Knowledge Discovery from User Preferences in
Conversational Recommendation

Maria Salamé, James Reilly, Lorraine McGinty, and Barry Smyth

Smart Media Institute, University College Dublin,
Belfield, Dublin 4, Ireland
{maria, james.d.reilly, lorraine.mcginty, barry.smyth}Qucd.ie

Abstract. Knowledge discovery for personalizing the product recom-
mendation task is a major focus of research in the area of conversational
recommender systems to increase efficiency and effectiveness. Conversa-
tional recommender systems guide users through a product space, al-
ternatively making product suggestions and eliciting user feedback. Cri-
tiquing is a common and powerful form of feedback, where a user can ex-
press her feature preferences by applying a series of directional critiques
over recommendations, instead of providing specific value preferences.
For example, a user might ask for a ‘less expensive’ vacation in a travel
recommender; thus ‘less erpensive’ is a critique over the price feature.
The expectation is that on each cycle, the system discovers more about
the user’s soft product preferences from minimal information input. In
this paper we describe three different strategies for knowledge discov-
ery from user preferences that improve recommendation efficiency in a
conversational system using critiquing. Moreover, we will demonstrate
that while the strategies work well separately, their combined effort has
the potential to considerably increase recommendation efficiency even
further.

1 Introduction

Recommender systems apply knowledge discovery techniques to decide which
recommendations are the most suitable for each user during a live customer
interaction. In this paper, we focus on conversational case-based recommenders
[1] which help users navigate product spaces by combining ideas and technologies
from information retrieval, artificial intelligence and user modelling. As part
of their cyclic recommendation process, conversational systems aim to retrieve
products that respect user preferences by requiring users to provide minimal
feedback in each cycle. It is expected that over the course of a recommendation
session that the recommender learns more about user preferences and therefore
it can assist in the discovery of recommendation knowledge which prioritises
products that best satisfy these preferences [2I3]. Advantages of the approach
include: (1) users have more control over the navigation process [4]; and (2) users
are guided to target products faster than standard browsing and alternative
recommendation approaches [56].

A. Jorge et al. (Eds.): PKDD 2005, LNAI 3721, pp. 228-239] 2005.
© Springer-Verlag Berlin Heidelberg 2005

Knowledge Discovery from User Preferences 229

Recommender systems can be distinguished by the type of feedback that
they support; examples include wvalue elicitation, ratings-based feedback and
preference-based feedback [7]. In this paper we are especially interested in a form
of user feedback called critiquing [8], where a user indicates a directional fea-
ture preference in relation to the current recommendation. For example, in a
travel/vacation recommender, a user might indicate that she is interested in a
vacation that is longer than the currently recommended option; in this instance,
longer is a critique over the duration feature.

Within the recommender systems literature the basic idea of critiquing can
be traced back to the seminal work of Burke et al. [4]. For example, Entrée is
the quintessential recommender system that employs critiquing (also sometimes
referred to as tweaking) in the restaurant domain. Entrée allows users to critique
restaurant features such as price, style, atmosphere etc. Importantly, critiquing
is a good example of a minimal user feedback approach where the user does not
need to provide a lot of specific preference information, while at the same time
it helps the recommender to narrow its search focus quite significantly [§]. As
recommender systems become more commonplace, there has been renewed inter-
est in critiquing, with the major focus of research in increasing the efficiency of
recommendation dialogues [9]. Furthermore, recent research has highlighted the
importance of investigating techniques for automating the discovery of implicit
preference knowledge while requiring minimal information input from the user
[3].

In this paper we describe three strategies for knowledge discovery from user
preferences that improves the performance of a critique-based recommender.
Specifically, we build upon work previously described by [I0], where the idea is
to consider a user’s critiquing history, as well as the current critique when mak-
ing new recommendations. This approach leads to significant improvements in
recommendation efficiency. We continue in this paper by considering the history
of critiques as a user model which determines the user preferences in a session.
We present a case discovery strategy, a feature discovery strategy and a query
discovery strategy which have the potential to focus rapidly on satisfactory prod-
uct cases. Finally, we show that by combining all three strategies, we can further
improve overall recommendation efficiency.

2 Background

This section describes the “incremental critiquing” [10] approach, which offers
major benefits in recommendation efficiency over the basic critiquing approach
as described by [11]. We consider the incremental critiquing approach as the
basis for our knowledge discovery strategies because it also considers a user’s
critiquing history as a basic starting point.

