
Weka4WS: A WSRF-Enabled Weka Toolkit

for Distributed Data Mining on Grids

Domenico Talia, Paolo Trunfio, and Oreste Verta

DEIS, University of Calabria,
Via P. Bucci 41c, 87036 Rende, Italy
{talia, trunfio}@deis.unical.it

Abstract. This paper presents Weka4WS, a framework that extends
the Weka toolkit for supporting distributed data mining on Grid envi-
ronments. Weka4WS adopts the emerging Web Services Resource Frame-
work (WSRF) for accessing remote data mining algorithms and manag-
ing distributed computations. The Weka4WS user interface is a modified
Weka Explorer environment that supports the execution of both local and
remote data mining tasks. On every computing node, a WSRF-compliant
Web Service is used to expose all the data mining algorithms provided by
the Weka library. The paper describes the design and the implementation
of Weka4WS using a first release of the WSRF library. To evaluate the
efficiency of the proposed system, a performance analysis of Weka4WS
for executing distributed data mining tasks in different network scenarios
is presented.

1 Introduction

Complex business and scientific applications require access to distributed re-
sources (e.g., computers, databases, networks, etc.). Grids have been designed
to support applications that can benefit from high performance, distribution,
collaboration, data sharing and complex interaction of autonomous and geo-
graphically dispersed resources. Since computational Grids emerged as effective
infrastructures for distributed high-performance computing and data process-
ing, a few Grid-based KDD systems has been proposed [1,2,3,4]. By exploting a
service-oriented approach, data-intensive and knowledge discovery applications
can be developed by exploiting the Grid technology to deliver high performance
and manage data and knowledge distribution. As critical for scalable knowledge
discovery, our focus here is on distributed data mining services beginning to al-
low distributed teams or virtual organizations accessing and mining data in a
high-level, standard and reliable way.

This paper presents Weka4WS, a framework that extends the widely used
Weka toolkit [5] for supporting distributed data mining on Grid environments.
Weka provides a large collection of machine learning algorithms written in Java
for data pre-processing, classification, clustering, association rules, and visualiza-
tion, which can be invoked through a common Graphical User Interface (GUI).
In Weka, the overall data mining process takes place on a single machine, since

A. Jorge et al. (Eds.): PKDD 2005, LNAI 3721, pp. 309–320, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

310 D. Talia, P. Trunfio, and O. Verta

the algorithms can be executed only locally. The goal of Weka4WS is to extend
Weka to support remote execution of the data mining algorithms. In such a way,
distributed data mining tasks can be executed on decentralized Grid nodes by
exploiting data distribution and improving application performance.

In Weka4WS, the data-preprocessing and visualization phases are still exe-
cuted locally, whereas data mining algorithms for classification, clustering and
association rules can be also executed on remote Grid resources. To enable re-
mote invocation, each data mining algorithm provided by the Weka library is
exposed as a Web Service, which can be easily deployed on the available Grid
nodes. Thus, Weka4WS also extends the Weka GUI to enable the invocation
of the data mining algorithms that are exposed as Web Services on remote
machines. To achieve integration and interoperability with standard Grid envi-
ronments, Weka4WS has been designed and developed by using the emerging
Web Services Resource Framework (WSRF) [6] as enabling technology.

WSRF is a family of technical specification concerned with the creation, ad-
dressing, inspection, and lifetime management of stateful resources. The frame-
work codifies the relationship between Web Services and stateful resources in
terms of the implied resource pattern. A stateful resource that participates in
the implied resource pattern is termed WS-Resource. WSRF describes the WS-
Resource definition and association with the description of a Web Service in-
terface, and describes how to make the properties of a WS-Resource accessible
through a Web Service interface.

Initial work on WSRF has been performed by the Globus Alliance and IBM,
with the goal of integrating previous work on the so-called Open Grid Services
Architecture (OGSA) [7] with new Web Services mechanisms and standards. The
Globus Alliance recently released the Globus Toolkit 4 (GT4) [8], which provides
an open source implementation of the WSRF library and incorporates services
implemented according to the WSRF specifications. The Weka4WS prototype
described in this paper has been developed by using the Java WSRF library
provided by a development release of Globus Toolkit 4 (Globus Toolkit 3.9.2
Core version).

