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Abstract. In the CoNLL 2003 NER shared task, more than two thirds of the 
submitted systems used the feature-rich representation of the task.  Most of 
them used maximum entropy to combine the features together.  Others used lin-
ear classifiers, such as SVM and RRM.  Among all systems presented there, 
one of the MEMM-based classifiers took the second place, losing only to a 
committee of four different classifiers, one of which was ME-based and another 
RRM-based.  The lone RRM was fourth, and CRF came in the middle of the 
pack.  In this paper we shall demonstrate, by running the three algorithms upon 
the same tasks under exactly the same conditions that this ranking is due to fea-
ture selection and other causes and not due to the inherent qualities of the algo-
rithms, which should be ranked otherwise. 

1   Introduction 

Recently, feature-rich probabilistic conditional classifiers became state-of-the-art in 
sequence labeling tasks, such as NP chunking, PoS tagging, and Named Entity Rec-
ognition. Such classifiers build a probabilistic model of the task, which defines a 
conditional probability on the space of all possible labelings of a given sequence.  In 
this, such classifiers differ from the binary classifiers, such as decision trees and rule-
based systems, which directly produce classification decisions, and from the genera-
tive probabilistic classifiers, such as HMM-based Nymble [2] and SCFG-based TEG 
[8], which model the joint probability of sequences and their labelings.  Modeling the 
conditional probability allows the classifiers to have all the benefits of probabilistic 
systems while having the ability to use any property of tokens and their contexts, if 
the property can be represented in the form of binary features.  Since almost all local 
properties can be represented in such a way, this ability is very powerful. 

There are several different feature-rich probabilistic classifiers developed by dif-
ferent researchers, and in order to compare them, one usually takes a known publicly 
available dataset, such as MUC-7 [23] or CoNLL shared task [12], and compares the 
performance of the algorithms on the dataset.  However, performance of a feature-rich 
classifier strongly depends upon the feature sets it uses.  Since systems developed by 
different researches are bound to use different feature sets, the differences in perform-
ance of complete systems can not reliably teach us about the qualities of the  
underlying algorithms. 
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In this work we compare the performances of three common models (all present in 
the CoNLL 2003 shared task) – MEMM  [15], CRF [16], and RRM (regularized Win-
now) [14] – within the same platform, using exactly the same set of features.  We also 
test the effects of different training sizes, different choice of parameters, and different 
feature sets upon the algorithms' performance. 

Our experiments indicate that CRF outperforms MEMM for all datasets and fea-
ture sets, which is not surprising, since CRF is a better model of sequence labeling.  
Surprisingly, though, the RRM performs at the same level or even better than CRF, 
despite being local model like MEMM, and being significantly simpler to build than 
both CRF and MEMM. 

The following section of the paper we outline the three algorithms.  We then pre-
sent our experiments and their results. 

2   Classifiers 

The general sequence labeling problem can be described as follows. Given a small set 
Y of labels, and a sequence x = x1x2…xl(x)

 , the task is to find a labeling y = y1y2…yl(x), 
where each label yi ∈ Y. In the framework of feature-rich classifiers, the elements xi of 
the sequence should not be thought of as simple tokens, but rather as sequence posi-
tions, or contexts.  The contexts are characterized by a set of externally supplied bi-
nary features. Thus, each context xi can be represented as a vector xi=(xi1,xi2,…,xik), 
where xij = 1 if the j-th feature is present in the i-th context, and xij = 0 otherwise. 

The feature-rich sequence classifiers have no knowledge of the nature of features 
and labels.  Instead, in order to make predictions, the classifiers are supplied with a 
training set T = {(x(t), y(t))}t=1..n of sequences with their intended labelings.  The classi-
fiers use the training set to build the model of the task, which is subsequently used to 
label unseen sequences. 

We shall describe the particular algorithms only briefly, referring to the original 
works to supply the details. 

2.1   MEMM 

A Maximum Entropy Markov Model classifier [4] builds a probabilistic conditional 
model of sequence labeling.  Labeling each position in each sequence is considered to 
be a separate classification decision, possibly influenced by a small constant number 
of previous decisions in the same sequence.  In our experiments we use a Markov 
model of order one, in which only the most recent previous decision is taken into 
account. 

