
A Quantitative Comparison of the Subgraph

Miners MoFa, gSpan, FFSM, and Gaston

Marc Wörlein, Thorsten Meinl, Ingrid Fischer, and Michael Philippsen

University of Erlangen-Nuremberg, Computer Science Department 2,
Martensstr. 3, 91058 Erlangen, Germany

simawoer@stud.informatik.uni-erlangen.de

{meinl, idfische, philippsen}@cs.fau.de

Abstract. Several new miners for frequent subgraphs have been pub-
lished recently. Whereas new approaches are presented in detail, the
quantitative evaluations are often of limited value: only the performance
on a small set of graph databases is discussed and the new algorithm is
often only compared to a single competitor based on an executable. It re-
mains unclear, how the algorithms work on bigger/other graph databases
and which of their distinctive features is best suited for which database.
We have re-implemented the subgraph miners MoFa, gSpan, FFSM, and
Gaston within a common code base and with the same level of program-
ming expertise and optimization effort. This paper presents the results of
a comparative benchmarking that ran the algorithms on a comprehensive
set of graph databases.

1 Introduction

Mining of frequent subgraphs in graph databases is an important challenge, espe-
cially in its most important application area “cheminformatics” where frequent
molecular fragments help finding new drugs. Subgraph mining is more challeng-
ing than frequent itemset mining, since instead of bit vectors (i.e., frequent item-
sets) arbitrary graph structures must be generated and matched. Since graph
isomorphism testing is a hard problem [3], fragment miners are exponential in
runtime and/or memory consumption. For a general overview see [1].

The naive fragment miner starts from the empty graph and recursively gen-
erates all possible refinements/fragment extensions by adding edges and nodes
to already generated fragments. For each new possible fragment, it then per-
forms a subgraph isomorphism test conceptually on each of the graphs in the
graph database to determine if that fragment appears frequently (i.e., if it has
enough support). Since a new refinement can only appear in those graphs that
already hold the original fragment, the miner keeps appearance lists to restrict
isomorphism testing to the graphs in these lists.

All possible graph fragments of a graph database form a lattice, see Fig. 1
for an example with just one graph. The empty graph ∗ is given at the top, the
final graph at the bottom of the picture. During the search this lattice will be

A. Jorge et al. (Eds.): PKDD 2005, LNAI 3721, pp. 392–403, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

A Quantitative Comparison of Subgraph Miners 393

pruned at infrequent fragments since their refinements will appear even more
rarely.1 Efficient fragment miners have to solve three main subproblems.

*
A B C

A C C CB C

A CC C CCC CB

CCA

CBC CA

B C C C

C CA

C

B

B C

A C C

C

B

B

C CA

C

B B BC

C

A

B BC

C

C

B C C C

BB C

C

BC CA

B C B C CB

∗ is the empty fragment. Each
graph is subgraph of all its
descendants in the lattice.
Subgraphs on one level have
the same number of edges.

The dashed C-C-fragment
is the common core of the
two circled fragments. The
new subgraph A-C-C-B can be
generated by taking this core
and adding the two edges A-

and B- that only appear in
one of the subgraphs.

Fig. 1. The complete subgraph lattice of the graph shown at the bottom

(A) Purposive refinement. Mining gets faster if instead of all potential
refinements only those are created that might appear in the database. Two basic
approaches exist: on the one hand two graphs can be joined from the previous
level of the lattice that share a common core (Fig. 1). Although this may create
some subgraphs that do not appear in the database, the appearance list of the
refinement (i.e., the intersection of both preceeding appearance lists) is quickly
checked. On the other hand, an existing subgraph can be extended by an edge
and a node (or only an edge if cycles are closed). The node to be extended and
the extension must be chosen carefully based on the appearance list.

(B) Efficient enumeration. Generated duplicates of the fragments have
to be filtered out. One possibility are isomorphism tests on the database, which
are costly. Hence, miners that generate less isomorphic refinements are faster.
Using a canonical graph representation, some time is saved by detecting these
duplicates before isomorphism testing on the database.