The paper describes the design, implementation and performance evalution
of Weka4WS. To evaluate the efficiency of the proposed system, a performance
analysis of Weka4WS executing distributed data mining tasks in different net-
work scenarios is presented. The remainder of the paper is organized as follows.
Section 2 describes the architecture and the implementation of the Weka4WS
framework. Section 3 presents a performance analysis of the Weka4WS proto-
type. Section 4 discusses related work. Finally, Section 5 concludes the paper.

2 The Weka4WS Framework

Figure 1 shows the general architecture of the Weka4WS framework that includes
three kinds of nodes: storage nodes, which store the datasets to be mined; com-
puting nodes, on which the remote data mining tasks are executed; user nodes,
which are the local machines of the users.

Weka4WS: A WSRF-Enabled Weka Toolkit 311

Graphical

User Interface

Web

Service

Weka

Library

Weka

Library

User node

Computing node

FTP/GridFTP

Server

Storage node

Dataset

Client

Module

Graphical

User Interface

Web

Service

Weka

Library

Weka

Library

User node

Computing node

FTP/GridFTP

Server

Storage node

Dataset

Client

Module

Fig. 1. The general architecture of the Weka4WS framework

User nodes include three components: Graphical User Interface (GUI), Client
Module (CM), and Weka Library (WL). The GUI is an extended Weka Explorer
environment that supports the execution of both local and remote data mining
tasks. Local tasks are executed by directly invoking the local WL, whereas remote
tasks are executed through the CM, which operates as an intermediary between
the GUI and Web Services on remote computing nodes.

Figure 2 shows a snapshot of the current GUI implementation. As highlighted
in the figure, a “Remote” pane has been added to the original Weka Explorer
environment. This pane provides a list of the remote Web Services that can

Fig. 2. The Graphical User Interface: a “Remote” pane has been added to the original
Weka Explorer to start remote data mining tasks

312 D. Talia, P. Trunfio, and O. Verta

be invoked, and two buttons to start and stop the data mining task on the
selected Web Service. Through the GUI a user can both: i) start the execution
locally by using the “Local” pane; ii) start the execution remotely by using the
“Remote” pane. Each task in the GUI is managed by an independent thread.
Therefore, a user can start multiple data mining tasks in parallel on different Web
Services, this way taking full advantage of the distributed Grid environment for
implementing parallel and distributed data mining tasks. Whenever the output
of a data mining task has been received from a remote computing node, it is
visualized in the standard “output” pane (on the right of Figure 2).

Computing nodes include two components: a Web Service (WS) and the
Weka Library (WL). The WS is a WSRF-compliant Web Service that exposes
the data mining algorithms provided by the underlying WL. Therefore, requests
to the WS are executed by invoking the corresponding WL algorithms.

Finally, storage nodes provide access to data to be mined. To this end, an FTP
server or a GridFTP server [9] is executed on each storage node. The dataset
to be mined can be locally available on a computing node, or downloaded to a
computing node in response to an explicit request of the corresponding WS.

2.1 Web Service Operations

Table 1 shows the operations provided by each Web Service in the Weka4WS
framework.

Table 1. Operations provided by each Web Service in the Weka4WS framework

Operation Description

createResource Creates a new WS-Resource.

subscribe Subscribes to notifications about resource properties changes.

destroy Explicitly requests destruction of a WS-Resource.

classification Submits the execution of a classification task.

clustering Submits the execution of a clustering task.

associationRules Submits the execution of an association rules task.

The first three operations are related to WSRF-specific invocation mecha-
nisms (described below), whereas the last three operations - classification,
clustering and associationRules - are used to require the execution of a
specific data mining task. In particular, the classification operation provides
access to the complete set of classifiers in the Weka Library (currently, 71 al-
gorithms). The clustering and association rules operations expose all the
clustering and association rules algorithms provided by the Weka Library (5 and
2 algorithms, respectively).

