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Preface 

During the last 30 years, face recognition and related problems such as face 
detection/tracking and facial expression recognition have attracted researchers from 
both the engineering and psychology communities.  In addition, extensive research 
has been carried out to study hand and body gestures. The understanding of how 
humans perceive these important cues has significant scientific value and extensive 
applications. For example, human-computer interaction, visual surveillance, and 
smart video indexing are active application areas. Aiming towards putting such 
amazing perception capability onto computer systems, researchers have made 
substantial progress. However, technological challenges still exist in many aspects.  

Following a format similar to the IEEE International Workshop on Analysis and 
Modeling of Faces and Gestures (AMFG) 2003, this one-day workshop (AMFG 
2005) provided a focused international forum to bring together well-known 
researchers and research groups to review the status of recognition, analysis and 
modeling of faces and gestures, to discuss the challenges that we are facing, and to 
explore future directions. Overall, 30 papers were selected from 90 submitted 
manuscripts. The topics of these papers range from feature representation, robust 
recognition, learning, and 3D modeling to psychology. In addition, two invited talks 
were given, by Prof. Kanade and Dr. Phillips. The technical program was organized 
into four oral sessions and two poster sessions.  

This workshop would not have been possible without the timely reviews provided 
by the members of the Technical Program Committee under a tight schedule.  

October 2005 Wenyi Zhao 
Shaogang Gong 

Xiaoou Tang 
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Facial Expression Analysis 

Takeo Kanade 

U.A. and Helen Whitaker University Professor, Robotics Institute, 
Carnegie Mellon University, Pittsburgh, PA 15213, USA 

Abstract. Computer analysis of human face images includes detection of faces, 
identification of people, and understanding of expression. Among these three 
tasks, facial expression has been the least studied, and most of the past work on 
facial expression tried to recognize a small set of emotions, such as joy, disgust, 
and surprise. This practice may follow from the work of Darwin, who proposed 
that emotions have corresponding prototypic facial expressions. In everyday 
life, however, such prototypic expressions occur relatively infrequently; instead, 
emotion is communicated more often by subtle changes in one or a few discrete 
features. FACS-code Action Units, defined by Ekman, are one such 
representation accepted in the psychology community. 

In collaboration with psychologists, we have been developing a system for 
automatically recognizing facial action units. This talk will present the current 
version of the system. The system uses a 3D Active Appearance Model to align 
a face image and transform it to a person-specific canonical coordinate frame. 
This transformation can remove appearance changes due to changes of head 
pose and relative illumination direction. In this transformed image frame, we 
perform detailed analysis of both facial motion and facial appearance changes, 
results of which are fed to an action-unit recogniser. 
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Modeling Micro-patterns for Feature Extraction 

Qiong Yang1, Dian Gong1, 2, and Xiaoou Tang1 

1 Microsoft Research Asia, Beijing Sigma Center, 
100080 Beijing, China 

{qyang, xitang}@microsoft.com 
2 Department of Electronic Engineering, Tsinghua University, 

100084 Beijing, China 
gongd@wmc.ee.tsinghua.edu.cn 

Abstract. Currently, most of the feature extraction methods based on micro-
patterns are application oriented. The micro-patterns are intuitively user-
designed based on experience. Few works have built models of micro-patterns 
for feature extraction. In this paper, we propose a model-based feature 
extraction approach, which uses micro-structure modeling to design adaptive 
micro-patterns. We first model the micro-structure of the image by Markov 
random field. Then we give the generalized definition of micro-pattern based on 
the model. After that, we define the fitness function and compute the fitness 
index to encode the image’s local fitness to micro-patterns. Theoretical analysis 
and experimental results show that the new algorithm is both flexible and 
effective in extracting good features. 

1   Introduction 

Feature extraction is one of the most important issues in pattern recognition. In 
previous studies, people observed that the spatial context in images plays an important 
role in many vision tasks, such as character recognition, object detection and 
recognition. So they design micro-patterns to describe the spatial context of the 
image, such as edge, line, spot, blob, corner, and more complex patterns. 
Furthermore, it is observed that the regional characteristics of micro-patterns are more 
robust to shift and scale, so a number of features are developed to calculate the 
regional characteristics of micro-patterns. These features include: 

a) Orientation Histogram. This kind of features designs the micro-pattern as 
directional line or edge, and calculates the histogram of each direction in the region. It 
has been used as an informative tool for various vision tasks. Sun and Si [1] used 
orientation histograms to find the symmetry axis in an image. Freeman and Roth [2] 
developed a method for hand gesture recognition based on the global orientation 
histogram of the image. Lowe [3] developed a scale-invariant feature from local 
orientation histograms for object recognition. Levi and Weiss [4] used local edge 
orientation histograms (EOH) as features to improve performance in object detection 
as well as face detection. Another example is that Four Directional Line Element 
(FDLE) [5] has been successfully used for character recognition.  

b) Filter Banks. In this kind of features, a bank of filters is designed to extract the 
micro-structural features, and the regional characteristics are computed from the filter 
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response. Goudail et al. [6] designed a series of local autocorrelation filters for face 
recognition, and the filter response is summed over the global image to form the 
feature. Wang et al. [7] used the histogram of regulated outputs of Gabor filters for 
Chinese character recognition in low-quality images.  

c) Local Binary Pattern. This feature is designed for texture analysis [8], face 
detection and face recognition [9]. The image is first divided into small regions, from 
which Local Binary Pattern (LBP) histograms are extracted and concatenated into a 
single feature histogram to efficiently represent the image.  

In all these features, the micro-patterns are intuitively user-designed based on 
experience, and they are application oriented. The micro-patterns fit for one task 
might be unfit for another. For example, FDLE [5] is successful in character 
recognition, but might not achieve the same success in face recognition, since face 
image is much more complex than the character image so that it cannot be simply 
represented by directional lines. Another problem is that in some cases, it is difficult 
for the user to intuitively determine whether the micro-pattern is appropriate unless he 
refers to the experimental result. A similar problem exists for Gabor features. 
Although in many papers Gabor has been used to recognize a general object as well as 
face [10,11,12], the parameters are mainly adjusted by experimental results, and it 
costs a lot of time and efforts to find the appropriate parameters. 

In this paper, we propose a model-based feature extraction approach, which uses 
Markov random field (MRF) to model the micro-structure of the image and design 
adaptive micro-patterns for feature extraction. The key idea is motivated by several 
observations: 

First of all, image structure modeling can help us find good features in at least 
three aspects: 1) Modeling could provide sound theoretical foundations and guide us 
on how to design suitable micro-patterns. 2) Through modeling, the feature extraction 
method could be more general, and also more applicable to various applications. 
3) Modeling will alleviate the efforts in adjusting parameters. Therefore, we introduce 
image structure modeling in the stage of feature extraction. 

Secondly, Markov field [13,14,15,17,18,19,20,21] provides a flexible mechanism 
for modeling spatial dependence. If we study the spatial dependence in a local region 
of the image, it will model the micro-patterns, with different spatial dependency 
corresponding to different micro-patterns. It is also convenient for representing 
unobserved complex patterns of images, especially the location of discontinuities 
between regions homogeneous in tone, texture or depth. Therefore it is possible for 
using Markov field to model the micro-patterns, not limited to the simple ones, but 
also the complex patterns. Moreover, the parameters of the model can be statistically 
learned from samples, instead of intuitively user-designed. Thereby it is more 
adaptive to the local characteristics of images. Different micro-patterns will be 
designed for different kinds of images, different attributes of images, and even at 
different sites of an image, so features will be more flexible, and also more applicable 
to various applications. 

Based on the above observations, we use MRF to extract block-level micro-
structural features. We first divide the image into sub-blocks and use MRF to model 
the micro-patterns in each sub-block. Based on that, we compute the local fitness 
sequence to describe the image’s local fitness to micro-patterns. Then, we extract the 
modified FFT (fast Fourier transform) feature of the local fitness sequence in each 
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sub-block. Finally, we concatenate these features from all sub-blocks into a long 
feature vector. The new feature presents a description of the image on three levels: the 
Markov field model reflects the spatial correlation of neighborhood in a pixel-level; 
the local fitness sequence in each sub-block reflects the image’s regional fitness to 
micro-patterns in a block level; and the features from all sub-blocks are concatenated 
to build a global description of the image. In this way, both the local textures and the 
global shape of the image are simultaneously encoded. 

2   Feature Extraction from Micro-structure Modeling 

2.1   Markov Random Field Model 

Let I  represent a H W×  image with S as its collection of all sites, and 
let s sX x= represent some attribute of the image I at site s S∈ . The attribute may be 

grayscale intensity, Gabor attribute or other features. Also, we denote the attributes of 
all other sites in S excluding site s by s sX x− −= . The spatial distribution of attributes 

on S , { },sx s S= = ∈X x , will be modeled as a Markov random field (MRF). 

Let sN denote the neighbors of site s , and the r -th order neighborhood is defined to 

be { }( ) | ( , ) ,r
sN t dist s t r t S= ≤ ∈ , where ( , )dist s t is the distance between site s and site t . 

The 1-st and 2-nd order neighborhood structure are displayed in Fig. 1. Because of the 
local property (i.e. Markovianity: ( ) ( )

s ss s s s s s N Np X x X x p X x X x− −= = = = = ), the Markov 

model is equivalent to the Gibbs random field, so we use the energy function to 
calculate the probability as follows 

{ }1
( ) ( ) exp ( , )

s s ss s s N s Np X X p X X E X Xθ− = = −
T

, (1) 

where ( , )
s ss NE X Xθ is the energy function at site s which is the sum of 

energies/potentials of the cliques containing site s , and { }exp ( , )
s s

s

s N
X

E X Xθ= −T is 

the partition function. Here, sθ is the parameter set for site s , so we rewrite 

( )
ss Np X X  into ( )

s ss Np X Xθ .  

For a pair-wise MRF model, there is ( , ) ( ) ( , )
s s

s

s N s s st s t
t N

E X X H X J X Xθ
∈

= + , where 

( )s sH X is the “field” at site s , and ( , )st s tJ X X  is the “interaction” between site s and 

site t . Furthermore, if ( ) 0s sH X = and 2
2

1
( , ) ( )

( )st s t s t
st

J X X X X
σ

= − , then we get the 

smooth model and there is 2
2

1
( , ) ( )

( )s s

s

s N s t
t N st

E X X X Xθ σ∈

= − , { },s st st Nθ σ= ∈ . 

If ( )s s s sH X Xα= , ( , )st s t st s tJ X X X Xβ= and { }1, 1 ,sX s S∈ + − ∈ , then we get the Ising 

model and there is ( , )
s s

s

s N s s st s t
t N

E X X X X Xθ α β
∈

= + , { }, ,s s st st Nθ α β= ∈ . For 

simplicity, we write sθ as θ . 
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(a)                (b)                (c)                    (d) 

Fig. 1. (a) The image I with the size of H W. (b) The site set S of the image I . (c) The 1-st 
order neighborhood structure. (d) The 2-nd order neighborhood structure.  Here, H=W=5. 

2.2   Feature Extraction 

In this section, we will discuss how we extract features based on Markov random field 
model. Firstly, we propose a generalized definition of micro-pattern, and then we 
design a fitness function to extract the image’s local fitness to micro-patterns. 

2.2.1   Generalized Definition of Micro-patterns 
Assume thatΩ denotes the micro-pattern, and ( )θ γΩ is defined to be all the pairs of 

( , )
ss Nx x that satisfy the constraint ( , )

ss Ng x xθ γ= with given θ , i.e. 

{ }( , ) : ( , )
s ss N s Nx x g x xθ γ= . Here,θ  is the parameter set. 

( )θ γΩ has the following properties: 

1. Givenθ ,{ }( ),θ γ γΩ ∈R describes a series of micro-patterns where R is the value 

set of γ . 

2. When γ is discrete, ( )θ γΩ is characterized by its probability ( )( )P θ γΩ = Ω ; when 

γ is a continuous variable, ( )θ γΩ is characterized by the probability density 

function ( )( )p θ γΩ . 

In this paper, since we use MRF model, we define 
( , ) ( , )

s s ss N s s N Ng x x E X x X xθ θ= = = , therefore 

{ }( ) ( , ) : ( , )
s s ss N s s N Nx x E X x X xθ θγ γΩ = = = =  (2) 

That is, ( , )
ss Nx x in the same level of energy belong to the same micro-pattern.  

a) When we use the smooth model, i.e. 2
2

1
( , ) ( )

( )s

s

s N s t
t N st

E X X X Xθ σ∈

= − , then  

2
2

1
( ) ( , ) : ( )

( )s

s

s N s t
t N st

x x x xθ γ γ
σ∈

Ω = − =  (3)  

In this sense, Fig. 2(a) and Fig. 2(b) are deemed to be same, while Fig 2(c) and Fig. 
2(d) are deemed to be different micro-patterns. 

b) When we use the Ising model, i.e. ( )
s

s

s N s s st s t
t N

H X X X X Xθ α β
∈

= + (with 1-st 

neighborhood), where { }1, 1 ,sX s S∈ + − ∀ ∈ and { }, ,s st st Nθ α β= ∈ is as shown in 

Fig.2(e), there is 
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( ) ( , ) :
s

s

s N s s st s t
t N

x x x x xθ γ α β γ
∈

Ω = + =  (4)  

This model can discriminate all the 16 patterns shown in Fig.2(f)~Fig.2(u). Among 
them, Fig.2(f) is a blob, Fig.2(g)~Fig.2(j) are triangles, Fig.2(k)~Fig.2(n) are corners, 
Fig.2(o)~Fig.2(p) are  lines, Fig.2(q)~Fig.2(t) are arrows, and Fig.2(u) is a ring. From 
the figure, we can see that the above model has strong capability in describing micro-
patterns. 

In fact, the micro-patterns defined in Eq.(2) is determined by the model parameters 
once the model form is given. The more parameters the model has, the more micro-
patterns it will discriminate. The micro-pattern designed by the model is adaptive to 
the local characteristics of the image, since the parameters are statistically learned 
from the training samples. This is quite different from the intuitively user-designed 
micro-patterns in Gabor [11,12], LBP [8,9], EOH [4] or FDLE [5]. 

 

         
(a)        (b)                (c)              (d) 

1

4

1

5

1

8

1

7

                 
(e)        (f)             (g)            (h)             (i)             (j)             (k)            (l)             (m) 

                 
(n)            (o)              (p)            (q)            (r)             (s)            (t)             (u) 

Fig. 2. (a)~(d) Micro-patterns of smooth model. (e) Parameters of Ising model. (f)~(u) Micro-
patterns of Ising model. 

2.2.2   Fitness Function 
Given θ , for any given pair of ( , )

ss NX X , we further define the fitness function 

( ),
ss Nh X Xθ as 

( )
( , )

,
s

s Ns
s N g X X

h X X e
θ

γ
θ γ

−

=
=  (5) 

Specifically, when ( , ) ( , )
s ss N s Ng X X E X Xθ θ= , there is 

( )
( , )

,
s

s Ns
s N E X X

h X X e
θ

γ
θ γ

−

=
=  (6) 

The fitness index can be computed by 

( ), ( , )
,

s
s Ns

s s N E x x
y h x x e

θ

γ
θ θ γ

−

=
= =  (7) 

The fitness function detects which micro-pattern the local characteristics of the 
image at site s fits with. Furthermore, it enlarges the difference between small γ , 
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where there is low potential/energy, and reduces the difference between large γ , 
where there is high potential/energy. 

More importantly, from the definition of micro-pattern (Eq.2) and the Markov 
random field model (Eq.1), we can derive 

( ) { }

: ( , )

( ) ( : ( , ) ) ( )

1
( )

1
( )

s s s s s

Ns

s s

N s s Ns s

s s

Ns

s s N N N N N
X

N N
X X E X X

N N
X

P P X E X X X x P X x

e P X x

V e P X x

e

θ

θ θ

γ

γ

γ

γ

γ γ

−

=

−

−

Ω = Ω = = = =

= ⋅ =

= ⋅ ⋅ ⋅ =

= ⋅

T

T
Z

, (8) 

where { }exp ( , )
s s

s

s N
X

E X Xθ= −T is independent of sX , V is the number of pairs 

( , )
ss NX X which belong to the micro-pattern ( )θ γΩ given

s sN NX x= , and 

1
( )

s s

Ns

N N
X

V P X x⋅ ⋅ =Z =
T

. Note that both V and T are only dependent on 
sNX and 

θ , so Z is a constant only dependent on θ . Consequently, 

( ) ( ), ( , )
, ( )

s s s N Ns s
s s N E X x X x

y h x x P
θθ θ θ γγ

= = =
= ∝ Ω = Ω  (9) 

That is, the fitness index ,syθ is proportional to the probability of
( , )

( )
s s N Ns s

E X x X xθθ γγ
= = =

Ω . 

From the perspective of filter design, the fitness function modulates the fitness to the 
micro-pattern with its probability. It enhances the micro-patterns with low energies 
which have high probabilities, and depresses those with high energies which have low 
probabilities. Actually, for a given θ , we design a series of micro-
patterns { }( ),θ γ γΩ ∈R , and ,syθ  indicates the occurrence probability of the micro-

pattern 
( , )

( )
s s N Ns s

E X x X xθθ γγ
= = =

Ω at site s . 

The fitness sequence can be computed as 

{ }, , 1,2,...,sy s nθ= =y , (10) 

where n H W= × is the number of sites in S . 

2.3   Estimation of Model Parameters 

The parameters in the MRF Model { },s s SθΘ = ∈ are estimated by learning from 

samples. Suppose there are m independent samples { }, 1,2,...,j j m=x , where 

1 2, ,...,
T

j j j jnx x x=x .  The maximum likelihood estimation (MLE) can be treated as 

the following optimization problem: 

*
1 1 2 2

1

arg max ( , ,..., )
m

j j n jn
j

p X x X x X xΘ
Θ =

Θ = = = =∏  (11) 



8 Q. Yang, D. Gong, and X. Tang 

 

Since there is ( ) ( )
s ss s s s s s N Np X x X x p X x X x− −= = = = = , we use the pseudo maximum 

likelihood estimation (PMLE) for approximation, i.e. 

1 1 2 2
1 1 1

arg max ( , ,..., ) arg max ( )
s s s

m m n

j j n jn s js N jN
j j s

p X x X x X x p X x X xθΘ
Θ Θ= = =

= = = ≈ = =∏ ∏∏
,    (12) 

which is equivalent to 

( )*

1 1

arg max log ( )
s s s

m n

s js N jN
j s

p X x X xθ
Θ = =

Θ ≈ = =  (13) 

Especially, when we use the smooth model, it can be treated as the following 
optimization problem: (for generality, we use the continuous form) 

2
2

1
( )

( )2
2

j=1 1

1
argmax ( ) log

( )

js jt
stt Ns

s

x xm n b

js jt jsa
s t N st

x x e dx
σ

σ
∈

− −

Θ = ∈

− − − , (14) 

where [ ],a b is the value interval of jsx . If we further assume that the Markov random 

field is homogenous and isotropic, i.e. stσ σ= , s S∀ ∈ , st N∀ ∈ , then it is equivalent to 

find the optimal σ  which maximizes the following function: 

2
2

2 2
j=1 1 j=1 1

-4 ( ) 2 -1
( ) exp

2 4 2

js

s
js

x b
m n m n

js js js js
js jt

s t N s
x a

x
x x erf

ζ ψ ψπ σ
σ σ σ

=

= ∈ =
=

+
− − − , (15) 

where 2
s

js jt
t N

xψ
∈

= , ( )2

s

js jt
t N

xζ
∈

= , 2

0

2
( ) exp( )

x
erf x t dt

π
= − . Then we can use the 

large scale algorithm to find the optimalσ . 

3   Algorithm 

The new algorithm includes three stages: 

1) We first divide the pre-aligned image into C sub-blocks (Fig.3a) with the size 
of N M× and the overlapping of L K× . For each sub-block, we independently use 
MRF to model the attributes ( ) ( 1,2,..., )i i C=x . For simplicity, we use a homogenous 
model in the block, i.e. the model parameters are the same in the same block. In the 
training stage, we learn the model parameters for each sub-block ( ) ( 1,2,..., )i i Cθ = from 

a set of pre-aligned training images { }( ) , 1,2,...,i
j j m=x by using Eq.(16): 

( )( )
( )

( )* ( ) ( )

1 1

arg max log ( )i
s si

m l
i i i

s js N jN
j s

p X x X xθ
θ

θ
= =

≈ = = , where l N M= × , 1,2,...,i C=  (16) 

Once the parameters are learned, we derive a series of micro-patterns for each block 
which fits best with the observations from the training samples. In the testing stage, 
we compute the local fitness sequence of the test image in each sub-block 

( ) ( 1,2,..., )i i C=y by using Eq.(17). 
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{ }( )

( )

,
, 1,2,...,i

i

s
y s lθ= =y , where ( )( ) ( ) ( )( )

( )

( ) ( )

, ( , )
,i i iis

i s Ns

i i
s Ns E x x

y h x x e
θ

γ
θ θ γ

−

=
= = , 1,2,...,i C=  (17) 

2) After that, we further extract a modified FFT feature (MFFT) of the local fitness 
sequence in each sub-block to reduce both dimensionality and noise (Fig.3b). The 
low-frequency components of the local fitness sequence are maintained, while the 
high-frequency components are averaged. If ( )iy denotes the local fitness sequence of 

the i -th block, and ( ) ( )( )i iFFT=z y , where { }( ) ( ) , 1,2,...,i i
sz s l= =z , then 

{ }( ) ( ) , 1,2,..., 1i i
su s k= = +u , where 

( )

( )

( )

1

, 1,2,...,

1
, 1

i
s

i l
s i

t
t k

z s k

u
z s k

l k = +

=
=

= +
−

 (18) 

and k is the truncation length. 
3) Finally, we concatenate ( ) ( 1,2,..., )i i C=u  from all sub-blocks as follows to form 

the MRF-based micro-structural feature, whose length is ( 1)C k× + (Fig.3b): 

(1) (2) ( ), ,...,
TC=u u u u  (19) 

 

{ }( ) , 1,2,...,i
j j m=x

( )iθ

( )ix ( )iy ( )iu

x

(1)x

(2)x

( )ix

(1)u

(2)u

( )iu

u

( ) :i
jx

( ) :ix
( ) :iy
( ) :iu

( ) :iθ

 
(a)                                                            (b)                               

Fig. 3. (a) Block-level representation. (b) MRF-based micro-structural feature extraction. 

4   Comparison with Related Works 

From above, we can see that, by dividing the pre-aligned image into small sub-blocks 
and assuming a homogenous model in the block, a series of micro-patterns which fits 
best with the observations of the block are designed for each sub-block. The 
occurrence probability of micro-patterns is computed site by site in each sub-block to 
form a sequence whose MFFT features are extracted to reflect the regional 
characteristics of its corresponding micro-patterns. All the modified FFT features 
from all sub-blocks are concatenated together to efficiently represent the image. 
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The new feature has the following traits: 
a) It is a micro-structural feature. Compared with the holistic features such as 

PCA (principal component analysis) [25], the new feature models the local spatial 
dependence and designs micro-patterns, while the holistic features extract the global 
characteristics of the image. Therefore, the new feature is more capable in capturing 
spatial context, which plays an important role in many vision tasks, such as face 
recognition and character recognition. 

b) It designs adaptive micro-patterns. Compared with other feature extraction 
methods based on micro-patterns, such as EOH [4], LBP [8,9], and FDLE [5], the 
micro-patterns in the new feature are adaptively designed by using MRF model, rather 
than intuitively user-defined in these previous features. The type of micro-patterns is 
learned from training samples, so it is adaptive to different images, different 
attributes, and different sites. 

c) It is a model-based feature. Compared with learning-based features by 
designing learning-based filters, such as LFA (local feature analysis) [22] and ICA 
(independent component analysis) [23], the new feature models the local spatial 
context directly, and thereby designs finer and more delicate micro-patterns than the 
previous features. In contrast, the filters in LFA or ICA are actually global feature 
projection vectors. The locality of filters is obtained by the least independence or least 
correlation between the filter responses. So it is less expressive in micro-structure 
than the new feature. 

Another related paper might be Liu’s work [21]. In that paper, Liu et al. built an 
inhomogeneous Gibbs model for face shape which is a set of linked key points, and 
they selected features by finding the optimal set of projection vectors which 
minimizes the KL divergence. Quite differently, in our paper, we use Markov random 
field to model the spatial dependence between attributes of neighboring sites, and we 
design micro-patterns by learning the model parameters from training samples. 

Some works on learning image priors using Markov random field can be found in 
texture analysis [26], image denoising and image inpainting [27]. However, these 
papers model the statistics of the whole image and they manage to find filters for 
sparse coding, rather than explicitly defining micro-patterns to extract micro-
structural feature as in our paper. 

5   Experiments 

5.1   Training MRF Model and the Flexibility of MRF Model 

To demonstrate the flexibility of the MRF model, we collect 2 training libraries to 
train the MRF model. The training libraries are from a standard face database: 
BANCA dataset [24], which contains 52 subjects with 120 images for each subject. 
Among them, 5 images/subject in Session 1 are used for training models. Using the 
260 images, two training libraries are marked as follows. The first library is the 
grayscale intensity of the 260 faces, which are cropped and normalized to the size of 
55 51×  based on the automatic registration of eyes. The second library is the Gabor 
attributes [12] of the same cropped faces, using a bank of Gabor filters with 2 scales 
and 4 orientations (wave-length: {6.5,6.5 2}ϕλ ∈ , orientation: { }0, / 4, / 2, 3 / 4μφ π π π∈ ). 
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We use the block-level representation in Sec. 3, and the pseudo maximum 
likelihood estimation (Eq.17) is utilized to train models respectively on the two 
libraries. A homogeneous and isotropic smooth model with 1-st order neighborhood 
structure is independently used for each sub-block as an example. The block size is 

5M N= =  with 2K L= = . The model parameters are shown in Fig. 4. Higher intensity 
represents larger value, and vice versa. 

From the figure, we can see that the MRF model is adaptive and flexible in at least 
three aspects. Firstly, it is adaptive to the intrinsic pattern of images. It is interesting 
to note that Fig. 4(b) manifests a facial-style pattern, since the model parameter varies 
with the local characteristics in the image. Secondly, the model is adaptive to different 
sites of the image. As Fig. 4(b) shows, the parameter varies with the site of the sub-
block, which takes big value when there is big variation in the sub-block, and takes 
small value when the variation is small. Thirdly, the model is adaptive to different 
attributes of the image. If we choose the attribute as grayscale intensity, the 
distribution of model parameter is shown in Fig. 4(b). While if we choose the Gabor 
attribute, the distribution of parameter is shown in Fig. 4(d), which shows the same 
characteristic in orientation and scale as the Gabor attribute in Fig. 4(c). All these 
demonstrate that the new feature is flexible due to the strong flexibility of model. 

 

    

 

(a)                    (b)                       (c)                    (d) 

Fig. 4. Parameters of the MRF model. (a) Grayscale intensity of an example image. (b) 
Parameters of MRF model on grayscale intensity. (c) Gabor attribute of an example image. 

6.5ϕλ = , / 4μφ π= . (d) Parameters of MRF model on Gabor attribute. 

5.2   Effectiveness of MRF Modeling in Feature Extraction 

To evaluate the effectiveness of our new feature, we conduct tests on two 
applications, face identification and glasses detection. 

5.2.1   Face Identification 
In face identification, two groups of experiments are implemented. The first group is 
conducted to test whether using MRF to model micro-structure on grayscale intensity 
really helps in identifying faces from different persons. In the tests, we first compare 
the new feature using MRF model on grayscale intensity with the original grayscale 
feature, and then compare it with Gabor feature which has been successfully used in 
face recognition. The second group is conducted to test if this micro-structure 
modeling could also be useful for Gabor attribute. 

The test database  is the BANCA dataset [24]. MC test configuration is employed, 
thereby 5 images/subject in Session 1 are used for training, and the other 35 
images/subject in Session 1~4 are used for testing. Each image is preprocessed in the 
same way as in Sec. 5.1.  

In the first group of experiments, three kinds of features are extracted and 
compared. They are: 1) the original grayscale intensity without MRF modeling (in 
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abbr. Grayscale); 2) the new feature using MRF model on grayscale intensity which 
has been trained by the first training library in Sec. 5.1 (in abbr. Grayscale+MRF); 
and 3) the Gabor feature similar to Liu &Wechsler [12] (in abbr. Gabor). Here, the 
same bank of Gabor filters as in Sec.5.1 is used. Then PCA [25] is applied on the 
respective three kinds of features for compression and noise suppression. At last, 
nearest neighborhood decision with L1 distance is used for classification. Here, we 
set 5M N= = , 2K L= = , and 3k = . Results are given in Fig.5(a) and Table 1. 

To further analyze whether the MRF modeling could be useful for Gabor attribute, we 
extract the new feature using MRF model on Gabor attribute (Gabor+MRF). We use the 
same scheme in preprocessing, feature compression, and classification as in the first group 
of experiments. The difference is that a two-stage concatenation is implemented. That is, 
the MRF-based feature extraction is first implemented on each scale and each orientation 
of Gabor attribute in each sub-block, and then the features on all scales and all orientations 
in one block are concatenated into a feature vector for the sub-block. Finally the features 
from all sub-blocks are concatenated again to form the complete feature set on the whole 
image. Here, the same bank of Gabor filters as in Sec. 5.1 are used. The MRF model is 
trained by the second training library in Sec.5.1 with 5M N= = , 2K L= = , 3k = . The 
original Gabor attribute (in abbr. Gabor) is used as a baseline for comparison. 
Experimental results are shown in Fig. 5(b) and Table 1. 

Table 1. Experimental results on face identification 

Feature Grayscale Grayscale+MRF  Gabor Gabor+MRF 

Accuracy Rate 87.91% 91.98% 90.77% 93.90% 

 
(a)                                                                  (b)                               

Fig. 5. Experiments in face identification. (a) Performance of MRF-based feature on grayscale 
intensity. (b) Performance of MRF-based feature on Gabor attribute.  

From the above experimental results, we can observe three facts: 

1) MRF modeling does help improve the performance on face identification. On 
grayscale intensity, the error rate is reduced by 33.66% after using MRF model. This 
shows that by using MRF to model the micro-structure in the image, the performance 
is considerably improved. This is because of two reasons. The first is that MRF is good 
at modeling spatial dependence between neighboring sites. The second is that the micro-
structural features are useful for face identification. 
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2) If we further compare the three features in the first group of experiments, we 
can find out that, in our experiments, the MRF-based feature on only grayscale 
intensity outperforms the Gabor feature, which manifests good performance in many 
applications. This is important in two aspects. Firstly, although Gabor filter has been 
widely used in many applications, it remains difficult to find suitable parameters for 
the method. Compared with Gabor, most of the parameters in the new feature 
extraction method are learned from training samples, rather than adjusted by 
experimental results. Secondly, extracting Gabor feature is still time-consuming, 
however the MRF-based feature extraction on grayscale intensity is much faster. 

3) MRF modeling is also useful for Gabor attribute. By using MRF modeling on 
Gabor attribute, Gabor+MRF achieves the highest performance, 93.90% accuracy rate 
on the BANCA dataset. This shows that the new feature extraction approach can be 
applied not only on grayscale intensity, but also on other attributes, if it can be 
modeled as a Markov field. 

5.2.2   Glasses Detection 
To further demonstrate the effectiveness of MRF modeling in feature extraction, 
experiments on glasses detection are also conducted. Images are collected from the 
complete BANCA dataset, which ranges from constrained scenario to degraded and 
adverse scenarios. In total, 2769 images of eyes wearing glasses and 3261 images 
without glasses are collected. Among them, 125 images wearing glasses and 185 images 
without glasses are used for training, and the remaining images are used for testing. All 
images are cropped and normalized to the size of 27 51× based on the automatic 
registration of eyes. Note that in the probe set there is no sun-glasses, and many glasses 
have no obvious edge, which makes it rather difficult to determine if there are glasses. 
Example images are shown in Fig.6. Such kind of grayscale images are chosen to test 
whether the minor change caused by glasses could be detected by the new feature. 

  
(a)                                                                  (b)                               

Fig. 6. (a) Example images of eyes wearing glasses. (b) Example images of eyes with no 
glasses. 

Two groups of comparison are also conducted via similar procedure as Sec. 5.2.1. 
The block size is 5M N= =  with 2K L= = . The results are given in Fig. 7 and Table 2, 
where the overall accuracy rate on both glasses and no-glasses are reported.  

From the table and the figures, we can see that although it is rather difficult to 
detect the minor changes caused by glasses, MRF does help in this challenging task. 
By using MRF model, the classification accuracy is greatly improved, from 70.61% to 
78.11% on grayscale intensity, and 34.30% improvement on Gabor attribute. Again, 
MRF-based feature on grayscale intensity is better than Gabor feature, and MRF-
based feature on Gabor attribute is the best among the 4 kinds of features. This 
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Table 2.   Experimental results on glasses detection 

Feature Grayscale Grayscale+MRF Gabor Gabor+MR

Accuracy Rate 70.61% 78.11% 74.84% 83.47% 

(a)                                                                             (b) 
Fig. 7. Experiments in glasses detection. (a) Performance of MRF-based feature on grayscale 
intensity. (b) Performance of MRF-based feature on Gabor attribute. 

demonstrates that the new feature extraction approach has good flexibility, and its 
application is not limited to one single specific area. 

6   Discussions 

a) Why do we build the model in the sub-block?  
There are mainly two reasons. The first is that the regional characteristic in the 

sub-block is more robust to shift and scale. The second is that it will be much simpler 
than building the model on the whole image. In the meanwhile, the spatial 
dependence between two sites generally decreases drastically when their distance 
exceeds the block size. 
b) Why do we use the pseudo-maximum likelihood estimation (PMLE)? 

The true maximum likelihood estimation (MLE) can be regarded as a NP-hard 
optimization problem and it is very hard to find the solution, so PMLE is adopted for 
approximation.  Actually, the estimation from PMLE follows the asymptotic normal 
distribution whose expectation is the true parameter value. 
c) Why do we compare our algorithm with the Gabor feature? 

Firstly, Gabor feature has been successfully used in many applications such as face 
recognition, character recognition, and texture analysis, so we are trying to find some 
other features beyond Gabor filter. Secondly, most current works find the parameters 
for Gabor filter through experimental results, which is time-consuming. 

7   Conclusions 

In this paper, a new algorithm is proposed to use micro-structure modeling for feature 
extraction, where the micro-structure in the image is modeled by Markov random 
field, and the model parameters are learned from the training samples. Therefore the 
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micro-patterns are adaptively designed according to the spatial context of images. 
That is, the micro-patterns are adaptive to various images, various attributes, and 
various sites. 

The paper only discusses methods in feature extraction, rather than feature 
projection or feature selection. So it can be combined with LDA (linear discriminate 
analysis) or other discriminant learning algorithms to further improve the 
discrimination capability of features. 

The new algorithm is a model-based feature extraction method. The introduction 
of Markov random field in the stage of feature extraction enables us to move a step 
towards modeling micro-patterns for feature extraction. Although this is an initial 
work, it shows some interesting results:  

1) Modeling the micro-structure does help find better features. 
2) The new micro-structural feature on grayscale intensity is better than Gabor 

feature on our experiments, and it is also much faster than Gabor feature. 
3) The new algorithm could be applied on various attributes, not only on 

grayscale intensity, but also on Gabor attribute. It can also be used in a variety 
of applications, not limited to one single specific area. 

Future work will be using better MRF models for feature extraction. Another 
important direction is more theoretical work on how to extract features based on the 
model. In addition, we will test the performance of these new algorithms on more 
applications. 
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Abstract. We present a new framework to represent and analyze dynamic facial
motions using a decomposable generative model. In this paper, we consider facial
expressions which lie on a one dimensional closed manifold, i.e., start from some
configuration and coming back to the same configuration, while there are other
sources of variability such as different classes of expression, and different peo-
ple, etc., all of which are needed to be parameterized. The learned model supports
tasks such as facial expression recognition, person identification, and synthesis.
We aim to learn a generative model that can generate different dynamic facial
appearances for different people and for different expressions. Given a single
image or a sequence of images, we can use the model to solve for the tempo-
ral embedding, expression type and person identification parameters. As a result
we can directly infer intensity of facial expression, expression type, and person
identity from the visual input. The model can successfully be used to recognize
expressions performed by different people never seen during training. We show
experiment results for applying the framework for simultaneous face and facial
expression recognition.

Sub-categories: 1.1 Novel algorithms, 1.6 Others: modeling facial expression.

1 Introduction

The appearance of a face performing a facial expression is an example of a dynamic
appearance that has global and local deformations. There are two interesting compo-
nents in dynamic facial expressions: face identity (face geometry and appearance char-
acterizing the person) and facial motion (deformation of face geometry through the
expression and its temporal characteristics). There has been extensive research related
to face recognition [24] emanating from interest in applications in security and visual
surveillance. Most of face recognition systems focused on still face images, i.e., cap-
turing identity through facial geometry and appearance. There have been also interests
on expression invariant face recognition [15,14,2]. Individual differences of facial ex-
pression like expressiveness can be useful as a biometric to enhance accuracy in face
recognition [8]. On the other hand, facial expression analysis gain interest in computer
vision with applications in human emotion analysis for HCI and affective computing.
Most studies of facial expression recognition have focused on static display of intense
expressions even though facial dynamics are important in interpreting facial expression
precisely [1].
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Our objective in this paper is to learn dynamic models for facial expressions that
enable simultaneous recognition of faces and facial expressions. We learn a dynamic
generative model that factors out different face appearance corresponding to different
people and in the same time parameterizes different expressions.

Despite the high dimensionality of the image space in facial expressions, facial
motions lie intrinsically on much lower dimensional subspaces. Therefore, researchers
have tried to exploit subspace analysis in face recognition and facial expression analy-
sis. PCA has been widely used in appearance modeling to discover subspaces for face
appearance variations as in [21,10]. When dealing with dynamic facial expressions, im-
age data lie on low dimensional nonlinear manifolds embedded in the high dimensional
input space. Embedding expression manifolds to low dimensional spaces provides a
way to explicitly model such manifolds. Linear subspace analysis can achieve a linear
embedding of the motion manifold in a subspace. However, the dimensionality of the
subspace depends on the variations in the data and not on the intrinsic dimensional-
ity of the manifold. Nonlinear dimensionality reduction approaches can achieve much
lower dimensionality embedding of nonlinear manifolds through changing the metric
from the original space to the embedding space based on local structure of the manifold,
e.g. [17,19]. Nonlinear dimensionality reduction has been recently exploited to model
the manifold structure in face recognition, facial expression analysis [3]. However, all
these approaches (linear and nonlinear) are data-driven, i.e., the visual input is used to
model motion manifolds. The resulting embeddings are data-driven and, therefore, the
resulting embedded manifolds vary due to person facial geometry, appearance, facial
deformation, and dynamics in facial expressions, which affect collectively the appear-
ance of facial expressions. The embedding of the same facial expression performed by
different people will be quite different and it is hard to find a unified representation of
the manifold. But, conceptually all these manifolds (for the same expression) are the
same. We can think of it as the same expression manifold which is twisted differently in
the input space based on person’s facial appearance. They are all topologically equiv-
alent, i.e., homeomorphic to each other and we can establish a bijection between any
pair of them. Therefore, we utilize a conceptual manifold representation to model facial
expression configuration and learn mappings between the conceptual unified represen-
tation and each individual data manifold.

Different factors affect the face appearance. There had been efforts to decompose
multiple factors affecting appearance from face and facial expression data. Bilinear
models were applied to decompose person-dependent factor and the pose-dependent
factor as the style and content from pose-aligned face images of different people [20]
and facial expression synthesis [4]. Multilinear analysis, or higher-order singular value
decomposition [11], were applied to aligned face images with variation of people, illu-
mination and expression factors and applied for face recognition [22]. In this model,
face images are decomposed into tensor multiplication of different people basis, illumi-
nation basis and expression basis. Facial expressions were also analyzed using multilin-
ear analysis for feature space similar to active appearance model to recognize face and
facial expression simultaneously [23]. All these approaches have limitations in captur-
ing nonlinearity of facial expression as the subspaces are expansion of linear subspace
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of facial images. In addition, all these approaches deal with static facial expressions and
do not model dynamics in facial expression.

In this paper, we learn nonlinear mappings between a conceptual embedding space
and facial expression image space and decompose the mapping space using multilinear
analysis. The mapping between sequences of facial expression and embedding points
contains characteristics of the data invariant to temporal variations and change with dif-
ferent people facial expression and different types of facial expressions. We decompose
the mapping space into person face appearance factor, which is person dependent and
consistent for each person, and expression factor, which depends on expression type
and common to all people with the same expression. In addition, we explicitly decom-
pose the intrinsic face configuration during the expression, as a function of time in the
embedding space, from other conceptually orthogonal factors such as facial expres-
sions and person face appearances. As a result, we learn a nonlinear generative model
of facial expression with modeling dynamics in low dimensional embedding space and
decomposing of multiple factors in facial expressions.

Contribution: In this paper we consider facial expressions which lie on a one dimen-
sional closed manifold, i.e., start from some configuration and coming back to the same
configuration. We introduce a framework to learn decomposable generative models for
dynamic appearance of facial expressions where the motion is constrained to one di-
mensional closed manifolds while there are other sources of variability such as different
classes of expression, and different people, etc., all of which are needed to be parame-
terized. The learned model supports tasks such as facial expression recognition, person
identification, and synthesis. Given a single image or a sequence of images, we can
use the model to solve for the temporal embedding, expression type and person iden-
tification parameters. As a result we can directly infer intensity of facial expression,
expression type, and person face from the visual input. The model can successfully be
used to recognize expressions performed by different people never seen in the training.

2 Facial Expression Manifolds and Nonlinear Decomposable
Generative Models

We investigate low dimensional manifolds and propose conceptual manifold embed-
ding as a representation of facial expression dynamics in Sec. 2.1. In order to preserve
nonlinearity of facial expression in our generative model, we learn nonlinear mapping
between embedding space and image space of facial expression in Sec. 2.2. The decom-
posable compact parameterization of the generative model is achieved using multilinear
analysis of the mapping coefficients in Sec. 2.3.

2.1 Facial Expression Manifolds and Conceptual Manifold Embedding

We use conceptual manifold embedding for facial expressions as a uniform represen-
tation of facial expression manifolds. Conceptually, each expression sequence forms
a one-dimensional closed trajectory in the input space as the expression starts from a
neutral face and comes back to the neutral face. Data-driven low dimensional manifolds
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using nonlinear dimensionality reduction algorithms such as LLE [17] and Isomap [19]
vary in different people and in different expression types. Fig. 1 shows low dimensional
manifold representation of facial expression sequences when we applied LLE to high
dimensional vector representations of image sequences of facial expressions. The fa-
cial expression data with twice repetitions of the same type expression are captured and
normalized for each person as shown in Fig. 1 (a) and (b). Fig. 1 (c) and (d) show the
manifolds found by applying the LLE algorithm. The manifolds are elliptical curves
with distortions according to the person face and expressions. Isomap and other nonlin-
ear dimensionality reduction algorithms show similar results. Sometimes the manifold
does not show smooth curves due to noise in the tracking data and images. In addition,
the embedding manifolds can be very different in some case. It is hard to find represen-
tations comparable each manifold for multiple expression styles and expression types.
Conceptually, however, all data driven manifolds are equal. They are all topologically
equivalent, i.e., homeomorphic to each other, and to a circular curve. Therefore, we can
use the unit circle in 2D space as a conceptual embedding space for facial expressions.

A set of image sequences which represent a full cycle of the facial expressions are
used in conceptual embedding of facial expressions. Each image sequence is of a certain
person with a certain expression. Each person has multiple expression image sequences.
The image sequences are not necessarily to be of the same length. We denote each
sequence by Y se = {yse

1 · · ·yse
Nse
}where e denotes the expression label and s is person

(a) Smile sequences from subject Db

(b) Smile sequences from subject S

(c) LLE embedding for Db’s smile
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(d) LLE embedding for S’s smile
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Fig. 1. Facial expression manifolds in different subjects: (a) and (b): Facial expression image
sequences. (2 cycles 480 frames):40th, 80th, 120th, 160th, 200th, 240th, 280th, 320th, 360th,
400th, 440th, 480th frames. (c) and (d): Nonlinear manifold embeddings of facial expression
sequences by LLE.
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face label. Let Ne and Ns denote the number of expressions and the number of people
respectively, i.e., there are Ns×Ne sequences. Each sequence is temporally embedded
at equidistance on a unit circle such that xse

i = [cos(2πi/Nse) sin(2πi/Nse)], i =
1 · · ·Nse. Notice that by temporal embedding on a unit circle we do not preserve the
metric in input space. Rather, we preserve the topology of the manifold.

2.2 Nonlinear Mapping Between Embedding Space and Image Space

Nonlinear mapping between embedding space and image space can be achieved through
raidal basis function interpolation [6]. Given a set of distinctive representative and ar-
bitrary points {zi ∈ R

2, i = 1 · · ·N} we can define an empirical kernel map[18] as
ψN (x) : R

2 → R
N where

ψN (x) = [φ(x, z1), · · · , φ(x, zN )]T, (1)

given a kernel function φ(·). For each input sequence Y se and its embedding Xse

we can learn a nonlinear mapping function fse(x) that satisfies fse(xi) = yi, i =
1 · · ·Nse and minimizes a regularized risk criteria. Such function admits a representa-
tion of the form

f(x) =
N∑

i=1

wiφ(x, zi),

i.e., the whole mapping can be written as

fse(x) = Bse · ψ(x) (2)

where B is a d×N coefficient matrix. If radial symmetric kernel function is used, we
can think of equation 2 as a typical Generalized Radial basis function (GRBF) inter-
polation [16] where each row in the matrix B represents the interpolation coefficients
for corresponding element in the input. i.e., we have d simultaneous interpolation func-
tions each from 2D to 1D. The mapping coefficients can be obtained by solving the
linear system

[yse
1 · · ·yse

Nse
] = Bse[ψ(xse

1 ) · · ·ψ(xse
Nse

)]

Where the left hand side is a d×Nse matrix formed by stacking the images of sequence
se column wise and the right hand side matrix is an N×Nse matrix formed by stacking
kernel mapped vectors. Using these nonlinear mapping, we can capture nonlinearity
of facial expression in different people and expressions. More details about fitting the
model can be found in [6].

2.3 Decomposition of Nonlinear Mapping Space

Each nonlinear mapping is affected by multiple factors such as expressions and person
faces. Mapping coefficients can be arranged into high order tensor according to expres-
sion type and person face. We applied multilinear tensor analysis to decompose the
mapping into multiple orthogonal factors. This is a generalization of the nonlinear style
and content decomposition as introduced in [7]. Multilinear analysis can be achieved by
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higher-order singular value decomposition (HOSVD) with unfolding, which is a gener-
alization of singular value decomposition (SVD) [11]. Each of the coefficient matrices
Bse = [b1b2 · · · bN ] can be represented as a coefficient vector bse by column stacking
(stacking its columns above each other to form a vector). Therefore, bse is an Nc = d·N
dimensional vector. All the coefficient vectors can then be arranged in an order-three fa-
cial expression coefficient tensor B with dimensionality Ns×Ne×Nc. The coefficient
tensor is then decomposed as

B = Z ×1 S ×2 E ×3 F (3)

where S is the mode-1 basis of B, which represents the orthogonal basis for the person
face. Similarly, E is the mode-2 basis representing the orthogonal basis of the expres-
sion and F represents the basis for the mapping coefficient space. The dimensionality of
these matrices are Ns×Ns, Ne×Ne, Nc×Nc for S,E and F respectively.Z is a core
tensor, with dimensionality Ns×Ne×Nc which governs the interactions among differ-
ent mode basis matrices. Similar to PCA, it is desired to reduce the dimensionality for
each of the orthogonal spaces to retain a subspace representation. This can be achieved
by applying higher-order orthogonal iteration for dimensionality reduction [12].

Given this decomposition and given any Ns dimensional person face vector s and
any Ne dimensional expression vector e we can generate coefficient matrix Bse by
unstacking the vector bse obtained by tensor product bse = Z ×1 s ×2 e. Therefore
we can generate any specific instant of the expression by specifying the configuration
parameter xt through the kernel map defined in equation 1. Therefore, the whole model
for generating image yse

t can be expressed as

yse
t = unstacking(Z ×1 s×2 e) · ψ(xt) .

This can be expressed abstractly also in the generative form by arranging the tensor Z
into a order-four tensor C

yt = C ×1 s×2 e×3 ψ(x)×4 L , (4)

where dimensionality of core tensor C is Ns ×Ne ×N × d, ψ(x) is a basis vector for
kernel mapping with dimension N for given x and L is collection of basis vectors of all
pixel elements with dimension d×d . We can analyze facial expression image sequence
by estimation of the parameters in this generative model.

3 Facial Expression Analysis and Synthesis Using Generative
Models

There are two main approaches in representing facial motions for facial expression
analysis: model-based or appearance-based. Geometric features are extracted with the
aid of 2D or 3D face models in model-based approaches. 3D deformable generic face
model [5] or multistate facial component models [13] are used to extract facial features.
Active appearance model are employed to use both shape and textures in [10][23]. Our
generative model use pixel intensity itself as an appearance representation as we want,
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not only to analyze, but also to synthesize facial expressions in the image space. The
final representation of facial expressions in our generative model, however, is a compact
person face vector and an expression vector that are invariant to temporal characteristics
and low dimensional embedding that represents temporal characteristics.

The generative model supports both sequence-based and frame-based recognition of
facial expressions. Facial expression recognition system can be categorized into frame-
based and sequence-based methods [8] according to the use of temporal information. In
frame-based methods, the input image is treated independently either a static image or
a frame of a sequence. Frame-based method does not use temporal information in the
recognition process. In sequence-based methods, the HMMs are frequently used to uti-
lize temporal information in facial expression recognition [5]. In our generative model,
the temporal characteristics are modeled in low dimensional conceptual manifolds and
we can utilize the temporal characteristics of the whole sequence by analyzing facial ex-
pression based on the mapping between the low dimensional embedding and the whole
image sequence. We also provide methods to estimate expression parameters and face
parameters from single static image.

3.1 Preprocessing: Cropping and Normalizing Face Images

The alignment and normalization of captured faces using a standard face is an important
preprocessing in facial expression recognition to achieve robust recognition of facial
expressions in head motion and lighting condition change. We interactively select two
eyes and a nose tip locations, which are relatively consistent during facial expressions,
from one face image for each subject. Based on the selected templates, we perform de-
tection of each template location from subsequent facial image by finding maximum
correlation of the template images in the given frame image. We cropped images based
on eye locations and nose similar to [14] after affine transformation to align the loca-
tion of eyes and nose tip to a standard front face. Fig. 2 (a) shows interactively selected
two eyes and a nose tip templates. A cropping region is decided after detection of tem-
plate locations and affine transformation for every new image as shown in (b). Fig. 2
(c) shows normalization results in the sequence where the first frame is used to select
templates and (d) in another sequence with different expression of the same subject

(a) (b) (c)

(d)

Fig. 2. Cropping and normalizing face images to a standard front face: (a) Selected templates
(eyes and a nose tip). (b) Template detection, affine transformation and selected cropping region.
(c) A normalized sequence where templates are selected from the first frame. (d) A normalized
sequence from another expression of the same person.
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without new template selections. We further processed the normalization of brightness
when necessary. As a result, we can recognize facial expression robustly with changes
of head location and small changes of head orientation from a frontal view.

3.2 Facial Expression Representation

Our generative model represents facial expressions using three state variables of the
generative model: person face vector s, expression vector e, and embedding manifold
point x, whose dimensions are Ns, Ne and 2 without further dimensionality reduction
using orthogonal iteration. The embedding can be parameterized by one dimensional
vector as the conceptual embedding manifold, unit circle, is one dimensional manifold
in two dimensional space. The total number of dimensions of the parameters to repre-
sent a facial image is Ns + Ne + 1 after we learn the generative model. Fig. 3 shows
examples of person face vectors (a) and expression vectors (b) when we learn the gen-
erative model from eight people with six different expressions related to basic emo-
tions from Cohn-Kanade AU coded facial expression database [9], where Ns = 8 and
Ne = 6. Plottings in three dimensional space using the first three parameters of face
class vectors (c) and facial expression class vectors (d) give insight to the similarity
among different person faces and different facial expression classes. Interestingly, plot-
ting of the first three parameters of six basic expressions in Fig. 3 (d) shows embedding
similar to the conceptual distance of six expressions in the image space. The surprise
expression class vector is located far from other expressions, which is connected to dis-
tinguishable different visual motions in surprise. Anger, fear, disgust, and sadness are
relatively close to each other than other expressions since they are distinguished visu-
ally using more subtle motions. The expression vector captures characteristics of image
space facial expression in low dimensional space.

3.3 Sequence-Based Facial Expression Recognition

Given a sequence of images representing a facial expression, we can solve for the ex-
pression class paramter, e, and person face parameter, s. First, the sequence is embed-

(a) Eight style vectors
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(d) Plotting expression vectors in 3D
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Fig. 3. Facial expression analysis for eight subjects with six expressions from Cohn-
Kanade dataset
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(a) Iteration: sadness
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(c) Iteration: happy
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(d) Iteration: anger
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Fig. 4. The convergence of estimated expression parameters in iterations

ded to a unit circle and aligned to the model as described in Sec. 2. Then, mapping
coefficients B are learned from the aligned embedding to the input. Given such coeffi-
cients, we need to find the optimal s and e, which minimize the error

E(s, e) = ‖b−Z ×1 s×2 e‖ , (5)

where b is the vector representation of matrix B by column stacking. If the person face
parameter s is known, we can obtain a closed form solution for e. This can be achieved
by evaluating the tensor product G = Z ×1 s to obtain tensor G. Solution for b can
be obtained by solving the system b = G ×2 e for e which can be written as a typical
linear system by unfolding G as a matrix. Therefore the expression estimation e can be
obtained by

e = (G2)+b (6)

where G2 is the matrix obtained by mode-2 unfolding of G and + denotes the pseudo
inverse using singular value decomposition (SVD). Similarly we can analytically solve
for s if the expression parameter, e, is known by forming a tensorH = Z ×2 e:

s = (H1)+b (7)

whereH1 is the matrix obtained by mode-1 unfolding ofH.
Iterative estimations of e and s using equations 6 and 7 would lead to a local minima

for the error in 5. Fig. 4 shows examples of expression estimation in iteration using new
sequences. Y axis shows Euclidian distance between the estimated expression vector
and six expression class vectors in the generative model in Sec. 4.1. Usually the esti-
mation parameters of expressions converge into one of expression class vectors within
several iterations. Fig. 4 (d) shows a case when more than ten iterations are required to
reach stable solution in the estimation of expression vector.

3.4 Frame-Based Facial Expression Recognition

When the input is a single face image, it is desired to estimate temporal embedding or
the face configuration in addition to expression and person face parameters in the gener-
ative model. Given an input image y, we need to estimate configuration, x , expression
parameter e, and person face parameter s which minimize the reconstruction error

E(x, s, e) =|| y − C ×1 s×2 e×3 ψ(x) || (8)
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We can use a robust error metric instead of Euclidian distance in error measurements.
In both cases we end up with a nonlinear optimization problem.

We assume optimal estimated expression parameter for a given image can be written
as a linear combination of expression class vectors in the training data. i.e., we need to
solve for linear regression weights α such that e =

∑Ke

k=1 αkek where each ek is one
of Ke expression class vectors in the training data. Similarly for the person face, we
need to solve for weights β such that s =

∑Ks

k=1 βksk where each sk is one of Ks face
class vectors.

If the expression vector and the person face vector are known, then equation 8 is re-
duced to a nonlinear 1-dimensional search problem for configuration x on the unit circle
that minimizes the error. On the other hand, if the configuration vector and the person face
vector are known, we can obtain expression conditional class probabilities p(ek|y, x, s)
which is proportional to observation likelihood p(y | x, s, ek). Such likelihood can be
estimated assuming a Gaussian density centered around C ×1 sk ×2 e×3 ψ(x), i.e.,

p(y | x, s, ek) ≈ N(C ×1 sk ×2 e×3 ψ(x), Σek

).

Given expression class probabilities we can set the weights to αk = p(ek | y, x, s).
Similarly, if the configuration vector and the expression vector are known, we can obtain
face class weights by evaluating image likelihood given each face class sk assuming a
Gaussian density centered at C ×1 sk ×2 e×3 ψ(x).

This setting favors an iterative procedures for solving for x, e, s. However, wrong
estimation of any of the vectors would lead to wrong estimation of the others and leads
to a local minima. For example wrong estimation of the expression vector would lead
to a totally wrong estimate of configuration parameter and therefore wrong estimate for
person face parameter. To avoid this we use a deterministic annealing like procedure
where in the beginning the expression weights and person face weights are forced to be
close to uniform weights to avoid hard decisions about expression and face classes. The
weights gradually become discriminative thereafter. To achieve this, we use a variable
expression and person face class variances which are uniform to all classes and are
defined as Σe = Teσ

2
eI and Σs = Tsσ

2
sI respectively. The parameters Te and Ts start

with large values and are gradually reduced and in each step and a new configuration
estimate is computed. Several iterations with decreasing Te and Ts allow estimations
of the expression vector, the person face vector and face configuration iteratively and
allow estimations of expression and face from a single image.

3.5 Facial Expression Synthesis

Our model can generate new facial expressions by combinations of new facial expres-
sion parameter and person face parameter. As we have decomposed the mapping space
that captures nonlinear deformation in facial expressions, the linear interpolation of the
face style and facial expression still somewhat captures nonlinearity in the facial expres-
sion. In addition, we can control the parameters for person face and facial expression
separately as a result of the multilinear decomposition. A new person face vector and
a new facial expression vector can be synthesized by linear interpolation of existing
person face class vectors and expression class vectors using parameter αi, and βj as
follows:
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(a) Neutral → smile → surprise (b) Surprise → angry → neutral

(c) Subject A face → subject B face (d) Subject B face → subject C face

(e) Simultaneous transfer of face and expression: neutral → smile → surprise → fear → neutral

Fig. 5. Facial expression synthesis: First row: Expression transfer. Second row: Person face trans-
fer during smile expression. Third row: simultaneous transfer of facial expression and person face.

enew = α1e1 + α2e2 + · · ·+ αNeeNe , snew = β1s1 + β2s2 + · · ·+ βNssNs , (9)

where
∑

i αi = 1, and
∑

j βj = 1, and αi ≥ 0 and βi ≥ 0 in order to be linear inter-
polation in the convex set of the original expression classes and face classes. Here αi

and βj are control parameters whereas they are estimated in recognition as in Sec. 3.4.
We can also control these interpolation parameters according to temporal information
or configuration. A new facial expression image can be generated using new style and
expression parameters.

ynew
t = C ×1 snew

t ×2 enew
t ×3 ψ(xt) (10)

Fig. 5 shows examples of the synthesis of new facial expressions and person faces.
During synthesis of the new images, we combine control parameter t to embedding
coordinate x and interpolation parameter α and β. In case of Fig. 5 (a), the t changed
0→ 1 and new expression parameter enew

t = (1−t)esmile+tesurprise. As a result, the
facial expression starts from neutral expression of smile and animates new expression
as t changes and when t = 1, the expression become a peak expression of surprise.
In case of (b), the t changed 1 → 0. In the same way, we can synthesize new faces
during smile expressions as in (c) and (d). Fig. 5 (e) is the simultaneous control of the
person face and expression parameters. This shows the potential of synthesis of new
facial expression in the image space using our generative model.

4 Experimental Results

4.1 Person Independent Recognition of Facial Expression: Cohn-Kanade Facial
Expression Data Set

We test the performance of facial expression analysis by our generative model using
Cohn-Kanade AU coded facial expression database [9]. We first collected eight sub-
jects with all six basic expression sequences, which are 48 expression sequences whose
frame number varies between 11 and 33 to target display. We performed normaliza-
tion by cropping image sequence based on template eyes and nose images as explained
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in Sec. 3.1. We embed the sequence into a half circle in the conceptual manifold as
we counted the sequence of the data as half of one cycle among neutral→ target ex-
pression→ neutral expression. Eight equal-distance centers are used in learning GRBF
with thin-plate spline basis. We used a full dimension to represent each style and expres-
sion. Fig. 3 shows the representation of expression vectors and person face vectors after
learning the generative models from these eight subjects with six expressions. Fig. 5
shows examples of facial expression synthesis using this generative model.

Sequence-Based Expression Recognition: The performance of person independent
facial expression recognition is tested by leave-one-out cross-validation method using
whole sequences in the database [9]. We learned a generative model using 42 sequences
of seven subjectsand and tested six sequences of one subject whose data are not used
for learning the generative model. We tested the recognition performance by select-
ing the nearest expression class vector after iterations by sequence-based expression
recognition in Sec. 3.3. Table 1 shows the confusion matrix for 48 sequences. The re-
sult shows potentials of the estimated expression vectors as feature vectors for other
advanced classifiers like SVM.

Frame-Based Expression Recognition: Using the generative model, we can estimate
person face parameters and expression parameters for a given expression image or se-
quence of images based on frame-by-frame estimation. We collected additional data that
have five different expressions from 16 subjects. We used the generative model learned
by eight subjects with six expressions to estimate expression parameters and person face
parameters using deterministic annealing in Sec. 3.4. Fig. 6 (a) (b) (c) shows expression
weight values α of every frame in three different expression sequences. The weights

Table 1. Person-independent average confusion matrix by sequence-based expression recognition

Emotion Happy Surprise Sadness Anger Disgust Fear
Happy 25%(2) 0 0 37.5%(3) 25%(2) 25%(2)

Surprise 12.5%(1) 62.5%(5) 12.5%(1) 0 0 12.5%(1)
Sadness 0 0 37.5%(3) 25%(2) 12.5%(1) 25%(2)
Anger 12.5%(1) 0 37.5%(3) 50%(4) 0 0

Disgust 12.5%(1) 12.5%(1) 12.5%(1) 25%(2) 12.5%(1) 25%(2)
Fear 0 0 0 50%(4) 0 50%(4)

(a) Happy: (4,8,12,16,20th frames)
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(c) Sadness: (1,5,9,13,17th frames)
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Fig. 6. Estimated expression weights in frame-based estimations
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become more discriminative as expressions get closer to target expressions. We can
recognize the expression using the maximum weight expression class in every frame.
Table 2 shows recognition results when we classified facial expression using maximum
expression weight of the last frame from 80 sequences.

Table 2. Person-independent average confusion matrix by frame-based recognition: classification
only last frame maximum weight expression

Emotion Happy Surprise Sadness Anger Disgust Fear
Happy 93.3%(14) 0 0 0 0 6.7%(1)

Surprise 0 100%(16) 0 0 0 0
Sadness 0 7.1%(1) 28.6%(4) 7.1%(1) 35.7%(5) 21.4%(3)
Anger 9.1%(1) 0 18.2%(2) 27.3%(3) 45.4% 0

Disgust 9.1%(1) 0 9.1%(1) 18.2%(2) 63.6%(7) 0
Fear 25%(3) 0 8.3%(1) 0 8.3%(1) 58.3%(7)

4.2 Dynamic Facial Expression and Face Recognition

We used CMU-AMP facial expression database which are used for robust face recogni-
tion in variant facial expressions [14]. We collected sequences of ten people with three
expressions (smile, anger, surprise) by manual segmentation from the whole sequences.
We learned a generative model from nine people. The last one person data are used to
test recognition of expression as a new person. The unit circle is used to embed each
expression sequence.

We used the learned generative model to recognize facial expression, and person
identity at each frame from the whole sequence using the frame-based algorithm in
section 3.4. Fig. 7 (a) shows example frames of a whole sequence and the three differ-
ent expression probabilities obtained in each frame (d)(e)(f). The person face weights,
which are used to person identification, consistantly show dominant weights for the
subject face as in Fig. 7 (b). Fig. 7 (c) shows that the estimated embedding parameters

(a) Source sequence images
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(a) Source sequence images
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Fig. 8. Expression recognition for a new person

are close to the true embedding from manually selected sequences. We used the learned
model to recognize facial expressions from sequences of a new person whose data are
not used during training. Fig. 8 shows recognition of expressions for the new person.
The model can generalize for the new person and can distinguish three expressions from
the whole sequence.

5 Conclusion

In this paper we presented a framework for learning a decomposable generative model
for facial expression analysis. Conceptual manifold embedding on a unit circle is used
to model the intrinsic facial expression configuration on a closed 1D manifold. The em-
bedding allows modeling any variations (twists) of the manifold given any number fac-
tors such as different people, different expression, etc; since all resulting manifolds are
still topologically equivalent to the unit circle. This is not achievable if data-driven em-
bedding is used. The use of a generative model is tied to the use of conceptual embed-
ding since the mapping from the manifold representation to the input space will be well
defined in contrast to a discriminative model where the mapping from the visual input
to manifold representation is not necessarily a function. We introduced a framework to
solve facial expression factors, person face factors and configurations in iterative meth-
ods for the whole sequence and in deterministic annealing methods for a given frame. The
estimated expression parameters can be used as feature vectors for expression recogni-
tion using advanced classification algorithms like SVM. The frame-by-frame estimation
of facial expression shows similar weights when expression image is close to the neutral
face and more discriminative weights when it is near to target facial expressions. The
weights of facial expression may be useful not only for facial expression recognition but
also for other characteristics like expressiveness in the expression.
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Abstract. In this paper we propose a nonlinear correlation filter using the 
kernel trick, which can be used for redundant class-dependence feature analysis 
(CFA) to perform robust face recognition. This approach is evaluated using the 
Face Recognition Grand Challenge (FRGC) data set. The FRGC contains a 
large corpus of data and a set of challenging problems. The dataset is divided 
into training and validation partitions, with the standard still-image training 
partition consisting of 12,800 images, and the validation partition consisting of 
16,028 controlled still images, 8,014 uncontrolled stills, and 4,007 3D scans. 
We have tested the proposed linear correlation filter and nonlinear correlation 
filter based CFA method on this FRGC2.0 data. The results show that the CFA 
method outperforms the baseline algorithm and the newly proposed kernel-
based non-linear correlation filters perform even better than linear CFA filters. 

1   Introduction 

Human face recognition is currently a very active research area [1, 2] with focus on 
ways to perform robust biometric identification. However, face recognition is a 
challenging task because of the variability of the appearance of face images even for 
the same subject as it changes due to expression, occlusion, illumination, pose, aging 
etc. The Face Recognition Grand Challenge (FRGC) [3] has been organized to 
facilitate the advancement of face recognition processing across the broad range of 
topics including pattern recognition algorithm design, sensor design, and in general 
for advancing the field of face recognition. 

In this paper, we focus on the face recognition algorithms based on 2D still 
images. Many algorithms [4-7] have been developed for face recognition from 2D 
still images. Among the different approaches, spatial frequency domain methods [8-9] 
have been shown to exhibit better tolerance to noise and illumination variations than 
many space domain methods. In this paper, we extend the linear correlation filter to 
the nonlinear correlation filters using kernel methods. The linear and nonlinear 
correlation filters are tested on the FRGC2.0 data using the redundant class-
dependence feature analysis (CFA) approach. In the CFA method, we train a filter 
bank of correlation filters based on the data from the generic training set, where we 
have multiple genuine images for each class. The trained filter bank is then used in 
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validation experiments to extract the discriminant class-dependence features for 
recognition. The nearest neighbor rule is applied to these features to measure the 
similarity between target and query images. The algorithm also offers the benefit of 
computationally efficient training, as when the database size increases there is no 
need for re-training when a new entry is added to the database. 

Kernel tricks have been used with support vector machine (SVM) [10], principal 
component analysis (PCA) [11], linear discriminant analysis (LDA) [12], kernel 
spectral matched filter [13] and many other approaches to generate nonlinear 
classifiers. Motivated by these approaches, we propose in this paper a nonlinear 
extension of the Equal Correlation Peak Synthetic Discriminant Function (ECP-
SDF)[15] filter and the Optimal Trade-off correlation Filter (OTF)[18], obtaining 
nonlinear correlation filter classifiers for face recognition application. The 
experimental results show that these nonlinear correlation filters outperform the linear 
correlation filters in the CFA approach on FRGC2.0 data. 

The paper is organized as follows. Section 2 introduces the redundant class-
dependence feature analysis method and kernel based nonlinear correlation filters. 
Section 3 introduces the FRGC2.0 data and Experiments. In Section 4, we show 
numerical results of the CFA method on the FRGC2.0 data and we discuss the results 
and outline the future work in Section 5. 

2   Redundant Class-Dependence Feature Analysis 

Most approaches to face recognition are in the image domain whereas we believe that 
there are more advantages to work directly in the spatial frequency domain. By going 
to the spatial frequency domain, image information gets distributed across frequencies 
providing tolerance to reasonable deviations and also providing graceful degradation 
against distortions to images (e.g., occlusions) in the spatial domain. Correlation filter 
technology is a basic tool for frequency domain image processing. In correlation filter 
methods, normal variations in authentic training images can be accommodated by 
designing a frequency-domain array (called a correlation filter) that captures the 
consistent part of training images while de-emphasizing the inconsistent parts (or 
frequencies). Object recognition is performed by cross-correlating an input image 
with a designed correlation filter using fast Fourier transforms (FFTs).  The advantage 
of using advanced correlation filter designs is that they offer closed form solutions 
which are computationally attractive [14]. 

2.1   Matched Filter (MF) and ECP-SDF Filter 

Matched Filters (MFs) [14] are simple correlation filters, which are optimal in the 
sense that they provide the maximum output signal-to-noise ratio (SNR). However, 
MFs lose their optimality rapidly when the test image differs from the reference 
image due to natural variability such as expressions, lighting, pose, etc. For N training 
images, we need N MFs, one for each training image. The Synthetic Discriminant 
Function (SDF) approach [15] was proposed to create a composite image that is a 
linear combination of multiple reference images and the weights for linear 
combination are selected so that the cross-correlation output at the origin is same for 
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all images belonging to one class. The basic SDF is known as the equal correlation 
peak (ECP) SDF [15]. The objective is to design a composite image h such that it 
generates the same value at the origin of the correlation plane for all training images 
from the same class. This origin value (loosely referred to as the correlation peak)  
c(0,0), is the inner product of the training image and the filter to be determined, i.e.,  

(0,0) i ic + += ⋅ = ⋅h x x h  (1) 

where xi denotes the i-th training image and h denotes the filter.  In most cases, we let 
c(0,0) be 1 for training images of true class (i.e., authentics) and 0 for the training 
images of false class (i.e., impostors, assuming that impostor images are available for 
training). For N training images, we can rewrite (1) as   

*+ =X h c  (2) 

The ECP SDF assumes that the composite image h is a linear combination of the 
training images and it can be solved as in [14] 

1 *( )+ −=h X X X c  (3) 

The ECP SDF filter, however does not incorporate any tolerance to input noise. Also 
because it is designed solely on the basis of constraints on correlation values at the 
origin, correlation values elsewhere may be larger and thus the correlation peak may 
not be the controlled value. If the test input is not centered, then we cannot use it 
because the correlation output peak is not necessarily the controlled value 
corresponding to the center of the target. More SDF filters have been developed to 
address these problems. 

2.2   Optimal Tradeoff Filter 

Different choices of energy minimization metrics of correlation output lead to 
correlation filters that address different problems. The minimum variance synthetic 
discriminant function (MVSDF) [16] filter minimizes the correlation output noise 
energy represented in matrix format as h+Ch; where C is a diagonal matrix whose 
diagonal elements C(k,k) represent the noise power spectral density at frequency k. 
The minimum average correlation energy (MACE) [17] filter minimizes the average 
correlation output energy h+Dh where D is the average of Di, the power spectrum of 
the i-th image, which is also a diagonal matrix whose elements Di(k,k) contain the 
power spectra of the i-th training image at frequency k. We note that the MACE filter 
emphasizes high spatial frequencies in order to produce sharp correlation peaks 
whereas the MVSDF filter typically suppresses high frequencies in order to achieve 
noise tolerance. Although both attributes are desired, the corresponding energy 
metrics cannot be minimized simultaneously. The optimal tradeoff filter (OTF) [18] is 
designed to balance these two criteria by minimizing a weighted metric h+Th where 
T=αD+βC and0 , 1α β≤ ≤ . The OTF is obtained as shown in (4) below: 

OTF
+= -1 -1 -1 *h T X(X T X) c  (4) 
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where X = [ x1, x2, …, xN ] is a d×N matrix, and each xi is d dimensional vector 
constructed by lexicographically reordering the 2-D Fourier transform of the i-th 
training image. 

2.3   Redundant Class-Dependence Feature Analysis  

When the correlation filters are used for verification, the commonly used method is to 
correlate the test image with the filter which is designed based on one or more 
training images, compute PSR value, and to compare it with a preset threshold to 
decide if the image is authentic or imposter, as shown in Fig. 1.  

 

Fig. 1. Commonly used method for still-to-still face verification using correlation filter 

There are some problems with this method when applied to the FRGC 2.0 
experiments. First, it is not efficient. FRGC2.0 experiment #1 requires that we 
generate a 16,028x16,028 similarity matrix. For this, we need to design 16,028 
correlation filters and compute 16,028x16,028 correlations. It can take a significant 
amount of time (up to a month using high-power dual processor machines) just to run 
the whole experiment once. Second, the performance of the filter may not be very 
good because there is only one genuine image available for training each filter. Third, 
the generic training set available with FRGC dataset is not being used by the 
traditional correlation filter synthesis method. 

To address these problems, we propose a novel redundant class-dependence 
feature analysis (CFA) method [19] for face recognition using correlation filters. In 
this method, we train a correlation filter for each subject from the generic training set, 
and get a bank of subject-dependence correlation filters. All of these filters are used 
for feature extraction, as shown in Fig. 2.  A test image evaluated on all of these filters 
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Fig. 2. The concept of feature extraction based on correlation filters 

generates a feature vector that is used to represent the test image. Because all of 
training and test images are centered during the pre-processing stage, we assume that 
the peak at the correlation output plane is also centered. To make it computationally 
efficient, we only compute the center value of the correlation output by calculating the 
inner product of the test image and each synthesized filter. Each component in the 
feature vector represents the similarity between the test image and a certain subject 
class. Because all synthetic filters are not orthonormal to each other, the coefficients 
in the feature vector contain redundant information, so we call this method redundant 
class-dependence feature analysis (CFA). 

During the final test matching phase, the nearest neighbor rule is applied to decide 
the class label for the test image, i.e.,  

( )( )
,

( ) arg min ij
i ji

measureθ = −y t r  (5) 

where ijr  represents feature vector corresponding the j-th training sample of the i-th 

class and t is the feature vector corresponding to the test input y. There are four 
commonly used similarity measures: the L1 norm, the Euclidean distance, the 
Mahalanobis distance and the cosine function. The cosine distance (6) in our 
experiments has been shown to be the best performance for this method. 

cos

( )
( , )S

− ⋅= r t
r t

r t
 (6) 

There are several attributes of the CFA method worth noting. First, when new classes 
are added in the generic training set, previously trained correlation filters do not 
require re-training, we just need to add a new filter which is easy to compute due to 
the nature of the closed form solution of the OTF. Second, since the filter bank is 
class-dependence, we expect to observe better performance when the generic training 
set and the validation sets have more overlapped classes. Finally, under the CFA 
framework, the class-dependence features can also be extracted by some classifiers 
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other than correlation filters, e.g., support vector machines that can be trained for each 
individual class.  

2.4   Kernel Methods of Correlation Filters  

Polynomial correlation filter (PCF) [19] had been developed to generate nonlinear 
correlation filter classifiers. In PCFs some point nonlinearity transforms (e.g. x2, x3, 
etc.) are applied to each pixel of the image and the filters are developed based on the 
transformed images to optimize a performance criterion of interest.  It is shown [19] 
that the polynomial correlation filter outperforms the linear correlation filter. 

In this paper, we introduce a new method to extend the linear ECP-SDF and OTF 
correlation filters to non-linear correlation filters using kernel methods. As discussed 
in Sec. 2.3, in face recognition application, we usually assume that the images are 
centered and geometrically normalized. In that case, we focus on the inner product of 
the filter and the tested image. For ECP-SDF filter h and a test image y, we can get 

1 *(0,0) ( )c + + −= =y h yX X X c  (7) 

The only way in which the data appears in the correlation framework is in the form of 
inner products i j⋅x x . Suppose we map the data to some other feature space by a 

non-linear mapping , then the correlation peak value of the ECP-SDF filter becomes 

( ) ( ) ( ) ( )( )(0,0)c = Φ ⋅Φ Φ ⋅Φ
-1 *y X X X c  (8) 

The training and test algorithms would depend on the functions of the form 

( ) ( )Φ ⋅Φy X . Now if we have a kernel function below 

( ) ( )( , )i j i jK = Φ ⋅Φx x x x  (9) 

We would only need to use ( , )i jK x x  to compute the correlation peak value 

( ) ( )( )(0,0) , ,c K K=
-1 *y X X X c  (10) 

and we would never need to explicitly know what the Φ  mapping is, which saves a 
lot of computations. This allows us to achieve a nonlinear correlation filter 
classification boundary in the original image space. Mercer’s condition [10] tells us 
whether or not a prospective kernel is actually an inner product in some space. We use 
this condition to modify any kernel variations to ensure that this is satisfied. 

Next we introduce the method of extend the OTF filter to its nonlinear version. For 
an OTF filter and a test image y, we can get  

(0,0)c + += = -1 -1 -1 *y h yT X(X T X) c  (11) 

Note that the difference between (11) and (7) is the diagonal matrix T, where 
T=αD+βC, a linear combination of the input noise power spectral density C and 
average power spectral of the training images. Since T is a diagonal and positive 
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definite matrix, it is easy to decompose 
1 1
2 2= - --1T T T , then we can rewrite the 

correlation peak as  

( ) ( )1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2

1

(0,0) ( )( )c
−+

+= =- - - - - - - --1 * *yT T X(X T T X) c T y T X T X T X c  (12) 

We can treat 
1
2-T as a pre-processing filter and apply it to every training and test 

image, so we get 

( ) ( ) ( )1 1 1 1
2 2 2 2

1
1

(0,0) ( )( ) ' ' ' 'c
−+ −+= =- - - - * *T y T X T X T X c y X X X c  (13) 

which is in the same form as in (7) and we can apply the kernel trick as well to obtain 
the kernel based nonlinear OTF classifier. In Fig. 3 we show an original image and a 
pre-filtered image by T with α=0.1 and β =1. 
 

 

Fig. 3. Illustration of image preprocessing: (a) original image and (b) pre-filtered image 

 
                   (a)                                              (b)                                      (c) 

Fig. 4. The illustration of the decision boundary for (a) linear correlation filter, (b) polynomial 
correlation filter and (c) Gaussian RBF classifier 

Some useful kernels include the polynomial kernel in (14) which results in a 
classifier that is a polynomial of degree p in the data and the Gaussian radial basis 
function (RBF) kernel in (15) that gives a Gaussian RBF classifier. In Fig. 4 we use a 
toy example to show the linear correlation filter and polynomial correlation filter and 
Gaussian RBF classification boundary. 
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( ), ( 1) pK = ⋅ +x y x y  (14) 

( )
2 22,K e σ− −= x yx y  (15) 

3   FRGC 2.0 Data and Experiments 

For the second phase of the face recognition grand challenge FRGC [3] data 2.0 was 
again collected at the University of Notre Dame. The generic training set contains 222 
subjects and consists of 12,776 still images captured in 100 subject sessions from 
academic year 2002-2003, and the validation set contains 466 subjects and consists of  
16,028 controlled still images and 8,014 uncontrolled still images captured in 4007 
subject sessions from academic year 2003-2004. The example images from the 
controlled still image set are shown in Fig. 5. The FRGC experiment #1 is defined to 
generate a similarity matrix of 16,028x16,028 similarity scores of controlled indoor 
still images vs. indoor still images and the FRGC experiment #4 is defined to generate 
a 16,028x8,014 similarity matrix of controlled still images vs. uncontrolled still 
images. Experiment #1 data set only exhibits some facial expression, minimal 
illumination variations and minimal pose variations and Experiment #4 data contains 
severe illumination variations and blurring. Experiment #4 is much harder because the 

 

Fig. 5. Example images from the controlled still set 

 

 
Fig. 6. Example images with illumination variations and blurring from the uncontrolled still set 

 



40 C. Xie, M. Savvides, and B.V.K.V. Kumar 

 

query images are of poorer quality. More details of all experiments defined in FRGC 
project can be found in [3]. 

Fig. 6 shows example images from uncontrolled still set that contains images under 
severe illumination conditions and images out of focus. We can see that the 
combination of the illumination, expression, pose variations and the blurring effect 
makes the recognition task even harder. 

4   FRGC Numerical Results 

In this paper, we focus on the FRGC2.0 experiment #1 for which we test our proposed 
algorithms on a controlled 2D still image set of 16,028 images and generate a 
similarity matrix of size 16,028x16,028. In this paper we show the experimental 
results of five different algorithms using our proposed CFA approach.  The first one is 
CFA based on the OTF correlation filter with parameters α=0.001 and β =1. The 
second one is the nonlinear CFA based on the polynomial kernel with polynomial 
degree parameter p=2.0. The third one is the nonlinear CFA based on the fractional 
power polynomial model [20] with polynomial degree parameter p=0.9. Note that 
when p=0.9, a fractional power polynomial does not necessarily define a kernel 
function, as it might not define a positive semi-definite Gram matrix [20]  but the 
fractional power polynomial models with 0<p<1 shows better face recognition 
performance than polynomial kernel with p>1 [20] using the same fractional power 
trick. It is also observed in our experiments. The forth one is the nonlinear CFA based 

on Gaussian RBF classifier with the variance parameter 2 3.0σ = . The last one is also 

the nonlinear CFA based on Gaussian RBF classifier ( 2 3.0σ = ) plus a preprocessing 
filter T (α=0.1 and β =1).  

In Fig. 7, we show three OTF correlation filter bases trained on the training data 
for the linear CFA approach. We generate the CFA feature vectors for all target 
images and query images by inner product and apply the nearest neighbor rule based 
on cosine distance to get the similarity matrix. 

 

 

Fig. 7. Three correlation filter-based CFA basis 

For the nonlinear CFA, we use the corresponding kernel functions or models with 
above specified parameters. We show the verification performance of 5 different 
algorithms on the FRGC2.0 experiment #1 in table 1 and Fig. 8. In table 1, we reported 
the face verification rate when the false acceptance rate (FAR) equal to 0.1% which are 
the result specifications according to FRGC. We compare results of the five algorithms 
described above to the FRGC baseline result and the traditional correlation filter results. 
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Table 1. The verification rate at 0.1% FAR of the different methods 

Baseline 
PCA 

OTF CFA 
Linear Filter 

CFA 
Poly (0.9) 

CFA 
Poly (2.0) 

CFA 
RBF 

CFA 
RBF+OTF 

66% [3] 77% 89.9% 91.4% 90.2% 92.5% 93.5% 

 

Fig. 8. The ROC curves of the verification performance of 5 different algorithms on FRGC2.0 
experiment #1 

From table 1 we can see that the CFA approach perform much better than the 
baseline PCA algorithm and it also performs better than the traditional method of face 
verification using correlation filter. The nonlinear CFA method generally outperforms 
the linear CFA method, and the kernel method plus the optimal tradeoff filter perform 
the best. The ROC curves of these experimental results are shown in Fig. 8. 

From Fig. 8 we can see that the nonlinear correlation filters based CFA approach 
generally outperforms linear correlation filters. The Gaussian RBF classifier based 
CFA method significantly improves the verification performance over other methods. 
Moreover, the Gaussian RBF plus the OTF based pre-processing filter further 
improves the performance; clearly showing the advantages of frequency domain 
approaches. From our experiments we can also see that there are some parameters to 
be decided when apply the nonlinear kernel method and/or the linear correlation 
filters. In this paper, we show the best results of testing on different parameters in our 
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experiments.  In our future work, we will investigate the methods on how to 
theoretically and experimentally select the nonlinear parameter and the correlation 
filter parameters. We will also investigate other possible kernel functions for 
nonlinear approaches.  

5   Conclusions 

In this paper we introduce a novel kernel correlation filter method applied in the 
redundant class-dependence feature analysis (CFA) approach to perform robust face 
recognition in the Face Recognition Grand Challenge (FRGC) data set. Under the CFA 
framework, the class-dependence features can be extracted for each target image and the 
query image and the nearest neighbor rule is applied for classification. The linear 
correlation filter based CFA approach is extended to the nonlinear correlation filter 
based CFA approach with the kernel methods. The verification performance of the 
linear filter and nonlinear filter based CFA approaches have been tested on the 
FRGC2.0 experiment#1, and the verification rates (93.5%) are much better than that 
reported of the baseline algorithm (66%). In the future, we will theoretically and 
experimentally investigate the method of how to select the kernel function parameters 
and correlation filter parameters and aim to further improve the face verification 
performance on the FRGC experiments. We will also investigate the CFA approaches 
based on other linear and non-linear classifiers (e.g. support vector machine) and extend 
other different types of advanced correlation filters to kernel based nonlinear filters. 
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Abstract. 2D intensity images and 3D shape models are both useful for face
recognition, but in different ways. While algorithms have long been developed
using 2D or 3D data, recently has seen work on combining both into multi-modal
face biometrics to achieve higher performance. However, the fusion of the two
modalities has mostly been at the decision level, based on scores obtained from
independent 2D and 3D matchers.

In this paper, we propose a systematic framework for fusing 2D and 3D face
recognition at both feature and decision levels, by exploring synergies of the two
modalities at these levels. The novelties are the following. First, we propose to
use Local Binary Pattern (LBP) features to represent 3D faces and present a sta-
tistical learning procedure for feature selection and classifier learning. This leads
to a matching engine for 3D face recognition. Second, we propose a statistical
learning approach for fusing 2D and 3D based face recognition at both feature
and decision levels. Experiments show that the fusion at both levels yields signif-
icantly better performance than fusion at the decision level.

1 Introduction

Face recognition has attracted much attention due to its potential values for appli-
cations as well as theoretical challenges. Many representation approaches have been
introduced. Principal Component Analysis (PCA) [1] computes a reduced set of or-
thogonal basis vector or eigenfaces of training face images. A new face image can be
approximated by weighted sum of these eigenfaces. PCA provides an optimal linear
transformation from the original image space to an orthogonal eigenspace with reduced
dimensionality in the sense of the least mean square reconstruction error. , Linear Dis-
criminant Analysis (LDA) [2] seeks to find a linear transformation by maximizing the
between-class variance and minimizing the within-class variance. Independent compo-
nent analysis(ICA) [3] uses high-order statistics to generate image bases. Elastic bunch
graph matching (EBGM) [4,5] uses Gabor wavelets to capture the local structure corre-
sponding to spatial frequency (scale), spatial localization, and orientation selectivity.

Local Binary Pattern (LBP), originally proposed as a descriptor for textures [6],
provides a simple yet effective way to represent faces [7,8]. There, the face image is
equally divided into small blocks and LBP features are extracted for each blocks to
represent the texture of a face locally and globally. Weighted Chi square distance of

W. Zhao, S. Gong, and X. Tang (Eds.): AMFG 2005, LNCS 3723, pp. 44–54, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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these LBP histograms is used as a dissimilarity measure for comparing the two images.
The above works have shown that LBP based methods can produces good results for
face recognition in 2D images.

Boosting learning with local features have recently been proposed as a promis-
ing approach. Jones and Viola [9] propose a general idea of boosting local features
and training a classifier on difference between two face image feature vectors (Haar
wavelets). Zhang et al. present an LBP-based boosting learning algorithm [10]. Such
works are for 2D face recognition.

While using 2D intensity images to recognize a face has long history of research
[11], recent advances in 3D range sensor has made it possible to overcome some lim-
itations in 2D based face recognition methods such as illumination and pose changes.
Early work on 3D face recognition was based on curvature features [12], following this
type of work in 3D range image understanding starting from mid-1980’s [13]. Later
developments in 2D face recognition have influenced 3D face recognition [14].

It may be advantageous to combine information contained in both 2D and 3D data
to overcome limitations in 2D or 3D based methods while 2D and 3D images encodes
different information. Methods have been proposed to combine information in both
modalities into multi-model face biometrics to achieve higher performance [14]. For
example, in [15,16], the weighted sum rule is applied to combine the two matching
scores. A recent performance evaluation on the 2D and 3D modalities and their fusion
has shown that multi-modal 3D+2D face recognition performs significantly better than
using either 3D or 2D alone [17].

So far, the fusion of 3D+2D modalities has been at the decision level, using scores
from 2D and 3D matchers. The 3D recognition result and the 2D recognition result
are each produced without reference to the other modality. It is desirable to explore
synergies of the two modalities at the feature level as well [14]. The work presented
here explores such synergies in the proposed framework of AdaBoost learning (with
LBP feature). This is new for solving the problem of 3D+2D face fusion.

In this paper, we propose a systematic framework for fusing 2D and 3D informa-
tion at both feature and decision levels. The main contributions are the following: First,
we propose to use LBP features as a representation of faces in 3D data. An AdaBoost
learning procedure [18,19,20] is then applied for feature selection and classifier learn-
ing. Second, with LBP as a unified representation of faces in both 2D and 3D images,
we propose to use AdaBoost learning to fuse 2D and 3D information at both feature and
decision levels. The same AdaBoost learning procedure as used for 3D face recognition
is used for 3D+2D fusion. 3D and 2D LBP histograms are computed, respectively, and
then combined into a 3D+2D feature set. AdaBoost is applied to select effective feature
from a 3D+2D feature pool, construct weak classifiers based on the selected features,
and then combine the weak classifiers into a strong one. Thus, the learning procedure
fuses the 3D and 2D modalities at both feature and decision levels. Experiments show
that the AdaBoost learning method produces significantly better results than the base-
line PCA method. AdaBoost learning based fusion performs significantly better than
fusion of PCA based scores. Experimental results clearly demonstrate the advantages
of the two level fusion over the exiting decision level fusion such as presented in a
recent PAMI paper [17].
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The rest of this paper is organized as follows: In section 2, the LBP representa-
tion is described. In section 3, we propose an AdaBoost learning method for 3D face
recognition. In section 4, we propose the boosting based fusion of 3D+2D modalities.
Experimental results are presented in section 5.

2 Feature Representation

Face images are preprocessed so that they are aligned in a predefined way. For 2D data,
the alignment and cropping is done according to the eye centers. For 3D data, the face
is rotated about the vertical axis so that the nose tip becomes the closest point and then
cropped; after that, a median filter is applied to remove high noise; this is followed
by hole-filling. Fig.1 shows some examples. LBP features are then extracted from the
cropped and preprocessed images.

Fig. 1. 3D (top) and 2D (bottom) face images of a person before (left) and after (right) alignment
and cropping

2.1 Local Binary Pattern

The LBP operator was originally introduced by Ojala [6] as texture description. LBP
features have performed very well in various applications, including texture classifica-
tion and segmentation. The basic form of an LBP operator labels the pixels of an image
by thresholding the 3× 3-neighborhood of each pixel with the center value and consid-
ering the result as a binary number. An illustration of the basic LBP operator is shown
in Fig.2. Note that the binary LBP code is circular.
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Fig. 2. Calculation of LBP code from 3x3 subwindow (from [8])

The major limitation of the basic LBP operator is its small spatial support area.
Features calculated in a local 3 × 3 neighborhood cannot capture large scale structure
that may be the dominant features of some textures. The LBP operator can be extended
to use neighborhoods of different size [6]. Another extension to the original operator is
to use so called uniform patterns [6]. An LBP is called uniform if it contains at most
two bitwise 0-1 or 1-0 transitions. There are 58 uniform LBP code patterns for 8-bits
LBP code, and 256-58=198 non-uniform LBP patterns.

2.2 Local Histograms of LBP Code

LBP histograms over local regions provides a more reliable description when the pattern
is subject to alignment errors. Considering the uniform LBP scheme, and denoting all the
non-uniform LBP patterns with a single bin, then there are a set of L + 1 = 59 possible
LBP code types for the 8-bit LBP code. Let us denote this set byL = {0, 1, . . . , L} such
that LBP (x, y) ∈ L, and the local LBP histogram over a block S(x,y) centered at (x, y)
by H(x,y) = (H(x,y)(0), H(x,y)(1), . . . , H(x,y)(L)). The histgram can be defined as

H(x,y)(	) =
∑

(x′,y′)∈S(x,y)

I{LBP (x′, y′) = 	}, 	 ∈ L (1)

where I(·) ∈ {0, 1} is an indication function of a boolean condition, and S(x, y) is a
local region centered at (x, y) which in our case is a 20x15 block.

The histogram H(x,y) contains information about the distribution of the local micro-
patterns, such as edges, spots and flat areas, over the block S(x,y). It effectively gives
a description of the face at two different levels of locality: individual LBP labels con-
tain information about the patterns at the pixel-level, whereas the frequencies of the
labels in the histogram produce information on regional level [7]. The collection of the
histograms at all possible pixels {H(x,y) | ∀(x, y)}, called the global LBP histogram,
provides the global level description.