(C) Focused isomorphism testing. Known approaches either use efficient
subgraph isomorphism tests, e.g. Nauty [3], or they trade time versus storage
and keep embeddings. An embedding is a mapping of the nodes and edges of a
fragment to the corresponding nodes and edges in the graph it occurs in. When
counting the support of fragments, excessive isomorphism tests are necessary. It
has to be clarified whether embedding lists lead to better results compared to
isomorphism tests.

Early fragment miners generated refinements in a breadth first way, e.g., SUB-
DUE [6] (incomplete beam-search), AGM [7], and FSG [8]. Depth first search
1 Similar to the frequency antimonotone principle in frequent itemset mining [4,5].

394 M. Wörlein et al.

(dfs) approaches need less memory to store appearance lists because the number
of lists that have to be stored in memory is proportional to the depth of the
lattice (i.e. the size of the biggest graph) whereas it is proportional to its width
(i.e. the maximal number of subgraphs in one level) in breadth first searches.
The dfs-algorithms MoFa [9], gSpan [10], FFSM [11], and Gaston [12] attack
the subproblems (A–C) quite differently. But since it is difficult to prove that a
solution is better than another, the authors usually select a few databases and
present benchmarks that demonstrate that their proposed solution works bet-
ter than a competitor based on executables. Since different authors use different
databases there is no general picture. It is unknown which of the solutions to (A–
C) perform best under which conditions. To make things worse, sometimes only
executables of the algorithms are available. Hence, measurements are skewed by
use of different programming language and by exploitation of varying compiler
optimization technology, etc.

In this paper we present an unbiased and detailed comparison of the four
fragment miners MoFa, gSpan, FFSM and Gaston. We implemented them all
from scratch using a common graph framework, i.e. all use the same graph
data structures. In section 2 we briefly characterize how these algorithms solve
subproblems (A–C). Section 3 contains the main body of this paper: the detailed
experimental evaluation of the four contestants.

2 Distinctive Ideas of MoFa, gSpan, FFSM, and Gaston

All four fragment miners work on general, undirected graphs with labeled nodes
and edges. They all are restricted to finding connected subgraphs and traverse
the lattice as mentioned before in depth-first order.

MoFa (Molecule Fragment Miner, by Borgelt and Berthold in 2002 [9]) has
been targeted towards molecular databases, but it can also be used for arbitrary
graphs. MoFa stores all embeddings (both nodes and edges). Extension is re-
stricted to those fragments, that actually appear in the database. Isomorphism
tests in the database can cheaply be done by testing whether an embedding can
be refined in the same way. MoFa uses a fragment-local numbering scheme to
reduce the number of refinements generated from a fragment: MoFa counts the
nodes of a fragment according to the sequence in which they have been added.
When a fragment is extended at node n, later refinements may only occur at
n or at nodes bigger than n. Moreover, all extensions that grow from the same
node n are ordered according to increasing node and edge labels. Although this
local ordering helps, MoFa still generates many isomorphic fragments and then
uses standard isomorphism testing to prune duplicates.

gSpan (graph-based Substructure pattern, by Yan and Han in 2002 [10])
uses a canonical representation for graphs, called dfs-code. A dfs-traversal of
a graph defines an order in which the edges are visited. The concatenation of
edge representations in that order is the graph’s dfs-code. Refinement genera-
tion is restricted by gSpan in two ways: First, fragments can only be extended
at nodes that lie on the rightmost path of the dfs-tree. Secondly, fragment gen-

A Quantitative Comparison of Subgraph Miners 395

eration is guided by occurrence in the appearance lists. Since these two pruning
rules cannot fully prevent isomorphic fragment generation, gSpan computes the
canonical (lexicographically smallest) dfs-code for each refinement by means of
a series of permutations. Refinements with non-minimal dfs-code can be pruned.
Since instead of embeddings, gSpan only stores appearance lists for each frag-
ment, explicit subgraph isomorphism testing must be done on all graphs in these
appearance lists.

FFSM (Fast Frequent Subgraph Mining, by Huan, Wang, and Prins in 2003
[11]) represents graphs as triangle matrices (node labels on the diagonal, edge
labels elsewhere). The matrix-code is the concatenation of all its entries, left
to right and line by line. Based on lexicographic ordering, isomorphic graphs
have the same canonical code (CAM – Canonical Adjacency Matrix). When
FFSM joins two matrices of fragments to generate refinements, only at most
two new structures result. FFSM also needs a restricted extension operation: a
new edge-node pair may only be added to the last node of a CAM. After re-
finement generation, FFSM permutes matrix lines to check whether a generated
matrix is in canonical form. If not, it can be pruned. FFSM stores embeddings
to avoid explicit subgraph isomorphism testing. However, FFSM only stores the
matching nodes, edges are ignored. This helps speeding up the join and exten-
sion operations since the embedding lists of new fragments can be calculated by
set operations on the nodes.

