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Abstract. We present Tree
2, a new approach to structural classifica-

tion. This integrated approach induces decision trees that test for pattern
occurrence in the inner nodes. It combines state-of-the-art tree mining
with sophisticated pruning techniques to find the most discriminative
pattern in each node. In contrast to existing methods, Tree

2 uses no
heuristics and only a single, statistically well founded parameter has
to be chosen by the user. The experiments show that Tree

2 classifiers
achieve good accuracies while the induced models are smaller than those
of existing approaches, facilitating better comprehensibility.

1 Introduction

Classification is one of the most important data mining tasks. Whereas tradi-
tional approaches have focused on flat representations, using feature vectors or
attribute-value representations, there has recently been a lot of interest in more
expressive representations, such as sequences, trees and graphs [1,2,3,4,5]. Moti-
vations for this interest include drug design, since molecules can be represented
as graphs or sequences. Classification of such data paves the way towards drug
design on the screen instead of extensive experiments in the lab. Regarding docu-
ments, XML, essentially a tree-structured representation, is becoming ever more
popular. Classification in this context allows for more efficient dealing with huge
amounts of electronic documents.

Existing approaches to classifying structured data (such as trees and graphs)
can be categorized into various categories. They differ largely in the way they
derive structural features for discriminating between examples belonging to the
different classes.

A first category can be described as a pure propositionalization approach.
The propositionalization approach typically generates a very large number of
features and uses an attribute-value learner to build a classifier. The resulting
classifiers are often hard to understand due to the large number of features used
which are possibly also combined in a non-trivial way (e.g. in a SVM).

A second class of systems can be described as the association rule approach,
e.g. Zaki [4]. Even though the resulting rules often yield high predictive accuracy,
the number of generated rules typically explodes, making the resulting classifier
difficult to understand.
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Both the association rule and propositionalization approaches consider fea-
ture generation and classification in two independent steps. Integrated approaches
form a third category of systems that integrates feature construction with clas-
sification. This category includes inductive logic programming systems, such as
FOIL [6] and Progol [7], as well as the DT-GBI approach of Motoda et al.
[5]. For those approaches to be computationally feasible they have to perform
heuristic search, possibly generating non-optimal features.

All techniques mentioned above share the need to specify a number of user-
defined parameters, which is often non-trivial.

In this work we present a different approach called Tree
2. It is motivated by

recent results on finding correlated patterns, allowing to find the k best features
according to a convex optimization criterion such as χ2 or Information Gain [8].
Rather than generating a large number of features or searching for good features
in a heuristic manner, Tree

2 searches for the best features to be incorporated
in a decision tree by employing a branch-and-bound search, pruning w.r.t. the
best pattern seen so far. As in DT-GBI, a decision tree is induced but at each
node, the single best feature is computed. There are several advantages: Tree

2

is an integrated approach, has stronger guarantees than GBI, only one parameter
has to be set (the significance level), and the resulting classifiers are far smaller
and easier to understand than those of the propositionalization and association
rule approaches.

The paper is organized as follows: in Section 2 we describe earlier work on the
topic and relate it to our approach; in Section 3, we discuss technical aspects of
our method and outline our algorithm; in Section 4, the experimental evaluation
is explained and its results discussed. We conclude in Section 5 and point to
future work directions.

2 Related Work

Structural classification has been done with different techniques. Firstly, there
are several propositionalization approaches, e.g. [2] and [3]. While details may
differ, the basic mechanism in these approaches is to first mine all patterns that
are unexpected according to some measure (typically frequency). Once those
patterns have been found, instances are transformed into bitstrings, denoting
occurrence of each pattern. Classifiers are trained using this bitstring represen-
tation. While these approaches can show excellent performance and have access
to the whole spectrum of machine learning techniques there are possible prob-
lems. Obviously the decision which patterns to consider special, e.g. by fixing a
minimum frequency, will have an effect on the quality of the model. The result-
ing feature set will probably be very large, forcing pruning of some kind. Finally,
interpretation of the resulting model is not easy, especially if the classifier is
non-symbolic, e.g. a SVM.

