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Abstract. Mining sequential patterns aims at discovering correlations between
events through time. However, even if many works have dealt with sequential
pattern mining, none of them considers frequent sequential patterns involving
several dimensions in the general case. In this paper, we propose a novel
approach, called M2SP, to mine multidimensional sequential patterns. The
main originality of our proposition is that we obtain not only intra-pattern
sequences but also inter-pattern sequences. Moreover, we consider generalized
multidimensional sequential patterns, called jokerized patterns, in which some
of the dimension values may not be instanciated. Experiments on synthetic data
are reported and show the scalability of our approach.
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1 Introduction

Mining sequential patterns aims at discovering correlations between events through
time. For instance, rules that can be built are A customer who bought a TV and a DVD
player at the same time later bought a recorder. Work dealing with this issue in the
literature have proposed scalable methods and algorithms to mine such rules [9]. As
for association rules, the efficient discovery is based on the support which indicates to
which extend data from the database contains the patterns.

However, these methods only consider one dimension to appear in the patterns,
which is usually called the product dimension. This dimension may also represent
web pages for web usage mining, but there is normally a single dimension. Although
some works from various studies claim to combine several dimensions, we argue here
that they do not provide a complete framework for multidimensional sequential pattern
mining [4I8l11]]. The way we consider multidimensionality is indeed generalized in the
sense that patterns must contain several dimensions combined over time. For instance
we aim at building rules like A customer who bought a sur fboard and a bag in NY later
bought a wetsuit in SF. This rule not only combines two dimensions (City and Product)
but it also combines them over time (NY appears before SF, surfboard appears before
wetsuit). As far as we know, no method has been proposed to mine such rules.

In this paper, we present existing methods and their limits. Then, we define the basic
concepts associated to our proposition, called M2SP, and the algorithms to build such
rules. Experiments performed on synthetic data are reported and assess our proposition.
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In our approach, sequential patterns are mined from a relational table, that can be
seen as a fact table in a multidimensional database. This is why, contrary to the stan-
dard terminology of the relational model, the attributes over which a relational table is
defined are called dimensions.

In order to mine such frequent sequences, we extend our approach so as to take
into account partially instanciated tuples in sequences. More precisely, our algorithms
are designed in order to mine frequent jokerized multidimensional sequences contain-
ing as few * as possible, i.e., replacing an occurrence of * with any value from the
corresponding domain cannot give a frequent sequence.

The paper is organized as follows: Section 2] introduces a motivating example il-
lustrating the goal of our work, and Section [3 reviews previous works on sequential
patterns mining. Section Ml introduces our contribution, and in Section B} we extend
multidimensional patterns to jokerized patterns. Section[6] presents the algorithms, and
experiments performed on synthetic data are reported in Section[7]l Section[8]concludes
the paper.

2 Motivating Example

In this section, we first briefly recall the basic ingredients of the relational model of
databases used in this paper (we refer to [[10] for details on this model), and we present
an example to illustrate our approach. This example will be used throughout the paper
as a running example.

Let U = {Dy,...D,} be a set of attributes, which we call dimensions in our ap-
proach. Each dimension D; is associated with a (possibly infinite) domain of values,
denoted by dom(D;). A relational table T over universe U is a finite set of tuples
t = (di,...,d,) such that, for every i = 1,...,n, d; € dom(D;). Moreover, given a ta-
ble T over U, for every i = 1,...,n, we denote by Domy(D;) (or simply Dom(D;) if
T is clear from the context) the active domain of D; in T, i.e., the set of all values of
dom(D;) that occurin T.

Since we are interested in sequential patterns, we assume that U contains at least
one dimension whose domain is totally ordered, corresponding to the time dimension.

In our running example, we consider a relational table 7 in which transactions is-
sued by customers are stored. More precisely, we consider a universe U containing six
dimensions (or attributes) denoted by D, CG, A, P and Q, where: D is the date of trans-
actions (considering three dates, denoted by 1,2 and 3), CG is the category of customers
(considering two categories, denoted by Educ and Ret, standing for educational and re-
tired customers, respectively), A is the age of customers (considering three discretized
values, denoted by ¥ (young), M (middle) and O (old)), C is the city where transactions
have been issued (considering three cities, denoted by NY (New York), LA (Los An-
geles) and SF (San Francisco)), P is the product of the transactions (considering four
products, denoted by c,m,p and r), and Q stands for the quantity of products in the
transactions (considering nine such quantities).