In [7], the face image is partitioned into a number (49) of blocks and a weight is
empirically assigned to each block. Denote the corresponding histograms between the
probe and a gallery by HP

(x,y) and HG
(x,y), respectively. Several possible dissimilarity

measures are available to compare local two histograms. The following Chi square dis-
tance is reported to work better for small sample size [7]:

χ2(HP
(x,y), H

G
(x,y)) =

∑
�∈L

(HP
(x,y)(	)−HG

(x,y)(	))
2

(HP
(x,y)(	) + HG

(x,y)(	))
(2)
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A possible scheme for matching between two images is based on a weighted sum of χ2

distances [7].

3 Learning for 3D Face Recognition

In this section, we describe a method which uses LBP features and AdaBoost learning
for 3D face recognition with the LBP features. While in [7], a face image is partitioned
into blocks, We consider every block centered at each pixel location. This yields a
large number of possible blocks, and hence a large number of local histograms H(x,y).
Instead of assigning a weight to each block, we derive the weights using an AdaBoost
learning method. As a result of the learning, those blocks which are more discriminative
for classification will be assigned larger weights and those which are useless or give
conflict information will be assigned near-zero weights. The learning also produces the
final classifier.

Face recognition is a multi-class problem. To dispense the need for a training pro-
cess for faces of a newly added person, we use a large training set describing intra-
personal or extra-personal variations [21], and train a “universal” two-class classifier.
An ideal intra-personal difference should be an image with all pixel values being zero,
whereas an extra-personal difference image should generally have much larger pixel
values. However, instead of deriving the intra-personal or extra-personal variations us-
ing difference images as in [21], the training examples to our learning algorithm is the
set of differences between each pair of local histograms H(x,y) at the corresponding lo-
cations. The positive examples are derived from pairs of intra-personal differences and
the negative from pairs of inter-personal differences.

With the two-class scheme, the face matching procedure will work in the following
way: It takes the probe face image and a gallery face image as the input; computes a
difference-based feature vector from the two images; and then calculated a similarity
score for the feature vector using some matching function. A decision is made based on
the score, to classify the feature vector into the positive class (coming from the same
person) or the negative class (different persons). The following presents an AdaBoost
learning algorithm for training such a two-class classifier using the positive and negative
examples of the 2D or 3D face data.

In AdaBoost learning, we are given a training set of N labeled examples from two
classes, S = (x1, y1), . . . , (xN , yN), where xi is the data yi ∈ {+1,−1} is the class
label. Associated with the training examples is a distribution wt = (wt,1, . . . , wt,N )
which is updated after each learning iteration t. An AdaBoost procedure adjust the
distribution in such a way that more difficult examples will receive higher weights. It
learns a sequence of T weak classifiers ht(x) ∈ {−1, +1} and linearly combines it in
an optimal way into a stronger classifier

H(x) = sign

(
T∑

t=1

αtht(x)

)
(3)

where αt ∈ R are the combining weights. We can consider the real-valued num-
ber
∑T

t=1 αtht(x) as the score, and make a decision by comparing the score with a
threshold.
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An AdaBoost learning procedure, shown in Fig. 3, is aimed to derive αt and ht(x).
The AdaBoost learning procedure in effect solves the following three fundamental prob-
lems: (1) learning effective features from the candidate feature set (step 3), (2) con-
structing weak classifiers each of which is based on one of the selected features (step
1-3), and (3) combining the learned weak classifiers into a stronger classifier (the output
step).

Input: Given labeled examples S;
Set the initial w1 to the uniform distribution;
For t = 1, . . . , T :

1. Train a weak classifier hj : x → {−1, +1};
2. Calculate wt-weighted error

ej = P [hj(xi) �= yi | wt];
3. Choose hk(x), such that ek < ej ,∀j �= k;
4. Let et = ek.

5. Choose αt = 1
2

log
(

1−et
et

)
;

6. Update wt+1,i ← wt,i exp(−αtyihi(xi));
7. Normalize wt+1 to

∑
i wt+1,i = 1;

Output H(x) as in Equ.(3).

Fig. 3. The AdaBoost learning procedure

In our system, a weak classifier is defined based on a single feature (i.e. an LBP
histogram bin value). A weak classifier gives an output of +1 or -1, by thresholding the
feature, at an appropriate threshold value learned with a weak learner procedure. This
is unlike the Chi square distance based weak classifiers used in [10]. We find that the
bin based weak classifiers can do a better job in both training and testing.

4 Learning to Fuse 2D and 3D

Now we present a method for fusing 2D and 3D information at both feature and decision
levels. In the fusion of the 2D and 3D information, we do not make assumptions on
how the information is correlated between 2D and 3D nor do we require that there
are correspondences between 2D and 3D images. The only requirement is that faces
in 2D and 3D images are properly aligned and normalized, respectively, as a result of
pre-processing. Then, everything is learned automatically. We use the same AdaBoost
learning procedure as above for the 3D+2D fusion as follows:

For every pixel location in an image (2D or 3D), an LBP code is computed. There
are L + 1 = 59 possible LBP code types. A histogram of 59 bins is calculated, over a
local sub-window centered at the pixel, to account for the distributions of the 59 types
of features in the sub-window. For each intra-pair or inter-pair of 2D or 3D images, the
Chi square distance is computed, according to Eq.(2), to account for the differences of
the two corresponding local LBP histograms, and will be used as the feature to measure
the dissimilarity between the two local image patches. The distributions of that Chi
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distances for the positive and negative examples at the local patch are then analyzed by
considering all the intra-pairs or inter-pairs. Such statistics are computed over all the
image locations and for both 2D and 3D images.

AdaBoost is applied to select most effective features from the complete 3D+2D
difference feature set. At each iteration, the best LBP feature is selected, among all the
locations for the 2D and 3D images, according to the distributions of the Chi square
distances of the LBP histograms, such that the feature provides the best discriminative
power. A weak classifier is then constructed by thresholding the Chi square distance.
The weak classifiers are then combined into a strong one. This way, the AdaBoost
based procedure provides a systematic approach for 3D+2D fusion at both feature and
decision levels.

5 Experimental Results

The purpose of the experiments presented below is to compare the proposed boosting
learning methods with the baseline PCA methods in their performance for 3D, 2D and
3D+2D face recognition.

5.1 Data Description

A large 3D+2D database is created for the experiments using a Minolta 3D digitizer,
which produces a range image and the corresponding color image. The images are taken
near-frontal but with varying pose, expression, and lighting changes. The database is
composed of 2305 images of persons. It is divided into three sets. The composition of
the data for the training, gallery and probe sets is summarized in Table 1. The images
are preprocessed and cropped into 138x118 pixels. Figure 4 gives some examples of the
preprocessed imaged.

Table 1. Data Composition

3D Data Num. of Images Num. of Persons
Train 945 246

Gallery 252 252
Probe 1108 252

2D Data Num. of Images Num. of Persons
Train 945 246

Gallery 252 252
Probe 1108 252

Before PCA the pixel vectors are first scaled such that the mean value of the vectors
is zero and the standard deviation is one. We choose the top 99 percent of the energy
and distance metric is L2. By computing the distance between the images in 2D and
3D set, respectively, we can get two similarity scores matrix. But the performance of
the PCA on 2D or 3D is not good enough. Therefore, we fuse the scores to improve the
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Fig. 4. Examples of 3D images and the corresponding 2D images of a person

Fig. 5. The first 5 features for 3D (top) and for 2D (bottom) learned by AdaBoost

Fig. 6. Cumulative Match Curves for 3D and 2D

classifying performance. Before fusing the scores from each modality, the scores are
normalized to [0, 100] and then fused by the sum rule. The weight is computed accord-
ing to the method being mentioned in [6]. By fusing at decision levels, the performances
are improved significantly.
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Fig. 7. The first 10 LBP features learned by boosted fusion of 3D+2D, ranked 1 to 10 from left to
right, from top to bottom. Among these top 10, 7 features are from 3D data and 3 from 2D.

Fig. 8. Cumulative Match Curves for 3D+2D fusion

5.2 Boosted 3D and 2D Face Recognition

An AdaBoost classifier is trained for 3D faces and another trained for 2D faces recogni-
tion, separately. The 3D model 83 weak classifiers whereas the 2D model has 170 weak
classifiers. Fig.5 shows the first 5 features for 3D and the first 5 for 2D. The comparative
results are shown in Fig.6 in terms of cumulative match curves (CMC). From the CMC
curves we conclude that the boosting learning method is superior to the PCA method.

5.3 Boosted Fusion of 3D+2D Face Recognition

For 3D+2D fusion, we trained a boosted model selected 97 most significant features.
Of the 97 features, 59 are from 3D and 38 from 2D. Fig.7 shows the first 10 features
for the 3D+2D fusion. We notice that the first 2 features in the AdaBoost 3D+2D fusion
model (Fig.7) correspond to the first 2 features of 3D only model (Fig.5); and that there
are more 3D features than 2D ones.
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To contrast with the proposed AdaBoost learning fusion scheme, two non-boosting
fusion schemes are included: The first is the PCA-based 3D+2D fusion (called “CBF’
score fusion, described at the end of Section 3 of [17]), which is the baseline fusion
performance. The second uses a sum rule to fuse the two AdaBoost classification scores.
The comparative results are shown in Fig.8 in terms of cumulative match curves (CMC).
From the CMC curves we conclude that fusing AdaBoost scores performs better than
fusing PCA scores; and that fusion at both feature and decision levels by the proposed
AdaBoost learning achieves the best performance of the three compared schemes.

6 Conclusion

In this paper, we explore synergies of 3D and 2D modalities by proposing a systematic
framework for fusing 2D and 3D face recognition at both feature and decision levels.
To our knowledge, this is the first work of this kind and is the main contribution of
the paper. Another contribution is the novel LBP+AdaBoost learning method for 3D
face recognition. We have demonstrated by experiments the effectiveness of the two
contributions in 3D face recognition and in 3D+2D fusion. The successful fusion of
3D+2D at both feature and decision level has verified a conjecture made in [14] that “it
is at least potentially more powerful to exploit possible synergies between the the two
modalities in the interpretation of the data.”
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Abstract. In many supervised learning problems, objects are represented as a se-
quence of observations. To classify such data, existing methods build classifiers
either based on their dynamics, or the statistics of the observations. However, sim-
ilar observations shared by most objects are uninformative for identification. In
this paper, we present a new approach that identifies similar observations across
objects and use only informative data for classification. To do this, we construct
a weighted multipartite graph from the training data, with weights representing
the similarities between observations from different objects. Identification of un-
informative observations is modeled as clustering on this multipartite graph using
a combinatorial optimization formulation. Two-level hierarchical classifiers are,
then, built using the clustering results. The first layer of the classifiers associates
the test observations with a certain cluster, whereas the second level identifies the
object within the cluster. Data associated with uninformative clusters are screened
out. Final identification for the group of observations is obtained using the ma-
jority voting rule only from the informative observations.

We apply our algorithm to the gait recognition problem. The hierarchical clas-
sifiers are built in four different feature spaces for silhouette images. Final classi-
fication is determined by aggregating results from these four feature spaces. The
experimental results show that our method results in improved recognition rates
in most cases compared with other previously reported methods.

1 Introduction

In many supervised learning problems, the object of interest is represented as a sequence
of observations. For instance, in cytological research, living tissue under a microscope
is observed as an ensemble of cell images [1]; and in human motion analysis, an in-
dividual’s movement is captured by cameras as a sequence of image frames [2]. To
distinguish tissue cells, or to identify a person from image sequences, two groups of
approaches have been applied to classify these observations. In the first group, the dy-
namics of all observations from an object, e.g., training a hidden Markov model [3],
are employed to capture the characteristics of the subject. In the second group of ap-
proaches, static features, such as averages and standard deviations in quadratic discrim-
inant function [4], are used to characterize the subject. These “dynamic” and “static”
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features, used to classify the subjects, are obtained through “intra-class” analysis of
each individual subject, i.e., without “inter-class” comparing the similarities and differ-
ences among observations of different subjects. In many cases, some observations from
different subjects are very similar, which do not provide any characteristic information
useful for classification. More significantly, including these uninformative frames in
the classification process tends to smear the differences among subjects, can lead to a
weaker classifier due to the potential confusions. Hence, it is necessary to exclude these
uninformative frames to enhance the classification accuracy and robustness.

Fig. 1. Outline of the proposed classification framework. The uninformative cluster and the cor-
responding samples are shown in shadow. Samples from different subjects are color-coded.

A common approach for removing redundant information is feature selection us-
ing principle component analysis, independent component analysis etc. [5]. These ap-
proaches remove irrelevant features from a given feature set, and thus will modify the
feature space for every sample across different objects. However, there has been no
systematic research on removing uninformative samples, keeping the feature space rep-
resentation unchanged.

In this paper, we present a novel combinatorial optimization approach to identify
similar observations across subjects, ignoring similarities between frames from the
same subject. We construct a multipartite graph structure from observations in the data,
where a partite set corresponds to a subject and vertices in a partite set correspond to the
samples from an object. Such a graph only specifies similarities between observations
from different objects. Then, the problem of identifying similar samples across objects
is formulated as a clustering problem on the multipartite graph. We give an efficient
algorithm for finding the clusters of uninformative samples.

Subsequently, we build supervised hierarchical classifiers, as illustrated in Fig. 1.
The first level classifier performs an assignment of a testing sample to clusters, whereas
the second level carries out the actual subject identification.

The above classification framework could be applied to many problems with en-
semble data. In this paper, methodological details of this work is demonstrated through
the gait recognition problem where objects are the human subjects and the samples
correspond to frames/images from the those subjects.
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Gait Recognition

To identify a walking subject from an image (frame) sequence, current gait recogni-
tion approaches can be classified as either model-based [9,10,11,12,13] or model-free
[2,14,15,16,17,18,19,20] based on whether a specific humanoid model is employed.
Joint angle trajectories [9,10,11,12,13], body shape parameters [16,19], or other fea-
tures [2,14,15,17,18,20] extracted from images, were used to represent gait character-
istics. When a probe frame sequence is available, the same features are extracted and
compared to those in the training data.

Both of these approaches calculate the similarity between the probe sequence and
a sequence from any subject in the data, and label the probe sequence as the one with
the highest similarity value. However, for subjects represented by silhouette images,
or binary images with foreground pixels labeled as 1 and background as 0, very often
similar silhouette images occurs among different subjects. Accurate and robust identifi-
cation can be achieved by training classifiers on frames that are signatures of individual
subjects, and excluding the ubiquitously present frames. There is no previous work, to
our knowledge, on studying the similarity across frames from different subjects and
pinpoint the uninformative ones.

We constructed four feature spaces for silhouette images to formulate of similarity
measure between samples. Hierarchical classifiers are built in each feature space. Fol-
lowing classification in each space separately, results in the four feature spaces for all
images within the test sequence are aggregated to provide the final classification results.

The organization of this paper is as follows. Section 2 presents a description of the
four feature spaces for silhouette images. In Section 3, we present our algorithm for
identifying uninformative clusters of similar image frames across subjects. The hierar-
chical classification process and the aggregation method are described in Section 4. In
Section 5, we present the experimental results and discussions, followed by conclusions
in Section 6.

2 Feature Spaces for Silhouette Images

The usual inputs in the gait recognition problem are binary silhouette images to elimi-
nate the texture and color information from original images. In this section, we provide
a domain-specific feature extraction procedure for the contour points of the human sil-
houette, and design four different feature spaces for similarity measurement between
images. Our classification framework can be applied to other problems by simply mod-
ifying the feature spaces.

2.1 Contour Point Detection

Our image features are defined on contour points, as the locations of these points encode
a given silhouette image. We design eight filters to detect contour points in silhouette
images, as shown in Fig. 2. These detectors are linear filters with various orientations.
A foreground point is marked as a contour point only when the convolution between the
silhouette image and any of the eight filters is greater than a certain threshold. Compared
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Fig. 2. Eight feature detectors for contour points

Fig. 3. Upper left panel: original silhouette image. Lower left: combined contour point detection
results. Second to last columns: responses to the feature detectors in Fig. 2.

with simple morphological operations such as removing foreground pixels whose four-
connected neighbors are foreground as well, these detectors can find the outer contour
of the silhouette image and also the orientation of the corresponding boundary. Fig. 3
illustrates the results of this contour point detection process. For the silhouette image
in the upper left panel, the responses to the eight filters are shown in the second to
last columns. Combining these individual filter responses leads to the complete contour
point plot shown in the lower left panel of Fig. 3.

2.2 Relative Shape Vector

To measure the relative location of a contour point within the silhouette, we introduce a
new shape descriptor, called Relative Shape Vector (RSV). For any point p within a set
of contour points C, all other points in the set C − {p} should be located in two of the
eight overlapping windows as shown in Fig 4(a). Counting the number of contour points
located in each window results in an eight-dimensional vector (c1(p, C), · · · , c8(p, C)).
The RSV for the point p with respect to set C is a normalized version of this vector,
defined as follows:

RSV (p, C) = (α1(p, C), · · · , α8(p, C)), (1)

where αi(p, C) = ci(p, C)/
∑8

k=1 ck(p, C), i = 1, . . . , 8. The RSVs for contour points
A, B, and C in Fig. 4(b) are given in Fig. 4(c). Note that this is similar to the shape con-
text descriptor [21], except that we have a set of overlapping windows and the histogram
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Fig. 4. (a) The eight windows used in Relative Shape Vector calculation. The number inside each
section is the window index. (b) Three contour points on a silhouette image. (c) The correspond-
ing eight-dimensional RSVs. Brighter shades means higher value.

is only calculated based on orientations, regardless of distances. Therefore, RSVs pre-
serve redundant information with overlapping windows, and describe less details of the
shape by ignoring relative distances, making it less sensitive to changes in the contours.

2.3 The Four Feature Spaces

As the RSV describes the relative location of a given contour point with respect to
others, points on different images but at roughly the same relative locations will have
similar RSV values. Therefore, grouping in the RSV space results in segmentation of
contour points according to their relative locations on a silhouette. Fig. 5 shows the
grouping results for two different images using the k-mean algorithm [22], where k =
13 is chosen empirically. We see that points at the same relative locations are labeled as
the same group. These grouping results enable us to define four feature spaces for the
silhouette images:

– Feature Space 1: Gravity Center Distance For each group of points in a given image,
we obtain its gravity center. The first feature space contains all distances between
different gravity centers, normalized with largest one. With 13 groups, the dimen-
sionality of this feature space is 78.
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Fig. 5. Grouping results of contour points in two silhouette images. Group numbers are labeled
alongside the contour points.
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– Feature Space 2: Relative Center Distance
For each gravity center, we rank its distances to other 12 centers, and obtain two
relative distances as the smallest and the second largest distances with respect to
the largest one among these 12 distances. This 26-dimensional feature measures
relative distances within each image.

– Feature Space 3: Local Orientation Statistics
The third feature space is designed to capture the boundary orientation information.
The orientation of the silhouette image at each contour point is contained in the
filter responses to the eight filters shown in Fig. 2. The average response from all
points in each group can be interpreted as a histogram of silhouette orientation at the
contour points. This 65-dimensional feature captures the local orientation statistics.

– Feature Space 4: Local Shape Statistics
Another feature we want to capture is the local distribution of contour points within
each group. These local shape statistics include the two eigenvalues of the covari-
ance matrix of these points, the ratio of the eigenvalues, and the orientation of the
principle components.

The above four feature spaces provide rich descriptions of the shape within a sil-
houette image and different opportunities for recognition. Similar silhouetted images
are close to each other in the feature spaces. Therefore, we are able to cluster images
according to their similarities within these four feature spaces.

3 Multipartite Graph Clustering and Filtering

In this section, we describe the clustering method for identifying uninformative frames
in a given feature space. Given the representation of frames in a feature space, our
goal is to divide the training data frames from multiple subjects into two classes: a
set with subject-specific frames, and another with non-subject-specific ones (shared by
many subjects). It is likely that filtering out frames that are similar (or uninformative)
across subjects would increase the accuracy of classification. Finding such uninfor-
mative frames can be cast as a clustering problem on a graph representing similarity
between frames from different subjects.

In a traditional clustering scenario, frames close to each other are grouped as a clus-
ter. However, in our problem, similarity between frames from the same subject should
not to be considered, as we are only interested in finding clusters containing similar
frames from different subjects. Such a similarity structure is captured by a multipartite
graph, where we denote a subject as a partite set and frames from a subject as ver-
tices in the corresponding partite set. An illustration of this representation is in Fig. 6,
where we show a complete three-partite graph. The multipartite graph representation is
suitable because it only considers the similarity relationships between frames from dif-
ferent subjects. The presence of clusters in the multipartite graph reveals the similarity
among frames from different objects and those containing very similar frames from a
large number of subjects are considered as uninformative.

In graph theory, clusters are related to dense subgraphs called cliques [7]. Therefore,
our problem of identifying similar frames across different subjects can be formulated
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Fig. 6. A complete three-partite graph

as finding cliques in a multipartite graph [6]. However, the maximum clique finding
problem, and its various weighted formulations for multipartite graphs, are proven to
be NP-complete [8,6]. Due to the sensitivity of the filtering problem and the additional
requirement for finding similar frames across different subjects only, existing cluster-
ing methods are inadequate. Heuristics are often used to find clusters in data [7] but
these heuristic methods are not well suited to our approach since they cannot guarantee
finding best multipartite clusters. Therefore, we need an optimization based procedure
whose exact solution can be found. In this paper, we propose such a multipartite graph
clustering method for finding clusters of uninformative frames. The objective function
in our multipartite clustering method have favorable properties which guarantee that a
globally optimal solution can be found with an efficient algorithm.

3.1 Multipartite Graph Clustering

For a problem with k subjects in the training data, let Vi, i ∈ {1, 2, . . . , k} denote a set
of vertices which represent frames from subject i. We construct an undirected weighted
multipartite graph G = (V, E, W ), where V = ∪k

i=1Vi, and E ⊆ ∪i�=jVi × Vj is the
set of weighted, undirected edges connecting vertices from different partite sets. The
weight wij ∈ W on the edge eij ∈ E represents the similarity between the vertices i
and j.

Let H denote a subset of V such that H contains vertices from at least two partite.
We define a score function F (H) to measure the proximity among elements in H . Then,
our multipartite quasi-clique, or a cluster, H∗, is defined as the subset with the largest
score value, i.e,

H∗ = arg max
H⊆V

F (H). (2)

The efficiency of extracting the optimal set H∗ is closely related to the algebraic prop-
erties of F (H). When the set function F (H) is quasi-concave, i.e,

F (H1 ∪H2) ≥ min(F (H1), F (H2)) ∀H1, H2 ⊆ V (3)

the optimal solution can be efficiently obtained, if F (H) can be efficiently computed.
Here, F (H) is designed using a linkage function π(i, H) that measures the degree of
similarity of the frame i ∈ H to other frames in H , leading to the following definition:

F (H) = min
i∈V

π(i, V ), ∀i ∈ V ∀H ⊆ V (4)
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In other words, F (H) is the π(i, H) values of the least similar (outlier) frame in H . Then,
according to (2), the subset, H∗ contains frames such that similarity of the least similar
frame in H is maximum. It can be proved that F (H) as defined in (4) is quasi-concave
if and only if the linkage function π(i, H) is monotonically increasing [23], i.e,

π(i, H) ≥ π(i, H1) ∀i,∀H1, ∀H : i ∈ H1 ⊆ H ⊆ V (5)

The linkage function is constructed from the pair-wise similarity values between frames
from different subjects. Besides being monotone increasing, the linkage function should
be designed such that π(i, H) and hence F (H) can be efficiently computed; this would
guarantee a polynomial time procedure to find H∗. At the same time, the linkage func-
tion should capture an appropriate notion of similarity so that the optimal solution H∗

captures the multipartite quasi-clique nature of relationships between frames contained
in H∗. Although a large family of linkage functions satisfying the above requirements
exists, we use a simple and intuitive linkage function to demonstrate our approach. If
mij (≥ o) is the similarity value between frame i from subject s(i) and frame j from
subject s(j) (s(j) 
= s(i)), then the linkage function is defined as

π(i, H) =
k∑

�=1
� �=s(i)

∑
j∈H

s(j) �=s(i)

mij (6)

In other words, the linkage function π(i, H) aggregates the similarity between the frame
i from subject s(i) and all other frames in H that do not belong to subject s(i).

Table 1. Pseudocode to extract H∗

Step 0: Set t := 1; H1 := V ; H∗ := V ;
Step 1: Find Mt := {i : π(i, Ht) = min

j∈Ht

π(j, Ht)};
Step 2: if ((Ht \Mt = ∅) ∨ (π(i, Ht) = 0 ∀i ∈ Ht)) STOP.

else Ht+1 := Ht \Mt; t := t + 1;
if (F (Ht) > F (H∗)) H∗ = Ht;
go to Step 1.

The algorithm to find the optimal solution H∗ is described in Table 1 [23]. This
iterative algorithm begins with the calculation of F (V ) and the set M1 containing the
subset of frames that satisfy F (V ) = π(i, V ), i.e, M1 = {i ∈ V : π(i, V ) = F (V )}.
The frames in M1 are removed from V to obtain H2 = V \ M1. At iteration t, it
considers the set Ht−1 as the input, calculates F (Ht−1), identifies the subset Mt such
that F (Ht−1) = π(it, Ht−1), ∀it ∈Mt, and removes this subset from Ht−1 to produce
Ht = Ht−1 \Mt. The algorithm terminates at iteration T when HT = ∅ or π(i, HT ) =
0 ∀i ∈ HT . It outputs H∗ as the subset, Hj with the smallest j such that F (Hj) ≥
F (Hl) ∀l ∈ {1, 2, . . . , T}.

The above formulation gives us one multipartite cluster, however, many such clus-
ters would be present in the multipartite graph. Assuming that these clusters are unre-
lated to each other, we can use a simple heuristic to find cluster H∗, remove it from
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the set V , and find another cluster in the remaining set V \ H∗. This can be applied
iteratively to find all the multipartite clusters.

3.2 Determining Uninformative Clusters

There are two criteria for determining which clusters should be labeled as uninforma-
tive. First of all, frames within such clusters should be highly similar to each other.
Secondly, these clusters should contain frames from most of the subjects.

From the above procedure, similarity among frames within a cluster is given by the
score value F (H∗) of cluster H∗. Since this score value is the aggregated similarity
between a frame and all other frames in the cluster, it would, in general, be larger
for larger clusters. Hence we use the average similarity value of a cluster defined as
F (H∗)/|H∗|, instead of F (H∗) for estimating homogeneity within a cluster. Clusters
with large average similarity values, but containing frames from just a few subjects are
actually informative for classification as they characterize the subjects therein. Hence,
only those clusters containing frames where most subjects have an average similarity
value above a certain threshold are labeled as uninformative.

4 Details of Classification

Clusters obtained in the previous section provide a hierarchical structure for the entire
data, based on which we build our classifiers as shown in Fig. 1. The first level is to
determine whether a probe frame is informative, whereas identification within each
informative cluster is specified in the second level. In addition, for a group of frames
from an unknown subject, we aggregate the identification results from all informative
ones to reach a final identification.

4.1 Hierarchical Classifiers

There are a number of standard methods available for binary or multi-class classifi-
cation. Here we use Bayesian logistic regression(BLR) [24] as the first level of our
hierarchical classifier structure and the nearest neighbor as the second level classifier.

First Level - Bayesian Logistic Regression. To determine the cluster for a probe
frame, we train a binary classifier for each cluster obtained from Section 3. The
Bayesian logistic regression (BLR) [24] is applied to achieve state of the art effec-
tiveness while avoiding over-fitting.

Given a training set containing n samples, s1, . . . , sn, with corresponding labels
y1, . . . , yn, the BLR aims at finding the best parameter value which maximizes the
conditional probability model of the form

p(y = +1|β, si) = ψ(βT si), where ψ(r) =
exp(r)

1 + exp(r)

is a logistic regression model, and β is a parameter to be determined through the learn-
ing process. We choose Laplace distribution as a prior distribution for each component
of β. This sparse favoring prior guarantees most components of β have a 0 or near zero
value. Fast and accurate prediction could be achieved through the method provided
in [24].
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Second Level - Nearest Neighbor. If a probe frame is labeled as an uninformative
cluster (the cluster shadowed in Fig. 1), this frame does not contain characteristic in-
formation, and will be screened out from classification. The second level of classifier is
used only for the frames classified as informative.

Within each informative cluster, there are multiple frames from several subjects. We
choose the nearest neighbor method due to its simplicity and low bias.

4.2 Classification Rule

To classify an unknown subject X = {(x11, x12, x13, x14), . . . , (xn1, xn2, xn3, xn4)}
with n frames where xk. = (xk1, xk2, xk3, xk4) is the representation for the frame
k in the four different feature spaces, we apply four different classifiers C1, C2, C3

and C4 in corresponding feature spaces. Let mij denote the number of informative
frames assigned by the classifier Cj to subject i in the training data-set. We integrate
the classification results from the individual classifiers for estimating the membership
ri of the unknown subject X to the subject i. We used the ordered weighting assignment
(OWA) [25] where weights for each classifier are ordered according to the confidence
levels of the classifier. Precisely, for estimating the membership of X to i, the mij ’s,
j = 1, . . . , 4 are sorted as mij1

≥ . . . ≥ mij4
and ordered weighted assignment, rOWA

i

is calculated as rOWA
i =

∑4
l=1 w

l
mij

l
. It must be noted that mij

l
is different from mij .

The procedure to find the weights w
l

will be described shortly. The final classification
r∗ for X is obtained as the subject which shows highest level of assignment [26] , i.e.,
r∗ = arg max

i
rOWA
i , where i is a subject from the training data.

The weight vector w = (w1, w2, w3, w4) used in the above classification rule must
satisfy

∑4
l=1 w

l
= 1 and w

l
≥ 0 ∀l, where wl is quantized into ten discrete values, i.e.,

w
l
∈ {0.1, 0.2, . . . , 0.9, 1.0}. The optimal weights under this restriction are obtained,

by exhaustively searching all possible combinations, as the one which maximizes the
accuracy of the above classifier under 5-fold cross-validation on the training data.

5 Experimental Results and Analysis

We apply our method to the silhouette images from Human ID Gait Challenge Database
collected at the University of South Florida (USF) in May and November 2001. There
are a total of 122 subjects in the data, walking on different surfaces (G/C), with different
shoes (A/B), with/without carrying a briefcase (BF/NB), and captured with two cameras
(R/L) at different times (t1/t2). There are 12 carefully designed experiments to test
whether identification can be made under different walking conditions, as summarized
in Table 2 [27].

The image frames from different subjects are clustered using the multipartite graph
clustering procedure described in section 3. On average about 87% of the training data
are classified into clusters. Most of the clusters contain frames from a few subjects,
therefore, they are considered as informative from classification perspective. Across
different feature spaces, we are able to label (on average) about 14% of all frames as
uninformative. Figure 7 shows some frames detected as uninformative. As we can see,
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Table 2. 12 probe sets with the common gallery of (G, A, R, t1) containing 122 subjects

Experiment Probe Difference
A G, A, L View
B G, B, R Shoe
C G, B, L Shoe View
D C, A, R Surface
E C, B, R Surface Shoe
F C, A, L Surface View
G C, B, L Surface Shoe View
H G, A, R, BF Briefcase
I G, B, R, BF Shoe, Briefcase
J G, A, L, BF View, Briefcase
K G, A/B, R, NB, BF, t2 Time
L C, A/B, R, NB, BF, t2 Surface Time

Fig. 7. A representative instance of uninformative frames from different subjects, in the USF data,
within an (uninformative) multipartite cluster

most frames are captured during the mid-swing/mid-stance phase of a gait cycle. This
is consistent with our intuition because at this stage of a gait cycle, most body parts
overlap with each other and could not show details in the silhouette images.

Further, classifiers are constructed based on the clustering results in the four differ-
ent feature spaces. The corresponding recognition rates, together with the aggregation
results of different feature spaces, are given in Table 3. In addition, Fig. 8 illustrates the
aggregation recognition results by the cumulative match score (CMS).

We find that the recognition rates in experiments A and C are consistently better in
space 1 (gravity center distance, see section 2.3); however space space 3 (local orien-
tation statistics) provides better recognition in experiments D through L, while space
4 (local shape statistics) seems to capture essential features in experiment B. This sug-
gests that the four feature spaces capture considerably different aspects of the silhouette
images, although in most cases, the local orientation statistics is the most relevant fea-
ture for recognition. Therefore aggregating results from all four features spaces leads to
improved recognition rates, as shown in Table 3 by utilizing all available information.

In Table 4, our results are compared with others reported previously. Our approach
considerably outperforms the baseline algorithm [27] in 10 out of the 12 cases, while
matching in another one. Our method achieve a much higher recognition rate for exper-
iments K and L, (18% and 15% respectively, comparing to 3% by baseline algorithm),
which are the most difficult experiments in the challenge set. The only favorable case
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Table 3. Recognition rates for different experiments in each of the four feature spaces as well as
the aggregation results

Exp Space 1 Space 2 Space 3 Space 4 Aggregate
A 70 61 66 52 82
B 81 78 78 83 89
C 69 56 54 63 76
D 19 21 31 20 36
E 36 31 40 34 53
F 12 12 16 13 23
G 22 16 22 16 34
H 32 25 42 25 44
I 40 29 50 40 57
J 25 19 28 20 37
K 12 12 12 12 18
L 6 3 12 9 15
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Fig. 8. CMS curves for USF data

for the baseline method is when the subject carries a briefcase in the probe sequence;
we attribute this to insufficient information to distinguish subjects when the briefcase
contour dominates the subject contour. In comparison to the results from HMM ap-
proach [3], our method performs better or equivalently in 5 of the 7 experimental
conditions.

We also compare our method with k-nearest neighbor without screening uninfor-
mative examples. We choose k = 5 in our comparison, and the results show that all
of the 12 cases, uninformative frames adversely affect the recognition rate. Further, we
employ principle component analysis (PCA), a typical feature selection method, to re-
duce the feature space before the k-nearest neighbor classification. Though we maintain
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Table 4. Comparison of recognition rates of our method with other methods

Exp HMM (UMD) Baseline kNN PCA Our work
Id (71 subj.) (122 subj.) (122 subj.) (122 subj.) (122 subj.)
A 99 73 75 75 82
B 89 78 78 78 89
C 78 48 56 56 76
D 36 32 34 34 36
E 29 22 40 40 53
F 24 17 16 16 23
G 18 17 22 22 34
H N/A 61 43 43 44
I N/A 57 48 48 57
J N/A 36 32 30 37
K N/A 3 12 12 18
L N/A 3 6 6 15

95% total variance of the original data, as we can see, there is no gain in applying PCA,
and the recognition rate even decreases in Exp J.

Our method significantly outperforms all other previously reported methods in cases
when the subject walks on a different surface or at different time comparing to the
training data. This shows our method has more prediction power for unknown walking
conditions. Eliminating the common frames across subjects enables us to avoid train-
ing on “noisy” (i.e. uninformative from the classification perspective) frames, thereby
resulting in a higher recognition rate. In contrast, approaches that attempt to capture
strict dynamics of a walking style, such as HMM based methods, cannot isolate the
uninformative frames, and hence may perform poorly.

6 Conclusions and Future Work

A new combinatorial framework for supervised classification problem is proposed in
this paper. In this framework, the similar samples from a large number of subjects are
taken to be uninformative. These uninformative samples are obtained as clusters on a
multipartite graph using a novel combinatorial clustering approach. To classify a test
subject (probe sequence), its observations (image frames) are first classified as either
uninformative or informative; so only the informative frames from the test subject are
used for classification.

This framework is applied to the gait recognition problem, and the results demon-
strate the efficacy of our method. Currently, we treat sequences of images as a group
of frames, without considering the dynamics. However, our framework can be ex-
tended to encode the dynamics by introducing another feature space. Furthermore,
for color/texture images, different feature spaces should also be developed for other
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applications. It would be interesting to see the performance of HMMs when they are
trained on more informative data for classification.
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Abstract. While there has been a great deal of research in face detection and
recognition, there has been very limited work on identifying the expression on
a face. Many current face detection projects use a [Viola/Jones] style “cascade”
of Adaboost-based classifiers to interpret (sub)images — e.g., to identify which
regions contain faces. We extend this method by learning a decision tree of such
classifiers (DTC): While standard cascade classification methods will apply the
same sequence of classifiers to each image, our DTC is able to select the most
effective classifier at every stage, based on the outcomes of the classifiers already
applied. We use DTC not only to detect faces in a test image, but to identify the
expression on each face.

1 Introduction

The pioneering work of Viola and Jones [12] has led to a host of face detectors based
on “cascade classifiers”, where each classifier is learned by applying Adaboost [4] (or
some related algorithm [11,13]) to a database of training images of faces and non-faces.
The underlying principle in all these algorithms is to learn multiple classifiers during
the training phase, then (at performance time), run these classifiers as a “cascade” on
each region (at various resolutions) of the test image — i.e., in a sequence one after
another, eliminating non-faces at each stage.

In general, there can be many sub-clusters within the class of face images — in par-
ticular, perhaps one sub-cluster corresponds to people with the same facial expression
while another corresponds to people with some other expression.

Moreover, one of our learned classifiers might do very well on one cluster, but
relatively poorly on another. Consider, for example, the examples shown in Figure 1,
and notice the positive instances can be grouped into 3 clusters. (Here, imagine every
instance labeled “+” corresponds to a HappyFace, “�” to a SadFace and “�” to an An-
gryFace”. Note all 3 are faces — i.e., should be labeled positively by a face detector.)
Now consider two possible classifiers, corresponding to the set of separating lines la-
beled C1 (respectively C2). Neither is perfect. If we are trying to separate only the “+”
labeled positive instances from the negative instances, we would get better results using
C1; but if dealing with “�” labeled or “�” labeled instances, then C2 would preferred.
Of course, this same idea holds for different possible cascade of classifiers: different
cascades might be preferable for different clusters of images.

W. Zhao, S. Gong, and X. Tang (Eds.): AMFG 2005, LNCS 3723, pp. 70–84, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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Fig. 1. Two classifiers on set of positive and negative examples. Note various sub-clusters
of positive examples.

At performance time, our performance system DTC will scan through an unlabeled
image. For each sub-image W , it will (1) quickly sort W to the cluster best able to
process this sub-image, and (2) apply to W the classifier cascade appropriate to this
cluster. If W passes all of those classifiers, it is declared a “face”, and moreover assigned
the expression E associated with this cluster. The challenge is learning these two sub-
procedures. To do this, we first run the [12] algorithm on a training set whose image
regions are labeled only as face (vs non-face), but without any expression data. This
produces a set of Adaboost classifiers C = {C1, . . . , CN}. We then use these Cis as
features, to produce a decision tree that attempts to partition a second labeled training
set, which is a collection of images whose faces are each labeled with an expression
(as well as non-faces), into sub-collections containing faces with the same expression.
At each leaf node of this decision tree we then assemble a sequence of classifiers (each
taken from the C set) to form a cascade appropriate to this cluster. (Note each cluster can
have its own classifier sequence.) By construction, the resulting face detection system
will not only detect faces, but also associate every such face detected in a test image
with an expression.

This framework has two advantages over the standard model of cascade classifiers.
First, the standard model can only assign a binary “face vs non-face” label to each
subimage. By contrast, our system can return several labels, corresponding to facial
expression (as well as “non-face”). Second, while one classifier (or cascade of clas-
sifiers) might work well in identifying images in one cluster, that classifier (cascade)
might not work well for another. Unfortunately the existing cascade-based detection
techniques are static and image-independent, in that they apply a fixed set of classifiers
in a fixed order to any image. By contrast, our dynamic classification technique DTC

can decide which classifier to use at any stage, based on the outcomes of the previous
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classifiers. That is, while DTC also applies a sequence of classifiers to detect faces, the
actual sequence can vary — hence it can apply different cascades of classifiers to dif-
ferent images. Our evidence suggests that such dynamic classifiers have slightly better
accuracy in detecting faces.

Our DTC corresponds to an augmented decision tree, whose internal nodes each
correspond to a version of a classifier (which computes a real-valued score given an
image) and whose arcs each correspond to a range of those values. Each leaf node
corresponds to a partitioning of the possible sub-images; we then identify with each
such leaf node both a further sequence of classifiers and also a specific facial expression.
Note that each sub-cluster (and hence the leaf node) identifies the facial expression. We
also identify a sequence of classifiers with each leaf node. To classify a test (sub)image
I , DTC will apply the classifier associated with root of the decision tree to I , then use
the outcome of that classifier to determine which subtree to explore. It then recurs:
applying the classifier at the root of that subtree, etc. (Hence, the classifier applied at
stage s depends on the outcomes of the classifiers at stage 1, 2, . . . , s−1.) On reaching
a leaf node 	, DTC will then apply the associated classifier cascade, and accepts I as
a face if all of the classifier agree with this claim. If I is labeled as a face, it is also
assigned 	’s facial expression.

Section 2 describes how we produce this DTC system from a collection of labeled
images. In particular, this section shows how we use dynamic programming and ab-
stractions to sidestep the serious combinatorial issues — e.g., the exponential number
of possible decision trees, and possible cascades.

This section also explains the details of how we build a DTC and how we use it
to detect faces and identify the expressions on each detected face. Section 3 evaluates
our work in the domain of face detection; Section 4 presents relevant work related to
our research.

2 Learning the DTC Classifier

This section describes how we learn our DTC from two sets of labeled images — one
training set FLT 1, that identifies the embedded faces (but not the expressions), and a
second smaller one, FELT2, that labels the embedded faces with the associated expres-
sions. Each face image in the FELT set contains a single face that is hand-labeled with
one of { sad, fear, surprise, happy, no expression }.

There are three steps to building the DTC classifier. We first use the standard ap-
proach [12] to build a cascade of Adaboost classifiers C = 〈C1, . . . , CN 〉, based only
on the FLT training set; see Section 2.2. We next use the FELT data to produce a fixed-
depth decision tree whose nodes each correspond to one of these Cis, with the goal of
partitioning the FELT set into sub-clusters of face images with similar expressions; see
Sections 2.3. Each leaf node is now identified with a single expression. Third, we add a
further fixed-size sequence of classifiers, taken from {C1, . . . , CN}, to each leaf node;
see Section 2.4.

1 Face-Labeled Training set.
2 Face-Expression-Labeled Training set.
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Later, to use DTC to classify some region of an image, we first drop that region into
the decision tree, and let it sort itself down to a leaf. We then run the associated sequence
of classifiers. If that image “passes” each member of that sequence, it is labeled as
a face, and given the expression label associated with the leaf node. Otherwise it is
declared a non-face; see Section 2.5.

We give the motivation to our approach first and then present the details of our
algorithm.

2.1 Motivation

Figure 1 shows two classifiers C1 and C2 that are each, independently, trying to separate
positive from negative examples; each line of C1 (resp., C2) denotes a linear separator,
whose intersection corresponds to the classifier. At a high level, the positive examples
can be approximately grouped into three sub-clusters.

Below, we will consider classifiers that map an image into a real “SCO-value” (de-
fined later), not just a bit; see below. A set of N such classifiers therefore map each
image into a point in N -dimensional space, and face images can be seen as forming
sub-clusters in this space. If we can partition them meaningfully along “d1 � N” (a
predetermined constant, see below) dimensions, then we can retrieve the sub-clusters.
Partitioning the images based on any single classifier Ci is equivalent to finding its pro-
jection on the ith dimension in the N dimensional space; we can then split the images
based on the classifier’s value, into two (perhaps equal) groups. If we take such pro-
jections and partition the images repeatedly along d1 dimensions corresponding to d1

classifiers, then we can retrieve the (at most 2d1) sub-clusters.
It is also important to choose the d1 most effective classifiers. The positive instances

in Figure 1 include members of a left-most sub-cluster, labeled “�” and a right-most
one labeled “+”.We can see that the positive instances in these two sub-clusters have
different ranges for their X–values, while they have a similar range for the Y –value.
This means it is easy to separate the left-most cluster from the right-most if we project
the data into the X–axis, but this is not true if we consider projection into the Y -axis.

Of the many ways to partition the images, we wanted the partitions that are asso-
ciated with common facial expressions, based on the images in the FELT dataset. Sec-
tion 2.3 shows how we build a fixed-depth decision tree, “DTC”, using the C classifiers
(from the FLT-based cascade) to do this.

Each leaf here corresponds to a single facial expression. We also find a sequence of
another d2 classifiers that are specifically chosen to remove the false positives from the
sub-cluster.

2.2 Learning a Cascade of Classifiers

Our implementation first uses Viola-Jones approach [12] to produce a cascade of Ad-
aboost classifiers, 〈C1, C2, . . . CN 〉: First apply Adaboost to the entire collection of
labeled images in the training set FLT to produce a classifier C1. Let T1 be the images
that C1 labeled positively. Then apply Adaboost to T1 to produce the C2 classifier; then
let C3 be the classifier Adaboost produces when given T2 (which are the images C2

labeled positively), and so forth, to produce N classifiers. In our case we tell Adaboost
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how many linear separators each classifier should use. However, the algorithm decides
how many classifiers N it needs to build.

Our DTC will use this set of classifiers, but will structure them into a decision tree,
rather than simply use them in this sequence.

SCO-Value: Each Ci classifier will reject many of the images. For each image it passes,
it will also compute a real-value, as follows: Let 〈c1

i , c
2
i , . . . c

k
i 〉 be the linear separators3

of the boosted classifier Ci and let cj
i (W ) be the outcome of applying cj

i to a train-
ing image W . We define SCO-value (“sum of classifier output values”), Vi(W ) =∑k

j=1 cj
i (W ) as the sum of the outputs of the linear separators of Ci.

Adaboost is designed to choose the best features from the over-a-hundred-thousand
possible candidates. They are likely to fall on salient features specific to faces — like
eyes, nose, mouth, etc. Since SCO-value uses the outcomes of these classifiers, we
anticipate partitioning face images based on these values should group images of similar
features into one sub-cluster.

2.3 Building the Basic Decision Tree

Figure 2(a) presents the learning algorithm. It has two goals: first, to partition the im-
ages in the FELT set into meaningful sub-clusters of face images with the same face
expression, and second, to find the most effective sequence of d2 classifiers for each
sub-cluster.

We first restrict the set of classifiers, paring the list from C = {C1, . . . , CN} down
to a smaller set. To do this, we view each of these classifiers individually, as if we were
planning to use only it to label images. For any classifier Ci and for a specified data set
of images S (here, we use FLT.) we compute the score

R(Ci, S ) = 	× FN(Ci, S) + FP (Ci, S) (1)

where FN(Ci, Sj) is the number of false negatives Ci returns over the set S and
FP (Ci, S) is the number of false positives in S. (We set 	 = 10 in this work, as
false negatives are much worse than false positives — as a subsequent classifier may
eliminate the false positive, but once any classifier has removed a false negative, it will
never be recovered.) We then use only the best M = 10 such classifiers.

Next, we produce a depth-d1 decision tree, whose features each correspond to one of
these M classifiers. Its goal is to partition the FELT data, into clusters with the same fa-
cial expression. (We used d1 = 3 here.) In general, achieving this objective can be very
expensive, as there are several thousands of training images, and a huge number of pos-
sible decision trees. We use a two stage divide-and-conquer approach to help sidestep
this. First, we use a dynamic programming tableau to learn an optimal depth-d1 decision
tree. Each node at depth d corresponds to the set of images based on the application of a
specific sequence of d classifiers. The single depth-0 node 〈〉 contains all of the images
considered, S. To compute the images in the 〈(Ci, +)〉 node: First let C1(S) be the sub-
set of S that pass the C1 classifier; assume these are sorted based on their SCO-value

3 Each ci is a “rectangular feature”, the outcome of which is computed using “integral images”.
See [12] for details.
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Learn DTC(T : FLT TrainingSet, V : FELT TrainingSet)
• Build a cascade of Adaboost classifiers

〈C1, C2, . . . CN 〉 using images in T .
• Let C1:M = 〈C1, . . . , CM 〉 = the M classifiers

with highest individual score on T (Equation 1)
• Build decision tree based on C1:M :

During tree expansion, at depth i
after applying any Ci from each of All sequences
− Remove each image that Ci classifies as a non-face
− Partition remaining images into two equal halves

based on their Ci-based SCO-value
− Apply each Ci+1 to each half and continue

• Compute utility at each leaf (representing sub-cluster)
• Propagate utility up the tree, for any node nd

at depth d
− U(nd) = max {U(nd+1)}
− Let C∗

d+1 yield max. utility when applied on nd

− Associate C∗
d+1 with F( nd ), store 〈F( nd ), C∗

d+1〉
− Merge all the δ-equivalent F( nd ) nodes into one,

store one classifier C∗
i with the maximum utility

• For each leaf, find best sequence of d2

additional classifiers

Use DTC(It : Test Image)
• Set ratio = 1.0
� For each window W (of 24 × 24 pixels) within It

◦ For 1 ≤ i ≤ d1

– Find abstract state F( ni ) “closest” to W
– Apply C∗

i associated with F( ni )
◦ If 〈C1, C2, . . . Cd1〉 label the window as a face

– Find the corresponding sub-cluster, i.e., F( nd1 )
– Apply d2 classifiers associated with F( nd1 )
– If these d2 classifiers also label W as a face,

mark W as a face
• Set ratio := ratio × 0.8

Resize It by a factor of ratio.
• If It.length ≥ 24 and It.width ≥ 24, goto �
• For each detected face Fi

◦ Using images in the matching sub-cluster SC,
compute P (E|SC) for each expression E.

◦ Assign expression E∗ =
arg maxE{P (E|SC)} to Fi

Fig. 2. (a) Learning algorithm to discover sub-clusters and find “effective” sequence of classifiers
for each sub-cluster; (b) Dynamic classification algorithm

as 〈w1, . . . , wm/2, wm/2+1, . . . , wm〉, where V1(wj) > V1(wk) when j > k. Then the
〈(C1, +)〉 node contains {w1, . . . , wm/2}, and 〈(C1,−)〉 contains {wm/2+1, . . . , wm}.
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Similarly 〈(C2, +)〉 contains half of the images in C2(S) — those with the highest V2(·)
values — and 〈(C2,−)〉 contains the other half of the C2(S) images. And so forth for
the other 〈(Ci,±)〉 nodes. We can then compute 〈(C1, +), (C2, +)〉 that contains half
of the 〈(C1, +)〉 images that pass the C2 classifier, and 〈(C1, +), (C2,−)〉 that contains
the other half, etc. We continue for d1 levels, producing

(
M
d1

)
× 2d1 nodes. Each node

at depth d1 corresponds to a sub-cluster; we found that no sub-cluster contained more
than 83 images.

We now want to determine the best decision tree within this tableau — the one that
leads to the “purest” leaf nodes.

Computing the Utilities, First d1 Classifiers: Each leaf of the tree represents a pos-
sible sub-cluster.. We want the sub-clusters that are as “pure” as possible, which we
compute based on the utility

U(Sd+1) = K1 × γ∗
exp × |Sd+1| −K2 × FN(Sd+1)

where |Sd+1| denotes the number of images in the sub-cluster Sd+1 (which might
include some false positives) and FN(Sd+1) denotes total false negatives in Sd+1

(recall this is after applying 〈C1, C2 . . . Cd〉) and γ∗
exp = maxe{γe} where γe is

the fraction of face images in Sd+1 with a particular expression e ∈{ sad, fear,
surprise, no expression, happy}. (We used the constants K1 = 100 and K2 = 10.)
The idea is to assign high utility value to sub-clusters that group face images of the
same expression and a low utility value to sub-clusters that have high false nega-
tives. For any internal node Si we define U(Si) = maxj{U(Sj

i+i} as the maximum

utility of its children, {Sj
i+i}j .

Using these, we propagate the utility up the tree. We collect the 〈F(Si ), C∗
i 〉 tuples

and also the corresponding utilities, for all depths i, 1 ≤ i ≤ d1. F(Si ) represents the
“abstract state” representation of S1, (see below for the notion of abstract states) C∗

i

denotes the classifier that, when applied to Si, transitions it to another state S∗
i+1, with

the maximum utility among the children of Si. For every two states Si and Sj (i 
= j)
that are δ-equivalent (see blow for the definition of δ-equivalent states) we retain only
one state that has a higher utility and the corresponding classifier.

State Abstraction: At any stage during detection (testing phase) our algorithm first tries
to determine the closest matching sub-cluster for each face detected in a test image.
To be more precise, after applying classifiers 〈C1, C2, . . . , Ci−1〉 to a window in the
image, DTC applies the most appropriate classifier Ci. To choose Ci, we compare the
performance of Ci in a “similar situation” on the training data. For that we need to
have some kind of a “state representation” that allows us to effectively perform such
comparisons quickly.

In general, with each node s in the decision tree, we can identify both the
sequence of classifiers 〈C1, . . . , Ck〉 on the path from root to s, and also a set
of training images Ss that will reach s. We can also identify each s with an ab-
stract state F( s ) = 〈[Vmin,1, Vmax,1], [Vmin,2, Vmax,2], . . . [Vmin,k, Vmax,k]〉, for
each i, where [Vmin,i, Vmax,i] is the range of SCO-values of Ss associated with
classifier Ci.
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Further, we say two abstractions are “δ-equivalent”, written F( s1 ) ≈δ F( s2 ), iff:

– s1 and s2 have applied the same set of classifiers, not necessarily in the same order.
– For every classifier Ci used in F( s1 ) and F( s2 ), |V (1)

min,i − V
(2)
min,i| ≤ δ and

|V (1)
max,i−V

(2)
max,i| ≤ δ, where δ is a pre-defined constant. We set δ = 70 throughout

this work.

The result of abstraction is that a large number of complex states can be described
by a small number of compact state descriptions. Of course, the same abstract state can
represent multiple states — it is possible that F( s1 ) = F( s2 ) even if s1 
= s2.

2.4 Further Pruning

The d1 classifiers leading to a leaf node both identify the sub-cluster, and also filter
away many, but not all, of the non-faces. We therefore use another set of d2 classifiers,
specific to each leaf node, to help filter out the other non-faces. We noticed that each
sub-cluster has just a fraction of the total number of the training data (none had more
than 83, from the FELT data of 2672 images). Further, we noticed the number of false
positives was not very high (less than 27) for each sub-cluster (see Section 3). So, we
select a classifier C∗

d1+1 for each state Sd (d1 ≤ d ≤ (d1 + d2)) such that C∗
d1+1 has

not been used earlier and C∗
d1+1 = arg maxCd1+1{R(Sd, Cd1+1 )}. We apply C∗

d1+1,
update false positives and false negatives and repeat the process until d2 such classifiers
are found. At performance time, this means our DTC algorithm will use at most a total
of d1+d2 classifiers for any image, which collectively form the most effective sequence
of classifiers for that particular sub-cluster. (Of course, can be different sequences for
different images.)

2.5 Detection Using the Dynamic Classifier

The DTC detection algorithm, shown in Figure 2(b), both detects faces within a given
image and also identifies the expression of each such face into a sub-cluster. This
face detection mechanism is very similar to the cascade classifiers method [12,13], ex-
cept that it chooses the classifiers dynamically, based on the outcomes of the previous
classifiers.

This process examines each 24 × 24 pixel window in the image; it then rescales
and repeats. For each window W , DTC first applies the classifier C∗

1 associated with
root. This might reject the window W ; if so the process terminates (i.e., DTC continues
with the next window). Otherwise, DTC computes the SCO-value associated with C∗

1

on W and uses this value to decide which subsequent classifier C∗
2 to apply. Again this

could reject W , but if not, C∗
2 ’s SCO-value identifies the next classifier C∗

3 to apply to
W . This can continue for d1 steps, until W reaches a leaf, 	.If so, DTC then runs the
sequence of d2 additional classifiers associated with 	, and declares W to be a face only
if it passes all of these classifiers. (Here, it had passed all d1 + d2 classifiers.)

We also identify each detected face W with a facial expression: Recall there are
many expression-labeled training images associated with this leaf node 	; we assign to
W the most common of these expressions.
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2.6 Computational Complexity of Learning

Let N be the total number of classifiers and P be the total number of images. We sort
the N classifiers based on their utility on the training data and choose M best from
them. We expand the tree exhaustively up to a depth of d1 using the M classifiers. At
every depth, we apply a classifier Cd, collect the images classified as faces by Cd as
positives, sort them based on the SCO-metric of Cd and partition the positive images
into two halves4. Hence the total complexity of the process is O(

(
M
d1

)
× P lg(P )). This

is computationally expensive. However, since the number of training images is halved
on each branch, this process terminates rapidly. In fact, starting with several thousands
of images, we can obtain sub-clusters of size less than 100 by expanding the tree to a
depth no greater than 3 or 4, which can be done in a few minutes.5

3 Empirical Studies — Face Detection

In this section we show how we apply our ideas to the challenging domain of face detec-
tion and show its performance on several images. The training set flt has 1600 images
of faces and 2320 images of non-faces6, each of size 24 × 24 pixels. The face images
include faces of many people, some having glasses, beard and many with different fa-
cial expressions, etc. Some training images of faces in FLT are shown in Figure 3(a) The
FELT set has a total of 917 face images of the five basic expressions (sad, fear, surprise,
no-expression and happy). It also has 2320 non-face images. Some of the face images
in FELT are shown in Figure 3(b).

During the training stage, we built a cascade of 21 classifiers using Adaboost, based
respectively on { 7 15 30 30 50 50 50 100 120 140 160 180 200 200 200 200 200 200
200 200 200} linear separators. We sort these classifiers based on their score S(Ci, T )
on the training data and select the 10 best classifiers. Using the 10 classifiers, we do
a depth first search as explained in Section 2.3 up to a depth of d1 = 3 and find sub-
clusters. Each sub-cluster included between 26–83 images, some of which could be
false positives. The number of false positives was in the range {0 ..27}, for any sub-
cluster. Figure 4 shows face images of the same expression from some interesting sub-
clusters that our algorithm learned.

For each sub-cluster we find another sequence d2 = 13 classifiers 7 that have the
maximum score on the images of the sub-cluster, as explained in Section 2.3. The (d1 +
d2) classifiers learned by our algorithm form the most effective sequence for the sub-
cluster they are associated with.

To detect faces in any given test image, we use the dynamic detection technique
given in Figure 2(b) and explained in Section 2.5. We ran it over 150 images mostly

4 We compute the SCO-metric V i
j of every classifier Ci on every training image Ij and also

whether Ci classifies Ij as face or not, apriori. So, there are no extra computation during the
tree expansion stage.

5 The training time for building the classification tree on a 1 GHz. computer with 256 Mb. RAM
running Windows-2000, using MS Visual C++ was about 5 minutes.

6 Most of these images were downloaded from the web from popular databases like Olivetti
Research & AT&T, Caltech, Yale, JAFFE, PICS, etc.

7 We set these values after initial experiments on many test images.
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(a) Faces in the FLT set

(b) Faces in the FELT set with five different expressions — fear, happy, no expression, sad and
surprised

Fig. 3. Face images in the FLT and FELT sets

from Olivetti Research database face images and could successfully identify the ex-
pression. Figure 5 shows the performance of our detection algorithm on a number of
face images with various expressions. The figure also shows a graph plotting P (E|SC),
which indicates the probability of expression E for the detected face. We assign the ex-
pression E∗ with maximum P (E|SC) to the expression. Note that expressions can be
mixed — like happy and surprised, sad and fear and so on. The graph below indicates
the probability of each expression.

3.1 ROC Curve

To find out the effectiveness of our face detection algorithm, we ran it on 178 image
face images of the MIT-CMU database with a total of over 532 faces and covering

(a)

(b)

(c)

(d)

(e)

Fig. 4. Various sub-clusters discovered from the FELT data — (a) Sad (b) Fear (c) Surprised (d)
No Expression (e) Happy
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(a)

(b)

(c)

(d)

(e)

Fig. 5. Performance on several test images — (a) happy (b) no expression (c) sad (d) fear (e)
surprise. For each test image, the corresponding graph below shows the probability of each of the
five expressions.
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Fig. 6. Classification results on sample images from MIT-CMU database
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Fig. 7. ROC curve

more than 30 million windows. Figure 6 shows the performance of our algorithm on
two images, each with several faces. Figure 7 compares the ROC curves for our face
detection algorithm with that of Viola-Jones cascade classification algorithm. 8 Note
that Viola-Jones detection method uses 21 classifiers, while our algorithm uses only
a subset of 16. Since our algorithm is built using the 21 classifiers of the Viola-Jones
algorithm, all the parameters (like the number of linear separators for each classifier,
the training data from which they are built) are exactly the same. An important point to
note — since our algorithm uses only a subset of the classifiers as Viola-Jones method,
it detects every face that Viola-Jones method detects.

8 This is the implementation of the Viola-Jones method [12] by Wu and Rehg.
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The main difference is the way they choose the classifiers — Viola-Jones method is
static, while our algorithm is dynamic. Our technique can adapt itself to choose the most
effective classifier specific to the sub-cluster. Hence, it can apply complex classifiers
(with a high number of linear classifiers) very early in the detection process.

The points on the ROC curve are obtained by varying the number of classifiers
applied in the range [4–21] for Viola-Jones method and [4–16] for our method. As can
be seen from the graph, both the methods seem to have similar performance, with a
peak detection rate of 92.5%, while our algorithm does marginally better.

3.2 Efficiency

We ran our Viola Jones algorithm and our algorithm on 400 images of Olivetti Research
database face images, each with a size of 92 × 112 pixels and each image having ex-
actly one face. On average Viola-Jones algorithm took 0.189 seconds per image while
our algorithm took 0.243 seconds. The increase in computational time can be attributed
to two reasons — our algorithm not only detects faces but also assigns an expression
to each detected face, that involves extra computation. Secondly, Viola-Jones algorithm
is a static algorithm optimized for speed. It uses boosted classifiers with smaller num-
ber (less than 10) of weak classifiers, that are faster to execute, early in the detection
process. We cannot detect the best matching sub-clusters (to find out expression) by
choosing classifiers statically. Hence, our algorithm may select more complex classi-
fiers (that take more time to execute) in the early stages of detection. However, complex
classifier can also prune off several thousands of false positives initially increasing the
overall detection efficiency.

4 Previous Work

There has been limited work in identifying face expressions. Liu and others [7,3,2] track
facial features and analyze them for facial expressions. Others proposed several other
methods [1] almost all of them are based on methods that do a local analysis of facial
features, like mouth, eyes, etc. Our work is significantly different from all these — we
don’t use sequence of images or analyze facial features explicitly, but use training set
to group face images of expression into sub-clusters. We associate each detected face
with a sub-cluster to identify the expression.

Many researchers have recently proposed several methods for detecting faces in
images; see [8,10,9] for a small sample. There has been a lot of interest in the cas-
cade classification methods using classifiers, after the seminal work of Viola and Jones
[12,11,13]. All of the cascade classification methods are static — the number of clas-
sifiers and the order in which they are applied is fixed; i.e., the same for each instance.
Although our approach also uses classifiers, it differs because the order of those sub-
classifiers can change for different images. We present an algorithm to learn a dynamic
classification method, that decides which classifier to apply to an image based on the
outcome of the classifiers already applied. Grossman [5] presented a tree-based detec-
tion method, which selects a linear combination of weak classifiers dynamically, based
on the outcome of the previous weak classifiers. Our work is also dynamic but differs
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significantly as we build a classification tree using these subclassifiers in the internal
nodes. Moreover, the aim of our work is not only to detect faces but to discover different
sub-groups in training images of faces and to associate each face that is detected in a test
image to one of these. Thus, it is an extension to simple face detection. [6] addressed
related issues in a feature-based face-recognition system by posing the task a “Markov
Decision Problem (MDP)”. They use dynamic programming to produce an optimal
policy, π∗, that maps “states” to “actions” (feature detector) for that MDP, then used
that optimal policy to recognize faces efficiently. We use similar techniques here in this
work — we aim to find the best sequence of classifiers here, to detect faces and also
each detected face to a sub-cluster.

5 Conclusions

We give future directions to extending this work and present the contributions of our
work.

5.1 Directions for Future Work

In this work we use classifiers to achieve two objectives — to detect faces and to group
each detected face into one sub-group. There are several interesting extensions to this
work; it can extended to partition training images into sub-clusters of faces with and
without (external) features like glasses, moustache, etc. The detection system can be
used to differentiate people with these features from those without these features.

It will be interesting to try our method on gender classification also. This work can
be directly extended to do multiple object detection. Our concept of sub-clusters of
faces can be directly correlated to different objects. We can still use a binary (positive
and negative) classifier where the training images of all the objects to be detected are
positive examples and the rest are negative examples. The training phase of computing
the rewards and building a classifier will be quite similar, where the most effective
sequence of classifiers will be those that can separate images of different objects into
separate clusters. The detection phase will be guided by the dynamic classifier where a
classifier with the maximum utility will be selected at each stage.

Finally, we believe that with suitable modifications our approach can be used for
gesture recognition, where each sub-cluster corresponds to face images that belong to
people with the same gesture.

5.2 Contributions

The main contribution of our work is that it assigns expression to faces during detec-
tion. Our training algorithm partitions training images into sub-clusters of similar ex-
pressions. During detection, every detected face is matched to one of these sub-clusters
to identify the expression. Another novel aspect of our work is that our face detection
method is dynamic. We present an algorithm to learn a dynamic classification method
that applies the most effective classifier based on the outcome of the previously applied
classifiers.
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Abstract. The development of web and digital camera nowadays has made it 
easier to collect more than hundreds of thousands of examples. How to train a 
face detector based on the collected enormous face database? This paper 
presents a manifold-based method to subsample. That is, we learn the manifold 
from the collected face database and then subsample training set by the 
estimated geodesic distance which is calculated during the manifold learning. 
Using the subsampled training set based on the manifold, we train an 
AdaBoost-based face detector. The trained detector is tested on the MIT+CMU 
frontal face test set. The experimental results show that the proposed method is 
effective and efficient to train a classifier confronted with the huge database. 

1   Introduction 

Over the past ten years, face detection has been thoroughly studied in computer vision 
research for its wide potential applications, such as video surveillance, human 
computer interface, face recognition, and face image database management etc. Face 
detection is to determine whether there are any faces within a given image, and return 
the location and extent of each face in the image if one or more faces are present [31]. 
Recently, the emphasis has been laid on the data-driven learning-based techniques, 
such as [7, 13, 14, 15, 19, 20, 21, 22, 30]. All of these schemes can be found in the 
recent survey by Yang [31]. After the survey, the methods based on boosting are 
much researched. Viola described a rapid object detection scheme based on a boosted 
cascade of simple features. It brought together new algorithms, representations and 
insights, which could broaden the applications in computer vision and image 
processing [23]. And the algorithm has been further developed by other researchers 
[11, 12, 28]. 

The performance of these learning-based methods highly depends on the training 
set, and they suffer from a common problem of data collection for training. It makes 
easier to collect more than hundreds of thousands of examples with the development 
of web and digital camera nowadays. How to train a classifier based on the collected 
immense face database? This paper will give a solution. 
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In nature, how to train a classifier based on the collected immense face database is 
a problem of data mining. In this paper we will use the knowledge of the manifold to 
subsample a small subset from the collected huge face database. Manifold can help us 
to transform the data to a low-dimensional space with little loss of information, which 
can enable us to visualize data, perform classification and cluster more efficiently. 
Recently, some representative techniques, including isometric feature mapping 
(ISOMAP) [25], local linear embedding (LLE) [17], and Laplacian Eigenmap [1], 
have been proposed. The ISOMAP algorithm is intuitive, well understood and 
produces reasonable mapping results [9, 10, 29]. Also, it is supported theoretically, 
such as its convergence proof [2] and it can recover the co-ordinates [4]. There is also 
a continuum extension of ISOMAP [32]. A mixture of Gaussians is applied to model 
a manifold and recover the global co-ordinates by combining the co-ordinates from 
different Gaussian components [3, 18, 24, 26], or by other methods [27]. To estimate 
the intrinsic dimensionality, different algorithms also have been considered in 
manifold learning [8, 16]. 

The main contributions of this paper are: 

1. Subsample a small but efficient and representative subset from the collected 
huge face database based on the manifold learning to train a classifier. 

2. Discuss the effect of outliers on the trained classifier. 
3. The performance is instable to train a detector based on the random subsampling 

face set from a huge database. However, a detector trained based on the subsampled 
face set by the data manifold is not only stable and but also can improve the detector 
performance. 

4. When we prepare the training set, we should collect more samples along those 
dimensionalities with larger variances to get a nearly uniformed distribution in the 
manifold, for example, left-right pose of face more than up-down pose. 

The rest of this paper is organized as follows: After a review of ISOMAP, the 
proposed subsampling method based on the manifold learning is described in section 2. 
Experimental results are presented in section 3, followed by discussion in section 4. 

2   Subsampling Based on ISOMAP 

As discussed in [25], for two arbitrary points on a nonlinear manifold (for example, in 
the “Swiss roll” manifold), their Euclidean distance in the high dimensional input 
space may not accurately reflect their intrinsic similarity, as measured by geodesic 
distance along the manifold. Therefore, we use the geodesic distance for subsampling 
and the geodesic distance can be calculated as in ISOMAP. That is to say, the smaller 
the geodesic distance between two points is, the more their intrinsic similarity is. 
When the distance is smaller than a given threshold, one point is deleted as shown in 
Fig 2. 

2.1   ISOMAP Algorithm 

The goal of learning the data manifold is to show high-dimensional data in its 
intrinsic low-dimensional structures and use easily measured local metric information 
to learn the underlying global geometry of a data set [25]. 
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In the ISOMAP algorithm, firstly, distances between neighboring data points are 
calculated. The neighborhood can be knn -neighborhood. ISOMAP supposes that the 
data set X lie on a manifold of dimension d and tries to find the global co-ordinates of 
those points on the manifold. And then an undirected neighborhood graph is 
constructed. 

Secondly, for each pair of non-neighboring data points, ISOMAP finds the shortest 
path through neighborhood graph, subject to the constraint that the path must hop 
from neighbor to neighbor. The length of this path (we call it “the estimated geodesic 
distance”) is an approximation to the true distance between its end points (we call it 
“geodesic distance”), as measured within the underlying manifold. That is to say after 
embedding the high-dimensional data manifold into low-dimensional structures, we 
can use straight lines in the embedding to approximate the true geodesic path. 

Finally, the classical multidimensional scaling is used to construct low-dimensional 
embedding. 

2.2   The Residual Variance of ISOMAP 

The residual variance ( RVar ) of ISOMAP denotes the difference between the 
Euclidean distance in the d-dimensional Euclidean space and the true geodesic path 
[25]. The less the value of RVar is, the more approximate between them. The 
intrinsic dimensionality of the data can be estimated by looking for the “elbow” at 
which this curve ceases to decrease significantly with added dimensions, i.e., the 
inflexion of the curve. The relationship between the ISOMAP embedding 
dimensionality and the residual variance of the 698 face image of [25] is shown in 
Fig. 1. 

 

Fig. 1. The residual variance of ISOMAP embedding on the 698 face database of [25] 

As discussed in [25], each coordinate axis of the embedding correlates highly with 
one degree of freedom underlying the original data: left-right pose corresponding to 
the first degree of freedom, up-down pose corresponding to the second one and 
lighting direction to the third one. That is to say the scatter of face images in left-right 
pose is the biggest while the scatter in up-down pose is the smallest among these three 
factors. We can conclude that, in order to select representative example set, we should 
pay more attention to the left-right pose variations than the up-down pose. 
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2.3   Subsampling Algorithm 

As discussed in [25], during the manifold learning, we can get the estimated geodesic 
distance in the high-dimensional space between pairs of the data points. And then 
they can be used directly to sample by deleting some examples from the database. 
And the remained examples can still keep the data’s intrinsic geometric structure 
basically. By this means, we can get a small representative subset of the huge data. 

    

(a)                                                 (b)                                (c) 

Fig. 2. Subsampling based on the manifold learning. (a) The schematic of subsampling based 
on the estimated geodesic distance; (b) the manifold of 698 faces; (c) the results of subsampling 
based on the estimated geodesic distance. 

The scheme is demonstrated in Fig. 2 (a). We sort all of the estimated geodesic 
distances between pairs of points in the high-dimensional space in increasing order. If 
one of the estimated geodesic distances between an example and others is smaller 
than a given threshold, it will be deleted while others will be reserved. For example, 
as shown in Fig. 2 (a), the data point 1 and the data point 2 will be deleted during 
subsampling. As to the data point 3, it is preserved since the estimated geodesic 
distance between it and others are larger than the given threshold. From the figure of 
top right in Fig. 2 (a), the remained examples can still maintain the data’s intrinsic 
geometric structure basically. 

As demonstrated in Fig. 2 (b), it is a two-dimensional projection of 698 raw face 
images where the three-dimensional embedding of data’s intrinsic geometric structure 
is learned by ISOMAP (K=6) [25]. Fig. 2 (c) is the results of subsampling where some 
data points (in circle) are deleted and the remained data points are still in solid dots. 

If we want to subsample 90% examples from a whole set, what we need to do is to 
delete its 10% examples since their corresponding estimated geodesic distances to 
others are in the front of the sorted distance sequence. 

3   Experiments 

3.1   The AdaBoost-Based Classifier 

A large number of experimental studies have shown that classifier combination can 
significantly exploit the discrimination ability comparing with individual feature and 
classifier. Boosting is one of the common used methods for combining classifiers. 
AdaBoost, a version of the boosting algorithm, has been used in face detection and is 
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capable of processing images extremely rapidly while achieving high detection rates 
[23]. Therefore, we use the AdaBoost algorithm to train a classifier. A final strong 
classifier is formed by combining a number of weak classifiers, which is described in 
Fig. 3. For the details of the AdaBoost based classifier, please refer to [23]. 

 
Fig. 3. The AdaBoost algorithm for classifier learning 

3.2   Detector Based on the MIT Face Database 

The data set is consisted of a training set of 6,977 images (2,429 faces and 4,548 non-
faces) and the test set is composed of 24,045 images (472 faces and 23,573 non-
faces). All of these images are 19 19×  grayscale and they are available on the CBCL 
webpage [33]. 

We let K=6 when ISOMAP learns the manifold of 2,429 faces in MIT database. By 
the manifold learning as discussed in [25], we can get the estimated geodesic distance 
in the high-dimensional space between pairs. And then they can be used directly to 
sample by deleting some examples from the database. 

Note that all of these examples are performed by histogram equalization before the 
manifold learning. It is because all examples to train a classifier are needed histogram 
equalization which maps the intensity values to expand the range of intensities. 

In order to study the relationship between the distribution of the training set and the 
trained detector, we subsample the MIT face database by 90%, 80% and 70% 
(named as ISO90, ISO80, ISO70 later) as discussed in section 2.3. Subsampling by 
90% is to say we reserve 90% examples of the database and the same meaning of 
80% and 70%. Note that ISO70 is a subset of ISO80 and ISO80 is a subset of ISO90 
in fact. 

The three subsampled face sets together with the non-face are used to train three 
classifiers based on the AdaBoost as demonstrated in [23]. And then they are tested 
on the test set of MIT database. The ROC curves of these three classifiers are shown 
in Fig. 4. From these ROC curves, one can conclude that all of these three detectors 
base on ISO90, ISO80 and ISO70 get the comparable performance to the detector  
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Fig. 4. The ROC curves on the MIT test set using the subsampling face example sets based on 
the manifold learning and the whole set as training set for a fixed classifier 

based on the whole set. It demonstrates that it is reasonable to subsample based on the 
manifold, i.e. the subsampled subsets ISO90, ISO80 and ISO70 can still maintain 
the.data’s intrinsic geometric structure basically. Further, the detector trained by 
ISO90 is the best of all and improves the performance of the detector distinctly 
compared with the detector even by the entire face examples in MIT database. Even 
the detector trained on ISO70 is a little better than the detector trained on the entire 
examples. Some possible reasons: the first one is the examples subsampled based on 
the manifold distribute evenly in the example space and have no examples 
congregating compared with the whole set; the second is that the outliers in the whole 
set deteriorate its performance which is to be discussed later. 

However, random subsampling from the MIT database is not so lucky. We choose 
four subsets randomly-subsampled from the MIT database and each subset has the 
same number of examples as in ISO90. After trained on these four sets, they are also 
tested on the same test set. The ROC curves are shown in Fig. 5. In this figure, we 
plot the resulting ROC curves of detectors on the whole set, ISO90, and two randomly 
chosen subsets. Herein, the curve “90% examples based on the random subsampling 
n1” and the curve “90% examples based on the random subsampling n2” represent 
the best and the worst results of these four random sampling cases. From these ROC 
curves, one can conclude that the detector based on ISO90 is still the best of all and 
the results based on random subsampling is much instable. We also think that the 
evenly-distributed examples and no outliers contribute to this kind of results. 

During the ISOMAP learning, we get 30 outliers. Using the examples by ISO90 
plus the 30 outliers, we train a classifier also based on AdaBoost. Evaluated on the 
MIT test set, some resulting ROC curves are shown in Fig. 6. One can find that the 
detector, based on the ISO90 plus the 30 outliers, will deteriorate its performance. It 
also denotes that the effects of the evenly-distributed examples on the trained detector 
are more important than that of the outliers. Integrating these two factors, the detector 
based on the ISO90 is much better than the detector on the total face set. 
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Fig. 5. The ROC curves on the MIT test set using the subsampling face example sets based on 
the manifold learning, two random sampling sets and the whole set as training set for a fixed 
classifier 

 

Fig. 6. The ROC curves on the MIT test set using the subsampling face example sets based on 
the manifold learning, the subsampling sets based on the manifold embedding plus outliers and 
the whole set as training set for a fixed classifier 

3.3   Detector Based on the Huge Database 

To compare the performance difference on different training sets further, we also use 
another three different face training sets. The face-image database consists of 100,000 
faces (collected form web, video and digital camera), which cover wide variations in 
poses, facial expressions and also in lighting conditions. To make the detection 
method robust to affine transform, the images are often rotated, translated and scaled 
[6]. Therefore, we randomly rotate these samples up to ±15o , translate up to half a 
pixel, and scale up to ±10%. After these preprocessing, we get 1,200,000 face images 
which constitute the whole set. The first group is composed of 15,000 face images 
which are sampled by the ISOMAP (called ISO15000, here). The second or third 
group is also composed of 15,000 face images which are random subsampling 
examples (named Rand1-15000 and Rand2-15000, respectively). 
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Fig. 7. Subsampling procedure by ISOMAP to get 15,000 examples from 3,000,000 examples 

 
Fig. 8. The ROC curves for the trained detectors, based on the sampled training set by the 
ISOMAP and the random subsampling training set, tested on the MIT+CMU frontal face test set 

It is hard to learn the manifold from 1,200,000 examples by the ISOMAP because 
it needs to calculate the eigenvalues and eigenvectors of a 1,200,000 1,200,000×  
matrix. In order to avoid this problem, as demonstrated in Fig. 7, we divide the whole 
set into 400 subsets and each subset has 3,000 examples. We get 1,000 examples by 
the proposed method from each subset and then incorporate every three subsampled 
sets into one subset. With the same procedure, we can get the total 15,000 examples 
after incorporating all subsampled examples into one set. 

In order to avoid destroying the intrinsic structure of the manifold when the whole 
examples are divided into 400 subsets, we divide the samples in the similar 
distribution into the same subset. That is to say, the examples vary in poses, facial 
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Table 1. The detection rates comparison of our system and others 

Methods Detection rate (%) False alarms 

Fröba [5] 89.7 22 

Li [11] 90.2 31 

Rowley [19] 86.0 31 

Schneiderman [21] 94.4 65 

Viola [23] 89.7 31 

Xiao [28] 88.2 26 

Our method 91.28 18 

 
 

 

 

 

Fig. 9. Output of our face detector on a number of test images from the MIT+CMU frontal face 
test set and other web images 

expressions or lighting conditions are fallen into the different subsets respectively. 
And this criterion is also applied to incorporate the subsampled sets. 

The non-face class is initially represented by 15,000 non-face images. Each single 
classifier is then trained using a bootstrap approach similar to that described in [22] to 
increase the number of negative examples in the non-face set. The bootstrap is carried 
out several times on a set of 13,272 images containing no faces. 

The resulting detectors, trained on the three different sets, are evaluated on the 
MIT+CMU frontal face test set which consists of 130 images showing 507 upright 
faces [19]. The detection performances on this set are compared in Fig. 8. From these 
ROC curves one can conclude that the detector based on ISO15000 is the best of all 
and the results based on random subsampling is also much instable. During the 
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ISOMAP learning, we get 2,639 outliers. We think that the evenly-distributed 
examples and no outliers contribute this kind of results, again. 

In table 1, the experimental results of our method is compared with the results 
reported on the same test set — MIT+CMU frontal face test set. We get the detection 
rate of 91.28% and 18 false alarms with the detector trained on the set ISO15000. 

Herein, the results of Fröba [5] and Xiao [28] are read from the ROC curves given 
in their paper, which might result in a little difference with their real results. In this 
table, all of the algorithms in [5], [11], [23], [28] are based on boosting, [19] based on 
neural network, and [21] on Bayes. From the experimental results in table 1, one can 
conclude that our system outperforms the results achieved by Fröba [5], Li [11], 
Rowley [19], Viola [23] and Xiao [28]. Although the accuracy is lower than that of 
Schneiderman [21], our system is approximately 15 times faster. Furthermore, our 
system has less false detects than that of Schneiderman [21]. 

However, different criteria (e.g. training time, the number of training examples 
involved, cropping training set with different subjective criteria, execution time, and the 
number of scanned windows in detection) can be used to favor one over another, which 
will make it difficult to evaluate the performance of different methods even though they 
use the same benchmark data sets [31]. Some results of this detector are shown in Fig. 9. 

4   Conclusion 

In this paper, we present a novel manifold-based method to subsample a small but 
efficient and representative training subset from the collected enormous face database. 
After calculating the geodesic distance by learning the manifold from the collected 
face database, we subsample the training set in the high dimensional space. An 
AdaBoost-based face detector is trained on the subsampled training set, and then we 
test it on the MIT+CMU frontal face test set. Compared with the detector using 
random subsampling examples, the detector trained by the proposed method is more 
stable and achieve better face detection performance. We conclude that the evenly-
distributed examples, due to the training set subsampled based on the manifold 
learning, and no outliers, discarded during the manifold learning, contribute to the 
improved performance. 
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Abstract. Non-rigid 3D shape recovery is an inherently ambiguous problem.
Given a specific rigid motion, different non-rigid shapes can be found that fit the
measurements. To solve this ambiguity prior knowledge on the shape and motion
should be used to constrain the solution. This paper is based on the observation
that often not all the points on a moving and deforming surface such as a human
face are undergoing non-rigid motion. Some of the points are frequently on rigid
parts of the structure – for instance the nose – while others lie on deformable
areas. First we develop a segmentation algorithm to separate rigid and non-rigid
motion. Once this segmentation is available, the rigid points can be used to es-
timate the overall rigid motion and to constrain the underlying mean shape. We
propose two reconstruction algorithms and show that improved reconstructions
can be obtained when the priors on the shape are used on synthetic and real data.

1 Introduction

In this paper we focus on the estimation of the 3D shape and motion of a deformable
object such as a human face which is moving rigidly while performing different fa-
cial expressions. The face can be thought of as an underlying rigid body undergoing a
global rotation and translation while suffering some local non-rigid deformations. Our
aim is the simultaneous recovery of motion and 3D non-rigid shape from multiple im-
ages exploiting prior knowledge on the structure such as the rigidity of some of the
observed points.

In the past years numerous techniques have been proposed to solve the structure
from motion problem in the case of rigid objects and more recently the framework has
also been extended to deal with non-rigid objects. The main challenge in non-rigid
structure from motion is to disambiguate the contribution to the image motion given by
the shape deformation and that caused by the rigid motion. Bregler et al [3] introduced
a representation for non-rigid 3D shape where any configuration can be expressed as
a linear combination of basis shapes that define the principal modes of deformation of
the object. They proposed a factorization method that exploits the rank constraint on
the measurement matrix and enforces orthonormality constraints on camera rotations to
recover the motion and the non-rigid 3D shape. Their work can be seen as an extension
of Tomasi and Kanade’s factorization framework [12] to the case of deformable objects.
Torresani et al. [13] extended the method of Bregler et al. to a trilinear optimization
problem by minimizing 2D image reprojection error using Alternating Least Squares.
Brand [2] proposed an alternative optimization method and added an extra constraint
on the basis shapes: the deformations should be as small as possible relative to the
rigid shape.

W. Zhao, S. Gong, and X. Tang (Eds.): AMFG 2005, LNCS 3723, pp. 97–108, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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The main problem with these approaches stems from the fact that deformation and
motion are ambiguous. Given a specific configuration of points on the image plane,
different 3D non-rigid shapes and camera motions can be found that fit the measure-
ments. To solve this ambiguity prior knowledge on the shape and motion should be
used to constrain the solution. Recently, Xiao et al. [17] proved that the orthogonality
constraints were insufficient to disambiguate rigid motion and deformations. They iden-
tified a new set of constraints on the shape bases which, when used in addition to the
rotation constraints, provide a closed form solution to the problem of non-rigid structure
from motion. However, their solution requires that there be K frames (where K is the
number of basis shapes) in which the shapes are known to be independent. Non-linear
optimization schemes that minimize image reprojection error have also been proposed
to refine an initial solution [1,4]. The advantage of these methods is that they provide
a maximum likelihood estimate in the presence of Gaussian noise and prior knowledge
on any of the model parameters can be easily incorporated to the cost function in the
form of penalty terms. The need for incorporating prior information on the motion or
shape parameters to avoid the ambiguities inherent to non-rigid shape estimation is also
recognised by Torresani et.al. [15,14] who propose an algorithm that learns the time-
varying shape of a non-rigid 3D object from uncalibrated 2D tracking data. Temporal
smoothness in the object shape can be imposed within their framework which can also
deal with missing data.

In this paper we focus on the observation that often not all the points on a moving
and deforming surface – such as a human face – are undergoing non-rigid motion. Some
of the points are frequently on rigid parts of the structure – for instance the nose – while
others lie on deformable areas. Intuitively, if a segmentation is available, the rigid points
can be used to estimate the overall rigid motion and to constrain the underlying mean
shape by estimating the local deformations exclusively with the parameters associated
to the non-rigid component of the 3D model. Our observation is also supported by
recent studies on the notion of shape average by Yezzi and Soatto introduced in [18]
where the authors precisely separate motion and deformation components for robustly
matching, registering and tracking deformable objects.

Our approach first performs rigid and non-rigid motion segmentation on the fully
observed image data to separate both types of motion using an automatic measure of
deformability of shapes [10]. Once the points have been segmented into the rigid and
non-rigid sets we recover the overall rigid motion from the rigid set and we formalise
the problem of non-rigid shape estimation as a constrained minimization adding priors
on the degree of deformability of each point. We perform experiments on synthetic and
real data which validate the approach and show that the addition of priors on the rigidity
of some of the points improves the 3D reconstruction.

The paper is organised as follows. In section 2 we describe the non-rigid factor-
ization framework. In section 3 we propose a rigid and non-rigid motion segmentation
algorithm. Section 4 presents two alternative algorithms to recover the 3D shape using
rigidity constraints on the non-deforming segmented points. Finally, in section 5 we
show experiments on synthetic and real data to validate the segmentation algorithm and
the 3D reconstruction methods.
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2 Non-rigid 3D Modelling Using Factorization

Tomasi and Kanade’s factorization algorithm has recently been extended to the case of
non-rigid 3D structure, assuming affine viewing conditions [3,2,13,4]. The model used
to express the deformations is point-wise and the 3D shape of any specific configuration
S is approximated by a linear combination of a set of K basis shapes Sk which represent
the principal modes of deformation of the object:

S =
K

∑
k=1

lkSk S,Sk ∈ℜ3×P lk ∈ℜ (1)

where each basis shape Sk is a 3× P matrix which contains the 3D locations of P
object points for that particular mode of deformation. Assuming an orthographic camera
model the shape is then projected onto an image frame i giving P image points:

[
xi1 ... xiP

]
= Ri

(
P

∑
k=1

likSk

)
(2)

where each xi j = [ui jvi j]T contains the horizontal and vertical image coordinates of the
point – referred to the centroid of the object – and Ri encodes the first two rows of the
rotation matrix for a specific frame i. If all P points are tracked in F image frames we
may construct the measurement matrix W which can be expressed as:

W =

⎡⎢⎣ x11 . . . x1P
...

...
xF1 . . . xFP

⎤⎥⎦=

⎡⎢⎣ l11R1 . . . l1KR1
...

...
lF1RF . . . lFKRF

⎤⎥⎦
⎡⎢⎣ S1

...
SK

⎤⎥⎦ (3)

Clearly, the rank of the measurement matrix is constrained to be at most 3K, where
K is the number of deformations. This rank constraint can be exploited to factorize the
measurement matrix into a motion matrix M̂ and a shape matrix Ŝ by truncating the SVD
of W to rank 3K. However, this factorization is not unique since any invertible 3K×3K
matrix Q can be inserted in the decomposition leading to the alternative factorization:
W = (M̂Q)(Q−1Ŝ). The problem is to find a transformation matrix Q that renders the ap-
propriate replicated block structure of the motion matrix shown in Equation (3) and that
removes the affine ambiguity, upgrading the reconstruction to a metric one.

In this paper we address the problem of non-rigid shape estimation and we propose
a new solution which incorporates information on the degree of deformability of the
3D points. First we identify the points whose motion can be explained purely by a rigid
transformation. This knowledge provides some constraints or priors on the values of the
3D shape which will allow to solve the inherent problem of ambiguity present in the
motion and 3D shape in non-rigid factorization.

3 Automatic Rigid and Non-rigid Motion Segmentation

As a first step to 3D structure recovery we propose to separate points in the sequence
that exhibit a purely rigid motion from those which are also suffering some non-rigid
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deformations. To do this we apply a subset selection technique on the non-rigid com-
ponent of the point trajectories encoded in the measurement matrix W. Subset selection
is a technique commonly used in feature selection problems where a group of features
is extracted to obtain a robust solution to a particular estimation problem [7].

Under the factorization framework, features are represented by their image point
trajectories stored in W. Our goal is to find the set of features whose motion can be
modelled exactly as a rigid motion. In this case we formulate the segmentation problem
as finding a subset of trajectories Wrigid within the measurement matrix such that the
following condition is satisfied:

rank(Wrigid) = 3. (4)

The segmentation algorithm follows a sequential backward selection strategy [9]
by initially considering all the trajectories in the measurement matrix and iteratively
deleting one by one those which are contributing most to the rank of the matrix, i.e. the
points that exhibit the most non-rigid motion. As the stop criterion for the classification
task, we compute the rank of the measurement matrix of the remaining points which
will become 3 when only the rigid trajectories are left.

Obviously the rank of the rigid points will not be exactly equal to 3 in the presence
of noise. Instead, we have used an automatic method to determine the deformability
index of a set of trajectories [10]. This method estimates the value of K – the number
of independent basis shapes needed to describe the non-rigid motion – automatically in
a non-iterative way. It provides a fixed threshold for comparing the eigenvalues of the
matrix to determine the rank. For the case of a 3D rigid body the deformability index K
is equal to 1 while in the case of a non-rigid body the index is 3K therefore this provides
a good selection criterion to separate both sets of trajectories. The complete algorithm
is detailed below:

– Initialize Wrigid = W
– Determine the deformability index K for Wrigid

1. Compute Wrigid � UDVT with SVD.
2. Define S = D1/2VT

3. Extract the non-rigid component of the shape matrix ~S3(K−1)×P =
[

S̃1 ... S̃P
]

where

each S̃ j is a 3(K− 1)× 1 vector which contains the 3D coordinates of the jth 3D
point associated to the K−1 non-rigid bases.

4. Determine the maximum norm vector: S̃t = max{ ‖ S̃1 ‖, ... ,‖ S̃P ‖ }.
5. Remove the selected trajectory t from Wrigid and determine the new deformability

index K.
6. If K = 1 stop the iteration.
7. Else, go to step 1.

We have obtained successful rigid and non-rigid motion segmentations on synthetic
sequences using this algorithm. The results will be discussed in the experimental sec-
tion. Note that the method converges to the right solution only if there is a unique set of
rigid points such that K = 1. In the case where different groups of features satisfy the
rank condition the algorithm could converge to the wrong set.
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4 Non-rigid Shape and Motion Estimation Using Rigidity
Constraints

Once we have segmented the scene into rigid and non-rigid points, we can use the in-
formation on the rigidity of the points to constrain the shape estimation. First we define
the constraints that arise based on the observation that a generic shape is composed
by points with different degrees of deformation. Kim and Hong [8] defined the degree
of non-rigidity of a point as its degree of deviation from the average shape to classify
points into three classes: rigid, near-rigid and non-rigid. Based on this measure they
proposed a method to estimate average shape using the degree of non-rigidity to weight
the contribution of each point in an iterative certainty re-weighted factorization scheme.
In contrast, we use the knowledge that some points of the scene are rigid to construct
specific linear constraints which will in turn eliminate the inherent ambiguities present
in non-rigid shape estimation.

4.1 Rigidity Constraint

Definition (rigid point). If the motion of a point p is completely rigid for the entire
sequence, the structure referring to the point can be expressed entirely by the first basis
(K = 1) called the rigid basis.

It follows from this definition that a completely rigid point p is entirely parameter-
ized by:

Sp =
[

Sp1

0

]
(5)

where Sp1 is a 3-vector which contains 3D coordinates of the rigid component and 0
is a 3(K−1)-vector of zeros. It is possible to reorder the measurement matrix after the
detection of all the rigid points by defining the permutation matrix P such that:

WP =
[
Wrigid Wnonrigid

]
=

⎡⎢⎣ l11R1 ... l1KR1
...