A second group of approaches is similar to the associative classification ap-
proach [9]. Again, outstanding patterns are mined but each of them has to asso-
ciate with the class value. Zaki et al.’s XRules classifier is of this variety. Each
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pattern is then considered as a rule predicting its class. Usually, the resulting rule
set has to be post-processed and/or a conflict resolution technique employed. As
in the propositionalization techniques, the choice of constraints under which to
mine is not straight-forward and choosing the resolution technique can strongly
influence performance, as has been shown e.g. in [10,11]. Additionally, the re-
sulting classifier often consists of thousands of rules, making interpretation by
the user again difficult.

Finally, there exist integrated techniques that do not mine all patterns, but
construct features during building the classifier. Since structural data can be
represented in predicate logic, techniques such as Foil [6] and Progol [7] are
capable of doing that. While ILP approaches are elegant and powerful, working
on large datasets can be too computationally expensive. An approach such as
DT-GBI [5], on the other hand, constructs the features it uses for the tests
of the induced decision tree by doing graph-mining. What is common to these
approaches is that feature induction is usually done in a heuristic way, often by
greedy maximization of a correlation measure during beam search. Responsibil-
ity of deciding the parameters governing this search is placed upon the user. For
instance, in Foil decisions have to be made on the beam size and the maxi-
mum number of literals that are allowed in the rule body. Similarly, DT-GBI

requires the user to specify beam size, the maximum number of specializations
in each node, and possibly a minimum frequency that should not be violated.
As Motoda shows in his work [5], finding the right value for the beam size and
the maximum number of specializations requires essentially a meta-search in the
space of possible classifiers.

In contrast, the only parameter to be specified for Tree
2 is the cut-off value

for growing the decision tree. By basing this value on the p-values for the χ2-
distribution, the user has a well-founded guide-line for choosing this value.

While all the above techniques focus on directly using structural information
for classification purposes, a different approach is exemplified by [12]. Instead of
explicitly representing the structures used, kernels are employed that quantify
similarities between entities. While the resulting classifiers are very accurate,
the use of e.g. a graph kernel together with an SVM make analyzing the model
difficult.

3 Methodology

In this section we explain the pattern matching notion used by the Tree
2 ap-

proach, discuss upper bound calculation, the main component of the principled
search for the most discriminating pattern, and formulate the algorithm itself.

3.1 Matching Embedded Trees

Several representations for structured data such as graphs, trees and sequences
exist. In this paper we will focus on tree structured data, like XML, only. Thus,
we need a notion for matching tree structured data.
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A rooted k-tree t is a set of k nodes Vt where each v ∈ Vt, except one called
root, has a parent denoted π(v) ∈ Vt. We use λ(v) to denote the label of a node
and an operator ≺ to denote the order from left to right among the children of a
node. The transitive closure of π will be denoted π∗. Let L be a formal language
composed of all labeled, ordered, rooted trees and D ⊂ L a database. To count
trees t ∈ D containing a pattern p we define a function dt : L → {0, 1} to be 1
iff p matches the tree t and 0 otherwise.

Several notions of tree matching exist. As in Zaki et al.’s work [4] we used a
notion called tree embedding which is defined as follows:

Definition 1. A tree t is embedded in a tree t′ iff a mapping ϕ : Vt → Vt′ exists
such that ∀u, v ∈ Vt : λ(u) = λ(ϕ(u)) ∧ u ≺ v ⇔ ϕ(u) ≺ ϕ(v) ∧ π∗(u) =
v ⇔ π∗(ϕ(u)) = ϕ(v).

An example of an embedded tree is given in Figure 1.

Fig. 1. The tree t is embedded in t′

c1 c2

T yT xT − yT xT

¬T m − yT n − m − (xT − yT ) n − xT

m n − m n

Fig. 2. A Contingency Table

We use tree embedding to compare our approach with Zaki et al.’s technique.
This notion is more flexible than simple subtrees and the mining process is
still efficient. In general, other matching notions (see [1]) and even different
representations could be used with our technique . This includes not only other
notions of matching trees, but also graphs, sequences etc., since the general
principles of our approach apply to all domains.