The incremental critiquing implementation assume a conversational recom-
mender system in the style of Entrée [I1]. Each recommendation session starts
with an initial user query resulting in the retrieval of a case with the highest
quality. The user will have the opportunity to accept this case, thereby ending

230 M. Salamé et al.

q: query, CB: CaseBase, cqg: critique, c, : current recommendation, U : User model
1. define Incremental Critiquing (g, CB) 17. define UserReview(c, , CB)
2. cqg:= null 18. cqg « user critique for some f € c,
3. U:= null 19. CB < CB - c,
4. begin 20. return cq
5. do
6. c, « ItemRecommend(q, CB, cgq, U) 21. define QueryRevise (q, c,)
7. cq <« UserReview (c,, CB) 22. q < C
: 23. return g
8. q <« QueryRevise(q, c,)
9. U <« UpdateModel (U, cqg, c,) 24. define UpdateModel (U, cg, c,)
10. until UserAccepts (c,) 25. U « U - contradict (U, cq, c,)
11. end 26. U < U - refine (U, cqg, c,)
27. U « U + (<cg, c.>)
. 28. return U
12. define ItemRecommend (q, CB, cq, U)
13. CB’ <« {c € CB | Satisfies(c, cq)}
14. CB’ « sort cases in CB’ in decreasing Quality
15. c, < most quality case in CB’
16. return c,

Fig. 1. The incremental critiquing algorithm

the recommendation session, or to critique it as a means to influence the next
cycle. A simplified version of the incremental critiquing algorithm is given in
Figure [l

The incremental critiquing algorithm consists of 4 key steps: (1) a new case
¢ 18 recommended to the user based on the current query and the previous
critiques; (2) the user reviews the recommendation and applies a directional
feature critique, cq; (3) the query, ¢ is revised for the next cycle; (4) the user
model, U is updated by adding the last critique cg and pruning all the critiques
that are inconsistent with it. The recommendation process terminates either
when the user is presented with a suitable case, or when they give up.

Importantly, the recommendation process is influenced by the user model of
previous critiques, U, that is incrementally updated on each cycle. Incremental
critiquing modifies the basic critiquing algorithm. Instead of ordering the filtered
cases on the basis of their similarity to the recommend case, it also computes a
compatibility score (see Equation [I)) for each candidate case. The compatibility
score is essentially the percentage of critiques in the user model that this case
satisfies. Then, the compatibility score and the candidate’s (¢') similarity to the
current recommendation (¢,) are combined in order to obtain an overall quality
score (see Equation 2] by default 8 = 0.75). The quality score is used to rank the
filtered cases prior to the next recommendation cycle (see line 14 in Figure [I])
and the case with the highest quality is then chosen as the new recommendation.

>y, satisfies(Ui,c’)

Compatibility(c',U) = v

(1)

Quality(d, c,,U) = 3 - Compatibility(c',U) + (1 — B) - Similarity(c’,c,) (2)

Algorithm [I] maintains a critique-based user model which is composed of
those critiques that have been chosen by the user so far. One of the key points

Knowledge Discovery from User Preferences 231

focused on the incremental critiquing approach is the maintenance of the user
model which prevents the existence of critiques that may be inconsistent with
earlier critiques. The user model is maintained using two possible actions: (1)
pruning previous critiques that are inconsistent with the current critique; (2)
removing all existing critiques, for which the new critique is a refinement.

3 Knowledge Discovery Strategies

This section presents three strategies for knowledge discovery from user pref-
erences that have the potential to improve product recommendations. The first
strategy discovers those cases that better satisfy the user preferences. The second
strategy deals with feature dimensionality, taking into account user preferences
to discover the relative importance of each feature for computing similarity. Fi-
nally, this paper presents a query discovery strategy that facilitates larger jumps
through the product space based on the current user critique. All of them share
a common foundation, they exploit the user’s history of critiques to discover
recommendation knowledge from the user preferences, in order to personalize
and focus in more rapidly on satisfactory product cases.