Fig. [Il shows the table T in which, for instance, the first tuple means that, at date
1, educational young customers bought 50 products ¢ in New York. Let us now as-
sume that we want to extract all multidimensional sequences that deal with the age of
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customers, the products they bought and the corresponding quantities, and that are fre-
quent with respect to the groups of customers and the cities where transactions have
been issued. To this end, we consider three sets of dimensions as follows: (i) the dimen-
sion D, representing the date, (ii) the three dimensions A, P and Q that we call analysis
dimensions, (iii) the two dimensions CG and C, that we call reference dimensions.

Tuples over analysis dimensions are those that appear in the items that constitute the
sequential patterns to be mined. The table is partitioned into blocks according to tuple
values over reference dimensions and the support of a given multidimensional sequence
is the ratio of the number of blocks supporting the sequence over the total number of
blocks. Fig. Rldisplays the corresponding blocks in our example.

In this framework, ({(Y,¢,50),(M,p,2)},{(M,r,10)}) is a multidimensional se-
quence having support é , since the partition according to the reference dimensions con-
tains 3 blocks, among which one supports the sequence. This is so because (Y,¢,50)
and (M, p,2) both appear at the same date (namely date 1), and (M, r, 10) appears later
on (namely at date 2) in the first block shown in Figure 4.

It is important to note that, in our approach, more general patterns, called joker-
ized sequences, can be mined. The reason for this generalization is that considering
partially instanciated tuples in sequences implies that more frequent sequences are
mined. To see this, considering a support threshold of %, no sequence of the form
{Y,c,m)}, {(M,r,i)}) is frequent. On the other hand, in the first two blocks of Fig.
2l Y associated with ¢ and M associated with r appear one after the other, according
to the date of transactions. Thus, we consider that the jokerized sequence, denoted by
{(Y,c,x)},{(M,r,*)}), is frequent since its support is equal to %

D CG C A P Q
(Date) (Customer-Group) (City) (Age) (Product) (Quantity)

1 Educ NY Y c 50
1 Educ NY M P 2

1 Educ LA Y c 30
1 Ret. SF (0] c 20
1 Ret. SF (0] m 2

2 Educ NY M P 3

2 Educ NY M r 10
2 Educ LA Y c 20
3 Educ LA M r 15

Fig.1. Table T

3 Related Work

In this section, we argue that our approach generalizes previous works on sequential pat-
terns. In particular, the work described in [8] is said to be intra-pattern since sequences
are mined within the framework of a single description (the so-called pattern). In this
paper, we propose to generalize this work to infer-pattern multidimensional sequences.
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3.1 Sequential Patterns

An early example of research in the discovering of patterns from sequences of events
can be found in [5]. In this work, the idea is the discovery of rules underlying the gen-
eration of a given sequence in order to predict a plausible sequence continuation. This
idea is then extended to the discovery of interesting patterns (or rules) embedded in a
database of sequences of sets of events (items). A more formal approach in solving the
problem of mining sequential patterns is the AprioriAll algorithm as presented in [6].
Given a database of sequences, where each sequence is a list of transactions ordered by
transaction time, and each transaction is a set of items, the goal is to discover all se-
quential patterns with a user-specified minimum support, where the support of a pattern
is the number of data-sequences that contain the pattern.

In [1], the authors introduce the problem of mining sequential patterns over large
databases of customer transactions where each transaction consists of customer-id,
transaction time, and the items bought in the transaction. Formally, given a set of se-
quences, where each sequence consists of a list of elements and each element consists
of a set of items, and given a user-specified min support threshold, sequential pattern
mining is to find all of the frequent subsequences, i.e., the subsequences whose occur-
rence frequency in the set of sequences is no less than min support. Sequential pattern
mining discovers frequent patterns ordered by time. An example of this type of pat-
tern is A customer who bought a new television 3 months ago, is likely to buy a DVD
player now. Subsequently, many studies have introduced various methods in mining
sequential patterns (mainly in time-related data) but almost all proposed methods are
Apriori-like, i.e., based on the Apriori property which states the fact that any super-
pattern of a nonfrequent pattern cannot be frequent. An example using this approach is
the GSP algorithm [9].