...
lF1RF ... lFKRF

⎤⎥⎦[Srigid Snonrigid

0

]
(6)

where Srigid is a (3× r) matrix containing the 3D coordinates of the r rigid points,
Snonrigid is a (3K× d) matrix containing the 3D coordinates of the K basis shapes for
the d deformable points and 0 is a 3(K− 1)× r matrix of zeros. Notice that it is now
possible to apply Tomasi and Kanade’s rigid factorization on the measurement matrix
containing the image trajectories of the rigid points Wrigid and decompose it into the
motion and rigid structure components as:

Wrigid =

⎡⎢⎣ R1
...
R f

⎤⎥⎦Srigid (7)
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4.2 Non-rigid Shape and Motion Estimation

In this section we solve for the non-rigid shape and motion given the 2D image tracks
and incorporating the above constraint on the automatically segmented rigid points.
Our approach is to minimize image reprojection error subject to the rigidity of the non-
deforming points. The cost function being minimised is:

χ =∑
i, j
‖ xi j− x̂i j ‖2=∑

i, j
‖ xi j− (Ri∑

k

likSk) ‖2 (8)

where xi j are the measured image points and x̂i j the estimated image points. We pro-
pose two alternative solutions to this constrained minimization: a linear alternate least
squares approach which incorporates the rigidity constraints using Generalised Singu-
lar Value Decomposition and a fully non-linear minimization scheme using priors on
the rigid shape parameters in a Maximum A Posteriori estimation.

Linear Equality-Constrained Least Squares Using GSVD. First we propose an al-
ternating least squares scheme to minimize the cost function described in equation (8).
The algorithm alternates between solving for the basis shapes S and for the configura-
tion weights lik. The configuration weights are initialised to random values. The scheme
can be summarised as follows:

1. Given Ri and lik equation (3) can be used to estimate S linearly subject to the con-
straint S̃p = 0 for p ∈ Ω with Ω being the set of r points considered to be rigid
throughout the sequence.

2. Given Ri and S solve for all lik using linear least-squares.
3. Iterate the above two steps until convergence.

Note that the algorithm does not solve for the overall rigid motion encoded in the
rotation matrices R since these are calculated before hand by running the rigid factor-
ization algorithm of Tomasi and Kanade on the rigid points. Rearranging equation (3)
the problem of solving for S subject to the rigidity constraint can be expressed as an
unconstrained least squares system of the form:

min ‖
[
A
λC

]
x−
[

b
λd

]
‖2 (9)

where A represents the linear equations, C the linear constraints and b and d are the
known observations. It is shown [5] that for λ→∞ the final solution lies on the surface
defined by Cx = d and thus we obtain a linear equality-constrained least squares (LSE)
problem:

min ‖ Ax−b ‖2 (10)

subject to:
Cx = d (11)

A method to solve the above LSE problem is directly to factorize both A and C using
Generalized Singular Value Decomposition (GSVD) (see [6] for details).
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Bundle Adjustment Using Priors. The correct approach to non-rigid factorization is
to formulate the problem as a non-linear least square estimation minimizing the distance
of the reprojection error in the model parameters:

arg min
RiSklik

∑
i, j
‖ xi j− x̂i j ‖2= arg min

RiSklik
∑
i, j
‖ xi j− (Ri∑

k

likSk) ‖2 (12)

where xi j are the measured image points and x̂i j the estimated image points.
This method has the advantage of providing a true maximum likelihood estimate,

provided the noise distribution is Gaussian. Besides, prior knowledge on any of the
model parameters can be easily incorporated to the error cost function in the form of
penalty terms. However, it suffers from the fact that it requires an initialization that
is close to the global minimum. Therefore these methods are generally used as a final
refinement step.

One of the main advantages of performing a prior segmentation of rigid and non-
rigid motion is firstly that the rigid motion (estimates of the rotation matrices R) can
be pre-computed by performing rigid factorization on the rigid points. This provides a
very good initial estimate for the rotation parameters, which coupled with the priors on
the 3D shape help solve the ambiguities.

Our prior expectation is that the points detected as being rigid have a zero non-rigid
component and can therefore be modelled entirely by the first basis shape:

Sp =
[

Sp1

S̃p

]
=
[

Sp1

0

]
(13)

Therefore our expected prior value of the coordinates of the non-rigid bases S̃p is
zero in this case. For every rigid point in the scene we model the distribution of S̃p as
a Gaussian with a small variance and solve the problem as a Maximum A Posteriori
estimation (MAP).

5 Results

5.1 Synthetic Data

The synthetic 3D data consisted of a set of random points sampled inside a cube of
size 50×50×50 units. Five sequences were generated with 8, 16, 32, 64 and 128 non-
rigid points sampled inside the cube. Each sequence also included 8 rigid points (the
vertices of the cube). Figure 1 shows the 3D data used in each of the five sequences with
the rigid points joined up for display purposes. Our aim is to show the performance of
our approach under different degrees of non-rigidity. The deformations for the non-
rigid points were generated using random basis shapes as well as random deformation
weights. Two basis shapes were used and the first basis shape had the largest weight
equal to 1. The data was then rotated and translated over 25 frames and projected onto
the images using an orthographic camera model and Gaussian noise was added to the
image coordinates. The overall rotation about any axis was 90 degrees at most.
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(a) (b) (c) (d) (e)

Fig. 1. Synthetic sequence. Example of ground truth of the 3D shape with 8 rigid points (vertices
of the cube) and (a) 8, (b) 16, (c) 32, (d) 64 and (e) 128 non-rigid points.

Rigid and Non-rigid Motion Segmentation. Figure 4(a) shows results of the motion
segmentation algorithm on a sequence using 8 rigid and 32 non-rigid points. The noise
level for this particular experiment was set to be σ = 1.5 pixels. The −y axis of the
graph shows the current value of the deformation index (K) and the −x axis represents
the total number of total points left at each iteration. The algorithm classifies points
according to the current value of K. The first 32 points are selected as non-rigid as their
deformability index K is consistently close to 2. When the 33rd point is selected one
can observe a sudden drop in the value of K to 1.5 which then tends to 1. This is the
cut-off point and the 8 remaining points are correctly classified as rigid.

3D Reconstruction. We have tested 3 reconstruction algorithms: the linear GSVD
method, bundle adjustment without priors (MLE) and bundle-adjustment incorporating
priors on the 3D structure (MAP). Figure 2 shows the 2D image reprojection error, rel-
ative 3D reconstruction error and absolute rotation error using each of the 3 algorithms,
for varying ratios of rigid/non-rigid scene points and different levels of measurement
noise. It becomes clear that GSVD and MAP outperform MLE thus showing the im-
proved performance when prior information on the shape is incorporated. In fact the
GSVD and MAP error curves appear superimposed which shows that they converge to
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Fig. 2. Relative 3D error (%), rms rotation error (deg) and 2D reprojection error for the synthetic
experiments for different ratios of rigid/non-rigid points and increasing levels of noise
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experiments for different numbers of basis shapes and increasing levels of noise
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Fig. 4. (a) Deformability index for the automatic segmentation experiment. The graph shows its
sudden decrease upon selection of point #33 (the first rigid point). (b) Face data used in the real
experiment. Points connected with wireframes show the selected rigid points located on the nose,
temples and side of the face.

the same solution, with the main observable difference being the higher speed of con-
vergence for the MAP approach. Note that the MLE approach is not able to compute a
correct 3D reconstruction even for the noiseless case showing that the added priors are
fundamental to avoid local minima given by ambiguous configurations of motion and
deformation parameters.

The number of basis shapes were then varied (d = 3, 4 and 5) to test the perfor-
mance of the algorithm with respect to this parameter. Figure 3 shows the 2D image
reprojection error, relative 3D reconstruction error and absolute rotation error obtained
with GSVD, MLE and MAP. As expected, the error increases with the number of basis
shapes for all 3 algorithms. Once more GSVD and MAP have almost identical perfor-
mance and provide better results than MLE.
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Frame 1 Frame 167 Frame 273 Frame 310

Ground truth

BA with priors

Ground truth

BA with priors

Ground truth

BA with priors

Fig. 5. Front, side and top views of the ground truth and reconstructed face with priors. Recon-
structions are shown for frames 1, 167, 273 and 310.
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5.2 Real Data

In this experiment we use real 3D data of a human face undergoing rigid motion –
mainly rotation – while performing different facial expressions. The 3D data was cap-
tured using a VICON motion capture system by tracking the subject wearing 37 markers
on the face. The 3D points were then projected synthetically onto an image sequence
310 frames long using an orthographic camera model and noise of variance σ = 0.5
pixels was added to the image coordinates. In this case the segmentation of points into
rigid and non-rigid sets was done manually. Figure 4(b) shows a frontal view of the face
where the 14 rigid points – situated on the nose, temples and the side of the face – are
marked with circles.

Figure 5 shows the ground truth and reconstructed shape from front, side and top
views using the bundle adjustment algorithm incorporating rigidity priors on the non-
deforming points. The deformations are very well captured by the model even for
the frames in which the facial expressions are more exaggerated. Crucially, the addi-
tion of the priors helps remove the ambiguity between the rotational and deformation
components.

6 Future Work

We are currently investigating other solutions for rigid and non-rigid motion segmen-
tation using alternative approaches [11,16]. Torresani et al.’s [15] method for learn-
ing non-rigid 3D shape from 2D motion using the expectation maximization algorithm
could also be used to perform the segmentation.

We also plan to exploit looser rigidity constraints on the shape such as the 3D points
behaving rigidly only for a set of frames and to include other priors such as the symme-
try of the structure.
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5. G. H. Golub and C. F. Van Loan. Matrix Computation. John Hopkins University Press, 1991.
Second Edition.

6. P. C. Hansen. Regularization, gsvd and truncated gsvd. BIT, 29(3):491–504, 1989.
7. A.K. Jain and D. Zongker. Feature selection: Evaluation, application, and small sample

performace. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(2):153–
158, February 1997.

8. T. Kim and K-S Hong. Estimating approximate shape and motion of deformable objects
with a monocular view. In Proc. Asian Conference on Computer Vision, Jeju Island, Korea,
January 2004.

9. J. Kittler. Feature selection and extraction. In T. Y. Young and K. S. Fu, editors, HPRIP,
pages 59–83, Orlando, FL, 1986. Academic Press.

10. A. Roy-Chowdhury. A measure of deformability of shapes with applications to human mo-
tion analysis. In IEEE Conference in Computer Vision and Pattern Recognition, volume 1,
pages 398–404, June 2005.

11. Y. Sugaya and K. Kanatani. Multi-stage optimization for multi-body motion segmentation.
IEICE Transactions on Information and Systems, E87-D(7):1935–1942, 2004.

12. C. Tomasi and T. Kanade. Shape and motion from image streams under orthography: A
factorization approach. International Journal in Computer Vision, 9(2):137–154, 1992.

13. L. Torresani, D. Yang, E. Alexander, and C. Bregler. Tracking and modeling non-rigid ob-
jects with rank constraints. In Proc. IEEE Conference on Computer Vision and Pattern
Recognition, Kauai, Hawaii, 2001.

14. Lorenzo Torresani and Aaron Hertzmann. Automatic non-rigid 3d modeling from video. In
Proc. 8th European Conference on Computer Vision, Prague, Czech Republic, pages 299–
312, May 2004.

15. Lorenzo Torresani, Aaron Hertzmann, and Christoph Bregler. Learning non-rigid 3d shape
from 2d motion. In Sebastian Thrun, Lawrence Saul, and Bernhard Schölkopf, editors, Ad-
vances in Neural Information Processing Systems 16. MIT Press, Cambridge, MA, 2004.

16. R. Vidal and R. Hartley. Motion segmentation with missing data using powerfactorization
and gpca. In IEEE Conference on Computer Vision and Pattern Recognition, volume 2, pages
310–316, Washington D.C., June 2004.

17. J. Xiao, J. Chai and T. Kanade. A closed-form solution to non-rigid shape and motion recov-
ery. In Proc. 8th European Conference on Computer Vision, Prague, Czech Republic, May
2004.

18. Anthony J. Yezzi and Stefano Soatto. Deformotion: Deforming motion, shape average and
the joint registration and approximation of structures in images. International Journal of
Computer Vision, 53(2):153–167, 2003.



Parametric Stereo for Multi-pose Face Recognition
and 3D-Face Modeling
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Abstract. This paper presents a new method for face modeling and face recog-
nition from a pair of calibrated stereo cameras. In a first step, the algorithm builds
a stereo reconstruction of the face by adjusting the global transformation param-
eters and the shape parameters of a 3D morphable face model. The adjustment
of the parameters is such that stereo correspondence between both images is es-
tablished, i.e. such that the 3D-vertices of the model project on similarly colored
pixels in both images. In a second step, the texture information is extracted from
the image pair and represented in the texture space of the morphable face model.
The resulting shape and texture coefficients form a person specific feature vector
and face recognition is performed by comparing query vectors with stored vec-
tors. To validate our algorithm, an extensive image database was built. It consists
of stereo-pairs of 70 subjects. For recognition testing, the subjects were recorded
under 6 different head directions, ranging from a frontal to a profile view. The
face recognition results are very good, with 100% recognition on frontal views
and 97% recognition on half-profile views.

1 Introduction

Over the past decades, the task of automatic face recognition has received considerable
attention from the computer vision community. One of the driving forces behind this
research is the wide range of commercial and law enforcement applications related to
it [16]. Furthermore, the human capability of recognizing faces under variable viewing
conditions which include light variations, differences in pose, and the presence or ab-
sence of facial features (glasses, beards,...) is remarkable, and keeps on attracting the
attention of researchers from different fields.

Given the vast number of face recognition related publications, it is impossible to
give a detailed account of past research. Here, we restrict ourselves to a short overview
of some landmark papers, where we follow the taxonomy proposed by Zhao et al. [16].
For the particular task of face recognition from still images, Zhao et al. distinguish
between three main categories, being (i) holistic matching methods, (ii) feature based
or structural matching methods and (iii) hybrid methods which combine characteristics
of both approaches. In the first category, the visual content of the complete face region is
used as input for the classification system. The system then extracts a low-dimensional
feature vector and compares it to stored examples. Typical examples are the PCA-based
Eigenfaces technique [14,11], Fisherfaces [2] and ICA-based representations [1]. In the

W. Zhao, S. Gong, and X. Tang (Eds.): AMFG 2005, LNCS 3723, pp. 109–124, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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Fig. 1. Geometry of the parametric stereo setting. The 3D-vertices of the face model are projected
onto both images, and the model is manipulated to establish stereo correspondence between the
image values at the locations of these projections.

second category, the position and appearance of local features like eyes, nose, etc. are
determined and a feature vector is built from these descriptors. A typical example is
the Elastic Bunch Graph Matching system [15], which uses ’wavelet jets’ to encode
local appearance. Many successful systems belong to the third category, and use both
local and global descriptors. Notable contributions are the modular Eigenfaces approach
[12] and the Flexible Appearance Model [10] which uses an ASM-model [8] to encode
shape, and PCA to encode image intensities.

The major challenge in automatic face recognition is to develop a system that per-
forms illumination and pose invariant recognition. An interesting approach to illumi-
nation invariant recognition is based on the so-called Illumination Cone [3]. One of
the most early attempts to solve the multi-pose recognition problem is due to Beymer
et al. [4,5]. The method uses a vectorized image representation at each pose, which
allows to map the texture information onto a (frontal) reference shape. Arguably the
most principled approach to pose invariant recognition makes use of 3D morphable
face models. Blanz and Vetter [6] introduced a flexible 3D model learned from exam-
ples of individual 3D face data. In [7] a morphable component model is fitted against
a multi-pose database of 68 subjects. The resulting shape and texture coefficients form
a person specific feature vector, and face recognition is performed by comparing the
computed feature vector with a set of stored vectors.

In this paper, we propose a multi-camera approach to face recognition, which ad-
dresses the problems of illumination and pose variation. In our setup, two calibrated
cameras are used, and the algorithm computes a 3D-shape and texture representation
of the face in front of the system. These representations are parametrized by the linear
shape and texture coefficients of a 3D-morphable face model. In a first step, the 3D-
shape of the face is determined. Rather then first computing a dense depth map of the
scene, and then approximating the face related part of this map within the shape-space
of the 3D-model, we directly fit the morphable 3D-model to the set of stereo-images,
hence the name parametric stereo. This greatly reduces the degrees of freedom (DOFs)
in the depth-from-stereo problem: from one DOF per pixel to the number of shape pa-
rameters of the 3D-model plus 6 (the DOFs related to rotational and translational com-
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ponents of the global transformation). Next, the texture from both images are mapped
onto the vertices of the 3D-model, and this shape and pose free texture is described in
terms of the linear texture model of the 3D-morphable model. The geometry of para-
metric stereo is shown in Fig.(1).

Using a 3D face model to constraint 3D solutions to possible model realizations
is not new. For example, in the context of structure-from-motion, such an approach
was followed by Shan et al. [13] and Dimitrijevic et al. [9]. In structure-from-motion,
an uncalibrated video stream is used as input, and the algorithm must simultaneously
estimate the unknown camera parameters and the facial model parameters. In [9], for
a given video frame, 2D point-correspondences are established in neighboring frames
and the camera and model parameters are optimized by means of bundle-adjustment.
The minimization criterion is the reprojection error of the 3D-points that are obtained
by intersecting the current model hypothesis with the camera rays defined by the 2D-
points in the central frame. This criterion is not symmetric w.r.t. the input images, how-
ever, the authors argue that the introduced biases cancel each other because many point
correspondence pairs are used. In our approach, on the other hand, the cameras are
already calibrated and the stereo images are captured simultaneously. This allows us
to formulate of a symmetric criterion, which measures the quality of the model fit by
color-differences, rather than reprojection distances, of corresponding points.

The advantage of the proposed method, compared to the approach of Blanz and
Vetter [7], is that the shape and texture computations are performed separately. Given
predominant diffuse or Lambertian reflection, the perceived color of a particular point
of the face is the same in all images. Therefore, shape optimization is possible without
having to worry about the number of lights in the scene, their intensities and the shad-
ows they cast on the face. Next, in a separate computation, and with knowledge of the
facial shape (i.e. surface normal directions), the lighting effects can be compensated for
while estimating the coefficients of the linear texture model. In the approach of Blanz
and Vetter, on the other hand, all effects have to be accounted for simultaneously, re-
sulting in a formidable optimization problem. Furthermore, the number of lights in the
scene has to be specified aforehand. Note that the Lambertian assumption, which un-
derlies the shape-from-stereo approach, is relatively mild, because the stereo solution is
computed directly in the 3D model space. Because the modes of the morphable model
are global (i.e. changing a parameter alters the global facial appearance), the method
can deal with a fair amount of specular reflections which typically occur locally. The
stereo-setup also puts strong constraints on the 3D-shape solution which, in principle,
should allow for more accurate recognition performance than single image approaches.
On the down-side, our approach requires a multi-camera setup. However, in many com-
mercial and law enforcement applications like entrance control, PIN-code verification
and surveillance, the employment of multiple cameras is no objection.

The remainder of this paper is organized as follows. In section 2 we briefly intro-
duce the stereo setup and the morphable model, and explain the energy formulation
underlying the shape and texture computations. In section 3 we discuss the model ini-
tialization and optimization related issues. Section 4 describes the experimental setup
and discusses the multi-pose recognition results. We end the paper with some general
conclusions and a description of future work.
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2 Problem Setting

Suppose we have 2 images Ii, i ∈ {1, 2}, which associate a 2D-coordinate x with an
image value Ii(x). If we are dealing with color images, this value is a 3-vector and
for intensity images it is a scalar. The images are taken with 2 cameras of which we
know the internal and external calibrations. The cameras are represented by the 3 × 4
projection matrices Pi:

Pi = Ki[RT
i | −RT

i ti] , (1)

where Ki, Ri and ti are the camera matrix, rotation and translation of the ith camera,
respectively. The projection matrices project homogeneous 3D points Xh =[X Y Z 1]T

to homogeneous 2D points xh = λ[x y 1]T linearly: xh = PiXh. The corresponding
image coordinate x is easily found by dividing out the homogeneous factor. We will
denote the overall projection transformation as x = Pi(X).

Furthermore, we have a morphable 3D-face model 1 which consists of an orthonor-
mal shape and texture basis. This morphable model is the result of a PCA analysis of a
set of 3D-laser scans of human faces. The scans have been brought into correspondence,
such that the same vertex of each model corresponds to the same physical point on the
face. Let S be a 3N -dimensional shape vector which is formed by the concatenation of
the N 3D-coordinates of the vertices of the facial model:

S = [X1 Y1 Z1. . .XNYNZN ]T .

Let T be a 3N -dimensional texture vector which is formed by the concatenation of the
N RGB-color values associated with these vertices:

T = [R1 G1 B1. . .RNGNBN ]T .

The shape and texture vectors of a particular face can now be realized independently as
linear combinations of the so-called eigen-shapes Sj and eigen-textures Tj :

S = S +
m∑

j=1

αjSj , T = T +
m∑

j=1

βjTj . (2)

Here, S and T are the average shape and texture vector, and the linear coefficients
αj and βj constitute the shape and texture description vectors α and β which fully
characterize the model realization. The effects of the first shape and texture eigenvectors
on the average face are visualized in Fig.(2). In what follows, we will use the term
face model to describe a particular shape and texture combination (S,T), and we will
preserve the term PCA model for the generative statistical model (i.e. the collection
of shape and texture averages and eigenvectors) itself. Let Xk, k ∈ {1, .., N}, be the
kth vertex of the face model, then the shape transformation of this vertex is denoted
as S(Xk).

The 3D-coordinates of the vertices of the face model are defined w.r.t. an object
centered coordinate system. The model can be moved around by a rigid body transfor-
mation T applied to each (shape-transformed) vertex of the model:

T ◦ S(Xk) = R
(
S(Xk)−C

)
+ C + t , (3)

1 USF Human ID 3-D Database and Morphable Faces [6].
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Fig. 2. Textured and untextured renderings of the face model. Left: the average model shape and
the effect of the 1st eigen-shape (±2σ) on the average. Note the changes in scale, as well as the
transition from female to male characteristics. Right: the average model texture and the effect of
the 1st eigen-texture (±2σ) on the average.

where R is a 3×3 rotation matrix, t is a translation vector, and C is the geometrical
mean of the average face shape. The transformation has 6 free parameters which are
jointly denoted as θ. Note that we have not included a scale parameter because the scale
variation of human faces is incorporated in the first eigen-shapes of the PCA-model.

Our goal is to estimate a particular set of global transformation, shape and texture
parameters (θ, α, β), which best explain the input images I1 and I2. We proceed as
follows. First, in the shape recovery step, we determine the values of θ and α which
establish stereo-correspondence between both input images. Put differently, we wish to
find those parameter values, such that for all model vertices X which are visible in both
images, the image color at their respective projections in I1 and I2 are as much alike
as possible, i.e. I1

(
P1 ◦ T ◦ S(X)

)
∼ I2
(
P2 ◦ T ◦ S(X)

)
. To reach this objective,

we only manipulate the parameter sets θ and α. Next, in the texture recovery step, the
color information of both images is back-projected onto the face model, giving rise
to a shape-free facial texture vector. This is then described as a linear combination of
eigen-textures, while simultaneously the effects of ambient and directional lighting are
accounted for.

2.1 Shape Computation

If we write xik for the projection of the kth vertex of the face model in the ith image,
i.e. xik = Pi◦T ◦S(Xk), the objective function we minimize is the following:

ES =
∑
k∈V

wS,k ‖I1(x1k)− I2(x2k)‖2 + λS

m∑
j=1

α2
j

σ2
S,j

, (4)

where V ⊂ {1, .., N} indexes the points which are visible from both images. This en-
ergy consists of a data-term, which measures the color difference between the images
at corresponding projection positions, and a prior-term, which constraints the shape
deformation to reasonable values.

In the data-term, the contribution of the kth color difference is weighted with a
vertex specific weight wS,k. The purpose of this weight is two-fold. First, it allows us
to account for foreshortening effects in the model projection, as a result of which the
majority of vertex projections cumulate nearby the contours of the face in both I1 and
I2. Next, it allows us to assign more importance to the frontal part of the face, i.e. the
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eyes, nose and mouth regions, which are more important for revealing identity than, say
the cheek or forehead regions. We use the following weighting function:

wS,k ∝ d(Xk)Sk nk ·v . (5)

The function d(Xk) is an exponentially decaying function which depends on the dis-
tance (in cylindrical coordinates) from the kth vertex to the center of the face, Sk is the
area of the surface patch around the kth vertex, nk is the surface normal vector at this
vertex and v is the average viewing direction of both cameras. We include the patch
area Sk because the vertices are not evenly distributed over the surface of the model
(the 3D-laser sensor samples the facial surface at cylindrical coordinates).

In the prior-term, σ2
S,j is the variance (i.e. eigenvalue) associated with the jth eigen-

shape of the PCA-model. The parameter λS , which we take proportional to the sum of
all weights in the data-term, allows us to balance the influence of the prior-term relative
to the data-term.

2.2 Texture Computation

Let IR
amb, IG

amb, IB
amb be the red, green and blue intensities of the ambient light. Fur-

thermore, let IR
dir , IG

dir, IB
dir be the red, green and blue intensities of the directional

(parallel) light, which has direction l. Then the observable color Ik = [Rk Gk Bk]T of
the kth vertex of the face model can be modeled as follows:

Rk = Roff + (Rk +
m∑

j=1

βjRjk)(IR
amb + IR

dirnk ·l) , (6)

where similar equations hold for Gk and Bk. In this equation, Roff is an offset, Rk and
Rjk are the red values of the kth vertex of the average texture and jth eigen-texture,
and nk is the normal surface vector emanating from the kth vertex. Note that the model
texture is used as the reflectance coefficient of a diffuse lighting model. Unlike in [7], we
do not add a specular component, because we experimentally observed that the diffuse
lighting model is sufficient to account for the lighting effects in our images. Given this
color model, the objective function we minimize is the following:

ET =
∑
k∈V

2∑
i=1

wT,k ‖Ii(xik)− Ik ‖2 + λT

m∑
j=1

β2
j

σ2
T,j

. (7)

Like in the shape computation, this energy consists of a data-term, which measures the
color difference between the input images and the texture reconstruction, and a prior-
term which constraints the texture deformation to reasonable values. The contribution
of each vertex color is weighted by a vertex specific weight wT,k, which accounts for the
aforementioned foreshortening effects, and also allows us to diminish the influence of
outliers in the texture reconstruction. These outliers are vertices, for whom the sampled
image colors Ii(xik) are significantly different. The differences might be caused by
wrong shape reconstructions (i.e. image locations where stereo correspondence was
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not established), but also by specular highlights in either of both images. We use the
following weighting function:

wT,k ∝ wS,k exp
(
− 1

2
d2
S

(
I1(x1k)− I2(x2k)

))
, (8)

where d2
S(x) is a squared distance defined by xT S−1x. For S we take a robust estimate

of the covariance matrix of the color differences I1(x1k)− I2(x2k).

3 Model Initialization and Optimization

3.1 Model Initialization

Before the shape energy ES defined in Eq.(4) is optimized w.r.t. the global transforma-
tion parameters θ and shape parameters α, the 3D-model needs to be at a reasonable
start position. In this paper we assume that we have a set of feature detectors at our
disposal, which are able to localize typical facial features (eyes, nose, corners of the
mouth, etc.) if they are visible. Furthermore, these detectors provide us with some indi-
cation of the spatial uncertainty of the detection. Typically, feature detectors provide a
detection value at each location in a certain region of interest, and report the position of
maximal detection value. Let x̂ip be the estimated position of the pth feature in the ith

image, and let Sip be a 2×2 scatter matrix which characterizes the spatial uncertainty
of this estimate. For the feature points of interest, we also know the 3D-coordinates of
the corresponding vertex on the morphable model. Let Xp be the 3D-coordinates of the
pth feature, and xip = Pi◦T ◦S(Xp) be the projection of this point in the ith image.
The objective function we minimize is the following:

EI =
2∑

i=1

Np∑
p=1

δip(x̂ip − xip)TS−1
ip (x̂ip − xip) , (9)

where Np is the total number of features we consider and δip ∈ {0, 1} is a binary
variable which indicates whether or not the pth feature was detected in the ith image.
The initial model position is found by minimizing EI w.r.t. the 6 parameters of θ. If the
number of detections is large enough to render a unique solution (e.g. > 3 non-colinear
features are detected in both images), it is possible to further optimize EI w.r.t. the
model shape parameters α. Using the same prior as in Eq.(4), the objective function
becomes:

EI =
2∑

i=1

Np∑
p=1

δip(x̂ip − xip)TS−1
ip (x̂ip − xip) + λI

m∑
j=1

α2
j

σ2
S,j

. (10)

We minimize this energy by Levenberg-Marquardt iterations. The gradient of EI w.r.t.
the jth global transformation parameter θj is given by:

∂EI

∂θj
= −2

2∑
i=1

Np∑
p=1

δip(x̂ip − xip)T S−1
ip JPi

∂T
∂θj

. (11)
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Fig. 3. Model initialization. Left column: the input stereo pair with feature points and their spatial
uncertainty. Middle column: the fit of the model guided by the feature points. The fit is relatively
accurate, but alignment errors are still visible at the contour of the face. Right column: renderings
of the initialized model. The reconstruction is relatively poor, but the main facial features are
already visible.

Here, the 2×3-matrix JPi is the Jacobian of the projection function Pi evaluated at
T ◦S(Xp) and ∂T /∂θj is a 3-derivative vector evaluated at S(Xp). The gradient of EI

w.r.t. the jth shape parameter αj is given by:

∂EI

∂αj
= −2

2∑
i=1

Np∑
p=1

δip(x̂ip − xip)T S−1
ip JPiJT

∂Xp

∂αj
+ 2λI

αj

σ2
S,j

, (12)

where the 3×3-matrix JT is the Jacobian of the rigid-body transformation evaluated
at S(Xp), and ∂Xp/∂αj is a 3-derivative vector, which contains the XYZ-values of
the jth eigen-shape at the position of Xp. The initialization procedure is graphically
illustrated in Fig.(3).

3.2 Shape Optimization

After the model initialization, the 3D face model is in approximate correspondence
with both input images. We now proceed with the optimization of the shape energy
ES defined in Eq.(4) w.r.t. the global transformation parameters θ and shape parame-
ters α. The purpose of this optimization is to establish stereo correspondence between
both images. The gradient of ES w.r.t. the jth global transformation parameters θj is
given by:
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Fig. 4. Shape optimization. Top row: the input stereo-pair with an overlay of the final model
shape. Note that, compared to the initialization result in Fig.(3), the accuracy of the fit has im-
proved. Particularly the alignment errors at the contour of the face have largely disappeared.
Bottom row: renderings of the untextured model at its final position.

∂ES

∂θj
= 2
∑
k∈V

wS,k[I1(x1k)− I2(x2k)]T∇I1
∂x1k

∂θj
−

2
∑
k∈V

wS,k[I1(x1k)− I2(x2k)]T∇I2
∂x2k

∂θj
(13)

The image gradients ∇Ii are 3×2-matrices and contain the spatial derivatives of the
R, G and B-component of Ii evaluated at positions xik . The differentials ∂xik/∂θj are
2-vectors defined as follows:

∂xik

∂θj
= JPi

∂T (S(Xk))
∂θj

. (14)

The gradient of ES w.r.t. the jth shape transformation parameters αj can be derived in
a similar fashion:

∂ES

∂αj
= 2
∑
k∈V

wS,k[I1(x1k)− I2(x2k)]T∇I1
∂x1k

∂αj
−

2
∑
k∈V

wS,k[I1(x1k)− I2(x2k)]T∇I2
∂x2k

∂αj
(15)
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where the differentials ∂xik/∂αj are given by:

∂xik

∂αj
= JPiJT Xjk . (16)

Here Xjk is the kth component of the jth eigen-shape. We optimize ES with conjugate
gradient. During optimization, model vertices do not project onto integral positions
in Ii, and we use bilinear interpolation to sample pixel and gradient values from the
images. To avoid local minima, a pyramidal coarse-to-fine strategy with 3 pyramidal
levels is followed. At the most coarse image scale, the prior parameter λS is set to 20.0,
whereas at the finest image scale this value is lowered to 5.0. To speed up convergence,
we use a vertex sub-sampling approach, and the number of selected vertices is increased
at every pyramidal level (1000, 2000 and 3000 at the respective pyramid levels). At
regular intervals, visibility is recomputed. On a standard desktop (P4, 2.6GHz), it takes
on average 35 seconds for the algorithm to converge. The effect of the optimization
procedure on the model fit is graphically illustrated in Fig. (4). Different views of a
subject, together with untextured renderings of the 3D model in the same pose, are
shown in Fig. (7).

3.3 Texture Optimization

After the shape extraction step, the textures from both images are mapped onto the ver-
tices of the 3D-model. The resulting shape and pose free texture is described in terms

Fig. 5. Texture reconstruction. Top row: the stereo-pair of test view one. Bottom row, left: the
average of the textures extracted from both images. The facial regions which are not visible
from both images are displayed in gray. Note that the average has remained sharp, which is an
indication of the quality of the shape reconstruction. Bottom row, right: the texture reconstruction
by the texture model.
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of the linear texture model of the 3D-morphable model. This is done by minimizing the
energy ET in Eq.(7) w.r.t. the light source variables and texture coefficients β, where
we only take into account the texture of the points which are visible in both images.
We optimize ET with conjugate gradient, and set λT to 5.0. An example of a texture
reconstruction is shown in Fig.(5).

4 Experiments and Discussion

To validate our algorithm, an extensive image database was built. It consists of stereo-
pairs of 70 subjects (35 males, 35 females), recorded from 6 different viewpoints. An
example of the stereo-pairs of one subject is shown in Fig.(6). The first viewpoint,
which is frontal w.r.t. the stereo-pair, is used as training or enrollment data. An example
is shown in the left column of Fig.(6). The shape and texture vectors of these faces are
stored in the memory of the recognition system, and all queries are compared to them.
The next 5 viewpoints range from a frontal to a profile view w.r.t. the viewing direction
of the first camera, in equal steps of π/8 radians. These views will serve as test data from
which query vectors are computed. Note that the first test view, which is frontal, was
recorded separately from the training data. The lighting conditions remained constant
over the course of the recordings. Lighting is complex with multiple light sources and
reflectors in the neighborhood of the subject. From Fig.(6) it can be appreciated that the
recorded intensities on the facial part of the image vary considerably over the different
viewpoints.

Fig. 6. Stereo-pair database: one face from the stereo database. The first row shows the images
from the left camera of the stereo-pair, the second row shows the images taken from the right
camera. Left column: the training viewpoint, which shows the subjects in frontal pose w.r.t. the
stereo cameras. Columns 2 to 6: the five test views with increasing angle w.r.t. the training view.

For a particular person and particular viewpoint, we then compute the face model
parameters (α, β). These are used as a query vector, and all training vectors are sorted
according to their distance from the query vector. The distance function we use is a
weighted sum of Mahalanobis distances, defined as follows:

d
(
α1, β1; α2, β2

)
= λα(α1 −α2)T C−1

α (α1 −α2) +

λβ(β1 − β2)TC−1
β (β1 − β2) . (17)
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Here, λα and λβ are weights which allow us to manipulate the importance of the
shape coefficients w.r.t. the texture coefficients, and Cα and Cβ are the model covari-
ance matrices of shape and geometry. If the correct person is at the first position of
the sorted list of training vectors, we denote this as a correct identification or ’rank-
1’ match. In the results, we report the percentage of correct identifications for each
test viewpoint. We also show the percentage of queries for which the correct person
is amongst the first 3 and 5 positions (’rank-3’ and ’rank-5’ matches). To gain more
insight in the roles of shape and texture in the recognition performance, we also report
recognition rates when we only use the shape or the texture vectors in the queries. In all
experiments, 50 shape and 50 texture components were used. The results are shown in
Table (1). From these figures, we immediately see that, except for the frontal test view

Table 1. Recognition rates without coefficient weighting. Top table: recognition rates based on
geometry only. Middle table: recognition rates based on texture only. Bottom table: recognition
rates based on combined geometry and texture features. Rank-1 matches are indicated in bold.

test 1 test 2 test 3 test 4 test 5

rank 1 90.0 87.1 68.6 52.9 41.4
rank 3 92.9 98.6 84.3 71.4 60.0
rank 5 94.3 98.6 90.0 85.7 72.9

rank 1 91.4 67.1 30.0 17.1 11.4
rank 3 92.9 84.3 44.3 25.7 12.9
rank 5 92.9 90.0 52.9 38.6 17.1

rank 1 94.3 94.3 77.1 58.6 45.7
rank 3 97.1 95.7 87.1 80.0 62.9
rank 5 97.1 95.7 92.9 85.7 68.6

(’test 1’), shape based recognition performs better than texture based recognition. Also,
the texture based recognition rates drop sharply when the test views have increasing
angle w.r.t. the training view (’test 2,3,...’). Both cues seem to be co-operative, i.e. the
results based on both shape and geometry features are better than the results based on
the separate features.

In Blanz et al. [7], a coefficient weighting method was introduced, which takes into
account the variation of model coefficients obtained from different images of the same
person. These variations may be due to several reasons. First of all, when the model is
fitted against images of the same person but from a different viewpoint, different facial
features are estimated with a different accuracy. For example, on the frontal views we
can expect an accurate assessment of the width and height of the face. For the ’depth
related features’ like the profile of nose, the prominence of eyebrows etc..., we can ex-
pect a much poorer assessment. On the profile views, on the other hand, the assessment
of the width of the face is much more difficult, whereas the profile of the nose can be
estimated accurately. Secondly, different lighting conditions can introduce ambiguities
in the texture reconstruction, such as skin complexion versus intensity of illumination
[7]. We also noticed that there is light-source variation within the eigen-textures of the
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model. This causes instabilities in the computation of texture coefficients, because the
model is able to explain lighting conditions both with its light source variables and
its linear model. This probably explains the relatively poor texture based recognition
results from Table (1). Finally, if the PCA model is not able to reproduce the faces
in the input images, the algorithm will do as well as possible and will distribute the
residual error over its coefficients. This distribution is likely to be different for different
viewpoints.

To account for these effects, the distance function in Eq.(17) is modified, to suppress
directions with high within-person variation in the whitened coefficient spaces. The
whitening transformation compensates for the relative magnitude of the coefficients
and transforms α and β to α′ = C−1/2

α α and β′ = C−1/2
β β, respectively. To suppress

directions with high within-person variation, the pooled within-person scatter matrices
Wα and Wβ are introduced into the Mahalanobis distances. To estimate Wα and Wβ

independently from our test-set, we recorded a training set consisting of stereo-pairs
of 30 more subjects (15 males, 15 females). The viewing conditions of this second
database are similar, but the lighting conditions are slightly different. Let N = 30
and V = 5 be the number of persons and number of viewpoints per person in this
trainingset. Furthermore, let α′

ij and β′
ij be the computed (whitened) shape and texture

coefficients of the ith person in the jth view point, and let 〈α′
i〉 and 〈β′

i〉 be the average
shape and texture coefficients of the ith person over all V viewpoints, respectively. The
weighting matrices are defined as follows:

Wα =
1
N

N∑
i

1
V

V∑
j

(α′
ij − 〈α′

i〉)(α′
ij − 〈α′

i〉)T

Wβ
1
N

N∑
i

1
V

V∑
j

(β′
ij − 〈β′

i〉)(β′
ij − 〈β′

i〉)T . (18)

These matrices estimate the spread of the model coefficients w.r.t. changes in view-
point, and can be used to identify consistent and inconsistent directions in the shape and
texture feature spaces. Taking the shape coefficients as an example, directions α′ char-
acterized by a high value of α′TWαα′ are inconsistent w.r.t. the viewpoint from which
these coefficients are computed, whereas directions α′ characterized by a low value
of α′TWαα′ are relatively stable w.r.t. viewpoint. By incorporating these weights in
Eq.(17), the importance of inconsistent directions can be diminished. The new distance
function is given by:

d
(
α1, β1; α2, β2

)
= λα(α1 −α2)T C− 1

2
α W−1

α C− 1
2

α (α1 −α2) +
(19)

λβ(β1 − β2)TC− 1
2

β W−1
β C− 1

2
β (β1 − β2) .

The final results are shown in Table (2). The performance boost is quite significant.
Especially the recognition rate of the texture-component seems to benefit from the co-
efficient weighting.
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Fig. 7. Shape optimization. Left column: the stereo-pair from which the 3D reconstruction is
computed with an overlay of the final model shape. Columns 2,3 and 4: new views of the subject
and the untextured renderings of the 3D model at the corresponding positions and orientations.

Table 2. Recognition results with coefficient weighting. Top table: recognition rates based on
geometry only. Middle table: recognition rates based on texture only. Bottom table: recognition
rates based on combined geometry and texture features. λα and λβ were set to 0.7 and 0.3.

test 1 test 2 test 3 test 4 test 5

rank 1 94.3 84.3 80.0 74.3 60.0
rank 3 98.6 95.7 94.3 88.6 75.7
rank 5 100.0 95.7 94.3 91.4 87.1

rank 1 94.3 97.1 80.0 68.6 42.9
rank 3 95.7 98.6 91.4 82.9 67.1
rank 5 95.7 98.6 97.1 85.7 81.4

rank 1 100.0 98.6 97.1 91.4 82.9
rank 3 100.0 98.6 98.6 92.9 90.0
rank 5 100.0 100.0 100.0 97.1 92.9

5 Conclusions

We presented a new method for face modeling and face recognition from a pair of
calibrated stereo cameras. In the shape extraction step, the algorithm builds a stereo
reconstruction of the face by adjusting the global transformation and shape parameters
of a 3D-morphable face model. Next, in the texture extraction step, texture is sampled
from the image pair and represented in the texture space of the morphable face model.
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The resulting shape and texture parameters are characteristic for the analyzed face, and
can subsequently be used for face recognition.

In a face recognition experiment on a stereo database of 70 subjects, we reported
recognition rates for 5 different viewpoints. The initial recognition results are reason-
able but a decrease in performance is noted for profile views. Particularly the texture
feature vector has relatively low discriminative power. However, after weighting the
coefficients with the pooled within-person scatter matrices − estimated independently
from the test set − detection rates increase significantly. The resulting face recognition
system has state-of-the-art performance.

We believe that, with a refinement of the morphable face model, the level of perfor-
mance can still increase. An obvious improvement is the usage of a component based
model with enhanced representative power. Furthermore, we noticed that there is ev-
idence of light-source variation within the eigen-textures of the model, which causes
instabilities in the computation of texture coefficients. These variations should be ac-
counted for, prior to PCA-analysis.
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Abstract. 3D tracking of faces in video streams is a difficult problem
that can be assisted with the use of a priori knowledge of the structure
and appearance of the subject’s face at predefined poses (keyframes).
This paper provides an extensive analysis of a state-of-the-art keyframe-
based tracker: quantitatively demonstrating the dependence of tracking
performance on underlying mesh accuracy, number and coverage of reli-
ably matched feature points, and initial keyframe alignment.

Tracking with a generic face mesh can introduce an erroneous bias that
leads to degraded tracking performance when the subject’s out-of-plane
motion is far from the set of keyframes. To reduce this bias, we show how
online refinement of a rough estimate of face geometry may be used to
re-estimate the 3d keyframe features, thereby mitigating sensitivities to
initial keyframe inaccuracies in pose and geometry. An in-depth analysis
is performed on sequences of faces with synthesized rigid head motion.

Subsequent trials on real video sequences demonstrate that tracking
performance is more sensitive to initial model alignment and geometry
errors when fewer feature points are matched and/or do not adequately
span the face. The analysis suggests several indications for most effective
3D tracking of faces in real environments.

1 Introduction

3D tracking of faces in video streams is a difficult problem that can be assisted
with the use of a priori knowledge of the structure and appearance of the sub-
ject’s face at predefined poses. Tracking accuracy, however, is dependent (in part)
upon the quality of this knowledge: ie, the underlying 3D accuracy and initial
alignment of the tracking model in a selection of key image frames corresponding
to the selected poses.

Unfortunately, for many tracking applications it is unreasonable to assume
that a model of the tracked subject exists, or that sufficient views of the face
are available a priori to optimally align the mesh. As shown in Figure 1, a single
generic face is an unsatisfactory prior for all tracking subjects and single-view
initialization can mask egregious registration errors. While a model of the sub-
ject may be created using global bundle adjustment as in [2], this is a lengthy
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Fig. 1. (left) Improper registration of tracking mesh is not apparent from a single
image. (right) Registration errors are dependent on subject’s facial structure. With the
first subject, errors are concentrated in forehead and chin area. The second subject
has a more shallow chin and more pronounced nose bridge making these areas more
difficult to align.

offline process. Reasonable results at or near keyframes can be achieved with a
relaxed 3D structure (ie, a generic face mesh) but as the subject deviates from
the keyframe poses, tracking becomes sensitive to the initial pose alignment.
Furthermore, even when accurate keyframe registration and geometry is avail-
able, 3D tracking from 2D features can be sensitive to the number and quality
of matched features in each image.

The primary goal of this paper is to present a thorough experimental inves-
tigation of the tracking performance of a state-of-the-art 3D tracker applied to
faces. We validate quantitatively the claims of tracking performance dependence
on model accuracy by comparing performance with a variety of meshes on image
sequences derived from real faces, but with synthetically generated motion whose
parameters are precisely known. We show that it can be better to track with
a much weaker prior such as an ellipsoid than to introduce a strong erroneous
bias with a misaligned generic “face-like” mesh when optimal keyframe initial-
ization is not possible. In both cases, the suboptimal mesh leads to degraded
tracking results when the subject’s pose is far from an in-plane translation of
the keyframe when compared to an accurate 3D mesh. Additional factors con-
tributing to tracking performance are also investigated, including the number
of feature points accurately matched to the keyframe, the total face coverage of
the points, and reprojection error.

We also demonstrate that by refining the geometry of the internal tracking
model using initial estimates of camera pose, errors in both mesh geometry and
alignment are reduced, and tracking performance is enhanced. Beginning with
a rough estimate of face geometry we iteratively refine the model online using
a simple stereo-based update approach and use the more accurate structure to
re-estimate the 3d keyframe features.

The experiments on synthesized motion sequences extend directly to real
sequences with the important caveat that due to variable image quality and
resolution, the number of accurately matched features can be low. Further in-
vestigation on real sequences shows that these effects must be minimized not
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only for accurate but also stable tracking. The investigation concludes with a
set of indications for effective 3D tracking of faces.

We have chosen to use the real-time tracker by [2] for our investigation due
to the reported high quality performance, both in speed and accuracy.

2 Previous Work

In most rigid object tracking approaches the pose estimate at a given time is
dependent on the estimate at the previous frame. Dubbed recursive tracking in
[2], the concatenation of motion estimates causes error to be aggregated and can
result in considerable tracking drift after several frames.

If the class of tracked objects is restricted (such as, to faces) a priori knowl-
edge of the object properties can be leveraged to improve tracking accuracy and
resolve pose ambiguities. 3D model-based tracking introduces this knowledge in
the form of the structure, pose, and, in some cases, surface texture of the object.
The 3D model is used to regularize feature motion in [6][8][5] [7][11][12].

To eliminate drift, keyframe approaches perform tracking by detection, uti-
lizing information obtained offline such as the known pose of the head in spe-
cific frames (keyframes) of the tracking sequence. Input images are matched to
existing keyframes and provide accurate pose estimates at or near key poses.
Such approaches suffer from tracking jitter and can require several keyframes
for robust tracking. In an uncontrolled environment, it may not be possible to
accurately establish multiple keyframes.

A critical issue in all 3D model based approaches, is the accurate estimation
of the tracking model. In keyframe approaches, accurate pose is also required at
keyframes. Indeed, [2] performs optimal pose and model estimation at keyframes
using global bundle adjustment. This preprocessing is lengthy and is acceptable
for offline tracking, or in situations where the subject to be tracked is known and
can be enrolled in the system prior to the tracking phase. However, such effort is
impractical for more general “ad-hoc” tracking situations such as surveillance.

View synthesis approaches for rapid model registration can be used to render
the appearance of the tracking model at different poses as in [4]. A best-fit search
among these views reveals the correct registration parameters. This method
performs well when lighting conditions are consistent between the rendered face
and the face image. However, like most appearance based approaches is likely to
be sensitive to drastic lighting changes and cosmetic changes on the face such as
facial hair and makeup.

Most model based trackers assume a rough estimate of face shape such as an
ellipsoid in [9][6] and a cylindrical model in [5]. In each of these approaches the
initial inaccurate tracking mesh remains static throughout the tracking sequence,
introducing considerable error.

In the model-based bundle adjustment work by Shan et.al. [3] a generic
face model is allowed to deform to account for both facial deformations and
rigid transformation. The number of optimization parameters is reduced by con-
straining the model points to lie on the surface of a mesh defined by a linear
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combination of face-metrics. For further performance, the dependence on the 3D
model parameters is eliminated using a transfer function that estimates 3d as a
projection onto the model surface. Subsequent optimization is performed only
over camera parameters and model coefficients. Because the deformed model is
constrained to be a linear combination of existing models, model error will be
present if the subject’s face can not be modeled as such (ie, does not lie in the
convex hull of the basis shapes). Though significantly faster than classical bundle
adjustment formulations, performance is not realtime. The tracker used in this
paper uses a similar approach but ignores model deformation to perform rigid
face tracking.

The work most similar to our update approach is [1] where a complex head
model is fit to a sequence of face images. After recovering accurate head pose
from bundle adjustment on sets of image triplets, stereo matching is performed
on image pairs and a generic face mesh is fit to the recovered 3D. In lieu of
local bundle adjustment with fixed internal camera parameters Jebara et. al.
recursively estimate camera geometry (focal length), mesh structure, and pose
[12] within an extended Kalman filter framework [10].

In [11] potentially erroneous feature point matches are eliminated by focusing
on a set of optimally trackable feature points where optimality is a function of
the determinant of the Hessian at a given feature location and the corresponding
surface normal of the point projected onto the model surface.

In contrast to [12] and [11] we separate model update from the internal op-
timization scheme of the tracker. Mesh vertices are updated using estimates of
head pose acquired with the current 3D model. Tracking improves after reini-
tialization with the updated model. Though the update approach is tested with
a specific tracker, maintaining the update outside of the internal tracking mech-
anism enables augmentation of any existing model based tracker.

3 Rigid 3D Tracking Overview

The starting point for our investigation is the tracker by Fua et. al. that combines
a recursive and keyframe based approach to minimize tracking drift and jitter,
and reduce the number of keyframes required for stable tracking. This section
presents a brief overview of the tracking approach, but the reader is deferred to
the original paper [2] for details.

A keyframe in [2] consists of a set of 2d feature locations detected on the
face with a Harris corner detector and their 3D positions estimated by back-
projecting onto a registered 3D tracking model. The keyframe accuracy is de-
pendent then on both the model alignment in the keyframe image, as well as
the geometric structure of the tracking mesh. Especially when the face is far
from the closest keyframe, there may be several newly detected feature points
not present in any keyframe that are useful to determine inter-frame motion.
These points are matched to patches in the previous frame and combined with
keyframe points for pose estimation.
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The current head pose estimate (or closest keyframe pose) serves as the
starting point for a local bundle adjustment. Classical bundle adjustment is
typically a time consuming process, even when a reasonable estimate of camera
and 3D parameters is provided. However, by constraining the 3D points to lie
on the surface of the tracking model, the method is modified to run in real-time
without substantial sacrifice in accuracy. When an accurate 3D model of the
tracked object is used, reported accuracy approaches that of commercial batch
processing bundle adjustment packages requiring several minutes per frame.

Unfortunately, a perfect 3D model of the tracked subject is rarely available
to the tracker a priori. As we will show next, tracking performance can degrade
drastically when a generic face model is used due to errors in initial alignment.
Experiments on real video sequences also exhibit problems due to limited fea-
ture point coverage on face images. These issues are somewhat more significant
as they are less predictable and can result from an inherent lack of sufficient
information in the image.

We first describe the data used in the synthesized and real video experiments
and present results and analysis of experiments demonstrating the dependence
of tracking accuracy on mesh accuracy and alignment. The mesh update method
is detailed and improved tracking results are shown using the updated models.
This is followed by an investigation of performance on real image sequences.

4 Test Data

4.1 Synthesized Motion

A set of experiments is performed on sequences of rotating 3D faces. To generate
the sequences, textured 3D models of four subjects are acquired using the Face-
Vision200 modeling system [14]. For each model, two independent sequences of
images are rendered. The first consists of pure rotation about the horizontal (X)
axis, and the second, rotation about the vertical (Y) axis. In both cases, the
sequences begin with the subject facing the camera and proceed to -15 degrees,
then to 15 degrees, and return to neutral in increments of 1 degree. A total of
60 frames is acquired for each sequence. Image dimensions are 484x362.

4.2 Real Video

Two real video sequences are tested for consistency with the synthetic trials. In
both cases a subject is instructed to rotate his head from right to left mimicking
the synthetic sequences. Ground truth rotation is acquired using commercial
bundle adjustment software [15].

5 Investigation of Tracking Model Bias

The tracker utilizes two primary sources to estimate camera pose: prior and ob-
served information. The model prior information is embedded in the keyframes



130 D. Fidaleo et al.

A B C D

Fig. 2. (top) Four test models. (bottom) Ellipsoid, generic face, and example true mask
(for subject A) used for tracking.

and is defined by the tracking mesh, its initial pose, the 2D feature points de-
tected on the face, and their 3D positions estimated by back-projecting to the
registered mesh. Observed data consists of 2D feature points detected in non-
keyframe images that are matched to the pre-defined keyframe features. In-
deed these are fundamental information sources in many 2D-feature-based 3D-
trackers, hence the analysis extends beyond the particular choice of tracker in
this investigation.

While errors in both the prior and observed data can contribute to tracking
inaccuracies, the effects of the latter are negligible in the controlled synthetic
sequences. We therefore focus our attention on tracking bias induced by inaccu-
racies in the model prior and defer the analysis of observed information to the
discussion of real sequences later in the paper.

5.1 Investigation 1: Mesh Accuracy

To demonstrate the connection between tracking and model accuracy, tracking
results are compared for four different tracking meshes: an ellipsoid, a generic
face mask, an updated mesh, and an accurate (“true”) 3D model of the subject.
The ellipsoid is a weak prior, making no assumptions regarding the location of
features on the face such as the eyes, nose, and mouth. The generic face mesh
makes stronger assumptions on these features, but other than the manual fitting
process (which involves a nonuniform scaling of the mesh) does not account for
the true structure of the subject’s face. The updated mesh is a refined version
of the ellipsoid and makes equally strong assumptions as the generic mask, but
derives these assumptions from observed data (discussed in Section 5.3). The
true mesh for each subject is derived from the same model used to generate the
sequence. The texture is not used, but the geometry is identical, eliminating
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errors due to geometry inaccuracies. To balance the comparison, each mesh is
designed or edited to cover only the face portion of the model as shown.

Figure 3 shows the X component of the recovered rotation compared to ground
truth on a representative sequence. Aggregate error for all four subjects is shown
in the chart in Figure 4. The average sum of square differences (SSD) is computed
with respect to the known ground truth for each degree of freedom.
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Fig. 3. Recovered X rotation in degrees (vertical axis) versus frame number (horizontal
axis) from the tracker for each of the test meshes. Results are from a synthetic sequence
with pure rotation about the horizontal axis. Ground truth (GT) shown for comparison.

The largest error consistently occurs with the generic face, and least error
with the true mesh. It is evident (and expected) that performance of the tracker
improves significantly with the true model geometry. An interesting observation,
however, is that the ellipsoidal mesh actually performs better than the face mask
in most cases.

An explanation for this is that the mask imposes a stronger (but erroneous)
prior on the tracker. Prominent features such as the nose and chin are difficult
to align properly using only an aspect change, and in some cases it may not
be possible at all given different proportions of human faces. These discrepan-
cies are not significant at small rotations, but become more prominent as the
out-of-plane motion increases.

Indeed the example in Figure 3 exhibits tracking performance that is simi-
lar for both the ellipsoid and mask within 3-5 degrees of the keyframe. However
when more of the face profile is exposed, chin and forehead alignment becomes an
issue with the tracker attempting to compensate for the misalignment. Results
from the updated mesh are discussed in Section 5.3.

5.2 Investigation 2: Model Registration

Referring back to Figure 1, a mesh that appears properly aligned in a frontal
image may actually be grossly misaligned as is apparent in the profile view. This
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misalignment establishes incorrect a priori information. While the effects of the
model bias may be negligible near the original keyframe, as tracking proceeds,
the tracker will attempt to resolve the new feature information with the incorrect
keyframe information by minimizing reprojection error. As keyframe information
is “trusted” to be correct, the result is biased toward an incorrect conclusion.
This section provides empirical evidence for this phenomenon with test sequences
of intentionally misaligned meshes.

The keyframe alignments of the previous section are perturbed by rotating
5 degrees about the horizontal axis. Figure 5 shows the results of tracking with
the misaligned meshes. Overall performance decreases for each of the meshes.
In the case of the TRUE mesh, there is a marginal difference in performance.
It is expected that due to the fact that faces are relatively smooth continuous
surfaces, small deviations in alignment for perfect geometry will embed smaller
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Fig. 5. Results from misalignment experiments. (left) Comparison of tracking error for
each image with aligned and misaligned meshes rotated 5 degrees about the horizontal
axis. (right) Aggregate error over all frames of sequence.

errors in the prior. Though not tested, larger errors in alignment should induce
similar magnitude errors for all face-like meshes.

5.3 Investigation 3: Online Model Refinement

The results in the previous sections demonstrate that despite perfect 3D in-
formation, tracking performance can degrade significantly when the model is
misregistered in the keyframes. Errors in the geometry of the tracking mesh in-
troduce similar errors. Both of these error sources can be minimized by updating
the geometry of an initial tracking model online. Beginning with a rough esti-
mate of the face geometry and we iteratively refine the model and use this more
accurate structure to re-estimate the 3D keyframe features thereby reducing the
erroneous bias imposed by the misaligned mesh.

Any starting mesh is a candidate for update however an ellipsoid is cho-
sen for its qualitative approximation of face shape without introducing strong
assumptions on feature location.

Update Method. The 3D locations of the vertices of the tracking mesh are
updated as follows:

The tracker is initialized with a 3D mesh with roughly the same proportions
as the subject’s face. As shown in the previous section, using a more complicated
generic face model does not necessarily improve initial tracking accuracy (and in
some cases can hinder it). Rather than risk introducing a strong erroneous bias
with a misaligned generic face mesh, we use an ellipsoidal mesh as it assumes
nothing about face orientation or location of features. Furthermore, in our cur-
rent experiments tracking with the ellipsoid provides good pose estimates within
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Fig. 6. Updated tracking meshes at different poses. The updated structure conforms
well to the subject’s face.

a few degrees of the initial keyframe. This baseline is sufficient for incremental
improvement of the sparse tracking model.

The ellipsoid mesh is manually aligned with the face in the first frame by
applying a translation and nonuniform scaling to the mesh. A single keyframe
is generated using this initial registration consisting of the projection matrix
P0, model vertices Xi, and their projections xi = Φ(P0, Xi). A set of “update
features” is generated by sampling a 7x7 window at each xi.

The tracker provides a new Pt for each image It. When a suitable baseline is
achieved (3-5 degrees) using the initial tracking model, the update features are
matched by correlation in It. Using camera estimates P0 and Pt, straightforward
stereo reconstruction [13] is performed at matched features and the new 3D
location of model vertices is updated.

The original keyframe mesh is substituted with the updated mesh and a
new keyframe is generated. In our current experiments a single update pass is
performed. However, the improved tracking results allow multiple passes to be
performed to increase the model and tracking accuracy.

Mesh Update Results. We use the method in the previous section to generate
updated versions of the ellipsoid for each of the subjects. The synthetic sequences
of section 4.1 are re-tracked using the updated models as described. Figure 6
shows the tracking mesh after a single update for two models at initialization
and an intermediate stage of tracking. The profile view is generated manually
to show the accuracy of the alignment. After a single update, the mesh captures
the overall shape and prominent features of the subjects, obviating the need for
precise alignment.

Figures 7 and 8 show tracking results for the two sequences of subject A (X
and Y rotation respectively). The top row shows the recovered head rotation
separated into X, Y, and Z components.
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truth with synthetic “X-Rotation” sequence. Comparison of results with four track-
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performance is expected, however the tracker gets stuck in a local minimum at the red
circle due to poor feature point coverage.
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The average results over all four subjects are summarized on the chart pre-
sented earlier in Figure 4. The tracking performance with the updated meshes is
considerably better than the ellipse or generic mask for all tracked parameters.

Though the reduction of negative model bias with the ellipsoid is desirable,
the mesh itself is not optimal. It is a coarse regular tessellation that does not
take into account expected locations of features on the face. If important features
(such as the nose bridge or chin boundary) do not happen to fall under the
ellipsoid vertices, the update process cannot adequately capture the complete
face structure. The sparsity of the ellipse template also increases the average error
of the updated mesh. This problem may be remedied by either a uniformly dense
tessellation, a non-uniform tessellation accounting for the expected location of
important features, or an alternative update approach. The generic face mask is
better with respect to tessellation, however it also makes strong assumptions on
feature locations, preventing adequate alignment without a nonlinear scaling of
the geometry (which requires identification of feature locations such as the eyes,
mouth, and nose).

6 Real Video Sequences

The synthetic experiments support the claims that mesh accuracy and keyframe
registration play an important role in accurate 3D tracking. When tracking faces
in real video sequences, however, we must contend with lower quality input data
that may affect the tracker in unpredictable ways. We therefore focus the remain-
der of the paper on the discrepancies between the expected results (as predicted
by the synthetic experiments) and the results observed on real sequences, in
order to identify sensitivities in 3D face tracking.

The most surprising case shown in Figure 9 will be the focus of our analysis.
This is a clear cut case where the subject is being tracked with the true geometry
of his face and should be expected to perform considerably better than the other
meshes (as was the case with the synthetic trials). However, it turns out that
the tracking accuracy is worse than all but the ellipse. Tracking progresses well
up to a point where it appears that the mesh gets locked into an incorrect pose
configuration.

The discrepancy between real and synthetic sequences can be explained by
the number of accurately matched keyframe feature points and the face coverage
they provide.

The number of feature points detected in the high error frames is signifi-
cantly lower than the best case tracking results. More importantly, the correctly
matched keyframe points are clustered on the portion of the face closest to the
camera providing poor face coverage and creating pose ambiguity. The tracker
minimizes the keyframe point reprojection error, but settles on a local minimum
corresponding to a poor tracking estimate. The tracker remains stuck in this
local minimum for subsequent frames until more feature points are matched.

Comparing these results to the sequence tracked with the generic mesh, we
observe another surprising phenomenon: in this case, the generic mesh performs
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better and doesn’t get stuck in the local minimum. It turns out that feature point
matching is dependent upon the local surface normal of the tracking mesh at the
backprojected feature location. Therefore, given the same input image and 2D
keyframe features, it is possible for a different number of points to be matched.
Indeed, this is the cause of the discrepancy: While the set of keyframe points
matched in the true and generic cases is different throughout the sequence, at
the divergence point a single critical feature point is lost while tracking the true
mesh. The loss of this point leaves a feature set that covers only a small portion
of the face, inducing a less favorable error surface.

6.1 Reprojection Error

In all cases, the tracking performance improves with model accuracy and align-
ment. A reasonable assumption, therefore, is that overall tracking performance
is directly related to feature point reprojection error and a plot of reprojection
error over time would be highly correlated with a similar plot of tracking er-
ror. Though large tracking errors induce large reprojection errors, the converse
is not true: low reprojection error does not necessarily indicate low tracking
error. This is due to the fact that as the tracker discards low confidence fea-
ture points, it is possible to settle into a minimum configuration where the
reprojection error for detected keyframe points is low, but the tracking error
is high.

7 Indications

The preceding analysis on controlled, synthesized motion sequences demon-
strated a strong dependency between tracking accuracy and mesh geometry and
alignment. Trials on real video uncovered a sensitivity to feature point num-
ber and coverage. We therefore conclude with a list of issues that should be
considered when using and evaluating 3D model based trackers.

MESH COVERAGE: For a detected feature point to be registered as a
keyframe point, it must back project onto the mesh at the initialization
phase. Tracking meshes with smaller face coverage may miss important po-
tential keyframe points on the outer boundary of the face. Therefore a track-
ing mask should be maximized to cover as much face area as possible.

IMAGE QUALITY: Despite the fact that the pixel area occupied by the face
in the real sequences is larger than the synthetic cases by roughly 30%, on
average 5 times fewer feature points are matched on each frame. Care should
therefore be taken to either maximize image quality or tune feature detection
parameters accordingly.

FEATURE POINTS AND LOCAL MINIMA: Absence or inclusion of a
single feature point can cause a dramatic change in the estimated pose. If
the tracker gets stuck in a local minimum in the reprojectionerror surface,
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the pose may remain skewed until a sufficient number of reliable feature
points are matched again. These local minima can be avoided or detected by
analyzing the proportion of the face covered by the detected feature points.

MODEL REFINEMENT: Tracking accuracy is greatly influenced by mesh
geometry and registration errors. If an accurate 3D model of the tracked sub-
ject is not available a priori, refinement of the structure online can mitigate
both error sources simultaneously.

NON-LOCAL BUNDLE ADJUSTMENT: The experiments in this paper
were performed with a single registered keyframe. Given an adequate number
and coverage of feature points, it is sufficient to consider only the key and
previous frame in the optimization. However, as we have seen, it is possible to
get stuck in a local minimum when coverage is poor. Considering additional
frames, though increasing the computational burden, is likely to help avoid
local minima. This suggests a bundle adjustment framework with a variable
size window of frames, dependent on the expected quality of the data (for
example, based on feature the current number or coverage of feature points).

8 Conclusions

Using an existing model-based tracker, we have demonstrated the dependence
of tracking accuracy on the accuracy of the underlying model geometry and
registration. We have shown that a simple stereo based approach to mesh update
significantly improves tracking performance. A single update of the model is
performed using the narrow baseline camera pose recovered by the tracker.

Updating the mesh eliminates the need for multiple view rotational alignment
of the mesh, as the resulting model automatically conforms to the subject’s fea-
tures. Aspect and translation alignment is still needed at initial ellipsoid place-
ment, but this is a much simpler process and can be performed, for example,
using the head bounding box information.

The discrepancy between the synthetic and real sequence results are at-
tributed to the sensitivity of the tracker to initial pose alignment and lack of
sufficient feature points matched to the keyframes on real sequences. When fea-
ture points do not span the entire face region, the pose optimization can get
stuck in local mimima on the reprojection error surface corresponding to high
pose error. We have provided a set of recommendations based on the investiga-
tions that we hope will assist in the development, implementation, and use of
3D tracking methodologies.
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Abstract. This paper presents a method for interpreting facial expres-
sions based on temporal structures among partial movements in facial
image sequences. To extract the structures, we propose a novel facial
expression representation, which we call a facial score, similar to a mu-
sical score. The facial score enables us to describe facial expressions as
spatio-temporal combinations of temporal intervals; each interval repre-
sents a simple motion pattern with the beginning and ending times of the
motion. Thus, we can classify fine-grained expressions from multivariate
distributions of temporal differences between the intervals in the score.
In this paper, we provide a method to obtain the score automatically
from input images using bottom-up clustering of dynamics. We evalu-
ate the efficiency of facial scores by comparing the temporal structure of
intentional smiles with that of spontaneous smiles.

1 Introduction

Facial expression plays an important role in our communication; for instance, it
can nonverbally express emotions and intentions to others. Much progress has
been made to build computer systems that recognize facial expression for hu-
man interfaces. However, these systems have problems; they don’t use enough
dynamic information in recognition, and the classification of facial expression
relies on a fundamental category based on emotions. Most previous systems de-
scribe facial expression based on action units (AUs) of the Facial Action Coding
System (FACS) developed by Ekman and Friesen [13]. An AU is defined as the
smallest unit of facial movement that is anatomically independent and visually
distinctive. FACS is a method for describing facial expression on the basis of
the combination of AUs. FACS, however, has a major weakness; there is no
time component of the description [6]. Furthermore, there may be facial motion
that AUs cannot express because they are heuristic motion patterns classified by
human. It is also important to decide what categories of facial expression are ap-
propriate as the outputs of facial recognition. Most previous systems categorize
facial expression into one of six basic categories (happiness, surprise, fear, anger,
disgust, and sadness) [6]. In human communication, however, facial expression is
classified into one of the more fine-grained categories by subtle dynamic changes
that are observed in facial components: the variety of changes and the timing of
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changes. To capture the subtlety of human emotion and intention, automated
recognition of subtle dynamic changes in facial expression is needed.

In this paper we assume that (1) dynamic movement of each facial compo-
nent (facial part) yields changes of facial expression, and that (2) movement of
facial parts is expressed based on temporal intervals. We define the intervals as
temporal ranges of monotonically changing events that have beginning times,
ending times, and labels of motion patterns (modes) as attributes. We provide a
framework for recognizing facial expression in detail based on timing structures,
which are defined as temporal relations among the beginning and ending times
of multiple intervals. To extract the timing structures, we propose a novel facial
expression representation, which we call a facial score. The score is similar to a
musical score, which describes the timing of notes in music. Using the score, we
can describe facial expressions as spatio-temporal combination of the intervals.

It is important to decide what the definition of modes is in the interval-based
description. Whereas AUs are suitable to distinguish emotional facial expres-
sion, they sometimes do not preserve sufficient dynamic information (e.g., time-
varying patterns) of facial actions. In this paper, we take another approach that
determines a set of modes from statistical analysis and describes facial actions
based on generative models. This approach extracts modes that have enough
dynamic information from the viewpoint of pattern generation, and provides a
unified framework that can be used not only for facial expression analysis but
for facial expression generation. We propose a bottom-up learning method to
find modes from captured real data. In this method, each mode is modeled by
a dynamical system that has an ability of generating simple patterns, and the
modes are extracted from clustering analysis based on the distances between
dynamical systems (see Section 3.3 and 4.2 for details).

In summary, the facial score is characterized as follows:

– It enables us to describe timing structures in faces based on temporal
intervals.

– It enables us to use motion patterns extracted from training data in a
bottom-up manner as modes of intervals.
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Fig. 1. The overall flow of facial expression recognition using the facial score
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Figure 1 depicts the overall flow of facial expression recognition using the
facial score: (1) we extract a series of feature vectors that characterize facial
expression from a sequence of facial images, (2) we partition the series of feature
vectors and extract the modes simultaneously to obtain a facial score, and (3) we
extract timing structures from the facial score, which contribute to recognition
of the facial expression. Automation of the above process provides for applica-
tions in recognizing facial expression, and therefore allows computers to learn to
recognize facial expression in detail.

The goal of this paper is to propose a method for automatically obtaining the
facial score and to evaluate the efficiency of the facial score for facial expression
recognition. We compare the timing structure of intentional smiles with that
of spontaneous smiles for the evaluation; in human communication it makes
sense to make a distinction between the two smiles, but most previous computer
systems have classified these smiles into the same category.

In Section 2, related works are described. In Section 3, facial scores are intro-
duced as representations that describe timing structures in faces. In Section 4,
we describe a method for automatically obtaining the facial score from input
sequences of facial images. In Section 5, we obtain facial scores automatically
from captured real data including intentional and spontaneous smiles, and eval-
uate the efficiency of the facial scores by the separability between the two smiles.
Finally, in Section 6 we conclude our work.

2 Related Works

In psychological experiments, evaluation by playing back facial expressions on
videotape to subjects has suggested the following knowledge of dynamic aspects
of facial movement. Bassili video-recorded the face that was covered with black
makeup and numerous white spots, and found that it is possible to distinguish
facial expression to a certain degree of accuracy merely from motion of the white
spots by playing back the video [2]. As a study concentrating on a more specific
part of facial motion, Koyama, et al. created CG animations with the temporal
relation between eye and mouth movement controlled, and showed laughter can
be classified into pleasant, unpleasant, and sociable types based on the temporal
difference [9]. As a study of analyzing solitary and social smiles, Schmidt, et al.
indicated temporally consistent lip movement patterns based on the evaluation
of the relationship between maximum velocity and amplitude [11]. Hence, the
importance of dynamic aspect in facial expression has been emphasized by many
studies. However, an appropriate representation that maintains spatio-temporal
structures in facial actions is still under study.

3 Facial Scores

3.1 Facial Scores Definition

A facial score is a representation that describes motion patterns of each facial
component and temporal relations between the movement. In this paper we
define the following notations:
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Facial parts and Facial Part Sets: Facial parts represent isolable facial
components. We define facial part sets as P =

{
P1, ..., PNp

}
where Np is

the number of facial parts described by facial scores. For instance, elements
of facial part sets include mouths, right eyes, left eyes, right eyebrows, and
left eyebrows.

Modes and Mode Sets: Modes represent monotonically changing events. We
define mode sets asM(a) =

{
M

(a)
1 , ..., M

(a)
Nma

}
where Nma is the number of

modes of a facial part Pa (a ∈ {1, ..., Np}). For instance, elements of mode
sets of a mouth part include “opening”, “remain open”, “closing”, and “re-
main closed”.

Intervals and Interval Sets: Intervals represent temporal ranges of modes.
We define interval sets as I(a) =

{
I
(a)
1 , ..., I

(a)
Nka

}
where Nka is the number of

intervals into which time series data of a facial part Pa is segmented. Intervals
I
(a)
k (k ∈ {1, ..., Nka}) have beginning times b

(a)
k ∈ {1, ..., T}, ending times

e
(a)
k ∈ {1, ..., T}, and labels of modes representing the events m

(a)
k ∈ M(a)

as attributes where T is the number of time series data of a facial part Pa.
Facial Scores: We define a facial score as a set of interval sets of all facial

parts {I(1), ..., I(Np)}. Figure 2 shows a conceptual figure of a facial score.
The vertical axis represents modes of facial parts, and the horizontal axis
represents time. The transition of the motion of each facial part is described
based on intervals along the temporal axis. In each facial part of the figure,
intervals of various colors represent various modes. Thus, the facial score can
describe timing structures among motions of facial parts.

3.2 Facial Parts in Facial Scores

To recognize facial expression based on timing structures, we treat the two areas
where their movements occur independently as different facial parts. Ekman, et
al. have revealed that the difference in the facial appearance of basic emotions
(happiness, surprise, fear, anger, disgust, and sadness) results from the combi-
nation of the three facial areas (around the eyebrows, eyes, and mouth) where
their movements can be observed individually in appearance [5]. We use these
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Fig. 2. Facial scores. The vertical axis represents modes of facial parts, and the hori-
zontal axis represents time. The transition of the motion of each facial part is described
based on intervals along the temporal axis.
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three areas, and furthermore treat areas around the eyebrows and eyes on the
left and right as different facial parts because the asymmetric movements of each
eyebrow and eye can be observed in real facial expression.

It is important to select useful features that can express subtle changes of
movements in the five facial areas. This paper defines feature vectors as coor-
dinates of feature points shown in Figure 5 (a), which can extract information
of movement directly. We consider that transient features such as furrows also
provide effective information in recognition of subtle facial expression, and that
changes of the feature points can represent them indirectly; for instance, move-
ment of feature points on the nose implies nasolabial furrows.

Therefore, we define elements of facial part sets P as right eyebrow, left
eyebrow, right eye, left eye, nose, and mouth. A feature vector z(a) of a facial
part Pa is represented by the following 2npa-dimensional column vector:

z(a) =
(
x

(a)
1 , y

(a)
1 , ..., x(a)

npa
, y(a)

npa

)�
, (1)

where npa is the number of feature points of a facial part Pa, and let
(
x

(a)
p , y

(a)
p

)
be coordinates of a feature point number p ∈ {1, ..., npa}.

3.3 Modes in Facial Scores

As we defined in Section 3.1, each complex movement of a facial part is composed
of simple motion categories, which we call modes. Therefore, a movement can
be partitioned into a sequence of temporal intervals by modes.

Modes are classified into two large categories by the velocity of feature vec-
tors: stationary poses and dynamic movements. For the modes with movement,
we use monotonic motions as the lowest-level representation, whereas humans
sometimes classify a cyclic motion as one category. Therefore, our facial score
represents a cyclic motion as a sequence of monotonic motions. For example, the
open and close action of the mouth is represented as the following sequence of
four modes: “opening”, “remain open”, “closing”, and “remain closed”.

AUs used in FACS are the most common units to describe facial movements.
Although AUs are suitable to distinguish emotional facial expressions by their
combinations, we do not use AUs as the modes in our facial scores for two reasons.
First, a method of AU tracking is still a challenging research topic for computer
vision. Second, AUs sometimes do not maintain sufficient dynamic information in
facial actions. As a result, AU-based CG animation systems sometimes generate
unnatural facial actions. In contrast, our approach takes a bottom-up learning
method to find modes rather than using predefined motion categories, as we
described in Section 1. That is, all the modes are extracted by the clustering of
dynamics from captured real data, as we will see in Section 4.2. For a generative
model of simple dynamics in each mode, we use a first-order linear dynamical
system. The dynamics of the mode M

(a)
i (i ∈ {1, ..., Nma}) in a facial part Pa is

represented by the following notation:

z
(a)
t = F (a, i)z

(a)
t−1 + f (a, i) + ω

(a, i)
t , (2)
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where z
(a)
t is a feature vector at time t, F (a, i) is a transition matrix, which differs

from other modes’ matrices, f (a, i) is a bias term, ω(a, i) is a process noise of the
system that has a multivariate Gaussian distribution with mean vector 0 and
covariance matrix Q(a, i).

As a result, each motion transition in each facial part is described based on
the transition of linear dynamical systems, which is similar to a switching linear
dynamical system [3,8]. Therefore, the proposed model can be considered as a
concurrent process of multiple switching linear dynamical systems. We currently
do not model the transition probability between modes to reduce the model
parameters; however, the transition probability will work as constraints during
a mode segmentation process, and can be introduced if specific mode transition
patterns appear frequently.

Given a sequence of feature vectors, we find a rough segmentation using
zero-crossing points of the velocity as the initialization of the method. Then,
we merge the nearest dynamical system pairs iteratively based on agglomerative
hierarchical clustering. A linear dynamical system, in general, can generate not
only monotonic motions but cyclic or oscillating motions. To extract only the
monotonic motions, we propose a method to provide a constraint on eigenvalues
of the transition matrices. We will describe the details of the identification and
clustering algorithms in Section 4.2.

3.4 Timing Structures in Facial Scores

Using facial scores defined in the previous sections, we can represent temporal
relations among motions in facial parts; we refer to the relation as timing struc-
tures of the face. In this section, we describe a method to represent and extract
timing structures from a facial score.

Representation of Timing Structures: Figure 3(a) shows 13 categories of tempo-
ral relations between two intervals Ii and Ij [1,10]. We can classify the relations
of the two intervals based on the temporal order of four times bi, bj, ei and ej ,
where bi(bj) and ei(ej) represent the beginning and ending times of the interval
Ii(Ij), respectively. Although these categories enable us to represent temporal
structures among multiple events, such as overlaps between two intervals, they
are insufficient for us to describe the difference of timing structures in facial ex-
pressions. We need to concentrate on not only temporal order of events but scales
and degree of temporal differences among beginning and ending times of multi-
ple intervals. In this paper, we extend the 13 categories based on multivariate
distributions of real-valued variables. Using temporal differences between begin-
ning and ending times, we can represent the first-order timing structure of two
intervals as four distributions H(bj − bi), H(ej − ei), H(bj − ei) and H(ej − bi),
where H(r) is a one-dimensional distribution of variable r ∈ R. We can also
represent the second-order timing structure as six distributions H(bj − bi, ej −
ei), H(bj−bi, bj−ei), H(bj−bi, ej−bi), H(ej−ei, bj−ei), H(ej−ei, ej−bi) and
H(bj−ei, ej−bi), where H(r1, r2) is a two-dimensional distribution of variables
r1, r2 ∈ R. Figure 3(b) shows the example of distribution H(bj − bi, ej − ei),
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Fig. 3. (a) An example of two-dimensional distributions of temporal differences be-
tween two intervals. The temporal order of beginning and ending times provides 13
relations of the two intervals. (b) The horizontal and vertical axes denote the differ-
ence between beginning times bj − bi and the difference between ending times ej − ei

of the two intervals (Ii and Ij), respectively.

where the horizontal and vertical axes represent the difference between the be-
ginning times and the difference between the ending times, respectively. Rep-
resentations of high-order timing structures become a set of high-dimensional
distributions in the same manner. To represent timing structures among more
than three intervals, for example the first-order timing structure of three inter-
vals Ii, Ij and Ik, we need 12 one-dimensional distributions H(bj−bi), H(bk−bj),
and so on.

Extraction of Timing Structures from Facial Scores: The selection of interval
combinations is necessary for calculating the distributions that are described
in the previous paragraphs when we make use of the timing structures for
facial expression analysis and recognition. In our experiments in Section 5,
we selected the combinations based on the following methods. First, we find
combinations of the intervals that belong to each facial part based on tempo-
ral distances. The interval in a facial part Pb (b 
= a, b ∈ {1, ..., Np}) that has
the nearest distance from an interval I

(a)
k in a facial part Pa is calculated as

I
(b)
l∗ (l∗ = arg minl IntervalDist(I(a)

k , I
(b)
l )), where IntervalDist is a distance be-

tween two intervals that is defined as follows:

IntervalDist(I(a)
k , I

(b)
l ) = |b(a)

k − b
(b)
l |+ |e

(a)
k − e

(b)
l |. (3)

Second, we represent the timing structure as two-dimensional distributions. If
there are clusters in the calculated distributions, we can define successfully more
subtle categories of facial expressions than basic emotional facial expressions.

4 Automatic Acquisition of Facial Scores

In this section, we describe a method for automatically obtaining facial scores
with facial image sequences as the inputs.
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4.1 Facial Feature Extraction

We track feature points in facial image sequences using Active Appearance Mod-
els (AAM) [4]. An AAM contains a statistical model of correlations between
shape and grey-level appearance variation. The model can be matched to a tar-
get image rapidly and robustly.

To build the model, we require a training set of images marked with feature
points. Figure 4 (a) shows an example of a face image labeled with 58 feature
points. Let s be a shape vector that represents the coordinate value of feature
points. Let g be a grey-level vector that represents the intensity information
from the shape-normalized image over the region covered with the mean shape.
In the first step, the method applies principal component analysis (PCA) to the
data. Any example image can then be approximated using:

s = s̄ + Uscs , g = ḡ + Ugcg, (4)

where s̄ and ḡ are the corresponding sample mean vectors, Us and Ug are matrices
of column eigenvectors of the shape and grey-level, and cs and cg are vectors of
shape and grey-level parameters, respectively. In the second step, because there
may be correlations between the shape and grey-level variation, the method
concatenates the vectors cs and cg, applies PCA, and obtains a model of the form[

Wscs

cg

]
= c =

[
Vs

Vg

]
d = V d, (5)

where Ws is a diagonal matrix of weights for each shape parameter, allowing for
the difference in units between the shape and grey-level models, V is a matrix
of column eigenvectors, and d is a vector of appearance parameters controlling
both the shape and grey-levels of the model.

(b) input image sequence

(c) tracked feature points using active appearance model(a) feature points to track

Fig. 4. (a) A training image to build active appearance models. (b) Part of a captured
face image sequence. (c) Part of a face image sequence with tracked feature points.
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Note that the linear nature of the model allows us to express the shape vector
s and grey-level vector g directly as functions of d:

s = s̄ + UsW
−1
s Vsd , g = ḡ + UgVgd. (6)

An example image can be synthesized for a given d by generating the shape-
free grey-level image from the vector g and warping it using the feature points
described by s. During a training phase we learn the relationship between model
parameter displacements and the residual errors induced between a training
image and a synthesized image.

The matching process for tracking the feature points is provided as an opti-
mization problem in which we minimize the difference between a target image
and an image synthesized by the model.

4.2 Modes Extraction

As we postulated in Section 3.3, each mode in the facial expression score is
represented by a different linear dynamical system. In this section, we describe
a method to find a set of modes that corresponds to a set of dynamical systems.
This algorithm is applied to each facial part independently.

Although there are several approaches to find dynamics in training sequences,
we propose a bottom-up clustering method to extract modes based on an agglom-
erative hierarchical clustering approach described in [7]. The method provides
useful interfaces such as dendrograms to determine the number of clusters.

First, we introduce a constrained system identification method that restricts
an upper bound of eigenvalues in the transition matrix in Equation (2). The
method enables us to find a set of modes that represent only monotonic dynam-
ics. Then, we introduce an agglomerative hierarchical clustering of dynamical
systems with the definition of distance between two dynamical systems. This
algorithm also merges two interval sets that are labeled by the same dynami-
cal system in each iteration. Thus, the clustering methods solve two problems
simultaneously: temporal segmentation and parameter estimation.

Constrained System Identification: The parameter estimation of a transition
matrix F (a,i) from a sequence of feature vectors z

(a,i)
1 , .., z

(a,i)
T in a facial part Pa

becomes an error minimization problem; that is, minimizing squared prediction
error vectors during the temporal interval [1, T ] that is represented by the mode
M

(a)
i . For convenience, we drop index a, which identifies a facial part, in the

remaining of this section because the following clustering method is applied to
each part independently.

The key idea to estimate monotonic dynamics is the method to constrain on
eigenvalues. If all the eigenvalues are lower than 1, the dynamical system changes
state in a monotonic manner (i.e., cyclic or oscillation will not occur and the
state converges to a certain value). Using the notation Z

(i)
0 = [z(i)

1 , ..., z
(i)
T−1] and

Z
(i)
1 = [z(i)

2 , ..., z
(i)
T ], we can estimate matrix F (i) by the following equation:

F (i)∗ = arg min
F (i)
||F (i)Z

(i)
0 − Z

(i)
1 ||

2
= lim

δ2→0
Z

(i)
1 Z

(i)�
0 (Z(i)

0 Z
(i)�
0 + δ2I)−1, (7)
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where I is a 2npa × 2npa unit matrix and δ is a positive real value. Using Ger-
shgorin’s theorem in linear algebra, we can determine the upper bound of eigen-
values in a matrix from the elements of the matrix. Therefore, we use a nonzero
value for δ that controls the scale of values in the matrix; that is, we stop the
limit in the Equation (7) before Z

(i)�
0 (Z(i)

0 Z
(i)�
0 + δ2I)−1 converges to a pseudo-

inverse matrix of Z
(i)
0 .

Clustering of Dynamics: The clustering algorithm of dynamics (modes) is ini-
tialized by a segmentation that partitions the training sequence into motion and
stationary pose intervals, which we call the initial interval set. To calculate the
initial interval set, we simply divide the training sequence by zero-crossing points
of feature velocity (i.e., the first-order difference of feature vectors). In the first
step of the algorithm, one dynamical system is identified from each interval in
the initial interval set. Then, we calculate the distances for all the dynamical sys-
tem pairs based on the distance definition in the next paragraph. In the second
step, the nearest dynamical systems are merged iteratively based on an agglom-
erative hierarchical clustering (see Algorithm 1 in Appendix for details). Finally,
all the modes are merged to one mode. We determine the number of the modes
manually using the obtained dendrogram (i.e., the tree structure that provides
the history of the total distance change).
Distance Between Dynamical Systems: We define the distance between two dy-
namical systems (modes) based on a cross check of the prediction errors between
the two modes. In the following equation, we use the notation z

(i)
t−1 and z

(i)
t , which

means that the adjacent feature vectors zt−1 and zt belong to an interval that
is represented by mode Mi. The prediction from the vector z

(i)
t−1 to the feature

vector of time t by the dynamics of the mode Mj becomes F (j)z
(i)
t−1. Thus, we

can calculate the prediction error from z
(i)
t as E

(i|j)
t = F (j)z

(i)
t−1 +f (j)−z

(i)
t . Cal-

culating this prediction error for all the adjacent feature vectors in the interval
set Ii, which is represented by the mode Mi, we can define the prediction error
from Mj to Mi as the following equation:

E (Mi||Mj) =
1
C

∑
Ik∈Ii

ek∑
t=bk

(E(i|j)
t

2
− E

(i|i)
t

2
), (8)

where C is the total interval length of the intervals in the set Ii, which normalizes
the sum of prediction error in a time axis. For the distance definition between
two modes, we take the average

Dist (Mi, Mj) = {E (Mi||Mj) + E (Mj ||Mi)} /2, (9)

because the two prediction errors, from Mi to Mj and from Mj to Mi, are
asymmetric.

5 Experimental Evaluations

We evaluated the efficiency of our representation for a separation of intentional
smiles from spontaneous smiles using obtained facial scores from captured data.
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Video Capturing: Intentional and spontaneous smiles of four subjects were cap-
tured in 240 × 320 at 60 fps as the input image sequences. We used a camera
system that was composed of a helmet and a camera fixed in front of the helmet
to focus on the analysis of front faces. The camera system enabled us to capture
front face images even if head motion occurred. The subjects were instructed
to begin with a neutral expression, make a smile, and return to a neutral ex-
pression again. Intentional smiles were captured by instructing the subjects to
force a smile. Spontaneous smiles were captured by making the subjects laugh.
The subjects were instructed to make either smile iteratively in capturing one
sequence, so that no sequences included both smiles. Figure 4 (b) shows part of
a captured face image sequence.
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Fig. 5. The correspondence of the mouth part of an obtained facial score from spon-
taneous smiles with the feature vector series. The vertical axes of the top, the middle
and the bottom subfigures represent x-coordinates of feature points, y-coordinates of
feature points and modes respectively, and the horizontal axes of each subfigure rep-
resent time. The numbers of legends in the top and middle correspond to numbers
that represent labels of feature points in Figure 4 (a). For example, the mode 4 and 5
represent “remain open” and “remain closed”, respectively.

Automatic Acquisition of Facial Scores: Feature points in the captured face
image sequences were tracked using the method in Section 4.11. The number
1 Feature points were tracked using the AAM-API that Stegmann (Technical Univer-

sity of Denmark) developed [12].
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Fig. 6. An example of obtained facial scores from intentional smiles (left and right
eyebrows are omitted)
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Fig. 7. Comparison of the two facial scores obtained from intentional and spontaneous
smiles

of feature points used in the AAM was set to 5 on each eyebrow, 8 on each
eye, 11 on the nose, 8 on the mouth, and 13 on the jawline (refer to Figure
4 (a)). Although the jawline was not represented as one of the facial parts,
it was used for improving tracking accuracy. Therefore, feature vectors were
obtained whose dimensions for each eyebrow, each eye, the nose, and the mouth
were 10, 16, 22 and 16 respectively. Figure 4 (c) shows part of a face image
sequence with tracked feature points; the frames correspond to the images shown
in Figure 4 (b). Comparison of the corresponding images demonstrates extremely
precise detection of feature points in changes of facial expression.

The obtained feature vectors of each facial part were segmented into modes
using the method in Section 4.2. Consequently, facial scores of intentional and
spontaneous smiles were acquired. Figure 5 shows the correspondence of the
mouth part of an obtained facial score from spontaneous smiles with the feature
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Fig. 8. The two-dimensional distribution that represents the timing structures of the
beginning of intentional and spontaneous smiles. The horizontal axis denotes the dif-
ference between the beginning times of the nose and mouth bnose − bmouth, and the
vertical axis denotes the difference between the beginning times of the left eye and nose
bleye − bnose.

vector series. The vertical axes of the top, the middle and the bottom subfigures
represent x-coordinates of feature points, y-coordinates of feature points and
modes respectively, and the horizontal axes of each subfigure represent time.
Figure 6 shows an example of obtained facial scores from intentional smiles,
and the correspondence it with captured image data. These figures demonstrate
that movement of smiles can be segmented into the following different modes:
“neutral”, “begin smiling”, “smiling”, and “end smiling”.

Comparison of Timing Structures in Intentional and Spontaneous Smiles: As
an example of comparison of timing structures in intentional and spontaneous
smiles, we concentrated on a mode “begin smiling” and examined temporal re-
lations between the beginning and ending times of the mouth, nose and left eye
modes (see Figure 7). 20 samples of each smile were prepared. We used a two-
dimensional distribution H(bnose−bmouth, bleye−bnose), which separated the two
smiles with the highest efficiency, where bmouth, bnose, and bleye are the beginning
times of the mouth, nose, and left eye, respectively. Figure 8 shows the distribu-
tions of four subjects. We see that there are respective clusters in the distribution
of the two smiles in case of subject A, B and C, but that there are not any clear
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clusters in case of subject D. We can find similarity between the distributions of
subject A and B. On the other hand, we can find difference between distribution
of subject A and C (or subject B and C). Hence, our experimental result suggests
that the timing structures extracted from facial scores have individual variation,
and the timing structures are effective in discrimination of the two smiles.

6 Conclusion

We proposed a facial score as a novel facial expression representation. The score
describes timing structures in faces by assuming that dynamic movement of
each facial part yields changes of facial expression. Using the score, we provided
a framework for recognizing fine-grained facial expression categories. In our eval-
uation, the scores were acquired from captured real image sequences including
intentional and spontaneous smiles automatically, and we confirmed that move-
ment of facial parts was expressed based on temporal intervals. We suggested
the individual variation of the timing structures extracted from facial scores and
the efficiency of the timing structures for discrimination of the two smiles.