3.1 Discovering Satisfactory Cases: Highest Compatibility Selection

A key problem with the standard incremental critiquing [I0] approach is that
there are no guarantees that the recommendations it returns will completely
satisfy a user’s preferences. This is largely due to the underlying case selection
strategy which averages the compatibility (with past critiques) and similarity
(with the current preference case). What we propose is a new strategy for prod-
uct recommendation, Highest Compatibility Selection (HCS), that allows the
recommender to select the most suitable cases; i.e., those cases that are most
compatible with user preferences. This maximum compatibility strategy can be
easily introduced into the incremental critiquing algorithm.

Figure 2l demonstrates that the only procedure which is affected in the incre-
mental critiquing algorithm is the ItemRecommend step. As before, the list of
remaining cases is filtered out using the current critique cg. In addition two new
steps are added. First, the recommender computes the compatibility score, as
detailed in Equation Bl It is important to note that the compatibility function
has also been modified, as explained below in Equation Bl Instead of averaging
the compatibility and the similarity, as is done with incremental critiquing, our
second step assembles the cases with the highest compatibility from the list of
remaining cases. Importantly, in our approach, only the remaining cases with
highest compatibility value, C'B”, influence the product recommendation. Put
differently, the strategy prioritises those cases that satisfy the largest number of
critiques made by the user over time.

The compatibility function. We have considered case discovery to be an
optimization problem in which we are trying to recommend cases that maximally

232 M. Salamé et al.

g: query, CB: CaseBase, cq: critique, c, : current recommendation, U: User Model

define ItemRecommend (q, CB, cg, U)
CB’ « {c € CB | Satisfies(c, cq)}
CB’ <« sort cases in CB’ in decreasing compatibility score

CB’’ <« sort cases in CB’’ in decreasing order of their sim to g
c, « most similar case in CB’’

1.
2
3
4. CB’’ ¢« selects those cases in CB’ with highest compatibility
5
6
7.

return c,

Fig. 2. Adapting the incremental critiquing algorithm ItemRecommend procedure to
improve focus on recommendation by using Highest Compatibility Selection strategy

satisfy the user preferences. For this reason, we evaluate the remaining cases as if
they were a set of states in a Reinforcement Learning Problem (RLP) [12], which
consists of maximising the sum of future rewards in a set of states. Reinforcement
Learning theory is usually based on Finite Markov Decision Processes (FMDP).

Each case is treated as a state whose compatibility score is updated at each
cycle using a Monte-Carlo value function (see Equation B]). This function eval-
uates the goodness of each state — for us the possible states are the complete
set of remaining cases we want to enhance — according to the critiques the user
has selected.

comp(c’) + a x (1 — comp(c')) if ¢’ satisfies Uy
comp(c’) + a x (0 — comp(c)) if ¢’ dissatisfies U
®3)

Our goal is to maximally satisfy all the user preferences. Thus, we are looking
for a set of maximally compatible cases (i.e., those cases which have the highest
compatibility (comp) value considering all the user preferences (U) or past cri-
tiques). At the beginning of each session each candidate case, ¢’, has a default
compatibility value (i.e., comp(c’)= 0.5). This value is updated over cycles tak-
ing into account the satisfaction or not of the current critique. The o parameter
in Equation [3lis the learning rate which is usually set up to 0.1 or 0.2 values; a
larger value leads to a larger gap between cases in early stages. In our case, the
learning rate is not important since we are looking for levels of satisfaction. In
other words, we are not trying to obtain a set of states that arrive as quickly as
possible to a 1.0 value, as usually is done in RLP.

It is important to note that Equation Bl updates the compatibility value
stored by each case according to the last user critique (Uy) as opposed to com-
puting all the set of critiques like the incremental approach (see Equation[I]). The
Compatibility(c’, Uy) value computed in the current cycle will be the (comp(c’))
in the next cycle.

Compatibility(c',Uy) = {

3.2 Discovering Important Features: Local User Preference
Weighting

The previous strategy highlights the case dimensionality problem. In other
words, it is focused on discovering cases that maximally satisfy user preferences.

Knowledge Discovery from User Preferences 233

Now, we present a strategy that concentrates on the feature dimensionality. We
propose a local user preference weighting (LW) strategy that discovers the rela-
tive importance of each feature in each case as a weighting value for computing
the similarity, taking into account user preferences.

