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Abstract. Hoeffding trees are state-of-the-art in classification for data
streams. They perform prediction by choosing the majority class at each
leaf. Their predictive accuracy can be increased by adding Naive Bayes
models at the leaves of the trees. By stress-testing these two prediction
methods using noise and more complex concepts and an order of mag-
nitude more instances than in previous studies, we discover situations
where the Naive Bayes method outperforms the standard Hoeffding tree
initially but is eventually overtaken. The reason for this crossover is
determined and a hybrid adaptive method is proposed that generally
outperforms the two original prediction methods for both simple and
complex concepts as well as under noise.

1 Introduction

The Hoeffding tree induction algorithm [2] has proven to be one of the best
methods for data stream classification. Standard Hoeffding trees use the majority
class at each leaf for prediction. Previous work [3] has shown that adding so-
called functional (or Naive Bayes) leaves to Hoeffding trees for both synthetically
generated streams, and real datasets of sufficient size, as well as in the presence
of noise outperforms standard Hoeffding trees.

In this paper we use an experimental evaluation methodology for data
streams, where every single instance in the stream is used for both learning
and testing. Using this methodology and an order of magnitude more data we
discover situations were the standard Hoeffding tree unexpectedly outperforms
its Naive Bayes counterpart. We investigate the cause and propose modifications
to the original algorithm. An empirical investigation compares these modifica-
tions to both the standard Hoeffding tree and its Naive Bayes variant, and shows
that one of the possible modifications is very robust across all combinations of
concept complexity and noise. The modifications only concern the method of
prediction. The standard Hoeffding tree learning algorithm is used in all cases.

The paper is arranged as follows. Section 2 contains an evaluation of Ho-
effding trees with an unexpected result. Section 3 proposes several solutions to
address the problem, and Section 4 evaluates and discusses them. Finally Sec-
tion 5 concludes the paper.
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2 Examining Hoeffding Trees

Data streams present unique opportunities for evaluation, due to the volume of
data available and the any-time property of the algorithms under examination.
We consider a method of evaluation that exploits this property whilst maximizing
use of the data. This is achieved by using every instance as a testing example
on the current model before using it to train the model, incrementally updating
statistics at each point.

The particular implementation of Hoeffding Tree induction discussed in this
paper uses information gain as the split criterion, the original VFDT Hoeffding
bound formulation [2] to determine when to split (using parameters δ = 10−6,
τ = 5%, and nmin = 300), and handles numeric attributes by Gaussian approx-
imation (throughout ht refers to this algorithm and htnb the same algorithm
with Naive Bayes prediction at the leaves).

Our first analysis looks at the difference in accuracy between ht and htnb.
We start with data generated by a randomly constructed decision tree consisting
of 10 nominal attributes with 5 values each, 10 numeric attributes, 2 classes,
a tree depth of 5, with leaves starting at level 3 and a 0.15 chance of leaves
thereafter (the final tree had 741 nodes, 509 of which were leaves)—which we
shall refer to as the simple random tree. Note that for all graphs in this paper
we have averaged over 10 runs to eliminate order effects.

Figure 1 shows the result of evaluating over 10 million instances with no
noise present. As in previous studies, it is clear that htnb gives an improvement
in classification accuracy, with both variants performing well, reaching around
99% accuracy in the long run.

Figure 2 shows the impact that noise has. 10% noise was introduced to the
data with uniform randomness. A different picture emerges—htnb looks better
initially but somewhere before 2 million instances the graphs cross over and in
the long run htnb is worse.

Next, the tree generator is adjusted to produce a complex random tree—50
nominal attributes with 5 values each, 50 numeric attributes, 2 classes, a tree
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Fig. 1. Simple random tree generator
with no noise
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Fig. 2. Simple random tree generator
with 10% noise
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Fig. 3. Complex random tree generator
with no noise
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Fig. 4. Complex random tree generator
with 10% noise

depth of 10, with leaves starting at level 5 and a 0.15 chance of leaves thereafter
(the final tree had 127,837 nodes, 90,259 of which were leaves).

Figures 3 and 4 show the learning curves resulting from the complex random
tree data, both clean and noisy. The same pattern is observed, only this time
htnb is worse from the outset.

Testing the simple tree with other noise levels gives result similar to Figure 2,
at 5% noise the crossover occurs later, and at 20% it occurs earlier than the 10%
case. On the complex tree data the gap in Figure 4 widens as the noise increases.

3 Possible Solutions to the Problem

The evaluation uncovered cases where htnb is less accurate than ht. This be-
haviour appears when noise is introduced, and becomes more pronounced when
the concept is more difficult to learn. The problem shows up on other datasets
also, though sometimes it is less apparent due to the millions of instances that
are needed before crossover occurs.