To emphasize the characteristics of the proposed representation, we focused
on only timing structures in this paper. Other features of movement such as
scale, speed and duration, which provide further information on recognizing fa-
cial expression, should be taken into account in practical systems. We also need
to discuss specificity and generality of timing structures: some structures may ex-
ist as general features determined by physical muscle constraints, and the other
may exist as subject specific features acquired as personal habits. Directions for
future works are to tackle these problems and to evaluate the effectiveness of
timing structures using a large number of captured sequences.
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tific Research of the Ministry of Education, Culture, Sports, Science and Tech-
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A Clustering of Dynamical Systems

Algorithm 1 Agglomerative Hierarchical Clustering
for i ← 1 to N do

M
(a)
i ← Identify

(
I
(a)
i

)
end for
for all pair

(
M

(a)
i , M

(a)
j

)
where M

(a)
i , M

(a)
j ∈ M(a) do

Dist (i, j) ← CalcDistance
(
M
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(a)
j

)
end for
while N ≥ 2 do

(i∗, j∗) ← arg min(i, j) Dist (i, j)

I(a)
i∗ ← MergeIntervals

(
I(a)

i∗ , I(a)
j∗
)
; M
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(
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erase M
(a)∗
j from M(a); N ← N − 1

for all pair
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)
where M
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j ∈ M(a) do

Dist(i∗, j) ← CalcDistance
(
M

(a)
i∗ , M

(a)
j

)
end for

end while

The clustering algorithm is applied to each facial part independently, and extracts
modes (simple motion) in the facial part. Suffix (a) in M (a) and I(a) denotes an index
of facial part. Identify is a constrained system identification described in Section 4.2,
which estimates the mode parameters θ

(a)
i = {F (a, i), f (a, i)} from feature vectors in

intervals. I(a)
i is an interval set that comprises intervals labeled by M

(a)
i . CalcDistance

calculates the distance between the two modes based on Equation (9). MergeIntervals
merges two interval sets that belong to the nearest modes (dynamical systems).
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Abstract. We propose a simplified and practical computational tech-
nique for estimating directional lighting in uncalibrated images of faces in
frontal pose. We show that this inverse problem can be solved using con-
strained least-squares and class-specific priors on shape and reflectance.
For simplicity, the principal illuminant is modeled as a mixture of Lam-
bertian and ambient components. By using a generic 3D face shape and
an average 2D albedo we can efficiently compute the directional lighting
with surprising accuracy (in real-time and with or without shadows).
We then use our lighting direction estimate in a forward rendering step
to “relight” arbitrarily-lit input faces to a canonical (diffuse) form as
needed for illumination-invariant face verification. Experimental results
with the Yale Face Database B as well as real access-control datasets
illustrate the advantages over existing pre-processing techniques such as
a linear ramp (facet) model commonly used for lighting normalization.

1 Introduction

In computer vision and specifically in face recognition, robust invariance to ar-
bitrary illumination has presented a difficult challenge. Indeed, in large indepen-
dent US government tests of the leading algorithms (e.g., in FERET [10] and
FRVT [9]) improper handling of variable (outdoor) lighting has been a key lim-
iting factor in achieving recognition rates obtained in more controlled laboratory
conditions.

In this paper, we address a difficult but routine problem in facial identification
as applied to access control and forensic surveillance: we are given a photograph
of a possibly unknown individual, appearing in fixed pose (e.g., frontal) which
was taken by an uncalibrated camera with unknown intrinsic parameters in an
arbitrary scene with unknown and variable illumination. Without any 3D mea-
surement (of subject or environment) and with only the single image provided,
we are to match identities by comparing the facial image to that of another
in a large database of (frontal) faces in fixed lighting (e.g., diffuse or frontal).
Equivalently, we must standardize all current and any future images in a grow-
ing database in order to simulate a common fixed illumination template suitable
for robust pattern matching and illumination-invariant facial identification. Nat-
urally, the canonical choice of illumination would consist of non-directional or

W. Zhao, S. Gong, and X. Tang (Eds.): AMFG 2005, LNCS 3723, pp. 155–169, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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diffuse (or at least frontal) lighting that would maximize visibility of all facial
features.

Since our focus is on illumination-invariance, we acknowledge that all im-
ages have undergone geometric normalization prior to analysis: beginning with
face detection (e.g., [6]), feature detection (of eyes) followed by rigid transforms
(scale, rotation and translation) to align all detected features. In addition, we
assume that some form of photometric normalization may have already taken
place in the form of a non-spatial global transform which is a function of in-
tensity only (e.g., gain, contrast, brightness). We also prepare to encounter any
number of possible data sources: live video capture, archival photography, web
imagery, family photo albums, passport and ID pictures, etc.

2 Background

Much of the research on illumination has focused on finding a compact low-
dimensional subspace to capture lighting variations. Belhumeur & Kriegman [2]
proved that under the Lambertian assumption, the image set of an object un-
der all possible lighting conditions forms a polyhedral “illumination cone” in
the image space. Georghiades et al. [5] demonstrated applications of this frame-
work to face recognition under variable illumination. Ramamoorthi [11] pre-
sented a method to analytically determine the low-dimensional illumination
subspace obtained with PCA. Basri & Jacobs [1] represent lighting using a
spherical harmonic basis wherein a low-dimensional linear subspace is shown
to be quite effective for recognition. Zhang & Samaras [16] have extended this
framework with spherical harmonic exemplars. Lee et al. [7] have empirically
found how to arrange physical lighting to best generate an equivalent basis for
recognition.

A complementary approach is to generate a lighting invariant signature im-
age. Although this technique cannot deal with large illumination changes, it does
have the advantage that only one image per object is required in the gallery.
Some of the earlier normalization techniques apply such an approach to face
recognition, using histogram equalization or linear ramp subtraction to generate
invariant templates [13]. Chen et al. [3] demonstrated that the image gradient
direction is mostly illumination-insensitive and can be used in a probabilistic
framework to determine the likelihood of two images coming from the same ob-
ject. Zhao & Chellappa [17] took advantage of the near symmetry of faces to
compute an illumination invariant prototype image for each individual without
recovering albedos. Shashua & Riklin-Raviv [14] assumed that different faces
have a common shape but different texture and computed an albedo ratio as an
illumination-invariant signature.

In computer graphics, object relighting has received much attention in recent
years. An interesting application by Nishino & Nayar [8] is the use of corneal
imaging for embedding realistic virtual objects (faces) into a scene, resulting
in synthetic faces that are properly lit (“relit”) in accordance with the esti-
mated environmental lighting. Another example is the radiance environment
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(a) (b)

Fig. 1. (a) 3D face shape with (b) a Lambertian reflectance model

map technique by Wen et al. [15] which renders relatively high-quality relighting
of faces using the spherical harmonics approach [12].

For our face verification application however, there is really no need for high-
quality graphics rendering or photo-realism. In fact, most 2D face recognition
systems in existence today operate at low to moderate resolutions (≈ 100 pix-
els across the face). Our relighting method can be categorized as an invariant
template approach to illumination-invariance as discussed above (although we
will also present an equivalent subspace formulation). As with [14] we assume a
common underlying 3D shape for all individuals and utilize the albedo or diffuse
reflectance (skin texture) as the main source of identity information. This, of
course, is in keeping with the fact that most 2D face recognition systems do not
measure 3D shape anyway.

Despite our simplifications, we will demonstrate that with low-resolution
shape, approximate albedo and simple diffuse reflectance for relighting, it is
possible to significantly improve the accuracy of face verification under moder-
ate lighting variations encountered in real access-control operational scenarios.
At the very least, it is our hope that others will find this algorithm to be a
practical and superior alternative for lighting normalization.

3 Lighting Estimation

We use a Lambertian or “diffuse reflectance” (constant BRDF) illumination
model for the face, as shown in Figure 1, despite the fact that sometimes there
is some specular reflection (due to secretion of sebum oil by sebaceous glands
in the skin). Nevertheless, this specular component is not always consistent and
therefore of little use in a biometric analysis. Hence, our illumination model
consists only of Lambertian and ambient components.

Specifically, let I(x, y) be the intensity at pixel (x, y) corresponding to a
point on the surface of a convex object (face or 3D face model) with Lambertian
surface reflectance, which is illuminated by a mixture of ambient light and a
(single) point light source at infinity s ∈ IR3 with intensity |s|. We designate the
unit surface normal s/|s| as the direction to the light source (ı.e., pointing out).
This direction (e.g. in azimuth/elevation angles) is our main estimand of interest.
The magnitude of the light source, on the other hand, is of little consequence in
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our analysis since it can be absorbed by the imaging system parameters modeling
gain and exposure. We define ρ(x, y) as the face albedo (or diffuse skin texture)
and let n(x, y) be the unit surface normal of the point on the facial surface
that projects onto the pixel I(x, y) in the image (under orthography). Under the
simple Lambertian (constant BRDF) model, a pixel’s (monochrome) intensity is
given by

I(x, y) = α {ρ(x, y)[max(n(x, y)Ts, 0) + c]} + β (1)

where α and β represent intrinsic camera system parameters such as lens aper-
ture and gain setting. In our analysis, (α, β) are essentially nuisance parameters
which only affect the dynamic range (gain) and offset (exposure bias) of pixel
intensity but not the lighting direction. Therefore, we can always set (α, β) to
their default values of (1, 0) with proper normalization. The parameter c repre-
sents the relative strength of the ambient lighting and we will show how it can
be estimated in Section 4. The term max(nT s, 0) above resets negative values of
the (Lambertian) cosine factor to zero for surface points that are in shadow.

For simplicity’s sake, we are assuming that a single (principal) light source
alone is responsible for the majority of the observed directional lighting in the
image (diffuse attenuation and/or shadowing) and that any other light sources
present in the scene (diffuse or directional) are non-dominant, hence their over-
all contribution can be represented by a global ambient component with relative
intensity c in Eq. (1). Nearly all 2D (view-based) face recognition systems are
adversely affected by directional lighting, but to a much lesser extent by more
subtle lighting effects [10]. Therefore, in most cases and for most algorithms the
principal directional component is a more critical factor than any other lighting
phenomena, especially when the other light sources are non-dominant. There-
fore, accounting for this principal illumination factor by effectively “undoing”
its effects can enhance verification performance.

Estimation of the principal lighting direction can be carried out with a least-
squares formulation with the right simplifying assumptions, especially given the
relatively simple illumination model in Eq. (1). More importantly, We can solve
this problem rather efficiently (in closed form) with elementary matrix operations
and dot-products. Specifically, let �I be the column vector of pixel intensities
obtained by stacking all the nonzero values of I(x, y) and similarly define �ρ
to be the corresponding vectorized albedo map (diffuse texture). 1 We then
form a 3-column shape matrix N by row-wise stacking of the corresponding
surface normals. We then form the so-called shape-albedo matrix A ∈ IRp×3

where each row a in A is the product of the albedo and the unit surface normal
in the corresponding row of �ρ and N. Mathematically, this corresponds to the
Hadamard (elementwise) matrix product ◦ as A = (�ρ 11×3) ◦N.

To solve for the unknown light source we use a matrix equation for least-
squares minimization of the approximation error in Eq. (1) in the new vectorized
form
1 Without ambient light, zero-valued pixels are most likely in shadow and thus infor-

mative only if we use ray-casting to pinpoint the source. In practice, ambient light is
always present and we use a nonzero threshold or a pre-set mask for pixel selection.



A Practical Face Relighting Method for Directional Lighting Normalization 159

argmin
s
‖ �I − αc�ρ−As ‖2 (2)

which yields the solution

s∗ = (ATA)−1AT (�I − αc�ρ− β) (3)

Note that we are only interested in the unit light source vector s∗/|s∗| for
its direction and not the magnitude (which depends on the specific camera
gain/exposure). Moreover, this estimation problem is well-behaved since it is
heavily over-constrained: the number of nonzero elements in �I (“observations”)
is on the order of O(103) as compared to the 3 unknowns in s∗ (in fact, since we
only use the direction there are only 2 angular estimands: azimuth & elevation).
Estimatation of the principal lighting direction is therefore quite stable with re-
spect to noise and small variations in the input �I. Note that the derived matrix
A comes from a generic shape and albedo and hence represents the entire frontal
face object class. Assuming that it is adequately representative, there is no need
to measure the exact shape (or even exact albedo) of an individual as long as
all shapes (and albedos) are roughly equal to first order (i.e., as far as lighting
direction is concerned).

Furthermore, The pseudo-inverse (AT A)−1 in Eq. (3) is directly proportional
to the error covariance of the least-squares estimate s∗ under Gaussian noise.
If we further define the p × 3 matrix P = A(AT A)−1 we see that the only
on-line computation in Eq. (3) is the projection of the input vector �I on the 3
columns of P which are linearly independent. In fact, they are basic functions
for the illumination subspace of our generic face (frontal face class). Moreover,
we can always find an equivalent orthogonal basis for this subspace using a QR-
factorization: P = QR, where the unitary matrix Q has 3 orthonormal columns
spanning the same subspace as P and the 3× 3 upper triangular matrix R now
defines the quality of the estimates since R−1 is a Cholesky factor (matrix square
root) of the error covariance. The QR factorization aids the interpretation and
analysis of the estimation in terms of pixels and bases since the input image is
directly projected onto the orthonormal basis Q to estimate the lighting direction
(the QR decomposition also saves computation in larger problems). In Section 5
we will show an example of this factorization.

Since P and Q are independent of the input data they can be pre-computed
once off-line and then stored. Also, the computational cost of using Eq. (3) is
quite minimal (requiring only 3 image-sized dot-products) and since the subse-
quent relighting (see Section 4) is even less expensive (requiring a single dot-
product), the lighting normalization process is very practical for real-time im-
plementation (perhaps as part of a much larger face processing system).

3.1 Estimation Analysis

To evaluate our estimation technique we chose the Yale Face Database B which
contains images of 10 individuals imaged under 45 different lighting conditions
(our tests were performed on all 450 images). Following the protocol established
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Subset A Subset B Subset C Subset D

Fig. 2. Images of an individual in the Yale Database B under the 4 directional lighting
subsets. See [5] for more examples.

Sphere Ellipse Face Albedo

Fig. 3. Range maps for 3 progressively more complex shapes: a sphere, an ellipse and
a generic face (note its smoothness). The effective albedo image is shown on the right.

in [5], the images were grouped into 4 subsets according to lighting direction
angle with respect to the camera. The first two subsets cover the range [0◦, 25◦],
the third subset covers [25◦, 50◦] and the fourth covers [50◦, 77◦]. Figure 2 shows
sample images from the four different subsets in the Yale Face Database B.

These 450 images were manually cropped, geometrically aligned as best as
possible and down-sampled to size 80×64 and then masked (but no photometric
processing was performed). The choice of resolution was partly due to an op-
erational specification (of a pre-existing face verification system) and also due
to the challenge of working with a low resolution nearer to the limit at which
surface normals can be reliably computed from a (potentially) noisy range map.

For our generic shape model we used the average 3D shape of 138 individuals
in the DARPA HumanID database of 3D Cyberware scans [4]. The resulting
average 3D face shape, seen in Figure 1(a), was first down-sampled and converted
to an 80 × 64 range map (frontal depth) which was then smoothed using a
Gaussian blur in order to reduce any quantization noise in its surface normals.
Then, our generic face shape’s surface normal map n(x, y) was computed and
registered with the image plane (using the fixed eye positions only) thereby
aligning our standardized 2D input image I(x, y) format with the surface normals
of our 3D model. As a rough 2nd-order approximation to the generic face shape,
we also computed range maps for a comparably-sized sphere and ellipse as shown
in Figure 3.

For the average albedo we found it sufficient to use the facial texture obtained
by averaging images of all 10 individuals in the Yale database with near-frontal
lighting (subset A+B). By averaging (integrating) over all illuminations we (ap-
proximately) simulate diffuse or non-directional lighting. This average texture
map was then processed (smoothed, de-noised, etc.) and normalized to the range
[0, 1] to serve as our generic face albedo. We should note that the albedo plays
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Table 1. Mean errors (in degrees) for the underlying shapes used in estimating lighting
directions on subsets of the Yale database

Light Source Estimation with Frontal Faces using Different Shapes

Mean Errors (in azimuth and elevation)
Surface Geometry subset AB subset C subset D ABCD combined

AZ EL AZ EL AZ EL AZ EL
Sphere 6.4 7.8 10.3 17.2 5.3 24.1 7.1 15.4
Ellipse 1.3 7.5 2.2 17.1 11.2 23.1 4.6 14.9
Face 2.3 4.9 3.0 6.7 5.5 9.2 4.5 5.5

a secondary role (in estimating the illuminant) as compared to the geometry
encoded in the surface normals. In fact, without going into the details, we men-
tion that we were able to obtain almost as good estimates even with constant
albedo. This is indicative of the overall stability (if not perfect accuracy) of this
estimation problem. Figure 3 shows the generic face albedo we used for the Yale
dataset.

In Table 1 we have summarized the mean estimation errors (in azimuth eleva-
tion degrees) for the 3 shapes in Figure 3 (sphere, ellipse, face). All 3 shapes were
used to estimate lighting direction of all 450 images in the Yale Face Database B.
Each error value reported in the table is the average difference between azimuth
and elevation of the ground truth source and the computed lighting directions
obtained from s∗ in Eq. (3) with c = 0 as there is no ambient component in this
dataset. From the totals column in the table (far right) the mean errors over
all lighting directions are about 5 deg with the generic face and an average of
about 10 deg (for both azimuth and elevation) with the sphere and ellipse. For
near-frontal lighting (subset A+B) the difference between the two simple shapes
and the face is relatively small in terms of the mean error.

−50 0 50

−50

0

50

Y−Albedo: Set AB

−50 0 50

−50

0

50

Y−Albedo: Set C

−50 0 50

−50

0

50

Y−Albedo: Set D

Fig. 4. Yale Database B lighting angle estimation plotted in degrees (elevation vs.

azimuth). Red dots represent ground truth lighting angles. Blue dots are the mean
estimates based on the 10 individuals. Blue dots are also the centers of the error
covariances shown as blue ellipses (95% confidence interval). Results are grouped into
3 plots {AB, C, D} based on the 4 subsets shown in Figure 2.
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For a more revealing analysis of the face-based results above we must look a
bit more closely at the individual estimates. Figure 4 plots the distribution of all
lighting estimates for all 10 individuals in the database. By comparing the mean
estimates (blue dots) with the ground truth (red dots) we see a high degree of
correlation between the two. Furthermore, there is as a surprising degree of ac-
curacy considering all the convenient half-true assumptions made in formulating
the solution in Eq. (3). Clearly, the blue error covariance ellipses confirm vari-
ation with between individuals as expected (due to differing geometry/albedo)
but these estimates are certainly “correct” in the trend, especially with respect
to the azimuth. It is only at the most extreme angles (subset D) that we see the
estimates “saturate” near a limiting angle of 50 deg (which is most likely due to
a lack of resolution in depth and the spatial boundary of the mask).

In Figure 4 we also see, based on the orientation of the error covariances, that
the error estimate (uncertainty) is much greater along elevation than it is along
azimuth. This raises an interesting question: what is limiting the precision of
elevation estimates? Since it cannot be a mathematical flaw in our derivation, it
must be either the albedo or the shape that we are using to compute the matrix
A in Eq. (3). To help explain this phenomenon, in Figure 5 we show two separate
histograms for the azimuth and elevation of the surface normals in our generic
face shape. Note that the variation in azimuth of the surface normals (±50 deg)
is greater than the variation in elevation (±20 deg). This limited “bandwidth”
in the elevation distribution reduces the effective precision of the estimates of
elevation (i.e., there are far fewer surface normals with high elevation angles).
This is partly due to an intrinsic feature of the shape of the human face, which to
a first-order approximation is an upright cylinder or ellipse (both of which span
a limited range of elevation) and partly due to the limitation of the smoothed
low-resolution face shape we are using (see subset D in particular in Figure 4).

4 Face Relighting

Given an estimate of the input image’s directional lighting we can approximately
“undo it” by estimating the individual’s albedo (diffuse skin texture) and then
relight this specific albedo (combined with a generic shape) under any desired
illumination (e.g., frontal or pure diffuse).

Whereas both generic shape and albedo were required in the inverse problem
of estimating directional lighting, only generic shape is needed in the forward
problem of relighting (as the input itself provides albedo information). Clearly,
the basic assumption here is that all individuals have the same 3D geometry (that
of our average shape). However, we find that moderate violations of this basic
assumption are not highly critical to the verification performance since what is
actually relighted to generate an invariant template is the facial texture of the
individual herself and this texture carries most of the identity information for 2D
face recognition. In fact, it is not possible to drastically alter the input image’s
albedo (skin texture) by using a (slightly) different 3D face shape. Therefore,
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Fig. 5. The histograms of the azimuth and elevation angles of the surface normals of
the average (generic) face shape

despite the variations in geometry every individual’s identity is mostly preserved
as long as their face texture is retained.

Referring back to Eq. (1), once we have a lighting estimate s∗ and our “plug-
in” shape (surface normals of the average face) we can directly solve for albedo
using

ρ∗ =
I − β

α(nT s∗ + c)
, I 
= 0, nT s∗ ≥ 0. (4)

where from hereon we have suppressed the spatial indices (x, y) for all 2D-arrays
(I, ρ and n) for the sake of clarity. Notice that the estimated albedo ρ∗ at a
point (x, y) depends only on the corresponding pixel intensity I(x, y) and the
surface normal n(x, y). Thus, if a scene point is in shadow and there is no ambient
illumination (c = 0), I will be zero and nT s∗ is negative. If so, the corresponding
albedo cannot be estimated with Eq. (4) and a default (average) albedo must
be substituted in for that pixel.

The estimated albedo is then relighted in order to generate our invariant
(fixed-illumination) template Io

Io = αo {ρ∗[max(nT so, 0) + co]}+ βo (5)

where so denotes the desired template’s illumination (defaulted to on-axis frontal
lighting) and co is the output ambient component. Similarly αo and βo designate
the output (display/storage) image format parameters.

5 Verification Experiments

To evaluate the performance of our lighting normalization technique in an actual
face verification test we used an internal face database belonging to our institu-
tion (had we chosen the same Yale Database B which has only 10 individuals,
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Fig. 6. The orthonormal basis Q in the QR-factorization of P = A(ATA)−1 in Eq. (3)
for internal datasets I & II

our performance results would have been statistically insignificant). Our data
comes from an unconstrained and realistic access-control operational scenario
inside a large industrial plant. The data was captured on two different days
and in two separate locations in the facility with no specific lighting control.
Approximately 500 individuals were automatically detected from a surveillance
video using an enhanced face/feature-detector based on [6] and then geometri-
cally aligned and cropped to our 80 × 64 image format and stored on disk (no
photometric pre-processing was performed).

We put together and processed (by averaging and filtering) a suitably smooth
and diffuse average face albedo (texture) for this dataset which is shown in Fig-
ure 9(b). Then we computed the corresponding shape-albedo matrix A in Eq. (3)
using the same average 3D shape used with the Yale database in Section 3. Fig-
ure 6 shows the orthogonal illumination subspace of this database’s generic face.
Notice how both the horizontal and vertical lighting directions are decoupled
into separate bases. The third basis image is the global intensity or amplitude
(recall that we are interested in the two degrees of freedom in azimuth and el-
evation). The mottled appearance in the 2nd basis image is mostly due to the
quantization noise in the surface normals (we did not wish to smooth the surface
normals too much and this obviously shows).

Unlike the Yale Database B, our internal dataset does have ambient lighting
which we can model with the ambient parameter c in Eq. (3. By using a rep-
resentative set of N training images we can (numerically) estimate the ambient
component using the optimality criteria

c∗ = arg min
c

N∑
i=1

∣∣∣∣∣ρi(c)−
1
N

N∑
i=1

ρi(c)

∣∣∣∣∣
2

(6)

where ρi(c) denotes the albedo of the i-th training image estimated with the
relative ambient intensity c in Eq. (3).

We now demonstrate the range of our estimation and relighting capability
using a small subset of our internal database which we call Dataset I. This subset
has frontal views of 32 individuals under three (maximally) different lighting
conditions: frontal lighting (for the gallery images) and left and right directional
lighting (for the probe images) both of which are mixed in with some (unknown)
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Original Images

Normalized by Linear Ramp

Frontal Relighting using Equation 5

Fig. 7. Comparison of the linear ramp and our relighting method. Three images from
different illuminations: frontal, left and right directional lighting (shown left to right).

proportion of ambient illumination. For each lighting condition 10 images of each
individual were taken for a total of 960 images.

Figure 7 shows a representative sample of our frontal relighting technique ap-
plied to the gallery and probe images (left, then center and right, respectively) of
one of the 32 individuals in Database I. The top row shows the original (unpro-
cessed) input images and the bottom row shows our relighting results. Clearly,
the directional component of the illumination has been successfully removed and
the frontally relit image has been generated in its place (which incorporates an
ambient component estimated with Eq. (6). In contrast, the middle row shows
the results obtained with linear ramp normalization (also known as a “facet
model”) which fits a plane to the image intensities (using least-squares) which is
then subtracted from the input in order to remove the main illumination gradi-
ent. The residual image is then normalized back to the original intensity range.
The saturation observed is a common feature of linear ramp normalization since
this technique can not represent shape variations other than its own implicit
Lambertian flat surface. The linear ramp model is also quite susceptible to the
specular highlights which can be rather significant outliers in the linear fit. We
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Fig. 8. The ROC curves of the face verification test based on L2 distance in internal
Dataset I. The diagonal (dashed) designates the EER line.

also compared our results to histogram equalization (not shown) but the ROC
curve was worse than the linear ramp.

Of course visual inspection of the apparent “good” quality of the relighted
images is (for us) a secondary issue (unlike say, in computer graphics). We are
primarily interested in improving the accuracy of face verification under arbi-
trary illumination. Therefore, we compared the verification performance of a
given algorithm with our relighted images versus with the original (raw) images.
We specifically wanted to illustrate a phenomenon which was universal, simple
to understand, made the least algorithmic assumptions and could be easily du-
plicated by others. Therefore, we chose a “model-free” matching metric in the
form of simple L2 norm of the difference between the probe and gallery images
or equivalently the Euclidean distance in pixel space. Figure 8 shows the re-
sulting receiver operating characteristic curve (ROC) obtained using the inverse
of the L2 norm as a similarity metric for verification. We see that the com-
monly reported performance measure, the “equal error rate” (EER), drops from
approximately 20% with raw imagery down to 4% with our frontal relighting
technique (an improvement by a factor of 5). By comparison, the linear ramp
normalization achieves approximately 7% EER. Moreover, the ROC curve for
frontal relighting is superior to the linear ramp at every operating point specified
by a given pair of false accept rate (FAR) and false reject rate (FRR). Although
the improvement trend is quite clear and pronounced in this test, we acknowl-
edge that these results are based on only 32 individuals may not generalize to
larger datasets (since it is probably too optimistic).

In order to obtain a more statistically significant performance measure, we
assembled the largest collection of images in our internal dataset, called Database
II, to accurately calibrate and benchmark the performance advantage provided
by using our lighting normalization. Database II consists of a gallery of 3,444
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(a) (b)

Fig. 9. (a) Database II sample images of an individual in gallery (left) and probes
(center and right). Also shown is (b) the mean “albedo” image used.
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Fig. 10. The ROC of the face verification test based on L2 distance in internal Dataset
II. The diagonal (dashed) designates the EER line. The ROC for histogram equalization
(not shown) is similar to that of the linear ramp but slightly worse.

images of 496 individuals and a probe set of 6,663 images of 363 individuals not
all of whom are in the gallery (i.e., impostors). Sample images for one individual
can be seen in Figure 9. Notice the bright highlights and specular reflection off
the spectacles and the relatively overhead (high elevation) lighting direction in
the center image (including shadows of the lens and the rims of the glasses on
the cheeks). Obviously, the lighting in these images is much more complex than
simple directional illumination with Lambertian reflectance.

Figure 10 shows the ROC curve for the verification test with Dataset II.
These results were computed based on the statistics of almost 23 million probe-
to-gallery matches yielding a relatively high degree of statistical significance.
Despite the fact that these images do not contain a single directional lighting
component and moreover exhibit some non-Lambertian phenomena (specularity,
shadowing, inter-reflection, etc.) we see a similar improvement trend with the
same rank ordering of performance under the two candidate lighting normaliza-
tions performed. Specifically, we see the raw data yield an EER of 10% (lower
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than the 20% in the previous figure since although the illumination is more com-
plex it is still mostly near-frontal and less extreme than in Figure 7). As seen in
the figure, our relighting technique achieves an EER of 5%, compared to 7% with
the linear ramp normalization. Considering the size of this test and the subse-
quent accuracy of the performance estimates (not just the EER but the entire
ROC curve) it is perhaps surprising that our simple illumination model which
makes a few simplifying assumptions that are clearly violated here, still manages
to provide a sizable performance advantage in complex lighting; especially with
imagery in which directional lighting does not seem (at first glance) to be the
main complicating factor adversely affecting the verification performance.

6 Conclusions

The contributions of this paper are essentially two-fold: first, a simple and prac-
tical method for estimating the dominant directional light source in a photomet-
rically uncalibrated image of a face (whose exact shape and albedo are basically
unknown) and secondly, a fast and efficient relighting technique for normalizing
the image for illumination-invariant template matching and recognition. The
necessary computations require less than 5 image-sized dot-products.

Furthermore, we have demonstrated the superiority of our technique in ex-
periments with both public datasets such as Yale Face Database B and our
own internal datasets of realistic access-control imagery which exhibits complex
real-world illumination environments. This performance enhancement is directly
due to a tighter clustering of an individual’s images in image space, which will
very likely help more sophisticated matching algorithms achieve illumination
invariance.

Our results demonstrate that (relatively) robust estimation of lighting direc-
tion and subsequent normalization are not only possible with simplified calcula-
tions but are also quite feasible for online use. The total computational cost for
estimation and relighting is only a few dot-products. Consequently, this method-
ology is a viable alternative for real-time applications while being superior to
linear ramp and histogram equalization techniques currently in use.
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Abstract. Both local features and holistic features are critical for face recognition 
and have different contributions. In this paper, we first propose a novel local 
steerable feature extracted from the face image using steerable filter for face 
representation. Discriminant information provided by steerable filter is locally 
stable with respect to scale, noise and brightness changes and it is semi-invariant 
under common image deformations and distinctive enough to provide useful 
identity information. We then present a new null space method based on random 
subspace. Linear Discriminant Analysis (LDA) is a popular holistic feature 
extraction technique for face recognition. Null Space LDA (NLDA) and 
Fisherface are adopted to extract global feature in the steerable feature space. 
Based on random subspaces, multiple NLDA classifiers are constructed under 
the most suitable situation for the null space. NLDA takes full advantage of the 
null space, while Fisherface extracts the most discriminant information in the 
principal subspace. Fisherface classifiers are constructed from the same set of 
random subspaces for NLDA classifiers. In each random subspace, Fisherface 
and NLDA share a unique eigen-analysis. There is no redundancy between such 
two kinds of complementary classifiers. Finally, all of the classifiers are 
integrated using a fusion rule. Experimental results on different face data sets 
demonstrate the effectiveness of the proposed method. 

1   Introduction 

Face recognition has attracted much attention due to its potential values for applications 
as well as theoretical challenges. To be successful for face recognition, features for 
classification must be robust to typical image deformations, and highly distinctive to 
afford identity information [2]. Local features offer advantages with stability to local 
deformations, lighting variations and expression variations. A variety of local features 
have been successfully employed in face recognition including Haar-like features [6, 
7], Gabor wavelet features [5] and Local Binary Pattern (LBP) features [8]. In this 
paper, we propose a novel local descriptor based on steerable feature which is robust 
and distinctive for face recognition. The feature is extracted from face image based on 
the responses of complex-valued steerable filters. The amplitude and zero-crossings of 
such filters provide useful information for texture analysis in face recognition. The 
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major advantage of using steerable feature is the stability with respect to image 
deformations that typically exist in the face images of the same person, so that similar 
structure is generally available for classification. 

The use of local, band-pass and linear filters is the focus of considerable research on 
early biological and computational visual processing [3]. Oriented filters are useful in 
many early vision and image processing tasks. One often needs to rotate the same filter 
to different angles under adaptive control, or to calculate the filter response at various 
orientations. Because the synthesis of the rotated filters is analytic and exact, steerable 
filters offer advantages for image analysis over ad hoc methods which combine 
oriented filters at different orientations. Physiological data suggest that the response of 
complex-valued steerable filter may model the basic binocular interaction of simple 
cells and complex-cell response [3]. Steerable filter has been successfully used for edge 
detection, shape-from-shading, feature detection, and stereo matching [1, 3, 4]. 
Steerable filter can capture the local structure corresponding to any orientation in one 
scale, while discriminative information in the scales-space of face image should be 
good to improve recognition performance. To further improve the accuracy, steerable 
filter is implemented with a Gaussian pyramid of face image. Steerable features from 
multiple scales and orientations are concatenated to an augmented feature vector to 
represent a face image. Such steerable features are over-complete and redundant. It is 
prohibitively time-consuming to perform classification in such a high dimensional 
feature space. Thus, we use AdaBoost method to select a small subset of the most 
efficient features. 

Both holistic features and local features are critical for face recognition and have 
different contributions [10]. Linear Discriminant Analysis (LDA) is employed to 
extract holistic feature in the AdaBoosted steerable feature space. However, LDA often 
suffers from the small sample size problem when dealing with the high dimensional 
face data. Null Space LDA (NLDA) and Fisherface are two conventional approaches to 
address this problem. They can respectively extract the most discriminative 
information from the null space and the principal space. Further, Liu et al. [15] 
proposed the most suitable situation for the null space, under which all null space 
contributes to discriminative power. In this paper, we propose a new null space method 
based on random subspace. Random subspace is generated under this situation. In a 
random subspace, the NLDA classifier and the Fisherface classifier are constructed 
sharing a unique eigen-analysis. Finally, the two kinds of complementary classifiers are 
combined using a simple fusion rule. 

Feature extraction, feature selection and classification rule are some crucial issues 
for face recognition. Our algorithm handles them together. It can effectively solve the 
small sample size problem. Compared with existing LDA approaches, our method is 
more stable and efficient. 

2   Local Steerable Feature 

2.1   Steerable Filters 

Steerable filter allows adaptive control over orientation. Steerable filter can be used for 
a variety of operations involving oriented filters. The oriented filter, rotated to an 
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arbitrary angle, is formed as a linear combination of basis filters. Once the basis filter 
responses are known, the response of the filter steered (rotated) to an arbitrary angle 
can easily be found. A similar technique can be used to control the magnitude of the 
filters. Following Mathews and Michael [1], we consider templates of the form 
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where ),( yxg  is an arbitrary isotropic window function and ),(, yxg ik is a basis 

filter. The filter ),( yxh  is steerable. Steerable filter is a class of filters in which a filter 

of arbitrary orientations is synthesized as a linear combination of a set of basis filters. In 
other words, the convolution of a 2D signal ),( yxf  with any rotated version of 

),( yxh  can be expressed as 
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where the functions ),(, yxf ik  are filtered versions of the signal ),( yxf  and can be 

expressed as 
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Fig. 1. X-Y separable basis filters for G4 and H4 
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where ),,( jikS  is defined as 

{ }jmlkimiklmljikS =+−≤≤−≤≤= )(;0;0|,),,(  (5) 

Once the ),(, yxf ik are available, );,(*),( θyxhyxf  can be evaluated very 

efficiently via a weighted sum with its coefficients that are trigonometric polynomials 
of θ . We use X-Y separable basis filters G4/H4 to extract local steerable features from 
face images in our algorithm. These basis filters are showed in Figure 1. One important 
property of steerable filters is that they are X-Y separable [12]. This property allows 

efficient implement of G4/H4 filters and reduces the filters complexity from )( 2NO  

to )2( NO . Another important property is that the coefficients are either symmetric or 

anti-symmetric which can be used to further save the computation cost [12]. 

2.2   Steerable Feature 

Steerable feature is a complex representation of local image data that is obtained 
through the use of steerable filters, tuned to a specific orientationθ . We use the 
steerable quadrature filter pairs G4/H4 as follows: 

),(*)();,( 4 yxIGyxm θθ =  (6) 

),(*)();,( 4 yxIHyxn θθ =  (7) 

);,();,();,( θθθ yxinyxmyxO +=  (8) 

where ),( yxI  is a 2D gray level face image. )(4 θG  is the fourth derivative of a 

Gaussian,  and )(4 θH  is the approximation of Hilbert transform of )(4 θG . A 

complex polar representation can be written as 

);,();,();,( θφθρθ yxieyxyxO =  (9) 

where );,( θρ yx and );,( θφ yx  are often called instantaneous amplitude and phase 

to emphasize their local nature. Since the magnitude part of complex response of the 
steerable filter provides a confidence measure for similarity between face images, it is 
used as local descriptor in our algorithm. Phase response of the steerable filter is also a 
good similarity measure, which we report in another paper.  

The steerableface, representing one face image, is computed by convoluting it with 
steerable filters. Figure 2 shows the steerableface representation of a face image with 

magnitude part corresponding to four orientations ( )°°°° 135,90,45,0  respectively, 

where °0  is vertical. We can see the synthesized texture orientation corresponding to 
the orientation of steerable filter from the steerableface. In other words, the 
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Fig. 2. X-Y separable basis filters for G4 and H4 

steerableface of orientation °0  shows vertical texture and the steerableface of 

orientation °90  shows horizontal texture, while the steerablefaces of orientation °45  

and °135  show oblique texture. In general, steerableface exhibits distinct spatial 
locality and orientation properties. 

Steerable filter can capture the local structure corresponding to any orientation in a 
single scale, while recognition performance should benefit from discriminant 
information in the scales-space of face image. To further improve the accuracy, 
steerable filter is implemented in a Gaussian pyramid of face image. Gaussian pyramid 
is constructed by subsampling with a factor of 2 horizontally and vertically at each 
level. To avoid aliasing, which can happen as a result of down-sampling, we pass the 
input image through a low-pass anti-aliasing filter. In our algorithm, Gaussian FIR filter 
is used as an anti-aliasing filter in horizontal and vertical directions. Then each scale of 
the pyramid is decomposed using oriented quardrature-pair steerable filters G4/H4. 
Finally, to encompass different spatial frequencies, spatial localities, each face image is 
represented with an augmented steerable feature vector from multiple scales and 
orientations in our algorithm. However, such a steerable feature space is high 
dimensional and redundant. Actually, different facial regions in a face image have 
different levels of important and discriminant power for face recognition. AdaBoost 
method provides a simple yet effective stagewise learning approach for feature 
selection. Without loss of useful facial features, AdaBoost [11] is adopted to select a 
small number of features with the most discriminant power from a large pool. 

3   LDA-Based Methods 

Steerable feature is a powerful descriptor for local facial structure, while both holistic 
features and local features are critical for recognition and have different contributions 
[10]. LDA is a popular holistic feature extraction technique for face recognition. LDA 
is used to extract global feature in the steerable feature space. There are many 
motivations for using features rather than pixels directly. The most common reason is 
that features can act to encode ad hoc domain knowledge which is difficult to learn 
using a finite quantity of training data [6].  
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Let n  denote the dimension of the raw sample space and c  is the number of 

classes. The between-class scatter matrix bS and the within-class scatter wS  are 

defined as 
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where iN  is the number of samples in class ( )ciCi ,...,2,1= , N  is the number of 

all the samples, im  is the mean of all the samples. The total scatter tS , i.e. the 

covariance matrix of all the samples, is given by 
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LDA determines a set of projection vectors maximizing bS  and minimizing wS  in the 

projective feature space. The optimal projection ],...,,[ 121 −= cwwwW  satisfies 
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3.1   Fisherface 

The optimal projection W  can be calculated by the eigenvectors of bw SS 1− . But this 

method is numerically unstable because it involves the direct inversion of a likely 
high-dimensional matrix. The most frequently used LDA algorithm in practice is based 

on simultaneous diagonalization of wS  and bS , 

Λ== WSWIWSW b
T

w
T ,  (14) 

Most algorithms require wS  being non-singular because the algorithm need to diagonalize 

wS  at the first step. The above procedure will break down when wS  is singular. It surely 

happens when the number of training samples is smaller than the dimension of the sample 
vector, i.e. the small sample size problem. An available solution to the singularity problem 
is to perform PCA before LDA. However, this step greatly reduces the dimension of both 

wS  and bS . It essentially removes null space from both wS  and bS . So PCA projection 

potentially loses some significant discriminating information. 
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3.2   Null Space LDA 

A more reasonable method called null space LDA was presented [14], where the 
optimal projection W  should satisfy 

Λ== WSWWSW b
T

w
T ,0  (15) 

i.e. the optimal discriminant vectors must exist in the null space of wS . In this case, the 

Fisher criteria in Eqs. (13) definitely reaches its maximum value. However, the 

computational complexity of extracting the null space of wS  is very high because of its 

high dimension. 

3.3   Null Space LDA in Most Suitable Situation 

In most cases, 

}1,min{)( −= NnSrank t  (16) 

},min{)( cNnSrank w −=  (17) 

}1,min{)( −= cnSrank b  (18) 

The dimension of null space of wS  is very large and not all null space contributions to 

the discriminative ability. Based on this observation, Liu et al [15] presented the most 

suitable situation for the null space. When n  is equal to 1−N , tS  is full-rank and 

the dimension of null space of tS  is zero. It follows that all null space of wS  

contributes to the discriminative power. Under this situation, only one eigen-analysis is 

needed to perform on wS  

ww
T DVSV =  (19) 

where IVV T = , wD  is diagonal matrix sorted in increasing order. Discard those 

with eigenvalues sufficiently far from 0, and keep 1−c  eigenvectors of wS  in most 

cases. Let Y  be the first 1−c  columns of V which spans the null space of wS ,  and 

Z  be the last cN − columns of V which spans the principal space of wS . We have 

0=YSY w
T  (20) 

0≠ZSZ w
T  (21) 

Y and Z span two orthogonal complementary subspaces. There is no redundancy in the 
context of discriminant information between the two subspaces since they are 
orthogonal complementary [18]. 
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4   Random Subspace LDA 

4.1   Random Subspace NLDA 

NLDA is always applicable to the small sample size problem. Any methods that can 
transform raw samples to 1−N  dimensional data without adding or losing main 
information can exploit the full merit of NLDA. In [15], PCA projection and kernel 
mapping were used to accomplish this transformation. However, recall that PCA may 
lead to a loss of some significant discriminative information. On the other hand, kernel 
technique is time-consuming and it is also hard to select an optimal kernel function. In 
this paper, we propose a new NLDA method based on random subspace (RS-NLDA). A 
set of random subspaces with 1−N  dimension are generated by random sampling 
among the AdaBoosted steerable features, and NLDA classifiers are constructed on the 
random subspaces. RS-NLDA contains the following steps: 

At the training stage, 

1) Apply AdaBoost to the training set to select sufficient steerable features. 

2) Generate K  random subspaces{ }K

iiR 1= . Each random subspace is constructed 

from 1−N steerable features. 

3) K  NLDA classifiers { }K

i
N
iC 1=  are constructed from the K random subspaces. 

At the recognition state, 

1) The steerable feature vector is projected to the K  random subspaces and fed to 
the K  NLDA classifiers in parallel. 

2) The outputs of the K  NLDA classifiers are fused to make the final decision. 

RS-NLDA has several advantages over previous LDA methods. First, random 
subspace is used to reduce the feature vector dimension, rather than PCA projection or 
kernel mapping [15]. In this way, the central eigen-decomposition problem is made 
relatively smaller than traditional LDA approaches. Since eigen-analysis is the most 
time-consuming in the LDA training, we can save much computation cost. 

Second, in our algorithm, random subspaces are completely independent. In 
comparison, the first 50 base vectors which are used to span the random subspace are 
identical in Wang and Tang’s method [17]. As they mentioned, the random subspaces 
generated in such a way are not really independent. 

Third, the random subspace dimension is determined empirically via extensive 
search experiments in [17]. By contrast, the optimal dimension of a random subspace is 
fixed theoretically given a training set.  

Fourth, steerable features with AdaBoost selection ensure that the performance of 
random subspace is not too low. PCA is used to project the high dimension image data 
to the low dimension subspace prior to construct random subspaces in [17]. As 
mentioned above, this step arouses a loss of some useful discriminant information. In 
fact, face images span a nonlinear manifold in the image space [11]. With assumption 
of Gaussian distribution of original training data, PCA essentially changes the 
distribution of training samples in the projection subspace. 
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4.2   Random Subspace LDA 

Though NLDA can make full use of the null space, it still discards important 
discriminative power in the principal subspace. The discriminating information 
retained by the two subspaces is mutually complementary. To further improve the 
recognition performance, we construct Fisherface classifiers from the same set of the 
random subspaces for NLDA classifiers (RS-Fisherface) and combine the two sets of 
complementary classifiers for final decision (RS-LDA). The main steps of RS-LDA are 
as follows: 

At the training stage, 

1) Apply AdaBoost to the training set to select sufficient steerable features. 

2) Generate K  random subspaces{ }K

iiR 1= . Each random subspace is constructed 

from 1−N steerable features. 

3) K NLDA classifiers { }K

i
N
iC 1=  are constructed from the K  random subspaces. 

4) Based on the same K  random subspaces { }K

iiR 1= , K  Fisherface classifiers 

{ }K

i
F
iC 1=  are also constructed. 

At the recognition state, 

1) The steerable feature vector is projected to the K  random subspaces and fed to 
the K  NLDA classifiers and K  Fisherface classifiers in parallel. 

2) The outputs of the K  NLDA classifiers and K  Fisherface classifiers are 
integrated to make the final decision. 

Wang and Tang [17] used two different random sampling schemes to improve 
traditional LDA approaches: sampling feature vectors for Fisherface (random 
subspace) and sampling training samples for NLDA (bagging). It is clear that 
Fisherface and NLDA classifiers generated in such a way are not really orthogonal 
complementary. Our scheme is more reasonable and efficient. 

5   Experiments on XM2VTS Database 

We first conduct experiments on the XM2VTS face database [13]. There are 295 
people, and each person has four frontal face images taken in four different sessions. 
In our experiments, two face images of each class are selected for training set, and 
the other two are for gallery and probe respectively. We adopt the recognition test 
protocol used in FERET [9]. In the following experiments, all the images are scaled 
to 6496× . Except histogram equalization used for reducing the influence of some 
extreme illumination, no other pre-processing is performed. Steerable features are 
extracted from preprocessed face images. The number of steerable features of 
each sample is 32256 containing four orientations with three scales 1/16) 1/4, (1, : 
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Fig. 4. Recognition accuracy of RS-NLDA on the AdaBoosted steerable feature space 

 

 
Fig. 5. Recognition accuracy of RS-LDA on the AdaBoosted steerable feature space 
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Fig. 6. Recognition accuracy of RS-LDA on the raw steerable feature space 

32256)16/14/11(46496 =++××× . In this paper, we use sum rule to combine 

multiple weak classifiers. More complex combination algorithms may further improve 
the algorithm performance. 

5.1   Random Subspace NLDA 

We first compare RS-NLDA with traditional NLDA. AdaBoost is adopted to select the 
most discriminative steerable features in advance. Since there are 590 face images of 295 
classes in the training set, the optimal dimension of random subspace should be 589. In 
all, 1178 steerable features are selected via AdaBoost learning. A single NLDA classifier 
is constructed based on selected features and achieves a recognition rate of 95.93%. Then 
we randomly select 589 features among the selected features to generate a random 
subspace. The procedure is repeated for 20 times, and 20 NLDA classifiers are 
constructed. The result of RS-NLDA combining 20 NLDA classifiers is shown in Figure 
4. The accuracy of individual NLDA classifier is between 92.88% and 94.92%. Using 
sum rule, the accuracy of RS-NLDA achieves 97.63%. This shows that NLDA classifiers 
constructed from different random subspaces are complementary of each other. 
Moreover, random subspace is indeed an efficient technique to enforce weak classifiers. 

5.2   Random Subspace LDA 

We then construct Fisherface classifiers from the same set of random subspaces for 
NLDA classifiers. A single Fisherface classifier is constructed based on selected 
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steerable features and achieved a recognition rate of 95.25%. The accuracy of each 
individual Fisherface classifier varies from 91.53% to 92.88%. The recognition rate of 
RS-Fisherface is 96.61% using sum rule. The accuracy of individual Fisherface 
classifier is lower than that of each NLDA classifier on the same random subspace. 

This indicates that the null space of wS  encodes the more significant discriminative 

information than the principal subspace. Finally, all the NLDA and Fisherface 
classifiers are integrated to achieve a higher recognition accuracy of 98.98%. Figure5 
reports the performance of RS-LDA. Figure 6 depicts the recognition accuracy of 
RS-NLDA and RS-Fisherface directly random sampling on the raw steerable feature 
space, rather than on the AdaBoosted steerable feature subspace. It shows that the 
improved method has a superior performance. 

6   Experiments on FERET Database 

The proposed method is also tested on the FERET FA/FB sets, which has been widely 
used to evaluate face recognition methods [9]. There are 1196 images in FA and 1195 
images in FB. Each set contains at most one image per person and FA contains different 
facial expressions with FB. The FA images are used as gallery images and the FB 
images are used as probes. The training set is also from the training set of FERET 
database, which includes 1002 images of 429 subjects. The preprocessing procedure for 
face images is identical with the last experiment. The optimal dimension of each 
 
 

 

Fig. 7. Recognition accuracy of RS-LDA on the raw image space and the selected steerable 
feature space 
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random subspace is 1001. To investigate the effect of steerable feature on recognition  
performance, RS-LDA on the raw face image space is also performed. Totally, 
AdaBoost selected 2002 steerable features and original pixels respectively for 
constructing the random subspaces. We compare RS-LDA with NLDA and Fisherface. 
The rank curves of all the methods are shown in Figure 7. We achieve a high 
recognition rate of 97.66%. It can be observed that all of the methods based on steerable 
feature space outperform that on the raw image space. Steerable feature is a powerful 
local descriptor for face structure. On the other hand, both RS-NLDA and 
RS-Fisherface are superior to NLDA and Fisherface. It confirms that NLDA or 
Fisherface are not sufficient to discriminate the complex data consisting of many 
classes like human faces. 

7   Conclusions 

Local descriptor is popular in the field of face recognition. We propose a novel local 
steerable feature extracted from the face image using steerable filter. Furthermore, 
steerable filter is implemented in the scales-space to encode more discriminate 
information. 

Subspace discriminant analysis involves two aspects: 1) Extract the most 
discriminative features from each subspace. 2) Exploit as much the complementary 
discriminative information as possible. In this paper, NLDA and Fisherface classifiers 
are constructed from the same set of random subspaces and integrated using a fusion 
rule. All the random subspaces are constructed under the most suitable situation for the 
null space. Our approach is simple, efficient and reasonable. Experimental results on 
multiple face databases show an encouraging recognition performance. 
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Abstract. It has been shown that features can be selected adaptively for object
tracking in changing environments [1]. We propose to use the variance of Mu-
tual Information [2] for online feature selection to acquire reliable features for
tracking by making use of the images of the tracked object in previous frames to
refine our model so that the refined model after online feature selection becomes
more robust. The ability of our method to pick up reliable features in real time is
demonstrated with multi-view object tracking. In addition, the projective warping
of 2D features is used to track 3D objects in non-frontal views in real time. Trans-
formed 2D features can approximate relatively flat object structures such as the
two eyes in a face. In this paper, approximations to the transformed features us-
ing weak perspective projection are derived. Since features in non-frontal views
are computed on-the-fly by projective transforms under weak perspective projec-
tion, our framework requires only frontal-view training samples to track objects
in multiple views.

1 Introduction

Much effort has been made to solve the problem of real-time object tracking over the
years. However, tracking algorithms still suffer from fundamental problems including
drifts away from targets [4] (partially due to change of viewpoint), inability to adapt
to changes of object appearance, dependence on the first frame for template matching
[5], instability to track objects under deformations (e.g. deformed contours), the ineffi-
ciency of Monte Carlo simulations for temporal tracking [6], and reliance on gradients
by active contours [7], i.e. problems with similar intensities on the background and the
object, or high gradient edges on the object itself. These problems are due to the com-
plexity of the object dynamics. We also have to deal with difficult tracking conditions
which include illumination changes, occlusions, changes of viewpoint, moving cameras
and non-translational object motions like zooming and rotation.

Recent techniques use more complex and descriptive representations for tracking
[8], [9], [10], [11]. A more descriptive representation may reduce the dependency on
temporal information for tracking. There are a number of advantages to use a more
descriptive representation. It makes tracking more robust in cluttered scenes. Less con-
strained physical state trajectories such as those containing discontinuities may also be
tracked. If the representation can encode the appearance of the object more discrimina-
tively, it allows the tracking of objects largely relying on framewise detections without
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much temporal analysis, such as Viola-Jones detector-based tracking [8]. However, it is
both difficult and expensive to obtain statistics to build a 3D model for object detection
or tracking while 2D appearance models such as [17], [3], [9] and [11] have been very
successful. When multi-views are considered, a huge amount of data is needed for each
view for the training for a particular object. Such a huge dataset is impractical to create
and it is also computationally expensive to train such a multi-view model. It is hard to
obtain thousands of samples in each view and train a system for weeks or even months
to track a particular object.

In this paper, a technique to track non-rigid objects in changing views with only
frontal-view training samples is developed. Non-frontal views are deduced from frontal-
view samples by geometric transformations. Using weak perspective projection, our
method can track objects with a roughly flat surface such as faces or cars. It is obvious
that, even for a roughly flat surface, there could be some uneven structures such as the
nose on a face. We further use Mutual Information for online feature selection to acquire
reliable features which are the relatively flat in our case. Our implementation picks up
flat features in real time for multi-view object tracking.

Haar-like features selected by AdaBoost [3] can model non-rigid objects under dif-
ferent lighting conditions. We explore the possibility to devise a tracking algorithm
using Haar-like features selected by AdaBoost as the representation [3]. Kalman filters
are adopted to track the state variables after projective warping in every frame. They are
used to temporally confine the parameter space of the transform. Our tracker is able to
track non-rigid objects and the initialization of tracking is completely automatic. A sin-
gle appearance model for both detection and tracking means a smooth transition from
detection to tracking. No assumption on color is made in our model.

In the rest of this paper, Section 2 presents our proposed methods to compute warped
Haar-like features. A technique for online feature selection using Mutual Information is
proposed in Section 3. Section 4 presents experiments to test our proposed framework.
Conclusions and future work are given in Section 5.

2 Projective Warping of Rectangle Features

Viola and Jones [3] make use of an intermediate representation for images called the
integral image or summed-area table [12] to obtain the sum of pixel values for rect-
angle features with no more than four array references. The integral image is vital to
computational efficiency for computing rectangle features. However, features are no
longer rectangular after projective transforms. Therefore, we cannot calculate the fea-
tures directly from the integral image. We propose to use a generalization of the method
to calculate the features while we can still use the integral image. The generalization
was proposed originally by Glassner [13] for texture mapping. It computes the average
pixel value within a quadrilateral to an arbitrary degree of accuracy using the integral
image with additional computation depending on the accuracy required. Glassner ap-
proximates a non-rectangular shape by rectangles. Two methods can be used to do this:
additive and subtractive synthesis. Arbitrarily accurate features can be obtained and the
integral image can still be used to retain the efficiency of the original appearance model.
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An alternative way is to approximate projective transforms. This method makes the
computation much more efficient. A planar projective transformation is a transforma-
tion with eight free parameters. A search in the parameter space could be computation-
ally very expensive. An advantage to approximate projective transforms is to reduce the
dimensionality of the parameter space. High dimensionality leads to expensive com-
putation and sparsity of data which prevents the search from finding the correct set of
parameters. A common approach is to approximate projective transforms by consider-
ing weak perspective projection such as planar affine transforms. For a planar affine
transform, the number of free parameters is reduced from eight to six.

2.1 Approximating Projective Transforms

We may use weak perspective projection to approximate the perspective projection of
rectangle features such as Haar-like features. Let us consider a rectangle feature with
corners P ′

i where i = 1 for the top left, 2 for the top right, 3 for the bottom right and 4
for the bottom left.

Pi = RoP
′
i , (1)

where Ro = Ro1(α)Ro2(β)Ro3(γ) is the rotation of the object and Pi are the corners
after rotating the feature. We consider tracking the out-of-plane rotations of an object
(i.e. pitch and yaw):

Pi = Ro1(α)Ro2(β)P ′
i . (2)

The rotational matrix Ro for the object rotation with pitch and yaw is Ro1(α)Ro2(β) =[ cosβ 0 sinβ
sinαsinβ cosα −sinαcosβ
−cosαsinβ sinα cosαcosβ

]
.

The corner of a rectangle feature after the pitch and yaw rotations in world coordinates
is, therefore,

Xw = cosβX ′
w, (3)

Yw = sinαsinβX ′
w + cosαY ′

w, (4)

where (X ′
w, Y ′

w) is the corner before rotations in world coordinates. Note that we rotate
the object symmetrically by locating it on the x-y plane and its center to be in the origin
in world coordinates so Z ′

w = 0 and, under weak perspective,

Z̄w ≈ 0. (5)

A rectangle feature can be on any part of the object. Thus, Z̄w is not exactly zero. In
homogeneous coordinates, the matrix equation of perspective projections can be written⎡⎣x1

x2

x3

⎤⎦ = M

⎡⎢⎢⎣
Xw

Yw

Zw

1

⎤⎥⎥⎦ ,

where x = x1
x3

, y = x2
x3

are in image coordinates and
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M =

⎡⎣−fr11 −fr12 −fr13 fRT
1 T

−fr21 −fr22 −fr23 fRT
2 T

r31 r32 r33 −RT
3 T

⎤⎦ .

where Ri, i = 1, 2, 3, is a three dimensional vector formed by the i-th row of the matrix
R. Under weak perspective projection,

xwp =
x1

x3
≈ fRT

1 (T − Pw)
RT

3 (P̄w − T )
,

ywp =
x2

x3
≈ fRT

2 (T − Pw)
RT

3 (P̄w − T )
.

Let R = I , i.e. there is no rotation between the world coordinates and the camera
coordinates. Thus,

xwp ≈ −
f(Xw − TX)

Z̄w − TZ
, ywp ≈ −

f(Yw − TY )
Z̄w − TZ

.

Using Equation 5, a corner in image coordinates under weak perspective projection is
then

Piwp =

[
f(Xw − TX)

TZ

f(Yw − TY )
TZ

f

]T
. (6)

By combining Equations 3, 4 and 6, a corner after the rotations of the object becomes

Piwp =

⎡⎢⎢⎢⎢⎢⎣
f(cosβX′

w−TX)
TZ

f(sinαsinβX′
w+cosαY ′

w−TY )
TZ

f

⎤⎥⎥⎥⎥⎥⎦
under weak perspective projection in image coordinates. Let us assume there is only the
pitch rotation or the yaw rotation and the two rotations don’t occur at the same time.
That means either α = 0 or β = 0. So, sinαsinβX ′

w = 0. In reality, especially for
face tracking, it is natural to assume the object to rotate either with the pitch or the yaw.
Therefore, when α becomes large, β ≈ 0, or when β becomes large, α ≈ 0. Hence,
sinαsinβX ′

w ≈ 0 and

Piwp =

[
f(cosβX ′

w − TX)
TZ

f(cosαY ′
w − TY )

TZ
f

]T
.

Notice that, since xwp in the above is independent of Y ′
w and ywp independent of X ′

w

after rotations, a rectangle feature after rotations is still rectangular under weak per-
spective. The width and height of the rectangle feature after rotations in image coordi-
nates are

x2wp − x1wp =
f cosβ(X ′

2w
−X ′

1w
)

TZ
, and
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y1wp − y4wp =
f cosα(Y ′

1w
− Y ′

4w
)

TZ
.

The aspect ratio of the rectangle feature η after the rotations α and β becomes cosβ
cosαη0,

where η0 = (X ′
2w
−X ′

1w
)/(Y ′

1w
− Y ′

4w
) is the aspect ratio before rotations.

This shows that, under weak perspective projection, the projective warping of a rect-
angle feature can be approximated by simply varying the aspect ratio of the rectangle
feature. It gives us an extremely efficient means to track a rotating object. Only the
aspect ratio η, the scale s and the centroid location (xl, yl) need to be tracked.

3 Feature Selection

It is both difficult and expensive to obtain statistics to build a 3D model for object de-
tection or tracking. For face detection and tracking, different people have their own 3D
face shapes. 2D appearance models cannot be trained easily to cope with view varia-
tions due to both the lack of the huge amount of labelled data for multi-views and the
computational cost of training.

We use projective warping to transform learned Haar-like features. However, not
all features are roughly flat. Therefore, the warping can introduce tracking errors due
to the linearity of projective transformation if a measure of feature ”goodness” is not
evaluated on-the-fly. The best features which are approximately flat need be selected in
real time after projective transforms have been made. We make use of the images of the
object which has been tracked in previous frames to refine our model so that the refined
model after online feature selection becomes more robust to track the object in different
views.

3.1 The Mutual Information

We use Mutual Information to select approximately flat features which should be re-
liable for projective warping as the object rotates. The mutual information measures
the statistical dependence between two variables. It has been shown to be a very effec-
tive measure for selecting a small set of relevant features from a large set of potential
features very quickly [16].

We have a set of features selected by AdaBoost for objects in single view. Redun-
dancy between features is not considered because redundancy is eliminated during the
AdaBoost training. Hence, for computational efficiency, we simply use the mutual in-
formation instead of the conditional mutual information [16] considered to take into
account redundancy between features. For continuous probability distributions, the mu-
tual information is defined as

I(i) =
∫

xi

∫
y

p(xi, y)log
p(xi, y)

p(xi)p(y)
dxdy.

It is hard and inefficient to estimate the continuous distributions p(xi, y), p(xi) and p(y)
[18] for Feature i. Instead of estimating the distributions of the features directly, we use
the output of the weak classifiers [3]. The statistical dependence of the weak classifer
output of a feature and the output of the AdaBoost cascade [3] is determined by the
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mutual information. Both of the outputs are Boolean values so we can use the discrete
form of the mutual information I(i) =

∑
xi

∑
y

P (X = xi, Y = y)log
P (X = xi, Y = y)

P (X = xi)P (Y = y)
.

Given a finite training set, one using frequency counts can only obtain an estimate of
the mutual information as follows:

Î(i) =
log n

n

∑
xiy

nxiylog
nxiy

nxiny
,

where n is the total number of occurrences and nxiy , nxi and ny are respectively the
numbers of occurrences of the pair (xi, y), xi and y. Hutter [2] obtained the distribution,
expectation value and variance of the mutual information by using a Bayesian approach.
The expectation value defined as follows containing a correction term, (r−1)(s−1)

2n , is a
more accurate estimate for the mutual information:

E{I(i)} =
∑
xiy

nxiy

n
log

nxiyn

nxiny
+

(r − 1)(s− 1)
2n

+ O(n−2).

When the tracked face is frontal, all features learned by AdaBoost are almost equally
discriminative. However, the more the face rotates, the lower the mutual information of
an uneven feature gets due to the linearity of projective transformation. On the contrary,
for an ideally flat feature, the mutual information remains the same as the face rotates.
Thus, as we transform the features geometrically under weak perspective, features rel-
atively flat are more stable for tracking and, thus, associate with small variations in the
mutual information (i.e. small variances) when the view is changing. Instead of finding a
set of features with the largest mutual information, we should look for a set of features
with the smallest corresponding variances of the mutual information so that features
more stable and, therefore, flat are selected. To measure the stability of a feature, the
variance of the mutual information [2] is V ar{I(i)} =

1
n

∑
xiy

nxiy

n

(
log

nxiyn

nxiny

)2

− 1
n

(∑
xiy

nxiy

n
log

nxiyn

nxiny

)2

+O(n−2).

It to the order of n−1 can be written

(log n)2

n2

(∑
xiy

nxiy

(
log

nxiy

nxiny

)2

− 1
n

(∑
xiy

nxiylog
nxiy

nxiny

)2
)

.
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When we compare the variances of the mutual information of the features, the scaling

factor (log n)2

n2 can be ingored. Thus, to select the most reliable features, we compare

∑
xiy

nxiy

(
log

nxiy

nxiny

)2

− 1
n

(∑
xiy

nxiylog
nxiy

nxiny

)2

.

In other words, we select the most reliable or stable features by picking up the smallest
corresponding variances of the mutual information of the features. Additionally, for the
strong classifier of AdaBoost, we set the weight of Feature i, αi = 0 to reject Feature i
so that the weights of the majority vote remain the same except for the rejected features.

4 Experimental Results

We use the MIT-CBCL face dataset [14] which consists of 6,977 cropped images (2,429
faces and 4,548 nonfaces). The resolution of the images is 19 × 19 and slightly lower
than 24× 24 used by Viola and Jones [3].

After the Viola-Jones detector initializes our tracker, four Kalman filters are sepa-
rately used to track the aspect ratio η, the scale s and the centroid location of the object
(xl, yl). A 5-stage cascade of AdaBoost [3] is used in our experiments. There are only
127 features in the 5 stages. The 5 stages separately compute 2, 7, 20, 50 and 50 features.

Experiment 1 (see Figure 1) shows a video (Video Sequence 1) with |β| < 90◦.
It shows that faces with relatively large |β| could also be tracked. It is clear that the
side views share some common features with the frontal view after projective trans-
forms. Experiment 2 (Figure 2) shows tracking a non-frontal male face outdoors with a

Fig. 1. Experiment 1 - Tracking a non-frontal female face in real-time. The figure shows example
images from an indoor sequence (Video Sequence 1).
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Fig. 2. Experiment 2 - Tracking a non-frontal male face in real-time. The figure shows example
images from an outdoor sequence with a moving hand-held camera (Video Sequence 2).

Table 1. Comparisons of Our Experiments

Experiment MI Feature Warping Video Number
Number Selection Used Used Sequence of Frames

Number Tracked
1 Yes Yes 1 500 (End of

Sequence)
2 Yes Yes 2 526 (End of

Sequence)
3 No Yes 1 431 (Background)
4 No No 1 17 (Non-Frontal

View)
5 No Yes 2 499 (Partial

Occlusion)
6 No No 2 141 (Non-Frontal

View)

moving hand-held camera (Video Sequence 2). Both experiments demonstrate that our
tracker can track deformable objects from different viewpoints, i.e. faces with different
expressions in different views in this case. In order to evaluate the performance of our
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(a) (b)

(c) (d)

Fig. 3. Notice that all tracking failures in our experiments are due to the fact that no subwindow
is classified to be a face in several consecutive frames. (a) and (c) show the failure of the tracker
after tracking respectively 431 frames in Experiment 3 due to the background and 499 frames in
Experiment 5 due to a partial occlusion. No feature selection is used. The tracker is significantly
less robust without online MI feature selection. In (b) and (d), Experiment 4 and Experiment 6
show the failure of the tracker due to view changes after respectively tracking 17 frames and 141
frames. In Experiments 4 and 6, neither feature selection nor geometric transformation is used.
The tracker is only able to track very few frames in the sequences without online MI feature
selection and geometric transformation.

Fig. 4. Experiment 7 - Two trackers are initiated to track both the person in the foreground and
the person wearing glasses in the background. The resolution of the face in the background is
approximately 19 × 19 as shown in the magnified image. The tracker loses the face in the last
frame due to the large quantization errors of projective warping when the out-of-plane rotation
angle β is large with the low resolution.
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Fig. 5. In Experiment 1 (top figure) and Experiment 2 (bottom figure), the number of features
rejected by the variance of the mutual information becomes stabilized after approximately the
initial two hundred frames
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Fig. 6. The above are the same figure with different scales. In Experiment 3, the tracker without
online MI feature selection loses the face at Frame 432.

Fig. 7. The above are the same figure with different scales. In Experiment 1, the number of ac-
cepted subwindows is much less likely to go below 3 than it is without online MI feature selection
as shown in Figure 6.

warping method and the proposed Mutual Information (MI) feature selection technique,
additional four experiments (3, 4, 5 and 6) are performed using the two videos used in
Experiment 1 and Experiment 2. Figure 3 shows tracking failures in our experiments



Online Feature Selection Using Mutual Information 195

Fig. 8. The above are the same figure with different scales. In Experiment 5, the tracker without
online MI feature selection loses the face at Frame 500.

Fig. 9. The above are the same figure with different scales. In Experiment 2, the number of ac-
cepted subwindows is much less likely to go below 3 than it is without online MI feature selection
as shown in Figure 8.

and Table 1 shows the comparisons of those experiments. In Figure 5, the number of
features rejected by the variance of the mutual information is shown to be stabilized
after the initial two hundred frames in Experiments 1 and 2. Furthermore, the number
of subwindows accepted by the cascade of AdaBoost, to a certain extent, indicates the
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stability of the tracker. So, we compare the numbers of subwindows accepted during
tracking with MI feature selection and without MI feature selection to better under-
stand the effect of online feature selection. Besides, since Figure 3 shows all of the
tracking failures in our experiments are due to the fact that no subwindow is classified
to be a face, we are also interested in seeing when the number of subwindows classified
to be a face becomes low. Figures 6 and 7 are the plots of the numbers of subwindows
accepted during tracking respectively without MI feature selection and with MI feature
selection for Video Sequence 1. Moreover, Figures 8 and 9 are the plots of the numbers
of subwindows accepted during tracking respectively without MI feature selection and
with MI feature selection for Video Sequence 2. We found that, when the number of
subwindows becomes zero, the tracker does not necessarily fail because of the Kalman
filters. However, when the number of subwindows becomes zero in several consecutive
frames, the tracker usually fails. As we can see in Figures 6, 7, 8 and 9, the tracker with
our proposed online MI feature selection method is much less likely to lose track of
the face when the number of subwindows goes below 3. In Experiment 7 (Figure 4), a
tracker is initiated to track a person wearing glasses in the background. The resolution
of the face is approximately 19 × 19 in order to evaluate tracking with low-resolution
images. Our tracker can track low-resolution faces provided that the out-of-plane rota-
tion angle β is not very large to avoid high quantization noise.

In our current experiments, the tracking frame rate is 7.4 frames per second with the
frame size 320×240. The code for the interface is in Matlab. Our core code is compiled
by gcc on Cygwin on an AMD Athlon 1.68GHz machine.

5 Conclusion

We have demostrated a system using the projective warping of 2D features to track 3D
objects in non-frontal views in real time. Mutual Information for online feature selec-
tion to acquire reliable features for tracking is proposed. We demonstrate the ability of
our method to pick up reliable features in real time with multi-view object tracking.
Our framework requires only frontal-view training samples. Features in other views are
computed by projective transforms under weak perspective projection on-the-fly. Ap-
proximations to the transformed features using weak perspective projection are derived.

Future work includes pose estimation making use of the out-of-plane rotation angles
α and β, and making the tracker more efficient by using noisy optimization such as
implicit filtering for searches in the parameter space for projective transforms.
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Abstract. Viola and Jones [1] proposed the influential rapid object detection al-
gorithm. They used AdaBoost to select from a large pool a set of simple features
and constructed a strong classifier of the form {∑j αjhj(x) ≥ θ} where each
hj(x) is a binary weak classifier based on a simple feature. In this paper, we
construct, using statistical detection theory, a binary decision tree from the strong
classifier of the above form. Each node of the decision tree is just a weak clas-
sifier and the knowledge of the coefficients αj is no longer needed. Also, the
binary tree has a lot of early exits. As a result, we achieve an automatic speedup
that always makes the rapid Viola and Jones algorithm rapider.

1 Introduction

Viola and Jones [1] proposed the influential rapid object detection algorithm. There are
three key contributions of the Viola and Jones algorithm. The first is to use the integral
image that enables fast computation of Harr-like simple features [2]. The second is
to invoke the AdaBoost algorithm [3] to select a small set of crucial features from a
large set. The final contribution is to train a cascade of strong classifiers that eliminates
negative examples as quickly as possible.

A strong classifier is constructed based on weak classifiers. A weak classifier hj(x),
consisting of a simple feature fj(x), a threshold θj , and a parity pj indicating the direc-
tion of the inequality sign, produces a binary decision

hj(x) =
{

1 if pjfj(x) < pjθj

0 otherwise
(1)

The final strong classifier is h(x) of the following form

h(x) =
{

1 if g(x) =
∑J

j=1 αjhj(x) ≥ 1
2

∑J
j=1 αj

0 otherwise
(2)

Following the spirit of the Viola and Jones algorithm [1], many variants and exten-
sions have been proposed in the literature. Naturally, the Viola and Jones algorithm [1]
can be modified in each of the three contributions.

– Modifying the feature set. Since the work of Viola and Jones [1], various new
types of Harr-like have been proposed: diagonal features [4,5], rotated features [6],

W. Zhao, S. Gong, and X. Tang (Eds.): AMFG 2005, LNCS 3723, pp. 198–212, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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center-surrounded features [6]. In the article of Zhang et al. [7], the Gabor wavelets
features were used for face recognition. Lienhart et al. [8] even used small CART
features.

– Modifying the AdaBoost algorithm. In Voila and Jones [9], the asymmetric Ad-
aBoosting algorithm was proposed to handle the unbalanced nature of the positive
and negative training sets. In the work by Li and Zhang [10], the FloatBoost al-
gorithm was used as a substitute of AdaBoost to achieve an even lower classifi-
cation error. The effect of three versions of AdaBoost (Discrete AdaBoost, Real
AdaBoost, Gentle AdaBoost) were compared by Lienhart et al. in [8].

– Modifying the cascade structure. The cascade structure can be regarded as a degen-
erate decision tree. Full decision tree was trained by Li and Zhang [10] to perform
multiview face detection more efficiently. A similar detection tree approach were
found in the work of Lienhart et al. [11]. Also, in [12], Sun et al. trained the cascade
while taking in account perturbation bias.

However, the core idea of using the strong classifier that consists of weak classifiers
remains intact. In this paper, we examine the strong classifier in detail. In particular, we
investigate the computational speed of the strong classifiers themselves, assuming that
they have been trained by some means.

1.1 A General Form of the Strong Classifier

We focus on a very general form of the strong classifier that arises from the AdaBoost
algorithm. It is worth emphasizing that our analysis is not only applicable to the Viola
and Jones detection algorithm, and can be used in a wide range of applications where
the AdaBoost algorithm is used.

– The weak classifier can be of an arbitrary form.

hj(x) =
{

T if certain condition holds
F otherwise

(3)

In the above, the weak classifier produces a binary decision of true (+1) or false (0).
– The strong classifier threshold is adjustable for various purposes [1]. We denote the

arbitrary threshold as θ. As mentioned above, usually the strong classifier threshold
obtained from an AdaBoost algorithm is set to 1

2

∑J
j=1 αj .

– Because of the additive nature of the weighted sum g(x) =
∑J

j=1 αjhj(x), without
loss of generality, we can always pre-sort the weights αi such that α1 > · · · >
αJ > 0. We will show that the tie case such as αj = αj+1 is a special case of our
treatment and can be easily handled by merging two cases. The fact that αj > 0
arises from the AdaBoost algorithm. According to the AdaBoost algorithm [1],
αj = log

1−ej

ej
where ej is the probability of error. Usually, ej is smaller than 1/2

and hence αj > 0. If ej ≥ 1/2, there is no need for further boosting because adding
this feature only degrades the final performance.

Now, the strong classifier has a very general form

h(x) =
{

T if g(x) =
∑J

j=1 αjhj(x) ≥ θ

F otherwise
(4)
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A further generalization is to allow the functions hj(x) to output discrete values (not
necessarily just a binary decision of true and false). However, this is not considered
here.

1.2 Proposed Approach

Calling upon the classical detection theory [13,14], we will show that the strong clas-
sifier of the above form (4) is equivalent to a binary decision tree. To be more exact,
given a strong classifier, we are able to construct a binary decision tree that has the same
detection and false alarm rates. To have an intuition how it works, by simply treating the
weak classifiers hj(x) as boolean inputs, one can arrive at a boolean output for h(x). In
other words, we can easily construct a lookup table for a strong classifier. It turns out
that the lookup table can be summarized by a binary decision tree.

The binary decision tree possesses three properties. First, each node of the binary
decision tree is just a weak classifier and its binary decision guides what to proceed. The
second property is that, once the tree is constructed, the knowledge of the coefficients αj

can be thrown away. So, there is no need to compute multiplications like αjhj(x) and
sum up the terms αjhj(x). Third, the binary tree has a lot of early exits, which implies
that only the weak classifiers before exit need evaluation. The above three properties
guarantee an automatic speedup that always makes the rapid Viola and Jones algorithm
even rapider.

The binary decision tree corresponding to the strong classifier should not be con-
fused with the cascade of the strong classifiers since the latter is also treated as a de-
generate binary decision tree with each node being a strong classifier. Our intention
is to replace the strong classifier at each stage of the cascade with a binary decision
tree, not the cascade structure. After replacing the strong classifiers at all stages, the
cascade of strong classifiers can be regarded as a true binary decision tree with each
node being a weak classifier. Also, the binary decision tree structure derived from the
strong classifier does not prevent us from using a decision tree for the weak classifier
as in [15]. In this case, we have a true decision tree corresponding to the boosted strong
classifier.

In [16], Grossmann directly learned a decision tree that can be analyzed in the
framework of Adaboost. He also observed that the tree structure reduces computational
cost. We here propose a technique that converts a boosted strong classifier to a binary
decision tree that improves computational speed as well.

1.3 Paper Organization

Sections 2 and 3 study the strong classifier with two weak classifiers and three weak
classifiers, respectively. Many insights are derived from the detailed discussion. Section
4 addresses a general strong classifier with more than three weak classifiers. Section 5
presents the experiments.
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Table 1. Rates for the weak classifier hj(x)

p(hj(x) = T ) p(hj(x) = F )
x ∈ P 1 − aj aj

x ∈ N bj 1 − bj

1.4 Notation

To simplify our analysis, we assume that all weak classifiers are statistically indepen-
dent1. Further, we assume that each weak classifier hj(x) has its own detection rate
(1− aj) and false alarm rate bj . Table 1 summarizes the rates associated with the weak
classifier hj(x), where P denotes the positive set and N the negative set.

We use the notation 〈SJ 〉 to denote a strong classifier that combines J weak clas-
sifiers or simple refer to it as the strong classifier 〈SJ 〉. We are often interested in con-
ducting a case study. We use the notation 〈SJ,n〉 to denote the nth case of the strong
classifier 〈SJ 〉, or simply refer to it as the strong classifier 〈SJ,n〉.

Sometime we isolate, from a ‘mother’ strong classifier, a ‘child’ strong classifier
that combines a subset of weak classifiers that belongs to the ‘mother’ strong classifier.
Therefore, there is a need to specify the weak classifiers used by the ‘child’ strong
classifier. We use the notation 〈Sj,n|{weak classifier IDs}〉. For example, the strong

classifier 〈S2,3|{4,5}〉 means the 3rd case of the ‘child’ strong classifier using two weak
classifiers, the 4th and 5th ones, belonging to the ‘mother’ strong classifier.

2 Strong Classifier 〈S2〉
We start from a simple case of combining J = 2 weak classifiers with α1 > α2 > 0.
The possible g(x) values are given in Table 2. Note that θ11 > θ10 > θ01 > θ00. There
are five cases of interests.

Table 2. Possible g(x) values of combining J = 2 weak classifiers

h1(x) h2(x) g(x)
T T θ11 = α1 + α2

T F θ10 = α1

F T θ01 = α2

F F θ00 = 0

1 It should be noted that we assumed the statistical independence among the weak classifiers
for simplicity of illustration. The assumption of independence is only needed for calculating
the detection and false alarm rates of the strong classifier. Therefore our case study analysis
presented above still holds even when the weak classifiers are dependent. One evidence is that
the ROC curve for strong classifier 〈S2〉 always consists of five points, whether the two weak
classifiers are independent or not.
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Table 3. Rates for all five cases of the strong classifier 〈S2〉

〈S2,1〉 p(h(x) = T ) p(h(x) = F )
x ∈ P 0 1
x ∈ N 0 1
〈S2,2〉 p(h(x) = T ) p(h(x) = F )
x ∈ P (1 − a1)(1 − a2) a1 + a2 − a1a2

x ∈ N b1b2 1 − b1b2

〈S2,3〉 p(h(x) = T ) p(h(x) = F )
x ∈ P 1 − a1 a1

x ∈ N b1 1 − b1

〈S2,4〉 p(h(x) = T ) p(h(x) = F )
x ∈ P 1 − a1a2 a1a2

x ∈ N b1 + b2 − b1b2 (1 − b1)(1 − b2)
〈S2,5〉 p(h(x) = T ) p(h(x) = F )
x ∈ P 1 0
x ∈ N 1 0

Fig. 1. The binary decision trees for all five cases of the strong classifier 〈S2〉

2.1 Case Study

Below, we examine each case separately. The detection and false alarm rates for all
cases are listed in Table 3. The binary decision trees for all cases are shown in Figure 1.

– Strong classifier 〈S2,1〉: θ11 < θ. This is an all-fail case, i.e., the strong classifier
fails all possible x.

– Strong classifier 〈S2,2〉: θ10 < θ ≤ θ11. The only way to pass the strong classifier is
to pass both weak classifiers. Thus, the corresponding decision tree is just a cascade
of two weak classifiers. Only when the first weak classifier is passed is the second
weak classifier triggered.

– Strong classifier 〈S2,3〉: θ01 < θ ≤ θ10. Passing the strong classifier is equivalent
to passing the first weak classifier and the second weak classifier is completely
useless! Hence, we automatically save the computation of evaluating the second
weak classifier.

– Strong classifier 〈S2,4〉: θ00 < θ ≤ θ01. The only way to fail the strong classifier is
to fail both weak classifiers. Thus, the corresponding decision tree is also a cascade
of two weak classifiers. However, only when the first weak classifier is failed is the
second weak classifier triggered.

– Strong classifier 〈S2,5〉: θ < θ00. This is an all-pass case, i.e., the strong classifier
passes all possible x.
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Fig. 2. A typical ROC curve for the strong classifier 〈S2〉

Table 4. The XOR problem

h1(x) h2(x) h(x)
T T F
T F T
F T T
F F F

The above 5 cases can be summarized using a receiver operating characteristic
(ROC) curve plotted in Figure 2 (with a1 = 0.2, a2 = 0.3, b1 = 0.4, b2 = 0.5).
The ROC curve consists of a set of discrete points. As the detection rate increases, the
false alarm rate increases too.

2.2 Discussion

The following issues are worthy of further clarification.
[XOR problem]. The XOR problem means that Table 4 or similar thing holds. The

XOR problem might result in a very complicate binary decision tree so that there is
no computational saving available. However, this cannot happen to the strong classifier
〈S2〉 because, if the second row holds, then the h(x) function in the first row must take
a true value owing to the additive nature of the g(x) function.

[Tie α1 = α2]. If α1 = α2, the strong classifier 〈S2,3〉 never exists. We only
consider cases 1, 2, 4, and 5.

[Strong classifier threshold θ = 1
2 (α1 + α2)].When the strong classifier threshold

is θ = 1
2 (α1 + α2), the strong classifier 〈S2,3〉 is applied, which means that the first
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stage of the Voila and Jones cascade that uses a combination of two weak classifiers can
be replaced by one weak classifier. In Voila and Jones [1], the first strong classifier of a
cascade of strong classifiers uses two weak classifiers and its strong classifier threshold
is adjusted to achieved a near 100% detection rate. We will examine this point next.

[Design issue of the strong classifier 〈S2,2〉]. In this strong classifier, the order
of the two weak classifiers can be interchanged without affecting the final decision.
In practice, we select the weak classifier with lower false alarm rate as the first one
because this way the negative example exits the binary decision tree more quickly. For
the positive example, both weak classifiers need to be evaluated.

[Design issue of the strong classifier 〈S2,4〉]. In this strong classifier, the order
of the two weak classifiers can be interchanged without affecting the final decision.
In practice, we select the weak classifier with higher detection rate as the first one
because this way the positive example exits the binary decision tree more quickly. For
the negative example, both weak classifiers need to be evaluated.

[100% detection rate]. Adjusting the strong classifier threshold θ is equivalent to
running on the ROC curve. To achieve a 100% detection rate by adjusting θ as sug-
gested in [1], theoretically there are only one feasible way, that is, choosing the classifier
〈S2,5〉. However, the false alarm rate is also 100% in this case, indicating that the clas-
sifier 〈S2,5〉 is useless in practice. Therefore, adjusting the strong classifier threshold in
principle is a dangerous practice to achieve 100% detection. The strong classifier 〈S2,4〉
is the practical choice with the highest detection rate and moderate false alarm rate.

Ultimately, the detection rate of the strong classifier depends on the detection rates
of the weak classifiers. If the weak classifier classifiers all have 100% detection rate,
the strong classifiers from 〈S2,2〉 to 〈S2,4〉 all have 100% detection rate. In practice,
we will choose the strong classifier 〈S2,2〉 owing its lower false alarm rate and its early
exit for negative examples. Therefore, adjusting the weak classifier thresholds is a more
feasible approach to achieving 100% detection rate.

3 Strong Classifier 〈S3〉
We now consider combining J = 3 weak classifiers with α1 > α2 > α3 > 0. The
possible g(x) values are given in Table 5. Note that {θ111, · · · , θ000} are in a descending
order except the order ambiguity between θ100 and θ011. If α1 > α2 + α3, then θ100 >
θ011. There are ten cases of interests.

3.1 Case Study

Below, we examine each case separately. Similarly, we can compute the detection and
false alarm rates for all cases. The binary decision trees for all cases are shown in
Figure 3.

– Strong classifier 〈S3,1〉: θ111 < θ. This is an all-fail case, i.e., the strong classifier
fails all possible x.

– Strong classifier 〈S3,2〉: θ110 < θ ≤ θ111. The only way to pass the strong classifier
is to pass all three weak classifiers. The strong classifier 〈S3,2〉 is a cascade of three



A Binary Decision Tree Implementation of a Boosted Strong Classifier 205

Table 5. Possible g(x) values of combining J = 3 weak classifiers

h1(x) h2(x) h3(x) g(x)
T T T θ111 = α1 + α2 + α3

T T F θ110 = α1 + α2

T F T θ101 = α1 + α3

T F F θ100 = α1

F T T θ011 = α2 + α3

F T F θ010 = α2

F F T θ001 = α3

F F F θ000 = 0

Fig. 3. The binary decision trees for all 10 cases of the strong classifier 〈S3〉

weak classifiers or a cascade of the first weak classifier and the strong classifier
〈S2,2|{2,3}〉.

– Strong classifier 〈S3,3〉: θ101 < θ ≤ θ110. The way to pass the strong classifier is to
pass the first two weak classifiers. This reduces to the strong classifier 〈S2,2|{1,2}〉.
An alternative way is to view the strong classifier 〈S3,3〉 as a cascade of the first
weak classifier and the strong classifier 〈S2,3|{2,3}〉.

– Strong classifier 〈S3,4〉: max(θ100, θ011) < θ ≤ θ101. The way to pass the strong
classifier is to first pass the first weak classifier and then the strong classifier
〈S2,4|{2,3}〉. Therefore, the strong classifier 〈S3,2〉 is a cascade of the first weak
classifier and the strong classifier 〈S2,4|{2,3}〉.

– Strong classifier 〈S3,5〉: min(θ100, θ011) < θ ≤ max(θ100, θ011) and θ100 =
max(θ100, θ011). The way to pass the strong classifier is to simply pass the first
weak classifier. Also, the strong classifier 〈S3,5〉 can be viewed as a cascade of the
first weak classifier and the strong classifier 〈S2,5|{2,3}〉.
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– Strong classifier 〈S3,6〉: min(θ100, θ011) < θ ≤ max(θ100, θ011) and θ011 =
max(θ100, θ011). There are two ways to pass the strong classifier. The first way
is to pass the strong classifier 〈S3,4〉. The second is to first fail in the first weak
classifier (this is allowed!) but then pass the strong classifier 〈S2,2|{2,3}〉.

– Strong classifier 〈S3,7〉: θ010 < θ ≤ min(θ100, θ011). There are two ways to pass
the strong classifier. The first way is to pass the first weak classifier. The second is
to first fail in the first weak classifier but then pass the strong classifier 〈S2,2|{2,3}〉.

– Strong classifier 〈S3,8〉: θ001 < θ ≤ θ010. There are two ways to pass the strong
classifier. The first way is to pass the first weak classifier. The second is to first fail
in the first weak classifier but then pass the second weak classifier or the strong
classifier 〈S2,3|{2,3}〉.

– Strong classifier 〈S3,9〉: θ000 < θ ≤ θ001. The only way to fail the strong classifier
is to fail all three weak classifiers. In an alternative perspective, there are two ways
to pass the strong classifier. The first way is to pass the first weak classifier. The
second is to first fail in the first weak classifier but then pass the strong classifier
〈S2,4|{2,3}〉.

– Strong classifier 〈S3,10〉: θ < θ000. This is an all-pass case, i.e., the strong classifier
passes all possible x.

3.2 Discussion

The same issues (such as XOR problem, interchanging the order of weak classifiers
for specific strong classifiers, 100% detection rate, etc.) for the strong classifier 〈S2〉
addressed in section 2.2 exists for the strong classifier 〈S3〉. However, most of them can
be similarly treated. Here we address only some newly introduced issues.

[Order ambiguity between θ100 and θ011]. The order ambiguity between θ100 and
θ011 arises from the undetermined relationship between α1 and α2 + α3. The weight
pre-sorting can only automatically fix orders of all possible g(x) values to some extent
(in fact sub-exponentially!). In practice, we would prefer the case θ100 > θ011 because
it provides a far simpler binary decision tree. However, the experimental results seldom
present this. We will return to this point in section 4.

[Recursive tree construction]. As we have mentioned in the case study and illus-
trated in Figure 3, all the binary decision trees corresponding to the strong classifier
〈S3〉 can be constructed as follows: The top node contains the first weak classifier, fol-
lowed by the strong classifier 〈S2|{2,3}〉 (with different case numbers though). In other
words, we can construct the tree recursively. This idea applies to the strong classifier
with an arbitrary value of J . We will examine this in detail in Section 4.

4 Strong Classifier 〈SJ>3〉
A complete analysis of the strong classifier 〈SJ>3〉 becomes tedious. Especially when
J takes a very big value, the tree could be complex. Below, we present a general com-
prehension of the asymptotic behavior of the tree corresponding to the strong classifier
〈SJ>3〉. We also address the same issue from an information theory perspective.

[Number of cases]. As we have seen before, the tree structure is completely de-
termined by the weight coefficients α and the strong classifier threshold θ. A different
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choices of α and θ might yield a completely different tree. Unfortunately, the number
of all possible trees (or cases) grows exponentially with the number of weak classifiers
J . It roughly equals to O(2J+1). This number can estimated as follows. If there is no
order ambiguity, there are O(2J ) cases (exactly 2J + 1 cases). The case with order
ambiguity also grows as O(2J) because the unambiguous cases that can be eliminated
by the condition α1 > . . . > αJ > 0 is o(2J). It should be noted that the case study
is introduced for theoretic analysis only. In practice, when only one configuration of α
and θ is available, there is no need to store all cases.

[Tree construction]. The tree for the strong classifier 〈SJ,n〉 can be constructed
recursively, as illustrated in Figure 4. First test the first weak classifier. If true, test
the next binary decision tree corresponding to the strong classifier 〈SJ−1,n1〉 (with case
number n1); if false, test the next binary decision tree corresponding to 〈SJ−1,n0〉 (with
case number n0). Therefore, at each node, we only need to remember two case numbers.
Similarly, the tree can be constructed backward, starting from the nth weak classifier.

Fig. 4. Recursive construction of the decision tree. (a) Decision tree corresponding to the strong
classifier 〈SJ〉. (b) The equivalent decision tree constructed using the first weak classifier fol-
lowed two decision tree corresponding to the strong classifiers 〈SJ−1,n1〉 and 〈SJ−1,n0〉.

[Tree complexity]. It seems that the constructed tree can be rather complicated be-
cause it may exhaust all possible nodes of a binary decision tree. However, in practice,
we found that many nodes disappears because of the additive nature of the strong clas-
sifier and there is no XOR problem.

[Information]. In summary, the decision tree is just another way of storing the
same amount of information. Therefore, we did not gain or loss any information. To
be more specific, the information of the strong classifier 〈SJ 〉 lies in the J weighting
coefficients αj , the strong classifier threshold θ, and the comparison to determine the
final classification result, whereas the information of the decision tree lies in the tree
structure. Because of the discrete nature of the weak classifier responses (true or false),
the binary decision tree encodes more than one configuration of the weights α and
the threshold θ. Therefore, the binary decision trees partition the complete information
space covering all possible configurations of weights α and strong classifier threshold θ
into a finite number of subsets. Also, binary decision tree helps visualize and interpret
the results.
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5 Classification Experiment

We compared the binary decision tree implementation with other two methods. The
default method is to first calculates the value g(x) and then compares it with θ. The fast
exit algorithm [12] utilized the additive nature of the function g(x) =

∑J
j=1 αjhj(x).