Our LW strategy for the discovery of feature knowledge is basically motivated
by the previous knowledge discovery strategy. As we have explained in Section
B the discovery of case knowledge is based on maximising user preferences,
which means we are looking for the most compatible cases. These cases are
quite similar on their critiqued features and their differences mainly belong to
those features that have not yet been critiqued. So, the aim of LW strategy is to
prioritise the similarity of those features that have not yet been critiqued.

for each feature f in case ¢’ compute:

. 1\ _ 1 _ [#critiques in U that satisfy featurey in case 4 (4)
wezght(cf) =1 (#total critiques featurey in U x 0.5

We generate a feature weight vector for each case, as shown in Equation [l
A feature that has not been critiqued will assume a weight value of 1.0 and
a decrement will be applied when a critique is satisfied by the case. As such,
the feature weight will be proportional to the number of times a critique on
this feature is satisfied by the case. However, as it can be seen in Equation
@ the weights never decrease to a 0 value. For example, in a travel vacation
recommender with a user model that contains two critiques [price, >, 1000] and
[price, >, 1500], a case with two features { duration, price} whose priceis 2000
will have as price weight a 0.5 value because it satisfies both critiques whereas
the duration weight will be 1.0 because there is no critique on this feature. It is
important to recap that the key idea here is to prioritise the similarity of those
features that have not yet been critiqued in a given session.

Our proposal is to discover the best product to recommend by exploiting the
similarity of those features that best differentiate the highest compatible cases.
To achieve this, a candidate’s (¢') similarity to the recommended case (c,) is
computed at each cycle in the incremental recommender system as shown by
Equation

Similarity(d, c,) = Zweight(c}) x similarity(c}, ¢,) 5)
vy

The similarity between the candidate case (¢) and the recommended case
(c) for each feature f is combined with the weight for this feature. The weight
is computed previously using Equation [l

3.3 Discovering Query Knowledge: Binary Search

The incremental critiquing approach is susceptible to feature-critique repetitions
that offer only a minor change in the relevant feature value from each cycle
to the next. We propose that this is largely due to the linear search policy it
uses to navigate through the value-space for the critiqued feature. The result

234 M. Salamé et al.

is that the recommendation system takes very short steps through the space of
possible alternatives. In this section we describe how the incremental critiquing
algorithm can be easily altered to facilitate larger jumps through the value space
for knowledge discovery of a given feature by taking a more efficient binary search
(BS) approach.

q: query, CB: CaseBase, cq: critique, c, : current recommendation

define QueryRevise(q, cqg, CB, c,)
begin
q < C
CB’ « {c € CB | Satisfies(c, cq)}
CB’ <« eliminate cases that conflict with prior critiques
f., ¢ set value in g for critiqued feature f € c, by Eg. 6

q
return g

© J 0w N e

end

Fig. 3. Illustrating the binary search procedure for query discovery

Figure Bl demonstrates how the incremental algorithm can be easily extended
to support our proposed approach. The only procedure which is affected is the
QueryRevise step of the incremental critiquing algorithm. The new query is up-
dated with all of the features from the current recommendation, ¢,. In addition
two new steps are added. First, the recommender system gathers all of the avail-
able cases that satisfy current feature critique (see line 4 of Figure[d). The second
step involves determining the value-change the critiqued feature will take on in
the revised query, ¢, used for retrieval of the next recommendation. Importantly,
in our approach all the remaining cases, CB’, influence the final value. There
are many approaches that could be used to compute this value. In this paper we
examine the possibility of computing the median (see equation [A]) for all cases
in CB’.

The recommender system collects all of the alternative value possibilities for
the critiqued feature from the cases covered by C'B’. For instance, if the critiqued
feature were [price, <, 2000] the recommender would gather all value options
that were less than 2000 from the set of remaining cases (e.g., 1800, 1650,

1600, 1570, 1460, 1350, etc.). Equation [0l assigns a value for the critiqued
feature f.; € ¢ by calculating the average feature value over all the relevant
cases.

C’B;LH/Z(f of ¢q) if odd #cases
fcq = (6>

CB! f of cq)+CB/ fof cq) .
n1/2()) (n+1/2)+1() if even #cases

For Equation [l it is assumed that the remaining case options, C B’ are first
sorted in ascending order. Here C'B.(f in cq) is the feature value critiqued by
cq in the i case. The median value corresponds to a cumulative percentage of
50% (i.e., 50% of the values are below the median and 50% of the values are

Knowledge Discovery from User Preferences 235

above the median). We place the critiqued features in ascending value order and
find the middle value if the number of cases is odd or find the middle pair and
compute the mean value between them if we have an even number of cases.