3.2 Correlation Measures

Popular approaches to finding relevant patterns in the data are based on the
support-confidence framework, mining frequent patterns, in the hope of captur-
ing statistically significant phenomena, with high predictive power. This frame-
work has some problems though, namely the difficulty of choosing a ”good”
support and the fact that confidence tends to reward patterns occurring to-
gether with the majority class. To alleviate these problems, we use correlation
measures for selecting discriminative patterns. A correlation measure compares
the expected frequency of the joint occurrence of a pattern and a certain class
value to the observed frequency. If the resulting value is larger than a certain
threshold then the deviation from the independence assumption is considered
statistically significant enough to assume a relationship between pattern and
class label.
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Example 1. Consider as an example a database consisting of 50 instances, half
of which are labeled with class label c1, the other half with class label c2. Assume
furthermore a pattern T which occurs with support 10 in the database. If eight of
the ten instances including T are labeled with c1, then the χ2 measure would give
this deviation a score of 4.5. Information Gain, that quantifies only the changes
in class distribution w.r.t. T , would give it a score of 0.079.

We organize the observed frequencies of a tree pattern T in a contingency
table, cf. Figure 2, with xT denoting the total number of occurences in the dataset
and yT the occurences in the subset corresponding to the first class. Since the
two variables are sufficient for calculating the value of a correlation measure on
this table, we will view these measures as real-valued functions σ : N

2 �→ R for
the remainder of this paper.

While calculating the correlation value of a given pattern is relatively simple,
directed search towards better solutions is somewhat more difficult since corre-
lation measures have no desirable properties such as anti-monotonicity. But if
they are convex it is possible to calculate an upper bound on the score that
can be achieved by specializations of the current pattern T and thus to decide
whether this branch in the search tree should be followed.

3.3 Convexity and Upper Bounds

It can be proved that χ2 and Information Gain are convex. For the proofs of
the convexity of χ2 and Information Gain we refer the reader to [8].

Convex functions take their extreme values at the points forming the convex
hull of their domain D. Consider the graph of f(x) in Figure 3(A). Assume the
function’s domain is restricted to the interval [k, l] which also makes those points
the convex hull of D. Obviously, f(k) and f(l) are locally maximal, with f(l)
being the global maximum. Given the current value of the function at f(c) and
assuming that it is unknown whether c increases or decreases, evaluating f at k
and l allows to check whether it is possible for any value of c to put the value of
f over the threshold.

Threshold
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Fig. 3. Convex Function and Convex Hull of the set of possible 〈x′
T , y′

T 〉
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For the two-dimensional case, the extreme values are reached at the vertices of
the enclosing polygon (in our case the four vertices of the parallelogram in Figure
3(B)). This parallelogram encloses all possible tuples 〈x′

T , y′
T 〉 that correspond

to occurence counts of specializations of the current pattern T . The tuple 〈0, 0〉
corresponds to a pattern that does not occur in the dataset and therefore does not
have to be considered in calculating the upper bound. 〈xT , yT 〉 represents a valid
pattern, but in the context of upper bound calculation denotes a specialization of
the current pattern T that is equally good in discriminative power. Since general
structures have a higher expected probability of being effective on unseen data,
we prefer those and thus disregard this tuple as well. Thus the upper bound on
σ(T ′) is ubσ(T ) = max{σ(yT , yT ), σ(xT − yT , 0)}. For an in-depth discussion of
upper bound calculation we refer the reader to [8,11].

Example 2. Continuing our example from 3.2, this means that for σ being
χ2, ubχ2(T ) = max{9.52, 2.08}, given x = 10, y = 8. Since 9.52 is larger than
χ2(xT , yT ) = 4.5 there might be a specialization of T that discriminates better
than T itself and therefore exploring this search path is worthwhile.

While this upper bound calculation is correct for Information Gain, an ad-
ditional problem w.r.t. χ2 lies in the fact that the information provided by the
score of χ2 is not always reliable. Statistical theory says that for a contingency
table with one degree of freedom, such as the one we are considering here, the
expected number of occurrences has to be greater than or equal to 5 for the χ2

score to be reliable. This means that a χ2-value on 〈yT , yT 〉 or 〈xT −yT , 0〉 is not
necessarily reliable. Thus, upper bound calculation has to be modified to achieve
reliability. Based on the size of the class and of D, upper and lower bounds cu, cl

on x′
T for which all four cells have an expected count of 5 can be calculated and

the values of the tuples adjusted accordingly. Two of the new vertices are shown
as 〈cu, cu〉 and 〈cl, cl − (xT − yT )〉.