Maximal Entropy models are formulated in terms of feature functions  
f(xi, yi, yi-1) → {0, 1}, which link together the context features and the target labels.  In 
our formulation, we have a feature function fjy for each context feature j and each 
label y, and a feature function fiyy' for each context feature and each pair of labels.  The 
functions are defined as follows: 

fjy(xi, yi, yi-1) = xijIy(yi)     and    fjyy'(xi, yi, yi-1)  = xijIy(yi)Iy'(yi-1), where  Ia(b)  is one if  
a = b  and zero otherwise.  The vector of all feature functions is denoted f(xi, yi, yi-1). 
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A trained MEMM model has a real weight λf for each feature function f.  Together, 
the weights form the parameter vector λ.  The model has the form 
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abilities for different labels sum to one. 
Given a model (1), it can be used for inferring the labeling  y = y1y2…yl(x) of an un-

seen sequence x = x1x2…xl(x) by calculating the most probable overall sequence of 
labels: 

(2) 
1 2 ( )

( )

1
... 1

( ) : arg max log ( | , )
l x

l x

i i i
y y y i

P y y −
=

= ∑ λy x x . 

This most probable sequence can be efficiently calculated using a variant of the Vit-
terbi algorithm. 

The model parameters are trained in such a way as to maximize the model’s en-
tropy while making the expected value of each feature function agree with the ob-
served relative frequency of the feature function in the training data.  Those condi-
tions can be shown to be uniquely satisfied by the model which maximizes the log-
likelihood of the training data among all models of the form (1).  In order to avoid 
overfitting, the likelihood can be penalized with a prior Pr(λ).  Then, the log-
likelihood is 
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and its gradient is 
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is the expectation of the feature vector under the model (1). 
With a reasonably chosen prior, the function LT(λ) is strictly concave, and so  

can be maximized by any convex optimization algorithm.  We use L-BFGS for  
this purpose. 

2.2   CRF 

A Conditional Random Fields (CRF) [7] classifier also builds a probabilistic model of 
sequence labeling.  CRF uses the maximal entropy principle to model the labeling of a 
sequence as a whole, in contrast to MEMM, which builds a model of separate labeling 
decisions at different sequence positions. 



220 B. Rosenfeld, M. Fresko, and R. Feldman 

The model is built upon exactly the same vector f(xi, yi, yi-1) of feature functions as 
MEMM.  The feature functions are summed along a sequence to produce a sequence 
feature functions vector 

(3) 
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which is then used for constructing the maximal entropy model 
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A trained model can be used for inferring the most probable labeling  
of an unseen sequence. The decomposition (3) allows to use the Vitterbi  
algorithm almost identically to the MEMM case, except that in (2),  

instead of 1 1 1log ( | , ) ( , , ) log ( , )i i i i i i i iP y y y y Z y− − −= ⋅ −λ λx f x x , simple 

1( , , )i i iy y −⋅λ f x  is used.  Since Z(x) does not depend on labeling, it need not be 

calculated at all during inference. 
To train the CRF model, we need to maximize the model entropy while satisfying 

the expectation constrains, expressed this time in terms of the sequence feature func-
tions.  As before, this is equivalent to maximizing the log-likelihood of the training 
data, which can also be penalized with a prior to avoid overfitting: 
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where Y(t) is the set of label sequences of length l(x(t)), and 
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is the expectation of the sequence feature functions vector under the model (3). 
In order to maximize LT(λ), we need a way to calculate log Z(x) and EPλ(F(x, Y)) 

for the given sequence x.  It is possible to do this efficiently, using a variant of the 
Forward-Backward algorithm.  Details can be found in [7] and [19]. 

2.3   RRM 

The Robust Risk Minimization classifier [14] results from regularization of the Win-
now algorithm [21].  Winnow is a multiplicative-update online algorithm used for 
estimating the weights of a binary linear classifier, which has the following general 
form: 

y  =  sign(wTx), 
where x is the input vector, w is the weight vector, and y ∈ {+1, –1} is the classifica-
tion decision. 

It was shown in [20], that using a risk function of a special form, the regularized 
Winnow can produce such weights w  that 
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P(y = +1 | x)  ≈  (Tr[-1,1](w
Tx) + 1) / 2, 

where Tr[a,b](s) = min(b, max(a, s)) is a truncation of s onto [a, b]. 
Although the derivation is elaborate, the resulting algorithm is very simple.  It con-

sists of iteratively going over the training set T = {(x(t), y(t))}t=1..n  (here, y(t) = ±1), and 
incrementally updating 
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The αt are the dual weights, initialized to zero and kept between the iterations.  c  is 
the regularization parameter, η  is the learning rate, and µj is the prior. 

The y(t) in (4) are binary decisions.  In order to use the RRM for sequence labeling 
task with more than two labels, we can build a separate classifier for each label and 
then combine them together within a single Vitterbi search. 