One important point, that also needs to be considered, is previous critiques on
the same feature. For example, suppose that a user has asked in a previous cycle
for a less expensive vacation thana 2500 recommendation and, in the current cy-
cle, the user says that she prefers a more expensive thana 1000 vacation. In such
situation in the current cycle, all the cases including those that exceed a 2500
vacation will satisfy the current critique more expensive than 1000. If we com-
pute the median value to jump larger in the search space, we also include those
cases rejected previously by the user. To avoid these situations, we use the history
of critiques applied by the user in order to cut correctly off the search space. The
previous critiques stored in the user model are treated as a set of soft constraints
[13] that allow us to control the number of remaining cases that will be used to
compute the median value.

So, following the earlier example, we only consider computing the median of
those cases that are more expensive than 1000 and less expensive than 2500.
As detailed in line 5 of Figure Bl before computing the median, we check for the
existence of previously applied critiques that contest the inclusion of cases in CB’,
and eliminate these cases from further consideration. Put differently, we use prior
critiques to decide what cases should be covered by C'B’, and to ultimately set the
value selection bounds for fe,.

The key motivation behind our binary search extension to incremental cri-
tiquing was to reduce critique repetition sequences, and improve recommendation
efficiency by discovering satisfactory products for users more rapidly. In short, this
binary search style approach enables the recommender to focus its search on those
candidate cases that: (1) satisfy the current critique; (2) fulfill previously applied
critiques; and (3) are similar to the current case but further away from it, and thus
have the capability of navigating the search space of options quickly.

4 Evaluation

In this paper so far we have argued that the incremental form of critiquing is
limited by its tendency to recommend cases that do not maximally satisfy the
user preferences. We propose three strategies that aid knowledge discovery in a
quest to improve retrieval accuracy and recommendation efficiency. This section
describes the related evaluation methodology that we used and the results that
ensued.

4.1 Setup

The evaluation was performed using the standard Travel dataset (available from
http://ww.ai-cbr.org) which consists of 1024 vacation cases. Each case is de-
scribed in terms of 9 features including price, duration, etc. The dataset was
chosen because it contains numerical and nominal features and it also provides
a wide search space.

236 M. Salamé et al.

We evaluate the highest compatibility selection (HCS), the local user prefer-
ence weighting (LW), the binary search (BS) and also all strategies combined in
our recommender (ALL) over incremental critiquing (incremental).

4.2 Methodology

We would like to have carried out an online evaluation with live-users, but unfor-
tunately this was not possible. As an alternative we opted for an offline evaluation
similar to the one described by [I4]. Accordingly, each case (which are called the
‘base’) in the case-base is temporarily removed and used in two ways. First, it
serves as a basis for a set of queries by taking random subsets of its features.
We focus on subsets of 1, 3 and 5 features to allow us to distinguish between
hard, moderate and easy queries respectively. Second, we select the case that is
most similar to the original base. These cases are the recommendation targets
for the experiments. Thus, the base represents the ideal query for a user, the
generated query is the initial query provided by the ‘user’, and the target is the
best available case for the user. Each generated query is a test problem for the
recommender, and in each recommendation cycle the ‘user’ picks a critique that
is compatible with the known target case; that is, a critique that when applied
to the remaining cases, results in the target case being left in the filtered set of
cases. Each leave-one-out pass through the case-base is repeated 10 times and
the recommendation sessions terminate when the target case is returned.

Related real user studies [15] have highlighted discrepancies between the orig-
inal [I4] artificial user model construction and real user behaviour with respect
to critiqued application and repetition. We use a modified artificial user model
that is informed by our real-user studies. The new model is designed to respond
to recommendations in a manner that is more consistent with the responses
recorded from real-users. In particular, our artificial user model repeats critique
selections during recommendation sessions until its target feature values are met.
For example, suppose our artificial user is looking for a 3-week vacation and they
are presented a 3-day city-break. They are likely to ask for a longer vacation by
critiquing the duration feature. In this evaluation, the artificial user will continue
to critique a feature until it’s preferences constraint is satisfied.