3.2 Multidimensional Sequential Patterns

As far as we know, three propositions have been studied in order to deal with several di-
mensions when building sequential patterns. Next, we briefly recall these propositions.

Pinto et al. [8]]. This work is the first one dealing with several dimensions in the frame-
work of sequential patterns. For instance, purchases are not only described by consid-
ering the customer ID and the products, but also by considering the age, the type of the
customer (Cust-Grp) and the city where (s)he lives, as shown in Fig.[Il
Multidimensional sequential patterns are defined over the schema Aj,...,A;,S
where Ay, ...,A,, are the dimensions describing the data and S is the sequence of items
purchased by the customers ordered over time. A multidimensional sequential pattern
is defined as (id1,(a1, ...,am),s) where a; € A; U {x}. idy,(ay,...,an) is said to be a mul-
tidimensional pattern. For instance, the authors consider the sequence ((x,NY,*),(bf))
meaning that customers from NY have all bought a product b and then a product f. Se-
quential patterns are mined from such multidimensional databases either (i) by mining
all frequent sequential patterns over the product dimension and then regrouping them
into multidimensional patterns, (ii) or by mining all frequent multidimensional patterns
and then mining frequent product sequences over these patterns. Note that the sequences
found by this approach do not contain several dimensions since the dimension time only
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concerns products. Dimension product is the only dimension that can be combined over
time, meaning that it is not possible to have a rule indicating that when b is bought in
Boston then c is bought in NY. Therefore, our approach can seen as a generalization of
the work in [8]].

Yu et Chen. [11]. In this work, the authors consider sequential pattern mining in the
framework of Web Usage Mining. Even if three dimensions (pages, sessions, days)
are considered, these dimensions are very particular since they belong to a single hi-
erarchized dimension. Thus, the sequences mined in this work describe correlations
between objects over time by considering only one dimension, which corresponds to
the web pages.

de Amo et al. [4]]. This approach is based on first order temporal logic. This proposition
is close to our approach, but more restricted since (i) groups used to compute the sup-
port are predefined whereas we consider the fact that the user should be able to define
them (see reference dimensions below), and (ii) several attributes cannot appear in the
sequences. The authors claim that they aim at considering several dimensions but they
have only shown one dimension for the sake of simplicity. However, the paper does not
provide hints for a complete solution with real multidimensional patterns, as we do in
our approach.

4 M?’SP: Mining Multidimensional Sequential Patterns

4.1 Dimension Partition

For each table defined on the set of dimensions D, we consider a partition of D into
four sets: D; for the temporal dimension, D for the analysis dimensions, Dy for the
reference dimensions, and Dy for the ignored dimensions.

Each tuple ¢ = (di, . ..,d,) can thus be written as ¢ = (f,r,a,t) where f, r, a and ¢
are the restrictions of ¢ on D, DR, Da and D, respectively.

Given a table T, the set of all tuples in 7 having the same restriction r over Dy is
said to be a block. Each such block B is denoted by the tuple r that defines it, and we
denote by B py, the set of all blocks that can be built up from table T'.

In our running example, we consider F = 0, Dg = {CG,C}, Dp = {A,P,Q} and
D, = {D}. Fig.2lshows the three blocks built up from table 7.

D CG C APAQ D CG C APAQ D CG C APQ
1 Educ NY Y ¢ 50 1 Edue LA Y ¢ 30 1 Ret. SF O ¢ 20
1 Edue NY M p 2 2 Educ LA Y ¢ 20 1 Rett SF O m 2
2 Educ NY M p 3 3 Edue LA M r 15
2 Edue NY M r 10

a. Block (Educ,NY) b. Block (Educ,LA) c. Block (Ret.,SF)

Fig. 2. Blocks defined on T over dimensions CG and C
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When mining multidimensional sequential patterns, the set Dy identifies the blocks
of the database to be considered when computing supports. The support of a sequence is
the proportion of blocks embedding it. Note that, in the case of usual sequential patterns
and of sequential patterns as in [8] and [4]], this set is reduced to one dimension (cid in
[8] or IdG in [4]).

