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Preface

The European Conference on Machine Learning (ECML) and the European
Conference on Principles and Practice of Knowledge Discovery in Databases
(PKDD) were jointly organized this year for the fifth time in a row, after some
years of mutual independence before. After Freiburg (2001), Helsinki (2002),
Cavtat (2003) and Pisa (2004), Porto received the 16th edition of ECML and
the 9th PKDD in October 3–7.

Having the two conferences together seems to be working well: 585 different
paper submissions were received for both events, which maintains the high sub-
mission standard of last year. Of these, 335 were submitted to ECML only, 220
to PKDD only and 30 to both. Such a high volume of scientific work required
a tremendous effort from Area Chairs, Program Committee members and some
additional reviewers. On average, PC members had 10 papers to evaluate, and
Area Chairs had 25 papers to decide upon. We managed to have 3 highly quali-
fied independent reviews per paper (with very few exceptions) and one additional
overall input from one of the Area Chairs. After the authors’ responses and the
online discussions for many of the papers, we arrived at the final selection of
40 regular papers for ECML and 35 for PKDD. Besides these, 32 others were
accepted as short papers for ECML and 35 for PKDD. This represents a joint
acceptance rate of around 13% for regular papers and 25% overall. We thank all
involved for all the effort with reviewing and selection of papers.

Besides the core technical program, ECML and PKDD had 6 invited speakers,
10 workshops, 8 tutorials and a Knowledge Discovery Challenge. Our special
thanks to the organizers of the individual workshops and tutorials and to the
workshop and tutorial chairs Floriana Esposito and Dunja Mladenić and to the
challenge organizer Petr Berka. A very special word to Richard van de Stadt for
all his competence and professionalism in the management of CyberChairPRO.
Our thanks also to everyone from the Organization Committee mentioned further
on who helped us with the organization. Our acknowledgement also to Rodolfo
Matos and Assunção Costa Lima for providing logistic support.

Our acknowledgements to all the sponsors, Fundação para a Ciência e Tecnolo-
gia (FCT), LIACC-NIAAD, Faculdade de Engenharia do Porto, Faculdade de
EconomiadoPorto,KDubiq –KnowledgeDiscovery inUbiquitousEnvironments—
Coordinated Action of FP6, Salford Systems, Pascal Network of Excellence,
PSE/SPSS, ECCAI and Comissão de Viticultura da Região dos Vinhos Verdes.
We also wish to express our gratitude to all other individuals and institutions not
explicitly mentioned in this text who somehow contributed to the success of these
events.

Finally, our word of appreciation to all the authors who submitted papers
to the main conferences and their workshops, without whom none of this would
have been possible.

July 2005 Aĺıpio Jorge, Lúıs Torgo, Pavel Brazdil,
Rui Camacho and João Gama
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Dunja Mladenić (Jozef Stefan Institute, Slovenia)

Challenge Chairs

Petr Berka (University of Economics, Czech Republic)
Bruno Crémilleux (Université de Caen, France)
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Aĺıpio Jorge, Portugal
Hillol Kargupta, USA
Pedro Larranaga, Spain
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Lorenza Saitta, Italy
Daniel Sanchez, Spain
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Nele Dexters

Christian Diekmann
Isabel Drost
Nicolas Durand
Mohamed Elfeky
Timm Euler
Nicola Fanizzi
Pedro Gabriel Ferreira
Francisco Ferrer
Daan Fierens
Sergio Flesca
Francesco Folino
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José Hernández-Orallo
Jochen Hipp
Juan F. Huete
Ali Inan
Ingo Mierswa
Stephanie Jacquemont
François Jacquenet
Aleks Jakulin
Tao Jiang
Wei Jiang
Xing Jiang



Organization XI

Sachindra Joshi
Pierre-Emmanuel Jouve
Michael Steinbach
George Karypis
Steffen Kempe
Arto Klami
Christian Kolbe
Stasinos Konstantopoulos
Matjaz Kukar
Minseok Kwon
Lotfi Lakhal
Carsten Lanquillon
Dominique Laurent
Yan-Nei Law
Roberto Legaspi
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Data from various areas of Life Sciences have increasingly caught the attention
of data mining and machine learning researchers. Not only is the amount of data
available mind-boggling but the diverse and heterogenous nature of the infor-
mation is far beyond any other data analysis problem so far. In sharp contrast
to classical data analysis scenarios, the life science area poses challenges of a
rather different nature for mainly two reasons. Firstly, the available data stems
from heterogenous information sources of varying degrees of reliability and qual-
ity and is, without the interactive, constant interpretation of a domain expert,
not useful. Furthermore, predictive models are of only marginal interest to those
users – instead they hope for new insights into a complex, biological system that
is only partially represented within that data anyway. In this scenario, the data
serves mainly to create new insights and generate new ideas that can be tested.
Secondly, the notion of feature space and the accompanying measures of similar-
ity cannot be taken for granted. Similarity measures become context dependent
and it is often the case that within one analysis task several different ways of
describing the objects of interest or measuring similarity between them matter.

Some more recently published work in the data analysis area has started to
address some of these issues. For example, data analysis in parallel universes [1],
that is, the detection of patterns of interest in various different descriptor spaces
at the same time, and mining of frequent, discriminative fragments in large,
molecular data bases [2]. In both cases, sheer numerical performance is not the
focus; it is rather the discovery of interpretable pieces of evidence that lights up
new ideas in the users mind. Future work in data analysis in the life sciences needs
to keep this in mind: the goal is to trigger new ideas and stimulate interesting
associations.
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Over the past 10-15 years, the influence of methods from machine learning has
transformed the way that research is done in the field of natural language pro-
cessing. This talk will begin by covering the history of this transformation. In
particular, learning methods have proved successful in producing stand-alone
text-processing components to handle a number of linguistic tasks. Moreover,
these components can be combined to produce systems that exhibit shallow
text-understanding capabilities: they can, for example, extract key facts from
unrestricted documents in limited domains or find answers to general-purpose
questions from open-domain document collections. I will briefly describe the
state of the art for these practical text-processing applications, focusing on the
important role that machine learning methods have played in their development.

The second part of the talk will explore the role that natural language pro-
cessing might play in machine learning research. Here, I will explain the kinds of
text-based features that are relatively easy to incorporate into machine learning
data sets. In addition, I’ll outline some problems from natural language process-
ing that require, or could at least benefit from, new machine learning algorithms.
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In the past few years there has been a lot of work lying at the intersection of prob-
ability theory, logic programming and machine learning [14,18,13,9,6,1,11]. This
work is known under the names of statistical relational learning [7,5], probabilis-
tic logic learning [4], or probabilistic inductive logic programming. Whereas most
of the existing works have started from a probabilistic learning perspective and
extended probabilistic formalisms with relational aspects, I shall take a different
perspective, in which I shall start from inductive logic programming and study
how inductive logic programming formalisms, settings and techniques can be ex-
tended to deal with probabilistic issues. This tradition has already contributed a
rich variety of valuable formalisms and techniques, including probabilistic Horn
abduction by David Poole, PRISMs by Sato, stochastic logic programs by Mug-
gleton [13] and Cussens [2], Bayesian logic programs [10,8] by Kersting and De
Raedt, and Logical Hidden Markov Models [11].

The main contribution of this talk is the introduction of three probabilistic
inductive logic programming settings which are derived from the learning from
entailment, from interpretations and from proofs settings of the field of induc-
tive logic programming [3]. Each of these settings contributes different notions of
probabilistic logic representations, examples and probability distributions. The
first setting, probabilistic learning from entailment, is incorporated in the well-
known PRISM system [19] and Cussens’s Failure Adjusted Maximisation ap-
proach to parameter estimation in stochastic logic programs [2]. A novel system
that was recently developed and that fits this paradigm is the nFOIL system [12].
It combines key principles of the well-known inductive logic programming system
FOIL [15] with the näıve Bayes’ appraoch. In probabilistic learning from entail-
ment, examples are ground facts that should be probabilistically entailed by the
target logic program. The second setting, probabilistic learning from interpreta-
tions, is incorporated in Bayesian logic programs [10,8], which integrate Bayesian
networks with logic programs. This setting is also adopted by [6]. Examples in
this setting are Herbrand interpretations that should be a probabilistic model
for the target theory. The third setting, learning from proofs [17], is novel. It is
motivated by the learning of stochastic context free grammars from tree banks.
In this setting, examples are proof trees that should be probabilistically provable
from the unknown stochastic logic programs. The sketched settings (and their
instances presented) are by no means the only possible settings for probabilistic
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inductive logic programming, but still – I hope – provide useful insights into the
state-of-the-art of this exciting field.

For a full survey of statistical relational learning or probabilistic inductive
logic programming, the author would like to refer to [4], and for more details
on the probabilistic inductive logic programming settings to [16], where a longer
and earlier version of this contribution can be found.
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Much of the world’s supply of data is in the form of time series. Furthermore,
as we shall see, many types of data can be meaningfully converted into ”time
series”, including text, DNA, video, images etc. The last decade has seen an
explosion of interest in mining time series data from the academic community.
There has been significant work on algorithms to classify, cluster, segment, index,
discover rules, visualize, and detect anomalies/novelties in time series.

In this talk I will summarize the latest advances in mining time series data,
including:

– New representations of time series data.
– New algorithms/definitions.
– The migration from static problems to online problems.
– New areas and applications of time series data mining.

I will end the talk with a discussion of “what’s left to do” in time series data
mining.
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Electronic Commerce is now entering its second decade, with Amazon.com and
eBay now in existence for ten years. With massive amounts of data, an ac-
tionable domain, and measurable ROI, multiple companies use data mining and
knowledge discovery to understand their customers and improve interactions. We
present important lessons and challenges using e-commerce examples across two
dimensions: (i) business-level to technical, and (ii) the mining lifecycle from data
collection, data warehouse construction, to discovery and deployment. Many of
the lessons and challenges are applicable to domains outside e-commerce.
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Abstract. With the proliferation of data intensive applications, it has become 
necessary to develop new techniques to handle massive data sets. Traditional 
algorithmic techniques and data structures are not always suitable to handle the 
amount of data that is required and the fact that the data often streams by and 
cannot be accessed again. A field of research established over the past decade is 
that of handling massive data sets using data synopses, and developing algo-
rithmic techniques for data stream models. We will discuss some of the research 
work that has been done in the field, and provide a decades’ perspective to data 
synopses and data streams.  

1   Summary 

In recent years, we have witnessed an explosion in data used in various applications. 
In general, the growth rate in data is known to exceed the increase rate in the size of 
RAM, and of the available computation power (a.k.a. Moore’s Law). As a result, 
traditional algorithms and data structures are often no longer adequate to handle the 
massive data sets required by these applications.  

One approach to handle massive data sets is to use external memory algorithms, de-
signed to make an effective utilization of I/O. In such algorithms the data structures 
are often implemented in external storage devices, and the objective is in general to 
minimize the number of I/Os. For a survey of works on external memory algorithms 
see [6].  Such algorithms assume that the entire input data is available for further 
processing. There are, however, many applications where the data is only seen once, 
as it “streams by”. This may be the case in, e.g., financial applications, network moni-
toring, security, telecommunications data management, web applications, manufactur-
ing, and sensor networks. Even in data warehouse applications, where the data may in 
general be available for additional querying, there are many situations where data 
analysis needs to be done as the data is loaded into the data warehouse, since the cost 
of accessing the data in a fully loaded production system may be significantly larger 
than just the basic cost of I/O. Additionally, even in the largest data warehouses, con-
sisting of hundreds of terabytes, data is only maintained for a limited  time, so access 
to historical data may often be infeasible. 

It had thus become necessary to address situations in which massive data sets are 
required to be handled as they “stream by”, and using only limited memory. Moti-
vated by this need, the research field of data streams and data synopses has emerged 
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and established over the last few years. We will discuss some of the research work 
that has been done in the field, and provide a decades’ perspective to data streams and 
data synopses. A longer version of this abstract will be available at [4]. 

The data stream model is quite simple: it is assumed that the input data set is given 
as a sequence of data items. Each data item is seen only once, and any computation 
can be done utilizing the data structures maintained in main memory. These memory 
resident data structures are substantially smaller than the input data. As such, they 
cannot fully represent the data as is the case for traditional data structures, but can 
only provide a synopsis of the input data; hence they are denoted as synopsis data 
structures, or data synopses [3].  

The use of data synopses implies that data analysis that is dependent on the entire 
streaming data will often be approximated. Furthermore, ad hoc queries that are de-
pendent on the entire input data could only be served by the data synopses, and as a 
result only approximate answers to queries will be available. A primary objective in 
the design of data synopses is to have the smallest data synopses that would guarantee 
small, and if possible bounded, error on the approximated computation.  

As we have shown in [1], some essential statistical data analysis, the so-called fre-
quency moments, can be approximated using synopses that are as small as polynomial 
or even logarithmic in the input size. Over the last few years there has been a prolif-
eration of additional works on data streams and data synopses. See, e.g., the surveys 
[2] and [5]. These works include theoretical results, as well as applications in data-
bases, network traffic analysis, security, sensor networks, and program profiling; 
synopses include samples, random projections, histograms, wavelets, and XML syn-
opses, among others. There remain a plethora of interesting open problems, both theo-
retical as well as applied.  
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Abstract. It is generally believed that data mining results do not violate the
anonymity of the individuals recorded in the source database. In fact, data mining
models and patterns, in order to ensure a required statistical significance, repre-
sent a large number of individuals and thus conceal individual identities: this is
the case of the minimum support threshold in association rule mining. In this pa-
per we show that this belief is ill-founded. By shifting the concept of k-anonymity
from data to patterns, we formally characterize the notion of a threat to anonymity
in the context of pattern discovery, and provide a methodology to efficiently and
effectively identify all possible such threats that might arise from the disclosure
of a set of extracted patterns.

1 Introduction

Privacy Preserving Data Mining, i.e., the analysis of data mining side-effects on pri-
vacy, has recently become a key research issue and is receiving a growing attention
from the research community [1,3,9,16]. However, despite such efforts, a common un-
derstanding of what is meant by “privacy” is still missing. This fact has led to the pro-
liferation of many completely different approaches to privacy preserving data mining,
all sharing the same generic goal: producing a valid mining model without disclosing
“private” data. As highlighted in [9], the approaches pursued so far leave a privacy ques-
tion open: do the data mining results themselves violate privacy? Put in other words, do
the disclosure of extracted patterns open up the risk of privacy breaches that may reveal
sensitive information? During the last year, few works [7,9,11] have tried to address this
problem by some different points of view, but they all require some a priori knowledge
of what is sensitive and what is not.

In this paper we study when data mining results represent per se a threat to privacy,
independently of any background knowledge of what is sensitive. In particular, we focus
on individual privacy, which is concerned with the anonymity of individuals.

A prototypical application instance is in the medical domain, where the collected
data are typically very sensitive, and the kind of privacy usually required is the anonymity
of the patients in a survey. Consider a medical institution where the usual hospital activ-
ity is coupled with medical research activity. Since physicians are the data collectors and
holders, and they already know everything about their patients, they have unrestricted
access to the collected information. Therefore, they can perform real mining on all avail-
able information using traditional mining tools – not necessarily the privacy preserving
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ones. This way they maximize the outcome of the knowledge discovery process, with-
out any concern about privacy of the patients which are recorded in the data. But the
anonymity of patients becomes a key issue when the physicians want to share their dis-
coveries (e.g., association rules holding in the data) with their scientific community.

At a first sight, it seems that data mining results do not violate the anonymity of the
individuals recorded in the source database. In fact, data mining models and patterns,
in order to ensure a required statistical significance, represent a large number of indi-
viduals and thus conceal individual identities: this is the case of the minimum support
threshold in association rule mining. The next example shows that the above belief is
ill-founded.

Example 1. Consider the following association rule:

a1 ∧ a2 ∧ a3 ⇒ a4 [sup = 80, conf = 98.7%]

where sup and conf are the usual interestingness measures of support and confidence
as defined in [2]. Since the given rule holds for a number of individuals (80), which
seems large enough to protect individual privacy, one could conclude that the given rule
can be safely disclosed. But, is this all the information contained in such a rule? Indeed,
one can easily derive the support of the premise of the rule:

sup({a1, a2, a3}) =
sup({a1, a2, a3, a4})

conf
≈ 80

0.987
= 81.05

Given that the pattern a1 ∧ a2 ∧ a3 ∧ a4 holds for 80 individuals, and that the pattern
a1 ∧ a2 ∧ a3 holds for 81 individuals, we can infer that in our database there is just one
individual for which the pattern a1 ∧ a2 ∧ a3 ∧ ¬a4 holds.

The knowledge inferred is a clear threat to the anonymity of that individual: on one
hand the pattern identifying the individual could itself contain sensitive information; on
the other hand it could be used to re-identify the same individual in other databases.

It is worth noting that this problem is very general: the given rule could be, instead
of an association, a classification rule, or the path from the root to the leaf in a decision
tree, and the same reasoning would still hold. Moreover, it is straightforward to note
that, unluckily, the more accurate is a rule, the more unsafe it may be w.r.t. anonymity.
As shown later, this anonymity problem can not be simply solved by discarding the
most accurate rules: in fact, more complex kinds of threats to anonymity exist which
involve more than simply two itemsets.

1.1 Related Works

During the last years a novel problem has emerged in privacy-preserving data mining
[7,9,11]: do the data mining results themselves violate privacy? Only little preliminary
work is available. The work in [9] studies the case of a classifier trained over a mix-
ture of different kind of data: public (known to every one including the adversary),
private/sensitive (should remain unknown to the adversary), and unknown (neither sen-
sitive nor known by the adversary). The authors propose a model for privacy implication
of the learned classifier.
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In [11] the data owner, rather than sharing the data, prefers to share the mined asso-
ciation rules, but requires that a set of restricted association rules are not disclosed. The
authors propose a framework to sanitize the output of association rules mining, while
blocking some inference channels for the restricted rules.

In [7] a framework for evaluating classification rules in terms of their perceived
privacy and ethical sensitivity is described. The proposed framework empowers the
data miner with alerts for sensitive rules that can be accepted or dismissed by the user
as appropriate. Such alerts are based on an aggregate sensitivity combination function,
which assigns to each rule a value of sensitivity by aggregating the sensitivity value (an
integer between 0 and 9) of each attribute involved in the rule. The process of labelling
each attribute with its sensitivity value must be accomplished by the domain expert.

The fundamental difference of these approaches with ours lies in generality: we pro-
pose a novel, objective definition of privacy compliance of patterns without any reference
to a preconceived knowledge of sensitive data or patterns, on the basis of the rather in-
tuitive and realistic constraint that the anonymity of individuals should be guaranteed.

An important method for protecting individual privacy is k-anonymity, introduced
in [14], a notion that establishes that the cardinality of the answer to any possible query
should be at least k. In this work, it is shown that protection of individual sources does
not guarantee protection when sources are cross-examined: a sensitive medical record,
for instance, can be uniquely linked to a named voter record in a publicly available voter
list through some shared attributes. The objective of k-anonymity is to eliminate such
opportunities of inferring private information through cross linkage. In particular, this
is obtained by a “sanitization” of the source data that is transformed in such a way that,
for all possible queries, at least k tuples will be returned. Such a sanitization is obtained
by generalization and suppression of attributes and/or tuples [15].

Trivially, by mining a k-anonymized database no patterns threatening the anonymity
can be obtained. But such mining would produce models impoverished by the infor-
mation loss which is intrinsic in the generalization and suppression techniques. Since
our objective is to extract valid and interesting patterns, we propose to postpone k-
anonymization after the actual mining step. In other words, we do not to enforce k-
anonymity onto the source data, but instead we move such a concept to the extracted
patterns.

1.2 Paper Contributions

In this paper we study the privacy problem described above in the very general setting
of patterns which are boolean formulas over a binary database. Our contribution is
twofold:

– we define k-anonymous patterns and provide a general characterization of inference
channels holding among patterns that may threat anonymity of source data;

– we develop an effective and efficient algorithm to detect such potential threats,
which yields a methodology to check whether the mining results may be disclosed
without any risk of violating anonymity.

We emphasize that the capability of detecting the potential threats is extremely use-
ful for the analyst to determine a trade-off among the quality of mining result and the
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privacy guarantee, by means of an iterative interaction with the proposed detection al-
gorithm. Our empirical experiments, reported in this paper, bring evidence to this ob-
servation. It should also be noted the different setting w.r.t. the other works in privacy
preserving data mining: in our context no data perturbation or sanitization is performed;
we allow real mining on the real data, while focussing on the anonymity preservation
properties of the extracted patterns. We have also developed possible strategies to elim-
inate the threats to anonymity by introducing distortion on the dangerous patterns in a
controlled way: for lack of space these results are omitted here but can be found in [5].

2 k-Anonymous Patterns and σ-Frequent Itemsets

We start by defining binary databases and patterns following the notation in [8].

Definition 1. A binary database D = (I, T ) consists of a finite set of binary vari-
ables I = {i1, . . . , ip}, also known as items, and a finite multiset T = {t1, . . . , tn} of
p-dimensional binary vectors recording the values of the items. Such vectors are also
known as transactions. A pattern for the variables in I is a logical (propositional) sen-
tence built by AND (∧), OR (∨) and NOT (¬) logical connectives, on variables in I.
The domain of all possible patterns is denoted Pat(I).

According to Def. 1, e ∧ (¬b ∨ ¬d), where b, d, e ∈ I, is a pattern. One of the
most important properties of a pattern is its frequency in the database, i.e. the number
of individuals (transactions) in the database which make the given pattern true1.

Definition 2. Given a database D, a transaction t ∈ D and a pattern p, we write p(t)
if t makes p true. The support of p in D is given by the number of transactions which
makes p true: supD(p) = |{t ∈ D | p(t)}|.

The most studied pattern class is the itemset, i.e., a conjunction of positive valued
variables, or in other words, a set of items. The retrieval of itemsets which satisfy a
minimum frequency property is the basic step of many data mining tasks, including
(but not limited to) association rules [2,4].

Definition 3. The set of all itemsets 2I , is a pattern class consisting of all possible
conjunctions of the form i1∧ i2∧ . . .∧ im. Given a database D and a minimum support
threshold σ, the set of σ-frequent itemsets in D is denoted

F(D, σ) = {〈X, supD(X)〉 | X ∈ 2I ∧ supD(X) ≥ σ}

Itemsets are usually denoted in the form of set of the items in the conjunction, e.g.
{i1, . . . , im}; or sometimes, simply i1 . . . im. Figure 1(b) shows the different notation
used for general patterns and for itemsets. The problem addressed in this paper is given
by the possibility of inferring from the output of frequent itemset mining, i.e, F(D, σ),
the existence of patterns with very low support (i.e., smaller than an anonymity thresh-
old k, but not null): such patterns represent a threat for the anonymity of the individuals
about which they are true.

1 The notion of truth of a pattern w.r.t. a transaction t is defined in the usual way: t makes p true
iff t is a model of the propositional sentence p.
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D
a b c d e f g h

t1 1 1 1 1 1 1 1 1
t2 1 1 1 1 1 0 1 0
t3 1 1 1 1 1 0 0 0
t4 1 1 1 1 1 1 1 0
t5 1 1 1 1 1 0 0 0
t6 1 1 1 1 1 0 0 0
t7 1 1 0 1 1 0 0 0
t8 1 0 0 0 1 1 1 0
t9 0 0 1 1 1 1 1 0
t10 0 0 1 1 1 0 0 0
t11 0 0 1 1 1 1 1 1
t12 1 1 0 0 0 1 1 0

Notation: patterns

supD(a ∨ f) = 11
supD(e ∧ (¬b ∨ ¬d)) = 4
supD(h ∧ ¬b) = 1

Notation: itemsets

supD(abc) = 6
supD(abde) = 7
supD(cd) = 9

F(D, 8) = {〈∅, 12〉, 〈a, 9〉, 〈b, 8〉, 〈c, 9〉,
〈d, 10〉, 〈e, 11〉, 〈ab, 8〉, 〈ae, 8〉, 〈cd, 9〉,
〈ce, 9〉, 〈de, 10〉, 〈cde, 9〉}

(c)

Cl(D, 8) = {〈∅, 12〉, 〈a, 9〉, 〈e, 11〉,
〈ab, 8〉, 〈ae, 8〉, 〈de, 10〉, 〈cde, 9〉}

(d)

MCh(3, Cl(D, 6)) = {〈Cabcde
abde , 1〉,

〈Cabcde
ae , 1〉, 〈Cabcde

ab , 1〉, 〈Cfg
g , 1〉, 〈Ceg

g , 1〉}
(a) (b) (e)

Fig. 1. Running example: (a) the binary database D; (b) different notation used for patterns and
itemsets; (c) the set of σ-frequent (σ = 8) itemsets; (d) the set of closed frequent itemsets; (e) the
set of maximal inference channels for k = 3 and σ = 6

Definition 4. Given a database D and an anonymity threshold k, a pattern p is said to
be k-anonymous if supD(p) ≥ k or supD(p) = 0.

2.1 Problem Definition

Before introducing our anonymity preservation problem, we need to define the infer-
ence of supports, which is the basic tool for the attacks to anonymity.

Definition 5. A set S of pairs 〈X, n〉, where X ∈ 2I and n ∈ N, and a database D are
said to be σ-compatible if S ⊆ F(D, σ). Given a pattern p we say that S |= sup(p) > x
(respectively S |= sup(p) < x) if, for all databases D σ-compatible with S, we have
that supD(p) > x (respectively supD(p) < x).

Informally, we call inference channel any subset of the collection of itemsets (with
their respective supports), from which it is possible to infer non k-anonymous patterns.
Our mining problem can be seen as frequent pattern extraction with two frequency
thresholds: the usual minimum support threshold σ for itemsets (as defined in Definition
3), and an anonymity threshold k for general patterns (as defined in Definition 1).

Note that an itemset with support less than k is itself a non k-anonymous, and thus
dangerous, pattern. However, since we can safely assume (as we will do in the rest of
this paper) that σ 
 k, such pattern would be discarded by the usual mining algorithms.

Definition 6. Given a collection of frequent itemsets F(D, σ) and an anonymity thresh-
old k, our problem consists in detecting all possible inference channels C ⊆ F(D, σ) :
∃p ∈ Pat(I) : C |= 0 < supD(p) < k.

Obviously, a solution to this problem directly yields a method to formally prove that
the disclosure of a given collection of frequent itemsets does not violate the anonymity
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constraint: it is sufficient to check that no inference channel exists for the given collec-
tion. In this case, the collection can be safely distributed even to malicious adversaries.
On the contrary, if this is not the case, we can proceed in two ways:

– mine a new collection of frequent itemsets under different circumstances, e.g.,
higher minimum support threshold, to look for an admissible collection;

– transform (sanitize) the collection to remove the inference channels.

The second alternative opens up many interesting mining problems, which are omit-
ted here for lack of space, and are discussed in [5].

3 Detecting Inference Channels

In this Section we study how information about non k-anonymous patterns can be
possibly inferred from a collection of σ-frequent itemsets. As suggested by Exam-
ple 1, a simple inference channel is given by any itemset X which has a superset
X ∪ {a} such that 0 < supD(X) − supD(X ∪ {a}) < k. In this case the pair
〈X, supD(X)〉, 〈X ∪ {a}, supD(X ∪ {a})〉 is an inference channel for the non k-
anonymous pattern X ∧¬a, whose support is directly given by supD(X)− supD(X ∪
{a}). This is a trivial kind of inference channel. Do more complex structures of item-
sets exist that can be used as inference channels? In general, the support of a pattern
p = i1 ∧ · · · ∧ im ∧¬a1 ∧ · · · ∧ ¬an can be inferred if we know the support of itemsets
I = {i1, . . . , im}, J = I ∪ {a1, . . . , an}, and every itemset L such that I ⊂ L ⊂ J .

Lemma 1. Given a pattern p = i1 ∧ · · · ∧ im ∧ ¬a1 ∧ · · · ∧ ¬an we have that:

supD(p) =
∑

I⊆X⊆J

(−1)|X\I|supD(X)

where I = {i1, . . . , im} and J = I ∪ {a1, . . . , an}.

Proof. (Sketch) The proof follows directly from the definition of support and the well-
known inclusion-exclusion principle [10].

Following the notation in [6], we denote the right-hand side of the equation above
as fJ

I (D). In the database D in Figure 1 we have that supD(b∧¬d∧¬e) = f bde
b (D) =

supD(b) − supD(bd) − supD(be) + supD(bde) = 8 − 7 − 7 + 7 = 1.

Definition 7. Given a database D, and two itemsets I, J ∈ 2I , I = {i1, . . . , im} and
J = I ∪ {a1, . . . , an}, if 0 < fJ

I (D) < k, then the set of itemsets {X |I ⊆ X ⊆ J}
constitutes an inference channel for the non k-anonymous pattern p = i1 ∧ · · · ∧ im ∧
¬a1 ∧ · · · ∧ ¬an. We denote such inference channel CJ

I and we write supD(CJ
I ) =

fJ
I (D).

Example 2. Consider the database D of Figure 1, and suppose k = 3. We have that
Cabcde

ab is an inference channel of support 1. This means that there is only one transaction
t ∈ D is such that a ∧ b ∧ ¬c ∧ ¬d ∧ ¬e.

The next Theorem states that if there exists a non k-anonymous pattern, then there
exists a pair of itemsets I ⊆ J ∈ 2I such that CJ

I is an inference channel.
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Theorem 1. ∀p ∈ Pat(I) : 0 < supD(p) < k . ∃ I ⊆ J ∈ 2I : CJ
I .

Proof. The case of a conjunctive pattern p is a direct consequence of Lemma 1. Let us
now consider a generic pattern p ∈ Pat(I). Without loss of generality p is in normal
disjunctive form: p = p1 ∨ . . . ∨ pq, where p1 . . . pq are conjunctive patterns. We have
that:

supD(p) ≥ max
1≤i≤q

supD(pi).

Since supD(p) < k we have for all patterns pi that supD(pi) < k. Moreover, since
supD(p) > 0 is there at least a pattern pi such that supD(pi) > 0. Therefore, there is
at least a conjunctive pattern pi such that 0 < supD(pi) < k.

From Theorem 1 we conclude that all possible threats to anonymity are due to infer-
ence channels of the form CJ

I . However we can divide such inference channels in two
subgroups:

1. inference channels involving only frequent itemsets;
2. inference channels involving also infrequent itemsets.

The first problem, addressed in the rest of this paper, is the most essential. In fact, a
malicious adversary can easily find inference channels made up only of elements which
are present in the disclosed output. However, these inference channels are not the unique
possible source of inference: further inference channels involving also infrequent item-
sets could be possibly discovered, albeit in a much more complex way.

In fact, in [6] deduction rules to derive tight bounds on the support of itemsets are
introduced. Given an itemset J , if for each subset I ⊂ J the support supD(I) is known,
such rules allow to compute lower and upper bounds on the support of J . Let l be the
greatest lower bound we can derive, and u the smallest upper bound we can derive: if
we find that l = u then we can infer that supD(J) = l = u without actual counting.
In this case J is said to be a derivable itemset. We transpose such deduction techniques
in our context and observe that they can be exploited to discover information about in-
frequent itemsets, and from these to infer non k-anonymous patterns. For lack of space,
this higher-order problem is not discussed here, and left to the extended version of
this paper. However, here we can say that the techniques to detect this kind of infer-
ence channels and to block them are very similar to the techniques for the first kind of
channels. This is due to the fact that both kinds of channels rely on the same concept:
inferring supports of larger itemsets from smaller ones. Indeed, the key equation of our
work (Lemma 1) is also the basis of the deduction rules proposed in [6].

From now on we restrict our attention to the essential form of inference channel,
namely those involving frequent itemsets only.

Definition 8. The set of all CJ
I holding in F(D, σ), together with their supports, is de-

noted Ch(k,F(D, σ)) = {〈CJ
I , fJ

I (D)〉 | 0 < fJ
I (D) < k∧〈J, supD(J)〉 ∈ F(D, σ)}.

Algorithm 1 detects all possible inference channels Ch(k,F(D, σ)) that hold in
a collection of frequent itemsets F(D, σ) by checking all possible pairs of itemsets
I, J ∈ F(D, σ) such that I ⊆ J . This could result in a very large number of checks.
Suppose that F(D, σ) is formed only by a maximal itemset Y and all its subsets (an
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Algorithm 1 Naı̈ve Inference Channel Detector
Input: F(D, σ), k
Output: Ch(k,F(D, σ))
1: Ch(k,F(D, σ)) = ∅
2: for all 〈J, sup(J)〉 ∈ F(D, σ) do
3: for all I ⊆ J do
4: compute fJ

I ;
5: if 0 < fJ

I < k then
6: insert〈CJ

I , fJ
I 〉 in Ch(k,F(D, σ));

itemset is maximal if none of its proper supersets is in F(D, σ)). If |Y | = n we get
|F(D, σ)| = 2n (we also count the empty set), while the number of possible CJ

I is∑
1≤i≤n (n

i ) (2i−1). In the following Section we study some interesting properties that
allow to dramatically reduce the number of checks needed to retrieve Ch(k,F(D, σ)).

4 A Condensed Representation of Inference Channels

In this section we introduce a condensed representation of Ch(k,F(D, σ)), i.e., a subset
of Ch(k,F(D, σ)) which is more efficient to compute, and sufficient to reconstruct the
whole Ch(k,F(D, σ)). The benefits of having such condensed representation go far
beyond mere efficiency. In fact, removing the redundancy existing in Ch(k,F(D, σ)),
we also implicitly avoid redundant sanitization, when we will block inference channels
holding in F(D, σ) (recall that, as stated before, the issue of how to block inference
channels is not covered in this paper).

Consider, for instance, the two inference channels 〈Cacd
ad , 1〉 and 〈Cabcd

abd , 1〉 holding
in the database in Fig. 1(a): one is more specific than the other, but they both uniquely
identify transaction t7. It is easy to see that many other families of equivalent, and thus
redundant, inference channels can be found. How can we directly identify one and only
one representative inference channel in each family of equivalent ones? The theory of
closed itemsets can help us with this problem.

Closed itemsets were first introduced in [12] and since then they have received a
great deal of attention especially by an algorithmic point of view [17,13]. They are a
concise and lossless representation of all frequent itemsets, i.e., they contain the same
information without redundancy. Intuitively, a closed itemset groups together all its
subsets that have its same support; or in other words, it groups together itemsets which
identify the same group of transactions.

Definition 9. Given the function f(T ) = {i ∈ I | ∀t ∈ T, i ∈ t}, which returns all
the items included in the set of transactions T , and the function g(X) = {t ∈ T |
∀i ∈ X, i ∈ t} which returns the set of transactions supporting a given itemset X , the
composite function c = f ◦ g is the closure operator. An itemset I is closed iff and only
if c(I) = I . Given a databaseD and a minimum support threshold σ, the set of frequent
closed itemsets is denoted Cl(D, σ). An itemset I ∈ Cl(D, σ) is said to be maximal iff
�J ⊃ I s.t. J ∈ Cl(D, σ).
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Analogously to what happens for the pattern class of itemsets, if we consider the
pattern class of conjunctive patterns we can rely on the anti-monotonicity property of
frequency. For instance, the number of transactions for which the pattern a ∧ ¬c holds
is always larger than the number of transactions for which the pattern a ∧ b ∧ ¬c ∧ ¬d
holds.

Definition 10. Given two inference channels CJ
I and CL

H we say that CJ
I � CL

H when
I ⊆ H and (J \ I) ⊆ (L \ H).

Proposition 1. CJ
I � CL

H ⇒ ∀D . fJ
I (D) ≥ fL

H(D).

Therefore, when detecting inference channels, whenever we find a CL
H such that

fL
H(D) ≥ k, we can avoid checking the support of all inference channels CJ

I � CL
H ,

since they will be k-anonymous.

Definition 11. An inference channel CJ
I is said to be maximal w.r.t. D and σ, if ∀H, L

such that I ⊆ H and (J \I) ⊆ (L\H), fL
H = 0. The set of maximal inference channels

is denoted MCh(k, Cl(D, σ)).

Proposition 2. CJ
I ∈ MCh(k, Cl(D, σ)) ⇒ I ∈ Cl(D, σ) ∧ J is maximal.

Proof. i) I ∈ Cl(D, σ): if I is not closed then consider its closure c(I) and consider
J ′ = J ∪ (c(I) \ I). For the definition of closure, the set of transactions containing I is
the same of the set of transactions containing c(I), and the set of transactions containing
J ′ is the same of the set of transactions containing J . It follows that CJ′

c(I) � CJ
I and

fJ
c(I) = fJ

I > 0. Then, if I is not closed, CJ
I is not maximal.

ii)J is maximal: if J is not maximal then consider its frequent superset J ′ = J ∪ {a}
and consider I ′ = I ∪ a. It is straightforward to see that fJ

I = fJ′
I + fJ′

I′ and that
CJ′

I � CJ
I and CJ′

I′ � CJ
I . Therefore, since fJ

I > 0, at least one among fJ′
I and fJ′

I′

must be not null. Then, if J is not maximal, CJ
I is not maximal as well.

The next Theorem shows how the support of any channel in Ch(k,F(D, σ)) can be
reconstructed from MCh(k, Cl(D, σ)).

Theorem 2. Given CJ
I ∈ Ch(k,F(D, σ)), let M be any maximal itemset such that

M ⊇ J . The following equation holds:

fJ
I (D) =

∑
c(X)

fM
c(X)(D)

where c(I) ⊆ c(X) ⊆ M and c(X) ∩ (J \ I) = ∅.

Proof. See [5].

From Theorem 2 we conclude that all the addends needed to compute fJ
I (D) for an

inference channel are either in MCh(k, Cl(D, σ)) or are null. Therefore, as the set of
all closed frequent itemsets Cl(D, σ) contains all the information of F(D, σ) in a more
compact representation, analogously the set MCh(k, Cl(D, σ)) represents, without re-
dundancy, all the information in Ch(k,F(D, σ)).
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In the database D of Figure 1(a), given σ = 6 and k = 3, |Ch(3,F(D, 6))| = 58
while |MCh(3, Cl(D, 6))| = 5 (Figure 1(e)), a reduction of one order of magnitude
which is also confirmed by our experiments on real datasets, as reported in Figure 2(a).
Moreover, in order to detect all inference channels holding in F(D, σ), we can limit our-
selves to retrieve only the inference channels in MCh(k, Cl(D, σ)), thus taking in input
Cl(D, σ) instead of F(D, σ) and thus performing a much smaller number of checks.
Algorithm 2 exploits the anti-monotonicity of frequency (Prop. 1) and the property of
maximal inference channels (Prop. 2) to compute MCh(k, Cl(D, σ)) from Cl(D, σ).
Thanks to these two properties, Algorithm 2 is much faster, dramatically outperforming
the naive inference channel detector (Algorithm 1), and scaling well even for very low
support thresholds, as reported in Figure 2(b).

Algorithm 2 Optimized Inference Channel Detector
Input: Cl(D, σ), k
Output: MCh(k, Cl(D, σ))
1: M = {I ∈ Cl(D, σ)|I is maximal};
2: MCh(k, Cl(D, σ)) = ∅;
3: for all J ∈ M do
4: for all I ∈ Cl(D, σ) such that I ⊆ J do
5: compute fJ

I ;
6: if 0 < fJ

I < k then
7: insert 〈CJ

I , fJ
I 〉 in MCh(k, Cl(D, σ));
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Fig. 2. Benefits of the condensed representation: size of the representations (a), and run time (b)

5 Anonymity vs. Accuracy: Empirical Observations

Algorithm 2 represents an optimized way to identify all threats to anonymity. Its perfor-
mance revealed adequate in all our empirical evaluations using various datasets from the
FIMI repository2; in all such cases the time improvement from the Naı̈ve (Algorithm 1)

2 http://fimi.cs.helsinki.fi/data/
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Fig. 3. Experimental results on cardinality of MCh(k, Cl(D, σ)) on two datasets

to the optimized algorithm is about one order of magnitude. This level of efficiency
allows an interactive-iterative use of the algorithm by the analyst, aimed at finding the
best trade-off among privacy and accuracy of the collection of patterns. To be more
precise, there is a conflict among keeping the support threshold as low as possible, in
order to mine all interesting patterns, and avoiding the generation of anonymity threats.
The best solution to this problem is precisely to find out the minimum support threshold
that generates a collection of patterns with no threats. The plots in Figure 3 illustrate
this point: on the x-axis we report the minimum support threshold, on the y-axis we re-
port the total number of threats (the cardinality of MCh(k, Cl(D, σ))), and the various
curves indicate such number according to different values of the anonymity threshold
k. In Figure 3(a) we report the plot for the MUSHROOM dataset (a dense one), while in
Figure 3(b) we report the plot for the KOSARAK dataset which is sparse. In both cases, it
is evident the value of the minimum support threshold that represents the best trade-off,
for any given value of k. However, in certain cases, the best support threshold can still
be too high to mine a sufficient quantity of interesting patterns. In such cases, the only
option is to allow lower support thresholds and then to block the inference channels in
the mining outcome. This problem, as stated before, is not covered in this paper for lack
of space, and will be presented in a forthcoming paper.

6 Conclusions

We introduced in this paper the notion of k-anonymous patterns. Such notion serves
as a basis for a formal account of the intuition that a collection of patterns, obtained
by data mining techniques and made available to the public, should not offer any pos-
sibilities to violate the privacy of the individuals whose data are stored in the source
database. To the above aim, we formalized the threats to anonymity by means of in-
ference channel through frequent itemsets, and provided practical algorithms to detect
such channels.

Other issues, emerging from our approach, are worth a deeper investigation and
are left to future research. These include: (i) a thorough comparison of the various dif-
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ferent approaches that may be used to block inference channels; (ii) a comprehensive
empirical evaluation of our approach: to this purpose we are conducting a large-scale
experiment with real life bio-medical data about patients to assess both applicability
and scalability of the approach in a realistic, challenging domain; (iii) an investigation
whether the proposed notion of privacy-preserving pattern discovery may be general-
ized to other forms of patterns and models.

In any case, the importance of the advocated form of privacy-preserving pattern
discovery is evident: demonstrably trustworthy data mining techniques may open up
tremendous opportunities for new knowledge-based applications of public utility and
large societal and economic impact.
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Abstract. The paradigm of pattern discovery based on constraints was intro-
duced with the aim of providing to the user a tool to drive the discovery process
towards potentially interesting patterns, with the positive side effect of achieving
a more efficient computation. So far the research on this paradigm has mainly
focussed on the latter aspect: the development of efficient algorithms for the eval-
uation of constraint-based mining queries. Due to the lack of research on method-
ological issues, the constraint-based pattern mining framework still suffers from
many problems which limit its practical relevance. As a solution, in this paper
we introduce the new paradigm of pattern discovery based on Soft Constraints.
Albeit simple, the proposed paradigm overcomes all the major methodological
drawbacks of the classical constraint-based paradigm, representing an important
step further towards practical pattern discovery.

1 Background and Motivations

During the last decade a lot of researchers have focussed their (mainly algorithmic)
investigations on the computational problem of Frequent Pattern Discovery, i.e. mining
patterns which satisfy a user-defined constraint of minimum frequency [1].

The simplest form of a frequent pattern is the frequent itemset.

Definition 1 (Frequent Itemset Mining). Let I = {x1, ..., xn} be a set of distinct
items, where an item is an object with some predefined attributes (e.g., price, type, etc.).
An itemset X is a non-empty subset of I. A transaction database D is a bag of itemsets
t ∈ 2I , usually called transactions. The support of an itemset X in databaseD, denoted
suppD(X), is the number of transactions which are superset of X . Given a user-defined
minimum support σ, an itemset X is called frequent in D if suppD(X) ≥ σ. This defines
the minimum frequency constraint: Cfreq[D,σ](X) ⇔ suppD(X) ≥ σ.

Recently the research community has turned its attention to more complex kinds
of frequent patterns extracted from more structured data: sequences, trees, and graphs.
All these different kinds of pattern have different peculiarities and application fields, but
they all share the same computational aspects: a usually very large input, an exponential
search space, and a too large solution set. This situation – too many data yielding too
many patterns – is harmful for two reasons. First, performance degrades: mining gen-
erally becomes inefficient or, often, simply unfeasible. Second, the identification of the
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fragments of interesting knowledge, blurred within a huge quantity of mostly useless
patterns, is difficult. The paradigm of constraint-based pattern mining was introduced
as a solution to both these problems. In such paradigm, it is the user which specifies
to the system what is interesting for the current application: constraints are a tool to
drive the mining process towards potentially interesting patterns, moreover they can be
pushed deep inside the mining algorithm in order to fight the exponential search space
curse, and to achieve better performance [15,20,25].

When instantiated to the pattern class of itemsets, the constraint-based pattern min-
ing problem is defined as follows.

Definition 2 (Constrained Frequent Itemset Mining). A constraint on itemsets is a
function C : 2I → {true, false}. We say that an itemset I satisfies a constraint if
and only if C(I) = true. We define the theory of a constraint as the set of itemsets
which satisfy the constraint: Th(C) = {X ∈ 2I | C(X)}. Thus with this notation, the
frequent itemsets mining problem requires to compute the set of all frequent itemsets
Th(Cfreq[D,σ]). In general, given a conjunction of constraints C the constrained frequent
itemsets mining problem requires to compute Th(Cfreq) ∩ Th(C).

Example 1. The following is an example mining query:

Q : suppD(X) ≥ 1500 ∧ avg(X.weight) ≤ 5 ∧ sum(X.price) ≥ 20

It requires to mine, from database D, all patterns which are frequent (have a support
larger than 1500), have average weight less than 5 and a sum of prices greater than 20.

So far constraint-based frequent pattern mining has been seen as a query optimiza-
tion problem, i.e., developing efficient, sound and complete evaluation strategies for
constraint-based mining queries. Or in other terms, designing efficient algorithms to
mine all and only the patterns in Th(Cfreq) ∩ Th(C). To this aim, properties of con-
straints have been studied comprehensively, and on the basis of such properties (e.g.,
anti-monotonicity, succinctness [20,18], monotonicity [11,17,6], convertibility [22],
loose anti-monotonicity [9]), efficient computational strategies have been defined. De-
spite such effort, the constraint-based pattern mining framework still suffers from many
problems which limit its practical relevance.

First of all, consider the example mining query Q given above: where do the three
thresholds (i.e., 1500, 5 and 20) come from? In some cases they can be precisely im-
posed by the application, but this is rarely the case. In most of the cases, they come from
an exploratory mining process, where they are iteratively adjusted until a solution set of
reasonable size is produced. This practical way of proceeding is in contrast with the ba-
sic philosophy of the constraint-based paradigm: constraints should represent what is a
priori interesting, given the application background knowledge, rather than be adjusted
accordingly to a preconceived output size. Another major drawback of the constraint-
based pattern mining paradigm is its rigidity. Consider, for instance, the following three
patterns (we use the notation 〈v1, v2, v3〉 to denote the three values corresponding to
the three constraints in the conjunction in the example query Q): p1 : 〈1700, 0.8, 19〉,
p2 : 〈1550, 4.8, 54〉, and p3 : 〈1550, 2.2, 26〉. The first pattern, p1, largely satisfies two
out of the three given constraints, while slightly violates the third one. According to
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the classical constraint-based pattern mining paradigm p1 would be discarded as non
interesting. Is such a pattern really less interesting than p2 and p3 which satisfy all the
three constraints, but which are much less frequent than p1? Moreover, is it reasonable,
in real-world applications, that all constraints are equally important?

All these problems flow out from the same source: the fact that in the classical
constraint-based mining framework, a constraint is a function which returns a boolean
value C : 2I → {true, false}. Indeed, interestingness is not a dichotomy.

This consideration suggests us a simple solution to overcome all the main draw-
backs of constraint-based paradigm.

Paper Contributions and Organization

In this paper, as a mean to handle interestingness [26,16,24], we introduce the soft con-
straint based pattern mining paradigm, where constraints are no longer rigid boolean
functions, but are “soft” functions, i.e., functions with value in a set A, which represents
the set of interest levels or costs assigned to each pattern.

– The proposed paradigm is not rigid: a potentially interesting pattern is not discarded
for just a slight violation of a constraint.

– Our paradigm creates an order of patterns w.r.t. interestingness (level of constraints
satisfaction): this allows to say that a pattern is more interesting than another, in-
stead of strictly dividing patterns in interesting and not interesting.

– From the previous point it follows that our paradigm allows to express top-k queries
based on constraints: the data analyst can ask for the top-10 patterns w.r.t. a given
description (a conjunction of soft constraints).

– Alternatively, we can ask to the system to return all and only the patterns which
exhibit an interest level larger than a given threshold λ.

– The proposed paradigm allows to assign different weights to different constraints,
while in the classical constraint-based pattern discovery paradigm all constraints
were equally important.

– Last but not least, our idea is very simple and thus very general: it can be instanti-
ated to different classes of patterns such as itemsets, sequences, trees or graphs.

For the reasons listed above, we believe that the proposed paradigm represents an
important step further towards practical pattern discovery.

A nice feature of our proposal is that, by adopting the soft constraint based paradigm,
we do not reject all research results obtained in the classical constraint-based paradigm;
on the contrary, we fully exploit such algorithmic results. In other terms, our proposal
is merely methodological, and it exploits previous research results that were mainly
computational.

The paper is organized as follows. In the next Section we briefly review the theory
of soft constraints and we define the soft constraint based pattern mining paradigm. In
Section 3 we discuss possible alternative instances of the paradigm. In Section 4 we
formally define the Soft Constraint Based Pattern Discovery paradigm. We then focus
on one of the many possible instances of the proposed paradigm, and we implement it
in a concrete Pattern Discovery System. Such a system is built as a wrapper around a
classical constraint pattern mining system.
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2 Introducing Soft Constraints

Constraint Solving is an emerging software technology for declarative description and
effective solving of large problems. Many real life systems, ranging from network man-
agement [14] to complex scheduling [2], are analyzed and solved using constraint re-
lated technologies. The constraint programming process consists of the generation of
requirements (constraints) and solution of these requirements, by specialized constraint
solvers. When the requirements of a problem are expressed as a collection of boolean
predicates over variables, we obtain what is called the crisp (or classical) Constraint
Satisfaction Problem (CSP). In this case the problem is solved by finding any assign-
ment of the variables that satisfies all the constraints.

Sometimes, when a deeper analysis of a problem is required, soft constraints are
used instead. Several formalizations of the concept of soft constraints are currently
available. In the following, we refer to the formalization based on c-semirings [5]: a
semiring-based constraint assigns to each instantiation of its variables an associated
value from a partially ordered set. When dealing with crisp constraints, the values are
the boolean true and false representing the admissible and/or non-admissible values;
when dealing with soft constraints the values are interpreted as preferences/costs. The
framework must also handle the combination of constraints. To do this one must take
into account such additional values, and thus the formalism must provide suitable op-
erations for combination (×) and comparison (+) of tuples of values and constraints.
This is why this formalization is based on the mathematical concept of semiring.

Definition 3 (c-semirings [5,3]). A semiring is a tuple 〈A, +,×,0,1〉 such that: A
is a set and 0,1 ∈ A; + is commutative, associative and 0 is its unit element; × is
associative, distributes over +, 1 is its unit element and 0 is its absorbing element. A
c-semiring (“c” stands for “constraint-based”) is a semiring 〈A, +,×,0,1〉 such that
+ is idempotent with 1 as its absorbing element and × is commutative.

Definition 4 (soft constraints [5,3]). Given a c-semiring S = 〈A, +,×,0,1〉 and an
ordered set of variables V over a finite domain D, a constraint is a function which,
given an assignment η : V → D of the variables, returns a value of the c-semiring. By
using this notation we define C = η → A as the set of all possible constraints that can
be built starting from S, D and V .

In the following we will always use the word semiring as standing for c-semiring,
and we will explain this very general concept by the point of view of pattern discovery.

Example 2. Consider again the mining queryQ. In this context we have that the ordered
set of variables V is 〈suppD(X), avg(X.weight), sum(X.price)〉, while the domain
D is: D(suppD(X)) = N, D(avg(X.weight)) = R+, and D(sum(X.price)) = N. If
we consider the classical crisp framework (i.e., hard constraints) we have the semiring
SBool = 〈{true, false},∨,∧, false, true〉. A constraint C is a function V → D → A;
for instance, suppD(X) → 1700 → true.

The + operator is what we use to compare tuples of values (or patterns, in our con-
text). Let us consider the relation ≤S (where S stands for the specified semiring) over
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A such that a ≤S b iff a + b = b. It is possible to prove that: ≤S is a partial order; +
and × are monotone on ≤S; 0 is its minimum and 1 its maximum, and 〈A,≤S〉 is a
complete lattice with least upper bound operator +. In the context of pattern discovery
a ≤S b means that the pattern b is more interesting than a, where interestingness is de-
fined by a combination of soft constraints. When using (soft) constraints it is necessary
to specify, via suitable combination operators, how the level of interest of a combina-
tion of constraints is obtained from the interest level of each constraint. The combined
weight (or interest) of a combination of constraints is computed by using the operator
⊗ : C × C → C defined as (C1 ⊗ C2)η = C1η ×S C2η.

Example 3. If we adopt the classical crisp framework, in the mining query Q of Exam-
ple 1 we have to combine the three constraints using the ∧ operator (which is the × in
the boolean semiring SBool). Consider for instance the pattern p1 : 〈1700, 0.8, 19〉 for
the ordered set of variables V = 〈suppD(X), avg(X.weight), sum(X.price)〉. The
first and the second constraint are satisfied leading to the semiring level true, while
the third one is not satisfied and has associated level false . Combining the three values
with ∧ we obtain true ∧ true ∧ false = false and we can conclude that the pattern
〈1700, 0.8, 19〉 is not interesting w.r.t. our purposes. Similarly, we can instead compute
level true for pattern p3 : 〈1550, 2.2, 26〉 corresponding to an interest w.r.t. our goals.
Notice that using crisp constraints, the order between values only says that we are inter-
ested to patterns with semiring level true and not interested to patterns with semiring
level false (that is semiring level false ≤SBool

true).

3 Instances of the Semiring

Dividing patterns in interesting and non-interesting is sometimes not meaningful nor
useful. Most of the times we can say that each pattern is interesting with a specific level
of preference. Soft constraints can deal with preferences by moving from the two values
semiring SBool to other semirings able to give a finer distinction among patters (see [3]
for a comprehensive guide to the semiring framework). For our scope the fuzzy and the
weighted semiring are the most suitable.

Example 4 (fuzzy semiring). When using fuzzy semiring [12,23], to each pair constraint-
pattern is assigned an interest level between 0 and 1, where 1 represents the best value
(maximum interest) and 0 the worst one (minimum interest). Therefore the + in this
semiring is given by the max operator, and the order ≤S is given by the usual ≤
on real numbers. The value associated to a pattern is obtained by combining the con-
straints using the minimum operator among the semiring values. Therefore the × in
this semiring is given by the min operator. Recapitulating, the fuzzy semiring is given
by SF = 〈[0, 1], max, min, 0, 1〉. The reason for such a max-min framework relies on
the attempt to maximize the value of the least preferred tuple. Fuzzy soft constraints
are able to model partial constraint satisfaction [13], so to get a solution even when the
problem is overconstrained, and also prioritized constraints, that is, constraints with dif-
ferent levels of importance [10]. Figure 1 reports graphical representations of possible
fuzzy instances of the constraints in Q. Consider, for instance, the graphical representa-
tion of the frequency constraint in Figure 1(C1). The dotted line describes the behavior
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Fig. 1. Graphical representation of possible fuzzy instances of the constraints in Q

of the crisp version (where 1 = true and 0 = false) of the frequency constraint,
while the solid line describes a possible fuzzy instance of the same constraint. In this
instance domain values smaller than 1200 yield 0 (uninteresting patterns); from 1200
to 1800 the interest level grows linearly reaching the maximum value of 1. Similarly
the other two constraints in Figure 1(C2) and (C3). In this situation for the pattern
p1 = 〈1700, 0.8, 19〉 we obtain that: C1(p1) = 1, C2(p1) = 1 and C3(p1) = 0.45.
Since in the fuzzy semiring the combination operator × is min, we got that the interest
level of p1 is 0.45. Similarly for p2 and p3:

– p1 : C1 ⊗ C2 ⊗ C3(1700, 0.8, 19) = min(1, 1, 0.45) = 0.45
– p2 : C1 ⊗ C2 ⊗ C3(1550, 4.8, 54) = min(1, 0.6, 1) = 0.6
– p3 : C1 ⊗ C2 ⊗ C3(1550, 2.2, 26) = min(1, 1, 0.8) = 0.8

Therefore, with this particular instance we got that p1 ≤SF p2 ≤SF p3, i.e., p3 is the
most interesting pattern among the three.

Example 5 (weighted semiring). While fuzzy semiring associate a level of preference
with each tuple in each constraint, in the weighted semiring tuples come with an associ-
ated cost. This allows one to model optimization problems where the goal is to minimize
the total cost (time, space, number of resources, . . . ) of the proposed solution. There-
fore, in the weighted semiring the cost function is defined by summing up the costs of all
constraints. According to the informal description given above, the weighted semiring
is SW = 〈R+, min, sum, +∞, 0〉. Consider, for instance, the graphical representation
of the constraints in the query Q in Figure 2. In this situation we got that:

– p1 : C1 ⊗ C2 ⊗ C3(1700, 0.8, 19) = sum(50, 20, 205) = 275
– p2 : C1 ⊗ C2 ⊗ C3(1550, 4.8, 54) = sum(200, 120, 30) = 350
– p3 : C1 ⊗ C2 ⊗ C3(1550, 2.2, 26) = sum(200, 55, 190) = 445

Therefore, with this particular instance we got that p3 ≤SW p2 ≤SW p1 (remember
that the order ≤SW correspond to the ≥ on real numbers). In other terms, p1 is the most
interesting pattern w.r.t. this constraints instance.

The weighted and the fuzzy paradigm, can be seen as two different approaches to
give a meaning to the notion of optimization. The two models correspond in fact to two
definitions of social welfare in utility theory [19]: “egalitarianism”, which maximizes
the minimal individual utility, and “utilitarianism”, which maximizes the sum of the
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Fig. 2. Graphical representation of possible weighted instances of the constraints in Q

individual utilities. The fuzzy paradigm has an egalitarianistic approach, aimed at max-
imizing the overall level of interest while balancing the levels of all constraints; while
the weighted paradigm has an utilitarianistic approach, aimed at getting the minimum
cost globally, even though some constraints may be neglected presenting a big cost. We
believe that both approaches present advantages and drawbacks, and may preferred to
the other one depending on the application domain. Beyond the fuzzy and the weighted,
many other possible instances of the semiring exist, and could be useful in particular
applications. Moreover, it is worth noting that the cartesian product of semirings is a
semiring [5] and thus it is possible to use the framework also to deal with multicriteria
pattern selection.

Finally, note that the soft constraint framework is very general, and could be instan-
tiated not only to unary constraints (as we do in this paper) but also to binary and k-ary
constraints (dealing with two or more variables). This could be useful to extend the soft
constraint based paradigm to association rules with “2-var” constraints [18].

4 Soft Constraint Based Pattern Mining

In this Section we instantiate soft constraint theory to the pattern discovery framework.

Definition 5 (Soft Constraint Based Pattern Mining). Let P denote the domain of
possible patterns. A soft constraint on patterns is a function C : P → A where A is the
carrier set of a semiring S = 〈A, +,×,0,1〉. Given a combination of soft constraints
⊗C, we define two different problems:

λ-interesting: given a minimum interest threshold λ ∈ A, it is required to mine the set
of all λ-interesting patterns, i.e., {p ∈ P| ⊗ C(p) ≥ λ}.

top-k: given a threshold k ∈ N, it is required to mine the top-k patterns p ∈ P w.r.t.
the order ≤S .

Note that the Soft Constraint Based Pattern Mining paradigm just defined, has many
degrees of freedom. In particular, it can be instantiated: (i) on the domain of pat-
terns P in analysis (e.g., itemsets, sequences, trees or graphs), (ii) on the semiring
S = 〈A, +,×,0,1〉 (e.g., fuzzy, weighted or probabilistic), and (iii) on one of the two
possible mining problems, i.e., λ-interesting or top-k mining.

In the rest of this paper we will focus on concretizing a simple instance of this very
general paradigm: λ-interestingfuzzy on the pattern class of itemsets.
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4.1 Mining λ-Interesting Itemsets on the Fuzzy Semiring

Definition 6. Let I = {x1, ..., xn} be a set of items, where an item is an object with
some predefined attributes (e.g., price, type, etc.). A soft constraint on itemsets, based
on the fuzzy semiring, is a function C : 2I → [0, 1]. Given a combination of such soft
constraints ⊗C ≡ C1 ⊗ . . . ⊗ Cn, we define the interest level of an itemset X ∈ 2I

as ⊗C(X) = min(C1(X), . . . , Cn(X)). Given a minimum interest threshold λ ∈ ]0, 1],
the λ-interesting itemsets mining problem, requires to compute {X ∈ 2I |⊗C(X) ≥ λ}.

In the following we describe how to build a concrete pattern discovery system for λ-
interestingfuzzy itemsets mining, as a wrapper around a classical constraint pattern min-
ing system. The basic components which we use to build our system are the following:

A crisp constraints solver - i.e., a system for mining constrained frequent itemsets,
where constraints are classical binary functions, and not soft constraints. Or in other
terms, a system for solving the problem in Definition 2. To this purpose we adopt
the system which we have developed at Pisa KDD Laboratory within the P 3D
project1. Such a system is a general Apriori-like algorithm which, by means of data
reduction and search space pruning, is able to push a wide variety of constraints
(practically all possible kinds of constraints which have been studied and charac-
terized so far [9]) into the frequent itemsets computation. Based on the algorithmic
results developed in the last years by our lab (e.g., [6,7,8,9,21]), our system is very
efficient and robust, and to our knowledge, is the unique existing implementation
of this kind.

A language of constraints - to express, by means of queries containing conjunctions
of constraints, what is interesting for the given application. The wide repertoire of
constraints that we admit, comprehends the frequency constraint (suppD(X) ≥ σ),
and all constraints defined over the following aggregates2: min, max, count, sum,
range, avg, var, median, std, md.

A methodology to define the interest level - that must be assigned to each pair itemset-
constraint. In other terms, we need to provide the analyst with a simple methodol-
ogy to define how to assign for each constraint and each itemset a value in the
interval [0, 1], as done, for instance, by the graphical representations of constraints
in Figure 1. This methodology should provide the analyst with a knob to adjust the
softness level of each constraint in the conjunction, and a knob to set the importance
of each constraint in the conjunction.

Let us focus on the last point. Essentially we must describe how the user can define the
fuzzy behavior of a soft constraint. We restrict our system to constraints which behave as
those ones in Figure 1: they return a value which grows linearly from 0 to 1 in a certain
interval, while they are null before the interval and equal to 1 after the interval. To
describe such a simple behavior we just need two parameters: a value associated to the
center of the interval (corresponding to the 0.5 fuzzy semiring value), and a parameter
to adjust the width of the interval (and consequently the gradient of the function).

1 http://www-kdd.isti.cnr.it/p3d/index.html
2 Range is (max − min), var is for variance, std is for standard deviation, md is for mean

deviation.
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Definition 7. A soft constraint C on itemsets, based on the fuzzy semiring, is defined by
a quintuple 〈Agg, Att, θ, t, α〉, where:

– Agg ∈ {supp, min, max, count, sum, range, avg, var, median, std, md};
– Att is the name of the attribute on which the aggregate agg is computed (or the

transaction database, in the case of the frequency constraint);
– θ ∈ {≤,≥};
– t ∈ R corresponds to the center of the interval and it is associated to the semiring

value 0.5;
– α ∈ R+ is the softness parameter, which defines the inclination of the preference

function (and thus the width of the interval).

In particular, if θ =≤ (as in Figure 1(C2)) then C(X) is 1 for X ≤ (t − αt), is 0 for
X ≥ (t + αt), and is linearly decreasing from 1 to 0 within the interval [t−αt, t + αt].
The other way around if θ =≥ (as, for instance, in Figure 1(C3)). Note that if the
softness parameter α is 0, then we obtain the crisp (or hard) version of the constraint.

Example 6. Consider again the query Q given in Example 1, and its fuzzy instance
graphically described by Figure 1. Such query can be expressed in our constraint lan-
guage as: 〈supp,D,≥, 1500, 0.2〉, 〈avg, weight,≤, 5, 0.2〉, 〈sum, price,≥, 20, 0.5〉.

Since the combination operator × in min, increasing the importance of a constraint
w.r.t. the others in the combination means to force the constraint to return lower values
for not really satisfactory patterns. By decreasing the softness parameter α, we increase
the gradient of the function making the shape of the soft constraint closer to a crisp
constraint. This translates in a better value for patterns X which were already behaving
well w.r.t. such constraint(C(X) > 0.5), and in a lower value for patterns which were
behaving not so well (C(X) < 0.5). Decreasing the gradient (increasing α) instead
means to lower the importance of the constraint itself: satisfying or not satisfying the
constraint does not result in a big fuzzy value difference. Additionally, by operating
on t, we can increase the “severity” of the constraint w.r.t. those patterns which were
behaving not so well. Therefore, the knob to increase or decrease the importance of a
constraint is not explicitly given, because its role, in the fuzzy semiring, can be played
by a combined action on the two knobs α and t.

Example 7. Consider again the query Q given in Example 1, and its fuzzy instance:
〈supp,D,≥, 1500, 0.2〉, 〈avg, weight,≤, 5, 0.2〉, 〈sum, price,≥, 20, 0.5〉. As we
stated in Example 4, it holds that p2 ≤SF p3. In particular, p2 is better than p3 w.r.t. con-
straint C3, while p3 is better than p2 w.r.t. constraint C2. Suppose now that we increase
the importance of C3, e.g., 〈sum, price,≥, 28, 0.25〉. We obtain that p3 ≤SF p2:

– p2 : C1 ⊗ C2 ⊗ C3(1550, 4.8, 54) = min(1, 0.6, 1) = 0.6
– p3 : C1 ⊗ C2 ⊗ C3(1550, 2.2, 26) = min(1, 1, 0.35) = 0.35

In [5,4] it has been proved that, when dealing with the fuzzy framework, computing
all the solution better than a threshold λ can be performed by solving a crisp problem
where all the constraint instances with semiring level lower than λ have been assigned
level false , and all the instances with semiring level greater or equal to λ have been
assigned level true. Using this theoretical result, and some simple arithmetic we can
transform each soft constraint in a corresponding crisp constraint.
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Definition 8. Given a fuzzy soft constraint C ≡ 〈Agg, Att, θ, t, α〉, and a minimum
interest threshold λ, we define the crisp translation of C w.r.t. λ as:

Cλ
crisp ≡

{
Agg(Att) ≥ t − αt + 2λαt, if θ =≥
Agg(Att) ≤ t + αt − 2λαt, if θ =≤

Example 8. The crisp translation of the soft constraint 〈sum, price,≥, 20, 0.5〉 is sum
(X.price) ≥ 26 for λ = 0.8, while it is sum(X.price) ≥ 18 for λ = 0.4.

Proposition 1. Given the vocabulary of items I, a combination of soft constraints
⊗C ≡ C1⊗ . . .⊗ Cn, and a minimum interest threshold λ. Let C′ be the conjunction of
crisp constraints obtained by conjoining the crisp translation of each constraint in ⊗C
w.r.t. λ: C′ ≡ C1λ

crisp ∧ . . .∧Cnλ
crisp. It holds that: {X ∈ 2I |⊗ C(X) ≥ λ} = Th(C′).

Proof (sketch). The soundness of the mapping come from the result in [5]. We here
have to only give a justification of the formula in Definition 8. This is done by means
of Figure 3(b), that shows a graphical representation of the simple arithmetic problem
and its solutions.

Therefore, if we adopt the fuzzy semiring, we can fully exploit a classical constraint-
based pattern discovery system (and all algorithmic results behind it), by means of
a simple translation from soft to crisp constraints. This is exactly what we have done,
obtaining a pattern discovery system based on soft constraints built as a wrapper around
a classical constraint-based mining system.

4.2 Experimental Analysis

We have conducted some experiments in order to asses the concrete effects obtained by
manipulating the α, t and λ parameters. To this purpose we have compared 5 different
instances (described in Figure 3(a)) of the query Q :

〈supp,D,≥, t, α〉〈avg, weight,≤, t, α〉, 〈sum, price,≥, t, α〉
where the transactional dataset D, is the well known RETAIL dataset, donated by Tom
Brijs and contains the (anonymized) retail market basket data from an anonymous Bel-
gian retail store3; and the two attributes weight and price have been randomly gener-
ated with a gaussian distribution within the range [0, 150000].

Figure 3(c) reports the number of solutions for the given five queries at different λ
thresholds. Obviously as λ increases the number of solutions shrinks accordingly. This
behavior is also reflected in queries evaluation times, reported in Figure 3(d): the bigger
is the size of the solution set, the longer is the associated computation.

Comparing queriesQ1, Q2 andQ3, we can gain more insight about the α parameter.
In fact, the three queries differ only by the α associated with one constraint (the frequency
constraint). We can observe that, if the λ threshold is not too much selective, increasing
the α parameter (i.e., the size of the soft interval), the number of solutions grows. Notice
however that, when λ becomes selective enough (i.e., λ > 0.5), increasing the softness
parameter we obtain an opposite behavior. This is due to the fact that, if on one hand a
more soft constraint is less severe with patterns not good enough, on the other hand it is
less generous with good patterns, which risk to be discarded by an high λ threshold.

3 http://fimi.cs.helsinki.fi/data/
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(a)

〈supp,D,≥, t, α〉 〈avg,weight,≤, t, α〉 〈sum, price,≥, t, α〉
t α t α t α

Q1 20 0.8 10000 0.5 20000 0.5
Q2 20 0.5 10000 0.5 20000 0.5
Q3 20 0.2 10000 0.5 20000 0.5
Q4 20 0.8 5000 0.2 20000 0.5
Q5 20 0.8 5000 0.8 20000 0.5

(b)
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Fig. 3. (a) description of queries experimented, (b) graphical proof to Proposition 1, (c) and (d)
experimental results with λ ranging in [0, 1]
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Abstract. Markov models have been widely used for modelling users’
web navigation behaviour. In previous work we have presented a dy-
namic clustering-based Markov model that accurately represents second-
order transition probabilities given by a collection of navigation sessions.
Herein, we propose a generalisation of the method that takes into ac-
count higher-order conditional probabilities. The method makes use of
the state cloning concept together with a clustering technique to separate
the navigation paths that reveal differences in the conditional probabili-
ties. We report on experiments conducted with three real world data sets.
The results show that some pages require a long history to understand
the users choice of link, while others require only a short history. We also
show that the number of additional states induced by the method can
be controlled through a probability threshold parameter.

1 Introduction

Modelling user web navigation data is a challenging task that is continuing to
gain importance as the size of the web and its user-base increase. Data char-
acterising web navigation can be collected from server or client-based log files,
enabling the reconstruction of user navigation sessions [15]. A session is usually
defined as a sequence of pages viewed by a user within a given time window. The
subarea that studies methods to extract patterns from navigation data has been
called web usage mining and such methods have been applied in several con-
texts including personalisation, link prediction, e-commerce analysis, adaptive
web site organisation and web page pre-fetching [10].

Several authors have proposed the use of Markov models to represent a col-
lection of user web navigation sessions. Pitkow et al. [12] proposed a method to
induce the collection of longest repeating sub-sequences, while Deshpande et al.
[7] proposed a technique that builds kth−order Markov models and combines
them to include the highest order model covering each state. On the other hand,
Sarukkai [13] presented a study showing that Markov models have potential use
in link prediction applications, while Zhu et al. [16] inferred a Markov model
from user navigation data to measure page co-citation and coupling similarity.
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An alternative method of modeling navigation sessions are tree-based models.
Schechter et al. [14] use a tree-based data structure that represents the collection
of paths inferred from log data to predict the next page accessed, while Dongshan
and Junyi [8] proposed a hybrid-order tree-like Markov model to predict web
page access. In addition, Chen and Zhang [6] use a Prediction by Partial Match
tree that restricts the roots to popular nodes.

In previous work we proposed to model a collection of user web navigation
sessions as a Hypertext Probabilistic Grammar (HPG) [1,2]. A HPG corresponds
to a first-order Markov model, which makes use of the N -gram concept [5] to
achieve increased accuracy by increasing the order of the Markov chain; for the
full details on the HPG concept see [2]. In [2] an algorithm to extract the most
frequent traversed paths from user data was proposed, and in [3] we have shown
that the algorithm’s complexity is, on average, linear time in the number of states
of the grammar. In [4] we extended the HPG model with a dynamic clustering-
based method that uses state cloning [9] to accurately represent second-order
conditional probabilities; the method is presented in Section 2. In this work we
generalise the method given in [4] to higher-order conditional probabilities.

Most current web mining systems use techniques such as clustering, associ-
ation rule mining and sequential pattern mining to search for patterns in navi-
gation records [10], and do not take into account the order in which pages were
accessed. This limitation has been tackled by building a sequence of higher-order
Markov models with a method that chooses the best model to use in each case
[7]. However, we argue that a method to produce a single model representing
the variable length history of pages has, so far, been missing.

The method we propose in Section 3 aims to fill that gap. By using the cloning
operation we duplicate states corresponding to pages that require a longer history
to understand the choice of link that users made. In this way the out-links from
a given state reflect the n-order conditional probabilities of the in-paths to the
state. In addition, the proposed model maintains the fundamental properties of
the HPG model [1], while providing a suitable platform for utilising an algorithm
for mining the navigation patterns that takes into account the order of page
views.

In Section 2 we review the essential of the dynamic clustering method, in
Section 3 we extend the method to model higher-order probabilities, and in
Section 4 we present the experimental results. Finally, in Section 5 we give our
concluding remarks.

2 Background

In previous work [1,2] we proposed to model user navigation data as a Hypertext
Probabilistic Grammar (HPG), which corresponds to a first-order Markov model.
We now review the HPG model with the aid of an example.

Consider a web site with seven web pages, {A1, A2, . . . , A7} , and the collec-
tion of navigation sessions given on the left-side of Figure 1 (NOS represents the
number of occurrences of each session). A navigation session gives rise to a se-
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quence of pages viewed by a user within a given time window. To each web page
there corresponds a state in the model. In addition, the start state, S, represents
the first state of every navigation session, and the a final state, F , represents
the last state of every navigation session. There is a transition corresponding to
each pair of pages visited in sequence, a transition from S to the first state of
a session, and a transition from the last state of a session to F . The model is
incrementally built by processing the complete collection of navigation sessions.

Session NOS

A1, A2, A3 3
A1, A2, A4 2
A5, A2, A3 1
A5, A2, A4 1
A6, A2, A3 2
A6, A2, A4 1
A1, A2, A4, A7 1
A5, A2, A4, A7 3
A6, A2, A4, A7 2

A2A5

A1

A6 A4

A36 (1)

6 (0.38)

10 (0.62)

S

6 (0.38)

F

6 (1)

4 (0.40)

5 (0.31)

5 (0.31)

5 (1)

5 (1)

A7

6 (1)

6 (0.60)

Fig. 1. A collection of user navigation sessions and the corresponding first-order model

A transition probability is estimated by the ratio of the number of times the
transition was traversed and the number of times the anchor state was visited.
The right-side of Figure 1 shows a representation of the first-order model corre-
sponding to the input sessions. Next to a link, the first number gives the number
of times the link was traversed and the number in parentheses gives its estimated
probability.

In [4] we proposed a method to increase the HPG precision in order to accu-
rately represent second-order probabilities. The method makes use of a cloning
operation, where a state is duplicated if first-order probabilities diverge from the
corresponding second-order probabilities. In addition, the method uses a clus-
tering algorithm to identify the best way to distribute a state’s in-links between
a state and its clones. We now present the essential properties of the model
proposed in [4], which we extend to higher-order probabilities in Section 3.

Given a model with states {S, A1, ...., An, F}, we let wi represent the number
of times the page corresponding to Ai was visited, wi,j be the number of times the
link from Ai to Aj was traversed, and wi,j,k be the number of times the sequence
Ai, Aj , Ak was traversed. In addition, we let pi,j = wi,j/wi be the first-order
transition probability from Ai to Aj , and pi,k j = wi,k,j/wi,k, be the second-order
transition probability. Also, the accuracy threshold, γ, sets the highest admissible
difference between a first-order and a second-order probability; a model is said
to be accurate if there is no link that violates the constraint set by γ.

In the example given in Figure 1, the user’s past navigation behaviour implies
that p1,23 = p1,24 = 0.5. Therefore, for γ = 0.1, the state A2 is not accurate, since
|p1,2 3−p2,3| > 0.1, and needs to be cloned. To clone state A2, we let each in-link
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define a vector of second-order probabilities; each of the vector’s components
corresponds to an out-link from state A2. In the example, state A2 has three
in-links and two out-links, inducing three vectors of second-order probabilities:
for i = {3, 4} we have P1,2i = {0.5, 0.5}, P5,2i = {0.2, 0.8} and P6,2i = {0.4, 0.6}.

A2

A6

A1

A5 A4

A36 (1)

1 (0.20)

4 (0.80)

S

6 (0.38)

F
6 (1)

4 (0.40)

5 (0.31)

5 (0.31)

5 (1)

5 (1)
A’2

5 (0.45)

6 (0.55)

A7

6 (1)

6 (0.60)

Fig. 2. The second-order HPG model obtained when applying the dynamic clustering
method with γ = 0.1 to the first-order model given in Figure 1

The method applies a k-means clustering algorithm to the collection of
second-order vectors, in order to identify groups of similar vectors with re-
spect to γ. Figure 2 shows the result of applying the method to state A2. Since
|p1,2 i − p6,2 i| < 0.1, for i = {3, 4}, links from A1 and A6 are assigned to one
clone, the link from A5 is assigned to the other clone. The transition counts for
the out-links are updated as follows: w2,3 = w1,2,3 +w6,2,3, w2,4 = w1,2,4 +w6,2,4,
w2′,3 = w5,2,3, w2′,4 = w5,2,4. Note that, state A4 is accurate, since all its in-links
have an equivalent source state, and, moreover, every state having just one out-
link is accurate by definition. Therefore, the model given in Figure 2 accurately
represents every second-order transition probability.

3 A Dynamic Clustering Method to Model Higher-Order
Probabilities

We now extend the method presented in [4] to incorporate higher-order proba-
bilities. In a second-order HPG model, the transition probabilities from a given
state are considered to be accurate, if all in-links to it induce identical second-
order probabilities. Similarly, in a third-order model every two-link path to a
state must induce identical third-order probabilities. In general, to accurately
model n-order probabilities each (n − 1)-length path to a state must induce
identical n-order conditional probabilities. Estimates of the n-order conditional
probabilities are obtained from the n-gram counts.

In the following, we let the length of a path be measured by the number
of links it is composed of, and we call the length of the path from a state
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to the target state the depth of this state; d = 0 corresponds to the target
state and d = n − 1 corresponds to the farthest state from the target when
assessing the model for order n. We let w1,...,n represent the n-gram counts, and
pi...j,kt = wi,...,j,k,t/wi,...,j,k represent the n-order conditional probability of going
to state At given that the (n− 1)-length path Ai, . . . , Aj , Ak was followed. Also,
we let

−→
l represent a path and p−→

l ,kt
the conditional probability of transition

(Ak, At) given the path
−→
l . Also, we let

−→
l [d] be the state at depth d on

−→
l

and v−→
l

be the vector of n-order conditional probabilities given path
−→
l . If a

state y needs cy clones, we let yi, with i = {1, . . . , cy}, represent y and its cy − 1
additional clones. Finally, we let

−→
l c be the cluster to which path

−→
l was assigned.

For a state x, the n-order conditional probabilities are assessed in three steps:

(i) Apply a breath-first search procedure to induce the (n − 1)-length in-paths
to state x, estimate the corresponding n-order conditional probabilities and,
for each path,

−→
l , store the conditional probabilities in a vector v−→

l
(the

vector’s dimension is given by the number of out-links from x). If the dif-
ference between a conditional probability and the corresponding transition
probability is greater than γ, label the state as needing to be cloned.

(ii) If x needs cloning, apply the k-means algorithm to the probability vectors,
v−→

l
. The number of clusters k is incremented until in the final solution, and

in every cluster, the distance between each vector and its centroid is smaller
than γ.

(iii) Identify states that need to be cloned to separate the paths to x. States
included in paths to x are assessed in descending depth order from d = n−1
to d = 0. For depth d, we let a prefix of a path to x, whose last state is
y, be named a y path-prefix to x. Thus, to separate paths to x, state y at
depth, d, needs as many clones as the number of distinct path prefixes with
the same length that are assigned to different clusters. The weights of the in
and out-links of y and its clones are determined by the n-gram counts. After
cloning y the in-paths to x need to be updated.

We now present an example of the method and a pseudo-code description. In
particular, we evaluate the third-order probabilities for the model in Figure 2.
The conditional probabilities induced by the paths to A4 are: for i = {7, F}
we have p12,4i = {0.33, 0.67}, p62,4i = {0.67, 0.33} and p52,4i = {0.75, 0.25}.
Thus, since these probabilities are not close to the corresponding second-order
probabilities, A4 is not third-order accurate for γ = 0.1 . Table 1 gives the in-
paths to A4, the third-order conditional probabilities and the resulting clustering
assignment. As result, state A2 for d = 1 needs one clone, and for d = 0 state
A4 also needs one clone. Figure 3 gives the resulting third-order model.

In Figure 3, the path S, A1, A2, A4 has probability estimate of 0.38 · 1.00 ·
0.50 = 0.19. It can be seen that in Figure 1, from a total of 16 sessions, 3
begin with the 3-gram A1, A2, A4 resulting in a probability estimate of 0.19.
Also, according to the third-order model, path S, A5, A2, A4, A7 has probability
0.31 · 1.00 · 0.80 · 0.71 = 0.18. It can be seen that in the input data 3 sessions
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Table 1. The paths to A4, the third-order conditional probabilities and the resulting
clustering assignment

d = 2 d = 1 d = 0 3rd order vectors cluster
A1 A2 A4 0.33 0.67 1
A6 A2 A4 0.67 0.33 2
A5 A′

2 A4 0.75 0.25 2

begin with A5, A2, A4, A7, resulting in a probability estimate of 0.19. In both
cases the difference between the two estimates is below 0.1, which is the value
specified for the accuracy probability threshold, γ.

A2

A6

A1

A5 A’4

A3

6 (1)

1 (0.20)

4 (0.80)

S

6 (0.38)

F

6 (1)

2 (0.29)

5 (0.31)

5 (0.31)

5 (1)

5 (1)
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Fig. 3. The third-order model obtained when applying the dynamic clustering method
with γ = 0.1 to the model given in Figure 2

Alternatively, the initial probability of a state can be estimated as wi/
∑

j wj

and every state has a link from S. In Figure 3 there is a total of 54 page views,
and, for example, pS,2 = 6/54 = 0.11 and pS,4′ = 7/54 = 0.13. For the path
A2, A4, A7 the probability estimate is given by the sum of the probabilities of
path A2, A4, A7, path A′

2, A
′
4, A7 and path A′′

2 , A′
4, A7, which is 0.12. In the input

sessions, shown in Figure 1, we have a total of 54 3-gram counts (including 3-
grams starting with S and ending with F ) and the count of A2, A4, A7 is 6,
therefore, its estimate is 6/54 = 0.11. For path A1, A2, A3 the model gives 0.05,
while the session analysis gives 0.05. Both cases are accurate with respect to
γ = 0.1.

The pseudo-code description of the algorithm, which implements the method,
is now given. We let n be the order with which to evaluate the model, HPG(n−1)
be the previous order model, and (n + 1)-grams be the n-gram counts of size
n + 1.
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Algorithm (HPG(n−1), n, γ, (n + 1)-grams)
begin:

for each state x
induce in-paths of length n − 1 to x

for each in-path
−→
l

for each out-link i from x
estimate p−→

l ,xi
and store in v−→

l

if (|p−→
l ,xi

− px,i| > γ) the state needs to be cloned
end for

end for
if state needs to be cloned

apply k-means to collection of vectors v−→
l

for depth d = (n − 1) to d = 0
for each state y at depth d

cy = num. distinct path prefixes assigned to different clusters
create cy − 1 clones of state y

for each in-path
−→
l to x

if (
−→
l [d] = y and

−→
l c > 1) redirect link to corresponding clone

end for
for state yi with i = {1, . . . , cy}

for each in-link t to yi

for each out-link r from yi

wt,yi = wt,yi + wt,yi,r , wyi,r = wyi,r + wt,yi,r

end for
end for
remove out-links from yi such that wyi,r = 0

end for
update ngram counts to take into account clones

end for
update in-paths with clone references

end for
end if

end for
end.

4 Experimental Evaluation

For the experimental evaluation we analysed three real world data sets. By using
data from three different sources we aim to assess the characteristics of our model
in a wide enough variety of scenarios. Our previous experience has shown that
it is difficult to create random data sets that mirror the characteristics of real
world data, and therefore looking at several data sets is necessary.

The first data set (CS) is from a university site, was made available by the
authors of [15] and represents two weeks of usage data in 2002. The site was
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cookie based, page caching was prohibited and data was made available with the
sessions identified. We split the data set into three subsets in order to enhance
analysis in a wider variety of scenarios. The second data set (MM) was obtained
from the authors of [11] and corresponds to one month of usage from the Music
Machines site (machines.hyperreal.org) in 1999 . The data was organised in
sessions and caching was disabled during collection. We split the data set into
four subsets, each corresponding to a week of usage. The third data set (LTM)
represents forty days of usage from the London Transport Museum web site
in 2003 (www.ltmuseum.co.uk). The data was obtained in a raw format. We
filtered .gif and .jpg requests, and requests with an error status code. Sessions
were defined as consecutive requests from a given IP address within a 30 minute
time window and a maximum session length of 100 requests was set. We split
this data set into four subsets, each corresponding to ten days of usage data.

Table 2 gives the summary characteristics for each data set; ds identifies
the data set, pg gives the number of distinct pages visited, %1v and %≤ 2v
indicate, respectively, the percentage of pages with just one visit and with two
or less visits. Also, aOL gives the average number of out-links per state, sOL
the standard deviation, aIL the average number of in-links per page and sIL the
standard deviation. Finally, ses gives the number of sessions, aSes the average
session length, sSes the standard deviation, and req the total number of requests.
The variabilty on the number of states induced by the model for a given web site
can be explained by the number of pages with less than one visit. Also, when
the number of pages with few visits increases the average number of out-links
and in-links decreases. The average session length is stable but the standard
deviation shows that the MM data has a higher variability on the session length.

Table 2. Summary characteristics of the real data sets

ds pg %1v %≤ 2v aOL sOL aIL sIL ses aSes sSes Req

LTM1 2998 0.62 0.68 4.5 9.6 4.4 11.6 9743 7.6 13.5 74441
LTM2 1648 0.19 0.27 8.4 13.8 8.3 16.6 11070 7.4 13.2 82256
LTM3 1610 0.27 0.37 7.8 12.8 7.7 15.0 9116 7.7 13.1 70558
LTM4 1586 0.24 0.34 7.8 13.3 7.7 15.9 9965 7.8 13.4 78179
MM1 8715 0.30 0.45 4.7 12.4 4.6 14.1 14734 6.4 37.8 94989
MM2 5356 0.32 0.44 6.0 18.9 5.9 20.7 14770 6.1 14.7 90682
MM3 5101 0.26 0.38 6.0 15.6 5.9 17.7 10924 6.7 35.2 73378
MM4 6740 0.35 0.49 5.1 18.5 4.9 19.8 14080 6.3 23.8 88053
CS1 3128 0.52 0.67 3.4 10.1 3.1 10.4 7000 4.8 6.5 33854
CS2 3946 0.59 0.74 2.8 9.3 2.6 9.9 7000 5.0 8.4 34897
CS3 5028 0.62 0.76 2.8 9.4 2.6 11.6 6950 5.5 12.8 38236

The left-hand side of Figure 4, shows, for the three representative data sets,
the variation of the model size with its order for γ = 0. (The data sets from
each source reveal almost identical behaviour). For the MM1 data set a large
percentage of state cloning is performed for second and third-order probabilities
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which indicates that there is no significant difference between third-order prob-
abilities and the corresponding higher-order probabilities, and that the MM site
only requires a short history when deciding which link to follow. The CS data set
shows a slower increase in the model’s size, and the model can be seen to reach
close to full accuracy with respect to fourth-order probabilities. Finally, the LTM
data set shows an increase in the number of states for up to the seventh-order
probabilities, meaning that the choice of which link to follow is clearly influenced
by a relatively long sequence of previously visited web pages.
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Fig. 4. The increase in model size with the model’s order for γ = 0 and the increase
in size for several values of the probability threshold, γ, with the LTM4 data set

The right-hand side of Figure 4, shows the effect of γ, on the model size
for the LTM4 data set and the left-hand side of Figure 5, shows the effect for
the CS1 data set. In both cases it can be seen that by tuning the value of γ
it is possible to control the increase on a models’s number of states. For both
data sets the difference in the number of states is not evident for second-order
models. For third and higher-order models it is possible to reduce the number
of states induced by the method by allowing some tolerance on representing the
conditional probabilities (by setting γ > 0). Setting γ to a value greater than
0.1 results in almost no cloning for higher orders.