Denote the sum up to k by gk(x) =
∑k

j=1 αjhj(x) = gk−1(x) + αkhk(x). The fast
exit algorithm uses the following two facts:

1. If gk(x) is already larger than the threshold θ, we can safely declare x as positive.
2. If gk(x)+

∑J
j=k+1 αj is already smaller than θ, we can safely declare x as negative.

The essence is to check at each weak classifier if we can exit the whole strong classifier
quickly.

5.1 The First Experiment

In this experiment, we used 3724 frontal face patches of size 24 × 24 (in fact 1862
images with their mirrors) and 6231 negative examples sampled from natural images
to boost a strong classifier consisting of 5 weak classifiers. Some training images are
shown in Figure 6. This boosted strong classifier has the following form:

2.550h1(x) + 1.606h2(x) + 1.288h3(x) + 1.274h4(x) + 1.096h5(x).

[Exp. 1, strong classifier 1]. When we take the strong classifier threshold as default,
i.e. θ = 3.907, we achieves a detection rate of 97.3% at the cost of a false alarm
rate of 5.89% on the training data. The corresponding binary decision tree is shown in
Figure 5(a).

[Exp. 1, strong classifier 2]. When adjusting the strong classifier threshold to pass
all training positive samples, the threshold is set to θ = 1.287 and the false alarm rate

Fig. 5. Two binary decision trees corresponding the first stage strong classifier in the face detector
with two different strong classifier thresholds
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Fig. 6. Example of positives (the top row) and negatives (the bottom row) of size 24 × 24 in the
training data set

Fig. 7. Example of positives (the top row) and negatives (the bottom row) of size 24 × 24 in the
first testing data set

Fig. 8. Two testing images of size 1024 × 768 in the second testing data set

increases to 82.4%! The corresponding binary decision tree is shown in Figure 5(b),
which is nothing but the following: to fail the strong classifier is to fail the first 3 weak
classifiers and then fail either of the 4th and 5th weak classifiers.

We used the above strong classifier to classify two test datasets. (i) The first testing
data set contains 4858 positives (2429 images with their mirrors) and 8569 negatives.
This data set is downloaded from the MIT CBCL website [17] and used in [18] for face
detection. The original image size is 19 × 19 and we normalized it to 24 × 24 using a
bicubic interpolation. Sample images in this testing data set are shown in Figure 7. Note
that the face images are shifted, rotated, and scaled version of the same object that is
not explicitly learned in the training stage. (ii) The second testing data set exhaustively
sampled 7740000 negatives from 10 images of size 1042× 768 known to be no face in-
side. Two such images are shown in Figure 8. This is used for testing negative rejection
at a large scale.
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Table 6. Summary of various face detection algorithms. (a) The strong classifier composed of
5 weak classifiers before adjusting the strong classifier threshold. (b) The strong classifier com-
posed of 5 weak classifiers after adjusting the strong classifier threshold. (c) The cascade of 3
strong classifiers.

(a) Exp. 1, strong classifier 1 Default Fast exit Binary decision tree
Detection(train) 97.3% 97.3% 97.3%

False alarm (train) 5.89% 5.89% 5.89%
Duration 64.80 s 40.16 s 36.98 s

Detection (test1) 94.2% 94.2% 94.2%
False alarm (test1) 9.07% 9.07% 9.07%

Duration 26.91 s 16.86 s 15.17 s
False alarm (test2) 16.4% 16.4% 16.4%

(b) Exp. 1, strong classifier 2 Default Fast exit binary decision tree
Detection(train) 100% 100% 100%

False alarm (train) 82.4% 82.4% 82.4%
Duration 64.67 s 34.56 s 29.12 s

Detection (test1) 99.96% 99.96% 99.96%
False alarm (test1) 75.8% 75.8% 75.8%

Duration 26.88 s 17.59 s 15.93 s
False alarm (test2) 46.4% 46.4% 46.4%

(c) Exp. 2 Default Fast exit Binary decision tree
Detection(train) 99.98% 99.98% 99.98%

False alarm (train) 2.78% 2.78% 2.78%
Duration 991 s 561 s 86.8 s

Detection (test1) 98.0% 98.0% 98.0%
False alarm (test1) 8.41% 8.41% 8.41%

Duration 349 s 253 s 32.5 s
False alarm (test2) 12.3% 12.3% 12.3%

It is obvious from Table 6(a) and (b) that the binary decision tree is the fastest
algorithm for the first dataset, almost two times faster than the default method. The
fast exit algorithm is more efficient than the default method, only a bit slower than the
binary decision tree. However, here we only used one strong classifier. When a cascade
of strong classifier is used as shown later, the decision tree implementation is much
faster than the fast exit algorithm. As expected, in the terms of the detection and false
alarm rates, the binary decision tree yields the exactly same results as the default and
fast exit algorithms.

5.2 The Second Experiment

In this experiment, we mimicked a detection scenario and tested the computation of the
cascade of strong classifiers. We followed the negative selection to training the strong
classifier cascade as in [1]. We used the same 3724 positives and selected negatives
from web images whenever needed. For simplicity, we trained a cascade of three strong
classifiers with 5, 10, and 200 weak classifiers at each stage. We constructed the binary
decision trees for the first two stages and used the fast exit algorithm for the third stage.
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Table 6(c) compares the performance of different algorithms. This experiment truly
manifests the computational advantage of the binary decision tree. It is significantly
faster than the other two implementation. It is more than ten times faster than the default
method and more than six times faster than the fast exit algorithm!

6 Conclusions

We presented a computational improvement to the rapid Viola and Jones algorithm
[1]. The improvement arises from the fact that a binary decision tree is derived from
a boosted strong classifier and the tree has a lot of early exits. In addition, each node
of the tree is just a weak classifier and the knowledge of the coefficients αj can be
discarded once the tree is constructed. Our experiments demonstrated that the binary
decision tree implementation is indeed rapider.
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Abstract. This paper presents an integrated approach for robustly loca
ting facial landmark for drivers. In the first step a cascade of probability
learners is used to detect the face edge primitives from fine to coarse, so
that faces with variant head poses can be located. The edge density de-
scriptors and skin-tone color features are combined together as the basic
features to examine the probability of an edge being a face primitive. A
cascade of the probability learner is used. In each scale, only edges with
sufficient large probabilities are kept and passed on to the next scale.
The final output of the cascade gives the edge primitives that belong to
faces, which determine the face location. In the second step, a facial land-
mark detection procedure is applied on the segmented face pixels. Facial
landmark candidates are first detected by learning the posteriors in mul-
tiple resolutions. Then geometric constraint and the local appearance,
modeled by SIFT descriptor, are used to find the set of facial landmarks
with largest matching score. Experiments over high-resolution images
(FERET database) as well as the real-world drivers’ data are used to
evaluate the performance. A fairly good results can be obtained, which
validates the proposed approach.

1 Introduction

Facial landmark localization is an important research topic in computer vision.
Many human computer interfaces require accurate detection and localization of
the facial landmarks. The detected facial landmarks can be used for automatic
face tracking [1], head pose estimation [2] and facial expression analysis [3]. They
can also provide useful information for face alignment and normalization [4], so
as to improve the accuracy of face detection and recognition. In computer vision
area, the facial landmarks are usually defined as the most salient facial points.
Good facial landmarks should have sufficient tolerance to the variations from
the facial expressions, lighting conditions and head poses. Eyes, nostrils and lip
corners are the most commonly studied facial landmarks.

In literature, many research efforts have been undertaken for solving this
problem. The Bayesian shape model presented in [5] and [6] model the facial
landmarks as the control points. The Bayesian shape model is modeled by the
contour, which gives a set of geometric constraints on the facial landmarks. To-
gether with the local appearance, the geometric configuration determines the

W. Zhao, S. Gong, and X. Tang (Eds.): AMFG 2005, LNCS 3723, pp. 213–228, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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location of the facial landmarks. Face bunch graphs [7] represent the facial land-
marks by ”Gabor Jet”. A graph structure is used to constrain the ”Jets” under
certain geometric configuration. The facial landmarks are located by an exhaus-
tive search for the best matching graph. In [8], Feris et. al. used a two-level
hierarchical Gabor Wavelet Network (GWN). In the first level, a GWN for the
entire face is used to locate the face region, find the face template from the
database and compute the appropriate transformation. In the second level, other
GWNs are used to model the local facial landmarks. The facial landmarks are
located under the constraint from the full-face GWN. In [9], the authors first
use Viola and Jone’s object detector [10] to locate the facial landmark candi-
dates and then a shape constraint is imposed on the detected candidates to find
the best match. In [11] and [12], the algorithms focused on the eye detection,
which is realized by a more accurate feature probability learning. Different sta-
tistical models are proposed to serve this purpose. However, most algorithms are
designed for feature detection in frontal face. When large head pose variation
presents, the performance deteriorates largely.

In this paper, we present an integrated approach to locate the facial land-
marks under variant head poses in a complicated background. More specifically,
we applied this algorithm on drivers’ video from an in-car camera. In the fol-
lowing sections, we discuss the details of the algorithm. In section 2, we give
the framework of the algorithm. In section 3, the pose invariant robust face de-
tector is presented. In section 4, the two-level scheme of the facial landmark
detection inside the face region is discussed. In section 5, experimental results
are shown to validate the effectiveness of our approach. Section 6 concludes our
presentation.

2 Algorithm Framework

The application scenario of intelligent vehicle system requires a robust algorithm
to accommodate the variations in illumination, head pose and facial expressions.
Locating the facial landmarks in an unconstrained image is not an easy job.
Some feature points from the cluttered background may possess the similar lo-
cal texture as the facial landmarks, causing false detections. Limiting the search
window within the face region would help reduce the false alarm. Therefore, we
first locate the faces. Considering the pose-invariant requirement, local low-level
primitives are used as the basic features. Edge density descriptor [13] is a good
local texture representation. It has certain tolerance to the background noise
while preserving local textures. However, local texture descriptor alone cannot
remove the ambiguous background patterns. Skin-tone color features [14] are
combined together for better performance. At different scales, the extracted tex-
ture information is different. In a smaller scale, more local details are represented;
while more global structural information is obtained in a larger scale. A cascade
of probability learners is used to detect the face edge primitives from fine to
coarse, using the combination of the edge density descriptors and the skin-tone
color features. The rectangular area that includes the most face edge primitives
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determines the face location. For the ease of the successive processing, in the
detected face region we further segment the face pixels using K-means clustering
of the color features. Only the segmented face pixels can be the facial landmark
candidates. It is worth to mention that in [15], Froba et. al also used the edge
features for face detection. However, the use of global template requires well
alignment of the images, which is not a trivial job.

Facial landmarks are constrained by their geometric structure. Given the
face pixels, geometric configuration together with the local appearance deter-
mines the location of facial landmarks. Similar as [9], a coarse-to-fine scheme is
proposed. We use the local Gabor wavelet coefficients. Each pixel is represented
by its neighborhood’s wavelet coefficients. In the first level, the posterior for each
face pixel of being a facial landmark is computed. Additive logistic regression
is used to model this posterior. Gabor filters can de-correlate the images into
features from different frequencies, orientations and scales. Features from one
resolution determine one posterior map. The de-correlated features have more
dependencies so that the posterior learning can be more accurate. The accumu-
lative posteriors give the overall posterior map, from which the local maxima are
determined as the facial landmark candidates. In the second level the false candi-
dates are rejected. A global geometric constraint together with local appearance
model using SIFT feature descriptor is used.

3 Face Detection

A background pixel may appear the similar local textures as the facial land-
marks. To remove such ambiguity, we confine the search window of facial land-
marks within face regions. In an in-car driver video sequence, as show in Fig. 1,
there are large variations in the illumination as well as in the head pose. Many
existing techniques were designed for single-view face detection. For example,
the Viola and Jone’s face detector [10] based on the Harr-type features can get
a very good accuracy for frontal face detection, however, the performance is not
as good if large head pose variation presents. It is because the appearance of the
face image changes a lot under different pose positions, a single view model is
not sufficient to catch the change. Using pose-invariant local features can solve
the problem. Color features are good candidates, but color features alone are
not consistent enough under large illumination change. Local primitive features,
such as edges, corners, are also pose invariant. Inspired from the wiry object
detection work in [13], we use the edge density descriptor together with the skin
tone technique. A concatenation of probability learners is used to find the edge
primitives that belong to the face region, so as to determine the face pixels. We
use additive logistic regression model for the probability. AdaBoost is used to
learn the logistic regression model. Fig. 2 gives the flowchart of the face detector.
The detector is proceeded from a smaller scale to a larger scale. In each scale,
only the detected face edge primitives are remained and passed on to the next
scale. The edge primitives obtained from the last scale are the detected face
edges.
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Fig. 1. Examples of frames from a driver’s video captured inside the car

Fig. 2. Flowchart of the face detection algorithm

Fig. 3. Illustration of the local edge density descriptor. The left image: the central
black dot shows the current edge point to be processed; the edge probes are located
at the positions indicated by the crosses. The right image: illustration of applying the
edge density descriptor on the image.

3.1 Edge Density Descriptor

Fig. 3 illustrates how to construct the local edge density descriptors. The descrip-
tors are formed under different scales Sk ∈ {S1, S2, · · · , SK}. Smaller scale can
give a more detailed description; while larger scale can get a better representation
of the global context. For a given edge point pc, the edge density under scale Sk

is described by a set of edge probes {Ek(δ1, δ2)}(δ1 = −d, · · · , d, δ2 = −d, · · · , d).
The edge probe Ek(δ1, δ2) is located around pc with horizontal distance δ1Sk
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and vertical distance δ2Sk. The edge probe Ek(δ1, δ2) evaluates the density of
the edges in its neighborhood using a Gaussian window:

Ek(δ1, δ2) =
∑

p∈{PIe}
exp{−‖p− pδ‖2

σ2
}; (1)

where {PIe} is the set of coordinates of all edge points. pδ is the position of the
edge probe E(δ1, δ2):

pδ = pc + (Skδ1, Skδ2).

3.2 Probability Learning

Given the edge density descriptor Ek = {Ek(δ1, δ2)}, the probability that the
edge point belongs to the face region is denoted as P (face|Ek). AdaBoost is used
to learn this probability. As one of the most important recent developments in
learning theory, AdaBoost has received great recognition. In [16], Friedman et.
al indicated that for binary classification problem, boosting can be viewed as
an approximation to additive modeling on the logistic scale using maximum
Bernoulli likelihood as an criterion.

If the probability can be modeled using logistic regression as follows:

P (face|Ek)
P (non− face|Ek)

= eC(Ek); (2)

where C(Ek) is a function of the edge density descriptor Ek and:

P (face|Ek) + P (non− face|Ek) = 1.

This can also be rewritten as:

P (face|Ek) =
eC(Ek)

1 + eC(Ek)
. (3)

If C(Ek) takes the form C(Ek) =
∑T

t=1 αtct(Ek), this probability model becomes
an additive logistic regression model. In [16], it shows that AdaBoost actually
provides a stepwise way to learn the model up to a scale factor of 2, which is:

P (face|Ek) =
eC(Ek)

eC(Ek) + e−C(Ek)
. (4)

Now ct(Ek)(t = 1, · · · , T ) becomes the hypotheses from the weak learners.

3.3 Skin Tone Prior

Edge density probe catches the texture information in a local neighborhood;
while the probability learning procedure gives the similarity between the ob-
served edge primitives and the known facial landmarks. However, certain back-
ground points may have similar local textures as the facial landmarks. Regional
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color features in different scale are used as priors to help reject the ambiguous
patterns from the background.

HSV space is a well-used color space for skin-tone segmentation due to hue
feature’s relative consistency to skin-colors [14]. We also use hue color here.
Since the color feature for a single pixel is not stable enough, we use regional
color features instead. Given an edge point pc, we denote the hue value of its
ξSk × ξSk(ξ < 1) neighborhood as hk = (h1, h2, · · · , hNk

). The distribution of
the regional skin color feature is:

P (hk) = P (‖hk‖)P (h̃k|‖hk‖);

where h̃k = (h1,h2,···,hNk
)

‖hk‖ is the normalized hue vector. ‖hk‖ represents the

average hue value in the neighborhood, while h̃k evaluates the variations. We
neglect the dependency between ‖h‖k and h̃k, so that

P (hk) = P (‖hk‖)P (h̃k). (5)

Due to the reflectance and noise on the face, the dependency between h̃k and
‖hk‖ is weak. Hence this assumption is reasonable. A Gaussian mixture is used
to model P (‖hk‖):

P (‖hk‖) =
∑
ki

ωkiN (‖hk‖; μki , σki).

A Gaussian in the subspace is used to model the probability of h̃k:

P (h̃k) = exp{−‖Uk(h̃k −mk)‖2
σ′2

k

};

where Uk is the PCA subspace transformation matrix and mk is the mean
vector from the training samples. Fig. 4 gives some example of the skin-tone
segmentation. We use the images from internet to learn the skin-color model.

Fig. 4. The regional color features in different scales. Leftmost: the original image.
Middle right: the color feature from the second scale. Middle left: the color feature
from the fourth scale. Rightmost: the color feature from the sixth scale.
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3.4 Face Edge Primitive and Face Detection

The edge density descriptor extracts the image features from different abstract
levels. Accordingly, we use a local-to-global strategy to detect the face edge
primitives. At each scale Sk, if:

P (face|Ek)× P (hk) > θk, (6)

the edge point is determined as a candidate of the face edge primitive. In the
next scale, only the face edge candidates from the previous scale are processed.
Six scales are used. Fig. 5 gives an example of the face edge primitive detection
procedure.

An edge filter is used to locate the face region from the detected face edge
primitives. The face region is the one that includes the most face edge primitives.
At each pixel, the edge filter output is the number of the face edge primitives
falling inside the rectangle box centered at the pixel. The location of the edge
filter maximum indicates the location of the face. Fig. 6 gives an example of the
edge filter output. If more than one maximum exist, we use the mean of the
maxima to locate the face.

Fig. 5. Example of the detected face primitives at each scale. Top left: the original
video frame. Top middle: black box shows the detected face. Top right: original edge
map. Bottom left: the detected candidates of face edge primitives at the second scale;
bottom middle: the detected candidates of face edge primitives at the fourth scale;
bottom right: the detected candidates of face edge primitives at the last scale.

Fig. 6. The example of edge filter output
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Fig. 7. An example of the face pixel segmentation result. First image: detected face;
Second image: segmented face pixels (white color: face pixels); Third image: refined
face pixel mask; Fourth image: segmented face pixels.

For the ease of the facial landmark localization procedure, we further segment
the face points in the detected face region from the background. All pixels are
clustered into H clusters by K-means clustering in the hue space. We use H = 10
as the initial number of clusters. During the clustering, the clusters with close
means are merged. Since face pixels dominates in the detected face region, the
largest cluster corresponds to the face pixels. Morphographic operation is used
to smooth the segmentation. The face components, eg. eyes and mouth, have
different color distributions. Morphographic operation might not be able to con-
nect them with the face pixels. Hence for every background patch, we need to
determine if it is a face component. If most pixels around the background patch
are face image, this background patch is a face component and correspondingly
the pixels in the background patch are actually face pixels. Fig. 7 gives an ex-
ample of the face pixel segmentation procedure. White pixels indicate the face
points.

4 Pose Invariant Facial Landmark Detection

We use a two-step scheme to detect the facial landmarks. In the first level,
candidates of the facial landmarks are found as the maxima in the posterior
map. In the second level, geometric constraint as well as local appearance are
used to find the facial landmarks.

4.1 First Stage: Finding Facial Landmark Candidates by Posterior
Learning

We use Gabor wavelets to decompose the images into different scales and orien-
tations. Gabor wavelets are joint spatial-frequency domain representations. They
extract the image features at different spatial locations, frequencies and orien-
tations. The Gabor wavelets are determined by the parameters n = (cx, cy, θ,
sx, sy), as shown in the following equation:

Ψn(x, y) = e−
1
2 [sx((x−cx) cos θ−(y−cy) sin θ)]2+[sy((x−cx) sin θ+(y−cy) cos θ)]2

× sin{sx((x− cx) cos θ − (y − cy) sin θ)}. (7)

cx, cy are the translation factors, sx, sy are the scaling factors and θ denotes the
orientation. Here only the odd component is used.
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Gabor wavelets actually model the local property of a neighborhood. We
use the wavelets coefficients of the local neighborhood around the given pixel
to estimate its probability of being a facial landmark. Gabor wavelet transform
partially de-correlate the image. Wavelet coefficients from the same Gabor filter
output have more dependency. Consequently, if we only use the wavelet coeffi-
cients from one Gabor filter, the probability estimation can be more accurate.
Since we have no prior information to tell which filter output contains more
discriminant information for classification, the posteriors are estimated in every
resolution. Posteriors for all pixels form a posterior map. These posterior maps
from all filter output are combined together to give the final probability estimate.

Let the feature vector for point pc be {xs}(s = 1, · · · , S). The probability
that pixel pc belongs to a facial landmark is:

P (l|xs) =
S∏

s=1

βsP (l|xs); (8)

where s-th is the filter index; βs is the confidence for the posterior estimated from
the s-th filter output and l ∈ {Facial Feature1,· · ·,Facial Featuren, Background}.

Similarly, we use the additive logistic regression model for the posterior. Let
P (l = i|xs) be the probability that xs is the i-th facial landmark, which is
modeled as:

P (l = i|xs) =
e2F (xs)

1 + e2F (xs)
, F (xs) =

∑
t

αtf(xs). (9)

AdaBoost is used to learn F (xs). The AdaBoost training procedure also pro-
vides us a measure for the discriminant ability of each filter output. The objective
function of AdaBoost, also that of the additive logistic regression model, is to
minimize the expectation of e−l·f(xs). If the features from these two classes do
not have enough discrimination information,

∑
m e−l(m)·f(x(m)

s ) over the testing
samples will be large. Cross-validation provides a way to evaluate E[e−l·f(xs)]
empirically, which is the mean value of

∑
m e−l(m)·f(x(m)

s ) over different testing
sets:

Ê[e−l·f(xs)] ∝
∑T

t=1

∑
m e−l(m)·f(x(m)

s )

T
. (10)

We use this estimate as the confidence on the posterior learned from current
resolution.

βs =
T∑T

t=1

∑
m e−l(m)·f(x

(m)
s )

. (11)

The probability map is updated at each filter output by using Equation. 8. For
each facial landmark, we can get an individual probability map. The overall
probability map is the summation of these individual probability maps. Fig. 8
gives an example of the probability map learning procedure for the left eye
corner, where the probability map updating procedure is shown. The desired
facial landmark is highlighted after the probability updating. Local maxima on
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(a) (b) (c) (d)

Fig. 8. The posterior updating procedure. Fig.8(a)-8(c): updated probability maps of
using 2, 4, 6 Gabor filter output respectively. Fig.8(d): Candidates for the left eye
corner (marked with the red points).

the overall probability map are computed and those local maxima with sufficient
high probabilities are selected as the candidates for the facial landmark. The red
crosses in Fig. 8(d) show the candidates for the left eye corner. A refinement
step by the geometric configuration is used in the next step to remove the false
detection.

4.2 Second Stage: Refinement by Geometric and Appearance
Constraints

The first level gives a set of facial landmark candidates. In the second level, the
detection is refined using the geometric constraints and the local textures.

The geometric configuration is described by the pairwise distances between
facial landmarks. The connectivity between different facial landmarks, denoted
by G, are predefined. Fig. 9 gives an example of the predefined connectivity,
where the facial landmarks include eye pupils, nostrils and lip corners. The
dotted red lines show the connection between features. If feature p1 and p2 are
connected, g(p1;p2) = 1; otherwise g(p1;p2) = 0. Let T be a combination of the
landmark candidates. Considering the situation that some facial landmarks may
not be visible due to occlusions, we allow the combination that includes less
facial landmarks than defined. We use Gaussian function N (x; μ, σ) to model
the geometric configuration: the distance between the i-th and the j-th facial
landmarks is modeled by (μx

ij , σ
x
ij) and (μy

ij , σ
y
ij). μx

ij and μy
ij are the means of

Fig. 9. Facial landmarks and the geometric constrains
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the corresponding horizontal distance and the vertical distance respectively. σx
ij

and σy
ij are the corresponding variances. For the combination T , if pi = (xi, yi)

and pj = (xj , yj) are candidates for the i-th and j-th features respectively, their
distance is constrained by:

J (pi;pj) = N (xi − xj ; μx
ij , κσx

ij)N (yi − yj ; μ
y
ij , κσy

ij)g(pi;pj). (12)

κ is the relaxation factor. We set κ = 1.5 in our implementation. The overall
geometric matching score for the combination T is:

S(T ) =
√

q
N∏
i

N∏
j

J (pi,pj); (13)

where q =
∑N

i

∑N
j g(pi;pj) is the number of the connections between feature

candidates. Only a small number of possible combinations can get sufficient
high geometric matching score. A nearest neighbor classifier based on the SIFT
feature [17] descriptor is used afterwards to find the final result.

Assume Tp is a combination with sufficient high geometric score and is com-
posed by N features. For each facial landmark candidate, we compute its SIFT
feature descriptor, which is f1, · · · , fN . From the training samples, we can get a
dictionary of the corresponding SIFT feature descriptors for both positive and
negative samples. For the i-th feature, the dictionary for the positive sample is
Ωp

i and that for the negative samples is Ωn
i . The best match is found by:

T �
p = argmin

Tp

N∑
i=1

minfp∈Ωp
i
‖ fi − fp ‖

minfn∈Ωn
i
‖ fi − fn ‖ . (14)

The facial landmark can be determined accordingly from T �
p . Fig. 10 gives a

detection example of the facial landmarks defined in Fig. 7.

(a) First example. (b) Second example.

Fig. 10. Examples of the facial landmarks localization results. Fig.10(a) and Fig.10(b)
give two examples. In both Fig.10(a) and Fig.10(b), the leftmost images: the overall
posterior maps; the middle images: the candidates of the facial landmarks; the right-
most images: the final detected facial landmarks.
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5 Experimental Evaluation

In this paper we presented an integrated approach for facial landmark detection
in complicated background. More specifically, we apply the approach for ana-
lyzing driver’s videos from an in-car camera. As described above, our algorithm
has two steps. The first one is to segment the face pixels and the second is to
locate the facial landmarks from the segmented face pixels. We evaluated these
two steps separately, and then some combined results are shown.

5.1 Experimental Evaluation on Face Localization

We use an in-car camera facing the driver to get the testing videos. 5 subjects
are tested. The drivers were asked to drive naturally. There were illumination
changes caused by the weather, shadow and road conditions. For each subject

Fig. 11. Examples of the face detection results for different subjects. The black boxes
show the detected faces.

Table 1. Accuracy of the face localization results

Video Person1 Person2 Person3 Person4 Person5
Accuracy 377

400
325
400

356
400

332
400

326
400
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Fig. 12. Examples of the correctly detected eye features

12000 frames are collected, which are sub-sampled by every 30 frames to get
the testing images. Hence, we have 400 frames per subject as the testing set.
Examples of the detecting results are shown in Fig. 11. (Some subjects wear a
camera on the head for data collecting.) The detection accuracy is summarized
in table 1.

5.2 Experimental Evaluation on Facial Landmark Localization

In this section, the performance for facial landmark localization is evaluated.
Subjects from grayscale FERET database [18] in different poses were used for
evaluation. Images from FERET database have high resolutions. The images
are obtained under controlled illuminations that have certain variations and the
subjects assume variant poses from −90o to 90o. We use left eye landmarks,
which include the two eye corners and eye pupil center, for the evaluation. Lo-
cating such eye landmarks accurately is not an easy job. 70 subjects are used for
testing. Each subject takes 5 different poses. In our testing, we only takes the
images with poses from −60o to 60o. A different set of images from the FERET
database is used as the training samples. For every feature, there are 250 positive
training samples and 1000 negative training samples. For one image, if more than
two eye landmarks can be located correctly, this is called a correct detection.
The algorithm gives an accuracy of 90.9%. Fig. 12 gives some examples of the
eye landmark localization results. The red markers indicate the left corner. The
blue ones indicates the pupils. The green markers indicate the right corner. Not
every eye feature can be detected. However, the location of the missing features
can easily be inferred from the geometric configuration.

5.3 Facial Landmark Detection in In-car Video

The facial landmarks to be detected are shown in Fig. 7. We only allow up
to 2 facial landmarks missing. The algorithm is tested on the subjects without
sunglasses. In Fig. 13, more examples of the results are shown. Experiments
indicate that the extreme case of the profile views cannot get satisfied results
due to severe occlusion. This can actually be solved by succeed feature tracking
procedure.
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(a) (b)

(c) (d)

Fig. 13. Examples of the located facial landmarks. For Fig.13(a)-13(d), the first images:
the overall probability map for all face pixels; the second images: the detected facial
landmark candidates; the third images: detected facial landmarks. Blue markers show
the detected facial landmarks.

6 Conclusion

In this paper we proposed an integrated approach for facial landmark local-
ization in complicated background, especially for drivers’ video. Edge density
descriptors at different scales are combined with skin-color segmentation to de-
tect the face edge primitives, so as to segment the faces regions. A cascade of
probability learners exploiting AdaBoost is used. At each scale, the probabil-
ity of being a face edge primitive is modeled by an additive logistic regression
model. AdaBoost is used to learn the model. Edges that have sufficient large
probabilities are determined as the face edges. The position that contains most
face edges gives the bounding box of the faces. K-means clustering in the hue
space is applied to segment the face pixels from the bounding box, which con-
fines the facial landmarks searching window. The facial landmark localization
uses a two-level scheme. In the first level, Gabor wavelets de-correlate the im-
ages into features from different resolution. In each resolution, AdaBoost is used
to learn the posterior modeled by the additive logistic regression model. Facial
landmark candidates are obtained from the probability map. Different combina-
tions of these candidates are input into the second level for refinement. Only the
combinations that have high matching score to the geometric configurations are
kept. Nearest neighborhood matching using the SIFT features is used afterwards
to get the final facial landmark locations. We use FERET data as well as the
data from real in-car environment to evaluate the performance. A fairly good
results can be obtained. However, the performance for subjects with sub-glasses
is still not satisfied due to the difference in local appearance.
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Abstract. Face recognition under varying pose is a challenging problem, espe-
cially when illumination variations are also present. Under Lambertian model,
spherical harmonics representation has proved to be effective in modelling illu-
mination variations for a given pose. In this paper, we extend the spherical har-
monics representation to encode pose information. More specifically, we show
that 2D harmonic basis images at different poses are related by close-form linear
combinations. This enables an analytic method for generating new basis images
at a different pose which are typically required to handle illumination variations
at that particular pose. Furthermore, the orthonormality of the linear combina-
tions is utilized to propose an efficient method for robust face recognition where
only one set of front-view basis images per subject is stored. In the method, we
directly project a rotated testing image onto the space of front-view basis images
after establishing the image correspondence. Very good recognition results have
been demonstrated using this method.

1 Introduction

Face recognition is one of the most successful applications of image analysis and under-
standing. In spite of recent advances, robust face recognition under variable lighting and
pose remains to be a challenging problem. This is due to the fact that we need to com-
pensate for both significant pose and illumination change at the same time. It becomes
even more difficult when only one training image per subject is available. Recently,
methods have been proposed to handle the illumination problem when only one train-
ing image is available, for example, a statistical learning method [13] based on spher-
ical harmonics representation [1,9]. In this paper, we propose to extend the harmonics
representation to encode pose information. That is, all the harmonic basis images of a
subject at various poses are related to the front-view basis images via close-form lin-
ear combinations. Moreover, these linear combinations are orthonormal. This suggests
that recognition methods based on projection onto the harmonic basis images [1] for
rotated testing images can be made very efficient. We do not need to generate a new
set of basis images at the same pose as that of the testing images. In stead, we can
directly use the existing front-view basis images without changing the matching score
defined in [1].

W. Zhao, S. Gong, and X. Tang (Eds.): AMFG 2005, LNCS 3723, pp. 229–243, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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Fig. 1. The flow chart of the proposed face recognition system

We propose an efficient face recognition method that needs only one set of basis im-
ages per subject for robust recognition of faces under variable illuminations and poses.
The flow chart of our face recognition system is shown in Fig. 1. We have a single
training image at the frontal pose for each subject in the training set. The basis im-
ages for each training subject are recovered using a statistical learning algorithm [13]
with the aid of a bootstrap set consisting of 3D face scans. For a testing image at a
rotated pose and under an arbitrary illumination condition, we first establish the image
correspondence between the testing image and the training images. The frontal pose
image is then warped from the testing image. Finally, a face is identified for which
there exists a linear reconstruction based on basis images that is the closest to the
testing image.

The remainder of the paper is organized as follows: Section 2 introduces the related
work. The pose-encoded spherical harmonic representation is presented in Section 3
where we prove that the basis images at a rotated pose is a linear combination of the ba-
sis images at the frontal pose. Section 4 presents the complete face recognition system.
Specifically, in Section 4.1 we briefly summarize a statistical learning method to recover
the basis images from a single image when the pose is fixed. Section 4.2 describes the
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recognition algorithm, and the system performance is demonstrated in Section 4.3. We
conclude our paper in Section 5.

2 Related Work

Either pose variations or illumination variations may cause serious performance degra-
dation for existing face recognition systems. [17] examined these two problems and
reviewed some approaches to solving them. The early effort to handle illumination vari-
ations was to discard the first few principal components, which packs most of the energy
caused by illumination variations [2]. In this method, the testing image must have the
same pose as the training images. In [3], a template matching scheme was proposed to
handle pose variations. It needs many different views per person and no lighting varia-
tions are allowed. Approaches to face recognition under pose variations [8][6] avoid the
correspondence problem by storing multiple images at different poses for each person.
View-based eigenface methods [8] explicitly code the pose information by construct-
ing an individual eigenface for each pose. [6] treats face recognition across poses as a
bilinear problem and disentangles the face identity and the head pose.

Few methods consider both pose and illumination variations at the same time. The
synthesis method in [7] can handle both illumination and pose variations by reconstruct-
ing the face surface using the illumination cone method under fixed pose and rotating it
to the desired pose. A set of training images are required for each subject to construct
the illumination cone. [16] presented a symmetric shape-from-shading (SFS) approach
to recover both shape and albedo for symmetric objects. This work was extended in
[5] to recover the 3D shape of a human face using a single image. In [15], a unified
approach was proposed to solving the pose and illumination problem. A generic 3D
model was used to establish the correspondence and estimate the pose and illumination
direction. [12] presents a pose-normalized face synthesis method under varying illu-
minations using the bilateral symmetry of the human face. A Lambertian model was
assumed and single light source was considered. [18] extends the photometric stereo al-
gorithms to recover albedos and surface normals from one image under unknown single
distant illumination conditions.

Recent work on spherical harmonics representation has been independently con-
ducted by by Basri et al. [1] and Ramamoorthi [9]. It has been shown that the set of
images of a convex Lambertian object obtained under a wide variety of lighting con-
ditions can be approximated accurately by a low dimensional linear subspace. The ba-
sis images spanning the illumination space for each face can be rendered from a 3D
scan of the face [1] or estimated by applying PCA to a number of images of the same
subject under different illuminations [9]. Following the statistical learning scheme in
[10], Zhang et al. [13] showed that the basis images spanning this space can be recov-
ered from just one image taken under arbitrary illumination conditions when the pose
is fixed.

To handle both pose and illumination variations, 3D morphable face model has been
proposed. By far the most impressive face synthesis results were reported in [4] fol-
lowed with very high recognition rates, where the shape and texture of each face is
represented as a linear combination of a set of 3D face exemplars and the parameters
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are estimated by fitting a morphable model to the input image. In order to handle il-
lumination more effectively, a recent work [14] incorporates spherical harmonics into
the morphable model framework. Most of the 3D morphable model approaches are
computationally intense because of the large number of parameters that need to be
optimized.

3 Pose-Encoded Spherical Harmonics

The spherical harmonics are a set of functions that form an orthonormal basis for the
set of all square-integrable functions defined on the unit sphere [1]. It can be shown
that the irradiance can be approximated by the combination of the first nine spherical
harmonics for Lambertian surfaces. Any image of an object under certain illumina-
tion conditions is a linear combination of a series of basis images {bmn}. In order
to generate the basis images for the object, 3D information is required as shown in
Appendix A.

For a fixed pose, spherical harmonics representation has proved to be effective in
modelling illumination variations, even in the case when a bootstrap set of 3D mod-
els and only one training image per subject are available [13]. In the presence of both
illumination and pose variance, two possible approaches can be taken. One is to use
3D morphoable model to reconstruct the 3D model from a single training image and
then build spherical harmonic basis images at the pose of the testing image for recog-
nition [14]. Another approach is to require multiple training images at various poses in
order to recover the new set of basis images at each pose. However, multiple training
images are not always available and 3D morphoable model method could be compu-
tationally expensive. As for efficient recognition of a rotated testing image, a natural
question to ask is: can we represent the basis images at different poses using one set
of basis images at a given pose, say, the front-view pose? In this section, we address
this question by showing that 2D harmonic basis images at different poses are related
by close-form linear combinations. This enables an analytic method for generating new
basis images at different poses from basis images at one pose.

Assuming that the testing image is at a different pose (rotated view) as the train-
ing images (usually frontal view), we aim to derive the basis images at the rotated
pose from the basis images at the frontal pose, assuming that the correspondence be-
tween the rotated view and the frontal view has been built. The general rotation can
be decomposed into three concatenated rotations around the X , Y and Z axis, namely
elevation, azimuth and roll, respectively. Roll is an in-plane rotation that can be han-
dled much easily and will not be discussed here. The following theorem states that
the basis images at the rotated pose is a linear combination of the basis images at the
frontal pose, and the transformation matrix is a function of the rotation angles only.

Theorem 1. Assume a rotated view is obtained by rotating a front-view head with an
azimuth angle −θ. With the correspondence between the frontal view and the rotated
view, the basis images B′ at the rotated pose are related to the basis images B at the
frontal pose in the following linear form:
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If there is an elevation angle−β other than the azimuth angle−θ, the basis images
B′′ for the newly rotated view are related to B′ in the following linear form:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
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For proof of this theorem, please see Appendix B.
The basis images at various poses can be generated from a set of basis images at

the frontal pose using the linear relationship in (1) and (2). Although in theory new
basis images can be generated from a rotated 3D model inferred by existing basis im-
ages since basis images actually capture the albedo (b00) and the 3D surface normal
(b10, b

e
11, b

o
11) of a given human face. The procedure of such 3D recovery is not trivial

in practice, let alone the computational cost. Now we have proved that the procedure of
first rotating objects and then recomputing basis images at a desired pose can be totally
avoided.

It is easy to see that the coefficient matrices in (1) and (2) are block diagonal, thus
preserving the energy on each band n = 0, 1, 2. Moreover, the orthonormality of the
coefficient matrices helps to further simplify the computation required for recognition
of the rotated testing image as shown in Section 4.2.

We synthesized the basis images at arbitrary rotated poses from those at the frontal
pose using (1) and (2), and compared them with the ground truth in Fig. 2. The first row
through the third row are the results for subject 1, with the first row showing the basis
images at the frontal pose generated from the 3D scan, the second row showing the
synthesized basis images at the rotated pose (azimuth angle θ = −30o, elevation angle
β = 20o), and the third row showing the ground truth of the basis images at the rotated
pose. Rows four through six are the results for subject 2, with the fourth row showing the
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Subject 1: the basis images at the frontal pose generated from the 3D scan

Subject 1: the synthesized basis images at the rotated pose

Subject 1: the ground truth of the basis images at the rotated pose

Subject 2: the basis images at the frontal pose generated from the 3D scan

Subject 2: the synthesized basis images at the rotated pose

Subject 2: the ground truth of the basis images at the rotated pose

Fig. 2. Results of the synthesized basis images at the rotated pose. The first row through the third
row are the results for subject 1, with the first row showing the basis images at the frontal pose
generated from the 3D scan, the second row showing the synthesized basis images at the rotated
pose (with the azimuth angle θ = −30o and the elevation angle β = 20o), and the third row
showing the ground truth of the basis images at the rotated pose. Rows four through six are the
results for subject 2, with the fourth row showing the basis images at the frontal pose generated
from the 3D scan, the fifth row showing the synthesized basis images at another rotated pose
(with the azimuth angle θ = −30o and the elevation angle β = −20o) and the last row showing
the ground truth of the basis images at the rotated pose.

basis images at the frontal pose generated from the 3D scan, the fifth row showing the
synthesized basis images for another rotated view (azimuth angle θ = −30o, elevation
angle β = −20o), and the last row showing the ground truth of the basis images at the
rotated pose. As we can see from Fig. 2, the synthesized basis images at the rotated
poses have no noticeable difference with the ground truth.
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4 Face Recognition Using Pose-Encoded Spherical Harmonics

In this section we present an efficient face recognition method using pose-encoded
spherical harmonics. Only one training image is needed per subject and high recog-
nition performance is achieved even when the testing image is at a different pose from
the training image and under an arbitrary illumination condition.

4.1 Statistical Models of Basis Images

We briefly summarize a statistical learning method to recover the harmonic basis images
from only one image taken under arbitrary illumination conditions, as shown in [13].

We build a bootstrap set with 50 3D face scans and the texture information from
Vetter’s 3D face database [19], and generate 9 basis images for each face model. For
a novel d-dimensional vectorized image I , let B be the d × 9 matrix of basis images,
α a 9 dimensional vector and E a d-dimensional error term, we have I = Bα + E. It
is assumed that the pdf’s of B are Gaussian distributions and the sample mean vectors
μb(x) and the sample covariance matrixes Cb(x) are estimated from the basis images
in the bootstrap set. Fig. 3 shows the sample mean of the basis images estimated from
the bootstrap set.

b00 b10 b11e b11o b20 b21e b21o b22e b22o

Fig. 3. The sample mean basis images estimated from the bootstrap set

The problem of estimating the basis images B and the illumination coefficients α is
a coupled estimation problem because of its bilinear form. It is simplified by estimating
α in a prior step with kernel regression and using it consistently across all pixels to re-
cover B. K bootstrap images {Jk}Kk=1 with known coefficients {αk}Kk=1 are generated
from the 3D face scans in the bootstrap set. Given a new image itra, the coefficients
αtra can be estimated as

αtra =
∑K

k=1 wkαk∑K
k=1 αk

(3)

where wk = exp[− 1
2 (D(i, Jk)/σk)2] and D(i, Jk) = ‖i− Jk‖2, σk is the width of the

k-th Gaussian kernel which controls the influence of Jk on the estimation of αtra. All
{σk}Kk=1 are pre-computed in a way such that ten percent of the bootstrap images are
within 1× σk at each σk. The sample mean μe(x, α) and the sample variance σ2

e(x, α)
of the error term E(α) are also estimated using kernel regression, similar to (3).

Given a novel face image i(x), with the estimated coefficients α, the corresponding
basis images b(x) at each pixel x are recovered by computing the maximum a posteriori
(MAP) estimate, bMAP (x) = argmaxb(x)(P (b(x)|i(x))). Using Bayes rule:
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I b00 b10 b11e b11o b20 b21e b21o b22e b22o

Basis images recovery from a single image under arbitrary illumination conditions

Basis images recovery from a single image under arbitrary illumination conditions

Basis images recovery from a single image under arbitrary illumination conditions

Generated basis images at the rotated pose from the recovered basis images at the frontal pose

Ground truth of the basis images at the rotated pose

Fig. 4. Rows one though three show the basis images recovery from a single training image, with
the first column showing different training images I under arbitrary illumination conditions for
the same subject and the rest 9 columns showing the reconstructed basis images. Row four shows
the generated basis images at the rotated pose from the recovered basis images at the frontal pose,
and the fifth row show the ground truth of the basis images at the rotated pose.

bMAP (x) = argmaxb(x)P (i(x)|b(x))P (b(x))
= argmaxb(x)

{
N
(
b(x)T α + μe, σ

2
e

)
×N (μb(x), Cb(x))

}
(4)

Taking logarithm, and setting the derivatives of the right hand side of (4) (w.r.t b(x))
to 0, we get A ∗ bMAP = T , where A = 1

σ2
e
ααT + C−1

b and T = (i−μe)
σ2

e
α + C−1

b μb.

By solving this linear equation, b(x) of the subject can be recovered.
Combining Section 3 and Eq. (4), we illustrate in Fig. 4 the procedure of generating

the basis images at a rotated pose (azimuth angle θ = −30o) from a single training
image at the frontal pose. In the first part of Fig. 4, rows one though three show the
basis images recovery from a single training image, with the first column showing dif-
ferent training images I under arbitrary illumination conditions for the same subject
and the remaining 9 columns showing the reconstructed basis images. In the second
part of Fig. 4, row four shows the generated basis images at the rotated pose from the
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recovered basis images at the frontal pose, and the fifth row shows the ground truth of
the basis images at the rotated pose. As we can see from the plots, the basis images re-
covered from different training images of the same subject look very similar, although
not perfect.

4.2 Recognition

For recognition, we follow a simple yet effective algorithm given in [1]. A face is iden-
tified for which there exists a weighted combination of basis images that is the closest
to the testing image. Let B be the set of basis images at the frontal pose, with size d×r,
where d is the number of pixels in the image and r the number of basis images used.
We use r = 9 as it is a natural choice capturing 98 percent of the energy of all the
model’s images [1]. Every column of B contains one spherical harmonic image. These
images form a basis for the linear subspace, though not an orthonormal one. A QR de-
composition is applied to compute Q, a d × r matrix with orthonormal columns, such
that B = QR where R is an r × r upper triangular matrix.

For a testing image Itest at a rotated pose, we can efficiently generate the set of basis
images B′ at that pose for each training subject from Section 3. The orthonormal basis
Q′ of the space spanned by B′ can be computed by QR decomposition. The distance
from the testing image Itest to the space spanned by B′ is computed as dmatch =
‖Q′Q

′T Itest − Itest‖. However, this algorithm is not efficient overall because the set
of basis images B′, or the orthonormal basis Q′, has to be generated for each training
subject at the pose of an arbitrarily rotated testing image. The question is that can we
have an overall efficient recognition method. The answer is yes based on the following
lemma:

Lemma 2. The matching distance dmatch of a rotated testing image Itest based on the
basis images B′ at that pose is the same as the matching distance of a geometrically
synthesized front-view image If based on the basis images B.

Let C be the transpose of the combined coefficient matrices in (1) and (2), we
have B′ = BC = QRC by QR decomposition. Applying QR decomposition again
to RC, we have RC = qrRC where qr×r is an orthonormal matrix. We now have
B′ = QqrRC = QqrRC by assuming Qq = Qq. Since Qq is the product of two
orthonormal matrices, it forms a valid orthnormal basis for B′. Hence the matching dis-
tance is ‖QqQ

T
q Itest−Itest‖. Now QqQ

T
q = QqqT QT = QQT since q is orthonormal.

Hence the final matching distance is ‖QQT Itest − Itest‖. Recall this implies that the
cross-pose correspondence between Q (B) and Itest has been established. To make this
explicit, we use If , a geometrically warped front-view version of Itest, in the equation.

In brief summary, we now have a very efficient solution for face recognition to han-
dle both pose and illumination variations as only one image If needs to be synthesized.

The remaining problem is that how the frontal pose image If is warped from Itest.
Apparently the correspondence between the frontal pose and the rotated pose has to be
established for the testing image. Finding correspondence is always challenging. Most
of the approaches to handle pose variations utilized manually picked sparse features
to build the dense cross-pose or cross-subject correspondence. For Itest at an arbitrary
pose, 63 designed feature points (eyebrows, eyes, nose, mouth and the face contour)
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Fig. 5. Building dense correspondence between the rotated view and the frontal view using sparse
features. The first and second image show the sparse features and the constructed meshes on
the mean face at the frontal pose. The third and fourth image show the picked features and the
constructed meshes on the given testing image at the rotated pose.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 6. (a) shows the testing images of a subject at the pose with the azimuth θ = −30o under
different lighting conditions ((γ = 90o, τ = 10o), (γ = 30o, τ = 50o), (γ = 40o, τ = −10),
(γ = 20o, τ = 70o), (γ = 80o, τ = −20o) and (γ = 50o, τ = 30o) from left to right).
The testing images of the same subject under some extreme lighting conditions ((γ = 20o, τ =
−70o), (γ = 20o, τ = 70o), (γ = 120o, τ = −70o) and (γ = 120o, τ = −70o) from left to
right) are shown in (b). (c) and (d) show the generated frontal pose images from the testing images
in (a) and (b) respectively. The testing images at another pose (with θ = −30o and β = 20o) of
the same subject are shown in (e) and (f), with the generated frontal pose images shown in (g)
and (h) respectively.

were picked. A mean face from the training images at the frontal pose and the corre-
sponding feature points were used to help to build the correspondence between Itest

and If . Triangular meshes on both faces were constructed and barycentric interpolation
inside each triangle was used to find the dense correspondence. The number of feature
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Table 1. The correct recognition rates at two rotated pose under various lighting conditions

Illumination condition Correct recogni-
tion rate at the
pose θ = −30o

using our ap-
proach

Correct recogni-
tion rate with the
training images
at the same pose
available

Correct recog-
nition rate at
the pose θ =
−30o, β = 20o

using our ap-
proach

Correct recogni-
tion rate with the
training images
at the same pose
available

(γ = 90o, τ = 10o) 94% 94% 94% 94%
(γ = 30o, τ = 50o) 92% 100% 96% 100%
(γ = 40o, τ = −10o) 90% 100% 92% 100%
(γ = 70o, τ = 40o) 94% 100% 100% 100%
(γ = 80o, τ = −20o) 80% 96% 86% 94%
(γ = 50o, τ = 30o) 94% 100% 100% 100%
(γ = 20o, τ = −70o) 86% 96% 94% 100%
(γ = 20o, τ = 70o) 86% 92% 96% 96%
(γ = 120o, τ = −70o) 42% 76% 62% 78%
(γ = 120o, τ = 70o) 58% 84% 84% 86%

points needed in our approach is comparable to the 56 manually picked feature points
in [14] to deform the 3D model. Fig. 5 shows the feature points and the meshes on the
mean face at the frontal pose and on a testing image at a rotated pose.

4.3 Recognition Results

We conducted the recognition experiments on Vetter’s 3D face model database [19] for
the sake of controllability and the convenience of comparison. There are totally 100 3D
face models in the database, wherein 50 of them were used as the bootstrap set and
the other 50 were used to generate training images. We synthesized the training images
under a wide variety of illumination conditions with the 3D scans of the subjects. For
each subject, only one frontal view image was stored as training image and used to
recover the basis images B using the algorithm in Section 4.1. The orthonormal basis
Q of the space spanned by B was obtained by applying QR decomposition to B. For
a testing image Itest at an arbitrary pose, the frontal pose image If was synthesized by
warping Itest, and the recognition score was computed as ‖QQT If − If‖.

We generated the testing images at different poses from the training images by ro-
tating the 3D scans and illuminated them with various lighting conditions (represented
by slant angle γ and tilt angle τ ). Fig. 6 (a) shows the testing images of a subject
at the pose with the azimuth angle θ = −30o and under 6 different lighting condi-
tions. We also did experiments under some extreme lighting conditions as shown in
Fig. 6 (b). The corresponding frontal pose images were synthesized as shown in Fig.
6 (c) and (d) respectively. The correct recognition rates obtained by using ‖QQT If −
If‖ for all these illumination conditions are listed in column 2 of Table 1. The test-
ing images at another pose (with θ = −30o and β = 20o) of the same subject are
shown in Fig. 6 (e) and (f), with the generated frontal pose images shown in Fig.
6 (g) and (h) respectively and the correct recognition rates listed in column 4 of
Table 1.



240 Z. Yue, W. Zhao, and R. Chellappa

As an comparison, we also conducted the recognition experiment on the same test-
ing images assuming that the training images at the same pose are available, as most
of the approaches suggested. By recovering the basis images B at that pose using the
algorithm in Section 4.1 and computing ‖QQT Itest − Itest‖, we achieved the correct
recognition rates as shown in column 3 and column 5 of Table 1 respectively, in corre-
spondence with the two poses mentioned above. As we can see, the recognition rates
using our approach are comparable to those when the training images at the rotated pose
are available.

We have to point out that if the the testing image has a large pose variation from the
frontal pose, it is inevitable that part of the face is self-occluded (Fig. 6). To have good
recognition result, only the visible part of the face is used for recognition. Accordingly,
only the visible parts of the basis images at the frontal pose are used as well.

5 Discussions and Conclusion

We have presented an efficient face recognition method to handle arbitrary pose and
illumination from a single training image per subject using pose-encoded spherical har-
monics. With a pre-built 3D face bootstrap set, we use a statistical learning method to
obtain the spherical harmonic basis images from a single training image. We then show
that the basis images at a rotated pose is a linear combination of the basis images at the
frontal pose. For a testing image at a different pose from the training images, recognition
is accomplished by comparing the distance from a warped version of the testing image
to the space spanned by the basis images of each model. Experimental results show that
high recognition rate can be achieved when the testing image is at a different pose and
under an arbitrary illumination condition. We are planning to conduct experiments using
the proposed approach on larger databases such as the CMU-PIE [11] database.

In the proposed method and existing methods where only one training image is
available, finding the cross-correspondence between the training images and the testing
image is inevitable. If the testing image is at a pose around the Y -axis only, a simpler
method can be used to find the self-correspondence of the testing image by exploit-
ing the bilateral symmetry of the human face. As a result, we do not need to build
the cross-subject correspondence between the testing image and the training images.
Unfortunately, automatic computation of these correspondences is not a trivial task and
manual operation is required in existing methods. We are looking into possible solutions
to address this issue.
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Appendix A: Harmonic Basis Images

The harmonic basis image intensity of a point p with surface normal n = (nx, ny, nz)
and albedo λ can be computed as (5), where nx2 = nxnx. ny2 , nz2 , nxy , nxz, nyz are
defined similarly. λ. ∗ t denotes the component-wise product of λ with any vector t.

b00 =
1√
4π

λ, b10 =

√
3
4π

λ. ∗ nz, be
11 =

√
3
4π

λ. ∗ nx, bo
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√
3
4π

λ. ∗ ny,
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5
4π
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5
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5

12π
λ. ∗ nyz,
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22 =

3
2

√
5

12π
λ. ∗ (nx2 − ny2), bo

22 = 3

√
5

12π
λ. ∗ nxy (5)
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Appendix B: Proof of Theorem 1

Assume that (nx, ny, nz) and (n′
x, n′

y, n′
z) are the the surface normals of point p at the

frontal pose and the rotated view respectively. (n′
x, n′

y, n′
z) is related to (nx, ny, nz) as⎡⎣n′

x

n′
y

n′
z

⎤⎦ =

⎡⎣ cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

⎤⎦⎡⎣nx

ny

nz

⎤⎦ (6)

where−θ is the azimuth angle.
By replacing (n′

x, n′
y, n′

z) in (5) with (nz sin θ + nx cos θ, ny, nz cos θ − nx sin θ),
and assuming the correspondence between the rotated view and the frontal view has
been built, we have

b′00 =
1√
4π

λ, b′10 =

√
3
4π

λ. ∗ (nz cos θ − nx sin θ),

b
′e
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√
3
4π
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′o
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√
3
4π
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√
5
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λ. ∗ (2(z cos θ − nx sin θ)2 − (nz sin θ + nx cos θ)2 − n2
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√
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√
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λ. ∗ (nz sin θ + nx cos θ)ny (7)

Rearranging, we get

b′00 = b00, b′10 = b10 cos θ − be
11 sin θ, b

′e
11 = be

11 cos θ + b10 sin θ, b
′o
11 = b11,

b′20 = b20 −
√

3 sin θ cos θbe
21 −
√

5
4π

3
2

sin2 θ(n2
z − n2

x),

b
′e
21 = (cos2 θ − sin2 θ)be

21 + 3

√
5

12π
sin θ cos θ(n2

z − n2
x),

b
′o
21 = bo

21 cos θ − bo
22 sin θ,

b
′e
22 = be

22 + cos θ sin θbe
21 +

√
5

12π

3
2

sin2 θ(n2
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x),

b
′o
22 = bo

22 cos θ + bo
21 sin θ. (8)

As shown in (8), b′00, b
′
10, b

′e
10, b

′o
11, b

′o
21 and b

′o
22 are in the form of linear combination

of the basis images at the frontal pose. For b′20,b
′e
21 and b

′e
22, we need to have (n2

z − n2
x)

which is not known. From [1], we know that if the sphere is illuminated by a single di-
rectional source in a direction other than the z direction the reflectance obtained would
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be identical to the kernel, but shifted in phase. Shifting the phase of a function dis-
tributes its energy between the harmonics of the same order n (varying m), but the
overall energy in each order n is maintained. The quality of the approximation, there-
fore, remains the same. This can be verified by b

′2
10 + b

′e2
11 + b

′o2
11 = b2

10 + be2
11 + bo2

11 for
the order n = 1. Noticing that b
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22, we still need b
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22 to preserve the energy for the order n = 2.
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Then
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Having b
′2
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′e2
21 + b
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22 and Q = P cos θ
sin θ , we get
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The two possible roots of the polynomial gives P = −2 sin θ cos θbe
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− sin2 θ(be
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√

3b20). Taking P = −2 sin θ cos θbe
21 into (9) gives b′20 = b20, b
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22, which is apparently incorrect. Therefore, we have P = − sin2 θ(be
22−√
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√
3b20). Substituting them in (9) we get
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√
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Using (8) and (10), we can write the basis images at the rotated pose in the matrix form
of the basis images at the frontal pose, as shown in (1).

Assume there is an elevation angle −β after the azimuth angle −θ and denote
(n′′

x, n′′
y , n′′

z ) as the surface normal for the new rotated view, we have⎡⎣n′′
x

n′′
y

n′′
z

⎤⎦ =

⎡⎣1 0 0
0 cosβ − sinβ
0 sin β cosβ

⎤⎦⎡⎣n′
x

n′
y

n′
z

⎤⎦ (11)

Repeating the above derivation easily leads to the linear equations in (2) which relates
the basis images at the new rotated pose to the basis images at the old rotated pose.



 

W. Zhao, S. Gong, and X. Tang (Eds.): AMFG 2005, LNCS 3723, pp. 244 – 254, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

Advantages of 3D Methods for Face Recognition 
Research in Humans 

Chang Hong Liu1 and James Ward2 

1 Department of Psychology, University of Hull, 
Hull, HU6 7RX, United Kingdom 

C.H.Liu@hull.ac.uk 
2 Department of Computer Science, University of Hull, 

Hull, HU6 7RX, United Kingdom 
J.W.Ward@dcs.hull.ac.uk 

Abstract. Research on face recognition in humans has mainly relied on 2D im-
ages. This approach has certain limitations. First, observers become relatively 
passive in face encoding, although in reality they may be more spontaneous in 
exploring different views of a 3D face. Moreover, the volumetric information of 
a face is often confined to pictorial depth cues, making it difficult to assess the 
role of 3D shape processing. This paper demonstrates that 1) actively exploring 
different views of 3D face models produces more robust recognition memory 
than passively viewing playback of the same moving stimuli, 2) face matching 
across 2D and 3D representations typically incurs a cost, which alludes to 
depth-cue dependent processes in face recognition, and 3) combining multiple 
depth cues such as stereopsis and perspective can facilitate recognition per-
formance even though a single depth cue alone rarely produces measurable 
benefits. 

1   Introduction 

Research on face recognition in humans has mainly relied on 2D pictures. An implicit 
assumption of this approach is that face recognition in pictures reveals the truth about 
face recognition in general. While the resemblance between a real face and its photo-
graphic representation is hardly in question, face recognition in the real world may 
employ additional information that is not available in a 2D representation. The most 
obvious difference between a real face and a photograph is their depth information. 
Whereas a photograph contains only monocular depth cues, a face in reality contains 
both monocular and binocular depth cues. This rich depth information may allow 
more precise encoding of facial surface geometry.  

Furthermore, unlike photographic images, faces and observers in reality are rarely 
stationary. Although increasing numbers of researchers use dynamic face stimuli [21], 
a crucial difference between perception of a face in motion pictures and a face in 
reality remains. Perception of a real face is an interactive process in the sense that the 
relative motion of the face and its observer determines resulting viewpoint of the face. 
The observer may from time to time actively engage in this interaction to deliberately 
register certain desired facial features. This means that face perception in reality in-
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volves the observer’s head movements and locomotion. Research methods based on 
2D images do not allow researchers to assess the role of this active process.  

In this paper, we will review how these issues are tackled by some recent studies 
that employed 3D face models and visualization methods. Before that, we will briefly 
review some prior research that has pioneered the use of 3D methods in psychology. 

1.1   Using 3D Face Models 

Despite their limitations, photographic materials are still considered as better alterna-
tives to life models in behavioral research. The main reason that life models have 
never become a popular choice is that they are susceptible to extraneous variables. 
Photographs allow much better control of variables such as pose, lighting, and facial 
expression, although at expense of poorer applicability of the research to real-world 
face recognition.  

The use of 3D models offers a promising solution to the problems facing 2D im-
ages and life models. When 3D laser-scanned models are shown in virtual environ-
ments, for example, they not only can mimic reality more closely, but also allow a 
 

 

Fig. 1. Face shape defined by shading.  The first row shows a top-lit and a bottom-lit face. The 
second row shows a bottom-lit face in a stereo pair. Bottom-lit faces are more difficult to rec-
ognize. Although this is sometimes attributed to disruption of 3D shape reconstruction from 
shading, stereopsis does not rectify this difficulty [20]. 
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similar level of control over experimental variables. In the early days when the 3D 
method was first used in behavioral research, however, it was the potential to manipu-
late certain variables in face recognition that attracted most attention.  

Laser-scanned faces were used in numerous studies since the early 1990s. Unlike 
photographs, laser-scanned models allow separation of 3D surface information from 
color or pigmentation information. Using this advantage, Bruce and her colleagues 
studied contributions of shading and surface information in face perception without 
presence of color or facial textures [3, 4, 5, 11, 12, 25]. Fig. 1 shows images of an 
example face defined by shading information alone. Although shape-from-shading is 
an important source of information for human face recognition, the effectiveness of 
this information is limited to top-lit faces [17]. The disadvantage of bottom-lit faces 
cannot be corrected by stereo cues, showing that shape-from-shading overrides shape-
from-stereo in face processing [18].  

The relative contributions of face shape and texture can be assessed by using 3D 
morphing techniques, where face shape and texture are selectively normalized onto an 
average [23, 24]. Similar techniques also allow separation of motion from shape or 
texture gradients from shading, making it possible to measure the contribution of non-
rigid motion and texture gradients [13, 14, 19, 27].  

The studies described so far have mainly attempted to separate out contributions 
from various sources of information in face perception. Their use of 3D methods 
involved reduction of information such that the information of interest could be stud-
ied in isolation. This line of approach, however, needs to be complemented by a syn-
thetic approach, whereby different sources of information are combined rather than 
subtracted. Clearly, 3D models can be comfortably adapted to research in either direc-
tion. It is the combination of information that makes 3D models more credible substi-
tutes for live models. It allows researchers to assess whether there is any difference 
between face recognition in pictures and face recognition in reality. At present, rela-
tively fewer attempts have been made in this direction. In this paper, we will present 
some of our recent studies that were aimed to explore the roles of active exploration 
and 3D information commonly found in real-world face perception. 

1.2   Methods of Stimulus Presentation 

To examine the role of active exploration in face recognition, it is necessary to present 
3D face models in real time for observer-face interaction. Most research, however, 
pre-renders 3D faces under the desired image conditions. For example, a study de-
signed to measure the effect of pose change on face recognition would render 3D 
faces in various views. The rendered scenes are captured and saved as 2D images for 
later use in planned experiments. However, this method is not suitable to study the 
role of active exploration, because the views of a face in such a study have to be dy-
namically affected by the observer’s exploratory actions.  

We developed a software tool recently to allow the observer to explore views of a 
3D face with a joystick [26]. The software is a user interface between the MATLAB 
programming environment and graphics libraries that operates directly on 3D face 
models and creates the desired image conditions in real time. Instead of retrieving 
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pre-rendered images, joystick feedback or simple MATLAB commands are used to 
control simulated rigid motion of a 3D face model.  

Unlike the pre-rendering method, the interactive feature reduces the difference be-
tween real faces and face images used in laboratory settings.   

2   Active Exploration Improves Recognition Performance 

Very little is known about whether spontaneous and active exploration of stimuli 
plays a role in visual cognition. The issue has only been investigated in computer 
generated novel objects [10]. Observers in the active condition explored the objects 
with a track ball during the training session, whereas those in the passive condition 
simply viewed the playbacks of the rotated objects generated by the active observers. 
It was found that active observers recognized trained objects more quickly than pas-
sive observers. However, there was no difference between the accuracy scores of the 
two conditions. The study leaves two unanswered questions. First, it is not clear 
whether recognition of a novel class of objects is readily applied to that of a familiar 
class of objects. Even if the answer is positive, it is still unclear whether recognition 
for a class of birds, for example, would be similar to recognition of faces. Unlike any 
other class of objects, faces are discriminated at individual level without deliberate 
training. Second, and perhaps more importantly, it is not clear whether recognition 
accuracy could be affected by active exploration. Accuracy is arguably a more impor-
tant measure of identification in forensic and social settings. It is certainly also a more 
critical measure of face recognition in engineering. 

We conducted a series of experiments aiming to answer these questions. We used a 
standard recognition task in a yoked design. The task involved remembering eight 
faces presented once at the learning session, and later identifying them at the test 
session where the trained faces were mixed with eight new ones. Observers in the 
active condition explored views of faces via a joystick, whereas observers in the pas-
sive condition simply viewed the replay of the same sequence of face stimuli gener-
ated by the active observers. The range of possible views for exploration is shown in 
Fig. 2. The initial view of each face was determined randomly from this range. Three 
experiments were conducted in which the condition of active exploration was varied. 

2.1   Active Exploration at Both Training and Test Sessions  

In the first experiment, active observers were allowed to explore the faces during both 
training and test sessions of the task. Active observers also decided how long they 
wished to explore each face at each trial before moving onto the next trial. Passive 
observers viewed the same views for the same length of time as the active observers. 
A total of 101 undergraduate students were randomly assigned to the two conditions. 

It was found that the active condition produced better recognition accuracy  
(M = 83.5%, SD = 16.4) than the passive condition (M = 73.5%, SD = 19.7), F (1, 99) 
= 10.59, p < .002. The result shows that human observers acquire more robust recog-
nition memory of faces when they are able to interactively control the views of faces. 
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Fig. 2. Limits of rotation (x = ±55º, y = ±30º) from the frontal view in the center. The laser-
scanned face database used in the present study was obtained from University of South Florida. 

2.2   Active Exploration Only at Training Session 

The advantage of active exploration found in the first experiment could either be due 
to spontaneous control of training views or correlations between the explored views at 
training and test. In order to determine whether active exploration at training could by 
itself produce better recognition performance, we ran the second experiment where 
active participants could explore views of faces only during the training session. A 
total of 80 undergraduate students participated. Other aspects of the experiment were 
identical to the first experiment.  

The results showed again that the active condition scored higher on recognition ac-
curacy (M = 79.1%, SD = 16.0) than the passive condition (M = 72.3%, SD = 18.6), F 
(1, 78) = 4.66, p < .03, although the mean difference between the two conditions was 
somewhat lower than that of the first experiment. The result shows that the advantage 
of the active condition cannot be simply due to correlations of the face views explored 
at training and test. 
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2.3   Active Exploration Only at Training Session Within a Fixed Duration 

Both experiments described so far allowed active observers to decide the duration of 
face stimuli on the display. Because preferred inspection time may well differ from 
one observer to another, the inability to decide the length of inspection time in the 
passive condition may have been a disadvantage that contributed to the different per-
formance between the two conditions. To investigate this possibility, we ran another 
experiment where the time to explore each face was fixed at 10 s such that observers 
in both conditions inspected the faces for the same duration. This specific duration 
was based on the data from the first experiment where observers on average spent 
10.6 s (SD = 5.7) learning each face. Again, observers in the active condition only 
explored the views of faces during the training session. A total of 60 undergraduate 
students were tested. Other aspects of the experiment were the same as before.  

Results again favored the active condition (M = 81.5%, SD = 8.9) over the passive 
condition (M = 75.6%, SD = 12.8), F (1, 58) = 4.22, p < .05. This experiment thus 
rules out the possibility that the advantage of the active condition in the previous 
experiments was merely due to the free control of preferred learning duration in that 
condition.  

These experiments present the first converging evidence that actively explored face 
views during learning can improve the accuracy of face recognition memory.  

3   Relevance of 3D Shape Information in Face Processing 

Both image-based and model-based approaches to face recognition have been devel-
oped in engineering over the past decades (see [8] and [28], for a review). A key dif-
ference between these two approaches is whether they involve face processing based 
on volumetric information. The psychological status of these approaches remains 
largely unknown. Although shading and motion related effects reported in psychology 
are often attributed to 3D shape processing, studies to date have not yet found con-
vincing evidence that the brain encodes 3D volumetric information of faces for  
recognition.  

The obvious way to test the hypothesis that 3D information is used in face process-
ing is to assess to what extent 3D cues assist face recognition. Research to date has 
failed to find any use of some key 3D information, such as stereopsis [18, 20] and 
linear perspective [15, 16]. Although stereo is often considered a more reliable cue for 
3D shape than shading and other cues [6], it is shading information that prior research 
has found to be far more important in face recognition. For example, faces in line 
drawings that are devoid of shading information are more difficult to recognize than 
photographs [3, 7]. Stereopsis, on the other hand, hardly produces any measurable 
effect on face recognition. If face recognition does rely on reconstruction of 3D sur-
face, such a result would appear rather surprising. Intuitively, the 3D shape of a face 
should be more easily perceived with stereo information. For example, the height of a 
nose from a frontal view of a face can only be accurately estimated when this infor-
mation is available. The diminished importance of stereo information has prompted 
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the conclusion that the visual system mainly uses 2D information for face processing 
[18]. Shading is merely treated as a 2D pattern rather than a cue to 3D shape. 

However, two questions remain. First, if 2D information plays a key role in face 
processing, is a 3D face simply encoded as a collection of 2D images just like the way 
a face in photographs would be encoded? Second, can certain combinations of 3D 
cues facilitate face recognition even though each of these cues alone fails to do so? 
We addressed the first question by looking at how well faces can be identified across 
their 2D and 3D representations and the second question by measuring how the 
combination of stereo with linear perspective affects recognition performance. 

3.1   Transfer Between 2D and 3D Representations 

Matching a 2D face image to a 3D face requires ignoring unmatched depth cues. If a 
3D face is simply encoded as 2D images, there should be no cost for such matching. 
To determine whether face recognition is affected by differences between 2D and 3D 
representations, we conducted two experiments where the dimensionality of the im-
ages used at training and test were either congruent or incongruent [20]. We used two 
congruent conditions. In the congruent stereo condition, both images of a face used at 
training and test were presented with stereo information. In the congruent mono con-
dition, both of these images were presented without stereo information. In the incon-
gruent condition, one of the images was presented with stereo, and the other without, 
and vice versa.  

Face images at training and test were always presented in two different views (full-
face and 3/4) to avoid matching based on trivial image similarity alone. Both stereo 
and mono images were observed through shutter glasses. One experiment employed a 
standard recognition task with a between-subject design. The task was to decide 
whether the faces presented at the test session had been shown at the training session. 
Another experiment was a matching task using a within-subject design. The task was 
to decide whether two sequentially displayed images were of the same person. 

Both experiments found significant main effects, F (2, 187) = 4.16, p < .02, and F 
(2, 112) = 6.85, p < .001, for the recognition and matching experiments respectively. 
Bonferroni post-hoc tests showed that the congruent stereo condition produced a sig-
nificantly higher accuracy (M = 74.3%, SD = 10.0) than the incongruent condition (M 
= 68.8%, SD = 10.7) in the recognition experiment. In the matching experiment, the 
accuracy scores in both congruent conditions (Ms = 86.0 and 85.7%, SDs = 8.3 and 
7.7, respectively, for the congruent stereo and congruent mono conditions) were sig-
nificantly higher than that in the incongruent condition (M = 82.3%, SD = 9.4). No 
difference was found between results of the congruent stereo and congruent mono 
conditions in either experiment. 

3.2   Combination of Depth Cues May Facilitate Face Recognition 

Evidence to date appears to deny any usefulness of 3D information in face processing. 
Nevertheless, it remains possible that the usefulness of this information depends on 
certain combinations of cues. We recently tested this hypothesis in a recognition task 
where face stimuli with several levels of perspective transformation were either pre-
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sented in stereo or without stereo. Faces were trained and tested at different distances 
simulated on a computer screen. As Fig. 3 shows, the 2D projections of facial features  
and the configuration of a face can be quite different from two camera distances. In a 
relatively large perspective transformation such as in Fig. 3A, the projection from the 
near camera not only results in a larger image overall, but also produces quite consid-
erable differences in 2D shape. It has visibly larger internal facial features such as the 
nose and eyes, and smaller peripheral features such as the neck and fading ears than 
the image projected from the far camera distance. In order to perceive the correspon-
dence between the two projections despite their image differences, the observer needs 
to compensate for the differences caused by perspective transformation.  
 

We used four levels of perspective transformation which ranged from large to no 
transformation. The mean visual angles subtended from the vertical extent of the faces 
(defined by the length from the top edge of the forehead to the tip of the chin) to the 
observer at these distances are shown in the second and third columns of Table 1. 
Each face was trained at a far distance and later tested at a near distance or vice versa. 
Each observer performed the task twice using two different sets of faces, once with 
stereo and once without. The order of the two conditions was counterbalanced.  

Results for the mono and stereo condition under perspective transformation are 
shown in the last two columns of Table 1. We found a significant main effect of per-
spective transformation, F (3, 185) = 27.54, p < .001. Namely, the greater the distance 
between the training and test face locations, the more difficult it is to identify the two 
images as the same person. However, when stereo information was available, 

Fig. 3. Four levels of perspective transformation between training and test. A. Large transfor-
mation. B. Medium transformation. C. Small transformation. D. No transformation. 
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recognition performance was less affected by perspective transformation, F (3, 185) = 
13.72, p < .001. Overall, recognition in the stereo condition was 5% better than the 
mono condition. Even at a small perspective transformation, the stereo condition 
produced better performance. The stereo advantage diminished when perspective 
transformation was not present. 

Table 1. Percentage accuracy as a function of perspective transformation and presence of 
stereopsis 

Face Size Mean Accuracy (%) Perspective 
Transformation Near Far Mono Stereo 

    Large 31.7º  9.9º 63.8 70.9 
    Medium  25.8º  12.9º 66.7 74.4 
    Small 22.1º 16.7º 80.2 84.3 
    None  19.5º    19.5º 87.2 87.5 

The results show that stereo information can play a role in face processing but only 
when it is combined with certain other 3D cues. Clearly, not all combinations of depth 
cues facilitate recognition performance. For example, recognition using shading in-
formation alone is similar to recognition using both shading and stereo information as 
demonstrated in this and prior studies [18]. 

4   Conclusions 

The benefits of 3D methods in behavioral research of face perception were recognized 
since the early infancy of the technology. However, it is not till quite recently that 
these methods have been applied to more realistic settings.  Using 3D methods, our 
studies have revealed a number of previously unknown facts about face recognition in 
humans. First, we found that actively exploring views of a face can lead to improved 
learning and more robust recognition memory of that face. Second, our results 
showed that although faces trained and tested in 2D images produce equivalent rec-
ognition performance to faces trained and tested in 3D images, transfer from 2D to 3D 
or vice versa results in reduced recognition performance. Last, stereopsis can enhance 
face recognition when combined with linear perspective.  

These findings show that face recognition may rely on more resources in reality 
than most research has suggested so far. These resources have not been fully investi-
gated due to the limitations of 2D face images used in laboratory research. However, 
these unexplored territories can now be more systematically examined using 3D 
methods.  

Our results show that using 3D faces in virtual environments leads to better identi-
fication performance. This may have promising implications for forensic applications. 
Currently, 2D mug shots and video parade systems are still dominant in this field. 
Simulated 3D environments offer an eyewitness the opportunity to explore any arbi-
trary views of a suspect in a police lineup parade, along with depth cues that are more 
compatible with real environments. Because recognition of unfamiliar faces is highly 
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view or image dependent [9], being able to explore a face in various pose conditions 
should improve the chance of successful identification. 

Understanding the benefits of 3D information in human face recognition should 
help engineers to determine what kind of face recognition software is useful to human 
users. If 3D models facilitate face recognition, it would be sensible to develop soft-
ware capable of 3D face synthesis from video or photographic images for use in eye-
witness identification.  

Apart from practical implications, our research on the role of 3D information in 
face recognition was aimed to shed some light on the psychological basis of the im-
age-based and model-based theories. Consistent with some prior findings [15, 16, 18], 
our recent research suggests that 3D information plays a relatively minor role in hu-
man face perception. There may be few processes in the brain for reconstruction of 
3D structures, or at least such reconstruction is not necessary. However, it has also 
become clear that the human visual system does employ 3D information for face 
processing and this can at times improve or optimize recognition performance. In-
deed, the utility of the 3D information may have been underestimated given that sys-
tematic research on the effects of combination of 3D cues has just started. Whether 
other combinations of depth cues such as motion parallax and stereopsis affect face 
recognition will become issues for future research.  
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Abstract. Our team has collected a face video database named the
CMU Face In Action (FIA) database. This database consists of 20-second
videos of face data from 180 participants mimicking a passport checking
scenario. The data is captured by six synchronized cameras from three
different angles, with an 8-mm and 4-mm focal-length for each of these
angles. We performed the collection in both a controlled, indoor environ-
ment and an open, outdoor environment for each participant. Our data
collection was taken in three sessions over a period of ten months. We
aimed for a three month separation between sessions for each partici-
pant. We expect the database to be useful for analysis and modeling of
faces and gestures.

1 Introduction

There are many existing databases containing face images under controlled con-
ditions, FERET [1], CMU PIE [2], ORL [3], Yale Database [4], UMIST [5].
However, as more and more researchers begin working on video-based face recog-
nition as opposed to traditional image-based face recognition, there is a greater
demand for a database of human faces in video sequences. With such a database,
the benefits of video-based face recognition can be explored.

Fig. 1. Sample images of the Face In Action database taken from the three 8-mm focal-
length cameras. Here we show 10 intermittent frames among the 600 JPEG images to
give a clear idea of our face video data.
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We have collected such a face video database, calling it CMU Face In Action
(FIA) database (Figure 1). The collection was performed for 180 participants
in both indoor and outdoor environments, three times per participant, over a
ten month period. We captured our videos from three different angles, with
two different focal-lengths for each angle. For each of these 20-second videos,
participants were asked to mimic a passport checking scenario, providing a large
range of gestures, facial expressions, and motions.

(a) Session 1( Aug, 2004), indoor (b) Session 1( Aug, 2004), outdoor

(c) Session 2( Dec, 2004), indoor (d) Session 2( Dec, 2004), outdoor

(e) Session 3( Apr, 2005), indoor (f) Session 3( Apr, 2005), outdoor

Fig. 2. Frame number 300 of 600 for the indoor (left) and outdoor (right) scenar-
ios from all three sessions. User-dependent gestures and expression variations are
expected.
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2 Database Variation

In face database collection, one samples the face in multiple dimensions, such as
pose, illumination, expression, aging, etc. In our CMU FIA capturing system, we
sampled in the following dimensions: motion, pose, image resolution, illumination
and variations over time.

Motion and pose were left participant-dependent. In order to vary image res-
olution, we utilized two focal lengths for each angle from which we captured. To
sample variations over time, we conducted our data collection in three sessions,
aiming for three months separation between sessions. Illumination was varied by
our two different environments: a controlled, indoor environment and an open,
outdoor environment. The indoor environment was fixed with a blue background
and fluorescent lighting. The outdoor environment utilized natural lighting, that
could be affected by season and climate as seen as Figure 2. The variables that
remained constant between these environments were the data rate and quality
of the videos, camera angles, procedure, and the face of each participant. The
poses for each sequence will have varied, as they are dependent to the partici-
pant. The sequences from the outdoor scenario can be used to study how well a
video-based face recognition system performs in a natural setting.

2.1 Equipment

For our video collection, we utilized six OEM-style IEEE-1394 board level Drag-
onfly cameras (Figure 3) from Point Grey Research Inc. [6], along with their
corresponding synchronizing mechanisms. The cameras utilize the Sony ICX424
sensor, which has a maximum resolution of 640x480 pixels and 24-bit true color
images (RGB), and a maximum frame rate of 30 Hz. The cameras were put on
adjustable arms of two identical aluminum carts, one used in our indoor scenario
and the other for our outdoor scenario. One IEEE-1394 bus can process a data
stream from a maximum of three cameras, based on the data rate of 640x480
pixels at 30 frames per second. Therefore, we utilized two separate buses, each
responsible for synchronizing three cameras. Since we were aiming to synchronize

Fig. 3. The Dragonfly camera from Point Grey Research Inc. (left). The Synchroniza-
tion Unit (right) plays the role of synchronizing two IEEE-1394 buses.
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all six cameras together for our database, and only three cameras may be syn-
chronized on one bus, we attached the two buses, each processing three cameras,
into a separate camera synchronization unit, which then serves to synchronize
the two groups together. Based on our experiences, the speed of the hard drive,
rather than the CPU speed, is the bottleneck of the capturing system. We used
more memory as cache to compensate for the latency of the hard drive. Even
so, we occasionally encountered “out of sync” frames. For the purpose of our
database, out of a total 600 frames, we made sure to keep this number of “out of
sync” frames to under 60 in the indoor scenario, and under 150 in the outdoor
scenario. In most cases, we had no “out of sync” frames.

2.2 Positioning

As shown in Figure 4, we have built a cart for mounting the capturing system.
There are six cameras on the C-shape arm whose height can be adjusted man-
ually from 1.5 meters to 1.7 meters according to the different height of each
participant. All of the cameras point to the same center spot from a distance
of 0.83 meters. We placed a red cross mark on the floor at this center spot as
a reference point for our participants. Since the C-shape arm can be adjusted
vertically by the linear bearing according to the height of the subject, the face is
essentially captured by three pairs of cameras with the same vertical angle, but
three different horizontal angles (-72.6 , 0 , 72.6 ) respectively. The six cameras
were arranged into three pairs. For each pair of cameras, one camera was set to
an 8-mm focal-length, which results in a face area of around 300 x 300 pixels,
and the other to a 4-mm focal-length, which results in a face area of around 100
x 100 pixels. The video sequence with larger face area can be used for applica-
tions demanding high-resolution face images, such as 3D reconstruction, while
the sequence with smaller face area presents face data closer to the size used
in video surveillance applications and gesture analysis. Two carts were used for

Fig. 4. A simple diagram of our cart to show exact dimensions and the location of our
cart
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Fig. 5. Snapshots of data collection in progress for the indoor (left) and outdoor (right)
scenarios

capturing our data, one in a controlled indoor environment, and the other in
an open outdoor environment, as seen in Figure 5. The indoor cart was always
kept in the same location, whereas the outdoor cart, for concern of security and
weather damage, was moved for each day that data was collected. Therefore, the
location of the outdoor cart may have varied by a few feet day to day, on the
occasion that the view was blocked by parked cars in the area. The red cross
reference and cart were adjusted accordingly.

2.3 Illumination

In the indoor scenario, we had a controlled environment with a blue background
made from a felt material, and fluorescent bulb lighting. In addition to standard
overhead, office lighting, a 40 inch, 40 watt Phillips “Soft White” fluorescent
bulb was affixed on either side of the cart, as well as to the top of the cart,
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Fig. 6. (a) The positioning of the fluorescent lighting for the indoor scenario and (b)
Our collection schedule represented in a bar graph, separated into sessions by color
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pointed directly forward from the cart (Figure 6 (a)), in order to provide suffi-
cient lighting for our video. In the outdoor scenario, we utilized natural daylight
lighting, that was dependent upon the variant weather and season. The data
collection did not take place during heavy precipitation, in order to save our
equipment from water damage.

2.4 Time Variance

We captured data in three sessions, each session occurring during a different
season: Late summer/fall, winter, and spring. Our goal was to have a three
month separation between sessions for each participant. The weekly schedule
for all three sessions is shown in Figure 6 (b). We began collecting data for
session one in August, 2004. Session two began in the beginning of November,
2004. Session three began in the middle of March, 2005. The total collection
spanned 10 months, or 40 weeks. The overlap between sessions two and three
are attributed to a large amount of precipitation and cold weather during the
months of session two, delaying our data collection for that session. The specific
dates of each participants’ collections has been documented.

3 Collection Procedure and Calibration

To simulate real-world face motion and gestures, we asked each of the partici-
pants to mimic a passport checkpoint at an airport, as shown in Figure 7 (a).
Each participant was asked to begin from the side of the cart, walk in and stand
on the red cross mark in front of the the cart, and simulate the gestures and
conversation typical of a passport check. After about 20 seconds, the participant
was asked to exit back off to the side. Each session consisted of two similar runs,
one taking place with the indoor scenario and one in the outdoor. There was no
audio recorded.

(a) (b)

Fig. 7. (a) A diagram illustrating participants’ procedure and (b) ColorChecker Color
Rendition Chart
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Fig. 8. Sample images of color (left) and camera (right) calibration data. Here we show
15 intermittent frames for the front camera.

In order to ensure color consistency among all the cameras, daily color cali-
bration data was taken. We waved a GretagMacbethTM [7] ColorChecker Color
Rendition Chart (Figure 7 (b)) in the area where a participant’s face would be.
This chart measures 8.5 x 11 inches and contains an array of 24 scientifically
designed colored squares. Six cameras captured the continuously moving chart
simultaneously. The color calibration data was taken at 20 frames per second
for 5 seconds. Figure 8 shows sample images of our color calibration data. This
color calibration data was taken for each day that we collected face data.

We also captured camera calibration data for each subject, using a 9x9 black
and white checkerboard. Similarly to the color chart, the checkerboard was waved
at the location that was clearly visible from all cameras. We captured the cali-
bration data at 7 frames per second for 6.5 seconds. Also, Figure 8 shows sample
images of our camera calibration data. The color calibration and camera cali-
bration data were only collected in the indoor scenario.

4 Database Organization

4.1 Data

We used the maximum resolution and data rate available to us through the
Dragonfly cameras, which is 640x480 pixels at 30 frames per second. Each video
sequence is 20 seconds long. Our video sequences, which are taken in raw .AVI
format, are converted into raw .PGM images for every frame captured. Giving
consideration to the large amount of disk space required, we converted the frames
to JPEG format with 90% quality. Each image consumes about 100 kb of hard
disk space. Thus the total required storage space for our database is ≈ 380GB
for only the .JPEG files. We must also put into consideration the space required
for the daily color calibration data and the camera calibration data for each
subject. Daily color calibration takes up ≈ 5 GB and camera calibration takes
up ≈ 15 GB. Thus, the total storage for the participants’ images, daily color
calibration, and participants’ camera calibration is 400 GB. The raw .AVI files
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require a space of 1.02 GB per participant, leading to an additional required
space of 180 participants, 1100 GB. Therefore, the total required disk space for
our complete database is 1100GB+400GB = 1500 GB.

4.2 Demographics

We captured the first session of CMU FIA for 214 participants, 180 of whom
returned for the second session, of whom 153 returned for a final, third session.
Of these participants for the first session, 38.7% are female and 61.3% are male.
The youngest participant is 18 years old. The oldest participant is 57 years old.
The mean age of the participants is 25.4 years old. In addition, we recorded
whether or not each participant wears glasses and/or has facial hair. This data,
along with gender and age, is also documented.

5 Possible Usage

The CMU FIA database, with different kinds of variations such as pose, illumi-
nation, expression, aging, and etc. is beneficial to the task of recognizing human
faces. The CMU FIA database is especially helpful to pose and face gesture vari-
ation related research, which is the most difficult to model [8]. Given the variety
of variation we were sampling in the CMU FIA database, we suggest that CMU
FIA can be used in the following studies:

– Video-based face recognition.
– Pose invariant face recognition [9].
– Three-dimensional face reconstruction from multiple views or from a video

sequence.
– Face recognition with respect to image resolution.
– Outdoor illumination invariant face recognition.
– Face recognition over periods of time.
– Face and facial gesture modeling and analysis.

6 Summary and Availability

We have collected a face video database named CMU FIA database. By mim-
icking the passport checking scenario, six synchronized cameras capture human
faces simultaneously from three different poses. We have performed the collection
in both indoor and outdoor environments three times, in order to capture the
face variance over time. Our data is open to all those interested in using it for re-
search purposes. Those interested may contact Tsuhan Chen (tsuhan@cmu.edu)
and send us one or several hard drives. The disk space for only the JPEG images
is about 400 GB. The raw .AVI files require an additional 1100 GB.
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Abstract. Discriminatory information about person identity is multimodal. Yet, 
most person recognition systems are unimodal, e.g. the use of facial appearance. 
With a view to exploiting the complementary nature of different modes of 
information and increasing pattern recognition robustness to test signal 
degradation, we developed a multiple expert biometric person identification 
system that combines information from three experts: face, visual speech, and 
audio. The system uses multimodal fusion in an automatic unsupervised 
manner, adapting to the local performance and output reliability of each of the 
experts. The expert weightings are chosen automatically such that the reliability 
measure of the combined scores is maximized. To test system robustness to 
train/test mismatch, we used a broad range of Gaussian noise and JPEG 
compression to degrade the audio and visual signals, respectively. Experiments 
were carried out on the XM2VTS database. The multimodal expert system out 
performed each of the single experts in all comparisons. At severe audio and 
visual mismatch levels tested, the audio, mouth, face, and tri-expert fusion 
accuracies were 37.1%, 48%, 75%, and 92.7% respectively, representing a 
relative improvement of 23.6% over the best performing expert. 

1   Introduction 

Biometrics is a field of technology devoted to verification or identification of 
individuals using physiological or behavioral traits. Verification, a binary 
classification problem, involves the validation of a claimed identity whereas 
identification, a multi-class problem, involves identifying a user from a set of enrolled 
subjects; and becomes more difficult as the number of enrollees increases. In audio-
video processing, the video modality lends itself to two experts, the face expert and 
the visual speech expert (referred to as the mouth expert here). 

Deployed person recognition systems are generally unimodal. Face based 
identification is susceptible to pose/illumination variation, occlusion, and poor image 
quality [1], [2]. Audio-based identification achieves high performance when the 
signal-to-noise ratio (SNR) is high. Yet, the performance degrades quickly as the test 
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SNR decreases (referred to as a train/test mismatch), as shown in [3] and elsewhere. 
Visual speech based person identification under performs audio and face based 
experts, and is not thought of as a stand-alone person recognition expert. 

To combat these limitations of unimodal audio-video based experts, a multimodal 
fusion approach can be adopted. This can both improve robustness and overall 
performance. The audio, face, and mouth modalities contain non-redundant, 
complementary information about person identity. For example, it was reported in [2] 
that the performance of the FaceIt face recognizer [4] is extremely sensitive to eye 
occlusion (dark sunglasses), yet the effect of mouth occlusion (scarf) was 
significantly lower. This provides motivation for combining the FaceIt and mouth 
experts, i.e. combining an expert emphasizing eye information with an expert 
emphasizing mouth information. Also, it is expected that, for person identity, audio 
and video information are complementary. 

In order to exploit this complementary information, issues arise, such as how to 
account for the reliabilities of the modalities and at what level to carry out the fusion. 
Only a few studies have investigated the combination of audio, face, and temporal 
mouth information for the purpose of person recognition [5], [6], [7]. The majority of 
studies are bi-modal, employing either the audio and face modalities, [8], or, the audio 
and temporal mouth modalities (ignoring face) [3], [9], [10]. 

The audio, mouth, and face experts were combined for person recognition in [5], 
[6], [7]; yet none of these studies employed expert weights that adapt automatically to 
local test conditions. In [5], fusion was carried out at the decision level, thus no 
individual expert reliability information could be considered. The weighted sum rule 
was employed in [7], however, the weights could only be varied using manual 
supervision. In [6], the weights were global and set empirically. To the best 
knowledge of the authors, no person recognition system exists, that combines the 
audio, mouth, and face experts in an automatic unsupervised manner, while adapting 
to the local performance of each expert. 

The aim of this study was to develop a tri-expert person recognition fusion system, 
combining audio, mouth sequence, and face information in an automatic unsupervised 
manner. Specifically the tri-expert information was to be combined, such that the 
fused system provided improved performance beyond existing systems, exhibiting 
higher robustness to mild through adverse test levels of both audio and visual (face 
and mouth) noise (train/test mismatch). Therefore, to fully fulfill the aims of this 
study, the contribution from each source of information to the final decision must be 
weighted dynamically by taking the current reliability of each source into account. 

This paper is organized as follows. Sections 2 and 3 describe how person 
identification based on audio, mouth features, and face was performed. Section 4 
investigates classifier fusion and develops the proposed fusion strategy. In Section 5, 
the audio-video corpus employed and its’ augmentation for the specific experiments is 
described. In Section 6, we present results of extensive evaluations examining 
individual expert performance and fusion performance. The results are discussed in 
Section 7 and finally in Section 8, conclusions from the results are drawn. 
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2   Audio Identification 

Audio based speaker identification is a mature topic, [11]. Standard acoustic methods 
are employed here. For the feature extraction, the audio signal was divided into 
frames using a Hamming window of length 20 ms, with an overlap of 10 ms. Mel-
frequency cepstral coefficients (MFCCs) of dimension 16 were extracted from each 
frame [12]. The energy [12] of each frame was also calculated and used as a 17th static 
feature. Static features refer to features extracted from individual audio frames that do 
not depend on other frames. Seventeen first order derivatives or delta features were 
calculated using WD adjacent static frames, where WD is the delta window size. The 
delta frames were appended to the static audio features to give an audio feature vector 
of dimension 34. These are calculated using HTK [12], employing a WD value of five 
frames. Cepstral mean normalization [12] was performed on the audio feature vectors 
(to each audio utterance). 