To improve concurrency the data mining operations are invoked in an asyn-
chronous way, i.e., the client submits the execution in a non-blocking mode, and
results will be notified to the client whenever they have been computed.

Weka4WS: A WSRF-Enabled Weka Toolkit 313

Table 2. Input parameters of the Web Service data mining operations

Operation Parameter Description

classification algorithm Name of the classification algorithm to be used.

arguments Arguments to be passed to the algorithm.

testOptions Options to be used during the testing phase.

classIndex Index of the attribute to use as the class.

dataSet URL of the dataset to be mined.

clustering algorithm Name of the clustering algorithm.

arguments Algorithm arguments.

testOptions Testing phase options.

selectedAttrs Indexes of the selected attributes.

classIndex Index of the class w.r.t. evaluate clusters.

dataSet URL of the dataset to be mined.

associationRules algorithm Name of the association rules algorithm.

arguments Algorithm arguments.

dataSet URL of the dataset to be mined.

Table 2 lists the input parameters of the Web Service data mining opera-
tions. Three parameters, in particular, are required in the invocation of all the
data mining operations: algorithm, arguments, and dataSet. The algorithm
argument specifies the name of the Java class in the Weka Library to be in-
voked (e.g., “weka.classifiers.trees.J48”). The arguments parameter specifies a
sequence of arguments to be passed to the algorithm (e.g., “-C 0.25 -M 2”).
Finally, the dataSet parameter specifies the URL of the dataset to be mined
(e.g., “gsiftp://hostname/path/ad.arff ”).

2.2 Task Execution

This section describes the steps that are performed to execute a data mining
task on a remote Web Service in the Weka4WS framework.

Figure 3 shows a Client Module (CM) that interacts with a remote Web
Service (WS) to execute a data mining task. In particular, this example assumes
that the CM is requesting the execution of a clustering analysis on a dataset
local to the user node, which then acts also as a storage node. Notice that this
is a worst case since in several scenarios the dataset is available on the remote
computing node. In order to perform this task, the following steps are executed
(see Figure 3):

1. Resource creation. The CM invokes the createResource operation, which
creates a new WS-Resource used to maintain the state of the subsequent
clustering computation. The state is stored as properties of the resource. In
particular, a “clustering model” property is used to store the result of the
clustering computation. The WS returns the endpoint reference (EPR) of
the created resource. The EPR is unique within the WS, and distinguishes

314 D. Talia, P. Trunfio, and O. Verta

Web

Service

Client

Module

createResource

subscribe

destroy

clustering

deliver

Dataset

WS-Resource

clustering

model

1

Dataset

1

2 2

3 3

Weka

Library

6

7 7

FTP

Server

User/Storage node Computing node

4

4

5 5

Web

Service

Client

Module

createResource

subscribe

destroy

clustering

deliver

Dataset

WS-Resource

clustering

model

1

Dataset

1

2 2

3 3

Weka

Library

6

7 7

FTP

Server

User/Storage node Computing node

4

4

5 5

Fig. 3. Execution of a data mining task on a remote Web Service

this resource from all other resources in that service. Subsequent requests
from the CM will be directed to the resource identified by that EPR.

2. Notification subscription. The CM invokes the subscribe operation,
which subscribes for notifications about changes that will occur to the “clus-
tering model” resource property. Whenever this property will change its
value (i.e., whenever the model has been computed), the CM will receive a
notification containing that value, which represents the result of the compu-
tation.

3. Task submission. The CM invokes the clustering operation to require the
execution of the clustering analysis. This operation receives six parameters
as shown in Table 2, among which the name of the clustering algorithm
and the URL of the dataset to be mined. The operation is invoked in an
asynchronous way, i.e., the client may proceed its execution without waiting
for the completion of the operation.

4. Dataset download. Since in this example the dataset is assumed not avail-
able on the computing node, the WS downloads the dataset to be mined from
the URL specified in the clustering invocation. The download request is
directed to an FTP server running on the user node. Note that different
protocols could be used, such as HTTP or GridFTP, as mentioned before.