Gaston (GrAph/Sequence/Tree extractiON, by Nijssen and Kok 2004 [12])
stores all embeddings, to generate only refinements that actually appear and to
achieve fast isomorphism testing. The main insight is that there are efficient ways
to enumerate paths and (non-cyclic) trees. By considering fragments that are paths
or trees first, and by only proceeding to general graphs with cycles at the end, a
large fraction of the work can be done efficiently. Only in that last phase, Gas-
ton faces the NP-completeness of the subgraph isomorphism problem. Gaston de-
fines a global order on cycle-closing edges and only generates those cycles that are
“larger” than the last one. Duplicate detection is done in two phases: hashing to
pre-sort and a graph isomorphism test for final duplicate detection.

For gSPan and MoFa several extensions exist that are described in section 3.5.

3 The Comparison

In the following sections we compare the four algorithms based on an analysis
of the main computational parts on detailed experiments and on some special
features of the algorithms.

3.1 Setup of Experiments

The tests were all done on 64bit Linux systems because of the huge memory
requirements of some algorithms on the bigger datasets. Because of the lengthy
tests we used several machines: Most experiments were run on a Dual-Itanium 2
PC running at 1.3 GHz with 10GB of RAM. Here we used IBM’s Java Virtual

396 M. Wörlein et al.

Machine (JVM) 1.4.2 because it produced the best runtime results for all algo-
rithms.2 The maximal heap space available to the JVM was set to 8GB to avoid
swapping influences. For the memory tests we used the SUN JVM3 as the IBM
JVM showed garbage collector artifacts. The test on varying database sizes was
carried out on an SGI Altix 3700 system4 with Itanium 2 processors at 1.3 GHz.
There only BEA Weblogic’s JVM 1.4.2 was available.5 The maximum heap was
set to 14GB. Except for the database size experiments we aborted tests that ran
longer than four hours.

We chose Java as programming language because this kept the implementa-
tion work at a bearable level. This may of course not lead to astonishingly fast
execution times but the relative performance of the algorithms should not be
affected significantly. Also the algorithms could be run on 64bit systems with no
changes at all, which was important for some experiments.

Dataset # mole- average largest # node
cules size molecule labels

edges # edges

IC93 1,283 28 81 10

HIV 42,689 27 234 58

NCI 237,771 22 276 78

PTE 337 26 213 66

CAN2DA99 32,557 28 236 69

HIV CA 423 42 196 21

HIV CM 1,083 34 234 27

Fig. 2. The molecular datasets used for testing
and their sizes. There are always four edge labels
in molecules.

Because the main application
area of frequent subgraphs
miners are molecular datasets,
experiments were done on the
databases described in Fig. 2.
The IC93 dataset [13] is used to
find out how the algorithms be-
have if the number of found frag-
ments and the fragments itself
get large. At a minimum sup-
port value of 4% the largest fre-
quent fragment has 22 bonds, the
number of fragments is 37,727.
Typically all molecules of the
HIV assay from 19996 are used
for performance evaluations. The complete NCI database7 is used to determine
how the algorithms scale with increasing database size. The found fragments will
very likely have no chemical meaning because the molecules in the dataset are
very diverse.

Only to retest performance comparisons from [14,15] the PTE database8, the
DTP Human Tumor Cell Line Screen (dataset CAN2DA99)9 and parts of the
HIV dataset containing only the confirmend moderately active molecules (HIV
CM) and the confirmed active molecules (HIV CA) were used. Except for the

2 http://www-128.ibm.com/developerworks/java/jdk/index.html
3 http://java.sun.com/
4 http://www.sgi.com/products/servers/altix/index.html
5 http://www.bea.com/framework.jsp/content/products/jrockit/
6 http://dtp.nci.nih.gov/docs/aids/aids data.html
7 http://cactus.nci.nih.gov/ncidb2/download.html
8 See [16] and http://web.comlab.ox.uk/oucl/research/areas/machlearn/PTE/.