Figure 6 shows some statistics on the number of clones per state for the LTM4
and CS1 data sets, with γ = 0.02 . The the average number of clones per state
(avg) is higher for the LTM4 data set than for the CS1 data set, as expected by
inspecting the left-side of Figure 4. The standard deviation (stdev) indicates a
substantial variability in the number of clones per state, a fact that is supported
by the maximum number of clones (max) and the indicated percentiles. For
the LTM4 data set 50% of the states were never cloned and 75% have at most
six clones for the seventh order. In the CS1 data set 75% of the states were
never cloned and 90% of the states have at most seven clones for the seventh
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Fig. 5. The increase in model size with the model’s order for several values of the
probability threshold, γ, for the CS1 data set and variation of the running time with
the model’s order for several values of the probability threshold for the LTM4 data set

order. These results help to motivate our interest in the dynamic model, since
while for some states the link choice of the corresponding page depends on the
navigation history, for other states the link choice is completely independent of
the navigation history.

LTM4 γ = 0.02
order

2 3 4 5 6 7

avg 3.94 4.99 6.32 8.63 9.67 10.46
stdev 10.86 15.29 24.85 40.88 47.20 50.69
max 205 307 683 989 1193 1265
75% 4.00 5.00 5.00 6.00 6.00 6.00
85% 10.00 11.25 13.00 14.00 16.25 18.00

CS1 γ = 0.02
order

2 3 4 5 6 7

avg 0.87 1.06 1.11 1.16 1.17 1.17
stdev 5.40 7.06 7.3 7.92 7.96 7.96
max 138 175 180 208 208 208
75% 0.00 0.00 0.00 0.00 0.00 0.00
95% 4.00 5.00 5.00 5.00 5.00 5.00

Fig. 6. Statistics on the number of clones per state with the model’s order for the
LTM4 and CS1 data set with γ = 0.02

The right-hand side of Figure 5, and the left-hand side of Figure 7, show
our analysis of the running time of the algorithm for two representative data
sets. We note that, while programming the method, we did not take particular
care regarding the implementation efficiency. The method is close to linear time
for γ = 0, since in such case no clustering is needed. For γ > 0 the k-means
method is applied and we let k increase until a solution which meets the threshold
criteria is obtained. For the reported experiments, we set k to vary according
to the expression k = ceiling(1.5k) in order to obtain a slow increment on its
value in the first stages and a larger increase of the k value in the subsequent
stages. Finally, the right-hand side of Figure 7, shows, for the LTM1 data set,
the increase in number of states with the model’s order for three methods used
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Fig. 7. The running time with the model’s order for several values of γ for the CS1

data set and the increase in model size with the model’s order for three methods to set
the number of clusters (k) for the LTM1 data set

to increase k, in the k-means method. The results show that for lower orders
the number of states is not very sensitive to the method, and for orders higher
than five the faster methods over estimate the number of clusters but with the
benefit of a faster running time (which is not shown in the plot).

5 Concluding Remarks

We have proposed a generalisation of the HPG model by using a state cloning
operation that is able to accurately model higher-order conditional probabilities.
The resulting dynamic high-order Markov model is such that the probabilities
of the out-links from a given state reflect the n-order conditional probabilities
of the paths to the state. Thus, the model is able to capture a variable length
history of pages, where different history lengths are needed to accurately model
user navigation. In addition, the method makes use of a probability threshold
together with a clustering technique that enables us to control the number of
additional states induced by the method at the cost of some accuracy. Finally, the
model maintains the fundamental properties of the HPG model, [1], providing
a suitable platform for an algorithm that can mine navigation patterns, taking
into account the order of page views.

We reported on experiments with three distinct real world data sets. From the
results we can conclude that, for some web sites users navigate with only a short
history of the pages previously visited (for example, the MM site) but in other
sites users hold a longer history in their memory (for example, the LTM site).
The results also suggest that, in a given site, different pages require different
amounts of history in order to understand the possible options users have when
deciding on which link to click on. This supports our interest in the proposed
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dynamic method that models each state with the required history depth. The
results indicate that the clustering method is interesting for large sites, where the
number of states induced for high orderers, for γ = 0, becomes unmanageable.

In the short term we plan to conduct a study to analyse the semantics of the
rules induced by different order probability models. We also plan to perform a
statistical comparison of subsequent order probabilities aimed at determining if
there is sufficient statistical evidence that the additional model complexity in
moving to a higher order justifies the corresponding increase in the algorithm’s
complexity. It would also be interesting to be able to estimate the number of
clusters necessary to achieve the required accuracy in order to speed up the
method. Finally, a comparative study with tree-based models is also planned.
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Abstract. We present Tree2, a new approach to structural classifica-
tion. This integrated approach induces decision trees that test for pattern
occurrence in the inner nodes. It combines state-of-the-art tree mining
with sophisticated pruning techniques to find the most discriminative
pattern in each node. In contrast to existing methods, Tree2 uses no
heuristics and only a single, statistically well founded parameter has
to be chosen by the user. The experiments show that Tree2 classifiers
achieve good accuracies while the induced models are smaller than those
of existing approaches, facilitating better comprehensibility.

1 Introduction

Classification is one of the most important data mining tasks. Whereas tradi-
tional approaches have focused on flat representations, using feature vectors or
attribute-value representations, there has recently been a lot of interest in more
expressive representations, such as sequences, trees and graphs [1,2,3,4,5]. Moti-
vations for this interest include drug design, since molecules can be represented
as graphs or sequences. Classification of such data paves the way towards drug
design on the screen instead of extensive experiments in the lab. Regarding docu-
ments, XML, essentially a tree-structured representation, is becoming ever more
popular. Classification in this context allows for more efficient dealing with huge
amounts of electronic documents.

Existing approaches to classifying structured data (such as trees and graphs)
can be categorized into various categories. They differ largely in the way they
derive structural features for discriminating between examples belonging to the
different classes.

A first category can be described as a pure propositionalization approach.
The propositionalization approach typically generates a very large number of
features and uses an attribute-value learner to build a classifier. The resulting
classifiers are often hard to understand due to the large number of features used
which are possibly also combined in a non-trivial way (e.g. in a SVM).

A second class of systems can be described as the association rule approach,
e.g. Zaki [4]. Even though the resulting rules often yield high predictive accuracy,
the number of generated rules typically explodes, making the resulting classifier
difficult to understand.

A. Jorge et al. (Eds.): PKDD 2005, LNAI 3721, pp. 46–58, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Tree2 - Decision Trees for Tree Structured Data 47

Both the association rule and propositionalization approaches consider fea-
ture generation and classification in two independent steps. Integrated approaches
form a third category of systems that integrates feature construction with clas-
sification. This category includes inductive logic programming systems, such as
FOIL [6] and Progol [7], as well as the DT-GBI approach of Motoda et al.
[5]. For those approaches to be computationally feasible they have to perform
heuristic search, possibly generating non-optimal features.

All techniques mentioned above share the need to specify a number of user-
defined parameters, which is often non-trivial.

In this work we present a different approach called Tree2. It is motivated by
recent results on finding correlated patterns, allowing to find the k best features
according to a convex optimization criterion such as χ2 or Information Gain [8].
Rather than generating a large number of features or searching for good features
in a heuristic manner, Tree2 searches for the best features to be incorporated
in a decision tree by employing a branch-and-bound search, pruning w.r.t. the
best pattern seen so far. As in DT-GBI, a decision tree is induced but at each
node, the single best feature is computed. There are several advantages: Tree2

is an integrated approach, has stronger guarantees than GBI, only one parameter
has to be set (the significance level), and the resulting classifiers are far smaller
and easier to understand than those of the propositionalization and association
rule approaches.

The paper is organized as follows: in Section 2 we describe earlier work on the
topic and relate it to our approach; in Section 3, we discuss technical aspects of
our method and outline our algorithm; in Section 4, the experimental evaluation
is explained and its results discussed. We conclude in Section 5 and point to
future work directions.

2 Related Work

Structural classification has been done with different techniques. Firstly, there
are several propositionalization approaches, e.g. [2] and [3]. While details may
differ, the basic mechanism in these approaches is to first mine all patterns that
are unexpected according to some measure (typically frequency). Once those
patterns have been found, instances are transformed into bitstrings, denoting
occurrence of each pattern. Classifiers are trained using this bitstring represen-
tation. While these approaches can show excellent performance and have access
to the whole spectrum of machine learning techniques there are possible prob-
lems. Obviously the decision which patterns to consider special, e.g. by fixing a
minimum frequency, will have an effect on the quality of the model. The result-
ing feature set will probably be very large, forcing pruning of some kind. Finally,
interpretation of the resulting model is not easy, especially if the classifier is
non-symbolic, e.g. a SVM.

A second group of approaches is similar to the associative classification ap-
proach [9]. Again, outstanding patterns are mined but each of them has to asso-
ciate with the class value. Zaki et al.’s XRules classifier is of this variety. Each
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pattern is then considered as a rule predicting its class. Usually, the resulting rule
set has to be post-processed and/or a conflict resolution technique employed. As
in the propositionalization techniques, the choice of constraints under which to
mine is not straight-forward and choosing the resolution technique can strongly
influence performance, as has been shown e.g. in [10,11]. Additionally, the re-
sulting classifier often consists of thousands of rules, making interpretation by
the user again difficult.

Finally, there exist integrated techniques that do not mine all patterns, but
construct features during building the classifier. Since structural data can be
represented in predicate logic, techniques such as Foil [6] and Progol [7] are
capable of doing that. While ILP approaches are elegant and powerful, working
on large datasets can be too computationally expensive. An approach such as
DT-GBI [5], on the other hand, constructs the features it uses for the tests
of the induced decision tree by doing graph-mining. What is common to these
approaches is that feature induction is usually done in a heuristic way, often by
greedy maximization of a correlation measure during beam search. Responsibil-
ity of deciding the parameters governing this search is placed upon the user. For
instance, in Foil decisions have to be made on the beam size and the maxi-
mum number of literals that are allowed in the rule body. Similarly, DT-GBI
requires the user to specify beam size, the maximum number of specializations
in each node, and possibly a minimum frequency that should not be violated.
As Motoda shows in his work [5], finding the right value for the beam size and
the maximum number of specializations requires essentially a meta-search in the
space of possible classifiers.

In contrast, the only parameter to be specified for Tree2 is the cut-off value
for growing the decision tree. By basing this value on the p-values for the χ2-
distribution, the user has a well-founded guide-line for choosing this value.

While all the above techniques focus on directly using structural information
for classification purposes, a different approach is exemplified by [12]. Instead of
explicitly representing the structures used, kernels are employed that quantify
similarities between entities. While the resulting classifiers are very accurate,
the use of e.g. a graph kernel together with an SVM make analyzing the model
difficult.

3 Methodology

In this section we explain the pattern matching notion used by the Tree2 ap-
proach, discuss upper bound calculation, the main component of the principled
search for the most discriminating pattern, and formulate the algorithm itself.

3.1 Matching Embedded Trees

Several representations for structured data such as graphs, trees and sequences
exist. In this paper we will focus on tree structured data, like XML, only. Thus,
we need a notion for matching tree structured data.
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A rooted k-tree t is a set of k nodes Vt where each v ∈ Vt, except one called
root, has a parent denoted π(v) ∈ Vt. We use λ(v) to denote the label of a node
and an operator ≺ to denote the order from left to right among the children of a
node. The transitive closure of π will be denoted π∗. Let L be a formal language
composed of all labeled, ordered, rooted trees and D ⊂ L a database. To count
trees t ∈ D containing a pattern p we define a function dt : L → {0, 1} to be 1
iff p matches the tree t and 0 otherwise.

Several notions of tree matching exist. As in Zaki et al.’s work [4] we used a
notion called tree embedding which is defined as follows:

Definition 1. A tree t is embedded in a tree t′ iff a mapping ϕ : Vt → Vt′ exists
such that ∀u, v ∈ Vt : λ(u) = λ(ϕ(u)) ∧ u ≺ v ⇔ ϕ(u) ≺ ϕ(v) ∧ π∗(u) =
v ⇔ π∗(ϕ(u)) = ϕ(v).

An example of an embedded tree is given in Figure 1.

Fig. 1. The tree t is embedded in t′

c1 c2

T yT xT − yT xT

¬T m − yT n − m − (xT − yT ) n − xT

m n − m n

Fig. 2. A Contingency Table

We use tree embedding to compare our approach with Zaki et al.’s technique.
This notion is more flexible than simple subtrees and the mining process is
still efficient. In general, other matching notions (see [1]) and even different
representations could be used with our technique . This includes not only other
notions of matching trees, but also graphs, sequences etc., since the general
principles of our approach apply to all domains.

3.2 Correlation Measures

Popular approaches to finding relevant patterns in the data are based on the
support-confidence framework, mining frequent patterns, in the hope of captur-
ing statistically significant phenomena, with high predictive power. This frame-
work has some problems though, namely the difficulty of choosing a ”good”
support and the fact that confidence tends to reward patterns occurring to-
gether with the majority class. To alleviate these problems, we use correlation
measures for selecting discriminative patterns. A correlation measure compares
the expected frequency of the joint occurrence of a pattern and a certain class
value to the observed frequency. If the resulting value is larger than a certain
threshold then the deviation from the independence assumption is considered
statistically significant enough to assume a relationship between pattern and
class label.
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Example 1. Consider as an example a database consisting of 50 instances, half
of which are labeled with class label c1, the other half with class label c2. Assume
furthermore a pattern T which occurs with support 10 in the database. If eight of
the ten instances including T are labeled with c1, then the χ2 measure would give
this deviation a score of 4.5. Information Gain, that quantifies only the changes
in class distribution w.r.t. T , would give it a score of 0.079.

We organize the observed frequencies of a tree pattern T in a contingency
table, cf. Figure 2, with xT denoting the total number of occurences in the dataset
and yT the occurences in the subset corresponding to the first class. Since the
two variables are sufficient for calculating the value of a correlation measure on
this table, we will view these measures as real-valued functions σ : N2 �→ R for
the remainder of this paper.

While calculating the correlation value of a given pattern is relatively simple,
directed search towards better solutions is somewhat more difficult since corre-
lation measures have no desirable properties such as anti-monotonicity. But if
they are convex it is possible to calculate an upper bound on the score that
can be achieved by specializations of the current pattern T and thus to decide
whether this branch in the search tree should be followed.

3.3 Convexity and Upper Bounds

It can be proved that χ2 and Information Gain are convex. For the proofs of
the convexity of χ2 and Information Gain we refer the reader to [8].

Convex functions take their extreme values at the points forming the convex
hull of their domain D. Consider the graph of f(x) in Figure 3(A). Assume the
function’s domain is restricted to the interval [k, l] which also makes those points
the convex hull of D. Obviously, f(k) and f(l) are locally maximal, with f(l)
being the global maximum. Given the current value of the function at f(c) and
assuming that it is unknown whether c increases or decreases, evaluating f at k
and l allows to check whether it is possible for any value of c to put the value of
f over the threshold.
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Fig. 3. Convex Function and Convex Hull of the set of possible 〈x′
T , y′

T 〉
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For the two-dimensional case, the extreme values are reached at the vertices of
the enclosing polygon (in our case the four vertices of the parallelogram in Figure
3(B)). This parallelogram encloses all possible tuples 〈x′

T , y′
T 〉 that correspond

to occurence counts of specializations of the current pattern T . The tuple 〈0, 0〉
corresponds to a pattern that does not occur in the dataset and therefore does not
have to be considered in calculating the upper bound. 〈xT , yT 〉 represents a valid
pattern, but in the context of upper bound calculation denotes a specialization of
the current pattern T that is equally good in discriminative power. Since general
structures have a higher expected probability of being effective on unseen data,
we prefer those and thus disregard this tuple as well. Thus the upper bound on
σ(T ′) is ubσ(T ) = max{σ(yT , yT ), σ(xT − yT , 0)}. For an in-depth discussion of
upper bound calculation we refer the reader to [8,11].

Example 2. Continuing our example from 3.2, this means that for σ being
χ2, ubχ2(T ) = max{9.52, 2.08}, given x = 10, y = 8. Since 9.52 is larger than
χ2(xT , yT ) = 4.5 there might be a specialization of T that discriminates better
than T itself and therefore exploring this search path is worthwhile.

While this upper bound calculation is correct for Information Gain, an ad-
ditional problem w.r.t. χ2 lies in the fact that the information provided by the
score of χ2 is not always reliable. Statistical theory says that for a contingency
table with one degree of freedom, such as the one we are considering here, the
expected number of occurrences has to be greater than or equal to 5 for the χ2

score to be reliable. This means that a χ2-value on 〈yT , yT 〉 or 〈xT −yT , 0〉 is not
necessarily reliable. Thus, upper bound calculation has to be modified to achieve
reliability. Based on the size of the class and of D, upper and lower bounds cu, cl

on x′
T for which all four cells have an expected count of 5 can be calculated and

the values of the tuples adjusted accordingly. Two of the new vertices are shown
as 〈cu, cu〉 and 〈cl, cl − (xT − yT )〉.

3.4 The Tree2 Algorithm

The Tree2 algorithm (shown as Algorithm 1) constructs a binary decision tree
in the manner of ID3 [13]. In the root node and each inner node, the occurrence
of a tree pattern is tested against the instance to be classified. A resulting tree
could look like the example given in Figure 4. In each node, the subtree having
the best discriminative effect on the corresponding subset is found by a system-
atic branch-and-bound search. The mining process is shown in the subroutine
EnumerateBestSubtree. The space of possible patterns is traversed using
canonical enumeration and the value of σ calculated for each candidate pattern.
If this value lies above the best score seen so far, the current pattern is the most
discriminating on this subset so far and the threshold is raised to its σ-value.
An upper bound on the value specializations of the current pattern can achieve
is calculated and pruning of the search space using this upper bound and the
threshold is performed. In this way, we separate the success of the technique
from user decisions about the search strategy. The only decision a user has to
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Fig. 4. A decision tree as produced by the Tree2 algorithm

make is the one w.r.t. a stopping criterion for further growth of the tree. To
this effect, a minimum value for the score of the correlation measure has to be
specified, which can be based on statistical theory, thus giving the user a better
guidance for making this decision.

Algorithm 1 The Tree2 algorithm
Tree2(D, σ, τuser , DT)

1: psplit = EnumerateBestSubtree(�, 0, σ, τuser, ∅)
2: if psplit 	= ∅ then
3: Add node including psplit to the DT
4: Tree2( {T ∈ D|psplit embedded in T} , σ, τuser, DT)
5: Tree2( {T ∈ D|psplit not embedded in T} , σ, τuser, DT)
6: return DT

EnumerateBestSubtree(t, τ, σ, τuser, p)
1: for all canonical expansions t′ of t do
2: if σ(t′) > τ ∧ σ(t′) ≥ τuser then
3: p = t′, τ = σ(t′)
4: if ubσ(t′) ≥ τ then
5: p = EnumerateBestSubtree(t′, τ, σ, τuser, p)
6: return p

Tree2 has several desirable properties. Firstly, the resulting classifier is in-
tegrated in the sense that it uses patterns directly, thus circumventing the need
for the user to restrict the amount of features and making the resulting classifier
more understandable. Secondly, by using correlation measures for quantifying
the quality of patterns, we give the user a sounder theoretical foundation on
which to base the decision about which learned tests to consider significant and
include in the model. Thirdly, we avoid using heuristics that force the user to de-
cide on the values of parameters that could have a severe impact on the resulting
model’s accuracy. Using principled search guarantees that Tree2 finds the best
discriminating pattern for each node in the decision tree w.r.t. the correlation
measure used. Finally, as the experiments show, the resulting decision tree is
far smaller than the rule sets produced by XRules classifier [4], while achieving
comparable accuracy, and is therefore more easily interpretable by human users.
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4 Experimental Evaluation

For the experimental evaluation, we compared our approach to XRules and a
decision tree base-line approach on the XML data used in Zaki et al.’s publication
[4]. Furthermore, we compared Tree2 to a base-line approach using frequency
mining for a SVM classifier and two Progol results on the regression-friendly
subset of the Mutagenesis dataset.

XML Data. The XML data used in our experiments are log files from web-site
visitors’ sessions. They are separated into three weeks (CSLOG1, CSLOG2, and
CSLOG3) and each session is classified as its producing visitor coming either
from an .edu domain or from any other domain. Characteristics of the datasets
are shown in Table 1. For the comparison we built decision trees with the

Table 1. Characteristics of Datasets (taken from [4])

DB #Sessions edu other %edu %other
CSLOG1 8074 1962 6112 24.3 75.7
CSLOG2 7409 1687 5722 22.8 77.2
CSLOG12 13934 2969 10965 21.3 78.7
CSLOG3 7628 1798 5830 23.6 76.4

χ2 distribution’s significance value for 90%, 95% and 99% respectively. In each
setting we used one set of data for training and another one for testing. Following
Zaki’s notation, CSLOGx-y means that we trained on set x and tested on set
y. For the base-line approach we mined the 100 patterns having the highest
discriminative effect on the data, transformed the data into bitstring instances
according to the found patterns, and built decision trees using all 100 patterns
in one run (C4.5 - 100 ) and the 50 best patterns in another run (C4.5 - 50 )
with the WEKA [14] implementation of the C4.5 [15] algorithm. We compare the
accuracies of the resulting classifiers against each other as well as the complexity
of the model which we measure by the number of rules used by XRules, and
by the number of leaves in the decision trees, which corresponds to the number
of rules that can be derived from the trees, respectively.

Fig. 5. Accuracies and size in rules of the different approaches
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Results are summarized in Figure 5. As can be seen, the accuracies of the
induced classifiers do not vary much. The only approach that significantly out-
performs (by 2-3%) the other techniques on all but the CSLOG1-2 setting, is
XRules. At the same time, the size of XRules’ models is also significantly
greater. While the Tree2 trees induced with Information Gain have several
hundred nodes and all trees induced with χ2 (both Tree2 and base-line) be-
tween 35 and 103 nodes, the smallest XRules model consists of more than 19000
rules. Patterns tested against in the inner decision tree nodes consist of 3-7 nodes
only. Since this is similar to the size of patterns used in XRules’ rules, complex-
ity is really reduced and not just pushed inside the classifier. In comparing the
other approaches, several things are noticeable. Raising the threshold from the
90% to the 95% significance level for χ2-induced Tree2 trees does not decrease
accuracy (even improving it slightly in 3 cases). Raising it further to the 99%
level has no clear effect. The tree size decreases, though, on average by 7.5 nodes
from the 90% to the 95% setting. Raising the significance level further to 99%
decreases the tree size by 18 nodes on average.

For the base-line approach we mined patterns correlating strongly with the
classes and trained a classifier on them. This approach achieves competitive
results w.r.t the accuracy. The clear drawback is that deciding on the number
of features to use is not straightforward. Using only 50 instead of 100 features
produces all kinds of behavior. In some cases the accuracy does not change. In
other cases the classifier using 50 features outperforms the one using 100 or vice
versa. Also, the base-line approach using 100 patterns tends to use most of these,
even if Tree2 trees of similar quality are much smaller.

Finally, using Information Gain as quality criterion shows mainly one thing -
that it is difficult to make an informed decision on cut-off values. The accuracies
and sizes shown refer to decision trees induced with a cut-off value of 0.001. For
one thing, the resulting trees grow far bigger than the χ2-trees. Additionally,
the accuracies in comparison with the χ2 approach vary, giving rise to one worse
tree, one of equal quality and two better ones. None of the differences in accuracy
is significant though. Inducing decision trees with a cut-off value of 0.01 lowers
accuracy by 1.5 to 3 percentage points, with the induced trees still being larger
than the χ2 trees.

Mutagenicity Data. For this setting, we chose the regression-friendly subset
of the well known Mutagenicity dataset used in [16]. We compare with the results
of the ILP system Progol reported in [16,17] and the results of the base-line
approach reported in [3]. Since the Mutagenicity dataset consists of molecules
represented as graphs, a transformation from the SMILES representation into
so-called fragment-trees is used that is explained following this paragraph.

The Smiles Encoding. The SMILES language [18] is used by computational
chemists as a compact encoding of molecular structure. It is supported by
many tools as OpenBabel or Daylight ([19,20]). The language contains sym-
bols for atoms, bonds, branches, and can express cycles. Using a decomposition-
algorithm by Karwath and De Raedt [21], a SMILES-String can, after some
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reformatting, be decomposed into a so-called fragment tree. Since there is no
unique SMILES-string for a molecule, the fragment tree is not unique either.
The decomposition-algorithm recursively splits the string into cycles {xT }x and
branches A(B)C. In the resulting fragment-tree the leaves contain pure cycles or
linear fragments without further branches. The inner nodes of such a tree contain
fragments still containing branches while the root node is the whole molecule.
The edge labels denote the type of decomposition (i.e. the part of the branch
or the number of the cycle). Thus, the leaves of a fragment-tree contain a lot of
information decomposed into very small fragments. As in [3] we drop the edge
labels and labeled all but the leaf nodes with a new, unique label. Hence, the
tree-structure represents the abstract structure of the molecule with the chemical
information in the leaves.

Figure 6 shows a molecule on the left-hand side which could be encoded by
the SMILES-string N − c1ccc(cc1)−O− c2ccc(cc2)− [Cl]. This string represents
the same as N{0cccc(cc}0)O{1cccc(cc}1)[Cl]. The corresponding fragment-tree
is shown on the right-hand side of Figure 6.

Fig. 6. A molecule with the encoding N − c1ccc(cc1) − O − c2ccc(cc2) − [Cl] and the
corresponding fragment-tree

Experimental Results. Predictive accuracy for each approach was estimated us-
ing ten-fold cross-validation. Reported are average accuracies and standard devi-
ation (if known). For Tree2, trees were induced at the 95% significance level for
χ2 and with a cut-off value of 0.01 for Information Gain. The results reported
in [16] were achieved using Progol and working only on structural informa-
tion, in [17], numerical values suggested by experts were used as well. This work
reports only an average accuracy. The resulting accuracies and the size of the
corresponding theories are shown in Table 2.

As can be seen, for both measures Tree2 gives similar results to the purely
structural Progol approach, with the differences being not significant. At the
same time, the χ2 induced model is far smaller than the other two. Again,
the patterns tested against in the inner nodes are not overly complex (5-11
nodes). When Progol uses the expert-identified attributes as well, its accuracy
increases. Since we do not have access to the standard deviation of these experi-
ments, we cannot make a significance statement. Finally, the base-line approach,
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Table 2. Accuracies and complexity of the models on the mutagenicity dataset

Approach Predictive Accuracy Average Size of the Model

Tree2 χ2 80.26±7.14 2.3 Nodes
Tree2 IG 81.76±9 11.8 Nodes
Progol ’94 [16] 80±3 9 Clauses
Progol ’95 [17] 84 4 Clauses
Frequent SMILES [3] 86.70 214 Patterns

which mined all patterns frequent in one class and not exceeding a given fre-
quency in the other class, and built a model using these features in an SVM,
significantly outperforms the Tree2 classifiers. On the other hand, by using
a SVM, the results will hardly be interpretable for humans anymore and the
amount of patterns used is larger than in the Tree2 models by two orders of
magnitude.

5 Conclusion and Future Work

We presented Tree2, an integrated approach to structural classification. The
algorithm builds a decision tree for tree structured data that tests for pattern
occurrence in the inner nodes. Using an optimal branch-and-bound search, made
possible by effective pruning, Tree2 finds the most discriminative pattern for
each subset of the data considered. This allows the user to abstract the success
of the classifier from decisions about the search process, unlike in existing ap-
proaches that include heuristics. Basing the stopping criterion for growing the
decision tree on statistically well founded measures rather than arbitrary thresh-
olds whose meaning is somewhat ambiguous gives the user better guidance for
selecting this parameter. It also alleviates the main problem of the support-
confidence framework, namely the generation of very large rule sets that are
incomprehensible to the user and possibly include uninformative rules w.r.t.
classification.

As the experiments show, Tree2 classifiers are effective while being less
complex than existing approaches. While using χ2 for assessing the quality of
discriminative patterns, raising or lowering the significance threshold affects the
induced trees in an expected manner. In contrast, using Information Gain is
more difficult, since selecting the cut-off value has no statistical foundations.
While base-line approaches, that separate feature generation and classifier con-
struction, achieve very good results, it is not entirely clear how to justify the
selected the number of features mined. Furthermore, there exists a gap in inter-
pretability since the classifier used might combine the mined features in a way
that is not easily accessible to the user.

So far, we have restricted ourselves to a single representation, trees, a cer-
tain type of classifier, decision trees, and two measures. Future work will include
evaluating other correlation measures and applying our approach to different
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representations. Finally, the success of using effective conflict resolution strate-
gies in the XRules classifier suggests the expansion our approach to ensemble
classifiers.
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Abstract. We explore the use of instance and cluster-level constraints with ag-
glomerative hierarchical clustering. Though previous work has illustrated the
benefits of using constraints for non-hierarchical clustering, their application to
hierarchical clustering is not straight-forward for two primary reasons. First, some
constraint combinations make the feasibility problem (Does there exist a single
feasible solution?) NP-complete. Second, some constraint combinations when
used with traditional agglomerative algorithms can cause the dendrogram to stop
prematurely in a dead-end solution even though there exist other feasible solu-
tions with a significantly smaller number of clusters. When constraints lead to
efficiently solvable feasibility problems and standard agglomerative algorithms
do not give rise to dead-end solutions, we empirically illustrate the benefits of
using constraints to improve cluster purity and average distortion. Furthermore,
we introduce the new γ constraint and use it in conjunction with the triangle
inequality to considerably improve the efficiency of agglomerative clustering.

1 Introduction and Motivation

Hierarchical clustering algorithms are run once and create a dendrogram which is a tree
structure containing a k-block set partition for each value of k between 1 and n, where
n is the number of data points to cluster allowing the user to choose a particular clus-
tering granularity. Though less popular than non-hierarchical clustering there are many
domains [16] where clusters naturally form a hierarchy; that is, clusters are part of other
clusters. Furthermore, the popular agglomerative algorithms are easy to implement as
they just begin with each point in its own cluster and progressively join the closest
clusters to reduce the number of clusters by 1 until k = 1. The basic agglomerative
hierarchical clustering algorithm we will improve upon in this paper is shown in Figure
1. However, these added benefits come at the cost of time and space efficiency since
a typical implementation with symmetrical distances requires Θ(mn2) computations,
where m is the number of attributes used to represent each instance.

In this paper we shall explore the use of instance and cluster level constraints with
hierarchical clustering algorithms. We believe the use of such constraints with hierar-
chical clustering is the first though there exists work that uses spatial constraints to find
specific types of clusters and avoid others [14,15]. The similarly named constrained hi-
erarchical clustering [16] is actually a method of combining partitional and hierarchical
clustering algorithms; the method does not incorporate apriori constraints. Recent work

A. Jorge et al. (Eds.): PKDD 2005, LNAI 3721, pp. 59–70, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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Agglomerative(S = {x1, . . . , xn}) returns Dendrogramk for k = 1 to |S|.
1. Ci = {xi}, ∀i.
2. for k = |S| down to 1

Dendrogramk = {C1, . . . , Ck}
d(i, j) = D(Ci, Cj), ∀i, j; l, m = argmina,b d(a, b).
Cl = Join(Cl, Cm); Remove(Cm).

endloop

Fig. 1. Standard Agglomerative Clustering

[1,2,12] in the non-hierarchical clustering literature has explored the use of instance-level
constraints. The must-link and cannot-link constraints require that two instances must
both be part of or not part of the same cluster respectively. They are particularly useful
in situations where a large amount of unlabeled data to cluster is available along with
some labeled data from which the constraints can be obtained [12]. These constraints
were shown to improve cluster purity when measured against an extrinsic class label not
given to the clustering algorithm [12]. The δ constraint requires the distance between
any pair of points in two different clusters to be at least δ. For any cluster Ci with two or
more points, the ε-constraint requires that for each point x ∈ Ci, there must be another
point y ∈ Ci such that the distance between x and y is at most ε. Our recent work [4]
explored the computational complexity (difficulty) of the feasibility problem: Given a
value of k, does there exist at least one clustering solution that satisfies all the constraints
and has k clusters? Though it is easy to see that there is no feasible solution for the three
cannot-link constraints CL(a,b),CL(b,c),CL(a,c) for k < 3, the general feasibility prob-
lem for cannot-link constraints is NP-complete by a reduction from the graph coloring
problem. The complexity results of that work, shown in Table 1 (2nd column), are impor-
tant for data mining because when problems are shown to be intractable in the worst-case,
we should avoid them or should not expect to find an exact solution efficiently.

We begin this paper by exploring the feasibility of agglomerative hierarchical clus-
tering under the above four mentioned instance and cluster-level constraints. This prob-
lem is significantly different from the feasibility problems considered in our previous
work since the value of k for hierarchical clustering is not given. We then empirically
show that constraints with a modified agglomerative hierarchical algorithm can im-
prove the quality and performance of the resultant dendrogram. To further improve
performance we introduce the γ constraint which when used with the triangle inequal-
ity can yield large computation saving that we have bounded in the best and average
case. Finally, we cover the interesting result of an irreducible clustering. If we are given
a feasible clustering with kmax clusters then for certain combination of constraints join-
ing the two closest clusters may yield a feasible but “dead-end” solution with k clusters
from which no other feasible solution with less than k clusters can be obtained, even
though they are known to exist. Therefore, the created dendrograms may be incomplete.

Throughout this paper D(x, y) denotes the Euclidean distance between two points
and D(X, Y ) the Euclidean distance between the centroids of two groups of instances.
We note that the feasibility and irreducibility results (Sections 2 and 5) are not neces-
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Table 1. Results for Feasibility Problems for a Given k (partitional clustering) and Unspecified k
(hierarchical clustering)

Constraint Given k Unspecified k Unspecified k - Deadends?
Must-Link P [9,4] P No

Cannot-Link NP-complete [9,4] P Yes
δ-constraint P [4] P No
ε-constraint P [4] P No

Must-Link and δ P [4] P No
Must-Link and ε NP-complete [4] P No

δ and ε P [4] P No
Must-Link, Cannot-Link, NP-complete [4] NP-complete Yes

δ and ε

sarily for Euclidean distances and are hence applicable for single and complete linkage
clustering while the γ-constraint to improve performance (Section 4) is applicable to
any metric space.

2 Feasibility for Hierarchical Clustering

In this section, we examine the feasibility problem for several different types of con-
straints, that is, the problem of determining whether the given set of points can be
partitioned into clusters so that all the specified constraints are satisfied.

Definition 1. Feasibility problem for Hierarchical Clustering (FHC)

Instance: A set S of nodes, the (symmetric) distance d(x, y) ≥ 0 for each pair of
nodes x and y in S and a collection C of constraints.

Question: Can S be partitioned into subsets (clusters) so that all the constraints in C
are satisfied?

When the answer to the feasibility question is “yes”, the corresponding algorithm
also produces a partition of S satisfying the constraints. We note that the FHC problem
considered here is significantly different from the constrained non-hierarchical cluster-
ing problem considered in [4] and the proofs are different as well even though the end
results are similar. For example in our earlier work we showed intractability results for
some constraint types using a straightforward reduction from the graph coloring prob-
lem. The intractability proof used in this work involves more elaborate reductions. For
the feasibility problems considered in [4], the number of clusters is in effect, another
constraint. In the formulation of FHC, there are no constraints on the number of clusters,
other than the trivial ones (i.e., the number of clusters must be at least 1 and at most |S|).

We shall in this section begin with the same constraints as those considered in [4].
They are: (a) Must-Link (ML) constraints, (b) Cannot-Link (CL) constraints, (c) δ con-
straint and (d) ε constraint. In later sections we shall introduce another cluster-level
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constraint to improve the efficiency of the hierarchical clustering algorithms. As ob-
served in [4], a δ constraint can be efficiently transformed into an equivalent collection
of ML-constraints. Therefore, we restrict our attention to ML, CL and ε constraints. We
show that for any pair of these constraint types, the corresponding feasibility problem
can be solved efficiently. The simple algorithms for these feasibility problems can be
used to seed an agglomerative or divisive hierarchical clustering algorithm as is the case
in our experimental results. However, when all three types of constraints are specified,
we show that the feasibility problem is NP-complete and hence finding a clustering, let
alone a good clustering, is computationally intractable.

2.1 Efficient Algorithms for Certain Constraint Combinations

When the constraint set C contains only ML and CL constraints, the FHC problem can
be solved in polynomial time using the following simple algorithm.

1. Form the clusters implied by the ML constraints. (This can be done by computing
the transitive closure of the ML constraints as explained in [4].) Let C1, C2, . . ., Cp

denote the resulting clusters.
2. If there is a cluster Ci (1 ≤ i ≤ p) with nodes x and y such that x and y are also

involved in a CL constraint, then there is no solution to the feasibility problem;
otherwise, there is a solution.

When the above algorithm indicates that there is a feasible solution to the given
FHC instance, one such solution can be obtained as follows. Use the clusters produced
in Step 1 along with a singleton cluster for each node that is not involved in an ML
constraint. Clearly, this algorithm runs in polynomial time. We now consider the com-
bination of CL and ε constraints. Note that there is always a trivial solution consisting
of |S| singleton clusters to the FHC problem when the constraint set involves only CL
and ε constraints. Obviously, this trivial solution satisfies both CL and ε constraints, as
the latter constraint only applies to clusters containing two or more instances.

The FHC problem under the combination of ML and ε constraints can be solved
efficiently as follows. For any node x, an ε-neighbor of x is another node y such that
D(x, y) ≤ ε. Using this definition, an algorithm for solving the feasibility problem is:

1. Construct the set S′ = {x ∈ S : x does not have an ε-neighbor}.
2. If some node in S′ is involved in an ML constraint, then there is no solution to the

FHC problem; otherwise, there is a solution.

When the above algorithm indicates that there is a feasible solution, one such solu-
tion is to create a singleton cluster for each node in S′ and form one additional cluster
containing all the nodes in S − S′. It is easy to see that the resulting partition of S
satisfies the ML and ε constraints and that the feasibility testing algorithm runs in poly-
nomial time. The following theorem summarizes the above discussion and indicates that
we can extend the basic agglomerative algorithm with these combinations of constraint
types to perform efficient hierarchical clustering. However, it does not mean that we
can always use traditional agglomerative clustering algorithms as the closest-cluster-
join operation can yield dead-end clustering solutions as discussed in Section 5.
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Theorem 1. The FHC problem can be solved efficiently for each of the following com-
binations of constraint types: (a) ML and CL (b) CL and ε and (c) ML and ε. ��

2.2 Feasibility Under ML, CL and ε Constraints

In this section, we show that the FHC problem is NP-complete when all the three con-
straint types are involved. This indicates that creating a dendrogram under these con-
straints is an intractable problem and the best we can hope for is an approximation
algorithm that may not satisfy all constraints. The NP-completeness proof uses a re-
duction from the One-in-Three 3SAT with positive literals problem (OPL) which is
known to be NP-complete [11]. For each instance of the OPL problem we can construct
a constrained clustering problem involving ML, CL and ε constraints. Since complexity
results are worse case, the existence of just these problems is sufficient for theorem 2.
One-in-Three 3SAT with Positive Literals (OPL)

Instance: A set C = {x1, x2, . . . , xn} of n Boolean variables, a collection Y =
{Y1, Y2, . . . , Ym} of m clauses, where each clause Yj = (xj1 , xj2 , xj3} has exactly
three non-negated literals.

Question: Is there an assignment of truth values to the variables in C so that exactly
one literal in each clause becomes true?

Theorem 2. The FHC problem is NP-complete when the constraint set contains ML,
CL and ε constraints.

The proof of the above theorem is somewhat lengthy and is omitted because of
space reasons. (The proof appears in an expanded technical report version of this paper
[5] that is available on-line.)

3 Using Constraints for Hierarchical Clustering: Algorithm and
Empirical Results

To use constraints with hierarchical clustering we change the algorithm in Figure 1 to
factor in the above discussion. As an example, a constrained hierarchical clustering al-
gorithm with must-link and cannot-link constraints is shown in Figure 2. In this section
we illustrate that constraints can improve the quality of the dendrogram. We purpose-
fully chose a small number of constraints and believe that even more constraints will
improve upon these results. We will begin by investigating must-link and cannot-link
constraints using six real world UCI datasets. For each data set we clustered all instances
but removed the labels from 90% of the data (Su) and used the remaining 10% (Sl) to
generate constraints. We randomly selected two instances at a time from Sl and gener-
ated must-link constraints between instances with the same class label and cannot-link
constraints between instances of differing class labels. We repeated this process twenty
times, each time generating 250 constraints of each type. The performance measures
reported are averaged over these twenty trials. All instances with missing values were
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Table 2. Average Distortion per Instance and Average Percentage Cluster Purity over Entire Den-
drogram

Data Set Distortion Purity
Unconstrained Constrained Unconstrained Constrained

Iris 3.2 2.7 58% 66%
Breast 8.0 7.3 53% 59%

Digit (3 vs 8) 17.1 15.2 35% 45%
Pima 9.8 8.1 61% 68%

Census 26.3 22.3 56% 61%
Sick 17.0 15.6 50% 59%

ConstrainedAgglomerative(S,ML,CL) returns Dendrogrami, i = kmin ... kmax

Notes: In Step 5 below, the term “mergeable clusters” is used to denote a pair of clusters whose
merger does not violate any of the given CL constraints. The value of t at the end of the loop in
Step 5 gives the value of kmin.

1. Construct the transitive closure of the ML constraints (see [4] for an algorithm) resulting in
r connected components M1, M2, . . ., Mr .

2. If two points {x, y} are both a CL and ML constraint then output “No Solution” and stop.
3. Let S1 = S − (

⋃r
i=1 Mi). Let kmax = r + |S1|.

4. Construct an initial feasible clustering with kmax clusters consisting of the r clusters M1,
. . ., Mr and a singleton cluster for each point in S1. Set t = kmax.

5. while (there exists a pair of mergeable clusters) do
(a) Select a pair of clusters Cl and Cm according to the specified distance criterion.
(b) Merge Cl into Cm and remove Cl. (The result is Dendrogramt−1.)
(c) t = t − 1.

endwhile

Fig. 2. Agglomerative Clustering with ML and CL Constraints

removed as hierarchical clustering algorithms do not easily handle such instances. Fur-
thermore, all non-continuous columns were removed as there is no standard distance
measure for discrete columns.

Table 2 illustrates the quality improvement that the must-link and cannot-link con-
straints provide. Note that we compare the dendrograms for k values between kmin and
kmax. For each corresponding level in the unconstrained and constrained dendrogram
we measure the average distortion (1/n ∗

∑n
i=1 D(xi − Cf(xi)), where f(xi) returns

the index of the closest cluster to xi) and present the average over all levels. It is im-
portant to note that we are not claiming that agglomerative clustering has distortion as
an objective function, rather that it is a good measure of cluster quality. We see that
the distortion improvement is typically of the order of 15%. We also see that the aver-
age percentage purity of the clustering solution as measured by the class label purity
improves. The cluster purity is measured against the extrinsic class labels. We believe
these improvement are due to the following. When many pairs of clusters have simi-
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lar short distances, the must-link constraints guide the algorithm to a better join. This
type of improvement occurs at the bottom of the dendrogram. Conversely, towards the
top of the dendrogram the cannot-link constraints rule out ill-advised joins. However,
this preliminary explanation requires further investigation which we intend to address
in the future. In particular, a study of the most informative constraints for hierarchical
clustering remains an open question, though promising preliminary work for the area
of non-hierarchical clustering exists [2].

We next use the cluster-level δ constraint with an arbitrary value to illustrate the
great computational savings that such constraints offer. Our earlier work [4] explored ε
and δ constraints to provide background knowledge towards the “type” of clusters we
wish to find. In that paper we explored their use with the Aibo robot to find objects in
images that were more than 1 foot apart as the Aibo can only navigate between such
objects. For these UCI data sets no such background knowledge exists and how to set
these constraint values for non-spatial data remains an active research area. Hence we
test these constraints with arbitrary values. We set δ equal to 10 times the average dis-
tance between a pair of points. Such a constraint will generate hundreds even thousands
of must-link constraints that can greatly influence the clustering results and algorithm
efficiency as shown in Table 3. We see that the minimum improvement was 50% (for
Census) and nearly 80% for Pima. This improvement is due to the constraints effec-
tively creating a pruned dendrogram by making kmax ! n.

Table 3. The Rounded Mean Number of Pair-wise Distance Calculations for an Unconstrained
and Constrained Clustering using the δ constraint

Data Set Unconstrained Constrained
Iris 22,201 3,275

Breast 487,204 59,726
Digit (3 vs 8) 3,996,001 990,118

Pima 588,289 61,381
Census 2,347,305,601 563,034,601

Sick 793,881 159,801

4 Using the γ Constraint to Improve Performance

In this section we introduce a new constraint, the γ constraint and illustrate how the
triangle inequality can be used to further improve the run-time performance of agglom-
erative hierarchical clustering. Though this improvement does not affect the worst-case
analysis, we can perform a best case analysis and an expected performance improve-
ment using the Markov inequality. Future work will investigate if tighter bounds can be
found. There exists other work involving the triangle inequality but not constraints for
non-hierarchical clustering [6] as well as for hierarchical clustering [10].

Definition 2. (The γ Constraint For Hierarchical Clustering) Two clusters whose geo-
metric centroids are separated by a distance greater than γ cannot be joined.
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IntelligentDistance (γ, C = {C1, . . . , Ck})
returns d(i, j) ∀i, j.

1. for i = 2 to n − 1 d1,i = D(C1, Ci) endloop
2. for i = 2 to n − 1

for j = i + 1 to n − 1 ˆdi,j = |d1,i − d1,j |
if ˆdi,j > γ then di,j = γ + 1 ; do not join else di,j = D(xi, xj)

endloop
endloop

3. return di,j , ∀i, j.

Fig. 3. Function for Calculating Distances Using the γ Constraint and the Triangle Inequality

The γ constraint allows us to specify how geometrically well separated the clus-
ters should be. Recall that the triangle inequality for three points a, b, c refers to the
expression |D(a, b) − D(b, c)| ≤ D(a, c) ≤ D(a, b) + D(c, b) where D is the Eu-
clidean distance function or any other metric function. We can improve the efficiency
of the hierarchical clustering algorithm by making use of the lower bound in the tri-
angle inequality and the γ constraint. Let a, b, c now be cluster centroids and we wish
to determine the closest two centroids to join. If we have already computed D(a, b)
and D(b, c) and the value |D(a, b)−D(b, c)| exceeds γ, then we need not compute the
distance between a and c as the lower bound on D(a, c) already exceeds γ and hence
a and c cannot be joined. Formally the function to calculate distances using geometric
reasoning at a particular dendrogram level is shown in Figure 3. Central to the approach
is that the distance between a central point (c) (in this case the first) and every other
point is calculated. Therefore, when bounding the distance between two instances (a, b)
we effectively calculate a triangle with two edges with know lengths incident on c and
thereby lower bound the distance between a and b. How to select the best central point
and the use of multiple central points remains future important research.

If the triangle inequality bound exceeds γ, then we save making m floating point
power calculations if the data points are in m dimensional space. As mentioned earlier
we have no reason to believe that there will be at least one situation where the triangle
inequality saves computation in all problem instances; hence in the worst case, there is
no performance improvement. But in practice it is expected to occur and hence we can
explore the best and expected case results.

4.1 Best Case Analysis for Using the γ Constraint

Consider the n points to cluster {x1, ..., xn}. The first iteration of the agglomerative hi-
erarchical clustering algorithm using symmetrical distances is to compute the distance
between each point and every other point. This involves the computation (D(x1, x2),
D(x1, x3),..., D(x1, xn)),..., (D(xi, xi+1), D(xi, xi+2),...,D(xi, xn)),...,
(D(xn−1, xn)), which corresponds to an arithmetic series n − 1 + n − 2 + . . . + 1
of computations. Thus for agglomerative hierarchical clustering using symmetrical dis-
tances the number of distance computations is n(n−1)/2 for the base level. At the next
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x1

x2 x3 x4 x5

x3 x4 x5 x4 x5 x5

Fig. 4. A Simple Illustration for a Five Instance Problem of How the Triangular Inequality Can
Save Distance Computations

level we need only recalculate the distance between the newly created cluster and the
remaining n− 2 points and so on. Therefore, the total number of distance calcluation is
n(n−1)/2+(n−1)(n−2)/2 = (n−1)2. We can view the base level calculation picto-
rially as a tree construction as shown in Figure 4. If we perform the distance calculation
at the first level of the tree then we can obtain bounds using the triangle inequality for
all branches in the second level. This is as bounding the distance between two points
requires the distance between these points and a common point, which in our case is x1.
Thus in the best case there are only n − 1 distance computations instead of (n − 1)2.

4.2 Average Case Analysis for Using the γ Constraint

However, it is highly unlikely that the best case situation will ever occur. We now focus
on the average case analysis using the Markov inequality to determine the expected per-
formance improvement which we later empirically verify. Let ρ be the average distance
between any two instances in the data set to cluster. The triangle inequality provides a
lower bound; if this bound exceeds γ, computational savings will result. We can bound
how often this occurs if we can express γ in terms of ρ, hence let γ = cρ.

Recall that the general form of the Markov inequality is: P (X = x ≥ a) ≤ E(X)
a ,

where x is a single value of the continuous random variable X , a is a constant and
E(X) is the expected value of X . In our situation since X is distance between two
points chosen at random, E(X) = ρ and γ = a = cρ as we wish to determine when the
distance will exceed γ. Therefore, at the lowest level of the tree (k = n) then the number
of times the triangle inequality will save us computation time is nE(X)

a = n ρ
cρ = n/c,

indicating a saving of a factor of 1/c at this lowest level. As the Markov inequality is a
rather weak bound then in practice the saving may be substantially different as we shall
see in our empirical section. The computation saving that are obtained at the bottom
of the dendrogram are reflected at higher levels of the dendrogram. When growing the
entire dendrogram we will save at least n/c+(n−1)/c . . . +1/c distance calculations.
This is an arithmetic sequence with the additive constant being 1/c and hence the total
expected computations saved is at least n/2(2/c + (n − 1)/c) = (n2 + n)/2c. As the
total computations for regular hierarchical clustering is (n − 1)2, the computational
saving is expected to be by a approximately a factor of 1/2c.

Consider the 150 instance IRIS data set (n=150) where the average distance (with
attribute value ranges all being normalized to between 0 and 1) between two instances is
0.6; that is, ρ = 0.6. If we state that we do not wish to join clusters whose centroids are
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Table 4. The Efficiency of Using the Geometric Reasoning Approach from Section 4 (Rounded
Mean Number of Pair-wise Distance Calculations)

Data Set Unconstrained Using γ Constraint
Iris 22,201 19,830

Breast 487,204 431,321
Digit (3 vs 8) 3,996,001 3,432,021

Pima 588,289 501,323
Census 2,347,305,601 1,992,232,981

Sick 793,881 703,764

separated by a distance greater than 3.0, then γ = 3.0 = 5ρ. By not using the γ constraint
and the triangle inequality the total number of computations is 22201, and the number
of computations that are saved is at least (1502 + 150)/10 = 2265; hence the saving is
about 10%. We now show that the γ constraint can be used to improve efficiency of the
basic agglomerative clustering algorithm. Table 4 illustrates the improvement that using
a γ constraint equal to five times the average pairwise instance distance. We see that the
average improvement is consistent with the average case bound derived above.

5 Constraints and Irreducible Clusterings

In the presence of constraints, the set partitions at each level of the dendrogram must be
feasible. We have formally shown that if kmax is the maximum value of k for which a
feasible clustering exists, then there is a way of joining clusters to reach another cluster-
ing with kmin clusters [5]. In this section we ask the following question: will traditional
agglomerative clustering find a feasible clustering for each value of k between kmax

and kmin? We formally show that in the worse case, for certain types of constraints (and
combinations of constraints), if mergers are performed in an arbitrary fashion (includ-
ing the traditional hierarchical clustering algorithm, see Figure 1), then the dendrogram
may prematurely dead-end. A premature dead-end implies that the dendrogram reaches
a stage where no pair of clusters can be merged without violating one or more con-
straints, even though other sequences of mergers may reach significantly higher levels
of the dendrogram. We use the following definition to capture the informal notion of a
“premature end” in the construction of a dendrogram. How to perform agglomerative
clustering in these dead-end situations remains an important open question.

Definition 3. A feasible clustering C = {C1, C2, . . ., Ck} of a set S is irreducible if no
pair of clusters in C can be merged to obtain a feasible clustering with k − 1 clusters.

The remainder of this section examines the question of which combinations of con-
straints can lead to premature stoppage of the dendrogram. We first consider each of the
ML, CL and ε-constraints separately. It is easy to see that when only ML-constraints
are used, the dendrogram can reach all the way up to a single cluster, no matter how
mergers are done. The following illustrative example shows that with CL-constraints, if
mergers are not done correctly, the dendrogram may stop prematurely.
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Example: Consider a set S with 4k nodes. To describe the CL constraints, we will think
of S as the union of four pairwise disjoint sets X , Y , Z and W , each with k nodes. Let
X = {x1, x2, . . ., xk}, Y = {y1, y2, . . ., yk}, Z = {z1, z2, . . ., zk} and W = {w1, w2,
. . ., wk}. The CL-constraints are as follows. (a) There is a CL-constraint for each pair
of nodes {xi, xj}, i "= j, (b) There is a CL-constraint for each pair of nodes {wi, wj},
i "= j, (c) There is a CL-constraint for each pair of nodes {yi, zj}, 1 ≤ i, j ≤ k.

Assume that the distance between each pair of nodes in S is 1. Thus, nearest-
neighbor mergers may lead to the following feasible clustering with 2k clusters: {x1, y1},
{x2, y2}, . . ., {xk, yk}, {z1, w1}, {z2, w2}, . . ., {zk, wk}. This collection of clusters
can be seen to be irreducible in view of the given CL constraints. However, a feasible
clustering with k clusters is possible: {x1, w1, y1, y2, . . ., yk}, {x2, w2, z1, z2, . . ., zk},
{x3, w3}, . . ., {xk, wk}. Thus, in this example, a carefully constructed dendrogram
allows k additional levels. ��

When only the ε-constraint is considered, the following lemma points out that there
is only one irreducible configuration; thus, no premature stoppages are possible. In
proving this lemma, we will assume that the distance function is symmetric.

Lemma 1. If S is a set of nodes to be clustered under an ε-constraint. Any irreducible
and feasible collection C of clusters for S must satisfy the following two conditions.

(a) C contains at most one cluster with two or more nodes of S.
(b) Each singleton cluster in C contains a node x with no ε-neighbors in S.

Proof: Suppose C has two or more clusters, say C1 and C2, such that each of C1 and C2
has two or more nodes. We claim that C1 and C2 can be merged without violating the
ε-constraint. This is because each node in C1 (C2) has an ε-neighbor in C1 (C2) since
C is feasible and distances are symmetric. Thus, merging C1 and C2 cannot violate
the ε-constraint. This contradicts the assumption that C is irreducible and the result of
Part (a) follows. The proof for Part (b) is similar. Suppose C has a singleton cluster
C1 = {x} and the node x has an ε-neighbor in some cluster C2. Again, C1 and C2 can
be merged without violating the ε-constraint. ��

Lemma 1 can be seen to hold even for the combination of ML and ε constraints since
ML constraints cannot be violated by merging clusters. Thus, no matter how clusters are
merged at the intermediate levels, the highest level of the dendrogram will always cor-
respond to the configuration described in the above lemma when ML and ε constraints
are used. In the presence of CL-constraints, it was pointed out through an example that
the dendrogram may stop prematurely if mergers are not carried out carefully. It is easy
to extend the example to show that this behavior occurs even when CL-constraints are
combined with ML-constraints or an ε-constraint.

6 Conclusion and Future Work

Our paper made two significant theoretical results. Firstly, the feasibility problem for
unspecified k is studied and we find that clustering under all four types (ML, CL, ε and
δ) of constraints is NP-complete; hence, creating a feasible dendrogram is intractable.
These results are fundamentally different from our earlier work [4] because the feasibil-
ity problem and proofs are quite different. Secondly, we proved under some constraint
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types (i.e. cannot-link) that traditional agglomerative clustering algorithms give rise to
dead-end (irreducible) solutions. If there exists a feasible solution with kmax clusters
then the traditional agglomerative clustering algorithm may not get all the way to a fea-
sible solution with kmin clusters even though there exists feasible clusterings for each
value between kmax and kmin. Therefore, the approach of joining the two “nearest”
clusters may yield an incomplete dendrogram. How to perform clustering when dead-
end feasible solutions exist remains an important open problem we intend to study.

Our experimental results indicate that small amounts of labeled data can improve the
dendrogram quality with respect to cluster purity and “tightness” (as measured by the
distortion). We find that the cluster-level δ constraint can reduce computational time
between two and four fold by effectively creating a pruned dendrogram. To further
improve the efficiency of agglomerative clustering we introduced the γ constraint, that
allows the use of the triangle inequality to save computation time. We derived best case
and expected case analysis for this situation which our experiments verified. Additional
future work we will explore include constraints to create balanced dendrograms and the
important asymmetric distance situation.
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Abstract. We show that (1) in hierarchical clustering, many linkage
functions satisfy a cluster aggregate inequality, which allows an exact
O(N2) multi-level (using mutual nearest neighbor) implementation of
the standard O(N3) agglomerative hierarchical clustering algorithm. (2)
a desirable close friends cohesion of clusters can be translated into kNN
consistency which is guaranteed by the multi-level algorithm; (3) For
similarity-based linkage functions, the multi-level algorithm is naturally
implemented as graph contraction. The effectiveness of our algorithms is
demonstrated on a number of real life applications.

1 Introduction

Agglomerative hierarchical clustering (AHC) is developed in 1960’s and is widely
used in practice. AHC produces a tree describing the hierarchical cluster struc-
ture. Such a comprehensive description of the data is quite useful for broad areas
of applications. For example, in bioinformatics research, AHC is most commonly
used for clustering genes in a DNA gene microarray expression data, because the
resulting hierarchical cluster structure is readily recognizable by biologists. The
phylogenetic tree (similar to binary clustering tree) of organisms is often built
using the UPGMA (unweighted pair group method average) AHC algorithm. In
social sciences, the hierarchical cluster structure often reveals gradual evolving
social relationships that help explain complex social issues. Another application
of AHC is in classification tasks on a large dataset using support vector ma-
chine [12]. The hierarchical cluster structure allows one to use most detailed
local representation near the decision boundaries where support vectors lie; but
as one moves away from the decision boundaries, the centroid representation of
progressively larger clusters can be used.

Besides hierarchical clustering, many other clustering algorithms have been
developed (see recent survey and text books [5,1,3]). K-means clustering is per-
haps the most commonly used method and is well developed. The gaussian mix-
ture model using EM algorithm directly improves over the K-means method
by using a probabilistic model of cluster membership of each object. Both al-
gorithms can be viewed as a global objective function optimization problem. A
related set of graph clustering algorithms are developed that partition nodes into
two sub-clusters based on well-motivated clustering objective functions [8]. They
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are typically applied in a top-down fashion (see also[7]), and thus complement
the bottom-up AHC.

Standard AHC scales as O(N3). A detailed description of AHC and complete
references can be found in [4,9]. A number of efficient implementation based on
approximations have been proposed [10,6]. Several recent studies propose to
integrate hierarchical clustering with additional information [2,11] or summary
statistics[13].

In this paper, we focus on making AHC scale to large data set. Over the last
40 years, the basic AHC algorithm remains unchanged. The the basic algorithm
is an iterative procedure; at each iteration, among all pairs of current clusters,
the pair with largest linkage function value (smallest distance) are selected and
merged.

We start with a key observation. In the AHC algorithm, at each iteration,
one may merge all mutual-nearest-neighbor (1mn) pairs (defined by the linkage
function) simultaneously in the same iteration. As long as the linkage function
satisfies a “cluster aggregate inequality”, this modified algorithm of simultane-
ously merge all 1mn-pairs at each iteration produces identical clustering results
as the standard AHC algorithm. The cluster aggregate inequality is satisfied by
most common linkage functions (see §2.2). This modified algorithm provides a
natural multi-level implementation of the AHC, where at each level we merge all
1mn pairs. This multi-level hierarchical clustering (MLHC) algorithm provides
an order-N speedup over the standard AHC.

Next we propose “close friends” cohesion as a desirable feature for clustering,
which requires that for every member in a cluster, its closest friend is also in the
same cluster. We show that the MLHC guarantees the close-friends cohesion,
a desirable feature for clustering. We further extend this cluster membership
cohesion idea to (mutual) nearest neighbor consistency, and show that MLHC
improves this KNN consistency compare to other clustering algorithms. (§3)

When the linkage function is expressed in similarity (in contrast to distance
or dissimilarity), the new algorithm is identical to multi-level graph contraction.
Graph contraction provides a natural framework for hierarchical clustering (§4).

The effectiveness of our algorithms is demonstrated on a number of real life
applications: DNA gene expressions for lung cancer, global climate pattern, and
internet newsgroups (§5).

2 Multi-level Hierarchical Clustering (MLHC)

2.1 Algorithm

The standard agglomerative hierarchical clustering is a bottom-up process. Dur-
ing each step, we merge two current clusters Cp and Cq which are closest, or
most similar among all pairs of current clusters:

min
<pq>

d(Cp, Cq).
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where d(·, ·) is the dissimilarity-based (distance) linkage function between Cp

and Cq. Many researches have studied the effects of different choice of linkage
functions [4].

At each step of AHC with p current clusters, p − 1 new linkage functions
need be computed, and we have total O(p2) pairwise linkage functions. It takes
p2 comparisons to search for the pair with the largest linkage. This is repeated
N − 1 times. The total computation is

NAHC
search = N2 + (N − 1)2 + · · · + 22 + 12 = O(N3/3).

The new MLHC algorithm is motivated by the following observation. In each
iterative step in AHC, when all pairwise linkage functions are computed, we can
form all mutual nearest neighbor pairs (1mn-pairs) of current clusters using the
linkage as the distance metric. Two objects (i,j) are a 1mn-pair if j is the nearest
neighbor of i and vice versa.

In this perspective, the standard AHC merges only the 1mn-pair with largest
linkage value. It is then natural to ask if we may also merge all other 1mn-pairs
simultaneously. Will this produces the same results? An analysis shows that if
the linkage function satisfies a “cluster aggregate inequality”, then the clustering
results remain the same as the standard AHC.

This observation suggests a simultaneous merging algorithm which we call
MLHC. At each level, all 1mn-pairs are identified and merged (not just the pair
with largest linkage value). This is repeated until all objects are merged into one
cluster. The total number of level is about log2N . Thus the required computation
is approximately

NMLHC
search = N2 + (N/2)2 + (N/4)2 + 22 + 12 = O(4N2/3).

The new algorithm speedups by a factor of order-N .

2.2 Cluster Aggregate Inequality

In this section, we show that the simultaneous merging of all 1mn-pairs in MLHC
produces identical clustering results as the standard AHC, provided the linkage
function satisfies a Cluster Aggregate Inequality.

Definition. Cluster Aggregate Inequality of the linkage function. Suppose we
have three current clusters A, B, C. We try to merge B, C into a new cluster
B+C. The cluster aggregate inequality is a property of the linkage function that
the merged cluster B + C is “no closer” to A than either one of its individual
members B or C. More precisely, for distance (dissimilarity) based linkage d(·, ·),
the cluster aggregate inequality is

dA,B+C ≥ min(dA,C , dA,B) (1)

for any triple (A, B, C).
What kind of linkage functions satisfy the cluster aggregate inequality? It

is interesting to see that most commonly used linkage functions satisfy cluster
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aggregate inequality. Consider the four similarity-based linkage function. (i) the
single linkage, defined as the closest distance among points in A, B, (ii) the
complete linkage, defined as the fartherest distance among points in A, B, (iii)
the average linkage, defined as the average of all distances among points in A, B,
(iv) the minimum variance linkage.

d sgl
A,B = min

i∈A j∈B
dij (2)

d cmp
A,B = max

i∈A j∈B
dij (3)

d avg
A,B =

d(A, B)
nA nB

(4)

dmin−var
A,B =

nA nB

nA + nB
||cA − cB ||2. (5)

Theorem 1. The single link, the complete link and average link satisfy the
strong cluster aggregate inequality.

Proof. For single link, one can easily see that

d sgl
A,B+C = min

i∈A;j∈B+C
dij = min( min

i∈A;j∈B
dij , min

i∈A;j∈C
dij) = min(d sgl

A,B , d sgl
A,C)

Thus the equality in Eq.(1) hold for single link. With same reasoning, one can
see the inequality holds for complete linkage.

For average link, we have

d avg
A,B+C =

∑
i∈A;j∈B+C

dij

|A||B + C|

=
∑

i∈A;j∈B

dij

|A||B + C| +
∑

i∈A;j∈C

dij

|A||B + C|

=
|B|

|B + C|d
avg
A,B +

|C|
|B + C|d

avg
A,C

≥ |B|
|B + C| min(d avg

A,B, d avg
A,C) +

|C|
|B + C| min(d avg

A,B, d avg
A,C)

= min(d avg
A,B, d avg

A,C) �

2.3 Equivalence of MLHC and AHC

Cluster aggregate inequality plays a fundamental role in hierarchical clustering.
It is similar to the triangle inequality in metric space: for any three vectors
xi,xj ,xk in the Hilbert space with the distance metric d(·, ·), the metric must
satisfies the triangle inequality

dik ≤ dij + djk.
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Triangle inequality plays a fundamental role in deriving properties of the metric
Space. Now we prove the main results of this paper.

Theorem 2. If the linkage function satisfies the cluster aggregate inequality, the
clustering trees produced by MLHC is identical to that produced by standard
AHC.

Proof. We view the linkage function as a distance metric and build all 1mn-
pairs based on the linkage function. We show that the AHC is iteratively merging
1mn-pairs, which is same as MLHC. The details is broken into two features of
AHC below. �–

We first note a simple feature of AHC:

Feature 1. The closest pair must be a 1mn-pair.

Proof. Suppose this is not true, i.e., the closest pair is (a, b), but a is not the
closest neighbor of b. There must exist another point c which is the closest
neighbor of a. Then the pair (a, c) must be the closest pair, but this contradicts
the fact that (a, b) is the closest pair. Thus a must be the closest neighbor of b.
Similarly, b must be the closest neighbor of a. �–

Next, we prove a key feature of AHC. This shows the essence of Theorem 2.

Feature 2. If the linkage function satisfies the cluster aggregate inequality, then
any 1mn-pair must be preserved and will merge eventually in standard AHC.

Proof. Suppose at certain iteration, the current clusters are listed as (Cj1 , Cj2),
(Cj3 , Cj4), Cj5 , (Cj6 , Cj7), · · · , where 1mn-pair is indicated by the parenthesis. In
AHC, the 1mn-pair with largest linkage value , say (Cj6 , Cj7), is merged. Due
to the cluster aggregate inequality, the newly merged cluster C(j6,j7) will be “no
closer” to any other current clusters. Thus the 1mn of C(j6,j7) can not be any
member of the current remaining 1mn-pairs, say Cj1 .

This can seen as follows. By construction, neither Cj6 nor Cj7 is closer to
Cj1 than Cj2 does. Due to the cluster aggregate inequality, the newly merged
cluster C(j6,j7) will be “no closer” to Cj1 than either Cj6 or Cj7 does. Thus 1mn
of C(j6,j7) can not be Cj1 .

This guarantees that the 1mn-pair (Cj1 , Cj2) will never be broken by a merged
cluster. Thus in the next iteration, either a current 1mn-pair, say (Cj3 , Cj4), is
merged, or the newly-merged C(j6,j7) is merged with a singleton cluster, say Cj5 .
Therefore, the 1mn-pair (Cj1 , Cj2) will preserve and eventually merge at some
later iteration. �–

We give a simple example to illustrating some of the concepts. In Figure 1(b),
we have 5 objects. They form two 1mn-pairs (a, b), (d, e) and one isolated object
c. We do the standard AHC. Suppose (a, b) has the largest linkage value. So a,b
are first merged into (a+b). We assert that the 1mn-pair (d, e) must be preserved
and will merge in later stages in AHC. This is done in two stages. First, we show
that d cannot be the nearest neighbor of (a + b), i.e.,

d(d, a + b) > d(d, e). (6)
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Fig. 1. (A) Dataset of 5 objects. 1mn-pairs are linked by a line. A merge is indicated
by an elongated solid circle. (B) Dendrogram using AHC. Numbers indicate order of
the merge. (C) Dendrogram using MLHC.

The fact that (d, e) is a 1mn-pair implies

d(d, a) > d(d, e), (7)
d(d, b) > d(d, e), (8)
d(d, c) > d(d, e). (9)

From the cluster aggregate inequality, d(d, a + b) ≥ min[d(d, a), d(d, b)]. From
this, and makeing use of Eqs.(7, 8), we obtain Eq.(6).

In the next round of AHC, either (i) the pair (a+ b, c) has the largest linkage
value, or (ii) the pair (d, e) has the largest linkage value. If (ii) holds, our assertion
is proved. Suppose (i) holds. Then (a + b, c) are merged into (a + b+ c). Now we
show that d cannot be the nearest neighbor of (a + b + c), i.e.,

d(d, a + b + c) > d(d, e). (10)

From the cluster aggregate inequality, d(d, a + b + c) ≥ min[d(d, a + b), d(d, c)]
From this, together with Eqs.(6, 9), we obtain Eq.(10). Therefore, (d, e) is the
pair with the largest linkage value. Thus (d, e) are merged into (d + e).

This example shows how 1mn pairs are preserved in AHC. Thus any cluster
merge in MLHC (those 1mn-pairs) will also occur in AHC. There are total N −1
cluster merges in both MLHC and AHC. So any cluster merge in AHC also occur
in MLHC.

Both AHC and MLHC algorithms lead to the same binary cluster tree. The
difference is the sequential order they are merged. This is illustrated in Figure
1.(B,C). If we represent the tree hight by the standard linkage function value for
each merge, the dendrograms of the two algorithm remains identical.

We emphasize that the equivalence of MLHC and AHC only requires 1mn-
pair preservation during AHC, as shown in Feature 2 in the above. Therefore,
cluster aggregate inequality is a sufficient condition for 1mn-pair preservation.

For a given dataset, it is possible that a particular linkage function maybe
not satisfy the generic cluster aggregate inequality for all possible triples (i, j, k),



Cluster Aggregate Inequality and Multi-level Hierarchical Clustering 77

but the 1mn-pair preservation holds during AHC and thus MLHC is equivalent
to AHC.

In summary, these analysis not only shows that MLHC is equivalent to AHC,
thus providing a O(n) speedup; but also brought out a new insight for AHC,
i.e., 1mn-pair preservation during AHC. This leads to close-friends cohesion.

3 “Close Friends” Cohesion

One of the fundamental concept of data clustering is that members of the same
cluster have high association with each other. One way to characterize the within
cluster association is the cohesion of the cluster members via the preservation
of “close friends”. Suppose we divide 100 people into 10 teams. The cohesion of
each team is greatly enhanced if for any member in a team, his/her close friends
are also in the same team.

It is interesting to note that this close-friends cohesion is guaranteed by
MLHC, if we interprete 1mn-pair relationship as close friends; by construction,
this cohesion is guaranteed at all levels. We say the clustering results satisfy 1mn-
consistency if for each object in a cluster, its 1mn is also in the same cluster.

By Theorem 2, clusters produced by the standard AHC also enjoy the same
1mn-consistency as in MLHC. We summarize this important result as

Theorem 3. In MLHC, 1mn-consistency is fully guaranteed. In agglomerative
hierarchical clustering, if the linkage function satisfy the cluster aggregate in-
equality, 1mn-consistency is fully guaranteed.

3.1 Cluster Membership kNN Consistency

1mn describe the “most close” friend. Beyond the closest friend, it is desirable
that other less close friends are also in the same cluster. This will increase cohe-
siveness of the clustering.

We thus further extend the “close friends” into k-nearest-neighbor, the co-
hesiveness of a cluster becomes the following knn consistency:

Cluster Membership kNN Consistency: For any data object in a cluster,
its k-nearest neighbors are also in the same cluster.

Note that the relationship of “close friend” is not symmetric. Although a’s
closest friend is b, b’s closest friend could be c, not a. Thus the “mutual closest
friend” implies the tightest friendship. Thus k-Mutual-Nearest-Neighbor Consis-
tency is more desirable.

3.2 Enforcing kNN Consistency

In general, clustering algorithms perform global optimizations, such as K-means
algorithm, will gives final clusters with a smaller degree of cluster knn and kmn
consistency than the bottom hierarchical clustering. This is because that in
global optimizations, nearest-neighbor relations are not considered explicitly.
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In HC, a pair of clusters are merged if their linkage value is high. Thus clusters
being merged are typically very similar to each other. Therefore the nearest-
neighbor local information are utilized to some extent, leading to higher degree
of knn consistency.

What about other knn/kmn consistency? First we note that cluster knn
consistency defines a “transitive relationship”. If x1 is a member of cluster C1,
and x2 is the 1nn of x1, then by cluster 1nn consistency, x2 should also be a
member of C1. This transitive relation implies that 100% 1nn consistency can
be achieved only if entire connected component of the 1nn graph are in C1.
To generate clusters that guarantee 100% knn consistency, at each level of the
MLHC, we must first generate knn-graph, identify all connected components,
and for each CC, merge all current clusters into one cluster.

Because for any object, its 2nn set always include its 1nn set. Thus 2nn
consistency guarantees 1nn consistency. Similarly, because any knn set include
kmn set, knn consistency implies (k-1)-nn consistency.

4 Similarity-Based Hierarchical Clustering: Multi-level
Graph Contraction

The above discussion uses the distance-based linkage. All results there can be
easily translate into similarity-based linkage function.

For similarity-based linkage we select the pair with the largest linkage to
merge: max<pq> s(Cp, Cq), where s(Cp, Cq) is the aggregate similarity between
clusters Cp, Cq. Let the initial pairwise similarity are W = (wij). The aggregate
similarity has a simple form, s(Cp, Cq) =

∑
i∈Cp

∑
j∈Cq

wij .
Cluster aggregate inequality using similarity-based linkage can be written as

s(A, B + C) ≤ max[s(A, B), s(A, C)] (11)

Consider the following similarity-based linkage functions. (i) the single link-
age, defined as the largest similarity among points in A, B, (ii) the complete
linkage, defined as the smallest similarity among points in A, B, (iii) the average
linkage, defined as the average of all similarities among points in A, B,

ssingle(A, B) = max
i∈A j∈B

sij , scomplete(A, B) = min
i∈A j∈B

sij , savg(A, B) =
s(A, B)
|A||B| .

With similar analysis as in the case of distance-based clustering, we can proof

Theorem 4. All three above similarity-based linkage functions satisfy the cluster
aggregate inequality. The similarity based linkage functions have an advantage
that merging two cluster become graph node contraction. Defining the similar-
ity between two objects as the weight on an edge between them, this forms a
similarity graph. Thus the multi-level hierarchical clustering naturally become
multi-level graph contraction of the similarity graph. Many well-known results
in graph theory can be applied.
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Merging two current clusters into a new cluster corresponds to contracting
two nodes i, j into a new node k and with edge eij being eliminated. Weights
of the graph are updated according to standard graph contraction procedure.
Let W (t), W (t+1) be the weights of the similarity graph at steps t, t + 1. The
updated weights for contracting the edge eij and merging nodes i, j into
k are ⎧⎪⎨⎪⎩

w
(t+1)
kk = w

(t)
ii + w

(t)
jj + w

(t)
ij

w
(t+1)
kp = w

(t)
ip + w

(t)
jp , ∀p /∈ {i, j, k}

w
(t+1)
pq = w

(t)
pq , ∀p, q /∈ {i, j, k}

fe
ta

l−
lu

ng
31

4−
99

−n
or

m
al

31
5−

99
−n

or
m

al
21

9−
97

−n
or

m
al

22
2−

97
−n

or
m

al
23

2−
97

−S
C

C
23

2−
97

−n
od

e
3−

S
C

C
24

5−
97

−S
C

C
24

5−
97

−n
od

e
58

−9
5−

S
C

C
22

0−
97

−S
C

C
22

0−
97

−n
od

e
69

−9
6−

A
de

no
15

7−
96

−S
C

C
23

9−
97

−S
C

C
16

6−
96

−S
C

C
42

−9
5−

S
C

C
24

6−
97

−S
C

C
−p

24
6−

97
−S

C
C

−c
21

9−
97

−S
C

C
75

−9
5−

co
m

bi
ne

d
68

−9
6−

A
de

no
13

7−
96

−A
de

no
12

−0
0−

A
de

no
19

9−
97

−A
de

no
−p

19
9−

97
−A

de
no

−c
20

4−
97

−A
de

no
19

8−
96

−A
de

no
15

6−
96

−A
de

no
31

9−
00

P
T−

A
de

no
18

0−
96

−A
de

no
18

7−
96

−A
de

no
18

1−
96

−A
de

no
25

7−
97

−A
de

no
11

−0
0−

A
de

no
32

0−
00

−A
de

no
−p

32
0−

00
−A

de
no

−c
23

4−
97

−A
de

no
18

4−
96

−A
de

no
18

4−
96

−n
od

e
13

9−
97

−L
C

LC
59

−9
6−

S
C

C
31

9−
00

M
T1

−A
de

no
31

9−
00

M
T2

−A
de

no
80

−9
6−

A
de

no
22

3−
97

−A
de

no
26

5−
98

−A
de

no
21

8−
97

−A
de

no
23

7−
97

−A
de

no
24

8−
97

−L
C

LC
19

1−
96

−A
de

no
25

6−
97

−L
C

LC
6−

00
−L

C
LC

14
7−

96
−A

de
no

16
1−

96
−A

de
no

13
2−

95
−A

de
no

29
9−

99
−A

de
no

31
4−

99
−S

C
LC

31
5−

99
−S

C
LC

31
5−

99
−n

od
e

23
0−

97
−S

C
LC

20
7−

97
−S

C
LC

16
5−

96
−A

de
no

22
2−

97
−A

de
no

22
6−

97
−A

de
no

31
3−

99
P

T−
A

de
no

31
3−

99
M

T−
A

de
no

17
8−

96
−A

de
no

18
5−

96
−A

de
no

30
6−

99
−n

or
m

al
30

6−
99

−A
de

no
30

6−
99

−n
od

e

ABCDEFG

111 111 11 11111 11 111

2222 2 2222 2 2

33 3333 3
44 44 4444

55 55

666 6 6

7 77 77

8888

99

10

11

Fig. 2. MLHC clustering of lung cancer gene expressions

Using the above graph contraction operation, AHC and MLHC can be de-
scribed very succinctly. AHC can be viewed as contracting one edge (with heav-
iest weight) at each step. The steps are repeated until all nodes merge into one.
This takes exactly N − 1 steps. MLHC can be viewed as contracting all 1mn-
pairs simultaneously at each step. It is repeated about O(log2 N) times. Now
the speedup of MLHC over AHC is clear. At each step, all-pair linkage function
computation is necessary. But the number of steps required in AHC is N − 1,
and it is O(log2 N) in MLHC.
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5 Experiments

5.1 DNA Gene Expression for Lung Cancer

The DNA gene expressions of lung cancer patients (available online: http://
genome-www.stanford.edu/lung cancer/adeno/) contains 73 samples of 67 lung
tumors from patients whose clinical course was followed for up to 5 years. The
samples comprise of 916 DNA clones representing 835 unique genes. The samples
are classified into 5 groups by visual examination (41 Adenocarcinomas (ACs),
16 squamous cell carcinomas (SCCs), 5 large cell lung cancers(LCLCs), 5 small
cell lung cancer (SCLCs) and 5 normal tissue with one fetal lung tissue.). The
largest group ACs is further classified into three smaller groups. The purpose is to
see if we can recover this 7 groups using unsupervised learning method, i.e., the
hierarchical clustering method. The Pearson correlations cij among tissue sam-
ples are computed first, and the similarity metric is defined as sij = exp(5cij).
We use MLHC and obtain the cluster structure as shown in Fig.2.

As the Figure shows, at 1st level, after an all-pair computation, 18 1mn-pairs
are formed and merged. At 2nd level, 11 1mn-pairs are formed and merged. Total
11 levels of merges are required to obtain 7 clusters. In contrast, for standard
AHC, We need 66 levels of merge steps to obtain 7 clusters. The clustering

result is give in the confusion matrix T =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

5 · · · · · ·
· 15 · 1 1 · ·
· · 16 · · · ·
· 1 · 9 1 · ·
· · · 3 3 · ·
· · 3 · · 5 ·
1 · 2 · · · 7

⎤⎥⎥⎥⎥⎥⎥⎥⎦
where T = (tij), tij is the

number of data points which are observed to be in cluster i, but was computed
via the clustering method to belong to cluster j. The accuracy is defined as
Q =

∑
k tkk/N = 82%. indicating the effectiveness of the clustering algorithm.

5.2 Climate Pattern

We tested MLHC on global precipitation data as shown in Fig.3. Regularly-
spaced data points cover the surface of earth. Each data point is a 402-
dimensional vector containing seasonal means over 100 years and geometric in-
formation: longitude and latitude. Similarity between two points are based two
factors: (1) precipitation pattern similarity computed as Euclidean distance and
(2) geometric closeness based on simple physical distance. The obtained stable
regions (shown in different color and symbols) correlate well with continents,
say, in Australia, south Americas.

5.3 Internet Newsgroups

We apply MLHC on Internet newsgroup articles. A 20-newsgroup dataset is from
www.cs.cmu.edu /afs/cs/project/theo-11/www/naive-bayes.html. 1000 words
are selected according to the mutual information between words and documents
in unsupervised manner. Word - document matrix is first constructed using stan-
dard tf.idf term weighting. Cosine similarity between documents is used. We
focus on two sets of 5-newsgroup combinations listed below:
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Fig. 3. Global precipitation pattern based on seasonal means over 100 years

A5: B5:
NG2: comp.graphics NG2: comp.graphics
NG9: rec.motorcycles NG3: comp.os.ms-windows
NG10: rec.sport.baseball NG8: rec.autos
NG15: sci.space NG13: sci.electronics
NG18: talk.politics.mideast NG19: talk.politics.misc

In A5, clusters overlap at medium level. In B5, clusters overlap substantially.
Table 1 contains the results of MLHC. To accumulate sufficient statistics, for
each newsgroup combination, we generate 10 datasets, each of which is a random
sample of documents from the newsgroups (with 100 documents per newsgroup).
The results in the table are the average over these 10 random sampled datasets.
For comparison purpose, we also run K-means clustering. For each dataset, we
run 10 K-means clustering from random seeds for cluster centroids and selecte
the best result as determined by the K-means objective function value. Results
are given in Table 1. Note that because percentage consistency results are close
to 1, we give inconsistency = 1 - consistency.

From Table 1, the MLHC results have better clustering accuracy (last column
of Table 1) compared to K-means clustering. More important is MLHC always
provides clustering with better kmn cluster membership consistency. For 1mn-
consistency, MLHC is perfect since this is guaranteed by MLHC. With this,
it is not surprising that MLHC has substantially better 1nn-consistency than
K-means method, about half as smaller. In all categories, MLHC has better
knn/kmn consistency than K-means .
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Table 1. Fractional knn and kmn inconsistency and clustering accuracy (last column)
for newsgroup datasets A5 and B5. For dataset A5, 1nn inconsistency is 16.2% for
K-means and 8.5% for MLHC.

1nn 2nn 3nn 1mn 2mn 3mn Accuracy
A5
K-means 16.2 28.4 37.8 6.4 14.5 23.0 75.2%
MLHC 8.5 24.1 36.4 0 6.9 16.6 77.6%
B5
K-means 23.1 39.4 50.6 8.5 21.6 32.8 56.3%
MLHC 10.2 28.9 45.0 0 9.3 21.3 60.7%

6 Summary

In this paper, we propose a modification of the standard AHC algorithm that
allow an order-N faster implementation. The modification is based on the recog-
nition that all 1mn-pairs in each iteration of AHC can be merged if the linkage
function satisfies the cluster aggregate inequality. This leads to the multi-level
hierarchical clustering algorithm. Many commonly used linkage functions satisfy
this inequality and thus will benefit from this modification. We propose “close
friends” cohesion as important feature of clustering and show that it is fully guar-
antees in the algorithm. This is further extended to cluster membership KNN
consistency. Experiments on newsgroup show that kNN consistency is satisfied
much better by MLHC than widely used algorithms such as K-means .
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Abstract. A system of nested dichotomies is a hierarchical decompo-
sition of a multi-class problem with c classes into c − 1 two-class prob-
lems and can be represented as a tree structure. Ensembles of randomly-
generated nested dichotomies have proven to be an effective approach
to multi-class learning problems [1]. However, sampling trees by giving
each tree equal probability means that the depth of a tree is limited
only by the number of classes, and very unbalanced trees can negatively
affect runtime. In this paper we investigate two approaches to build-
ing balanced nested dichotomies—class-balanced nested dichotomies and
data-balanced nested dichotomies—and evaluate them in the same en-
semble setting. Using C4.5 decision trees as the base models, we show
that both approaches can reduce runtime with little or no effect on accu-
racy, especially on problems with many classes. We also investigate the
effect of caching models when building ensembles of nested dichotomies.

1 Introduction

Many real-world classification problems are multi-class problems: they involve a
nominal class variable that has more than two values. There are basically two
approaches for tackling this type of problem. One is to adapt the learning al-
gorithm to deal with multi-class problems directly, and the other is to create
several two-class problems and form a multi-class prediction based on the pre-
dictions obtained from the two-class problems. The latter approach is appealing
because it does not involve any changes to the underlying two-class learning
algorithm. Well-known examples of this type of approach are error-correcting
output codes [2] and pairwise classification [3], and they often result in signifi-
cant increases in accuracy.

Recently, it has been shown that ensembles of nested dichotomies are a
promising alternative to pairwise classification and standard error-correcting
output codes. In experiments with a decision tree learner and logistic regres-
sion, their performance was less dependent on the base learner used, and they
yield probability estimates in a natural and well-founded way if the base learner
can generate two-class probability estimates [1].

A drawback of ensembles of nested dichotomies, at least compared to pairwise
classification, is the significant increase in runtime. Although pairwise classifica-
tion requires applying the base learner c ∗ (c− 1)/2 times for a learning problem
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with c classes, each learning problem is much smaller than the original problem
because only data from the relevant pair of classes is considered [3]. Assuming
a learning algorithm that scales linearly in the number of instances, and assum-
ing that every class has the same number of instances, the overall runtime for
pairwise classification is linear in the number of classes.1

Building a single system of nested dichotomies in the same setting also re-
quires time linear in the number of classes in the worst case, but the algorithm
must be applied a fixed, user-specified number of times to build an ensemble of
trees (10 to 20 ensemble members were found to be generally sufficient to achieve
maximum accuracy on the UCI datasets investigated in [1]).

In this paper we are looking at approaches to reducing the time required
to build an ensemble of nested dichotomies (END). More specifically, we pro-
pose class-balanced or data-balanced systems of nested dichotomies (ECBNDs or
EDBNDs, respectively). Using C4.5 as the base learner, we show that they can
improve runtime, especially on problems with many classes, with little or no
effect on classification accuracy. We also investigate the effect of caching models:
the same two-class learning problem can occur multiple times in an ensemble
and it makes sense to re-use two-class base models that have already been built
for previous systems of nested dichotomies.

The paper is structured as follows. In Section 2 we discuss the basic method
of building ENDs, our two modified versions of the algorithm (ECBNDs and
EDBNDs), and the use of caching models. Section 3 presents empirical results,
obtained from 21 multi-class UCI datasets, and several artificial domains with a
varying number of classes. Section 4 summarizes our findings.

2 Balanced Nested Dichotomies

A system of nested dichotomies is a statistical model that is used to decompose
a multi-class problem into multiple two-class problems (e.g. [4] introduces it as
a method for performing multi-class logistic regression). The decomposition can
be represented as a binary tree (Figure 1). Each node of the tree stores a set
of class labels, the corresponding training data and a binary classifier. At the
very beginning, the root node contains the whole set of the original class labels
corresponding to the multi-class classification problem. This set is then split into
two subsets. These two subsets of class labels are treated as two “meta” classes
and a binary classifier is learned for predicting them. The training dataset is
split into two subsets corresponding to the two meta classes and one subset
of training data is regarded as the positive examples while the other subset is
regarded as the negative examples. The two successor nodes of the root inherit
the two subsets of the original class labels with their corresponding training
datasets and a tree is built by applying this process recursively. The process
finally reaches a leaf node if the node contains only one class label.