5. Data mining. After the dataset has been downloaded to the computing
node, the clustering analysis is started by invoking the appropriate Java
class in the Weka Library. The execution is handled within the WS-Resource
created on Step 1, and the result of the computation (i.e., the inferred model)
is stored in the “clustering model” property.

6. Results notification. Whenever the “clustering model” property has been
changed, its new value is notified to the CM, by invoking its implicit deliver
operation. This mechanism allows for the asynchronous delivery of the exe-
cution results whenever they are generated.

7. Resource destruction. The CM invokes the destroy operation, which
destroys the WS-Resource created on Step 1.

Weka4WS: A WSRF-Enabled Weka Toolkit 315

The next section presents a performance analysis of the execution mecha-
nisms described above.

3 Performance Analysis

To evaluate the efficiency of the proposed system, we carried out a performance
analysis of Weka4WS for executing a typical data mining task in different net-
work scenarios. In particular, we evaluated the execution times of the different
steps needed to perform the overall data mining task, as described at the end of
the previous section. The main goal of our analysis is to evaluate the overhead
introduced by the WSRF mechanisms with respect to the overall execution time.

For our analysis we used the census dataset from the UCI repository [10].
Through random sampling we extracted from it ten datasets, containing a num-
ber of instances ranging from 1700 to 17000, with a size ranging from 0.5 to
5 MB. We used Weka4WS to perform a clustering analysis on each of these
datasets. In particular, we used the Expectation Maximization (EM) clustering
algorithm, using 10 as the number of clusters to be identified on each dataset.

The clustering analysis on each dataset was executed in two network
scenarios:

– LAN: the computing node Nc and the user/storage node Nu are connected
by a LAN network, with an average bandwidth of 94.4 Mbps and an average
round-trip time (RTT) of 1.4 ms. Both Nc and Nu machines are Pentium4
2.4 GHz with 1 GB RAM.

– WAN: the computing node Nc and the user/storage node Nu are connected
by a WAN network, with an average bandwidth of 213 kbps and an average
RTT of 19 ms. Nc is an Pentium4 2.4 GHz with 1 GB RAM, whereas Nu is
an Athlon 2.14 GHz with 512 MB RAM.

For each dataset size and network scanario we run 20 independent executions.
The values reported in the following graphs are computed as an average of the
values measured in the 20 executions.

Figure 4 represents the execution times of the different steps of the clustering
task in the LAN scenario for a dataset size ranging from 0.5 to 5 MB. As shown in
the figure, the execution times of the WSRF-specific steps are independent from
the dataset size, namely: resource creation (1698 ms, on the average), notification
subscription (275 ms), task submission (342 ms), results notification (1354 ms),
and resource destruction (214 ms).

On the contrary, the execution times of the dataset download and data mining
steps are proportional to the dataset size. In particular, the execution time of
the dataset download ranges from 218 ms for 0.5 MB to 665 ms for 5 MB, while
the data mining execution time ranges from 107474 ms for the dataset of 0.5
MB, to 1026584 ms for the dataset of 5 MB. The total execution time ranges
from 111798 ms for the dataset of 0.5 MB, to 1031209 ms for the dataset of 5
MB. Note that in Figure 4 the lines representing the total execution time and

316 D. Talia, P. Trunfio, and O. Verta

1
.1

2
E

+
0
5

2
.1

2
E

+
0
5

3
.1

1
E

+
0
5

4
.1

6
E

+
0
5

5
.1

9
E

+
0
5

6
.2

5
E

+
0
5

7
.2

6
E

+
0
5

8
.3

0
E

+
0
5

9
.2

4
E

+
0
5

1
.0

3
E

+
0
6

1.0E+02

1.0E+03

1.0E+04

1.0E+05

1.0E+06

1.0E+07

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Dataset size (MB)

E
x
e
c
u
ti
o
n

ti
m

e
(m

s
)

Resource creation

Notification subscription

Task submission

Dataset download

Data mining

Results notification

Resource destruction

Total

Fig. 4. Execution times of the different steps of the clustering task in the LAN scenario

the data mining execution time appear coincident, because the data mining step
takes from 96% to 99% of the total execution time, as discussed below.