The dataset we used was provided by Siegfried Nijssen.
9 http://dtp.nci.nih.gov/docs/cancer/cancer data.html

A Quantitative Comparison of Subgraph Miners 397

CAN2DA99 these datasets are rather small compared to the complete HIV or
the NCI dataset.

3.2 Hotspots

Section 2 has summarized how the four algorithms solve subproblems (A-C) and
which tasks need to be done. Hence, we first show the runtime distribution by
percentage for each task and each algorithm, a measurement, that was not done
before in the literature. We used Quest’s JProbe on a Profiler10 on the PC with
the SUN JVM for monitoring a run on the IC93 dataset with a minimum support
of 5%, see Fig. 3. Using a profiler slows down the runtime a lot, so we took the
biggest databases, that are manageable for this experiment: IC93 and HIV CA
+ HIV CM.

IC93 HIV CA+CM

MoFa gSpan FFSM Gaston MoFa gSpan FFSM Gaston

Duplicate filtering/pruning 11.3% 3.1% 0.1% 1.8% 12.3% 1.4% 0.2% 1.0%

Support computation 9.3% 62.9% 3.7% 9.6% 70.7% 3.3%
Embedding list calculations 19.1% - 60.4% 87.8% 18.1% - 62.7% 95.9%
Extending of subgraphs 29.9% 17.3% 10.2% 31.1% 14.9% 8.1%

Joining of subgraphs - - 0.1% - - - 0.1% -

Fig. 3. The table shows the main parts of the subgraph mining process and how much
time (relative to the total runtime) each of the four algorithms spends for them

Filtering/pruning duplicates plays only a minor role in the whole sub-
graph mining process (0.1% - 12.3% of the total runtime). For MoFa, the time
contains both the graph isomorphism tests for already generated graphs, and
the deletion of extensions that do not comply with the structural pruning rules.

Support Computation or Embedding list calculation is where the
algorithms spend most of their time. Using embedding lists (MoFa and FFSM)
leads to low numbers in support computation, but calculating them is expensive.
Although MoFa’s 19.1% for IC93 seem faster than FFSM’s 60.4% for IC93,
both algorithms have spent about the same number of seconds in this task.
If no embedding lists are used (gSpan), expensive subgraph isomorphism tests
are necessary. For Gaston, it is impossible to separate runtimes for support
computation, embedding list calculation and the extension of fragments. The
87.8% for IC93 includes Gaston’s ability to uniquely generate paths and trees.

Extending or joining subgraphs takes about the same time in MoFa,
gSpan and FFSM. Joining is only done by FFSM and is very cheap compared
to the extension process.

The number for HIV CA + CM do not differ much from the numbers mea-
sured for IC93.
10 http://www.quest.com/jprobe/

398 M. Wörlein et al.

 0

 0.5

 1

 1.5

 2

 4 6 8 10 12 14 16 18 20

ru
nt

im
e

in
 m

in

minimal support in %

IC93(1283 graphs)

MoFa(base)
gSpan
FFSM

Gaston

 0

 10

 20

 30

 40

 50

 60

 70

 80

 4 6 8 10 12 14 16 18 20

ru
nt

im
e

pe
r

fo
un

d
fr

ag
m

en
t

in
 m

se
c

minimal support in %

IC93(1283 graphs)

MoFa(base)
gSpan
FFSM

Gaston

 0

 10

 20

 30

 40

 50

 60

 4 6 8 10 12 14 16 18 20

nu
m

be
r

of
 d

up
lic

at
e

fr
ag

m
en

ts
 /

10
00

minimal support in %

IC93(1283 graphs)

MoFa(base)
gSpan
FFSM

Gaston

 0

 20

 40

 60

 80

 100

 120

 4 6 8 10 12 14 16 18 20

ru
nt

im
e

in
 m

in

minimal support in %

HIV(42689 graphs)

MoFa(base)
gSpan
FFSM

Gaston

 0

 0.5

 1

 1.5

 2

 2.5

 4 6 8 10 12 14 16 18 20

ru
nt

im
e

pe
r

fo
un

d
fr

ag
m

en
t

in
 s

ec

minimal support in %

HIV(42689 graphs)