We speculate that the problem is due to small disjuncts in the tree in combi-
nation with noisy data. The leaves see only an insufficient number of examples,
and the ones they do see are noisy, causing htnb to be less accurate than ht.

Experiments with severely limited maximum tree sizes supported this hy-
pothesis: htnb eventually outperformed ht once tree growth was artificially
stopped.

If the problem with htnb under noise is due to the models being unreliable
in their early stages, then there are several ways the problem could be solved.

One solution has been proposed by Gama who in [3] suggests the use of a
short term memory cache housing some of the recently seen instances. A problem
with this solution is determining a sufficient size for the cache. As the tree grows
in complexity, fewer of the instances in the cache will be applicable to the new
leaves deep in the tree (we refer to this as htnb-stmx where x is the cache size).

Another idea is to inherit information from the parent once a split has been
chosen. For an attribute split, it is possible to approximate the distribution of
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values resulting from the split. For the other attributes, less information is known
about the result of the new split, but we can assume that the distribution is the
same as in the parent. This approximation may be grossly incorrect, but at least
it gives the model a starting point rather than starting with no information
(htnbp).

A potentially serious problem with this approach is that if the statistics used
to make split choices are primed then the split decisions will be altered, having
an impact on the tree structure. As will be shown in Section 4, this generally
has a detrimental effect on accuracy.

A solution to this is to maintain a separate model per leaf that is used for
prediction purposes only, and leave the split decision statistics untouched. This
effectively doubles the storage requirement per leaf (htnbps).

An adaptive solution is to see how often the Naive Bayes leaves make clas-
sification errors compared with choosing the majority class, using Naive Bayes
leaves only when their measured accuracy is higher. The data stream setting af-
fords us the ability to do this as we can monitor performance on unseen instances
in the same way that the overall evaluation is performed (htnba).

The method works by performing a Naive Bayes prediction per training in-
stance, comparing its prediction with the majority class. Counts are stored to
measure how many times the Naive Bayes prediction gets the true class correct
as compared to the majority class. When performing a prediction on a test in-
stance, the leaf will only return a Naive Bayes prediction if it has been more
accurate overall than the majority class, otherwise it resorts to a majority class
prediction.

To complete the experimentation, we added priming and model separation
to htnba, these are referred to as htnbap and htnbaps respectively.

Table 1 summarizes the costs associated with the candidates, beyond that
needed for htnb. The costs associated with the adaptive choice are minor—
a few extra counts and a single comparison per prediction. The Naive Bayes
prediction per training instance is a cost that can be shared with the evaluation
mechanism. The costs associated with maintaining a separate prediction model
are the greatest—effectively doubling the storage and update time per leaf. As
splitting is a much less frequent operation than anything else, higher splitting
costs usually do not have much impact on the overall total cost.

4 Results and Discussion

Figures 5 to 8 show the result of the various prediction strategies on the simple
and complex tree data, with and without noise.

Figure 5 shows that the two methods of priming without separate models
(htnbp and htnbap) do worse than ht. All other Naive Bayes methods out-
perform ht by roughly equal amounts. Introducing noise in Figure 6 sees htnb
doing worst overall, even worse than htnbp and htnbap. The other methods
(besides those using short term memory) successfully overcome the problem with
little between them.
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Table 1. Additional space/time costs beyond htnb requirements

space per tree space per leaf time per
training
instance

time per test
instance

time per split

htnb-stmx cache of x in-
stances

cache update pass instances
to leaves +
NB updates

htnbp distribution
estimation

htnbps NB model NB update distribution
estimation

htnba error count NB prediction
count update

decide MC or
NB

htnbap error count NB prediction
count update

decide MC or
NB

distribution
estimation

htnbaps error count
NB model

NB prediction
count update
NB update

decide MC or
NB

distribution
estimation

Figure 7 explores the case of a more complex but still noise-free concept. Re-
sults are similar to the simple tree case (Figure 5). There is not much separation
within the group of methods that outperform ht. Once again both htnbp and
htnbap perform worse than ht.

Adding noise to more complex concepts results in the greatest separation
between the techniques. Figure 8 shows the short term memory solution to be
unsatisfactory. A short term memory of 1000 instances hardly does better than
htnb, which is the worst performer. Increasing the cache size to 10000 instances
does little to improve the situation.

Figure 8 demonstrates the superiority of the adaptive method. htnbp and
htnbps fall short of ht, while all of the adaptive methods do better. The best
performing method is also the most costly one (htnbaps), with the less expensive
htnba not far behind.

To investigate whether these findings hold more generally, experiments on
two additional UCI datasets [1] were conducted. The LED dataset is a synthetic
generator allowing us to generate the desired 10 million instances. The particu-
lar configuration used of the LED generator produced 24 binary attributes, 10
classes, and 10% noise.