3   Experimental Setup 

The goal of this work is to compare the three sequence labeling algorithms in several 
different dimensions:  absolute performance, dependence upon the corpus, depend-
ence upon the training set size and the feature set, and dependence upon the hyper-
parameters. 

3.1   Datasets 

For our experiments we used four datasets:  CoNLL-E, the English CoNLL 2003 
shared task dataset, CoNLL-D, the German CoNLL 2003 shared task dataset, the 
MUC-7 dataset [23], and the proprietary CLF dataset [8].  For the experiments with 
smaller training sizes, we cut training corpora into chunks of 10K, 20K, 40K, 80K, 
and 160K tokens.  The corresponding datasets are denoted <Corpus>_<Size>, e.g. 
“CoNLL-E_10K”. 

3.2    Feature Sets 

There are many properties of tokens and their contexts that could be used in a NER 
system.  We experiment with the following properties, ordered according to the diffi-
culty of obtaining them: 

A. The exact character strings of tokens in a small window around the given 
position. 

B. Lowercase character strings of tokens. 
C. Simple properties of characters inside tokens, such as capitalization, letters 

vs digits, punctuation, etc. 
D. Suffixes and prefixes of tokens with length 2 to 4 characters. 
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E. Presence of tokens in local and global dictionaries, which contain words that 
were classified as certain entities someplace before – either anywhere (for 
global dictionaries), or in the current document (for local dictionaries). 

F. PoS tags of tokens. 
G. Stems of tokens. 
H. Presence of tokens in small manually prepared lists of semantic terms – such 

as months, days of the week, geographical features, company suffixes, etc. 
I. Presence of tokens inside gazetteers, which are huge lists of known entities. 

The PoS tags are available only for the two CoNLL datasets, and the stems are 
available only for the CoNLL-D dataset.  Both are automatically generated and thus 
contain many errors. 

The gazetteers and lists of semantic terms are available for all datasets except 
CoNLL-D. 

 
We tested the following feature sets: 
    set0: checks properties A, B, C at the current and the previous token. 
    set1: A, B, C, B+C in a window [-2…0]. 
    set2: A, B, C, B+C in a window [-2…+2]. 
    set2x: Same as set2, but only properties appearing > 3 times are used. 
    set3: A, B, C, B+C in a window [-2…+2], D at the current token. 
    set4: A, B, C, B+C in a window [-2…+2], D at the current token, E. 
    set5: A, B, C, B+C, F, G in a window [-2…+2] , D at the current token, E. 
    set6: set4 or set5, H 
    set7: set4 or set5, H, I 

3.3    Hyperparameters 

The MaxEntropy-based algorithms, MEMM and CRF, have similar hyperparameters, 
which define the priors for training the models.  We experimented with two different 
priors – Laplacian (double exponential)   PrLAP(λ) = αΣi|λi| and Gaussian  PrGAU(λ) = 
(Σiλi

2) / (2σ2).  Each prior depends upon a single hyperparameter specifying the 
“strength” of the prior.  Note, that ∇PrLAP(λ) has discontinuities at zeroes of λi.  Be-
cause of that, a special consideration must be given to the cases when λi approaches 
or is at zero.  Namely,  

(1) if λi tries to change sign, set λi := 0, and allow it to change sign only on the 
next iteration, and 

(2) if λi = 0, and ( )
i TL∂

∂λ < αλ , do not allow λi to change, because it will 

immediately be driven back toward zero. 

In some of the previous works (e.g., [22]) the Laplacian prior was reported to pro-
duce much worse performance than the Gaussian prior.  Our experiments show them 
to perform similarly.  The likely reason for the difference is poor handling of the zero 
discontinuities. 

The RRM algorithm has three hyperparameters – the prior µ, the regularization pa-
rameter c, and the learning rate η. 
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4   Experimental Results 

It is not possible to test every possible combination of algorithm, dataset and hyper-
parameter. Therefore, we tried to do a meaningful series of experiments, which would 
together highlight the different aspects of the algorithms. 

All of the results are presented as final microaveraged F1 scores. 