1 Pairwise classification is actually even more beneficial when the base learner’s run-
time is worse than linear in the number of instances.
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Fig. 1. Two different nested dichotomies for a classification problem with five classes

It is obvious that for any given c-class problem, the tree contains c leaf nodes
(one for each class) and c−1 internal nodes. Each internal node contains a binary
classifier. A nice feature of using a system of nested dichotomies for multi-class
problems is that it yields class probability estimates in a straightforward fashion.
Assuming the individual two-class classifiers built by the base learner produce
class probability estimates for the corresponding two-class problems—one for
each branch extending from the corresponding internal node—we can obtain a
class probability estimate for a particular leaf node (i.e. the class label in the
multi-class problem that is associated with this leaf node) by simply multiplying
together the probability estimates obtained from the binary classifiers along the
particular path from the root node to that leaf [1].

However, there is a problem with the application of nested dichotomies to
standard multi-class problems: there are many possible tree structures for a given
set of classes, and in the absence of prior knowledge about whether a particular
decomposition is more appropriate, it is not clear which one to use. Figure 1
shows two different systems of nested dichotomies for a five-class problem. The
problem is that two different trees will often lead to different predictions because
the binary classifiers for each node are dealing with different two-class problems.
The selection of the tree structure will influence the classification results. Given
this observation and the success of ensemble learning in yielding accurate predic-
tions, it makes sense to use all possible nested dichotomies for a given problem
and average their probability estimates. Unfortunately this is infeasible because
the number of possible systems of nested dichotomies for a c-class problem is
(2c − 3)!! [1]. Hence it is necessary to take a subset.

Frank and Kramer [1] sample randomly from the space of all possible trees,
giving each tree equal probability. However, it is not clear whether this is the
best approach. In the absence of prior knowledge, any sampling scheme that does
not give preferential treatment to a particular class can be considered a suitable
candidate. The problem with random sampling based on a uniform distribution
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Table 1. Comparison of the number of possible trees

Number of Number of Number of class-balanced
classes nested dichotomies nested dichotomies

2 1 1
3 3 3
4 15 3
5 105 30
6 945 90
7 10,395 315
8 135,135 315
9 2,027,025 11,340
10 34,459,425 113,400
11 654,729,075 1,247,400
12 13,749,310,575 3,742,200

over trees is that the tree depth is only limited by the number of classes, and
deep trees can take a long time to build. Consider the case where the tree is a
list, as in the second tree shown in Figure 1, and assume the two largest classes
are separated out last (classes 2 and 5 in the example). Then all binary learning
problems will involved the two largest classes, incurring a high computational
cost for the process of building the binary classifiers in the tree.

2.1 Class-Balanced Nested Dichotomies

In light of these observations we consider two different sampling strategies in
this paper. The first method is based on balancing the number of classes at
each node. Instead of sampling from the space of all possible trees, we sample
from the space of all balanced trees, and build an ensemble of balanced trees.
The advantage of this method is that the depth of the tree is guaranteed to be
logarithmic in the number of classes. We call this an ensemble of class-balanced
nested dichotomies (ECBND).

The number of possible class-balanced nested dichotomies is obviously smaller
than the total number of nested dichotomies. The following recurrence relation
defines the number of possible class-balanced trees:

T (c) =

{
1
2

(
c

c/2

)
T ( c

2 )T ( c
2 ) : if c is even(

c
(c+1)/2

)
T ( c+1

2 )T ( c−1
2 ) : if c is odd

where T (1) = 1 and T (2) = 1.
Table 1 shows the number of possible systems of nested dichotomies for up

to 12 classes for the class-balanced (CBND) and the unconstrained case (ND).
It shows that a non-trivial number of CBNDs can be generated for classification
problems with five or more classes.

Figure 2 shows the algorithm for building a system of class-balanced nested
dichotomies. At each node the set of classes is split into equal size subsets (of
course, if the number of classes is odd, the size will not be exactly equal), and the
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method buildClassBalancedNestedDichotomies(Dataset D, Set of classes C)

if |C| = 1 then return
P = subset of C, randomly chosen from all subsets of size �|C|/2�
N = C \ P
Dp = all instances in D apart from those pertaining to classes in P
buildClassBalancedNestedDichotomies(Dp , P)
Dn = all instances in D apart from those pertaining to classes in N
buildClassBalancedNestedDichotomies(Dn , N)
D′ = a two-class version of D created based on N and P
classifierForNode = buildClassifier(D′)

Fig. 2. Algorithm for generating class-balanced nested dichotomies

base learning algorithm is applied to the data corresponding to these two subsets.
The algorithm then recurses until only one class is left. It is applied repeatedly
with different random number seeds to generate a committee of trees.

2.2 Data-Balanced Nested Dichotomies

There is a potential problem with the class-balanced approach: some multi-class
problems are very unbalanced and some classes are much more populous than
others. In that case a class-balanced tree does not imply that it is also data-
balanced (i.e. that it exhibits about the same number of instances in the two
successor nodes of an internal node). This can negatively affect runtime if the
base learning algorithm has time complexity worse than linear in the number of
instances. Hence we also consider a simple algorithm for building data-balanced
nested dichotomies in this paper. Note that this method violates the condition
that the sampling scheme should not be biased towards a particular class: based
on this scheme, leaf nodes for larger classes will be located higher up in the
tree structure. Despite this potential drawback we decided to investigate this
scheme empirically because it is difficult to say how important this condition is
in practice.

Figure 3 shows our algorithm for building a system of data-balanced nested
dichotomies. It randomly assigns classes to two subsets until the size of the
training data in one of the subsets exceeds half the total amount of training
data at the node. One motivation for using this simple algorithm was that it is
important to maintain a degree of randomness in the assignment of classes to
subsets in order to preserve diversity in the committee of randomly generated
systems of nested dichotomies. Given that we are aiming for an ensemble of
nested dichotomies it would not be advisable, even if it were computationally
feasible, to aim for an optimum balance because this would severely restrict the
number of trees that can be generated. Even with our simple algorithm diversity
suffers when the class distribution is very unbalanced. However, it is difficult to
derive a general expression for the number of trees that can potentially generated
by this method because this number depends on the class distribution in the
dataset.
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method buildDataBalancedNestedDichotomies(Dataset D, List of classes C)

if |C| = 1 then return
C = random permutation of C
Dp = ∅, Dn = ∅
do

if (|C| > 1) then
add all instances from D pertaining to first class in C to Dp

add all instances from D pertaining to last class in C to Dn

remove first and last class from C
else

add all instances from D pertaining to remaining class in C to Dp

remove remaining class from C
while (|Dp| < �|D|/2�) and (|Dn| < �|D|/2�)
if ((|Dp| ≥ �|D|/2�) then

add instances from D pertaining to remaining classes in C to Dn

else
add instances from D pertaining to remaining classes in C to Dp

P = all classes present in Dp, N = all classes present in Dn

buildDataBalancedNestedDichotomies(Dp , P)
buildDataBalancedNestedDichotomies(Dn , N)
D′ = a two-class version of D created based on N and P
classifierForNode = classifier learned by base learner from D′

Fig. 3. Algorithm for generating data-balanced nested dichotomies

2.3 Computational Complexity

The motivation for using balanced nested dichotomies is that this reduces run-
time. In the following we analyze the computational complexity of completely
random and balanced nested dichotomies. Let c be the number of classes in the
dataset, and n be the number of training instances. For simplicity, assume that
all classes have an approximately equal number of instances in them (i.e. that
the number of instances in each class is approximately n/c). We assume that
the time complexity of the base learning algorithm is linear in the number of
training instances, and that we can ignore the effect of the number of attributes.

In the worst case, a completely random system of nested dichotomies can
degenerate into a list, and the total runtime for building a multi-class classifier
based on this kind of structure and the above assumptions is
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c
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c
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)
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2
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Hence the worst-case time complexity is linear in the number of instances and
classes.

Let us now consider the balanced case. Assuming c is even, we have log c
layers of internal nodes. In each layer, all the training data needs to be processed
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(because the union of all subsets in each layer is the original dataset). Given that
we have assumed that the base learner scales linearly in the number of instances,
the overall runtime becomes n log c, i.e. it is logarithmic in the number of classes
and linear in the number of instances.

Assuming a base learning algorithm whose time complexity is worse than
linear, the advantage of the balanced scheme becomes even more pronounced
(because the size of the subsets of data considered at each node decreases more
quickly in this scheme). Note also that the assumption of evenly distributed
classes is not strictly necessary. This can be seen by considering the worst case,
where one class has almost all the instances. The worst-case time complexity for
the unbalanced case remains linear in the number of classes in this situation,
and the one for the balanced case logarithmic in the number of classes.

However, in the case of a skewed class distribution it is possible to improve
on the class-balanced scheme when the base learning algorithm’s runtime is
worse than linear. In that case it makes sense to attempt to divide the number
of instances as evenly as possible at each node, so as to reduce the maximum
amount of data considered at a node as quickly as possible. This is why we have
investigated the data-balanced approach discussed above.

2.4 Caching Models

There is a further opportunity to improve the training time for ensembles of
nested dichotomies. It arises from the fact that ensemble members may share
some two-class problems. Consider Figure 1. In both trees, a classifier has to be
learned that separates classes 2 and 5. These classifiers will be identical because
they are based on exactly the same data. It is not sensible to build them twice.
Consequently we can cache models that have been built in a hash table and
reduce computational complexity further.

As explained by Frank and Kramer [1], there are (3c − (2c+1 − 1))/2 pos-
sible two-class problems for a c-class problem, i.e. growth is exponential in the
number of classes. Hence we can expect that caching only makes a difference
for relatively small numbers of classes. If we consider balanced dichotomies, the
number of possible two-class problems is reduced. Consequently caching will be
more beneficial in the balanced case.

3 Experiments

In the following we empirically investigate the effect of our proposed modifica-
tions on runtime and accuracy. We used 21 multi-class UCI datasets [5]. The
number of classes varies from 3 to 26. We also performed some experiments with
artificial data that exhibits a larger number of classes. For each scheme, we used
10 ensemble members (i.e. 10 systems of nested dichotomies are generated and
their probability estimates are averaged to form a prediction). J48, the imple-
mentation of the C4.5 decision tree learner [6] from the Weka workbench [7] was
used as the base learner for the experiments.
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Table 2. Effect of model caching on ENDs for UCI datasets

Dataset Number of Number of Training time for ENDs
classes instances w/o caching with caching

iris 3 150 0.03 ± 0.02 0.01 ± 0.00
balance-scale 3 625 0.28 ± 0.06 0.09 ± 0.04 •
splice 3 3190 4.56 ± 0.32 1.37 ± 0.14 •
waveform 3 5000 38.78 ± 0.65 11.42 ± 0.96 •
lymphography 4 148 0.06 ± 0.02 0.04 ± 0.02 •
vehicle 4 846 1.87 ± 0.11 1.08 ± 0.16 •
hypothyroid 4 3772 3.13 ± 0.47 1.75 ± 0.29 •
anneal 6 898 0.99 ± 0.08 0.82 ± 0.13 •
zoo 7 101 0.07 ± 0.02 0.06 ± 0.02
autos 7 205 0.40 ± 0.05 0.36 ± 0.05
glass 7 214 0.30 ± 0.03 0.27 ± 0.03
segment 7 2310 6.61 ± 0.27 5.87 ± 0.37 •
ecoli 8 336 0.25 ± 0.04 0.23 ± 0.04
optdigits 10 5620 72.53 ± 3.30 68.70 ± 3.00 •
pendigits 10 10992 49.30 ± 2.00 47.07 ± 2.12 •
vowel 11 990 4.21 ± 0.11 4.04 ± 0.16 •
arrhythmia 16 452 21.14 ± 1.01 20.76 ± 1.09
soybean 19 683 1.02 ± 0.07 0.99 ± 0.06
primary-tumor 22 339 0.63 ± 0.06 0.63 ± 0.06
audiology 24 226 0.74 ± 0.06 0.74 ± 0.05
letter 26 20000 317.53 ± 11.44 315.74 ± 11.53

All experimental results are averages from 10 runs of stratified 5-fold cross-
validation (UCI datasets) or 3-fold cross-validation (artificial data). We also
report standard deviations for the 50 (UCI data) or 30 (artificial data) individ-
ual estimates. Runtime was measured on a machine with a Pentium 4 3 GHz
processor running the Java HotSpot Client VM (build 1.4.2 03) on Linux, and
is reported in seconds. We tested for significant differences using the corrected
resampled t-test [8].

3.1 Applying Caching to ENDs

In this section we discuss the effect of caching individual classifiers in an ensemble
of nested dichotomies. Table 2 has the average training time for ENDs with and
without caching based on a hash table. Significant improvements in training time
obtained by caching are marked with a •.

The results show that the runtime decreases significantly for 14 of the 21 UCI
datasets (of course, accuracy remains identical). The improvement is especially
obvious on datasets with a small number of classes and a large number of in-
stances. With a small number of classes one is more likely to encounter the same
binary classifier in different systems of nested dichotomies in the ensemble. With
a large number of instances, more time is saved by avoiding rebuilding the same
binary classifier. For instance, the training time on the waveform dataset, which



92 L. Dong, E. Frank, and S. Kramer

Table 3. Comparison of training time on UCI datasets

Dataset Number of Training time
classes ENDs ECBNDs EDBNDs

iris 3 0.01 ± 0.00 0.03 ± 0.02 0.02 ± 0.00
balance-scale 3 0.09 ± 0.04 0.09 ± 0.04 0.09 ± 0.04
splice 3 1.37 ± 0.14 1.45 ± 0.12 1.33 ± 0.20
waveform 3 11.42 ± 0.96 11.31 ± 0.56 11.24 ± 1.10
lymphography 4 0.04 ± 0.02 0.03 ± 0.02 0.03 ± 0.00
vehicle 4 1.08 ± 0.16 0.51 ± 0.06 • 0.52 ± 0.05 •
hypothyroid 4 1.75 ± 0.29 0.86 ± 0.12 • 0.92 ± 0.22 •
anneal 6 0.82 ± 0.13 0.63 ± 0.09 • 0.50 ± 0.13 •
zoo 7 0.06 ± 0.02 0.06 ± 0.03 0.06 ± 0.02
autos 7 0.36 ± 0.05 0.26 ± 0.04 • 0.25 ± 0.05 •
glass 7 0.27 ± 0.03 0.21 ± 0.04 • 0.20 ± 0.04 •
segment 7 5.87 ± 0.37 4.88 ± 0.34 • 4.98 ± 0.41 •
ecoli 8 0.23 ± 0.04 0.20 ± 0.03 0.21 ± 0.04
optdigits 10 68.70 ± 3.00 55.17 ± 1.91 • 55.03 ± 2.16 •
pendigits 10 47.07 ± 2.12 37.95 ± 1.53 • 38.40 ± 1.52 •
vowel 11 4.04 ± 0.16 3.62 ± 0.11 • 3.70 ± 0.12 •
arrhythmia 16 20.76 ± 1.09 19.20 ± 1.08 • 17.39 ± 1.56 •
soybean 19 0.99 ± 0.06 0.87 ± 0.06 • 0.85 ± 0.07 •
primary-tumor 22 0.63 ± 0.06 0.54 ± 0.06 • 0.54 ± 0.06 •
audiology 24 0.74 ± 0.05 0.64 ± 0.08 • 0.63 ± 0.09 •
letter 26 315.74 ± 11.53 273.45 ± 16.75 • 274.07 ± 16.84 •

has 5000 instances and only 3 classes, decreases dramatically from 38.78 seconds
to 11.42 seconds by using hash tables. On the other hand, for the arrhythmia
dataset, which has 16 classes and only 452 instances, the training time decreases
only slightly, from 21.14 seconds to 20.76 seconds. From Table 2, we also see that
there is no significant improvement for the training time when the number of
classes exceeds 11. The chance to encounter the same binary classifier in those
situations becomes limited as there are so many possible two-class problems.
Moreover, the number of instances in these datasets (excluding the letter data)
is small so that the time saved by using hash tables is not noticeable. We also
performed experiments with artificial data with even more classes and there was
essentially no difference in runtime on that data.

3.2 Comparing ENDs, ECBNDs, and EDBNDs

As we have seen, caching does not help when there are many classes. In the
following we will see that using balanced nested dichotomies helps in those cases.
We will first look at training time and then the effect on accuracy.

Training time. Table 3 shows the training times for ENDs, class-balanced
ENDs (ECBNDs), and data-balanced ENDs (EDBNDs), on the UCI datasets.
Model caching was applied in all three versions of ENDs. A • indicates a signif-
icant reduction in runtime compared to ENDs.
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Table 4. Comparison of training time on artificial datasets

Number of Number of Training time
classes instances ENDs ECBNDs EDBNDs

10 820 0.60 ± 0.09 0.58 ± 0.07 0.58 ± 0.07
20 1390 1.50 ± 0.12 1.42 ± 0.08 1.44 ± 0.09
30 1950 2.72 ± 0.11 2.31 ± 0.12 • 2.33 ± 0.12 •
40 2410 3.87 ± 0.16 3.18 ± 0.14 • 3.24 ± 0.13 •
50 3090 5.55 ± 0.23 4.54 ± 0.17 • 4.57 ± 0.20 •
60 3660 7.48 ± 0.29 5.86 ± 0.17 • 5.90 ± 0.25 •
70 4560 10.41 ± 0.36 8.23 ± 0.28 • 8.35 ± 0.30 •
80 5010 12.32 ± 0.43 9.56 ± 0.33 • 9.67 ± 0.31 •
90 5840 15.75 ± 0.53 12.62 ± 0.44 • 12.78 ± 0.34 •
100 6230 18.25 ± 0.61 13.61 ± 0.38 • 13.98 ± 0.44 •
150 9590 40.65 ± 1.90 27.63 ± 0.77 • 28.19 ± 0.65 •
200 12320 66.41 ± 2.95 42.37 ± 1.30 • 42.70 ± 1.30 •

The results show that using class-balanced nested dichotomies results in
significantly reduced training times on 14 of the 21 datasets. Using the data-
balanced scheme also helps: EDBNDs are significantly more efficient than ENDs
on 14 datasets, just like ECBNDs. Compared to class-balanced trees, data-
balanced trees are significantly more efficient on one dataset (arrhythmia). (This
information is not included in Table 3.) This dataset has an extremely unbal-
anced class distribution and this is why the data-balanced approach helps.

The advantage of the balanced schemes is restricted to datasets with more
than 3 classes. On three-class datasets, all nested dichotomies are class-balanced,
so we would not expect any significant difference between ENDs and ECBNDs.
The experimental results bear this out.

Table 4 shows the training times for our 12 artificial datasets. To generate these
datasets we used a cluster generator and varied the number of clusters from 10 to
200. Instances in the same cluster were assigned the same class label. Each instance
in these datasets consists of one boolean attribute and two numeric attributes. The
attribute value ranges were set to be different but could overlap. Attribute values
were generated randomly within each cluster. The number of instances in each
cluster (i.e. class) was also randomly generated and varied between 20 and 110.

The results on the artificial datasets show that the balanced schemes exhibit
a significant advantage in terms of running time when 30 or more classes are
present in the data. There was no significant difference in running time for the
two balanced schemes (class-balanced vs. data-balanced) on any of the datasets.
This indicates that the class distribution in our artificial datasets is not skewed
enough for the data-balanced approach to help.

Accuracy. Improvements in runtime are less useful if they affect accuracy in a
significant fashion. Hence it is important to evaluate the effect of our proposed
modifications on accuracy. Table 5 shows the estimated accuracy for ENDs, ECB-
NDs, and EDBNDs on the UCI datasets. We can see that there is no dataset
with a significant difference in accuracy for ENDs and ECBNDs. This is the
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Table 5. Comparison of accuracy on UCI datasets

Dataset Number of Percent correct
classes ENDs ECBNDs EDBNDs

iris 3 94.13 ± 3.84 94.13 ± 3.72 94.27 ± 3.81
balance-scale 3 79.92 ± 2.37 79.49 ± 2.41 79.78 ± 2.31
splice 3 94.75 ± 1.01 94.55 ± 0.98 93.07 ± 1.33 •
waveform 3 77.89 ± 1.88 77.53 ± 1.91 77.85 ± 2.06
lymphography 4 77.73 ± 7.47 76.63 ± 6.35 76.90 ± 6.93
vehicle 4 73.20 ± 2.92 72.36 ± 2.30 72.36 ± 2.30
hypothyroid 4 99.54 ± 0.26 99.51 ± 0.27 99.54 ± 0.28
anneal 6 98.63 ± 0.80 98.44 ± 0.75 98.53 ± 0.62
zoo 7 93.66 ± 5.67 93.87 ± 4.61 93.88 ± 4.50
autos 7 76.20 ± 6.11 74.83 ± 6.62 75.32 ± 7.10
glass 7 72.82 ± 7.42 73.51 ± 6.17 72.25 ± 6.84
segment 7 97.45 ± 0.83 97.35 ± 0.80 97.39 ± 0.87
ecoli 8 85.60 ± 4.11 85.36 ± 4.06 84.88 ± 4.13
optdigits 10 96.99 ± 0.49 97.14 ± 0.45 97.18 ± 0.50
pendigits 10 98.59 ± 0.27 98.76 ± 0.25 98.76 ± 0.26
vowel 11 88.31 ± 2.66 89.98 ± 2.47 89.24 ± 2.79
arrhythmia 16 72.59 ± 3.24 72.82 ± 4.11 71.51 ± 3.55
soybean 19 93.90 ± 1.63 94.49 ± 1.69 94.36 ± 1.78
primary-tumor 22 44.72 ± 5.04 46.28 ± 4.61 45.96 ± 4.62
audiology 24 78.46 ± 5.44 79.66 ± 5.12 79.48 ± 5.23
letter 26 94.33 ± 0.37 94.50 ± 0.36 94.51 ± 0.35

Table 6. Comparison of accuracy on artificial datasets

Number of Number of Percent correct
classes instances ENDs ECBNDs EDBNDs

10 820 78.08 ± 1.94 78.34 ± 2.35 78.32 ± 2.32
20 1390 77.79 ± 1.87 77.21 ± 1.44 77.47 ± 1.66
30 1950 77.09 ± 1.61 76.93 ± 1.53 76.85 ± 1.46
40 2410 76.64 ± 1.24 76.56 ± 1.39 76.46 ± 1.24
50 3090 76.26 ± 1.09 76.17 ± 1.26 76.25 ± 1.19
60 3660 76.43 ± 1.08 76.33 ± 1.04 76.37 ± 0.95
70 4560 73.58 ± 1.12 73.27 ± 0.97 73.50 ± 0.90
80 5010 75.85 ± 1.06 75.61 ± 0.94 75.71 ± 0.87
90 5840 76.41 ± 0.84 76.40 ± 0.91 76.41 ± 0.87
100 6230 76.59 ± 0.77 76.54 ± 0.73 76.50 ± 0.85
150 9590 75.92 ± 0.66 75.89 ± 0.72 75.86 ± 0.62
200 12320 75.89 ± 0.51 75.67 ± 0.51 75.73 ± 0.49

desired outcome. For EDBNDs, there is one three-class dataset (splice) where
the accuracy is significantly reduced compared to ENDs. The splice data has
a skewed class distribution, where one class has about half the instances and
the rest is evenly distributed among the remaining two classes. We measured
the diversity of the three types of ensembles on this dataset using the kappa
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statistic. This statistic can be used to measure agreement between pairs of en-
semble members [9]. For EDBNDs, the mean kappa value over all pairs, measured
on the training data, was 0.96, which was indeed higher than the mean kappa
values for ENDs and ECBNDs (0.94 and 0.93 respectively). This indicates that
reduction in diversity is the reason for the drop in performance.

Table 6 shows the same information for the artificial datasets. In this case
there is not a single dataset where there is a significant difference in accuracy
between any of the schemes.

4 Conclusions

Ensembles of nested dichotomies have recently been shown to be a very promising
meta learning scheme for multi-class problems. They produce accurate classifi-
cations and yield class probabilities estimates in a natural way. In this paper
we have shown that it is possible to improve the runtime of this meta learn-
ing scheme without affecting accuracy. A simple way to improve runtime for
problems with a small number of classes is to cache two-class models and re-use
them in different members of an ensemble of nested dichotomies. On problems
with many classes we have shown that using class-balanced nested dichotomies
significantly improves runtime, with no significant change in accuracy. We have
also presented a data-balanced scheme that can help to improve runtime further
when there are many classes and the class distribution is highly skewed.
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Abstract. Considering the characteristics of biological sequence
databases, which typically have a small alphabet, a very long length and
a relative small size (several hundreds of sequences), we propose a new
sequence mining algorithm (gIL). gIL was developed for linear sequence
pattern mining and results from the combination of some of the most
efficient techniques used in sequence and itemset mining. The algorithm
exhibits a high adaptability, yielding a smooth and direct introduction
of various types of features into the mining process, namely the extrac-
tion of rigid and arbitrary gap patterns. Both breadth or a depth first
traversal are possible. The experimental evaluation, in synthetic and real
life protein databases, has shown that our algorithm has superior per-
formance to state-of-the art algorithms. The use of constraints has also
proved to be a very useful tool to specify user interesting patterns.

1 Introduction

In the development of sequence pattern mining algorithms, two communities
can be considered: the Data Mining and the Bioinformatics community. The
algorithms from the Data Mining community inherited some characteristics from
the association rule mining algorithms. They are best suited for data with many
(from hundred of thousands to millions) sequences with a relative small length
(from 10 to 20), and an alphabet of thousands of events, e.g. [9,7,11,1]. In the
bioinformatics community, algorithms are developed in order to be very efficient
when mining a small number of sequences (in the order of hundreds) with large
lengths (few hundreds). The alphabet size is typically very small (ex: 4 for DNA
and 20 for protein sequences). We emphasize the algorithm Teiresias [6] as a
standard.

The major problem with Sequence pattern mining is that it usually generates
too many patterns. When databases attain considerable size or when the average
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length of the sequences is very long, the mining process becomes computation-
ally expensive or simply infeasible. This is often the case when we are mining
biological data like proteins or DNA. Additionally, the user interpretation of
the results turns out to be a very hard task since the interesting patterns are
blurred into the huge amount of outputted patterns. The solution to this prob-
lem can be achieved through the definition of alternative interesting measures
besides support, or with user imposed restrictions to the search space. When
properly integrated in the mining process these restrictions reduce the computa-
tion demands in terms of time and memory, allowing to deal with datasets that
are otherwise potentially untractable. These restrictions are expressed through
what is typically called as Constraints. The use of Constraints enhances the
database queries. The runtime reduction grants the user with the opportunity
to interactively refine the query specification. This can be done until an expected
answer is found.

2 Preliminaries

We consider the special case of linear sequences databases. A database D is as
a collection of linear sequences. A linear sequence is a sequence composed by
successive atomic elements, generically called events. Examples of this type of
databases are protein or DNA sequences or website navigation paths. The term
linear is used to make the distinction from the transactional sequences, that
consist in sequences of EventSets(usually called as ItemSets). Given a sequence
S, S′ is subsequence of S if S′ can be obtained by deleting some of the events
in S. A sequence pattern is called a frequent sequence pattern if it is found to
be subsequence of a number of sequences in the dataset greater or equal to a
specified threshold value. This value is called minimum support, σ, and is defined
as an user parameter. The cover represents the list of sequence identifiers where
the pattern occurs. The cardinality of this list corresponds to the support of that
pattern.

Considering patterns in the form A1 − x(p1, q1) − A2 − x(p2, q2) − ... An,
a sequence pattern is an arbitrary gap sequence pattern when a variable (zero
or more) number of gaps exist between adjacent events in the pattern, i.e. pi ≤
qi, ∀i. Typically a variable gap with n minimum and m maximum number of gaps
is described as −x(n, m)−. In the sequences < 1 5 3 4 5 > and < 1 2 2 3 > exists
an arbitrary gap pattern 1−x(1, 2)−3. A rigid gap pattern is a pattern where gaps
contain a fixed size for all the database occurrences of the sequence pattern, i.e.
pi = qi, ∀i. To denote a rigid gap the −r(n)− notation is used, where n is the size
of the gap. The 1−r(2)−3 is a pattern of length 4, in the sequences < 1 2 5 3 4 5 >
and < 1 1 6 3 >. Each gap position is denoted by the ”.” (wildcard) symbol,
meaning that it matches any symbol of the alphabet. A pattern belongs to one
of three classes: maximal, closed or all. A sequence pattern is maximal if it is not
contained in any other pattern, and closed when all its extensions have an inferior
support than itself. The all refers to when all the patterns are enumerated. When
extending a sequence pattern S =< s1 s2 . . . sn >, with a new event sn+1, then
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S is called a base sequence and S′ =< s1 s2 . . . sn sn+1 > the extended sequence.
If an event b occurs after a in a certain sequence, we denoted it as: a → b, and a
is called the predecessor, pred(a → b) = a, and b the successor, succ(a → b) = b.
The pair is frequent if it occurs in at least σ sequences of the database.

Constraints represent an efficient way to prune the search space [9,10]. Con-
sidering the user’s point of view, it also enables to focus the search on more inter-
esting sequence patterns. The most common and generic types of constraints are:

– Item Constraints: restricts the set of the events (excludedEventsSet) that
may appear in the sequence patterns,

– Gap Constraints : defines the (minGap) minimum distance or the maximum
distance (maxGap) that may occur between two adjacent events in the se-
quence patterns,

– Duration or Window Constraints : defines the maximum distance (window)
between the first and the last event of the sequence patterns.

– Start Events Constraints : determines that the extracted patterns start with
the specified events (startEvents).

Another useful feature in sequence mining, in particular to protein pattern
mining, is the use of Equivalent/Substitution Sets. When used during the mining
process an event can be substituted by another event belonging to the same set.
A ”is-a” hierarchy of relations can be represented through substitution sets.

Depending on the target application of the frequent sequence patterns other
measures of interest and scoring can be applied as posterior step of the mining
process. Since the closed and the maximal patterns are not necessarily the most
interesting we designed our algorithm in order to find all the frequent patterns.
From the biological point of view, rigid patterns allow to find more well conserved
regions, while arbitrary patterns permit the cover of a large number of sequences
in the database.

The problem we address in this paper can be formulated as follow: given a
database D of linear sequences, a minimum support, σ, and the optional param-
eters minGap, maxGap, window, excludedEventsSet, startEventsSets and substi-
tutionSets, find all the arbitrary or rigid gap frequent sequence patterns that
respect the defined constraints.

3 Algorithm

The proposed algorithm uses a Bottom-Up search space enumeration and a com-
bination of frequent pairs of events to extend and find all the frequent sequence
patterns. The algorithm is divided in two phases: scanning phase and sequence
extension phase. Since the frequent sequences are obtained from the set of fre-
quent pairs, the first phase of the algorithm consists in traversing all the se-
quences in the database and building two auxiliary data structures. The first
structure contains the set of all pairs of events found in the database. Each pair
representation points to the sequences where they appear (through a sequence
identifier bitmap). The second data structure consists of a vertical representation
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of the database. It contains the positions or offsets of the events in the sequences
where they occur. This information is required to ensure that the order of the
events along the data sequence is respected. Both data structures are thought
for quick information retrieval. At the end of the scanning phase we obtain a
map of all the pairs of events present in the database and a vertical format rep-
resentation of the original database. In the second phase the pairs of events are
successively combined to find all the sequence patterns. These operations are
fundamentally based on two properties:

Property 1 (Anti-Monotonic). All supersequences of an infrequent sequence
are infrequent.

Property 2 (Sequence Transitive Extension). Let S =< s1 . . . sn >, CS

is its cover list and OS the list of the offset values of S for all the sequences in
CS. Let P = (sj → sm), CP is it cover list and OP the offset list of succ(P )
for all sequences in CP . If succ(S) = pred(P ), i.e., sn = sj, then the extended
sequence E =< s1 . . . snsm > will occur in CE , where CE = {X : ∀X in CS ∩
CP , OP (X) > OS(X)}.

Hence, the basic idea is to successively extend a frequent pair of events with
another frequent pair, as long as the predecessor of one pair is equal to the suc-
cessor of the other. This joining step is sound provided that the above mentioned
properties (1 and 2) are respected. The joining of pairs combined with a breadth
first or a depth first traversal yields all the frequent sequences patterns in the
database.

3.1 Scanning Phase

The first phase of the algorithm consists in the following procedure: For each
sequence in D, obtain all ordered pairs of events, without repetitions. Consider
the sequence 5 in the example database of table 1(a). The obtained pairs are:
1 → 2, 1 → 3, 1 → 4, 2 → 2, 2 → 3, 2 → 4 and 3 → 4. During the determination
of the pairs of events the first auxiliary data structure, that consists of an N-
bidimensional matrix, is built and updated. N corresponds to the size of the
alphabet. The N2 cells in the matrix correspond to the N2 possible combinations
of pairs. We call this structure the Bitmap Matrix. Each Cell(i, j) contains the
information relative to the pair i → j. This information consists of a bitmap
that indicates the presence (1) or the absence (0) in the respective sequence

Table 1. (a) Parameters used in the synthetic data generator; (b) Properties of the
proteins datasets

Symbol Meaning
S Number of Sequences (x 103)
L Avg. Length of the sequences
R Alphabet Size
P Distribution Skewness

DataSet NumSeq AlphabetSize AvgLen MinLen MaxLen
Yeast 393 21 256 15 1859
PSSP 396 22 158 21 577

nonOM 60 20 349 53 1161
mushroom 8124 120 23 23 23



100 P.G. Ferreira and P.J. Azevedo

(i-th bit corresponds to the sequence i in D) and an integer that contains the
support count. This last value allows a fast support checking. For each pair
i → j we update the respective Cell(i, j) in the Bitmap Matrix, by activating
the bit corresponding to the sequence where the pair occurs and incrementing the
support counter. As an example, for the pair 1 → 3, the Cell(1, 3) is represented
in figure 1(b):

Sid Sequence
1 < 1 2 3 4 5 >

2 < 1 3 4 >

3 < 2 3 2 3 >

4 < 3 2 1 >

5 < 1 2 2 3 4 >

Fig. 1. (a) An example database; (b) Content of the Cell(1,3) in the Bitmap Matrix;
(c) Representation of event 2 in the Offset Matrix

This means that the pair occurs in the database sequence 1, 2 and 5 and has
a support of 3. Simultaneously, as each event in the database is being scanned, a
second data structure called Offset Matrix is also being built. Conceptually, this
data structure consists of an adjacency matrix that will contain all the offset
(positions) of all the events in the entire database. Each event is a key that
points to a list of pairs <Sid,OffsetList>, where OffsetList is a list of all the
positions of the event in the sequence Sid. Thus, the Offset Matrix is a vertical
representation of the database. Figure 1(c) shows the information stored in the
Offset Matrix for the event 2.

3.2 Sequence Extension Phase

We start by presenting how arbitrary gap patterns are extracted. In section
3.4 we will show how easily our algorithm can be adapted to extract rigid gap
patterns. For implementing the extension phase we present two tests (algorithms)
that conjunctively are necessary and sufficient conditions to consider as frequent
a new extended sequence.

This is a quick test that implements property 1. The bitmap function gets
the correspondent bitmaps of S and P . The intersection operation is also very
fast and simple and the support function retrieves the support of the intersec-
tion bitmap. This test allows the verification of a necessary but not sufficient
condition for the extended sequence to be frequent. A second test is necessary

input : S(BaseSequence); P (ExtensionP air); σ(Min.Support)
CS = bitmap(S) and CP = bitmap(P )
C

S′ = CS ∩ CP
if support(C

S′ ) ≥ σ , then return OK.

Algorithm 1: Support Test
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input : C
S′ (Bitmap); S(Base Seq); P(Ext. P air); σ(Sup.)

seqLst = getSeqIdLst(C
S′ );1

Ev = succ(P );2
cnt = 0;3
foreach Sid in seqLst do4

Ov = offsetLst(Sid, Ev);5
Y = offsetLastEvent(Sid, S);6
W = offsetStartEvent(Sid, S);7
if ∃X ∈ Ov , X > Y then8

cnt = cnt + 1;9
if (X − Y ) < n then n = (X − Y )10
if (X − Y ) > m then m = (X − Y )11

end12
diffT est(cnt, σ);13

end14
if cnt ≥ σ then15

return OK;16
end17

Algorithm 2: Order Test

to guarantee that the order of the events is kept along the sequences that CS′

bitmap points to.
Algorithm 2 assumes that, for each frequent sequence, additional information

besides the sequence event list is kept during the extension phase. Namely, the
corresponding bitmap that for the case exposed in algorithm 1 will be CS′ if S′

is determined to be frequent. Also two offset lists in the form <Sid, offset> are
kept. One will contain the offset of the last event of the sequence, offsetLastEvent,
and will be used for the ”Order Test”. The second, offsetStartEvent, contains the
offset of the first event of the sequence pattern in all the Sid where it appears.
This will be used when the verification of the window constraint is performed. In
the Order Test, given a bitmap resulted from the support test, the getSeqIdLst
function returns the list of the sequence identifiers for the bitmap. The function
offsetLst returns a list of offset values of the event in the respective Sid. For each
sequence identifier it is tested whether the extension pair has an offset greater
than the offset value of the extended sequence. This implements the computation
of CE and the offsetList of succ(E) as in property 2. At line 13 the diffT est
function performs a simple test to check whether the minimum support is still
reachable. At the end of the procedure (lines 15 to 17) it is tested whether the
order of the extended sequence pattern is respected in a sufficient number of
database sequences. In the positive case the extended sequence is considered
frequent. Given algorithm 1 and 2, property 3 guarantees the necessary and
sufficient conditions to safely extend a base sequence into a frequent one.

Property 3 (Frequent Extended Sequence). Given a minimum support σ,
a frequent base sequence S =< E1 . . . En >, where |S| ≥ 2 and a pair P = Ek →
Ew. If En = Ek, then S′ =< E1 . . . En gn,kEk >, where gn,k = −x(n, m)− if
in arbitrary gap mode or −r(n)− if in rigid gap mode, is frequent if algorithm 1
and 2 return OK.

3.3 Space Search Traversal

Guided by the Bitmap Matrix the search space can be traversed using two possi-
ble approaches: breadth first or depth first. For both cases the set of the frequent
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sequences starts as the set of frequent pairs. In the depth first mode it starts
with a sequence of size 2 that is successively expand until it can not be further
extended. Then we backtrack and start extending another sequence. The advan-
tage of this type of traversal is that we don’t need to keep all the intermediary
frequent sequence information, in contrast with the breadth first traversal where
all the information of the sequences size k need to be kept before the sequences of
size k+1 are generated. This yields is some cases, a significant memory reduction.

3.4 Rigid Gap Patterns

The algorithm described in 2 is designed to mine arbitrary gap patterns. Using
gIL to mine rigid gap patterns requires only minor changes in the Order Test
algorithm. Lines 4 to 11 in algorithm 2 are rewritten in algorithm 3. In this
algorithm, first it is collected (in gapLst) the size of all the gaps for a certain
sequence extension. Next, for each gap size it is tested whether the extended
sequence is frequent. One should note that for rigid gap patterns, two sequence
patterns with the same events are considered different if the gaps between the
events have different size, e.g., < 1 · · 2 > is different from < 1 · · · 2 >.

foreach Sid in seqLst do1
Ov = offsetLst(Sid, Ev);2
Y = offsetLastEvent(Sid, S);3
W = offsetStartEvent(Sid, S);4
if ∃X ∈ Ov , X > Y then5

gap = X − Y ; gapLst.add(gap);6
end7

end8
foreach R in gapLst do9

foreach Sid in seqLst do10
Repeat Step 2 to 4;11
if ∃X ∈ Ov , (X − Y ) = R then12

cnt = cnt + 1;13
end14

end15
if cnt ≥ σ then16

return OK;17
end18

end19
Algorithm 3: Algorithm changes to mine rigid gap patterns

4 Constraints

The introduction of constraints in the gIL algorithm like min/max gap, window
size, items exclusion is a straightforward process and translates into a consid-
erable performance gain. These efficiency improvements are naturally expected
since (depending on the values of the constraints) the search space can be greatly
reduced. The introduction of substitution sets is also very easy to achieve. Im-
plementing events exclusion constraint and substitution sets turns out to be a
natural operation. Simple changes in the Bitmap Matrix (that guides the se-
quence extension) and in the Offset Matrix (discriminates the positions of the
events in every sequence where they occur) enable this implementations. The new
features are introduced between the scanning phase and the sequence extension
phase. The min/max gap and window constraints constitute an additional to be
applied when the sequence is extended.
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4.1 Events Exclusion, Start Events and Substitution Sets

The event exclusion constraint is applied by traversing the rows and columns
of the Bitmap Matrix where the excluded events occurs. At that positions the
support1 count variable in the respective cells is set to zero. Start events con-
straints are also straightforwardly implemented by allowing extensions only to
the events in StartEventSets.

When substitution sets are activated, one or more sets of equivalent events
are available. For each set of equivalent events one has to form the union of
the rows (horizontal union) and columns (vertical union) in the Bitmap Matrix,
where those events occur. The vertical union is similar to the horizontal union.
Moreover, for all the equivalent events, one needs to pairwisely intersect the
sequences where they occur and then perform the union of the offsetLists for the
intersected sequences. This results in the new offsetLists of the equivalent events.

4.2 Min / Max Gap and Window Size

These constraints are trivially introduced in the ”Order Test”. In algorithm 2, the
test in line 8 is extended with three additional tests: (X − Y ) < maxGap AND
(X − Y ) > minGap AND (X − W ) < windowSize.

5 Experimental Evaluation

We evaluated our algorithm along different variables using two collections of
synthetic and real datasets. To generate the synthetic datasets we developed a
sequence generator based on the Zipfian distribution. This generator receives
the following parameters (see table 1(a)): number of sequences, average length
of the sequences, alphabet size and a parameter p that expresses the skewness
of the distribution. This generator has allowed us to generate sequences with a
relative small alphabet. The evaluated variables for this datasets were: support,
dataset size (number of sequences), and sequence size. Additionally, we tested the
mushroom dataset used at the FIMI workshop [4]. To represent real life data, we
used several datasets of proteins. The Yeast (saccharomyces cerevisiae) dataset
is available at [5] and PSSP used for protein secondary structure prediction [3].
We also used a subset of the non Outer Membrane proteins obtained from [8].
The properties for this datasets are summarized in table 1(b). It is interesting
to notice that, for all datasets, gIL’s scanning phase time is residual (less than
0.4 seconds).

Since gIL finds two types of patterns we performed evaluation against two
different algorithms. Both are in memory algorithms, assuming that the database
completely fits into main memory. For the arbitrary gap patterns from the all
patterns class we compared gIL with the SPAM [1] algorithm. SPAM has shown
to outperform SPADE [11] and PrefixSpan [7] and is a state-of-the-art algorithm
1 Future interactions on this dataset still have the Bitmap Matrix intact since the

bitmaps remain unchanged.
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in transactional sequence pattern mining. The datasets suffer a conversion into
the transactional dataset format, in order to be processed by SPAM. In this
conversion each customer is considered as a sequence and each itemset contains
a unique item (event).

For the rigid gap patterns we compared gIL with Teiresias [6], a well known
algorithm from the bioinformatics community. It can be obtained from [2]. It is,
as far as we know, the most complete and efficient algorithm for mining closed
(called ”most specific” in their paper) frequent rigid gap patterns. Closed pat-
terns are a subset of all frequent sequence patterns. In this sense, gIL (which
derives all patterns) tackles a more general problem and consequently considers
a much larger search space than Teiresias. Besides minimum support, Teiresias
uses two additional parameters. L and W are respectively the number of non-wild
cards events in a pattern and the maximum spanning between two consecutive
events. Since gIL starts by enumerating patterns with size 2, we will set L=2
and W to the maxGap value. All the experiments2 were performed using exact
discovery, i.e. without the use of substitution sets, and on a 1.5GHz Intel Cen-
trino machine with 512MB of main memory, running windows XP Professional.
The applications were written in C/C++ language.

5.1 Arbitrary Gap Patterns Evaluation

We start by comparing the efficiency of SPAM with the gIL algorithm without
constraints. In figure 2(a) and 2(b) we tested different values of support for two
datasets of 1K and 2K respectively. The sequences have an average length of
60 and an alphabet of 20 events. It was clear in these two experiments that for
relative smaller dataset sizes and lower support values gIL becomes more efficient
than SPAM. Figure 2(c) shows the scalability of the algorithms in respect to the
dataset size for a support of 30%. This graphic shows that gIL scales well in
relation to the dataset size.

In order to test a dataset with different characteristics, namely larger alpha-
bet size, small length and greater dataset size, we used the Mushroom dataset,
see figure 3(a). In figure 3(b) we have runtimes of gIL for datasets with one
thousand sequences and different values of average sequence length. It was im-
posed a maxGap constraint of 15. As we observed during all the experiments,
there is a critical point in the support variation, typically between 10% and 20%,
that translates into an explosion of number of frequent patterns. This leads to
an exponential behaviour in the algorithm’s runtime. Even so, we can see that
gIL shows similar behaviour for the different values of sequence length. Figure
3(c) measures the relative performance time, i.e. the ratio between the mining
time with constraints and without constraints. These values were obtained for
a support of 70%. Runtime without constraints was 305 seconds. It describes
the behaviour of the algorithm when decreasing the maxGap and the Window
values.

2 Further details and results can be obtained from an extended version of this paper.
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Fig. 3. (a) Support variation for the Mushroom dataset; (b) Scalability of gIL w.r.t
sequence size for different support values (c) Performance evaluation using maxgap and
windowgap constraints

In respect to memory usage both algorithms showed a low memory demand
for all the datasets. For the Mushroom dataset which was the most demanding
in terms of memory, SPAM used a maximum of 9 MB for a support of 4% and
gIL a constant memory usage of 26 MB for all the support values. gIL shows a
constant and support independent memory usage since once the data structures
are built for a given dataset they remain unchanged.

5.2 Rigid Gap Patterns Evaluation

In order to assess the performance of gIL in the mining of rigid gap patterns
we compared it with Teiresias [6], for different proteins datasets. In figure 4(a)
and 4(b) the Yeast dataset was evaluated for two values of maxGap(W), 10
and 15. The results showed that gIL outperforms Teiresias by an order of mag-
nitude. When comparing the performance of the algorithms in relation to the
PSSP (figure 4(c)) and the nonOM (figure 5(a)) datasets, for a maxGap of 15,
gIL outperforms Teiresias by a factor of 2 in the first case. This difference be-
comes more significant in the second case. The nonOM dataset has a greater
average sequence length, but a small dataset size. This last characteristic results
into a smaller bitmap length yielding a significant performance improvement. As
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we already verified in the arbitrary gap experiments, gIL memory usage main-
tains nearly constant for all the tested support values (figure 5(b)). Figure 5(c)
shows the linear scalability of gIL in relation to the number of frequent sequence
patterns.

6 Conclusions

We presented an algorithm called gIL, suitable to work with databases of linear
sequences with a long average length and a relative small alphabet size. Our
experiments showed that for the particular case of the proteins datasets, gIL ex-
hibits superior performance to state-of-the-art algorithms. The algorithm has a
high adaptability, and thus it was easily changed to extract two different types of
patterns: arbitrary and rigid gap patterns. Furthermore, the data organization
allows a straightforward implementation of constraints and substitution sets.
These features are pushed directly into the mining process, which in some cases
enables the mining in useful time of otherwise untractable problems. In this
sense gIL is an interesting and powerful algorithm to be applied in a broader
range of domains and in particular suitable for biological data. Thus, even when
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performing extensions an event at a time (using a smart combination of some of
the most efficient techniques that have been used in the task of itemset and se-
quence mining) one can obtain an algorithm that efficiently handles the explosive
nature of pattern search, inherent to the biological sequence datasets.
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Abstract. In this paper, we propose an incremental classification algo-
rithm which uses a multi-resolution data representation to find adaptive
nearest neighbors of a test point. The algorithm achieves excellent per-
formance by using small classifier ensembles where approximation error
bounds are guaranteed for each ensemble size. The very low update cost
of our incremental classifier makes it highly suitable for data stream ap-
plications. Tests performed on both synthetic and real-life data indicate
that our new classifier outperforms existing algorithms for data streams
in terms of accuracy and computational costs.

1 Introduction

A significant amount of recent research has focused on mining data streams
for applications such as financial data analysis, network monitoring, security,
sensor networks, and many others [3,8]. Algorithms for mining data streams
have to address challenges not encountered in traditional mining of stored data:
at the physical level, these include fast input rates and unending data sets,
while, at the logical level, there is the need to cope with concept drift [18].
Therefore, classical classification algorithms must be replaced by, or modified
into, incremental algorithms that are fast and light and gracefully adapt to
changes in data statistics [17,18,5].

Related Works. Because of their good performance and intuitive appeal, deci-
sion tree classifiers and nearest neighborhood classifiers have been widely used in
traditional data mining tasks [9]. For data streams, several decision tree classi-
fiers have been proposed—either as single decision trees, or as ensembles of such
trees. In particular, VFDT [7] and CVFDT [10] represent well-known algorithms
for building single decision tree classifiers, respectively, on stationary, and time-
changing data streams. These algorithms employ a criterion based on Hoeffding
bounds to decide when a further level of the current decision tree should be
created. While this approach assures interesting theoretical properties, the time
required for updating the decision tree can be significant, and a large amount of
samples is needed to build a classifier with reasonable accuracy. When the size of
the training set is small, the performance of this approach can be unsatisfactory.

Another approach to data stream classification uses ensemble methods. These
construct a set of classifiers by a base learner, and then combine the predictions

A. Jorge et al. (Eds.): PKDD 2005, LNAI 3721, pp. 108–120, 2005.
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of these base models by voting techniques. Previous research works [17,18,5] have
shown that ensembles can often outperform single classifiers and are also suitable
for coping with concept drift. On the other hand, ensemble methods suffer from
the drawback that they often fail to provide a simple model and understanding
of the problem at hand [9].

In this paper, we focus on building nearest neighbor (NN) classifiers for data
streams. This technique works well in traditional data mining applications, is
supported by a strong intuitive appeal, and it rather simple to implement. How-
ever, the time spent for finding the exact NN can be expensive and, therefore,
a significant amount of previous research has focused on this problem. A well-
known method for accelerating the nearest neighbor lookup is to use k-d trees
[4]. A k-d tree is a balanced binary tree that recursively splits a d-dimensional
space into smaller subregions. However, the tree can become seriously unbal-
anced by massive new arrivals in the data stream, and thus lose the ability of
expediting the search. Another approach to NN classifiers attempts to provide
approximate answers with error bound guarantees. There are many novel algo-
rithms [11,12,13,14] for finding approximate K-NN on stored data. However, to
find the (1 + ε)-approximate nearest neighbors, these algorithms must perform
multiple scans of the data. Also, the update cost of the dynamic algorithms
[11,13,14] depends on the size of the data set, since the entire data set is needed
for the update process. Therefore, they are not suitable for mining data streams.

Our ANNCAD Algorithm. In this paper, we introduce an Adaptive NN
Classification Algorithm for Data-streams. It is well-known that when data is
non-uniform, it is difficult to predetermine K in the KNN classification [6,20].
So, instead of fixing a specific number of neighbors, as in the usual KNN algo-
rithm, we adaptively expand the nearby area of a test point until a satisfactory
classification is obtained. To save the computation time for finding adaptive NN,
we first preassigning a class to every subregion (cell). To achieve this, we decom-
pose the feature space of a training set and obtain a multi-resolution data rep-
resentation. There are many decomposition techniques for multi-resolution data
representations. The averaging technique used in this paper can be thought of
Haar Wavelets Transformation [16]. Thus, information from different resolution
levels can then be used for adaptively preassigning a class to every cell. Then
we determine to which cell the test point belongs, in order to predict its class.
Moreover, because of the compact support property inherited from wavelets, the
time spent updating a classifier when a new tuple arrives is a small constant,
and it is independent of the size of the data set. Unlike VDFT, which requires a
large data set to decide whether to expand the tree by one more level, ANNCAD
does not have this restriction.

In the paper, we use grid-based approach for classification. The main char-
acteristic of this approach is the fast processing time and small memory usage,
which is independent of the number of data points. It only depends on the num-
ber of cells of each dimension in the discretized space, which is easy to adjust
in order to fulfill system constraints. Therefore, this approach has been widely
employed in clustering problem. Some examples of novel clustering algorithms
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are STING [19], CLIQUE [1] and WaveCluster [15]. However, there is not much
work using this approach for classification.

Paper Organization. In this paper, we present our algorithm ANNCAD and
discuss its properties in §2. In §3, we compare ANNCAD with some existing algo-
rithms. The results suggest that ANNCAD will outperform existing algorithms.
Finally, conclusions and suggestions for future work will be given in §4.

2 ANNCAD

In this section, we introduce our proposed algorithm ANNCAD, which includes
four main stages: (1) Quantization of the Feature Space; (2) Building classifiers;
(3) Finding predictive label for a test point by adaptively finding its neighboring
cells; (4) Updating classifiers for newly arriving tuples. This algorithm only read
each data tuple at most once, and only requires a small constant time to process
it. We then discuss its properties and complexity.

2.1 Notation

We are given a set of d-dimensional data D with attributes X1, X2, ..., Xd. For
each i = 1, ..., d, the domain of Xi is bounded and totally ordered, and ranges
over the interval [Li, Hi). Thus, X = [L1, H1)× ...× [Ld, Hd) is the feature space
containing our data set D.

Definition 1. A discretized feature space is obtained by dividing the domain of
each dimension into g open intervals of equal length. The discretized feature space
so produced consists of gd disjoint rectangular blocks, of size Δxi = (Hi −Li)/g
in their ith dimension.

Let Bi1,...,id
denote the block:

[L1 + (i1 − 1)Δx1, L1 + i1Δx1) × ... × [Ld + (id − 1)Δxd, Ld + idΔxd).

Alternatively, we denote Bi1,...,id
by Bi, with i = (i1, ..., id) the unique identifier

for the block. Then, two blocks Bk and Bh, k "= h, are said to be adjacent if
|ki −hi| ≤ 1, for each i = 1, ..., d. In this case, Bk is said to be a neighbor of Bh.
CtrBi denotes the center of block Bi, computed as the average of its vertices:

CtrBi = (L1 + (i1 − 1/2)Δx1, ..., Ld + (id − 1/2)Δxd).

Definition 2. Let x be a point and Bi be a block in the same feature space. The
distance between x and Bi is defined as the distance between x and CtrBi .

Note that the distance in Def. 2 can be any kind of distance. In the following,
we use Euclidean distance to be the distance between a point and a block.
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2.2 Quantization of the Feature Space

The first step of ANNCAD is to partition the feature space into a discretized
space with gd blocks as in Def. 1. It is advisable to choose different sizes of grid
according to system resource constraints and desirable fineness of a classifier.
For each nonempty block, we count the number of training points contained in
it for each class. Now we get the distribution of the data entities in each class. To
decide whether we need to start with a finer resolution feature space, we then
count the number of training points that do not belong to the majority class
of its block as a measure of the training error. We then calculate the coarser
representations of the data by averaging the 2d corresponding blocks in the next
finer level. We illustrate the above process by Example 1.

Example 1. A set of 100 two-class training points in the 2-D unit square is
shown in Fig. 1(a). There are two classes for this data set, where a circle (resp.
triangle) represents a training point of class I (resp. II). First we separate the
training points of each class, discretize them using a 4 × 4 grid and count the
number of training points for each block to get the data distribution of each class
(see Fig. 1(b)). Moreover, Fig. 1(c)-(d) show the coarser representations of the
data.
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Fig. 1. Multi-resolution representation of a two-class data set

Due to the problem of the curse of dimensionality, the storage amount is ex-
ponential in the number of dimensions. To deal with this, we store the nonempty
blocks in the leaf nodes of a B+-tree using their z-values [21] as keys. Thus the
required storage space is much smaller and is bounded by O(min(N, gd)) where
N is the number of training samples. For instance, in Fig. 1, we only need to
store information for at most 8 blocks even though there are 100 training points
in the 4 × 4 blocks feature space. To reduce space usage, we may only store the
data array of the finest level and calculate the coarser levels on the fly when
building a classifier. On the other hand, to reduce time complexity, we may pre-
calculate and store the coarser levels. In the following discussion, we assume that
the system stores the data representation of each level.
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2.3 Building a Classifier and Classifying Test Points

The main idea of ANNCAD is to use a multi-resolution data representation for
classification. Notice that the neighborhood relation strongly depends on the
quantization process. This will be addressed in next subsection by building sev-
eral classifier ensembles using different grids obtained by subgrid displacements.
Observe that in general, the finer level the block can be classified, the shorter
distance between this block and the training set. Therefore, to build a classi-
fier and classify a test point (see Algorithms 1 and 2), we start with the finest
resolution for searching nearest neighbors and progressively consider the coarser
resolutions, in order to find nearest neighbors adaptively.

We first construct a single classifier as a starting point (see Algorithm 1).
We start with setting every block to have a default tag U (Non-visited). In the
finest level, we classify any nonempty block with its majority class label. We
then classify any nonempty block of every lower level as follows: We label the
block by its majority class label if the majority class label has more points than
the second majority class by a threshold percentage. If not, we use a specific tag
M (Mixed) to label it.

Algorithm 1. BuildClassifier({x, y}|x is a vector of attributes, y is a class label.)

Quantize the feature space containing {x}
Label majority class for each nonempty block in the finest level
For each level i = log(g) downto 1

For each nonempty block B
If |majority ca| − |2nd majority cb| > threshold %, label class ca

else label tag M
Return Classifier

Algorithm 2. TestClass(test point: t)

For each level i = log(g) + 1 downto 1
If label of Bi(t) <> U /*Bi(t) is nonempty */

If label of Bi(t) <> M , class of t = class of Bi(t)
else class of t = class of NN of Bi+1(t) /*Bi+1(t) contains t in level i + 1*/
Break

Return class label for t, Bi(t)

Example 2. We build a classifier for the data set of Example 1 and set the
threshold value to be 80%. Fig. 2(a), (b) and (c) show the class label of each
nonempty block in the finest, intermediate and coarsest resolution respectively.



An Adaptive Nearest Neighbor Classification Algorithm for Data Streams 113
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Fig. 2. Hierarchical structure of classifiers

For each level i, a test point t belongs to a unique block Bi(t). We search
from the finest to the coarsest level until reaching a nonempty block Bi(t). If
the label of Bi(t) is one of the classes, we label the test point by this class.
Otherwise, if Bi(t) has tag M , we find the nearest neighbor block of Bi+1(t)
where Bi+1(t) is a block containing t in level i + 1. To reduce the time spent,
we only consider the neighbors of Bi+1(t) which belong to Bi(t) in level i. It is
very easy to access these neighbors as they are also neighbors of Bi+1(t) in the
B+-tree with their z-values as keys. Note that Bi+1(t) must be empty, otherwise
we should classify it at level i+1. But some of the neighbors of Bi+1(t) must be
nonempty as Bi(t) is nonempty. We simply calculate the distance between test
point t and each neighbor of Bi+1(t) and label t by the class of NN.

Example 3. We use the classifier built in Example 2 to classify a test point
t = (0.6, 0.7). Starting with the finest level, we found that the first nonempty
block containing t is [0.5, 1) × [0.5, 1) (see Fig. 3(b)). Since it has tag M , we
calculate the distance between t and each nonempty neighboring block in the
next finer level ([0.75, 1) × [0.5, 0.75), [0.5, 0.75)× [0.75, 1)). Finally, we get the
nearest neighboring block [0.75, 1)× [0.5, 0.75) and label t to be class I (see Fig.
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3(c)). When we combine the multi-resolution classifier of each level, we get a
classifier for the whole feature space (see Fig. 4).

2.4 Incremental Updates of Classifiers

The main requirement of a data stream classification algorithm is that it is
able to update classifiers incrementally and effectively when a new tuple arrives.
Moreover, updated classifier should be adapt to concept drift behaviors. In this
subsection, we present incremental update process of ANNCAD for a station-
ary data, without re-scanning the data and discuss an exponential forgetting
technique to adapt to concept drifts.

Because of the compact support property, arrival of a new tuple only affects
the blocks of the classifier in each level containing this tuple. Therefore, we only
need to update the data array of these blocks and their classes if necessary.
During the update process, the system may run out of memory as the number
of nonempty blocks may increase. To deal with this, we may simply remove the
finest data array, multiple the entries of the remaining coarser data arrays by 2d,
and update the quantity g. A detailed description of updating classifiers can be
found in Algorithm 3. This solution can effectively meet the memory constraint.

Algorithm 3. UpdateClassifier(new tuple: t)

For each level i = log(g) + 1 downto 1
Add δt/2d×(log(g)+1−i) to data array Φi

/*δt is a matrix with value 1 in the corr. entry of t and 0 elsewhere.*/
If i is the finest level, label Bi(t) with the majority class
else if |majority ca| − |2nd majority cb| > threshold %, label Bi(t) by ca

else label Bi(t) by tag M
If memory runs out,

Remove the data array of level log(g) + 1
For each level i = log(g) downto 1, Φi = 2d · Φi

Label each nonempty block of the classifier in level log(g) by its majority class
Set g = g/2

Return updated classifier

Exponential Forgetting. If the concept of the data changes over time, a
very common technique called exponential forgetting may be used to assign less
weight to the old data to adapt to more recent trend. To achieve this, we multiply
an exponential forgetting factor λ to the data array, where 0 ≤ λ ≤ 1. For each
level i, after each time interval t, we update the data array Φi to be:

Φi|(n+1)t ← λΦi|n·t
where Φi|n·t is the data array at time n · t. Indeed, if there is no concept change,
the result of classifier will not be affected. If there is a concept drift, the classifier
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can adapt to the change quickly since the weight of the old data is exponentially
decreased. In practice, an exponential forgetting technique is easier to implement
than a sliding window because we need extra memory buffer to store the data
of the most current window for implementing the sliding window.

2.5 Building Several Classifiers Using Different Grids

As mentioned above, the neighborhood relation strongly depends on the quan-
tization process. For instance, consider the case that there is a training point u
which is close to the test point v but they are located in different blocks. Then
the information on u may not affect the classification of v.

To overcome the problem of initial quantization process, we build several
classifier ensembles starting with different quantization space. In general, to build
nd different classifiers, each time we shift 1

n of the unit length of feature space
for a set of selected dimensions. Fig. 5 shows a reference grid and its 3 different
shifted grids for a feature space with 4 × 4 blocks. For a given test point t,
we use these nd classifiers to get nd class labels and selected blocks Bi(t) of t
in each level i, starting from the finest one. We then choose the majority class
label. If there is tie, we calculate the distance between each selected block Bi(t)
with majority class label and t to find the closest one. Algorithm 4 shows this
classifying process using nd classifiers.

Fig. 5. An example of 4 different grids for building 4 classifiers

Algorithm 4. TestndClass(objects: t)

For each level i = log(g) + 1 downto 1
Get the label of t for each classifier
If there is a label <> U, choose the majority label

If there is a tie, label t by class of Bi(t) with closest center to t
Break

Return class label for t

The following theorem shows that the approximation error of finding nearest
neighbors decreases as the number of classifier ensembles increases.

Theorem 1. For d attributes, let x be the test point and Y be the set of training
points which are in blocks containing x of those nd classifiers. Then, for every
training point z /∈ Y , dist(x, y) < (1 + 1

n−1 )*dist(x, z) for every y ∈ Y .
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Proof. For simplicity, we consider the case when d = 1. This proof works for
any d. For d = 1, we build n classifiers, where each classifier i use the grid that
is shifted i

n unit length from the original grid. Let ε be the length of a block.
Consider a test point x, x belongs to an interval Ik for classifier k. Note that
[x − n−1

n ε, x + n−1
n ε] ⊂

⋃
Ik ⊂ [x − ε, x + ε]. Hence, the distance between x and

its nearest neighbor that we found must be less than ε. Meanwhile, the points
that we do not consider should be at least n−1

n ε far away from x. If z /∈ Y ,
dist(x,y)
dist(x,z) < ε

(n−1)ε/n = (1 + 1
n−1 ) for every y ∈ Y .

The above theorem shows that the classification result using one classifier
does not have any guarantee about the quality of the nearest neighbors that it
found because the ratio of approximation error will tend to infinity. When n is
large enough, the set of training points selected by those classifier ensembles are
exactly the set of training points with distance ε from the test point. To achieve
an approximation error bound guarantee, theoretically we need an exponential
number of classifiers. However, in practice, we only use two classifiers to get a
good result. Indeed, experiments in §3 show that few classifiers can obtain a
significant improvement at the beginning. After this stage, the performance will
become steady even though we keep increasing the number of classifiers.

2.6 Properties of ANNCAD

As ANNCAD is a combination of multi-resolution and adaptive nearest neigh-
bors techniques, it inherits both their properties and their advantages.

– Compact support: The locality property allows a fast update. As a new tuple
arrival only affects the class of the block containing it in each level, the
incremental update process only costs a constant time (number of levels).

– Insensitivity to noise: We may set a threshold value for classifying decisions
to remove noise.

– Multi-resolution: This algorithm makes it easy to build multi-resolution clas-
sifiers. Users can specify the number of levels to efficiently control the fineness
of the classifier. Moreover, one may optimize the system resource constraints
and easy to adjust on the fly when the system runs out of memory.

– Low complexity: Let g, N and d be the number of blocks of each dimension,
training points and attributes respectively. The time spent on building a
classifier is O(min(N, gd)) with constant factor log(g). For the time spent on
classifying a test point, the worst case complexity is O(log2(g) + 2d) where
the first part is for classifying a test point using classifiers and the second
part is for finding its nearest neighbor which is optional. Also, the time spent
for updating classifiers when a new tuple arrives is log2(g) + 1. Comparing
with the time spent in VFDT, our method is more attractive.

3 Performance Evaluation

In this section, we first study the effects on parameters for ANNCAD by using
two synthetic data sets. We then compare ANNCAD with VFDT and CVFDT
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on three real-life data sets. To illustrate the approximation power of ANNCAD,
we include the results of Exact ANN, which computes ANN exactly, as controls.
Exact ANN: For each test point t, we search the area within 0.5 block side length
distance. If the area is nonempty, we classify t as the majority label of all these
points in this area. Otherwise, we expand the searching area by doubling the
radius until we get a class for t. Note that the time and space complexities of
Exact ANN are very expensive making it impractical to use.

3.1 Synthetic Data Sets

The aim of this experiment is to study the effect on the initial resolution for
ANNCAD. In this synthetic data set, we consider a 3-D unit cube. We randomly
pick 3k training points and assign those points which are inside a sphere with
center (0.5, 0.5, 0.5) and radius 0.5 to be class 0, and class 1 otherwise. This
data set is effective to test the performance of a classifier as it has a curve-like
decision boundary. We then randomly draw 1k test points and run ANNCAD
starting with different initial resolution and 100% threshold value. In Fig. 6(a),
the result shows that a finer initial resolution gets a better result. This can be
explained by the fact that we can capture a curve-like decision boundary if we
start with a finer resolution. On the other hand, as discussed in last section, the
time spent for building a classifier increases linearly for different resolutions. In
general, we should choose a resolution according to system resource constraints.

The aim of this experiment is to study the effect on number of classifier
ensembles for ANNCAD. As in the previous experiment, we randomly pick 1k
training examples and assign them labels. We then randomly draw 1k test points
and test them based on the voting result of these classifiers. We set 16× 16× 16
blocks for the finest level and 100% threshold value. In Fig. 6(b), the result
shows that having more classifiers will get a better result in the beginning. The
performance improvement becomes steady even though we keep increasing the
number of classifiers. It is because there is no further information given when
we increase the number of classifiers. In this experiment, we only use 2 or 3
classifiers to obtain a competitive result with the Exact ANN (90.4%).
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Fig. 6. Effect on initial resolutions and number of classifiers
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3.2 Real Life Data Sets

The aim of this set of experiments is to compare the performance of AN-
NCAD with that of VFDT and CFVDT on stationary and time-changing real-
life data sets respectively. We first used a letter recognition data set from the
UCI machine learning repository web site [2]. The objective is to identify a
black-and-white pixel displays as one of the 26 English alphabet. In this data
set, each entity is a pixel display for an English alphabet and has 16 numeri-
cal attributes to describe its pixel displays. The detail description of this data
set is provided in [2]. In this experiment, we use 15k tuples for training set
with 5% noise added and 5k for test set. We obtain noisy data by randomly
assigning a class label for 5% training examples. For ANNCAD, we set g for
the initial grid to be 16 units and build two classifiers. Moreover, since VFDT
needs a very large training set to get a fair result, we rescan the data sets
up to 500 times for VFDT. So the data set becomes 7,500,000 tuples. In Fig.
7(a), the performance of ANNCAD dominates that of VFDT. Moreover, AN-
NCAD only needs one scan to achieve this result, which shows that ANNCAD
even works well for a small training set.

The second real life data set we used is the Forest Cover Type data set which
is another data set from [2]. The objective is to predict forest cover type (7 types).
For each observation, there are 54 variables. Neural network (backpropagation)
was employed to classify this data set and got 70% accuracy, which is the highest
one recorded in [2]. In our experiment, we used all the 10 quantitative variables.
There are 12k examples for training set and 90k examples for testing set. For
ANNCAD, we scaled each attribute to the range [0, 1). We set g for the initial
grid to be 32 units and build two classifiers. As the above experiment, we rescan
the training set up to 120 times for VFDT, until its performance becomes steady.
In Fig. 7(b), the performance of ANNCAD dominates that of VFDT. These two
experiments show that ANNCAD works well in different kinds of data sets.

We further tested ANNCAD in the case when there are concept drifts in
data set. The data we used was extracted from the census bureau database [2].
Each observation represents a record of an adult and has 14 attributes includ-
ing age, race etc. The prediction task is to determine whether a person makes
over 50K a year. Concept drift is simulated by grouping records with same
race (Amer-Indian-Eskimo(AIE), Asian-Pac-Islander(API), Black(B), Other(O),
White(W)). The distribution of training tuples of each race is shown in Fig. 7(c).
Since the models for different races of people should be different, concept drifts
are introduced when n = 311, 1350, 4474, 4746. In this experiment, we used the 6
continuous attributes. We used 7800 examples for learning and tested the classi-
fiers for every 300 examples. For ANNCAD, we build two classifiers and set λ to
be 0.98 and g for the initial grid to be 64 units. We scaled the attribute values as
mentioned in the previous experiment. The results are shown in Fig. 7(c). The
curves show that ANNCAD keeps improving in each region. Also, as mentioned
in §2.6, computations required for ANNCAD are much lower than CVFDT.

Moreover, notice that ANNCAD works almost as well as Exact ANN on these
three data sets, which demonstrates its excellent approximation ability.
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Fig. 7. Three real-life data sets:(a) Letter Recognition (b) Forest Covertype (c) Census

4 Conclusion and Future Work

In this paper, we proposed an incremental classification algorithm ANNCAD
using a multi-resolution data representation to find adaptive nearest neighbors
of a test point. ANNCAD is very suitable for mining data streams as its update
speed is very fast. Also, the accuracy compares favorably with existing algorithms
for mining data streams. ANNCAD adapts to concept drift effectively by the
exponential forgetting approach. However, the very detection of sudden concept
drift is of interest in many applications. The ANNCAD framework can also be
extended to detect concept drift–e.g. changes in class label of blocks is a good
indicator of possible concept drift. This represents a topic for our future research.

Acknowledgement. This research was supported in part by NSF Grant No.
0326214.
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Abstract. In this paper we propose Support Vector Random Fields
(SVRFs), an extension of Support Vector Machines (SVMs) that ex-
plicitly models spatial correlations in multi-dimensional data. SVRFs
are derived as Conditional Random Fields that take advantage of the
generalization properties of SVMs. We also propose improvements to
computing posterior probability distributions from SVMs, and present
a local-consistency potential measure that encourages spatial continu-
ity. SVRFs can be efficiently trained, converge quickly during inference,
and can be trivially augmented with kernel functions. SVRFs are more
robust to class imbalance than Discriminative Random Fields (DRFs),
and are more accurate near edges. Our results on synthetic data and a
real-world tumor detection task show the superiority of SVRFs over both
SVMs and DRFs.

1 Introduction

The task of classification has traditionally focused on data that is “independent
and identically distributed” (iid), in particular assuming that the class labels for
different data points are conditionally independent (ie. knowing that one patient
has cancer does not mean another one will). However, real-world classification
problems often deal with data points whose labels are correlated, and thus the
data violates the iid assumption. There is extensive literature focusing on the
1-dimensional ‘sequential’ case (see [1]), where correlations in the labels of data
points in a linear sequence exist, such as in strings, sequences, and language.
This paper focuses on the more general ‘spatial’ case, where these correlations
exist in data with two-dimensional (or higher-dimensional) structure, such as in
images, volumes, graphs, and video.

Classifiers that make the iid assumption often produce undesirable results
when applied to data with spatial dependencies in the labels. For example, in
the task of image labeling, a classifier could classify a pixel as ‘face’, even if all
adjacent pixels were classified as ‘non-face’. This problem motivates the use of
Markov Random Fields (MRFs) and more recently Conditional Random Fields
(CRFs) for spatial data. These classification techniques augment the perfor-
mance of an iid classification technique (often a Mixture Model for MRFs, and
Logistic Regression for CRFs) by taking into account spatial class dependencies.

A. Jorge et al. (Eds.): PKDD 2005, LNAI 3721, pp. 121–132, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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Support Vector Machines (SVMs) are classifiers that have appealing theoret-
ical properties [2], and have shown impressive empirical results in a wide variety
of tasks. However, this technique makes the critical iid assumption. This paper
proposed an extension to SVMs that considers spatial correlations among data
instances (as in Random Field models), while still taking advantage of the pow-
erful discriminative properties of SVMs. We refer to this technique as Support
Vector Random Fields (SVRFs)

The remaining sections of this paper are organized as follows. Section 2 for-
malizes the task and reviews related methods for modeling dependencies in the
labels of spatial data. Section 3 reviews Support Vector Machines, and presents
our Support Vector Random Field extension. Experimental results on synthetic
and real data sets are given in Sect. 4, while a summary of our contribution is
presented in Sect. 5.

2 Related Work

The challenge of performing classification while modeling class dependencies is
often divided into two perspectives: Generative and Discriminative models [1].
Generative classifiers learn a model of the joint probability, p(x, y) = p(x|y)p(y),
of the features x and corresponding labels y. Predictions are made using Bayes
rule to compute p(y|x), and finding an assignment of labels maximizing this
probability. In contrast, discriminative classifiers model the posterior p(y|x) di-
rectly without generating any prior distributions over the classes. Thus, dis-
criminative models solely focus on maximizing the conditional probability of the
labels, given the features. For many applications, discriminative classifiers of-
ten achieve higher accuracy than generative classifiers [1]. There has been much
related work on using random field theory to model class dependencies in gener-
ative and more recently discriminative contexts [3,4]. Hence, we will first review
Markov Random Fields (typically formulated as a generative classifier), followed
by Conditional Random Fields (a state-of-the-art discriminative classifier built
upon the foundations of Markov Random Fields).

2.1 Problem Formulation

In this work, we will focus on the task of classifying elements (pixels or regions) of
a two-dimensional image, although the methods discussed also apply to higher-
dimensional data. An image is represented with an M by N matrix of elements.
For an instance X = (x11, x12, . . . , x1N , . . . , xM1, xM2, . . . , xMN ), we seek to
infer the most likely joint class labels:

Y ∗ = (y∗
11, y

∗
12, . . . , y

∗
1N , . . . , y∗

M1, y
∗
M2, . . . , y

∗
MN )

If we assume that the labels assigned to elements are independent, the fol-
lowing joint probability can be formulated: P (Y ) =

∏M
i=1
∏N

j=1 P (yij). However,
conditional independency does not hold for image data, since spatially adjacent
elements are likely to receive the same labels. We therefore need to explicitly
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consider this local dependency. This involves addressing three important issues:
How should the optimal solution be defined, how are spatial dependencies con-
sidered, and how should we search the (exponential size) configuration space.

2.2 Markov Random Fields (MRFs)

Markov Random Fields (MRFs) provide a mathematical formulation for model-
ing local dependencies, and are defined as follows [3]:

Definition 1. A set of random variables Y is called a Markov Random Field
on S with respect to a neighborhood N, if and only if the following two conditions
are satisfied, where S − {i} denotes the set difference, yS−{i} denotes random
variables in S−{i}, and Ni denotes the neighboring random variables of random
variable i:

1. P (Y ) > 0
2. P (yi|yS−{i}) = P (yi|yNi)

Condition 2 (Markovianity) states that the conditional distribution of an
element yi is dependent only on its neighbors. Markov Random Fields have
traditionally sought to maximize the joint probability P (Y ∗) (a generative ap-
proach). In this formulation, the posterior over the labels given the observations
is formulated using Bayes’ rule as:

P (Y |X) ∝ P (X |Y )P (Y ) = P (Y )
n∏
i

P (xi|yi) (1)

In (1), the equivalence between MRFs and Gibbs Distributions [5] provides an
efficient way to factor the prior P (Y ) over cliques defined in the neighborhood
Graph G. The prior P (Y ) is written as

P (Y ) =
exp(

∑
c∈C Vc(Y ))∑

Y ′∈Ω exp(
∑

c∈C Vc(Y ′))
(2)

where Vc(Y ) is a clique potential function of labels for clique c ∈ C, C is a set of
cliques in G, and Ω is the space of all possible labelings. From (1) and (2), the
target configuration Y ∗ is a realization of a locally dependent Markov Random
Field with a specified prior distribution. Based on (1) and (2) and using Z to
denote the (normalizing) “partition function”, if we assume Gaussian likelihoods
then the posterior distribution can be factored as:

P (Y |X) =
1
Z

exp
[∑

i∈S

log(P (xi|yi)) +
∑
c∈C

Vc(Yc)
]

(3)

The Gaussian assumption for P (X |Y ) in (1) allows straightforward Maximum
Likelihood parameter estimation. Although there have been many approximation
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algorithms designed to find the optimal Y ∗, we will focus on a local method called
Iterated Conditional Modes [5], written as:

y∗
i = argmax

yi∈L
P (yi|yNixi) (4)

Assuming Gaussians for the likelihood and a pairwise neighborhood system for
the prior over labels, (4) can be restated as:

y∗
i = argmax

yi∈L

1
Zi

exp
[
log(P (xi|yi)) +

∑
j∈Ni

βyiyj

]
(5)

where β is a constant and L is a set of class labels.
This concept has proved to be applicable in a wide variety of domains where

there exists correlations among neighboring instances. However, the generative
nature of the model and the assumption that the likelihood is Gaussian can be
too restrictive to capture complex dependencies between neighboring elements or
between observations and labels. In addition, the prior over labels is completely
independent from the observations, thus the interactions between neighbors are
not proportional to their similarity.

2.3 Conditional Random Fields (CRFs)

CRFs avoid the Gaussian assumption by using a model that seeks to maxi-
mize the conditional probability of the labels given the observations P (Y ∗|X)
(a discriminative model), and are defined as follows [1]:

Definition 2. Let G = (S, E) be a graph such that Y is indexed by the vertices
S of G. Then (X, Y ) is said to be a CRF if, when conditioned on Y , the random
variables yi obey the Markov property with respect to the graph: P (yi|X, ys\i) =
P (yi|X, yNi).

This model alleviates the need to model the observations P (X), allowing the
use of arbitrary attributes of the observations without explicitly modeling them.
CRFs assume a 1-dimensional chain-structure where only adjacent elements are
neighbors. This allows the factorization of the joint probability over labels. Dis-
criminative Random Fields (DRFs) extend 1-dimensional CRFs to 2-dimensional
structures [6]. The conditional probability of the labels Y in the Discriminative
Random Field framework is defined as:

P (Y |X) =
1
Z

exp
(∑

i∈S

Ai(yi, X) +
∑
i∈S

∑
j∈Ni

Iij(yi, yj,X)
)

(6)

Ai is the ‘Association’ potential that models dependencies between the obser-
vations and the class labels, while Ii is the ‘Interaction’ potential that models
dependencies between the labels of neighboring elements (and the observations).
Note that this is a much more powerful model than the assumed Gaussian As-
sociation potential and the indicator function used for the Interaction potential
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(that doesn’t consider the observations) in MRFs. Parameter learning in DRFs
involves maximizing the log likelihood of (6), while inference uses ICM [6].

DRFs are a powerful method for modeling dependencies in spatial data.
However, several problems associated with this method include the fact that it
is hard to find a good initial labeling and stopping criteria during inference, and
it is sensitive to issues of class imbalance. Furthermore, for some real-world tasks
the use of logistic regression as a discriminative method in DRFs often does not
produce results that are as accurate as powerful classification models such as
Support Vector Machines (that make the iid assumption).

3 Support Vector Random Fields (SVRFs)

This section presents Support Vector Random Fields (SVRFs), our extension of
SVMs that allows the modelling of non-trivial two-dimensional (or higher) spatial
dependencies using a CRF framework. This model has two major components:
The observation-matching potential function and the local-consistency potential
function. The observation-matching function captures relationships between the
observations and the class labels, while the local-consistency function models re-
lationships between the labels of neighboring data points and the observations at
data points. Since the selection of the observation-matching potential is critical
to the performance of the model, the Support Vector Random Field model em-
ploys SVMs for this potential, providing a theoretical and empirical advantage
over the logistic model used in DRFs and the Gaussian model used in MRFs,
that produce unsatisfactory results for many tasks. SVRFs can be formulated
as follows:

P (Y |X) =
1
Z

exp
{∑

i∈S

log(O(yi, Υi(X))) +
∑
i∈S

∑
j∈Ni

V (yi, yj , X)
}

(7)

In this formulation, Υi(X) is a function that computes features from the observa-
tions X for location i, O(yi, Υi(X)) is the observation-potential, and V (yi, yj, X)
is the local-consistency potential. The pair-wise neighborhood system is defined
as a local dependency structure. In this work, interactions between pixels with
a Euclidean distance of 1 were considered (ie. the radius 1 von Neumann neigh-
borhood). We will now examine these potentials in more detail.

3.1 Observation-Matching

The observation-matching potential seeks to find a posterior probability distri-
bution that maps from the observations to corresponding class labels. DRFs
employ a Generalized Linear Models (GLM) for this potential. However, GLMs
often do not estimate appropriate parameters. This is especially true in image
data where feature sets may have a high number of dimensions and/or several
features have a high degree of correlation. This can cause problems in parameter
estimation and approximations to resolve these issues may not produce optimal
parameters [7].
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Fortunately, the CRF framework allows a flexible choice of the observation-
matching potential function. We overcome the disadvantages of the GLM by
employing a Support Vector Machine classifier, seeking to find the margin maxi-
mizing hyperplane between the classes. This classifier has appealing properties in
high-dimensional spaces and is less sensitive to class imbalance. Furthermore, due
to the properties of error bounds, SVMs tends to outperform GLMs, especially
when the classes overlap in the feature space (often the case with image data).
Parameter estimation for SVMs involves optimizing the following Quadratic Pro-
gramming problem for the training data xi (where C is a constant that bounds
the misclassification error):

max
∑N

i=1 αi − 1
2

∑N
i

∑N
j αiαjyiyjx

T
i xj

subject to 0 ≤ αi ≤ C and
∑N

i=1 αiyi = 0 (8)

Consequently, the decision function, given the parameters αi for the l training
instances and bias term b, is (for a more thorough discussion of SVMs, we refer
to [2]): f(x) =

∑l
i=1(αiyix · xi) + b

Unfortunately, the decision function f(x) produced by SVMs measures dis-
tances to the decision boundary, while we require a posterior probability func-
tion. We adopted the approach of [8] to convert the decision function to a pos-
terior probability function. This approach is efficient and minimizes the risk of
overfitting during the conversion, but has some ambiguities and potential difficul-
ties in numerical computation. We have addressed these issues in our approach,
which will be briefly outlined here.

We estimate a posterior probability from the Support Vector Machine deci-
sion function using the sigmoid function:

O(yi = 1, Υi(X)) =
1

1 + exp(Af(Υi(X)) + B)
(9)

The parameters A and B are estimated from training data represented as
pairs (f(Υi(X)), ti), where f(·) is the Support Vector Machine decision function,
and ti denotes a relaxed probability that yi = 1 as in (9). We could set ti = 1, if
the class label at i is 1(ie. yi = 1). However, this ignores the possibility that Υi(X)
has the opposite class label (ie. -1). Thus, we employed the relaxed probability:
ti = N++1

N++2 , if yi = 1, and ti = 1
N−+2 , if yi = −1 (N+ and N− being the

number of positive and negative class instances). By producing the new forms of
training instances, we can solve the following optimization problem to estimate
parameters:

min−
l∑

i=1

[
ti log p(Υi(X)) + (1 − ti) log(1 − p(Υi(X)))

]
(10)

where
p(Υi(X)) =

1
1 + exp(Af(Υi(X)) + B)
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[8] adopted a Levenberg-Marquardt approach to solve the optimization prob-
lem, finding an approximation of the Hessian matrix. However, this may cause
incorrect computations of the Hessian matrix (especially for unconstrained op-
timizations [7]). Hence, we employed Newton’s method with backtracking line
search to solve the optimization. In addition, in order to avoid overflows and
underflows of exp and log functions, we reformulate Eq.10 as follows:

−
(
ti log p(Υi(X)) + (1 − ti) log(1 − p(Υi(X)))

)
= ti(Af(Υi(X)) + B) + log(1 + exp(−Af(Υi(X)) − B)) (11)

3.2 Local-Consistency

In MRFs, local-consistency considers correlations between neighboring data
points, and is considered to be observation independent. CRFs provide more
powerful modelling of local-consistency by removing the assumption of observa-
tion independence. In order to use the principles of CRFs for local-consistency,
an approach is needed that penalizes discontinuity between pairwise sites. For
this, we use a linear function of pairwise continuity:

V (yi, yj, X) = yiyjν
T Φij(X) (12)

Φij(X) is a function that computes features for sites i and j based on observa-
tions X. As opposed to DRFs, which penalize discontinuity by considering the
absolute difference between pairwise observations [6], our approach introduces
a new mapping function Φ(·) that encourages continuity in addition to penaliz-
ing discontinuity (using max(Υ (X)) to denote the vector of max values for each
feature):

Φij(X) =
max(Υ (X))− | Υi(X) − Υj(X) |

max(Υ (X))
(13)

3.3 Learning and Inference

The proposedmodel needs to estimate the parameters of the observation-matching
function and the local-consistency function. Although we estimate these parame-
ters sequentially, our model outperforms the simultaneous learning approach of
DRFs and significantly increases its computational efficiency.

The parameters of the Support Vector Machine decision function are first es-
timated by solving the Quadratic Programming problem in (8) (using SVMlight
[9]). We then convert the decision function to a posterior function using (10) and
the new training instances. Finally, we adopted pseudolikelihood [3] to estimate
the local consistency parameters ν, due to its simplicity and fast computation.
For training on l pixels from K images, pseudolikehood is formulated as:

ν̂ = arg max
ν

K∏
k=1

l∏
i=1

P (yk
i |yk

Ni
, Xk, ν) (14)
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As in [6], to ensure that the log-likelihood is convex we assume that ν is Gaussian
and compute the local-consistency parameters using its log likelihood l(ν̂):

l(ν̂) = arg max
ν

K∑
k=1

l∑
i=1

{
On

i +
∑
j∈Ni

V (yk
i , yk

j , Xk) − log(zk
i )
}
− 1

2τ
νT ν (15)

In this model, zk
i is a partition function for each site i in image k, and τ is a

regularizing constant. Equation (15) is solved by gradient descent, and note that
the observation matching function acts as a constant during this process. Due
to the employment of SVMs, the time complexity of learning is O(S2), where S
is the number of pixels to be trained, although in practice it is much faster.

The inference problem is to infer an optimal labeling Y ∗ given a new instance
X and the estimated model parameters. We herein adopted the Iterated Condi-
tional Modes (ICM) approach described in Section 2.2 [5], that maximizes the
local conditional probability iteratively. For our proposed model and [6], ICM is
expressed as,

y∗
i = arg max

yi∈L
P (yi|yNi, X) (16)

Although ICM is based on iterative principles, it often converges quickly to a
high quality configuration, and each iteration has time complexity O(S).

4 Experiments

We have evaluated our proposed model on synthetic and real-world binary image
labeling tasks, comparing our approach to Logistic Regression, SVMs, and DRFs
for these problems. Since class imbalance was present in many of the data sets,
we used the Jaccard measure to quantify performance: f = TP

TP+FP+FN , where
TP is the number of true positives, FP denotes the number of false positives,
and FN tallies false negatives.