3.4 The Tree
2 Algorithm

The Tree
2 algorithm (shown as Algorithm 1) constructs a binary decision tree

in the manner of ID3 [13]. In the root node and each inner node, the occurrence
of a tree pattern is tested against the instance to be classified. A resulting tree
could look like the example given in Figure 4. In each node, the subtree having
the best discriminative effect on the corresponding subset is found by a system-
atic branch-and-bound search. The mining process is shown in the subroutine
EnumerateBestSubtree. The space of possible patterns is traversed using
canonical enumeration and the value of σ calculated for each candidate pattern.
If this value lies above the best score seen so far, the current pattern is the most
discriminating on this subset so far and the threshold is raised to its σ-value.
An upper bound on the value specializations of the current pattern can achieve
is calculated and pruning of the search space using this upper bound and the
threshold is performed. In this way, we separate the success of the technique
from user decisions about the search strategy. The only decision a user has to
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Fig. 4. A decision tree as produced by the Tree
2 algorithm

make is the one w.r.t. a stopping criterion for further growth of the tree. To
this effect, a minimum value for the score of the correlation measure has to be
specified, which can be based on statistical theory, thus giving the user a better
guidance for making this decision.

Algorithm 1 The Tree
2 algorithm

Tree
2(D, σ, τuser , DT)

1: psplit = EnumerateBestSubtree(�, 0, σ, τuser, ∅)

2: if psplit �= ∅ then
3: Add node including psplit to the DT
4: Tree

2( {T ∈ D|psplit embedded in T} , σ, τuser, DT)
5: Tree

2( {T ∈ D|psplit not embedded in T} , σ, τuser, DT)
6: return DT

EnumerateBestSubtree(t, τ, σ, τuser, p)
1: for all canonical expansions t′ of t do
2: if σ(t′) > τ ∧ σ(t′) ≥ τuser then
3: p = t′, τ = σ(t′)
4: if ubσ(t′) ≥ τ then
5: p = EnumerateBestSubtree(t′, τ, σ, τuser, p)
6: return p

Tree
2 has several desirable properties. Firstly, the resulting classifier is in-

tegrated in the sense that it uses patterns directly, thus circumventing the need
for the user to restrict the amount of features and making the resulting classifier
more understandable. Secondly, by using correlation measures for quantifying
the quality of patterns, we give the user a sounder theoretical foundation on
which to base the decision about which learned tests to consider significant and
include in the model. Thirdly, we avoid using heuristics that force the user to de-
cide on the values of parameters that could have a severe impact on the resulting
model’s accuracy. Using principled search guarantees that Tree

2 finds the best
discriminating pattern for each node in the decision tree w.r.t. the correlation
measure used. Finally, as the experiments show, the resulting decision tree is
far smaller than the rule sets produced by XRules classifier [4], while achieving
comparable accuracy, and is therefore more easily interpretable by human users.
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4 Experimental Evaluation

For the experimental evaluation, we compared our approach to XRules and a
decision tree base-line approach on the XML data used in Zaki et al.’s publication
[4]. Furthermore, we compared Tree

2 to a base-line approach using frequency
mining for a SVM classifier and two Progol results on the regression-friendly
subset of the Mutagenesis dataset.

XML Data. The XML data used in our experiments are log files from web-site
visitors’ sessions. They are separated into three weeks (CSLOG1, CSLOG2, and
CSLOG3) and each session is classified as its producing visitor coming either
from an .edu domain or from any other domain. Characteristics of the datasets
are shown in Table 1. For the comparison we built decision trees with the

Table 1. Characteristics of Datasets (taken from [4])

DB #Sessions edu other %edu %other
CSLOG1 8074 1962 6112 24.3 75.7
CSLOG2 7409 1687 5722 22.8 77.2
CSLOG12 13934 2969 10965 21.3 78.7
CSLOG3 7628 1798 5830 23.6 76.4