Figure 5 represents the execution times of the different steps in the WAN
scenario. The execution times of the WSRF-specific steps are similar to those
measured in the LAN scenario. The only significant difference is the execution
time of the results notification step, which passes from an average of 1354 ms
in the LAN scenario to an average of 2790 ms in the WAN scenario, due to
additional time needed to transfer the clustering model through a low-speed
network. For the same reason, the transfer of the dataset to be mined requires an
execution time significantly greater than the one measured in the LAN scenario.
In particular, the execution time of the dataset download step in the WAN
scenario ranges from 14638 ms for 0.5 MB to 132463 ms for 5 MB.

The data mining execution time is similar to that measured in the LAN
scenario, since the clustering analysis is executed on an identical computing node,
as mentioned before. Mainly due to the additional time required by the dataset
download step, the total execution time is greater than the one measured in the
LAN scenario, ranging from 130488 ms for the dataset of 0.5 MB to 1182723 ms
for the dataset of 5 MB. Like Figure 4, the line of the total execution time is
very close to the line of the data mining execution time.

To better highlight the overhead introduced by the WSRF mechanisms and
the distributed scenario, Figure 6 and Figure 7 show the percentage of the ex-
ecution times of the data mining, dataset download, and the other steps (i.e.,
resource creation, notification subscription, task submission, results notification,
resource destruction), with respect to the total execution time in the LAN and
WAN scenarios.

In the LAN scenario (see Figure 6) the data mining step represents from
96.13% to 99.55% of the total execution time, the dataset download ranges from
0.19% to 0.06%, and the other steps range from 3.67% to 0.38%. Notice that the
data mining time corresponds to total Weka execution time on a single node.

Weka4WS: A WSRF-Enabled Weka Toolkit 317

1
.3

0
E

+
0
5

2
.4

6
E

+
0
5

3
.6

1
E

+
0
5

4
.8

6
E

+
0
5

6
.1

6
E

+
0
5

7
.2

5
E

+
0
5

8
.4

9
E

+
0
5

9
.6

4
E

+
0
5

1
.0

6
E

+
0
6

1
.1

8
E

+
0
6

1.0E+02

1.0E+03

1.0E+04

1.0E+05

1.0E+06

1.0E+07

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Dataset size (MB)

E
x
e
c
u
ti
o
n

ti
m

e
(m

s
)

Resource creation

Notification subscription

Task submission

Dataset download

Data mining

Results notification

Resource destruction

Total

Fig. 5. Execution times of the different steps of the clustering task in the WAN scenario

9
6
.1

3
%

9
8
.0

2
%

9
8
.7

1
%

9
9
.0

2
%

9
9
.2

1
%

9
9
.3

2
%

9
9
.4

0
%

9
9
.4

8
%

9
9
.5

2
%

9
9
.5

5
%

0

10

20

30

40

50

60

70

80

90

100

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Dataset size (MB)

%
o
f

th
e

to
ta

l
e
x
e
c
u
ti
o
n

ti
m

e

Other steps

Dataset download

Data mining

Fig. 6. Percentage of the execution times of the different steps in the LAN scenario

In the WAN scenario (see Figure 7) the data mining step represents from
84.62% to 88.32% of the total execution time, the dataset download ranges from
11.22% to 11.20%, while the other steps range from 4.16% to 0.48%.

We can observe that in the LAN scenario neither the dataset download nor the
other steps represent a significant overhead with respect to the total execution
time. In the WAN scenario, on the contrary, the dataset download is a critical
step that can significantly affect the overall execution time. For this reason, the
use of high-performance file transfer protocols such as GridFTP can be of great
importance.