4.1 Experiments on Synthetic ata

We evaluated the four techniques over 5 synthetic binary image sets. These bi-
nary images were corrupted by zero mean Gaussian noise with unit standard
deviation, and the task was to label the foreground objects (see the first and
second columns in Fig. 1). Two of the sets contained balanced class labels (Car
and Objects), while the other three contained imbalanced classes. The five 150
image sets were divided into 100 images for training and 50 for testing. Example
results and aggregate scores are shown in Fig. 1. Note that the last 4 columns
illustrate the outcomes from each technique– SVMs, Logistic Regression (LR),
SVRFs, and DRFs.

Logistic Regression and subsequently DRFs performed poorly in all three
imbalanced data sets (Toybox, Size, and M ). In these cases, SVMs outper-
formed these methods and consequently our proposed SVRFs outperformed

D
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Fig. 1. Average scores on synthetic data sets

SVMs. In the first balanced data set (Car), DRFs and SVRFs both signifi-
cantly outperformed SVMs and Logistic Regression (the iid classifiers). How-
ever, DRFs performed poorly on the second balanced data set (Objects). This is
due to DRFs simultaneous parameter learning, that tends to overestimate the
local-consistency potential. Since the observation-matching is underweighted,
edges become degraded during inference (there are more edge areas in the Ob-
jects data). Terminating inference before convergence could reduce this, but
this is not highly desirable for automatic classification. Overall, our Support
Vector Random Field model demonstrated the best performance on all data
sets, in particular those with imbalanced data and a greater proportion of
edge areas.
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(a) T1 (b) T2 (c) T1-Contrast

Fig. 2. A multi-spectral MRI
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Fig. 3. An example of the classification result

4.2 Experiments on Real Data

We applied our model to the real-world problem of tumor segmentation in medical
imaging. We focused on the task of brain tumor segmentation in MRI, an impor-
tant task in surgical planning and radiation therapy currently being laboriously
done by human medical experts. There has been significant research focusing on
automating this challenging task (see [10]). Markov Random Fields have been ex-
plored previously for this task (see [10]), but recently SVMs have shown impres-
sive performance [11,12]. This represents a scenario where our proposed Support
Vector Random Field model could have a major impact. We evaluated the four
classifiers from the previous section over 7 brain tumor patients. For each patient,
three MRI ‘modalities’ were available: T1 (visualizing fat locations), T2 (visual-
izing water locations), and an additional T1 image with a ‘contrast agent’ added
to enhance the visualization of metabolically active tumor areas (refer to Fig. 2).
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Fig. 4. Averaged accuracy and convergence in inference

The data was preprocessed with the Statistical Parametric Mapping software [13]
to non-linearly align the images with a template in a standard coordinate system,
and remove intensity inhomogeneity field effects. This non-linear template align-
ment approach was quantified to be highly effective in [14], and the inhomogene-
ity correction step computes a smooth corrective field that seeks to minimize the
residual entropy after transformation of the log-intensity value’s probability distri-
bution [15]. We used 12 features that incorporate image information and domain
knowledge (the raw intensities, spatial expected intensities within the coordinate
system, spatial priors for the brain area and normal tissue types within the coor-
dinate system, the template image information, and left-to-right symmetry), each
measured as features at 3 scales by using 3 different sizes of Gaussian kernel filters.
We used a ‘patient-specific’ training scenario similar to [11,12].

Results for two of the patients are shown in Fig. 3, while average scores
over the 7 patients are shown in Fig. 4(a). Note that ‘SVM+prob’ in Fig. 3
denotes the classification results from the Support Vector Machine posterior
probability estimate. The Logistic Regression model performs poorly at this
task, but DRFs perform significantly better. As with the synthetic data in cases
of class imbalance, SVMs outperform both Logistic Regression and the DRFs.
Finally, SVRFs improve the scores obtained by the SVMs by almost 5% (a
significant improvement).

We compared convergence of the DRFs and SVRFs by measuring how many la-
bel changes occuredbetween inference iterations averaged over 21 trials (Fig. 4(a)).
These results show that DRFs on average require almost 3 times as many iterations
to converge, due to the overestimation of the local-consistency potential.

5 Conclusion

We have proposed a novel model for classification of data with spatial dependen-
cies. The Support Vector Random Field combines ideas from SVMs and CRFs,
and outperforms SVMs and DRFs on both synthetic data sets and an important
real-world application. We also proposed an improvement to computing posterior
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probability distributions from SVM decision functions, and a method to encour-
age continuity with local-consistency potentials. Our Support Vector Random
Field model is robust to class imbalance, can be efficiently trained, converges
quickly during inference, and can trivially be augmented with kernel functions
to further improve results.
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Abstract. How can we generate realistic graphs? In addition, how can
we do so with a mathematically tractable model that makes it feasible
to analyze their properties rigorously? Real graphs obey a long list of
surprising properties: Heavy tails for the in- and out-degree distribution;
heavy tails for the eigenvalues and eigenvectors; small diameters; and
the recently discovered “Densification Power Law” (DPL). All published
graph generators either fail to match several of the above properties, are
very complicated to analyze mathematically, or both. Here we propose
a graph generator that is mathematically tractable and matches this
collection of properties. The main idea is to use a non-standard matrix
operation, the Kronecker product, to generate graphs that we refer to as
“Kronecker graphs”.

We show that Kronecker graphs naturally obey all the above proper-
ties; in fact, we can rigorously prove that they do so. We also provide
empirical evidence showing that they can mimic very well several real
graphs.

1 Introduction

What do real graphs look like? How do they evolve over time? How can we
generate synthetic, but realistic, time-evolving graphs? Graph mining has been
attracting much interest recently, with an emphasis on finding patterns and
abnormalities in social networks, computer networks, e-mail interactions, gene
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regulatory networks, and many more. Most of the work focuses on static snap-
shots of graphs, where fascinating “laws” have been discovered, including small
diameters and heavy-tailed degree distributions.

A realistic graph generator is important for at least two reasons. The first is
that it can generate graphs for extrapolations, “what-if” scenarios, and simula-
tions, when real graphs are difficult or impossible to collect. For example, how
well will a given protocol run on the Internet five years from now? Accurate
graph generators can produce more realistic models for the future Internet, on
which simulations can be run. The second reason is more subtle: it forces us to
think about the patterns that a graph generator should obey, to be realistic.

The main contributions of this paper are the following:

• We provide a generator which obeys all the main static patterns that have
appeared in the literature.

• Generator also obeys the recently discovered temporal evolution patterns.
• Contrary to other generators that match this combination of properties, our

generator leads to tractable analysis and rigorous proofs.

Our generator is based on a non-standard matrix operation, the Kronecker
product. There are several theorems on Kronecker products, which actually cor-
respond exactly to a significant portion of what we want to prove: heavy-tailed
distributions for in-degree, out-degree, eigenvalues, and eigenvectors. We also
demonstrate how a Kronecker Graph can match the behavior of several real
graphs (patent citations, paper citations, and others). While Kronecker prod-
ucts have been studied by the algebraic combinatorics community (see e.g. [10]),
the present work is the first to employ this operation in the design of network
models to match real datasets.

The rest of the paper is organized as follows: Section 2 surveys the related
literature. Section 3 gives the proposed method. We present the experimental
results in Section 4, and we close with some discussion and conclusions.

2 Related Work

First, we will discuss the commonly found (static) patterns in graphs, then some
recent patterns on temporal evolution, and finally, the state of the art in graph
generation methods.

Static Graph Patterns: While many patterns have been discovered, two of
the principal ones are heavy-tailed degree distributions and small diameters.

Degree distribution: The degree-distribution of a graph is a power law if the
number of nodes ck with degree k is given by ck ∝ k−γ (γ > 0) where γ is
called the power-law exponent. Power laws have been found in the Internet [13],
the Web [15,7], citation graphs [24], online social networks [9] and many others.
Deviations from the power-law pattern have been noticed [23], which can be
explained by the “DGX” distribution [5]. DGX is closely related to a truncated
lognormal distribution.
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Small diameter: Most real-world graphs exhibit relatively small diameter (the
“small- world” phenomenon): A graph has diameter d if every pair of nodes can
be connected by a path of length at most d. The diameter d is susceptible to
outliers. Thus, a more robust measure of the pairwise distances between nodes
of a graph is the effective diameter [26]. This is defined as the minimum number
of hops in which some fraction (or quantile q, say q = 90%) of all connected
pairs of nodes can reach each other. The effective diameter has been found to be
small for large real-world graphs, like Internet, Web, and social networks [2,21].

Scree plot: This is a plot of the eigenvalues (or singular values) of the ad-
jacency matrix of the graph, versus their rank, using a log-log scale. The scree
plot is also often found to approximately obey a power law. The distribution of
eigenvector components (indicators of “network value”) has also been found to
be skewed [9].

Apart from these, several other patterns have been found, including the
“stress” [14,9], “resilience” [2,22], “clustering coefficient” and many more.

Temporal evolution Laws: Densification and shrinking diameter: Two
very recent discoveries, both regarding time-evolving graphs, are worth mention-
ing [18]: (a) the “effective diameter” of graphs tends to shrink or stabilize as the
graph grows with time, and (b) the number of edges E(t) and nodes N(t) seems
to obey the densification power law (DPL), which states that

E(t) ∝ N(t)a (1)

The densification exponent a is typically greater than 1, implying that the aver-
age degree of a node in the graph is increasing over time. This means that real
graphs tend to sprout many more edges than nodes, and thus are densifying as
they grow.

Graph Generators: The earliest probabilistic generative model for graphs was
a random graph model, where each pair of nodes has an identical, independent
probability of being joined by an edge [11]. The study of this model has led to
a rich mathematical theory; however, this generator produces graphs that fail
to match real-world networks in a number of respects (for example, it does not
produce heavy-tailed degree distributions).

The vast majority of recent models involve some form of preferential attach-
ment [ ,2,28,15,16]: new nodes join the graph at each time step, and preferen-
tially connect to existing nodes with high degree (the “rich get richer”). This
simple behavior leads to power-law tails and to low diameters. The diameter
in this model grows slowly with the number of nodes N , which violates the
“shrinking diameter” property mentioned above.

Another family of graph-generation methods strives for small diameter, like
the small-world generator [27] and the Waxman generator [6]. A third family of
methods show that heavy tails emerge if nodes try to optimize their connectivity
under resource constraints [8,12].

Summary: Most current generators focus on only one (static) pattern, and
neglect the others. In addition, it is usually hard to prove properties of them.
The generator we describe in the next section addresses these issues.

1
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3 Proposed Method

The method we propose is based on a recursive construction. Defining the recur-
sion properly is somewhat subtle, as a number of standard, related graph con-
struction methods fail to produce graphs that densify according to the patterns
observed in practice, and they also produce graphs whose diameters increase.
To produce densifying graphs with constant diameter, and thereby match the
qualitative behavior of real network datasets, we develop a procedure that is
best described in terms of the Kronecker product of matrices. To help in the
description of the method, the accompanying table provides a list of symbols
and their definitions.

Symbol Definition
G1 the initiator of a Kronecker Graph
N1 number of nodes in initiator
E1 number of edges in initiator
G

[k]
1 = Gk the kth Kronecker power of G1

a densification exponent
d diameter of a graph
P1 probability matrix

3.1 Main Idea

The main idea is to create self-similar graphs, recursively. We begin with an
initiator graph G1, with N1 nodes and E1 edges, and by recursion we produce
successively larger graphs G2 . . . Gn such that the kth graph Gk is on Nk = Nk

1
nodes. If we want these graphs to exhibit a version of the Densification Power
Law, then Gk should have Ek = Ek

1 edges. This is a property that requires some
care in order to get right, as standard recursive constructions (for example, the
traditional Cartesian product or the construction of [4]) do not satisfy it.

It turns out that the Kronecker product of two matrices is the perfect tool
for this goal. The Kronecker product is defined as follows:

Definition 1 (Kronecker product of matrices). Given two matrices
A = [ai,j ] and B of sizes n×m and n′ ×m′ respectively, the Kronecker product
matrix C of dimensions (n ∗ n′) × (m ∗ m′) is given by

C = A⊗ B .=

⎛⎜⎜⎜⎝
a1,1B a1,2B . . . a1,mB
a2,1B a2,2B . . . a2,mB

...
...

. . .
...

an,1B an,2B . . . an,mB

⎞⎟⎟⎟⎠ (2)

We define the Kronecker product of two graphs as the Kronecker product of
their adjacency matrices.
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Fig. 1. Example of Kronecker multiplication: Top: a “3-chain” and its Kronecker prod-
uct with itself; each of the Xi nodes gets expanded into 3 nodes, which are then linked
using Observation 1. Bottom row: the corresponding adjacency matrices, along with
matrix for the fourth Kronecker power G4.

Observation 1 (Edges in Kronecker-multiplied graphs)

Edge (Xij , Xkl) ∈ G ⊗ H iff (Xi, Xk) ∈ G and (Xj , Xl) ∈ H

where Xij and Xkl are nodes in G ⊗ H, and Xi, Xj, Xk and Xl are the corre-
sponding nodes in G and H, as in Figure 1.

The last observation is subtle, but crucial, and deserves elaboration: Fig-
ure 1(a–c) shows the recursive construction of G ⊗ H , when G = H is a 3-node
path. Consider node X1,2 in Figure 1(c): It belongs to the H graph that replaced
node X1 (see Figure 1(b)), and in fact is the X2 node (i.e., the center) within
this small H-graph.

We propose to produce a growing sequence of graphs by iterating the Kro-
necker product:

Definition 2 (Kronecker power). The kth power of G1 is defined as the ma-
trix G

[k]
1 (abbreviated to Gk), such that:

G
[k]
1 = Gk = G1 ⊗ G1 ⊗ . . . G1︸ ︷︷ ︸

k times

= Gk−1 ⊗ G1

The self-similar nature of the Kronecker graph product is clear: To produce
Gk from Gk−1, we “expand” (replace) each node of Gk−1 by converting it into
a copy of G, and we join these copies together according to the adjacencies in
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Gk−1 (see Figure 1). This process is very natural: one can imagine it as positing
that communities with the graph grow recursively, with nodes in the community
recursively getting expanded into miniature copies of the community. Nodes in
the subcommunity then link among themselves and also to nodes from different
communities.

3.2 Theorems and Proofs

We shall now discuss the properties of Kronecker graphs, specifically, their de-
gree distributions, diameters, eigenvalues, eigenvectors, and time-evolution. Our
ability to prove analytical results about all of these properties is a major advan-
tage of Kronecker graphs over other generators. The next few theorems prove
that several distributions of interest are multinomial for our Kronecker graph
model. This is important, because a careful choice of the initial graph G1 can
make the resulting multinomial distribution to behave like a power-law or DGX
distribution.

Theorem 1 (Multinomial degree distribution). Kronecker graphs have
multinomial degree distributions, for both in- and out-degrees.

Proof. Let the initiator G1 have the degree sequence d1, d2, . . . , dN1 . Kronecker
multiplication of a node with degree d expands it into N1 nodes, with the cor-
responding degrees being d× d1, d× d2, . . . , d× dN1 . After Kronecker powering,
the degree of each node in graph Gk is of the form di1 × di2 × . . . dik

, with
i1, i2, . . . ik ∈ (1 . . .N1), and there is one node for each ordered combination.
This gives us the multinomial distribution on the degrees of Gk. Note also that
the degrees of nodes in Gk can be expressed as the kth Kronecker power of the
vector (d1, d2, . . . , dN1). ��

Theorem 2 (Multinomial eigenvalue distribution). The Kronecker graph
Gk has a multinomial distribution for its eigenvalues.

Proof. Let G1 have the eigenvalues λ1, λ2, . . . , λN1 . By properties of the Kro-
necker multiplication [19,17], the eigenvalues of Gk are kth Kronecker power of
the vector (λ1, λ2, . . . , λN1). As in Theorem 1, the eigenvalue distribution is a
multinomial. ��

A similar argument using properties of Kronecker matrix multiplication
shows the following.

Theorem 3 (Multinomial eigenvector distribution). The components of
each eigenvector of the Kronecker graph Gk follow a multinomial distribution.

We have just covered several of the static graph patterns. Notice that the
proofs were direct consequences of the Kronecker multiplication properties.

Next we continue with the temporal patterns: the densification power law,
and shrinking/stabilizing diameter.
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Theorem 4 (DPL). Kronecker graphs follow the Densification Power Law
(DPL) with densification exponent a = log(E1)/ log(N1).

Proof. Since the kth Kronecker power Gk has Nk = Nk
1 nodes and Ek = Ek

1
edges, it satisfies Ek = Na

k , where a = log(E1)/ log(N1). The crucial point is
that this exponent a is independent of k, and hence the sequence of Kronecker
powers follows an exact version of the Densification Power Law. ��

We now show how the Kronecker product also preserves the property of
constant diameter, a crucial ingredient for matching the diameter properties of
many real-world network datasets. In order to establish this, we will assume that
the initiator graph G1 has a self-loop on every node; otherwise, its Kronecker
powers may in fact be disconnected.

Lemma 1. If G and H each have diameter at most d, and each has a self-loop
on every node, then the Kronecker product G⊗H also has diameter at most d.

Proof. Each node in G ⊗ H can be represented as an ordered pair (v, w), with
v a node of G and w a node of H , and with an edge joining (v, w) and (x, y)
precisely when (v, x) is an edge of G and (w, y) is an edge of H . Now, for an
arbitrary pair of nodes (v, w) and (v′, w′), we must show that there is a path
of length at most d connecting them. Since G has diameter at most d, there
is a path v = v1, v2, . . . , vr = v′, where r ≤ d. If r < d, we can convert this
into a path v = v1, v2, . . . , vd = v′ of length exactly d, by simply repeating v′

at the end for d − r times By an analogous argument, we have a path w =
w1, w2, . . . , wd = w′. Now by the definition of the Kronecker product, there is
an edge joining (vi, wi) and (vi+1, wi+1) for all 1 ≤ i ≤ d − 1, and so (v, w) =
(v1, w1), (v2, w2), . . . , (vd, wd) = (v′, w′) is a path of length d connecting (v, w)
to (v′, w′), as required. ��

Theorem 5. If G1 has diameter d and a self-loop on every node, then for every
k, the graph Gk also has diameter d.

Proof. This follows directly from the previous lemma, combined with induction
on k. ��

We also consider the effective diameter de; we define the q-effective diameter
as the minimum de such that, for at least a q fraction of the reachable node
pairs, the path length is at most de. The q-effective diameter is a more robust
quantity than the diameter, the latter being prone to the effects of degenerate
structures in the graph (e.g. very long chains); however, the q-effective diameter
and diameter tend to exhibit qualitatively similar behavior. For reporting results
in subsequent sections, we will generally consider the q-effective diameter with
q = .9, and refer to this simply as the effective diameter.

Theorem 6 (Effective Diameter). If G1 has diameter d and a self-loop on
every node, then for every q, the q-effective diameter of Gk converges to d (from
below) as k increases.
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Proof. To prove this, it is sufficient to show that for two randomly selected nodes
of Gk, the probability that their distance is d converges to 1 as k goes to infinity.

We establish this as follows. Each node in Gk can be represented as an or-
dered sequence of k nodes from G1, and we can view the random selection of a
node in Gk as a sequence of k independent random node selections from G1. Sup-
pose that v = (v1, . . . , vk) and w = (w1, . . . , wk) are two such randomly selected
nodes from Gk. Now, if x and y are two nodes in G1 at distance d (such a pair
(x, y) exists since G1 has diameter d), then with probability 1 − (1 − 2/N1)k,
there is some index j for which {vj , wj} = {x, y}. If there is such an index,
then the distance between v and w is d. As the expression 1− (1 − 2/N1)k con-
verges to 1 as k increases, it follows that the q-effective diameter is converging
to d. ��

3.3 Stochastic Kronecker Graphs

While the Kronecker power construction discussed thus far yields graphs with
a range of desired properties, its discrete nature produces “staircase effects” in
the degrees and spectral quantities, simply because individual values have large
multiplicities. Here we propose a stochastic version of Kronecker graphs that
eliminates this effect. counterparts.

We start with an N1 × N1 probability matrix P1: the value pij denotes the
probability that edge (i, j) is present. We compute its kth Kronecker power
P [k]

1 = Pk; and then for each entry puv of Pk, we include an edge between nodes
u and v with probability pu,v. The resulting binary random matrix R = R(Pk)
will be called the instance matrix (or realization matrix).

In principle one could try choosing each of the N2
1 parameters for the matrix

P1 separately. However, we reduce the number of parameters to just two: α
and β. Let G1 be the initiator matrix (binary, deterministic); we create the
corresponding probability matrix P1 by replacing each “1” and “0” of G1 with α
and β respectively (β ≤ α). The resulting probability matrices maintain — with
some random noise — the self-similar structure of the Kronecker graphs in the
previous subsection (which, for clarity, we call deterministic Kronecker graphs).

We find empirically that the random graphs produced by this model continue
to exhibit the desired properties of real datasets, and without the staircase ef-
fect of the deterministic version. The task of setting α and β to match observed
data is a very promising research direction, outside the scope of this paper. In
our experiments in the upcoming sections, we use heuristics which we describe
there.

4 Experiments

Now, we demonstrate the ability of Kronecker graphs to match the patterns of
real-world graphs. The datasets we use are:

• arXiv: This is a citation graph for high-energy physics research papers,
with a total of N = 29, 555 papers and E = 352, 807 citations. We follow its
evolution from January 1993 to April 2003, with one data-point per month.
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• Patents: This is a U.S. patent citation dataset that spans 37 years from
January 1963 to December 1999. The graph contains a total of N = 3, 942, 825
patents and E = 16, 518, 948 citations. Citation graphs are normally considered
as directed graphs. For the purpose of this work we think of them as undirected.

• Autonomous systems: We also analyze a static dataset consisting of a sin-
gle snapshot of connectivity among Internet autonomous systems from January
2000, with N = 6, 474 and E = 26, 467.

We observe two kinds of graph patterns — “static” and “temporal.” As
mentioned earlier, common static patterns include the degree distribution, the
scree plot (eigenvalues of graph adjacency matrix vs. rank), principal eigenvector
of adjacency matrix and the distribution of connected components. Temporal
patterns include the diameter over time, the size of the giant component over
time, and the densification power law. For the diameter computation, we use
a smoothed version of the effective diameter that is qualitatively similar to the
standard effective diameter, but uses linear interpolation so as to take on non-
integer values; see [18] for further details on this calculation.

Results are shown in Figures 2 and 3 for the graphs which evolve over time
(arXiv and Patents). For brevity, we show the plots for only two static and
two temporal patterns. We see that the deterministic Kronecker model already
captures the qualitative structure of the degree and eigenvalue distributions, as
well as the temporal patterns represented by the Densification Power Law and
the stabilizing diameter. However, the deterministic nature of this model results
in “staircase” behavior, as shown in scree plot for the deterministic Kronecker
graph of Figure 2 (second row, second column). We see that the Stochastic Kro-
necker Graphs smooth out these distributions, further matching the qualitative
structure of the real data; they also match the shrinking-before-stabilization
trend of the diameters of real graphs.

For the Stochastic Kronecker Graphs we need to estimate the parameters α
and β defined in the previous section. This leads to interesting questions whose
full resolution lies beyond the scope of the present paper; currently, we searched
by brute force over (the relatively small number of) possible initiator graphs of
up to five nodes, and we then chose α and β so as to match well the edge density,
the maximum degree, the spectral properties, and the DPL exponent.

Finally, Figure 4 shows plots for the static patterns in the Autonomous sys-
tems graph. Recall that we analyze a single, static snapshot in this case. In
addition to the degree distribution and scree plot, we also show two typical
plots [9]: the distribution of network values (principal eigenvector components,
sorted, versus rank) and the hop-plot (the number of reachable pairs P (h) within
h hops or less, as a function of the number of hops h).

5 Observations and Conclusions

Here we list several of the desirable properties of the proposed Kronecker Graphs
and Stochastic Kronecker Graphs.
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Fig. 2. arXiv dataset: Patterns from the real graph (top row), the deterministic Kro-
necker graph with G1 being a star graph with 3 satellites (middle row), and the Stochas-
tic Kronecker graph (α = 0.41, β = 0.11 – bottom row). Static patterns: (a) is the PDF
of degrees in the graph (log-log scale), and (b) the distribution of eigenvalues (log–log
scale). Temporal patterns: (c) gives the effective diameter over time (linear-linear scale),
and (d) is the number of edges versus number of nodes over time (log-log scale). Notice
that the Stochastic Kronecker Graph qualitatively matches all the patterns very well.
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Fig. 3. Patents: Again, Kronecker graphs match all of these patterns. We show only
the Stochastic Kronecker graph for brevity.
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Fig. 4. Autonomous systems: Real (top) versus Kronecker (bottom). Columns (a) and
(b) show the degree distribution and the scree plot, as before. Columns (c) and (d)
show two more static patterns (see text). Notice that, again, the Stochastic Kronecker
Graph matches well the properties of the real graph.

Generality: Stochastic Kronecker Graphs include several other generators, as
special cases: For α=β, we obtain an Erdős-Rényi random graph; for α=1 and
β=0, we obtain a deterministic Kronecker graph; setting the G1 matrix to a 2x2
matrix, we obtain the RMAT generator [9]. In contrast to Kronecker graphs, the
RMAT cannot extrapolate into the future, since it needs to know the number of
edges to insert. Thus, it is incapable of obeying the “densification law”.

Phase transition phenomena: The Erdős-Rényi graphs exhibit phase tran-
sitions [11]. Several researchers argue that real systems are “at the edge of
chaos” [3,25]. It turns out that Stochastic Kronecker Graphs also exhibit phase
transitions. For small values of α and β, Stochastic Kronecker Graphs have many
small disconnected components; for large values they have a giant component
with small diameter. In between, they exhibit behavior suggestive of a phase
transition: For a carefully chosen set of (α, β), the diameter is large, and a giant
component just starts emerging. We omit the details, for lack of space.

Theory of random graphs: All our theorems are for the deterministic Kro-
necker Graphs. However, there is a lot of work on the properties of random
matrices (see e.g. [20]), which one could potentially apply in order to prove
properties of the Stochastic Kronecker Graphs.

In conclusion, the main contribution of this work is a family of graph gen-
erators, using a non-traditional matrix operation, the Kronecker product. The
resulting graphs (a) have all the static properties (heavy-tailed degree distribu-
tion, small diameter), (b) all the temporal properties (densification, shrinking
diameter), and in addition, (c) we can formally prove all of these properties.

Several of the proofs are extremely simple, thanks to the rich theory of Kro-
necker multiplication. We also provide proofs about the diameter and “effective
diameter”, and we show that Stochastic Kronecker Graphs can be tuned to
mimic real graphs well.
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Abstract. For an undirected graph G without self-loop, we prove: (i)
that the number of closed patterns in the adjacency matrix of G is even;
(ii) that the number of the closed patterns is precisely double the num-
ber of maximal complete bipartite subgraphs of G; (iii) that for every
maximal complete bipartite subgraph, there always exists a unique pair
of closed patterns that matches the two vertex sets of the subgraph.
Therefore, we can enumerate all maximal complete bipartite subgraphs
by using efficient algorithms for mining closed patterns which have been
extensively studied in the data mining field.

1 Introduction

Interest in graphs and their applications has grown to a very broad spectrum in
the past decades (see [18] and the Preface of [8]), largely due to the usefulness of
graphs as models in many areas such as mathematical research, electrical engi-
neering, computer programming, business administration, sociology, economics,
marketing, biology, and networking and communications. In particular, many
problems can be modeled with maximal complete bipartite subgraphs (see the
definition below) formed by grouping two non-overlapping subsets of vertices of
a certain graph that show a kind of full connectivity between them.

We consider two examples. Suppose there are p customers in a mobile com-
munication network. Some people have a wide range of contact, while others have
few. Which groups of customers (with a maximal number) have a full interac-
tion with another group of customers? This situation can be modeled by a graph
where a mobile phone customer is a node and a communication is an edge. Thus,
a maximal bipartite subgraph of this graph corresponds to two groups of cus-
tomers between whom there exist a full communication. This problem is similar
to the one studied in web mining [4,9,12] where web communities are modeled
by bipartite cores. Our second example is about proteins’ interaction in a cell.
There are usually thousands of proteins in a cell that interact with one another.
This situation again can be modeled by a graph, where a protein is a node and
an interaction between a pair of proteins forms an edge. Then, listing all maxi-
mal complete bipartite subgraphs from this graph can answer questions such as
which two protein groups have a full interaction, which is a problem studied in
biology [14,15].

A. Jorge et al. (Eds.): PKDD 2005, LNAI 3721, pp. 146–156, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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Listing all maximal complete bipartite subgraphs has been studied theoret-
ically in [5]. The result is that all maximal complete bipartite subgraphs of a
graph can be enumerated in time O(a322an), where a is the arboricity of the
graph and n is the number of vertices in the graph. Even though the algorithm
has a linear complexity, it is not practical for large graphs due to the large
constant overhead (a can easily be around 10-20 in practice) [20]. In this pa-
per, we study this problem from a data mining perspective: We use a heuristics
data mining algorithm to efficiently enumerate all maximal complete bipartite
subgraphs from a large graph. A main concept of the data mining algorithm
is called closed patterns. There are many recent algorithms and implementa-
tions devoted to the mining of closed patterns from the so-called transactional
databases [2,6,7,13,16,17,19]. The data structures are efficient and the mining
speed is tremendously fast. Our main contribution here is the observation that
the mining of closed patterns from the adjacency matrix of a graph, termed a
special transactional database, is equivalent to the problem of enumerating all
maximal complete bipartite subgraphs of this graph.

The rest of this paper is organized as follows: Sections 2 and 3 provide basic
definitions and propositions on graphs and closed patterns. In Section 4 we
prove that there is a one-to-one correspondence between closed pattern pairs
and maximal complete bipartite subgraphs for any simple graph. In Section 5,
we present our experimental results on a proteins’ interaction graph. Section 6
discusses some other related work and then concludes this paper.

2 Maximal Complete Bipartite Subgraphs

A graph G = 〈V G, EG〉 is comprised of a set of vertices V G and a set of edges
EG ⊆ V G × V G. We often omit the superscripts in V G, EG and other places
when the context is clear. Throughout this paper, we assume G is an undirected
graph without any self-loops. In other words, we assume that (i) there is no edge
(u, u) ∈ EG and (ii) for every (u, v) ∈ EG, (u, v) can be replaced by (v, u)—that
is, (u, v) is an unordered pair.

A graph H is a subgraph of a graph G if V H ⊆ V G and EH ⊆ EG. A
graph G is bipartite if V G can be partitioned into two non-empty and non-
intersecting subsets V1 and V2 such that EG ⊆ V1 × V2.This bipartite graph G
is usually denoted by G = 〈V1 ∪ V2, E

G〉. Note that there is no edge in G that
joins two vertices within V1 or V2. G is complete bipartite if V1 × V2 = EG.

Two vertices u, v of a graph G are said to be adjacent if (u, v) ∈ EG—that is,
there is an edge in G that connects them. The neighborhood βG(v) of a vertex
v of a graph G is the set of all vertices in G that are adjacent to v—that is,
βG(v) = {u | (u, v) or (v, u) ∈ EG}. The neighborhood βG(X) for a non-empty
subset X of vertices of a graph G is the set of common neighborhood of the
vertices in X—that is, βG(X) = ∩x∈XβG(x).

Note that for any subset X of vertices of a graph G such that X and βG(X)
are both non-empty, it is the case that H = 〈X ∪ βG(X), X × βG(X)〉 is a com-
plete bipartite subgraph of G. Note also it is possible for a vertex v "∈ X of G to
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be adjacent to every vertex of βG(X). In this case, the subset X can be expanded
by adding the vertex v, while maintaining the same neighborhood. Where to stop
the expansion? We use the following definition of maximal complete bipartite
subgraphs.

Definition 1. A graph H = 〈V1 ∪ V2, E〉 is a maximal complete bipartite
subgraph of G if H is a complete bipartite subgraph of G such that βG(V1) = V2
and βG(V2) = V1.

Not all maximal complete bipartite subgraphs are equally interesting. Recall
our earlier motivating example involving customers in a mobile communication
network. We would probably not be very interested in those two groups of cus-
tomers with a small size containing a single person or just a few. In contrast,
we would probably be considerably more interested if one of the group is large,
or both of the groups are large. Hence, we introduce the notion of density on
maximal complete bipartite subgraphs.

Definition 2. A maximal complete bipartite subgraph H = 〈V1 ∪ V2, E〉 of a
graph G is said to be (m,n)-dense if |V1| or |V2| is at least m, and the other is
at least n.

A complete bipartite subgraph H = 〈V1 ∪ V2, E〉 of G such that βG(V1) =
V2 and βG(V2) = V1 is maximal in the sense that there is no other complete
bipartite subgraph H ′ = 〈V ′

1 ∪ V ′
2 , E′〉 of G with V1 ⊂ V ′

1 and V2 ⊂ V ′
2 such

that βG(V ′
1) = V ′

2 and βG(V ′
2) = V ′

1 . To appreciate this notion of maximality,
we prove the proposition below.

Proposition 1. Let H = 〈V1 ∪ V2, E〉 and H ′ = 〈V ′
1 ∪ V ′

2 , E′〉 be two maximal
complete bipartite subgraphs of G such that V1 ⊆ V ′

1 and V2 ⊆ V ′
2 . Then H = H ′.

Proof. Suppose H = 〈V1 ∪ V2, E〉 and H ′ = 〈V ′
1 ∪ V ′

2 , E′〉 are two maximal
complete bipartite subgraphs of G such that V1 ⊆ V ′

1 and V2 ⊆ V ′
2 . Since V1 ⊆ V ′

1
and V2 ⊆ V ′

2 , we have βG(V ′
1) ⊆ βG(V1) and βG(V ′

2) ⊆ βG(V2). Using the
definition of maximal complete bipartite subgraphs, we derive V ′

2 = βG(V ′
1) ⊆

βG(V1) = V2 and V ′
1 = βG(V ′

2) ⊆ βG(V2) = V1. Then E = V1 × V2 = V ′
1 × V ′

2 =
E′. Thus H = H ′ as desired.

3 Closed Patterns of an Adjacency Matrix

The adjacency matrix of a graph is important in this study. Let G be a graph
with V G = {v1, v2, . . . , vp}. The adjacency matrix A of G is the p× p matrix
defined by

A[i, j] =
{

1 if (vi, vj) ∈ EG

0 otherwise

Recall that our graphs do not have self-loop and are undirected. Thus A is a
symmetric matrix and every entry on the main diagonal is 0. Also, {vj | A[k, j] =
1, 1 ≤ j ≤ p} = βG(vk) = {vj | A[j, k] = 1, 1 ≤ j ≤ p}.
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The adjacency matrix of a graph can be interpreted into a transactional
database (DB) [1]. To define a DB, we first define a transaction. Let I be a set
of items. Then a transaction is defined as a subset of I. For example, assume
I to be all items in a supermarket, a transaction by a customer is the items
that the customer bought. A DB is a non-empty multi-set of transactions. Each
transaction T in a DB is assigned a unique identity id(T ). A pattern is defined
as a non-empty set1 of items of I. A pattern may be or may not be contained
in a transaction. Given a DB and a pattern P , the number of transactions in
DB containing P is called the support of P , denoted supDB(P ). We are often
interested in patterns that occur sufficiently frequent in a DB. Those patterns
are called frequent patterns—that is, patterns P satisfying supDB(P ) ≥ ms,
for a threshold ms > 0. In this paper, unless mentioned otherwise, we consider
all and only those patterns with a non-zero support, namely all those frequent
pattern with the support threshold ms = 1. So, by a pattern of a DB, we mean
that it is non-empty and it occurs in DB at least once.

Let G be a graph with V G = {v1, v2, . . . , vp}. If each vertex in V G is defined
as an item, then the neighborhood βG(vi) of vi is a transaction. Thus,

{βG(v1),βG(v2), . . . ,βG(vp)}

is a DB. Such a special DB is denoted by DBG. The identity of a transaction in
DBG is defined as the vertex itself—that is, id(βG(vi)) = vi. Note that DBG has
the same number of items and transactions. Note also that vi "∈ βG(vi) since we
assume G to be an undirected graph without self-loop.

DBG can be represented as a binary square matrix. This binary matrix B is
defined by

B[i, j] =
{

1 if vj ∈ βG(vi)
0 otherwise

Since vj ∈ βG(vi) iff (vi, vj) ∈ EG, it can be seen that A = B. So, “a pattern of
DBG” is equivalent to “a pattern of the adjacency matrix of G”.

Closed patterns are a type of interesting patterns in a DB. In the last few
years, the problem of efficiently mining closed patterns from a large DB has
attracted a lot of researchers in the data mining community [2,6,7,13,16,17,19].
Let I be a set of items, and D be a transactional database defined on I. For a
pattern P ⊆ I, let fD(P ) = {T ∈ D |P ⊆ T}—that is, fD(P ) are all trans-
actions in D containing the pattern P . For a set of transactions D′ ⊆ D, let
g(D′) =

⋂
T∈D′ T =

⋂
D′—that is, the set of items which are shared by all

transactions in D′. Using these two functions, we can define the notion of closed
patterns. For a pattern P , CLD(P ) = g(fD(P )) is called the closure of P . A
pattern P is said to be closed with respect to a transactional database D iff
CLD(P ) = P .

We define the occurrence set of a pattern P in DB as occDB(P ) = {id(T ) | T
∈ DB, P ⊆ T} = {id(T ) | T ∈ fDB(P )}. It is straightforward to see that

1 The ∅ is usually defined as a valid pattern in the data mining community. However,
in this paper, to be consistent to the definition of βG(X), it is excluded.
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id(T ) ∈ occDB(P ) iff T ∈ fDB(P ). There is a tight connection between the
notions of neighbourhood in a graph G and occurrence in the corresponding
transactional database DBG.

Proposition 2. Given a graph G and a pattern P of DBG. Then occDBG(P ) =
βG(P ).

Proof. If v ∈ occ(P ), then v is adjacent to every vertex in P . Therefore, v ∈ β(v′)
for each v′ ∈ P . That is, v ∈

⋂
v′∈P β(v′) = β(P ).

If u ∈ β(P ), then u is adjacent to every vertex in P . So, β(u) ⊇ P . Therefore,
β(u) is a transaction of DBG containing P . So, u ∈ occ(P ).

There is also a nice connection between the notions of neighborhood in a graph
and that of closure of patterns in the corresponding transactional database.

Proposition 3. Given a graph G and a pattern P of DBG. Then βG(βG(P )) =
CLDBG(P ). Thus βG ◦ βG is a closure operation on patterns of DBG.

Proof. By Proposition 2, β(β(P )) = β(occ(P )) =
⋂

id(T )∈occ(P ) T =⋂
T∈f(P ) T = g(f(P )) = CL(P ).

We discuss in the next section deeper relationships between the closed pat-
terns of DBG and the maximal complete bipartite subgraphs of G.

4 Results

The occurrence set of a closed pattern C in DBG plays a key role in the max-
imal complete bipartite subgraphs of G. We introduce below some of its key
properties.

Proposition 4. Let G be a graph. Let C1 and C2 be two closed patterns of DBG.
Then C1 = C2 iff occDBG(C1) = occDBG(C2).

Proof. The left-to-right direction is trivial. To prove the right-to-left direction,
let us suppose that occ(C1) = occ(C2). It is straightforward to see that id(T ) ∈
occ(P ) iff T ∈ f(P ). Then we get f(C1) = f(C2) from occ(C1) = occ(C2).
Since C1 and C2 are closed patterns of DBG, it follows that C1 = g(f(C1)) =
g(f(C2)) = C2, and finishes the proof.

Proposition 5. Let G be a graph and C a closed pattern of DBG. Then C and
its occurrence set has empty intersection. That is, occDBG(C) ∩ C = {}.

Proof. Let v ∈ occ(C). Then v is adjacent to every vertex in C. Since we assume
G is a graph without self-loop, v "∈ C. Therefore, occDBG(C) ∩ C = {}.

In fact this proposition holds for any pattern P , not necessarily a closed
pattern C.
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Lemma 1. Let G be a graph. Let C be a closed pattern of DBG. Then
fDBG(occDBG(C)) = {βG(c) | c ∈ C}.
Proof. As C is a closed pattern, by definition, then {c | c ∈ C} are all and only
items contained in every transaction of DBG that contains C. This is equivalent
to that {c | c ∈ C} are all and only vertices of G that are adjacent to every
vertex in occ(C). This implies that {β(c) | c ∈ C} are all and only transactions
that contain occ(C). In other words, f(occ(C)) = {β(c) | c ∈ C}.

Proposition 6. Let G be a graph and C a closed pattern of DBG. Then occDBG

(C) is also a closed pattern of DBG.

Proof. By Lemma 1, f(occ(C)) = {β(c) | c ∈ C}. So CL(occ(C)) =
g(f(occ(C))) =

⋂
f(occ(C)) =

⋂
c∈C β(c) = β(C). By Proposition 2, β(C) =

occ(C). Thus occ(C) is a closed pattern.

The three propositions above give rise to a couple of interesting corollaries
below.

Corollary 1. Let G be a graph. Then the number of closed patterns in DBG is
even.

Proof. Suppose there are n closed patterns (that appear at least once) in DBG,
denoted as C1, C2, ..., Cn. As per Proposition 6, occ(C1), occ(C2), ..., occ(Cn)
are all closed patterns of DBG. As per Proposition 4, occ(Ci) is different from
occ(Cj) iff Ci is different from Cj. So every closed pattern can be paired with
a distinct closed pattern by occ(·) in a bijective manner. Furthermore, as per
Proposition 5, no closed pattern is paired with itself. This is possible only when
the number n is even.

Corollary 2. Let G be a graph. Then the number of closed patterns C, such
that both C and occDBG(C) appear at least ms times in DBG, is even.

Proof. As seen from the proof of Corollary 1, every closed pattern C of DBG can
be paired with occDBG(C), and the entire set of closed patterns can be partitioned
into such pairs. So a pair of closed patterns C and occDBG(C) either satisfy or
do not satisfy the condition that both C and occDBG(C) appear at least ms times
in DBG. Therefore, the number of closed patterns C, satisfying that both C and
occDBG(C) appear at least ms times in DBG, is even.

Note that this corollary does not imply the number of frequent closed patterns
that appear at least ms times in DBG is always even. A counter example is given
below.

Example 1. Consider a DBG given by the following matrix:

p1 p2 p3 p4 p5

β(p1) 0 1 1 0 0
β(p2) 1 0 1 1 1
β(p3) 1 1 0 1 1
β(p4) 0 1 1 0 0
β(p5) 0 1 1 0 0
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We list its closed patterns, their support, and their occ(·) counterpart patterns
below:

support of X close pattern X Y = occ(X) support of Y

3 {p2, p3} {p1, p4, p5} 2
4 {p2} {p1, p3, p4, p5} 1
4 {p3} {p1, p2, p4, p5} 1

Suppose we take ms = 3. Then there are only 3 closed patterns—an odd
number—that occur at least ms times, viz. {p2, p3}, {p2}, and {p3}.

Finally, we demonstrate our main result on the relationship with closed pat-
terns and maximal complete bipartite subgraphs. In particular, we discover that
every pair of a closed pattern C and its occurrence set occDBG(C) yields a distinct
maximal complete bipartite subgraph of G.

Theorem 1. Let G be an undirected graph without self-loop. Let C be a closed
pattern of DBG. Then the graph

H = 〈C ∪ occDBG(C), C × occDBG(C)〉

is a maximal complete bipartite subgraph of G.

Proof. By assumption, C is non-empty and C has a non-zero support in DBG.
Therefore, occ(C) is non-empty. By Proposition 5, C∩occDBG(C) = {}. Further-
more, ∀v ∈ occ(C), v is adjacent in G to every vertex of C. So, C×occ(C) ⊆ EG,
and every edge of H connects a vertex of C and a vertex of occ(C). Thus, H
is a complete bipartite subgraph of G. By Proposition 2, we have occDBG(C) =
βG(C). By Proposition 3, C = βG(βG(C)). By Proposition 2, we derive C =
βG(occDBG(C)). So H is maximal. This finishes the proof.

Theorem 2. Let G be an undirected graph without self-loop. Let graph H =
〈V1∪V2, E〉 be a maximal complete bipartite subgraph of G. Then, V1 and V2 are
both a closed pattern of DBG, occDBG(V1) = V2 and occDBG(V2) = V1.

Proof. Since H is a maximal complete bipartite subgraph of G, then β(V1) = V2
and β(V2) = V1. By Proposition 3, CL(V1) = β(β(V1)) = β(V2) = V1. So, V1 is
a closed pattern. Similarly, we can get V2 is a closed pattern. By Proposition 2,
occ(V1) = β(V1) = V2 and occ(V2) = β(V2) = V1, as required.

The above two theorems say that maximal complete bipartite subgraphs
of G are all in the form of H = 〈V1 ∪ V2, E〉, where V1 and V2 are both a
closed pattern of DBG. Also, for every closed pattern C of DBG, the graph H =
〈C ∪ occDBG(C), C × occDBG(C)〉 is a maximal complete bipartite subgraph of
G. So, there is a one-to-one correspondence between maximal complete bipartite
subgraphs and closed pattern pairs.

We can also derive a corollary linking support threshold of DBG to the density
of maximal complete bipartite subgraphs of G.
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Corollary 3. Let G be an undirected graph without self-loop. Then

H = 〈C ∪ occDBG(C), C × occDBG(C)〉

is a (m,n)-dense maximal complete bipartite subgraph of G iff C is a closed
pattern such that C occurs at least m times in DBG and occDBG(C) occur at
least n times in DBG.

The corollary above has the following important implication.

Theorem 3. Let G be an undirected graph without self-loop. Then

H = 〈C ∪ occDBG(C), C × occDBG(C)〉

is a (m,n)-dense maximal complete bipartite subgraph of G iff C is a closed
pattern such that C occurs at least m times in DBG and |C| ≥ n.

Proof. Suppose H = 〈C∪occDBG(C), C×occDBG(C)〉 is a (m,n)-dense maximal
complete bipartite subgraph of G. By Theorem 2, C = occ(occ(C)). By definition
of occ(·), sup(occ(C)) = |occ(occ(C))| = |C|. Substitute this into Corollary 3,
we get H is a (m,n)-dense maximal complete bipartite subgraph of G iff C is
a closed pattern such that C occurs at least m times in DBG and |C| ≥ n as
desired.

Theorems 1 and 2 show that algorithms for mining closed patterns can be
used to extract maximal complete bipartite subgraphs of undirected graphs with-
out self-loop. Such data mining algorithms are usually significantly more efficient
at higher support threshold ms. Thus Theorem 3 suggests an important opti-
mization for mining (m,n)-dense maximal complete bipartite subgraphs. To wit,
assuming m > n, it suffices to mine closed patterns at support threshold ms = m,
and then get the answer by filtering out those patterns of length less than n.

5 Experimental Results

We use an example to demonstrate the speed of listing all maximal complete
bipartite subgraphs by using an algorithm for mining closed patterns. The graph
is a protein interaction network with proteins as vertices and interactions as
edges. As there are many physical protein interaction networks corresponding
to different species, here we take the simplest and most comprehensive yeast
physical and genetic interaction network [3] as an example. This graph consists of
4904 vertices and 17440 edges (after removing 185 self loops and 1413 redundant
edges from the original 19038 interactions). Therefore, the adjacency matrix is
a transactional database with 4904 items and 4904 transactions. On average,
the number of items in a transaction is 3.56. That is, the average size of the
neighborhood of a protein is 3.56.

We use FPclose* [7], a state-of-the-art algorithm for mining closed patterns,
for enumerating the maximal complete bipartite subgraphs. Our machine is a PC
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with a CPU clock rate 3.2GHz and 2GB of memory. The results are reported in
Table 1, where the second column shows the total number of frequent close pat-
terns whose support level is at least the threshold number in the column one. The
third column of this table shows the number of close patterns whose cardinality
and support are both at least the support threshold; all such closed patterns
are termed qualified closed patterns. Only these qualified closed patterns can be
used to form maximal complete bipartite subgraphs H = 〈V1 ∪ V2, E〉 such that
both of |V1| and |V2| meet the thresholds. From the table, we can see:

– The number of all closed patterns (corresponding to those with the support
threshold of 1) is even. Moreover, the number of qualified close patterns
with cardinality no less than any support level is also even, as expected from
Corollary 2.

– The algorithm runs fast—The algorithm program can complete within 4
seconds for all situations reported here. This indicates that enumerating all
maximal complete bipartite subgraphs from a large graph can be practically
solved by using algorithms for mining closed patterns.

– A so-called “many-few” property [11] of protein interactions is observed again
in our experiment results. The “many-few” property says that: a protein that
interacts with a large number of proteins tends not to interact with another
protein which also interacts with a large number of proteins [11]. In other
words, highly connected proteins are separated by low-connected proteins.
This is most clearly seen in Table 1 at the higher support thresholds. For
example, at the support threshold 11, there are 12402 protein groups that
have full interactions with at least 11 proteins. But there are only two groups,
as seen in the third column of the table, that each contain at least 11 proteins
and that have full mutual interaction.

Table 1. Close patterns in a yeast protein interaction network

support threshold# of frequent close patterns# of qualified close patternstime in sec.
1 121314 121314 3.859
2 117895 114554 2.734
3 105854 95920 2.187
4 94781 80306 1.765
5 81708 60038 1.312
6 66429 36478 0.937
7 50506 15800 0.625
8 36223 3716 0.398
9 25147 406 0.281
10 17426 34 0.171
11 12402 2 0.109
12 9138 0 0.078
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6 Discussion and Conclusion

There are two recent research results related to our work. The problem of enu-
merating all maximal complete bipartite subgraphs (called maximal bipartite
cliques there) from a bipartite graph has been investigated by [10]. The differ-
ence is that our work is to enumerate all the subgraphs from any graphs (without
self loops and undirected), but Makino and Uno’s work is limited to enumerating
from only bipartite graphs. So, our method is more general. Zaki [20] observed
that a transactional database DB can be represented by a bipartite graph H,
and also a relation that closed patterns (wrongly stated as maximal patterns
in [20]) of DB one-to-one correspond to maximal complete bipartite subgraphs
(called maximal bipartite clique there) of H. However, our work is to convert a
graph G, including bipartite graphs, into a special transactional database DBG,
and then to discover all closed patterns from DBG for enumerating all maximal
complete bipartite subgraphs of G. Furthermore, the occurrence set of a closed
pattern in Zaki’s work may not be a closed pattern, but that of ours is always a
closed pattern.

Finally, let’s summarize the results achieved in this paper. We have studied
the problem of listing all maximal complete bipartite subgraphs from a graph.
We proved that this problem is equivalent to the mining of all closed patterns
from the adjacency matrix of this graph. Experimental results on a large protein
interactions’ data show that a data mining algorithm can run very fast to find all
interacted protein groups. The results will have great potential in applications
such as in web mining, in communication systems, and in biological fields.
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Improving Generalization by Data Categorization
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Abstract. In most of the learning algorithms, examples in the training
set are treated equally. Some examples, however, carry more reliable or
critical information about the target than the others, and some may carry
wrong information. According to their intrinsic margin, examples can be
grouped into three categories: typical, critical, and noisy. We propose
three methods, namely the selection cost, SVM confidence margin, and
AdaBoost data weight, to automatically group training examples into
these three categories. Experimental results on artificial datasets show
that, although the three methods have quite different nature, they give
similar and reasonable categorization. Results with real-world datasets
further demonstrate that treating the three data categories differently in
learning can improve generalization.

1 Introduction

Machine learning is an alternative approach to system design. Instead of the
conventional way of mathematically modeling the system, the role of learning
is to take a dataset of examples, such as input-output pairs from an unknown
target function, and synthesize a hypothesis that best approximates the target.
The dataset, acting as the information gateway between the target and the
hypothesis, is thus at the heart of the learning process.

Generally, every example in the dataset is treated equally and no example is
explicitly discarded. After all, each example carries its own piece of information
about the target. However, if some of the examples are corrupted with noise,
the information they provide would be misleading. In this case, it is better to
identify and remove them, which can be performed either explicitly by an out-
lier detection preprocessing step [1], or implicitly in the learning algorithm via
regularization [2].

Even in cases where all the examples are noiseless, there are situations in
which we want to deal with examples differently. For instance, in large datasets
which often contain redundant examples, a subset of informative examples that
carries most of the information is usually more desirable for computational rea-
sons [3]. In cases where none of the hypotheses can perfectly model the target,
it is better to discard examples that cannot be classified correctly by any hy-
pothesis as they may “confuse” the learning [4].

Most existing methods that treat examples differently tend to group exam-
ples into two categories based on different criteria: consistent vs. inconsistent
(outliers) [1], easy vs. hard [5], typical vs. informative [3], etc. In this paper,
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we introduce the concept of intrinsic margin as a criterion for grouping data
and motivate the need to have three categories instead of two. We present three
methods to automate the categorizing. We show that by treating examples in
these three categories differently, we can improve the generalization performance
of learning on real-world problems. In addition, the categorization can be used
to reduce the dataset size without affecting the learning performance.

The paper is organized as follows. The formal framework of learning is defined
in Sect. 2. Then in Sect. 3, we introduce the concept of data categorization and
present our methods for automatic categorization. Results on artificial and real-
world datasets are presented in Sects. 4 and 5. We finally conclude in Sect. 6.

2 Learning Systems

In learning problems, examples are in the form of input-output pair (x, y). We
assume that the input vectors x ∈ X are generated independently from an
unknown probability distribution PX , and the output labels y ∈ Y are computed
from y = f(x). Here the unknown function f : X → Y is called the target
function. In this paper, we shall only focus on binary classification problems,
in which Y = {−1, 1}. We further assume that f comes from thresholding an
intrinsic function fr : X → R, i.e., f(x) = sign(fr(x)), where the magnitude of
fr(x) corresponds to the reliability of the output f(x). For example, if the target
function f(x) indicates whether a credit card should be issued to a person x,
the intrinsic function fr(x) could be the aligned credit score of the person.

For a hypothesis g : X → Y and an example (x, y), a commonly used error
measure (loss function) is

e(g(x), y) = [g(x) �= y] ,

where the Boolean test [·] is 1 if the condition is true and 0 otherwise. Then, for
a target function f , we can define the out-of-sample error of g as

π(g) = Ex∼PX [e(g(x), f(x))] .

The goal of learning is thus to choose a hypothesis g that has a low out-of-sample
error π(g) from a set of candidate hypotheses, namely the learning model G.

However, π(g) cannot be directly computed because the distribution PX and
the target function f are both unknown. The only information we can access
is often limited in the training set D, which consists of N examples (xi, yi),
i = 1..N . Thus, instead of looking for a hypothesis g with low π(g) values, a
learning algorithm may try to find g that minimizes an estimator of π(g). A
commonly used estimator is the in-sample error ν(g) on the training set D,

ν(g) = ν(g,D) =
1
N

N∑
i=1

e (g(xi), yi) .

For a fixed hypothesis g, ν(g) is an unbiased estimator of π(g), and when the
size of D is large enough, statistical bounds guarantee that ν(g) and π(g) would
not differ by too much.

Li et al.
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Note that the learning algorithm searches the whole learning model G for a
suitable hypothesis rather than focusing on a fixed one. In this case, the proba-
bility that ν(g) and π(g) differs for some g ∈ G gets magnified by the complexity
of G. Thus, the hypothesis found might fit the training set well while still having
a high out-of-sample error [2]. This situation is called overfitting, which arises
when good in-sample predictions do not relate to good out-of-sample predictions.
The situation can become worse when the examples contain noise. Then, fitting
the training set well means fitting the wrong information, which leads to bad
out-of-sample predictions.

Learning algorithms often try to avoid overfitting through regularization [2].
Regularization usually enforces a trade-off between the complexity of G and
the necessity to predict the training examples correctly. If we can characterize
the usefulness of each training example, the learning algorithm can then be
guided to focus on predicting important examples correctly, leading to a more
meaningful regularization trade-off and thus a better generalization performance.
This motivates our work to categorize the training examples.

3 Data Categorization

The purpose of data categorization is to group examples according to their use-
fulness to learning so that it is possible to treat them differently. Guyon et al. [3]
grouped data into two categories, typical and informative. However, they found
that the category of informative examples contained both useful examples and
noisy ones. Thus, they needed human-based post-processing to eliminate the
noisy examples. Similar problems are encountered in other methods that use
two-group categorization. This shows that we need to have more than two cate-
gories. In this paper, we fit the need by having three categories: typical, critical
and noisy.

Although all examples carry information about the target, they are not equal
in the sense that some examples carry more useful information about the target
than others, and some examples may misguide the learning algorithm. For in-
stance, in classification problems, an example close to the class boundary gives
more critical information than an example deep in the class territory. In addi-
tion, real-world data often contain mislabeled examples, which compromise the
ability of the in-sample error to approximate the out-of-sample error and lead
to bad generalization.

One way to categorize examples based on the above intuition is through
the concept of intrinsic margin. For an example (x, y), its intrinsic margin is
yfr(x), where fr is the implicit intrinsic function defined in Sect. 2. Under some
reasonable smoothness assumption, the intrinsic margin can be treated as a
measure of how close the example is to the classification decision boundary. If
the intrinsic margin is small positive, the example lies near the decision boundary
and should be categorized as critical. If the margin is large positive, the example
is far from the boundary and should be categorized as typical. Examples with
negative intrinsic margin are mislabeled, and should be classified as noisy. Thus,
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we may use two thresholds, 0 and some small positive value, to partition the
intrinsic margin and categorize the data.

In practical situations, it is impossible to calculate the intrinsic margin unless
the intrinsic function is known. However, since we are only interested in thresh-
olding the intrinsic margin, any monotonic function of the intrinsic margin can
be used with appropriate thresholds. Next, we propose three different methods
to estimate such functions for automatically categorizing the data.

3.1 Selection Cost

Bad generalization arises when the in-sample error is a bad indicator of the out-
of-sample error. A particular example (x, y) may deteriorate the generalization
performance if its error is a bad indicator of the out-of-sample error. Based on
this intuition, Nicholson [4] suggested to use the correlation coefficient between
e(g(x), y) and π(g) under a prior distribution PG for g,

ρ(x, y) = corrcoefg [e(g(x), y), π(g)]

=
Eg [e(g(x), y)π(g)]− Eg [e(g(x), y)] Eg [π(g)]√

Varg [e(g(x), y)] Varg [π(g)]
,

to measure how well the individual error e(g(x), y) indicates π(g). A positive
correlation ρ indicates that if g has a low error on this example, it is likely to
have a low out-of-sample error, too. This is formalized in Theorem 1.

Theorem 1. If the learning model G is negation symmetric (i.e., PG [g] =
PG [−g] for any g ∈ G),

ρ(x, y) ∝ Eg [π(g) | g(x) �= y]− Eg [π(g) | g(x) = y] , (1)

where the proportional constant is positive and depends only on G.

Proof. For a given example (x, y) and PG , let pi = Pr [e(g(x), y) = i] and πi =
Eg [π(g) | e(g(x), y) = i] for i = 0, 1. We have p0 + p1 = 1, and

Eg [e(g(x), y)π(g)] = p1π1, Eg [π(g)] = p0π0 + p1π1,

Eg [e(g(x), y)] = p1, Varg [e(g(x), y)] = p0p1.

Hence with the definition of ρ(x, y),

ρ(x, y) =
p1π1 − p1 (p0π0 + p1π1)√
Varg [e(g(x), y)] Varg [π(g)]

= (π1 − π0)
√

p0p1

Varg [π(g)]
.

When G is negation symmetric, it is trivial that p0 = p1 = 1
2 for any (x, y). So

the proportional ratio is a constant. ��
The conditional expectation π1 (π0) is the expected out-of-sample error of hy-
potheses that predict (x, y) wrongly (correctly). In the learning process, we can
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select hypotheses that agree on (x, y) or those that do not. The difference be-
tween the two conditional expectations is thus the relative change in the average
out-of-sample error, and is called the selection cost. If there were only one ex-
ample to learn, a positive selection cost would imply that we should choose a
hypothesis that agrees with it. When a dataset is concerned, the selection cost
indicates, at least qualitatively, how desirable it is to classify the example cor-
rectly. Since the correlation ρ is just a scaled version of the selection cost, we
will use the name selection cost for both quantities in the following text.

In practice, the selection cost of an example (xi, yi) is inaccessible because
π(g) cannot be computed. However, we may estimate π(g) by the leave-one-out
error1 ν(i)(g) = ν (g,D\{(xi, yi)}). The selection cost can then be estimated, by
random sampling over the learning model, as the correlation coefficient between
e(g(xi), yi) and ν(i)(g). This works well even in the presence of noise [4].

Note that for Theorem 1 to be meaningful, the actual learning model has to
be used to estimate the selection cost. Under suitable choices of model complex-
ity, however, relaxing this requirement often does not affect the performance in
experiments. In this paper, we shall use neural networks as our underlying model
when computing the selection cost.

We categorize an example as typical if its selection cost is greater than a
threshold tc, noisy if the cost is less than a threshold tn, and critical if the cost
lies between the two thresholds. Since a negative selection cost implies that it is
better to misclassify the example, zero is an ideal threshold to separate noisy and
noiseless examples. We choose thresholds around zero, tc = 0.15 and tn = −0.1,
to accommodate estimation errors. Better categorization may be obtained by
further estimating the optimal thresholds; but for the illustration purpose of
this paper, we use ad hoc thresholding for all our methods.

3.2 SVM Confidence Margin

The support vector machine (SVM) [2] is a learning algorithm that finds a large-
confidence hyperplane classifier in the feature space. Such classifier is usually
obtained by solving the Lagrange dual problem:

min
α

1
2

N∑
i=1

N∑
j=1

αiαjyiyjK (xi,xj)−
N∑

i=1

αi

s.t.
∑N

i=1yiαi = 0, 0 ≤ αi ≤ C.

Here the kernel K (x,x′) is an inner product of the transformed x and x′ in the
feature space, and C is the regularization parameter. SVM predicts the label of
x as the sign of g̃(x) =

∑N
i=1 αiyiK (xi,x) + b. We call yig̃(xi) the confidence

margin of the example (xi, yi). This concept is related to the intrinsic margin,
but comes specifically from the view of a learning algorithm.

1 To avoid a positive bias in estimating ρ, which can be easily verified from a formula
similar to (1), we do not use the in-sample error ν.
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The Lagrange multiplier αi and the confidence margin yig̃(xi) are also closely
related:

– When αi = 0, we have yig̃(xi) ≥ 1. The example is typical because the
confidence margin is large.

– When αi > 0, we have yig̃(xi) ≤ 1. The example is a support vector and is
informative for evaluating g̃(x).

Guyon et al. [3] used the relative magnitude of αi as a criterion for automated
identification and elimination of noisy examples with C = ∞. Somehow they
found that the criterion failed to distinguish critical examples from noisy ones
cleanly, and hence they proposed human-based post-processing to manually elim-
inate the noisy ones. The situation becomes even more confusing when C is finite,
simply because we cannot tell whether examples with αi = C are critical or noisy
without other means.

In this paper, we propose to use the confidence margin yig̃(xi) as the criterion
for categorization, which works well with a suitable choice of finite C. The ideal
thresholds, according to the relationship between the confidence margin and αi,
would be tn = 0 and tc = 1. For robustness, we use slightly different ad hoc
values tn = 0.05 and tc = 0.95. We apply the popular Gaussian kernel with
grid-based parameter search [6], and train an SVM with the best parameter to
compute the confidence margin.

3.3 AdaBoost Data Weight

AdaBoost [7] is an algorithm to improve the accuracy of any base learner by it-
eratively generating a linear ensemble of base hypotheses. During its iterations,
some examples are more likely to be misclassified than others, and are thus
“hard” to learn [5]. AdaBoost maintains a set of weights for the training exam-
ples and gradually focuses on hard examples by giving them higher weights. At
iteration t, the ensemble g̃t(x) =

∑t
s=1 αshs(x) is constructed, where hs is a base

hypothesis and αs is the coefficient for hs. The data weight w
(t)
i , proportional to

e−yig̃t(xi), is thus tightly related to the ensemble confidence margin yig̃t(xi), and
shows how hard it is to get an example correct at iteration t [7]. For instance,
noisy examples tend to get misclassified a lot by base hypotheses and would have
very large weights for most of the iterations; Typical examples, on the contrary,
are almost always classified correctly and would have small weights. Thus, the
average weight over different iterations can be used for data categorization.

Note that examples with smaller average weights are usually more reliable.
For consistency with the other two methods, we actually use the negative of
the average weight to approximate the intrinsic margin. For a set of size N , the
initial weight is 1/N . Thus, we use tc = −1.05/N and tn = −2.1/N to categorize
examples with average weights slightly above the initial weight as critical, and
examples with even higher average weights as noisy. We observe that these ad hoc
thresholds work well under a common AdaBoost setting: 1000 iterations with
the decision stump as the base learner.

Li et al.
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Merler et al. [5] used the concept of misclassification ratio, the fraction of
times an example is misclassified when it is not in the training set, to detect
hard examples. Since they used resampling instead of reweighting in AdaBoost,
in each iteration, the training set is sampled based on the data weight, and the
misclassification ratio of an example is computed only when the example is not
picked for training. This method however has a drawback that hard examples
tend to have large weights and so are almost always picked in the training set.
Thus the misclassification ratio is computed from a very small number of cases
and is not very reliable, especially for critical and noisy examples.

We compared the misclassification ratio and the average data weight, and
found that the average data weight is a better indicator of the intrinsic margin,
as seen from Fig. 2.

4 Experiments with Artificial Data

We first test our methods for data categorization on three artificial targets (de-
tails in Appendix A), for which the intrinsic function is known. For each target,
a dataset of size 400 is randomly generated, and the outputs of 40 examples
(the last 10% indices) are further flipped as injected outliers. The ability of
each method to capture the intrinsic margin is examined in two steps, the two-
category experiments and the three-category experiments.

4.1 Two-Category Experiments

As mentioned previously, we try to construct a measure which is monotonic in
the intrinsic margin. The scatter plots of two measures used in our methods
versus the intrinsic margin (Fig. 1) show the overall monotonic relationship.
However, we also observe that the monotonicity is not perfectly honored locally,
and the degree of inconsistency depends on the dataset and the method used.
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Fig. 1. Correlation between the measures and the intrinsic margin for the NNet dataset
with the SVM confidence margin (Left) and the Sin dataset with the selection cost
(Right). Noisy examples with negative intrinsic margins are shown as filled squares.
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Fig. 2. ROC curves comparing the performance of all the methods on artificial datasets
NNet (Left) and Sin (Right)

The scatter plots also show that our methods can reasonably group the data
into noiseless (including typical and critical) and noisy categories, since the mis-
labeled examples are mostly cluttered in the bottom half of the plots. Figure 2
shows the receiver operating characteristic (ROC) curves for such categoriza-
tion, where the false positive rate is the portion of noiseless examples being
categorized as noisy. The ROC curves of two other methods, namely, the SVM
Lagrange coefficient [3] and the AdaBoost misclassification ratio [5], are also
plotted. These curves show that our methods, SVM confidence margin and Ada-
Boost data weight, surround larger area underneath and hence are much better
than the related methods in literature for two-group categorization.

4.2 Three-Category Experiments

To visually study the nature of the data categorization obtained by the three
methods, we design fingerprint plots, in which examples are positioned according
to their intrinsic value fr(xi) on the vertical axis and their index i in the dataset
on the horizontal axis. Examples are also marked as typical, critical, and noisy,
as assigned by the categorization method.

An ideal fingerprint plot would have the last 10% of the examples, which
are mislabeled, categorized as noisy. The plot should also have a band of critical
examples around the zero value. Figure 3 shows the fingerprint plot for the NNet
dataset with the selection cost as the categorization method. Since the target
function is in the model for estimating the selection cost, the categorization is
near perfect. Figure 4 shows fingerprint plots for two other cases, where we do
not have perfect categorization, and some of the critical examples are categorized
as outliers and vice versa. This is partly due to the ad hoc thresholding used to
categorize the examples. Similar results are obtained for the other combinations
of dataset and method.

Figure 5 shows the categorization results for the two 2-D datasets visually.
First, we notice that almost all the mislabeled examples are detected as noisy

Li et al.
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Fig. 3. Fingerprint plot of the NNet dataset with the selection cost. Critical and noisy
examples are shown as empty circles and filled squares, respectively.
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Fig. 4. Fingerprint plots of the Yin-Yang dataset with the SVM confidence margin
(Left), and the Sin dataset with the AdaBoost data weight (Right)

(shown as �), while very few of them are wrongly categorized as critical (�). Some
clean examples, mostly those around the decision boundary, are also categorized
as noisy (•), partly explained with the ad hoc thresholding. Secondly, we can see
that most of the identified critical examples (◦ or �) are around the boundary or
the outliers, which is desired since examples there do provide critical information
about the target.

5 Real-World Data

When the dataset has been categorized, it is possible to treat different data
categories differently in learning. For example, we can remove the noisy exam-
ples and also emphasize the critical examples, and intuitively this would help
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Fig. 5. 2-D categorization with the SVM confidence margin on artificial datasets Yin-
Yang (Left) and Sin (Right). The 10% mislabeled examples are shown in squares and
the 90% correctly labeled ones are shown in dots or circles. The three categories are
shown as dots (typical), empty circles or squares (critical), and filled circles or squares
(noisy).

learning.2 To demonstrate that such a simple intuition based on our data cat-
egorization methods can be quite useful in practice, we carry out experiments
on seven datasets3 from the UCI machine learning repository [8]. Their input
features are normalized to the range [−1, 1]. Each dataset is randomly split into
training and testing parts with 60% of the data for training and rest for testing.
The data categorization methods4 are applied to the training set, and noisy ex-
amples are then removed. We further emphasize the critical examples by giving
them twice the weight of the typical ones. A 500-iteration AdaBoost of decision
stumps is used to learn both the full training set and the filtered one. The test
error averaged over 100 runs is reported in Table 1 together with its standard
error. It is observed that removing the noisy examples and emphasizing the crit-
ical ones almost always reduces the test error. The exceptions with the selection
cost method should be due to a possible mismatch of complexity between the
underlying model of the selection cost and the learning model used in AdaBoost.

Although details are not included here, we also observed that the test error,
when we just removed the noisy examples, was not statistically different from

2 We do not flip the noisy examples since the categorization may not be perfect. If
a noiseless example is marked as noisy, flipping it brings a relatively high risk. So
removing the noisy examples would be a safer choice.

3 They are australian (Statlog: Australian Credit Approval), breast (Wisconsin Breast
Cancer), cleveland (Heart Disease), german (Statlog: German Credit), heart (Stat-
log: Heart Disease), pima (Pima Indians Diabetes), and votes84 (Congressional Vot-
ing Records), with incomplete records removed.

4 Note that the feed-forward neural networks for estimating the selection cost have
one hidden layer of 15 neurons.
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Table 1. Test error (%) of AdaBoost with 500 iterations

dataset full dataset selection cost SVM margin AdaBoost weight
australian 16.65 ± 0.19 15.23 ± 0.20 14.83 ± 0.18 13.92 ± 0.16

breast 4.70 ± 0.11 6.44 ± 0.13 3.40 ± 0.10 3.32 ± 0.10
cleveland 21.64 ± 0.31 18.24 ± 0.30 18.91 ± 0.29 18.56 ± 0.30
german 26.11 ± 0.20 30.12 ± 0.15 24.59 ± 0.20 24.68 ± 0.22
heart 21.93 ± 0.43 17.33 ± 0.34 17.59 ± 0.32 18.52 ± 0.37
pima 26.14 ± 0.20 35.16 ± 0.20 24.02 ± 0.19 25.15 ± 0.20

votes84 5.20 ± 0.14 6.45 ± 0.17 5.03 ± 0.13 4.91 ± 0.13

the case when we also emphasized the critical examples. However, we found
that removing the critical examples almost always increased the test error, and
removing as much as 50% of the typical examples did not affect the test error
by much. This clearly shows the distinction between the three categories.

6 Conclusion

We proposed the concept of grouping data into typical, critical, and noisy cate-
gories according to the intrinsic margin, and presented three methods to auto-
matically carry out the categorization. The three methods, rooted from different
parts of learning theory, are quite different in the models they use and the way
they approximate the intrinsic margin. However, they still gave similar catego-
rization results on three artificial datasets, which established that the concept is
independent of the methods. The categorization results can be used in conjunc-
tion with a large variety of learning algorithms for improving the generalization.
The results on the UCI datasets with AdaBoost as the learning algorithm demon-
strated the applicability of the methods in real-world problems. In addition, the
categorization can also be used to reduce the dataset size without affecting the
learning performance.

Further work needs to be done to estimate the optimal thresholds from the
dataset (say, using a validation set [5]), to better utilize the categorization in
learning, and to extend the framework for regression problems.

A Artificial Targets

We used three artificial target functions in the paper.

3-5-1 NNet This is a feed-forward neural network with 3 inputs, 5 neurons
in the hidden layer, and 1 output neuron. All neurons use tanh (sigmoid) as
the transfer function. The weights and thresholds are randomly picked with a
Gaussian distributionN (0, 0.72). The continuous output from the output neuron
is used as the intrinsic value fr.

.
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Yin-Yang A round plate centered at (0, 0) in R2 is partitioned into two classes
(see Fig. 5). The “Yang” (white) class includes all points (x1, x2) that satisfy

(d+ ≤ r) ∨ (r < d− ≤ R
2

) ∨ (x2 > 0 ∧ d+ > R
2

)
,

where the radius of the plate is R = 1, the radius of two small circles is r = 0.18,

d+ =
√

(x1 − R
2 )2 + x2

2, and d− =
√

(x1 + R
2 )2 + x2

2. Points out of the plate
belong to the Yang class if its x2 > 0. For each example, we use its Euclidean
distance to the nearest boundary as its intrinsic margin.

Sin The Sin target in [5] is also used in this paper (see Fig. 5). It partitions
[−10, 10]× [−5, 5] into two class regions, and the boundary is

x2 =

{
2 sin 3x1, if x1 < 0;
0, if x1 ≥ 0.

As in the Yin-Yang target, the distance to the nearest boundary is used as the
intrinsic margin.
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Abstract. Mining regression models from spatial data is a fundamental
task in Spatial Data Mining. We propose a method, namely Mrs-SMOTI,
that takes advantage from a tight-integration with spatial databases and
mines regression models in form of trees in order to partition the sample
space. The method is characterized by three aspects. First, it is able to
capture both spatially global and local effects of explanatory attributes.
Second, explanatory attributes that influence the response attribute do
not necessarily come from a single layer. Third, the consideration that
geometrical representation and relative positioning of spatial objects with
respect to a reference system implicitly define both spatial relationships
and properties. An application to real-world spatial data is reported.

1 Introduction

The rapidly expanding market for spatial databases and Geographic Information
System (GIS) technologies is driven by the pressure from the public sector, envi-
ronmental agencies and industries to provide innovative solutions to a wide range
of data intensive applications that involve spatial data, that is, a collection of
(spatial) objects organized in thematic layers (e.g., enumeration districts, roads,
rivers). A thematic layer is characterized by a geometrical representation (e.g.,
point, line, and polygon in 2D) as well as several non-spatial attributes (e.g.,
number of inhabitants), called thematic attributes. A GIS provides the set of
functionalities to adequately store, display, retrieve and manage both geometri-
cal representation and thematic attributes collected within each layer and stored
in a spatial database. Anyway, the range of GIS applications can be profitably
extended by adding spatial data interpretation capabilities to the systems. This
leads to a generation of GIS including Spatial Data Mining (SDM) facilities [11].

Spatial Data Mining investigates how interesting and useful but implicit
knowledge can be extracted from spatial data [8]. Regression is a fundamental
task of SDM where the goal is to mine a functional relationship between a con-
tinuous attribute Yi (response attribute) and m continuous or discrete attributes
Xj,i j = 1, ..., m (explanatory attributes). The training sample consists of spatial
objects. For instance, for UK census data available at the level of Enumeration
Districts (EDs), a possible goal may be estimating the response attribute “num-
ber of migrants” associated to each ED i on the basis of explanatory attributes
Xj,i (e.g., “number of inhabitants”) associated to EDs.

A. Jorge et al. (Eds.): PKDD 2005, LNAI 3721, pp. 169–180, 2005.
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The simplest approach to mine regression models from spatial data, is based
on standard regression [18] that models a functional relationship in the form:
Yi = β0 + β1X1,i + . . . + βkXk,i, where i is each ED area. The main problem
with this model is that it disregards the arrangement properties due to spatial
structure of data [5] (e.g., the phenomenon of migration is typically stronger in
peripheral EDs). When spatially-dependent heterogeneity of the model can be
anticipated by the analyst, the model can be improved by introducing a dummy
variable Di ∈ {0, 1}, which differentiate the behavior of the model according
to a predefined partitioning of areas in two groups. In this way, the model is
either Yi = β0 + β1X1,i + . . . + βkXk,i + γDi (constant spatial variation) or
Yi = β0 +(β1 +γDi)X1,i + . . .+βkXk,i (regression parameter spatial variation).
However, when the areas of homogeneous dependence cannot be anticipated by
the expert, a solution is represented by model trees [16] that approximate a
piece-wise (linear) function by means of a tree structure, where internal nodes
partition the sample space (as decision trees), while leaves are associated to
(linear) functions. In this way, it is possible to automatically determine different
regression model for different areas.

In this paper, we propose the model tree induction method, namely Mrs-
SMOTI (Multi-relational Spatial Stepwise Model Tree Induction), that faces
several degrees of complexity which characterize the regression problem from
spatial data. In the next section, we discuss these problems and introduce our
solution. Section 3 presents a stepwise approach to mine spatial regression mod-
els. Section 4 focuses on spatial database integration. Finally, an application is
presented in Section 5 and some conclusions are drawn.

2 Spatial Regression: Background and Motivations

While model tree learning has been widely investigated in the data mining liter-
ature [16,10,17], as far as we know, no attention has been given to the problem
of mining model trees from spatial data. Model tree induction from spatial data
raises several distinctive problems: i) some explanatory attributes can have spa-
tially global effect on the response attribute, while others have only a spatially
local effect; ii) explanatory attributes that influence the response attribute not
necessarily come from a single layer, but in most of cases they come from layers
possibly spatially related with the layer that is the main subject of the analysis;
iii) geometrical representation and relative positioning of spatial objects with re-
spect to some reference system implicitly define both spatial relationships (e.g.,
“intersects”, “distance”) and spatial attributes (e.g., “area”, “direction”).

Concerning the first point, it would be useful to identify the global effect of
some attributes (possibly) according to the space arrangement of data. Indeed, in
almost all model trees induction methods, the regression model associated with
a leaf is built on the basis of those training cases falling in the corresponding
partition of the feature space. Therefore, models in the leaves have only a local
validity and do not consider the global effects that some attributes might have
in the underlying model. In model trees, global effects can be represented by
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Fig. 1. An example of spatial model tree with regression and splitting nodes. Node 0
is a regression node that captures a global effect between the unemployed rate (Y) and
the GDP per capita (X1). It is associated to all countries. Node 1 splits the sample
space as depicted in the map. Functions at leaves only capture local effects.

attributes that are introduced in the linear models at higher levels of the tree.
This requires a different tree-structure where internal nodes can either define
a partitioning of the sample space or introduce some regression attributes in
the linear models to be associated to the leaves. In our previous work [10], we
proposed the method SMOTI whose main characteristic is the construction of
trees with two types of nodes: splitting nodes, which partition the sample space,
and regression nodes, which perform only straight-line regression. The multiple
model associated to a leaf is built stepwise by combining straight-line regressions
along the path from the root to the leaf. In this way, internal regression nodes
contribute to the definition of multiple models and capture global effects, while
straight-line regressions at leaves capture only local effects. Detecting global and
local effects over spatial data, allows to model phenomena, that otherwise, would
be ignored. As an example we show a simplistic case: suppose we are interested
in analyzing the unemployed rate in EU. In this case, it may be found that the
unemployed rate of each country is proportional to its GDP (Gross Domestic
Product) per capita. This behavior is independent of the specific country and
represents a clear example of global effect. This global effect corresponds to a
regression node in higher levels of the tree (see Fig. 1).

The second point enlightens that the value of the response attribute may
go beyond the values of explanatory attributes of the spatial object to be pre-
dicted. In particular, it is possible that the response attribute depends on the
attribute values of objects spatially-related to the object to be predicted and
possibly belonging to a different layer. In this point of view, the response at-
tribute is associated to the spatial objects that are the main subjects of the
analysis (target objects) while each explanatory attribute refers either to the
target objects to be predicted or to the spatial objects that are relevant for the
task in hand and are spatially related to the target ones (non-target objects).
This is coherent with the idea of exploiting intra-layer and inter-layer relation-
ships when mining spatial data [1]. Intra-layer relationships describe a spatial
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interaction between two spatial objects belonging to the same layer, while inter-
layer relationships describe a spatial interaction between two spatial objects
belonging to different layers. According to [5], intra-layer relationships make
available both spatially-lagged explanatory attributes useful when the effect of
an explanatory attribute at any site is not limited to the specified site (e.g., the
proportion of people suffering from respiratory diseases in an ED also depends
on the high/low level of pollution of EDs where people daily move) and spatially
lagged response attribute, that is, when autocorrelation affects the response val-
ues (e.g., the price for a good at a retail outlet in a city may depend on the
price of the same good sold by local competitors). Differently, inter-layer rela-
tionships model the fact that the response attribute value observed from some
target object may depend on explanatory attributes observed at spatially related
non target objects belonging to different layers. For instance, if the “EDs” layer
is the subject of the analysis and the response attribute is the mortality rate
associated to an ED, mortality rate may depend on the air-pollution degree on
crossing roads. Although spatial regression systems (such as the R spatial project
- http://sal.uiuc.edu/csiss/Rgeo/index.html) are able to deal with user defined
intra-layer spatial relationships, they ignore inter-layer relationships that can be
naturally modeled by resorting to the multi-relational setting [4].

The third point is due to the fact that geometrical representation and relative
positioning of spatial objects with respect to some reference system implicitly
define both spatial relationships and spatial attributes . This implicit information
is often responsible for the spatial variation over data and it is extremely useful in
modelling [15]. Hence, spatial regression demands for the development of specific
methods that, differently from traditional ones, take the spatial dimension of the
data into account when exploring the spatial pattern space. In this way, thematic
and spatial attribute values of target objects and spatially related non-target
objects are involved in predicting the value of the response attribute.

The need of extracting and mining the information that is implicitly defined
in spatial data motivates a tight-integration between spatial regression method
and spatial database systems where some sophisticated treatment of real-world
geometry is provided for storing, indexing and querying spatial data. This is
confirmed by the fact that spatial operations (e.g., computing the topological
relationships among spatial objects) are available free of charge for data analysts
in several spatial database advanced facilities [6].

In this work, we present Mrs-SMOTI that extends SMOTI by taking advan-
tage of a tight integration with a spatial database in order to mine stepwise
a spatial regression model from multiple layers. The model is built taking into
account all three degrees of complexity presented above.

3 Stepwise Mining of a Spatial Regression Model

Mrs-SMOTI mines a spatial regression model by partitioning training spatial
data according to intra-layer and inter-layer relationships and associating dif-
ferent regression models to disjoint spatial areas. In particular, it mines spatial
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data and performs the stepwise construction of a tree-structured model with
both splitting nodes and regression nodes until some stopping criterion is satis-
fied. In this way, it faces the spatial need of distinguishing among explanatory
attributes that have some global effect on the response attribute and others that
have only local effect. Both splitting and regression nodes may involve several
layers and spatial relationships among them.

Spatial split. A spatial splitting test involves either a spatial relationship condi-
tion or a spatial attribute condition on some layer from S. The former partitions
target objects according to some spatial relationship (either intra-layer or inter-
layer). For instance, when predicting the proportion of people suffering from
respiratory diseases in EDs, it may be significant to mine a different regression
function according to the presence or absence of main roads crossing the ter-
ritory. An extra-consequence of performing such spatial relationship condition
concerns the introduction of another layer in the model. The latter is a test
involving a boolean condition (“X ≤ α vs. X > α” in the continuous case and
“X ∈ {x1, . . . , xk} vs. X /∈ {x1, . . . , xk}” in the discrete one) on a thematic
attribute X of a layer already included in the model. In addition to thematic at-
tributes, an attribute condition may involve a spatial property (e.g., the area for
polygons and the extension for lines), that is implicitly defined by the geometri-
cal structure of the corresponding layer in S. It is noteworthy that only spatial
relationship conditions add new layers of S to the model. Consequently, a split
on a thematic attribute or spatial property involves a layer already introduced
in the model. However, due to the complexity of computing spatial relationships,
we impose that a relationship between two layers can be introduced at most once
in each unique path connecting the root to the leaf.

Coherently with [10], the validity of a spatial splitting test is based on an
heuristic function σ(t) that is computed on the attribute-value representation
of the portion of spatial objects in S falling in tL and tR, that is, the left and
right child of the splitting node t respectively. This attribute-value represen-
tation corresponds to the tuples of S derived according to both spatial rela-
tionship conditions and attribute conditions along the path from the root of
the tree to the current node. We define σ(t) = (n(tL)/(n(tL) + n(tR)))R(tL) +
(n(tR)/(n(tL) + n(tR)))R(tR), where n(tL) (n(tR)) is the number of attribute-
value tuples passed down to the left (right) child. Since intra-layer and inter-layer
relationships lead to a regression model that may include several layers (not nec-
essarily separate), it may happen that n(t) �= n(tL) + n(tR) although the split
in t satisfies the mutual exclusion requirement. This is due to the many-to many
nature of intra-layer and inter-layer relationships. In fact, when several spatial
objects are spatially related to the same object (e.g., a single ED may be inter-
sected by zero, one or more roads), computing spatial relationships may return
a number of attribute-value tuples greater than one. R(tL) (R(tR)) is the Mini-
mum Squared Error (MSE) computed on the left (right) child tL (tR) as follows:

R(tL) =

√√√√ 1
n(tL)

∑
i=1...n(tL)

(yi − ŷi)
2 (

R(tR) =

√√√√ 1
n(tR)

∑
i=1...n(tR)

(yi − ŷi)
2),
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such that ŷi is the response value predicted according to the spatial regression
model built by combining the best straight-line regression associated to tL (tR),
with all straight-line regressions in the path from the root to tL (tR) [3].
Spatial regression. A spatial regression node performs a straight-line regres-
sion on either a continuous thematic attribute or a continuous spatial property
not yet introduced in the model currently built. Coherently with the stepwise
procedure [3], both response and explanatory attributes are replaced with their
residuals. For instance, when a regression step is performed on a continuous
attribute X , the response attribute is replaced with the residual Y ′ = Y − Ŷ ,
where Ŷ = α̂ + β̂X . The regression coefficients α̂ and β̂ are estimated on the
attribute-value representation of the portion of S falling in the current node.

According to the spatial structure of data, the regression attribute comes
from one of the layers already involved in the model. Continuous thematic and
spatial attributes of these layers, which have not yet been introduced in the
model, are replaced with the corresponding residuals in order to remove the
effect of the regression attribute. Whenever a new layer is added to the model
(by means of a spatial relationship condition), continuous thematic and spatial
attributes, introduced with it, are replaced with the corresponding residuals.
Residuals are contextually computed on the attribute-value representation of
the portion of S falling in the current node. In this way, the effect of regression
attributes previously introduced in the model by regression steps is also removed
by introduced attributes.

The evaluation of a spatial regression step Ŷ = α̂ + β̂X is based on the
heuristic function ρ(t), that is: ρ(t) = min{R(t), σ(t′)}, where t′ is the best
spatial splitting node following the regression step in t. This look-ahead step
involved in the heuristic function above depends on the fact that spatial split
looks for best straight-line regression after the split condition is performed, while
the regression step does not. A fairer comparison would be growing the tree at
a further level to base the computation of ρ(T ) on the best multiple linear
regressions after the regression step on Xi is performed [10].
Stopping criteria. Three different stopping criteria are implemented. The first
requires that a minimal number of target objects fall in current node. The sec-
ond stops the induction process when the coefficient of determination is greater
than a threshold [18]. This coefficient is a scale-free one-number summary of the
strength of the relation between explanatory attributes in the actual multiple
model and the response attribute. Finally, the third stops the induction process
when no further regression step can be performed (i.e. all continuous attributes
are included in the current model) also after introducing some new layer.