4.3 Recommendation Efficiency

We analyse the recommendation efficiency — by which we mean average recom-
mendation session length — when comparing the new strategies to incremental
critiquing. Figure [(A) presents a graph comparing the average session length
of the incremental critiquing approach to the combination of all the strategies
(ALL) for 3 different initial query lengths. The three strategies combined consis-
tently reduce average session length when compared to the incremental critiquing
approach, demonstrating the potential to improve recommendation efficiency.
For example, for the hard queries the incremental recommender results in an
average on session of 12.46 cycles while the combined recommender results in an
average of 11.47 cycles.

Knowledge Discovery from User Preferences 237

Figure HB) shows the benefit of each strategy (HCS, LW, and BS) sep-
arately and the combined strategies (ALL) in our recommender when com-
pared to the incremental critiquing. We find that all strategies separately
result in a relative session length reduction of between 2.65% and under
7.5%, with some variation in the relative benefit due to the HCS, LW and
BS approaches. The lowest benefit is for the highest compatibility selection
(HCS) approach, which ranges between 2.65% and 3.81%, because it does
the same process as the incremental critiquing approach with two little mod-
ifications that consists of using a different compatibility measure and a dif-
ferent strategy for discovering the set of cases available for recommendation.
Similarly a 3% to 4% benefit is found using the binary search (BS) strat-
egy. On the other hand, the local weighting approach (LW) gives the high-
est benefit, ranging from 4.5% to 6.73%, when applied alone. These results
show that the strategy to promote uncritiqued features is able to discover
and detect differences between cases that are maximally compatible to the
user critiques.

Average Cycles Benefit over Incremental Critiquing
Mincremental @ALL ——HCS —=—LW ——BS —m-ALL |
14 12
12 oo 10 N
10 - S
8
S 61 @ o
© a4t & 4 f—— T
2 1 2
0 0
1 3 5 1 3 5
Query Size Query Size
(A) B)

Fig. 4. Average session length and benefit over incremental critiquing

On the other hand, the combined strategies in our recommender result in
a reduction in session length that ranges from nearly 8% to 10.5%. Combin-
ing all of the strategies further enhances recommendation performance, result-
ing in the discovery of better recommendations for all queries (hard, moderate
and easy). It seems that the recommenders ability to learn user preferences is
greater when combining information from these three distinct knowledge dis-
covery resources. An important point to note is that all results show a lower
benefit for easy queries. This is to be expected perhaps since the easy queries
naturally result in shorter sessions and thus there are fewer opportunities to
find good lower and upper critique bounds to focus the search space prop-
erly in the BS strategy, and hence fewer opportunities for the benefit to be
felt.

It is worth noting the benefit of the proposed strategies over the basic cri-
tiquing algorithm, see Figure Bl We have selected incremental critiquing as a
benchmark because it improves on the recommendation efficiency of the basic
critiquing algorithm by over 82%. Nevertheless, our combination of approaches
has the potential to deliver further reductions in session length (from 83.5% to

238 M. Salamé et al.

upper 84%) even with short sessions where the BS approach does not have much
of an opportunity to affect the recommendations.

To summarise, a significant efficiency benefit is enjoyed by HCS, LW and
BS strategies, when compared to the incremental critiquing approach. The main
contribution of this paper is that the proposed strategies assist in the discovery
of useful recommendation knowledge, allowing the system to prioritise products
that best satisfy the user. We have demonstrated that this approach is highly
effective, even in situations where only a minimal knowledge of user preferences
is available (e.g., critiquing approach). Furthermore, the results of the com-
bined strategies show a significant increase in recommendation efficiency when
compared to incremental critiquing and also to the basic critiquing approach
proposed by [I1].

Benefit over Basic Critiquing
—s—Incremental —=— ALL

84.5 ¢

84.0 e — .
=
E 835
E 83.0
2 825 T
R 820

81.5

81.0 T T

1 3 5
Query Size

Fig. 5. Incremental and ALL benefit over basic critiquing approach

5 Conclusions

The discovery of implicit user preference knowledge is necessary to decide which
product recommendations are the most suitable for each user during a live cus-
tomer interaction. In this paper we have proposed three discovery strategies that
alm to improve recommendation efficiency. First of all, we have presented a case
prioritization strategy that maximises the user preferences over time. Secondly,
we have presented a user preference weighting strategy that prioritises features
locally to each case. Finally, we have presented a query strategy that has the
capability of navigating the search space quickly.