A text dependent speaker identification methodology was tested. For text 
dependent modeling [13], the same utterance is spoken by the subject for both 
training and testing. It was employed, as opposed to text independent modeling [11], 
due to its suitability to the database used in this study (see Section 5). The N subject 
classes Sn, n=1,2,…,N, are represented by N speaker hidden Markov models (HMMs) 
denoted by n, n=1,2,…,N. The speaker utterance that is to be classified is a sentence, 
which is represented by a sequence, OA, of feature vectors or observations denoted by, 

},,...,,...,{ 21 ATtA ooooO =  (1) 

where ot is the speech frame at time t and TA denotes the number of observations. For 
HMMs, the output scores are in log-likelihood form, denoted by ll(OA| n). 

3   Video Based Identification 

Visual speech based speaker recognition differs from face recognition in two major 
ways. Firstly, face recognition employs the entire face area, conversely, visual based 
speaker recognition employs a region of interest about the speakers’ mouth, where 
most of the speech information is contained. Secondly, for face recognition, a gallery 
of static face images forms a template, whereas for visual based speaker recognition, 
it is attempted to model the temporal characteristics of the visual speech signal. 

3.1   Mouth Features Expert 

It has been consistently shown in several visual speech studies, that pixel based 
features outperform geometric features [14], [15]. Geometric features/lip-contours 
require significantly more sophisticated mouth-tracking techniques compared to just 
locating the mouth region of interested (ROI) for pixel-based features. This may be 
difficult, particularly when the visual conditions are poor. Pixel based features employ 
linear transforms to map the image ROI into a lower dimensional space, removing the 
redundant information while retaining pertinent speech information. Many types of 
transforms are examined in the literature, including the discrete cosine transform 
(DCT) [14], [16], discrete wavelet transform (DWT) [14], and principal component 



Robust Automatic Human Identification Using Face, Mouth, and Acoustic Information 267 

 

analysis (PCA) [15]. The DCT is one of most commonly employed image transforms. 
It has good de-correlation and energy compaction properties and has been found to 
outperform other transforms [15]. The visual mouth features were extracted from the 
mouth ROI, which consists of a 49×49 color pixel block (see Fig. 3). To account for 
varying illumination conditions across sessions, the gray scale ROI was histogram 
equalized and the mean pixel value was subtracted. The two dimensional DCT was 
applied to the pre-processed gray scale pixel blocks. 

Considering that most of the information of an image is contained in the lower 
DCT spatial frequencies, the first 15 non-zero DCT coefficients were selected, using a 
mask that selects the coefficients in a tri-angular fashion (upper-left region of the 
transform matrix) [14]. This gives the static features. The visual sentences were 
modelled using the same HMM methodology as described for the audio sentences. 
Dynamic features (frame derivatives of the static features) were employed in previous 
studies, but exhibited very poor robustness to video degradation, compared to using 
just static features [17], and were not employed here. We have TV visual observations 
(generally TA ≈ 4xTV) and a sequence, OM, of visual mouth speech feature vectors or 
observations denoted by, 

}.,...,,...,,{ 21 VTtM ooooO =  (2) 

Each mouth expert HMM gives the log-likelihood ll(OM| n), that the observation 
sequence OM was produced by the nth mouth expert model n. 

3.2   Face Expert 

Most current face recognition algorithms can be categorized into two classes, image 
template-based or geometry feature-based. The template-based methods compute the 
correlation between a face and one or more model templates to estimate the face 
identity. Statistical tools such as Support Vector Machines (SVM) [18], Linear 
Discriminant Analysis (LDA) [19], [20], Principal Component Analysis (PCA) [21], 
[22], Kernel Methods [23], and Neural Networks [24] have been used to construct a 
suitable set of face templates. While these templates can be viewed as features, they 
mostly capture global features of the face images. Facial occlusion is often difficult to 
handle in these approaches. 

The geometry feature-based methods analyze explicit local facial features, and 
their geometric relationships. Cootes et al. have presented an active shape model in 
[25] extending the approach by Yuille [26]. Wiskott et al. developed an elastic bunch 
graph matching algorithm for face recognition in [27]. Penev et. al [28] developed 
PCA into Local Feature Analysis (LFA) which is the basis for the commercial face 
recognition system FaceIt. LFA addresses two major problems of PCA. The 
application of PCA to a set of images yields a global representation of the image 
features that is not robust to variability due to localized changes in the input. 
Furthermore the PCA representation is non topographic, so nearby values in the 
feature representation do not necessarily correspond to nearby values in the input. 
LFA overcomes these problems by using localized image features in form of multi-
scale filters. The feature images are then encoded using PCA to obtain a compact 
description. 
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FaceIt was among the top performing systems in a number of independent 
evaluations [1], [2], [29]. It has been shown to be robust against variations in lighting, 
facial expression and lower face occlusion. Each of the registered N subjects is 
represented by a face template n. Unlike for the audio and mouth experts employed 
here, FaceIt gives a confidence score, rather than a log-likelihood, denoted here by 
l(OF| n), i.e. the likelihood that the face observation OF belongs to the nth face 
template n. For FaceIt, the set of N templates, n, n=1…N, receives maximum and 
minimum scores of ten and zero respectively, i.e. l(OF| n)∈[0,10]. 

4   Classifier Fusion 

The fusion of audio and video information falls into two broad categories, early 
integration and late integration [13]. Early-integration consists of concatenating the 
feature vectors, from the different modalities, to give a combined larger dimensional 
feature vector. This has the disadvantage of high dimensionality and the inability to 
take the reliability of the individual modalities into account. Furthermore, features 
from some experts may not be suitable or even available for fusion with speech-based 
features, e.g. the FaceIt face recognizer. 

Late integration can occur at the score level or at the decision level; and has 
several advantages: a) late integration involves lower data dimensions than early 
integration, b) early integration is less robust to sensor failure, c) for late integration, 
it is more straightforward to add new experts, d) late integration allows the fusion of 
modalities possessing different temporal synchrony e.g. face and audio. 

A significant amount of information is lost when the expert confidence scores are 
mapped to the class labels (decisions). This is why that, if the individual expert 
reliabilities are to be considered, fusion should occur at the score and not the decision 
level, as the score level information is crucial for discerning the reliability of each 
expert. For decision fusion, the number of classifiers should be higher than the 
number of classes. This is reasonable for person verification. For person 
identification, the number of classes is large, rendering decision fusion unsuitable. 

Two typical methods of combining the output scores from the NE experts are the 
product and the sum rules [30]. The product rule consists of multiplying the NE scores 
together. It is sensitive to expert errors; in the extreme case, if any single expert 
produces a close to zero score for a specific class; the combined score for that class 
will be close to zero. The sum rule is less sensitive to expert errors and will 
outperform the product rule when the expert errors are large. The robustness of the 
sum rule to expert errors was shown theoretically and verified experimentally in [30]. 

Experts scores can take many forms such as posteriors, likelihoods, and distance 
measures. Non-normalized scores cannot be integrated sensibly in their raw form, as 
it is impossible to fuse incomparable numerical scales. The min-max technique shifts 
and scales the scores into the range [0,1]. Given a set or a list of N scores {Sn}n=1…N 
corresponding to N class labels the normalized score is calculated as: 
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where Smax and Smin are the maximum and minimum scores from the set {Sn}. While 
been straightforward to implement the min-max norm, has been found to have 
comparable performance to more complicated methods [31], hence, it was used for 
experiments reported here. Its’ poor robustness to outlier scores can be circumvented 
(in the person identification scenario) by considering only the top M ranked scores for 
normalization. This omits the worst (outlier) expert scores. 

4.1   The Proposed Method 

The fusion strategy was first developed for fusing any two experts, and was then 
extended to include an additional third expert. Each expert provides a list of N 
likelihoods: {l(Om| n)}n=1...N with m ∈ {A, M, F}. These are ranked into descending 
order and normalized into the range [0,1] using Eqn. (3), applied to only the top M 
scores. Using a high value for M may retain the worst s(outlier) scores, which could 
unfairly skew the distribution. A very low value, would result in information loss; the 
limit been M=1, where all confidence information has been lost. Tests showed that 
the system performance degraded for M<50 and M>100. A value for M of 75 was 
employed for this study1. This value may depend on N, the number of classes. The set 
of M ranked normalized scores is denoted by {S(Om| i)}i=1...M. We have the weighted 
sum rule (for the specific case of two experts): 
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where S(O1,O2| i) represents the combined likelihood that the observations O1 and O2 
were produced by the subject class i; and m is the weight of the mth expert, subject to 
the constraints that m=1 and 0  m  1 for m=1...NE. Given that the weights m are 
variable, some sort of reliability measure must be devised, which takes the confidence 
associated with each expert into account, and is used to determine the m values. 

Expert reliability parameters can be calculated at the signal or at the score level. 
Signal based reliability measures are generally acoustic based [32] which have the 
disadvantage of having no corresponding video reliability measure. Even if an 
observation signal is of high quality, the expert may still give a misclassification for 
two (non-exhaustive) reasons: 1) the correct subject class may be indistinguishable for 
the given expert, and may be consistently misclassified, 2) the model/template for the 
correct subject may be a poor representation. A signal based reliability measure 
cannot take these into account. The distribution of the set of expert confidence scores 
contains information not only about the integrity of the observation signal, but also 
the reliability of that experts’ decision. Taking these points into account, it is better to 
calculate the reliability measure based on the expert scores. 

If the highest ranked class receives a high score and all of the other classes receive 
relatively low scores, then the confidence level is high. Conversely, if all the classes 
receive similar scores, the confidence is low. Various metrics exist, which can be used 
to capture this confidence information. Examples include, score entropy [32], 
dispersion [32], variance [9], and difference [9]. For a test observation vector Om, we 
 

                                                           
1 The overall performance did not vary significantly for 50<M<100. 
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have the set of M ranked normalized scores {S(Om| i)}i=1...M. The difference, ξ, 
between the two highest ranked confidence scores is calculated as 

),|()|( 21 λλξ mmm OSOS −=  (5) 

where 1 and 2 are the subject classes achieving the highest and second highest ranks 
respectively, and m denotes the expert. This metric was employed for this study. 

A mapping between the reliability estimates and the expert weightings is required. 
In [16], [32] a sigmoidal mapping was used to map the reliability estimates to the 
fusion weights. The sigmoidal parameters require training, which is difficult when the 
amount of audio-visual data is scare, and may be specific to the noise type. Another 
option is to form bins of evaluation reliability values and the corresponding αm values 
(found by exhaustive search), effectively a lookup table, but again this requires 
extensive training. Considering the small amount of audio-visual training data 
generally available, it was decided to use a non-learned approach to map the 
reliability estimates to the αm values. This was carried out as follows: 

For each specific identification trial (user interaction), the system is presented with 
two expert observations, O1 and O2. 

1. The two experts each generate a set of N match scores, {l(O1| n)} and 
{l(O2| n)}, which are normalized to give the sets of M ranked scores 
{S(O1| i)}i=1...M and {S(O2| i)}i=1...M. 

2. The fusion parameter α2 is varied from 0 to 1 in steps of 0.05. For each of 
these α2 values, the expert score lists {S(O1| i)} and {S(O2| i)} are combined 
using Eqn. (4) (with α1=1-α2), to give the combined set of N scores 
{S12,n}={S(O1,O2| n)}n=1...N. We have N, not M, S12 scores here because the 
sets of M normalized scores arising from experts 1 and 2 will in general 
correspond to different sets of M subject classes; some of the N S12 scores 
will be zeroed valued. 

3. The combined score set is subsequently normalized as before, to give 
{S(O1,O2| i)}i=1...M, and the combined score reliability estimate, denoted by 
ξ12, is calculated, as in Eqn. (5). ξ12 can be thought of as a linear weighted 
combination of the individual expert reliabilities ξ1 and ξ2 because 
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(6) 

where 1 and 2 are the subject classes achieving the highest and second 
highest ranks respectively, as before. However, the ξ12 value is calculated 
using Eqn. (5) and not Eqn. (6) because the set of scores {S12,n} is 
normalized, and hence Eqn. (6) does not hold exactly. 

4. We choose the α2 value that maximizes ξ12 for the given test according to 
Eqn. (7), to give the fusion parameters α2opt and α1opt = 1-α2opt. The 
maximum ξ12 value should correspond to the combined scores of highest 
confidence, i.e. maximizes the score separation between the highest ranked 
class and the other classes. Finally, we combine {S(O1| i)} and {S(O2| i)} as 
in Eqn. (4) (using α1opt and α2opt), to form the combined score list {S12,n}opt, 

n=1,…,N which is used to make the final identification decision. 
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It should be noted that the above procedure is carried out for every identification 
trial, and thus the fusion weights are determined online and automatically in an 
unsupervised manner. Also, O1/O2 above can represent any of m ∈ {A, M, F}. For 
illustration, Fig. 1 gives four examples of the specific case of fusing the scores arising 
from audio and mouth observations. The four examples show that the weight selection 
procedure has the ability to adapt the weights to the reliability of each expert. 
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Fig. 1. The variation of the combined score reliability estimate w.r.t. α2; and the individual 
expert reliability estimates are shown for four scenarios: (a) expert 1 is more reliable (selected 
α2opt = 0.15), (b) expert 2 is more reliable (α2opt = 0.9), (c) experts 1 and 2 have similar 
reliabilities (α2opt = 0.5), and (d) expert 2 has a very low reliability (ξ2 = 8x10-4), and α2opt = 0 

4.2   Fusion of the Three Experts 

The bi-expert fusion method developed above can be employed to combine the output 
scores from any pair of person identification experts. In order to carry out tri-expert 
fusion of the audio, mouth, and face experts, a cascade approach is employed. Firstly, 
the two visual based experts (face and mouth) are combined, thus giving N “face-
mouth” scores. This is shown in the first block of Fig. 2, where “N Score 
Integration” refers to the general bi-expert fusion block as described above. It is 
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intuitive to fuse the two visual experts initially, as a noisy visual observation signal is 
likely to affect both the face and mouth experts; in which case, the audio scores can 
still be weighted highly to counteract this. The “face-mouth” scores are subsequently 
fused with the N audio scores to give a tri-expert identification decision. We will now 
describe the fusion experiments that were carried out using the proposed method. 

ID
DecisionN

Audio Face-Mouth
Scores

N Face
Scores

N
Face-Mouth

Scores

N Score
Integration

N Score
Integration

N Mouth
Scores

N Audio
Scores

 
Fig. 2. Flow diagram for the fusion of all three experts 

5   Audio-Visual Corpus 

The XM2VTS audio-visual database [19] was used for the experiments, and consists 
of video data recorded from 295 subjects in four sessions, spaced monthly. The first 
recording per session of the phonetically balanced third sentence (“Joe took father’s 
green shoe bench out”) was used. Some sentence recordings were clipped. Due to this 
and other errors, only 248 subjects were used for the experiments. The position of the 
mouth ROI was determined by manually labeling the left and right labial corners and 
taking the center point. Frames were manually labeled for every 10th frame only; the 
ROI positions for the other frames were interpolated. 

To test the robustness of the proposed system, both the audio and video (face 
sequence) test signals were degraded to provide a train/test mismatch. Ten levels of 
audio and visual degradation were applied; emulating mild to adverse train/test 
mismatch noise levels, which may be encountered in a realistic operating 
environment. Additive white Gaussian noise was applied to the clean audio at SNR 
levels ranging from 48 dB to 21 dB in 3 dB decrements. In [14], an image transform 
based approach was used to carry out visual word recognition. The system 
demonstrated robustness to JPEG compression, with no significant drop in 
performance until JPEG quality factors (QF) levels fell below 10. For our study, in 
order to account for practical video conditions, the video frame images were 
compressed using JPEG compression. We tested ten levels of JPEG QF, i.e. 

2}, 3, 4, 6, 8, 10, 14, 18, 25, {50,∈QF  (8) 

where a QF of 100 represents the original uncompressed image. The compression was 
applied to each video frame individually. The mouth ROI was then extracted from the 
compressed images. Manually labeled mouth coordinates were employed, so that any 
drop in performance would be due to mismatched testing rather than poorer mouth 
tracking. The variation of the face and corresponding mouth ROI images w.r.t. JPEG 
QF is shown in Fig. 3. JPEG blocking artifacts are evident at the lower QF levels. 
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Fig. 3. Ten levels of JPEG compression and corresponding mouth ROI images 

6   Experiments and Results 

The proposed tri-expert system was applied to closed-set person identification. It can 
also be applied to the more general problem of open-set person recognition. 

Audio Expert: The HMMs were trained/tested using HTK [12]. The first three 
sessions were used for training and the last for testing. A prototype HMM consists of 
the initial parameters. Since there are only three training utterances per subject, there 
was insufficient training data to train a speaker HMM directly from a prototype 
model. For this reason, a background HMM was trained using three of the sessions 
for all N subjects, and was used to initialize the training of the speaker models. All 
models were trained on the clean speech and tested on the various SNR levels. This 
provides for an audio train/test mismatch. The num+ber of HMM states that 
maximized the audio accuracy was found empirically to be eleven (with a mix of two 
Gaussians per state). Fig. 4 shows how the audio expert performs w.r.t. audio 
degradation. A maximum accuracy of 97.6% was achieved at 48dB, with dropped to 
37.1% at 21 dB. 
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Fig. 4a. Audio expert performance versus 
audio degradation level 

Fig. 4b. Mouth expert performance versus 
number of HMM states 

Mouth Expert: The effect of the number of HMM states on the performance of 
the mouth expert was initially tested. One Gaussian per state was used. The result of 
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this is shown in Fig. 4b. The mouth expert performed best with just one state and 
decreased steadily with increasing number of states. For the visual degradation 
experiments the mouth expert HMMs were trained on the “clean“ (uncompressed) 
visual images and tested on the degraded visual images. This provided for a visual 
train/test mismatch. The results are given in Table 1 and Fig. 5c. 

Face Expert: The face gallery set, comprising of three images, was formed by 
arbitrarily extracting the 9th image frame from the first three sessions. The probe 
images used for testing were obtained from the fourth session (again, the 9th frame). 
The gallery sets consisted of the original uncompressed images and the probe sets 
consisted of degraded images at the ten levels of JPEG compression. This provided 
for a gallery/probe mismatch. The results are given in Table 1 and Fig. 5c. 

Fusion Experiments: Four fusion experiments were carried out using the 
proposed fusion method: 1) the face and mouth experts, 2) the audio and mouth 
experts, 3) the audio and face experts, and 4) the audio, face, and mouth experts. The 
face, mouth, and face-mouth fusion performance w.r.t. JPEG QF mismatch is given in  
Table 1 and Fig. 5c. For the three audio-visual fusion experiments, ten levels of both 
visual (JPEG QF) and audio (dB) degradation were examined. The results for these 
experiments are given in Fig. 5 and Table 2, with the audio-mouth results in Fig. 5a, 
the audio-face results in Fig. 5b, and the audio-face-mouth, results in Fig. 5d. 

Table 1. The mouth, face, and face-mouth fusion accuracies for the ten levels of JPEG QF 

JPEG QF 50 25 18 14 10 8 6 4 3 2

Mouth [%] 85.9 85.1 84.3 84.3 82.7 80.2 79.4 60.5 50.8 48.0

FaceIt [%] 98.8 98.8 99.6 99.6 98.8 98.8 98.0 91.9 85.9 75.0

Mouth-FaceIt [%] 100.0 99.2 100.0 100.0 100.0 100.0 100.0 98.4 92.7 87.5
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Fig. 5. The accuracies for the fusion of: (a) the audio and mouth experts, (b) the audio and face 
experts, (c) the face and mouth experts, and (d) the audio, face, and mouth experts 
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Table 2. The accuracies for the mouth (M), face (F), audio (A), and the fusion of: (a) the face 
and mouth experts (FM), (b) the audio and mouth experts (AM), (c) the audio and face experts 
(AF), and (d) the audio, face, and mouth experts (AFM) 

dB 33 30 27 24 21

A 93.1 89.1 75.8 57.3 37.1

M 80.2 AM 98.8 97.6 96.0 91.1 86.3

F 98.8 AF 99.6 99.6 99.6 99.6 99.6

FM 100.0 AFM 100.0 100.0 100.0 100.0 100.0

M 79.4 AM 98.8 97.2 94.4 89.9 85.1

F 98.0 AF 99.6 99.6 99.6 99.2 98.8

FM 100.0 AFM 100.0 100.0 100.0 100.0 100.0

M 60.5 AM 97.6 96.4 91.1 84.7 76.6

F 91.9 AF 99.2 99.2 98.0 96.8 96.4

FM 98.4 AFM 99.6 99.2 98.8 98.4 98.4

M 50.8 AM 97.6 95.6 91.9 81.5 72.6

F 85.9 AF 99.2 98.8 97.2 94.8 93.1

FM 92.7 AFM 99.2 98.8 98.4 97.6 96.4

M 48.0 AM 97.2 95.2 91.1 80.6 71.4

F 75.0 AF 98.8 97.2 93.1 89.9 86.3

FM 87.5 AFM 97.6 97.2 96.4 95.6 92.7

3

2

QF

8

6

4

 

7   Discussion 

With regard to the specific experiments, the audio expert performed very well under 
near “clean” testing conditions, however the accuracy roll off w.r.t. SNR is very high. 
For the mouth expert experiments, the fact that the static visual features performed 
best with just one state indicates that HMMs may not be required to model visual 
speech, rather, a Gaussian mixture model (GMM) approach [11] would be sufficient. 
The best mouth expert accuracy is 85.9%. A reasonable level of robustness to video 
degradation is exhibited; with an accuracy of 48.2% at a QF of 2. 

It was expected that FaceIt, a commercial system, employing features located 
throughout the entire face would outperform an expert employing features extracted 
from just the mouth ROI. The face expert outperformed the mouth expert at all levels 
of train/test mismatch. The highest face expert accuracy of 98.8% is 15% higher 
(relative) than the highest mouth expert accuracy of 85.9%. The face expert also 
exhibits higher robustness to JPEG compression, when compared to the mouth expert, 
with accuracies exceeding 98%, for all test mismatch levels exceeding a QF of 4. At 
the highest mismatch QF level of 2, the face expert accuracy was 75%, and the mouth 
expert accuracy was 48%. The superior performance of FaceIt is more impressive 
when considering that the FaceIt gallery consists of only three images, whereas the 
mouth expert model has the advantage of “seeing” three sequences of video frames 
and hence more variation in the subjects’ appearance. The robustness of the face 
expert against JPEG compression is in line with results from the Face Recognition 
Vendor Test 2000 [1], where similar observations were made. 

For the fusion of the face and mouth experts, a perfect face-mouth accuracy of 
100% is achieved at several levels of JPEG QF mismatch. Also, the face-mouth 
accuracies are higher than either of the face or mouth expert accuracies for all levels 
of JPEG QF mismatch, i.e. enhancing fusion. The most significant improvements are 
yielded for the higher levels of mismatch, for example at the lowest QF level of 2, the 
face-mouth, face, and mouth accuracies are, 87.5%, 75%, and 48% respectively, 
representing a 17% relative improvement over the face expert alone. The improved 
face-mouth performance indicates that the mouth features complement the facial 
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features that the FaceIt engine employs. The improvement may be due to two factors. 
a) the face expert emphasizes eye information and hence the mouth expert is 
complementary, b) the fact that the mouth expert can capture the variation of the 
mouth ROI over the training video frame sequences. 

The audio-mouth accuracies represent an improvement over the individual audio 
and mouth expert accuracies at all tested levels of audio and visual train/test 
mismatch. At the (21dB, 2QF) operating point, the audio, mouth, and audio-mouth 
accuracies are 37.1%, 48%, and 71.4% respectively, representing a relative 
improvement of 49% over the mouth expert. The audio-face results also show an 
improvement over the individual experts. At the (21dB, 2QF) operating point, the 
audio, face, and audio-face accuracies are 37.1%, 75%, and 86.3% respectively, 
representing a 21% relative improvement over the audio-mouth accuracy. 

For the tri-expert experiments, perfect audio-face-mouth 100% accuracies were 
achieved at the majority of operating points. From Fig. 5 it is evident that the tri-
expert performance exceeds the performance of either the audio-mouth or audio-face 
fusion. The improvements in performance were most significant, at the highest levels 
of train/test mismatch. At 21dB, the audio accuracy is 37.1% and at a JPEG QF of 2, 
the face and mouth accuracies are 75% and 48% respectively. At the (21dB, 2QF) 
operating point, the audio-mouth, audio-face, and audio-face-mouth accuracies are 
71.4%, 86.3%, and 92.7% respectively. Improvements over the face-mouth accuracies 
were also achieved, particularly at the (21dB, 2QF) operating point, where an 
accuracy of 92.7% outperforms the face-mouth accuracy of 87.5% at a QF of 2. This 
highlights the increased robustness of the tri-expert fusion over bi-expert fusion and 
exemplifies the robustness of our tri-expert fusion method to both audio and visual 
degradation. Importantly, integrating a highly mismatched scenario (e.g. audio 37.1% 
at 21dB) with a “clean” test (e.g. face 75%, mouth 48% at QF2) does not result in 
catastrophic fusion (audio-face-mouth 92.7%). These results were achieved with the 
tri-expert fusion block having no prior knowledge of the level or type of audio or 
visual degradation. The fusion method is not computationally expensive as only 
1+1/0.05 = 21 fusion-parameter steps are carried out to determine the best fusion 
weight and also, the reliability measure is computed with a basic subtraction. 

Further work includes testing the performance of the fusion system using different 
types of audio and visual degradations, and examining other reliability measures. 

8   Conclusion 

A multiple expert biometric person identification system has been presented, which 
combines information from three experts, namely: face, audio, and visual speech 
information in an automatic unsupervised fusion, adapting to the local performance of 
each expert, and taking into account the output-score based reliability estimates of 
each of the experts. Previous tri-expert (face, mouth, and audio) fusion studies employ 
un-weighted fusion or else fixed weights; expert reliability information is not 
considered. A benefit of the approach described is that audio-visual training data is 
not required to tune the fusion process. Importantly, no assumption has been made 
about the type of audio or visual noise that may cause an expert to perform poorly. 
The results show improved fusion accuracies for the gamut of tested levels of audio 
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and visual degradation, compared to the individual expert accuracies. This highlights 
the complementary nature of the mouth and face experts under clean and noisy test 
conditions, and in turn, the complementary nature of audio and video based 
information. The deployment tri-expert information should be robust to varying facial 
expressions, which may deform the eye or mouth region. These results are important 
for remote authentication applications, where bandwidth is limited and uncontrolled 
acoustic noise is probable, such as, video telephony and online authentication. 
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Abstract. This paper proposes the AdaBoost Gabor Fisher Classifier (AGFC) 
for robust face recognition, in which a chain AdaBoost learning method based 
on Bootstrap re-sampling is proposed and applied to face recognition with 
impressive recognition performance. Gabor features have been recognized as 
one of the most successful face representations, but it is too high dimensional 
for fast extraction and accurate classification. In AGFC, AdaBoost is exploited 
to select optimally the most informative Gabor features (hereinafter as 
AdaGabor features). The selected low-dimensional AdaGabor features are then 
classified by Fisher discriminant analysis for final face identification. Our 
experiments on two large-scale face databases, FERET and CAS-PEAL (with 
5789 images of 1040 subjects), have shown that the proposed method can 
effectively reduce the dimensionality of Gabor features and greatly increase the 
recognition accuracy. In addition, our experimental results show its robustness 
to variations in facial expression and accessories. 

1   Introduction 

Automatic Face Recognition (AFR) research has been motivated by both its scientific 
values and wide potential applications in public security, law enforcement, and video 
surveillance. Relevant research activities have significantly increased, and much 
progress has been made during the past few years [1,2,3]. However, most current 
systems work well only under constrained conditions, even requiring the subjects 
highly cooperative. Therefore, the general problems in AFR remain unsolved, 
especially under the practical unconstrained conditions.  

The performance of a face recognition system depends not only on the classifier, 
but also on the representation of the face patterns. Generally speaking, a good 
representation should have such characteristics as small within-class variation, large 
between-class variation, and being robust to transformations without changing the 
class label [4]. Furthermore, its extraction should not depend much on the manual 
operation. Intuitively, one should derive face representation from the 3D face shape 
and skin reflectance if we could recover the above intrinsic information from a given 
2D face image. Unfortunately, it is an ill-posed problem in computer vision. 
Therefore, most current famous face recognition methods derive face representation 
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directly from the 2D face image matrix. The obvious disadvantages of 2D image 
representation lie in its sensitivity to the changes in the extrinsic imaging factors such 
as viewpoint and lighting.  

Another popular strategy to represent face pattern exploits some transformations of 
the 2D image. Typical transformations include the Fourier transform [5], various 
wavelets, among which Gabor wavelets have been widely accepted by researchers in 
AFR community [6,7,8,9], mostly because the kernels of Gabor wavelet are similar to 
the 2D receptive field profiles of the mammalian cortical simple cells and exhibit 
desirable characteristics of spatial locality and orientation selectivity [10, 11]. 
Previous works on Gabor features have also demonstrated excellent performance. 
Typical methods include the Dynamic Link Architecture (DLA) [6], Elastic Graph 
Matching (EGM) [7], Gabor Wavelet Network (GWN) [8], and Gabor-Fisher 
Classifier (GFC) [9].  

EGM represents a face as a labeled graph [7]. Each vertex of the graph corresponds 
to a predefined facial landmark with fixed high-level semantics, and labeled by the 
multi-scale, multi-orientation Gabor Jet computed from the image area centered at the 
vertex landmark. And the edge of the graph represents the connection between the 
two vertices landmarks and labeled by the distance between them. After the 
construction of the graph, identification can be achieved by the elastic matching 
between the reference graph and the probe one. By selecting facial landmarks 
carefully, elastic graph can well model the local facial features as well as their 
configuration. Therefore, it makes the most of the local features as well as the overall 
facial configuration. Nevertheless, the high complexity of graph construction and 
matching may have prevented its further application. In addition, imprecise landmarks 
localization may also influence its recognition performance.  

One straightforward way to exploit Gabor features for AFR is proposed by Liu [9]. 
In Liu’s method, Gabor features of multi-scale and multi-orientation for each pixel in 
the normalized face images (with the eyes aligned) are firstly computed and 
concatenated to form a high-dimensional Gabor features, which is then uniformly 
down-sampled to a low-dimensional feature vector, and further reduced dimension by 
Principle Component Analysis (PCA), and discriminated by enhanced Fisher 
Discriminant Analysis for final face identification [9]. This method is simple and does 
not need to localize more facial landmarks except the two eyes. Liu has 
experimentally shown the excellent performance of such a method. However, the 
uniform down-sampling procedure would not only reduce the dimension of the high-
dimension dense Gabor features, but also reject a great number of informative Gabor 
features and reserve many redundant ones, which would do harm to the final 
classification.  

Aiming at the above-mentioned problem of GFC, this paper proposes to optimally 
select informative Gabor features to keep from losing discriminant Gabor features and 
introducing redundant ones by the simple down-sampling procedure. We originally 
apply AdaBoost to face recognition as a feature selection tool to reduce the dimension 
of Gabor features. The Gabor features selected by AdaBoost are further processed by 
Fisher discriminant as the final classifier. Our experiments on two large-scale face 
databases, FERET and CAS-PEAL, have shown that the proposed AGFC method can 
efficiently reduce the dimension of the original Gabor features, and the final 
recognition performance has also been improved. 
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2   Related Works 

2.1   Gabor Features 

Gabor wavelets model quite well the receptive field profiles of cortical simple cells, 
and they can capture salient visual properties such as spatial localization, orientation 
selectivity, and spatial frequency characteristic. Gabor filters extract both the overall 
and the subtle spatial frequency features in some local image area with multiple 
scales and multiple orientations, magnifying like a microscope all the features 
implied in the changing of gray-level intensity. Therefore, 2D Gabor filters enhance 
the low-level image features such as the peaks, valleys, and ridges. So, the eyes, the 
nose and the mouth, as well as the other salient local features like naevi, dimples, and 
scars, are enhanced as key features for the following discrimination of different faces. 
The Gabor wavelet representation also facilitates recognition without correspondence 
(hence, little need for manual annotations) because it captures the local structure 
corresponding to spatial frequency (scale), spatial localization, and orientation [9]. As 
a result, the Gabor wavelet representation of face images is robust to mis-alignment 
to some degree as Shan et al report in [12]. 

Lades et al. pioneered the use of Gabor wavelets for face recognition using the DLA 
framework, which is then expanded to EGM by Wiskott et al. [7]. The commonly used 
Gabor filters in face recognition area is defined as followings [6, 7, 9, 11]: 
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where u and ν define the orientation and scale of the Gabor kernels, ),( yxz = , 

. denotes the norm operator, and the wave vector vuk , is defined as follows:  

ui
vvu ekk φ=, ,                                                        (2) 

where v
v fkk /max= and 8/uu πφ =  with maxk be the maximum frequency, and f be the 

spacing factor between kernels in the frequency domain. In face recognition area, 
researchers commonly use 40 Gabor wavelets with five scales }4,3,2,1,0{∈v  and eight 

orientations }7,,0{ L∈u and with πσ 2= , 
2max

π=k , and 2=f .  

Convolving the image with these 40 Gabor kernels can then generate the Gabor 
features. Thus, for each pixel position in the face image, 40 complex values can be 
calculated. Note that, because the phase information of the transform is time-varying, 
generally, only its magnitudes are used to form the final face representation. 
Evidently, this will result in a feature with a dimension of 40 times of the original face 
images size, which is too high dimensional in pixel-wise dense sampling case. 
Therefore, GFC down-sampled the Gabor features, while in this paper learning 
method is used to select the most informative ones.  

2.2   Adaptive Boosting (AdaBoost) 

Boosting has been proposed to improve the accuracy of any given learning algorithm. 
In Boosting one generally creates a classifier with accuracy on the training set greater 
than an average performance, and then adds new component classifiers to form an 
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ensemble whose joint decision rule has arbitrarily high accuracy on the training set 
[4]. In such a case, we say that the classification performance has been “boosted”. In 
overview, the technique train successive component classifiers with a subset of the 
entire training data that is “most informative” given the current set of component 
classifiers [4].  

AdaBoost (Adaptive Boosting) is a typical instance of Boosting learning. In 
AdaBoost, each training pattern is assigned a weight that determines its probability of 
being selected for some individual component classifier. Generally, one initializes the 
weights across the training set to be uniform. In the learning process, if a training 
pattern has been accurately classified, then its chance of being used again in a 
subsequent component classifier is decreased; conversely, if the pattern is not 
accurately classified, then its chance of being used again is increased [4]. In each 
iteration, one draws a training set at random according to the weights, and then trains 
a component classifier Ck on the patterns selected. Next one increases weights of 
those training patterns misclassified by Ck and decrease weights of the patterns 
correctly classified by Ck. Patterns chosen according to this new weights are used to 
train the next classifier, Ck+1, and the process is iterated to a predefined error rate or 
enough component classifiers have been constructed [4]. In this way, AdaBoost 
focuses on the informative or “difficult” patterns. The final classifier is a linear 
combination of the component classifiers. According to the idea, Freund and Schapire 
first proposed the concrete algorithms of Adaboost [13].  

In 2001, Viola and Jones proposed a modified AdaBoost algorithm and applied it to 
face detection successfully [14]. In Viola’s AdaBoost, the component classifier (or so-
called weak classifier) has been designed by one individual weak Haar-like feature. 
AdaBoost learning is adopted to combine these weak classifiers. Therefore, in some 
sense, in Viola’s AdaBoost, weak classifier is somewhat equivalent to weak feature. 
For the specific face detection problem, Viola has designed a fast algorithm to exact a 
huge number of rectangle (Haar-like) features from a small candidate window region, 
a few of which are then selected and combined to form a strong classifier by 
AdaBoost learning. By far, AdaBoost-based face detection has been recognized as the 
most successful one for face detection task [15]. Viola has also applied the similar 
method to pedestrian detection and achieved similar success. By using AdaBoost for 
selecting Gabor features, this paper originally applies AdaBoost to face recognition 
successfully. 

3   AdaBoost Gabor Fisher Classifier 

The great success of AdaBoost on face detection has motivated our interest in 
applying AdaBoost to face recognition. Considering the success of Gabor features in 
face recognition area, we have previously proposed to design an AdaBoost classifier 
by using the Gabor representation as the original feature set [16]. Unlike our previous 
work in [16], this paper re-considers AdaBoost as a feature selection tool and Fisher 
Discriminant Analysis is exploited as the final classifier. To apply AdaBoost to multi-
class AFR problem, the “dual difference class”, i.e., intra-personal and extra-personal 
differences are introduced to convert the multi-class problem into a binary 
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classification problem [17]. Given a training set, the two difference classes are first 
computed, and then AdaBoost is trained on them to select those most informative 
ones (named by AdaGabor features) from all the original high-dimensional pixel-wise 
dense Gabor features. The resulting AdaGabor features are then further reduced in 
dimensionality by PCA, and then fed into the Fisher Discriminant Analysis for final 
classification.  

3.1   Intra-personal and Extra-personal Difference 

To exploit AdaBoost for face recognition, we have to convert the multi-class problem 
to a binary one. Typical methods include one-to-one and one-to-rest, which need to 
construct C(C-1)/2 and C classifiers respectively, where C is the number of persons to 
be recognized. Both of them are very complex, and inconvenience when we need to 
enroll new persons. To solve this problem, we have adopted the intra-personal and 
extra-personal difference method proposed by Moghaddam and Pentland [17]. Given 
two images in a training set coming from the same face, their feature vector difference 
would be put into the intra-personal difference class, otherwise, their difference will 
be labeled as an extra-personal difference. In this way, face recognition problem is re-
formulated as a binary classification problem to determine which class the difference 
between the probe image and any gallery one belongs to. Therefore, AdaBoost can be 
applied straightforwardly to learn the separation super-surface.  

3.2   Gabor Features Selection Using Chain AdaBoost Learning Based on 
Bootstrap Re-sampling 

Inevitably, given a training set, the intra-personal/extra-personal difference method 
will result in the heavy unbalance between the amount of intra-personal (hereinafter 
as “positive”) and extra-personal (hereinafter as “negative”) difference samples. For 
instance, assume there are m persons with k samples for each person in the training 
set, the amount of intra-personal and extra-personal difference samples would be 

2/)1(21 −==+ kmkCCN km
 and 2/)1(2112 −==− mmkCCCN kkm  respectively. So, 

their ratio is )1/()1(/ −−== +− kmkNNR . Let m=500 and k=5, then N+ and N- 
will be 5,000 and 3,118,750 respectively with their ratio be 624. Obviously, such huge 
amount of negative samples will lead to severe memory problem for the learning 
process. In addition, the heavy unbalance between the positive and negative samples 
will also influence the design of the final classifier. One simple way to deal with this 
problem is sampling part of the negative set randomly. However, random sampling 
would not necessarily guarantee inclusion of the most representative ones. To solve 
this problem, we further turn to the idea of bootstrap and propose a re-sampling 
strategy to construct a chain AdaBoost. The abstract procedure of the methods is 
described in Algorithm 1.   

Alg.1 Chain AdaBoost Learning Based on Bootstrap Re-sampling of Negative 
Examples 

Input: )},(),...,,{( 11 nn yy ΔΔ be the whole training set, with Di ∈Δ  be the 

difference pattern, and }1,0{=∈Yyi  its label (‘1’ denotes Intra-personal difference 

and ‘0’ denotes extra-personal difference.) 
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Initialize: (1) All the positive exemplas form the positive training set S+, which is 
remain unchanged during the whole learning procedure. (2) Randomly choose a 

predefined amount of negative exemplas to form the initial negative training set −
0S .  

And assume ., −−++ == SNSN  be the amount of positive and negative exemplas 

respectively. In our experiments, N - is set to be 7 times of N+.  
For Ll ,,1L=  
Begin 

(1) Initialize the weights for each training exemplum.  
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(2) Call AdaBoost procedure to learn the current level AdaBoost classifier lC  using 

the current training set:  
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where lT  is the number of weak classifiers learned in this level AdaBoost, which 

can be adjusted by controlling the learning accuracy, and 1log −= tt βα  be the 

combination weight of the t-th weak classifier in the AdaBoost. For the meaning 
of other symbols, please refer to the AdaBoost algorithm in [14] for details.  

(3) Then, combine the lC  with the previous classifiers to form the lth strong classifier Hl:  
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where 
=

=
l

j
jTT

1
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(4) Re-sampling the negative exemplas to form the next generation of negative 
training set:  
a) Set S – be a null set, φ=−S .  

b) Randomly take out one negative exemplum, kΔ , from the left negative training 

set. If kΔ is classified incorrectly by the classifier,  
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it is selected and added into the next generation negative exemplas set, 

}{ kSS Δ∪= −− . The classifier described by Equ.6 is a loose version of Hl, 

where 1<lξ  and increase gradually with the increase of l.  

c) Repeat the above b-step until the size of −S becomes the predefined 
number −N . 
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End 
So, finally LH  is the final classifier: 
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where 
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1

, jT  is the number of weak classifier for the jth AdaBoost. 

Though the above chain AdaBoost learning algorithm finally establishes a strong 
classifier discriminating the intra-personal and extra-personal difference that can be 
used for both face identification and verification, unfortunately, our experiments have 
shown that its performance for face recognition is not as satisfactory as expected. 
Therefore, in this paper, we have re-considered its usage as an excellent feature 
selection or dimension reduction tool to solve the high dimension problem when 
using Gabor features for face recognition. From the learning procedure, one can see 
that each weak classifier is constructed from one single Gabor feature using the 
simplest linear perceptron. This implies that the Gabor features selected to construct 
the weak classifiers should be the most informative ones. Therefore, in this sense, 
AdaBoost has selected a small quantity from all the Gabor features, i.e., AdaBoost has 
completed a feature selection or dimension reduction procedure. For convenience, we 
call the T Gabor features selected by the above-mentioned chain AdaBoost learning 
procedure AdaGabor features. These AdaGabor features are then further reduced in 
dimensionality by PCA and then fed into Fisher linear discriminant analysis for the 
final face identification.  

3.3   FDA of AdaGabor Features 

In face recognition research, Fisher Discriminant Analysis (FDA) has been 
recognized as one of the most successful methods [18]. In FDA, the original face 
representation is transformed to a new FDA subspace where the between-class scatter 
is maximized, while the within-class scatter is minimized by maximizing the Fisher 
separation criterion.  

When designing a Fisher classifier, one has to deal with the within-class scatter 
matrix carefully, because it may be singular. To avoid the singularity problem, PCA is 
conducted to further reduce the dimensionality of the AdaGabor features to be less 
than N-C, where N is the number of training examples, and C is the number of classes. 
The PCA transformed features are then fed into the final FDA for classification. 

4   Experiments and Analysis 

4.1   Description of the Testing Database  

To evaluate the proposed method with some statistically salient comparisons, we 
choose the FERET and CAS-PEAL face database, both of which contain more than 
1000 subjects with several face images for each subject.  
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FERET Face Database [2] 
The Facial Recognition Technology (FERET) database was collected at George 
Mason University and at US Army Research Laboratory facilities as part of the 
FERET program, sponsored by the US Department of Defense Counterdrug 
Technology Development Program. The lists of images used in training, gallery and 
probe sets are distributed along with the database CD. Note that the FERET face 
database has strictly distinguished the testing set (composed of Gallery and Probe 
sets) from the training set. Table.1 shows the structure of the FERET face database 
we use to evaluate our method. We have tested our method on the largest probe set 
FB with 1195 images of different subject. Note that the training set we use is a near-
frontal face subset of the standard FERET training set, in which only the near-frontal 
face images in the standard FERET training CD are included.  

 

Table 1. Structure of the FERET face database used in our experimental evaluation 

Database #Persons #Images Note 

Training Set 429 1002 
All near-frontal faces in the 
standard FERET training set 

Gallery 1196 1196 
Standard FERET gallery with 
Near-frontal faces  Test

Set 
FB Probes 1195 1195 

Near-frontal faces with different 
expressions from those in Gallery. 

CAS-PEAL-R1 Face Database [19] 
CAS-PEAL face database is constructed by the Joint R&D Laboratory for Advanced 
Computer and Communication Technologies (JDL) of Chinese Academy of Sciences 
(CAS), under the support of the Chinese National Hi-Tech (863) Program. The CAS-
PEAL face database contains 99,594 images of 1040 individuals (595 males and 445 
females) with varying Pose, Expression, Accessory, and Lighting (PEAL). CAS has 
recently released part of the database named by CAS-PEAL-R1 face database, which 
consists of 30,900 images of 1040 Chinese and is divided into a frontal subset and a 
pose subset. In the release CAS-PEAL-R1 CD, the authors have also suggested a 
standard evaluation prototype, which has specified the images that compose the  
 

   

Fig. 1. Frontal face examples in the CAS-PEAL-R1 
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training set, the gallery, and the probe sets. This paper has strictly followed the CAS-
PEAL-R1 evaluation protocol as illustrated in Table 2. Some example images are shown 
in Figure 1.  

Table 2. Structure of the CAS-PEAL-R1 face database used in our experimental evaluation 

Probe sets (frontal) 
Datasets 

Traini
ng set 

Gallery 
Exp Acc Bac Dis Age 

#Subject 300 1040 377 438 297 275 66 
#Images 1,200 1040 1,570 2,285 553 275 66 

Preprocessing 
For both FERET and CAS-PEAL-R1 face database, the coordinates of the eyes in all 
the face images have been provided, which can be used as the ground-truth alignment. 
In our experiments, faces are normalized as shown in Fig.2. Faces are firstly cropped 
out, as Fig.2 (c), by placing the two eyes at fixed locations specified with h, t, b be 
0.64, 0.43, and 1.85 respectively. A mask is then overlapped on the face region to 
eliminate the background and the hairstyle. Eventually, all faces are warped to the 
size of 64x64 as shown in Fig.2 (d) from their original form as in Fig.2 (b). 

 

D

tDhD 

bD 

tD 

hD 

bD

    
(a) (b) (c) (d) 

Fig. 2. Face normalization method in our experiments 

4.2   Analysis of the Selected AdaGabor Features 

As we have analyzed, the AdaGabor features should be the most informative features 
discriminating different faces. To observe their characteristics intuitively, we 
conducted experiments on FERET training set to obtain 1000 AdaGabor features. 
Some of their statistics are given below.  

The Most “Discriminant” Gabor Features 
Figure 3 shows the leading 4 most “discriminant” AdaGabor feature obtained through 
the Chain AdaBoost learning procedure, in which their Gabor kernels are overlapped 
to a face image for intuitive understanding. From the figure, one can easily see the 
position, scale and orientation of the corresponding Gabor kernel. It seems that these 
four Gabor kernels have coarsely positioned at the two eyes, the nose, and the mouth. 
One may have expected the first two exactly coincide with the two eye centers, but 
the experimental results have conflict with this expectation. We suppose the precise 
alignment of the two eyes in the processing stage should answer for the phenomenon, 
since this may have greatly decreased the difference between eyes.  
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Fig. 3. The Four Leading AdaGabor features 

 
Frequency analysis of the 40 Gabor kernels in the AdaGabor features 
Figure 4 illustrates the frequency of the 40 Gabor kernels in the leading 1000 
AdaGabor features. From the figure 4, we can safely conclude that different Gabor 
filters contribute to identification quite differently. At least for the FERET face 
database case, the No.1 (u=0, v=0), No.5 (u=4, v=0), and No.13 (u=4, v=1) Gabor 
kernels have contributed more when compared with the others.  

Scale distribution and variation of the leading AdaGabor features 
We also reviewed the distribution and variation of scales among the leading 100, 500, 
and 1000 AdaGabor features, as illustrated in Figure 5. Clearly, smaller scales 
contribute more to the accurate identification especially when we need to distinguish 
the subtle difference between faces, as we can see that the kernels with 0-scale are 
about 1/3 in the 1000 AdaGabor features. This is also coinciding with our basic 
intuition.  
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Fig. 4. Distribution of 40 Gabor kernels in the Leading AdaGabor features 



 AdaBoost Gabor Fisher Classifier for Face Recognition 289 

 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 1 2 3 4
scale

Frequency

100
500
1000

 

Fig. 5. The scale distribution and variation of the leading AdaGabor features 

Orientation distribution and variation of the leading AdaGabor features 
Different orientations also contribute differently to the classification. Figure 6 shows 
the distribution and variation of orientations among the leading 100, 500, and 1000 
AdaGabor features. It seems that the orientation distribution is somewhat uniform. 
However, the vertical Gabor kernels (with v=4) have extracted stronger features, 
while those with 45 degree (v=2 and v=6) are relatively weaker.  

4.3   Methods for Comparison 

We have implemented two algorithms, Fisherface and Liu’s GFC, to compare with 
the proposed AGFC. In GFC, the down-sampling factor is 16, that is, the 16 Gabor 
Jets in a 44×  rectangle are averaged to calculate one Jet. So, for the original 
normalized 64 pixels by 64 pixels face image, the dimension after down sampling is 

000,9401515 =×× . These 9000 Gabor features are then analyzed by PCA to further 
reduce its dimension to 500 for further Fisher discriminant analysis. 
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Fig. 6. The orientation distribution and variation of the leading AdaGabor features 
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4.4   Experimental Results 

We then evaluate the proposed AGFC on FERET and CAS-PEAL-R1 face database, 
and compare its performance with that of the Fisherface and the GFC methods. The 
experimental results are illustrated in Table 3 and Table 4. In the experiments, 1884 
and 2500 AdaGabor features are respectively selected for FERET and CAS-PEAL 
database by the AdaBoost procedure from the original 163,840 Gabor features. Note 
that to compare the three methods impartially, for each probe subset, all the possible 
dimensions for PCA and FDA (Dpca and Dfda in the table) are tested to find the optimal 
one. The Dpca and Dfda value in the Table 4 are the average for the 5 subsets.  

From Table 3, one can see that our AGFC performs a little better than Fisherface 
and GFC from the recognition rate. This observation is more statistically salient on 
the CAS-PEAL-R1 face database as shown in Table 4. Especially for its “Expression” 
and “Accessory” cases, AGFC has achieved much higher recognition rate compared 
with Fisherface and GFC, which indicates that the AGFC is much more robust to the 
variations in facial expression and accessories.  

Except its advantage in recognition accuracy compared with Fisherface and GFC, 
more importantly, our AGFC has greatly reduced the dimensionality of the original 
face features for classification. This will greatly facilitate the design of the 
classification as well as the real world face recognition systems, since we need not to 
compute all the Gabor features as GFC. So, a more fast and accurate face recognition 
system can be easily implemented using AGFC after the training stage. 

Table 3. Performance Comparisons of Fisherface, GFC, and the AGFC on FERET face 
database fb subset 

Dimensions 
Methods 

Dori Dpca Dfda 
Recognition rate on 

FERET fb 
Fisherface 4096 300 210 94.4% 

GFC 9000 500 250 96.3% 
AGFC 1884 250 200 97.2% 

 

Table 4. Performance Comparisons of Fisherface, GFC, and AGFC on the different subsets of 
CAS-PEAL-R1 face database 

Dimension 
Recognition rate on different CAS-PEAL 

Subsets (%) Methods 

Dori Dpca  Dfda Exp Acc Bac Age Dis 
Fisherface 4096 400 210 80.2 71.0 97.5 77.3 97.5 
GFC 9000 500 250 92.9 85.1 98.9 93.9 100.0 
AGFC 2500 250 200 98.2 87.5 99.6 97.0 99.3 

5   Conclusion and Discussion 

This paper has investigated the dimensionality reduction of high dimensional Gabor 
features and proposed a novel AdaBoost Gabor Fisher Classifier (AGFC) for robust 
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face recognition by successfully applying the popular AdaBoost to face recognition as 
an effective feature selection tool to select the most informative Gabor features for 
discriminating different faces. In order to apply AdaBoost to multi-class problem, the 
intra-personal and extra-personal difference strategy is exploited to convert face 
recognition problem to a binary classification problem, then a chain AdaBoost 
learning algorithm is proposed based on Bootstrap re-sampling to make full use of the 
huge amount of extra-personal difference samples. Thus, thousands of informative 
AdaGabor features are selected for further Fisher discriminant analysis. In the 
experimental parts, we analyzed the distribution of the selected AdaGabor features, 
and compared the performance of the proposed AGFC with Fisherface and GFC on 
two large-scale face databases, FERET and CAS-PEAL-R1, which has impressively 
indicated the advantages of the AGFC.  

   
(a) (b) (c) 

Fig. 7. Intuitive difference between the EGM, the GFC, and the proposed AGFC 

The intuitive difference in Gabor sampling of the EGM, the GFC, and the proposed 
AGFC is illustrated in Figure 7. In EGM, predefined facial landmarks with canonical 
positions can subsequently shift and adapt to the input face geometry, and all the 40 
Gabor features (5 scales combing 8 orientations) are computed for each landmark. 
However, for GFC, after aligning the two eye centers, all the 40 Gabor filters are 
convoluted with the image at each vertex of a uniform grid. Evidently, both of them 
rely on the subjective selection of “informative” Gabor features. But in our AGFC 
method, the Gabor filters (in terms of its position, the orientation and the scale) to be 
exploited for identification are learned by the AdaBoost, which can be regarded as an 
objective standard. 

Our future work would focus on the further investigation of the AdaGabor features. 
Also, we are trying other feature selection tools and comparing their performance 
with AdaBoost-based method.  
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Abstract. We introduce a novel framework for automatic 3D facial expression 
analysis in videos. Preliminary results demonstrate editing facial expression 
with facial expression recognition. We first build a 3D expression database to 
learn the expression space of a human face. The real-time 3D video data were 
captured by a camera/projector scanning system. From this database, we extract 
the geometry deformation independent of pose and illumination changes. All 
possible facial deformations of an individual make a nonlinear manifold em-
bedded in a high dimensional space. To combine the manifolds of different sub-
jects that vary significantly and are usually hard to align, we transfer the facial 
deformations in all training videos to one standard model. Lipschitz embedding 
embeds the normalized deformation of the standard model in a low dimensional 
generalized manifold. We learn a probabilistic expression model on the general-
ized manifold. To edit a facial expression of a new subject in 3D videos, the 
system searches over this generalized manifold for optimal replacement with 
the ‘target’ expression, which will be blended with the deformation in the pre-
vious frames to synthesize images of the new expression with the current head 
pose. Experimental results show that our method works effectively. 

1   Introduction 

Facial expression analysis and synthesis is an active and challenging research topic in 
computer vision, impacting important applications in areas such as human-computer 
interaction and data-driven animation. We introduce a novel framework for automatic 
facial expression editing in 3D videos. The system recognizes the expressions and 
replaces them by expression mapping functions smoothly. We expect to use this 3D 
system in the future as the core element of a facial expression analysis that takes 2D 
video input. 

3D information is becoming widely used in this field [1-3]. A combination of im-
age texture and 3D geometry can be used to considerably reduce the variation due to 
pose and illumination changes. Recent technical progress allows the capture of accu-
rate dense 3D data in real time, which enables us to build a 3D expression database 
for learning the deformation space of human faces. The data capture system was de-
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veloped by [4]. A coarse mesh model is fitted to track the inter-frame point motion 
and a dense mesh is used for synthesis of new expressions. 

The nonlinear expression manifolds of different subjects share a similar structure 
but vary significantly in the high dimensional space. Researchers have proposed many 
approaches, such as locally linear embedding (LLE) [5] and Isomap [6] to embed the 
nonlinear manifolds in a low dimensional space. Expression manifolds from different 
subjects remain difficult to align in the embedded space due to various causes: (1) 
subjects have different face geometries; (2) facial expression styles vary by subject; 
(3) some persons cannot perform certain expressions; and (4) the whole expression 
space is large including blended expressions, so only a small portion of it can be sam-
pled. Considering these factors, bilinear [7] and multi-linear  [8] models have been 
successful in decomposing the static image ensembles into different sources of varia-
tion, such as identity and content. Elgammal and Lee [9] applied a decomposable 
generative model to separate the content and style on the manifold representing dy-
namic objects. It learned a unified manifold by transforming the embedded manifolds 
of different subjects into one. This approach assumes that the same kind of expression 
performed by different subjects match each other strictly. However, one kind of ex-
pression can be performed in multiple styles, such as laughter with closed mouth or 
with open mouth. The matching between these styles is very subjective.  

To solve this problem, we built a generalized manifold that is capable of handling 
multiple kinds of expressions with multiple styles. We transferred the 3D deformation 
from the models in the training videos to a standard model. Sumner and Popovic [10] 
designed a special scheme for triangle meshes where the deformed target mesh is 
found by minimizing the transformation between the matching triangles while enforc-
ing the connectivity. We added a temporal constraint to ensure the smooth transfer of 
the facial deformations in the training videos to the standard model. This model is 
scalable and extensible. New subjects with new expressions can be easily added in. 
The performance of the system will improve continuously with new data. 

We built a generalized manifold from normalized motion of the standard model. 
Lipschitz embedding was developed to embed the manifold to a low dimensional 
space. A probabilistic model was learned on the generalized manifold in the embed-
ded space as in [11].  

In this framework, a complete expression sequence becomes a path on the expres-
sion manifold, emanating from a center that corresponds to the neutral expression. 
Each path consists of several clusters. A probabilistic model of transition between the 
clusters and paths is learned through training videos in the embedded space. The like-
lihood of one kind of facial expression is modeled as a mixture density with the clus-
ters as mixture centers. The transition between different expressions is represented as 
the evolution of the posterior probability of six basic expression paths. In a video with 
a new subject, the deformation can be transferred to the standard model and recog-
nized correctly. 

For expression editing, the user can define any expression mapping function F: 
66 RR → , where the domain and range are the likelihood of one kind of facial expres-

sion. We currently use 3D videos as input data. Many algorithms [12,13] have been 
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Fig. 1. System diagram 

proposed to fit 3D deformable models on 2D image sequences. So the next step will 
be to take 2D videos as input with a system (such as [13]) used as a preprocessing 
module.  

When the expression in the domain of F is detected, the system will search over the 
generalized manifold for an optimal replacement in the ‘range’ expression. The de-
formation of the standard model is transferred back to the subject, and blended with 
the facial deformation in the previous frame to ensure smooth editing. Fig. 1 illus-
trates the overall system structure. 

The main contributions of this paper are the following: (1) We constructed a 3D 
expression database with good scalability. (2) We proposed and defined a generalized 
manifold of facial expression. Deformation data from different subjects complement 
each other for a better description of the true manifold. (3) We learned a probabilistic 
model to automatically implement the expression mapping function.  

The remainder of the paper is organized as follows. We present the related work in 
Section 2. We then describe how to construct the 3D expression database in Section 3. 
Section 4 presents how to build generalized expression manifold. Section 5 discusses 
the probabilistic model. Section 6 presents the experimental results. Section 7 con-
cludes the paper with discussion. 

2   Related Work 

Many researchers have explored the nature of the space of facial expressions. Zhang 
et al. [14] used a two-layer perceptron to classify facial expressions. They found that 
five to seven hidden perceptrons are probably enough to represent the space of facial 
expressions. Chuang et al. [15] showed that the space of facial expression could be 
modeled with a bilinear model. Two formulations of bilinear models, asymmetric and 
symmetric, were fit to facial expression data.  

There are several publicly available facial expression databases: Cohen-Kanade fa-
cial expression database [16] provided by CMU has 97 subjects, 481 video sequences 
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with six kinds of basic expressions. Subjects in every video began from a neutral 
expression, and ended at the expression apex. FACS coding of every video is also 
provided. The CMU PIE database [17] includes 41,368 face images of 68 people 
captured under 13 poses, 43 illuminations conditions, and with 3 different expres-
sions: neutral, smile, and blinking. The Human ID database provided by USF has 100 
exemplar 3D faces. The exemplar 3D faces were put in full correspondence as ex-
plained by Blanz and Vetter [1].  

Facial animation can be generated from scratch, or by reusing existing data. Noh 
and Neumann [18] proposed a heuristic method to transfer the facial expression from 
one mesh to another based on 3D geometry morphing. Lee and Shin [19] retargeted 
motions by using a hierarchical displacement mapping based on multilevel B-spline 
approximation. Zhang [20] proposed a geometry-driven photorealistic facial expres-
sion synthesis method. Example-based motion synthesis is another stream of research. 
Ryun et al. [21] proposed an example-based approach for expression retargeting. We 
improve the deformation transfer scheme in [10] by adding temporal constraints to 
ensure smooth transfer of source dynamics.   

We were inspired by the work of Wang et al. [3]. The main difference is that we 
build a generalized expression manifold by deformation transfer, which is capable of 
handling multiple expressions with multiple styles. The probabilistic model also takes 
the blended expression into consideration and enables automatic expression editing. 

3   3D Expression Database 

To our knowledge, there is no 3D expression database publicly available, so we built 
our own 3D database by capturing real-time range data of people making different 
facial expressions. The database includes 6 subjects and 36 videos, with a total of 
2581 frames. Each subject performed all six basic expressions from neutral to apex 
and back to neutral. The range data were registered by robust feature tracking and 3D 
mesh model fitting. We intend to make the database publicly available with more 
subjects in the near future. 

3.1   Real-Time 3D Scanner 

To construct a high quality 3D expression database, the capture system should pro-
vide high quality texture and geometry data in real-time. Quality is crucial for accu-
rate analysis and realistic synthesis. Real-time is important for subtle facial motion 
capture and temporal study of facial expression. 

The system used for obtaining 3D data [4] is based on a camera/projector pair and 
active stereo. It was built with off-the-shelf NTSC video equipment. The key of this 
system is the combination of the color code (b,s)-BCSL [22] with a synchronized 
video stream. 

The (b,s)-BCSL code provides an efficient camera/projector correspondence 
scheme. Parameter b is the number of colors and s is the number of patterns to be 
projected. Two patterns is the minimum, giving the best time coherence compromise. 
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Fig. 2. Decoding stripe transitions 

The complementary patterns are used to detect stripe transitions and colors robustly. 
Our system applies six colors that can be unambiguously detected through zero-
crossings: RGBCMY. In our experiments, we use a (6,2)-BCSL code that features 
two patterns of 900 stripes.  

To build camera/projector correspondence, we project a subsequence of these two 
patterns onto the scene and detect the projected stripe colors and boundaries from the 
image obtained by a high-speed camera. The four projected colors, two for each pattern, 
detected close to any boundary are uniquely decoded to the projected stripe index p 
(Fig. 2). The correspondent column in the projector space is detected in O(1) by  using 
(6,2)-BCSL decoding process. The depth is then computed by the camera/projector 
intrinsic parameters and the rigid transformation between their reference systems. 

We project every color stripe followed by its complementary color to facilitate the 
robust detection of stripe boundaries from the difference of the two resulting images. 
The stripe boundaries become zero-crossings in the consecutive images and can be 
detected with sub-pixel precision. One complete geometry reconstruction is obtained 
after the projection of the pattern 1 and its complement followed by pattern 2 and its 
complement.  

The (6,2)-BCSL can be easily combined with video streams. Each 640x480 video 
frame in NTSC standard is composed of two interlaced 640x240 fields. Each field is 
exposed/captured in 1/60 sec. The camera and projector are synchronized using 
genlock. For projection, we generate a frame stream interleaving the two patterns that 
is coded with its corresponding complement as fields in a single frame. This video 
signal is sent to the projector and connected to the camera’s genlock pin. The sum of 
its fields gives a texture image and the difference provides projected stripe colors and 
boundaries. The complete geometry and texture acquisition is illustrated in Fig. 3. 

This system is suitable for facial expression capture because it maintains a good 
balance between texture, geometry and motion detection. Our videos were obtained 
by projecting 25-35 stripes over the face and the average resolutions are: vertical = 12 
points/cm and horizontal = 1.25 points/cm (right bottom window of Fig. 4). We used 
a Sony HyperHAD camera and an Infocus LP-70 projector. 
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Fig. 3. Input video frames, and the texture and geometry output streams at 30 fps 

 

Fig. 4. An example of 3D data viewer with fitted mesh 

   
(a) (b) 

Fig. 5. (a) The 2D tracking results.  (b) The dense mesh model. 
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3.2   3D Data Registration  

The acquired range data need to be registered for the following analysis. The 
range points are first smoothed by radial basis functions (RBF). We build a coarse 
mesh model with 268 vertices and 244 quadrangles for face tracking. A coarse 
generic model is fitted manually at the first frame. A robust feature tracker from 
Nevengineering [23] provides the 2D positions of 22 prominent feature points. 
The mesh’s projection was warped by the 22 feature points. The depth of the 
vertex was recovered by minimizing the distance between the mesh and the range 
data [24].  

An example of the 3D viewer is shown in Fig. 4. The left bottom window shows 
the range data with the fitted mesh. The right bottom window is the texture image 
with the projected 3D points. Fig. 5 (a) shows the texture image with the 22 tracked 
feature points. Fig. 5 (b) shows the dense mesh with 4856 vertices and 4756 quadran-
gles. The dense model is used for the synthesis of new expressions. 

4   Generalized Expression Manifold 

We built the generalized expression manifold by transferring the facial deformations 
in the training videos to a standard model. The standard model serves as the interface 
between the models in the training videos and models in the testing videos. The gen-
eralized manifold, that is the expression manifold of the standard model, includes all 
information in the training videos.  The more training data we have, the better it ap-
proximates the true manifold. We can define expression similarity on this manifold 
and use it to search the optimal approximation for any kind of expression. The expres-
sion synthesis will involve only the standard model and target model.  

4.1   Deformation Transfer with Temporal Constraints 

Sumner [10] proposed a novel method to transfer the deformation of the source trian-
gle mesh to the target one by minimizing the transformation between the matching 
triangles while enforcing the connectivity. This optimization problem can be rewritten 
in linear equations: 

2

...
||||min

1
F

vv
Axc

n

−                                                        (1) 

where the matrix norm 
F|||| •  is the Frobenius norm, or the square root of the sum of 

the square matrix elements. 
nvv ,...,1
 is the vertex of the unknown deformed target 

mesh. x is a vector of the locations of  
nvv ,...,1
. c is a vector containing entries from the 

source transformations, and A is a large sparse matrix that relates x to c, which is 
determined by the undeformed target mesh. This classic least-square optimization 
problem has closed form solution as  

bSx = , where cAbAAS ',' == .                                             (2) 
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The result is unique up to a global translation. We fix the rigid vertex, such as inner 
eyes corners to resolve the global position. x can be split as ]'''[ xmxfx =  where xf 

corresponds to the fixed vertex, and xm to all the other vertices. Thus  

[ ] xmAmdxmAmxfAfc
xm

xf
AmAfcAxc **** −=−−=−=−  

Our goal is to transfer the deformation of a training subject in a video sequence to a 
standard face smoothly. The vertex 

iv  at frame t is represented as 

.,...,1;,...,1, ktnivt
i ==  k is the length of the video.  We add a constraint for temporal 

coherence and the optimization problem becomes  
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σ                                     (3) 

where σ  is the weight for temporal smoothing. tc  is the source transformation at 
frame t,  xfAfcd tt *−= . 

  

Fig. 6. Example of deformation transfer with texture synthesis. The first row is the texture 
image of the source video at frames 1, 12, and 24. The second row is the dense mesh of the 
target face with transferred deformation. The first image of the third row is the texture image of 
the undeformed target model. The second and the third images are the corresponding synthe-
sized faces by the deformed dense mesh. 
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This problem can be solved in a progressive way by approximating  
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where 0xm  is the vertex locations of the undeformed target mesh.  
Eq. (3) can be rewritten as 
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where 

                            
1*'*'

'*'
−+=

+=
ttt xmdAmpQ

IAmAmQQ

σ
σ  

σ  is chosen to guarantee IAmAm σ+'*  is symmetric positive matrix. Q always exists, 
while it is not needed to solve Q explicitly. Eq. (4) has a closed solution: tt pQxmQQ '*' = . 

For efficiency, we compute and store the LU factorization of Q’Q only once. 
We separate the motion of the tracked source mesh into a global transformation 

due to head movement and a local deformation due to facial expression. The local 
deformation is used for facial expression (deformation) transfer. 

Fig. 6 shows an example of transferring the source mesh to the target mesh with 
synthesized texture data. 

4.2   Lipschitz Embedding 

We get the deformation vectors of the standard model as ktRx nts ,...1,3*, =∈ , 

where n is the number of vertices; s is the number of videos and k  is the length of 
the video. We normalize the duration of every video by re-sampling the deforma-
tion vectors at equal intervals. The interpolation is implemented by a cubic spline. 
We build the manifold by using the coarse mesh such that expression can be rec-
ognized quickly. The dense mesh of the standard model is saved for synthesis of 
the new expression.   

Lipschitz embedding [25] is a powerful embedding method used widely in image 
clustering and image search. For a finite set of input data S , Lipschitz embedding is 
defined in terms of a set R of subsets of S , },...,,{ 21 kAAAR = . The subsets 

iA  are 

termed the reference sets of the embedding. Let );( Aod  be an extension of the dis-

tance function d  to a subset SA ⊂ , such that )},({min),( xodAod Ax∈= . An embed-

ding with respect to R  is defined as a mapping F  such 
that ));();...,;();;(()( 21 kAodAodAodoF = .  

For our experiments, we used six reference sets, each of which contains only the 
deformation vectors of one kind of basic facial expression at its apex. The embedded 
space is six dimensional. The distance function in the Lipschitz embedding should 
reflect the distance between points on the manifold. We use the geodesic manifold 
distance [5] to preserve the intrinsic geometry of the data. After we apply the 
Lipschitz embedding with geodesic distance to the training set, there are six basic 
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paths in the embedded space, emanating from the center that corresponds to the neu-
tral image. The images with blended expression lie between the basic paths.  

An example of the generalized expression manifold projected on its first three di-
mensions can be found in the middle of the second row of Fig. 1. Points with different 
colors represent embedded deformation vectors of different expressions. Anger: red; 
Disgust: green; Fear: blue; Sad: cyan; Smile: pink; Surprise: yellow. In the embedded 
space, expressions can be recognized by using the probabilistic model described in the 
following section. 

5   Probabilistic Model on the Generalized Manifold 

The goal of the probabilistic model is to exploit the temporal information in video 
sequences in order to recognize expression correctly and find the optimal replacement 
for expression editing.  

5.1   Model Learning 

On the standard model, assume there are K  videos sequences for each kind of basic ex-
pression }6,...,1{, =SS . The embedded vector for the ith frame in the jth video for 

expression S  is 6
,, RI ijs ∈ , },...,1{ Kj = . By K-means clustering technique, all 

points are grouped into clusters rnc n ,...,1, = . We compute a cluster frequency measure 
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ijs
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ijsnn  
2,1 nnT  represents how many time the situation occurs in all videos that one frame 

belongs to cluster 1nc  and its next frame belongs to cluster 2nc . The prior 
)|( 12 nn ccp is learned as     
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where δ is a small empirical number. Scale and δ are selected such that 
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The prior )|( Scp is assigned according to the expression intensity of the cluster 

center, varying from 0 to 1. By Bayes’ rule,  
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For time series ,...1,0=t , the transition between different expressions can be com-

puted as the transition between the clusters: 
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Due to the small variation within a cluster, 
1−tS  and 

tS  are conditionally inde-

pendent given 
1−tc . 
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5.2   Expression Recognition 

Given a probe video, the facial deformation is first transferred to the standard model, 
and the deformation vector is embedded as ,...1,0, =tI t

. The expression recognition 

can be represented as the evolution of the posterior probability )|( :0:0 tt ISp .  

We assume statistical independence between prior knowledge on the distributions 
)|( 00 Icp  and )|( 00 ISp . Using the overall state vector ),( ttt cSx = , the transition 

probability can be computed as: 

)|()|()|( 111 −−− = tttttt ccpSSpxxp                                           (5) 

We define the likelihood computation as follows 

)|()],(
2

1
exp[),|( 2 ScpuIdScIp c

cσ
−∝  

where 
cu  is the center of cluster c , 

cσ  is the variation of cluster c . 

Given this model, our goal is to compute the posterior )|( :0 tt ISp . It is in fact a 

probability mass function (PMF) since 
tS  only takes values from 1 to 6. The mar-

ginal probability )|,( :0 ttt IcSp  is also a PMF for the same reason. 

Using Eq. (5), the Markov property, statistical independence, and time recursion in 
the model, we can derive: 
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1:0 −tS , we obtain Equation (6): 
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which can be computed by the priors and the likelihood ticSIp iii ,...,1),,|( = . This 

provides us the probability distribution of the expression categories, given the se-
quence of embedded deformation vectors of the standard model. 

5.3   Expression Editing  

The user can define the any expression editing function F as needed. F: 66 RR → . 

],...,,[))6(),...,1(( 621 qqqSpSpF ===  

where 
=

=
6

1

1
i

iq , q is the new likelihood of one kind of facial expression. For example, 

if we want to edit all sadness (S=1) videos to anger (S=2), the mapping function can 
be defined as 

                  F (p (S=1), p (S=2), …, p (S=6))= 
   [p (S=2), p (S=1), …, p (S=6)], when p (S=1)>γ .                            (7) 
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This function will increase the likelihood of anger when the sadness is detected, that 
is, its likelihood is above a threshold γ . 

The system automatically searches for the embedded vector with likelihood that is 
closest to the “range” expression. It first looks for the cluster whose center has the 
closest likelihood. In that cluster, the point closest to the embedded vector of the input 
frame is selected. We transfer the corresponding deformation vector back to the 
model in the new video. The deformation vector is blended with the deformation at 
the previous frame to ensure smooth editing. The synthesized 2D image uses the head 
pose in the real input frame and the texture information of the dense model. 

6   Experimental Results 

We collected 3D training videos from 6 subjects (3 males, 3 females). Every subject 
performed six kinds of basic expressions. The total number of frames in the training 
videos is 2581. We use Magic Morph morphing software to estimate the average of 
the training faces, and we use that average as the standard model. The standard model 
only contains geometrical data, no texture data. It will approach the “average” shape 
of human faces when the number of training subjects increases.  

Fig. 7 includes some examples of the mesh fitting results. We change the view-
points of 3D data to show that the fitting is very robust. A supplementary video is 
available at http://ilab.cs.ucsb.edu/demos/AMFG05.mpg. This video gave a snapshot 
of our database by displaying the texture sequences and 3D view of the range data 
with the fitted mesh at the same time. 

 
 

 

Fig. 7. Mesh fitting for training videos. Images in each row are from the same subject. The first 
column is the neutral expression. The second and third columns represent large deformation 
during the apex of expressions. 
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Fig. 8. Two different styles of the anger in training videos transferred to the standard mesh 
model. The first row and second row is images of anger and the corresponding deformed stan-
dard mesh model. The first to the third column is one style of anger at frame 1, 6, and 29. The 
fourth to sixth column is another style of anger at frames 1, 20, and 48. 

 

Fig. 9. Expression editing examples. First row is from the input video of sadness. We define the 
expression mapping function as Eq. 7. The second row is the deformed dense mesh by our 
algorithm. The third row is the output: the first image is unchanged, the following images are 
synthesized anger faces by the expression mapping function. 

Fig. 8 shows examples of deformation transfer. The motions of the training videos 
are well retargeted on the standard model.   

Fig. 9 is an example of expression editing. The system recognized the sadness cor-
rectly and synthesized new faces with anger expression correspondingly. 

7   Conclusion 

We introduced a novel framework for automatic facial expression analysis in 3D 
videos. A generalized manifold of facial expression is learned through a 3D expres-
sion database. This database provides a potential to learn the complete deformation 
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space of human faces when more and more subjects are added in. Expression recogni-
tion and editing is accomplished automatically by using the probabilistic model on the 
generalized expression manifold of the standard model. 

The current input is 3D videos. We plan to take 2D video input by using a system 
like [13]. The output video is a synthesized face with a new expression. How to sepa-
rate and keep the deformation due to speech and merge the synthesized face smoothly 
with the background in videos [26] are important topics for the future research. 
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Abstract. We propose a new technique for simultaneously executing
face deformation modeling and 3D head pose estimation. Previous meth-
ods for estimating 3D head pose require a preliminary training stage for
the head model, and cannot start tracking the head pose until this stage
is complete. In contrast, our proposed method can acquire and refine a
user’s deformable head model in parallel with tracking the user’s head
pose. This allows progressive improvement in the accuracy of the esti-
mation of head pose and face deformation.

Our technique consists of three main steps. In the first step we esti-
mate the 3D head pose using a head model that is obtained automat-
ically. The second step finds true positions of feature points by using
the resulting poses of the first step. Finally, the basis vectors of face
deformation are calculated from the true positions of feature points to
acquire a new deformable head model as a linear combination of the basis
vectors.

The iteration of the three steps refines the deformable head model,
thus improving the accuracy of head pose estimation progressively. The
improvement has been successfully demonstrated via experiments.

1 Introduction

Tracking of 3D head pose is regarded as an important topic in computer vision.
So far a number of researchers have developed methods for estimating 3D head
pose. Many of those methods employ a rigid model that can only deal with
3D translation and rotation [1, 7, 14, 16, 20, 17]. Actually, the human face is of-
ten deformed significantly due to various factors, for example, change of facial
expression, which causes deterioration of accuracy or failure of tracking.

This has motivated work that uses a model to represent deformation of a user’s
face, that is, a deformable head model. Black and Yacoob segment the human
face into rigid parts and deformable parts, and estimate head pose and face
expression with the segmented model [2]. Several researchers use 3D deformable
surface models, for example mesh models, for estimating fine deformation of a
user’s face [10, 6, 3, 18, 5]. Recently, the Active Appearance Model (AAM) and
similar methods have been studied by many researchers. Matthews and Baker
presented good survey on AAM [15]. While those methods have the potential for
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c© Springer-Verlag Berlin Heidelberg 2005



Real-Time Modeling of Face Deformation for 3D Head Pose Estimation 309

good estimation, some sort of 3D geometrical model, for example the deformable
head model itself, must be prepared with manual feature extraction or 3D laser
scanning. An approach for solving this problem is automatic tracking of several
feature points, and then analyzing the coordinates of the tracked points for
acquiring basis shape vectors of face deformation. In this approach, Gokturk
et al. utilizes the Principal Component Analysis (PCA) [8], and Del Bue et al.
makes use of the non-rigid factorization technique [4].

The previously proposed methods that use a deformable head model as de-
scribed above have a common problem: they require a preliminary stage to ac-
quire the head model. Those methods cannot start real-time tracking of 3D head
pose before completing that stage, and they do not have a framework for refining
the deformable head model using estimation results.

In this paper, we propose a new method for acquiring and refining a user’s
deformable head model in parallel with estimating the user’s head pose in real
time. This means that our method requires no cumbersome preparation for con-
structing a head model. The method for acquiring a deformable head model
consists of three steps. In the first step we estimate the 3D head pose and
the face deformation using a head model that is obtained automatically. Sec-
ond, we find true positions of feature points by using the resulting poses of the
first step. Finally, the basis vectors of face deformation are calculated from the
true positions of the feature points to acquire a new deformable head model
as a linear combination of the basis vectors. Since the newly acquired model
is used for the next estimation of the 3D head pose and face deformation,
our method can progressively improve the accuracy of estimating pose and
deformation.

The main contributions of our study are summarized in the following three
points: 1) real-time estimation of 3D head pose without a preliminary training
stage, 2) real-time refinement of a deformable head model, and 3) progressive
improvement of the accuracy of estimating head pose and face deformation. The
improvement has been successfully demonstrated via experiments.

The reminder of this paper is organized as follows. In Section 2, we describe
our method for estimating head pose and face deformation. We then propose
a method for acquiring a deformable head model in Section 3. We show the
experimental results of our method in Section 4. Finally, we conclude this paper
in Section 5.

2 Real-Time Estimation of 3D Head Pose with
Deformable Head Model

In this section, we describe our method for estimating 3D head pose and defor-
mation from image inputs from two calibrated cameras1, the left camera and
the right camera, that incorporate a deformable head model.

1 Although we assume a two-camera configuration here, we can increase the number
of cameras without altering the algorithm of our proposed method.
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2.1 Deformable Head Model

In our method, the head model has K feature points, and each feature point
consists of two components: the 3D position in the model coordinate system
fixed to a user’s head at the frame t, and two small image templates. Let M t be
the 3K-dimensional shape vector that consists of 3D coordinates of K feature
points in the model coordinate system. Also, TL and TR are defined as the image
template sets for the left camera and the right camera respectively. Here, K is
set to 10 to represent these ten feature points: the inner and outer corners of
both eyes, both corners of the mouth, both nostrils, and the inner corner of both
brows.

The shape vector M t of our deformable head model is formulated as:

M t = M̄ + Mat (1)

where M̄ is the mean shape vector, M is the 3K×B basis shape matrix, which
consists of B columns of the basis shape vectors, and at is a B-dimensional coef-
ficient vector of M. Here, the shape M t is represented as a linear combination
of the constant basis shape vectors corresponding to the columns of M in a sim-
ilar way to other methods [8, 15, 5]. The limited size of B, B = 5 in this method
enables us to represent the face deformation by a small number of parameters
in at, We will describe how the basis matrix M and the mean vector M̄ are
obtained later in Section 3.

2.2 Particle Filter for Estimating Head Pose and Face Deformation

During tracking we produce successive estimation of a (6+B) dimensional state
vector xt = (pT

t , aT
t )T for each image frame t. Here, pt is the translation and

the rotation from the world coordinate system to the model coordinate system.
For pose estimation we make use of the deformable head model and the particle
filtering technique.

A particle filter [9] represents the probability density function (PDF) of a
state as a set of many discrete samples, each sample with a corresponding
weight. Hence, this sample set can approximate an arbitrary PDF including
non-Gaussian ones. Our method uses the sample set {(s(i)

t ; π(i)
t )}(i = 1 . . .N),

which consists of N discrete samples s
(i)
t in the (6 + B) dimensional state space

and their corresponding weights π
(i)
t .

The main flow of our estimation method is shown in Fig.1. We first generate
N new samples {s(i)

t } based on the sample set {(s(i)
t−1; π

(i)
t−1)} and the following

motion model on the assumption of a uniform straight motion of a user’s head
between each pair of successive image frames:

s
(i)
t = s′

t−1 + τvt−1 + ω (2)

where s′
t−1 is a chosen sample from {(s(i)

t−1; π
(i)
t−1)}, τ is the time interval between

frames, vt−1 represents the velocity of the pose that is calculated at the end of
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Fig. 1. Flow of estimating head pose and deformation

Initial acquisition of head model (Section 3.1)

Initialization

1st step

Estimation of Pose and Deformation (Section 2)

2nd step

Finding true positions of feature points (Section 3.2)

3rd step

Acquisition of Deformable Head Model (Section 3.3)

sufficient amount of data accumulation

model update

Fig. 2. Flow of acquiring deformable head model

the previous estimation step t − 1, and ω is system noise. In addition, ω is a
(6 + B) dimensional Gaussian noise vector with a zero mean, and the upper-left
6 × 6 elements of its covariance matrix corresponding to the pose parameters
are adaptively controlled depending on the velocity of the head. We have found
that such control of system noise improves the robustness against sudden abrupt
motion while maintaining the high accuracy of estimating head pose at the same
time [17]. On the other hand, the rest of the covariance matrix is a diagonal
matrix whose diagonal elements are represented by a B-dimensional constant
vector β. Each element of β is proportional to the corresponding element of the
standard deviation vector μ of at which is calculated by PCA as explained in
Section 3.3.

After we obtain new samples {s(i)
t } we compute the weight π

(i)
t by evaluating

each sample s
(i)
t based on the set of current input images.

Given a sample s
(i)
t , we apply the normalized correlation-based function

Nh(s(i)
t ) with the following processes. In this function, the shape of the head
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model is first deformed by the deformation elements a
(i)
t of s

(i)
t using Eq.(1).

The deformed shape is then translated and rotated depending on the pose el-
ements p

(i)
t of s

(i)
t . After the 3D feature points of the transformed shape are

projected onto the image plane h, the sum of matching scores is calculated be-
tween the neighboring region of each projected 2D point and the corresponding
template included in the template set Th by normalized correlation. The sum is
given as the output of Nh(s(i)

t ).
We apply Nh(s(i)

t ) to all image planes h to produce a total score c
(i)
t (Eq.(3)).

We then calculate the weight π
(i)
t from the total score c

(i)
t using a Gaussian

function as in Eq.(4). Finally, each weight π
(i)
t is normalized so that the sum of

the π
(i)
t is equal to 1.

c
(i)
t =

∑
h∈{L,R}

Nh(s(i)
t ) (3)

π
(i)
t ∝ exp

⎛⎜⎝−
(
2K − c

(i)
t

)2
2σ2

− 1
2

B∑
b=1

(
a
(i)
t,b

μb

)2
⎞⎟⎠ (4)

Here, σ is the standard deviation of the Gaussian function and is empirically
set to 3.0, a

(i)
t,b is the b-th element of a

(i)
t , and μb is the b-th element of μ. Note

that in Eq.(4) we multiply the function with regard to a
(i)
t by using standard

deviation vector μ in order to prevent excessive face deformation.
We finally calculate the state vector xt representing the current pose pt and

deformation at by using the sample set {(s(i)
t ; π(i)

t )}. In this calculation, we
aggregate only the neighborhood of the sample with the maximum weight using
the following equation:

w
(i)
t =
{

1 if ‖s(i)
t − s

(M)
t ‖ < d

0 else
(5)

xt =
∑N

i=1 s
(i)
t π

(i)
t w

(i)
t∑N

i=1 π
(i)
t w

(i)
t

(6)

where π
(M)
t is the maximum of {π(i)

t }, and s
(M)
t is the sample corresponding to

π
(M)
t . In the current implementation, the value of d is empirically determined.
We also calculate the velocity vt of xt for the estimation of the next frame:

vt =
xt − xt−1

τ
(7)

where the last B elements of vt corresponding to face deformation are set to 0,
because the variation of the face deformation parameters does not match well
with the assumption of uniform straight motion.
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2.3 Halfway Partitioned Sampling

We could obtain the new sample set {(s(i)
t ; π(i)

t )} using the procedure described
above. Actually, instead of the procedure described above, we apply the follow-
ing sampling and weighting method which is similar to the partitioned sampling
technique [13] in principle. We call this sampling technique the halfway parti-
tioned sampling.

According to our observations, the motion of the human head and face can be
categorized into two typical situations: rigid transformation of head pose with
little face deformation, and face deformation with little transformation of head
pose. For efficiently handling such situations, we first apply the drift of the pose
elements from Eq.(2) to just half of the total samples; to the other half, we apply
only the deformation elements’ operation from Eq.(2). Then we determine the
weights of those samples by Eq.(3) and (4).

After that, we apply a standard resampling technique, that is total resampling
in the all dimensions, to the sample set {(s(i)

t ; π(i)
t )} to improve the accuracy of

the PDF. Even if face deformation and rigid transformation occur simultane-
ously, our method can handle such cases owing to this resampling process.

3 Method for Acquiring Deformable Head Model

In this section, we explain the method for acquiring the deformable head model
of a user’s head. This method consists of an automatic initialization step and
three model acquisition steps as shown in Fig.2.

In the automatic initialization step, we construct the rigid head model as the
initial head model. This initialization step is described in Section 3.1. After the
initialization, we execute the three steps for acquiring a deformable head model.
At the first step, we estimate the 3D head pose pt and face deformation at

from input images in real time, as described in Section 2. In the second step,
we find the true positions of feature points in each input frame by using pt and
at, as described in Section 3.2. Finally, in the third step, we calculate the mean
shape vector M̄ and the basis shape matrix M in Eq.(1) by using the PCA as
described in Section 3.3.

The new deformable head model is then used for the next estimation of 3D
head pose and face deformation in the first step. This framework allows progres-
sive improvement of the accuracy for estimating head pose and face deformation
in parallel with refining a user’s deformable head model.

3.1 Initial Acquisition of Head Model

The initialization step automatically constructs a 3D rigid model of a user’s
head. In this step, we utilize the OKAO vision library developed by OMRON
Corporation [12]. This library is used for detecting a face and 6 facial feature
points, that is, the inner and outer corners of both eyes, both corners of the
mouth, from input images. The other feature points are detected as the distinct
features [19] satisfying certain geometrical relations given a priori.
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We first try to detect those feature points from the left image, and then search
for the corresponding points based on epipolar constraints from the right image.
After that, the 3D shape M is calculated based on triangulation, and the 3D
shape and image template set TL, TR are registered together.

Note that we cannot estimate the deformation vector at when we have only
the rigid model just after this initialization step. In such situation, at is set to
zero vector.

3.2 Finding True 3D Positions of Feature Points

The purpose of this step, the second step of acquiring a deformable head model,
is to find the true 3D positions of feature points from each input image frame.
For constructing an accurate deformable head model, we have to collect the
exact positions of each feature point. However, these positions do not necessarily
coincide with the positions given in M t which are calculated from Eq.(1) and
the estimated at.

For this purpose, we make use of the feature tracking technique [11, 19]. Let
M ′

t be the 3K-dimensional vector that represents the true 3D coordinates of K
feature points in the model coordinate system. For reliably finding M ′

t, we refer
to pt and at which are estimated in the first step (Section 2).

At first, we define a function Ph that first transforms M ′
t by the head pose

pt and then projects the transformed points onto the image plane h:

mh,t = Ph(pt, M
′
t) (8)

where mh,t is a 2K-dimensional vector that consists of the 2D coordinates of
K projected points. We also define a K-dimensional intensity vector Ih

t (mh,t)
whose k-th element is the intensity of the k-th 2D position represented by mh,t

in the input image frame t from the camera h.
By using those definitions, we produce the energy function EI

t to minimize as
follows:

EI
t =

∑
ROI

h∈{L, R}

{
ρ‖Ih

t (mh,t)− Ih
t−1(mh,t−1)‖2

+‖Ih
t (mh,t)− Ih

1 (mh,1)‖2
}

(9)

Here, the first term in Eq.(9) is the standard energy function representing the
difference between the K Regions Of Interest (ROIs) in the current image Ih

t

and their corresponding ROIs in the previous image Ih
t−1. In contrast, the second

term works for the minimization of the difference between the current image Ih
t

and the first image Ih
1 . This term is useful for avoiding the drift of feature

points as used also in [8]. In addition, ρ is a constant for determining the ratio
between the effect of the first term and that of the second term. In the current
implementation, ρ is empirically set to 4, and the size of ROI is 16× 16.

We also introduce the additional term EM
t based on the estimated shape

M t. This term plays a very important role for preventing failure of tracking the
feature points especially when a user’s head pose changes significantly.
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EM
t = ‖M ′

t −M t‖2 (10)

This function means that we find each point of M ′
t in the neighboring region of

each point of M t. Such method for finding the point reduces significantly the
probability of losing tracking of feature points. Furthermore, as the deformable
head model is refined more accurately, the minimization of EM

t becomes more
effective for finding the correct 3D coordinates of feature points.

Hence, we minimize the following energy function for the purpose of
finding M ′

t:

Et = EI
t + εEM

t (11)

where ε is a constant, and it is empirically set to 2000.
M ′

t is then found by minimizing Et in a similar way to [8]. That is, we
calculate the difference dM ′

t = M ′
t −M ′

t−1 successively in each input frame.
This is achieved by setting the derivative of Et with respect to dM ′

t to 0.
While the technique described above yields a good tracking result M ′

t, the
components caused by rigid transformation are occasionally involved in M ′

t.
This might lead to incorrect deformable head models that cannot appropriately
distinguish face deformation from rigid transformation.

For this reason, we need to eliminate the components of transformation in-
volved in M ′

t in a similar way to the method used in [15]. We first calculate
the mean shape M̄

′ of the series from M ′
1 to M ′

t−1. Then, we apply 3D trans-
lation and rotation to M ′

t so that the sum of the square distance between the
corresponding points of M ′

t and M̄
′ is minimized. While this operation can

eliminate the unwanted components due to rigid transformation, it might have
an adverse affect on the correctly calculated M ′

t. Therefore, we apply this op-
eration only if necessary: when the distance between M ′

t and M t exceeds the
constant threshold.

3.3 Acquisition of Deformable Head Model by PCA

In the third step of acquiring a deformable head model, we calculate the mean
shape vector M̄ and the basis shape matrix M in Eq.(1). Our method applies
the PCA to the accumulated correct shape set {M ′

t}; then uses the first B
basis vectors to form M for representing face deformation in a similar way
to the method by Gokturk et al. [8] This contributes to preventing unfeasible
deformation of the human face as well as reducing the number of dimensions of
the state vector xt.

Here, we briefly describe how to acquire M̄ and M. To be precise, {M ′
t}

consists of only the shape M ′
t when a user is facing toward the cameras judging

from the estimated pose pt; this is because we desire to use as reliable data as
possible for acquiring the deformable head model. We first calculate the mean
shape vector M̄ from {M ′

t}. Then, in {M ′
t}, we count the M ′

t satisfying the
condition where the distance between M ′

t and M̄ exceeds the predetermined
threshold. If this number exceeds the predetermined number L (L = 600 in the
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current implementation), we apply the PCA to {M ′
t}. This condition is neces-

sary for judging whether {M ′
t} includes sufficient amount of shape deformation.