The performance analysis discussed above demonstrates the efficiency of the
WSRF mechanisms as a means to execute data mining tasks on remote machines.
By exploiting such mechanisms, Weka4WS can provide an effective way to perform
compute-intensive distributed data analysis on a large-scale Grid environment.

318 D. Talia, P. Trunfio, and O. Verta

8
8
.3

2
%

8
8
.2

5
%

8
8
.3

2
%

8
8
.3

1
%

8
8
.1

9
%

8
8
.1

0
%

8
7
.5

6
%

8
7
.2

9
%

8
6
.4

0
%

8
4
.6

2
%

0

10

20

30

40

50

60

70

80

90

100

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Dataset size (MB)

%
o
f

th
e

to
ta

l
e
x
e
c
u
ti
o
n

ti
m

e

Other steps

Dataset download

Data mining

Fig. 7. Percentage of the execution times of the different steps in the WAN scenario

4 Related Work

The idea of adapting the Weka toolkit to a Grid environment has been recently
explored, although none of the proposed systems makes use of WSRF as enabling
technology.

Grid Weka [11] modifies the Weka toolkit to enable the use of multiple com-
putational resources when performing data analysis. In this system, a set of data
mining tasks can be distributed across several machines in an ad-hoc environ-
ment. Tasks that can be executed using Grid Weka include: building a classifier
on a remote machine, labelling a dataset using a previously built classifier, test-
ing a classifier on a dataset, and cross-validation. Even if Grid Weka provides a
way to use multiple resources to execute distributed data mining tasks, it has
been designed to work within an ad-hoc environment, which does not constitute
a Grid per se. In particular, the invocation of remote resources in the Weka
Grid framework is not service-oriented, and makes use of ad-hoc solutions that
do not take into considerations fundamental Grid aspects (e.g., interoperabil-
ity, security, etc.). On the contrary, Weka4WS exposes all its functionalities as
WSRF-compliant Web Services, which enable important benefits, such as dy-
namic service discovery and composition, standard support for authorization
and cryptography, and so on.

FAEHIM (Federated Analysis Environment for Heterogeneous Intelligent
Mining) [12] is a Web Services-based toolkit for supporting distributed data
mining. This toolkit consists of a set of data mining services, a set of tools to in-
teract with these services, and a workflow system used to assemble these services
and tools. The Triana problem solving environment [13] is used as the workflow
system. Data mining services are exposed as Web Services to enable an easy
integration with other third party services, allowing data mining algorithms to
be embedded within existing applications. Most of the Web Services in FAEHIM

Weka4WS: A WSRF-Enabled Weka Toolkit 319

are derived from the Weka library. All the data mining algorithms available in
Weka were converted into a set of Web Services. In particular, a general “Clas-
sifier Web Service” has been implemented to act as a wrapper for a complete
set of classifiers in Weka, a “Clustering Web Service” has been used to wrap
a variety of clustering algorithms, and so on. This service-oriented approach is
similar to that adopted in Weka4WS. However, in Weka4WS standard WSRF
mechanisms are used for managing remote tasks execution and asynchronous
results notification (which is missing in that system), and all the algorithms are
exposed on every node as a single WSRF-compliant Web Service to facilitate
the deployment in a large Grid environment.

WekaG [14] is another adaptation of the Weka toolkit to a Grid environ-
ment. WekaG is based on a client/server architecture. The server side defines
a set of Grid Services that implement the functionalities of the different algo-
rithms and phases of the data mining process. A WekaG client is responsible
for communicating with Grid Services and offering the interface to users. A
prototype that implements the capabilities of the Apriori algorithm has been
developed using Globus Toolkit 3. In this prototype an Apriori Grid Service has
been developed to produce association rules from a dataset, while GridFTP is
used for the deployment of the files to the Grid Service node. WekaG shares this
service-orientation with Weka4WS. However, the WekaG prototype provides ac-
cess to only one data mining algorithm (Apriori), whereas Weka4WS currently
provides access to 78 different Weka algorithms through a single Web Service
interface. Moreover, WekaG uses the old Grid Service technology [15], which -
differently from WSRF - is largely incompatible with current Web Service and
Grid computing standards.