The results in Figure 9 exhibit slightly different looking curves. The majority
of the methods hover around 26% error which is known to be the optimal Bayes
error for this problem. The exceptions are ht (which has a much slower learning
curve without the aid of Naive Bayes leaves), and htnb. The failure of htnb
shows that the problem extends beyond tree generated data. The success of the
others show that the problem can be alleviated.

These results contradict those reported by Gama et al. [3,4], whose conclusion
was that Naive Bayes leaves are always better on the LED data. They used a
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Table 2. Final accuracies achieved on tree generators

simple tree simple tree complex tree complex tree
no noise 10% noise no noise 10% noise

ht 99.056 ± 0.033 82.167 ± 0.031 89.793 ± 0.168 73.644 ± 0.151

htnb 99.411 ± 0.026 81.533 ± 0.021 90.723 ± 0.153 71.425 ± 0.118

htnb-stm1k 99.407 ± 0.027 81.544 ± 0.019 90.768 ± 0.150 71.527 ± 0.108

htnb-stm10k 99.409 ± 0.025 81.593 ± 0.018 91.008 ± 0.153 71.658 ± 0.085

htnbp 97.989 ± 0.058 81.853 ± 0.042 88.326 ± 0.209 73.029 ± 0.121

htnbps 99.376 ± 0.028 82.456 ± 0.023 90.598 ± 0.153 73.063 ± 0.124

htnba 99.408 ± 0.027 82.510 ± 0.024 90.874 ± 0.153 74.089 ± 0.141

htnbap 98.033 ± 0.057 81.938 ± 0.040 88.609 ± 0.211 73.675 ± 0.127

htnbaps 99.375 ± 0.028 82.545 ± 0.024 90.935 ± 0.148 74.249 ± 0.134

Table 3. Final accuracies achieved on other datasets

LED Covertype

ht 72.851 ± 0.031 66.832 ± 0.163

htnb 71.645 ± 0.013 69.064 ± 0.135

htnbp 73.928 ± 0.005 68.476 ± 0.040

htnbps 73.799 ± 0.041 69.049 ± 0.145

htnba 73.935 ± 0.005 70.998 ± 0.087

htnbap 73.961 ± 0.004 71.388 ± 0.037

htnbaps 73.996 ± 0.005 71.054 ± 0.095

hold out test set and quoted the final accuracy attained. The largest training
set used in their work was 1.5 million instances. In our experiment the problem
does not occur until about 4 million instances.

Finally, the algorithms were tested on real data using the Forest Covertype
dataset. This consists of 581,012 instances, 10 numeric attributes, 44 binary
attributes and 7 classes. To do 10 runs over this data the instances were randomly
permuted 10 different ways. In Figure 10 we see three distinct groups. The
worst performer is ht. The next group consists of the non-adaptive methods
htnb, htnbp and htnbps. The group of best performers are the adaptive ones.
This result demonstrates that even in cases where htnb is not obviously under-
performing, adding the adaptive modification can enhance performance.

Tables 2 and 3 show the final accuracies achieved along with the standard
error for all of the graphs displayed in Figures 5 through 10.

Overall these results support the conclusion that priming the leaf models
without using a separate model per leaf results in poor performance. Without
the separate model, the split decisions are altered in such a way that the tree is
less accurate. Inclusion of the separate model improves the situation (at a cost),
but it appears not as helpful as using the adaptive method.

Our experiments demonstrate that htnba provides a good compromise be-
tween accuracy and cost. In some cases it did slightly worse than htnbaps, but
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the difference does not justify the extra cost. The adaptive approach of htnba
has a relatively low overhead, meaning it can be justified over ht, and especially
over htnb, in all but the most extreme resource-bounded situations.
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Fig. 5. Simple random tree generator
with no noise
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Fig. 6. Simple random tree generator
with 10% noise
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Fig. 7. Complex random tree generator
with no noise
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Fig. 8. Complex random tree generator
with 10% noise
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Fig. 9. LED generator
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5 Conclusions

By using noise and synthetically generating large and complex concepts we have
performed experiments that stress-test Hoeffding trees. Our focus has been on
the two common prediction methods used in association with these trees: ma-
jority class prediction and Naive Bayes leaf prediction. In this experimental
environment we uncovered an unexpected problem with Naive Bayes leaf pre-
diction. Multiple improvements to the shortcomings of this method were invented
and empirically evaluated. The best solution adaptively decides when the Naive
Bayes leaves are accurate enough to be trusted. This adaptive method only im-
poses a minor additional cost on the algorithm, yet seems to almost guarantee
equal or better accuracy than a simple majority class prediction.
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