4.1   Experiment 1 

In the first series of experiments we evaluated the dependence of the performance of 
the classifiers upon their hyperparameters.  We compared the performance of the 
 

Table 1. RRM results on CoNLL-E dataset 

 CoNLL-E_40K_set7 CoNLL-E_80K_set7 CoNLL-E_160K_set7 

µ=0.01 c=0.001 c=0.01 c=0.1 c=0.001 c=0.01 c=0.1 c=0.001 c=0.01 c=0.1 

η=0.001 78.449 78.431 78.425 81.534 81.534 81.510 84.965 84.965 84.965 

η=0.01 85.071 85.071 84.922 87.766 87.774 87.721 90.246 90.238 90.212 

η=0.1 82.918 83.025 83.733 87.846 87.835 88.031 89.761 89.776 89.904 

µ=0.1          

η=0.001 84.534 84.552 84.534 87.281 87.281 87.264 89.556 89.556 89.573 

η=0.01 85.782 85.800 85.800 89.032 89.032 89.066 91.175 91.175 91.150 

η=0.1 82.439 82.709 83.065 63.032 63.032 63.032 30.741 30.741 56.445 

µ=1.0          

η=0.001 85.973 85.973 85.990 89.108 89.108 89.100 91.056 91.056 91.056 

η=0.01 83.850 83.877 83.904 88.141 88.141 88.119 90.286 90.317 90.351 

η=0.1 0 0 29.937 0 0 0 0 0 0 

Table 2. RRM results on other datasets 

 CoNLL-D_20K_set7 MUC7_40K_set2x CLF_80K_set2 

µ=0.01 c=0.001 c=0.01 c=0.1 c=0.001 c=0.01 c=0.1 c=0.001 c=0.01 c=0.1 

η=0.001 43.490 43.490 43.453 48.722 48.722 48.650 49.229 49.229 49.244

η=0.01 46.440 46.438 46.472 63.220 63.207 62.915 64.000 64.040 63.710

η=0.1 44.878 44.943 45.995 61.824 62.128 63.678 58.088 58.628 61.548

µ=0.1           

η=0.001 44.674 44.674 44.671 60.262 60.249 60.221 59.943 59.943 59.943

η=0.01 44.799 44.845 44.957 65.529 65.547 65.516 64.913 64.913 64.811

η=0.1 43.453 43.520 44.192 60.415 60.958 63.120 55.040 55.677 60.161

µ=1.0           

η=0.001 44.682 44.682 44.694 66.231 66.231 66.174 65.408 65.408 65.408

η=0.01 43.065 43.080 43.195 62.622 62.579 62.825 59.197 59.311 59.687

η=0.1 0 0 6.123 2.922 2.922 8.725 0 0 1.909
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Table 3. CRF results on a selection of datasets 

CRF CLF CoNLL-D MUC7 CoNLL-E 
 20K_set2 40K_set2 80K_set2 40K_set1 80K_set1 160K_set1 80K_set0 80K_set0 

GAU σ = 1 76.646 78.085 80.64 29.851 35.516 39.248 80.756 69.247 

GAU σ = 3 75.222 77.553 79.821 28.530 35.771 38.254 80.355 69.693 

GAU σ = 5 75.031 77.525 79.285 29.901 35.541 38.671 79.853 69.377 

GAU σ = 7 74.463 77.633 79.454 30.975 36.517 38.748 79.585 69.341 

GAU σ = 10 74.352 77.05 77.705 29.269 36.091 38.833 80.625 68.974 

          

LAP α=0.01 73.773 77.446 79.071 29.085 35.811 38.947 79.738 69.388 

LAP α=0.03 75.023 77.242 78.810 31.082 34.097 38.454 79.044 69.583 

LAP α=0.05 76.314 77.037 79.404 30.303 35.494 39.248 79.952 69.161 

LAP α=0.07 74.666 76.329 80.841 30.675 34.530 38.882 79.724 68.806 

LAP α=0.1 74.985 77.655 80.095 31.161 35.187 39.234 79.185 68.955 

Table 4. MEMM results on a selection of datasets 

MEMM CLF CoNLL-D MUC7 CoNLL-E 

  20K_set2 40K_set2 80K_set2 40K_set1 80K_set1 160K_set1 80K_set0 80K_set0 

GAU σ = 1 75.334 78.872 79.364 30.406 35.013 40.164 78.773 67.537 

GAU σ = 3 74.099 75.693 77.278 28.484 35.330 40.005 77.295 67.401 

GAU σ = 5 73.959 74.685 77.316 28.526 35.043 39.799 77.489 67.870 

GAU σ = 7 73.411 74.505 77.563 28.636 34.630 38.531 77.255 67.897 

GAU σ = 10 73.351 74.398 77.379 28.488 33.955 37.830 77.094 68.043 
          

LAP α=0.01 71.225 74.04 75.721 28.316 34.329 40.074 78.312 67.871 

LAP α=0.03 72.603 72.967 76.540 29.086 35.159 38.621 77.385 67.401 

LAP α=0.05 71.921 75.523 75.370 30.425 33.942 39.984 78.262 67.908 

LAP α=0.07 72.019 74.486 77.197 30.118 35.250 39.195 76.646 67.833 

LAP α=0.1 72.695 75.311 76.335 30.315 33.487 40.861 78.141 67.421 

 

classifiers on a selection of datasets, with different hyperparameter values.  All of the 
algorithms showed moderate and rather irregular dependence upon their hyper-
parameters.  However, single overall set of values can be selected. 