χ2 distribution’s significance value for 90%, 95% and 99% respectively. In each
setting we used one set of data for training and another one for testing. Following
Zaki’s notation, CSLOGx-y means that we trained on set x and tested on set
y. For the base-line approach we mined the 100 patterns having the highest
discriminative effect on the data, transformed the data into bitstring instances
according to the found patterns, and built decision trees using all 100 patterns
in one run (C4.5 - 100 ) and the 50 best patterns in another run (C4.5 - 50 )
with the WEKA [14] implementation of the C4.5 [15] algorithm. We compare the
accuracies of the resulting classifiers against each other as well as the complexity
of the model which we measure by the number of rules used by XRules, and
by the number of leaves in the decision trees, which corresponds to the number
of rules that can be derived from the trees, respectively.

Fig. 5. Accuracies and size in rules of the different approaches
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Results are summarized in Figure 5. As can be seen, the accuracies of the
induced classifiers do not vary much. The only approach that significantly out-
performs (by 2-3%) the other techniques on all but the CSLOG1-2 setting, is
XRules. At the same time, the size of XRules’ models is also significantly
greater. While the Tree

2 trees induced with Information Gain have several
hundred nodes and all trees induced with χ2 (both Tree

2 and base-line) be-
tween 35 and 103 nodes, the smallest XRules model consists of more than 19000
rules. Patterns tested against in the inner decision tree nodes consist of 3-7 nodes
only. Since this is similar to the size of patterns used in XRules’ rules, complex-
ity is really reduced and not just pushed inside the classifier. In comparing the
other approaches, several things are noticeable. Raising the threshold from the
90% to the 95% significance level for χ2-induced Tree

2 trees does not decrease
accuracy (even improving it slightly in 3 cases). Raising it further to the 99%
level has no clear effect. The tree size decreases, though, on average by 7.5 nodes
from the 90% to the 95% setting. Raising the significance level further to 99%
decreases the tree size by 18 nodes on average.

For the base-line approach we mined patterns correlating strongly with the
classes and trained a classifier on them. This approach achieves competitive
results w.r.t the accuracy. The clear drawback is that deciding on the number
of features to use is not straightforward. Using only 50 instead of 100 features
produces all kinds of behavior. In some cases the accuracy does not change. In
other cases the classifier using 50 features outperforms the one using 100 or vice
versa. Also, the base-line approach using 100 patterns tends to use most of these,
even if Tree

2 trees of similar quality are much smaller.
Finally, using Information Gain as quality criterion shows mainly one thing -

that it is difficult to make an informed decision on cut-off values. The accuracies
and sizes shown refer to decision trees induced with a cut-off value of 0.001. For
one thing, the resulting trees grow far bigger than the χ2-trees. Additionally,
the accuracies in comparison with the χ2 approach vary, giving rise to one worse
tree, one of equal quality and two better ones. None of the differences in accuracy
is significant though. Inducing decision trees with a cut-off value of 0.01 lowers
accuracy by 1.5 to 3 percentage points, with the induced trees still being larger
than the χ2 trees.

Mutagenicity Data. For this setting, we chose the regression-friendly subset
of the well known Mutagenicity dataset used in [16]. We compare with the results
of the ILP system Progol reported in [16,17] and the results of the base-line
approach reported in [3]. Since the Mutagenicity dataset consists of molecules
represented as graphs, a transformation from the SMILES representation into
so-called fragment-trees is used that is explained following this paragraph.

The Smiles Encoding. The SMILES language [18] is used by computational
chemists as a compact encoding of molecular structure. It is supported by
many tools as OpenBabel or Daylight ([19,20]). The language contains sym-
bols for atoms, bonds, branches, and can express cycles. Using a decomposition-
algorithm by Karwath and De Raedt [21], a SMILES-String can, after some
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reformatting, be decomposed into a so-called fragment tree. Since there is no
unique SMILES-string for a molecule, the fragment tree is not unique either.
The decomposition-algorithm recursively splits the string into cycles {xT }x and
branches A(B)C. In the resulting fragment-tree the leaves contain pure cycles or
linear fragments without further branches. The inner nodes of such a tree contain
fragments still containing branches while the root node is the whole molecule.
The edge labels denote the type of decomposition (i.e. the part of the branch
or the number of the cycle). Thus, the leaves of a fragment-tree contain a lot of
information decomposed into very small fragments. As in [3] we drop the edge
labels and labeled all but the leaf nodes with a new, unique label. Hence, the
tree-structure represents the abstract structure of the molecule with the chemical
information in the leaves.