By the PCA-based operation, we obtain the basis shape matrix M and the
B-dimensional standard deviation vector μ, each of whose elements represents
the standard deviation of its corresponding column of M. μ is equivalent to
the standard deviation of distribution of at in Eq.(1). Thus, μ is used for de-
termining the variance of random noise in Eq.(2) and the weight of each sample
in Eq.(4).

4 Experimental Evaluation

We have conducted experiments to evaluate the performance of our proposed
method. Our system consists of a Windows-based PC with Intel Pentium4 3.0-
GHz and two CCD black-and-white digital video cameras connected via IEEE-
1394. Each image frame was captured at the resolution of 640 × 480. The size
of image templates for normalized correlation was set to 16 × 16, and a set of
1000 samples was used for particle filtering. Our method runs at 30 frames per
second with this configuration, including the 1st step and the 2nd step of Fig.2.
In addition, the 3rd step of Fig.2, that is, the PCA-based calculation of the shape
vectors, can also execute at very short execution time without spoiling real-time
performance (30fps) of the proposed system.

We prepared an image sequences of a user moving his head pose with occa-
sional face deformation. This image sequence was 60 seconds long and therefore
contained 1800 frames. By using the first 1200 frames, the user’s deformable
head model was acquired with our proposed method. Then, we estimated the
3D head pose and face deformation from the last 600 image frames using the
acquired deformable head model. For the first approximately 150 out of 600
image frames, the user’s head moved by rigid transformation accompanied by
little face deformation. After that, the user moved his head accompanied by face
deformation, for example, opening and closing his mouth.

For comparison, we also conducted head pose estimation from the same 600
image frames using the rigid head model. This rigid head model was acquired
from the initialization step in Section 3.1. We compared those two estimation
results.

Fig.3 shows the estimation results using the rigid head model and the de-
formable head model. In this figure, the thin lines show the results with the
rigid head model, and the thick lines represent the ones using the deformable
head model. For the first 150 frames, both estimation results are similar each
other. This means the deformable head model can estimate rigid transformation
without generating unwanted face deformation. On the other hand, we can see
the clear difference between both results for the remaining 450 frames. As shown
in this figure, the results using the deformable model are far more stable than
the ones using the rigid model. Hence, the deformable head model constructed
by our proposed method has the capability to handle the face deformation in
contrast to the rigid head model.
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Fig. 3. Estimation results with rigid and deformable head model. Translation consists
of x, y, and z: x represents the horizontal motion, y shows the vertical motion, z
corresponds to the depth-directional motion. Rotation consists of roll, yaw, and pitch:
roll is the rotation around the axis toward the front, yaw corresponds to the pan-
directional rotation, and pitch represents the tilt-directional rotation.
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Fig. 4. Resulting images: the images of the left column are the estimation results using
the rigid head model, and the images of the right column are the estimation results
using the deformable head model

Fig.4 shows the resulting images. In this figure, we have drawn the model co-
ordinate axes corresponding to the estimated 3D head pose, and the 2D points
onto which the estimated shape M t is projected. The left column of the figure
is the results using the rigid head model, and the right column shows the results
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using the deformable head model. Also from those results, we can confirm that
our deformable head model handles face deformation successfully.

We can see the video of this experiment on the Web. 2 This video demonstrates
the stability of pose estimation with our deformable head model.

5 Conclusions

In this paper, we proposed a new method for acquiring and refining a user’s
deformable head model in parallel with estimating the user’s 3D head pose in real
time. The main contributions of our study are summarized in the following three
points: 1) real-time estimation of 3D head pose without a preliminary training
stage, 2) real-time refinement of a deformable head model, and 3) progressive
improvement of the accuracy of estimating head pose and face deformation. The
improvement has been successfully demonstrated via experiments. We believe
that this work is the first example to achieve simultaneous execution of face
deformation modeling and 3D head pose estimation in real-time.

For further study, we are planning to use the Candid Covariance-free Incre-
mental PCA (CCIPCA) [21] that allows basis vectors to be updated at each
input image frame.
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Abstract. Subspace analysis has been widely used for head pose esti-
mation. However, such techniques are usually sensitive to data alignment
and background noise. In this paper a two-stage approach is proposed to
address this issue by combining the subspace analysis together with the
topography method. The first stage is based on the subspace analysis of
Gabor wavelets responses. Different subspace techniques were compared
for better exploring the underlying data structure. Nearest prototype
matching using Euclidean distance was used to get the pose estimate.
The single pose estimated was relaxed to a subset of poses around it to
incorporate certain tolerance to data alignment and background noise.
In the second stage, the uncertainty is eliminated by analyzing finer geo-
metrical structure details captured by bunch graphs. This coarse-to-fine
framework was evaluated with a large data set. We examined 86 poses,
with the pan angle spanning from −90o to 90o and the tilt angle spanning
from −60o to 45o. The experimental results indicate that the integrated
approach has a remarkably better performance than using subspace anal-
ysis alone.

1 Motivation and Background

Head pose can be used for analyzing subjects’ focus of attention in “smart”
environment [1][2][3]. Head pose is determined by the pan angel β and the tilt
angle α, as shown in the right image of Fig. 1. For applications in driver assistance
systems, accuracy and robustness of the head pose estimation modular is of
critical importance [3]. Besides focus analysis, head pose estimation is also a
very useful front-end processing for multi-view human face analysis. The accurate
pose estimate can provide necessary information to reconstruct the frontal view
face for a better facial expression recognition [4]. Pose estimation can also help
select the best view-model for detection and recognition [5][6].

Over the past several years, head pose estimation has been an active area
of research. If there are multiple images available, pose position in the 3D
space can be recovered using the face geometry. The input could be video se-
quences [3][4][7][8] as well as multi-camera output [9][10]. Following techniques
have been proposed: feature tracking, including tracking the local salient fea-
tures [4][8] or the geometric features [3][7]; studying the joint statistical prop-
erty of image intensity and the depth information [9][10]. With only static images

W. Zhao, S. Gong, and X. Tang (Eds.): AMFG 2005, LNCS 3723, pp. 321–335, 2005.
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Fig. 1. Illustration of head pose estimation in focus analysis

available, the 2D pose estimation problem has presented a different challenge.
Pose can only be determined in certain degrees of freedom (DOF), instead of
the full 6 DOF as the 3D one does. 2D pose estimation can be used as the
front-end for multi-view face analysis [5][11]; as well as to provide the initial
reference frame for 3D head pose tracking. In [12], the author investigated the
dissimilarity between poses by using some specific filters such as Gabor filters
and PCA. This study indicates that identity-independent pose can be discrimi-
nated by prototype matching with suitable filters. Some efforts have been put to
investigate the 2D pose estimation problem [5][6][11][13][14] and they are mainly
focused on the use of statistical learning techniques, such as SVC in [5], KPCA
in [11], multi-view eigen-space in [14], eigen-space from best Gabor filter in [13],
manifold learning in [6] etc. All these algorithms are based on the features from
entire faces. Although the identity information can be well-suppressed, one main
drawback of such techniques is that they are sensitive to the face alignment, back-
ground and scale. Some researchers also explored the problem by utilizing the
geometric structure constrained by representative local features [15,16]. In [15],
the authors extended the bunch graph work from [17] to pose estimation. The
technique provides the idea to incorporate the geometric configuration for the
2D head pose estimation. However, the study is only based on 5 well-separated
poses. The other poses not included can be categorized into these 5 poses by
extensive elastic searching. Although this benefits the multi-view face recogni-
tion problem, it is not suitable for head pose estimation in a fine scale, since
the elastic searching introduces ambiguity between similar poses. In [16], Gabor
wavelets network, or GWN, which is constructed from the Gabor wavelets of
local facial features, was used to estimate the head pose. One drawback is that
it requires selected facial features to be visible, hence not suitable for head pose
estimation with wide angle changes.

In this paper, our aim is to get a robust identity independent pose estimator
over a wide range of angles. We propose a two-stage framework which combines
the statistical subspace analysis together with the geometric structure analysis
for more robustness. The main issue we want to solve is the robustness to data
alignment and background. More details are discussed below.
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2 Algorithm Framework

The proposed solution is a two-stage scheme in a coarse-to-fine fashion. In the
first stage, we use subspace analysis in a Gabor wavelet transform space. Our
study indicates that statistical subspace analysis is insufficient to deal with data
misalignment and background noise, however, the noise does not drive the esti-
mate far from its true value. Therefore, we can assume that the true pose locates
in a subset of p× p neighboring poses around the estimate with a high accuracy.
We use the subset of poses as the output from the first stage. This is similar to a
fuzzy decision. The first-stage accuracy is evaluated accordingly: if the true pose
locates in the p× p subset around the estimate, the estimate is determined as a
correct one. Since geometric structure of the local facial features has the ability
to provide the necessary detail for a finer pose assessment, in the second stage,
we use a structural landmark analysis in the transform domain to refine the es-
timate. More specifically, we use a revised version of the face bunch graph [17].
The diagrams in Fig. 2 outline this algorithm.

Fig. 2. Flowchart of the two-stage pose estimation framework. The top diagram is for
the first-stage estimation and the bottom one is for the second-stage refinement. The
output of the first stage is the input of the second stage.
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To get a comprehensive view of the underlying data structure, we study four
popular subspaces so that the best subspace descriptors can be found: Prin-
ciple Component Analysis (PCA) [18]; Kernel Principle Component Analysis
(KPCA) [19]; Multiple class Discriminant Analysis (MDA) [18] and Kernel Dis-
criminant Analysis (KDA) [20,21]. Results show that analysis in the kernel space
can provide a better performance. Also, discriminant analysis is slightly better
than PCA (please refer to Table 1). To refine the estimate from the first-stage,
semi-rigid bunch graph is used. Different from the face recognition task solved
in [17], we only need to recover the identity-independent head pose. In [17],
an exhaustive elastic graph searching is used so as to find the fiducial points
that contains subjects’ identity. However, the distortion in the geometric struc-
ture caused by the exhaustive elastic search would introduce ambiguity for close
poses. Furthermore, for pose estimation, we do not require exact match of the
fiducial points since the nodes from Gabor jets are actually able to describe
the neighborhood property. That is the reason we use the “semi-rigid” bunch
graph, in which the nodes can only be individually adjusted locally in legit-
imate geometrical configurations. We use multiple bunch graphs per pose to
incorporate all available geometric structures. The reason is that the geometric

Table 1. First-stage multi-resolution subspace analysis results evaluated under
different p

p=1 p=3 p=5
PCA 36.4 86.6 96.9
MDA 40.1 88.0 97.3
KPCA 42.0 90.2 99.2
KDA 50.3 94.0 97.9

Fig. 3. Examples of the image set. The top two poses are not discussed because of
lacking of enough samples.
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structure captured by a single model graph is not subject-independent. Simply
averaging is not sufficient to describe all subjects. Since the first stage estimation
restricts the possible candidate in a small subset, the computational cost is still
reasonable.

The data span pan angles from −90o to 90o and tilt angle from −60o (head
tilt down) to 45o (head tilt up). 86 poses are included, as shown in Fig. 3.

3 Stage 1: Multi-resolution Subspace Analysis

Gabor wavelet transform is a convolution of the image with a family of Gabor
kernels. All Gabor kernels are generated by a mother wavelet by dilations and
rotations. Gabor wavelets provide a good joint spatial frequency representation.
DC-free version of the Gabor wavelets can suppress the undesired variations, such
as illumination change. Also, optimal wavelets can ideally extract the position
and orientation of both global and local features [22]. Only magnitude responses
are used in our algorithm since the phase response is too sensitive.

3.1 Subspace Projection

The wavelet features suffer from high dimensionality and no discriminant infor-
mation are extracted. Subspace projection is used to reduce the dimensionality
as well as extracting the most representative information. In this paper, we com-
pare four popular subspaces for better discovering the underlying data structure,
which are PCA, MDA and their corresponding nonlinear pair. For the clarity of
presentation, in the following sections, the data set is denoted as {xi}i=1,···,N
with C classes. Samples from c-th class are denoted as xc,i, i = 1, · · · , Nc, where
N =
∑C

c=1 Nc and {xi}i=1,···,N = ∪C
c=1{xc,j}j=1,···,Nc .

Linear Subspace Projection. PCA aims to find the subspace that describes
most variance while suppresses known noise as much as possible. PCA subspace
is spanned by the principal eigenvectors of the covariance matrix, which is:

Σ =
1
N

N∑
i=1

(xi − μ)(xi − μ)T; (1)

where μ is the sample mean: μ = 1
N

∑N
i=1 xi. The principal components are

computed by solving the following eigen-decomposition problem:

ΣV = ΛV; (2)

where Λ is the diagonal matrix whose non-zero entries are the eigenvalues λi

of Σ. V is the matrix from eigenvectors. λi indicates the information preserved
on the corresponding eigenvector direction. By picking the eigenvectors with
the largest eigenvalues the information lost is minimized in the mean-square
sense.
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While PCA looks for a projection subspace with minimal information lost,
discriminant analysis seeks a projection subspace efficient for classification. The
basic idea is to find a projection, in which the within class data are compactly
represented while the between class data are well-separated. We use a multiple
class discriminant analysis as introduced in [18]. The within-class scatter matrix
SW is used to evaluated the data compactness, defined as follows:

SW =
C∑

c=1

Nc∑
i=1

(xc,i − μc)(xc,i − μc)T; (3)

with μc = 1
Nc

∑Nc

i=1 xc,i as the class mean. The separability between data from
different classes is evaluated by the between-class scatter matrix as follows

SB =
C∑

c=1

Nc(μc − μ)(μc − μ)T; (4)

where μ = 1
N

∑N
i=1 xi is the overall sample mean. The subspace is found by

Fisher’s criterion, which maximize the Raleigh coefficient:

J (V) =
VTSBV
VTSW V

. (5)

This turns out to be an eigen-decomposition problem. The solution can be found
by solving the generalized eigen-decomposition problem SBvi = λiSW vi.

PCA and MDA provide powerful linear techniques for data reduction. How-
ever, most interesting data in real world assume certain non-linearities that lin-
ear projection can not model. This inspires the use of kernel machine, which
explores the non-linearity of the data space. The extended nonlinear alternative,
KPCA [19,23] and KDA [20], are used.

Kernel Machine: KPCA and KDA. In [11] the use of KPCA for modeling
the multi-view faces in the original image space was presented. Assuming data
non-linearly distributed, we can map it onto a new higher dimensional feature
space {Φ(x) ∈ F} where the data possess a linear property. The mapping is
Φ : x �→ Φ(x). KPCA is realized by a linear PCA in the transformed space F .
The covariance matrix now becomes:

Σ =
1
N

N∑
i=1

(Φ(xi)−Φ(μ))(Φ(xi)−Φ(μ))T. (6)

Sample mean Φ(μ) = 1
N

∑N
i=1 Φ(xi). Only dot product Φ(xi)•Φ(xj) is involved,

hence no explicit function is needed for the mapping Φ. Define the kernel as

K(xi;xj) ≡ Φ(xi) •Φ(xj)

and the Gram matrix K as a N × N matrix with its entry: K(xi;xj), (i, j =
1, · · · , N). The Hilbert space assumption constrains v’s solution space within the
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span of {Φ(x1), · · · ,Φ(xN )}, which means v =
∑

i αiΦ(xi) (α = [α1, · · · , αN ]T).
The linear PCA problem in space F gives:

K′α = Nλα, (7)

where K′ is the slightly different version from K by removing the feature’s mean:

K′ = (I− eeT)K(I− eeT); (8)

e = 1√
N

[1, 1, · · · , 1]T.
The eigen-decomposition of the Gram matrix provides an embedding that

captures the low-dimensional structure on the manifold. Hence, a better gener-
alization ability can be achieved. In our implementation, we use the traditional
Gaussian kernel.

The same as KPCA, KDA processes data in the transformed space F . Hilbert
space is assumed so that k-th projection direction is: wk =

∑N
i=1 α

(k)
i Φ(xi).

Introduce the kernel K(xi;xj) = Φ(xi) •Φ(xj) and define an additional kernel
matrix Kc as a N × Nc matrix whose entry is K(xi;xc,j) (i = 1, · · · , N , j =
1, · · · , Nc). Now the scatter matrices can be represented by:

WTSBW = WT
C∑

c=1

Nc(μc − μ)(μc − μ)TW

= VT(
C∑

c=1

Kc1cKT
c

Nc
− K1K

N
)V; (9)

WTSW W =
C∑

c=1

Nc∑
i=1

(xc,i − μc)(xc,i − μc)T

= VT(
C∑

c=1

KcKT
c −

C∑
c=1

Kc1cKT
c

Nc
)V. (10)

where 1 is an N × N matrix with all 1 entries and 1c is an Nc × Nc matrix
with all 1 entries. The new projection matrix is V = [α1, · · · , αm] with αk =
[α(k)

1 , · · · , α(k)
N ]T. The Raleigh’s coefficient now becomes:

J (V) =
VT(
∑C

c=1
1

Nc
Kc1cKT

c − 1
N K1K)V

VT(
∑C

c=1 KcKT
c −
∑C

c=1
1

Nc
Kc1cKT

c )V
. (11)

Similar as its linear alternative, KDA projection is pursued by maximizing the
Raleigh’s coefficient.

In Fig. 4 and Fig. 5, 2D toy examples are used to illustrate the four subspace
analysis methods. In Fig. 4, the original 2D data are projected onto the 1D PCA
and LDA subspace as shown. LDA can well-separate the data while PCA cannot.
In Fig. 5, we illustrate the separation abilities for nonlinear data set. All four
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Fig. 4. Illustrative example of PCA and LDA subspace representation. The data from
two classes are shown in red and blue individually. Left: original data; middle: projected
data from PCA subspace; right: the projected data from LDA subspace.
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Fig. 5. Illustrative examples of the subspace representation for nonlinear data. Red
color and blue color indicate samples from different classes. First row: the original
data. Row 2-3: transformed data (top: 2D space; bottom: 1D space). From column 1
to column 4: PCA, LDA, KPCA, KDA. Kernel: same Gaussian kernel.

subspace projections are compared on a binary 2D toy data set. As can be seen,
PCA and LDA are not able to produce a more discriminating representations
due to the non-linearity of the data, whereas the KPCA and KDA transform
the data into two well-separated clusters.

3.2 Prototype Matching

We use the nearest prototype matching for the first stage classification. Each pose
is represented by a set of subspaces, each of them computed from filter responses
in one resolution. In each subspace the prototype from class mean is found as
a template. Euclidean distances is used to measure the similarity in subspaces.
The pose estimation is given by the prevailing class label from all resolutions
as illustrated in Fig. 2. This gives a single pose as an estimate. We relax the
single estimated pose label to a subset of 3 × 3 poses around it for additional
robustness. A second-stage is applied thereafter to solve the sub-problem, where
only poses in the subset are tackled.
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4 Stage 2: Geometric Structure Analysis

The second stage serves to refine the coarse pose estimation. In this section, we
use a revised version of the face bunch graph introduced in [17] for this purpose.
Face graph is a labeled graph which connects the local image features together
with the image’s geometric configuration. It exploits the local salient features
on a human face, e.g. pupils, nose tip, corners of mouth, and etc. together with
their locations.

4.1 Bunch Graph Construction

Each face image constructs a model graph. The model graph is a labeled graph
with its nodes corresponding to the Gabor jets at the predefined salient facial
features, and its edges labeled by the distance vector between nodes. Gabor jet is
defined as the concatenation of the Gabor wavelet responses at an image point.
Some examples of the model graphs are show in Fig. 6. Occlusion of the current
view determines how many nodes are used. More nodes assert more geometric
constraint useful for pose discriminating, however, more identity information
could be preserved.

Each view is modeled by one set of bunch graphs from the model graphs of the
same pose. The nodes of the bunch graph are the bundles of the corresponding
nodes in model graphs. The geometric structure is subject-dependent in a cer-
tain degree. Subjects from different race, age group, or different gender possess
different geometric configuration. Although a simple average of all the geometric
configurations followed by an exhaustive search and match can still be used to
find the identity-related fiducial points, this step will also add ambiguity to the
global structure between close poses. In the purpose of retrieving the pose infor-
mation while suppressing the subject identity, we keep every available geometric
configuration and use a semi-rigid searching for matching, which means only lo-
cal adjustment is allowed for refine the estimated face graph. Therefore, for each
pose, we actually have the same number of bunch graphs as the model graphs.
Each bunch graph inherits the edge information from an individual model graph.
All the bunch graphs differ only in the edge labels. This is illustrated in Fig. 7.
This strategy enables us to avoid large distortions in geometric structure that
causes ambiguities between neighboring poses. This offline model construction
step gives each pose a set of bunch graphs as the templates.

Fig. 6. Examples of the face model graph. Left: pan: 0o tilt: 0o; middle: pan: −15o tilt:
0o; right: pan: +15o tilt: 0o.



330 J. Wu and M.M. Trivedi

Fig. 7. Construction of the bunch graphs as the template for a single pose. Frontal
view is used. The graphs shown here are just for illustration. In actual computation,
more nodes are used, hence the graph structure is different from that shown here.

4.2 Graph Matching

Denote the subset of poses confined by the first stage estimation as Ps. Given a
test image, every pose candidate in Ps gives an estimated face graph by search-
ing the sets of nodes that maximize the graph similarity. Graph similarity is
determined by both the similarity of the nodes and the distance in edge labels.
We use the normalized cross correlation as the nodes similarity metric [17]. Let
J(i) = (f1(i), · · · , fF (i)) be the Gabor jet for i-th nodes. Nodes similarity D is
given by:

D(J(i);J(k)) =
∑F

m=1 fm(i)fm(k)√∑F
m=1 f2

m(i)
∑F

m=1 f2
m(k)

. (12)

The graph similarity S between the estimated face graph G = (Jm, δe) and some
bunch graph B = ({JBi

m }i, δB
e ) is defined as:

S(G,B) =
1
M

M∑
m=1

max
i

(D(Jm;JBi
m ))− λ

E

E∑
e=1

(δe − δB
e )2

(δB
e )2

; (13)

where λ is the relaxation factor.
Since we have multiple bunch graphs for a single pose, each of them can

generate a possible face graph for the testing image. The best matched one
needs to be found as the representative face graph for this pose. This best face
graph estimate is given by the following steps:

1. Scan the testing image. Each rigid topographic constraint (λ = ∞) deter-
mined by one bunch graph gives a set of matching nodes, and hence a graph
Gt. Out of which the best matched one is:
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t� = argmax
t
S(Gt,Bt),

with λ =∞.
2. The nodes of the best matched estimated graph Gt� are individually adjusted

locally to refine the match.
3. Refined nodes determines the graph.

The best geometric configuration t� is selected and the graph similarity between
the estimated face graph and the t�-th bunch graph is evaluated by equation 13.
The pose with the highest similarity score gives the final pose estimation.

5 Experimental Evaluations

The data set used for evaluating this approach includes 28 subjects. Magnetic
sensor is used to provide the ground-truth. Some poses are excluded due to lack
of enough samples (see Fig. 3). We include 86 poses. The pan angle spans from
−90o to +90o; with 15o intervals from −60o to 60o, and then the poses with ±90o

pan angles are also considered. The tilt angle has a consistent interval of 15o from
−45o to 60o. 3894 images of size 67 × 55 and their mirror images are used, so
altogether 7788 images included. Each pose has 80∼100 images, randomly split
into two parts, one for training and one for testing. Some subjects may have
multiple samples for one pose, assuming sufficient different facial expressions.
We use Viola and Jone’s face detector [24] to get the face area. 9 separate
detectors are trained for different views. For each image, we manually select one
detector according to the ground-truth of the head pose.

5.1 Stage 1: “Coarse” Pose Estimation

Output of the first stage is a p × p subset of poses. The accuracy is evaluated
accordingly: if the true pose does not belong to this subset, it is counted as a
false estimate. In our implement p = 3 is used if not specially stated. Bigger p
gives better accuracy, however, more computational cost will be needed for the
second stage refinement. In table 1, the first-stage estimation for different sub-
spaces are evaluated under different p. To better present the error distribution,
in Fig. 8 we use a color coded error distribution diagram to show the accuracy for
each pose for KDA subspace (evaluated under p = 3). Darker color shows more
error. All four subspace didn’t give a satisfactory results comparable with those
reported when p = 1, which is actually the accuracy of using subspace analysis
alone. This is not a surprise, since the subspace analysis is very sensitive to the
data noise, such as background and data alignment. In our data set, the face
position is not well-aligned. Also in some images parts of the hair and shoulder
appears while not in the other. In such case, the subspace analysis alone is not
capable to obtain as good performance. The use of the two-stage framework
solves this problem. More experiments validate the advantage of the two-stage
framework. We purposely translate the cropping window for the testing face
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Fig. 8. Color coded error distribution diagram for KDA subspace (p = 3)
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Fig. 9. The performance with the added misalignment (±16,±8,±6,±4,±2) in both
directions. Top row: misalignment in the horizontal direction. Bottom row: misalign-
ment in the vertical direction. Left column: accuracy change with misalignment. Right
column: relative accuracy change with misalignment. Blue curve with x: evaluated on
p = 3. Red curve with o: evaluated on p = 1.

images by ±2,±4,±6,±8,±16 pixels in both directions, which aggravates the
misalignment. Use the same KDA subspace obtained in previous step to test the
performance. The accuracy is evaluated for both p = 1 and p = 3, as show in
Fig. 9. Experimental results indicate that when using p = 3 to evaluate the ac-
curacy, the accuracy is actually quite stable with the aggravating misalignment.
However, when p = 1, the accuracy keeps stable for small misalignment (<4
pixels), and drops fast with increasing misalignment. Since the second-stage is
not affected by the misalignment, if we can get a stable output for the first-stage
with increasing misalignment, the overall accuracy would be stable. This shows
the advantage of the 2-stage framework.

5.2 Stage 2: Refinement

We only use the best results, which is from KDA subspace analysis, as the first-
stage output. The pose estimation accuracy after the refinement is summarized in
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Table 2. The overall accuracy (%) using KDA subspace majority voting for the first
stage estimation and the semi-rigid bunch graph matching as the second stage refine-
ment. The accuracy is 75.4%.

−90o −60o −45o −30o −15o 0o 15o 30o 45o 60o 90o

60o 16.7 30.8 11.1 50.0 50.0 20.0 30.8 23.1 25.0
45o 80.5 77.5 65.6 65.4 79.5 88.2 76.7 83.6 58.3 77.8 67.1
30o 80.8 74.7 81.5 73.0 76.3 85.3 71.1 82.2 87.6 83.3 86.6
15o 75.4 71.4 80.5 84.4 94.3 84.0 79.4 82.4 85.7 71.4 87.3
0o 87.5 83.4 77.0 88.8 91.6 86.0 87.9 79.0 83.1 79.6 79.3

−15o 67.0 81.2 85.0 78.9 82.5 80.4 89.1 75.9 74.5 84.1 87.0
−30o 80.9 84.1 92.2 67.7 89.5 64.7 94.2 75.9 87.0 72.1 76.8
−45o 82.9 65.7 77.1 81.6 76.7 65.6 68.8 81.6 71.1 75.0 30.0

Table 3. Comparison of results from different second-stage refinement

KDA PCA MDA KPCA KDA
+BG +MDA +MDA +MDA +MDA
75.4 43.1 44.0 47.3 53.4

Table 2. The accuracy was evaluated by the ratio of samples that were correctly
classified. Pose with tilt angle 60o get poor performance. It is because of the
severe occlusion. Discarding these poses, the overall accuracy can be improved
to 81.3%. For comparison, a second stage refinement by multi-resolution MDA
analysis is also performed, using the poses confined by the first stage. The results
are shown in Table 3. The comparison shows that by introducing the second-
stage structure landmark matching, the estimation accuracy has a markable
improvement.

6 Concluding Remarks

In this paper we discussed a two-stage approach for estimating head pose from
static images. We use statistical subspaces analysis in Gabor wavelet domain
to confine the possible range of the head pose. Semi-rigid bunch graph was
used to systematically analyze the finer structural details associated with facial
features, so as to refine the first-stage estimate. The combination of statistical
analysis on features from entire images with the geometrical topograph driven
approach provides a robust way to estimate the head pose in a fine scale. It
solves the internal problem of the statistical analysis approach that requires a
high-quality data set, as well as introducing the methodology of decomposing a
large classification problem into smaller sub-problem, so that template matching
is feasible. Experimental results show that better performance can be obtained
than statistical analysis alone.
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Abstract. Recognizing faces with complex intrapersonal variations is a 
challenging task, especially when using small size samples. Our approach, 
which obtains state of the art results, is based on a new face recognition 
scheme: Gabor-Eigen-Whiten-Cosine (GEWC). The novelty of this paper lies 
in 1) the finding that the same face with complex variations, projected into the 
Gabor based whitened PCA feature space, is approximately angle invariance; 
and 2) the experimental studies that analyze the joint contribution of Gabor 
wavelet, whitening process, and cosine similarity measure on the PCA based 
face recognition. The new GEWC method has been successfully tested and 
evaluated using comparative experiments on 3000+ FERET frontal face images 
with 1196 subjects. In particular, the GEWC method achieves constant 100% 
accuracy on the 200-subject experiment across illuminations and facial 
expressions. Furthermore, its recognition rates reach up to 96.3%, 99.5%, 
78.8%, and 77.8% on the FB, fc, dup I, and dup II probes respectively using 
only one training sample per person. 

1   Introduction 

Face recognition can be defined as the identification of individual from images of 
their faces by using a stored database of faces labeled with people’s identities, which 
is largely motivated by the need for surveillance and security, human-computer 
intelligent interaction, telecommunications, and smart environment [1]. The challenge 
of face recognition comes from the generally similar shape of face combined with the 
numerous variations between images of the same face, such as changes in facial 
expression, illumination conditions, age and accessories, etc. The task of a face 
recognition system is to recognize a face in a manner that is as independent as 
possible of these image and facial variations [2]. Therefore, a good face recognition 
methodology should consider representation as well as classification issue to 
counteract the intrapersonal variation.

Discriminating analysis based methods [4][5][6] are widely used to suppress the 
intrapersonal variation, which define a projection that makes the within-class scatter 
small and the between-class scatter large to derive compact and well-separated cluster. 
The drawback of these methods is that they require large and representative training 
samples to guarantee their generalization. However, many face recognition tasks, such 
as airport security and law enforcement applications, can only offer small size training 
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samples. Consequently, the discriminating analysis possibly over-fits to the training 
data, and fail on future trials using novel (unseen) test data. As evidence in support of 
our claim, we should draw the attention of the reader to some of the results in the 
September 1996 FERET competition [7] and those reported by the literature [8].  

In general, the difference between two faces can be modeled by three components: 
intrinsic difference [9] that discriminates different face identity; trained variation,
arising from the different conditions of the same training face (class), such as expression 
and illumination changes; novel variation, which is not characterized by the training 
samples, such as an unexpected accessory or illumination. Note that the intrapersonal 
variation consists of both the trained and the novel variation. In the real-world scenario, 
since one never knows in advance the underlying distributions for the different faces, 
the novel variation is the most challenge factor. A good face recognition methodology 
should not only retain maximum intrinsic difference and minimum trained variation, but 
more importantly, also should be robust to the novel variation.  

Our work focuses on developing a robust face recognition scheme from small size 
sample, namely one or two training samples per person, without discriminant 
analysis. We first note that PCA is potential to extract discriminating information, 
because covariance matrix has characterized all the intrinsic difference in the training 
data. The whitening process is then applied to exclude the trained variation retained 
by the PCA.  Inspired by the Dynamic Link Architecture (DLA) framework [10], we 
use Labeled-Graph (LG) vector for face representation, instead of the traditional 
pixel-based representation, to narrow the intrapersonal variation between the probe 
and corresponding gallery. The features used in the LG vector, based on the 2D Gabor 
wavelet transform, are expected to be robust to changes in the illumination and facial 
expression [6][11]. For classification, we newly discovery that the cosine similarity 
measure is less sensitive to the novel variation in the whitened PCA feature space, 
which is validated by our extensive experiments.  

This paper presents a new face recognition scheme called Gabor-Eigen-Whiten-
Cosine (GEWC) for face recognition, which integrates the Gabor wavelet 
representation (Gabor), PCA dimensionality reduction (Eigen), whitening process 
(Whiten), and cosine similarity measure based classification (Cosine). The 
effectiveness and robustness of this new method is comprehensively tested using the 
FERET face dataset. We first conduct a face recognition experiment using 600 
FERET frontal face images corresponding to 200 subjects, which were acquired under 
variable illumination and facial expressions. Furthermore, our method is evaluated 
against four categories of tasks, following the procedure of the FERET Evaluation. 
The effectiveness of the GEWC method is shown in terms of the comparative 
performance against the state of art face recognition methods such as the Eigenface 
method [3], the Fisherface method [4]. Comparative experimental studies are also 
performed to illustrate how the four procedures of the GEWC method contribute the 
face recognition performance respectively. 

2   Gabor-Eigen-Whiten-Cosine Scheme 

This section details the Gabor-Eigen-Whiten-Cosine scheme for face recognition. 
Firstly, a Label Graph (LG) vector, which is robust to the illumination and facial 
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expression changes, is derived based on 2D Gabor Transformation. Secondly, PCA is 
applied on the LG vector to extract a compact feature vector. Thirdly, PCA based 
features are normalized by whitening process for higher separability. Finally, cosine 
similarity measure is used at the classification stage to counteract the intrapersonal 
different between the probes and galleries in the feature space. 

2.1   Face Representation 

2D Gabor Transform was developed by J. Daugman in 1988, which today is widely 
applied across computer vision domains [11]. To extract information about object 
appearance, the image is convolved with a multiple spatial resolution, multiple 
orientation set of Gabor filters. Specifically, the 2D Gabor filters are usually defined 
as follow: 
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2, 2

, 2
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μ υ μ υ
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vk k f= gives the frequency,  8μφ μπ= , [ )0,μφ π∈ gives 

the orientation, and ( , )z x y= . Note that, in equation (1), v controls the scale of the 

Gabor filters, which mainly determines the center of the Gabor filter in the frequency 
domain; μ controls the orientation of the Gabor filters. This can be observed 

intuitively from the visualization of the real part of the Gabor filters. The parameters 

for the Gabor filters are as follows: 2σ π= , max / 2k π= , 2f = , five 

scales {0,1,2,3,4}v∈  and eight orientations {0,1,2,3,4,5,6,7}μ ∈ . These Gabor 

kernels form a bank of 40 different filters and exhibit desirable characteristics of 
spatial frequency, spatial locality, and orientation selectivity. 

In our implement, the Gabor representation for face images is derived as follow: 1) 
all images are translated, rotated, and scaled so that the center of the eyes are placed 
on specific pixels, yielding 65×75 pixel cropped and rectified face images (see 
Fig.1.a); 2) Faces are masked to remove background and hair and histogram 

Fig. 1. Illustration of the procedure of the Label graph vector derivation. (a) the cropped and 
rectified images. (b) the normalized masked images. (c) the settled grid for sampling Gabor 
features. 
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equalization is then carried out to smooth the distribution of grey values for the non-
masked pixels, making the masked images insensitive to overall level of illumination 
conditions (see Fig.1.b); and 3) The normalized masked image is convolved with the 
40 Gabor filters and the magnitudes of the complex-value filter responses are sampled 
at 225 points on square grid (see Fig.1.c), which is settled at the core region of the 
human face. Then the sampled values are combined into a 9000 dimensional Label 
Graph (LG) vector to form the Gabor representation for a face image. 

2.2   Dimension Reduction 

As the perceptually meaningful structure of the face representation has many fewer 
independent degrees of freedoms than its dimensionality, it is natural to pursue 
dimensionality reduction schemes. A classical technique for dimensionality reduction, 
particularly in face recognition, is principle component analysis (PCA). In order to 
produce a compact representation, the LG vector is projected into a lower dimensional 
feature space found by principle components analysis (PCA). 

PCA=u W x (2)

The input LG vectors are first transformed by subtracting the mean: i i= −x m .

The principal components of the training data set are given by the eigenvectors of its 

covariance matrix 1

1 T
ii

n

in == . Because of the high dimensionality of the LG 

vectors,  is very large; however, there are only 1n −  nonzero eigenvalues and only 
the corresponding eigenvectors are relevant for describing the distribution of the 
training set. In practice, only M (M< 1n − ) eigenvectors having the largest 
eigenvalues (and, hence, the largest variance in the data set) are kept empirically to 
form the projection matrix PCAW .

PCA technique is guaranteed to discover the linear projection that maximizes the 
scatter of all the projected training samples, but this induces its main drawback for the 
classification purposes: the scatter being maximized is not only due to the intrinsic 
difference that is useful, but also due to the trained variation that is harmful. Note that 
in face recognition, the trained variations are usually due to low frequency changes, 
such as the global variable lighting and similar expression changes of the training 
samples, which will be retained in leading components. Pentland et al. [13] have 
empirically shown that superior face recognition results are achieved when the first 
three eigenvector is not used. It is unlikely that, however, the leading principal 
components corresponding solely to the trained variation; as a consequence, 
information that is useful for discrimination may be lost [14]. In the GEWC scheme, 
we solve this problem using the whitening process. 

2.3   Feature Normalization  

PCA based feature suffers from two obvious shortcomings: 1) the leading 
eigenvectors encode mostly for prototypical representational aspects, such as 
illumination and expression, rather than discriminating information [13]; and 2) 
Mean-Square-Error (MSE) principle underlying PCA preferentially weights low 
frequencies [16][17][18], which makes the discriminating information contained in 
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the high frequency components cannot contribute the face recognition. Note that in 
the Gabor based PCA feature space, the trailing eigenvectors might retain the high-
frequency components, which contribute to the fine details required in the 
identification task, rather than the noise, since the image noise has been suppressed by 
the Gabor filter. 

A straightforward way to counteract these disadvantages is the whitening process, 
which normalizes the PCA based feature. Specifically, the PCA based feature, u is 
subject to the whitening transformation and yields yet another feature set w :

1/ 2
M
−=w u (3)

where 1/ 2 1/ 2 1/ 2 1/ 2
M 1 2 M{ , ,..., }diag λ λ λ− − − −= . The integrated projection matrix 1/ 2

M PCA
− W

treats variance along all principle component axes as equally significant by weighting 
components corresponding to smaller eigenvalues more heavily and is arguably 
appropriate since our aim is discrimination, rather than representation. Consequently, 
the negative influences of the leading eigenvectors are reduced, while the 
discriminating details encoded in trailing eigenvectors are magnified.     

2.4   Classification Rule and Similarity Measure 

When a face image is presented to the GEWC method, the LG vector of the face 
image is first calculated as detailed in Section 2.1, and the low dimensional Gabor-
based features, w , is derived using (3). Let 0 , 1,2,...,k k L=m , be the prototype, the 

mean of training samples, for class kω  in the feature space. The GEWC method 

applies the nearest neighbor (to the mean) rule for classification using similarity 
measureδ

0 0( , ) min ( , )k j k
j

δ δ ω= → ∈w m w m w (4)

The image feature vector, w , is classified as belonging to the class of the closet 

mean, 0
km , using the similarity measureδ .

Popular similarity measures include L1, L2, Mahalanobis distance, and cosine 
similarity measure. In the PCA-based feature space, it is proven that the Mahalanobis 
distance measure performs the best followed in order by L1, L2 distance and cosine 
similarity measure, because Mahalanobis distance counteracts the fact that simple 
distance measures, like L1 and L2 distance, in the PCA space weight preferentially for 
low frequencies [6][18]. In our scheme, however, this preference is equalized 
explicitly by the whitening process, which makes the Mahalanobis distance 
unnecessary. Instead, we should reconsider the optimal similarity measure according 
to its invariance with the image changes. 

Note that when the novel variation, unseen in the training set, is projected onto the 
feature space, most energy of it will distribute over all the eigenvectors. This is 
because such variations are somewhat independent of the variance retained by the 
feature space. In other words, novel variation, projected into the feature space, is 
incline to evenly affect the projected scale on each component, and thus take more 
effect on the L1 and L2 distance rather than the vector angle. Therefore, the cosine 
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similarity measure, CSMδ , which is invariant to change in scale, is employed to 

perform nearest neighbor search in the feature space for face recognition.  

T
1 2

CSM 1 2
1 2

( , )δ −
=

⋅
w w

w w
w w

(5)

Although we argue the GEWC method is robust scheme for face recognition, we 
still bear the burden of establishing our claim with the help of actual data. This we 
will do in the rest of this paper with the help of  a standard testbed: FERET database. 

3   Experiments and Analysis 

We assessed the effectiveness and robustness of our new GEWC method on the face 
recognition task using a large scale data set from the The FacE REcognition 
Technology (FERET) database, which is a standard testbed for face recognition 
technologies [7]. The FERET facial database displays diversity across gender, 
ethnicity, and age. To obtain a robust assessment of performance, the GEWC 
algorithm is evaluated against different categories of images. The categories were 
broken out by a lighting change, varying expression, and time between the acquisition 
date of the database image and the testing image. 

3.1   Experiments: Recognition Across Illumination and Facial Expression 

This experiment involves 600 face images corresponding to 200 subjects and each 
subject has three images of  256×384 with 256 gray scale level. As the images were 
acquired during different photo sessions, they display different illumination and 
characteristics and facial expressions. As two images are randomly chosen for 
training, while the remaining image is used for testing (see Fig.2), the tested methods 
have to cope with both illumination and facial expression variabilities. 

Fig. 2. Example FERET images used in our experiments (cropped and rectified). The top rows 
show the example of the training images, while the bottom row shows the examples of the 
testing images. 



342 W. Deng, J. Hu, and J. Guo 

 

Fig. 3. Comparative performance of the GEWC method and six algorithms. The six include the 
Eigenface method, the Eigenface method with whitening process (Wt), and the Fisherface 
method, using two face representations: normalized masked image and Label Graph vector 
(LG) respectively.  

For comparison purpose, we first implemented the Eigenface method [3], the 
Eigenface method with whitening process, the Fisherface method [4] and tested them 
using normalized mask images (see Fig.1.b). The comparative face recognition 
performance of these three methods is shown in Fig.3 by dashed lines, and one can 
see from the figure that the Fisherface method performs better than the Eigenface 
method. This shows the superiority of the discriminant analysis method when using 
representative training data. Note that, however, the whitening process improves the 
Eigenface method significantly and even brings it a higher accuracy than the 
Fisherface method. This result indicates that (i) the whitening process suppresses the 
trained variation encoded in the leading eigenvector, since a 50% increase in accuracy 
is achieve when whiten the leading 50 features; and (ii) the whitening process 
effectively explores discriminating information in the trailing eigenvector, since the 
recognition rate keep increasing when using 50+ whitened features.  

We then applied the above three methods on the LG vector, and the results show 
that the recognition performance improves for all three methods by a large margin 
when using 50+ feature. These results suggest that (i) Gabor wavelet based 
representation carries discriminating information effective to narrowing the 
intrapersonal variation; and (ii) Gabor wavelet takes more affect on the trailing 
eigenvectors that encode the high frequency information corresponding to local 
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variation, such as local illumination changes, since the benefits of it can only be 
revealed when using 50+ features. 

GEWC method is finally applied and it performs better than all of the other six 
methods. In particular, GEWC method achieves constant 100% correct recognition 
accuracy when using 185+ features. The high performance of cosine similarity measure 
shows that the face and image variations, projected in the Gabor based whitened PCA 
feature space, are less likely to affect the angle of feature vector rather than its scale. 
Note that in the PCA based feature space, the superiority of the cosine similarity 
measure can be revealed only when the whitening process is applied to equalize 
projected variations. Without the previous whitening process, the cosine similarity 
measure only achieves equivalent performance to the L1 and L2 distance [6][18]. 

3.2   Experiments: Face Recognition with One Sample Image 

In this series of experiments, the GEWC method is evaluated extensively against 
different categories of image to obtain a robust assessment of its performance. To 
produce comparable results, we follow the procedure of FERET Evaluation [7], using 
the same gallery and probe sets.  

The gallery images were 1196 FA images captured during different photo sessions, 
with one image per person. The FB probes consisted of 1195 images with alternative 
facial expression; The fc probes contain 194 images taken with a different camera and 
lighting; The duplicate I probes involve 722 images with corresponding gallery 
image taken from on a different day and in a different place, and thus they might 
contain “unite variation” due to illumination, facial expression, accessories, and 
aging, etc. The duplicate II probes, a subset of duplicate I, is considered the most 
challenging probe, since they contains 234 images from subjects whose gallery match 
was taken more than 18 months beforehand. Fig.4 shows some example of these 
gallery and probe images. 

We test the algorithm using different number of training samples randomly chosen 
from the gallery set. This means that not more than one sample per class is used for 
training, and the training samples are captured under variable conditions. Although 
few researchers adopt this methodology of sample selection, this configuration is 
applicable for real-life face recognition application. Since in the domain of face 
recognition, one never knows in advance the underlying distributions for different 
faces [8], representative samples are usually unavailable. In some cases, even a 
neutral gallery image is hardly available, such as the watch list application. 

For comparison, we first implement the Eigenface baseline [7], which improves the 
standard Eigenface technique using the L1 distance metric, and its performance for the 
four tasks is shown in the Fig.5 as function of the number of training samples. As the 
performance of face recognition varies with the number of features, we reports the 
best results it obtains. As expected, the Eigenface baseline achieves similar results as 
those reported in the FERET Evaluation [7]. However, we find that this method does 
not benefit from the increasing number of training samples. Since the training samples 
are randomly selected from the gallery images captured during different photo 
sessions, they display large variations in lighting and expression. The PCA encodes 
these interpersonal variations from the new training samples, which makes the 
Eigenface method  cannot enhance the recognition accuracy further. 
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Fig. 4. Example images (cropped and rectified) used in the FERET Evaluation. The top row 
shows the examples of the FA gallery images, which are also used for training in our 
experiments. The bottom row shows the four types of probe images. Specifically, (a) illustrates 
the FB probes, (b) fc probes, (c) & (d) dup I probes, and (d) dup II probes. 

Fig. 5. Comparative performance of the GEWC method (black solid line) and the Eigenface 
baseline [7] (blue dotted line) as function of the number of training samples for the four face 
recognition tasks: FA/FB, FA/fc, FA/dup I, and FA/dup II 

We then apply the GEWC method, and the performance is improved by a large 
margin for all the recognition tasks no matter how large the training sample size is. 
This shows again the superiority of the GEWC method. Furthermore, unlike the 
Eigenface method, the recognition accuracy increases significantly when using more 
training samples. This suggests that the GEWC method effectively excludes the 
interpersonal variations when incorporates the discriminating information from the 
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unused training samples. When using 1196 training images, with one training sample 
per person, the results of the GEWC method compare well with the best reported 
results [7], outperforming other systems [4][19][20] by a typical margin of 10–20%. 
In particular, the GEWC method achieves 96.3% accuracy for facial expression task 
(FA/FB), 99.5% for illumination task (FA/fc), 78.8% and 77.8% for aging tasks 
(FA/dup I, FA/dup II) respectively.  

3.3   Experiments: Extensive Studies 

Actually, Gabor wavelet representation [6][18][19][21], PCA dimensionality 
reductions [3][4][18], whitening process [6][9][12], and cosine similarity measure 
[6][19] all are widely used in face recognition literature. However, it is fire-new 
knowledge that the GEWC method, which systematically integrates these four 
techniques, can obtain surprising performance which compare favorably against the 
state of the art results. To further reveal and analysis the strengths and weaknesses 
of these four techniques and the joint contribution of them, we conduct a series of 
extensive experiments by decomposing the GEWC scheme into four procedures as  
follows: 1) first apply the standard Eigenface technique [3] on the intensity image; 2) 
 

Fig. 6. Comparative performance of the four decomposing methods from the GEWC scheme, E 
(Eigenface method), GE (Eigenface method on the LG vector), GEW (Eigenface method on the 
LG vector with whitening process), GEWC (GEWC method), for the four recognition task in 
the FERET Evaluation 
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apply Eigenface method on the LG vector instead of on the intensity image to 
evaluate the benefits of the Gabor wavelet; 3) add the whitening process following 
PCA, and thus the influence of the whitening processing is evaluated by comparing 
the recognition results with and without the whitening transformation; and 4) 
substitute the cosine similarity measure for Euclidean distance, the performance 
improvement achieve by this replacement is evaluated to be the contribution of the 
cosine similarity measure. In addition, the four steps are applied to the four FERET 
face recognition task respectively, as described in section 3.2. Fig. 6. (a)~(d) show the 
comparative results of the four schemes for the four tasks respectively. 

Eigenface. The fc probes are most difficult for the Eigenface technique, followed in 
order by dup II, dup I, and FB probes. One can see that only the leading 150 features 
could contribute the recognition rate, the low frequency preference of PCA is clearly 
shown.

Note that in FA/fc task, the Eigenface method is destroyed by the variations due 
lighting changes, receiving accuracy as low as 5%. This is because the histogram 
equalization technique can normalize the global illumination level, but the remaining 
local shines and shadows (see Fig.1.b) could damage the face recognition using the 
intensity image. 

Gabor Wavelet. There is a dramatic improvement by LG vector for the FA/fc test 
where the recognition rate was increased from 5 percent to 70 percent. These results 
clearly show that the Gabor wavelet representation, which forms a well regular 
mapping from pixel space to feature space, is robust to large variation due to local 
shines and shadows. Moreover, the Gabor wavelet also brings a 20% accuracy 
enhancement in the dup II task.

On the side, the contribution of the Gabor wavelet is not remarkable in the FB and 
dup I probes. This because 1) the expression variations are so slight in these images that 
the equalized gray-level comparison was sufficient to recognize them well [2]; and 2) 
the discriminating information driven by the Gabor wavelet is concentrate on the high 
frequency domain which is suppressed by the low frequency preference of PCA. 

Whitening Process. The GEW method achieves considerably higher accuracy than 
the GE method when using the leading 150 features for all tasks. Nevertheless, the 
performance drops with further increase of the feature number. This is because the 
interpersonal variation retained in high dimensional components is significantly 
magnified in whitening, and this “whitening noise” will deteriorate the recognition 
results. 

Comparing Fig.5 and Fig.3, we further find that find that the “whitening noise” is 
more related to the novel variation, rather than the trained variation or image noise. 
Note that in Fig.3, although there are large variation in illumination and expression, 
most of them are trained and encoded in the leading eigenvector. In this case, the 
whitening does not deteriorate the recognition. However, In Fig.5, most variations are 
novel due to the non-representative training data. The negative influence of the 
whitening is shown and becomes more severe when larger novel variation is 
presented. 
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Cosine Similarity Measure. The contribution of the cosine similarity measure is 
highlighted for all four tasks. Specifically, the accuracy increase driven by CSM over 
the Euclidean distance is up to 10%, 20%, 30%, and 40% for the FB, fc, dup I and 
dup II probes respectively, clearly showing its robustness to the novel variation in 
expression, illumination, and aging. The great robustness of cosine similarity strongly 
supports the supposition that the novel variation, projected into the whitened PCA 
space, is likely to change scale of the feature vector rather than its angle.

4   Conclusion and Discussion 

A face is a surface of a three-dimensional solid having partially deformable parts. The 
images it projects depend upon pose, perspective angle, illumination conditions, age, 
cosmetics or adornments, and expression. [12]. How to capture the intrinsic variation 
that discriminates different face identity, and at the same time be invariant to the 
countless volatile factors that affect the face appearance is crucial for face 
recognition. In this paper, we propose a GEWC method integrates the four traditional 
techniques, namely Gabor wavelet for image representation, PCA for dimensional 
reduction, whitening transformation for feature normalization, and cosine similarity 
measure for nearest-neighbor classification, to produce a robust and accurate scheme 
for face recognition. Experiments have verified that the proposed method can 
suppress trained variation, preserve discriminating information, and be robust to the 
novel variation. 

The feasibility of the GEWC method has been successfully tested on large-scale 
data sets from the FERET database. Specifically, we used 3000+ FERET frontal 
images corresponding to 1196 subjects, which were acquired under variable 
illumination, facial expression, photo sessions, and capture device. The effectiveness 
and robustness is shown in terms of both absolute performance indices and 
comparative performance against some popular face recognition schemes such as the 
Eigenface method and the Fisherface method. In particular, the GEWC method 
achieves constant 100% accuracy on the 200-subject experiment across illuminations 
and facial expressions. Furthermore, its recognition rates reach up to 96.3%, 99.5%, 
78.8%, and 77.8% on the FERET FB, fc, dup I, and dup II probe using only one 
training sample per person. In addition, the proposed system also achieves excellent 
performance on the experiments with another large database, the CAS-PEAL face 
database [23], which indicates again that the GEWC method is a robust scheme for 
large-scale face recognition application [24]. 

The experiments not only show the state of the art results obtained by the GEWC 
method, but also suggest a number of interesting conclusions: 1) the benefits of the 
Gabor wavelet comes from its counteraction against local illumination variation; 2) 
the trailing eigenvectors might encode the discriminating details useful for 
recognition, which can be revealed by the whitening process; 3) the whitening process 
can suppress the intrapersonal variation encoded in leading eigenvectors, and thus 
contribute the face recognition significantly. 4) the Eigenface method cannot profit 
from the larger training sample size, when the training samples are captured under 
variable conditions; 5) the same face (class) with complex variations, projected into 
the Gabor based whitened PCA feature space, is approximately angle invariance. 
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Abstract. Non-negative matrix factorization (NMF) is a recently developed 
method for finding parts-based representation of non-negative data such as face 
images. Although it has successfully been applied in several applications, di-
rectly using NMF for face recognition often leads to low performance. More-
over, when performing on large databases, NMF needs considerable computa-
tional costs. In this paper, we propose a novel NMF method, namely 2DNMF, 
which stands for 2-D non-negative matrix factorization. The main difference 
between NMF and 2DNMF is that the former first align images into 1D vectors 
and then represents them with a set of 1D bases, while the latter regards images 
as 2D matrices and represents them with a set of 2D bases. Experimental results 
on several face databases show that 2DNMF has better image reconstruction 
quality than NMF under the same compression ratio. Also the running time of 
2DNMF is less, and the recognition accuracy higher than that of NMF. 

1   Introduction 

There is psychological and physiological evidence for parts-based representations in 
the brain, and certain computational theories of object rely on such representations 
[11]. For that reason, parts-based learning has received much interest in machine 
learning, computer vision and pattern recognition [13]. Many parts-based image rep-
resentation approaches ca be ascribed to a general subspace method, which has been 
successfully used in many high dimensional data analysis applications. Given a class 
of image patterns, there are many approaches to construct the subspace. One such 
method is principal component analysis (PCA) [10], also known as Eigenface method 
in face recognition [19]. In PCA, any image can be represented as a linear combina-
tion of a set of orthogonal bases which form an optimal transform in the sense of 
reconstruction error. However, due to the holistic nature of the method, PCA cannot 
extract basis components manifesting localized features [13]. And its two extensions: 
independent component analysis (ICA) [4], [17] and kernel principal component 
analysis (KPCA) [18] also have the same problem. 
                                                           
* Corresponding author. 
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Recently a new subspace method called non-negative matrix factorization (NMF) 
[11] is proposed to learn the parts of objects and images. NMF imposes the non-
negativity constraints in its bases and coefficients. Thus NMF learns localized fea-
tures that can be added together to reconstruct the whole images, because only addi-
tive combination, not subtractive cancellations, are allowed in the reconstruction [11], 
[20], [6], [9], [5]. The localized, parts-based representation is very different from the 
holistic ‘eigenface’ of PCA. And due to its parts-based representation property, NMF 
or its variations have been used to image classification [1], [7], [8], face expression 
recognition [2], face detection [3], face and object recognition [13], [14], [15]. How-
ever, experiments have shown that when used for image compression and recognition 
tasks, NMF usually has low image reconstruction image quality and low recognition 
accuracy. Also NMF needs comparatively more computational costs due to the alter-
nate iterations. To try to overcome those problems, many improved algorithms are 
proposed including local NMF [13] and sparse NMF [9] which impose extra con-
straints on the bases. But those methods often need even more iteration time to learn 
the bases, especially for high-dimensional data such as faces. 

In this paper, we present a novel NMF method, called 2-Dimensional non-negative 
matrix factorization (2DNMF) for image representation and recognition. The key 
difference between 2DNMF and NMF is that the former adopt a novel representation 
for original images. In traditional NMF, the 2D image matrices must be previously 
transformed into 1D image vectors. The resulting image vectors usually lead to a 
high-dimensional image vector space, where it is difficult to find good bases to ap-
proximately reconstruct original images. That is also called the ‘curse of dimensional-
ity’ problem, which is more apparent in small-sample-size cases. Another disadvan-
tage of NMF is that such a matrix-to-vector transform may cause the loss of some 
structure information hiding in original 2D images. In contrast to the 1D representa-
tion of NMF, we adopt a more natural 2D matrix representation in 2DNMF, i.e. repre-
senting 2D images with a set of 2D bases. We first apply NMF on column vectors and 
then row vectors of original images to obtain the corresponding 1D column bases and 
1D row bases respectively, and finally compute the outer-product of those two 1D 
bases as the 2D bases used in 2DNMF. To evaluate the performances of 2DNMF, a 
series of experiments are performed on several face databases: FERET, UMIST, Yale 
and AR. The experimental results demonstrate advantages of 2DNMF over NMF on 
image reconstruction quality at similar compression ratio, computational efficiency 
and recognition accuracy. 

The rest of the paper is organized as follows: Section 2 first introduces NMF 
method briefly. This is followed by the detailed description of 2DNMF algorithm in 
Section 3. In Section 4, experimental results are presented for the FERET, UMIST, 
Yale, and AR face databases to demonstrate the effectiveness of 2DNMF. Finally, we 
conclude in Section 5. 

2   Non-negative Matrix Factorization 

The key ingredient of NMF is the non-negativity constraints imposed on the two fac-
tors, and the non-negativity constraints are compatible with the intuitive notion of  
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combining parts to form a whole. Because a part-based representation can naturally 
deal with partial occlusion and some illumination problems, it has received much 
attention recently. Assume that the image database is represented as an n×m matrix 
V, each column of which contains n non-negative pixel values of one of the m face 
images. In order to compress data or reduce the dimensionality, NMF finds two non-
negative matrix factors W and H such that 

=

=≈
r

a
aiaii HWWHV

1

)( μμμ  (1) 

Here the r columns of W are called NMF bases, and the columns of H are its com-
bining coefficients. The dimensions of W and H are n× r and r×m respectively. The 
rank r of the factorization is usually chosen such that (n+m)r<nm, and hence the com-
pression or dimensionality reduction is achieved. The compression ratio of NMF is 
easily gotten as nm/ (nr+mr). 

To find an approximate factorization V≈W H, a cost function is needed to quan-
tify the quality of the approximation. NMF uses the divergence measure as the objec-
tive function 
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NMF factorization is a solution to the following optimization problem: 

Problem 1 [12]. Minimize ( || )D V WH with respect to W and H , subject to the 

constraints , 0W H ≥ . 

In order to obtain W and H, a multiplicative update rule is given in [11] as follows: 
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The pseudo-code for computing the bases W and coefficients H following the 
above iterative procedure is given in Algorithm 1. 

Algorithm 1: NMF 
Input: n×m matrix V, each column of which denotes the 
aligned image vector, and rank r 
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Output: n×r matrix W and r×m matrix H 
1. Obtain initial values for W and H, and set 1k ←  
2. While not convergent 
3.  update the bases W using Eqs. (3a) and (3b)  
4.  update the coefficients H using Eq. (3c)  

5.  1k k← +  
6. EndWhile 

3   2-D Non-negative Matrix Factorization 

3.1   2DNMF Algorithm 

Let p×q matrices Ak , k=1, 2, …, m, denote original training images. In traditional 
NMF, a 2D image is first transformed into a 1D vector, and then the image databases 
are represented with an n×m matrix V, each column of which contains n=pq non-
negative pixel values of one of the m face images. In 2DNMF, however, we never 
transform the 2D images into its corresponding 1D vectors. Instead we will use a 
more straightforward way which views an image as a 2D matrix. 

The procedure of 2DNMF method consists of two successive stages. At first we 
align the m training images into a p×qm matrix X = [A1, A2, …, Am], where each Ak 
denotes one of the m face images. Similar to NMF, 2DNMF first finds p×d non-
negative matrix L and d×qm non-negative matrix H such that 

X LH≈  (4) 

Here L and H are the bases and combining coefficients respectively. For conven-
ience, we divide H into m d×q sub-matrices as H = [H1, H2, …, Hm], where Hk de-
notes the coefficients of the image Ak. Since each column of X corresponds to a col-
umn of original images, we also call L as column bases. Thus the k-th image Ak can 
be written as a weighted sum of the column bases L as follows: 

,     1,2,...,k kA LH k m≈ =  (5) 

The column bases L can be obtained by solving the following optimization problem: 

Problem 2a. Minimize ( || )D X LH with respect to L and H , subject to the con-

straints , 0L H ≥ . 

Problem 2a can be solved by performing NMF algorithm on X with rank d. We 
also call the first stage for computing column bases L as Column NMF.  

The second stage of 2DNMF involves of computing the row bases. Fom Eq. (5), 

we construct a new q × dm matrix 1 2[ , ,..., ]T T T
mH H H H′ = . Similarly, 2DNMF 

seeks a q×g non-negative matrix R and a g×dm non-negative matrix C such that  
H RC′ ≈  (6) 
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Here R and C are the bases and combining coefficients respectively. And we also 
divide C into m g×d sub-matrices as C = [C1, C2, …, Cm], where Ck denotes the coef-

ficients of the matrix T
kH . Because the columns of H ′ contains the row information 

of original images, we call R as row bases. Thus T
kH is formulated as a weighted sum 

of the row bases R as follows: 

,     1,2,...,T
k kH RC k m≈ =  (7) 

The row bases R can be obtained by solving the following optimization problem: 

Problem 2b. Minimize ( || )D H RC′ with respect to R and C , subject to the con-

straints , 0R C ≥ . 

Similarly, problem 2b can be solved by performing NMF algorithm on H ′  with 
rank g. And we call the second stage for computing row bases R as Row NMF.  

By now we have obtained the p×d dimensional column bases L and the q×g di-
mensional row bases R. By substituting Eq. (7) into Eq. (6), we get 

 ,     1,2,...,T T
k kA LC R k m≈ =  (8) 

Let L = [l1, l2, …, ld], R = [r1, r2, …, rg], and define the 2D bases of 2DNMF as the 

outer product between the column base il  and the row base jr  as follows: 

, (1 ,1 )T
ij i jE l r i d j g= ⋅ ≤ ≤ ≤ ≤  (9) 

Let k T
kD C= , k=1, 2, …, m, then Eq. (8) turns into 
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Fig. 1. An illustration for the 2DNMF algorithm 
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It is easy to verify that the 2D bases Eij s have the following properties: 

1) Eij is a 2D matrix with the same size of original image, i.e. p×q. 
2) The intrinsic dimensionality of Eij is 1. 
3) Any training image Ak can be approximately represented with a weighted sum of 

2D bases Eij s. 

Figure 1 gives a simple illustration for the procedure of 2DNMF. For a p×q di-
mensional image Ak, it experiences the Column NMF operation (Eq. (5)) and the Row 
NMF operation (Eq. (7)) successively. If the ranks d and g are chosen such that d < p 
and g < q, then figure 1 indicates that we can approximately represent the original 

image Ak with much smaller matrix kD . 
The pseudo-code for computing the column bases L, row bases R, and the 2D 

bases Eij s is given in part of Algorithm 2. 

Algorithm 2: 2DNMF 

Input: p×q matrices { } 1

m

k k
A

=
, and rank d, g 

Output: p×d column bases L, q×g row bases R, d×g ma-
trices { }

1

mk

k
D

=
 and 2D bases ijE  

1. Align the m training images into a p×qm matrix X = 
[A1, A2, …, Am]  

2. Perform Column NMF on X with rank d: X LH≈ , obtain-
ing column bases L and coefficients matrix    H = [H1, 
H2, …, Hm]  

3. Construct q×dm matrix 1 2[ , ,..., ]T T T
mH H H H′ =  

4. Perform Row NMF on H with rank g:H RC′ ≈ , obtaining 
row bases R and coefficients matrix C = [C1, C2, …, Cm]  
5. For k = 1 to m 

6.       
k T

kD C←  

7. EndFor 
8. For i = 1 to d, for j =1 to g 

9.       
T

ij i jE l r← ⋅  

10. EndFor 

3.2   2DNMF-Based Image Compression 

Suppose we have learned the 2D bases , (1 ,1 )T
ij i jE l r i d j g= ⋅ ≤ ≤ ≤ ≤ , from the 

training images Ak , k=1, 2, …, m. According to Eq. (10) each training image Ak can 
be approximately reconstructed as 

1 1

ˆ
gd

k
k ij ij

i j

A D E
= =

=  (11) 

Here ˆ
kA  denotes the reconstructed image corresponding to image Ak.  
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In Eq. (11), the coefficients kD  are obtained by performing Column NMF (Eq. (5)) 

and the Row NMF (Eq. (7)) successively. For a test image A which is not contained in 
the training sets, the values for the coefficients D  are unknown. However, we can 

approximately compute D L AR+≈ ( L+  is the generalized inverse of L ), and then use 

Â LDR+≈  ( R+  is the generalized inverse of R ) to get the reconstructed image.  
In this paper, we measure the quality of the reconstructed image using the peak 

signal-to-noise ratio (PSNR), which is defined as follows: 

( )

2

2

,

255
10 log10

1
( , ) ( , )

i j

PSNR

A i j B i j
pq

=
−

  

Here A denotes the original image, B denotes the reconstructed image, and p, q is the 
size of the image. 

Equations (10) and (11) indicate that the p×d matrix L, q×g matrix R and the 

d×g matrix kD , k=1, 2, …, m, can be used to reconstruct the original m p×q matri-

ces Ak , k=1, 2, …, m. The memories required for storing L, R and kD , k=1, 2, …, m, 
are pd+qg+mdg. So if pd+qg+mdg < mpq, the compression or dimensionality 
reduction is achieved. And it is easy to compute the compression ratio of 2DNMF as 
mpq / ( pd+qg+mdg). 

3.3   2DNMF-Based Face Recognition 

It contains two steps when using 2DNMF for recognition. One is the feature extrac-
tion step and the other is classification step. 

In feature extraction step, we first project each training image Ak into the bilinear 

space as a feature matrix T
k kF L A R= , for k=1, 2, …, m, which are then used as the 

comparing prototypes. A test or query face image A to be classified is represented by 

its projection onto the space as T
AF L AR= . 

In classification step, we calculate the distance based on Frobenius norm between 
the query and each prototype as follows: 

( , )A k A k F
d F F F F= −  

And the query is classified to the class to which the closest prototype belongs. 

4   Experimental Results 

In this section, we experimentally evaluate the performance of 2DNMF with NMF 
and local NMF (LNMF) [13] on several face databases. All our experiments are car-

(12) 

( ) 13
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ried out on a P4 1.7 GHz PC machine with 512M memory. For all the three algo-
rithms, the convergence condition is  

( ) ( )
, ,

max max 0.01new old old
ij ij ij

i j i j
W W W− <  ( ) 

Where new
ijW  is the value of the bases at the current iteration step while old

ijW  de-

notes the value at the last iteration. The maximum iteration steps for NMF and LNMF 
are both set to 100.  

The parameters d (number of column bases) and g (number of row bases) in 
2DNMF are both set to 20 in all experiments, if without explicit explanations. 
The value of r (number of bases) in NMF and LNMF is chosen such that NMF, 
LNMF and 2DNMF have similar compression ratio in most cases, except for the 
Yale database where we assure r=16 at least. For example, if we set d=g=20 on 
the training set (m=200, p=q=60, n=pq=3600) of the FERET database, the com-
pression ratio of 2DNMF will be mpq / ( pd+qg+mdg)=8.74. And then we adjust 
the value of r to make the compression ratio of NMF and LNMF near to 8.74. 
Here we choose r=22, and the corresponding compression ratio of NMF and 
LNMF is nm/ (nr+mr)= 8.61. 

4.1   Datasets 

We use the following four face databases in our experiments: FERET, UMIST, Yale 
and AR [16] face database. Table 1 summarizes the statistics of the four datasets (the 
 

Table 1. Statistics of four face databases 

Datasets Size Dimension # of classes 
FERET1 400(200) 6 ×60 200 
UMIST2 575(375) 112×92 20 
Yale3 165 (75) 100×100 15 
AR4 1400(700) 66×48 100 

values in bracket indicate the size of training set). Note that for FERET and AR we 
only use a subset of the whole datasets. More detailed description of the four face 
databases can be obtained through browsing the face databases websites, whose 
linked address are given at the bottom of this page. 

4.2   Learning the Bases 

In this subsection, we compute the bases of NMF and 2DNMF from the training set. 
For comparison, we also compute the bases of PCA and its extension 2DPCA [21]. 

                                                           
1 http://www.itl.nist.gov/iad/humanid/feret/feret_master.html 
2 http://images.ee.umist.ac.uk/danny/database.html 
3 http://cvc.yale.edu/projects/yalefaces/yalefaces.html 
4 http://rvl1.ecn.purdue.edu/~aleix/aleix_face_DB.html 

14
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We do the experiment on the FERET face databases, and 200 fa face images are used 
as the training set. 

Fig. 2 plots parts of the bases gotten from the four methods respectively. Fig. 2 (a) 
and (b) are plotted using the method in [21]. For NMF the first 16 columns of matrix 
 

    
(a)                        (b) 

    
(c)                                      (d) 

Fig. 2. Bases obtained from PCA (a), 2DPCA (b), NMF (c) and 2DNMF (d) respectively. (a) 
and (b) are plotted using the method in [21]. For NMF the first 16 columns of matrix W are 
retransformed to matrix for plotting, while for 2DNMF the 16 bases Eij (1 i 4, 1 j 4) are 
directly plotted as images. 

W are retransformed to matrix for plotting, while for 2DNMF the 16 bases Eij (1  I  
4, 1   j  4) are directly plotted as images.  

From Fig. 2, we can see that both the bases of PCA and 2DPCA are global. Com-
pared with PCA, 2DPCA possess of some strip or block like structures. The reason for 
that is 2DPCA is essentially a kind of line-based PCA [21]. However, the bases of 
2DPCA cannot yet reflect any local or part-based features. On the other hand, Fig. 2(c) 
indicates that although NMF is a part-based algorithm, its bases still take on some holis-
tic property similar to PCA. In contrast we notice from Fig. 2(d) that the bases of 
2DNMF are much sparser than those of NMF. It is worth noting that although the base 
of 2DNMF is sparse, it has no parts-based (like eye, mouth, etc. in face image) features 
any more due to the essence of 2D methods. That is, 2DNMF is essentially a kind of 
line-based NMF, so what 2DNMF really learns are some parts of ‘line’.  

Because each base of 2DNMF can be generated using a p-dimensional col-
umn base and a q-dimensional row base, its storing cost (p+q) is much less than 
that of NMF base (which is pq). Thus we can use much more sparse-distributed 
2D bases to represent original image, which will be further discussed in the next 
subsection. 
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Fig. 3. Some reconstructed training images on FERET database. First row: original images. 
Second row: images gotten by NMF. Third row: images gotten by LNMF. Bottom row: images 
gotten by 2DNMF. 

Table 2. Comparisons of the performances (PSNR / compression ratio / recognition accuracy) 
of NMF, LNMF and 2DNMF on four datasets 

Data sets NMF LNMF 2DNMF 
FERET 20.89 / 8.6/ 0.68 7.74 / 8.6/ 0.73 23.50 / 8.7/ 0.79 
UMIST 21.34 / 24.1/ 0.71 8.08 / 24.1/ 0.67 24.12 / 25.1/ 0.76 
Yale 22.03 / 4.7/ 0.69 7.16 / 4.7/ 0.68 23.98 / 22.1/ 0.81 
AR 19.50 / 8.0/ 0.49 5.00 / 8.0/ 0.62 20.68 / 7.9/ 0.64 

 
 

4.3   Image Compression and Reconstruction 

In this subsection, we will compare the compression performances of NMF, LNMF 
and 2DNMF. We carry out experiments on the training set of the four datasets listed 
in table 1. That is, we only use the training images to learn the bases of NMF, LNMF 
and 2DNMF respectively. After that we reconstruct the training images or a new 
image not appearing in the training sets (test images) using the corresponding meth-
ods discussed in subsection 3.2. 

Table 2 gives the PSNR values of NMF, LNMF and 2DNMF on the four datasets, 
and the corresponding compression ratios are also given in the brackets of the table. 
Table 2 shows that 2DNMF has the highest PSNR values on all the four datasets un-
der nearly the same compression ratio except for the Yale database, where even when 
the compression ratio of 2DNMF is 5 times of that of NMF and LNMF, the former 
still achieves the best performance.  

Fig. 3 shows parts of the reconstructed training images using NMF, LNMF and 
2DNMF respectively on the FERET database. From Fig. 3, although the reconstructed 
images of NMF and LNMF smoother than that of 2DNMF, they don’t resemble the 
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Fig. 4. Some reconstructed test images on FERET database using the same bases as those in 
figure 3. First row: original test images. Second row: images gotten by NMF. Third row: im-
ages gotten by LNMF. Bottom row: images gotten by 2DNMF. 

original images any more. That phenomenon is especially severe for LNMF, because 
it imposes additional constrains on the bases which are useful for recognition but not 
for reconstruction, as clearly shown in Fig. 3. On the other hand, although there exist 
some stripping artifacts arising from the use of 2D bases of outer products of 1D row 
and column bases, 2DNMF reconstruct the original image more faithfully than the 
other two methods. 

Fig. 4 shows some reconstructed test images of the three methods on FERET 
database using the same bases as those in Fig. 3. Similar as in Fig. 3, the recon-
structed images of 2DNMF are most faithful compared with those of NMF and 
LNMF. 

4.4   Face Recognition 

In this subsection, we use the learned bases of NMF, LNMF and 2DNMF in section 
4.2 for recognition. The detailed method for recognition has been discussed in section 
3.3, and the recognition accuracy, which is defined as the percentage of correctly 
recognized images in test images, is used as the performance measure.  

The first experiment is recognizing test images on four face databases without 
occlusion and noise and the result is given in part of table 2. Clearly, 2DNMF 
obtains the best accuracy in that case on all the datasets. The second experiment is 
to test the recognition accuracy of the three methods under partial occlusions or 
noises. Fig. 5 gives some examples of different levels of occluded images and 
noisy images (here only the ‘Salt & Pepper’ noise is considered). Fig. 6 gives the 
averaged (20 times) results of the three methods on FERET database when occlu-
sions and noises are considered. From Fig. 6, 2DNMF outperforms NMF and 
LNMF in all cases. And because LNMF learns more localized parts than NMF, it 
achieves better result than NMF. 
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Fig. 5. Some examples of randomly occluded images and noisy images 

 

 

Fig. 6. Comparison of recognition accuracy of NMF, LNMF and 2DNMF under different size 
of occlusions (left) and different level of noises (right) 

  

  

Fig. 7. Comparisons of performances of NMF, LNMF and 2DNMF under different number of 
bases. For NMF and LNMF, number of bases is d*d, while for 2DNMF the both numbers of 
row and column bases are 2d. 
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4.5   The Effect of Number of Bases 

In this subsection, we evaluate the effect of the number of bases used in NMF, LNMF 
and 2DNMF respectively. For NMF and LNMF, we set the number of bases p = d*d, 
and varies d from 1 to 6. For 2DNMF, we set the both the numbers of row and col-
umn bases d=g=2*d, and also varies d from 1 to 6. The results on FERET database 
 are shown in Fig. 7. From Fig. 7, we see that when d is relatively small (e.g. d<4), the 
compression ratio of 2DNMF is much greater than those of NMF and LNMF, and the 
recognition of 2DNMF is apparently higher than those of NMF and LNMF. As the 
value of d increases, the differences on compression ratio and recognition accuracy 
among the three methods reduce, while the difference on execution time begins to 
increase. In nearly all cases, 2DNMF achieves much better performance than the 
other two methods. Remember the number of bases of NMF and LNMF are d*d and 
the number of bases of 2DNMF is 2d+2d=4d. Especially, when d=4, all the three 
methods use the same number of bases. However, from Fig. 7, we know that 2DNMF 
still achieves better performance than NMF and LNMF. 

5   Conclusions 

In this paper, we have proposed a new method, 2-D non-negative matrix factorization 
(2DNMF), for face representation and recognition. This work is aimed to improve the 
performance of original non-negative matrix factorization (NMF) in the following 
aspect: reducing the computational costs, enhancing the image reconstruction quality 
and improving the recognition accuracy with or without occlusions and noises. We 
achieved our goal through using a novel image representation method, i.e. using 2D 
bases instead of traditional 1D bases. Experimental results on four face databases 
convince our claim that 2DNMF improves NMF on the above three aspects. 

The number of bases (d and g) of 2DNMF is set by hand in advance, and if we 
change the values each time, we have to re-execute the whole algorithm, which will 
be very inconvenient in practice. We will investigate how to choose the values auto-
matically like in PCA. Another future work is to investigate further improving the 
recognition accuracy of 2DNMF. But how to use the learned bases and feature vectors 
via NMF for further analysis such as recognition is still an open problem. We also 
encounter that problem in 2DNMF, and maybe we have to integrate 2DNMF with 
other method for better recognition accuracy. 
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Abstract. Pose variations, especially large out-of-plane rotations, make
face recognition a difficult problem. In this paper, we propose an algo-
rithm that uses a single input image to accurately synthesize an image
of the person in a different pose. We represent the two poses by stack-
ing their information (pixels or feature locations) in a combined feature
space. A given test vector will consist of a known part corresponding to
the input image and a missing part corresponding to the synthesized im-
age. We then solve for the missing part by maximizing the test vector’s
probability. This approach combines the “distance-from-feature-space”
and “distance-in-feature-space”, and maximizes the test vector’s proba-
bility by minimizing a weighted sum of these two distances. Our approach
does not require either 3D training data or a 3D model, and does not
require correspondence between different poses. The algorithm is com-
putationally efficient, and only takes 4 - 5 seconds to generate a face.
Experimental results show that our approach produces more accurate
results than the commonly used linear-object-class approach. Such tech-
nique can help face recognition to overcome the pose variation problem.

1 Introduction

Face recognition applications often involve pose variations. The gallery may only
have the faces under a specific pose, such as the frontal view, but the probe image
may be captured under a random pose, sometimes with a large out-of-plane rota-
tion. In order to do face recognition in this scenario, we need to synthesize the new
view of the probe face, such that we can compare it with the gallery images.

According to the stereopsis theory in computer vision, to recover the precise
3D geometry of an object, we need at least three images of this object. This is
why some approaches use multi-view images [6], or even video sequences [13],
to synthesize new views. Although a single image is insufficient to recover the
precise 3D geometry, machine learning techniques can apply prior knowledge
onto this single image in order to synthesize new views. In particular, Blanz and
Vetter pioneered a 3D algorithm based on fitting a 3D morphable model learned
from many 3D training examples, to synthesize novel views from a single image
[2,3,4].

The drawback of such a 3D approach is its large computational cost of 4.5
minutes for each fitting process [3,4]. This high computational cost limits the
approach’s applicability to real life applications, such as in airport security. An-
other drawback is the need for specialized 3D scanning hardware. For practical

W. Zhao, S. Gong, and X. Tang (Eds.): AMFG 2005, LNCS 3723, pp. 364–376, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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systems, it would be more attractive to implement a solution using only 2D im-
ages. The linear-object-class method proposed by Vetter and Poggio [12] and its
variation [7] hold the promise of such a method. However, our own experiments
show that its performance for large out-of-plane rotations, such as 45◦ and 90◦ is
not satisfactory. In particular, the predicted shapes exhibit significant distortion
(Fig. 3, 4, 5).

Vetter and Poggio’s linear-object-class method [12] solves a set of linear equa-
tions with missing data: (

Φ1

Φ2

)
y =
(

b̃1

b̃2

)
, (1)

where b̃2 is the unknown pose and b̃1 is the known pose of the test example.

ΦM =
(

Φ1

Φ2

)
is the training set (or vectors formed from a linear combination of

the training set, i.e., PCA of the training set) containing the two poses.
(

b̃1

b̃2

)
is represented as a linear combination of the columns in

(
Φ1

Φ2

)
. The vector y

contains the parameters describing the linear combination. The linear-object-

class method solves for y = arg min
∥∥∥Φ1 · y − b̃1

∥∥∥2, then uses it to predict b̃2 =
Φ2y. (In the view synthesis problem for faces, shape and appearance are usually
analyzed and predicted seperately.)

This method has been discussed in some related problems [8,1,9]. Hwang and
Lee [8] use exactly the same method as above in predicting occluded parts of
human faces. Black et al. [1] and Leonardis et al.[9] slightly modify the approach,
by either excluding [9] or putting less weight [1] on some rows of Φ1 that they
assume are outliers.

We believe that the problems with the linear-object-class method lie with
an incorrect assumption: there are no errors inherent in the solution for y in

y = arg min
∥∥∥Φ1 · y − b̃1

∥∥∥2. However, as it is well known, there are measurement
errors in the training data due to many factors. These errors will propagate
into the solution for b̃2, using the linear-object-class method. We can improve
upon this solution with a probabilistic formulation. This formulation combines
“distance-from-feature-space” (DFFS) and “distance-in-feature-space” (DIFS)
[10], whereas the linear-object-class solution is purely based on DFFS. By con-

sidering DIFS, our method penalizes for points within the subspace,
(

Φ1

Φ2

)
,

that have low probability. Our representation leads to solutions that have higher
probability and, as we will show, significantly better empirical performance.

This paper is organized as follows. In Section 2, a probabilistic model combin-
ing DFFS and DIFS is introduced, and the solution for equation (1) is derived.
In Section 3, we explain the necessary steps of seperating the shapes from the
appearance of faces, and apply the solution in Section 2 to predict a new view
of faces. Section 4 shows experimental results of synthetic face images at new
views. In Section 5, we discuss this approach and conclude.
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2 Probabilistic Modeling

The problem of linear equations with missing data described in equation (1) is
restated in the following way:

We have NT training vectors {xi}NT

i=1, each of which is an N -by-1 vector.

Usually N � NT . A test example b =
(

b1

b2

)
belongs to the same class defined

by the training set. b is N -by-1. We only know b1, which contains the first N1

elements of b. The task is to predict b2, given b1 and {xi}NT

i=1.

2.1 Probabilistic Modeling

Let’s first discuss the ideal case that we have enough independent training ex-
amples to span the whole N -dimensional space, i.e., NT ≥ N .

Here we apply several assumptions:

1. The class defined by the training set is an M -dimensional linear subspace,
denoted as F . M < N and determined by PCA from the training set. PCA
is computed from the training set {xi}NT

i=1, and the M largest eigenvalues of
the principal components λ1 ≥ λ2 ≥ · · · ≥ λM are the variances along the
M dimensions of F .

2. In this subspace F , samples are drawn from an M -dimensional Gaussian
distribution with zero mean.

3. If the complete space has N dimensions, there is another (N − M) di-
mensional linear subspace F̄ , which is orthogonal and complementary to
the eigenspace F (Fig. 1). We assume F and F̄ are statistically indepen-
dent.

4. The samples also contain random noise distributed over all the (N − M)
dimensions of F̄ . Each of the (N −M) dimensions of F̄ has approximately
equal non-zero variance, i.e., λM+1 ≈ λM+2 ≈ · · · ≈ λN > 0.

Under these assumptions, the probability of x is

P (x|Ω) =

⎡⎢⎢⎢⎢⎣
exp

(
− 1

2

N∑
i=1

y2
i

λi

)

(2π)N/2
N∏

i=1

λ
1/2
i

⎤⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎣
exp

(
− 1

2

M∑
i=1

y2
i

λi

)

(2π)M/2
M∏
i=1

λ
1/2
i

⎤⎥⎥⎥⎥⎦ ·
⎡⎢⎢⎢⎢⎢⎣

exp

(
− 1

2

N∑
i=M+1

y2
i

λi

)

(2π)(N−M)/2
N∏

i=M+1

λ
1/2
i

⎤⎥⎥⎥⎥⎥⎦
= PF (x|Ω) · PF̄ (x|Ω),
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Fig. 1. Decomposition into the eigenspace F and its orthogonal subspace F̄ . The DFFS
and DIFS are also shown.

where Ω denotes the class described by the training set. x is a random point from
this class, and its projection onto each dimension is denoted as {yi}Ni=1. PF (x|Ω)
and PF̄ (x|Ω) are two marginal Gaussian distributions, in F and F̄ respectively.

Since N is very large, we lack sufficient data to compute each {λi}Ni=M+1 in
PF̄ (x|Ω).

Recall the assumption that {λi}Ni=M+1 are about the same magnitude. Then

it is reasonable to use the arithematic average ρ = 1
N−M

N∑
i=M+1

λi [10] to get an

estimation of P (x|Ω), which is

P̂ (x|Ω) = PF (x|Ω) · P̂F̄ (x|Ω)

=

⎡⎢⎢⎢⎢⎣
exp

(
− 1

2

M∑
i=1

y2
i

λi

)

(2π)M/2
M∏
i=1

λ
1/2
i

⎤⎥⎥⎥⎥⎦ ·
⎡⎢⎢⎢⎢⎢⎣

exp

(
− 1

2ρ ·
N∑

i=M+1

y2
i

)
(2πρ)(N−M)/2

⎤⎥⎥⎥⎥⎥⎦ .

The distance characterizing the P̂ (x|Ω) is

d̂(x) =

[
M∑
i=1

y2
i

λi

]
+

1
ρ
·
[

N∑
i=M+1

y2
i

]
. (2)

In our problem, we only know the upper part of b =
(

b1

b2

)
, and know it is

from class Ω. In order to solve for the unknown part b2, we want to maximize the
likelihood of P̂ (b|Ω) by choosing {yi}Ni=1, where (y1, y2, · · · , yN)T = ΦT (b− x̄)
and x̄ is the mean of the training set. We then generate b2 = x̄2 + Φ2 · y.

This optimization depends upon three quantities:

[
M∑
i=1

y2
i

λi

]
,

[
N∑

i=M+1

y2
i

]
and the

weight ρ, . Let’s look at them one by one.
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2.2

[
M∑

i=1

y2
i

λi

]
: DIFS

This is the Mahalanobis distance, also called the “distance-in-feature-space”
(DIFS) [10]. It describes how far the projection of x onto F is from the origin.

Let Λ−1
M =

⎡⎢⎢⎢⎣
1
λ1

0
1
λ2

. . .
0 1

λM

⎤⎥⎥⎥⎦, and y = (y1, y2, · · · , yM )T , then

[
M∑
i=1

y2
i

λi

]
= yT Λ−1

M y. (3)

2.3

⎡⎣ N∑
i=M+1

y2
i

⎤⎦ : DFFS

The residual reconstruction error, also called DFFS [10] is
N∑

i=M+1

y2
i = ε2(x) =

‖x′ − x‖2, where x′ is the projection of x on F .
The linear-object-class method [12] minimizes the DFFS to find y in order to

predict b2. Split the eigenvector matrix ΦM containing the first M eigenvectors

into ΦM =
(

Φ1

Φ2

)
and split the mean x̄ of training data into x̄ =

(
x̄1

x̄2

)
, where

Φ1 and x̄1 have the same number of rows as b1. No matter what method we use
to solve for y, since b2 is defined as x̄2 + Φ2 ·y, the residual reconstruction error

of resulting b =
(

b1

b2

)
is

N∑
i=M+1

y2
i = ε2(b) = ‖b− (x̄ + ΦM · y)‖2 =

∥∥∥∥( b1

b2

)
−
(

x̄1 + Φ1 · y
x̄2 + Φ2 · y

)∥∥∥∥2
= ‖b1 − (x̄1 + Φ1 · y)‖2

=
∥∥∥b̃1 − Φ1 · y

∥∥∥2 ,

(4)

where b̃1 = b1− x̄1. Thus the linear-object-class method [12] solves a least square
problem to solve for y :

y = arg min
∥∥∥Φ1 · y − b̃1

∥∥∥2 .

2.4 Determining ρ

Moghaddam and Pentland [10] define ρ = 1
N−M

N∑
i=M+1

λi, under the assumption

that the number of training examples NT ≥ N , and that {λi}Ni=M+1 are about
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the same magnitude. However, in practice, N is very large and we have NT � N .
These NT training examples can only span an (NT − 1) dimensional subspace,
resulting in that λNT = λNT +1 = · · · = λN = 0.

We use the non-zero eigenvalues, {λi}NT −1
i=M+1, to guess what {λi}Ni=NT

would be
like had we been given sufficient training data. Here we add another assumption:
– We assume that the actual values of {λi}Ni=NT

will be about the same mag-
nitude as the average of the known eigenvalues {λi}NT−1

i=M+1.

Under this assumption, ρ = 1
NT−M−1

NT−1∑
i=M+1

λi.

2.5 Solving the Optimization Problem

Given b1, we want to find b2 that minimizes d̂(b). Substituting equations (3) and
(4) into (2),

d̂(b) =
M∑
i=1

y2
i

λi
+ ε2(b)

ρ

= yT Λ−1
M y + 1

ρ

∥∥∥b̃1 − Φ1 · y
∥∥∥2

= yT Λ−1
M y + 1

ρ

(
b̃1 − Φ1 · y

)T (
b̃1 − Φ1 · y

)
= 1

ρ

(
yT ρΛ−1

M y + yT ΦT
1 Φ1y − 2

(
ΦT

1 b̃1

)T
· y + b̃T

1 b̃1

)
.

Letting the partial derivative to be zero,

0 = ∂d̂(b)
∂y = 2ρΛ−1

M y + 2ΦT
1 Φ1y − 2ΦT

1 b̃1

= 2
[(

ρΛ−1
M + ΦT

1 Φ1

)
y − ΦT

1 b̃1

]
.

The solution of y is
y =
(
ρΛ−1

M + ΦT
1 Φ1

)−1 · ΦT
1 b̃1. (5)

And the unknown b2 can be predicted as b2 = x̄2 + Φ2 · y.

3 Seperating Shape and Appearance

Let’s use the above technique to solve the problem of synthesizing new views of
human faces. The problem is described as follows. Given a probe face image I
under pose 1, we need to synthesize a new image J of this person’s face under
pose 2. The training set consists of NT pairs of face images, {[I1, J1] , [I2, J2] , · · · ,
[INT , JNT ]}. Ii and Ji are faces of the ith subject in the training set. {Ii}NT

i=1 are
under pose 1, and {Ji}NT

i=1 are under pose 2.
In our approach, we make the common assumption [5,12,7] that the charac-

teristics of shape can be seperated from appearance.
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3.1 Shape

On each face image, a set of landmarks are labeled by hand. For the ith training
image under pose 1, denote the coordinates of each landmark as (xj , yj) , j =
1, · · · , L1, where L1 is the number of landmarks on the faces under pose 1. Define
the shape vector of this ith face image under pose 1 as

si,1 = (x1, x2, · · · , xL1 , y1, y2, · · · , yL1)
T

.

A similar vector si,2 can also be defined in the same way for pose 2. Concate-
nating these two vectors, we get a vector

si =
(

si,1

si,2

)
as a combined shape vector for the ith subject in the training set.

Thus, for the NT subjects in the training set, we get a training set of shape
vectors {si}NT

i=1.

3.2 Appearance

For each pose, a reference face is chosen, so that every face under this pose
is warped to the shape of the reference face, giving a normalized image. The
warping is done via a triangulation algorithm with the landmarks [5] assuming
that the faces have lambertian surfaces. On each normalized image, only the
pixels within the convex hull of the landmarks are kept and all other pixels are
discarded. This is done to remove the unnecessary variations of the hair or the
background scenery. Let’s call the resultant normalized images under pose 1 as
Ĩ1, Ĩ2, · · · , ĨNT , and those under pose 2 as J̃1, J̃2, · · · , J̃NT . Reshape them into
vectors as {ti,1}NT

i=1 and {ti,2}NT

i=1 for pose 1 and pose 2 respectively.
For the ith subject in the training set, define

ti =
(

ti,1
ti,2

)
as a combined appearance vector. Thus, for the NT subjects in the training set,
we get a training set of appearance vectors {ti}NT

i=1.

3.3 Probe Image and Prediction

Given a probe face image I under pose 1, we need to synthesize a new image
J of this person’s face under pose 2. With a set of landmarks on I and the
reference face under pose 1, we can again decompose I into its shape vector ŝ1

and appearance vector t̂1. The landmarks can be obtained using AAM fitting
[5]. In our experiments, we hand labeled these landmarks on the probe image I.
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If we can predict the shape vector ŝ2 and the appearance vector t̂2 of the
unknown image J , by warping t̂2 from the reference face under pose 2 back to
the shape defined by ŝ2, we will be able to get the synthesized new image J .