4 Spatial Database Integration

Most spatial data mining systems process data in main memory. This results in
high performance for computationally intensive processes when enough memory
is available to store all necessary data. However, in spatial data intensive pro-
cesses it is important to exploit powerful mechanisms for accessing, filtering and
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indexing data, such as those available in spatial DBMS (DataBase Management
Systems). For instance, spatial operations (e.g., computing the topological rela-
tionships among spatial objects) supported by any spatial DBMS take advantage
from spatial indexes like Quadtrees or Kd-tree [14]. This motivates a tight inte-
gration of spatial data mining systems and spatial DBMS in order to i) guarantee
the applicability of spatial data mining algorithms to large spatial datasets; ii)
exploit useful knowledge of spatial data model available, free of charge, in the
spatial database, iii) specify directly what data stored in a database have to be
mined, iv) avoid useless preprocessing leading to redundant data storage that
may be unnecessary when part of space of the hypothesis may be never explored.

Some examples of integrating spatial data mining and spatial database sys-
tem are presented in [11] for classification tasks and in [1] for association rules
discovery tasks. In both cases, a data mining algorithm working in first-order
logic is only loosely integrated with a spatial database by means of some middle
layer module that extracts spatial attributes and relationships independently
from the mining step and represents these features in a first-order logic formal-
ism. Thus, data mining algorithms are practically applied to preprocessed data
and this preprocessing is user-controlled. Conversely, in [6] a spatial data mining
system, named SubgroupMiner, is proposed for the task of subgroup discovery
in spatial databases. Subgroup discovery is here approached by taking advan-
tage from a tight integration of the data mining algorithm with the database
environment. Spatial relationships and attributes are then dynamically derived
by exploiting spatial DBMS extension facilities (e.g., packages, cartridges or ex-
tenders) and used to guide the subgroup discovery.

Following the inspiration of SubgroupMiner, we assume an object-relational
(OR) data representation, such that spatial patterns representing both splitting
and regression nodes are expressed with spatial queries. These queries include
spatial operators based on the non-atomic data type for geometry consisting in
an ordered set of coordinates (X, Y ) representing points, lines and polygons.
Since no spatial operator is present in basic relational algebra or Datalog, we
resort to an extension of the OR-DBMS Oracle Spatial Cartridge 9i where spatial
operators to compute spatial relationships and to extract spatial attributes are
made available free of charge [6]. These operators can be called in SQL queries.
For example: SELECT * FROM EDs x, Roads y WHERE SDO GEOM.

RELATE(x.geometry,’ANYINTERACT’,y.geometry, 0.001) = ’TRUE’
This spatial query retrieves the pairs 〈ED, Road〉 whose topological relationship
is “not disjoint” by means or the Oracle operator ”RELATE”. It is noteworthy
that, the use of such SQL queries, appears to be more direct and much more
practical than formulating non-trivial extension of relational algebra or Datalog
such that those provided in constraint database framework [9].

When running a spatial query (associated to a node of the tree), the result
is a set of tuples describing both thematic attributes and spatial attributes of
involved layers. The FROM clause includes layers (not necessarily different) in
the model at the current node. The WHERE clause includes split conditions
found along the path from the root to the current node. The negation of either a
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SELECT T1.X1 as T1X1, T.X2 as T1X2, T1.Y as T1Y,

SDO_GEOM.SDO_AREA(T1.G,0.001) T1AREA

FROM Q

SELECT T1.X1 as T1X1, T.X2 as T1X2, T1.Y as T1Y,

SDO_GEOM.SDO_AREA(T1.G,0.001) as T1AREA , T2.X1

as T2X1, T2.X2 asT2X2 SDO_GEOM.SDO_AREA(T2.G,

0.001) as T2AREA

FROM Q T1, S T2

WHERE SDO_GEO.RELATE(T1.G,’ANYINTERACT’,T2.G,0.001)=

’TRUE’

SELECT T1.X1 as T1X1, T.X2 as T1X2, T1.Y as T1Y,

SDO_GEOM.SDO_AREA(T1.G,0.001) T1AREA

FROM Q T1

WHERE T1.X1 not in (SELECT T1.X1

FROM Q T1, S T2

WHERE SDO_GEO.RELATE(T1.G,’ANYINTERACT’,

T2.G, 0.001)= ’TRUE’)

SELECT T1.X1 as T1X1,

avg (3.7- 7.5 T2.X2 +0.5 –0.001(SDO_GEOM.SDO_AREA (T1.G,0.001) –

0.1 –0.005 T2.X2 ) T1Y

FROM Q T1, S T2

WHERE SDO_GEO.RELATE(T1.G,’ANYINTERACT’,T2.G,0.001)=

’TRUE’

GROUP BY T1.X1

…

SELECT T1.X1 as T1X1, T.X2 as T1X2, T1.Y –3.7+ 7.5 T2.X2 as T1Y ,

SDO_GEOM.SDO_AREA(T1.G,0.001) – 0.1 –0.005 T2.X2

as T1AREA , T2.X1 as T2X1, T2.X2 asT2X2

SDO_GEOM.SDO_AREA(T2.G, 0.001)+3-0.03T2.X2 as

T2AREA

FROM Q T1, S T2

WHERE SDO_GEO.RELATE(T1.G,’ANYINTERACT’,T2.G,0.001)=

’TRUE’

Fig. 2. An example of spatial model tree with regression, splitting and leaf nodes
expressed by means of spatial queries assuming that training data are stored in spatial
layers (e.g., Q and R) of a spatial database

spatial relationship condition or an attribute condition involving some attribute
of a non-target layer is transformed into a negated nested spatial sub-query.
This is coherent with the semantic of tests involving multiple tables of a rela-
tional database [2]. Finally, the SELECT clause includes thematic and spatial
attributes (or their residuals) from the layers involved in the WHERE clause.

Leaf nodes are associated with aggregation spatial queries, that is, spatial
queries where all tuples referring the same target object are grouped together.
In this way, the prediction of the response variable is the average response value
predicted on the set of attribute-value tuples describing the unique target object
to be predicted. This means that spatial model trees can be expressed in form
of a set of SQL spatial queries (see Fig. 2). Queries are stored in XML format
that can be subsequently used for predicting (unknown) response attributes.

5 Spatial Regression on Stockport Census Data

In this section we present a real-world application concerning the mining of spa-
tial regression models. We consider both 1991 census and digital map data pro-
vided in the context of the European project SPIN! (Spatial Mining for Data of
Public Interest) [12]. This data concerns Stockport, one of the ten metropolitan
districts in Greater Manchester (UK) which is divided into twenty-two wards for
a total of 589 census EDs. Spatial analysis is enabled by the availability of vec-
torized boundaries for 578 Stockport EDs as well as by other Ordnance Survey
digital maps of UK. Data are stored in an Oracle Spatial Cartridge 9i database.
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The application in this study investigates the number of unemployed people
in Stockport EDs according to the number of migrant people available for each
ED in census data as well as geographical factors represented in topographic
maps stored in form of layers. The target objects are the Stockport EDs, while
other layers, such as, shopping (53 objects), housing (9 objects) and employment
areas (30 objects) are the non target objects. The EDs play the role of both target
objects and non target objects when considering intra-layer relationship on EDs.

Two experimental settings are defined. The first setting (BK1) is obtained by
exclusively considering the layer representing EDs. The second setting (BK2) is
obtained by considering all the layers. In both settings, intra-layer relationships
on EDs make possible to model the unemployment phenomenon in Stockport
EDs by taking into account the self-correlation on the spatially lagged explana-
tory attributes of EDs. The auto-correlation on the spatially-lagged response
attribute can be similarly exploited during the mining process. In this study,
we consider (intra-layer and inter-layer) spatial relationships that describe some
(non disjoint) topological interaction between spatial objects. Furthermore, we
consider area of polygons and extension of lines as spatial properties.

In order to prove the advantage of using intra-layer and inter-layer relation-
ships in the mining process, we compare the spatial regression model mined by
Mrs-SMOTI with the regression models mined by SMOTI and M5’[17]. Since
SMOTI and M5’ work under single table assumption, we transform the origi-
nal object-relational representation of Stockport data in a single relational table
format. Two different transformations are considered. The former (P1) creates a
single table by deriving all thematic and spatial attributes from layers according
to all possible intra-layer and inter-layer relationships. This transformation leads
to generate multiple tuples for the same target object. The latter transformation
(P2) differs from the previous one because it does not generate multiple tuples
for the same target object. This is obtained by including aggregates (i.e., the av-
erage for continuous values and the mode for discrete values)[7] of the attributes
describing the non target objects referring to the same target object1.

Model trees are mined by requiring that the minimum number of spatial
target objects falling in an internal node must be greater than the square root
of the number of training target objects, while the coefficient of determination
must be below 0.80. Comparison is performed on the basis of the average MSE,
number of regression nodes and leaves obtained by means of the same five-fold
cross validation of Stockport data. Results are reported in Table 1.

The non-parametric Wilcoxon two-sample paired signed rank test [13] is used
for the pairwise comparison of methods. In the Wilcoxon signed rank test, the
summations on both positive (W+) and negative (W-) ranks determine the
winner. Results of Wilcoxon test are reported in Table 2.

1 In both P1 and P2 transformations the attribute-value dataset is composed by 5
attibutes for BK1 (6 when including the lagged response) and 11 for BK2 (12 when
including the lagged response). The number of tuples for P1 is 4033 for BK1 and
4297 for BK2. In the case of P2, the number of tuples is 578 in both settings.
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Table 1. Average MSE, No. of leaves and regression nodes of trees induced by Mrs-
SMOTI, SMOTI and M5’. L1 is ”No lagged response”, L2 is ”Lagged response”.

Setting MSE Leaves RegNodes
BK1 BK2 BK1 BK2 BK1 BK2
L1 L2 L1 L2 L1 L2 L1 L2 L1 L2 L1 L2

Mrs-SMOTI 12.34 13.74 11.99 10.92 19.80 23.40 23.60 23.60 3.4 6.6 3.8 6.2
SMOTI P1 12.91 10.23 20.11 13.0 101.6 107.6 104.0 111.8 6.2 5.0 15.0 11.4

P2 11.89 18.17 19.71 15.80 41.00 24.80 42.40 44.20 3.4 4.0 10.2 11.6
M5’ P1 13.52 12.41 12.92 12.30 433.6 872.0 408.6 711.2 - - - -

P2 12.44 9.19 12.48 9.59 198.0 199.4 199.2 197.4 - - - -

Results confirm that Mrs-SMOTI is better or at worst comparable to SMOTI
in terms of predictive accuracy. This result is more impressive when we consider
the regression model mined when both intra-layer and inter-layer relationships
are ignored. The average MSE of model trees mined by SMOTI taking into
account only the number of migrants and the area of EDs is 15.48.

Moreover, when we consider results of SMOTI on data transformed accord-
ing to P1 and P2, we note that the stepwise construction takes advantage of the
tight-integration of Mrs-SMOTI with the spatial DBMS that avoids the gener-
ation of useless features (relationships and attributes). The side effect of useless
features may lead to models that overfit training data, but fail in predicting
new data. In a deeper analysis, we note that even when SMOTI, in average,
outperforms Mrs-SMOTI in terms of MSE, the Wilcoxon test does not show any
statistically significant difference. Results on the two data settings show that
mining the geographical distribution of shopping (housing or employment) areas
over EDs (i.e., the spatial relationships between EDs and shopping areas, shop-
ping areas and shopping areas, shopping areas and employment areas, and so
on) decreases the average MSE of models mined by Mrs-SMOTI, while no sig-
nificant improvement is observed in mining the same information with SMOTI.
The autocorrelation on the response improves performance of Mrs-SMOTI only
for BK2 level (10.92 vs. 11.99) without significantly increasing tree size.

Table 2. Mrs-SMOTI vs SMOTI and M5’: results of the Wilcoxon test on the MSE of
trees. If W+≤ W- then results are in favour of Mrs-SMOTI. The statistically significant
values (p ≤ 0.1) are in boldface. L1 is ”No lagged response”, L2 is ”Lagged response”.

Setting Mrs-SMOTI vs.
SMOTI P1

Mrs-SMOTI vs.
SMOTI P2

Mrs-SMOTI vs.
M5’ P1

Mrs-SMOTI vs.
M5’ P2

W+ W- p W+ W- p W+ W- p W+ W- p

BK1
L1 6 9 0.81 9 6 0.81 3 12 0.310 7 8 1.000
L2 10 5 0.63 6 9 0.81 8 7 1.000 15 0 0.060

BK2
L1 1 14 0.125 0 15 0.06 4 11 0.430 6 9 0.810
L2 0 15 0.06 3 12 0.31 0 15 0.060 15 0 0.060
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- split on EDs’ number of migrants [≤ 47] (578 EDs)
- regression on EDs’ area (458 EDs)

- split on EDs - Shopping areas spatial relationship (458 EDs)
- split on Shopping areas’ area (94 EDs) ...
- split on EDs’ number of migrants (364 EDs) ...

- split on EDs’ area (120 EDs)
- leaf on EDs’ area (22 EDs)
- regression on EDs’ area (98 EDs) ...

Fig. 3. Top-level description of a portion of the model mined by Mrs-SMOTI on the
entire dataset at BK2 level with no spatially lagged response attributes

The number of regression nodes and leaves are indicators of the complexity
of the induced regression models. In this case, results show that the model in-
duced by Mrs-SMOTI is much simpler than the model induced by SMOTI in
both settings independently from data transformation. The relative simplicity
of the spatial regression models mined by Mrs-SMOTI makes them easily to be
interpreted. In particular, the tree structure can be easily navigated in order
to distinguish among global and local effects of explanatory attributes. For in-
stance, in Fig. 3 it is shown the top-level description of the spatial regression
model mined by Mrs-SMOTI on the entire dataset at BK2 level with no spatially
lagged response attributes. Mrs-SMOTI captures the global effect of the area of
EDs over Stockport covered by the 458 EDs having “number of migrants ≤ 47”.
The effect of this regression is shared by all nodes in the corresponding sub-tree.

Finally, the comparison of Mrs-SMOTI with M5’, does not show any clear
difference in terms of MSE. Anyway, M5’ presents two important disadvantages
with respect to Mrs-SMOTI. First, M5’ cannot capture spatial global and local
effects. Second, mined model trees cannot be interpreted by humans because of
the complexity of the models (there is an increase of one order of magnitude in
the number of leaves from Mrs-SMOTI to M5’)

6 Conclusions

In this paper we have presented a spatial regression method Mrs-SMOTI that is
able to capture both spatially global and local effects of explanatory attributes.
The method extends the stepwise construction of model trees performed by its
predecessor SMOTI in two directions. First, by taking advantage from a tight-
integration with a spatial database in order to mine both spatial relationships
and spatial attributes which are implicit in spatial data. Indeed, this implicit
information is often responsible for the spatial variation over data and it is ex-
tremely useful in regression modelling. Second, the search strategy is modified
in order to mine models that capture the implicit relational structure of spatial
data. This means that spatial relationships (intra-layer and inter-layer) make
possible to consider explanatory attributes that influence the response attribute
but do not necessarily come from a single layer. In particular, intra-layer re-
lationships make available spatially lagged response attributes in addition to
spatially lagged explanatory attributes.
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Experiments on real-world spatial data show the advantages of the proposed
method with respect to SMOTI. As future work, we intend to extend the method
in order to mine both geometrical (e.g., distance) and directional (e.g., north of)
relationships in addition to topological relationships.
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Abstract. The introduction of hierarchical thesauri (HT) that contain signifi-
cant semantic information, has led researchers to investigate their potential for
improving performance of the text classification task, extending the traditional
“bag of words” representation, incorporating syntactic and semantic relationships
among words. In this paper we address this problem by proposing a Word Sense
Disambiguation (WSD) approach based on the intuition that word proximity in
the document implies proximity also in the HT graph. We argue that the high
precision exhibited by our WSD algorithm in various humanly-disambiguated
benchmark datasets, is appropriate for the classification task. Moreover, we de-
fine a semantic kernel, based on the general concept of GVSM kernels, that
captures the semantic relations contained in the hierarchical thesaurus. Finally,
we conduct experiments using various corpora achieving a systematic improve-
ment in classification accuracy using the SVM algorithm, especially when the
training set is small.

1 Introduction

It can be argued that WSD algorithms for the document classification task should differ
in their design and evaluation from pure WSD algorithms. It is expected that correctly
disambiguated words could improve (and certainly not degrade) the performance of
a document classification task, while falsely disambiguated words would entail noise.
Although the SVM algorithm [1] used in our experiments is known to be noise tol-
erant, it is certain that noise, above a certain level, will eventually degrade in SVM’s
performance. In the absence of theoretical or experimental studies on the exact level of
falsely disambiguated words that can be tolerated by classification algorithms, the most
appropriate performance measure for WSD algorithms designed for a classification task
is precision. Choosing the WSD algorithm with the highest precision will result in the
incorporation of the lowest amount of noise in the classification task.

Another important issue for the successful embedding of WSD in text classification,
is the exploitation of senses’ semantic relations, that are provided by the HT. These re-
lations are essential for defining distances and kernels that reflect semantic similarities
between senses. An extensive bibliography exists for measuring distances and similari-
ties on thesauri and ontologies, which has not been taken into account by other research
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approaches that embed WSD in the text classification task. The need for exploiting se-
mantic relations is illustrated in [2], where SemCor 1.7.1, a humanly-disambiguated
corpus, is used in classification experiments. It is demonstrated that even with a 100%
accurate disambiguation, the simple use of senses instead of keywords does not improve
classification performance.

In this paper we propose an unsupervised WSD algorithm for classification, that uti-
lizes a background HT. Our approach adopts the intuition that adjacent terms extracted
from a given document are expected to be semantically close to each other and that is
reflected to their pathwise distance on the HT. Thus, the objective of our WSD method
is, given a set of terms, to select the senses (one for each term among many found in the
HT) that overall minimize the pathwise distance and reflect the compactness of the se-
lected sense set. The semantic compactness measure introduced is based on the concept
of the Steiner Tree [3]. As opposed to other approaches that have utilized WSD for clas-
sification [4],[5],[6],[7], we have conducted extensive experiments with disambiguated
corpora (Senseval 2 and 3, SemCor 1.7.1), in order to validate the appropriateness of
our WSD algorithm. Experiments, using the WordNet HT, demonstrate that our WSD
algorithm can be configured to exhibit very high precision, and thus can be considered
appropriate for classification. In order to exploit the semantic relations inherent in the
HT, we define a semantic kernel based on the general concept of GVSM kernels [8].
Finally, we have conducted experiments utilizing various sizes of training sets for the
two largest Reuters-21578 categories and a corpus constructed from crawling editorial
reviews of books from the Amazon website. The results demonstrate that our approach
for exploiting hierarchical thesauri semantic information contributes significantly to the
SVM classifier performance, especially when the training set size is small.

In the context of this paper WordNet [9] is utilized as a hierarchical thesaurus both
for WSD and for classification. Although WordNet contains various semantic relations
between concepts1, our approach relies only on the hypernym/hyponym relation that
orders concepts according to generality, and thus our approach can generalize to any
HT that supports the hypernym/hyponym relation.

The rest of the paper is organized as follows. Section 2 discusses the preliminary
notions and the related work. Section 3 presents our compactness measure for WSD that
is based on the graph structure of an HT. Section 4 describes the semantic kernel that
is utilized for the experiments. Section 5 discusses the experiments performed. Section
6 contains the comparison of the proposed framework to other approaches, concluding
remarks and pointers to further work.

2 Preliminaries

2.1 Graph Theoretic Notions

Assuming that a document is represented by a set of senses, the semantic compactness
measure that we introduce for WSD implies a similarity notion either among the senses
of a sense set or between two sense sets. Its commutation is based on the notion of

1 Concepts are word senses in WordNet terminology and in this paper we will use the terms
word senses and concepts interchangeably.
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Steiner Tree. Given a set of graph vertices, the Steiner Tree is the smallest tree that
connects the set of nodes in the graph. The formal definition of the Steiner Tree is given
below.

Definition 1 (Steiner Tree). Given an undirected graph G = (V, E), and a set S ⊆ V ,
then the Steiner Tree is the minimal Tree of G that contains all vertices of S.

2.2 Semantic Kernels Based on Hierarchical Thesaurus

Since we aim at embedding WSD in the SVM classifier, we require the definition of
a kernel that captures the semantic relations provided by the HT. To the extend of our
knowledge the only approach that defines a semantic kernel based on a HT is [10]. The
formal definition of their kernel is given below.

Definition 2 (Semantic Smoothing Kernels [10]). The Semantic smoothing Kernel
between two documents d1, d2 is defined as K(d1, d2) = d1P

′Pd2 = d1P
2d2, where P

is a matrix whose entries Pij = Pji, represent the semantic proximity between concepts
i and j.

The similarity matrix P is considered to be derived by a HT similarity measure. The
Semantic Smoothing Kernels have similar semantics to the GVSM model defined in
[8]. A kernel definition based on the GVSM model is given below.

Definition 3 (GVSM Kernel). The GVSM kernel between two documents d1 and d2 is
defined as K(d1, d2) = d1DD′d2, where D is the term document matrix.

The rows of matrix D, in the GVSM kernel contain the vector representation of terms,
used to measure their pairwise semantic relatedness. The Semantic Smoothing Ker-
nel has similar semantics. The Semantic Smoothing Kernel between two documents
K(d1, d2) = d1P

2d2, can be regarded as a GVSM kernel, where the matrix D is
derived by the decomposition of P 2 = DD′ (the decomposition is always possible
since P 2 is guaranteed to be positive definite). The rows of D can be considered as the
vector representation of concepts, used to measure their semantic proximity. Seman-
tic Smoothing Kernels use P 2 and not P , because P is not guaranteed to be positive
definite.

2.3 Related Work

WSD. The WordNet HT has been used for many supervised and unsupervised WSD
algorithms. In direct comparison to our WSD approach we can find [11],[12],[13] that
are unsupervised and rely on the semantic relations provided by WordNet. In the ex-
perimental section we show that our WSD algorithm can be configured to exhibit very
high precision in various humanly-disambiguated benchmark corpora, and thus is more
appropriate for the classification task.

Senseval (www.senseval.org), provides a forum, where the state of the art WSD
systems are evaluated against disambiguated datasets. In the experimental sections we
will compare our approach to the state of the art systems that have been submitted to
the Senseval contests.
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WSD and classification. In this section we shall briefly describe the relevant work
done in embedding WSD in the document classification task. In [7], a WSD algorithm
based on the general concept of Extended Gloss Overlaps is used and classification is
performed with an SVM classifier for the two largest categories of the Reuters-25178
collection and two IMDB movie genres (www.imdb.com).

It is demonstrated that, when the training set is small, the use of WordNet senses
together with words improves the performance of the SVM classification algorithm,
however for training sets above a certain size, the approach is shown to have inferior
performance to term-based classification. Moreover, the semantic relations inherent in
WordNet are not exploited in the classification process. Although the WSD algorithm
that is employed is not verified experimentally, its precision is estimated with a refer-
ence to [13], since the later work has a very similar theoretical basis. The experiments
conducted by [13] in Senseval 2 lexical sample data, show that the algorithm exhibits
low precision (around 45%) and thus may result in the introduction of much noise that
can jeopardize the performance of a classification task.

In [4], the authors experiment with various settings for mapping words to senses
(no disambiguation, most frequent sense as provided by WordNet and WSD based on
context). Their approach is evaluated on the Reuters-25178, the OSHUMED and the
FAODOC corpus, providing positive results. Their WSD algorithm has similar seman-
tics to the WSD algorithm proposed in [12]. Although in [12] the experiments are con-
ducted in a very restricted subset of SemCor 1.7.1, the results reported can be compared
with our experiment results for the same task, as it is shown in Section 5. Moreover [4],
use hypernyms for expanding the feature space.

In [5] the authors utilize the supervised WSD algorithm proposed in [14] in k-
NN classification of the 20-newsgroups dataset. The WSD algorithm they employ is
based on a Hidden Markov Model and is evaluated against Senseval 2, using “English
all words task”, reporting a maximum precision of around 60%. On the classification
task of the 20-newsgroup dataset, they report a very slight improvement in the error-
percentage of the classification algorithm. The semantic relations that are contained in
WordNet are not exploited in the k-NN classification process.

The authors in [6] present an early attempt to incorporate semantics by means of
a hierarchical thesauri in the classification process, reporting negative results on the
Reuters-21578 and DigiTrad collection. While none disambiguation algorithm is em-
ployed, the use of hypernyms for extending the feature space representation is levied.

2.4 Hierarchical Thesaurus Distances – Similarities

As we have discussed in the introduction section, an important element for the success-
ful incorporation of semantics in the classification process is the exploitation of the vast
amount of semantic relations that are contained in the HT. There is an extensive bibli-
ography that addresses the issue of defining distances and similarity measures based on
the semantic relations provided by an HT [9],[15],[16],[17], which has not been related
to the existing approaches for embedding WSD in classification. A common ground of
most of the approaches is that the distance or similarity measure will depend on the
“size” of the shortest path that connects the two concepts through a common ancestor
in the hierarchy, or on the largest “depth” of a common ancestor in the hierarchy. The
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terms “size” and “depth” are used in an informal manner, for details one should use the
references provided.

3 Compactness Based Disambiguation

In this section we present our unsupervised WSD method, as this was initially sketched
in [18]. Our WSD algorithm is based on the intuition that adjacent terms extracted
from a text document are expected to be semantically close to each other. Given a set
of adjacent terms, our disambiguation algorithm will consider all the candidate sets
of senses and output the set of senses that exhibits the highest level of semantic re-
latedness. Therefore, the main component of our WSD algorithm is the definition of
a semantic compactness measure for sets of senses. We refer to our disambiguation
approach as CoBD (Compactness Based Disambiguation). The compactness measure
utilized in CoBD is defined below.

Definition 4. Given an HT O and a set of senses S = (s1, ..., sn), where si ∈ O the
compactness of S is defined as the cost of the Steiner Tree of S∪ lca(S), such that there
exists at least one path, using hypernym relation, from each si to the lca(S).

In the definition above we include one path, using the hypernym relation, for every
sense to the least common ancestor lca(S). The reason for imposing such a restriction
is that the distance between two concepts in an HT is not defined as the shortest path
that connects them in the HT, but rather as the shortest path that goes through a common
ancestor. Thus, it can be argued that two concepts are connected only through a common
ancestor and not through any other path in the HT. The existence of the lca(S) (and of
a path between every concept and the lca(S) using the hypernym relation) guarantees
that a path connecting all pairs of concepts (in the context discussed earlier) exists.

Although in general the problem of computing the Steiner Tree is NP-complete,
the computation of the Steiner Tree (with the restriction imposed) of a set of concepts
with their lca in a HT is computationally feasible and is reduced to the computation
of the shortest path of the lca to every concept of the set. Another issue, potentially
adding excessive computational load, is the large number of combinations of possible
sets of senses, when a term set of large cardinality is considered for disambiguation. In
order to address this issue, we reduce the search space by using a Simulated Annealing
algorithm. The experimental setup used in this paper for the empirical evaluation of our
WSD algorithm is described in detail in section 5.

4 Exploitation of Hierarchical Thesaurus Semantics in SVM
Classification

We have argued in the introductory section that the exploitation of the semantics pro-
vided by an HT are important for the successful embedding of WSD in the classification
task. In this section we will present the definition of the Kernel we will utilize in SVM
classification. The Kernel we define is based on the general concept of GVSM kernel
and depicts the semantics of the HT.
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It is shown in detail in [18], that the use of hypernyms for the vector space repre-
sentation of the concepts of a HT, enables the measurement of semantic distances in
the vector space. More precisely, given a Tree HT, there exists a weight configuration
for the hypernyms, such that standard vector space distance and similarity measures are
equivalent to popular HT distances and similarities. The proofs for propositions given
below can be found in [18].

Proposition 1. Let O be a Tree HT, if we represent the concepts of the HT O, as vectors
containing all their hypernyms, then there exists a configuration for the weights of the
hypernyms such that the Manhattan distance (Minkowski distance with p=1) of any two
concepts in vector space is equal to the Jiang-Conrath measure [15] in the HT.

Proposition 2. Let O be a Tree HT, if we represent the concepts of the HT O as vectors
containing all their hypernyms, then there exists a configuration for the weights of the
hypernyms such that the inner product of any two concepts in vector space is equal to
the Resnik similarity measure [16] in the HT.

The WordNet hierarchical thesaurus is composed by 9 hierarchies that contain concepts
that inherit from more than one concept, and thus are not Trees. However, since only
2.28% of the concepts inherit from more than one concept [19], we can consider that
the structure of WordNet hierarchies is close to the Tree structure.

From the above we conclude that, if we construct a matrix D where each row con-
tains the vector representation of each sense containing all its hypernyms, the matrix
DD′ will reflect the semantic similarities that are contained in the HT. Based on D, we
move on to define the kernel between two documents d1,d2, based on the general con-
cept of GVSM kernels as Kconcepts(d1, d2) = d1DD′d2. In our experiments we have
used various configurations for the rows of D. More precisely, we have considered the
vector representation of each concept to be extended with a varying number of hyper-
nyms. The argument for using only a limited number and not all hypernyms is that the
similarity between hypernyms close to the root of the HT is considered to be very close
to 0. Apart from hypernyms, in the experiments section, we have explored the poten-
tial of using hyponyms for constructing matrix the D in the GVSM kernel. The kernel
that we finally utilize in our experiments is a combination of the inner product kernel
for terms with the concept kernel K(d1, d2) = Kterms(d1, d2) + Kconcepts(d1, d2).
This kernel was embedded into the current version of SVMLight [20] and replaced the
standard linear kernel used for document classification with sparse training vectors.

The kernel defined implies a mapping from the original term and concept space, to
a space that includes the terms, the concepts and their hypernyms. The kernel can be
considered as the inner product in this feature space.

5 Experiments

5.1 Evaluation of the WSD Method

CoDB was tested in four benchmark WSD corpora; Brown 1 and Brown 2 from the
SemCor 1.7.1 corpus, and the in the “English All Words” task of Senseval 2 and 3.
These corpora are pre-tagged and pre-annotated. From all the parts of speech in the
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Fig. 1. WSD results on 4 benchmark datasets for different initializations of W and L

texts we only considered nouns, which are usually more informative than the rest and
form a meaningful type hierarchy in WordNet. In order to implement CoBD efficiently
we had to take into account that the search space of combinations to be examined for
their compactness increases dramatically as the cardinality of the set of words exam-
ined increases, making exhaustive computation infeasible. Thus we adopted simulated
annealing as in [21]. This approach reduced the search space and allowed us to execute
the WSD using various set of words sizes in a time efficient manner. The parameters of
the WSD method are:

1. Window Size (W): Set cardinality of the words to be disambiguated.
2. Allowed Lonely: Given a word set L, it is the maximum number of lonely senses 1

allowed in a WordNet noun hierarchy, for any senses combination of that window.

Figure 1 presents experiments we have conducted using various parameter settings.
The results are sorted in decreasing order of precision. The precision and coverage 2

values reported do not take into account the monosemous nouns, but only the ambigu-
ous ones. We can estimate, based on the examined corpora statistics, that the inclusion
of the monosemous nouns would report an increase in precision between 3% and 4%,
as well as an increase in coverage of almost 22%.

1 A sense s belonging to a set of senses S is referred to as lonely if the WordNet noun hierarchy
H it belongs to, does not contain any other k ∈ S.

2 Coverage is defined as the percentage of the nouns that are disambiguated.
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We observe that CoBD achieves precision greater than 80% with an associated cov-
erage of more than 25%, if monosemous (i.e., non-ambiguous) nouns are also taken
into account. Comparable experiments conducted in [12] reported a top precision result
of 64,5% with an associated coverage of 86,2%. Similar experiments conducted in [11],
[13] and [14] resulted as well in lower precision than CoBD. In comparing our approach
to the state of the art WSD algorithms that were submitted to the “English All Words”
Senseval 2 contest (www.senseval.org), we observe that our approach can be configured
to exhibit the highest precision.

5.2 Document Collections and Preprocessing for Text Classification

Reuters. Reuters-21578 is a compilation of news articles from the Reuters newswire in
1987. We include this collection mostly for transparency reasons, since it has become
the gold standard in document classification experiments. We conducted experiments
on the two largest categories, namely acquisitions and earnings, in terms of using test-
and training documents based on the [4] split. This split yields a total of 4,436 training
and 1,779 test documents for the two categories. We extracted features from the mere
article bodies, thus using whole sentences only and hiding any direct hint to the actual
topic from the classifier.

Amazon. To test our methods on a collection with a richer vocabulary, we also ex-
tracted a real-life collection of natural-language text from amazon.com using Ama-
zon’s publicly available Web Service interface. From that taxonomy, we selected all
the available editorial reviews for books in the three categories Physics, Mathematics
and Biological Sciences, with a total of 6,167 documents. These reviews typically con-
tain a brief discussion of a book’s content and its rating. Since there is a high overlap
among these topics’ vocabulary and a higher diversity of terms within each topic than
in Reuters, we expect this task to be more challenging for both the text- as well as the
concept-aware classifier.

Before actually parsing the documents, we POS-annotated both the Reuters and
Amazon collections, using a version of the commercial Connexor software for NLP
processing. We restricted the disambiguation step to matching noun phrases in Word-
Net, because only noun phrases form a sufficiently meaningful HT in the ontology
DAG. Since WordNet also contains the POS information for each of its concepts, POS
document tagging significantly reduces the amount of choices for ambiguous terms and
simplifies the disambiguation step. For example the term run has 52 (!) distinct senses
in WordNet out of which 41 are tagged as verbs. The parser first conducts continuous
noun phrase tokens in a small window of up to a size of 5 into dictionary lookups in
WordNet before the disambiguation step takes place. If no matching phrase is found
within the current window, the window is moved one token ahead. This sliding window
technique enables us to match any composite noun phrase known in WordNet, where-
upon larger phrases are typically less ambiguous. Non-ambiguous terms can be chosen
directly as safe seeds for the compactness-based disambiguation step. Note that we did
not perform any feature selection methods such as Mutual Information or Information
Gain [22] prior to training the SVM, in order not to bias results toward a specific clas-
sification method.
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Fig. 2. Relative Improvement of F-measures scores for various Similarity Configurations in the
Amazon Topics

5.3 Evaluation of Embedding CoBD in the Text Classification Task

To evaluate the embedding of CoBD in text classification, we performed binary classi-
fication tasks, only, i.e., we did not introduce any additional bias from mapping multi-
class classification task onto the binary decision model used by the SVM method. The
binary classification tasks were performed after forming all pairs between the three
Amazon topics, and one pair between the two largest Reuters-21578 topics. The pa-
rameters’ setting for CoBD was W 3 L 0, since it reported high percision and performed
in a stable manner during the WSD evaluation experiments in the 4 benchmark corpora.
Our baseline was the F-Measure [22] arising from the mere usage of term features. The
baseline competed against the embedding of the term senses, whenever disambiguation
was possible, and their hypernyms/hyponyms into the term feature vectors, according
to the different GVSM kernel configurations shown in Figures 2,3. In our experiments,
the weights of the hypernyms used in the GVSM kernel are taken to be equal to the
weights of the terms they correspond to. We varied the training set sizes between 3 and
500 documents per topic. For each setup, in Figures 2,3 we report the differences of the
macro-averaged F-Measure between the baseline and the respective configurations, us-
ing 10 iterations for each of the training set sizes of the Reuters dataset and 30 iterations
for each of the training set sizes of the Amazon dataset. The variation of the differences
was not too high and allowed for all the results where the absolute difference of the
sample means was greater than 1% to reject the null hypothesis (that the means are
equal) at a significance level of 0.05. For more than 500 documents, all our experiments
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Fig. 3. Relative Improvement of F-measures scores for various Similarity Configurations in the
Reuters Topics

indicate a convergence in results between the concept-aware classifier and the text
classifier. The average F-measures for the baseline classifier are reported in Figure 3.
For each run, the training documents were selected randomly following a uniform dis-
tribution. Since there is no split into separate documents for training and testing given
in the Amazon collection, we performed cross-validation runs over the whole set, each
using all the remaining documents for the test phase.

The results demonstrate that the use of CoBD and our kernel function, based on a
small number of hypernyms increases consistently the classification quality especially
for small training sets. In some cases, as the number of hypernyms increases we observe a
performance deterioration which in some cases falls below the term-based classification.

The variance in the number of hypernyms needed for achieving better performance,
can be explained by the fact that we did not employ a hypernym weighting scheme.
Thus, when semantically correlated categories are considered, (such as Maths/Physics
in the Amazon data), then the use of all the hypernyms with equal weights would result
in many documents belonging to the Physics category to have a high similarity to doc-
uments of Maths category, degrading the performance of the classification algorithm.

6 Discussion and Conclusions

The context of the current work entails the content and structure (i.e. the senses and
hierarchical relationships) of HTs and their usage for successful extension of the bag
of words model for text classification. The objective is that such extensions (i.e. senses
and hypenyms/hyponyms more precisely) are contributing to higher quality in the clas-
sification process.

The contribution of the paper is the design of a successful WSD approach to be in-
corporated and improve the text classification process. Our WSD approach takes into ac-
count term senses found in HTs, (in the specific case Wordnet), and for each document
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selects the best combination of them based on their conceptual compactness in terms of
related Steiner tree costs. Apart from the senses we add to the original document fea-
ture set a controlled number of hypernyms of the senses at hand. The hypernyms are
incorporated by means of the kernel utilized. The attractive features of our work are:

Appropriate WSD approach for text classification. Most of the related approaches
incorporating WSD in the classification task [6],[7],[4] do not provide a sound exper-
imental evidence on the quality of their WSD approach. On the contrary in our work,
the WSD algorithm is exhaustively evaluated against various humanly disambiguated
benchmark datasets and achieves very high precision (among the top found in related
work) although at low coverage values (see Fig.1). This is not a problem, though since
as mentioned earlier, it is essential to extend the feature space with correct features in
order to prevent introduction of noise in the classification process. The experimental
evaluation provides us with the assurance that our WSD algorithm can be configured to
have high precision, and thus, would insert in the training set very little noise.

Similarity measure that takes into account the structure of the HT. Document classi-
fication depends on a relevant similarity measure to classify a document into the closest
of the available classes. It is obvious that the similarity among sets of features (repre-
senting documents) should take into account their hierarchical relationships as they are
represented in the HT. None of the previous approaches for embedding WSD in clas-
sification has taken into account the existing literature for exploiting the HT relations.
Even when the use of hypernyms is used [6],[4], it is done in an ad-hoc way, based on
the argument that the expansion of a concept with hypernyms would behave similar to
query expansion using more general concepts. We utilize a Kernel based on the gen-
eral concept of a GVSM kernel that can be used for measuring the semantic similarity
between two documents. The kernel is based on the use of hypernyms for the representa-
tion of concepts - theoretically justified in the context of the related work concerning the
computation of semantic distances and similarities on a HT that aligns to tree structure.

We conducted classification experiments on two real world datasets (the two largest
Reuters categories and a dataset constructed by the editorial reviews of products on three
categories at the amazon.com web site). The results demonstrate that our approach for
embedding WSD in classification yields significantly better results especially when the
training sets are small.

An issue that we will investigate in further work is the introduction of a weighting
scheme for hypernyms favoring hypernyms that are close to the concept. A success-
ful weighting scheme is expected to reduce the problem of the variance in the number
of hypernyms needed to achieve optimal performance. We will investigate learning ap-
proaches to learn the weighting schemes for hypernyms. Moreover, we aim in conducting
further experiments on other larger scale and heterogeneous data sets.
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Abstract. Near-synonyms or paraphrases are beneficial in a variety of
natural language and information retrieval applications, but so far their
acquisition has been confined to clean, trustworthy collections of docu-
ments with explicit external attributes. When such attributes are avail-
able, such as similar time stamps associated to a pair of news articles,
previous approaches rely on them as signals of potentially high content
overlap between the articles, often embodied in sentences that are only
slight, paraphrase-based variations of each other. This paper introduces
a new unsupervised method for extracting paraphrases from an informa-
tion source of completely different nature and scale, namely unstructured
text across arbitrary Web textual documents. In this case, no useful ex-
ternal attributes are consistently available for all documents. Instead, the
paper introduces linguistically-motivated text anchors, which are identi-
fied automatically within the documents. The anchors are instrumental
in the derivation of paraphrases through lightweight pairwise alignment
of Web sentence fragments. A large set of categorized names, acquired
separately from Web documents, serves as a filtering mechanism for im-
proving the quality of the paraphrases. A set of paraphrases extracted
from about a billion Web documents is evaluated both manually and
through its impact on a natural-language Web search application.

1 Motivation

The qualitative performance of applications relying on natural language pro-
cessing may suffer, whenever the input documents contain text fragments that
are lexically different and yet semantically equivalent as they are paraphrases of
each other. The automatic detection of paraphrases is important in document
summarization, to improve the quality of the generated summaries [1]; informa-
tion extraction, to alleviate the mismatch in the trigger word or the applicable
extraction pattern [2]; and question answering, to prevent a relevant document
passage from being discarded due to the inability to match a question phrase
deemed as very important [3].

In specialized collections such as news, the coverage of major events by dis-
tinct sources generates large numbers of documents with high overlap in their
content. Thus, the task of detecting documents containing similar or equivalent
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information is somewhat simplified by the relative document homogeneity, use of
properly-formatted text, the availability of external attributes (headlines), and
knowledge of the document temporal proximity (similar article issue dates, or
time stamps). When switching to unrestricted Web textual documents, all these
advantages and clues are lost. Yet despite the diversity of content, the sheer
size of the Web suggests that text fragments “hidden” inside quasi-anonymous
documents will sometimes contain similar, or even equivalent information.

The remainder of the paper is structured as follows. After an overview of the
proposed paraphrase acquisition method and a contrast to previous literature in
Section 2, Section 3 provides more details and explains the need for self-anchored
fragments as a source of paraphrases, as well as extensions for increasing the
accuracy. Candidate paraphrases are filtered based on a large set of categorized
named entities acquired separately from unstructured text. Section 4 describes
evaluation results when applying the method to textual documents from a Web
repository snapshot of the Google search engine. The section also evaluates the
impact of the extracted paraphrases in providing search results that directly
answer a standard evaluation set of natural-language questions.

2 Proposed Method for Paraphrase Acquisition

2.1 Goals

With large content providers and anonymous users contributing to the informa-
tion accessible online, the Web has grown into a significant resource of implicitly-
encoded human knowledge. The lightweight unsupervised method, presented in
this paper, acquires useful paraphrases by mining arbitrary textual documents
on the Web. The method is designed with a few goals in mind, which also rep-
resent advantages over previous methods:

1. No assumptions of any kind are made about the source, genre or structure of
the input documents. In the experiments reported here, noise factors such as
errors, misspellings, improperly formed sentences, or the use of html tags as
implicit visual delimiters of sentences, are the norm rather than exceptions.

2. The method does not have access to any document-level attributes, which
might otherwise hint at which pairs of documents are more likely to be
sources of paraphrases. Such external attributes are simply not available for
Web documents.

3. The acquisition is lightweight, robust and applicable to Web-scale collections.
This rules out the use of deeper text analysis tools, e.g. syntactic [4] or
semantic-role parsers [5].

4. For simplicity, the method derives paraphrases as a by-product of pairwise
alignment of sentence fragments. When the extremities of the sentence frag-
ments align, the variable parts become potential paraphrases of each other.

5. The method places an emphasis on defining the granularity (e.g., words,
phrases, sentences or entire passages) and the actual mechanism for select-
ing the sentence fragments that are candidates for pairwise alignment. The
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After 1989, when Soviet troops withdrew from Afghanistan, the mujahedeen fought a civil war
against the Afghan government, which devastated the country, Kabul in particular.

But Washington has steadily downgraded its involvement in and financial commitment to the
region since 1989, when Soviet troops pulled out of Afghanistan.

Fig. 1. Paraphrase acquisition from unstructured text across the Web

selection depends on text anchors, which are linguistic patterns whose role
is twofold. First, they reduce the search/alignment space, which would oth-
erwise be overwhelming (i.e., all combinations of contiguous sentence frag-
ments). Second and more important, the anchors increase the quality of po-
tential paraphrases, as they provide valuable linguistic context to the align-
ment phase, with little processing overhead.

2.2 Overview of Acquisition Method

As a pre-requisite, after filtering out html tags, the documents are tokenized,
split into sentences and part-of-speech tagged with the TnT tagger [6]. Due to
the inconsistent structure (or complete lack thereof) of Web documents, the
resulting candidate sentences are quite noisy. Therefore some of the burden of
identifying reliable sentences as sources of paraphrases is passed onto the acqui-
sition mechanism.

Figure 1 illustrates the proposed method for unsupervised acquisition of para-
phrases from Web documents. To achieve the goals listed above, the method
mines Web documents for sentence fragments and associated text anchors. The
method consists in searching for pairwise alignments of text fragments that have
the same associated anchors. In the example, the anchors are identical time
stamps (i.e., 1989) of the events captured by the sentence fragments. The acqui-
sition of paraphrases is a side-effect of the alignment.

The choice of the alignment type determines the constraints that two sentence
fragments must satisfy in order to align, as well as the type of the acquired
paraphrases. The example in Figure 1 is a const-var-const alignment. The two
sentence fragments must have common word sequences at both extremities, as
well as identical associated anchors. If that constraint holds, then the middle,
variable word sequences are potential paraphrases of each other. Even if two
sentences have little information content in common, their partial overlap can
still produce paraphrase pairs such as 〈pulled out of, withdrew from〉 in Figure 1.
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2.3 Comparison to Previous Work

Lexical resources such as WordNet [7] offer access to synonym sets, at the expense
of many years of manual construction efforts. As general-purpose resources, they
only cover the upper ontologies of a given language. Misspellings, idioms and
other non-standard linguistic phenomena occur often in the noisy Web, but
are not captured in resources like WordNet. Search engine hit counts rather
than entries in lexical resources can be successfully exploited to select the best
synonym of a given word, out of a small, closed-set of possible synonyms [8].

In addition to its relative simplicity when compared to more complex,
sentence-level paraphrase acquisition [9], the method introduced in this paper is
a departure from previous data-driven approaches in several respects. First, the
paraphrases are not limited to variations of specialized, domain-specific terms as
in [10], nor are they restricted to a narrow class such as verb paraphrases [11].
Second, as opposed to virtually all previous approaches, the method does not
require high-quality, clean, trustworthy, properly-formatted input data. Instead,
it uses inherently noisy, unreliable Web documents. The source data in [12] is
also a set of Web documents. However, it is based on top search results collected
from external search engines, and its quality benefits implicitly from the rank-
ing functions of the search engines. Third, the input documents here are not
restricted to a particular genre, whereas virtually all other recent approaches
are designed for collections of parallel news articles, whether the articles are
part of a carefully-compiled collection [13] or aggressively collected from Web
news sources [14]. Fourth, the acquisition of paraphrases in this paper does not
rely on external clues and attributes that two documents are parallel and must
report on the same or very similar events. Comparatively, previous work has
explicit access to, and relies strongly on clues such as the same or very similar
timestamps being associated to two news article documents [13], or knowledge
that two documents are translations by different people of the same book into
the same language [15].

3 Anchored Sentence Fragments as Sources of
Paraphrases

Even though long-range phrase dependencies often occur within natural-
language sentences, such dependencies are not available without deeper linguistic
processing. Therefore the acquisition method exploits only short-range depen-
dencies, as captured by text fragments that are contiguous sequences of words.
Two factors contribute substantially to the quality of the extracted paraphrases,
namely the granularity of the text fragments, and the selection of their bound-
aries.

3.1 Fragment Granularity: Passages vs. Sentence Fragments

In principle, the granularity of the text fragments used for alignment ranges from
full passages, a few sentences or a sentence, down to a sentence fragment, a phrase
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Table 1. Examples of incorrect paraphrase pairs collected through the alignment of
sentence fragments with arbitrary boundaries

(Wrong) Pairs Examples of Common Sentence Fragments

〈city, place〉 (to visit the of their birth) (is a beautiful on the river),
(live in a where things are) (once the richest in the world)

〈dogs, men〉 (one of the took a step) (does not allow to live in),
(average age of at diagnosis is) (a number of killed and wounded)

or a word. In practice, full text passages provide too much alignment context to
be useful, as the chance of finding pairwise const-var-const alignments of any two
passage pairs is very low. On the other hand, words and even phrases are useless
since they are too short and do not provide any context for alignment. Sentences
offer a good compromise in terms of granularity, but they are rarely confined to
describing exactly one event or property as illustrated by the two sentences from
Figure 1. Even though both sentences use similar word sequences to refer to a
common event, i.e. the withdrawal of troops, they do not align to each other
as complete sequences of words. Based on this and other similar examples, the
paraphrase acquisition method relies on the alignment of contiguous chunks of
sentences, or sentence fragments, instead of full-length sentences.

3.2 Fragment Boundaries: Arbitrary vs. Self-Anchored

It is computationally impractical to consider all possible sentence fragments as
candidates for alignment. More interestingly, such an attempt would actually
strongly degrade the quality of potential extractions as shown in Table 1. The
pairs 〈city, place〉 and 〈dogs, men〉 are extracted from 1149 and 38 alignments
found in a subset of Web documents, out of which only four alignments are
shown in the table. For example, the alignment of the sentence fragments “to
visit the city of their birth” and “to visit the place of their birth” results in
〈city, place〉 becoming a potential paraphrase pair. On the positive side, the
alignments capture properties shared among the potential paraphrases, such
as the fact that both cities and places can be visited, located on a river, be
lived in, or be the richest among others. Similarly, both categories of dogs and
men can take steps, not be allowed to live somewhere, have an average age,
and be killed or wounded. Unfortunately, the sharing of a few properties is not
a sufficient condition for two concepts to be good paraphrases of each other.
Indeed, neither 〈city, place〉 not 〈dogs, men〉 constitute adequate paraphrase
pairs.

Arbitrary boundaries are oblivious to syntactic structure, and will often span
only partially over otherwise cohesive linguistic units, such as complex noun
phrases, clauses, etc. Their main limitation, however, is the lack of an anchoring
context, that would act as a pivot to which the information within the sentence
fragments would be in strong dependency. We argue that it is both necessary and
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Table 2. Types of text anchors for sentence fragment alignment

Anchor Type Examples

Named entities (“Scott McNealy, CEO of Sun Microsystems”,
for appositives “Scott McNealy, chief executive officer of Sun Microsystems”)
Common statements (“President Lincoln was killed by John Wilkes Booth”,
for main verbs “President Lincoln was assassinated by John Wilkes Booth”)
Common dates for (“1989, when Soviet troops withdrew from Afghanistan”,
temporal clauses “1989, when Soviet troops pulled out of Afghanistan”)
Common entities (“Global and National Commerce Act, which took effect in

for adverbial October 2000”, “Global and National Commerce Act, which
relative clauses came into force in October 2000”)

possible to automatically extract anchoring context from the sentences, and use
it in conjunction with the sentence fragments, to decide whether the fragments
are worth aligning or not. Text anchors provide additional linguistic context to
the alignment phase. Generally speaking, they are linguistic units to which the
sentence fragments as a whole are in a strong syntactic or semantic relation. From
the types of anchors suggested in Table 2, only the temporal relative clauses and
the more general adverbial relative clauses are implemented in the experiments
reported in this paper.

To ensure robustness on Web document sentences, simple heuristics rather
than complex tools are used to approximate the text anchors and sentence frag-
ment boundaries. Sentence fragments are either temporal relative clauses or other
types of adverbial relative clauses. They are detected with a small set of lexico-
syntactic patterns, which can be summarized as:

(Temporal-Anchors): Date [,|-|(|nil] when TemporalClause [,|-|)|.]
(Adverbial-Anchors): NamedEntity [,|-|(|nil] WhAdv RelativeClause [,|-|)|.]
The patterns are based mainly on wh-words and punctuation. The disjunctive

notation [,|-|)|.] stands for a single occurrence of a comma, a dash, a parenthesis,
or a dot. WhAdv is one of who, which or where, and a NamedEntity is approxi-
mated by proper nouns, as indicated by part-of-speech tags. The matching clause
TemporalClause and RelativeClause must satisfy a few other constraints, which
aim at avoiding, rather than solving, complex linguistic phenomena. First, per-
sonal and possessive pronouns are often references to other entities. Therefore
clauses containing such pronouns are discarded as ambiguous. Second, apposi-
tives and other similar pieces of information are confusing when detecting the
end of the current clause. Consequently, during pattern matching, if the current
clause does not contain a verb, the clause is either extended to the right, or
discarded upon reaching the end of the sentence.

The time complexity for brute-force pairwise alignment is the square of the
cardinality of the set of sentence fragments sharing the same anchors. A faster
implementation exploits an existing parallel programming model [16] to divide
the acquisition and alignment phases into three extraction stages. Each stage is
distributed for higher throughput.
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Table 3. Examples of siblings within the resource of categorized named entities

Phrase Top Siblings

BMW M5 S-Type R, Audi S6, Porsche, Dodge Viper, Chevrolet Camaro, Ferrari
Joshua Tree Tahquitz, Yosemite, Death Valley, Sequoia, Grand Canyon, Everglades
NSA CIA, FBI, INS, DIA, Navy, NASA, DEA, Secret Service, NIST, Army
Research Arts, Books, Chat, Fitness, Education, Finance, Health, Teaching
Porto Lisbon, Algarve, Coimbra, Sintra, Lisboa, Funchal, Estoril, Cascais

3.3 Categorized Named Entities for Paraphrase Validation

Spurious sentences, imperfect alignments, and misleading contextual similar-
ity of two text fragments occasionally produce incorrect paraphrases. Another
contribution of the paper is the use of a novel post-filtering mechanism, which
validates the candidate paraphrase pairs against a large resource of InstanceOf
relations separately acquired from unstructured Web documents.

The data-driven extraction technique introduced in [17] collects large sets of
categorized named entities from the Web. A categorized named entity encodes
an InstanceOf relation between a named entity (e.g. Tangerine Dream) and a
lexicalized category (e.g., progressive rock group) to which the entity belongs.
Both the named entity and the lexicalized category are extracted from some
common sentence from the Web. Even though the algorithm in [17] was devel-
oped for Web search applications, it is exploited here as one of the many possible
criteria for filtering out some of the incorrect paraphrase pairs.

The key source of information derived from the categorized named entities
are the siblings, i.e. named entities that belong to the same category. They are
directly available in large numbers within the categorized named entities, as
named entities often belong to common categories as shown in Table 3. Since
siblings belong to a common class, they automatically share common properties.
This results in many surrounding sentence fragments that look very similar to
one another. Consequently, siblings produce a significant percentage of the in-
correct paraphrase pairs. However, these errors can be detected if the phrases
within a potential paraphrase pair are matched against the siblings from the
categorized names. If the elements in the pair are actually found to be siblings
of each other, their value as paraphrases is questionable at best, and hence the
pair is discarded.

4 Evaluation

4.1 Experimental Setting

The input data is a collection of approximately one billion Web documents from
a 2003 Web repository snapshot of the Google search engine. All documents
are in English. The sentence fragments that are aligned to each other for para-
phrase acquisition are based on two types of text anchors. In the first run,
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Table 4. Top ranked paraphrases in decreasing order of their frequency of occurrence
(top to bottom, then left to right)

With Temporal-Anchors With Adverbial-Anchors

passed, enacted percent, per- cent died, passed away included, includes
percent, per cent took, came into percent, per cent played, plays
figures, data totalled, totaled United States, US lives, resides
passed, approved took, came to finished with, scored operates, owns
statistics, figures over, more than over, more than consists of, includes
statistics, data enacted, adopted began, started center, centre
United States, US information is, include, includes came, entered

data are
figures are, data is information is, operates, runs takes, took

figures are
statistics are, data is was elected, begins, starts lost, won

became
passed, adopted statistics are, effect, force chairs, heads

information is

Temporal-Anchors, the sentence fragments are relative clauses that are tempo-
rally anchored through a when adverb to a date. In the Adverbial-Anchors sun,
the sentence fragments are adverbial relative clauses anchored to named entities
through other wh-adverbs.

For each unique date anchor (Temporal-Anchors) and named entity anchor
(Adverbial-Anchors), a maximum of 100,000 associated sentence fragments are
considered for pairwise alignment to one another. The extracted paraphrase pairs
are combined across alignments, and ranked according to the number of unique
alignments from which they are derived. Pairs that occur less than three times
are discarded.

The impact of the extracted paraphrases is measured on a test set of temporal
queries. The set consists of 199 When or What year queries from the TREC
Question Answering track (1999 through 2002) [18]. The queries extract direct
results from an existing experimental repository of 8 million factual fragments
associated with dates [17]. The fragments are similar to the sentence fragments
from the Temporal-Anchors run, e.g., 1953 associated to “the first Corvette
was introduced”, and 1906 associated to “Mount Vesuvius erupted”. Each query
receives a score equal to the reciprocal rank of the first returned result that is
correct, or 0 if there is no such result [18]. Individual scores are aggregated over
the entire query set.

4.2 Results

Table 4 shows the top paraphrases extracted in the two runs, after removal
of pairs that contain either only stop words, or any number of non-alphabetic
characters, or strings that differ only in the use of upper versus lower case.
A small number of extractions occur in both sets, e.g., 〈over, more than〉. At
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Table 5. Quality of the acquired paraphrases computed over the top, middle and
bottom 100 pairs

Temporal-Anchors Adverbial-Anchors
Classification of Pairs Top Mid Low Top Mid Low
(1) Correct; synonyms 53 37 3 33 23 6
(2) Correct; equal if case-insensitive 4 7 0 9 2 14
(3) Correct; morphological variation 0 0 0 20 15 6
(4) Correct; punctuation, symbols,spelling 22 1 10 18 11 15
(5) Correct; hyphenation 2 33 0 2 19 43
(6) Correct; both are stop words 15 0 0 1 0 0
Total correct 96 78 13 83 70 84
(7) Siblings rather than synonyms 0 10 82 5 7 7
(8) One side adds an elaboration 0 11 4 4 3 1
Total siblings 0 21 86 9 10 8
(10) Incorrect; e.g., antonyms 4 1 1 8 20 8

least one of the pairs is spurious, namely 〈lost, won〉, which are antonyms rather
than synonyms. Difficulties in distinguishing between synonyms, on one side,
and siblings or co-ordinate terms (e.g., Germany and France) or even antonyms,
on the other, have also been reported in [11]. The occurrence of the spurious
antonym pair in Table 4 suggests that temporal anchors provide better alignment
context than the more general adverbial anchors, as they trade off coverage for
increased accuracy.

The automatic evaluation of the acquired paraphrases is challenging despite
the availability of external lexical resources and dictionaries. For example, the
lexical knowledge encoded in WordNet [7] does not include the pair 〈abduction,
kidnapping〉 as synonyms, or the pair 〈start, end〉 as antonyms. Therefore these
and many other pairs of acquired paraphrases cannot be automatically evaluated
as correct (if synonyms) or incorrect (e.g., if antonyms) based only on information
from the benchmark resource. To measure the quality of the paraphrases, the top,
middle and bottom 100 paraphrase pairs from each run are categorized manually
into the classes shown in Table 5. Note that previous work on paraphrase acquisi-
tion including [9], [13] and [16] also relies on manual rather than automatic eval-
uation components. The pairs in class (1) in Table 5 are the most useful; they in-
clude 〈photo, picture〉, 〈passed, approved〉, etc. The following categories correspond
to other pairs classified as correct. For instance, 〈Resolution, resolution〉 is classi-
fied in class (2); 〈takes, took〉 is classified in class (3); 〈world, wolrd〉 is classified in
(4); 〈per-cent, percent〉 in (5); and 〈has not, hasn’t〉 in (6). The next three classes do
not contain synonyms. The pairs in (7) are siblings rather than direct synonyms,
including pairs of different numbers. Class (8) contains pairs in which a portion of
one of the elements is a synonym or phrasal equivalent of the other element, such
as 〈complete data, records〉. Finally, the last class from Table 5 corresponds to in-
correct extractions, e.g. due to antonyms like 〈started, ended〉. The results confirm
that temporal anchors produce better paraphrases, at least over the first half of
the ranked list of paraphrases. In comparison to the results shown in Table 5, the
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Table 6. Examples of paraphrase pairs discarded by sibling-based validation

Discarded Pair Ok? Discarded Pair Ok?

April, Feb. Yes Monday, Tuesday Yes
season, year Yes country, nation No
goods, services Yes north, south Yes
Full, Twin Yes most, some Yes
country, county Yes higher, lower Yes
authority, power No Democrats, Republicans Yes
England, Scotland Yes fall, spring Yes

Table 7. Performance improvement on natural-language queries

Max. Nr. Disjunctions Nr. Queries with Nr. Queries with Overall
per Expanded Phrase Better Scores Lower Scores Score

1 (no paraphrases) 0 0 52.70
5 (4 paraphrases) 18 5 63.35

evaluation of a sample of 215 pairs results in an accuracy of 61.4% in [11], whereas
81.4% of a sample of 59 pairs are deemed as correct in [9].

The validation procedure, based on siblings from categorized names, identifies
and discards 4.7% of the paraphrase pairs as siblings of one another. This is a
very good ratio, if corroborated with the percentage of pairs classified as siblings
in Table 5. Out of 200 pairs selected randomly among the discarded pairs, 28 are
in fact useful synonyms, which corresponds to a projected precision of 86% for
the validation procedure. Table 6 illustrates a few of the pairs discarded during
validation.

The acquired paraphrases impact the accuracy of the dates retrieved from the
repository of factual fragments associated with dates. All phrases from the test
set of temporal queries are expanded into Boolean disjunctions with their top-
ranked paraphrases. For simplicity, only individual words rather than phrases
are expanded, with up to 4 paraphrases per word. For example, the inclusion
of paraphrases into the query Q685:“When did Amtrak begin operations?” re-
sults in the expansion “When did Amtrak (begin|start|began|continue| commence)
(operations|operation|activities|business|operational)?”. The top result retrieved
for the expanded query is 1971, which is correct according to the gold standard.

As shown in Table 7, paraphrases improve the accuracy of the returned dates,
increase the number of queries for which a correct result is returned, and increase
the overall score by 20%. Further experiments show that the incremental addi-
tion of more paraphrases, i.e., four versus three paraphrases per query word, re-
sults in more individual queries with a better score than for their non-expanded
version, and higher overall scores for the returned dates. After reaching a peak
score, the inclusion of additional paraphrases in each expansion actually degrades
the overall results, as spurious paraphrases start redirecting the search towards
irrelevant items.
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5 Conclusion

Sophisticated methods developed to address various natural language process-
ing tasks tend to make strong assumptions about the input data. In the case of
paraphrase acquisition, many methods assume reliable sources of information,
clean text, expensive tools such as syntactic parsers, and the availability of ex-
plicit document attributes. Comparatively, this paper makes no assumption of
any kind about the source or structure of the input documents. The acquisition
of paraphrases is a result of pairwise alignment of sentence fragments occurring
within the unstructured text of Web documents. The inclusion of lightweight
linguistic context into the alignment phase increases the quality of potential
paraphrases, as does the filtering of candidate paraphrases based on a large set
of categorized named entities also extracted from unstructured text. The exper-
iments show that unreliable text of the Web can be distilled into paraphrase
pairs of good quality, which are beneficial in returning direct results to natural-
language queries.
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Abstract. Mining sequential patterns aims at discovering correlations between
events through time. However, even if many works have dealt with sequential
pattern mining, none of them considers frequent sequential patterns involving
several dimensions in the general case. In this paper, we propose a novel
approach, called M2SP, to mine multidimensional sequential patterns. The
main originality of our proposition is that we obtain not only intra-pattern
sequences but also inter-pattern sequences. Moreover, we consider generalized
multidimensional sequential patterns, called jokerized patterns, in which some
of the dimension values may not be instanciated. Experiments on synthetic data
are reported and show the scalability of our approach.

Keywords: Data Mining, Sequential Patterns, Multidimensional Rules.

1 Introduction

Mining sequential patterns aims at discovering correlations between events through
time. For instance, rules that can be built are A customer who bought a TV and a DVD
player at the same time later bought a recorder. Work dealing with this issue in the
literature have proposed scalable methods and algorithms to mine such rules [9]. As
for association rules, the efficient discovery is based on the support which indicates to
which extend data from the database contains the patterns.

However, these methods only consider one dimension to appear in the patterns,
which is usually called the product dimension. This dimension may also represent
web pages for web usage mining, but there is normally a single dimension. Although
some works from various studies claim to combine several dimensions, we argue here
that they do not provide a complete framework for multidimensional sequential pattern
mining [4,8,11]. The way we consider multidimensionality is indeed generalized in the
sense that patterns must contain several dimensions combined over time. For instance
we aim at building rules like A customer who bought a sur f board and a bag in NY later
bought a wetsuit in SF. This rule not only combines two dimensions (City and Product)
but it also combines them over time (NY appears before SF, surfboard appears before
wetsuit). As far as we know, no method has been proposed to mine such rules.

In this paper, we present existing methods and their limits. Then, we define the basic
concepts associated to our proposition, called M2SP, and the algorithms to build such
rules. Experiments performed on synthetic data are reported and assess our proposition.

A. Jorge et al. (Eds.): PKDD 2005, LNAI 3721, pp. 205–216, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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In our approach, sequential patterns are mined from a relational table, that can be
seen as a fact table in a multidimensional database. This is why, contrary to the stan-
dard terminology of the relational model, the attributes over which a relational table is
defined are called dimensions.

In order to mine such frequent sequences, we extend our approach so as to take
into account partially instanciated tuples in sequences. More precisely, our algorithms
are designed in order to mine frequent jokerized multidimensional sequences contain-
ing as few ∗ as possible, i.e., replacing an occurrence of ∗ with any value from the
corresponding domain cannot give a frequent sequence.

The paper is organized as follows: Section 2 introduces a motivating example il-
lustrating the goal of our work, and Section 3 reviews previous works on sequential
patterns mining. Section 4 introduces our contribution, and in Section 5, we extend
multidimensional patterns to jokerized patterns. Section 6 presents the algorithms, and
experiments performed on synthetic data are reported in Section 7. Section 8 concludes
the paper.

2 Motivating Example

In this section, we first briefly recall the basic ingredients of the relational model of
databases used in this paper (we refer to [10] for details on this model), and we present
an example to illustrate our approach. This example will be used throughout the paper
as a running example.

Let U = {D1, . . .Dn} be a set of attributes, which we call dimensions in our ap-
proach. Each dimension Di is associated with a (possibly infinite) domain of values,
denoted by dom(Di). A relational table T over universe U is a finite set of tuples
t = (d1, . . . ,dn) such that, for every i = 1, . . . ,n, di ∈ dom(Di). Moreover, given a ta-
ble T over U , for every i = 1, . . . ,n, we denote by DomT (Di) (or simply Dom(Di) if
T is clear from the context) the active domain of Di in T , i.e., the set of all values of
dom(Di) that occur in T .

Since we are interested in sequential patterns, we assume that U contains at least
one dimension whose domain is totally ordered, corresponding to the time dimension.

In our running example, we consider a relational table T in which transactions is-
sued by customers are stored. More precisely, we consider a universe U containing six
dimensions (or attributes) denoted by D, CG, A, P and Q, where: D is the date of trans-
actions (considering three dates, denoted by 1,2 and 3), CG is the category of customers
(considering two categories, denoted by Educ and Ret, standing for educational and re-
tired customers, respectively), A is the age of customers (considering three discretized
values, denoted by Y (young), M (middle) and O (old)), C is the city where transactions
have been issued (considering three cities, denoted by NY (New York), LA (Los An-
geles) and SF (San Francisco)), P is the product of the transactions (considering four
products, denoted by c,m, p and r), and Q stands for the quantity of products in the
transactions (considering nine such quantities).

Fig. 1 shows the table T in which, for instance, the first tuple means that, at date
1, educational young customers bought 50 products c in New York. Let us now as-
sume that we want to extract all multidimensional sequences that deal with the age of
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customers, the products they bought and the corresponding quantities, and that are fre-
quent with respect to the groups of customers and the cities where transactions have
been issued. To this end, we consider three sets of dimensions as follows: (i) the dimen-
sion D, representing the date, (ii) the three dimensions A,P and Q that we call analysis
dimensions, (iii) the two dimensions CG and C, that we call reference dimensions.

Tuples over analysis dimensions are those that appear in the items that constitute the
sequential patterns to be mined. The table is partitioned into blocks according to tuple
values over reference dimensions and the support of a given multidimensional sequence
is the ratio of the number of blocks supporting the sequence over the total number of
blocks. Fig. 2 displays the corresponding blocks in our example.

In this framework, 〈{(Y,c,50),(M, p,2)},{(M,r,10)}〉 is a multidimensional se-
quence having support 1

3 , since the partition according to the reference dimensions con-
tains 3 blocks, among which one supports the sequence. This is so because (Y,c,50)
and (M, p,2) both appear at the same date (namely date 1), and (M,r,10) appears later
on (namely at date 2) in the first block shown in Figure 4.

It is important to note that, in our approach, more general patterns, called joker-
ized sequences, can be mined. The reason for this generalization is that considering
partially instanciated tuples in sequences implies that more frequent sequences are
mined. To see this, considering a support threshold of 2

3 , no sequence of the form
〈{(Y,c,μ)},{(M,r,μ′)}〉 is frequent. On the other hand, in the first two blocks of Fig.
2, Y associated with c and M associated with r appear one after the other, according
to the date of transactions. Thus, we consider that the jokerized sequence, denoted by
〈{(Y,c,∗)},{(M,r,∗)}〉, is frequent since its support is equal to 2

3 .

D CG C A P Q
(Date) (Customer-Group) (City) (Age) (Product) (Quantity)

1 Educ NY Y c 50
1 Educ NY M p 2
1 Educ LA Y c 30
1 Ret. SF O c 20
1 Ret. SF O m 2
2 Educ NY M p 3
2 Educ NY M r 10
2 Educ LA Y c 20
3 Educ LA M r 15

Fig. 1. Table T

3 Related Work

In this section, we argue that our approach generalizes previous works on sequential pat-
terns. In particular, the work described in [8] is said to be intra-pattern since sequences
are mined within the framework of a single description (the so-called pattern). In this
paper, we propose to generalize this work to inter-pattern multidimensional sequences.
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3.1 Sequential Patterns

An early example of research in the discovering of patterns from sequences of events
can be found in [5]. In this work, the idea is the discovery of rules underlying the gen-
eration of a given sequence in order to predict a plausible sequence continuation. This
idea is then extended to the discovery of interesting patterns (or rules) embedded in a
database of sequences of sets of events (items). A more formal approach in solving the
problem of mining sequential patterns is the AprioriAll algorithm as presented in [6].
Given a database of sequences, where each sequence is a list of transactions ordered by
transaction time, and each transaction is a set of items, the goal is to discover all se-
quential patterns with a user-specified minimum support, where the support of a pattern
is the number of data-sequences that contain the pattern.

In [1], the authors introduce the problem of mining sequential patterns over large
databases of customer transactions where each transaction consists of customer-id,
transaction time, and the items bought in the transaction. Formally, given a set of se-
quences, where each sequence consists of a list of elements and each element consists
of a set of items, and given a user-specified min support threshold, sequential pattern
mining is to find all of the frequent subsequences, i.e., the subsequences whose occur-
rence frequency in the set of sequences is no less than min support. Sequential pattern
mining discovers frequent patterns ordered by time. An example of this type of pat-
tern is A customer who bought a new television 3 months ago, is likely to buy a DVD
player now. Subsequently, many studies have introduced various methods in mining
sequential patterns (mainly in time-related data) but almost all proposed methods are
Apriori-like, i.e., based on the Apriori property which states the fact that any super-
pattern of a nonfrequent pattern cannot be frequent. An example using this approach is
the GSP algorithm [9].

3.2 Multidimensional Sequential Patterns

As far as we know, three propositions have been studied in order to deal with several di-
mensions when building sequential patterns. Next, we briefly recall these propositions.

Pinto et al. [8]. This work is the first one dealing with several dimensions in the frame-
work of sequential patterns. For instance, purchases are not only described by consid-
ering the customer ID and the products, but also by considering the age, the type of the
customer (Cust-Grp) and the city where (s)he lives, as shown in Fig. 1.

Multidimensional sequential patterns are defined over the schema A1, ...,Am,S
where A1, . . . ,Am are the dimensions describing the data and S is the sequence of items
purchased by the customers ordered over time. A multidimensional sequential pattern
is defined as (id1,(a1, ...,am),s) where ai ∈ Ai∪{∗}. id1,(a1, ...,am) is said to be a mul-
tidimensional pattern. For instance, the authors consider the sequence ((∗,NY,∗),〈b f 〉)
meaning that customers from NY have all bought a product b and then a product f . Se-
quential patterns are mined from such multidimensional databases either (i) by mining
all frequent sequential patterns over the product dimension and then regrouping them
into multidimensional patterns, (ii) or by mining all frequent multidimensional patterns
and then mining frequent product sequences over these patterns. Note that the sequences
found by this approach do not contain several dimensions since the dimension time only
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concerns products. Dimension product is the only dimension that can be combined over
time, meaning that it is not possible to have a rule indicating that when b is bought in
Boston then c is bought in NY . Therefore, our approach can seen as a generalization of
the work in [8].

Yu et Chen. [11]. In this work, the authors consider sequential pattern mining in the
framework of Web Usage Mining. Even if three dimensions (pages, sessions, days)
are considered, these dimensions are very particular since they belong to a single hi-
erarchized dimension. Thus, the sequences mined in this work describe correlations
between objects over time by considering only one dimension, which corresponds to
the web pages.

de Amo et al. [4]. This approach is based on first order temporal logic. This proposition
is close to our approach, but more restricted since (i) groups used to compute the sup-
port are predefined whereas we consider the fact that the user should be able to define
them (see reference dimensions below), and (ii) several attributes cannot appear in the
sequences. The authors claim that they aim at considering several dimensions but they
have only shown one dimension for the sake of simplicity. However, the paper does not
provide hints for a complete solution with real multidimensional patterns, as we do in
our approach.

4 M2SP: Mining Multidimensional Sequential Patterns

4.1 Dimension Partition

For each table defined on the set of dimensions D, we consider a partition of D into
four sets: Dt for the temporal dimension, DA for the analysis dimensions, DR for the
reference dimensions, and DF for the ignored dimensions.

Each tuple c = (d1, . . . ,dn) can thus be written as c = ( f ,r,a, t) where f , r, a and t
are the restrictions of c on DF, DR, DA and Dt , respectively.

Given a table T , the set of all tuples in T having the same restriction r over DR is
said to be a block. Each such block B is denoted by the tuple r that defines it, and we
denote by BT,DR

the set of all blocks that can be built up from table T .
In our running example, we consider F = /0, DR = {CG,C}, DA = {A,P,Q} and

Dt = {D}. Fig. 2 shows the three blocks built up from table T .

D CG C A P Q
1 Educ NY Y c 50
1 Educ NY M p 2
2 Educ NY M p 3
2 Educ NY M r 10

a. Block (Educ,NY )

D CG C A P Q
1 Educ LA Y c 30
2 Educ LA Y c 20
3 Educ LA M r 15

b. Block (Educ,LA)

D CG C A P Q
1 Ret. SF O c 20
1 Ret. SF O m 2

c. Block (Ret.,SF)

Fig. 2. Blocks defined on T over dimensions CG and C
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When mining multidimensional sequential patterns, the set DR identifies the blocks
of the database to be considered when computing supports. The support of a sequence is
the proportion of blocks embedding it. Note that, in the case of usual sequential patterns
and of sequential patterns as in [8] and [4], this set is reduced to one dimension (cid in
[8] or IdG in [4]).

The set DA describes the analysis dimensions, meaning that values over these di-
mensions appear in the multidimensional sequential patterns. Note that usual sequential
patterns only consider one analysis dimension corresponding to the products purchased
or the web pages visited. The set F describes the ignored dimensions, i.e. those that are
used neither to define the date, nor the blocks, nor the patterns to be mined.

4.2 Multidimensional Item, Itemset and Sequential Pattern

Definition 1 (Multidimensional Item). Let DA = {Di1 , . . . ,Dim} be a subset of D. A
multidimensional item on DA is a tuple e = (di1 , . . . ,dim) such that, for every k in [1,m],
dik is in Dom(Dik).

Definition 2 (Multidimensional Itemset). A multidimensional itemset on DA is a non
empty set of items i = {e1, . . . ,ep} where for every j in [1, p], e j is a multidimensional
item on DA and for all j,k in [1, p], e j �= ek.

Definition 3 (Multidimensional Sequence). A multidimensional sequence on DA is
an ordered non empty list of itemsets ς = 〈i1, . . . , il〉 where for every j in [1, l], i j is a
multidimensional itemset on DA.

In our running example, (Y,c,50), (M, p,2), (M,r,10) are three multidimensional items
on DA = {A,P,Q}. Thus, 〈{(Y,c,50),(M, p,2)},{(M,r,10)}〉 is a multidimensional se-
quence on DA.

Definition 4 (Inclusion of sequence). A multidimensional sequence ς = 〈a1, . . . ,al〉 is
said to be a subsequence of a sequence ς′ = 〈b1, . . . ,bl′ 〉 if there exist 1 ≤ j1 ≤ j2 ≤
. . .≤ jl ≤ l′ such that a1 ⊆ b j1 ,a2 ⊆ b j2 , . . . ,al ⊆ b jl .

With ς = 〈{(Y,c,50)}, {(M,r,10)}〉 and ς′ = 〈{(Y,c,50),(M, p,2)},{(M,r,10)}〉, ς is a sub-
sequence of ς′.

4.3 Support

Computing the support of a sequence amounts to count the number of blocks that sup-
port the sequence. Intuitively, a block supports a sequence ς if (i) for each itemset i in
ς there exists a date in Dom(Dt) such that all items in i appear at this date, and (ii) all
itemsets in ς are successively retrieved at different and increasing dates.

Definition 5. A table T supports a sequence 〈i1, . . . , il〉 if for every j = 1, . . . , l, there
exists d j in Dom(Dt) such that for every item e in i j, there exists t = ( f ,r,e,d j) in T
with d1 < d2 < . . . < dl.
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In our running example, the block (Educ,NY ) from Fig. 2.a supports ς = 〈{(Y,c,50),
(M, p,2)}, {(M,r,10)}〉 since {(Y,c,50), (M, p,2)} appears at date = 1 and
{(M,r,10)} appears at date = 2.

The support of a sequence in a table T is the proportion of blocks of T that support
it.

Definition 6 (Sequence Support). Let DR be the reference dimensions and T a table
partitioned into the set of blocks BT,DR

. The support of a sequence ς is defined by:

support(ς) =
|{B∈BT,DR

| B supports ς}|
|BT,DR

|

Definition 7 (Frequent Sequence). Let minsup ∈ [0,1] be the minimum user-defined
support value. A sequence ς is said to be frequent if support(ς)≥ minsup.
An item e is said to be frequent if so is the sequence 〈{e}〉.
In our running example, let us consider DR = {CG,C}, DA = {A,P,Q}, minsup = 1

5 ,
ς = 〈{(Y,c,50),(M, p,2)},{(M,r,10)}〉. The three blocks of the partition of T from
Fig. 2 must be scanned to compute support(ς).
1. Block (Educ,NY) (Fig. 2.a). In this block, we have (Y,c,50) and (M, p,2) at date 1,
and (M,r,10) at date 2. Thus this block supports ς.
2. Block (Educ,LA) (Fig. 2.b). This block does not support ς since it does not contain
(M, p,2).
3. Block (Ret.,SF) (Fig. 2.c). This block does not support ς since it contains only one
date.
Thus, we have support(ς) = 1

3 ≥ minsup.

5 Jokerized Sequential Patterns

Considering the definitions above, an item can only be retrieved if there exists a frequent
tuple of values from domains of DA containing it. For instance, it can happen that
neither (Y,r) nor (M,r) nor (O,r) is frequent whereas the value r is frequent. In this
case, we consider (∗,r) which is said to be jokerized.

Definition 8 (Jokerized Item). Let e = (d1, . . . ,dm) a multidimensional item. We de-
note by e[di/δ] the replacement in e of di by δ. e is said to be a jokerized multidimen-
sional item if: (i) ∀i ∈ [1,m],di ∈ Dom(Di)∪{∗}, and (ii) ∃i ∈ [1,m] such that di �= ∗,
and (iii) ∀di = ∗, �δ ∈Dom(Di) such that e[di/δ] is frequent.

A jokerized item contains at least one specified analysis dimension. It contains a ∗ only
if no specific value from the domain can be set. A jokerized sequence is a sequence
containing at least one jokerized item. A block is said to support a sequence if a set of
tuples containing the itemsets satisfying the temporal constraints can be found.

Definition 9 (Support of a Jokerized Sequence). A table T supports a jokerized
sequence ς = 〈i1, . . . , il〉 if: ∀ j ∈ [1, l], ∃δ j ∈ Dom(Dt), ∀e = (di1 , . . . ,dim) ∈ i j, ∃t =
( f ,r,(xi1 , . . . ,xim),δ j) ∈ T with dik = xik or dik = ∗ and δ1 < δ2 < . . . < δl .

The support of ς is defined by: support(ς) =
|{B∈BT,DR

s.t.B supports ς}|
|BT,DR

|



212 M. Plantevit et al.

6 Algorithms

6.1 Mining Frequent Items

The computation of all frequent sequences is based on the computation of all frequent
multidimensional items. When considering no joker value, a single scan of the database
is enough to compute them.

On the other hand, when considering jokerized items, a levelwise algorithm is used
in order to build the frequent multidimensional items having as few joker values as
possible. To this end, we consider a lattice which lower bound is the multidimensional
item (∗, . . . ,∗). This lattice is partially built from (∗, . . . ,∗) up to the frequent items
containing as few ∗ as possible. At level i, i values are specified, and items at this level
are combined to build a set of candidates at level i+1. Two frequent items are combined
to build a candidate if they are ��-compatible.

Definition 10 (��-compatibility). Let e1 = (d1, . . . ,dn) and e2 = (d′1, . . . ,d
′
n) be two

distinct multidimensional items where di and d′i ∈ dom(Di)∪{∗}. e1 and e2 are said to
be ��-compatible if there exists Δ= {Di1 , . . . ,Din−2} ⊂ {D1, . . . ,Dn} such that for every
j ∈ [1,n−2], di j = d′i j

�= ∗ with din−1 = ∗ and d′in−1
�= ∗ and din �= ∗ and d′in = ∗.

Definition 11 (Join). Let e1 = (d1, . . . ,dn) and e2 = (d′1, . . . ,d
′
n) be two ��-compatible

multidimensional items. We define e1 �� e2 = (v1, . . . ,vn) where vi = di if di = d′i , vi = di

if d′i = ∗ and vi = d′i if di = ∗.
Let E and E ′ be two sets of multidimensional items of size n, we define

E �� E ′ = {e �� e′ | (e,e′) ∈ E×E ′ ∧ e and e’ are ��-compatible}
In our running example, (NY,Y,∗) and (∗,Y,r) are ��-compatible. We have (NY,Y,∗) ��
(∗,Y,r) = (NY,Y,r). On the contrary, (NY,M,∗) and (NY,Y,∗) are not ��-compatible.
Note that this method is close to the one used for iceberg cubes in [2,3].

Let Fi
1 denote the set of 1-frequent items having i dimensions which are specified

(different from ∗). F1
1 is obtained by counting each value over each analysis dimension,

i.e., F1
1 = { f ∈Cand1

1 , support( f ) ≥ minsup}. Candidate items of size i are obtained
by joining the set of frequent items of size i−1 with itself: Candi

1 = Fi−1
1 �� Fi−1

1 .

Function supportcount
Data : ς,T,DR,counting //counting indicates if joker values are considered or not
Result : support of ς
Integer support ←− 0 ; Boolean seqSupported;
BT,DR ←− {blocks o f T identi f ied over DR};
foreach B ∈BT,DR do

seqSupported ←− supportTable(ς,B,counting) ;
if seqSupported then support ←− support +1;

return
(

support
|BT,DR |

)
Algorithm 1: Support of a sequence (supportcount)
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Function supportTable
Data : ς,T,counting
Result : Boolean
ItemSetFound ←− f alse ; seq←− ς ; itset ←− seq. f irst() ; it ←− itset. f irst()
if ς = /0 then return (true) // End of Recursivity
while t ←− T.next �= /0 do

if supports(t, it,counting) then
if (NextItem←− itset.second()) = /0 then ItemSetFound ←− true
// Look for all the items from the itemset
else

// Anchoring on the item (date)
T ′ ←− σdate=t.date(T )
while t ′ ←− T ′.next() �= /0∧ ItemSetFound = f alse do

if supports(t ′,NextItem,counting) then NextItem←− itset.next()
if NextItem = /0 then ItemSetFound ←− true

if ItemSetFound = true then
// Anchoring on the current itemset succeeded; test the other itemsets in seq
return (supportTable(seq.tail(),σdate>t.date(T ),counting))

else
// Anchoring failure: try anchoring with the next dates
itset ←− seq. f irst()
T ←− σdate>t.date(T ) // Skip to next dates

return(false) // Not found

Algorithm 2: supportTable (Checks if a sequence ς is supported by a table T )

6.2 Mining Jokerized Multidimensional Sequences

The frequent items give all frequent sequences containing one itemset consisting of a
single item. Then, the candidate sequences of size k (k≥ 2) are generated and validated
against the table T . This computation is based on usual algorithms such as PSP [7] that
are adapted for the treatment of joker values.

The computation of the support of a sequence ς according to the reference dimen-
sions DR is given by Algorithm 1. This algorithm checks whether each block of the
partition supports the sequence by calling the function supportTable (Algorithm 2).
supportTable attempts to find a tuple from the block that matches the first item of the
first itemset of the sequence in order to anchor the sequence. This operation is repeated
recursively until all itemsets from the sequence are found (return true) or until there is
no way to go on further (return false). Several possible anchors may have to be tested.

7 Experiments

In this section, we report experiments performed on synthetic data. These experiments
aim at showing the interest and scalability of our approach, especially in the jokerized
approach. As many databases from the real world include quantitative information, we
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have distinguished a quantitative dimension. In order to highlight the particular role of
this quantitative dimension, we consider four ways of computing frequent sequential
patterns: (i) no joker (M2SP), (ii) jokers on all dimensions but the quantitative one
(M2SP-alpha), (iii) jokers only on the quantitative dimension (M2SP-mu), (iv) jokers
on all dimensions (M2SP-alpha-mu). Note that case (iv) corresponds to the jokerized
approach presented in Section 5. Our experiments can thus be seen as being conducted
in the context of a fact table of a multidimensional database, where the quantitative
dimension is the measure. In Figures 5-12, minsup is the minimum support taken into
account, nb dim is the number of analysis dimensions being considered, DB size is the
number of tuples, and avg card is the average number of values in the domains of the
analysis dimensions.

Fig. 3 and 4 compare the behavior of the four approaches described above when
the support changes. M2SP-alpha and M2SP-alpha-mu have a similar behavior, the
difference being due to the verification of quantities in the case of M2SP-alpha. Note
that these experiments are not led with the same minimum support values, since no
frequent items are found for M2SP and M2SP-mu if the support is too high. Fig. 5
shows the scalability of our approach since runtime grows almost linearly when the
database size increases (from 1,000 tuples up to 26,000 tuples).

Fig. 6 shows how runtime behaves when the average cardinality of the domains of
analysis dimensions changes. When this average is very low, numerous frequent items
are mined among few candidates. On the contrary, when this average is high, numer-
ous candidates have to be considered from which few frequent items are mined. Be-
tween these two extrema, the runtime decreases. Fig. 7 and 8 show the behavior of our
approach when the number of analysis dimensions changes. The number of frequent
items increases as the number of analysis dimensions grows, leading to an increase
of the number of frequent sequences. Fig. 9 and 10 show the differential between the
number of frequent sequences mined by our approach compared to the number of fre-
quent sequences mined by the approach described in [8], highlighting the interest of our
proposition.
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8 Conclusion

In this paper, we have proposed a novel definition for multidimensional sequential pat-
terns. Contrary to the propositions [4,8,11], several analysis dimensions can be found
in the sequence, which allows for the discovery of rules as A customer who bought a
surfboard together with a bag in NY later bought a wetsuit in LA. We have also defined
jokerized sequential patterns by introducing the joker value ∗ on analysis dimensions.
Algorithms have been evaluated against synthetic data, showing the scalability of our
approach.

This work can be extended following several directions. For example, we can take
into account approximate values on quantitative dimensions. In this case, we allow
the consideration of values that are not fully jokerized while remaining frequent. This
proposition is important when considering data from the real world where the high num-
ber of quantitative values prevents each of them to be frequent. Rules to be built will
then be like The customer who bought a DVD player on the web is likely to buy almost
3 DVDs in a supermarket later. Hierarchies can also be considered in order to mine
multidimensional sequential patterns at different levels of granularity in the framework
of multidimensional databases.
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Abstract. In the CoNLL 2003 NER shared task, more than two thirds of the 
submitted systems used the feature-rich representation of the task.  Most of 
them used maximum entropy to combine the features together.  Others used lin-
ear classifiers, such as SVM and RRM.  Among all systems presented there, 
one of the MEMM-based classifiers took the second place, losing only to a 
committee of four different classifiers, one of which was ME-based and another 
RRM-based.  The lone RRM was fourth, and CRF came in the middle of the 
pack.  In this paper we shall demonstrate, by running the three algorithms upon 
the same tasks under exactly the same conditions that this ranking is due to fea-
ture selection and other causes and not due to the inherent qualities of the algo-
rithms, which should be ranked otherwise. 