Figure 6 shows a molecule on the left-hand side which could be encoded by
the SMILES-string N − c1ccc(cc1)−O− c2ccc(cc2)− [Cl]. This string represents
the same as N{0cccc(cc}0)O{1cccc(cc}1)[Cl]. The corresponding fragment-tree
is shown on the right-hand side of Figure 6.

Fig. 6. A molecule with the encoding N − c1ccc(cc1) − O − c2ccc(cc2) − [Cl] and the
corresponding fragment-tree

Experimental Results. Predictive accuracy for each approach was estimated us-
ing ten-fold cross-validation. Reported are average accuracies and standard devi-
ation (if known). For Tree

2, trees were induced at the 95% significance level for
χ2 and with a cut-off value of 0.01 for Information Gain. The results reported
in [16] were achieved using Progol and working only on structural informa-
tion, in [17], numerical values suggested by experts were used as well. This work
reports only an average accuracy. The resulting accuracies and the size of the
corresponding theories are shown in Table 2.

As can be seen, for both measures Tree
2 gives similar results to the purely

structural Progol approach, with the differences being not significant. At the
same time, the χ2 induced model is far smaller than the other two. Again,
the patterns tested against in the inner nodes are not overly complex (5-11
nodes). When Progol uses the expert-identified attributes as well, its accuracy
increases. Since we do not have access to the standard deviation of these experi-
ments, we cannot make a significance statement. Finally, the base-line approach,
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Table 2. Accuracies and complexity of the models on the mutagenicity dataset

Approach Predictive Accuracy Average Size of the Model
Tree

2 χ2 80.26±7.14 2.3 Nodes
Tree

2 IG 81.76±9 11.8 Nodes
Progol ’94 [16] 80±3 9 Clauses
Progol ’95 [17] 84 4 Clauses
Frequent SMILES [3] 86.70 214 Patterns

which mined all patterns frequent in one class and not exceeding a given fre-
quency in the other class, and built a model using these features in an SVM,
significantly outperforms the Tree

2 classifiers. On the other hand, by using
a SVM, the results will hardly be interpretable for humans anymore and the
amount of patterns used is larger than in the Tree

2 models by two orders of
magnitude.

5 Conclusion and Future Work

We presented Tree
2, an integrated approach to structural classification. The

algorithm builds a decision tree for tree structured data that tests for pattern
occurrence in the inner nodes. Using an optimal branch-and-bound search, made
possible by effective pruning, Tree

2 finds the most discriminative pattern for
each subset of the data considered. This allows the user to abstract the success
of the classifier from decisions about the search process, unlike in existing ap-
proaches that include heuristics. Basing the stopping criterion for growing the
decision tree on statistically well founded measures rather than arbitrary thresh-
olds whose meaning is somewhat ambiguous gives the user better guidance for
selecting this parameter. It also alleviates the main problem of the support-
confidence framework, namely the generation of very large rule sets that are
incomprehensible to the user and possibly include uninformative rules w.r.t.
classification.

As the experiments show, Tree
2 classifiers are effective while being less

complex than existing approaches. While using χ2 for assessing the quality of
discriminative patterns, raising or lowering the significance threshold affects the
induced trees in an expected manner. In contrast, using Information Gain is
more difficult, since selecting the cut-off value has no statistical foundations.
While base-line approaches, that separate feature generation and classifier con-
struction, achieve very good results, it is not entirely clear how to justify the
selected the number of features mined. Furthermore, there exists a gap in inter-
pretability since the classifier used might combine the mined features in a way
that is not easily accessible to the user.

So far, we have restricted ourselves to a single representation, trees, a cer-
tain type of classifier, decision trees, and two measures. Future work will include
evaluating other correlation measures and applying our approach to different
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representations. Finally, the success of using effective conflict resolution strate-
gies in the XRules classifier suggests the expansion our approach to ensemble
classifiers.
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