MoFa(base)
gSpan
FFSM

Gaston

 0

 5

 10

 15

 20

 25

 4 6 8 10 12 14 16 18 20

nu
m

be
r

of
 d

up
lic

at
e

fr
ag

m
en

ts
 /

10
00

minimal support in %

HIV(42689 graphs)

MoFa(base)
gSpan
FFSM

Gaston

 0

 20

 40

 60

 80

 100

 120

 4 6 8 10 12 14 16 18 20

ru
nt

im
e

in
 m

in

minimal support in %

NCI(237771 graphs)

MoFa(base)
gSpan
FFSM

Gaston

 0

 2

 4

 6

 8

 10

 12

 14

 4 6 8 10 12 14 16 18 20

ru
nt

im
e

pe
r

fo
un

d
fr

ag
m

en
t

in
 s

ec

minimal support in %

NCI(237771 graphs)

MoFa(base)
gSpan
FFSM

Gaston

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4 6 8 10 12 14 16 18 20

nu
m

be
r

of
 d

up
lic

at
e

fr
ag

m
en

ts
 /

10
00

minimal support in %

NCI(237771 graphs)

MoFa(base)
gSpan
FFSM

Gaston

Fig. 4. Total runtime, runtime per found fragment, and the number of found duplicates
for the three datasets IC93, HIV, and NCI measured for varying minimum support

3.3 Tests on Molecular Databases

First we retested successfully the results published in [14,15] (PC, IBM JVM) to
prove that our implementations can compete with the original implementations
and provide qualitatively the same results as given in the literature.

Second we recorded for each algorithm the total time needed at varying sup-
port values, the time needed per found frequent fragment and the number of
found duplicates (which have to be filtered out by the algorithm in some way)
for the IC93, HIV and NCI dataset. A comparison of MoFa11, gSpan, FFSM and
Gaston based on these databases was never published before. Figure 4 shows the
results. The first obvious conclusion is the exponential rise in runtime with lower
support values (left column). This is not very surprising as the number of frag-
ments found also increases exponentially. Therefore, the runtime per found frag-
ment (second column) is more interesting. For all datasets it shrinks with lower
support values which can be explained by the cheaper frequency determination
and calculation of embedding lists. The runtime per graph rises for Gaston on
the NCI dataset for low support values. This is a memory problem as NCI is

11 As for MoFa several extensions (closed fragments, ring mining, fuzzy chains) exist
we did not use in our experiments, this algorithm is marked as MoFa base in the
pictures, see section 3.5.

A Quantitative Comparison of Subgraph Miners 399

the largest database and Gaston needs the most memory of all algorithms, see
Fig. 5 on the left.

There is a more or less clear runtime ranking among the four algorithms:
MoFa is always the slowest. On the big datasets, FFSM is the second slowest
algorithm, only on IC93 it is faster than gSpan. The result of this IC93 test
equals the test result in [15]. The likely reason why gSpan is so slow on the
IC93 dataset is the growing number of subgraph isomorphism tests gSpan has
to do at these low support value (more than 37,000). All other algorithms use
embedding list which speed up these tests especially for large fragments. On the
large datasets, however, gSpan is faster than FFSM. Gaston is the fastest of
all algorithms except at lower support values on the complete NCI dataset. A
reason for this may be the amount of bookkeeping because of the large number
of embeddings. Also a slowdown because of more frequent garbage collections
may be the cause. The fragments found are however rather small so that gSpan
gets by with cheap tests.

The number of found duplicates (right column) gives an insight into the
power of the fragment refinement mechanisms. Also different pruning techniques
minimize the number of duplicates, but as shown in section 3.2 they are not as
relevant. Gaston wins as it does not produce duplicates for non-cyclic graphs.
On the other hand FFSM’s and MoFa’s extension methods and pruning rules
seem to be the weakest. For FFSM a look at relative time spend in filtering out
these duplicates (see table 3), which is only 0.1% like Gaston, indicates that the
canonical representation is very efficient.