1   Introduction 

Recently, feature-rich probabilistic conditional classifiers became state-of-the-art in 
sequence labeling tasks, such as NP chunking, PoS tagging, and Named Entity Rec-
ognition. Such classifiers build a probabilistic model of the task, which defines a 
conditional probability on the space of all possible labelings of a given sequence.  In 
this, such classifiers differ from the binary classifiers, such as decision trees and rule-
based systems, which directly produce classification decisions, and from the genera-
tive probabilistic classifiers, such as HMM-based Nymble [2] and SCFG-based TEG 
[8], which model the joint probability of sequences and their labelings.  Modeling the 
conditional probability allows the classifiers to have all the benefits of probabilistic 
systems while having the ability to use any property of tokens and their contexts, if 
the property can be represented in the form of binary features.  Since almost all local 
properties can be represented in such a way, this ability is very powerful. 

There are several different feature-rich probabilistic classifiers developed by dif-
ferent researchers, and in order to compare them, one usually takes a known publicly 
available dataset, such as MUC-7 [23] or CoNLL shared task [12], and compares the 
performance of the algorithms on the dataset.  However, performance of a feature-rich 
classifier strongly depends upon the feature sets it uses.  Since systems developed by 
different researches are bound to use different feature sets, the differences in perform-
ance of complete systems can not reliably teach us about the qualities of the  
underlying algorithms. 
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In this work we compare the performances of three common models (all present in 
the CoNLL 2003 shared task) – MEMM  [15], CRF [16], and RRM (regularized Win-
now) [14] – within the same platform, using exactly the same set of features.  We also 
test the effects of different training sizes, different choice of parameters, and different 
feature sets upon the algorithms' performance. 

Our experiments indicate that CRF outperforms MEMM for all datasets and fea-
ture sets, which is not surprising, since CRF is a better model of sequence labeling.  
Surprisingly, though, the RRM performs at the same level or even better than CRF, 
despite being local model like MEMM, and being significantly simpler to build than 
both CRF and MEMM. 

The following section of the paper we outline the three algorithms.  We then pre-
sent our experiments and their results. 

2   Classifiers 

The general sequence labeling problem can be described as follows. Given a small set 
Y of labels, and a sequence x = x1x2…xl(x)

 , the task is to find a labeling y = y1y2…yl(x), 
where each label yi ∈ Y. In the framework of feature-rich classifiers, the elements xi of 
the sequence should not be thought of as simple tokens, but rather as sequence posi-
tions, or contexts.  The contexts are characterized by a set of externally supplied bi-
nary features. Thus, each context xi can be represented as a vector xi=(xi1,xi2,…,xik), 
where xij = 1 if the j-th feature is present in the i-th context, and xij = 0 otherwise. 

The feature-rich sequence classifiers have no knowledge of the nature of features 
and labels.  Instead, in order to make predictions, the classifiers are supplied with a 
training set T = {(x(t), y(t))}t=1..n of sequences with their intended labelings.  The classi-
fiers use the training set to build the model of the task, which is subsequently used to 
label unseen sequences. 

We shall describe the particular algorithms only briefly, referring to the original 
works to supply the details. 

2.1   MEMM 

A Maximum Entropy Markov Model classifier [4] builds a probabilistic conditional 
model of sequence labeling.  Labeling each position in each sequence is considered to 
be a separate classification decision, possibly influenced by a small constant number 
of previous decisions in the same sequence.  In our experiments we use a Markov 
model of order one, in which only the most recent previous decision is taken into 
account. 

Maximal Entropy models are formulated in terms of feature functions  
f(xi, yi, yi-1) → {0, 1}, which link together the context features and the target labels.  In 
our formulation, we have a feature function fjy for each context feature j and each 
label y, and a feature function fiyy' for each context feature and each pair of labels.  The 
functions are defined as follows: 

fjy(xi, yi, yi-1) = xijIy(yi)     and    fjyy'(xi, yi, yi-1)  = xijIy(yi)Iy'(yi-1), where  Ia(b)  is one if  
a = b  and zero otherwise.  The vector of all feature functions is denoted f(xi, yi, yi-1). 
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A trained MEMM model has a real weight λf for each feature function f.  Together, 
the weights form the parameter vector λ.  The model has the form 

(1) ( )1 1
1

1
( | , ) exp ( , , )

( , )i i i i i i
i i

P y y y y
Z y− −

−

= ⋅λ λx f x
x

, 

where ( )1 1( , ) exp ( , , )i i i iy
Z x y y y− −= ⋅λ f x  is the factor making the prob-

abilities for different labels sum to one. 
Given a model (1), it can be used for inferring the labeling  y = y1y2…yl(x) of an un-

seen sequence x = x1x2…xl(x) by calculating the most probable overall sequence of 
labels: 

(2) 
1 2 ( )

( )

1
... 1

( ) : arg max log ( | , )
l x

l x

i i i
y y y i

P y y −
=

= λy x x . 

This most probable sequence can be efficiently calculated using a variant of the Vit-
terbi algorithm. 

The model parameters are trained in such a way as to maximize the model’s en-
tropy while making the expected value of each feature function agree with the ob-
served relative frequency of the feature function in the training data.  Those condi-
tions can be shown to be uniquely satisfied by the model which maximizes the log-
likelihood of the training data among all models of the form (1).  In order to avoid 
overfitting, the likelihood can be penalized with a prior Pr(λ).  Then, the log-
likelihood is 
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and its gradient is 
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where 
( ) ( ) ( ) ( ) ( ) ( )

1 1 1( ( , , )) ( | , ) ( , , )t t t t t t
P i i i i i iy Y

E Y y P y y y y− − −∈
=λ λf x x f x  

is the expectation of the feature vector under the model (1). 
With a reasonably chosen prior, the function LT(λ) is strictly concave, and so  

can be maximized by any convex optimization algorithm.  We use L-BFGS for  
this purpose. 

2.2   CRF 

A Conditional Random Fields (CRF) [7] classifier also builds a probabilistic model of 
sequence labeling.  CRF uses the maximal entropy principle to model the labeling of a 
sequence as a whole, in contrast to MEMM, which builds a model of separate labeling 
decisions at different sequence positions. 
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The model is built upon exactly the same vector f(xi, yi, yi-1) of feature functions as 
MEMM.  The feature functions are summed along a sequence to produce a sequence 
feature functions vector 

(3) 
( )

1
1

( , ) ( , , )
l x

i i i
i

y y −
=

=F x y f x , 

which is then used for constructing the maximal entropy model 

 ( )1
( | ) exp ( , )

( )
P

Z
= ⋅λ λy x F x y

x
. 

A trained model can be used for inferring the most probable labeling  
of an unseen sequence. The decomposition (3) allows to use the Vitterbi  
algorithm almost identically to the MEMM case, except that in (2),  

instead of 1 1 1log ( | , ) ( , , ) log ( , )i i i i i i i iP y y y y Z y− − −= ⋅ −λ λx f x x , simple 

1( , , )i i iy y −⋅λ f x  is used.  Since Z(x) does not depend on labeling, it need not be 

calculated at all during inference. 
To train the CRF model, we need to maximize the model entropy while satisfying 

the expectation constrains, expressed this time in terms of the sequence feature func-
tions.  As before, this is equivalent to maximizing the log-likelihood of the training 
data, which can also be penalized with a prior to avoid overfitting: 

   ( )
2

( ) ( ) ( ) ( ) ( )

2

|| ||
( ) log ( | ) ( , ) log ( ) Pr( )

2

t t t t t

T

t t

L P Z
σ

= − = ⋅ − −λ

λ
λλ λy x F x y x . 

The gradient is 
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where Y(t) is the set of label sequences of length l(x(t)), and 
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∈
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is the expectation of the sequence feature functions vector under the model (3). 
In order to maximize LT(λ), we need a way to calculate log Z(x) and EPλ(F(x, Y)) 

for the given sequence x.  It is possible to do this efficiently, using a variant of the 
Forward-Backward algorithm.  Details can be found in [7] and [19]. 

2.3   RRM 

The Robust Risk Minimization classifier [14] results from regularization of the Win-
now algorithm [21].  Winnow is a multiplicative-update online algorithm used for 
estimating the weights of a binary linear classifier, which has the following general 
form: 

y  =  sign(wTx), 
where x is the input vector, w is the weight vector, and y ∈ {+1, –1} is the classifica-
tion decision. 

It was shown in [20], that using a risk function of a special form, the regularized 
Winnow can produce such weights w  that 
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P(y = +1 | x)  ≈  (Tr[-1,1](w
Tx) + 1) / 2, 

where Tr[a,b](s) = min(b, max(a, s)) is a truncation of s onto [a, b]. 
Although the derivation is elaborate, the resulting algorithm is very simple.  It con-

sists of iteratively going over the training set T = {(x(t), y(t))}t=1..n  (here, y(t) = ±1), and 
incrementally updating 

(4) 
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The αt are the dual weights, initialized to zero and kept between the iterations.  c  is 
the regularization parameter, η  is the learning rate, and μj is the prior. 

The y(t) in (4) are binary decisions.  In order to use the RRM for sequence labeling 
task with more than two labels, we can build a separate classifier for each label and 
then combine them together within a single Vitterbi search. 

3   Experimental Setup 

The goal of this work is to compare the three sequence labeling algorithms in several 
different dimensions:  absolute performance, dependence upon the corpus, depend-
ence upon the training set size and the feature set, and dependence upon the hyper-
parameters. 

3.1   Datasets 

For our experiments we used four datasets:  CoNLL-E, the English CoNLL 2003 
shared task dataset, CoNLL-D, the German CoNLL 2003 shared task dataset, the 
MUC-7 dataset [23], and the proprietary CLF dataset [8].  For the experiments with 
smaller training sizes, we cut training corpora into chunks of 10K, 20K, 40K, 80K, 
and 160K tokens.  The corresponding datasets are denoted <Corpus>_<Size>, e.g. 
“CoNLL-E_10K”. 

3.2    Feature Sets 

There are many properties of tokens and their contexts that could be used in a NER 
system.  We experiment with the following properties, ordered according to the diffi-
culty of obtaining them: 

A. The exact character strings of tokens in a small window around the given 
position. 

B. Lowercase character strings of tokens. 
C. Simple properties of characters inside tokens, such as capitalization, letters 

vs digits, punctuation, etc. 
D. Suffixes and prefixes of tokens with length 2 to 4 characters. 
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E. Presence of tokens in local and global dictionaries, which contain words that 
were classified as certain entities someplace before – either anywhere (for 
global dictionaries), or in the current document (for local dictionaries). 

F. PoS tags of tokens. 
G. Stems of tokens. 
H. Presence of tokens in small manually prepared lists of semantic terms – such 

as months, days of the week, geographical features, company suffixes, etc. 
I. Presence of tokens inside gazetteers, which are huge lists of known entities. 

The PoS tags are available only for the two CoNLL datasets, and the stems are 
available only for the CoNLL-D dataset.  Both are automatically generated and thus 
contain many errors. 

The gazetteers and lists of semantic terms are available for all datasets except 
CoNLL-D. 

 
We tested the following feature sets: 
    set0: checks properties A, B, C at the current and the previous token. 
    set1: A, B, C, B+C in a window [-2…0]. 
    set2: A, B, C, B+C in a window [-2…+2]. 
    set2x: Same as set2, but only properties appearing > 3 times are used. 
    set3: A, B, C, B+C in a window [-2…+2], D at the current token. 
    set4: A, B, C, B+C in a window [-2…+2], D at the current token, E. 
    set5: A, B, C, B+C, F, G in a window [-2…+2] , D at the current token, E. 
    set6: set4 or set5, H 
    set7: set4 or set5, H, I 

3.3    Hyperparameters 

The MaxEntropy-based algorithms, MEMM and CRF, have similar hyperparameters, 
which define the priors for training the models.  We experimented with two different 
priors – Laplacian (double exponential)   PrLAP(λ) = αΣi|λi| and Gaussian  PrGAU(λ) = 
(Σiλi

2) / (2σ2).  Each prior depends upon a single hyperparameter specifying the 
“strength” of the prior.  Note, that ∇PrLAP(λ) has discontinuities at zeroes of λi.  Be-
cause of that, a special consideration must be given to the cases when λi approaches 
or is at zero.  Namely,  

(1) if λi tries to change sign, set λi := 0, and allow it to change sign only on the 
next iteration, and 

(2) if λi = 0, and ( )
i TL∂

∂λ < αλ , do not allow λi to change, because it will 

immediately be driven back toward zero. 

In some of the previous works (e.g., [22]) the Laplacian prior was reported to pro-
duce much worse performance than the Gaussian prior.  Our experiments show them 
to perform similarly.  The likely reason for the difference is poor handling of the zero 
discontinuities. 

The RRM algorithm has three hyperparameters – the prior μ, the regularization pa-
rameter c, and the learning rate η. 
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4   Experimental Results 

It is not possible to test every possible combination of algorithm, dataset and hyper-
parameter. Therefore, we tried to do a meaningful series of experiments, which would 
together highlight the different aspects of the algorithms. 

All of the results are presented as final microaveraged F1 scores. 

4.1   Experiment 1 

In the first series of experiments we evaluated the dependence of the performance of 
the classifiers upon their hyperparameters.  We compared the performance of the 
 

Table 1. RRM results on CoNLL-E dataset 

 CoNLL-E_40K_set7 CoNLL-E_80K_set7 CoNLL-E_160K_set7 

μ=0.01 c=0.001 c=0.01 c=0.1 c=0.001 c=0.01 c=0.1 c=0.001 c=0.01 c=0.1 

η=0.001 78.449 78.431 78.425 81.534 81.534 81.510 84.965 84.965 84.965 

η=0.01 85.071 85.071 84.922 87.766 87.774 87.721 90.246 90.238 90.212 

η=0.1 82.918 83.025 83.733 87.846 87.835 88.031 89.761 89.776 89.904 

μ=0.1          

η=0.001 84.534 84.552 84.534 87.281 87.281 87.264 89.556 89.556 89.573 

η=0.01 85.782 85.800 85.800 89.032 89.032 89.066 91.175 91.175 91.150 

η=0.1 82.439 82.709 83.065 63.032 63.032 63.032 30.741 30.741 56.445 

μ=1.0          

η=0.001 85.973 85.973 85.990 89.108 89.108 89.100 91.056 91.056 91.056 

η=0.01 83.850 83.877 83.904 88.141 88.141 88.119 90.286 90.317 90.351 

η=0.1 0 0 29.937 0 0 0 0 0 0 

Table 2. RRM results on other datasets 

 CoNLL-D_20K_set7 MUC7_40K_set2x CLF_80K_set2 

μ=0.01 c=0.001 c=0.01 c=0.1 c=0.001 c=0.01 c=0.1 c=0.001 c=0.01 c=0.1 

η=0.001 43.490 43.490 43.453 48.722 48.722 48.650 49.229 49.229 49.244

η=0.01 46.440 46.438 46.472 63.220 63.207 62.915 64.000 64.040 63.710

η=0.1 44.878 44.943 45.995 61.824 62.128 63.678 58.088 58.628 61.548

μ=0.1           

η=0.001 44.674 44.674 44.671 60.262 60.249 60.221 59.943 59.943 59.943

η=0.01 44.799 44.845 44.957 65.529 65.547 65.516 64.913 64.913 64.811

η=0.1 43.453 43.520 44.192 60.415 60.958 63.120 55.040 55.677 60.161

μ=1.0           

η=0.001 44.682 44.682 44.694 66.231 66.231 66.174 65.408 65.408 65.408

η=0.01 43.065 43.080 43.195 62.622 62.579 62.825 59.197 59.311 59.687

η=0.1 0 0 6.123 2.922 2.922 8.725 0 0 1.909
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Table 3. CRF results on a selection of datasets 

CRF CLF CoNLL-D MUC7 CoNLL-E 
 20K_set2 40K_set2 80K_set2 40K_set1 80K_set1 160K_set1 80K_set0 80K_set0 

GAU σ = 1 76.646 78.085 80.64 29.851 35.516 39.248 80.756 69.247 

GAU σ = 3 75.222 77.553 79.821 28.530 35.771 38.254 80.355 69.693 

GAU σ = 5 75.031 77.525 79.285 29.901 35.541 38.671 79.853 69.377 

GAU σ = 7 74.463 77.633 79.454 30.975 36.517 38.748 79.585 69.341 

GAU σ = 10 74.352 77.05 77.705 29.269 36.091 38.833 80.625 68.974 

          

LAP α=0.01 73.773 77.446 79.071 29.085 35.811 38.947 79.738 69.388 

LAP α=0.03 75.023 77.242 78.810 31.082 34.097 38.454 79.044 69.583 

LAP α=0.05 76.314 77.037 79.404 30.303 35.494 39.248 79.952 69.161 

LAP α=0.07 74.666 76.329 80.841 30.675 34.530 38.882 79.724 68.806 

LAP α=0.1 74.985 77.655 80.095 31.161 35.187 39.234 79.185 68.955 

Table 4. MEMM results on a selection of datasets 

MEMM CLF CoNLL-D MUC7 CoNLL-E 

  20K_set2 40K_set2 80K_set2 40K_set1 80K_set1 160K_set1 80K_set0 80K_set0 

GAU σ = 1 75.334 78.872 79.364 30.406 35.013 40.164 78.773 67.537 

GAU σ = 3 74.099 75.693 77.278 28.484 35.330 40.005 77.295 67.401 

GAU σ = 5 73.959 74.685 77.316 28.526 35.043 39.799 77.489 67.870 

GAU σ = 7 73.411 74.505 77.563 28.636 34.630 38.531 77.255 67.897 

GAU σ = 10 73.351 74.398 77.379 28.488 33.955 37.830 77.094 68.043 
          

LAP α=0.01 71.225 74.04 75.721 28.316 34.329 40.074 78.312 67.871 

LAP α=0.03 72.603 72.967 76.540 29.086 35.159 38.621 77.385 67.401 

LAP α=0.05 71.921 75.523 75.370 30.425 33.942 39.984 78.262 67.908 

LAP α=0.07 72.019 74.486 77.197 30.118 35.250 39.195 76.646 67.833 

LAP α=0.1 72.695 75.311 76.335 30.315 33.487 40.861 78.141 67.421 

 

classifiers on a selection of datasets, with different hyperparameter values.  All of the 
algorithms showed moderate and rather irregular dependence upon their hyper-
parameters.  However, single overall set of values can be selected. 

The RRM results are shown in the Table 1 and the Table 2.  As can be seen, select-
ing  μ = 0.1, c = 0.01 and η = 0.01 gives reasonably close to optimal performance on 
all datasets. All subsequent experiments were done with those hyperparameter values. 

Likewise, the ME-based algorithms have no single best set of hyperparameter val-
ues, but have close enough near-optimal values.  A selection of MEMM and CRF 
results is shown in the Table 3 and Table 4.  For subsequent experiments we use CRF 
with Laplacian prior with α = 0.07 and MEMM with Gaussian prior with σ = 1. 
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4.2   Training Size 

In this series of experiments we evaluated the performance of the algorithms using 
progressively bigger training datasets:  10K, 200K, 400K, 800K and 1600K tokens.  
The results are summarized in the Fig.1.  As expected, the algorithms exhibit very 
similar training size vs. performance behavior. 
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Fig. 1. Performance of the algorithms with different training sizes 

Table 5. Performance of the algorithms with different feature sets 

  MUC7   CoNLL-D  CoNLL-E 
 CRF MEMM RRM CRF MEMM RRM CRF MEMM RRM 

set0 75.748 66.582 62.206 48.988 43.36 40.109 87.379 82.281 76.887 
set1 75.544 67.075 68.405 50.672 49.164 48.046 87.357 82.516 81.788 
set2 75.288 74.002 74.755 52.128 ~52.01 51.537 86.891 87.089 87.763 
set3 76.913 76.333 76.794 ~60.172 59.526 61.103 88.927 88.711 89.110 
set4 78.336 77.887 77.828 62.79 63.58 65.802 ~90.037 ~90.047 90.722 
set5    ~65.649 65.319 67.813 ~90.139 ~90.115 90.559 
set6 78.969 78.442 78.016    ~90.569 ~90.492 90.982 
set7 81.791 80.923 81.057    ~91.414 90.88 91.777 

4.3   Feature Sets 

In this series of experiments we trained the algorithms with all available training data, 
but using different feature sets.  The results are summarized in the Table 5. The re-
sults were tested for statistical significance using the McNemar test. All the perform-
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ance differences between the successive feature sets are significant at least at the level 
p=0.05, except for the difference between set4 and set5 in CoNLL-E dataset for all 
models, and the differences between set0, set1, and set2 in CoNLL-E and MUC7 
datasets for the CRF model. Those are statistically insignificant. The differences be-
tween the performance of different models that use same feature sets are also mostly 
significant. Exceptions are the numbers preceded by a tilda “~”. Those numbers are 
not significantly different from the best results in their corresponding rows. 

As can be seen, both CRF and RRM generally outperform MEMM.  Among the 
two, the winner appears to depend upon the dataset.  Also, it is interesting to note that 
CRF always wins, and by a large margin, on feature sets 0 and 1, which are distin-
guished from the set 2 by absense of “forward-looking” features.  Indeed, using “for-
ward-looking” features produces little or no improvement for CRF, but very big im-
provement for local models, probably because such features help to alleviate the label 
bias problem [7]. 

5   Conclusions 

We have presented the experiments comparing the three common state-of-the-art 
feature-rich probabilistic sentence classifiers inside a single system, using completely 
identical feature sets.  The experiments show that both CRF and RRM significantly 
outperform MEMM, while themselves performing roughly similarly.  Thus, it shows 
that the comparatively poor performance of CRF in the CoNLL 2003 NER task [16] 
is due to suboptimal feature selection and not to any inherent flaw in the algorithm 
itself. 

Also, we demonstrated that the Laplacian prior performs just as well and some-
times better than Gaussian prior, contrary to the results of some of the previous re-
searches. 

On the other hand, the much simpler RRM classifier performed just as well as CRF 
and even outperformed it on some of the datasets.  The reason of such surprisingly 
good performance invites further investigation. 
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Abstract. Knowledge discovery for personalizing the product recom-
mendation task is a major focus of research in the area of conversational
recommender systems to increase efficiency and effectiveness. Conversa-
tional recommender systems guide users through a product space, al-
ternatively making product suggestions and eliciting user feedback. Cri-
tiquing is a common and powerful form of feedback, where a user can ex-
press her feature preferences by applying a series of directional critiques
over recommendations, instead of providing specific value preferences.
For example, a user might ask for a ‘less expensive’ vacation in a travel
recommender; thus ‘less expensive’ is a critique over the price feature.
The expectation is that on each cycle, the system discovers more about
the user’s soft product preferences from minimal information input. In
this paper we describe three different strategies for knowledge discov-
ery from user preferences that improve recommendation efficiency in a
conversational system using critiquing. Moreover, we will demonstrate
that while the strategies work well separately, their combined effort has
the potential to considerably increase recommendation efficiency even
further.

1 Introduction

Recommender systems apply knowledge discovery techniques to decide which
recommendations are the most suitable for each user during a live customer
interaction. In this paper, we focus on conversational case-based recommenders
[1] which help users navigate product spaces by combining ideas and technologies
from information retrieval, artificial intelligence and user modelling. As part
of their cyclic recommendation process, conversational systems aim to retrieve
products that respect user preferences by requiring users to provide minimal
feedback in each cycle. It is expected that over the course of a recommendation
session that the recommender learns more about user preferences and therefore
it can assist in the discovery of recommendation knowledge which prioritises
products that best satisfy these preferences [2,3]. Advantages of the approach
include: (1) users have more control over the navigation process [4]; and (2) users
are guided to target products faster than standard browsing and alternative
recommendation approaches [5,6].

A. Jorge et al. (Eds.): PKDD 2005, LNAI 3721, pp. 228–239, 2005.
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Recommender systems can be distinguished by the type of feedback that
they support; examples include value elicitation, ratings-based feedback and
preference-based feedback [7]. In this paper we are especially interested in a form
of user feedback called critiquing [8], where a user indicates a directional fea-
ture preference in relation to the current recommendation. For example, in a
travel/vacation recommender, a user might indicate that she is interested in a
vacation that is longer than the currently recommended option; in this instance,
longer is a critique over the duration feature.

Within the recommender systems literature the basic idea of critiquing can
be traced back to the seminal work of Burke et al. [4]. For example, Entrée is
the quintessential recommender system that employs critiquing (also sometimes
referred to as tweaking) in the restaurant domain. Entrée allows users to critique
restaurant features such as price, style, atmosphere etc. Importantly, critiquing
is a good example of a minimal user feedback approach where the user does not
need to provide a lot of specific preference information, while at the same time
it helps the recommender to narrow its search focus quite significantly [8]. As
recommender systems become more commonplace, there has been renewed inter-
est in critiquing, with the major focus of research in increasing the efficiency of
recommendation dialogues [9]. Furthermore, recent research has highlighted the
importance of investigating techniques for automating the discovery of implicit
preference knowledge while requiring minimal information input from the user
[3].

In this paper we describe three strategies for knowledge discovery from user
preferences that improves the performance of a critique-based recommender.
Specifically, we build upon work previously described by [10], where the idea is
to consider a user’s critiquing history, as well as the current critique when mak-
ing new recommendations. This approach leads to significant improvements in
recommendation efficiency. We continue in this paper by considering the history
of critiques as a user model which determines the user preferences in a session.
We present a case discovery strategy, a feature discovery strategy and a query
discovery strategy which have the potential to focus rapidly on satisfactory prod-
uct cases. Finally, we show that by combining all three strategies, we can further
improve overall recommendation efficiency.

2 Background

This section describes the “incremental critiquing” [10] approach, which offers
major benefits in recommendation efficiency over the basic critiquing approach
as described by [11]. We consider the incremental critiquing approach as the
basis for our knowledge discovery strategies because it also considers a user’s
critiquing history as a basic starting point.

The incremental critiquing implementation assume a conversational recom-
mender system in the style of Entrée [11]. Each recommendation session starts
with an initial user query resulting in the retrieval of a case with the highest
quality. The user will have the opportunity to accept this case, thereby ending
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q: query, CB: CaseBase, cq: critique, cr : current recommendation, U : User model

1. define Incremental_Critiquing(q, CB)

2. cq:= null

3. U:= null

4. begin

5. do

6. cr � ItemRecommend(q, CB, cq, U)

7. cq � UserReview(cr, CB)

8. q � QueryRevise(q, cr)

9. U � UpdateModel(U, cq, cr)

10. until UserAccepts(cr)

11. end

12. define ItemRecommend(q, CB, cq, U)

13. CB’ � {c � CB | Satisfies(c, cq)}

14. CB’ � sort cases in CB’ in decreasing Quality

15. cr � most quality case in CB’

16. return cr

17. define UserReview(cr , CB)

18. cq � user critique for some f � cr
19. CB � CB – cr
20. return cq

21. define QueryRevise(q, cr)

22. q � cr
23. return q

24. define UpdateModel(U, cq, cr)

25. U � U – contradict(U, cq, cr)

26. U � U – refine(U, cq, cr)

27. U � U + (<cq, cr>)

28. return U

q: query, CB: CaseBase, cq: critique, cr : current recommendation, U : User model

1. define Incremental_Critiquing(q, CB)

2. cq:= null

3. U:= null

4. begin

5. do

6. cr � ItemRecommend(q, CB, cq, U)

7. cq � UserReview(cr, CB)

8. q � QueryRevise(q, cr)

9. U � UpdateModel(U, cq, cr)

10. until UserAccepts(cr)

11. end

12. define ItemRecommend(q, CB, cq, U)

13. CB’ � {c � CB | Satisfies(c, cq)}

14. CB’ � sort cases in CB’ in decreasing Quality

15. cr � most quality case in CB’

16. return cr

17. define UserReview(cr , CB)

18. cq � user critique for some f � cr
19. CB � CB – cr
20. return cq

21. define QueryRevise(q, cr)

22. q � cr
23. return q

24. define UpdateModel(U, cq, cr)

25. U � U – contradict(U, cq, cr)

26. U � U – refine(U, cq, cr)

27. U � U + (<cq, cr>)

28. return U

Fig. 1. The incremental critiquing algorithm

the recommendation session, or to critique it as a means to influence the next
cycle. A simplified version of the incremental critiquing algorithm is given in
Figure 1.

The incremental critiquing algorithm consists of 4 key steps: (1) a new case
cr is recommended to the user based on the current query and the previous
critiques; (2) the user reviews the recommendation and applies a directional
feature critique, cq; (3) the query, q is revised for the next cycle; (4) the user
model, U is updated by adding the last critique cq and pruning all the critiques
that are inconsistent with it. The recommendation process terminates either
when the user is presented with a suitable case, or when they give up.

Importantly, the recommendation process is influenced by the user model of
previous critiques, U , that is incrementally updated on each cycle. Incremental
critiquing modifies the basic critiquing algorithm. Instead of ordering the filtered
cases on the basis of their similarity to the recommend case, it also computes a
compatibility score (see Equation 1) for each candidate case. The compatibility
score is essentially the percentage of critiques in the user model that this case
satisfies. Then, the compatibility score and the candidate’s (c′) similarity to the
current recommendation (cr) are combined in order to obtain an overall quality
score (see Equation 2, by default β = 0.75). The quality score is used to rank the
filtered cases prior to the next recommendation cycle (see line 14 in Figure 1)
and the case with the highest quality is then chosen as the new recommendation.

Compatibility(c′, U) =

∑
∀i

satisfies(Ui, c
′)

|U | (1)

Quality(c′, cr, U) = β · Compatibility(c′, U) + (1− β) · Similarity(c′, cr) (2)

Algorithm 1 maintains a critique-based user model which is composed of
those critiques that have been chosen by the user so far. One of the key points
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focused on the incremental critiquing approach is the maintenance of the user
model which prevents the existence of critiques that may be inconsistent with
earlier critiques. The user model is maintained using two possible actions: (1)
pruning previous critiques that are inconsistent with the current critique; (2)
removing all existing critiques, for which the new critique is a refinement.

3 Knowledge Discovery Strategies

This section presents three strategies for knowledge discovery from user pref-
erences that have the potential to improve product recommendations. The first
strategy discovers those cases that better satisfy the user preferences. The second
strategy deals with feature dimensionality, taking into account user preferences
to discover the relative importance of each feature for computing similarity. Fi-
nally, this paper presents a query discovery strategy that facilitates larger jumps
through the product space based on the current user critique. All of them share
a common foundation, they exploit the user’s history of critiques to discover
recommendation knowledge from the user preferences, in order to personalize
and focus in more rapidly on satisfactory product cases.

3.1 Discovering Satisfactory Cases: Highest Compatibility Selection

A key problem with the standard incremental critiquing [10] approach is that
there are no guarantees that the recommendations it returns will completely
satisfy a user’s preferences. This is largely due to the underlying case selection
strategy which averages the compatibility (with past critiques) and similarity
(with the current preference case). What we propose is a new strategy for prod-
uct recommendation, Highest Compatibility Selection (HCS), that allows the
recommender to select the most suitable cases; i.e., those cases that are most
compatible with user preferences. This maximum compatibility strategy can be
easily introduced into the incremental critiquing algorithm.

Figure 2 demonstrates that the only procedure which is affected in the incre-
mental critiquing algorithm is the ItemRecommend step. As before, the list of
remaining cases is filtered out using the current critique cq. In addition two new
steps are added. First, the recommender computes the compatibility score, as
detailed in Equation 3. It is important to note that the compatibility function
has also been modified, as explained below in Equation 3. Instead of averaging
the compatibility and the similarity, as is done with incremental critiquing, our
second step assembles the cases with the highest compatibility from the list of
remaining cases. Importantly, in our approach, only the remaining cases with
highest compatibility value, CB′′, influence the product recommendation. Put
differently, the strategy prioritises those cases that satisfy the largest number of
critiques made by the user over time.

The compatibility function. We have considered case discovery to be an
optimization problem in which we are trying to recommend cases that maximally
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q: query, CB: CaseBase, cq: critique, cr : current recommendation, U: User Model

1.define ItemRecommend(q, CB, cq, U)

2. CB’ � {c � CB | Satisfies(c, cq)}

3. CB’ � sort cases in CB’ in decreasing compatibility score

4. CB’’ � selects those cases in CB’ with highest compatibility

5. CB’’ � sort cases in CB’’ in decreasing order of their sim to q

6. cr � most similar case in CB’’

7.return cr

q: query, CB: CaseBase, cq: critique, cr : current recommendation, U: User Model

1.define ItemRecommend(q, CB, cq, U)

2. CB’ � {c � CB | Satisfies(c, cq)}

3. CB’ � sort cases in CB’ in decreasing compatibility score

4. CB’’ � selects those cases in CB’ with highest compatibility

5. CB’’ � sort cases in CB’’ in decreasing order of their sim to q

6. cr � most similar case in CB’’

7.return cr

Fig. 2. Adapting the incremental critiquing algorithm ItemRecommend procedure to
improve focus on recommendation by using Highest Compatibility Selection strategy

satisfy the user preferences. For this reason, we evaluate the remaining cases as if
they were a set of states in a Reinforcement Learning Problem (RLP) [12], which
consists of maximising the sum of future rewards in a set of states. Reinforcement
Learning theory is usually based on Finite Markov Decision Processes (FMDP).

Each case is treated as a state whose compatibility score is updated at each
cycle using a Monte-Carlo value function (see Equation 3). This function eval-
uates the goodness of each state — for us the possible states are the complete
set of remaining cases we want to enhance — according to the critiques the user
has selected.

Compatibility(c′, Uf) =
{

comp(c′) + α× (1 − comp(c′)) if c’ satisfies Uf

comp(c′) + α× (0 − comp(c′)) if c’ dissatisfies Uf

(3)

Our goal is to maximally satisfy all the user preferences. Thus, we are looking
for a set of maximally compatible cases (i.e., those cases which have the highest
compatibility (comp) value considering all the user preferences (U) or past cri-
tiques). At the beginning of each session each candidate case, c’, has a default
compatibility value (i.e., comp(c’)= 0.5 ). This value is updated over cycles tak-
ing into account the satisfaction or not of the current critique. The α parameter
in Equation 3 is the learning rate which is usually set up to 0.1 or 0.2 values; a
larger value leads to a larger gap between cases in early stages. In our case, the
learning rate is not important since we are looking for levels of satisfaction. In
other words, we are not trying to obtain a set of states that arrive as quickly as
possible to a 1.0 value, as usually is done in RLP.

It is important to note that Equation 3 updates the compatibility value
stored by each case according to the last user critique (Uf ) as opposed to com-
puting all the set of critiques like the incremental approach (see Equation 1). The
Compatibility(c′, Uf ) value computed in the current cycle will be the (comp(c′))
in the next cycle.

3.2 Discovering Important Features: Local User Preference
Weighting

The previous strategy highlights the case dimensionality problem. In other
words, it is focused on discovering cases that maximally satisfy user preferences.
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Now, we present a strategy that concentrates on the feature dimensionality. We
propose a local user preference weighting (LW) strategy that discovers the rela-
tive importance of each feature in each case as a weighting value for computing
the similarity, taking into account user preferences.

Our LW strategy for the discovery of feature knowledge is basically motivated
by the previous knowledge discovery strategy. As we have explained in Section
3.1, the discovery of case knowledge is based on maximising user preferences,
which means we are looking for the most compatible cases. These cases are
quite similar on their critiqued features and their differences mainly belong to
those features that have not yet been critiqued. So, the aim of LW strategy is to
prioritise the similarity of those features that have not yet been critiqued.

for each feature f in case c′ compute:
weight(c′f ) = 1−

(
#critiques in U that satisfy featuref in case c′

#total critiques featuref in U × 0.5
) (4)

We generate a feature weight vector for each case, as shown in Equation 4.
A feature that has not been critiqued will assume a weight value of 1.0 and
a decrement will be applied when a critique is satisfied by the case. As such,
the feature weight will be proportional to the number of times a critique on
this feature is satisfied by the case. However, as it can be seen in Equation
4 the weights never decrease to a 0 value. For example, in a travel vacation
recommender with a user model that contains two critiques [price, >, 1000] and
[price, >, 1500], a case with two features {duration, price} whose price is 2000
will have as price weight a 0.5 value because it satisfies both critiques whereas
the duration weight will be 1.0 because there is no critique on this feature. It is
important to recap that the key idea here is to prioritise the similarity of those
features that have not yet been critiqued in a given session.

Our proposal is to discover the best product to recommend by exploiting the
similarity of those features that best differentiate the highest compatible cases.
To achieve this, a candidate’s (c′) similarity to the recommended case (cr) is
computed at each cycle in the incremental recommender system as shown by
Equation 5.

Similarity(c′, cr) =
∑
∀f

weight(c′f)× similarity(c′f , crf
) (5)

The similarity between the candidate case (c′) and the recommended case
(cr) for each feature f is combined with the weight for this feature. The weight
is computed previously using Equation 4.

3.3 Discovering Query Knowledge: Binary Search

The incremental critiquing approach is susceptible to feature-critique repetitions
that offer only a minor change in the relevant feature value from each cycle
to the next. We propose that this is largely due to the linear search policy it
uses to navigate through the value-space for the critiqued feature. The result
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is that the recommendation system takes very short steps through the space of
possible alternatives. In this section we describe how the incremental critiquing
algorithm can be easily altered to facilitate larger jumps through the value space
for knowledge discovery of a given feature by taking a more efficient binary search
(BS) approach.

q: query, CB: CaseBase, cq: critique, cr : current recommendation

1. define QueryRevise(q, cq, CB, cr)

2. begin

3. q � cr

4. CB’ � {c � CB | Satisfies(c, cq)}

5. CB’ � eliminate cases that conflict with prior critiques

6. fcq � set value in q for critiqued feature f � cr by Eq. 6

7. return q

8. end

q: query, CB: CaseBase, cq: critique, cr : current recommendation

1. define QueryRevise(q, cq, CB, cr)

2. begin

3. q � cr

4. CB’ � {c � CB | Satisfies(c, cq)}

5. CB’ � eliminate cases that conflict with prior critiques

6. fcq � set value in q for critiqued feature f � cr by Eq. 6

7. return q

8. end

Fig. 3. Illustrating the binary search procedure for query discovery

Figure 3 demonstrates how the incremental algorithm can be easily extended
to support our proposed approach. The only procedure which is affected is the
QueryRevise step of the incremental critiquing algorithm. The new query is up-
dated with all of the features from the current recommendation, cr. In addition
two new steps are added. First, the recommender system gathers all of the avail-
able cases that satisfy current feature critique (see line 4 of Figure 3). The second
step involves determining the value-change the critiqued feature will take on in
the revised query, q, used for retrieval of the next recommendation. Importantly,
in our approach all the remaining cases, CB′, influence the final value. There
are many approaches that could be used to compute this value. In this paper we
examine the possibility of computing the median (see equation 6) for all cases
in CB′.

The recommender system collects all of the alternative value possibilities for
the critiqued feature from the cases covered by CB′. For instance, if the critiqued
feature were [price, <, 2000] the recommender would gather all value options
that were less than 2000 from the set of remaining cases (e.g., 1800, 1650,

1600, 1570, 1460, 1350, etc.). Equation 6 assigns a value for the critiqued
feature fcq ∈ q by calculating the average feature value over all the relevant
cases.

fcq =

⎧⎪⎨⎪⎩
CB′

n+1/2(f of cq) if odd #cases

CB′
n+1/2(f of cq)+CB′

(n+1/2)+1(f of cq)
2 if even #cases

(6)

For Equation 6 it is assumed that the remaining case options, CB′ are first
sorted in ascending order. Here CB′

i(f in cq) is the feature value critiqued by
cq in the ith case. The median value corresponds to a cumulative percentage of
50% (i.e., 50% of the values are below the median and 50% of the values are
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above the median). We place the critiqued features in ascending value order and
find the middle value if the number of cases is odd or find the middle pair and
compute the mean value between them if we have an even number of cases.

One important point, that also needs to be considered, is previous critiques on
the same feature. For example, suppose that a user has asked in a previous cycle
for a less expensive vacation than a 2500 recommendation and, in the current cy-
cle, the user says that she prefers a more expensive than a 1000 vacation. In such
situation in the current cycle, all the cases including those that exceed a 2500
vacation will satisfy the current critique more expensive than 1000. If we com-
pute the median value to jump larger in the search space, we also include those
cases rejected previously by the user. To avoid these situations, we use the history
of critiques applied by the user in order to cut correctly off the search space. The
previous critiques stored in the user model are treated as a set of soft constraints
[13] that allow us to control the number of remaining cases that will be used to
compute the median value.

So, following the earlier example, we only consider computing the median of
those cases that are more expensive than 1000 and less expensive than 2500.
As detailed in line 5 of Figure 3, before computing the median, we check for the
existence of previously applied critiques that contest the inclusion of cases in CB′,
and eliminate these cases from further consideration. Put differently, we use prior
critiques to decide what cases should be covered by CB′, and to ultimately set the
value selection bounds for fcq.

The key motivation behind our binary search extension to incremental cri-
tiquing was to reduce critique repetition sequences, and improve recommendation
efficiency by discovering satisfactory products for users more rapidly. In short, this
binary search style approach enables the recommender to focus its search on those
candidate cases that: (1) satisfy the current critique; (2) fulfill previously applied
critiques; and (3) are similar to the current case but further away from it, and thus
have the capability of navigating the search space of options quickly.

4 Evaluation

In this paper so far we have argued that the incremental form of critiquing is
limited by its tendency to recommend cases that do not maximally satisfy the
user preferences. We propose three strategies that aid knowledge discovery in a
quest to improve retrieval accuracy and recommendation efficiency. This section
describes the related evaluation methodology that we used and the results that
ensued.

4.1 Setup

The evaluation was performed using the standard Travel dataset (available from
http://ww.ai-cbr.org) which consists of 1024 vacation cases. Each case is de-
scribed in terms of 9 features including price, duration, etc. The dataset was
chosen because it contains numerical and nominal features and it also provides
a wide search space.
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We evaluate the highest compatibility selection (HCS), the local user prefer-
ence weighting (LW), the binary search (BS) and also all strategies combined in
our recommender (ALL) over incremental critiquing (incremental).

4.2 Methodology

We would like to have carried out an online evaluation with live-users, but unfor-
tunately this was not possible. As an alternative we opted for an offline evaluation
similar to the one described by [14]. Accordingly, each case (which are called the
‘base’) in the case-base is temporarily removed and used in two ways. First, it
serves as a basis for a set of queries by taking random subsets of its features.
We focus on subsets of 1, 3 and 5 features to allow us to distinguish between
hard, moderate and easy queries respectively. Second, we select the case that is
most similar to the original base. These cases are the recommendation targets
for the experiments. Thus, the base represents the ideal query for a user, the
generated query is the initial query provided by the ‘user’, and the target is the
best available case for the user. Each generated query is a test problem for the
recommender, and in each recommendation cycle the ‘user’ picks a critique that
is compatible with the known target case; that is, a critique that when applied
to the remaining cases, results in the target case being left in the filtered set of
cases. Each leave-one-out pass through the case-base is repeated 10 times and
the recommendation sessions terminate when the target case is returned.

Related real user studies [15] have highlighted discrepancies between the orig-
inal [14] artificial user model construction and real user behaviour with respect
to critiqued application and repetition. We use a modified artificial user model
that is informed by our real-user studies. The new model is designed to respond
to recommendations in a manner that is more consistent with the responses
recorded from real-users. In particular, our artificial user model repeats critique
selections during recommendation sessions until its target feature values are met.
For example, suppose our artificial user is looking for a 3-week vacation and they
are presented a 3-day city-break. They are likely to ask for a longer vacation by
critiquing the duration feature. In this evaluation, the artificial user will continue
to critique a feature until it’s preferences constraint is satisfied.

4.3 Recommendation Efficiency

We analyse the recommendation efficiency — by which we mean average recom-
mendation session length — when comparing the new strategies to incremental
critiquing. Figure 4(A) presents a graph comparing the average session length
of the incremental critiquing approach to the combination of all the strategies
(ALL) for 3 different initial query lengths. The three strategies combined consis-
tently reduce average session length when compared to the incremental critiquing
approach, demonstrating the potential to improve recommendation efficiency.
For example, for the hard queries the incremental recommender results in an
average on session of 12.46 cycles while the combined recommender results in an
average of 11.47 cycles.
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Figure 4(B) shows the benefit of each strategy (HCS, LW, and BS) sep-
arately and the combined strategies (ALL) in our recommender when com-
pared to the incremental critiquing. We find that all strategies separately
result in a relative session length reduction of between 2.65% and under
7.5%, with some variation in the relative benefit due to the HCS, LW and
BS approaches. The lowest benefit is for the highest compatibility selection
(HCS) approach, which ranges between 2.65% and 3.81%, because it does
the same process as the incremental critiquing approach with two little mod-
ifications that consists of using a different compatibility measure and a dif-
ferent strategy for discovering the set of cases available for recommendation.
Similarly a 3% to 4% benefit is found using the binary search (BS) strat-
egy. On the other hand, the local weighting approach (LW) gives the high-
est benefit, ranging from 4.5% to 6.73%, when applied alone. These results
show that the strategy to promote uncritiqued features is able to discover
and detect differences between cases that are maximally compatible to the
user critiques.
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Fig. 4. Average session length and benefit over incremental critiquing

On the other hand, the combined strategies in our recommender result in
a reduction in session length that ranges from nearly 8% to 10.5%. Combin-
ing all of the strategies further enhances recommendation performance, result-
ing in the discovery of better recommendations for all queries (hard, moderate
and easy). It seems that the recommenders ability to learn user preferences is
greater when combining information from these three distinct knowledge dis-
covery resources. An important point to note is that all results show a lower
benefit for easy queries. This is to be expected perhaps since the easy queries
naturally result in shorter sessions and thus there are fewer opportunities to
find good lower and upper critique bounds to focus the search space prop-
erly in the BS strategy, and hence fewer opportunities for the benefit to be
felt.

It is worth noting the benefit of the proposed strategies over the basic cri-
tiquing algorithm, see Figure 5. We have selected incremental critiquing as a
benchmark because it improves on the recommendation efficiency of the basic
critiquing algorithm by over 82%. Nevertheless, our combination of approaches
has the potential to deliver further reductions in session length (from 83.5% to
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upper 84%) even with short sessions where the BS approach does not have much
of an opportunity to affect the recommendations.

To summarise, a significant efficiency benefit is enjoyed by HCS, LW and
BS strategies, when compared to the incremental critiquing approach. The main
contribution of this paper is that the proposed strategies assist in the discovery
of useful recommendation knowledge, allowing the system to prioritise products
that best satisfy the user. We have demonstrated that this approach is highly
effective, even in situations where only a minimal knowledge of user preferences
is available (e.g., critiquing approach). Furthermore, the results of the com-
bined strategies show a significant increase in recommendation efficiency when
compared to incremental critiquing and also to the basic critiquing approach
proposed by [11].
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5 Conclusions

The discovery of implicit user preference knowledge is necessary to decide which
product recommendations are the most suitable for each user during a live cus-
tomer interaction. In this paper we have proposed three discovery strategies that
aim to improve recommendation efficiency. First of all, we have presented a case
prioritization strategy that maximises the user preferences over time. Secondly,
we have presented a user preference weighting strategy that prioritises features
locally to each case. Finally, we have presented a query strategy that has the
capability of navigating the search space quickly.

Our experiments indicate that the three proposals have the potential to de-
liver worthwhile efficiency benefits. Reductions in the average length of rec-
ommendation sessions were noted in all of the proposals, both separately and
combined, when compared to the incremental and basic critiquing setups. Impor-
tantly, the proposed strategies are sufficiently general to be applicable across a
wide range of recommendation scenarios. In particular, those that assume a com-
plex product-space where recommendation sessions are likely to be protracted,
and/or domains where only minimal user feedback is likely to be available.
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Abstract. This paper presents an unsupervised discretization method
that performs density estimation for univariate data. The subintervals
that the discretization produces can be used as the bins of a histogram.
Histograms are a very simple and broadly understood means for display-
ing data, and our method automatically adapts bin widths to the data.
It uses the log-likelihood as the scoring function to select cut points and
the cross-validated log-likelihood to select the number of intervals. We
compare this method with equal-width discretization where we also se-
lect the number of bins using the cross-validated log-likelihood and with
equal-frequency discretization.

1 Introduction

Discretization is applied whenever continuous data needs to be transformed into
discrete data. We consider data that is organized into instances with a fixed
number of attributes. Some or all of the attributes might be continuous. To
discretize a continuous attribute the range of its values is divided into intervals.
The attribute values are substituted by an identifier for each bin. Note that
the new attribute is actually not categorical but ordered [1]. In this paper we
consider the problem of unsupervised discretization, where the discretization is
based on the distribution of attribute values alone and there are no class labels.
Moreover, we consider univariate discretization: our method only considers the
attribute to be discretized, not the values of other attributes.

Our algorithm treats unsupervised discretization as piece-wise constant den-
sity estimation. The intervals gained from the discretization can be used to draw
a histogram or used to pre-process the data for another data mining scheme. In
the former case, the height of each bin h is the density that is computed from
the bin width wi, the number of instances ni that fall into that bin, and the
total number of instances N in the dataset:

h =
ni

wi ∗N
(1)

A. Jorge et al. (Eds.): PKDD 2005, LNAI 3721, pp. 240–251, 2005.
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The paper is organized as follows. In Section 2 we discuss non-parametric
density estimation, of which our histogram estimator is a special case. We com-
pare our discretization method to equal-width discretization (and variants) and
equal-frequency discretization. These methods are summarized in Section 3. In
Section 4 we discuss the cross-validated log-likelihood, which we use as the model
selection criterion to choose an appropriate number of bins. Our method is ex-
plained in detail in Section 5. An experimental comparison is presented in Sec-
tion 6. Section 7 has some concluding remarks.

2 Non-parametric Density Estimation

Density estimation, parametric or non-parametric, is about constructing an es-
timated density function from some given data. Parametric density estimation
assumes that the data has a density function that is of a known family of distri-
butions. For example, the distributions of the normal or Gaussian model have the
parameters μ for the mean and σ2 for the variance. The parametric method has
to find the parameters for the best fit to the data. However, practical applications
showed that there is often data that cannot be fit well enough with parametric
methods, so non-parametric methods have been developed that work without
the assumption of one of these specific distributions and fit more complex and
flexible models to the data [2].

Non-parametric density estimation suffers from two major problems: the
curse of dimensionality and finding a good smoothing parameter [3]. Since we
work in the univariate case the curse of dimensionality does not matter in our
application. What still remains is the problem of finding a good smoothing pa-
rameter. The smoothing parameter for histograms is the number of bins. If the
histogram has many bins, the density curve will show many details; if the bins
get fewer, the density curve will appear smoother. The question is how much is
enough detail. Our method automatically finds an appropriate bin width based
on cross-validation and the width is not constant for the whole range but adapts
to the data (i.e. the bin width varies locally).

Histograms have been widely used because they generate an easily under-
standable representation of the data. They represent the density function as
a piece-wise constant function. Alternative methods of non-parametric density
estimation are kernel estimators, which represent the data with a smooth func-
tion [2]. Although kernel density estimators avoid the discontinuities present in
histograms, they cannot be used to summarize the data in a concise form and
are more difficult to explain to the non-expert.

A further disadvantage of the kernel method is its computational complexity.
Assuming all kernels contribute to the density, computing the density for a test
instance requires time linear in the number of training instances. In contrast a
binary search on the bins is sufficient in a histogram, and the time complexity is
logarithmic in the number of bins. This is particular relevant for large datasets.
Kernel density estimation is a lazy method. Our method is an eager method that
requires more effort at training time.
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3 Existing Unsupervised Discretization Methods

We compare our method with two well-known unsupervised discretization meth-
ods: equal-width discretization and equal-frequency discretization. Equal-width
discretization divides the range of the attribute into a fixed number of intervals
of equal length. The user specifies the number of intervals as a parameter. A
variant of this method, which we also compare against, selects the number of
intervals using the cross-validated log-likelihood. This variant is implemented in
Weka [4].

For equal-width histograms it is not only important to select the number
of intervals but also the origin of the bins [2]. The origin is found by shifting
the grid by a part of the actual bin width (e.g. one 10th of it), and selecting
the best one of these shifts. We implemented this by using the cross-validated
log-likelihood to select the origin and the number of bins.

Equal-frequency discretization also has a fixed number of intervals, but the
intervals are chosen so that each one has the same or approximately the same
number of instances in it. The number of intervals is determined by the user.

4 Cross-Validating the Log-Likelihood

Cross-validation is used in machine learning to evaluate the fit of a model to the
real distribution. It is generally applied to classification or regression problems
but it can also be applied to clustering [5]. The idea is to split the dataset into
n equal-sized folds and repeat the training process n times using n− 1 folds for
training and the remainder for testing. This is done with every parameter value
and the best value is chosen to build the final model based on the full training
set. Various scoring functions are used to decide which parameter value is the
best. We use the log-likelihood of the histogram, which is also used for fitting
mixtures of normal distributions for clusters.

The log-likelihood is a commonly used measurement to evaluate density es-
timators [2]. It measures how likely the model is, given the data. Choosing the
model that maximizes the likelihood on the training data results in overfitting,
analogue to the classification or regression case. Cross-validation gives an (al-
most) unbiased estimate of performance on the true distribution and is a more
suitable criterion for determining model complexity.

Leave-one-out cross-validation can be applied in the case of equal-width dis-
cretization because the log-likelihood on each test instance can be easily com-
puted as the bins stay fixed. In our new discretization method the location of
each cut point can change with one instance removed, making the leave-one-out
method too expensive. Hence we use 10-fold cross-validation instead.

Let ni be the number of training instances in bin i, ni−test the number of
instances of the test set that fall into this bin, wi the bin width, and N the total
number of training instances. Then the log-likelihood L on the test data is:

L =
∑

i

ni−test ∗ log
ni

wi ∗N
(2)
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Fig. 2. Our TUBE-Method chose 5
bins of varying length

There is one problem: empty bins. If ni equals zero the logarithm is undefined.
To solve this problem we spread a single instance over the whole range of the data
by adding a part of the instance to each bin that is equivalent to the relative
width of the bin. Assume W denotes the total length of the range. Then the
above formula becomes:

L =
∑

i

ni−test ∗ log
ni + wi

W

wi ∗ (N + 1)
(3)

5 Tree-Based Unsupervised Discretization

The most common and simplest way of making histograms is the equal-width
method. The range is divided into subranges or bins of equal-width. In contrast
to this, our new algorithm divides the range of an attribute into intervals of
varying length. The goal is to cut the range in such a way that intervals are
defined that exhibit uniform density. Of course, in practical problems the true
underlying density will not really be uniform in any subrange but the most
significant changes in density should be picked up and result in separate intervals.
Figure 1 shows an equal-width estimator for a simple artificial dataset. Figure 2
shows the density function generated with our discretization method. In both
figures the “true” density (the density function that was used to generate the
data) is plotted with a dotted line. The training data is shown as vertical bars
at the bottom.

We call our method TUBE (Tree-based Unsupervised Bin Estimator), be-
cause it uses a tree-based algorithm to determine the cut points. More specifi-
cally, it builds a density estimation tree in a top-down fashion. Each node defines
one split point. In the following we describe how a locally optimum split point
can be found for a subset of data. Then we describe how the tree is built and
pruned and what can be done about the problem of “small” cuts.
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Fig. 3. The log-likelihood is minimized between instances

5.1 Where to Cut

The quality of the density estimation is measured by the log-likelihood. We
choose the split point that maximizes the likelihood based on the training data
and the ranges at the current node of our density estimation tree:

L = nleft ∗ log
nleft

wleft ∗N
+ nright ∗ log

nright

wright ∗N
(4)

Here, nleft is the number of instances in the left subrange and wleft its
width. The quantities for the right subrange are defined accordingly. In contrast
to decision tree learning [6], every training instance defines two potential maxi-
mum likelihood cut points. The cut is made at the instance (and not in-between
instances as in the case of classification or regression trees) and includes the
instance in either (a) the left or (b) the right subset. This is because the log-
likelihood of a division into two bins has a local minimum if the cut point is set
in-between two points. It attains a local maximum at the points. The diagram
in Figure 3 shows the log-likelihood of cut points at two values of an attribute
(circles) and at nine points in-between the values (crosses). The log-likelihood
is maximized at the instance values. Hence we cut at the values of the training
instances and consider including a point in either the right or the left subset—i.e.
we consider the interval boundaries .., x)[x, .. and ..x](x, .. for an instance x.

Note that this causes problems when the data is very discontinuous and has
a “spike” in its range (i.e. several identical training instances at the minimum or
maximum). The estimated density would be infinity because the range would be
zero. Therefore our implementation does not actually cut at the instance value
itself but add, or substract, a small value (we used 10−4 in our experiments).

5.2 Building the Tree

The selection of k cut points can be seen as a search through a resolution space
for the optimal solution. A well-known search method is the divide-and-conquer
method that decision trees use. On numeric attributes this method finds the
locally optimal binary split and repeats the process recursively in all subranges
until a stopping criterion is met. This is a greedy search that does not find
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Fig. 4. Pseudo code for the tree building algorithm
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Fig. 5. Tree after the first cut

an optimal global division but a division that is a computational inexpensive
estimate. We apply this method to unsupervised discretization using best-first
node expansion. The pseudo code of our algorithm is shown in Figure 4.

In the following we present an example using the dataset from Figures 1
and 2. First the best cut point is found in the whole range and two new bins
are formed. Within the two subranges two new locally optimal cut points are
searched for. Both splits are evaluated and a log-likelihood for the division into
the resulting three bins is computed for both possible splits. Figure 5 shows the
discretization tree corresponding to this situation. The root node represents the
first cut and the two leaf nodes represent the next two possible cuts.1

Each node represents a subrange, the root node the whole range. The vari-
ables written to the left and right side of the square corresponding to a node
represent the minimum and maximum of the subrange. The overall minimum
and maximum of this example dataset are 1.0 and 10.0. Each leaf node repre-

1 All values are rounded.
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sents a bin and the minimum exhibits a “[” if the minimum value itself is part of
the bin and a “(” if it is part of the next bin. The notation for the maximum is
analogue. The variable written in the middle of the node represents the cut point.

The whole range is first cut at the value 4.0. The next possible cut point is ei-
ther 2.0 or 8.0. These would split the dataset into the subranges [1.0:2.0] [2.0:4.0]
[4.0:10.0] or [1.0:4.0] [4.0:8.0] [8.0:10.0] respectively. The gain in log-likelihood for
each of the two possible divisions is written in the half-circle over the not-yet-
exercised cuts. The cut at 2.0 results in a log-likelihood gain of 38.5 computed based
on Formula 4, the cut at 8.0 has a log-likelihood gain of 44.6. Among the possible
cuts the one with the largest gain in log-likelihood is selected, which in this case is
the cut at 8.0. Figure 6 shows the state of the dicretization tree after two cuts.

After the cut at 8.0 is performed, two new bins are generated, and in each of
them a new possible cut is searched for. These cuts are 5.5 and 9.9, with log-likeli-
hood gains of 100.3 and 9.5 respectively. So for the third cut there is a choice be-
tween three cuts (including the cut at 2.0) and the next one chosen would be 5.5.

After four cuts our discretization tree learning algorithm decides to stop.
The stopping criterion will be explained in Section 5.3. Figure 7 shows the final
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discretization tree. The resulting histogram is the one shown at the beginning of
this section in Figure 2. In the final tree each leaf node represents a bin of the
histogram. Each internal node represents a cut.

5.3 The Stopping Criterion

The third and last part of our algorithm is the stopping criterion. Based on the
likelihood on the training data, the algorithm would not stop cutting until all
subranges contain a single value (i.e. it would overfit). The stopping criterion
sets the maximal number of cut points and prevents overfitting.

We use the 10-fold cross-validated log-likelihood to find an appropriate num-
ber. We start with zero and increase the maximal number of cut points in in-
crements of one. This can be implemented efficiently: to find k cut points, one
can use the division into k − 1 cut points and add one more. By default the
algorithm iterates up to N − 1 as the maximal number of cut points (i.e. the
cross-validated log-likelihood is computed for all trees with 1 up to N − 1 cut
points). For each of the N − 1 iterations the algorithm computes the average
log-likelihood over the test folds and from this the number of splits that exhibits
the maximum value is chosen.

In our above example the cross-validated log-likelihood curve has its maxi-
mum at four cut points and therefore four cuts have been performed. Note that
this method involves growing a density estimation tree eleven times: first once
for each of the ten training folds, and finally for the full dataset based on the
chosen number of cut points. The time complexity of the discretization algorithm
is O(NlogN).

5.4 A Problem: Small Cuts

The log-likelihood criterion used to find the cut point in a range can be unstable.
Sometimes a cut is found at the border of a subrange that contains very few
instances and is very small. This can lead to a very high density value and the
criterion decides to cut.
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Hence we implemented a heuristic that avoids these small cuts in most cases.
More specifically, we disallow cuts that are smaller than 0.1 percent of the whole
range of the data and set the minimum number of instances to

√
0.1 ∗N . Figure 8

shows a strongly distorted histogram of a normal density that is due to two small
cuts that have very high density. This was created by our method without using
the heuristic. The same dataset is used in Figure 9, where the small cuts have
been avoided using the heuristic.

6 Evaluation

We evaluated the TUBE discretization method using numeric attributes from
21 UCI datasets [7]. The algorithm works on univariate numeric data, and thus
the numeric attributes of the UCI datasets have been extracted and converted
into 464 one-attribute datasets.

A surprising finding was that many of these numeric attributes have a low
uniqueness in their values. Low uniqueness means that they have many instances
with the same value. Table 1 lists the number of attributes sorted into columns
according to their level of uniqueness (e.g. [0− 20) means that the percentage of
unique values is between 0 and 20). The table also shows the UCI datasets the
attributes have been extracted from and the number of instances.

Table 1. 464 numeric attributes from UCI datasets and their levels of uniqueness

Dataset [ 0-20) [20-40) [40-60) [60-80) [80-100] num inst
anneal 6 - - - - 898
arrythmia 182 7 14 3 - 452
autos 13 - - 1 1 205
balance-scale 4 - - - - 625
winsconsin-breast-cancer 9 - - - - 699
horse-colic 7 - - - - 368
german-credit 6 - - - 1 1000
ecoli 7 - - - - 336
glass 3 3 2 1 - 214
heart-statlog 12 1 - - - 270
hepatitis 4 1 1 - - 155
hypothyroid 7 - - - - 3772
ionosphere 2 - 2 31 - 351
iris 4 - - - - 150
labor 8 - - - - 57
lymphography 3 - - - - 148
segment 14 3 - 2 - 2310
sick 7 - - - - 3772
sonar - 7 4 - 46 208
vehicle 17 1 5 - 846
vowel - - 4 8 - 990
Sum 315 23 27 51 48
In percent 68 5 6 11 10
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These datasets are used to test how well TUBE discretization estimates the
true density. The density estimates that are generated are evaluated using 10x10-
fold cross-validation, measuring the log-likelihood on the test data. Note that
this “outer” cross-validation was performed in addition to the “inner” cross-
validation used to select the number of cut points.

Our new discretization method (TUBE) is compared against equal-width
discretization with 10 bins (EW-10), equal-width with cross-validation for the
number of bins (EWcvB), equal-width with cross-validation for the origin of the
bins and the number of bins (EWcvBO), and equal-frequency discretization with
10 bins (EF-10). The equal-frequency method could not produce useful models
for the attributes with uniqueness lower than 20 and has therefore been left out
in that category. TUBE, EWcvB and EWcvBO were all run with the maximum
bin number set to 100.

6.1 Evaluating the Fit to the True Distribution

Table 2 lists the summary of the comparison. Each value in the table is the
percentage of all attributes in that uniqueness category for which TUBE was

Table 2. Comparison of the density estimation results. Result of paired t-test based
on cross-validated log-likelihood.

EW-10 EWcvB EWcvBO EF-10
(0-20)
TUBE significantly better 99 100 100 -
TUBE equal 1 0 0 -
TUBE significantly worse 0 0 0 -
[20-40)
TUBE significantly better 48 43 43 48
TUBE equal 52 57 57 52
TUBE significantly worse 0 0 0 0
[40-60)
TUBE significantly better 8 8 8 37
TUBE equal 92 92 92 63
TUBE significantly worse 0 0 0 0
[60-80)
TUBE significantly better 53 56 56 67
TUBE equal 44 40 42 30
TUBE significantly worse 3 3 2 3
[80-100]
TUBE significantly better 13 17 15 13
TUBE equal 85 81 81 85
TUBE significantly worse 2 2 4 2
Total
TUBE significantly better 76 77 77 43
TUBE equal 23 22 22 55
TUBE significantly worse 1 1 1 2
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significantly better, equal or worse respectively based on the corrected resampled
t-test [8]. In almost all cases our method is at least as good as the other methods
and shows especially good results in cases with low uniqueness and some cases of
high uniqueness. We have analyzed the corresponding attributes and they show
that TUBE is generally better when attributes exhibit discontinuities in their
distributions.

It is difficult to split the datasets precisely into attributes with continuous
distributions and attributes with discontinuous distributions. Datasets below 20
percent uniqueness can be considered discontinuous but there are some datasets
in the higher uniqueness category that showed discontinuities.

Attributes with low uniqueness exhibit discontinuous distributions of differ-
ent kinds. Some of the attributes are very discrete and have only integer values
(e.g. vehicle-9) or a low precision (e.g.iris-4), some have irregularly distributed
data spikes (e.g. segment-7) and some have data spikes in regular intervals (e.g.
balance-scale-1). In the category of (0-20) uniqueness TUBE outperforms all
other methods on almost all of the datasets.

In the category [60-80) half of the attributes have a distribution that is a
mixture between continuous data and discrete data (most of the ionosphere at-

Table 3. Comparison of the number of bins

EW-10 EWcvB EWcvBO EF-10
(0-20)
TUBE significantly fewer 14 62 62 -
TUBE equal 2 8 7 -
TUBE significantly more 84 30 31 -
[20-40)
TUBE significantly fewer 31 13 26 31
TUBE equal 4 30 17 4
TUBE significantly more 65 57 57 65
[40-60)
TUBE significantly fewer 29 46 54 29
TUBE equal 38 42 38 38
TUBE significantly more 33 12 8 33
[60-80)
TUBE significantly fewer 44 94 97 44
TUBE equal 14 6 3 14
TUBE significantly more 42 0 0 42
[80-100]
TUBE significantly fewer 96 85 92 96
TUBE equal 2 15 8 2
TUBE significantly more 2 0 0 2
Total
TUBE significantly fewer 29 65 68 56
TUBE equal 5 12 9 12
TUBE significantly more 66 23 23 32
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tributes in this category have a mixed distribution). TUBE’s density estimation
was better for all these attributes.

6.2 Comparing the Number of Bins

Table 3 shows a comparison of the number of bins generated by the different
methods. A smaller number of bins gives histograms that are easier to under-
stand and analyze. In the category 80 percent and higher the TUBE discretiza-
tion generates a significantly smaller number of bins than the other methods.
Whenever it produces more bins this appears to result in a better fit to the data.

7 Conclusion

TUBE discretization provides a good algorithm for density estimation with his-
tograms. The density estimation of very discontinuous data is often difficult.
Our results show that TUBE outperforms equal-width and equal-frequency dis-
cretization on discontinuous attributes. It finds and can represent “spikes” in
the density function that are caused by discrete data (many instances with the
same value) and can reliably detect empty areas present in the value range.

On truly continuous data the method provides a discretization that represents
the data as well as the other methods but with fewer bins and hence gives a
clearer picture of areas of different density. A possible application of our method
would be density estimation for classification in Naive Bayes [9]. We plan to
investigate this application in future work.
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Abstract. Mutual information is a common feature score in feature selection for
text categorization. Mutual information suffers from two theoretical problems:
It assumes independent word variables, and longer documents are given higher
weights in the estimation of the feature scores, which is in contrast to common
evaluation measures that do not distinguish between long and short documents.
We propose a variant of mutual information, called Weighted Average Pointwise
Mutual Information (WAPMI) that avoids both problems. We provide theoretical
as well as extensive empirical evidence in favor of WAPMI. Furthermore, we
show that WAPMI has a nice property that other feature metrics lack, namely it
allows to select the best feature set size automatically by maximizing an objective
function, which can be done using a simple heuristic without resorting to costly
methods like EM and model selection.

1 Introduction

Automatic text categorization, i.e. the assignment of text documents to predefined cat-
egories, is an important task in many NLP applications. The common bag of words
approach results in a document space with very high dimensionality. In order to speed
up parameter estimation and classification and to improve the classifier performance, it
is common to use feature selection to reduce the dimensionality of the document space.
This is typically done using a filtering approach [1] in which each feature is assigned
a score based on an independent evaluation, and the features are then ranked according
to their scores, and the N highest ranked features are selected, where N is the desired
vocabulary size. Wrapper methods, which use the classifier directly to evaluate different
feature subsets [1], are not commonly used for text classification because of the high
dimensionality of the feature space that makes searching for the best feature subset
intractable.

Mutual Information (MI) is an information-theoretic measure that is often used to
evaluate features. It measures the amount of information that the value of a feature in
a document (e.g. the presence or absence of a word) gives about the class of the docu-
ment. Feature selection studies have obtained good results with MI [2]. However, there
are two problems associated with the use of MI for feature ranking: First, MI treats
each feature as an independent random variable. This is a problem because words in a
text are not independent. Second, classifiers based on generative models, such as Naive
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Bayes [3], estimate class-conditional probability distributions over words from train-
ing data. In the multinomial Naive Bayes model [3,4] this is done by concatenating the
training documents in each class to one long document and estimating the distribution
of words in this long document. This gives larger weights to longer documents. How-
ever, in classifier evaluation, all (test) documents have equal weight irrespective of their
length—that is, there is a mismatch between classifier training and evaluation.

This paper proposes a variant of MI, Weighted Average Pointwise Mutual Informa-
tion (WAPMI) that avoids both aforementioned problems. We present theoretical (using
an information-theoretic argument that links WAPMI to multinomial Naive Bayes) and
empirical evidence (through extensive experimentation) in favor of WAPMI. WAPMI
improves the performance of multinomial Naive Bayes over MI on a variety of stan-
dard benchmark corpora. It also outperforms several other standard metrics for feature
ranking.

In addition, WAPMI has a very nice property compared to other metrics, including
MI: It allows to determine the (theoretically) best feature set size by maximizing an
objective function. This can be done using a simple heuristic by applying a general,
data-independent threshold to the feature scores, without the need to resort to compu-
tationally intensive methods like EM and model selection. Other feature metrics only
evaluate the relative usefulness, and it is not entirely clear how they could be used to
define an objective function for feature selection.

We demonstrate the effectiveness of this general thresholding method in our exper-
iments. On some datasets (notably those that are commonly regarded “easy” classifica-
tion tasks) we obtain smaller feature sets and better performance, while on “difficult”
datasets (i.e. large datasets with great variability in the vocabulary) WAPMI selects
larger feature sets than other metrics while outperforming them.

The paper is structured as follows. In Sect. 2 we review the probabilistic frame-
work of multinomial Naive Bayes. In Sect. 3 we define weighted average pointwise
mutual information and motivate its use for feature ranking. We also discuss its re-
lation to distributional clustering. The experimental setup is described in Sect. 4,
and Sect. 4 presents our experiments and the results. Section 5 finishes with some
conclusions.

2 Naive Bayes

Naive Bayes is a simple probabilistic classifier that is widely used for text classification
[3,4]. Despite this independence assumption, Naive Bayes performs surprisingly well
on text classification problems [5].

Let C = {c1, . . . ,c|C|} denote the set of possible classes of documents, and let V =
{w1, . . . ,w|V |} be a vocabulary. The multinomial Naive Bayes classifier assumes that
a document d is drawn from a multinomial distribution by |d| independent trials on a
random variable W ∈V with class-conditional distribution p(wt |c j) (where |d| denotes
document length):

p(d|c j) = p(|d|)|d|!
|V |
∏
t=1

p(wt |c j)xt

xt !
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xt is the number of times W yields wt , i.e. the number of times the word wt occurs
in d. The parameters p(wt |c j) are usually estimated from training documents using
maximum likelihood with Laplace smoothing to avoid zero probabilities:

p̂(wt |c j) =
1 + n(c j,wt )
|V |+ n(c j)

where n(c j,wt ) is the number of occurrences of wt in the training documents in c j and
n(c j) is the total number of word occurrences in c j.

The posterior probability of the class given the document is given by Bayes’ rule:

p(c j|d) =
p(c j)p(d|c j)

p(d)

where p(d) is the total probability of d:

p(d) =
|C|
∑
j=1

p(c j)p(d|c j)

The class priors p(c j) are estimated from training documents as the fraction of docu-
ments in class c j. Given a document, the Naive Bayes classifier selects the class with
the highest posterior probability (we can omit those parts that do not depend on the
class in the maximization):

c∗(d) = argmax
c j

p(c j)p(d|c j) (1)

3 Weighted Average Pointwise Mutual Information

3.1 Defining Weighted Average Pointwise Mutual Information

Mutual Information is a measure of the information that one random variable gives
about the value of another random variable [6]. Let W be a random variable that ranges
over the vocabularyV , and let C be random variable that ranges over classes. The mutual
information between W and C is defined as:

I(W ;C) =
|V |
∑
t=1

|C|
∑
j=1

p(wt ,c j) log
p(wt |c j)

p(wt)
(2)

The term log
p(wt |c j)

p(wt)
is called pointwise mutual information [7].1 Note that mutual in-

formation can be written as a weighted sum of Kullback-Leibler (KL) divergences. The
KL-divergence between two probability distributions p and q is defined as D(p‖q) =
∑x p(x) log p(x)

q(x) [6]. Thus (2) can be written as the weighted average KL-divergence

1 In [2] this is called information gain, and the term mutual information is used as a synonym
for pointwise mutual information.



WAPMI for Feature Selection in Text Categorization 255

between the class-conditional distribution of words and the global (unconditioned) dis-
tribution in the entire corpus:

I(W ;C) =
|C|
∑
j=1

p(c j)D(p(W |c j)‖p(W ))

To rank features we would like a measure for each feature. A common method is to
define new binary random variables, Wt , for each word that indicate whether the next
word in a document is wt (or some other word) [3,8]: p(Wt = 1) = p(W = wt). Then
the MI-score for wt is given by:

MI(wt) := I(Wt ;C) =
|C|
∑
j=1

∑
x=0,1

p(Wt = x,c j) log
p(Wt = x|c j)

p(Wt = x)
(3)

The problem with (3) is that it treats Wt as an independent random variable, but in

fact ∑|V |t=1 p(Wt = 1) = 1! To avoid this independence assumption, we consider (2) as a
sum over word scores, where the score for wt is the pointwise mutual information with
the class, averaged over all classes:

PMI(wt) :=
|C|
∑
j=1

p(wt ,c j) log
p(wt |c j)

p(wt)
(4)

The problem with (4) is that it treats all training documents in one class as one
big document (because of the way the class-conditional probabilities are estimated).
Thus, if there is variation in the document lengths, (4) is dominated by the longer doc-
uments. To avoid this problem, we replace the weight p(wt ,c j) with a term that is a
weighted average of the document-conditional probabilities p(wt |di) = n(wt ,di)/|di|
where n(wt ,di) is the number of times wt occurs in di and |di| is the length of di.2 Thus
weighted average pointwise mutual information is defined as:

WAPMI(wt) :=
|C|
∑
j=1

∑
di∈c j

αi p(wt |di) log
p(wt |c j)

p(wt)
(5)

We consider several alternatives for the weights αi, which can be associated with dif-
ferent measures for classifier evaluation:

– αi = p(c j) · |di|/∑di∈c j
|di|. This gives each document a weight proportional to its

lengths and yields (4).

– αi = 1/∑|C|j=1 |c j|. This gives equal weight to all documents. This corresponds to an
evaluation measure that counts each misclassified document as the same error, i.e.
classification accuracy.

– αi = 1/(|c j| · |C|) where di ∈ c j. This gives equal weight to the classes by normal-
izing for class size, i.e. documents from smaller categories receive higher weights.
This compensates for the dominance of larger categories in classifier evaluation.

2 Note that any word that does not occur in di has zero probability.
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By summing (5) over all words we obtain the total weighted average pointwise mutual
information between the word variable W and the class variable C:

WAPMI(W ;C) :=
|V |
∑
t=1

|C|
∑
j=1

∑
di∈c j

αi p(wt |di) log
p(wt |c j)

p(wt)
(6)

In the following subsections we provide theoretical evidence that total WAPMI could
be used as an objective function, and the goal of feature selection is to maximize that
objective function.

3.2 Relation to Distributional Clustering

Note that (6) can be written as a weighted sum of the difference between (i) the KL-
divergence of the document-conditional distribution from the corpus distribution and
(ii) the KL-divergence of the document-conditional distribution from the class-condi-
tional distribution:

|C|
∑
j=1

∑
di∈c j

αi

[
D(p(W |di)‖p(W ))−D(p(W |di)‖p(W |c j))

]
(7)

This can be interpreted as an estimate of how similar the documents in one class are and
how dissimilar documents of different classes are. From a clustering perspective we can
say that (7) is large if the documents that belong to the same class form tight clusters, with
wide separation between the clusters. Interpreting text categorization as an information
retrieval task (i.e. regarding classes as queries) this is a desirable property that has been
argued to improve document retrieval performance in the vector space model [9].

In distributional clustering the goal is to cluster similar objects (e.g. documents)
together so as to maximize the value of an objective function that measures the quality
of the clustering [10]. Below we argue that maximizing (7) is expected to improve the
accuracy of the multinomial Naive Bayes classifier. Thus we can regard total weighted
average pointwise mutual information as an objective function (since it is a function
of the entire training corpus). However, in contrast to clustering, we do not change the
clusters (which correspond to the classes in the training corpus and which we consider
to be fixed). Instead our goal is to improve the clustering by changing the document
representation (i.e. by using a subset of the features).

3.3 Relation to Multinomial Naive Bayes

We can use (7) to get an estimate of the expected performance of Naive Bayes on the
training set (and by generalization also on a test set, if the test documents are draw
from the same distribution). We manipulate the Naive Bayes classifier (1) in an infor-
mation theoretic framework using the fact that a document defines a probability dis-
tribution over words. We define the distance of a document, di, from a class, c j, as
the KL-divergence between the document-conditional word distribution and the class-
conditional distribution. Naive Bayes can then be written in the following form by tak-
ing logarithms, dividing by the length of di and adding the entropy of di, H(p(W |di)) =
−∑t p(wt |di) log p(wt |di) [10]:
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c∗(di) = argmin
c j

[
D(p(W |di)‖p(W |c j))− 1

|di| log p(c j)
]

(8)

Note that the modifications in (8) do not change the classification of documents. As-
suming equal class priors, Naive Bayes can thus be interpreted as selecting the class
which has the least distance from the document. Taking into account the arguments
from the previous subsection, maximizing the total weighted average pointwise mu-
tual information (6) would thus increase the probability that each document is nearer
to its true class than to any other class, and would therefore be classified correctly by
multinomial Naive Bayes.

3.4 Using WAPMI as an Objective Function for Feature Selection

Taking into account the arguments in the previous subsections, the best feature set
would be one that maximizes the total WAPMI (6). Note that the WAPMI score (5)
can be negative, which suggests the following simple heuristic for maximizing total
WAPMI: Simply select all words with a positive WAPMI score and removing all other
words. This is equivalent to applying a threshold of θ = 0 to the WAPMI score. We ex-
amine this empirically in Sect. 4. In contrast, mutual information is always non-negative
(and almost always positive), and it is not entirely clear how mutual information could
be used as an objective function in feature selection.

Note that the above heuristic is only an approximation. In fact, feature selection
isn’t entirely well-defined in multinomial Naive Bayes, since we are not only prun-
ing the model but the data too! Pruning the vocabulary changes the distribution of the
remaining words. An alternative would be to not greedily discard words but perform
several iterations and recompute the objective function after each iteration until con-
vergence. We tried this, but there was almost no difference. In most cases, convergence
occurred after only two or three iterations, with only a few additional words removed
after the first round.

4 Experiments

4.1 Datasets and Procedures

We perform experiments on five text categorization datasets, described in Table 1. The
20 Newsgroups dataset3 consists of Usenet articles distributed evenly in 20 different
newsgroups that make up the classes [11]. We remove newsgroup headers and binary
attachments and use only words consisting of alphabetic characters as tokens, after con-
verting to lower case and mapping numbers, URLs and email addresses to special tokens.

The WebKB dataset and the 7 Sectors dataset are both available from the WebKB
project [12].4 WebKB contains web pages gathered from computer science departments
and categorized in six classes plus one other class. We use only the four most populous
classes course, faculty, project and student. The 7 Sectors data consists of web pages

3 http://people.csail.mit.edu/people/jrennie/20Newsgroups/
4 http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-11/www/wwkb/
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Table 1. Corpus statistics. The last two columns show the number of documents in the smallest
and biggest categories, respectively.

Dataset Classes Vocabulary Documents Smallest Largest
20 Newsgroups 20 94,897 19,997 997 1,000
WebKB 4 41,015 4,199 504 1,641
7 Sectors 48 42,110 4,582 39 105
Reuters-10 (train) 10 22,430 6,490 181 2,877
Reuters-10 (test) 10 13,849 2,545 56 1,087
Reuters-90 (train) 90 24,719 7,770 1 2,877
Reuters-90 (test) 90 15,660 3,019 1 1,087

from different companies divided into a hierarchy of classes. We use the flattened version
of the data. We strip all HTML tags and use only words and numbers as tokens, after
converting to lower case and mapping numbers and other expressions to special tokens.

The Reuters-21578 dataset5 consists of Reuters news articles belonging to zero or
more topic classes. We use the ModApte split [13] and produce two versions of the
corpus. Reuters-10 uses only the 10 largest topics. On average, each document belongs
to 1.105 topic classes. Reuters-90 uses all 90 topics that have at least one document in
the training and test set, with an average of 1.235 topics per document.

Except on Reuters, all experiments are performed using cross-validation. We fol-
low the methodology in [3]. For 20 Newsgroups and 7 Sectors, we split the data into
five parts of equal size and with equal class distribution. For WebKB we produce ten
train/test splits using stratified random sampling with 70% training and 30% test data.
We report average classification accuracy across trials.

For the Reuters experiments we build a binary classifier for each topic, using the
documents belonging to each topic as positive examples and all other documents as
negative examples. Following the standard methodology with multi-label datasets, we
ignore the classification decision of the classifier and use the classification scores to
rank the documents. We then report precision/recall breakeven points averaged over
all topics (called “macroaverage”). Instead of the Naive Bayes posterior probabilities,
which tend to produce extreme values with growing document length due to the Naive
Bayes independence assumption and are not comparable across documents, we use the
normalized KL-divergence based classification scores described in [12].

4.2 Quality of Selected Features

We compare our WAPMI scoring function against three other scoring functions: Mutual
Information [3], Chi-squared [2] and Bi-normal separation [14]. We evaluate the quality
of the selected features by varying the number of selected features. We use WAPMI
with equal weighting for all documents (we also experimented with equal class weights
but found no statistically significant difference). Table 2 shows the top 20 words in the
entire 20 Newsgroups corpus according to Mutual Information and WAPMI.

Figure 1 shows classification accuracy on the three datasets. As can be seen, the
WAPMI scoring function yields higher classification accuracy, although on WebKB

5 http://www.daviddlewis.com/resources/testcollections/reuters21578/
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Table 2. 20 words with highest MI (left) and WAPMI score (right) in the 20 Newsgroups corpus

MI Word MI Word WAPMI Word WAPMI Word
0.02833 ax 0.00174 g 0.00221 rainbowthreedigit 0.00073 rainbowdigits
0.01555 rainbowonedigit 0.00168 w 0.00179 sale 0.00070 mac
0.00387 rainbowdigits 0.00161 m 0.00150 rainbowtwodigit 0.00068 clipper
0.00374 rainbowtwodigit 0.00155 u 0.00140 windows 0.00067 taggedemail
0.00336 x 0.00144 v 0.00129 x 0.00067 card
0.00222 q 0.00143 of 0.00091 car 0.00066 thanks
0.00188 rainbowthreedigit 0.00124 god 0.00089 god 0.00065 team
0.00182 f 0.00119 r 0.00087 game 0.00064 he
0.00181 max 0.00109 p 0.00083 drive 0.00064 i
0.00175 the 0.00104 that 0.00074 bike 0.00064 space

the difference is statistically significant only for up to 2,000 words. In general, the
improvement seems to be higher on smaller vocabulary sizes.

The class distribution is highly skewed in the Reuters datasets. The largest category
(earn) has 2,877 documents in the training set, while the smallest category in Reuters-
10 (corn) has 181 documents in the training set. In Reuters-90 there are 29 categories
with less than 10 documents in the training set.

For the Reuters experiments we use two versions of WAPMI: with equal weights
for all documents (WAPMI1), and with equal class weights (WAPMI2) (cf. Sect. 3.1),
which deemphasizes the impact of the larger classes. Figure 2 shows the results on the
Reuters datasets with 10 and 90 categories. We report macroaveraged precision/recall
breakeven, which gives equal weight to the performance on each category. WAPMI with
equal weights on documents does not perform better than the other metrics, except for
very small vocabularies on Reuters-90. However, when the weights are set such that
documents from smaller categories receive higher weights (WAPMI2), WAPMI clearly
outperforms the other feature scoring methods.

4.3 Global Thresholding

In addition to the experiments with varying numbers of features we also examined the
possibility of using a global thresholding strategy, with a fixed threshold that is applied
to all datasets. We are interested in the sensitivity of the various feature scoring func-
tions to the difficulty of the classification task. In general, the Naive Bayes classifier
performs better with large vocabularies, but the optimal vocabulary size depends on
the dataset. For instance, the 20 Newsgroups dataset requires a larger vocabulary for
optimal classification accuracy than the other datasets [3].

For Mutual Information, Chi-squared and Bi-normal separation we select a thresh-
old that yields relatively good performance on all datasets. For WAPMI we use the
theoretically best threshold 0. For all datasets except 20 Newsgroups we use both vari-
ants with equal weights on documents (WAPMI1) and on classes (WAPMI2). For 20
Newsgroups WAPMI1 and WAPMI2 are the same because all classes have the same
number of documents.
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Fig. 1. Classification accuracy on 20 Newsgroups (top), WebKB (middle) and 7 Sectors (bottom).
Curves show small error bars twice the width of the standard error of the mean. Differences
between WAPMI and the other metrics are statistically significant (at the 95% confidence level
using a two-tailed paired t-test) at the following vocabulary sizes: on 20 Newsgroups from 20 to
50,000 words; on WebKB from 20 to 2,000 words; on 7 Sectors from 100 to 20,000 words.
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Fig. 2. Macroaveraged precision/recall breakeven on the Reuters datasets with 10 (top) and 90
(bottom) topic classes. WAPMI1 gives equal weight to documents, while WAPMI2 gives equal
weight to classes.

Table 3 shows the results. For each dataset and each scoring function we report
the number of features and the classification performance at the selected threshold. In
addition we show the classification performance at the full vocabulary (i.e. with no
feature selection).

We make two observations in Table 3. First, WAPMI is always among the top per-
formers, although its performance is significantly better only on 20 Newsgroups and
Reuters. Mutual Information performs significantly worse than the other metrics on 7
Sectors. Secondly and more importantly, the number of features selected by WAPMI
seems to reflect the difficulty of the datasets better than for the other scoring methods.
For 20 Newsgroups, which requires many features, WAPMI1 selects more features than
any other method, while it still omits some features which results in an improvement
of 2 percentage points compared to the full vocabulary. In contrast, the WAPMI scores
select considerably less features on the Reuters datasets than the other methods, with
better results.
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Table 3. Global thresholding results. Shown are the number of selected words at the predefined
threshold, classification performance, and standard deviation where applicable. Statistically sig-
nificant differences (at p = 0.95 using a two-tailed paired t-test) are printed in boldface. For
Reuters, macroaveraged precision/recall breakeven points are shown.