The RRM results are shown in the Table 1 and the Table 2.  As can be seen, select-
ing  µ = 0.1, c = 0.01 and η = 0.01 gives reasonably close to optimal performance on 
all datasets. All subsequent experiments were done with those hyperparameter values. 

Likewise, the ME-based algorithms have no single best set of hyperparameter val-
ues, but have close enough near-optimal values.  A selection of MEMM and CRF 
results is shown in the Table 3 and Table 4.  For subsequent experiments we use CRF 
with Laplacian prior with α = 0.07 and MEMM with Gaussian prior with σ = 1. 
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4.2   Training Size 

In this series of experiments we evaluated the performance of the algorithms using 
progressively bigger training datasets:  10K, 200K, 400K, 800K and 1600K tokens.  
The results are summarized in the Fig.1.  As expected, the algorithms exhibit very 
similar training size vs. performance behavior. 
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Fig. 1. Performance of the algorithms with different training sizes 

Table 5. Performance of the algorithms with different feature sets 

  MUC7   CoNLL-D  CoNLL-E 
 CRF MEMM RRM CRF MEMM RRM CRF MEMM RRM 

set0 75.748 66.582 62.206 48.988 43.36 40.109 87.379 82.281 76.887 
set1 75.544 67.075 68.405 50.672 49.164 48.046 87.357 82.516 81.788 
set2 75.288 74.002 74.755 52.128 ~52.01 51.537 86.891 87.089 87.763 
set3 76.913 76.333 76.794 ~60.172 59.526 61.103 88.927 88.711 89.110 
set4 78.336 77.887 77.828 62.79 63.58 65.802 ~90.037 ~90.047 90.722 
set5    ~65.649 65.319 67.813 ~90.139 ~90.115 90.559 
set6 78.969 78.442 78.016    ~90.569 ~90.492 90.982 
set7 81.791 80.923 81.057    ~91.414 90.88 91.777 

4.3   Feature Sets 

In this series of experiments we trained the algorithms with all available training data, 
but using different feature sets.  The results are summarized in the Table 5. The re-
sults were tested for statistical significance using the McNemar test. All the perform-
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ance differences between the successive feature sets are significant at least at the level 
p=0.05, except for the difference between set4 and set5 in CoNLL-E dataset for all 
models, and the differences between set0, set1, and set2 in CoNLL-E and MUC7 
datasets for the CRF model. Those are statistically insignificant. The differences be-
tween the performance of different models that use same feature sets are also mostly 
significant. Exceptions are the numbers preceded by a tilda “~”. Those numbers are 
not significantly different from the best results in their corresponding rows. 

As can be seen, both CRF and RRM generally outperform MEMM.  Among the 
two, the winner appears to depend upon the dataset.  Also, it is interesting to note that 
CRF always wins, and by a large margin, on feature sets 0 and 1, which are distin-
guished from the set 2 by absense of “forward-looking” features.  Indeed, using “for-
ward-looking” features produces little or no improvement for CRF, but very big im-
provement for local models, probably because such features help to alleviate the label 
bias problem [7]. 

5   Conclusions 

We have presented the experiments comparing the three common state-of-the-art 
feature-rich probabilistic sentence classifiers inside a single system, using completely 
identical feature sets.  The experiments show that both CRF and RRM significantly 
outperform MEMM, while themselves performing roughly similarly.  Thus, it shows 
that the comparatively poor performance of CRF in the CoNLL 2003 NER task [16] 
is due to suboptimal feature selection and not to any inherent flaw in the algorithm 
itself. 

Also, we demonstrated that the Laplacian prior performs just as well and some-
times better than Gaussian prior, contrary to the results of some of the previous re-
searches. 

On the other hand, the much simpler RRM classifier performed just as well as CRF 
and even outperformed it on some of the datasets.  The reason of such surprisingly 
good performance invites further investigation. 
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