The set Dp describes the analysis dimensions, meaning that values over these di-
mensions appear in the multidimensional sequential patterns. Note that usual sequential
patterns only consider one analysis dimension corresponding to the products purchased
or the web pages visited. The set F describes the ignored dimensions, i.e. those that are
used neither to define the date, nor the blocks, nor the patterns to be mined.

4.2 Multidimensional Item, Itemset and Sequential Pattern

Definition 1 (Multidimensional Item). Ler DA = {D;,,... ,D;, } be a subset of D. A
multidimensional item on D A is a tuple e = (d;,, . .. ,d;,) such that, for every k in [1,m],
d;, is in Dom(D;,).

Definition 2 (Multidimensional Itemset). A multidimensional itemset on D is a non
empty set of items i = {ey,...,e,} where for every j in [1,p], e; is a multidimensional
item on D and for all j.k in [1,p], e; # ey.

Definition 3 (Multidimensional Sequence). A multidimensional sequence on Dy is
an ordered non empty list of itemsets ¢ = (i1, ...,i;) where for every j in [1,1], i; is a
multidimensional itemset on D .

In our running example, (¥, ¢,50), (M, p,2), (M,r,10) are three multidimensional items
onDp ={A,P,Q}. Thus, ({(¥,¢,50),(M,p,2)},{(M,r,10)}) is a multidimensional se-
quence on Dy .

Definition 4 (Inclusion of sequence). A multidimensional sequence ¢ = (ay,...,a;) is
said to be a subsequence of a sequence ¢ = (by,...,by) if there exist 1 < j; < jo <
.. < ji<Usuchthatay Cbj ,a> Cbj,,...,a; C bj,.

With ¢ = ({(¥,¢,50)}, {(M,10)}) and ¢’ = ({(¥,¢,50), (M, p,2)},{(M,r, 10)}), C is a sub-
sequence of ¢'.

4.3 Support

Computing the support of a sequence amounts to count the number of blocks that sup-
port the sequence. Intuitively, a block supports a sequence ¢ if (i) for each itemset i in
¢ there exists a date in Dom(D;) such that all items in i appear at this date, and (ii) all
itemsets in ¢ are successively retrieved at different and increasing dates.

Definition 5. A rable T supports a sequence (i, ...,i) if for every j =1,...,1, there
exists d; in Dom(D;) such that for every item e in i}, there exists t = (f,r,e,d;) in T
withd) < dp < ...<dj.
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In our running example, the block (Educ,NY) from Fig. Rla supports ¢ = ({(¥, ¢, 50),
(M,p,2)}, {(M,r,10)}) since {(Y,c,50), (M,p,2)} appears at date = 1 and
{(M,r,10)} appears at date = 2.

The support of a sequence in a table T is the proportion of blocks of 7' that support
1t.
Definition 6 (Sequence Support). Let Dy be the reference dimensions and T a table
partitioned into the set of blocks Br py, . The support of a sequence G is defined by:

{B€Br,py | Bsupports ¢}|
support(g) = ll%T.DR|

Definition 7 (Frequent Sequence). Let minsup € [0, 1] be the minimum user-defined
support value. A sequence G is said to be frequent if support(G) > minsup.
An item e is said to be frequent if so is the sequence ({e}).

In our running example, let us consider Dr = {CG,C}, Dy = {A,P,Q}, minsup = ;,
¢ = ({(¥,¢,50),(M,p,2)},{(M,r,10)}). The three blocks of the partition of T from
Fig.Rlmust be scanned to compute support(c).

1. Block (Educ,NY) (Fig.2la). In this block, we have (Y,c,50) and (M, p,2) at date 1,
and (M, r, 10) at date 2. Thus this block supports ¢.

2. Block (Educ,LA) (Fig.2lb). This block does not support ¢ since it does not contain

(M. p,2).
3. Block (Ret.,SF) (Fig.Rlc). This block does not support ¢ since it contains only one
date.

Thus, we have support(c) = % > minsup.

5 Jokerized Sequential Patterns

Considering the definitions above, an item can only be retrieved if there exists a frequent
tuple of values from domains of D containing it. For instance, it can happen that
neither (Y, r) nor (M,r) nor (O,r) is frequent whereas the value r is frequent. In this
case, we consider (x,r) which is said to be jokerized.