20 Newsgroups WebKB 7 Sectors
Words Acc SDev Words Acc SDev Words Acc SDev

Chi2=0.1 65,194 81.35% 0.36% 32,712 84.79% 0.99% 15,147 72.29% 1.19%
MI=10−7 77,694 81.13% 0.37% 32,776 84.79% 1.01% 37,474 68.32% 1.17%
BNS=0.05 62,777 81.42% 0.26% 32,550 84.78% 0.99% 8,545 72.27% 1.78%
WAPMI1=0 85,870 82.92% 0.72% 32,091 85.00% 0.96% 37,422 73.12% 0.57%
WAPMI2=0 32,278 85.06% 1.03% 37,428 73.14% 1.01%
Full 86,019 80.97% 0.29% 32,873 84.80% 0.99% 37,474 68.32% 1.17%

Reuters-10 Reuters-90
Words P/R Words P/R

Chi2=0.1 18,861 81.72% 23,395 22.30%
MI=10−7 18,014 81.72% 22,571 22.57%
BNS=0.05 20,086 81.76% 23,778 22.26%
WAPMI1=0 7,617 82.47% 3,066 44.58%
WAPMI2=0 10,610 83.17% 20,762 38.97%
Full 22,430 81.61% 24,719 22.28%

5 Conclusions

This paper proposes weighted average pointwise mutual information (WAPMI) as a
replacement for mutual information to rank features for feature selection in text catego-
rization. Experiments on a number of standard benchmark datasets show that WAPMI
outperforms several other feature scoring metrics, including mutual information, Chi-
squared and Bi-normal separation. An important property of WAPMI is that the feature
set size (i.e. the number of selected features) can be set automatically, depending on the
complexity and difficulty of the dataset, by using a simple constant-threshold heuristics
that maximizes an objective function and does not require EM or model selection.

WAPMI contains weights that can be set to account for skewed class distributions,
which we used in our experiments with the Reuters dataset and obtained improved
classification performance. It is not entirely clear how this could be done with other
metrics.

We have used WAPMI with the multinomial Naive Bayes classifier, but future work
should deal with other classification models, e.g. support vector machines. A general
open problem is that feature selection for multinomial Naive Bayes is not entirely well-
defined, thus we are actually approximating feature selection. More work is required to
better understand how feature selection affects the class-conditional distributions.

Acknowledgments

The author would like to thank the anonymous reviewers for their detailed comments
and suggestions that helped to improve the paper.



WAPMI for Feature Selection in Text Categorization 263

References

1. John, G.H., Kohavi, R., Pfleger, K.: Irrelevant features and the subset selection problem. In
Cohen, W.W., Hirsh, H., eds.: Machine Learning: Proceedings of the Eleventh International
Conference, San Francisco, CA, Morgan Kaufmann Publishers (1994) 121–129

2. Yang, Y., Pedersen, J.O.: A comparative study on feature selection in text categorization. In:
Proc. 14th International Conference on Machine Learning (ICML-97). (1997) 412–420

3. McCallum, A., Nigam, K.: A comparison of event models for Naive Bayes text classification.
In: Learning for Text Categorization: Papers from the AAAI Workshop, AAAI Press (1998)
41–48 Technical Report WS-98-05.

4. Eyheramendy, S., Lewis, D.D., Madigan, D.: On the Naive Bayes model for text catego-
rization. In Bishop, C.M., Frey, B.J., eds.: AI & Statistics 2003: Proceedings of the Ninth
International Workshop on Artificial Intelligence and Statistics. (2003) 332–339

5. Friedman, J.H.: On bias, variance, 0/1-loss, and the curse-of-dimensionality. Data Mining
and Knowledge Discovery 1 (1997) 55–77

6. Cover, T.M., Thomas, J.A.: Elements of Information Theory. John Wiley, New York (1991)
7. Church, K.W., Hanks, P.: Word association norms, mutual information, and lexicography.

Computational Linguistics 16 (1990) 22–29
8. Rennie, J.D.M.: Improving multi-class text classification with Naive Bayes. Master’s thesis,

Massachusetts Institute of Technology (2001)
9. Salton, G., Wong, A., Yang, C.S.: A vector space model for automatic indexing. Communi-

cations of the ACM 18 (1975) 613–620
10. Dhillon, I.S., Mallela, S., Kumar, R.: A divisive information-theoretic feature clustering

algorithm for text classification. Journal of Machine Learning Research 3 (2003) 1265–1287
11. Lang, K.: NewsWeeder: Learning to filter netnews. In: Proc. 12th International Conference

on Machine Learning (ICML-95), Morgan Kaufmann (1995) 331–339
12. Craven, M., DiPasquo, D., Freitag, D., McCallum, A., Mitchell, T., Nigam, K., Slattery, S.:

Learning to construct knowledge bases from the World Wide Web. Artificial Intelligence
118 (2000) 69–113

13. Apté, C., Damerau, F., Weiss, S.M.: Towards language independent automated learning
of text categorization models. In: Proc. 17th ACM SIGIR Conference on Research and
Development in Information Retrieval (SIGIR ’94). (1994) 23–30

14. Forman, G.: An extensive empirical study of feature selection metrics for text classification.
Journal of Machine Learning Research 3 (2003) 1289–1305



A. Jorge et al. (Eds.): PKDD 2005, LNAI 3721, pp. 264 – 273, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

Non-stationary Environment Compensation Using 
Sequential EM Algorithm for Robust Speech Recognition* 

Haifeng Shen, Jun Guo1, Gang Liu1, and Qunxia Li2 

1 Beijing University of Posts and Telecommunications, 100876, Beijing, China 
shen_hai_feng@126.com, guojun@bupt.edu.cn, lg@pris.edu.cn 

2 University of Science and Technology Beijing, 100083, Beijing, China 
kellylqx@163.com 

Abstract. The paper presents a non-stationary environment compensation using 
sequential EM estimation for tracking the complicated environment. All of the 
noisy features used in the recognition system are effectively compensated. The 
speech corruption in the log domain such as the 24 log-filterbank coefficients 
and the log-energy feature can be modeled as a nonlinear model. For efficient 
estimating noise parameter using the subsequent sequential Expectation-
Maximization (EM) algorithm, the nonlinear environment model is linearized 
by the truncated first-order vector Taylor series (VTS) approximation. Due to 
the cepstral features are nearly independence, we train the clean speech using 
cepstral features and the log-energy feature, and then obtain a diagonal Gaus-
sian mixture model in the log domain by taking inverse discrete cosine trans-
form (IDCT). The experiments are conducted on the large vocabulary continu-
ous speech recognition (LVCSR) system. Results demonstrate that it achieves 
attractive improvements when compared with CMN (cepstral mean normaliza-
tion) and the batch-EM based compensation approach. 

1   Introduction 

The recognition performance will be severely degraded in the acoustic-distorted envi-
ronments due to mismatches between the training and the test environments. The test 
utterances represent specific conditions such as specific speakers, specific speaking 
styles, specific noisy conditions, which generally are not included in the training data 
set and usually differ from the training conditions. There are many compensation 
approaches for reducing the influences of these mismatches on the speech. CMN 
(cepstral mean normalization), with the merits of inexpensive computation load and 
good recognition performance, can remove the cepstral mean from all vectors with the 
cepstral mean calculated separately from each sentence assuming that the average 
cepstral mean in the training and testing environments are equal to each other. The 
data-driven approach such that SNR-Dependent Cepstral Normalization (SDCN), 
Fixed Codeword-Dependent Cepstral Normalization (FCDCN) [1], needs a “stereo” 
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database that contains time-aligned samples of speech which had been simultaneously 
recorded in both the training and the reprehensive test environments. The cepstral 
features of the incoming speech are compensated by direct comparison. The problem 
of the data-driven approach is that the stereo data recorded in a specific test environ-
ment is not suitable for another real environment. Moreover, this kind of the ap-
proaches is really complicated in recording the “stereo” databases and not effective 
when dealing with the non-stationary environment. Recently, the model-based ap-
proach becomes the most attractive technique [2]-[10]. The acoustic-distorted envi-
ronment is modeled as an explicit model. For effectively modeling the statistical dis-
tribution of the noisy observation and estimating the environment parameters, the 
environment model is postprocessed to achieve the compact model. For instance, by 
employing the truncated first order vector Taylor series (VTS) approximation [2] [3] 
[5] and statistical linear approximation (SLA) [6]-[8], the nonlinear model is lin-
earized. It is proven that such environment approximation approaches achieve the 
considerable performance on speech recognition. Furthermore, based on maximum 
likelihood estimation (ML) [7] or maximum a posteriori estimation (MAP) criterion 
[3], the noise parameter is iteratively updated to the real value using EM algorithm, 
generally, using the batch-EM algorithm. It is clear that the batch-EM algorithm can 
be carried out assuming that the environment is stationary, that is, the noise statistics 
is iteratively updated by computing the posteriori probabilities of all of the incoming 
speech frames. Although the batch-EM algorithm also improves the recognition per-
formance in the non-stationary environment, this improvement is rather limited, espe-
cially in the high time-varying environment. The sequential EM algorithm [8]-[10], 
can deal with this problem and can improve recognition performance considerably 
compared with the batch EM environment compensation, especially in the time-
varying environment.  

In this paper, we present a non-stationary environment compensation based on se-
quential EM algorithm. Generally speaking, most of state-of-the-art speech recogni-
tion systems use the Mel frequency cepstral coefficients (MFCCs) and the log-energy 
feature as the acoustic vector. It is well known that the log-energy feature also makes 
a significant contribution for improving the recognition performance. Because the 
cepstral coefficients can be obtained from the log-filterbank coefficients by taking 
DCT transform, a number of the papers in literature [2]-[6], [8] [10] deal with the cep-
stral coefficients or the log-filterbank coefficients for making the feature robust 
against the noise environments. But it is clear that if the log-energy feature isn’t well 
compensated, the system also can deteriorate the system performance, especially in 
the condition with a large mount of noise. Therefore, in this paper, we compensate all 
of the log-filterbank coefficients and the log-energy feature. Then taking DCT trans-
form and corresponding dynamic features computation, the compensated cepstal coef-
ficients and the log-energy feature plus the first and second differentials are obtained. 
For effectively estimating the environment parameter, the environment in the log 
domain can be modeled as a nonlinear model and linearized using the truncated first-
order VTS approximation. It is noticeable that the clean speech model has a severe 
influence on the recognition performance. Generally, the clean speech model is mod-
eled as the diagonal Gaussian mixture distribution for the effectiveness of the subse-
quent environment parameter estimation, also for decreasing the huge computation 
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load. Due to the aforementioned nearly independence in the cepstral domain, our 
approach to this is based on combination of all cepstral coefficients and the log-
energy feature. Then the diagonal clean model in the log domain is obtained by taking 
inverse DCT transform on the cepstral statistics of the trained model. Based on initial-
izing the truncated first-order VTS coefficients by employing the current estimated 
noise parameter and the next noisy speech frame, we update the next frame noise 
parameter by using sequential EM algorithm until the last noisy frame. The experi-
ments are conducted on the large vocabulary continuous speech recognition (LVCSR) 
system. Results demonstrate that the environment compensation using the sequential 
EM algorithm improves recognition performance considerably compared with the 
batch EM environment compensation, especially in the time-varying environment. 
After introducing the forgetting factor for tracking the non-stationary time-varying 
environment, the performance of the speech recognition can further be improved in 
the non-stationary environment. The rest of the paper is organized as follows. The 
next section briefly describes the environment model approximation and accordingly 
investigates the statistical characteristics of the noisy speech. In section 3, we present 
sequential EM algorithm for noise parameter estimation. The experimental results are 
given in section 4 and some conclusions are drawn in section 5. 

2   Environment Model Approximation 

As seen in the appendix, due to the noise is additive in the linear spectral domain, the 
speech corruption will be nonlinear in the log spectral domain. In addition, the log-
energy feature has the same corruption form as those of the log filterbank coefficients. 
So we can describe the corruption of these features in the noisy environment jointly. 
Denote the noisy feature, the clean feature and the noise in the log domain 
by y , x and n . The corruption is well represented as  

log(1 exp( )) ( , ).y x n x x f x n= + + − = +  (1) 

We assume the clean speech is modeled as a Gaussian mixture model: 

1

( ) ( ; , ),
M

j xj xj
j

p x p N x μ
=

= Σ  
(2) 

in which M denotes the number of mixture components, jp , xjμ and xjΣ denote the 

mixture coefficient, the mean vector and the diagonal covariance matrix for the j th 
mixture component, respectively. In our system, we first train the clean cepstral coef-
ficients and the log-energy feature to obtain Gaussian mixture model. Then taking 
inverse DCT transform on these cepstral probability statistics, Gaussian mixture 
model in the log domain can be derived. We assume the noise is a Gaussian and sta-
tistically independent from the clean speech. The probability distribution of the noisy 
speech, unfortunately, is not the Gaussian mixture model due to the nonlinear rela-
tionship between the noisy speech and the clean speech described in Eq.(1). To sim-
plify the distribution of the noisy speech and efficient noise estimation using sequen-
tial EM algorithm in the following step, we employ the truncated first-order VTS 
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expansion to linearize the nonlinearity ( , )f x n  in Eq.(1) around the vector 
points 0( , )xj nμ . This gives the linearized model in the j th mixture component: 

,j j jy A x B n C= + +  (3) 
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0

0

0 0 0 0

1 ( , )

( , ) ,

( , ) ( , ) ( , )

j x xj

j n xj

j xj x xj xj n xj

A f n

B f n

C f n f n f n n

μ
μ

μ μ μ μ

= + ∇

= ∇

= −∇ −∇

 (4) 

and the gradients 0( , )x xjf nμ∇  and 0( , )n xjf nμ∇ have the following close form: 
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3   Noise Estimation Using Sequential EM Algorithm 

Assuming that the noise is a single Gaussian distribution with mean vector tn and 

covariance matrix nΣ  in each instant time t , we can see that the distribution of the 

noisy speech is a Gaussian mixture model by applying the first-order VTS approxima-
tion. In this paper, for simplicity, we are only interested in the noise mean estimation 
in each frame. The covariance matrix of each frame is set with equal value and can be 
estimated from silence frames. Given the acoustic-distorted feature sequence 

1 1 2 1{ , , , }t tY y y y+ +=  and the previous noise estimate sequence 0 1ˆ ˆ ˆ{ , , , }nt tn n nΛ =  in 

which 0n̂ is the initial parameter estimate and ˆtn is the noise estimate at time t ,  

the noise 1ˆtn + at time 1t +  can be obtained under ML criterion: 

( ){ }
1

1 1 1 1ˆ arg max log , | , ,
t

t t t t nt
n

n P Y J n
+

+ + + += Λ  (6) 

where 1 1 2 1{ , , , }t tJ j j j+ +=  is the a set of the mixture components up to time 1t + . 

In general, it is not easy to estimate instant noise parameter. In this section, we use 
the sequential EM algorithm to iteratively estimate the different instant noise. At each 
iteration, the likelihood in Eq.(6) are increase until convergence. The auxiliary func-
tion is given below 

1 1 1 1 1 1 1ˆ ˆ( | , ) {log ( , | , ) | , , },t t nt t t t nt t t ntQ n n E P Y J n Y n+ + + + + + +Λ = Λ Λ  (7) 

where 1tn + is the initial value needed to know beforehand. In the slow time-varying 

acoustic-distorted environment, the value 1tn + can be approximated using the previous 

estimate ˆtn , then the above equation can be compactly written as  
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where 

, 1 1 1

, 1 1 1 1

ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )
,

ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )

y j j xj j j

y j j xj j j n j

n A n B n n C n

A n A n B n B n

τ

τ

τ τ τ τ τ

τ τ τ τ

μ μ− − −

− − − −

= + +

′ ′Σ = Σ + Σ
 (9) 

where the coefficients ( )jA ⋅ , ( )jB ⋅ and ( )jC ⋅  are the functions of the noise paramter 1n̂τ − . 

That is, the nonlinear function ˆ( , )f x nτ  in Eq.(1) is approximated around the vector 

point 1ˆ( , )xj nτμ − by using vector Taylor expansion. 

The posteriori probability 1ˆ( | , )p j j y nτ τ τ −= in Eq.(8) can be computed as  
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where , 1ˆ ˆ( , )y j xj xjf n
τ τμ μ μ −= + . 

In the non-stationary environment, the history observation data is not useful or not 
really important to current noise estimation. We can add the different weights accord-
ing to their contributions on current noise estimation. The different weights can be 
added by introducing the forgetting factor ρ where ρ is a non-negative constant with 
value less than 1, thus, Eq.(8) can be rewritten as 
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By Taylor series expansion to the above auxiliary function, choosing the truncated 
second order items, and maximizing the approximated items with respect to the noise 
parameter, the noise at time 1t + can be estimated [8]-[11] 

1
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+ + += + ⋅  (12) 

where the disturbing factor γ  is a non-negative constant with value greater than 0, the 
Fisher information matrix 1 ˆ( )t tK n+ and the score vector 1 ˆ( )t tS n+ are defined as follow-
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4   Experimental Results 

A continuous hidden Markov model (HMM)-based speech recognition system is used 
in the recognition experiments for examining the presented approach. The utterances 
of 82 speakers (41 males and 41 females) from the mandarin Chinese corpus provided 
by the 863 plan (China High-Tech Development Plan[12]) are trained for triphone-
based HMM acoustic models, where each triphone unit was modeled as a three-
emitting-state left-right topology with a mixture of 16 Gaussian per state and diagonal 
covariance matrices. The utterances of 9 speakers from the clean corpus are used for 
subsequent artificial contamination with different noise class.  

In order to extract Mel frequency cepstral coefficients (MFCCs) from the 16Hz 
noisy speech data, we use a power spectrum which is calculated every 10ms on a 
25ms Hmming window with pre-emphasis coefficient 0.97,  then take a mel-scaled 
triangular filterbank and logarithmic computation and accordingly obtain the Mel-
scaled 24 log-fiterbank coefficients. After transforming them into the cepstral domain 
with DCT transform, we obtain the first 12 cepstral coefficients (excluding the zero 
coefficients). The log-energy feature in each frame is computed after taking Hmming 
windowing. Accordingly, 39 dimensional features consisting of the 12 cepstral coeffi-
cients, the log-energy feature coefficient and their time derivatives are computed.  

In our feature compensation paradigm, for modeling the clean speech, we extract a 
set of 24 MFCCs and one log-energy feature from the clean speech data for training 
and obtain a mixture of 128 Gaussian distributions. Then the mean vector of each 
mixture component in the Mel-scaled log spectral domain is obtained using inverse 
cosine transformation matrix. The covariance matrix is computed also from the cep-
stral domain using the inverse cosine transformation matrix and its transpose. By 
ignoring the off-diagonal elements in the covariance matrices assuming that the dif-
ferent coefficients are statistically independent, we obtain the diagonal covariance 
matrices in the log domain. With the developed sequential EM algorithm, the 24 di-
mensional log-filterbank features and a log-energy feature are compensated. With 
DCT transform and delta and delta-delta regression equations, the static coefficients 
(12 MFCCs plus the log-energy feature) and the corresponding dynamic coefficients 
(13 delta coefficients and 13 delta-delta coefficients) are computed. 

In order to test the validity of the feature compensation algorithm, a number of ex-
periments have been performed. They include the baseline without compensation, 
compensation with CMN (cepstral mean normalization), batch-EM estimation and 
sequential EM estimation. The forenamed three approaches are titled as “baseline”, 
“CMN” and “batch-EM”, respectively in Table 1 and Table 2. In the sequential EM 
estimation, to investigate the behavior in the non-stationary environment, we get three 
forms: “Seq-0.90”, “Seq-0.95” and “Seq-1.00” according to the different forgetting 
value ρ  with 0.90, 0.95 and 1.00. And we add the stationary white noise and the non-
stationary babble noise from NoiseX92 [13] to the test set according to different SNR 
varying from 0dB to 20dB. It is observed from Table 1 that, the sequential estimation 
gives considerable performances, compared with “baseline”, “CMN” and “Batch-
EM”. For example, in the 5dB white noisy condition, “baseline” only achieves 2.54% 
recognition rate, “CMN” achieves 10.98% recognition rate, and “Batch-EM” achieves 
17.00% recognition rate. The sequential estimation with the forgetting factor ρ  set to 
0.90, 0.95 and 1.00 gives 18.93%, 18.97% and 18.91% recognition rates and achieves 
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1.93%, 1.97%, and 1.91% improvements over that by “Batch-EM”, respectively. As a 
whole, the sequential estimation with different forgetting factor value achieves 0.77%, 
0.75%, and 0.82% improvements over that by “Batch-EM”, respectively. It is clear 
that the presented approach is very effective in the stationary noisy condition. 

Table 1. Recognition rates in the white noisy environment (%) 

SNR 0dB 5dB 10dB 15dB 20dB Avg. 
baseline 0.32 2.54 11.14 30.00 56.04 20.01�
CMN 3.31 10.98 29.99 36.94 61.65 28.57 

Batch-EM 5.51 17.00 39.37 62.36 77.12 40.27 
Seq-0.90 4.99 18.93 39.99 63.19 78.10 41.04 
Seq-0.95 4.99 18.97 40.19 62.85 78.12 41.02�
Seq-1.00 5.02 18.91 40.38 63.02 78.14 41.09�

Table 2. Recognition rates in the babble noisy environment (%) 

SNR 0dB 5dB 10dB 15dB 20dB Avg. 
baseline 3.87 24.61 54.84 62.98 80.23 45.31�
CMN 11.16 32.38 55.95 71.04 80.31 50.17 

Batch-EM 15.86 39.25 61.78 75.23 81.09 54.64 
Seq-0.90 17.72 40.71 62.56 75.53 81.07 55.52 
Seq-0.95 17.50 40.70 62.49 75.50 81.21 55.48 
Seq-1.00 17.44 40.31 62.60 75.51 81.46 55.46�

To test the validity of the sequential estimation in non-stationary conditions, we 
further test the babble noise in different SNR levels. It is observed in Table 2 that, 
using “baseline”, performance degradation is not obvious in the high SNR condition, 
such as in the 20dB condition. But when the noise amount increases, recognition 
performance quickly deteriorates with only 3.87% recognition rate in the 0dB condi-
tion. With “CMN” and “Batch-EM”, the phenomena can be relatively restrained. 
However, they still have the main limitations to cope with the non-stationary envi-
ronments. Although compensation is applied to reduce the mismatch among the clean 
acoustic model and the test set, they remain a minor mismatch which they don’t ob-
tain the best performance at all of non-stationary noisy conditions. With the sequential 
estimation algorithm, it can further reduce the mismatch and can improve the system 
performance in most of noisy conditions, especially in low SNR conditions. For ex-
ample, in 5dB condition, the sequential EM algorithm with different forgetting factor 
achieves 1.46%, 1.45% and 1.06% improvements in comparison to “Batch-EM”, 
respectively.  

From Table 1 and Table 2, we also observe that the sequential estimation averagely 
provides slight improvement when the forgetting factor ρ  is 1.00 over that of ρ  is 
0.9 or 0.95 for the white noise. But we notice that it averagely provides slight im-
provement when ρ  is 0.90 over that of ρ  is 0.95 or 1.00 for the babble noise. The 
cause of this behavior is that the white noise is the stationary noise and the babble 
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noise is the non-stationary noise. For the white noisy condition, it is clear that the 
history data is very useful to noise estimation. With the reasonable forgetting factor, 
the presented approach can ignore the history data which is effective for computing 
the current noise parameter in the non-stationary condition. Due to the babble noise is 
a slow time-varying noise, the forgetting factor can be set with a high value relatively. 
For the highly time-varying conditions, ρ can be a low value to reasonably track the 
non-stationary characteristics.  

5   Conclusions 

We have presented an approach to environment compensation for robust speech rec-
ognition based on a sequential EM algorithm. The algorithm compensates entirely all 
of the features to deal with the environment corruption. The corruption causing distor-
tion in the speech signal in the log domain can be modeled a nonlinear function and 
linearized by the truncated first-order VTS approximation. Furthermore, all of the 
clean cepstral coefficients and the log-energy feature are trained and postprocessed by 
taking corresponding inverse DCT transform to obtain a reasonable Gaussian mixture 
model in the log domain. They give a reasonable basis for the subsequent speech 
recognition. Experiment results show that the algorithm presented provides improve-
ments of about 20% in the white noise and about 10% in the babble noise when com-
pared with the performances under distortion environments. Moreover, the perform-
ance of speech recognition system by using sequential EM algorithm achieves consid-
erable improvement compared with the traditional batch-EM algorithm. In the future 
work, we will investigate the relationship of the forgetting factor with the degree of 
the non-stationary characteristics and the noise class. 
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Appendix 

If we only consider the additive noise, the corruption in the signal domain is shown as 
following 

t t ty x n= + , (15) 

where ty denotes the noisy sample, tx for the clean sample, tn for the additive noise. 

Generally we assume that tx and tn are statistically independent. If we transform the 

above relation into the power spectral domain, the corruption can be expressed as: 

( ) ( ) ( )Y X Nω ω ω= + , (16) 

where ( )Y ω , ( )X ω  and ( )N ω  represent the power spectrum of the noisy speech, clean 
speech and additive noise, respectively. If we take a logarithmic computation on both 
sides of Eq.(16), 
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Let { }log ( )y Y ω= , { }log ( )x X ω=  and { }log ( )n N ω= , we have [2] 

log(1 exp( )) ( , )y x n x x f x n= + + − = + , (18) 



 Non-stationary Environment Compensation Using Sequential EM Algorithm 273 

where ,y x and n are respectively the noisy speech, the clean speech and the noise in 
the log spectral domain. From Eq.(18), For each log-filterbank bin, it is noticeable 
that the corruption becomes a complex nonlinear contamination procedure.  

Now we describe the log-energy feature contamination procedure. In order to at-
tenuate the discontinuities at the window, we generally use the Hmming window 
before extracting the feature coefficients. The energy of one frame after taking 
Hmming windowing on speech can be written as 

[ ]2

1

( )
L

y l
l

E h y
=

= , (19) 

where L denotes the number of samples in each frame, yE is the noisy energy, 

( )h ⋅ represents operation with Hmming windowing. Due to the clean speech and the 
noise are statistical independent and ( )h ⋅ is a linear computation, the above equation 
can be rewritten as  
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 (20) 

where xE and nE are respectively the clean energy and the noise energy in one frame. 

If we take a logarithmic transformation on Eq.(20), the corruption of the log-energy 
feature is  

log(1 exp( ))e e e ey x n x= + + − , (21) 

in which ,e ey x and en  are respectively the noisy log-energy feature , the clean log-

energy feature and the noise,  log( )e yy E= , log( )e xx E= , log( )e nn E= . 

As seen in Eq.(18) and Eq.(21), the corruptions of the log-filtebank coefficients 
and the log-energy feature have the same functional form. 
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Abstract. Cost-sensitive decision tree and cost-sensitive naïve Bayes are both 
new cost-sensitive learning models proposed recently to minimize the total cost 
of test and misclassifications. Each of them has its advantages and 
disadvantages. In this paper, we propose a novel cost-sensitive learning model, 
a hybrid cost-sensitive decision tree, called DTNB, to reduce the minimum total 
cost, which integrates the advantages of cost-sensitive decision tree and of the 
cost-sensitive naïve Bayes together. We empirically evaluate it over various test 
strategies, and our experiments show that our DTNB outperforms cost-sensitive 
decision and the cost-sensitive naïve Bayes significantly in minimizing the total 
cost of tests and misclassification based on the same sequential test strategies, 
and single batch strategies. 

1   Introduction 

Inductive learning techniques have had great success in building classifiers and 
classifying test examples into classes with a high accuracy or low error rate. However, 
in many real-world applications, lowing misclassification error is not the goal as 
“errors” can cost very differently. This type of learning is called cost-sensitive 
learning. Turney [14] surveys a whole range of costs in cost-sensitive learning, among 
which two types of costs are most important: misclassification costs and test costs. 
For example, in a binary classification task, the cost of false positive (FP) and the cost 
of false negative (FN) are often very different. In addition, attributes (tests) may have 
different costs, and acquiring values of attributes also incurs costs. The goal of 
learning is to minimize the sum of the misclassification costs and the test costs.   

Tasks involving both misclassification and test costs are abundant in real-world 
applications. For example, when building a model for medical diagnosis from the 
training data, we must consider the cost of tests (such as blood tests, X-ray, etc.) and 
the cost of misclassifications (errors in the diagnosis). Further, when a doctor sees a 
new patient (a test example), tests are normally ordered, at a cost to the patient or 
his/her insurance company. To better diagnose or predict the disease of the patient 
(i.e., reducing the misclassification cost). Doctors must balance the trade-off between 
potential misclassification costs and test costs to determinate which tests should be 
ordered, and at what order, to reduce the expected total cost. A case study on heart 
disease is given in the paper.  

In this paper, we propose a new cost-sensitive learning model, DTNB, which 
integrates the advantages of the cost-sensitive decision tree and the cost-sensitive 
naïve Bayes, both of which minimize the total cost of misclassifications and tests. 
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DTNB uses the cost-sensitive decision tree to collect the required tests for test 
examples, and uses the cost-sensitive naïve Bayes to classify. For a test example, after 
the required tests are collected according to the cost-sensitive decision tree, the tests 
are performed with a cost and their results are available. Then the cost-sensitive naïve 
Bayes built on all the training data is applied to classify the test example. The naïve 
Bayes model can make use of the known values which do not appear in the path 
which the test example follows to go down to a leaf in the cost-sensitive decision tree. 
Thus, we can expect that the cost-sensitive DTNB can achieve lower total cost than 
the cost-sensitive decision tree and the cost-sensitive naïve Bayes do alone. 

The rest of paper is organized as follows. We first review the related work in 
Section 2. Then we describe our new cost-sensitive learning model, DTNB, to reduce 
the minimum total cost of tests and misclassifications in Section 3. In Section 4, we 
present empirical experiments. The paper concludes with discussion and some 
directions for the future work.  

2   Review of Previous Work 

Cost-sensitive learning has received extensive attentions in recent years. Turney [14] 
analyzes a variety of costs in machine learning, such as misclassification costs, test 
costs, active learning costs, computation cost, human-computer interaction cost, etc. 
Two types of costs are singled out as the most important in machine learning: 
misclassification costs and test costs, and test costs are normally considered in 
conjunction with misclassification costs. Much work has been done in considering 
non-uniform misclassification costs (alone), such as [4, 5, 7]. Those works can often 
used to solve problem of learning with very imbalanced datasets [3]. Some previous 
work, such as [10, 12], consider the test cost alone without incorporating 
misclassification cost. As pointed out by [14] it is obviously an oversight. As far as we 
know, the only work considering both misclassification and test costs includes [13, 
15, 9, 2]. We discuss these works in detail below. 

In [15], the cost-sensitive learning problem is cast as a Markov Decision Process 
(MDP), and an optimal solution is given as a search in a state space for optimal 
policies.  While related to our work, their research adopts an optimal search strategy, 
which may incur very high computational cost to conduct the search.  In contrast, we 
adopt the local search similar to [11] using a polynomial time algorithm to build a 
new decision trees, and our test strategies are also polynomial to the tree size. 
(Greiner et al. 2002) studied the theoretical aspects of active learning with test costs 
using a PAC learning framework, which models how to use a budget to collect the 
relevant information for the real-world applications with no actual data at beginning. 
Our algorithm builds a model from history data to minimize the total cost of 
misclassification and tests for a new case with missing values. Turney [13] presented 
a system called ICET, which uses a genetic algorithm to build a decision tree to 
minimize the cost of tests and misclassification.  Our algorithm essentially adopts the 
same decision-tree building framework as in [11], and it is expected to be more 
efficient than Turney’s genetic algorithm based approach. 

Ling et al. [9] propose a cost-sensitive decision tree learning program that 
minimizes the total cost of tests and misclassifications. They also propose several test 
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strategies, and compare their results to C4.5. However, for a test example, the cost-
sensitive decision tree ignores the information supplied by the known attributes which 
do not appear in the path which the test example follows to go down to a leaf in the 
cost-sensitive decision tree. Chai et al. [2] propose a cost-sensitive naïve Bayes based 
algorithm, called CSNB, which searches for minimal total cost of tests and 
misclassifications. They also propose a sequential test strategy and a single batch test 
strategy. However, the cost-sensitive naïve Bayes does not learn the general attribute 
structure (such as the tree structure) but only probability tables from training data. The 
test sequence for each test example is less comprehensible.  

Our model, DTNB, combines the advantages of cost-sensitive decision tree and 
naïve Bayes. It utilizes the structure of the cost-sensitive decision tree to collect the 
beneficiary tests for a test example and makes use of the information in the known 
attributes which are ignored by the cost-sensitive decision tree to reduce the 
misclassification cost. We expect that our DTNB outperform cost-sensitive decision 
tree and cost-sensitive naïve Bayes alone in terms of the total cost of tests and 
misclassification. 

The new cost-sensitive model, DTNB, is composed of decision tree and naïve 
Bayes, but it is much different from NBTree [8] proposed by Kohavi. First of all, 
NBTree is not a cost-sensitive learning model. The learning algorithm of NBTree is 
similar to C4.5 [Qui93]. DTNB is a cost-sensitive learning to minimize the total cost 
of tests and misclassification. Secondly, in NBTree, a naïve Bayes is constructed for 
each leaf using the data associated with the leaf. However, DTNB only constructs one 
naïve Bayes using all the training data. This naïve Bayes acts as a hidden node at each 
node (including the leaves) of the cost-sensitive decision tree. The details of 
difference between NBTree and DTNB are explained in Section 3.   

3   The New Cost-Sensitive Learning - DTNB 

We assume that we are given a set of training data (with possible missing attribute 
values), the misclassification costs, and test costs for each attribute. We propose a 
novel cost-sensitive learning model, DTNB, which combines the advantages of cost-
sensitive decision tree and naïve Bayes. The rationale of DTNB is based on our 
observations. We note that cost-sensitive decision tree has the ability of learning a 
general structure, and the structure of the tree plays an important role for collecting 
the most beneficiary unknown values. However, the decision tree ignores the original 
known values which do not appear in the tree for classify a test example. In non-cost-
sensitive learning, this is one reasonable feature of decision tree. But in cost-sensitive 
learning, any value is available with a certain cost. We do not want waste any 
available information. Naturally, making use of all known values can reduce the total 
cost. The information of the known attributes which do not appear in the path through 
which the test example goes down to a leaf of the tree is useful for cost-sensitive 
classification to reduce the misclassification cost. Fortunately, cost-sensitive naïve 
Bayes indeed utilizes all known attributes for misclassification, but it does not have a 
structure learning ability to help determine which tests and in what order should be 
done for unknown attributes.  
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Fig. 1. An example of cost-sensitive DTNB 

In order to overcome these drawbacks and combine those advantages in the two 
cost-sensitive models, we propose a novel cost-sensitive learning model, which 
integrates cost-sensitive decision tree with cost-sensitive naïve Bayes, called DTNB. 
Figure 1 shows the structure of an example of the novel cost-sensitive learning model 
DTNB. We can see DTNB is an integration model with two parts. The left part is a 
cost-sensitive decision tree which is used for finding the required tests for each testing 
example. Besides the cost-sensitive tree, DTNB also contains a naïve Bayes (right 
part), which is for classification. 

First of all, DTNB builds a cost-sensitive decision tree, given a set of training data, 
the misclassification costs, and test costs for each attribute. The building procedure is 
similar to C4.5. Instead of using entropy based splitting criteria, we use the expected 
total misclassification cost to select an attribute for splitting. This gives a more 
accurate choice for attribute selection. That is, an attribute may be selected as a root 
node of a decision tree if the sum of the test cost and the expected misclassification 
costs of all branches is the minimum among other attributes, and is less than that of 
the root. For a subset of examples with tp positive examples and tn negative 
examples, if CP = tp×TP + tn×FP is the total misclassification cost of being a positive 
leaf, and CN  =  tn× TN + tp×FN is the total misclassification cost of being a negative 
leaf, then the probability of being positive is estimated by the relative cost of CP and 
CN; the smaller the cost, the larger the probability (as minimum cost is sought). Thus, 

the probability of being positive is: 
NP

N

NP

P

CC

C

CC

C

+
=

+
−1 . The expected 

misclassification cost of being positive is: P
NP

N
P C

CC

C
E ×

+
= . Similarly, the 

probability of being a negative leaf is
NP

P

CC

C

+
; and the expected misclassification 
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cost of being negative is: N
NP

P
N C

CC

C
E ×

+
= . Therefore, without splitting, the 

expected total misclassification cost of a given set of examples 

is:
NP

NP
NP CC

CC
EEE

+
××=+= 2

. If an attribute A has l branches, then the 

expected total misclassification cost after splitting on A is: 

ii

ii

NP

NP
l

i
A CC

CC
E

+
×

×=
=1

2 . Thus, (E – EA –TC) is the expected cost reduction 

splitting on A, where TC is the total test cost for all examples on A. It is easy to find 
out which attribute has the smallest expected total cost (the sum of the test cost and 
the expected misclassification cost), and if it is smaller than the one without split (if 
so, it is worth to split). With the expected total misclassification cost described above 
as the splitting criterion, the lazy-tree learning algorithm is shown in Figure 2. 

Simultaneously, we build a cost sensitive naïve Bayes. Note that this model is built 
on all the training data, and for all nodes in the tree. However, NBTree [Koh96] treats 
the segmentation of decision tree as an advantage. It builds a naïve Bayes at each leaf 
of the decision tree. And the naïve Bayes constructed for a leaf uses only the data 
associated with the leaf. However, as the tree grows, the training data are split into the 
lower level nodes. Finally, there are very little data in the leaves. The classification 
based on these leaves is far less accurate, so that the misclassification cost goes 
higher. This is reason that NBTree is proposed for larger dataset. However, without 
larger dataset assumption DTNB overcomes the shortcoming of segmentation of 
decision tree by constructing only one naïve Bayes using all the training data. This 
naïve Bayes acts as a hidden model at each node (including the leaves) of the cost-
sensitive decision tree. The hidden model is only for classification. Thus, DTNB does 
not utilize the data which go down into a leaf of the tree to classify a testing example 
which drops into this leaf. It classifies the test example by the only hidden cost-
sensitive naïve Bayes.  

DTNB only builds one general naïve Bayes from all the training data. Whereas, the 
posterior probabilities of a test example e are computed from the known attributes and 
the tested unknown attributes. The unknown attributes which are not selected to 
perform testing are not concerned. With the posterior probabilities, if FN× P(+|e) > 
FP×P(-|e), this test example is classified as negative, otherwise, as positive. A 
misclassification cost may be incurred if the prediction of the test example is wrong. 
Thus, for each test example, not only the attributes appearing on the tree, but also the 
known attributes can be fully used to make correct classification, so that the total 
misclassification cost can be reduced, as any known value is worthy of a certain cost. 
But for the cost-sensitive decision tree, it is possible some known attributes are not 
used to split the training data, so that they become useless for the classification. 
DTNB makes use of all known attributes, as well as the available values of the 
collected unknown attributes at certain test costs. 
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Fig. 2. Algorithm of cost-sensitive decision tree 

In the naïve Bayes model of DTNB, the Laplace Correction is applied. That is, 

,
1

)|(
mN

N
ap a

+
+

=+  where Na is the number of instances whose attribute A1=a, N 

is the number of instances whose class is +, and m is the number of classes. 
After DTNB is built, for each testing example, there are two steps to find the 

minimum total cost of tests and misclassifications. The first step is to utilize the tree 
structure of the cost-sensitive decision tree to collect a set of tests which need be 
performed according to a certain strategy (there are several strategies explained in 
Section 4). The total test cost is accumulated in the step. After the set of tests are 
done, the values of the unknown attributes in the test example are available. It 
automatically goes to the second step, where the cost-sensitive naïve Bayes model is 
used to classify the test example into a certain class. The naïve Bayes uses not only 
the unknown attributes tested but also all known attributes. If it is classified 
incorrectly, there is misclassification cost. We empirically evaluate it over various test 
strategies in next section. 

4   Experiments 

We evaluate the performance of DTNB on two categories of test strategies: Sequential 
Test, and Single Batch Test. For a given test example with unknown attributes, the 

CSDT(Examples, Attributes, TestCosts) 
1. Create a root node for the tree 
2. If all examples are positive, return the single-node tree, with label = + 
3. If all examples are negative, return the single-node tree, with label = - 
4. If attributes is empty, return the single-node tree, with label assigned 

according to min (EP, EN) 
5. Otherwise Begin 

a. If maximum cost reduction < 0 return the single-node tree, with label 
assigned according to min (EP, EN) 

b. A is an attribute which produces maximum cost reduction among all the 
remaining attributes 

c. Assign the attribute A as the tree root 
d. For each possible value vi of the attribute A 

i. Add a new branch below root, corresponding to the test A=vi 
ii. Segment the training examples into each branch Example_vi 
iii. If no examples in a branch, add a leaf node in this branch, with label 

assigned according to min (EP, EN) 
iv. Else add a subtree below this branch, CSDT(examples_vi, 

Attributes-A, TestCosts) 
6. End  
7. Return root 
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Sequential Test can request only one test at a time, and wait for the test result to 
decide which attribute to be tested next, or if a final prediction is made.  The Single 
Batch Test, on the other hand, can request one set (batch) of one or many tests to be 
done simultaneously before a final prediction is made.   

4.1   DTNB’s Optimal Sequential Test  

Recall that Sequential Test allows one test to be performed (at a cost) each time 
before the next test is determined, until a final prediction is made. Ling, et al. [9] 
described a simple strategy called Optimal Sequential Test (or OST in short) that 
directly utilizes the decision tree built to guide the sequence of tests to be performed 
in the following way: when the test example is classified by the tree, and is stopped 
by an attribute whose value is unknown, a test of that attribute is made at a cost. This 
process continues until the test case reaches a leaf of the tree. According to the leaf 
reached, a prediction is made, which may incur a misclassification cost if the 
prediction is wrong. Clearly the time complexity of OST is only linear to the depth of 
the tree. 

One weakness with this approach is that it ignores some known attributes which do 
not appear in the path through which a test example goes down to a leaf. However, 
these attributes can be useful for reducing the misclassification cost. Like the OST, 
We also propose an Optimal Sequential Test strategy for DTNB (section 3), called 
DNOST in short. It has the similar process as OST. The only difference is that the 
class prediction which is not made by the leaf it reached, but the naïve Bayesian 
classification model in DTNB. This strategy utilizes the tree structure to collect the 
most useful tests for a test example. And it also utilizes the entire original known 
attributes in the test example with the unknown attributes tested to predict the class of 
the test example. We can expect DNOST outperforms OST. 

Table 1. Datasets used in the experiments 

 
No. of 

Attributes 
No. of 

Examples 
Class dist. (N/P) 

Ecoli 6 332 230/102 

Breast 9 683 444/239 
Heart 8 161 98/163 

Thyroid 24 2000 1762/238 
Australia 15 653 296/357 

Tic-tac-toe 9 958 332/626 
Mushroom 21 8124 4208/3916 
Kr-vs-kp 36 3196 1527/1669 
Voting 16 232 108/124 
Cars 6 446 328/118 
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Comparing Sequential Test Strategies. To compare various sequential test 
strategies, we choose 10 real-world datasets which are listed in Table 1, from the UCI 
Machine Learning Repository [1]. The datasets are first discretized using the minimal 
entropy method [6]. These datasets are chosen because they are binary class, have at 
least some discrete attributes, and have a good number of examples. Each dataset is 
split into two parts: the training set (60%) and the test set (40%). Unlike the case 
study of heart disease, the detailed test costs and group information [13] of these 
datasets are unknown. To make the comparison possible, we simply choose randomly 
the test costs of all attributes to be some values between 0 and 100. This is reasonable 
because we compare the relative performance of all test strategies under the same 
chosen costs. To make the comparisons straightforward, we set up the same 
misclassification costs 200/600 (200 for false positive and 600 for false negative). For 
test examples, a certain ratio of attributes (0.2, 0.4, 0.6, 0.8, and 1) are randomly 
selected and marked as unknown to simulate test cases with various degrees of 
missing values.  

In this section, we compare our DNOST with the other two sequential test 
strategies available, OST, and CSNB [2] on 10 real-world datasets to see which one is 
better (having a smaller total cost). Note that DNOST and OST use the same decision 
tree to collect beneficiary tests. However, DNOST uses DTNB’s naïve Bayes for 
classification, while OST uses the leaves of tree to classify test examples. CSNB 
follows the same test strategy: determine next test based on the previous test result. 
However, it is based on the naïve Bayes only. In all, all of them are based on the same 
test strategy, but they are applied different cost-sensitive learning models. That is, 
their performances directly stand for the performances of different learning models. 
We repeat this process 25 times, and the average total costs for the 10 datasets are 
plotted in Figure 3. 
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Fig. 3. The total cost of our new Sequential Test Strategy DNOST compared to previous 
strategies (OST and CSNB) 
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We can make several interesting conclusions. First, DNOST performs the best 
among the three sequential test strategies. When the unknown attribute ratio is higher, 
the difference between DNOST and CSNB becomes bigger. However, DNOST is 
gradually close to OST when the unknown ratio is increased. When the unknown ratio 
is lower, the difference between DNOST and OST is bigger, as more known attributes 
are utilized in DTNB, but they are ignored in cost-sensitive decision tree. Second, the 
results proof our expectation which DTNB integrates the advantage of the decision 
tree and the naïve Bayes and overcomes their defects. When the unknown ratio is 
lower, there are more known attributes ignored by OST, so that OST performs worse, 
whereas DNOST and CSNB perform better and are closer, as they make use of the 
known values. When the unknown ratio is higher, there are less known attributes 
ignored by OST and both DNOST and OST utilize the tree structure to collect the 
most beneficiary tests, so that they perform better and are close to each other.  

4.2   Single Batch Test Strategies 

The Sequential Test Strategies have to wait for the result of each test to determine 
which test will be the next one. Waiting not only costs much time, but also increases 
the pressure and affects the life quality of patients in medical diagnosis. In 
manufacturing diagnoses, it delays the progress of engineering. Even in some 
particular situations, for example, emergence, we have to make decisions as soon as 
possible.  In medical emergence, doctors normally order one set of tests (at a cost) to 
be done at once. This is the case of the Single Batch Test. 

In [9] a very simple heuristic is described. The basic idea is that when a test 
example is classified by a minimum-cost tree and is stopped by the first attribute 
whose value is unknown in the test case, all unknown attributes under and including 
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this first attribute would be tested, as a single batch. Clearly, this strategy would have 
exactly the same misclassification cost as the Optimal Sequential Test, but the total 
test cost is higher as extra tests are performed. This strategy is called Naïve Single 
Batch (NSB).  

The weakness of NSB is that it ignores some known attributes which do not appear 
in the path through which a test example goes down to a leaf after the tests are 
performed. However, these attributes can be useful for reducing the misclassification 
cost. Like the NSB, we apply the similar process on DTNB. The only difference is the 
class prediction which is not made by the leaf a test example reached after the tests 
are performed, but by the naïve Bayes classification model. We call this process 
DTNB’s Naïve Single Batch Test (or DN-NSB in short).  

Comparing Single Batch Test Strategies. We use the same experiment procedure on 
the same 10 datasets used in Section 4.1 (see Table 1) to compare various Single 
Batch Test strategies including CSNB-SB [2]. The only change is the 
misclassification costs, which are set to 2000/6000 (2000 for false positive and 6000 
for false negative). The misclassification costs are set to be larger so the trees will be 
larger and the batch effect is more evident. Note that DN-NSB and NSB use the same 
decision tree to collect beneficiary tests. However, DN-NSB uses DTNB’s naïve 
Bayes for classification, while NSB uses the leaves of tree to classify test examples. 
CSNB follows the same test strategy: request one set (batch) of one or many tests to 
be done simultaneously before a final prediction is made. However, it is based on the 
naïve Bayes only. In all, all of them are based on the same test strategy, but they are 
applied to different cost-sensitive learning models. That is, their performances 
directly stand for the performances of different learning models. The total costs for 
the 10 datasets are compared and plotted in Figure 4.  

We can make several interesting conclusions. First, the single batch test strategy 
(DN-NSB) based on DTNB outperforms others on any unknown ratio. CSNB-SB 
outperforms NSB when the unknown ratio is higher, but it is worse than NSB when 
the unknown ratio goes down. Second, the results again proof our expectation which 
DTNB integrates the advantage of the decision tree and the naïve Bayes and 
overcomes their defects. When the unknown ratio is lower, there are more known 
attributes ignored by NSB, so that NSB performs worse. DN-NSB and CSNB-SB 
perform better, as they make use of the known values. When the unknown ratio is 
higher, there are less known attributes ignored by NSB and both DN-NSB and NSB 
utilize the tree structure to collect the most beneficiary tests, so that they perform 
better.   

5   Conclusion and Future Work 

In this paper, we present a hybrid decision tree learning algorithm, which integrate 
with naïve Bayes, to minimize the total cost of misclassifications and tests. We 
evaluate the performance (in terms of the total cost) empirically, compared to 
previous methods using decision tree and naïve Bayes alone. The results show that 
our novel learning algorithm, DTNB, performs significantly better than the decision 
tree learning and the naïve Bayes learning alone.  
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 In our future work we plan to design smart single batch test strategies. We also 
plan to incorporate other types of costs in our hybrid decision tree learning DTNB and 
test strategies. 
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Abstract. We present a case study on the discovery of clinically relevant
domain knowledge in the field of HIV drug resistance. Novel mutations
in the HIV genome associated with treatment failure were identified by
mining a relational clinical database. Hierarchical cluster analysis sug-
gests that two of these mutations form a novel mutational complex, while
all others are involved in known resistance-conferring evolutionary path-
ways. The clustering is shown to be highly stable in a bootstrap proce-
dure. Multidimensional scaling in mutation space indicates that certain
mutations can occur within multiple pathways. Feature ranking based on
support vector machines and matched genotype-phenotype pairs compre-
hensively reproduces current domain knowledge. Moreover, it indicates a
prominent role of novel mutations in determining phenotypic resistance
and in resensitization effects. These effects may be exploited deliberately
to reopen lost treatment options. Together, these findings provide valu-
able insight into the interpretation of genotypic resistance tests.

Keywords: HIV, clustering, multidimensional scaling, support vector
machines, feature ranking.

1 Introduction

1.1 Background: HIV Combination Therapy and Drug Resistance

Human immunodeficiency virus HIV-1 is the causative agent of the acquired
immunodeficiciency syndrome AIDS, a disease in which persistent virus-induced
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depletion of helper T cells leads to immune failure and death due to opportunistic
infections. While to date there is no cure for HIV infection, the introduction of
highly active antiretroviral therapy (HAART), in which three to six antiretrovi-
ral drugs are administered in combination, has significantly improved life quality
and survival time of patients. However, incomplete suppression of HIV replica-
tion by current drugs, combined with high mutation and replication rates of
HIV ultimately results in the selection of viral populations carrying resistance-
conferring mutations in their genomes. The fixation of these strains in the pop-
ulation eventually leads to therapy failure, upon which a new combination of
drugs has to be chosen as next-line regimen.

1.2 Motivation: Evidence for Additional Resistance-Associated
Mutations and Mutational Clusters

To date, the decision for follow-up drug combinations in patients failing therapy
is routinely based on sequencing the relevant genomic region of the viral popu-
lation harbored by the individual. The sequence is then analyzed to identify the
presence of resistance-associated mutations for each of the 19 drugs currently
available for anti-HIV therapy, by using mutation lists annually updated by the
International AIDS Society (IAS) [1] or other panels of human experts.

The situation is complicated by the fact that resistance mutations do not ac-
cumulate independently from each other. Rather, they are loosely time-ordered
along mutational pathways, leading to distinct mutational complexes or clus-
ters.1 Rational therapy planning is severely compromised by our limited under-
standing of these effects. Increasing evidence on additional mutations involved in
the development of drug resistance [2,3], besides those listed by the IAS, provides
the incentive for our present study.

1.3 Outline

We describe an approach towards the discovery and characterization of novel
mutations associated with therapy failure from a large relational database, and
their evolutionary and phenotypic characterization using supervised and unsu-
pervised statistical learning methods. We focus on resistance against seven drugs
from the class of nucleoside reverse transcriptase inhibitors (NRTIs), which tar-
get an HIV protein called reverse transcriptase (RT). This enzyme is responsible
for translating the RNA genome of HIV back to DNA prior to its integration
into the human genome. NRTIs are analogues of the natural building blocks of
DNA, but lack a group essential for chain elongation. Thus, incorporation of a
nucleoside analogue during DNA polymerization terminates the chain elongation
process.

The knowledge discovery process described in this paper combines hetero-
geneous data from three different virological centers. To allow for integrated
1 Throughout this paper, the words complex, cluster, and pathway are used inter-

changeably.
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analysis, these data are stored in a relational database, whose structure is out-
lined in section 2. Systematic mining for mutations with differing propensities
in NRTI-treated and untreated patients, respectively, as detailed in section 3,
leads to the identification of 14 novel mutations associated with therapy fail-
ure. In section 4, we propose an approach towards characterizing the covariation
structure of novel mutations and their association into complexes using hier-
archical clustering and multidimensional scaling. Stability results are provided
using a bootstrap method. Feature ranking based on support vector machines,
described in section 5, allows for assessing the actual phenotypic impact of novel
mutations. In section 6, we conclude by summarizing our approach, related work,
and open problems.

2 The Arevir Database for Managing Multi-center
HIV/AIDS Data

This study is based on multi-center virological data, including HIV genomic se-
quences from over 2500 patients, in vitro measurements of drug resistance [4],
and clinical data such as viral load and helper T cell counts. Our relational
HIV database Arevir, implemented in MySQL and Perl, and in use and ongo-
ing development since 2002, provides an appropriate platform to address the
challenges of data management and integration. The Arevir database schema is
grouped into different modules, each consisting of a few tables, corresponding to
information on patients, therapies, sequences, isolates, and specific (predicted or
measured) isolate properties. Registered users can perform queries or enter data
directly through a web interface. Upload of new data triggers the execution of
several scripts, including programs for sequence alignment. To ensure privacy,
connection between client and server is established via an SSH-tunneled Virtual
Network Computing (VNC) client.2

3 Mining for Novel Mutations

Our approach towards identifying mutations associated with NRTI therapy is
based on the assumption that these should occur with differential frequencies in
treatment-naive subjects and in patients failing therapy, respectively.

Thus, mining for novel mutations was based on contrasting the frequency
of the wild-type residue with that of a specific mutation in 551 isolates from
drug-naive patients and 1355 isolates from patients under therapy failure, at RT
positions 1–320 [5]. Chi-square tests were performed for all pairs of wild-type
and mutant residues to determine mutations for which the null hypothesis that
amino acid choice is independent from the patient population can be rejected.
Correction for multiple testing was performed using the Benjamini-Hochberg
method [6] at a false discovery rate of 0.05.
2 Computational analyses are performed on completely anonymized data, retaining

only patient identifiers instead of full names.
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This procedure revealed 14 novel mutations significantly associated with
NRTI treatment, in addition to those previously described in [1]: K43E/Q/N,
E203D/K, H208Y, D218E3 were virtually absent in therapy-naives (< 0.5%),
while K20R, V35M, T39A, K122E, and G196E were already present in the naive
population with a frequency of > 2.5% but showed significant increase in treated
patients. Surprisingly, mutations I50V and R83K showed significant decrease in
the treated population as compared to therapy-naives.

4 Identifying Mutational Clusters

In this section we describe an unsupervised learning approach towards charac-
terizing the covariation structure of a set of mutations and its application to
the newly discovered mutations. Mutational complexes can give rise to distinct
physical resistance mechanisms, but can also reflect different ways to achieve the
same resistance mechanism. Indeed, the two most prominent complexes associ-
ated with NRTI resistance, the nucleoside analogue mutations (NAMs), groups 1
and 2, consisting of mutations M41L/L210W/T215Y and K70R/K219Q/D67N,
respectively, both confer resistance via an identical mechanism, called primer
unblocking. On the other hand, the multi-NRTI resistance complex with Q151M
as the main mutation mediates a different physical mechanism in which recog-
nition of chemically modified versions of the DNA building blocks is improved
to avoid unintended integration. In essence, to appreciate the evolutionary role
of novel mutations it is important to identify whether they aggregate with one
of these complexes or whether they form novel clusters, possibly reflecting ad-
ditional resistance mechanisms. This analysis was performed focusing on 1355
isolates from patients failing therapy.

4.1 Pairwise Covariation Patterns

Patterns of pairwise interactions among mutations associated with NRTI treat-
ment were identified from the database using Fisher’s exact test. Specifically, for
each pair of mutations co-occurrence frequencies for mutated and corresponding
wild-type residues were contrasted in a 2-way contingency table, from which the
test statistic was computed.

A visual summary of these pairwise comparisons, part of which is shown in
Fig. 1, immediately reveals the classical mutational clusters described above. It
is also apparent that no significant interactions are formed between the Q151M
complex and mutations from the NAM clusters, suggesting that resistance evo-
lution along the former pathway is largely independent from the other complexes
and that different pathways may act simultaneously on a sequence, at least if
they mediate different physical resistance mechanisms.

In contrast, significant interactions take place across the two NAM complexes.
Antagonistic interactions between the core NAM 1 mutations L210W / M41L /
3 We use the syntax axb to denote amino acid substitutions in RT, where a is the most

frequent amino acid in virus from untreated patients and b the mutated residue.
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Fig. 1. Pairwise φ correlation coefficients between mutations (part view), with red in-
dicating maximal observed positive covariation and blue maximal observed negative
covariation. Boxes indicate pairs whose covariation behavior deviates significantly from
the independence assumption, according to Fisher’s exact test and correction for mul-
tiple testing using the Benjamini-Hochberg method at a false discovery rate of 0.01.
The classical mutational complexes introduced in section 4 form distinct clusters, from
left to right: NAM 1, Q151M multi-NRTI, NAM 2.

T215Y and NAM 2 mutations K70R and K219Q might indicate negative effects
of simultaneous evolution along these two pathways, which both contribute to
the primer unblocking mechanism.

4.2 Clustering Mutations

Dendrograms obtained from hierarchical clustering allow for a more detailed
analysis of mutation covariation structure. The similarity between pairs of mu-
tations was assessed using the φ (Matthews) correlation coefficient, as a measure
of association between two binary random variables, with 1 and −1 representing
maximal positive and negative association, respectively. This similarity measure
was transformed into a dissimilarity δ by mapping φ = 1 to δ = 0 and φ = −1
to δ = 1, with linear interpolation in between. Since it is impossible to obtain
adequate dissimilarity estimates for pairs of mutations at a single position from
cross-sectional data, 4 these were treated as missing values in our approach. The
resulting partial dissimilarity matrix was taken as the basis for average linkage
hierarchical agglomerative clustering.5

The dendrogram in Fig. 2 reveals that most novel mutations group within
the NAM 1 cluster (T215Y/M41L/L210W), except for D218E and F214L, which
4 Such mutation pairs never co-occur in a sequence.
5 In average linkage with missing values, the distance between clusters is simply the

average of the defined distances.
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aggregrate to NAM 2. Interestingly, mutations R83K and I50V, which occur more
frequently in naive than in treated patients appear to form a novel outgroup.

To assess the stability of the dendrogram, 100 bootstrapped samples of RT se-
quences were drawn from the original 1355 sequences. Distance calculation and
hierarchical clustering were performed for each of these samples as described
above. Then, for each subtree of the dendrogram in Fig. 2, the fraction of boot-
strap runs was counted in which the set of mutations defined by the subtree
occurred as a subtree, without additional mutations. 6

The four edge weights next to the root of the dendrogram show that the
reported association of mutations D218E and F214L with NAM 2 is indeed
highly stable across resampled data subsets, as is the grouping of other novel
mutations with NAM 1, and the outgroup status of R83K and I50V. Bootstrap
values for the lower dendrogram levels have been omitted for the sake of clarity;
they range from 0.35 to 0.99, reflecting considerable variability of intra-cluster
accumulation order. Finally, the core NAM 1 and NAM 2 mutations, respectively,
are again grouped together with maximal confidence.

4.3 Multidimensional Scaling in Mutation Space

As can be seen in Fig. 1, certain mutations interact positively with mutations
from both NAM pathways – an effect which might be missed in a dendrogram
representation, and which can be visualized, at least to some extent, using mul-
tidimensional scaling (MDS).

The goal in MDS is, given a distance matrix D between entities, to find
an embedding of these entities in Rn (here n = 2), such that the distances D′

induced by the embedding match those provided in the matrix optimally, defined
via minimizing a particular “stress” function. Our embedding is based on the
Sammon stress function [7],

E(D, D′) =
1∑

i�=j Dij

∑
i�=j

(Dij −D′
ij)

2

Dij
, (1)

which puts emphasis on reproducing small distances accurately. As in clustering,
mutation pairs at a single position are excluded from the computation of the
stress function, to avoid undue distortions.

The optimal Sammon embedding for the mutation distance matrix derived
from pairwise φ values is shown in Fig. 3. Note that due to the non-metricity
of this matrix, which violates the triangle inequality, such an embedding cannot
be expected to preserve all original distances accurately, Still, the MDS plot
supports the main conclusions from section 4.2, such as to the structure of the
classical NAM complexes, the outgroup status of R83K and I50V, and the ex-
clusive propensity of certain mutations, such as K43E/Q or F214L, to a unique

6 Thus, in computing confidence values increasingly closer to the root, topology of
included subtrees is deliberately ignored (otherwise, values would be monotonically
decreasing from leaves to the root).
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Fig. 2. Dendrogram, as obtained from average linkage hierarchical clustering, showing
the clear propensity of novel mutations to cluster within one of the classical NAM
complexes T215Y/M41L/L210W and K219Q/K70R/D67N, or in the case of R83K
and I50V, to a distinct outgroup. Bootstrap values which are not relevant for our
discussion have been removed for the sake of clarity. Distances between mutations at a
single position are treated as missing values in the clustering procedure. Remarkably,
such pairs of mutations can show differential clustering behavior, as is apparent in the
case of K219Q/R and T215F/Y.

pathway. In addition, the plot also suggests a role in both NAM pathways for
several mutations, such as H208Y, D67N, or K20R.

5 Phenotypic Characterization of Novel Mutations Using
SVM-Based Feature Ranking

The analyses described above allowed us to associate novel mutations with treat-
ment failure and to group them into distinct mutational complexes. In this sec-
tion we address the question whether novel mutations contribute directly to
increased resistance or merely exert compensatory functions in removing cat-
alytic deficiencies induced by the main resistance-conferring mutations. We do
so by analyzing their role in classification models for predicting phenotypic drug
resistance.

Resistance of a given HIV strain against a certain drug can be measured in
vitro by comparing the replicative capacity of the mutant strain with that of a
non-resistant reference strain, at increasing drug concentrations [4]. The result
of this comparison is summarized in a scalar resistance factor. On the basis of
650 matched genotype-phenotype pairs for each drug, we have built predictive
models, using decision trees [8], and support vector machine classification and
regression. These models are implemented in a publically available web server
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which optimally (according to Sammon’s stress function) preserves the distances among
the mutations, as derived from the φ correlation coefficient. Distances between muta-
tions at a single position were treated as missing values.

called geno2pheno [9] (http://www.geno2pheno.org), which has been used over
36000 times since December 2000.

While support vector machines are widely considered as the state-of-the-art
in prediction performance, there is a common attitude that these models are
difficult to interpret and suffer from “the same disadvantage as neural networks,
viz. that they yield black-box models” [10]. In fact, a substantial set of techniques
is available for feature ranking with SVMs (e.g. [11]), by removing features or
destroying their information through permutation, and even for extracting rule
sets from SVMs.

In our case, using the linear kernel k(x, y) = 〈x, y〉 (standard nonlinear kernels
did not significantly improve accuracy), feature ranking is particularly straight-
forward. Due to the bilinearity of the scalar product, the SVM decision function
can be written as a linear model,

f(x) =
∑

i

yiαik(xi, x) + b = 〈
∑

i

yiαixi, x〉+ b, (2)

allowing for direct assessment of the model weights.
Figure 4 shows the result of this SVM-based feature ranking for zidovudine

(ZDV), one of the seven NRTIs. All mutations associated with resistance to ZDV
in the current resistance update provided by the International AIDS Society [1]
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Fig. 4. Major mutations conferring resistance to zidovudine (ZDV), as obtained from
SVM-based ranking of 5001 mutations. Bar heights indicate z-score-normalized feature
weights (for example, mutation M41L is more than 20 standard deviations above the
mean feature weight). Mutations associated with ZDV resistance by the International
AIDS Society are shown in black; novel mutations identified from frequency compar-
isons in treated and untreated patients are shown in grey.

appear in the top 50 of 5001 features (250 positions, 20 amino acids each, plus
1 indicator for an insertion), with the first six positions exclusively occupied
by classical NAM mutations (shown in black). This observation provides evi-
dence that our models have adequately captured established domain knowledge
as contributed by human experts. Remarkably, when investigating the role of
novel mutations (shown in grey) in the model, we find that many of them are
prominently involved in determining ZDV resistance, ranking even before several
of the classical ZDV mutations.

These findings generalize to the whole NRTI drug class, as is obvious from
table 1, which shows the ranks of novel mutations in the individual drug models.
Table 1 also reveals some striking and unexpected differences among mutations.
For example, various results suggest a close relationship of mutations H208Y
and E203K, which form a tight cluster in the dendrogram, show up as neighbors
in the multidimensional scaling plot, and exhibit similar rank profiles – with the
notable exception of their differential impact on ddC resistance.

This surprising difference and other effects are more readily appreciated in
Fig. 5, which shows the weights associated with novel mutations in the individ-
ual SVM drug models (after drug-wise z-score weight normalization for improved
comparability). Indeed, increased resistance against ZDV, 3TC, and ABC upon
appearance of E203K seems to coincide with resensitization (i.e. increased sus-
ceptibility) towards ddC. A similar, even more extreme effect can be observed
in the case of T39A, for which increased resistance against ZDV and TDF again
contrasts with increased ddC susceptibility. R83K shows dual behavior: increased
d4T resistance and increased ZDV susceptibility. The presence of I50V is asso-
ciated with increased susceptibility against all NRTIs, explaining its decreased
frequency in treated patients.
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Table 1. Ranks of novel mutations in SVM models for seven NRTIs, with rank 1
indicating maximal contribution to resistance, and rank 5001 maximal contribution to
susceptibility. The classical mutation M184V is shown here for comparison, due to its
particularly strong resensitization effect. The clinical (but not virological) relevance of
results concerning ddC is limited by the limited popularity of this drug.

ZDV ddI ddC d4T 3TC ABC TDF
R83K 4972 3722 718 79 4973 539 154
I50V 4910 803 4702 4855 4736 4818 4899
H208Y 8 16 170 9 114 20 65
E203K 17 271 4963 103 8 19 103
K43Q 30 121 72 684 19 32 18
K43E 12 19 641 10 107 49 10
K122E 10 21 37 45 72 72 774
T39A 11 3814 4882 528 169 4017 50
D218E 20 22 103 50 25 13 659
F214L 119 898 4019 735 128 303 4844
M184V 67 2 1 4971 1 1 4994

Related effects have attracted considerable recent interest due to their pos-
sible benefits in reopening lost treatment options [12]. Arguably the most pro-
nounced behavior can be seen in the classical mutation M184V (table 1), known
to confer high-level resistance to 3TC but inducing d4T and TDF resensitization.
SVM-based feature ranking reproduces this effect in a most striking manner: For
ddI, ddC, 3TC, and ABC, M184V turns out to be the top resistance mutation,
with contributions of 11.2,15.4,42.0, and 20.8 standard deviations above the
mean. In contrast, the same mutation appears to be one of the major contrib-
utors of increased susceptibility towards d4T and TDF, 3.5 and 8.2 standard
deviations below the mean, respectively.

6 Discussion

We have presented a case study on mining a multi-center HIV database using su-
pervised and unsupervised methods. Previously undescribed mutations could be
associated with resistance towards the drug class of nucleoside reverse transcrip-
tase inhibitors and grouped into mutational clusters. SVM-based feature ranking
on an independent data set suggests a direct contribution of novel mutations to
phenotypic resistance and an involvement in resensitization effects which might
be exploited in the design of antiretroviral combination therapies.

Mutation Screening. Novel mutations were found by position-wise com-
parisons, leaving inter-residue effects aside. It is conceivable that additional sets
of mutations related to therapy failure, whose effect is too weak to discern in
isolation, could be identified using other methods, such as discriminating item
set miners. In fact, we have recently proposed an approach towards mining dis-
criminating item sets, in which an overall rule weight in a mixture model of rules
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Fig. 5. Weights of novel mutations (after z-score normalization) in SVM models for
seven NRTIs. For example, mutation E203K contributes significantly to ZDV resis-
tance, while increasing susceptibility towards ddC.

is modulated by the genomic background in which a rule matches [13]. Further
work will have to explore the possible benefits of using such strategies in the
present context.

Covariation Versus Evolution. Dendrograms and MDS analyses describe
the association of mutations into mutational complexes, but refrain from ex-
plicit statements on the accumulation order of mutations. Other approaches,
most notably mutagenetic tree models [14], are explicitly tailored towards elu-
cidating HIV evolutionary pathways from cross-sectional data as those used in
our study. However, while novel mutations exhibit distinct clustering behavior,
the actual order of their accumulation seems to be relatively flexible, challenging
the applicability of such evolutionary models in this setting.

SVM-based Versus Correlation-Based Feature Ranking. To date, fea-
ture ranking is performed mostly using simple correlation methods, in which
features are assessed in their performance to discriminate between classes indi-
vidually, e.g. by using mutual information. However, as detailed in [11], feature
ranking with correlation methods suffers from the implicit orthogonality assump-
tions that are made, in that feature weights are computed from information on
a single feature in isolation, without taking into account mutual information
between features. In contrast, statistical learning models such as support vec-
tor machines are inherently multivariate. Thus, their feature ranking is much
less prone to be misguided by inter-feature dependencies than simple correlation
methods. Further analysis of the feature rankings induced by different methods
can provide valuable insights into their particular strenghts and weaknesses and
suggest novel strategies for combining models from different model classes.
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Abstract. Object identification is the problem of determining whether
different observations correspond to the same object. It occurs in a wide
variety of fields, including vision, natural language, citation matching,
and information integration. Traditionally, the problem is solved sepa-
rately for each pair of observations, followed by transitive closure. We
propose solving it collectively, performing simultaneous inference for all
candidate match pairs, and allowing information to propagate from one
candidate match to another via the attributes they have in common. Our
formulation is based on conditional random fields, and allows an optimal
solution to be found in polynomial time using a graph cut algorithm. Pa-
rameters are learned using a voted perceptron algorithm. Experiments
on real and synthetic datasets show that this approach outperforms the
standard one.

1 Introduction

In many domains, the objects of interest are not uniquely identified, and the
problem arises of determining which observations correspond to the same ob-
ject. For example, in vision we may need to determine whether two similar
shapes appearing at different times in a video stream are in fact the same ob-
ject. In natural language processing and information extraction, a key task is
determining which noun phrases are co-referent (i.e., refer to the same entity).
When creating a bibliographic database from reference lists in papers, we need
to determine which citations refer to the same papers in order to avoid dupli-
cation. When merging multiple databases, a problem of keen interest to many
large scientific projects, businesses, and government agencies, we need to deter-
mine which records represent the same entity and should therefore be merged.
This problem, originally defined by Newcombe et al. [14] and placed on a firm
statistical footing by Fellegi and Sunter [7], is known by the name of object
identification, record linkage, de-duplication, merge/purge, identity uncertainty,
hardening soft information sources, co-reference resolution, and others. There is
a large literature on it, including Winkler [21], Hernandez and Stolfo [9], Cohen
et al. [4], Monge and Elkan [13], Cohen and Richman [5], Sarawagi and Bhamidi-
paty [17], Tejada et al. [20], Bilenko and Mooney [3], etc. Most approaches are
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variants of the original Fellegi-Sunter model, in which object identification is
viewed as a classification problem: given a vector of similarity scores between
the attributes of two observations, classify it as “Match” or “Non-match.” A
separate match decision is made for each candidate pair, followed by transi-
tive closure to eliminate inconsistencies. Typically, a logistic regression model is
used [1].

Making match decisions separately ignores that information gleaned from
one match decision may be useful in others. For example, if we find that a pa-
per appearing in Proc. PKDD-04 is the same as a paper appearing in Proc. 8th
PKDD, this implies that these two strings refer to the same venue, which in
turn can help match other pairs of PKDD papers. In this paper, we propose an
approach that accomplishes this propagation of information. It is based on con-
ditional random fields, which are discriminatively trained, undirected graphical
models [10]. Our formulation allows us to find the globally optimal match in
polynomial time using a graph cut algorithm. The parameters of the model are
learned using a voted perceptron [6].

Recently, Pasula et al. [15] proposed an approach to the citation matching
problem that has collective inference features. This approach is based on directed
graphical models, uses a different representation of the matching problem, also
includes parsing of the references into fields, and is quite complex. It is a genera-
tive rather than discriminative approach, requiring modeling of all dependences
among all variables, and the learning and inference tasks are correspondingly
more difficult. A collective discriminative approach has been proposed by Mc-
Callum and Wellner [12], but the only inference it performs across candidate
pairs is the transitive closure that is traditionally done as a post-processing
step. Bhattacharya and Getoor [2] proposed an ad hoc approach to matching
authors taking into account the citations they appear in. Our model can be
viewed as a form of relational Markov network [18], except that it involves the
creation of new nodes for match pairs, and consequently cannot be directly cre-
ated by queries to the databases of interest. Max-margin Markov networks [19]
can also be viewed as collective discriminative models, and applying their type
of margin-maximizing training to our model is an interesting direction for future
research.

We first describe in detail our approach, which we call the collective model.
We then report experimental results on real and semi-artificial datasets, which
illustrate the advantages of our model relative to the standard Fellegi-Sunter
one.

2 Collective Model

Using the original database-oriented nomenclature, the input to the problem is
a database of records (set of observations), with each record being a tuple of
fields (attributes). We now describe the graphical structure of our model, its
parameterization, and inference and learning algorithms for it.
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2.1 Model Structure

Consider a database relation R = {r1, r2, . . . , rn}, where ri is the ith record in
the relation. Let F = {F 1, F 2, . . . , Fm} denote the set of fields in the relation.
For each field F k, we have a set FV k of corresponding field values appearing in
the relation, FV k = {fk

1 , fk
2 , . . . , fk

lk
}. We will use the notation ri.F

k to refer
to the value of kth field of record ri. The goal is to determine, for each pair of
records (ri, rj), whether they refer to the same underlying entity. Our graphical
model contains three types of nodes:

Record-match nodes. The model contains a Boolean node Rij for each pair-
wise question of the form: “Is record ri the same as record rj?”

Field-match nodes. The model contains a Boolean node F k
xy for each pairwise

question of the form: “Do field values fk
x and fk

y represent the same underlying
property?” For example, for the venue field in a bibliography database, the
model might contain a node for the question: “Do the strings ‘Proc. PKDD-
04’ and ‘Proc. 8th PKDD’ represent the same venue?”

Field-similarity nodes. For pair of field values fk
x , fk

y ∈ FV k, the model con-
tains a node Sk

xy whose domain is the [0, 1] interval. This node encodes how
similar the two field values are, according to a pre-defined similarity mea-
sure. For example, for textual fields this could be the TF/IDF score [16].
Since their values are computed directly from the data, we will also call these
nodes evidence nodes.

Because of the symmetric nature of their semantics, Rij , F k
xy and Sk

xy repre-
sent the same nodes as Rji, F k

yx and Sk
yx, respectively.

The structure of the model is as follows. Each record-match node Rij is con-
nected by an edge to each corresponding field-match node F k

xy, 1 ≤ k ≤ m.
Formally, Rij is connected to F k

xy iff ri.F
k = fk

x and rj .F
k = fk

y . Each field-
match node F k

xy is in turn connected to the corresponding field-similarity node
Sk

xy. Each record-match node Rij is also directly connected to the corresponding
field-similarity node Sk

xy. In general, a field-match node will be linked to many
record-match nodes, as the same pair of field values can be shared by many
record pairs. This sharing lies at the heart of our model. The field-match nodes
allow information to propagate from one candidate record pair to another. No-
tice that merging the evidence nodes corresponding to the same field value pairs,
without introducing field-match nodes, would not work. This is because evidence
nodes have known values at inference time, rendering the record-match nodes
independent and reducing our approach to the standard one. Figure 1(a) shows
a four-record bibliography database, and 1(b) shows the corresponding graph-
ical representation for the candidate pairs (b1, b2) and (b3, b4). Note how de-
pendences flow through the shared field-match node corresponding to the venue
field. Inferring that b1 and b2 refer to the same underlying paper will lead to the
inference that the corresponding venue strings “Proc. PKDD-04” and “Proc.
8th PKDD” refer to the same underlying venue, which in turn might provide
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sufficient evidence to merge b3 and b4. In general, our model can capture com-
plex interactions between candidate pair decisions, potentially leading to better
object identification.

One limitation of the model is that it makes a global decision on whether
two fields are the same, which may not always be appropriate. For example, “J.
Doe” may sometimes be the same as “Jane Doe,” and sometimes the same as
“Julia Doe.” In this case the model will tend to choose whichever match is most
prevalent. This simplifies inference and learning, and in many domains will not
sigificantly affect overall performance. Nevertheless, relaxing it is an item for
future work.

2.2 Conditional Random Fields

Conditional random fields, introduced by Lafferty et al. [10], define the condi-
tional probability of a set of output variables Y given a set of input or evidence
variables X. Formally,

P (y|x) =
1

Zx

∑
c∈C

exp
∑

l

λlcflc(yc, xc) (1)

where C is the set of cliques in the graph, xc and yc denote the subset of vari-
ables participating in clique c, and Zx is a normalization factor. flc, known as
a feature function, is a function of variables involved in clique c, and λlc is the
corresponding weight. In many domains, rather than having different parameters
(feature weights) for each clique in the graph, the parameters of a conditional
random field are tied across repeating clique patterns in the graph, called clique
templates [18]. The probability distribution can then be specified as

P (y|x) =
1

Zx

∑
t∈T

∑
c∈Ct

exp
∑

l

λltflt(yc, xc) (2)

where T is the set of all the templates, Ct is the set of cliques which satisfy
template t, and flt and λlt are respectively a feature function and a feature
weight, pertaining to template t.

2.3 Model Parameters

Our model has a singleton clique for each record-match node and one for each
field-match node, a two-way clique for each edge linking a record-match node
to a field-match node, a two-way clique for each edge linking a record-match
node to a field-similarity node, and a two-way clique between each field-match
node and the corresponding field-similarity node. The parameters for all cliques
of the same type are tied; there is a template for the singleton record-match
cliques, one for each type of singleton field-match clique (e.g., in a bibliography
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b1

b2

b3

b4 Learning of Boolean Expressions

Learning Boolean Formulas

Record        Title Author Venue

record−match node field−match node field−similarity node

Bill Johnson

William Johnson

     Linda Stewart

       Linda StewartObject Identification using CRFs

Object Identification using CRFs Proc. PKDD−04

Proc. 8th−PKDD

Proc. PKDD−04

Proc. 8th−PKDD

(a) A bibliography database.

b3.T = b4.T?b1.T = b2.T?

Title(T)

Learning of Boolean Expressions)

Title(T)

b1=b2?

b3.V = b4.V?

Sim(Bill Johnson, William Johnson)

Author(A)

b3.A = b4.A?

Sim(Linda Stewart, Linda Stewart)

Venue(V)

b1.A = b2.A?

b3=b4?

Author(A)

b1.V = b2.V?

Sim(Object Identification using CRFs, 
Object Identification using CRFs)

Sim(Learning Boolean Formulas, 

Sim(Proc. PKDD−04, Proc. 8th PKDD)

(b) Collective model (fragment).

Fig. 1. Example of collective object identification. For clarity, we have omitted the
edges linking the record-match nodes to the corresponding field-similarity nodes.

database, one for author fields, one for title fields, one for venue fields, etc.),
and so on. The probability of a particular assignment r to the record-match and
field-match nodes, given that the field-similarity (evidence) node values are s, is

P (r|s) =
1
Zs

exp
∑
i,j

[∑
l

λlfl(rij) +
∑

k

(∑
l

φklfl(rij .F
k) +

∑
l

γklgl(rij , rij .F
k)

+
∑

l

ηklhl(rij , rij .S
k) +

∑
l

δklhl(rij .F
k, rij .S

k)

)]
(3)

where (i, j) ranges over all candidate pairs and k ranges over all fields. rij .F
k and

rij .S
k refer to the kth field-match node and field-similarity node, respectively,

for the record pair (ri, rj). λl and φkl denote the feature weights for singleton
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cliques. γkl denotes the feature weights for a two-way clique between a record-
match node and a field-match node. ηkl and δkl denote the feature weights for a
two-way clique between a Boolean node (record-match node or field-match node,
respectively) and a field-similarity node. Cliques have one feature per possible
state. Singleton cliques thus have two (redundant) features: f0(x) = 1 if x = 0,
and f0(x) = 0 otherwise; f1(x) = 1 if x = 1, and f1(x) = 0 otherwise. Two-way
cliques involving Boolean variables have four features: g0(x, y) = 1 if (x, y) =
(0, 0); g1(x, y) = 1 if (x, y) = (0, 1); g2(x, y) = 1 if (x, y) = (1, 0); g3(x, y) = 1 if
(x, y) = (1, 1); each of these features is zero in all other states. Two-way cliques
between a Boolean node (record-match node or field-match node) q and a field-
similarity node s have two features, defined as follows: h0(q, s) = 1− s if q = 0,
and h0(q, s) = 0 otherwise; h1(q, s) = s if q = 1, and h1(q, s) = 0 otherwise. This
captures the fact that, the more similar two field values are, the more likely they
are to match.

Notice that a particular field-match node appears in Equation 3 once for each
pair of records containing the corresponding field values. This reflects the fact
that that node is effectively the result of merging the field-match nodes from
each of the individual record-match decisions.

2.4 Inference and Learning

Inference in our model corresponds to finding the configuration r∗ of non-evidence
nodes that maximizes P (r∗|s). For random fields where maximum clique size is two
and all non-evidence nodes are Boolean, this problem can be reduced to a graph
min-cut problem, provided certain constraints on the parameters are satisfied [8].
Our model is of this form, and it can be shown that satisfying the following con-
straints suffices for the min-cut reduction to hold: γk0 + γk3 − γk1 − γk2 ≥ 0,
∀k, 1 ≤ k ≤ m, where the γkl, 0 ≤ l ≤ 3, are the parameters of the clique template
for edges linking record-matchnodes to field-match nodes of type F k (see Equation
3).1 This essentially corresponds to requiring that nodes be positively correlated,
which should be true in this application. Our learning algorithm ensures that the
learned parameters satisfy these constraints. Since min-cut can be solved exactly
in polynomial time, we have a polynomial-time exact inference algorithm for our
model.

Learning involves finding maximum-likelihood parameters from data. The
partial derivative of the log-likelihood L (see Equation 3) with respect to the
parameter γkl is

∂L

∂γkl
=
∑
i,j

gl(rij , rij .F
k)−

∑
r′

PΛ(r′|s)
∑
i,j

gl(r′ij , r
′
ij .F

k) (4)

where r′ varies over all possible configurations of the non-evidence nodes in the
graph, and PΛ(r′|s) denotes the probability distribution according to the current
1 The constraint mentioned in Greig et al. [8] translates to γk0, γk3 ≥ 0, γk1, γk2 ≤ 0,

which is a more restrictive version of the constraint above.
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set of parameters. In words, the derivative of the log-likelihood with respect to a
parameter is the difference between the empirical and expected counts of the cor-
responding feature, with the expectation taken according to the current model.
The other components of the gradient are found analogously. To satisfy the con-
straint γk0 + γk3 − γk1 − γk2 ≥ 0, we perform the following re-parameterization:
γk0 = f(β1) + β2, γk1 = f(β1) − β2, γk2 = −f(β3) + β4, γk3 = −f(β3) − β4,
where f(x) = log(1+ex). We then learn the β parameters using the appropriate
transformation of Equation 4. The second term in this equation involves the
expectation over an exponential number of configurations, and its computation
is intractable. We use a voted perceptron algorithm [6], which approximates this
expectation by the feature counts of the most likely configuration, which we find
using our polynomial-time inference algorithm with the current parameters. The
final parameters are the average of the ones learned during each iteration of the
algorithm. Notice that, because parameters are learned at the template level, we
are able to propagate information through field values that did not appear in
the training data.

2.5 Combined Model

Combining models is often a simple way to improve accuracy. We combine the
standard and collective models using logistic regression. For each record-match
node in the training set, we form a data point with the outputs of the two models
as predictors, and the true value of the node as the response variable. We then
apply logistic regression to this dataset. Notice that this still yields a conditional
random field.

3 Experiments

We performed experiments on real and semi-artificial datasets, comparing the
performance of (a) the standard Fellegi-Sunter model using logistic regression,
(b) the collective model, and (c) the combined model. If we consider every possi-
ble pair of records for a match, the potential number of matches is O(n2), which
is a very large number even for datasets of moderate size. Therefore, we used the
technique of first clustering the dataset into possibly-overlapping canopies using
an inexpensive distance metric, as described by McCallum et al. [11], and then
applying our inference and learning algorithms only to record pairs which fall in
the same canopy. This reduced the number of potential matches to at most the
order 1% of all possible matches. In our experiments we used this technique with
all the three models being compared. The field-similarity nodes were computed
using cosine similarity with TF/IDF [16].

3.1 Real-World Data

Cora. The hand-labeled Cora dataset is provided by McCallum2 and has previ-
ously been used by Bilenko and Mooney [3] and others. This dataset is a collec-
2 www.cs.umass.edu/∼mccallum/data/cora-refs.tar.gz
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Table 1. Experimental results on the Cora dataset (performance measured in %)

Citation Matching
Model Before transitive closure After transitive closure

F-measure Recall Precision F-measure Recall Precision
Standard 86.9 89.7 85.3 84.7 98.3 75.5
Collective 87.4 91.2 85.1 88.9 96.3 83.3
Combined 85.8 86.1 87.1 89.0 94.9 84.5

Author Matching
Model Before transitive closure After transitive closure

F-measure Recall Precision F-measure Recall Precision
Standard 79.2 65.8 100 89.5 81.1 100
Collective 90.4 99.8 83.1 90.1 100 82.6
Combined 88.7 99.7 80.1 88.6 99.7 80.2

Venue Matching
Model Before transitive closure After transitive closure

F-measure Recall Precision F-measure Recall Precision
Standard 48.6 36.0 75.4 59.0 70.3 51.6
Collective 67.0 62.2 77.4 74.8 90.0 66.7
Combined 86.5 85.7 88.7 82.0 96.5 72.0

tion of 1295 different citations to computer science of research papers from the
Cora Computer Science Research Paper Engine. The original dataset contains
only unsegmented citation strings. Bilenko and Mooney [3] segmented each cita-
tion into fields (author, venue, title, publisher, year, etc.) using an information
extraction system. We used this processed version of Cora. We further cleaned
it up by correcting some labels. This cleaned version contains references to 132
different research papers. We used only the three most informative fields: author,
title and venue (with venue including conferences, journals, workshops, etc.). We
compared the performance of the algorithms for the task of de-duplicating cita-
tions, authors and venues.3 For training and testing purposes, we hand-labeled
the field pairs. The labeled data contains references to 50 authors and 103 venues.
We carried out five runs of two-fold cross-validation, and report the average F-
measure, recall and precision on post-canopy record match decisions. (To avoid
contamination of test data by training data, we ensured that no true set of
matching records was split between folds.) Next, we took the transitive closure
over the matches produced by each model as a post-processing step to remove
any inconsistent decisions. Table 1 shows the results obtained before and after
this step. The combined model is the best-performing one for de-duplicating
citations and venues. The collective model is the best one for de-duplicating
authors. Transitive closure has a variable effect on the performance, depending
upon the algorithm and the de-duplication task (i.e. citations, authors, venues).

3 For the standard model, TFIDF similarity scores were used as the match probabilities
for de-duplicating the fields (i.e. authors and venues).
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Table 2. Experimental results on the BibServ dataset (performance measured in %)

Citation Matching
Model Before transitive closure After transitive closure

F-measure Recall Precision F-measure Recall Precision
Standard 82.7 99.8 70.7 68.5 100.0 52.1
Collective 82.8 100.0 70.7 73.6 99.5 58.4
Combined 85.6 99.8 75.0 76.0 99.5 61.5

We also generated precision/recall curves on Cora for de-duplicating cita-
tions, and the collective model dominated throughout. 4

BibServ. BibServ.org is a publicly available repository of about half a million
pre-segmented citations. It is the result of merging citation databases donated
by its users, CiteSeer, and DBLP. We experimented on the user-donated sub-
set of BibServ, which contains 21,805 citations. As before, we used the author,
title and venue fields. After forming canopies, we obtained about 58,000 match
pair decisions. We applied the three models to these pairs, using the parameters
learned on Cora (Training on BibServ was not possible because of the unavail-
ability of labeled data.). We then hand-labeled 100 random pairs on which at
least one model disagreed with the others, and 100 random pairs on which they
all agreed. From these, we extrapolated the (approximate) results that would be
obtained by hand-labeling the entire dataset.5 Table 2 shows the results obtained
for de-duplicating citations before and after transitive closure. All the models
have close to 100% recall on the BibServ data. The combined model yields the
best precision, resulting in the overall best F-measure. Transitive closure hurts
all models, with the standard model being the worst hit. This is attributable to
the fact that BibServ is much noisier and broader than Cora; the parameters
learned on Cora produce an excess of matches on BibServ, and transitive closer
compounds this. Collective inference, however, makes the model more resistant
to this effect.