Our experiments indicate that the three proposals have the potential to de-
liver worthwhile efficiency benefits. Reductions in the average length of rec-
ommendation sessions were noted in all of the proposals, both separately and
combined, when compared to the incremental and basic critiquing setups. Impor-
tantly, the proposed strategies are sufficiently general to be applicable across a
wide range of recommendation scenarios. In particular, those that assume a com-
plex product-space where recommendation sessions are likely to be protracted,
and/or domains where only minimal user feedback is likely to be available.

Knowledge Discovery from User Preferences 239

References

1.

2.

10.

11.

12.
13.

14.

15.

D.W. Aha, L.A. Breslow, and H. Mufioz-Avila. Conversational Case-Based Rea-
soning. Applied Intelligence, 14:9-32, 2000.

D. McSherry. Increasing Dialogue Efficiency in Case-Based Reasoning without Loss
of Solution Quality. In Proceedings of the 18th International Joint Conference on
Artificial Intelligence, pages 121-126. Morgan-Kaufmann, 2003.

. D. McSherry and C. Stretch. Automating the Discovery of Recommendation

Knowledge. In Proceedings of the 19th International Joint Conference on Arti-
ficial Intelligence, page forthcoming. Morgan-Kaufmann, 2005.

. R. Burke, K. Hammond, and B.C. Young. The FindMe Approach to Assisted

Browsing. Journal of IEEE Ezpert, 12(4):32-40, 1997.

. L. McGinty and B. Smyth. Comparison-Based Recommendation. In Susan Craw,

editor, Proceedings of the 6th European Conference on Case-Based Reasoning,
pages 575-589. Springer, 2002. Aberdeen, Scotland.

. H. Shimazu. ExpertClerk: A Conversational Case-Based Reasoning Tool for Devel-

oping Salesclerk Agents in E-Commerce Webshops. Artificial Intelligence Review,
18(3-4):223-244, 2002.

. B. Smyth and L. McGinty. An Analysis of Feedback Strategies in Conversational

Recommender Systems. In P. Cunningham, editor, Proceedings of the 14th National
Conference on Artificial Intelligence and Cognitive Science, 2003. Dublin, Ireland.

. L. McGinty and B. Smyth. Tweaking Critiquing. In Proceedings of the Workshop

on Personalization and Web Techniques at the International Joint Conference on
Artificial Intelligence. Morgan-Kaufmann, 2003.

. R. Burke. Interactive Critiquing for Catalog Navigation in E-Commerce. Artificial

Intelligence Review, 18(3-4):245-267, 2002.

J. Reilly, K. McCarthy, L. McGinty, and B. Smyth. Incremental Critiquing. In
M. Bramer, F. Coenen, and T. Allen, editors, Research and Development in Intel-
ligent Systems XXI. Proceedings of AI-2004, pages 101-114. Springer, 2004. Cam-
bridge, UK.

R. Burke, K. Hammond, and B. Young. Knowledge-Based Navigation of Com-
plex Information Spaces. In Proceedings of the Thirteenth National Conference
on Artificial Intelligence, pages 462-468. AAAI Press/MIT Press, 1996. Portland,
OR.

M.E. Harmon and S.S. Harmon. Reinforcement learning: A tutorial, 1996.

M. Stolze. Soft Navigation in Electronic Product Catalogs. International Journal
on Digital Libraries, 3(1):60-66, 2000.

B. Smyth and L. McGinty. The Power of Suggestion. In Proceedings of the Inter-
national Joint Conference on Artificial Intelligence. Morgan-Kaufmann, 2003.

K. McCarthy, L. McGinty, B. Smyth, and J. Reilly. On the Evaluation of Dynamic
Critiquing: A Large-Scale User Study. In Proceedings Twentieth National Con-
ference on Artificial Intelligence, pages 535-540. AAAI Press / The MIT Press,
2005.

	Introduction
	Background
	Knowledge Discovery Strategies
	Discovering Satisfactory Cases: Highest Compatibility Selection
	Discovering Important Features: Local User Preference Weighting
	Discovering Query Knowledge: Binary Search

	Evaluation
	Setup
	Methodology
	Recommendation Efficiency

	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