Next the memory consumption at varying support values was recorded based
on the SUN JVM. We frequently called the garbage collector and recorded the
maximum heap size. This does not necessarily give the exact value of the mem-
ory consumption, but is a very good approximation. Because it slows down the
runtime dramatically only the values for the HIV dataset were recorded. As can
be seen in Fig. 5, gSpan needs the least memory as it does not use embedding
lists. Although MoFa stores both edges and nodes in the embedding lists whereas
FFSM only stores the nodes, MoFa still needs less memory. This is because MoFa
only needs to store in each node of the search tree the embeddings of one sub-
graph, while in FFSM a search tree node consists of many subgraphs together
with their embeddings. Gaston needs the most memory because embedding lists
for a new fragment are built based on the embedding lists of the parent. Ex-
tensions to the parent’s embedding list are stored with the children. Therefore,
the size of the embedding lists does also depend on the number of children a
fragment has. This results in the rise of the curve for low support values.

Finally the scalability of the algorithms for increasing database size was
tested (Bea JVM, Altix), see Fig. 5, right. The complete NCI database was
split into 119 pieces of 2,000 randomly selected molecules. For 5% support we
have tested the performance for various subsets of the NCI database, each subset
consisting of a growing number of these pieces. An obvious conclusion is, that
all algorithms scale linearly with the database size, but with different factors.
The surprising result is, that in this test Gaston is always slower than gSpan

400 M. Wörlein et al.

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 4 6 8 10 12 14 16 18 20

m
em

or
y

us
ag

e
in

 G
B

minimal support in %

HIV(42689 graphs)

MoFa(base)
gSpan
FFSM

Gaston

 0

 20

 40

 60

 80

 100

 120

 140

 0 50 100 150 200 250

ru
nt

im
e

in
 m

in

number of database graphs / 1000

NCI(partial; 5% support)

MoFa(base)
gSpan
FFSM

Gaston

Fig. 5. Memory usage on the HIV database and the runtime in dependence of the
database size on the complete NCI database

which was not the case in all other tests. We have performed some tests to be
convinced that this is not an artefact of the different JVMs. Instead it seems that
the uncommon memory architecture of the SGI Altix system penalizes memory
intensive algorithms like Gaston. This also explains the raise in runtime for Gas-
ton for larger databases. Testing Gaston with the IBM JVM on the Itanium on
the same subsets of the NCI database did not result in this steep rise of the
runtime curve.

3.4 Tests on Artificial Graph Databases

Real-world datasets are never “random”. For example typical characteristics of
molecular databases are certain distribution of labels, distinct cycles, and low
node degrees. Although artificial generated graph databases seem to be a way
to do general graph comparisons, there are several obstacles. The main problem
is, that even with some fixed parameters randomly generated graph databases
can be very different from each other and cause a wide spectrum of runtimes.
By considering only the average or median of these results, no valid conclusion
can be drawn.

Nevertheless we did some experiments with synthetical databases by our own
graph generator. The most interesting test was done with graphs of varying edge
densities as molecules mostly have a low edge density. We took a fixed number
of 2000 graphs with an average of 50 nodes (ranging from 1 to 100) and 10
uniformly distributed different nodes and edge labels. Then we increased the
number of edges in the graphs, starting at an edge density of 10% up to 40%
(which means that the graphs contain e.g. 0.1·(#nodes)2

2 edges). The minimum
support was set to 10%. Figure 6 shows the runtime per graph in the left diagram
and the total number of discovered fragments in the right one. Except MoFa,
all other algorithms show a slight increase in the runtime which seems not to be
strongly correlated to the number of found graphs. MoFa however shows a steep
increase in the runtime. One reason is the number of discovered fragments: each
new fragment has to be checked against all others to find out if it has already
been found. The other algorithms rely on canonical representations and the test
for duplicates is independent of the number of already discovered structures.