So the problem turns into: How to predict ŝ2, given ŝ1 and the training set
{si}NT

i=1? And how to predict t̂2, given t̂1 and the training set {ti}NT

i=1? They are
the same mathematical problem. Using exactly equation (5) that we described

Fig. 2. The 13 poses in CMU PIE database

Fig. 3. Synthesizing a frontal view from a given profile. Column 1 to 5: (1) input image
under pose 1 (2) synthetic image using linear-object-class. (3) synthetic image using our
approach. (4) PCA reconstruction of ground truth of pose 2. (5) ground truth of pose 2.
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in Section 2 will predict the unknown shape ŝ2 and the unknown appearance t̂2.
Then we can combine them to get the synthesized new image J , which is the
new view of the probe face under pose 2 .

4 Experimental Results

We tested the performance of this method on the CMU PIE database [11]. The
database contains 68 subjects. We chose 64 subjects as the training set, and
4 subjects (04016, 04022, 04026 and 04029) as the test set. Our experiments
were performed on the “expression” subset including those images with neutral
expressions, and those images containing glasses if the subject normally wears
glasses. All images were converted to gray-scale images. The database contains
13 poses, illustrated in Fig. 2. We used combinations of ‘c27’ (frontal view),
‘c37’ (45◦ view) and ‘c22’ (profile) to test our algorithm. The landmarks were

Fig. 4. Synthesizing a profile from a given frontal view. Column 1 to 5: (1) input image
under pose 1 (2) synthetic image using linear-object-class. (3) synthetic image using
our approach. (4) PCA reconstruction of ground truth of pose 2. (5) ground truth of
pose 2.
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Fig. 5. Synthesizing a 45◦ view from a given frontal view. Column 1 to 5: (1) input image
under pose 1 (2) synthetic image using linear-object-class. (3) synthetic image using our
approach. (4) PCA reconstruction of ground truth of pose 2. (5) ground truth of pose 2.

provided courtesy of Ralph Gross [7]. The number of landmarks vary depending
on the pose, from 39 landmarks to 54 landmarks.

We performed 3 sets of experiments, including predicting frontal view from
profile (Fig. 3), predicting profile from frontal view (Fig. 4), predicting 45◦ view
from frontal view (Fig. 5). These experiments all involve large out-of-plane ro-
tations, such as 90◦ or 45◦. In each experiment, the result of our approach is
compared with that of linear-object-class method. We also computed the PCA

reconstruction of the ground truth, by projecting the true b =
(

b1

b2

)
onto the

eigenspace, to show the best possible reconstruction under the linear eigenspace
assumption. In each experiment, for either the shape or the appearance, we al-
ways choose the number of principal eigenvectors that occupies 98% of energy.
Each synthesis takes an average of 4 - 5 seconds on a PC with a 3GHz Pentium 4
processor, including predicting shape and appearance and also warping the ap-
pearance to the shape. More specificly, the prediction of shape and appearance
takes about 0.3 second, and the warping takes about 4 seconds.

Fig. 3 - 5 show how our approach improves upon the results of the linear-
object-class method, especially in predicting the shapes and handling large out-
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Table 1. Sum of squared errors in shape prediction from profile to frontal view

linear-object-class method our approach PCA reconstruction of ground truth
49.5860 36.4763 12.8272
31.8927 27.6268 11.6914
51.8873 34.2422 11.6563
74.9253 49.6667 13.1261

Table 2. Sum of squared errors in shape prediction from frontal view to profile

linear-object-class method our approach PCA reconstruction of ground truth
67.1898 38.1367 15.9177
42.6668 32.0460 11.9452
47.4225 31.5215 13.5370
50.4465 28.2523 16.2700

Table 3. Sum of squared errors in shape prediction from frontal view to 45◦ view

linear-object-class method our approach PCA reconstruction of ground truth
46.4735 34.7182 16.0734
42.6817 31.4329 12.1678
56.5308 35.1610 18.0164
65.3341 41.0252 15.2125

of-plane rotations. Although our synthetic images are not perfect replicas of
the ground truth, they are similiar to the PCA reconstructions of the ground
truth, which are the best possible synthetic images under the linear eigenspace
assumption. We performed these experiments using a training set of only 64
subjects. With more training data, the eigenspace would be more accurately
described and better results could be expected.

We have also included the numerical comparison of errors for shape prediction
in each set of experiments (Table 1, 2, 3). In each table, we compare the sum-of-
squared-errors in the coordinates of the predicted shape, using the linear-object-
class method, our approach, and the PCA reconstructions of ground truth, re-
spectively. From the numerical errors, we can see our approach is efficient in
reducing the errors by at least 30%.

Such technique can be used in face recognition which involves pose variation
of large out-of-plane rotations.

5 Discussion and Conclusion

In this paper, we proposed an approach that can efficiently synthesize accurate
new views of faces across large out-of-plane rotation, given only a single image. In
our approach, we formulate a probabilistic model combining the “distance-from-
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feature-space” and the “distance-in-feature-space”, and minimize the weighted
sum of the two distances, in order to maximize the likelihood of the test example
with missing data. Experimental results show that our approach produces more
accurate results than the commonly used linear-object-class approach which is
the basis of many 2D approaches.

Moreover, if compared with the 3D approaches, our method is also attractive
in that it is computationally efficient and fast. With no need for a 3D model or 3D
training data, it does not construct 3D geometry at all, thus it avoids expensive
3D rendering and fitting. It directly synthesizes 2D images, and requires using
only pairs of 2D images. Nor does our approach require correspondence between
different poses. Only correspondence between faces under the same pose is used.
As a tradeoff, our approach needs the same number of views for each subject in
the database, and can only synthesize those views which are in the database.

Pose variations, especially large out-of-plane rotations, make face recognition
a difficult problem. Our algorithm of synthesizing new views of a person’s face
given a single input face image, can enable face recognition systems to overcome
the pose variation problem.
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Abstract. When applied to high-dimensional classification task such as face 
recognition, linear discriminant analysis (LDA) can extract two kinds of dis-
criminant vectors, those in the null space (irregular) and those in the range 
space (regular) of the within-class scatter matrix. Recently, regularization tech-
niques, which alleviate the over-fitting to the training set, have been used to fur-
ther improve the recognition performance of LDA. Most current regularization 
techniques, however, are pre-processing approaches and can’t be used to regu-
larize irregular discriminant vectors. This paper proposes a post-processing 
method, 2D-Gaussian filtering, for regularizing both regular and irregular dis-
criminant vectors. This method can also be combined with other regularization 
techniques. We present two LDA methods, regularization of subspace LDA 
(RSLD) and regularization of complete Fisher discriminant framework (RCFD) 
and test them on the FERET face database. Post-processing is shown to im-
prove the recognition accuracy in face recognition. 

1   Introduction 

Over the past thirty years, because of its wide applications in security, human-
machine communication, and image retrieval, face recognition has been a focus of 
research in the areas of biometrics, computer vision and pattern recognition [1]. 
Among the various methods of face recognition, there are mainly two categories, the 
geometric-based approaches and the holistic-based approaches.  

As a typical holistic-based method, linear discriminant analysis (LDA) has been 
very successful in high-dimensional pattern classification such as face recognition 
since the appearance of the Fisherfaces method [2, 3]. 

When applied to face recognition, LDA always encounters the Small Sample Size 
(SSS) problem, where the number of the training samples N, is much less than the 
dimension of facial image. The SSS problem would cause the singularity of the 
within-class scatter matrix Sw. To date, researchers have proposed a number of ways 
to alleviate this problem. The most famous approach is Fisherfaces [2, 3], which uses 
principal component analysis (PCA) to map the original data to a low-dimensional 
subspace so as to eliminate the singularity of Sw. Other transform techniques, such as 
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latent semantic indexing (LMI) and partial least squares (PLS), have also been inves-
tigated as ways to reduce dimensionality before implementing LDA [4, 5, 6]. Un-
fortunately, all of these methods discard the null space of Sw, yet the discarded null 
space contains discriminative information that would be useful in the SSS problem 
[7, 8, 9]. Recently, some work has been carried out on extracting the discriminative 
information in the null space of Sw [10, 11]. In this paper, we call this kind of dis-
criminative information irregular discriminative information, in contrast with regu-
lar discriminative information in the range space of Sw. To extract both regular and 
irregular discriminative information, Yang presented the theoretical foundation for 
the PCA plus LDA framework and proposed a complete Fisher discriminant frame-
work (CFD) [12, 13]. 

The SSS problem would also cause the poor estimation of the scatter matrices, Sw 
and Sb [21, 22]. The discriminant vectors may be over-fitted to the training set, and 
are very noisy and are wiggly in appearance [14]. So regularization techniques are 
investigated to address this [15]. One class of these regularization techniques is sub-
space LDA method (or the enhanced Fisher linear discriminant model: EFM) [14, 16]. 
Like Fisherfaces, subspace LDA also adopts a two-phase framework, PCA plus LDA. 
For subspace LDA, the aim of the PCA projection is to alleviate the over-fitting prob-
lem and reduce noise [14, 16, 17], whereas the aim of Fisherfaces is to discard the 
null space of Sw [2, 3]. Another regularization technique is regularized discriminant 
analysis (RDA) [18, 19, 20], which can alleviate the poor estimation of Sw [21, 22]. 

Previous regularization techniques, however, has a number of disadvantages. First, 
they concentrate only on the regularization of regular discriminative information, and 
ignore the crucial irregular discriminative information in the null space of Sw. Sec-
ond, they all are one-dimensional pre-processing regularization techniques; they ad-
just the within-class scatter matrix Sw, and neglect of the two-dimensional identity of 
the discriminant vector. For example, subspace LDA uses PCA projection to modify 
the dimension of Sw, and RDA regularizes Sw by adding perturbation. Since the aim of 
LDA is to maximize the ratio of the between-class scatter and the within-class scatter, 
adjusting Sw will result in the regularization of the discriminant vectors. 

In this paper, we propose a post-processing regularization technique to directly 
modify the discriminant vectors. In Marr’s vision theory, the intensity of a pixel is 
influenced by the surrounding pixels as a Gaussian function of the radial distance. 
Motivated by this, we consider this influence in the construction of the discriminant 
vectors. Thus our method first maps a discriminant vector into a 2D image (discrimi-
nant image) then use 2D-Gaussian filtering to regularize the discriminant image. Fi-
nally, the regularized image is re-mapped to the discriminant vector. Using the pro-
posed method, we present the regularizations of subspace LDA (RSLD) and complete 
Fisher discriminant framework (RCFD). To evaluate our method, experiments are 
carried out using the FERET face database. The results show that the proposed 
method outperforms other methods in term of the recognition accuracy. 

The remainder of this paper is organized as follows. In Section 2, we briefly review 
subspace LDA and the complete Fisher discriminant framework. Section 3 first offers 
some reasons to study post-processing regularization, then presents the Gaussian 
filtering approach and our RSLD and RCFD methods, and finally discusses the poten-
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tial disadvantages of post-processing. In Section 4, the FERET face database is used 
to evaluate the proposed regularization method. Section 5 offers our conclusion. 

2   Subspace LDA and Complete Fisher Discriminant Framework 

Various modified LDA methods have been proposed to address the SSS problem. In 
this Section, we investigate two representative methods, subspace LDA, which use 
dimensionality reduction to alleviate the over-fitting and eliminates the singularity of 
Sw, and complete Fisher dicriminant Framework (CFD), which can extract both regu-
lar and irregular discriminative information. 

2.1   Subspace LDA  

Subspace LDA is based on the PCA plus LDA framework where PCA is used to alle-
viate the over-fitting and eliminate the singularity of the within-class scatter matrix Sw 
[14, 16, 17].  

In subspace LDA, each image should be previously mapped into a 1D vector by 
concatenating the rows of the original image. Let 

1

(1) (1) (1)
1 2{ , , , , ,N=X x x xL L  

( ) ( ), , }
C

i C
j Nx xL be a training set with Ni image vectors for class i. The number of class is 

C, and ( )i
jx  denotes the jth image vector of class i. The total covariance matrix St of 

PCA is defined as 

( ) ( )

1 1

1
( )( )

iNC
i i T

t j j
i jN = =

= − −S x x x x , 
(1) 

where x  is the mean vectors of all training images, and 
1

C

i
i

N N
=

= is the total number 

of training images. The PCA projector 
SPCA1 2[ , , , ]Spca dϕ ϕ ϕ=T L  can be obtained by 

calculating the eigenvalues and vectors of the total scatter matrix St, where kϕ  is the 

eigenvector corresponding to the kth largest eigenvalue of St, and dSPCA is the PCA 
dimension for subspace LDA. 

The between-class scatter matrix Sb and the within-class scatter matrix Sw are de-
fined as 

( ) ( )

1

1
( )( )

C
i i T

b i
i

N
N =

= − −S x x x x , 
(2) 

( ) ( ) ( ) ( )

1 1

1
( )( )

iNC
i i i i T

w j j
i jN = =

= − −S x x x x , 
(3) 

where ( )ix  is mean vector of class i. With PCA projector TSpca, we map Sb and Sw to 
PCA subspace, 
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PCA projection can eliminate the singularity of the within-class scatter matrix. 
Thus the optimal discriminant vectors can be calculated by maximizing the Fisher’s 
criterion 

( )
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w
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( . 
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The discriminant vectors can be obtained by calculating the first dLDA generalized ei-
genvectors 

LDA1 2[ , , , ]dw w wL  and the corresponding eigenvalues 
LDA1 2[ , , , ]dD D L D  of 

bS
(

 and wS
(

. Given an image vector x, the discriminant feature vector Sz  is defined as 

S T T
S SPCA=z U T x , (6) 

where 
LDA1 2[ , , , ]S d=U w w wL  is the subspace LDA projector. 

2.2   Complete Fisher Discriminant Framework 

The Complete Fisher discriminant framework (CFD) is a method designed to extract 
both regular and irregular discriminant vectors [12, 13]. Like Fisherfaces and sub-
space LDA, CFD is also based on a two-phase framework: PCA plus LDA. Unlike 
subspace LDA, PCA is used to reduce dimensionality without losing discriminative 
information that could be used in CFD. 

PCA, also called the KL transform, is used to find the optimal lower dimensional 
representation by solving the eigenvalue problem of the total scatter matrix St. Unlike 
subspace LDA, CFD chooses eigenvectors corresponding to all positive eigenvalues 
of St in order to construct the PCA projector

CPCA1 2[ , , , ]T
CPCA dϕ ϕ ϕ=T L  and transform 

the training image vector x into dCPCA-dimensional PCA space y, 

CPCA=y T x , (7) 

where dCPCA is the dimension of the range space of St. 
In PCA space, the between-class scatter matrix Sb and the within-class scatter ma-

trix Sw are defined as 

( ) ( )

1

1
( )( )

C
i i T

b i
i

N
N =

= − −S y y y y , 
(8) 

( ) ( ) ( ) ( )

1 1

1
( )( )

iNC
i i i i T

w j j
i jN = =

= − −S y y y y , 
(9) 

where ( )iy  is the mean vector of class i, and ( ) ( )i i
j CPCA j=y T x . We can then obtain the 

optimal discriminant vectors by maximizing the Fisher’s linear discriminant criterion. 
However, if Sw is singular, it is not possible to calculate the generalized eigenvectors 
directly. To address this, Yang proposed a complete Fisher’s discriminant criterion 
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To solve Eq. (10), we should work out a subspace spanned by
W1 2{ , , , }dφ φ φL  in which 

we can extract all regular discriminative information, and a subspace spanned by 

W 1 CPCA
{ , , }d dφ φ

+
L , in which we can extract all irregular discriminative features. 

We calculate the eigenvalues and the eigenvectors of Sw, 

w =S , (11) 

where 
CPCA1 2[ , , , ]dφ φ φ= L  is the eigenvector matrix, and  is the corresponding 

diagonal matrix of eigenvalues 
CPCA1 2{ , , , }dL . Supposing

CPCA1 2 d≥ ≥ ≥L , we 

choose all eigenvectors corresponding to positive eigenvalues to construct the projec-
tor 

W1 2[ , , , ]R dφ φ φ= L . With R , we define T
b R b R=S S%  and T

w R w R=S S% . 

We then obtain the regular discriminant vectors by maximizing the criterion, 

( )
T

b
T

w

J = w S w
w

w S w

%

% . (12) 

First we calculate the generalized eigenvalues problem of b w=S w S w% % . Then we 

choose the eigenvectors 
LDA1 2[ , , , ]d=U u u uL  corresponding to the first dLDA largest 

eigenvalues. Finally, the regular discriminant feature vector Rz  of a image vector x is 
defined as 

R T T
R R PCA=z U T x . (13) 

Similarly, we can calculate the irregular discriminant vectors. First, all eigenvec-
tors corresponding to zero eigenvalues are chosen to construct the projector 

W 1 CPCA
[ , , ]I d dφ φ

+
= L . Next, we define ˆ T

b I b I=S S . 

Then, by maximizing the criterion 

ˆ( ) T
b bJ =w w S w , (14) 

we choose the eigenvectors 
LDA1 2[ , , , ]d=V v v vL  corresponding to the first dLDA 

largest eigenvalues of ˆ
bS . Finally, the irregular discriminant feature vector Iz  of a 

image vector x is defined as 

I T T
I PCA=z V T x . (15) 

In [17], the face difference is modeled with three components: intrinsic difference, 
transformation difference, and noise. From this perspective, the aim of LDA is to 
maximize intrinsic difference and to reduce both transformation difference and noise. 
Wang suggested discarding the eigenvectors corresponding to smaller eigenvalues in 
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the projection to the within-class subspace. In the implementation of the CFD frame-
work, we also take this strategy in account. Unlike [12, 13], however, we adjust dW 
experimentally to construct

W1 2[ , , , ]R dφ φ φ= L  rather than choosing all eigenvectors 

corresponding to positive eigenvalues. We use all other eigenvectors to construct 

W CPCA1[ , , ]I d dφ φ+= L . 

3   Post-processing Regularization Technique 

Although little investigated, post-processing regularization technique can be used to 
further improve the recognition performance of LDA. In this Section, we first de-
scribe the characteristics of post-processing regularization. Next we propose our 2D-
Gaussian filtering approach for the regularization of LDA, and then present two LDA 
methods, regularization of subspace LDA (RSLD) and regularization of complete 
Fisher discriminant framework (RCFD). Finally we discuss the potential adverse 
effects of the proposed method. 

3.1   Advantageous Properties of Post-processing 

Post-processing regularization is used to further modify the discriminant vectors after 
the LDA training. Post-processing technique has four advantageous properties over 
other regularization techniques, straightforward regularization on discriminant vec-
tors, two-dimensional identity, the complement of other methods, and the capability 
of regularizing the irregular discriminant vectors. First, post-processing is a straight-
forward regularization technique on discriminant vectors. Other regularization tech-
niques, such as subspace LDA or RDA, modify the within-class scatter matrix Sw by 
dimensionality reduction or adding some perturbation on Sw. Obviously, the change of 
Sw alters the discriminant vectors. 

Second, post-processing regularization allows the use of two-dimensional image 
processing techniques. Since face recognition is a typical image recognition tasks and 
the discriminant vector can be mapped to a two-dimensional image, two-dimensional 
post-processing may be a novel effective regularization technique deserving further 
investigation. In contrast, both subspace LDA and RDA are one-dimensional regu-
larization techniques. 

Third, post-processing is a complement to other regularization techniques and can 
be used to combine with other methods to further improve recognition performance. 
For example, subspace LDA modifies the discriminant vectors by adjusting Sw. After 
LDA training, post-processing can be used to further regularize them. 

Fourth, the post-processing technique can be used to regularize the irregular dis-
criminant vectors. Other regularization techniques cannot do this. RDA, for example, 
which adds perturbation on the within-class scatter matrix Sw, cannot modify the ir-
regular discriminant vectors. But post-processing still performs well. 

3.2   Regularization of LDA Using 2D-Gaussian Filtering 

In this Section we propose a post-processing approach, 2D-Gaussian filtering, for 
regularization of the discriminant vectors. The 2D-Gaussian filter is an ideal filter in 
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the sense that it reduces the magnitude of high spatial frequency in an image and has 
been widely applied in image smoothing [23]. Since a discriminant vector can be 
mapped to a 2D image, Gaussian filtering is used to post-process the discriminant 
images. 2D-Gaussian function is defined as 

2 2 2( ) / 2
2

1
( , )

2
x yG x y e

π
− += , 

(16) 

where 0> , which is the standard deviation. In the implementation of post-
processing regularization, we first define a 2D-Gaussian model gM  according to the 

standard deviation . The window size [w, w] can be determined as 6w = × , and 
the Gaussian model Mg is defined as the w×w truncation from the Gaussian kernel 

( , )G x y . Then we calculate the norm of each discriminant vector
2

T
i i i=v v v , and 

map i  into its corresponding discriminant image Vi. The Gaussian filter Mg is used 

to smooth discriminant image Vi, 

( , ) ( , ) ( , )i gx y x y x y′ = ⊗V V M . (17) 

( , )i x y′V  is transformed into a high dimensional vector i′v  by concatenating the rows 

of ( , )i x y′V  together. Finally we normalize i′v  using the norm of iv  

2i
i iT

i i

′′ ′=
′ ′

v
v v

v v
, 

(18) 

and obtain the post-processed LDA projector 
LDA1 2[ , , , ]pLDA d′′ ′′ ′′=T v v vL , where dLDA is 

the number of discriminant vectors. 
With the proposed post-processing regularization technique, we present two LDA 

methods, the regularization of subspace LDA (RSLD) and the regularization of com-
plete Fisher discriminant framework (RCFD).  

The algorithmic procedure of RSLD is formally stated in Fig. 1. 
The algorithmic procedure of RCFD is stated in Fig. 2. 
 
 

 

Fig. 1. RSLD Algorithm 



384 W. Zuo et al. 

 

 

Fig. 2. RCFD Algorithm 

3.3   Discussion 

LDA is an optimal statistical analysis technique so post-processing on the discrimi-
nant vectors would partially damage this optimality and produce adverse effects such 
as changing the norm or breaking the orthogonality of the discriminant vectors. In this 
Section, we’ll discuss these adverse effects of post-processing regularization. 

While the purpose of LDA is to maximize the Fisher criterion ( )optJ W , post-

processing will produce a lower value of ( )optJ ′′W . Such a decrease in the value of 

( )optJ ′′W  will have two contrasting effects. The first, undesirable, effect is that it 

would damage the optimality of the discriminant vectors. On the other hand, however, 
it would at the same time produce the benefits of making the discriminant vectors 
more robust and of alleviating over-fitting. Similar phenomena are also observed in 
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other regularization techniques such as subspace LDA, where the value of J(Wopt) is 
lowered but the recognition performance is improved, as demonstrated in [14, 16]. 
Thus experimental evidence is needed to correctly evaluate the post-processing regu-
larization technique. 

Post-processing can change the norm of the discriminant vector iv , 
2 2i i′≠v v . 

In our post-processing approach, we use a normalization process to pledge the invari-

ance of 
2iv . We normalize ′v  by 2

2

i
i i

i

′′ ′=
′

v
v v

v
, thus guaranteeing the invariance of 

iv ’s norm, 
2 2i i′′=v v . 

Post-processing may also break the orthogonality of the discriminant vectors. Gen-
erally speaking, the optimal discriminant vectors can be calculated subject to either of 
two orthogonal constraints, an St-orthogonal constraint 0T

i t j =v S v  ( i j∀ ≠ ) or a 

simple orthogonal constraint 0T
i j =v v ( )i j∀ ≠ . Previous studies on LDA indicate 

that the discriminant vectors subjected to St-orthogonal constraints exhibit a higher 
recognition accuracy than those subjected to simple orthogonal constraint [24, 25, 
26]. In our LDA methods, the discriminant vectors satisfy the St-orthogonal constraint 
before post-processing. After post-processing, the equation 0T

i t j =v S v  ( )i j∀ ≠  may 

not hold. Like Sw, the total scatter matrix St may also be over-fitted to the training set. 
Thus the destruction of equation 0T

i t j =v S v  may not cause the degradation of the 

recognition performance, but further experimental evidence is needed to validate this. 

4   Experimental Results and Discussion 

In this section, we use the FERET face database to test the performance of RSLD and 
RCFD in face recognition. The FERET face database is a US Department of Defense-
sponsored face database that has become a standard face image set used in testing and 
evaluating face recognition algorithms [27]. For our experiments, we chose a subset 
of the FERET database. This subset includes 1, 400 images of 200 individuals (each 
individual has seven images). The seven images of each individual consist of three 
front images with varied facial expressions and illuminations, and four profile images 
ranging from ±15° to ±25° pose. The facial portion of each original image was 
cropped to a size of 80×80 and pre-processed using histogram equalization. Fig. 3 
presents the seven cropped images of an individual. 

 
 

       

Fig. 3. Images of one person in the FERET subset 
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(a)                                                           (b) 

 
(c) 

Fig. 4. Illustration of the recognition accuracy over the variation of the RSLD parameters on 
the FERET subset. (a) Recognition rate vs. the PCA dimension. (b) Recognition rate vs. the 
LDA dimension. (c) Recognition rate vs. the standard variation. 

  
(a)                                                               (b) 

 
(c) 

Fig. 5. Illustration of the recognition accuracy over the variation of the RCFD parameters on 
the FERET subset. (a) Recognition rate vs. the with-class dimension. (b) Recognition rate vs. 
the LDA dimension. (c) Recognition rate vs. the standard variation. 
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Using the FERET subset, two experimental schemes are designed to evaluate the 
performance of RSLD and RCFD. In the first scheme, three images of each person 
(600 images) are randomly selected for training. These training images are also used 
as gallery images. The remaining 800 images are used as probe images. In the second 
scheme, all of the images of 100 persons (700 images) are randomly selected for 
training. These training images are used to learn the LDA projector. The 100 normal 
frontal images (“ba”) of the other 100 persons in the subset are selected as gallery 
images, and the remaining 600 images of this group are used as probe images. In both 
experimental schemes, we use the nearest neighbor classifier to match probe images 
and gallery images, and the averaged recognition rate (ARR) is used by calculating 
the mean across 10 runs. 

The evaluation of RSLD and RCFD consists two phases, parameter selection and 
performance evaluation. In the phase of parameter selection, we determine the opti-
mal parameter values for each method. In the phase of performance evaluation, we 
reevaluate the recognition rates of RSLD and RCFD, and compare them with other 
methods such as Eigenfaces, subspace LDA and CFD. 

The parameter selection of RSLD is to determine the values of three parameters, 
the PCA dimension dPCA, the LDA dimension dLDA, and the standard variation . 
Since it is difficult to determine these three parameters at the same time, we here 
adopt a stepwise selection strategy which first finds the optimal PCA dimension dPCA 
by fixing the other two parameters, and then determine dLDA and  in the similar way. 
To determine the optimal value of the PCA dimension, we fix the LDA dimension 
dLDA = 20 and the standard variation  = 1.5. Fig. 4(a) shows the recognition rate 
versus the variation of dPCA. From Fig. 4(a), we determine the optimal PCA dimension 
dPCA=100 which corresponds to the maximum recognition rate. After determining 
dPCA, we study the recognition accuracy over the variation of the LDA dimension dLDA 
with dPCA=100 and =1.5, as depicted in Fig. 4(b). The maximum average recognition 
rate is obtained with the LDA dimension dLDA=24. Then we explore the recognition 
rate vs. the variation of  with dPCA=100 and dLDA=24, as shown in Fig. 4(c). From 
Fig. 4, we determine all the optimal values of RSLD parameters, dPCA=100, dLDA=24 
and =1.5, as shown in Table 1. 

The parameter selection of RCFD is to determine three parameters, the within-class 
dimension dW, the LDA dimension dLDA and standard variation . Fig. 5 depicts the 
effect of dW, dLDA and  on the recognition rate. Thus the optimal values of RCFD 
parameters are determined, dW=350, dLDA=24 and =1.5, as listed in Table 1. Unlike 
RSLD, RCFD extracts two kinds of discriminative feature, regular and irregular. So 
the recognition rate of RCFD: regular and RCFD: irregular are also plotted in Fig. 5. 

Table 2 lists the recognition rates obtained using RSLD and RCFD in the 
parameter selection phase. RSLD can achieve a recognition rate of 87.34%, higher 
than 84.54%, that obtained using subspace LDA. RCFD can achieve the recognition 
rate of 89.87%, higher than 86.75%, that obtained using CFD. So the efficiency of 
post-processing in recognition performance is revealed. 

Table 1. The optimal parameters of RSLD and RCFD 

Method RSLD RCFD: Regular RCFD: Irregular RCFD 

Parameters [100,24,1.5] [400,20,1.5] [200,24,1.5] [350,24,1.25] 
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Table 2. The average recognition rate of RSLD and RCFD across the first 10 tests 

Method RSLD RCFD: Regular RCFD: Irregular RCFD 

Recognition 
Rate (%) 

87.34 86.59 88.36 89.87 

 
 

     
(a) 

     
(b) 

     
(c) 

Fig. 6. Illustration of the discriminant vectors of (a) Fisherfaces, (b) subspace LDA and (c) 
RSLD 

 

     
(a) 

     
(b) 

     
(c) 

     
(d) 

Fig. 7. Illustration of the discriminant vectors of (a) CFD: regular, (b) RCFD: regular, (c) 
CFD: irregular and (d) RCFD: irregular 
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Table 3. The recognition rates of different methods across the second 10 tests 

Method Eigenfaces 
Subspace 

LDA 
RSLD CFD RCFD 

ARR (%) 25.58±1.0 84.74±1.6 87.30±1.0 87.08±1.1 89.61±1.1 

 

Fig. 8. The average recognition rates of subspace LDA, RSLD, CFD and RCFD across 10 tests 
with the second experiment scheme 

Table 4. The average recognition rate (%) of CFD and RCFD and their standard deviation (std) 
with the second experiment scheme 

Method CFD 
RCFD: 
Regular 

RCFD: 
Irregular 

RCFD 

ARR (%) 87.62±0.97 88.32±1.01 87.57±1.46 89.93±1.02 

In the phase of performance evaluation, we first show the discriminant vectors of 
different methods, and then reevaluate the recognition rate obtained using RSLD and 
RCFD. Fig. 6 shows the discriminant vectors of Fisherfaces, subspace LDA and 
RSLD. The discriminant vectors of Fisherfaces are very noisy and wiggly. Subspace 
LDA can visibly improve the smoothness, and RSLD can further smooth the dis-
criminant vectors and make the projection axes more robust. Fig. 7 illustrates the 
appearance of the CFD and RCFD discriminant vectors. We can see that RCFD can 
further smooth the discriminant images of CFD: regular and CFD: irregular. 

We reevaluate RSLD and RCFD according to their average recognition rates of 
another 10 runs. Table 3 lists the recognition rates and standard deviation (std.) ob-
tained using Eigenfaces, subspace LDA, RSLD, CFD and RCFD. The recognition rate 
of RSLD is 87.30, and that of RCFD is 89.61, both are higher than those of Eigen-
faces (25.58), subspace LDA (84.74), and CFD (87.08). 

Next we compare the recognition rates of some methods with the second experiment 
scheme. Fig. 8 and Table 4 depict the average recognition rates obtained by subspace 
LDA, CFD, RSLD and RCFD. We can see that RSLD has a higher recognition rate 
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(87.95%) that that of subspace LDA (86.73%), and the recognition rate obtained using 
RCFD (89.93%) is also higher than that obtained using CFD (87.62%). It is worth 
noting that, in the first experiment scheme, RCFD: irregular (88.48%) is superior to 
RCFD: regular (86.81%) in recognition accuracy, which indicates that irregular dis-
criminative feature exhibits a better discriminatory power. But in the second experi-
ment scheme, RCFD: regular (88.32%) outperform RCFD: irregular (87.57%), which 
means regular discriminative feature has a better generalization capability. 

5   Conclusion 

In this paper, we propose a post-processing approach, 2D-Gaussian filtering, for the 
regularization of LDA, and apply it to face recognition. Post-processing differs from 
other regularization technique in that it directly regularizes discriminant vectors and 
can be used to regularize the discriminative information in the null space of Sw. Post-
processing can also be used to combine with other regularization technique to further 
improve the recognition performance. 

Using the post-processing technique, we present two LDA methods, regularization 
of subspace LDA (RSLD) and regularization of complete Fisher discriminant frame-
work (RCFD). RSLD post-processes the discriminant vectors obtained by subspace 
LDA, and RCFD post-processes that obtained by the complete Fisher discriminant 
framework. Experimental results on the FERET face subset show that post-processing 
is very effective in face recognition. With three samples of each subject for training, 
RCFD achieves an average recognition rate of 89.61% on the FERET subset. 

Acknowledgment 

The work is partially supported by the UGC/CRC fund from the HKSAR Govern-
ment, the central fund from the Hong Kong Polytechnic University and the NSFC 
fund under the contract No. 60332010 and No. 90209020. 

References 

1. Zhao, W., Chellappa, R., Phillips, P.J., Rosenfeld, A.: Face recognition: a literature survey. 
ACM Computing Surveys, 35 (2003) 399-458. 

2. Swets, D.L., Weng, J.: Using discriminant Eigenfeatures for image retrieval. IEEE Trans. 
Pattern Analysis and Machine Intelligence, 18 (1996) 831-836. 

3. Belhumeour, P.N., Hespanha, J.P., Kriegman, D.J.: Eigenfaces versus Fisherfaces: recog-
nition using class specific linear projection. IEEE Trans. Pattern Analysis and Machine 
Intelligence, 19 (1997) 711-720. 

4. Torkkola, K.: Linear discriminant analysis in document classification. Proc. IEEE ICDM 
Workshop Text Mining (2001). 

5. Baeka, J., Kimb, M.: Face recognition using partial least squares components. Pattern Rec-
ognition, 37 (2004) 1303-1306. 

6. Chien, J.T., Wu, C.C.: Discriminant waveletfaces and nearest feature classifiers for face 
recognition. IEEE Trans. Pattern Analysis and Machine Intelligence, 24 (2002) 1644-1649. 



 Regularization of LDA for Face Recognition: A Post-processing Approach 391 

 

7. Chen, L.F., Mark Liao, H.Y., Ko, M.T., Lin, J.C., Yu, G.J.: A new LDA-based face recog-
nition system which can solve the small sample size problem. Pattern Recognition, 33 
(2000)1713-1726. 

8. Yu, H., Yang, J.: A direct LDA algorithm for high-dimensional data with application to 
face recognition. Pattern Recognition, 34 (2001) 2067-2070. 

9. Lu, J., Plataniotis, K.N., Venetsanopoulos, A.N.: Face recognition using LDA-based algo-
rithms. IEEE Trans. Neural Networks, 14 (2003) 195-200. 

10. Yang, J., Zhang, D., Yang, J.Y.: A generalized K-L expansion method which can deal with 
Small Smaple Size and high-dimensional problems. Pattern Analysis and Applications, 6 
(2003) 47-54. 

11. Cevikalp, H., Neamtu, M., Wilkes, M., Barkana, A.: Discriminative common vectors for 
face recognition. IEEE Trans. Pattern Analysis and Machine Intelligence, 27 (2005) 4-13. 

12. Yang J., Yang, J.Y.: Why can LDA be performed in PCA transformed space. Pattern Rec-
ognition, 36 (2003) 563-566. 

13. Yang, J., Frangi, A.F., Yang, J.Y., Zhang, D., Jin, Z.: KPCA plus LDA: a complete Kernel 
Fisher discriminant framework for feature extraction and recognition. IEEE Trans. Pattern 
Analysis and Machine Intelligence, 27 (2005) 230-244. 

14. Zhao, W., Chellappa, R., Krishnaswamy, A.: Discriminant analysis of principal compo-
nents for face recognition. Proc. Int’l Conf. Automatic Face and Gesture Recognition 
(1998) 336-341. 

15. Bensmail, H., Celeux, G.: Regularized Gaussian discriminant analysis through eigenvalue 
decomposition. Journal of the American Statistics Association, 91 (1996) 1743-1748. 

16. Liu, C., Wechsler, H.: Enhanced Fisher linear discriminant models for face recognition. 
Proc. 14th Int’l Conf. Pattern Recognition, 2 (1998) 1368-1372. 

17. Wang, X., Tang, X.: A unified framework for subspace face recognition. IEEE Trans. Pat-
tern Analysis and Machine Intelligence, 26 (2004) 1222-1228. 

18. Dai, D.Q., Yuen, P.C.: Regularized discriminant analysis and its application to face recog-
nition. Pattern Recognition, 36 (2003) 845-847. 

19. Chen, W.S., Yuen, P.C., Huang, J., Dai, D.Q.: Kernel machine-based one-parameter regu-
larized Fisher Discriminant method for face recognition. IEEE Trans. Systems, Man, and 
Cybernetics-B, 35 (2005) 659-669. 

20. Pima, I. Aladjem, M.: Regularized discriminant analysis for face recognition. Pattern Rec-
ognition, 37 (2004) 1945-1948. 

21. Hoffbeck, J.P., Landgrebe, D.A.: Covariance matrix estimation and classification with lim-
ited training data. IEEE Trans. Pattern Analysis and Machine Intelligence, 18 (1996) 763–
767. 

22. Thomaz, C.E., Gillies, D.F., Feitosa, R.Q.: A new covariance estimate for Bayesian classi-
fier in biometrics recognition. IEEE Trans. Circuits and Systems for Video Technology, 14 
(2004) 214-223. 

23. Pratt, W.K.: Digital Image Processing. 2nd edn. Wiley, New York (1991). 
24. Yang, J., Yang, J.Y., Zhang, D.: What’s wrong with Fisher criterion. Pattern recognition, 

35 (2002) 2665-2668. 
25. Xu, Y., Yang, J.Y., Jin, Z.: Theory analysis on FSLDA and ULDA. Pattern recognition, 36 

(2003) 3031-3033. 
26. Jin, Z., Yang, J.Y., Hu, Z.S., Lou, Z.: Face recognition based on the uncorrelated discrimi-

nant transform. Pattern recognition, 34 (2001) 1405-1416. 
27. Philips, P.J., Moon, H., Rizvi, S.A., Rauss, P.J.: The FERET evaluation methodology for 

face-recognition algorithms. IEEE Trans. Pattern Analysis and Machine Intelligence, 22 
(2000) 1090-1104. 



Linear Programming for Matching in Human
Body Gesture Recognition

Hao Jiang, Ze-Nian Li, and Mark S. Drew

School of Computing Science, Simon Fraser University,
Burnaby, BC, Canada V5A 1S6

{hjiangb, li, mark}@cs.sfu.ca

Abstract. We present a novel human body gesture recognition method using a
linear programming based matching scheme. Instead of attempting to segment
an object from the background, we develop a novel successive convexification
linear programming method to locate the target by searching for the best match-
ing region based on a graph template. The linear programming based matching
scheme generates relatively dense matching patterns and thus presents a key fea-
ture for robust object matching and human body gesture recognition. By match-
ing distance transformations of edge maps, the proposed scheme is able to match
figures with large appearance changes. We further present gesture recognition
methods based on the similarity of the exemplar with the matching target. Exper-
iments show promising results for recognizing human body gestures in cluttered
environments.

1 Introduction

Human body gesture recognition has attracted a lot of interest in recent years because
of its potential important applications in surveillance, human-computer interaction and
computer animation. Recognizing body gestures is also a challenging problem because
of articulated motion of human limbs and bodies and large appearance variations such
as the changes of clothing.

In this paper, we study problems where only a single camera is available. We present
a gesture recognition method based on a novel linear programming (LP) matching
scheme. The proposed LP scheme can be used to solve large scale L1 metric labeling
problems. Target matching in gesture recognition can be formulated as this subclass of
labeling problems. Different from standard matching schemes such as the graph cut and
belief propagation, the proposed LP relaxation method represents a label space with a
much smaller set of basis labels, and is thus more suited for very large label set match-
ing problems. A successive convexification scheme is proposed to solve the labeling
problem. Iteratively, the trust region shrinks based on previous relaxation solution and
the approximation becomes more accurate when the trust region becomes small. A new
aspect of the algorithm is that the cost function is replaced by the lower convex hull
at each stage — we re-convexify the cost, while focusing increasingly closely on the
global solution. This is novel. The proposed multi-stage relaxation method is found to
be more efficient than schemes such as the graph cut or belief propagation for the object
matching problem where a large searching range is involved. It can also solve problems
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for which traditional schemes fail. Based on the matching scheme, we propose a gesture
recognition method which has the following properties: (1) The method works for cases
when reliable background subtraction is unavailable, e.g., for still images; (2) It is quite
insensitive to the clothing of the figures in the image. In this paper, local features are
used because they have less variation than human parts and are therefore more reliable
in matching. Unlike global shape features such as shape context [7], local features also
enable the proposed scheme to be applicable to matching problems in cluttered envi-
ronments. To suppress the influence of appearance changes for humans, we propose to
match the distance transformations of the edge maps of the template and target images.
This representation makes matching figures in different clothing possible. We further
present a method to quantify the similarity of the template and the target object and
form a reliable gesture recognition system.

Different schemes have been studied for recognizing human body gestures. Back-
ground subtraction has been used in gesture recognition. The difficulty with this scheme
is that background subtraction is not robust and not always available, and the method
cannot distinguish gestures when body parts are covered by silhouettes. One method to
solve the problem is by extracting range data for the character in the scene using mul-
tiple cameras [1]. But such an approach is more expensive to deploy than monocular
systems. A body-part based matching model [2] is presented for human body gesture
recognition. As an extension, an SVM body-part matching method [3] is further pre-
sented. Mori [4] presents a segmentation based approach for part-based human body
gesture recognition. Another method is to match the target as a whole, e.g. the Chamfer
matching based method [5] in which tree structured binary templates are used to de-
tect pedestrians. One shortcoming of this approach is that it usually needs many more
templates than part-based schemes. Shape matching methods have also been applied
for recognition of human actions [6][7]. Shape matching based methods usually need
many fewer templates than the Chamfer matching scheme because the template de-
forms. These schemes work best in relatively clean background settings.

Object matching can be represented as a consistent labeling problem, and is essen-
tial for gesture recognition. Consistent labeling is NP-hard in general. Apart from a
few cases in which polynomial algorithms are available, approximation algorithms are
preferred for image matching. Much effort has been made to study efficient algorithms
for these problems. Relaxation labeling (RL) [14] uses local search, and therefore relies
on a good initialization process. ICM – Iterative Conditional Modes [9], another widely
applied method for solving labeling problem, is greedy and is found to be easily trapped
in a local minimum. In recent years, graph cut (GC) [11] and belief propagation (BP)
[10] have become popular methods for solving consistent labeling problems. GC and
BP are more robust than traditional labeling schemes and are also found to be faster
than the traditional stochastic annealing methods. But GC and BP are still very com-
plex for large scale problems that involve a large number of labels. Spectral graph theory
based methods [15] have also been studied for matching. The work most related to our
proposed scheme are the mathematical programming matching schemes. The early RL
methods belong to this class. One of the big challenges in designing mathematical pro-
gramming based labeling algorithms is to overcome local minima in the optimization
process. Different schemes have been proposed. Deterministic annealing schemes [12]
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have been successfully applied to matching point sets. Convex programming is another
scheme for labeling problems. Up to now, methods such as quadratic programming
and semidefinite programming can only be applied to small scale problems. Because
of its efficiency, linear programming has been successfully applied in vision problems,
e.g. estimating motion of rigid scenes [17]. A linear programming formulation [16] is
presented for uniform labeling problems and approximating general problems by tree
metrics. Another general LP scheme, studied in [13], is similar to the linear relaxation
labeling formulation [14]. This LP formulation is found to be only applicable to small
problems because of the large number of constraints and variables involved.

2 Gesture Estimation with Matching

In this section, we present a scheme for estimating human body gestures based on visual
pattern matching using linear programming. First, we present our novel linear program-
ming matching method, which forms the key component for gesture recognition. Then,
we study gesture recognition based on similarity measures.

2.1 Matching by Linear Programming

In L1 metric space, matching can be stated in general as the following consistent label-
ing problem:

min
f

ε :
∑
s∈S

c(s, fs) +
∑

{p,q}∈N
λp,q||fp − fq||

in which c(s, fs) is the cost of assigning label fs to site s; ||.|| is the L1 norm and f are
labels defined in L1 metric space; S is a finite set of sites; N is the set of non-ordered
neighbor site pairs; λp,q are smoothing coefficients. In the following discussion, we
assume that both S and label sets Ls are discrete and f are 2D vectors. The proposed
method can be easily extended to cases where labels have higher dimensionality. We can
always convert a discrete labeling problem into a continuous one using the following
procedure. First, we interpolate the costs c(s, fs) for each site piecewise-linearly such
that c(s, fs) become surfaces; then we extend the feasible region for f to the convex hull
supported by the discrete labels. The new problem is defined as continuous extension
of the original discrete problem. To simplify notation, we also use c(s, fs) to represent
the continuous extension cost function.

2.2 Approximation by Linear Programing

The above energy optimization problem is nonlinear and usually non-convex, which
makes it difficult to solve in this original form without a good initialization process.
We now show how to approximate the problem by a linear programming via linear ap-
proximation and variable relaxation as outlined in [8] by Jiang et al. To linearize the
first term, the following scheme is applied. A basis Bs is selected for the labels of each
site s. Then the label fs can be represented as a linear combination of the label basis as
fs =
∑

j∈Bs
ξs,j · j, where ξs,j are real valued weighing coefficients. The labeling cost
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of fs can then be approximated by the linear combination of the basis labeling costs
c(s,
∑

j∈Bs
ξs,,j · j) ≈

∑
j∈Bs

ξs,j · c(s, j). We also further set constraints ξs,j ≥ 0 and∑
j∈Bs

ξs,j = 1 for each site s. Clearly, if ξs,j are constrained to be 1 or 0, and the basis
contains all the labels, i.e., Bs = Ls, the above representation becomes exact. Note that
fs are not constrained to the basis labels, but can be any convex combination. To lin-
earize the regularity terms in the nonlinear formulation we can represent a free variable
by the difference of two nonnegative auxiliary variables and introduce the summation
of the auxiliary variables into the objective function. If the problem is properly formu-
lated, when the linear programming problem is optimized the summation will approach
the absolute value of the free variable.

Based on this linearization process, a linear programming approximation of the
problem can be stated as

min
∑
s∈S

∑
j∈Bs

c(s, j) · ξs,j +
∑

{p,q}∈N
λp,q

2∑
m=1

(f+
p,q,m + f−

p,q,m)

s.t.
∑
j∈Bs

ξs,j = 1, ∀s ∈ S

∑
j∈Bs

ξs,j · φm(j) = fs,m, ∀s ∈ S, m = 1, 2

fp,m − fq,m = f+
p,q,m − f−

p,q,m, ∀ {p,q} ∈ N
ξs,j, f+

p,q,m, f−
p,q,m ≥ 0

where fs = (fs,1, fs,2). It is not difficult to show that either f+
p,q,m or f−

p,q,m will
become zero and thus f+

p,q,m + f−
p,q,m = |fp,m − fq,m| when the linear program is

optimized. Therefore, the linear programming formulation is equivalent to the general
nonlinear formulation if the linearization assumption c(s,

∑
j∈Bs

ξs,,j ·j) =
∑

j∈Bs
ξs,j ·

c(s, j) holds. In general situations, the linear programming formulation is an approxi-
mation of the original nonlinear optimization problem.

Property 1: If Bs = Ls, and the cost function of its continuous extension c(s, j) is
convex, ∀s ∈ S , the LP exactly solves the continuous extension of the discrete labeling
problem. Ls is the label set of s.

Proof: We just need to show when LP is optimized, the configuration {f∗s =∑
j∈Bs

ξ∗s,j.j} also solves the continuous extension of the nonlinear problem. Since
c(s, j) is convex,

∑
j∈Ls

c(s, j)ξ∗s,j ≥ c(s, f∗s ). And, when the LP is minimized we

have
∑

{p,q}∈N λp,q

∑2
m=1(f

+
p,q,m + f−

p,q,m)=
∑

{p,q}∈N λp,q||f∗p− f∗q ||. Therefore

min
∑

s∈S,j∈Ls

c(s, j)ξs,j +
∑

{p,q}∈N
λp,q

2∑
m=1

(f+
p,q,m + f−

p,q,m)

≥
∑
s∈S

c(s, f∗
s ) +

∑
{p,q}∈N

λp,q||f∗p − f∗q ||
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Fig. 1. (a): The convexification process introduced by LP relaxation. (b): An example when the
single LP relaxation produces a fractional labeling.

According to the definition of continuous extension, f∗s are feasible solutions of con-
tinuous extension of the non-linear problem. Therefore the optimum of the linear pro-
gramming problem is not less than the optimum of the continuous extension of the
nonlinear problem. On the other hand, it is easy to construct a feasible solution of LP
that achieves the minimum of the continuous extension of the nonlinear problem. The
property follows.

In practice, the cost function c(s, j) is usually highly non-convex for each site s. In
this situation, the proposed linear programming model approximates the original non-
convex problem by a convex programming problem.

Property 2: For general cost function c(s, j), if Bs = Ls, ∀s ∈ S, the linear program-
ming formulation solves the continuous extension of the reformulated discrete labeling
problem, with c(s, j) replaced by its lower convex hull for each site s.

Its proof is similar to Property 1, by replacing c(s, j) in the non-linear function with
its lower convex hull. Fig. 1(a) illustrates the convexification effect introduced by LP
relaxation.

Property 3: For general cost function c(s, j), the most compact basis set Bs contains
the vertex coordinates of the lower convex hull of c(s, j), ∀s ∈ S.

By Property 3, there is no need to include all the labeling assignment costs in the
optimization: we only need to include those corresponding to the basis labels. This is
one of the key steps to speed up the algorithm.

Property 4: If the lower convex hull of the cost function c(s, j) is strictly convex,
nonzero weighting basis labels must be “adjacent”.

Proof: Here “adjacent” means the convex hull of the nonzero weighting basis labels
cannot contain other basis labels. Assume this does not hold for a site s, and the nonzero
weighting basis labels are j

k
, k = 1..K . Then, there is a basis label jr located inside the

convex hull of jk, k = 1..K . Thus, ∃αk such that jr =
∑K

k=1 αkjk and
∑K

k=1 αk=1,
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αk ≥ 0. According to Karush-Kuhn-Tucker Condition (KKTC), there exists λ1, λ2, λ3

and μj such that
c(s, j) + λ1 + λ2φ1(j) + λ3φ2(j)− μj = 0 and ξs,jμj = 0, μj ≥ 0, ∀j ∈Bs

Therefore we have,
c(s, jk) + λ1 + λ2φ1(jk) + λ3φ2(jk) = 0, k = 1..K

c(s, jr) + λ1 + λ2φ1(jr) + λ3φ2(jr) ≥ 0
On the other hand,

c(s, jr) + λ1 + λ2φ1(jr) + λ3φ2(jr)
= c(s,

∑K
k=1 αkjk) + λ1 + λ2φ1(

∑K
k=1 αkjk) + λ3φ2(

∑K
k=1 αkjk)

<
∑K

k=1 αkc(s, jk) + λ1 + λ2

∑K
k=1 αkφ1(jk) + λ3

∑K
k=1 αkφ2(jk) = 0

which contradicts the KKTC. The property follows.
After the convexification process, the original non-convex optimization problem

turns into a convex problem and an efficient linear programming method can be used
to yield a global optimal solution for the approximation problem. Note that, although
this is a convex problem, a standard local optimization scheme is found to work poorly
because of quantization noise and large flat areas in the convexified objective function.

Approximating the matching cost by its lower convex hull is also intuitively attrac-
tive since in the ideal case, the true matching will have the lowest matching cost and thus
the optimization becomes exact in this case. In real applications, several target points
may have equal matching cost and, even worse, some incorrect matching may have
lower costs. In this case, because of the convexification process, in a one-step relax-
ation, the resulting fractional labeling could be not exactly the true solution, as shown
in the Fig 1(b). In this simple image matching example, there are 2 sites in the source
image and we construct a simple 2-node graph template. There are 5 target points in
the target image. In the example, labels are the displacement vectors. We assume that a
white rectangle will match a white rectangle with zero cost. And the circles will match
with zero cost. Matching between different shape points has large matching cost. The
light gray rectangle is in fact the true target for the white one in the source image, but
the match cost is a very small positive number because of noisy measurement. By solv-
ing the LP relaxation problem, we get a fractional solution as illustrated in Fig 1(b)
that has zero cost for LP’s objective function but is not the true solution. Adjusting the
smoothing parameter will not help because it already achieves the minimal zero cost. A
traditional rounding scheme will try to round ξ into 0 and 1. Unfortunately, the round-
ing will drive the solution even farther from the true solution, in which the rectangle
template node will match one of the white points in the target image. Intuitively, we
can shrink the searching region for each site based on the current LP solution, and do
a further search by solving a new LP problem in the smaller trust region. In the follow-
ing section, we expand this idea and propose a successive convexification scheme to
improve the approximation iteratively.

2.3 Successive Convexification Linear Programming

Here we propose a successive convexification linear programming method to solve the
non-linear optimization problem, in which we construct linear programming recursively
based on the previous searching result and gradually shrink the matching trust region
systematically.
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Assume Bn
s to be the basis label set for site s at stage n linear programming. The

trust region Un
s of site s is determined by the previous relaxation solution fn−1

s =
(fn−1

s,1 , fn−1
s,2 ), and a trust region diameter dn. We defineQn

s = Ls∩Un
s . Bn

s is specified
by Bn

s = {the vertex coordinates of the lower convex hull of {c(s, j),∀j ∈ Qn
s }}, where

c(s, j) is the cost of assigning label j to site s.

Algorithm 1. Successive Convexification Linear Programming
1. Set n = 0; Set initial diameter = d0;
2. FOREACH(s ∈ S)
3. { Calculate the cost function {c(s, j), ∀j ∈ Q0

s};
4. Convexify {c(s, j)} and find basis B0

s ; }
5. Construct and solve LP0;
6. WHILE ( n ≤ N and dn ≥ 1)
7. { n←n+1;
8. dn = dn−1 − δn;
9. FOREACH(s ∈ S)
10. { IF (Qn

s is empty) {Qn
s = Qn−1

s ;Un
s = Un−1

s ; }
11. ELSE update Un

s ,Qn
s ;

12. Reconvexify {c(s, j)} and relocate basis Bn
s ; }

13. Construct and solve LPn; }
14. Output f∗

s , ∀s ∈ S;

Notice that the relaxed LP gives the lower bound of the original problem; It is easy to
verify that the necessary condition for successive LP approaching the global minimum
is LPn ≤ E∗, n = 0..N, where E∗ is the global minimum of the non-linear problem.
Since the global minimum of the function is unknown, we estimate an upper bound
E+of E∗ in the iterative process. The configuration of labels that achieves the upper
bound E+ is composed of anchors — an anchor is defined as the control point of the
trust region for the next iteration. We keep the anchor in the new trust region for each site
and shrink the boundary inwards. If the anchor is on the boundary of the previous trust
region, other boundaries are moved inwards. A simple scheme is to select anchors as the
solution of the previous LP, rs = f (n−1)

s . Unfortunately, in the worse case, this simple
scheme has solution whose objective function is arbitrarily far from the optimum. In
fact, the fractional solution could be far away from the discrete label site. To solve the
problem, we present a deterministic rounding process by checking the discrete labels
and selecting the anchor that minimizes the non-linear objective function, given the
configuration of fractional matching labels defined by the solution of the current stage.
This step is similar to a single iteration of an ICM algorithm. In this step, we project a
fractional solution into the discrete space. We call the new rounding selection scheme a
consistent rounding process. Except for LP1, we further require that new anchors have
energy not greater than the previous estimation: the anchors are updated only if new
ones have smaller energy. The objective function for LPn must be less than or equal
to E+. This iterative procedure guarantees that the objective function of the proposed
multi-step scheme is at least as good as a single relaxation scheme. In the following
example, we use a simple scalar labeling problem to illustrate the solution procedure.
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Fig. 2. Successive convexification LP

Example 1. (A scalar labeling problem): Assume there are two sites {1, 2} and for each
site the label set is {1..7}. The objective function is min{ρ1,ρ2} c(1, ρ1) + c(2, ρ2) +
λ|ρ1 − ρ2|. In this example we assume that {c(1, j)} ={ 1.1 6 2 7 5 3 4 }, {c(2, j)} =
{ 5 5 5 1 5 1 5} and λ = 0.5.

Based on the proposed scheme, the problem is solved by the sequential LPs: LP0,
LP1 and LP2. In LP0 the trust regions of sites 1 and 2 are both [1, 7]. Constructing
LP0 based on the proposed scheme corresponds to solving an approximated problem in
which {c(1, j)} and {c(2, j)} are replaced by their lower convex hulls respectively (see
Fig. 2). Step LP0 uses basis labels {1,6,7} for site 1 and basis labels {1, 4, 6, 7} for
site 2. LP0 finds solution ξ1,1 = 0.4, ξ1,6 = 0.6, ξ1,7 = 0, ρ1 = (0.4∗1+0.6∗6) = 4;
and ξ2,4 = 1, ξ2,1 = ξ2,6 = ξ2,7 = 0, ρ2 = 4. Based on the proposed rules for anchor
selection, we fix site 2 with fractional label 4 obtained by solving LP0, and search the
best label for site 1 in the region [1,7] using the non-linear objective function; we get
the anchor 3 for site 1. Using similar method, we fix site 1 with its fractional label 4 and
search the best label for site 2, and we get its anchor 4. At this stage, using anchor labels
we get E+ = c(1, 3) + c(2, 4) + 0.5 ∗ |3− 4| = 3.5. Further, the trust region of LP1 is
[2, 6] for site 1 and [2, 6] for site 2 by shrinking the previous trust region diameter by 2.
The solution of LP1 is ρ1 = 4 and ρ2 = 4. The anchor is 3 for site 1 and 4 for site 2
with E+ = 3.5. Based on LP1, LP2 has new trust region [3, 5]× [3, 5] and its solution
is ρ1 = 3 and ρ2 = 4. Since LP achieves the upper bound 3.5 in the trust region, there
is no need to further shrink the trust region and the iteration terminates. It is not difficult
to verify that the configuration ρ1 = 3, ρ2 = 4 achieves the global minimum. Fig. 2
illustrates the proposed successive convexification process method for this example.

Interestingly, for the above example ICM or even the graph cut scheme only finds
a local minimum if initial values are not correctly set. For ICM, if ρ2 is set to 6 and
the updating is from ρ1, the iteration will fall into a local minimum corresponding to
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ρ1 = 6 and ρ2 = 6. The GC scheme based on α-expansion will have the same problem
if the initial values of both ρ1 and ρ2 are set to 6.

A revised simplex method is used to solve the LP problem. Therefore, an estimate
of the average complexity of successive convexification linear programming is O(|S| ·
|Q|1/2 · (log |Q|+ log |S|)), where Q is the label set. Experiments also confirm that the
average complexity of the proposed optimization scheme increases more slowly with
the searching window size than previous methods such as the graph cut scheme, whose
average complexity is linear with respect to |Q|.

2.4 Model Generation

The basic idea of body gesture recognition is to match a human body gesture image
with different templates; The best matching template indicates the gesture and location
of the human object in the image. The problem is challenging because we do not have a
segmentation mask in the target image, and therefore we have to deal with strong back-
ground clutters. Another difficult problem is to make the algorithm resistant to different
clothing and other large appearance changes. For gesture recognition problems, the fea-
tures selected for the matching process must be insensitive to appearance changes of
human objects. The edge map contains all the shape information of an object, and at
the same time is not sensitive to color changes. Edge features have been widely applied
in Chamfer matching schemes [5]. We propose the use of small blocks, centered on the
edge pixels, of the distance transform of an image’s edge map as the matching feature.
A distance transform converts a binary edge map into its corresponding grayscale repre-
sentation, where the intensity of a pixel is proportional to its distance to the nearest edge
pixel. Denoting the square block of the distance transform of I’s edge map centered at
the edge pixel x as dx(I), the cost of matching is defined as

Cx,y =
1

Δ2√σxσy
||dx(Is)− dy(It)||

where Is and It are the template and target images respectively; ||.|| is the cityblock
norm in this paper; σx and σy are the standard deviations of dx(Is) and dy(It) respec-
tively; Δ is the size of the square block. The orientation information is now integrated
in the proposed feature. For instance, there is now a big difference for two features
on orthogonal edges. In this paper, the features are randomly selected on the edges of
the template. The neighboring relation N is defined by the edges of the graph gener-
ated by Delaunay triangulation of the feature points on the template. In this problem,
source set S contains the feature points on the template, and labels are the displacement
vectors of target points to each feature point on the template. Therefore, c(s, fs) in the
optimization problem equal Cs,fs+s.

2.5 Similarity Measures

After finding the matches of the feature points in the template with corresponding points
in the target image based on the proposed method, we need to further decide how similar
these two constellations of matched points are and whether the matching result corre-
sponds to the same event as in the exemplar. We use the following quantities to measure
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the difference between the template and the matching object. The first measure is D,
defined as the average of pairwise length changes from the template to the target. To
compensate for the global deformation, a global affine transform A is first estimated
based on the matching and then applied to the template points before calculating D.
D is further normalized with respect to the average edge length of the template. The
second measure is the average warped template matching cost M , which is defined as
the average absolute difference of the target image distance transform and the warped
reference image distance transform in the region of interest. The warping is based on
cubic spline. The total matching cost is simply defined as M + αD, where α has a
typical value from 0.1 to 0.5. Experiments show that only about 100 randomly selected
feature points are needed in calculating D and M .

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 3. An example where traditional methods fail. (a): Template image; (b): Target image; (c):
Edge map of template image; (d): Edge map of target image; (e): Template mesh; (f): Matching
result of the proposed scheme; (g): ICM matching result; (h): Graph cut matching result.

(a) (b) (c) (d)

(e) (f) (g)

Fig. 4. Binary to grayscale. (a, b): Template image and target image. (c): Template model showing
distance transform; (d): Matching result of proposed scheme; (e): Matching result by GC; (f):
Matching result by ICM. (g): Matching result by BP.
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Template 1 Template 2 Template 3 Template 4

(a) 0.0733 0.0918 (b) 0.1096 0.1172

(c) 0.0868 0.1221 (d) 0.0847 0.0889

(e) 0.0840 0.2990 (f) 0.0888 0.1110

(g) 0.0873 0.1092 (h) 0.1081 0.1440

(i) 0.0797 0.0863 (j) 0.1003 0.1171

(k) 0.1036 0.1038 (l) 0.1128 0.1182

(m) 0.0983 0.1060 (n) 0.0804 0.0993

(o) 0.0917 0.1011 (p) 0.0675 0.0928

Fig. 5. Testing images and their top two matches from four body gestures
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Template 0.0656 0.0658 0.0681 0.0730 0.0731

0.0887 0.0919 0.1223 0.1241 0.1332 0.1346

0.1361 0.1433 0.1441 0.1453 0.1503 0.1512
(a) Gesture recognition result with template 1

Template 0.0433 0.0473 0.0909 0.1036 0.1049

0.1068 0.1081 0.1106 0.1109 0.1110 0.1115

0.1138 0.1180 0.1218 0.1223 0.1259 0.1294
(b) Gesture recognition result with template 2

Template 0.0745 0.1308 0.1372 0.1376 0.1380

0.1381 0.1407 0.1421 0.1440 0.1451 0.1468

0.1418 0.1494 0.1535 0.1553 0.1553 0.1555
(c) Gesture recognition result with template 3

Fig. 6. Matching result for Yoga images. The first image in each subfigure is the template and the
rest are the top 17 candidate matching images. Numbers show the matching cost.
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Frame 0 Frame 40 Frame 80 Frame 120 Frame 160 Frame 200

Frame 240 Frame 280 Frame 320 Frame 360 Frame 400 Frame 440
(a) Sample frames from video 1

Template 0.065176 0.069108 0.071428 0.077256 0.078176

0.079321 0.079884 0.080592 0.083508 0.083684 0.083924
(b) Top 11 matches for video 1

Frame 0 Frame 80 Frame 160 Frame 240 Frame 320 Frame 400

Frame 480 Frame 560 Frame 640 Frame 720 Frame 800 Frame 880
(c) Sample frames from video 2

Template 0.148730 0.152855 0.153233 0.154401 0.155574

0.156224 0.157334 0.160047 0.160292 0.160323 0.160668
(d) Top 11 matches for video 2

Fig. 7. Matching human gestures using flexible toy object template
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3 Experimental Results

Fig. 3 shows the advantage of using our deformable matching scheme when we only
have one template available. We try to match the distance transform of the template
and target images. As shown in this example, greedy schemes such as ICM meet with
great difficulty since there are a lot of ambiguities in matching distance transformation
images. Comparing with the graph cut scheme, the proposed LP based method can solve
the problem more robustly. Fig. 4 shows a comparison result using synthetic binary
images. All the methods in the comparison use the same set of energy functions and
parameter settings. With a 2.66GHz Pentium IV Linux machine, each LP iteration takes
about 1 second for a problem with 100 nodes and 10000 target points. The typical
number of iterations is 3 to 4 for most problems.

Fig. 5 shows body gesture recognition results using two articulated objects. Four
body gestures are involved. A single template is generated for each gesture using the
first object. The region of the object is set for the template object and about 100 features
are randomly selected from the edge pixels automatically. Another object with differ-
ent appearance is used for testing in different background settings. Distance transform
images are used in matching to compensate for the appearance changes. A linear com-
bination of the deformation measure D and the matching error M are used to form a
matching score. We set the coefficient to be 0.1 for deformation D and unity for match-
ing error M . Top two match candidates and their matching cost are shown in each of
Figs. 5 (a) to (p). These experiments show that the proposed scheme can reliably match
the target in complex background settings.

In another experiment, we study the following retrieval problem: we use a template
image and retrieve the best match in an image data set. The data set is extracted from
a video sequence. In this experiment, there is only one human object in the image.
The search range is the whole target image. The template images and target images are
extracted from different sections of the video, which have a large number of different
body gestures and small number of similar body gestures. The character in the image
has different clothing and somewhat different size in the template and target image.
The test set contains 40 images with about 20 different gestures. Fig. 6 shows retrieval
results for 3 different gestures. The matcher is reliable and all the correct matches are
located in the first several best matches.

In Fig.7 we conducted experiments to test the performance of the proposed scheme
in matching objects with large appearance differences. We use a toy as the template
object and search for similar human body gestures in video sequences. Two sequences
are used in testing. The first one shown in Fig.7 has 500 frames and the other has
1000 frames. There are fewer than 10% of true targets in the video sequence. The first
sequence has a precision of 90% when the recall is 55%; Precision drops to 82% when
recall goes up to 100%. The second sequence has a precision of 92% when the recall is
50%; Precision drops to 81% when recall reaches 100%.

4 Conclusion

We propose a novel linear programming method using successive convexification which
is more efficient and effective than schemes such as the graph cut or belief propagation
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methods for the object matching problem where a large searching range is involved.
It can also solve problems for which other schemes fail. As well, we propose using
distance transformations of the edge maps to match the template and target images.
This representation facilitates matching some types of objects with large appearance
variations. Experiments show very promising results for human gesture detection in
cluttered environments. In future work, we will extend this method to dynamic gesture
and human activity recognition problems. The proposed scheme has the potential to be
directly applied to general object recognition problems.
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Abstract. The present paper discusses a method for robust face recog-
nition that works even when only one image is registered and the test
image contains a lot of local noises. Two types of facial image decom-
position are compared both theoretically and experimentally. That is,
we consider both a projectional decomposition, in which images are de-
composed into individuality and other components, and a locational de-
composition, in which the effects of local noises are suppressed. These
two decompositions are simple and powerful and can be applied in col-
laboration with one another. This collaboration can be realized in a
straightforward manner because the decompositions are consistent with
one another. They work in a complementary manner and provide better
results than when the decompositions are used independently. Finally,
we report experimental results obtained using three databases. These
results indicate that the combination of projectional and locational de-
compositions works well, even when only one image is registered and the
test images contain significant noise.

1 Introduction

The appearance of the human face changes according to the lighting condi-
tions under which the facial image is captured. However, it is often difficult to
control the lighting condition in natural environments. A face recognition algo-
rithm should not be sensitive to the lighting condition in order to realize robust
face recognition. Although an eigenface[1,2] can efficiently represent photomet-
ric changes, it cannot be constructed appropriately when too few images are
available for registration. In this case, photo-insensitive information should be
extracted from registered images. In other words, we should decompose the im-
age into individuality and other information. This decomposition is referred to
herein as projectional decomposition. This decomposition is a basic and impor-
tant problem in not only face recognition but also pattern recognition.

Local noises, such as occlusions and shadows, are contained in images and
affect the recognition method based on the eigenspace and projection onto the
eigenspace. Several algorithms have been proposed[3,4] for robust recognition
against various noises. Although these algorithms provide good projection even
when an image includes local noises, a great deal of processing time is required.

W. Zhao, S. Gong, and X. Tang (Eds.): AMFG 2005, LNCS 3723, pp. 407–421, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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Alternatively, in another approach, the image is regarded as a set of small com-
ponents [2,5,6,7]. This approach, referred to herein as locational decomposition,
does not spread local noises to the entire image and thus can avoid the above-
mentioned problem.

In the present paper, we propose a novel method for robust face recognition
by combining projectional and locational decompositions. Since projectional and
locational decompositions can be used simultaneously, this combination facilitates
the realization of a face recognition algorithm that is robust with respect to noises.

2 Definitions

2.1 Normalized Eigenspace

In this section, we present basic definitions and the notation scheme used herein.
Since the proposed method is based on eigenspace, this section deals mainly with
the concept of eigenspace.

In the present study, all images are normalized as follows. Let an N -dimens-
ional vector X denote an original image composed of N pixels, and let 1 denote
an N -dimensional vector in which each element is 1. The normalized image x of
an original image X is defined as x = X/(1TX). After the normalization, x is
normalized in the sense that 1Tx = 1. An image space constructed by a set of
normalized images is called the Normalized Image Space (NIS).

An eigenspace constructed by mean vector x and m-principal eigenvectors Φm

in NIS is described as 〈x, Φm〉. In NIS, an image x is projected onto eigenspace
〈x, Φm〉 by

x̃∗ = Φ̃+
mx,

where Φ̃m = [Φm x] and Φ̃+
m = (Φ̃T

mΦ̃m)−1Φ̃T
m.

In order to measure the similarity between an input imagex and the eigenspace
〈x, Φm〉 , we define a normalized correlation in terms of NIS, which can be defined
by the cosine of an angle when an image 1/N is regarded as the origin of the NIS.
That is, a normalized correlation CI between x and 〈x, Φm〉 is defined as

CI = C(x, Φ̃mx̃∗) (1)

where

C(x,y) =
(x − 1/N)T (y − 1/N)

||x− 1/N ||1/2||y − 1/N)||1/2
. (2)

By this definition, a given image x can be evaluated in terms of NIS without
explicit normalization.

2.2 Partial Projection

Let us define an indicator matrix P , which is an N × N diagonal matrix, each
diagonal term of which is 1 or 0, which indicates whether the pixel is effective (1)
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or ineffective (0) for the projection. Then, x is partially projected onto 〈x, Φm〉
with indicator matrix P by

x̃∗
P = (PΦ̃m)+Px, (3)

where Φ̃m = [Φm x] and (PΦ̃m)+ = (Φ̃T
mPΦ̃m)−1(PΦ̃m)T . A partial residual is

defined as
x̃�

P = P (x− Φ̃mx̃∗
P ). (4)

The last element of x̃∗
P is important and is denoted by βP . βP is equivalent to

the total pixel values estimated by the partial projection. When the eigenspace
cannot be constructed because only one image is available, we can regard the
image as a 0-dimensional eigenspace. The normalized correlation CI can be ex-
tended to span the partial projection. A partial correlation CP between x and
〈x, Φm〉 within a pixel set indicated by P is defined as

CP = C(Px, P Φ̃mx̃∗
P ). (5)

When P is an identity matrix, Eq. (5) is equivalent to Eq. (1).

3 Projectional Decompositions

3.1 Decomposition by Canonical Eigenspace

A facial image contains various types of information, such as head pose, lighting
condition, and individuality. In face recognition, it is important to decompose
the facial image into the individuality and the other information. In the present
paper, we refer to this decomposition as a projectional decomposition. In this
section, we discuss the projectional decomposition for face recognition.

Principal component analysis (PCA) reduces the dimension of the face space
with little loss of representability [1]. Shakunaga and Shigenari[8] proposed an im-
age decomposition by an eigenspace that is constructed from a lot of facial images
taken under various lighting conditions. Their method is used as a projectional
decomposition in the present paper. We consider an eigenspace constructed from
a lot of facial images as the canonical face space. The eigenspace is referred to as
the canonical space, or CS for short, and the images used for CS construction are
referred to as the canonical set. Figure 1 shows examples of the CS. Information
that cannot be represented in the CS is regarded as the individuality.

The canonical space can be used for decomposing a facial image into the canon-
ical information and the individuality. The former is a projection onto CS, and the
latter is the residual of the projection. They are orthogonal to each other.

Fig. 1. Example of CS: Mean vector (leftmost image) and four principal bases
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Let 〈xcs, Φcs〉 denote CS. The projection of an image x onto CS is given by

x̃∗ = Φ̃+
csx,

where Φ̃cs =[Φcs xcs]. In the original image space, the projection x̃∗ is described by

x$ = Φ̃csx̃∗.

The residual x� is then expressed as

x� = x− x$.

The decomposition of x into x$ and x� is hereinafter referred to as CS
decomposition.

Although the individuality may be represented by only the residual in an
ideal environment, it is impossible to completely decompose an input image into
the individuality and the other properties in an ordinary environment. Therefore,
we simultaneously use both the projection and the residual for face recognition
because they are complementary.

A face recognition algorithm is constructed in the conventional way using
these two components. In the face registration stage, one eigenspace is con-
structed from a set of the projections and is denoted by 〈x$, Φ$

m〉 . The other
eigenspace is constructed from a set of the residuals and is denoted by 〈x�, Φ�

m〉.
In the recognition stage, a projection x$ and a residual x� are evaluated inde-
pendently by

C$ = C(x$, Φ̃$
mΦ̃$+

m x$) (6)

and
C� = C(x�, Φ̃�

mΦ̃�+
m x�). (7)

Finally, the image x is evaluated by adding C$ to C�.
The similarity C$, calculated in CS, is a variation of the well known distance-

in-feature-space [2]. However, the similarity C� is definitely distinct from the
distance-from-feature-space. In the distance-from-feature-space, all of the resid-
ual components are simply summed up to L2-norm. In contrast, the similarity

Input

CS
decomposition

Gaussian
decomposition

Fig. 2. Examples of CS decomposition and Gaussian decomposition: original images
(x) (top row), CS decomposition results (x$ and x�) (middle row), and Gaussian de-
composition results (x$

G and x�
G) (bottom row)
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C� is the similarity between the residual x� and the eigenspace 〈x�, Φ�
m〉 in CS.

In other words, C� is the “distance-in-another-feature-space.”
Figure 2 shows three examples of the CS decomposition in which input images

were not used for constructing CS. The left and center input images, which do
not contain an occlusion, are appropriately projected onto CS. Therefore, they
are properly decomposed. In the right image, however, an occlusion by a scarf
affects both the projection and residual.

3.2 Decomposition by Gaussian Filter

Canonical space decomposition is useful when an appropriate learning set can
be prepared for the CS construction. However, often, when a facial image is
taken using a different camera under different conditions, CS may not properly
decompose the image into the canonical information and the individuality. In
addition, when a test image contains numerous noises, such as occlusions, the
noises may affect the entire image upon projection onto CS. Furthermore, the
test image should be aligned with CS before the CS decomposition. In order to
avoid these problems, we consider an alternative method that does not use CS
for the projectional decomposition.

Wang et al.[9] proposed a self-quotient image (SQI) that extracts the com-
ponent that is insensitive to illumination. In their method, a Gaussian filter is
used to extract lighting information. The Gaussian filter is used in the proposed
method for the projectional decomposition. Let G denote an N ×N matrix that
works as the Gaussian filter. Then, the decomposition of image x into a Gaussian
image x$

G and its residual x�
G by the Gaussian filter can be formulated as

x$
G = Gx (8)

and
x�

G = x− x$
G. (9)

Since the matrix G can be regarded as a projection matrix, x$
G can be regarded

as a component of the Gaussian space. In this formulation, no a priori knowledge
is necessary because x$

G can be calculated from only the input image. An input
image is simply decomposed into the Gaussian image and its residual. This
decomposition is referred to hereinafter as Gaussian decomposition. Figure 2
also shows three examples of Gaussian decomposition. Although the right input
image includes an occlusion by a scarf, the effect of this occlusion does not spread
to the entire image. 1

1 In the self-quotient image, each pixel value of the input image should be divided
by the corresponding pixel in the Gaussian image in order to cancel the effect of
illumination. In the proposed method, however, the Gaussian image is subtracted
from the original image in order to calculate the residual. That is, the Gaussian image
and the residual are regarded as approximations of illumination and individuality,
respectively. This is an alternative method of calculating the self-quotient image, and
the computational cost is lower than the self-quotient image because the residual can
be calculated by subtraction rather than division.
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4 Locational Decomposition

4.1 Parallel Partial Projections

When an input image contains local noises, such as shadows or occlusions, the
noises affect the recognition results. First, in the most commonly used method,
although images for face recognition are normalized by some method, when the
image contains noises, the image cannot be properly normalized. Second, when
we use an eigenspace, the effects of noises is spread to the entire image by the
projection onto the eigenspace, affecting the face recognition results.

In order to avoid this problem, we utilize local information independently.
In this section, we introduce a locational decomposition algorithm, which can
utilize local information independently.

A framework of parallel partial projections (PPP) onto an eigenspace is
proposed for face recognition under various lighting conditions[5]. This is one
method for implementing the locational decomposition, and so local information
is treated independently and the spread of noises is prevented. In the present
paper, this method is used as the locational decomposition of the image.

Let us describe the j-th partial projection x̃∗
Pj

onto an individual eigenspace
〈x, Φm〉. Here, we consider a set of partial projections {x̃∗

P1
, · · · , x̃∗

PM
}, where

M is the number of parts indicated by Pj . This can be represented by the
backprojected image, which can be calculated as

x$′
=

M∑
j=1

Pj Φ̃mx̃∗
Pj

.

In the discriminant function for PPP, we use a partial correlation. The (partial)
correlation is essentially robust with respect to noises because it represents the
cosine of the angle between two vectors. The image x is evaluated by

C′ =
M∑

j=1

C(Pjx, PjΦ̃mx̃∗
Pj

), (10)

where M is the number of Pj and C(x,y) = xT y/(xT xyT y)1/2. Of course, PPP
can be used not only for the eigenspace, but also for only one image. When only
one image can be registered, the image is regarded as a 0-dimensional eigenspace
consisting of the image.

The face recognition algorithm is summarized in Fig 3. Here, local noises are
not spread by projection onto the eigenspace.

4.2 Division Scheme

In face recognition using the parallel partial projections, the indicator matrix P
can be used to indicate an arbitrary area in the facial image. The image contains
some characteristic points such as the eyes, nose and mouth. Several previously
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Partial Correlation

Discrimination

Parallel Partial Projections

Individual Eigenface

Fig. 3. Parallel partial projections for face recognition

proposed methods have used these characteristic points[2]. Although this method
is effective, we do not use characteristic points in the proposed method because
correctly determining an effective position for recognition is difficult. Therefore,
points that are characteristic points from a human viewpoint may not be charac-
teristic points from the viewpoint of a computer. Furthermore, when the proposed
method is applied to the recognition of some other objects, proper characteristic
points for the recognition are impossible to conceive of ahead of time.

Therefore, we do not herein consider the optimal placement of P . In the
proposed method, images are divided into a set of squares, and experimental re-
sults, described later herein, show that the proposed method works well without
optimal placement of P .

Parallel Partial Projections (Locational Decomposition)

Partial Correlation

Final Result

CS-Decomposition/
Gaussian-Decomposition

(Projectional Decomposition)

Fig. 4. Combination of projectional and locational decompositions
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5 Combination of Locational and Projectional
Decompositions

5.1 Combination of CS Decomposition and Parallel Partial
Projections

A projectional decomposition and a locational decomposition can be combined
in a simple manner. We show two combinations of projectional and locational
decompositions. In the combination methods, an input image is projectionally
decomposed by either CS decomposition or Gaussian decomposition, and the
two decomposed components are evaluated in a framework of the locational
decomposition. Figure 4 shows the concept of the combinations.

First, an input image x is projection decomposed by parallel partial projec-
tions onto CS. x̃∗

Pj
= (PjΦ̃cs)+Pjx (11)

x�
Pj

= Pj(x− Φ̃csx̃∗
Pj

), (12)

where Φ̃cs = [Φcs xcs]. We define x$′
and x�′ as

x$′ =
M∑

j=1

PjΦ̃csx̃∗
Pj

(13)

x�′ =
M∑

j=1

Pjx
�
Pj

, (14)

where M is the number of parts. This method realizes the projectional decompo-
sition without any noise expansion because the parallel partial projections onto
canonical space do not spread noises. Examples of the decomposition by PPP
are shown in Fig 5.

The decomposed images can be locationally decomposed and evaluated in
a straightforward manner. In the combination method, the partial correlation
should be defined for each component. When an eigenspace constructed from a
set of x$′ is denoted by 〈x$′, Φ$

m

′〉, a partial correlation C$
Pj

between x$′ and

〈x$′, Φ$
m

′〉 within a pixel set indicated by Pj is calculated by

C$
Pj

= C(Pjx$′, PjΦ̃
$′
m(Pj Φ̃

$′
m)+Pjx$′). (15)

In a similar manner, a partial correlation C�
Pj

between a residual x�′ and an

eigenspace 〈x�′Φ�
m

′〉 is calculated by

C�
Pj

= C(Pjx�′, PjΦ̃
�′
m(Pj Φ̃

�′
m)+Pjx�′), (16)

where 〈x�′Φ�
m

′〉 is constructed from a set of the residuals defined in Eq. (14).
Then, the total correlation Ccs

′ is defined as

Ccs
′ = w

M∑
j=1

C$
Pj

+ (1− w)
M∑

j=1

C�
Pj

, (17)

where w is the weight of the projectional components.
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Although the locational decomposition provides robustness with respect to lo-
cal noises, effective information for face recognition does not increase in the entire
image. The locational decomposition still requires a sufficient number of regis-
tered images for each person because the conventional eigenface method requires
a lot of images for the stable recognition. On the other hand, the projectional de-
composition often provides stable results even when only a few images are regis-
tered. However, the projectional decomposition is sometimes seriously affected by
local noises. In the combination method, however, the locational decomposition
prevents local noises from spreading to the entire image when the projectional
decomposition provides sufficient information for face recognition. Therefore, the
combination method works better than the individual decompositions.

5.2 Combination of Gaussian Decomposition and PPP

A combination of the Gaussian decomposition and the parallel partial projec-
tions is more straightforward and simpler than the CS decomposition because
the Gaussian filter uses only local (independent) information of the input images.
In Fig. 5, the right-most images show the results of the Gaussian decomposition,
which are similar to the results of the parallel partial projections onto CS using
64(8×8) square subregions as shown in the most upper row. In this method,
an input image is decomposed by the Gaussian filter. The Gaussian component
and the residual are locationally decomposed and evaluated in a manner similar

division
for PPP

input

input

1-square
(CS)

4-square
(CS)

16-square
(CS)

64-square
(CS) (Gaussian)

Fig. 5. Examples of the decomposition by parallel partial projections onto CS and the
Gaussian filter. The upper row shows the projected images, and the lower row shows the
residuals. The first column shows the input images. The second through fifth columns
show the images decomposed by the parallel partial projections (M = 1, 4, 16, 64) onto
CS. The sixth column shows the images decomposed by Gaussian decomposition.
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to that described in the previous section. Let C$
GPJ

denote the partial correla-
tion between a Gaussian component x$

G and an eigenspace constructed in the
Gaussian space, and let C�

GPJ
denote the correlation with the residual. Then,

an image x is evaluated by

CG
′ = w

M∑
j=1

C$
GPj

+ (1− w)
M∑

j=1

C�
GPj

, (18)

where w is the weight of the projectional components.

6 Experimental Results

6.1 Results for Yale Face Database B

Data Specifications
We performed discrimination experiments on 640 frontal facial images of 10
people, which were taken from the Yale Face Database B [10]. The database
includes 65 frontal facial images of each person. Sixty-four of the images were
taken under different lighting conditions, and one special image was taken under
ambient light. In order to remove the contribution of ambient light, we prepared
64 images of each person with the ambient image subtracted. At the same time,
each image was converted to a 64 × 64 pixel image such that the eyes of all of
the images are located at the same coordinates, as shown in Fig. 6.

Discrimination experiments were performed using the segmented data set.
Figure 7 shows examples of the five subsets (SS1-5). In the first set of experi-
ments, only the frontal illuminated images in SS1 were used as registered images,
and all of the images in SS1 were used in the second set of experiments.

The CS is created from a canonical set from our laboratory, which consists of
1,200 images of 50 people. For each person, images were taken under 24 lighting
conditions.

Fig. 6. Segmented facial images in Yale Face Database B

SS1
θ ≤ 12◦

SS2
θ ≤ 25◦

SS3
θ ≤ 50◦

SS4
θ ≤ 77◦

SS5
θ > 77◦

Fig. 7. Example images in subsets 1-5 (SS1-5), where θ is the angle between the light
source direction and the camera axis
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Discrimination Results
Table 1 shows the discrimination rates for the dataset when only one image is
registered from SS1. In the methods that use the PPP, images were divided into
sixty-four squares. Among the three single decomposition methods, PPP, the
CS decomposition and the Gaussian decomposition, CS decomposition provides
the worst results because the method spreads noises by the projection onto CS.
Although the PPP provides better results than CS decomposition by preventing
the expansion of noises, the results are not sufficient because the method does
not include individuality-extraction. Gaussian decomposition provides the best
results among the three methods because it can approximately extract individ-
uality without any noise expansion.

The two combination methods, PPP-CS and PPP-Gaussian, work much
better than the other methods because they not only extract individuality
but also include schemes for avoiding the problems of noises. In addition, in
the combination methods, CS decomposition works as well as Gaussian de-
composition because CS decomposition does not spread noises by the parallel
partial projections.

Table 2 shows discrimination rates when seven images are registered from SS1
for each person. In the experiments, the PPP and the combination methods give
the complete discrimination because a sufficient number of images are registered.
Two projectional decompositions give slightly worse results than PPP because
they cannot sufficiently suppress the noises.

Table 1. Discrimination rates (%) for Yale Face Database B when only one image
is registered from SS1. NN denotes the Nearest Neighbor method, PPP denotes the
Parallel Partial Projections (locational decomposition), and CS and Gaussian denote
the CS and Gaussian projectional decompositions, respectively. In addition, PPP-CS
and PPP-Gaussian are combination methods.

Test Method
Class NN PPP CS Gaussian PPP-CS PPP-Gaussian

Subset 2 99.2 100 100 100 100 100
Subset 3 74.6 99.2 83.1 99.2 100 100
Subset 4 30.4 78.3 65.9 83.3 98.6 100
Subset 5 12.2 78.3 23.8 44.4 100 100

Table 2. Discrimination rates (%) for Yale Face Database B when seven images are
registered from SS1: EF indicates the eigenface method and the other methods are as
listed in Table 1

Test Method
Class EF PPP CS Gaussian PPP-CS PPP-Gaussian

Subset 2 100 100 100 100 100 100
Subset 3 100 100 100 100 100 100
Subset 4 93.5 100 98.6 98.6 100 100
Subset 5 56.1 100 52.9 74.1 100 100
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Table 3. Comparison of the number of parts for each algorithm when seven images
are registered from SS1. SS4 and SS5 are used as test sets in the experiment.

# parts Test Method
Class PPP PPP-CS PPP-Gaussian

1 × 1 SS4 93.5 98.6 98.6
SS5 56.1 52.9 74.1

2 × 2 SS4 96.4 98.6 99.3
SS5 94.7 90.5 97.4

4 × 4 / SS4 100 100 100
8 × 8 SS5 100 100 100

16 × 16 SS4 98.6 98.6 100
SS5 96.3 99.5 99.5

Table 4. Discrimination rates (%) when one image randomly selected from SS4 is
registered

Test Method
Class NN PPP CS Gaussian PPP-CS PPP-Gaussian

Subset 1 16.7 41.3 39.2 57.8 92.2 96.7
Subset 2 18.4 41.2 36.0 48.3 90.0 93.8
Subset 3 22.0 37.3 33.4 39.2 71.5 78.3
Subset 5 21.4 37.0 25.4 30.2 83.4 84.3

Table 5. Discrimination rates (%) when seven images randomly selected from SS4 are
registered

Test Method
Class EF PPP CS Gaussian PPP-CS PPP-Gaussian

Subset 1 86.7 99.5 97.6 100 100 100
Subset 2 91.3 99.9 98.6 99.9 100 100
Subset 3 95.5 97.8 98.5 99.4 100 100
Subset 5 70.9 98.1 75.0 87.0 100 100

Table 3 shows the results when the input image is divided to different numbers
of image parts. When the number of image parts is too large, the discrimination
rate becomes worse because each part can not provide sufficient information for
recognition because it is too small. In the experiments, the best result is provided
when the number of parts is 4 × 4 and 8 × 8.

Tables 4 and 5 show results when images classified into SS4 are registered. In
these experiments, images for registration are randomly selected from SS4. This
process was repeated twenty times and the registered images for each person were
varied. Most of the results for these experiments were worse than those shown
in Tables 1 and 2 because the images in SS4 include more shadows than SS1.
However, the results for the combination methods retained high discrimination
rates in the experiments.
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Table 6. Discrimination rates (%) using other methods: Illumination cone (IC1), il-
lumination cone with cast shadow (IC2), photometric alignment using RANSAC (PA)
and segmented linear subspace method (SLS). Note that only one image is registered
for PPP-CS and PPP-Gaussian.

Test Method
Class IC1[11] IC2[11] PA[4] SLS[6] PPP-CS PPP-Gaussian

Subset 2 100 100 100 100 100 100
Subset 3 100 100 100 100 100 100
Subset 4 91.4 100 100 100 98.6 100
Subset 5 - - 81.5 - 100 100

Table 7. Discrimination rates (%) for the AR Database

Test Method
Class NN PPP CS Gaussian PPP-CS PPP-Gaussian
light 40.5 70.1 89.1 82.2 94.8 95.3
scarf 3.7 45.4 37.0 63.7 83.7 84.7

Table 6 shows a number of results reported in the literature[11,4,6]. This table
shows that all of the algorithms provide good results when seven images are reg-
istered from SS1. However, the proposed methods, PPP-CS and PPP-Gaussian,
can provide almost same results with registering only one image from SS1.

In conclusion, the combination methods work better than the individual de-
composition methods. In addition, the combination methods have the advantages
of both the projectional and locational decompositions and work well even when
only one image is registered and the test images or registered images include a
significant number of shadows.

6.2 Results for the AR Database

The AR database[12] contains images of 135 people taken under various condi-
tions for each person. For this experiment, we used database images taken under
seven different conditions. The example images are as shown in Fig 8. In this
experiment, only one image was registered and the other images were used as
the test set from which test images were selected.

Under the normal
condition (registered)

Under different lighting
conditions (light-set)

Wearing a scarf
(scarf-set)

Fig. 8. Examples of segmented images in the AR Database
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Table 8. Discrimination rates (%) for our database when one image is registered for
each person (a) and when all images classified into Classes 1 and 2 are registered (b)

Registered Test Method
Class Class EF PPP CS Gaussian PPP-CS PPP-Gaussian
(a) Class 2 54.0 83.6 87.1 81.3 95.9 94.4

Class 3 20.5 70.2 84.2 72.4 86.6 84.3
(b) Class 3 93.5 93.2 94.0 90.3 99.8 99.7

Table 7 shows the discrimination rates obtained in the experiments. For the
light set, CS decomposition and Gaussian decomposition gave better results than
the PPP. However, CS decomposition did not work for the scarf set because
the test images included a large occlusion. The combination methods worked
better than the other methods for both of the individual sets. The results of this
experiment indicate that combination methods work well when only one image
is registered and the test images include a large occlusion.

6.3 Results for Another Dataset Under the Same Conditions as the
Canonical Set

Finally, experimental results are shown for a database that consists of a set
of images taken under the same conditions as the canonical set. The database
contains images of 50 people taken under 24 lighting conditions for each person.
Each image was converted to a 32 × 32 pixel image. In the methods that use
the PPP, images were divided into sixteen squares. The images are classified into
three classes. Images classified into Class 1 are frontal illuminated and were used
as registered images. Class 2 images, which contain small shadows, and Class
3 images, which contain large shadows, were used as test sets. Table 8 shows
the discrimination rates for the database. In the dataset, the two methods that
use CS decomposition work better than those that use Gaussian decomposition,
because the illumination conditions of the canonical set are identical to those of
the test set. The results suggest that the CS decomposition works better when
the lighting conditions are similar between the canonical set and the test set.

7 Conclusions

Combination methods of the two types of decomposition, projectional and loca-
tional, has been proposed. The projectional decomposition method can extract
the individuality from an image. In particular, the Gaussian decomposition can
extract the individuality when the image contains noises. The locational decom-
position provides robustness with respect to noises when the eigenspace can be
constructed properly. The combination methods have the advantages of both of
the decomposition methods. The method of combining projectional and loca-
tional decompositions works well even when only one image is registered and
test images or registered images contain numerous noises, such as shadows or
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occlusions. We hope that the concept of the proposed method will be useful in
solving other problems in image recognition and computer vision.
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