5 Conclusions

Weka4WS adopts the emerging Web Services Resource Framework (WSRF) for
accessing remote data mining algorithms and composing distributed KDD ap-
plications.

The paper described the design and the implementation of Weka4WS using
a first release of the WSRF library. To evaluate the efficiency of the proposed
system, a performance analysis of Weka4WS for executing a distributed data
mining task in different network scenarios has been also discussed.

The experimental results demonstrate the efficiency of the WSRF mecha-
nisms as a means to execute data mining tasks on remote resources. By ex-
ploiting such mechanisms, Weka4WS can provide an effective way to perform
compute-intensive distributed data analysis on large-scale Grids. The Weka4WS
software prototype will be made available to the research community.

Acknowledgements

This research work is carried out under the FP6 Network of Excellence Core-
GRID funded by the European Commission (Contract IST-2002-004265). This

320 D. Talia, P. Trunfio, and O. Verta

work has been also supported by the Italian MIUR FIRB Grid.it project
RBNE01KNFP on High Performance Grid Platforms and Tools.

References

1. Curcin, V., Ghanem, M., Guo, Y., Kohler, M., Rowe, A., Syed, J., Wendel, P.: Dis-
covery Net: Towards a Grid of Knowledge Discovery. 8th Int. Conf. on Knowledge
Discovery and Data Mining (2002).

2. Brezany, P., Hofer, J., Tjoa, A. M., Woehrer, A.: Towards an open service ar-
chitecture for data mining on the grid. Conf. on Database and Expert Systems
Applications (2003).

3. Skillicorn, D., Talia, D.: Mining Large Data Sets on Grids: Issues and Prospects.
Computing and Informatics, vol. 21 n. 4 (2002) 347-362.

4. Cannataro, M., Talia, D.: The Knowledge Grid. Communications of the ACM, vol.
46 n. 1 (2003) 89-93.

5. Witten, H., Frank, E.: Data Mining: Practical machine learning tools with Java
implementations. Morgan Kaufmann (2000).

6. Czajkowski, K. et al: The WS-Resource Framework Version 1.0 (2004).
http://www-106.ibm.com/developerworks/library/ws-resource/ws-wsrf.pdf.

7. Foster, I., Kesselman, C., Nick, J., Tuecke, S.: The Physiology of the Grid. In:
Berman, F., Fox, G., A. Hey, A. (Eds.), Grid Computing: Making the Global
Infrastructure a Reality, Wiley (2003) 217-249.

8. Foster, I.: A Globus Primer (2005). http://www.globus.org/primer.
9. Allcock, B., Bresnahan, J., Kettimuthu, R., Link, M., Dumitrescu, C., Raicu, I.,

Foster, I.: The Globus Striped GridFTP Framework and Server. Conf. on Super-
computing (SC’05) (2005).

10. The UCI Machine Learning Repository. http://www.ics.uci.edu/∼mlearn/
MLRepository.html.

11. Khoussainov, R., Zuo, X., Kushmerick, N.: Grid-enabled Weka: A Toolkit for Ma-
chine Learning on the Grid. ERCIM News, n. 59 (2004).

12. Shaikh Ali, A., Rana, O. F., Taylor, I. J.: Web Services Composition for Distributed
Data Mining. Workshop on Web and Grid Services for Scientific Data Analysis
(2005).

13. The Triana Problem Solving Environment. http://www.trianacode.org.
14. Prez, M. S., Sanchez, A, Herrero, P, Robles, V., Pea. J. M.: Adapting the Weka

Data Mining Toolkit to a Grid based environment. 3rd Atlantic Web Intelligence
Conf. (2005).

15. Tuecke, S. et al.: Open Grid Services Infrastructure (OGSI) Version 1.0 (2003).
http://www-unix.globus.org/toolkit/draft-ggf-ogsi-gridservice-33 2003-06-27.pdf.

	Introduction
	The Weka4WS Framework
	Web Service Operations
	Task Execution

	Performance Analysis
	Related Work
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