A Quantitative Comparison of Subgraph Miners 401

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 10 15 20 25 30 35 40

ru
nt

im
e

pe
r

fo
un

d
fr

ag
m

en
t

in
 m

se
c

edge density in %

edge density with support of 10%

MoFa(base)
gSpan
FFSM

Gaston

 0.46

 0.48

 0.5

 0.52

 0.54

 0.56

 0.58

 10 15 20 25 30 35 40

nu
m

be
r

of
 fo

un
d

fr
ag

m
en

ts
 /

10
00

edge density in %

edge density with support of 10%

found

Fig. 6. Runtime and number of frequent subgraphs on synthetic datasets with varying
edge density

3.5 Special Features and Possible Extensions

Some of the presented algorithms have special extensions not taken into account
for this comparison, but which might improve the performance of the algorithms.
One example are closed subgraphs. A subgraph is said to be closed if there is
no bigger supergraph containing it that occurs in the same transactions of the
database. Unclosed subgraphs can easily be filtered out after the search (and
partly during the search), but for gSpan and MoFa there exist special extensions
that prune branches of the search tree if only closed subgraphs are to be found
[17,18]. This speeds up the search considerably (on some datasets for gSpan a
speedup of a factor of 10 is reported, for MoFa the runtime is almost halved).

Another issue is the search in directed graphs. FFSM strongly relies on the
triangle matrices, that cannot be used for directed graphs. Gaston’s rules for
uniquely constructing all paths and trees cannot be used for directed graphs
without major changes. It is e.g. unclear how a spanning tree can be constructed
in a directed graph. MoFa is capable of finding directed frequent subgraphs and
also for gSpan only minor changes should be necessary.

Another topic of interest is the search for unconnected subgraphs. An exam-
ple are molecules in which a certain part of the fragment must be present but
the rest of the fragment is not known yet. MoFa can start the search with an
unconnected seed instead of the empty graph. It is unclear how seeds can be
combined with any of the other three algorithms.

For MoFa there also exists an extension for molecular databases that treats
rings as single entities [19]. This not only dramatically reduces the number of
search tree nodes but also avoids the reporting of fragments with open ring sys-
tems that normally make no sense for the biochemists. Another addition enables
MoFa to find fragments with carbon chains of varying lengths [20], because this
length is not important for biochemical reactions.

4 Conclusions

After re-implementing and testing four famous subgraph mining algorithms, the
following conclusions can be drawn:

402 M. Wörlein et al.

– Contrary to common belief embedding lists do not considerably speed up
the search for frequent fragments. Even though gSpan does not use them,
it is competitive to Gaston and FFSM. Only if the fragments become large
(like in the IC93 dataset), gSpan falls off. On the other hand, embedding
lists can cause problems if not enough memory is available or if the memory
throughput is not high enough.

– The power of the pruning strategies to avoid duplicates is not the most
important factor. The generation of candidates and support/embedding lists
computations are much more critical.

– Using canonical representations for detecting duplicates is more efficient than
doing explicit graph isomorphism test. Even better is the complete avoidance
of duplicate fragment generation like Gaston does (at least for non-cyclic
fragments).

– All algorithms scale linearly with the database size though with different
factors.

– Depending on the used Java Virtual Machine results can sometimes differ.
This problem can not be solved by the algorithms themself.

– Pure performance is not everything. Although MoFa is the slowest algo-
rithm in all tests it offers much more functionality than the other miners for
molecular databases and biochemical questions.

It is not yet clear, where the development of frequent subgraph mining will lead
in the future. Possible directions are distributed or parallel search to overcome
memory and performance limits. Exploring new application areas is expected to
lead to new insights.

References

1. Fischer, I., Meinl, T.: Subgraph Mining. In Wang, J., ed.: Encyclopedia of Data
Warehousing and Mining. Idea Group Reference, Hershey, PA, USA (2005)

2. Washio, T., Motoda, H.: State of the Art of Graph–based Data Mining. SIGKDD
Explorations Newsletter 5 (2003) 59–68

3. McKay, B.: Practical graph isomorphism. Congressus Numerantium 30 (1981)
4. Agrawal, R., Imielinski, T., Swami, A.N.: Mining Association Rules between Sets

of Items in Large Databases. In Buneman, P., Jajodia, S., eds.: Proc. 1993 ACM
SIGMOD Int’l Conf. on Management of Data, Washington, D.C., USA, ACM Press
(1993) 207–216

5. Zaki, M.J., Parthasarathy, S., Ogihara, M., Li, W.: New Algorithms for Fast
Discovery of Association Rules. In Heckerman, D., Mannila, H., Pregibon, D.,
Uthurusamy, R., Park, M., eds.: In 3rd Int’l Conf. on Knowledge Discovery and
Data Mining, AAAI Press (1997) 283–296