Definition 8 (Jokerized Item). Let e = (dy,...,dy) a multidimensional item. We de-
note by e(q,/5) the replacement in e of d; by 0. e is said to be a jokerized multidimen-
sional item if: (i) Vi € [1,m],d; € Dom(D;) U {x}, and (ii) 3i € [1,m] such that d; # *,
and (iii) Vd; = *, $& € Dom(D;) such that e|q,/5) is frequent.

A jokerized item contains at least one specified analysis dimension. It contains a * only
if no specific value from the domain can be set. A jokerized sequence is a sequence
containing at least one jokerized item. A block is said to support a sequence if a set of
tuples containing the itemsets satisfying the temporal constraints can be found.

Definition 9 (Support of a Jokerized Sequence). A fable T supports a jokerized
sequence ¢ = (iy,...,i;) if: ¥j € [1,1], 38; € Dom(Dy), Ve = (d;,,...,d;,) € ij, 3t =
(for (xiy s 5xi,),0;) € T withd;, =x;, ordj, =%and & <& < ... <.

The support of G is defined by: support(c) = HBEBT'DP“];;;;STWOM ol
DR
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6 Algorithms

6.1 Mining Frequent Items

The computation of all frequent sequences is based on the computation of all frequent
multidimensional items. When considering no joker value, a single scan of the database
is enough to compute them.

On the other hand, when considering jokerized items, a levelwise algorithm is used
in order to build the frequent multidimensional items having as few joker values as
possible. To this end, we consider a lattice which lower bound is the multidimensional
item (x,...,x). This lattice is partially built from (x,...,x) up to the frequent items
containing as few * as possible. At level i, i values are specified, and items at this level
are combined to build a set of candidates at level i + 1. Two frequent items are combined
to build a candidate if they are x-compatible.

Definition 10 (x-compatibility). Let e; = (di,...,d,) and e; = (di,...,d},) be two
distinct multidimensional items where d; and d; € dom(D;) U{x}. e| and e are said to
be x-compatible if there exists A= {D;,,...,Dj _,} C{Du,...,D,} such that for every
jelln=2],diy=di #xwithd;,_, =xandd;  #x*andd;, #*andd; = .

Definition 11 (Join). Let ey = (d\,...,d,) and e; = (dy,...,d}) be two x-compatible
multidimensional items. We define e; X e; = (vi,...,v,) where v; =d; if d; = dl{, v, =d;
ifd, =xandv;=d. if d; = *.
Let E and E' be two sets of multidimensional items of size n, we define

EXE ={exe | (e,el) e EXE A eande’ are X-compatible}

In our running example, (NY,Y, ) and (x,Y,r) are x-compatible. We have (NY,Y,*) x
(*,Y,r) = (NY,Y,r). On the contrary, (NY,M,*) and (NY,Y,*) are not X-compatible.
Note that this method is close to the one used for iceberg cubes in [2|3].

Let F denote the set of 1-frequent items having i dimensions which are specified
(different from x). Fll is obtained by counting each value over each analysis dimension,
ie., F! = {f € Cand}, support(f) > minsup}. Candidate items of size i are obtained
by joining the set of frequent items of size i — 1 with itself: Cand’i = FI"*l X Flifl.

Function supportcount
Data : G, T,DR, counting //counting indicates if joker values are considered or not
Result : support of ¢
Integer support «—— 0 ; Boolean seqSupported;
Br,pg «— {blocks of T identified over DR };
foreach B € By p; do
seqSupported «—— supportTable(c, B, counting) ;
if seqSupported then support «—— support +1;

return (Sllppurt)
[Brog|

Algorithm 1: Support of a sequence (supportcount)
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Function supportTable
Data : G, T, counting
Result : Boolean
ItemSet Found <« false ; seq «—— G ; itset «— seq.first() ; it < itset.first()
if ¢ = 0 then return (true) // End of Recursivity
while t «— T.next #0 do
if supports(t,it,counting) then

if (NextItem — itset.second()) = 0 then ItemSet Found — true

/I Look for all the items from the itemset

else

/I Anchoring on the item (date)

T — Gdale:z.dale(T)
while ¢/ «— T'.next() # 0 A ltemSet Found = false do

if supports(t', NextItem,counting) then NextItem «— itset.next()
if NextItem = 0 then ItemSet Found «— true

if ItemSet Found = true then
/I Anchoring on the current itemset succeeded; test the other itemsets in seq
return (supportTable(seq.tail(),04u1e>t.dare(T), counting))
else
/I Anchoring failure: try anchoring with the next dates
itset — seq. first()
T «—— Ggarest.dare(T) I/ Skip to next dates

return(false) // Not found

Algorithm 2: supportTable (Checks if a sequence ¢ is supported by a table T')

6.2 Mining Jokerized Multidimensional Sequences

The frequent items give all frequent sequences containing one itemset consisting of a
single item. Then, the candidate sequences of size k (k > 2) are generated and validated
against the table 7. This computation is based on usual algorithms such as PSP [7]] that
are adapted for the treatment of joker values.

The computation of the support of a sequence ¢ according to the reference dimen-
sions Dg is given by Algorithm [Il This algorithm checks whether each block of the
partition supports the sequence by calling the function supportTable (Algorithm [2)).
supportTable attempts to find a tuple from the block that matches the first item of the
first itemset of the sequence in order to anchor the sequence. This operation is repeated
recursively until all itemsets from the sequence are found (return true) or until there is
no way to go on further (return false). Several possible anchors may have to be tested.

7 Experiments

In this section, we report experiments performed on synthetic data. These experiments
aim at showing the interest and scalability of our approach, especially in the jokerized
approach. As many databases from the real world include quantitative information, we
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have distinguished a quantitative dimension. In order to highlight the particular role of
this quantitative dimension, we consider four ways of computing frequent sequential
patterns: (i) no joker (M2SP), (ii) jokers on all dimensions but the quantitative one
(M2SP-al pha), (iii) jokers only on the quantitative dimension (M2SP-mu), (iv) jokers
on all dimensions (M2SP-al pha-mu). Note that case (iv) corresponds to the jokerized
approach presented in Section[3l Our experiments can thus be seen as being conducted
in the context of a fact table of a multidimensional database, where the quantitative
dimension is the measure. In Figures 5-12, minsup is the minimum support taken into
account, nb dim is the number of analysis dimensions being considered, DB size is the
number of tuples, and avg card is the average number of values in the domains of the
analysis dimensions.

Fig. Bl and [ compare the behavior of the four approaches described above when
the support changes. M2SP-alpha and M*SP-alpha-mu have a similar behavior, the
difference being due to the verification of quantities in the case of M2SP-alpha. Note
that these experiments are not led with the same minimum support values, since no
frequent items are found for M>SP and M*SP-mu if the support is too high. Fig.
shows the scalability of our approach since runtime grows almost linearly when the
database size increases (from 1,000 tuples up to 26,000 tuples).

Fig. 6l shows how runtime behaves when the average cardinality of the domains of
analysis dimensions changes. When this average is very low, numerous frequent items
are mined among few candidates. On the contrary, when this average is high, numer-
ous candidates have to be considered from which few frequent items are mined. Be-
tween these two extrema, the runtime decreases. Fig. [71and Bl show the behavior of our
approach when the number of analysis dimensions changes. The number of frequent
items increases as the number of analysis dimensions grows, leading to an increase
of the number of frequent sequences. Fig. [0 and [I0] show the differential between the
number of frequent sequences mined by our approach compared to the number of fre-
quent sequences mined by the approach described in 8], highlighting the interest of our
proposition.
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8 Conclusion

In this paper, we have proposed a novel definition for multidimensional sequential pat-
terns. Contrary to the propositions [4/8l11]], several analysis dimensions can be found
in the sequence, which allows for the discovery of rules as A customer who bought a
surfboard together with a bag in NY later bought a wetsuit in LA. We have also defined
Jokerized sequential patterns by introducing the joker value * on analysis dimensions.
Algorithms have been evaluated against synthetic data, showing the scalability of our
approach.

This work can be extended following several directions. For example, we can take
into account approximate values on quantitative dimensions. In this case, we allow
the consideration of values that are not fully jokerized while remaining frequent. This
proposition is important when considering data from the real world where the high num-
ber of quantitative values prevents each of them to be frequent. Rules to be built will
then be like The customer who bought a DVD player on the web is likely to buy almost
3 DVDs in a supermarket later. Hierarchies can also be considered in order to mine
multidimensional sequential patterns at different levels of granularity in the framework
of multidimensional databases.
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