6. Cook, D.J., Holder, L.B.: Substructure Discovery Using Minimum Description
Length and Background Knowledge. J. of Artificial Intelligence Research 1 (1994)
231–255

7. Inokuchi, A., Washio, T., Motoda, H.: An apriori-based algorithm for mining fre-
quent substructures from graph data. In: PKDD ’00: Proceedings of the 4th Euro-
pean Conference on Principles of Data Mining and Knowledge Discovery, London,
UK, Springer (2000) 13–23

A Quantitative Comparison of Subgraph Miners 403

8. Kuramochi, M., Karypis, G.: Frequent subgraph discovery. In: Proceedings of the
IEEE Intl. Conf. on Data Mining ICDM, Piscataway, NJ, USA, IEEE Press (2001)
313–320

9. Borgelt, C., Berthold, M.R.: Mining Molecular Fragments: Finding Relevant Sub-
structures of Molecules. In: Proc. IEEE Int’l Conf. on Data Mining ICDM, Mae-
bashi City, Japan (2002) 51–58

10. Yan, X., Han, J.: gSpan: Graph–Based Substructure Pattern Mining. In: Proc.
IEEE Int’l Conf. on Data Mining ICDM, Maebashi City, Japan (2002) 721–723

11. Huan, J., Wang, W., Prins, J.: Efficient mining of frequent subgraphs in the
presence of isomorphism. In: Proceedings of the 3rd IEEE Intl. Conf. on Data
Mining ICDM, Piscataway, NJ, USA, IEEE Press (2003) 549–552

12. Nijssen, S., Kok, J.N.: Frequent Graph Mining and its Application to Molecular
Databases. In Thissen, W., Wieringa, P., Pantic, M., Ludema, M., eds.: Proc. of
the 2004 IEEE Conf. on Systems, Man and Cybernetics, SMC 2004, Den Haag,
The Netherlands (2004) 4571 – 4577

13. Institute of Scientific Information, Inc. (ISI): Index chemicus - subset from 1993
(1993)

14. Nijssen, S., Kok, J.N.: A quickstart in frequent structure mining can make a dif-
ference. Technical report, Leiden Institute of Advanced Computer Science, Leiden
University (2004)

15. Huan, J., Wang, W., Prins, J.: Efficient mining of frequent subgraphs in the
presence of isomorphism. Technical report, Department of Computer Science at
the University of North Carolina, Chapel Hill (2003)

16. Srinivasan, A., King, R.D., Muggleton, S.H., Sternberg, M.: The predictive toxi-
cology evaluation challenge. In: Proceedings of the Fifteenth International Joint
Conference on Artificial Intelligence (IJCAI-97). Morgan-Kaufmann (1997) 1–6

17. Yan, X., Han, J.: Closegraph: Mining Closed Frequent Graph Patterns. In: Proc.
of the 9th ACM SIGKDD Int’l Conf. on Knowledge Discovery and Data Mining,
Washington, DC, USA, ACM Press (2003) 286–295

18. Meinl, T., Borgelt, C., Berthold, M.R.: Discriminative Closed Fragment Mining
and Pefect Extensions in MoFa. In Onaindia, E., Staab, S., eds.: STAIRS 2004
- Proc. of the Second Starting AI Researchers’ Symp. Volume 109 of Frontiers in
Artificial Intelligence and Applications., Valencia, Spain, IOS Press (2004) 3–14

19. Hofer, H., Borgelt, C., Berthold, M.R.: Large Scale Mining of Molecular Fragments
with Wildcards. In: Advances in Intelligent Data Analysis. Number 2810 in Lecture
Notes in Computer Science, Springer (2003) 380–389

20. Meinl, T., Borgelt, C., Berthold, M.R.: Mining Fragments with Fuzzy Chains in
Molecular Databases. In Kok, J.N., Washio, T., eds.: Proc. of the Workshop W7
on Mining Graphs, Trees and Sequences (MGTS ’04), Pisa, Italy (2004) 49–60

	Introduction
	Distinctive Ideas of MoFa, gSpan, FFSM, and Gaston
	The Comparison
	Setup of Experiments
	Hotspots
	Tests on Molecular Databases
	Tests on Artificial Graph Databases
	Special Features and Possible Extensions

	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