Summary. These experiments show that the collective and the combined mod-
els are able to exploit the flow of information across candidate pairs to make
better predictions. The best combined model outperforms the best standard
model in F-measure by 2% on de-duplicating citations in Cora, 27.5% on de-
duplicating venues in Cora and 3% on de-duplicating citations in BibServ. On
de-duplicating authors in Cora, the best collective model outperforms the best
standard model by 0.9%.

3.2 Semi-artificial Data

To further observe the behavior of the algorithms, we generated variants of
the Cora dataset by taking distinct field values from the original dataset and
4 For the collective model, the match probabilities needed to generate precision/recall

curves were computed using Gibbs sampling starting from the graph cut solution.
5 Notice that the quality of this approximation does not depend on the size of the

database.
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randomly combining them to generate distinct papers. This allowed us to control
various factors like the number of clusters, level of distortion, etc., and observe
how these factors affect the performance of our algorithms. To generate the
semi-artificial dataset, we created eight distorted duplicates of each field value
taken from the Cora dataset. The number of distortions within each duplicate
was chosen according to a binomial distribution whose “probability of success”
parameter we varied in our experiments; a single Bernoulli trial corresponds to
the distortion of a single word in the original string. The total number of records
was kept constant at 1000 in all the experiments with semi-artificial data. To
generate the records in the dataset, we first decided the number of clusters,
and then created duplicate records for each cluster by randomly choosing the
duplicates for each field value in the cluster. The results reported are over the
task of de-duplicating citations, were obtained by performing five runs of two-fold
cross-validation on this data, and are before transitive closure.6

The first set of experiments compared the relative performance of the models
as we varied the number of clusters from 50 to 400, with the first two cluster
sizes being 50 and 100 and then varying the size at an interval of 100. The
binomial distortion parameter was kept at 0.4. Figures 2(a), 2(c) and 2(e) show
the results. The F-measure (Figure 2(a)) drops as the number of clusters is
increased, but the collective model always outperforms the standard model. The
recall curve (Figure 2(c)) shows similar behavior. Precision (Figure 2(e)) appears
to drop with increasing number of clusters, with collective model outperforming
the standard model throughout.

The second set of experiments compared the relative performance of the
models as we varied the level of distortion from 0 to 1, at intervals of 0.2. (0
means no distortion, and 1 means that every word in the string is distorted.) The
number of clusters in the dataset was kept constant at 100. Figures 2(b), 2(d)
and 2(f) show the results. As expected, the F-measure (Figure 2(b)) drops as the
level of distortion in the data increases, with the collective model dominating
between the distortion levels of 0.2 to 0.6. The two models seem to perform
equally well at other distortion levels. The recall curve (Figure 2(c)) shows similar
behavior. Precision (Figure 2(e)) seems to fluctuate with increasing distortion,
with the collective model dominating throughout.

Overall, the collective model clearly dominates the standard model over a
broad range of the number of clusters and level of distortion in the data.

4 Conclusion and Future Work

Determining which observations correspond to the same object is a key prob-
lem in information integration, citation matching, natural language, vision, and
other areas. It is traditionally solved by making a separate decision for each pair
of observations. In this paper, we proposed a collective approach, where infor-
mation is propagated among related decisions via the attribute values they have

6 For clarity, we have not shown the curves for the combined model, which are similar
to the collective model’s.
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Fig. 2. Experimental results on semi-artificial data

in common. In our experiments, this produced better results than the standard
method. Directions for future work include enriching the model with more com-
plex dependences (which will entail moving to approximate inference), using it
to deduplicate multiple types of objects at once, etc.
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Abstract. This paper presents Weka4WS, a framework that extends
the Weka toolkit for supporting distributed data mining on Grid envi-
ronments. Weka4WS adopts the emerging Web Services Resource Frame-
work (WSRF) for accessing remote data mining algorithms and manag-
ing distributed computations. The Weka4WS user interface is a modified
Weka Explorer environment that supports the execution of both local and
remote data mining tasks. On every computing node, a WSRF-compliant
Web Service is used to expose all the data mining algorithms provided by
the Weka library. The paper describes the design and the implementation
of Weka4WS using a first release of the WSRF library. To evaluate the
efficiency of the proposed system, a performance analysis of Weka4WS
for executing distributed data mining tasks in different network scenarios
is presented.

1 Introduction

Complex business and scientific applications require access to distributed re-
sources (e.g., computers, databases, networks, etc.). Grids have been designed
to support applications that can benefit from high performance, distribution,
collaboration, data sharing and complex interaction of autonomous and geo-
graphically dispersed resources. Since computational Grids emerged as effective
infrastructures for distributed high-performance computing and data process-
ing, a few Grid-based KDD systems has been proposed [1,2,3,4]. By exploting a
service-oriented approach, data-intensive and knowledge discovery applications
can be developed by exploiting the Grid technology to deliver high performance
and manage data and knowledge distribution. As critical for scalable knowledge
discovery, our focus here is on distributed data mining services beginning to al-
low distributed teams or virtual organizations accessing and mining data in a
high-level, standard and reliable way.

This paper presents Weka4WS, a framework that extends the widely used
Weka toolkit [5] for supporting distributed data mining on Grid environments.
Weka provides a large collection of machine learning algorithms written in Java
for data pre-processing, classification, clustering, association rules, and visualiza-
tion, which can be invoked through a common Graphical User Interface (GUI ).
In Weka, the overall data mining process takes place on a single machine, since

A. Jorge et al. (Eds.): PKDD 2005, LNAI 3721, pp. 309–320, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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the algorithms can be executed only locally. The goal of Weka4WS is to extend
Weka to support remote execution of the data mining algorithms. In such a way,
distributed data mining tasks can be executed on decentralized Grid nodes by
exploiting data distribution and improving application performance.

In Weka4WS, the data-preprocessing and visualization phases are still exe-
cuted locally, whereas data mining algorithms for classification, clustering and
association rules can be also executed on remote Grid resources. To enable re-
mote invocation, each data mining algorithm provided by the Weka library is
exposed as a Web Service, which can be easily deployed on the available Grid
nodes. Thus, Weka4WS also extends the Weka GUI to enable the invocation
of the data mining algorithms that are exposed as Web Services on remote
machines. To achieve integration and interoperability with standard Grid envi-
ronments, Weka4WS has been designed and developed by using the emerging
Web Services Resource Framework (WSRF ) [6] as enabling technology.

WSRF is a family of technical specification concerned with the creation, ad-
dressing, inspection, and lifetime management of stateful resources. The frame-
work codifies the relationship between Web Services and stateful resources in
terms of the implied resource pattern. A stateful resource that participates in
the implied resource pattern is termed WS-Resource. WSRF describes the WS-
Resource definition and association with the description of a Web Service in-
terface, and describes how to make the properties of a WS-Resource accessible
through a Web Service interface.

Initial work on WSRF has been performed by the Globus Alliance and IBM,
with the goal of integrating previous work on the so-called Open Grid Services
Architecture (OGSA) [7] with new Web Services mechanisms and standards. The
Globus Alliance recently released the Globus Toolkit 4 (GT4) [8], which provides
an open source implementation of the WSRF library and incorporates services
implemented according to the WSRF specifications. The Weka4WS prototype
described in this paper has been developed by using the Java WSRF library
provided by a development release of Globus Toolkit 4 (Globus Toolkit 3.9.2
Core version).

The paper describes the design, implementation and performance evalution
of Weka4WS. To evaluate the efficiency of the proposed system, a performance
analysis of Weka4WS executing distributed data mining tasks in different net-
work scenarios is presented. The remainder of the paper is organized as follows.
Section 2 describes the architecture and the implementation of the Weka4WS
framework. Section 3 presents a performance analysis of the Weka4WS proto-
type. Section 4 discusses related work. Finally, Section 5 concludes the paper.

2 The Weka4WS Framework

Figure 1 shows the general architecture of the Weka4WS framework that includes
three kinds of nodes: storage nodes, which store the datasets to be mined; com-
puting nodes, on which the remote data mining tasks are executed; user nodes,
which are the local machines of the users.
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Fig. 1. The general architecture of the Weka4WS framework

User nodes include three components: Graphical User Interface (GUI ), Client
Module (CM ), and Weka Library (WL). The GUI is an extended Weka Explorer
environment that supports the execution of both local and remote data mining
tasks. Local tasks are executed by directly invoking the local WL, whereas remote
tasks are executed through the CM, which operates as an intermediary between
the GUI and Web Services on remote computing nodes.

Figure 2 shows a snapshot of the current GUI implementation. As highlighted
in the figure, a “Remote” pane has been added to the original Weka Explorer
environment. This pane provides a list of the remote Web Services that can

Fig. 2. The Graphical User Interface: a “Remote” pane has been added to the original
Weka Explorer to start remote data mining tasks
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be invoked, and two buttons to start and stop the data mining task on the
selected Web Service. Through the GUI a user can both: i) start the execution
locally by using the “Local” pane; ii) start the execution remotely by using the
“Remote” pane. Each task in the GUI is managed by an independent thread.
Therefore, a user can start multiple data mining tasks in parallel on different Web
Services, this way taking full advantage of the distributed Grid environment for
implementing parallel and distributed data mining tasks. Whenever the output
of a data mining task has been received from a remote computing node, it is
visualized in the standard “output” pane (on the right of Figure 2).

Computing nodes include two components: a Web Service (WS ) and the
Weka Library (WL). The WS is a WSRF-compliant Web Service that exposes
the data mining algorithms provided by the underlying WL. Therefore, requests
to the WS are executed by invoking the corresponding WL algorithms.

Finally, storage nodes provide access to data to be mined. To this end, an FTP
server or a GridFTP server [9] is executed on each storage node. The dataset
to be mined can be locally available on a computing node, or downloaded to a
computing node in response to an explicit request of the corresponding WS.

2.1 Web Service Operations

Table 1 shows the operations provided by each Web Service in the Weka4WS
framework.

Table 1. Operations provided by each Web Service in the Weka4WS framework

Operation Description

createResource Creates a new WS-Resource.
subscribe Subscribes to notifications about resource properties changes.
destroy Explicitly requests destruction of a WS-Resource.
classification Submits the execution of a classification task.
clustering Submits the execution of a clustering task.
associationRules Submits the execution of an association rules task.

The first three operations are related to WSRF-specific invocation mecha-
nisms (described below), whereas the last three operations - classification,
clustering and associationRules - are used to require the execution of a
specific data mining task. In particular, the classification operation provides
access to the complete set of classifiers in the Weka Library (currently, 71 al-
gorithms). The clustering and association rules operations expose all the
clustering and association rules algorithms provided by the Weka Library (5 and
2 algorithms, respectively).

To improve concurrency the data mining operations are invoked in an asyn-
chronous way, i.e., the client submits the execution in a non-blocking mode, and
results will be notified to the client whenever they have been computed.
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Table 2. Input parameters of the Web Service data mining operations

Operation Parameter Description

classification algorithm Name of the classification algorithm to be used.
arguments Arguments to be passed to the algorithm.
testOptions Options to be used during the testing phase.
classIndex Index of the attribute to use as the class.
dataSet URL of the dataset to be mined.

clustering algorithm Name of the clustering algorithm.
arguments Algorithm arguments.
testOptions Testing phase options.
selectedAttrs Indexes of the selected attributes.
classIndex Index of the class w.r.t. evaluate clusters.
dataSet URL of the dataset to be mined.

associationRules algorithm Name of the association rules algorithm.
arguments Algorithm arguments.
dataSet URL of the dataset to be mined.

Table 2 lists the input parameters of the Web Service data mining opera-
tions. Three parameters, in particular, are required in the invocation of all the
data mining operations: algorithm, arguments, and dataSet. The algorithm
argument specifies the name of the Java class in the Weka Library to be in-
voked (e.g., “weka.classifiers.trees.J48”). The arguments parameter specifies a
sequence of arguments to be passed to the algorithm (e.g., “-C 0.25 -M 2”).
Finally, the dataSet parameter specifies the URL of the dataset to be mined
(e.g., “gsiftp://hostname/path/ad.arff ”).

2.2 Task Execution

This section describes the steps that are performed to execute a data mining
task on a remote Web Service in the Weka4WS framework.

Figure 3 shows a Client Module (CM ) that interacts with a remote Web
Service (WS ) to execute a data mining task. In particular, this example assumes
that the CM is requesting the execution of a clustering analysis on a dataset
local to the user node, which then acts also as a storage node. Notice that this
is a worst case since in several scenarios the dataset is available on the remote
computing node. In order to perform this task, the following steps are executed
(see Figure 3):

1. Resource creation. The CM invokes the createResource operation, which
creates a new WS-Resource used to maintain the state of the subsequent
clustering computation. The state is stored as properties of the resource. In
particular, a “clustering model” property is used to store the result of the
clustering computation. The WS returns the endpoint reference (EPR) of
the created resource. The EPR is unique within the WS, and distinguishes
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Fig. 3. Execution of a data mining task on a remote Web Service

this resource from all other resources in that service. Subsequent requests
from the CM will be directed to the resource identified by that EPR.

2. Notification subscription. The CM invokes the subscribe operation,
which subscribes for notifications about changes that will occur to the “clus-
tering model” resource property. Whenever this property will change its
value (i.e., whenever the model has been computed), the CM will receive a
notification containing that value, which represents the result of the compu-
tation.

3. Task submission. The CM invokes the clustering operation to require the
execution of the clustering analysis. This operation receives six parameters
as shown in Table 2, among which the name of the clustering algorithm
and the URL of the dataset to be mined. The operation is invoked in an
asynchronous way, i.e., the client may proceed its execution without waiting
for the completion of the operation.

4. Dataset download. Since in this example the dataset is assumed not avail-
able on the computing node, the WS downloads the dataset to be mined from
the URL specified in the clustering invocation. The download request is
directed to an FTP server running on the user node. Note that different
protocols could be used, such as HTTP or GridFTP, as mentioned before.

5. Data mining. After the dataset has been downloaded to the computing
node, the clustering analysis is started by invoking the appropriate Java
class in the Weka Library. The execution is handled within the WS-Resource
created on Step 1, and the result of the computation (i.e., the inferred model)
is stored in the “clustering model” property.

6. Results notification. Whenever the “clustering model” property has been
changed, its new value is notified to the CM, by invoking its implicit deliver
operation. This mechanism allows for the asynchronous delivery of the exe-
cution results whenever they are generated.

7. Resource destruction. The CM invokes the destroy operation, which
destroys the WS-Resource created on Step 1.
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The next section presents a performance analysis of the execution mecha-
nisms described above.

3 Performance Analysis

To evaluate the efficiency of the proposed system, we carried out a performance
analysis of Weka4WS for executing a typical data mining task in different net-
work scenarios. In particular, we evaluated the execution times of the different
steps needed to perform the overall data mining task, as described at the end of
the previous section. The main goal of our analysis is to evaluate the overhead
introduced by the WSRF mechanisms with respect to the overall execution time.

For our analysis we used the census dataset from the UCI repository [10].
Through random sampling we extracted from it ten datasets, containing a num-
ber of instances ranging from 1700 to 17000, with a size ranging from 0.5 to
5 MB. We used Weka4WS to perform a clustering analysis on each of these
datasets. In particular, we used the Expectation Maximization (EM ) clustering
algorithm, using 10 as the number of clusters to be identified on each dataset.

The clustering analysis on each dataset was executed in two network
scenarios:

– LAN: the computing node Nc and the user/storage node Nu are connected
by a LAN network, with an average bandwidth of 94.4 Mbps and an average
round-trip time (RTT) of 1.4 ms. Both Nc and Nu machines are Pentium4
2.4 GHz with 1 GB RAM.

– WAN: the computing node Nc and the user/storage node Nu are connected
by a WAN network, with an average bandwidth of 213 kbps and an average
RTT of 19 ms. Nc is an Pentium4 2.4 GHz with 1 GB RAM, whereas Nu is
an Athlon 2.14 GHz with 512 MB RAM.

For each dataset size and network scanario we run 20 independent executions.
The values reported in the following graphs are computed as an average of the
values measured in the 20 executions.

Figure 4 represents the execution times of the different steps of the clustering
task in the LAN scenario for a dataset size ranging from 0.5 to 5 MB. As shown in
the figure, the execution times of the WSRF-specific steps are independent from
the dataset size, namely: resource creation (1698 ms, on the average), notification
subscription (275 ms), task submission (342 ms), results notification (1354 ms),
and resource destruction (214 ms).

On the contrary, the execution times of the dataset download and data mining
steps are proportional to the dataset size. In particular, the execution time of
the dataset download ranges from 218 ms for 0.5 MB to 665 ms for 5 MB, while
the data mining execution time ranges from 107474 ms for the dataset of 0.5
MB, to 1026584 ms for the dataset of 5 MB. The total execution time ranges
from 111798 ms for the dataset of 0.5 MB, to 1031209 ms for the dataset of 5
MB. Note that in Figure 4 the lines representing the total execution time and
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Fig. 4. Execution times of the different steps of the clustering task in the LAN scenario

the data mining execution time appear coincident, because the data mining step
takes from 96% to 99% of the total execution time, as discussed below.

Figure 5 represents the execution times of the different steps in the WAN
scenario. The execution times of the WSRF-specific steps are similar to those
measured in the LAN scenario. The only significant difference is the execution
time of the results notification step, which passes from an average of 1354 ms
in the LAN scenario to an average of 2790 ms in the WAN scenario, due to
additional time needed to transfer the clustering model through a low-speed
network. For the same reason, the transfer of the dataset to be mined requires an
execution time significantly greater than the one measured in the LAN scenario.
In particular, the execution time of the dataset download step in the WAN
scenario ranges from 14638 ms for 0.5 MB to 132463 ms for 5 MB.

The data mining execution time is similar to that measured in the LAN
scenario, since the clustering analysis is executed on an identical computing node,
as mentioned before. Mainly due to the additional time required by the dataset
download step, the total execution time is greater than the one measured in the
LAN scenario, ranging from 130488 ms for the dataset of 0.5 MB to 1182723 ms
for the dataset of 5 MB. Like Figure 4, the line of the total execution time is
very close to the line of the data mining execution time.

To better highlight the overhead introduced by the WSRF mechanisms and
the distributed scenario, Figure 6 and Figure 7 show the percentage of the ex-
ecution times of the data mining, dataset download, and the other steps (i.e.,
resource creation, notification subscription, task submission, results notification,
resource destruction), with respect to the total execution time in the LAN and
WAN scenarios.

In the LAN scenario (see Figure 6) the data mining step represents from
96.13% to 99.55% of the total execution time, the dataset download ranges from
0.19% to 0.06%, and the other steps range from 3.67% to 0.38%. Notice that the
data mining time corresponds to total Weka execution time on a single node.
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Fig. 5. Execution times of the different steps of the clustering task in the WAN scenario
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Fig. 6. Percentage of the execution times of the different steps in the LAN scenario

In the WAN scenario (see Figure 7) the data mining step represents from
84.62% to 88.32% of the total execution time, the dataset download ranges from
11.22% to 11.20%, while the other steps range from 4.16% to 0.48%.

We can observe that in the LAN scenario neither the dataset download nor the
other steps represent a significant overhead with respect to the total execution
time. In the WAN scenario, on the contrary, the dataset download is a critical
step that can significantly affect the overall execution time. For this reason, the
use of high-performance file transfer protocols such as GridFTP can be of great
importance.

The performance analysis discussed above demonstrates the efficiency of the
WSRF mechanisms as a means to execute data mining tasks on remote machines.
By exploiting such mechanisms, Weka4WS can provide an effective way to perform
compute-intensive distributed data analysis on a large-scale Grid environment.
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Fig. 7. Percentage of the execution times of the different steps in the WAN scenario

4 Related Work

The idea of adapting the Weka toolkit to a Grid environment has been recently
explored, although none of the proposed systems makes use of WSRF as enabling
technology.

Grid Weka [11] modifies the Weka toolkit to enable the use of multiple com-
putational resources when performing data analysis. In this system, a set of data
mining tasks can be distributed across several machines in an ad-hoc environ-
ment. Tasks that can be executed using Grid Weka include: building a classifier
on a remote machine, labelling a dataset using a previously built classifier, test-
ing a classifier on a dataset, and cross-validation. Even if Grid Weka provides a
way to use multiple resources to execute distributed data mining tasks, it has
been designed to work within an ad-hoc environment, which does not constitute
a Grid per se. In particular, the invocation of remote resources in the Weka
Grid framework is not service-oriented, and makes use of ad-hoc solutions that
do not take into considerations fundamental Grid aspects (e.g., interoperabil-
ity, security, etc.). On the contrary, Weka4WS exposes all its functionalities as
WSRF-compliant Web Services, which enable important benefits, such as dy-
namic service discovery and composition, standard support for authorization
and cryptography, and so on.

FAEHIM (Federated Analysis Environment for Heterogeneous Intelligent
Mining) [12] is a Web Services-based toolkit for supporting distributed data
mining. This toolkit consists of a set of data mining services, a set of tools to in-
teract with these services, and a workflow system used to assemble these services
and tools. The Triana problem solving environment [13] is used as the workflow
system. Data mining services are exposed as Web Services to enable an easy
integration with other third party services, allowing data mining algorithms to
be embedded within existing applications. Most of the Web Services in FAEHIM
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are derived from the Weka library. All the data mining algorithms available in
Weka were converted into a set of Web Services. In particular, a general “Clas-
sifier Web Service” has been implemented to act as a wrapper for a complete
set of classifiers in Weka, a “Clustering Web Service” has been used to wrap
a variety of clustering algorithms, and so on. This service-oriented approach is
similar to that adopted in Weka4WS. However, in Weka4WS standard WSRF
mechanisms are used for managing remote tasks execution and asynchronous
results notification (which is missing in that system), and all the algorithms are
exposed on every node as a single WSRF-compliant Web Service to facilitate
the deployment in a large Grid environment.

WekaG [14] is another adaptation of the Weka toolkit to a Grid environ-
ment. WekaG is based on a client/server architecture. The server side defines
a set of Grid Services that implement the functionalities of the different algo-
rithms and phases of the data mining process. A WekaG client is responsible
for communicating with Grid Services and offering the interface to users. A
prototype that implements the capabilities of the Apriori algorithm has been
developed using Globus Toolkit 3. In this prototype an Apriori Grid Service has
been developed to produce association rules from a dataset, while GridFTP is
used for the deployment of the files to the Grid Service node. WekaG shares this
service-orientation with Weka4WS. However, the WekaG prototype provides ac-
cess to only one data mining algorithm (Apriori), whereas Weka4WS currently
provides access to 78 different Weka algorithms through a single Web Service
interface. Moreover, WekaG uses the old Grid Service technology [15], which -
differently from WSRF - is largely incompatible with current Web Service and
Grid computing standards.

5 Conclusions

Weka4WS adopts the emerging Web Services Resource Framework (WSRF) for
accessing remote data mining algorithms and composing distributed KDD ap-
plications.

The paper described the design and the implementation of Weka4WS using
a first release of the WSRF library. To evaluate the efficiency of the proposed
system, a performance analysis of Weka4WS for executing a distributed data
mining task in different network scenarios has been also discussed.

The experimental results demonstrate the efficiency of the WSRF mecha-
nisms as a means to execute data mining tasks on remote resources. By ex-
ploiting such mechanisms, Weka4WS can provide an effective way to perform
compute-intensive distributed data analysis on large-scale Grids. The Weka4WS
software prototype will be made available to the research community.
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Abstract. Protein-protein interactions play an important role in many
fundamental biological processes. Computational approaches for predict-
ing protein-protein interactions are essential to infer the functions of
unknown proteins, and to validate the results obtained of experimental
methods on protein-protein interactions. We have developed an approach
using Inductive Logic Programming (ILP) for protein-protein interac-
tion prediction by exploiting multiple genomic data including protein-
protein interaction data, SWISS-PROT database, cell cycle expression
data, Gene Ontology, and InterPro database. The proposed approach
demonstrates a promising result in terms of obtaining high sensitiv-
ity/specificity and comprehensible rules that are useful for predicting
novel protein-protein interactions. We have also applied our method to a
number of protein-protein interaction data, demonstrating an improve-
ment on the expression profile reliability (EPR) index.

1 Introduction

The interaction between proteins is fundamental to a broad spectrum of biolog-
ical functions, including regulation of metabolic pathways, immunologic recog-
nition, DNA replication, progression through the cell cycle, and protein synthe-
sis. Therefore, mapping the organism-wide protein-protein interaction network
plays an important role in functional inference of the unknown proteins. With
the development of genomic technology, new experimental methods have vastly
increased the number of protein-protein interactions for various organisms. An
enormous amount of protein-protein interaction data have been obtained re-
cently for yeast and other organisms using high-throughput experimental ap-
proaches such as yeast two-hybrid [12], affinity purification and mass spectrom-
etry [2], phage display [22]. However, a potential difficulty with these kinds of
data is a prevalence of false positive (interactions that are seen in an experiment
but never occur in the cell or are not physiologically relevant) and false nega-
tives (interactions that are not detected but do occur in the cell). As such, the
prediction of protein-protein interactions using computational approaches can

A. Jorge et al. (Eds.): PKDD 2005, LNAI 3721, pp. 321–330, 2005.
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be used to validate the results of high-throughput interaction screens and used
to complement the experimental approaches.

There have been a number of studies using computational approaches ap-
plied to predicting interactions. Bock and Gough [3] applied a Support Vector
Machine learning system to predict directly protein-protein interactions from pri-
mary structure and associated data. Jansen et al. [13] used a Bayesian networks
approach for integrating weakly predictive genomic features into reliable predic-
tions of protein-protein interactions. A different approach is based on interacting
domain pairs, attempting to understand protein-protein interactions at the do-
main level. Sprinzak and Margalit [23] proposed the AM (Association Method)
for computing the score for each domain pair. Deng et al. [9] estimated the prob-
abilities of interactions between every pair of domains using an EM algorithm,
using the inferred domain-domain interactions to predict interactions between
proteins. The major drawback of this approach is that there are currently no ef-
ficient experimental methods for detecting domain-domain interactions. Also, in
[11], Grigoriev demonstrated that there is a significant relationship between gene
expression and protein interactions on the proteome scale, finding that the mean
correlation coefficients of gene expression profiles between interacting proteins
are higher than those between random protein pairs.

In this paper, we present an approach for predicting genome-wide protein-
protein interactions in yeast using the ILP system Aleph [1], a successor to
Progol [16]. Unlike the other work, our approach is able to exploit the relation-
ships among features of multiple genomic data, and to induce rules that give
possible insight into the binding mechanism of the protein-protein interactions.
Concerning rule-based methods using protein-protein interaction data, Oyama et
al. [21] applied Association Rule Mining to extracting rules from protein-protein
interaction data, however, the goal of this work is descriptive while our aim is
to generate rules for predictive purposes.

2 ILP and Bioinformatics

Inductive Logic Programming (ILP) is the area of AI which is built on a foun-
dation laid by research in machine learning and computational logic. ILP deals
with the induction of hypothesized predicate definitions from examples and back-
ground knowledge. Logic programs are used as a single representation for exam-
ples, background knowledge and hypotheses. ILP is differentiated from most
other forms of Machine Learning (ML) both by its use of an expressive repre-
sentation language and its ability to make use of logically encoded background
knowledge. This has allowed successful applications of ILP in areas such as molec-
ular biology and natural language which both have rich sources of background
knowledge and both benefit from the use of an expressive concept representation
languages [17].

It is considered that one of the most important application domains for ma-
chine learning in general is bioinformatics. There have been many ILP systems
that are successfully applied to various problems in bioinformatics. ILP is partic-
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ular suitable for bioinformatics tasks because of its ability to take into account
background knowledge and work directly with structured data. The ILP system
GOLEM [18] was used to model the structure activity relationships of trimetho-
prim analogues binding to dihydrofolate reductase [14]. A study of discriminating
molecules with positive mutagenicity from those with negative mutagenicity [15]
has been conducted using Progol [16], another ILP system. ILP has also been ap-
plied to many other tasks in bioinformatics, such as protein secondary structure
prediction [19] and protein fold recognition [26].

3 Using ILP for Predicting Protein-Protein Interactions

In this section, we present an algorithm for discovering rules using ILP. We use
a multi-relational data mining approach to discover rules from multiple genomic
data concerning protein-protein interactions. At present, we are using five kinds
of genomic data:

1. SWISS-PROT [5], containing description of the function of a protein, its
domains structure, post-translational modifications, variants, and so on.

2. MIPS [4], containing highly accurate protein interaction data for yeast.

Algorithm 1 Discovering rules for protein-protein interactions
Require:

Set of protein interacting pairs I = {(pi, pj)}, pi ∈ P , pj ∈ P , where P is the set
of proteins occurred

Number of negative examples N
Multiple genomic data used for extracting background knowledge

(SSWISS−PROT , SMIPS , Sexpression, SGO , SInterPro)
Ensure: Set of rules R for protein-protein interaction prediction

1: R := ∅, Spos := I
2: Extract protein annotation information concerning each p of P from SSWISS−PROT

3: Extract protein information concerning each p of P from SMIPS

4: Call GENERATE-NEGATIVES for artificially generating N negative examples
5: Extract the expression correlation coefficients from Sexpression for every protein

pairs (pk, pl), where pk ∈ P, pl ∈ P .
6: Extract all is a and part of relations (g1, g2), g1 ∈ GP , g2 ∈ GP , where GP is the

set of GO terms associated with P
7: Extract all relations between InterPro domains and GO terms (dInterPro, g) from

SInterPro, dInterPro ∈ DInterPro
P , g ∈ GP , where DInterPro

P is the set of InterPro
domains associated with P

8: Select a positive example at random
9: Saturate it to find the most specific clause that entails this example

10: Do top-down search for selecting the best clause c and add c to R
11: Remove covered positive examples
12: If there remain positive examples, go to step 8
13: return R
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3. Gene expression data [24], containing the correlation of mRNA amounts
with temporal profiles during the cell cycle.

4. Gene Ontology (GO) [20], containing the relations between GO terms.
5. InterPro [7], containing the relations between InterPro domains and their

corresponding GO terms.

Our algorithm 1 consists of two main parts. The first part (step 1 to 7) is con-
cerned with generating negative examples and extracting background knowledge
from multiple genomic data. The second part (step 8 to 12) deals with inducing
rules given the lists of positive, negative examples and background knowledge
using Aleph [1]. Aleph is an ILP system that uses a top-down ILP covering
algorithm, taking as input background information in the form of predicates,
a list of modes declaring how these predicates can be chained together, and a
designation of one predicate as the head predicate to be learned. Aleph is able
to use a variety of search methods to find good clauses, such as the standard
methods of breadth-first search, depth-first search, iterative beam search, as well
as heuristic methods requiring an evaluation function. We use the default evalu-
ation function coverage (the number of positive and negative examples covered
by the clause) in our work.

Algorithm 2 GENERATE-NEGATIVES
Require:

Number of negative examples N and SMIPS

Ensure: Set of negative examples Sneg consisting of N protein pairs

1: n := 0, Sneg := ∅
2: repeat
3: Select an arbitrary pair (pk, pl), where pk ∈ P, pl ∈ P
4: Find the sets of subcellular location Lk and Ll of pk and pl from SMIPS

5: if Lk ∩ Ll = ∅ then
6: Add (pk, pl) to Sneg

7: n := n + 1
8: endif
9: until n = N

10: return Sneg

In this paper, we want to learn the following target predicate

interact(Protein, Protein): the instances of this relation represent the in-
teraction between two proteins.

For background knowledge, we shortly denote all predicates used by each ge-
nomic data. Note that Aleph uses mode declarations to build the bottom clause,
and there are three types of variables: (1) an input variable (+), (2) an output
variable (−), and (3) a constant term (#). Table 1 shows the list of predicates
used as background knowledge for each genomic data.
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4 Experiments

4.1 Data Preparation

We used the core data of the Yeast Interacting Proteins Database provided by Ito
[6] as positive examples. Ito et al. [12] conducted comprehensive analysis using their
systemto examine two-hybrid interactions inall possible combinationsbetween the
6000 proteins of the budding yeast Saccharomyces cerevisiae. Among 4,549 inter-
actions detected using yeast-hybrid analysis, the “core” data consist of 841 inter-
actions with more than two IST hits1, accounting for 18.6%of the whole data. Note
that the core data used in this paper is a subset of protein-protein interactions of
MIPS [4] database, which is considered as the gold-standard for positive examples
in [13]. A negatives gold-standard is defined similar to [13] in which negative exam-
ples are synthesized from lists of proteins in separate subcellular compartments.

We employ our approach to predict protein-protein interactions. We used the
core data of Ito data set [6] mentioned above as positive examples, selecting at
random 1000 protein pairs whose elements are in separate subcellular compart-
ments as negative examples. Each interaction in the interaction data originally
shows a pair of bait and prey ORF (Open Reading Frame)2 some of which are
not found in SWISS-PROT database. After removing all interactions in which
either bait ORF or prey ORF is not found in SWISS-PROT, we obtained 602
interacting pairs from the original 841 pairs.

4.2 Analysis of Sensitivity/Specificity

To validate our proposed method, we conducted a 10-fold cross-validation test,
comparing cross-validated sensitivity and specificity with those obtained by using
AM [23] and SVM method. The AM method calculates a score dkl to each domain
pair (Dk, Dl) as the number of interacting protein pairs containing (Dk, Dl)
divided by the number of protein pairs containing (Dk, Dl).

In the approach of predicting protein-protein interactions based on domain-
domain interactions, it can be assumed that domain-domain interactions are
independent and two proteins interact if at least one domain pairs of these two
proteins interact. Therefore, the probability pij that two proteins Pi and Pj

interact can be calculated as

pij = 1−
∏

Dk∈Pi,Dl∈Pj

(1 − dkl)

We implemented the AM and SVM methods in order to compare with our
proposed method. We used the PFAM domains extracted from SWISS-PROT
and superdomains, i.e. proteins without any domain information. The probability
threshold is set to 0.05 for the simplicity of comparison. For SVM method, we
1 ISThit means how many times the corresponding interaction was observed. The higher

IST number, the much more reliable the corresponding interaction is.
2 ORF is a series of codons which can be translated into a protein.
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Table 1. Predicates used as background knowledge in various genomic data

Genomic data Background Knowledge
SWISS-PROT haskw(+Protein,#Keyword): A protein contains a keyword

hasft(+Protein,#Feature): A protein contains a feature
ec(+Protein,#EC): An enzyme code for a protein
pfam(+Protein,-PFAM Domain)
A protein contains a Pfam domain
interpro(+Protein,-InterPro Domain)
A protein contains a InterPro domain
pir(+Protein,-PIR Domain)
A protein contains a Pir domain
prosite(+Protein,-PROSITE Domain)
A protein contains a Prosite domain
go(+Protein,-GO Term)
A protein contains a GO term

MIPS subcellular location(+Protein,#Subcellular Structure)
Relation between proteins and the subcellular structures
in which they are found.
function category(+Protein,#Function Category)
A protein which is categorized to a certain function category
protein category(+Protein,#Protein Category)
A protein which is categorized to a certain protein category
phenotype category(+Protein,#Phenotype Category)
A protein which is categorized to a certain phenotype category
complex category(+Protein,#Complex Category)
A protein which is categorized to a certain complex category

Gene expression correlation(+Protein,+Protein,-Expression)
Expression correlation coefficient between two proteins

GO is a(+GO Term,-GO Term)
is a relation between two GO terms
part of(+GO Term,-GO Term)
part of relation between two GO terms

InterPro interpro2go(+InterPro Domain,-GO Term)
Mapping of InterPro entries to GO

used SV M light [25] for learning, and used the same set of PFAM domains and
superdomains as used in AM method. The linear kernel with default value of
the parameters was used. For Aleph, we selected minpos = 2 and noise = 0,
i.e. the lower bound on the number of positive examples to be covered by an
acceptable clause is 2, and there are no negative examples allowed to be covered
by an acceptable clause. We also used the default evaluation function coverage
which is defined as P −N , where P , N are the number of positive and negative
examples covered by the clause.

Table 2 shows the performance of Aleph compared with AM and SVM meth-
ods. The sensitivity of a test is described as the proportion of true positives
it detects of all the positives, measuring how accurately it identifies positives.
On the other hand, the specificity of a test is the proportion of true negatives
it detects of all the negatives, thus is a measure of how accurately it identifies
negatives. It can be seen from this Table that the proposed method showed a
considerably high sensitivity and specificity given a certain number of negative
examples. The number of negative examples should be chosen neither too large
nor too small to avoid the imbalanced learning problem. At present, we did not
compare our approach with EM method [9] in which they obtained 42.5% speci-
ficity and 77.6% sensitivity using the combined Uetz and Ito protein-protein
interaction data.
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Table 2. Performance of Aleph compared with AM and SVM methods. The sensitivity
and specificity are obtained for each randomly chosen set of negative examples. The
last column demonstrates the number of rules obtained using our proposed method
with the minimum positive cover is set to 2.

# Neg Sensitivity Specificity # Rules
AM SVM Aleph AM SVM Aleph

100 0.70 0.99 0.90 0.46 0.01 0.44 27
500 0.68 0.54 0.79 0.42 0.61 0.84 63
1000 0.71 0.32 0.73 0.39 0.88 0.93 62
2000 0.69 0.26 0.69 0.38 0.95 0.96 58
4000 0.69 0.15 0.68 0.39 0.98 0.99 68

4.3 Rule Analysis

Figure 1 demonstrates a number of selective rules obtained when providing 602
positive examples and 1000 randomly chosen negative examples. Those rules are
manually ranked using the difference between positive and negative coverages. It
can be seen that although some of rules can be obtained using other propositional
learning methods, some other rules can only be obtained using ILP.Rule 1 supports
the approach using domain-domain interactions, demonstrating that two proteins
interact if they share a common PFAM domain (81 cases covered among a total of
602 positive examples). Some rules obtained also match the result reported in [11]
that the mean correlation coefficients of gene expression profiles between interact-
ing proteins are higher than those between random protein pairs.

Using the Gene Ontology Term Finder tool [10], we also searched for signifi-
cant GO terms, or parents of the GO terms used to describe the pair of protein
interaction of each positive example covered by those rules in Figure 1. As a
result, it can be found that rule 5, 6, 10, 12, 13, 14 are relevant with very high
confidence, rule 7, 8, 9, 11 are relevant with lower confidence, and rule 15 is
irrelevant.

4.4 Assessment of the Reliability Using EPR Index

Since high-throughput experimental methods may produce false positives, it is
essential to assess the reliability of protein-protein interaction data obtained.
Deane et al. [8] proposed the expression profile reliability (EPR) index to as-
sess the reliability of measurement of protein interaction. The EPR index es-
timates the biologically relevant fraction of protein interactions detected in a
high throughput screen. For each given data, we retrieved all protein pairs that
classified as positive. Table 3 shows the EPR index calculated using the original
and our proposed method for a number of well-known protein-protein interac-
tion data. It can be seen that the EPR index of our method is higher than the
original one, demonstrating the validity of the proposed method.



328 T.N. Tran, K. Satou, and T.B. Ho

Rule 1 [Pos cover = 81 Neg cover = 0]
interact(A,B) : − pfam(B,C), pfam(A,C).

Rule 2 [Pos cover = 61 Neg cover = 0]
interact(A,B) : − go(B, C), go(A,C), is a(C,D).

Rule 3 [Pos cover = 51 Neg cover = 0]
interact(A,B) : − interpro(B,C), interpro(A,C), interpro2go(C,D).

Rule 4 [Pos cover = 15 Neg cover = 0]
interact(A,B) : − go(B, C), go(A,C),
hasft(A,domain coiled coil potential).

Rule 5 [Pos cover = 8 Neg cover = 0]
interact(A,B) : − go(B, C), go(A,C),
complex category(A,intracellular transport complexes).

Rule 6 [Pos cover = 6 Neg cover = 0]
interact(A,B) : − subcellular location(B, nucleus),
function category(A,cell cycle and dna processing),
phenotype category(B,cell morphology and organelle mutants).

Rule 7 [Pos cover = 6 Neg cover = 0]
interact(A,B) : − pfam(A,C), subcellular location(B, er),
haskw(B, autophagy).

Rule 8 [Pos cover = 5 Neg cover = 0]
interact(A,B) : − phenotype category(B,conditional phenotypes),
hasft(A,domain rna binding rrm).

Rule 9 [Pos cover = 5 Neg cover = 0]
interact(A,B) : − correlation(B, A, C), gteq(C, 0.241974),
hasft(A,domain rna binding rrm).

Rule 10 [Pos cover = 4 Neg cover = 0]
interact(A,B) : − pfam(A,C), haskw(B, direct protein sequencing),
hasft(B, domain histone fold).

Rule 11 [Pos cover = 4 Neg cover = 0]
interact(A,B) : − correlation(A, B, C), gteq(C, 0.236007),
hasft(A,domain poly gln).

Rule 12 [Pos cover = 4 Neg cover = 0]
interact(A,B) : − protein category(A,gtp − binding proteins),
correlation(A, B, C), gteq(C,0.144137).

Rule 13 [Pos cover = 4 Neg cover = 0]
interact(A,B) : − function category(B,cell fate),
hasft(B, transmem potential), hasft(A, transmem potential).

Rule 14 [Pos cover = 3 Neg cover = 0]
interact(A,B) : − subcellular location(B, integral membrane),
correlation(A, B, C), gteq(C,0.46332).

Rule 15 [Pos cover = 2 Neg cover = 0]
interact(A,B) : − correlation(B, A, C), gteq(C, 0.599716),
haskw(A, cell division).

Fig. 1. Some rules obtained with minpos = 2. For example, rule 14 means that protein
A will interact with protein B if protein B is located in the integral membrane of the
cell, and the expression correlation coefficient between protein A and protein B is
greater than 0.46332.
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Table 3. Evaluated the proposed method using EPR index. The number of interac-
tions after preprocessing means the number of interactions obtained after removing all
interactions in which either bait ORF or prey ORF it not found in SWISS-PROT.

Data Number of interactions EPR index
Original After preprocessing Proposed Original Proposed

Ito 4549 3174 1925 0.1910 ± 0.0306 0.2900 ± 0.0481
Uetz 1474 1109 738 0.4450 ± 0.0588 0.5290 ± 0.0860

Ito+Uetz 5827 4126 2567 0.2380 ± 0.0287 0.3170 ± 0.0431
MIPS 14146 10894 7080 0.5950 ± 0.0337 0.6870 ± 0.0420
DIP 15409 12152 8674 0.4180 ± 0.0260 0.5830 ± 0.0374

5 Conclusions and Future Work

We have presented an approach using ILP to predict protein-protein interactions.
The experimental results demonstrate that our proposed method can produce
comprehensible rules, and at the same time, showing a considerably high per-
formance compared with other work on protein-protein interaction prediction.
In future work, we would like to investigate further about the biological signif-
icance of novel protein-protein interactions obtained by our method, and apply
the ILP approach to other important tasks, such as predicting protein functions
and subcellular locations using protein-protein interaction data. We are also in-
vestigating to exploit the GO structures as background knowledge, rather than
using the occurence of a single GO term as in the current work.
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Abstract. Locally Linear Embedding (LLE) has recently been proposed
as a method for dimensional reduction of high-dimensional nonlinear
data sets. In LLE each data point is reconstructed from a linear com-
bination of its n nearest neighbors, which are typically found using the
Euclidean Distance. We propose an extension of LLE which consists in
performing the search for the neighbors with respect to the geodesic dis-
tance (ISOLLE). In this study we show that the usage of this metric can
lead to a more accurate preservation of the data structure. The proposed
approach is validated on both real-world and synthetic data.

1 Introduction

The analysis of complex high-dimensional data structures is essential in many
real-world applications, including medical high resolution time-series data. Al-
gorithms for dimensional data reduction are particularly useful for discerning
the information contained in a high-dimensional data structure.

In recent years several methods for the analysis of nonlinear data sets have
been proposed, including Locally Linear Embedding (LLE) [1]. LLE has already
been successfully applied to many problems, including face recognition [2], pre-
diction of membrane protein types [3] and the analysis of micro array data [4].
The algorithm assumes linearity in the local area centered on each data point.
Each area is mathematically characterized by a set of coefficients (weights) which
correlate the particular data point with its n nearest neighbors. The aggrega-
tion of all areas can be intuitively thought as an assemblage of linear patches
which approximates the nonlinear data structure. The high-dimensional data is
then projected into a lower-dimensional space while preserving the coefficients
between neighboring data points.

The number of neighbors n strongly influences the accuracy of the linear
approximation of nonlinear data. Specifically, the smaller n, the smaller the
area, the more faithful is the linear approximation. However, if these areas are
disjoint, LLE can fail to detect the global data structure [5]. Disjoint areas can
be obtained especially when the data is sparse or spread among multiple clusters.

A. Jorge et al. (Eds.): PKDD 2005, LNAI 3721, pp. 331–342, 2005.
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Geodesic distanceEuclidean distance

Fig. 1. The short circuit induced by Euclidean distance is shown on the left. In case
the number of neighbors n is set to a relative high value, the two points in figure can
be treated as neighbors, although they are on the opposite parts of the horseshoe. This
may cause LLE to fail to detect the real global structure of the data. On the right
are shown the benefits of the geodesic distance. In this case the two points are not
neighbors, as they are faraway according to the geodesic distance.

To address this problem, in [6] it is proposed to search for the n/2 nearest and
n/2 furthest neighbors of each data point. Another approach is given in [7],
where the authors suggest to connect the disjoint manifold or interpolating the
embeddings of some samples.

In general, for larger values of n the linear areas are more likely to overlap.
The number of neighbors n therefore needs to be sufficiently high to satisfy this
condition. On the other hand, as the neighbors search is typically conducted
using the Euclidean distance, this may lead a data point to have neighbors which
are instead very distant as one considers the intrinsic geometry of the data. More
intuitively, one can imagine this fact as a short circuit (see Fig. 1). The presence
of short circuits is undesirable, as they can cause LLE to misinterpret the actual
data structure.

To address the above outlined problems occurring to LLE when employed
with a high number of neighbors, we propose the usage of LLE with geodesic
distance (ISOLLE). More specifically, the n nearest neighbors are searched with
respect to the geodesic distance. This metric has already been employed in other
methods for nonlinear dimensional data reduction such as Isomap [8], Curvi-
linear Distance Analysis [9] and Self-organizing Maps [10]. The geodesic distance
between two data points can be intuitively thought as their distance along the
contour of an object (see Fig. 1 right). For example let us consider the distance
between Paris and New York. Their geodesic distance is the distance along the
curvature of the Earth. Their Euclidean distance instead is the length of the
straight line connecting the two cities which is below the level of the ground.
Points faraway from each other, as measured by the geodesic distance, may
appear deceptively close in the high-dimensional input space as measured by the
Euclidean distance.

In this work we demonstrate that the employment of the geodesic distance
can lower the probability to create short circuits during the neighbors search,
thereby allowing for a more accurate dimensional reduction. Our approach to
investigate the performances of ISOLLE as compared to conventional LLE is
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basically twofold. Firstly, we perform the analysis on synthetic data, namely a
three-dimensional swissroll which was also used in [1] and [8]. By this phan-
tom data set we illustrate the difference between both techniques. Secondly, we
analyze a complex, medical real-world data set acquired using dynamic contrast-
enhanced magnetic resonance imaging (DCE-MRI). DCE-MRI involves the re-
peated imaging of a region of interest, in our case the female breast with tumor
lesions, after the administration of a contrast agent, yielding a high-dimensional
spatio-temporal data structure.

Both data sets are reduced to two dimensions using different values of the
number of neighbors n. The dimensional reduction of the swissroll is evaluated
qualitatively, while the analysis of the tumor data set requires a statistical ap-
proach because of the complexity of the data. Specifically for this purpose we
consider the percentage of nearest points in the original space that are preserved
as nearest neighbors in the dimensional reduced space, and the stress induced
by the dimensional reduction. In addition, in the final part the running times of
LLE and ISOLLE are compared.

2 Locally Linear Embedding (LLE)

The LLE algorithm is based on three steps involving standard methods of li-
near algebra. Its input comprises N D-dimensional vectors {Xi}. The first step
consists in searching for the n nearest neighbors of each data point.

Once the neighbors are determined, by minimizing the following error fun-
ction (step 2)

Ψ(W ) =
N∑

i=1

|Xi −
n∑

j=1

WijXj |2 (1)

subject to the constraint
∑n

j=1 Wij = 1, one obtains the weights {Wij} that
best allow to reconstruct each data point from its neighbors. With the above
constraints, Eq. (1) can be simplified to a linear system and the weights can
be computed in closed form as follows: given a particular data point Xi with
n-nearest neighbors Xj and reconstruction weights Wj that sum to one, we can
write the reconstruction error as

Ψ(W ) =
N∑

i=1

|Xi −
n∑

j=1

WjXj |2 =
∑
jk

WjWkCjk. (2)

In the second identity, the term

Cjk = (Xi −Xj) · (Xi −Xk) (3)

is the local covariance matrix. The weights which minimize the error function of
Eq. (1) are given by:

Wj =

∑
k C−1

jk∑
lm C−1

lm

, l, m ∈ {1, .., n}. (4)



334 C. Varini, A. Degenhard, and T. Nattkemper

In some cases, for example if the number of neighbors is greater than the input
dimension (n > D), it arises that the matrix C is singular or nearly singular
and the solution of Eq. (2) is not unique. In this case the matrix C must be
conditioned by adding a small multiple of the identity matrix [11]:

Cij ← Cij + δijΓ (5)

where Γ is defined as

Γ =
Tr(C)

n
Δ2. (6)

The term Δ is a correction parameter set by the user and its value must be much
smaller than 1.

The third and last step of the LLE algorithm consists in mapping each data
point Xi to a low dimensional vector Yi, such that the following embedding
error function is minimized:

Φ(Y ) =
N∑

i=1

|Yi −
n∑

j=1

WijYj |2 (7)

under the conditions 1
N

∑N
i=1 YiYT

i = I and
∑N

i=1 Yi = 0, which provide a
unique solution. Note that the weights are kept constant in order to preserve
the local neighborhood of each data point. The most straightforward method for
computing the M -dimensional coordinates is to find the bottom M + 1 eigen-
vectors of the sparse matrix

S = (I −W )T (I −W ). (8)

These eigenvectors are associated with the M + 1 smallest eigenvalues of S. The
bottom eigenvector is related to the smallest eigenvalue whose value is closest
to zero. This eigenvector is the unit vector with all equal components and is
discarded.

3 The ISOLLE Algorithm

The ISOLLE algorithm differs from LLE only in the first step, i.e. the neighbors
search. More specifically, ISOLLE computes the n nearest neighbors of each data
point according to the geodesic distance. For this purpose we employ a small
variation of Dijkstra’s algorithm [12]. Given a graph, this algorithm computes
the shortest paths from a particular node to all remaining nodes. In our case we
restrict the computation to the n shortest paths.

In practice, the process of finding the geodesic neighbors is composed of
two phases. The first phase consists in constructing a weighted graph G over the
data set where neighboring data points are connected. In principle, any similarity
measure dE can be adopted to determine neighboring relations, and probably
the Euclidean distance is the most common choice. Two points are neighbors if
are closer than a fixed distance ε (ε-graph), or one is the K nearest point of the
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other (K-graph). These relations between neighbors are represented by edges of
weights dE(Xi,Xj) [8].

In the second phase the n nearest neighbors of each data point are found
according to the geodesic distance computed by Dijkstra’s algorithm. This algo-
rithm begins at a specific node (source vertex) and extends outward within the
graph until all the vertices have been reached (in our case only the n nearest
nodes). Dijkstra’s algorithm creates labels associated with vertices. These labels
represent the distance (cost) from the source vertex to that particular vertex.
Within the graph, there exists two kinds of labels: temporary and permanent.
The temporary labels are given to vertices that have not been reached. The value
given to these temporary labels can vary. Permanent labels are given to vertices
that have been reached and their distance (cost) to the source vertex is known.
The value given to these labels is the distance (cost) of that vertex to the source
vertex. For any given vertex, there must be a permanent label or a temporary
label, but not both. An animated example of Dijkstra’s algorithm can be seen
at [13]. Both steps of the neighboring search are detailed in the following:

Construct the neighborhood graph: define the graph G over all data points
by connecting points Xi and Xj if (as measured by dE(Xi,Xj)) they are
closer than ε, or if Xi is one of the K nearest neighbors of Xj . Set edge
lengths equal to dE(Xi,Xj).

Compute n nearest points with Dijkstra’s algorithm: given a graph
G=(V,E) where V is a set of vertices and E a set of edges, Dijkstra algorithm
keeps two sets of vertices:
S −the set of vertices whose shortest paths from the source vertex have

already been determined. These vertices have a permanent label
V-S −the remaining vertices. These have a temporary label
The other data structures needed are:
X0 −initial beginning vertex (source vertex)
N −number of vertices in G
D −array of estimates of shortest path to X0.
The basic mode of operation of Dijkstra’s algorithm is:
1 S={X0}
2 For i=1 to N

D[i]=E[X0,i]
3 For i=1 to N -1

Choose a vertex w in V-S such that D[w] is minimum and add it to S
For each vertex v in V-S
D[v]=min(D[v],D[w]+E[w,v])

The construction of graph G requires a further parameter (ε or K) to be set by
the user. In [8] it is pointed out the scale-invariant parameter K is typically easier
to set than ε, but may yield misleading results when the local dimensionality
varies across the data set. A sensible way to set this parameter can be to choose
the minimal value such that all the pairwise geodesic distances are finite.
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4 Data Sets

The performances of ISOLLE and LLE are tested on two data sets whose num-
bers of points are displayed in table 1. The first data set is a three-dimensional
synthetic distributions, namely a swissroll (Fig. 2(a)). The second is a real-world
data set comprising the signal intensity values obtained by dynamic contrast-
enhanced magnetic resonance imaging (DCE-MRI) on female breast with tumor.

The DCE-MRI technique consists in acquiring a sequence of images (six
in our case) from a region of interest (the female breast in our case), whose
movement is carefully restricted, over time in order to monitor the dynamic of a
previous injected contrast agent within the tissue. As a result, tissue types with
higher level of vascularity have enhanced values of signal intensity, proportionally
to the amount of absorbed contrast agent. After the acquisition of the images,
a time-series of intensity values is correlated with each voxel (see Fig. 2(b)).
As benign and malignant tumor tissues are expected to differ in the level of
vascularization, the respective contrast characteristics are expected to exhibit
different behaviors.

The tumor data set in this work comprises the time-series relative to six be-
nign and six malignant cancerous lesions which were labeled and pathologically
analyzed by an expert physician. The discrimination between benign and malig-
nant lesions in DCE-MRI is a particularly challenging and delicate problem in
light of the relatively high rate of false positive cases characterizing this imaging
technique, as published in the literature [14]. In this study the time-series asso-
ciated with the voxel of each tumor is treated as a data point in a six-dimensional
signal space. It is therefore interesting to project this six-dimensional space in
two dimensions in order to visualize how benign and malignant data differs from
each other.

5 Method for Comparing ISOLLE and LLE

The difference between LLE and ISOLLE are illustrated by considering the three-
dimensional swissroll. At first we visualize the neighbors graphs obtained by LLE
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Fig. 2. (a) Three-dimensional swissroll data set. (b) In DCE-MRI, a time-series of MR
signal intensity values is associated with each voxel.
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Table 1. Data sets investigated in this study

Data set Number of points Dimension
Swissroll 1000 3

DCE-MRI breast tumor data 2449 6

and ISOLLE with different values of n in order to highlight the advantages of the
geodesic distance. Each graph is obtained by connecting each data point with its
n neighbors by an edge (note that this is not the graph G used to compute the
geodesic distances and described in section 3). This allows us to check for the
possible presence of short circuits induced by the neighbors search. The effects of
these short circuits are then qualitatively evaluated by visualizing the respective
two-dimensional projections.

The evaluation of the dimensional reduction of the tumor data set requires
a statistical analysis, as the output can not be predicted a priori because of the
complexity and multi-dimensional nature of the data, and consequently it is not
possible to visually evaluate the accuracy of the low-dimensional projection.

The quality of the tumor data embeddings is estimated by means of two
numerical quantities, namely neighborhood preservation (NP) and stress (ST).
The first quantity is given by the average percentage of neighbors which are
preserved after the dimensional reduction. It is defined as

NP =
1
V

V∑
i=1

pt(Xi) (9)

where pt(Xi) is the percentage of the t-nearest neighbors of point Xi in the
original space which are preserved in the low-dimensional space. For example, if
only 25% of its t-nearest neighbors are preserved in the embedding, then pt(Xi)
will equal 0.25. In this work we use t = 5. A high value of NP (close to 1)
denotes a good preservation of the local relations between data points in the
low-dimensional space.

Stress reflects the preservation of the global structure of the original data set
in the embedding. More specifically, it quantifies the overall deviation (i. e. the
extent to which they differ) between the distances in the original and embedded
space [15]. Let Xi and Xj be two data points; their distance in the original and
in the embedding space are indicated by d(Xi,Xj) and δ(Xi,Xj), respectively.
Stress is typically defined in terms of variance as

ST =

∑
Xi,Xj

(δ(Xi,Xj)− d(Xi,Xj))2∑
Xi,Xj

d(Xi,Xj)2
. (10)

Prior to the computation of the value of stress, both the original and embedded
coordinates are scaled to [0,1] in order to allow for a correct comparison between
different embeddings. Low values of stress (close to 0) reflect a good preservation
of the original pairwise distances in the low dimensional space.
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6 Experiments

Graph G is computed by setting ε to the minimal possible value such that all
the pairwise distances are finite. These values empirically found for each data
set are: ε(swissroll)=5; ε(tumor data)=90.

The two data sets are reduced to two dimensions by LLE and ISOLLE with
the number of neighbors n varying between 5 and 40.

7 Results and Discussion

In Fig. 3 one can see the neighbors graphs of the swissroll. It is obvious that
already with n = 15 LLE with Euclidean distance meets some short circuit effects
in the neighbors search. With n = 40 the number of short circuits increases
noticeably. By contrast, the graphs relative to ISOLLE do not present short
circuit effects, even when the number of neighbors n equals 40. This shows that
the usage of the geodesic distance can drastically reduce the number of short
circuits.

Possible effects of these short circuits on the two-dimensional projection of
the swissroll data set can be seen in Fig. 4. Here it is clear that LLE fails to
preserve the global structure of the data with n = 15 and in particular n = 40,
as in both cases the darkest points are mapped close to brighter points. On the
contrary, ISOLLE can correctly unfold the swissroll in all three cases, and the
structure of the data is clearly preserved. In particular, the ISOLLE projection is
also accurate with n = 40, while the respective LLE projection results completely
incorrect.

ISOLLE n=40

LLE n=6 LLE n=40LLE n=15

ISOLLE n=15ISOLLE n=6

Fig. 3. Neighbors graphs of the swissroll data set. In the LLE graph with n = 15
there are already short circuits. Their number considerably increases with n = 40.
Conversely, in all the ISOLLE graphs there are no short circuits.
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LLE n=40LLE n=15

ISOLLE n=40ISOLLE n=15ISOLLE n=6

LLE n=6

Fig. 4. Two-dimensional reductions of the swissroll data set. While LLE fails to pre-
serve the structure of the swissroll with n ≥ 15, ISOLLE yields a good projection of
the data in all cases.

The evaluation of dimensional reduction of the tumor data set is conducted
by taking into account the neighborhood preservation and stress measures. Their
average values with the respective variances computed with respect to n com-
prised between 5 and 40 are displayed in table 2. The projections by ISOLLE
result better with respect to both quantities. Indeed, the average ST value is
lower than the one by LLE, suggesting that ISOLLE better preserves the metric
of the tumor data. The higher value of the average NP by ISOLLE gives evi-
dence that this algorithm also leads to a better preservation of the topology of
the data. Two scatter plots of the DCE-MRI breast data embeddings obtained
by LLE and ISOLLE with n = 20 are shown in Fig. 5. Interestingly, the be-
nign cluster in the projection by ISOLLE appears more localized and compact
than in the projection by LLE. Moreover, benign and malignant data overlap
more in the projection by LLE. This indicates that ISOLLE can better separate
benign from malignant data and this is of considerable value from the medical
point of view. In addition, the compactness of the benign cluster in the ISOLLE
projection shows that benign tumors are rather homogeneous, while the malig-
nant ones are more heterogeneous, in agreement with the clinical experience of
physicians [16].

Table 2. Average and variance values of stress (ST) and neighborhood preserva-
tion(NP) computed for the tumor data set

ST(LLE) ST(ISOLLE) NP(LLE) NP(ISOLLE)
0.454±0.034 0.337 ± 0.025 0.081±0.001 0.115 ± 0.002
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LLE ISOLLE

Fig. 5. Two scatter plots of the two-dimensional embeddings of the DCE-MRI breast
data set obtained by LLE and ISOLLE. In both cases n equals 20. Note that the benign
and malignant clusters overlap much less in the ISOLLE embedding. In particular, here
the benign cluster is more compact and localized.

Table 3. Table of the running times in seconds

n Swissroll DCE-MRI
LLE ISOLLE LLE ISOLLE

10 0.20 2.66 1.26 16.55
20 0.23 6.32 1.39 39.24
30 0.27 11.25 1.62 69.31
40 0.30 17.29 1.75 106.37

Finally, we compare the performances of LLE and ISOLLE is terms of running
time. Both algorithms were run with different n on a Pentium IV 2.8 GHz. The
respective values of running times are shown in table 3. The ISOLLE algorithm
involves a larger computation time and the divergence of speed becomes more
marked as n increases. The higher computational time of ISOLLE is somewhat
expected as the algorithm requires a further step as compared to LLE, i. e. the
construction of the neighborhood graph over all data points.

In general, the usage of ISOLLE should be preferred to LLE in particular
when n needs to be relatively high (for example in case of sparse or clustered
data) and in turn short circuits are more likely to occur. One way to determine
if a certain data set requires a relatively high value of n is to perform an analysis
of the smallest eigenvalues of matrix S from eq. (8). Specifically, in standard
conditions matrix S has only one eigenvalue close to 0. However, if n is so
small that the linear areas are disjoint, then matrix S will have more than one
close-to-zero eigenvalue [5]. Therefore, the minimum n for which S has only
one eigenvalue close to 0 can be taken into account in order to evaluate which
algorithm is more suited for the data analysis.
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8 Conclusions

In this study we propose a new approach to the neighbor search in LLE based
on the geodesic distance. Its usage can reduce the number of short circuits con-
siderably, thereby improving the preservation of the data structure. We show
this by investigating the neighbors graphs obtained by LLE and ISOLLE on a
synthetic three-dimensional swissroll. The ISOLLE graphs do not exhibit short
circuits, even when the number of neighbors is high. By contrast, the standard
neighbors search with Euclidean distance in LLE causes many short circuits.
As a consequence, ISOLLE can detect the intrinsic two-dimensional structure
of the swissroll with both small and large values of the number of neighbors n.
Conversely, LLE fails to unfold the swissroll with n ≥ 15.

Regarding the dimensional reduction of the tumor data set, our results clearly
show that ISOLLE significantly outperforms LLE in terms of both stress and
neighborhood preservation. In addition, ISOLLE appears to better distinguish
between benign and malignant lesions.

Experiments concerning the running times revealed that ISOLLE is slower
than LLE and this becomes more noticeable as n increases.

In conclusion, ISOLLE exhibits a superior ability to project the investigated
data sets into a two-dimensional space while preserving the original data struc-
ture but at the cost of a larger running time.

Future work will include the comparison of the performances of LLE and
ISOLLE with respect to data sets having different density distributions, with
particular regard to sparse data.
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Abstract. We describe work aimed at cost-constrained knowledge dis-
covery in the biomedical domain. To improve the diagnostic/prognostic
models of cancer, new biomarkers are studied by researchers that might
provide predictive information. Biological samples from monitored pa-
tients are selected and analyzed for determining the predictive power of
the biomarker. During the process of biomarker evaluation, portions of
the samples are consumed, limiting the number of measurements that
can be performed. The biological samples obtained from carefully mon-
itored patients, that are well annotated with pathological information,
are a valuable resource that must be conserved. We present an active
sampling algorithm derived from statistical first principles to incremen-
tally choose the samples that are most informative in estimating the
efficacy of the candidate biomarker. We provide empirical evidence on
real biomedical data that our active sampling algorithm requires signif-
icantly fewer samples than random sampling to ascertain the efficacy of
the new biomarker.

1 Introduction

In the biomedical domain, the acquisition of data is often expensive. The cost
constraints generally limit the amount of data that is available for analysis and
knowledge discovery. We present a methodology for intelligent incremental data
acquisition for performing knowledge discovery under cost constraints.

In biological domains molecular tests, called biomarkers, conducted on biolog-
ical samples (e.g. tumor tissue samples) that provides predictive information to
pre-existing clinical data are studied. The development of molecular biomarkers
for clinical application is a long process that must go through many phases start-
ing from early discovery phases to more formalized clinical trials. This process
involves the analysis of biological samples obtained from a large population of
patients in a retrospective manner. The biological samples that need to be prop-
erly preserved are collected together with corresponding clinical data over time
and are therefore very valuable. There is therefore a need to carefully optimize
the use of the samples while studying new biomarkers. We address the issue
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of cost-constrained biomarker evaluation for developing diagnostic/prognostic
models for cancer.

In general the acquisition of new data can be performed automatically by
querying the environment by choosing the queries that are most likely to pro-
vide ‘useful’ information. This learning paradigm called active learning, where
the learner is endowed with the ability to choose the data to be acquired, has
been shown to yield comparable accuracy with significantly fewer data [1,6,9,11].
Traditionally active learning methods have been applied for training classifiers
in the presence of unlabeled data, where the class labels of carefully chosen sam-
ples are queried. These techniques are suitable for situations where the class
labels are considerably more expensive to obtain than the feature representation
of the examples. Moreover the queries are chosen in order to learn the classifier
accurately (with low cost).

In contrast, for our problem new biomarkers are tested on biological samples
from patients who are labeled according to their disease and survival status.
Moreover for each patient we have additional information such as grade of the
disease, tumor dimensions and lymphonode status. That is, the samples are class
labeled as well as described by some previous features. The goal is to choose the
new feature (the biomarker) among many that is most correlated with the class
label given the previous features. Since the cost involved in the evaluation of all
the biomarkers on all the available data is prohibitive, we need to actively choose
the the samples on which the new features (biomarkers) are tested. Therefore
our objective at every sampling step is to choose the query (the sample on which
the new feature is measured) so as to learn the efficacy of the biomarker most
accurately.

Although the general theory of active learning has been studied in statistics
in the area of optimal experimentation [7,10,13], it has seldom been applied to
problems in knowledge discovery. The reason being the difficulty in resolving
various practical issues such as finding good approximations to the theory and
learning with sampling bias (which is a side-effect of active sampling).

In Section 2 we provide an overview of the process of identifying and eval-
uating biomarkers with a description of the resources required. In Section 3 we
present an abstract formulation of the problem and outline a solution. We then
describe the dataset obtained from Tissue Microarray analysis and will provide
experimental evidence for the efficacy of our solution. We conclude with a dis-
cussion of the insights gained and directions for future work.

2 Cancer Biomarker Evaluation

Current models for cancer characterization, that lead to diagnostic/prognostic
models, mainly involve the histological parameters (such as grade of the disease,
tumor dimensions, lymphonode status) and biochemical parameters (such as the
estrogen receptor). The diagnostic models used for clinical cancer care are not
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yet definitive and the prognostic and therapy response models do not accurately
predict patient outcome and follow up. For example, for lung cancer, individuals
affected by the same disease and equally treated demonstrate different treatment
responses, evidencing that still unknown tumor subclasses (different istotypes)
exist. This incomplete view results, at times, in the unnecessary over-treatment
of patients, that is some patients do not benefit from the treatment they un-
dertake. Diagnostic and prognostic models used in clinical cancer care can be
improved by embedding new biomedical knowledge. The ultimate goal is to im-
prove the diagnostic and prognostic ability of the pathologists and clinicians
leading to better decisions about treatment and care.

Ongoing research in the study and characterization of cancer is aimed at
the refinement of the current diagnostic and prognostic models. As disease de-
velopment and progression are governed by gene and protein behaviour, new
biomarkers found to be associated with patient diagnosis or prognosis are inves-
tigated. The identification of new potential biomarkers is recently driven by high
throughput technologies, called Microarrays. They enable the identification of
genes that provide information with a potential impact on understanding disease
development and progression [5].

Although the initial high throughput discovery techniques are rapid, they
often only provide qualitative data. Promising genes are further analyzed by us-
ing other experimental approaches (focusing on DNA, RNA or proteins), to test
specific hypotheses. Usually a well characterized dataset of tumor samples from
a retrospective population of patients is identified and the experimental process
of analyzing one biomarker (feature) on one sample at a time is conducted. These
analyses are usually based on the comparison between 1)non-diseased (e.g. nor-
mal) and diseased (e.g. tumors) biological samples, 2)between diseased samples
pharmacologically treated and untreated at variable time points or 3)between
samples of different diseases. The efficacy of specific biomakers can for example
be determined based on their discriminative power in distinguishing between
patients with poor or good prognosis, meaning patients with short or long over-
all survival respectively or cancer recurring or not recurring. This process can
be time consuming, depending on the type of experimental technique which is
adopted.

More importantly, well annotated tissue samples are very precious. Moni-
toring the status of patients over years, even decades, and store them so that
to be useful for studies is not trivial and requires organizational efforts. It is
not uncommon, for example, that patients who undertook the treatment at a
hospital, will be monitored during the follow up period in another hospital and
even in another country. Therefore keeping track of their status may become
quite difficult. When the biomarker is tested on a biological sample, a portion of
the sample is consumed, implying that each sample can be used for only a finite
number of experiments. This motivates the need to develop an active sampling
approach to conserve the valuable biological sample resource.
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3 Active Measurement of Feature Values

We first present an abstract statement of the problem and show how it fits the
real problem in the biomedical domain. We will then derive an active sampling
algorithm as a solution. Let us consider a finite set of monitored pattern instances
(or subjects) T = {ti}i=1,...,N . Let the random variable corresponding to the
class label be denoted by c taking values in C. The random variables1 x and
y correspond to features (or attributes) that can be measured on any instance,
taking on values in X and Y respectively. The class label and the feature value x
are known for every instance in T . In other words the random vector s = (c,x)
is instantiated on all the instances. However, initially, feature value y has not
been acquired on any instance. Let the probability distribution over C×X×Y be
parameterized by θ ∈ Θ. It is required to learn a concept g (which is a function
of θ) on C × X × Y accurately by minimizing the number of instances on which
y is measured (or probed).

In this formulation the class label c represents the diagnostic class, over-
all survival or relapse free survival status or the response to the treatment of
the particular patient, the previous feature vector x represents the histological
parameters of the tumor sample or biomarkers previously determined to be effec-
tive and the feature y represents the expression level of the candidate biomarker
that is being evaluated. The concept g to be learned represents the efficacy of
the new feature, or equivalently the error rate (denoted by e) of the classifier
φ : X × Y → C operating on the full feature space. Since the goal is to save the
valuable resource we would like to measure as few samples as possible with the
new biomarker before deciding whether it provides any useful information.

3.1 Active Sampling to Minimize Predicted Mean Squared Error

The active sampling approach is to iteratively choose the best s = (c, x) where
to probe the feature value y. Then an instance in the dataset with the particular
s is chosen on which y is probed. Let us assume that after k iterations of this
sampling process we obtained the dataset of measurements Tk = {s1 → y1, s2 →
y2, . . . , sk → yk}. We will now describe how the choice of best s can be performed
from a Bayesian statistical viewpoint.

Let us assume that the estimate of the concept is the Bayes minimum mean
square error (MMSE) estimate. That is, given data T , the estimate of the concept
is given by ĝ(T ) = E[g|T ]. The predicted mean squared error (MSE) of the
estimate of g at step k + 1, if s were to be probed for the value of y, is given by

MSE(s)k+1 =
∫ ∫

(E[g|Tk, s→ y]− g)2p(g|Tk, s→ y)p(s → y|Tk)dg dy

=
∫ ∫

(E[g|Tk, s→ y]− g)2p(g, s→ y|Tk)dg dy (1)

1 In general x and y can be random feature vectors of different lengths.
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Note that the MSE is averaged over all the possible values of y, with the prob-
abilities given by conditioning over all the data we have seen thus far. Now the
best s to probe is the one that yields the lowest predicted mean squared error2.

Lemma 1. To select the sample s to minimize the predicted mean squared error
in Equation 1, we can equivalently maximize the squared difference between the
Bayes estimates of the concept before and and after s is probed, averaged over
the possible outcomes. That is

B(s) = argmin
s

MSE(s)k+1

= argmax
s

∫
Y
(E[g|Tk, s→ y]− E[g|Tk])2p(s → y|Tk)dy

The proof is outlined in [12]. The result implies that the most informative s
to sample at is the one where the sampling would lead to the most change from
the current estimate of the concept in the expected sense. In most problems,
however, it is difficult to estimate the concept using a Bayes MMSE approach.
Therefore we relax this constraint to approximate the objective function as

B(s) =
∫
Y
(ĝ(Tk, s→ y)− ĝ(Tk))2p(s → y|Tk)dy (2)

where ĝ(T ) is any estimate of the concept g from data T , that is appropriate
for the problem. Our active sampling method based on this benefit criterion is
called the Maximum Average Change (MAC) sampling algorithm3. An approach
such as ours where the best instance to sample is decided based upon the benefit
at the next step is called myopic active learning. An alternative would be reason
about the best sample based upon the benefit it will have after many sampling
steps. This alternative, however, can be computationally very expensive.

For feature selection we need to evaluate the benefit of adding each candi-
date feature y to the current set of features x. Therefore the concept g to be
learned is the error rate (denoted by e) of the classifier φ : X ×Y → C operating
on the full feature space. Although the above derivation of the active learning
strategy is problem and classifier independent, we implemented the active fea-
ture measurement algorithm for the estimation of the error rate of a Bayesian
maximum a posteriori classifier with discrete valued features and class labels.
As opposed to the Naive Bayes classifier, we do not assume that the features x
and y are class-conditionally independent. We will now briefly describe how the
active sampling algorithm was implemented and provide the equations for the
estimation of the probability distribution and for the error rate of the classifier.

2 In case of non-uniform costs a different objective function that uses both the sampling
cost and the MSE should be optimized.

3 In [12] we have shown that MAC heuristic incurs significantly lower sampling cost
than the heuristics proposed by Lizotte et al. [4] and Zheng and Padmanabhan [14]
for similar problems.
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3.2 Implementation

All probability distributions are multinomial whose parameters are estimated
from data using Bayes MMSE estimators under uniform Dirichlet priors. Due
to the difficulty in obtaining the exact Bayes MMSE estimate of the error rate,
we approximate it by the error rate computed from the Bayes estimate of the
distribution p(c, x, y) over C × X × Y.

We will now describe how the estimation of the joint probability is performed
and present the formulae for the computation of the classifier and its error rate.
At a given iteration of the active sampling process some of the instances have
feature value y missing. Moreover because of the active sampling the missing
values are not uniformly distributed. In [3] MacKay asserts that the biases in-
troduced in the induced concept because of non-random sampling can be avoided
by taking into account how we gathered the data. Therefore to construct the es-
timator p̂(c, x, y) over C×X ×Y it is necessary to consider the sampling process.
Since all the examples in the database are completely described with respect to
c and x we already have the density p(c, x). In addition, at any iteration of the
active sampling algorithm there is an incomplete database with y values missing
non-uniformly across various configurations of (c,x). However for each (c, x) the
samples for y are independent and identically distributed. We incorporate this
information in the estimator of the probability density from incomplete data T
as follows. We first calculate

p̂T (y|c, x) =
nc,x,y + 1∑
Y nc,x,y + |Y| (3)

where nc,x,y is the number of instances of the particular combination of (c, x, y)
among all the completely described instances in T . Note that p̂T (y|c, x) is the
same as p(s → y|T ) used in the equations above. Now the probability density
over C × X × Y is calculated as

p̂T (c, x, y) = p̂T (y|c, x)× p(c, x) (4)

Once we have the estimate p̂T (c, x, y) all other quantities can be computed
easily and in particular the estimate of the error rate ê(T ) is computed as follows.

ê(T ) = 1−
∑
X×Y

p̂T (φ̂(x, y), x, y) (5)

where φ̂T is the Bayes maximum a posteriori classifier learned from data T given
by

φ̂T (x, y) = argmax
c∈C

p̂T (c, x, y)∑
C p̂T (c, x, y)

(6)

For a given amount of budget and candidate feature y, the MAC active
sampling algorithm to learn the utility of (i.e., the error rate given) the feature
is given in pseudocode below.
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Algorithm : ActiveSamplingForErrorRate(DataSet,y, Budget)

cost ← 0;
ErrorRate ← EstimateErrorRate(DataSet) comment: cf. Equation 5

while (cost < Budget)
for each s ∈ C × X

B[s] ← 0;
for each y ∈ Y

p(y|s) ← CalcConditionalProb(DataSet)
comment: cf. Equation 3

AugmentedDataSet ← AddSample(DataSet, (s→ y))
PredErrorRate ← EstimateErrorRate(AugmentedDataSet)
B[s] ← B[s] + (PredErrorRate − ErrorRate)2 × p(y|s)

end
end

BestSample ← RandomChooseSample(argmax
s

B[s])
comment: Randomly select an incomplete sample among samples with max Benefit

DataSet ← AddSample(DataSet, (BestSample→ ExtractY (BestSample)))
comment: Measure y on BestSample and update DataSet

ErrorRate ← EstimateErrorRate(DataSet)
cost ← cost + SamplingCost

end
return (ErrorRate)

4 Dataset for Experimentation

To provide evidence that our method is effective in reducing costs in the biomed-
ical domain we experimentally evaluated our method on a breast cancer Tissue
Microarray dataset4. Although the biomarker evaluation problem is not relevant
for this particular dataset we use it to demonstrate the utility of our approach.

The dataset was acquired using the recently developed technique of Tissue
Microarray [8] that improves the in-situ experimentation process by enabling the
placement of hundreds of samples on the same glass slide. Core tissue biopsies
are carefully selected in morphologically representative areas of original samples
and then arrayed into a new ”recipient” paraffin block, in an ordered array
allowing for high-throughput in situ experiments. A TMA block contains up
to 600 hundred tissue biopsies. TMA approach has a dramatic advantage over
the conventional approach in performing in situ experiments on standard glass
slides by allowing the simultaneous staining of hundreds of tissue samples from
as many patients, ensuring experimental standardization and conserving the
4 The data used for experimentation was collected by the Department of Histopathol-

ogy and the Division of Medical Oncology, St. Chiara Hospital, Trento, Italy. Tissue
Microarray experiments were conducted at the Department of Histopathology [2].
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limited tissue resource, which is vital given the increasing number of candidate
genes that need to be explored.

For each patient there is a record that described by clinical, histological and
biomarkers information. The entire dataset consisted of 400 records defined by
11 features. Each of the clinical features is described by a binary status value and
a time value. Some of the records have missing values. The data are described
by the following features:

Clinical Features
1. the status of the patient (binary, dead/alive) after a certain amount of

time (in months, integer from 1 to 160)
2. the presence/absence of tumor relapse (binary value) after a certain

amount of time (in months, integer from 1 to 160 months)
Histological Features
3. diagnosis of tumor type made by pathologists (nominal, 14 values)
4. pathologist’s evaluation of metastatic lymphonodes (integer valued)
5. pathologist’s evaluation of morphology (called grading, ordinal, 4 values)

Biomarkers Features (manually measured by experts in TMA)
6. Percentage of nuclei expressing ER (estrogen receptor) marker.
7. Percentage of nuclei expressing PGR (progesterone receptor) marker.
8. Score value (combination of colour intensity and percentage of stained

area measurements) of P53 (tumor suppressor protein) maker in cells
nuclei.

9. Score value (combination of colour intensity and percentage of stained
area measurements) of cerbB marker in cells membrane.

The learning task defined on this dataset is the prediction of the status of the
patient (dead/alive or relapse) given some previous knowledge (histological in-
formation or known biomarkers). The goal is to choose the new biomarker which
can be used along with the histological features that provides accurate predic-
tion. The experiments address the issue of learning which additional feature has
to be sampled.

The dataset was preprocessed as follows. Continuous features have been dis-
cretized to reduce the level of detail and to narrow the configuration space
for the sampling problem. Feature values have been discretized encoded into
binary variables according to the convention suggested by experts in the do-
main.

We designed 10 experiments corresponding to different learning situations.
The experiments differ in the choice of attribute for the class label (c), the
attributes used as the previous features (x) and the feature used as the new
candidate feature (y). The various configurations are shown below.
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Class Label (C) Known Features (X) New Feature (Y) Size (#)
I dead/alive all histological information PGR 160

II dead/alive all histological information P53 164
III dead/alive all histological information ER 152
IV dead/alive all histological information cerbB 170
V relapse all histological information PGR 157

VI relapse all histological information P53 161
VII relapse all histological information ER 149

VIII relapse all histological information cerbB 167
IX dead/alive PGR, P53, ER cerbB 196
X relapse PGR, P53, ER cerbB 198

For the empirical evaluation we performed an additional preprocessing step
of removing all the records with missing values for each experiment separately.
For this reason the sizes of datasets used for different experiments are different.

5 Experiments

For each of the 10 experimental configurations described above, the random and
MAC sampling schemes are compared for different number of acquired samples.
The evaluation metric is computed as follows. For each choice of x and y we
calculated the expected error rate eF of a maximum a posteriori classifier trained
on the entire database (i.e., with all the values of c, x and y known). Then for
a given sample size L we sampled y values on L samples from the database
(either by MAC or random sampling) and calculate the predicted error rate eL

for each method. We then computed the root mean square difference between eL

and eF over several runs of the sampling scheme. Under the assumption of unit
cost for feature value acquisition the rms difference will measure the efficacy of
a sampling scheme in estimating the error rate of a classifier trained on both x
and y as a function of the number of feature values acquired.

To relate the evaluation measure used to the biological problem, we note
that eF can be viewed as the true error rate of the classifier that uses the new
biomarker y and eL as the estimate of the error rate after sampling y on L
samples. Since our goal is to predict the error rate accurately minimizing L, we
can measure the effectiveness of our sampling algorithm by the rms difference
between eF and eL.

For each experiment we plotted the rms value against the number of samples
probed which are shown in Figure 1. In each plot, to compare the MAC sam-
pling scheme to the random method for cost effectiveness, we must compare the
number of feature values sampled for a required rms error.

In some plots the rms value starts at zero before increasing to a maximum
value. This happens in situations where the new feature y adds no new infor-
mation for predicting the class c given the previous features x. Therefore in the
beginning of the sampling process, the estimated error rate is just the error rate
obtained by using x which is the actual value. As more samples are added the
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Fig. 1. Plots of the rms difference between the ‘true’ error rate of the classifier operating
on the full feature space and that estimated from the acquired samples for all three
sampling schemes as a function of the number of samples acquired. The features chosen
for c, x and y are also indicated. The rms value is computed from 500 runs of the
sampling experiment for each configuration. The error bars are smaller than the markers
used in the plots.
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estimate becomes optimistic predicting an error rate lower than the actual value
until sufficiently large number of samples are added to learn the new feature is
useless.

We observe from the plots that our MAC active sampling algorithm is signifi-
cantly better in reducing the number of samples needed for error rate estimation
than random sampling. For example in the top-left subplot, we observe that to
obtain an error rate estimate with an rms error of 0.001, MAC algorithm needs
less than 40 samples as opposed to about 150 for random. This behaviour is
observed in most of the experimental configurations.

In terms of the biomedical problem, this implies that using the MAC active
sampling, we can evaluate a higher number of biomarkers on the same amount
of bio-sample resource than using the standard random sampling method.

6 Conclusions and Future Work

We presented a preliminary solution to the problem of evaluating new biomarkers
that enable better characterization of cancer while conserving the limited amount
of well annotated biological samples. We showed experimentally that our active
sampling algorithm holds promise in accurately evaluating the efficacy of the new
biomarker with significantly fewer samples tested. This allows for the evaluation
of more biomarkers using the biological samples at hand. One way to exploit
the efficacy of the active sampling algorithm is to initially test the biomarkers
on only a limited number of samples to discard uninformative biomarkers and
proceed to test the remaining ones exhaustively.

There are still several open problems that need to be addressed. With the
Tissue Microarray method several tissue samples are stained with the biomarker
simultaneously. Therefore we need to extend our sampling algorithm by rea-
soning about incrementally sampling not one but a batch of samples. Although
we can follow the same analysis presented above to derive an algorithm for the
batch case, the algorithm would be computationally expensive. Therefore we
need to make further approximations to derive a feasible algorithm. Since the
Tissue Microarray process is complicated in the preparation of the slides, the
costs involved are not uniform. We intend to develop active sampling algorithms
for more general cost models. We also intend to investigate active sampling with
other classification schemes. Our goal is to develop a fully functioning active sam-
pling decision support system that can be employed for biomarker evaluation in
biomolecular laboratories.
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Abstract. In many classification and data-mining applications the user
does not know a priori which distance measure is the most appropriate
for the task at hand without examining the produced results. Also, in
several cases, different distance functions can provide diverse but equally
intuitive results (according to the specific focus of each measure). In order
to address the above issues, we elaborate on the construction of a hybrid
index structure that supports query-by-example on shape and structural
distance measures, therefore lending enhanced exploratory power to the
system user. The shape distance measure that the index supports is
the ubiquitous Euclidean distance, while the structural distance mea-
sure that we utilize is based on important periodic features extracted
from a sequence. This new measure is phase-invariant and can provide
flexible sequence characterizations, loosely resembling the Dynamic Time
Warping, requiring only a fraction of the computational cost of the latter.
Exploiting the relationship between the Euclidean and periodic measure,
the new hybrid index allows for powerful query processing, enabling the
efficient answering of kNN queries on both measures in a single index
scan. We envision that our system can provide a basis for fast tracking
of correlated time-delayed events, with applications in data visualization,
financial market analysis, machine monitoring/diagnostics and gene ex-
pression data analysis.

1 Introduction

Even though many time-series distance functions have been proposed in the data-
mining community, none of them has received the almost catholic acceptance
that the Euclidean distance enjoys. The Euclidean norm can be considered as
the most rudimentary shape-matching distance measure, but it has been shown
to outperform many complex measures in a variery of clustering/classification
tasks [3], while having only a fraction of the computational and logical complexity
of the competing measures.

Lately however, time-series researchers are also starting to acknowledge cer-
tain limitations of shape matching distance measures, and therefore we are grad-
ually experiencing a shift to more structural measures of similarity. These new
structural measures can greatly enhance our ability to assess the inherent similar-
ity between time sequences and tend to be more coherent with theories governing
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the human perception and cognition. Recent work quantifying structurally the
similarity between sequences, may take into consideration a variety of features,
such as change-point-detection [2], sequence burstiness [7], ARIMA or ARMA
generative models [9], and sequence compressibility [4].

In many cases though, there is no clear indication whether a shape or a
structural measure is best suited for a particular application. In the presence of
a heterogeneous dataset, specific queries might be tackled better using different
measures. The distance selection task becomes even more challenging, if we con-
sider that different distance measures can sometimes also provide diverse but
equally intuitive search results.

In an effort to mitigate the distance selection dilemma, we present an index
structure that can answer multi-metric queries based on both shape and struc-
ture, allowing the end user to contrast answer sets, explore and organize more
effectively the resulting query matches. The proposed indexing scheme seam-
lessly blends the Euclidean norm with a structural periodic measure. Periodic
distance functions were recently presented in [8] and have been shown to perform
very effectively for many classes of datasets (i.e., ECG data, machine diagnos-
tics, etc). However, in the original paper no indexing scheme had been proposed.
Recognizing that the periodic measure can easily (and cost-effectively) identify
time-shifted versions of the query sequence (therefore loosely resembling Time-
Warping), we exploit the relationship between the euclidean and the periodic
measure in the frequency domain, in order to design an index that supports
query-by-example on both metrics. By intelligently organizing the extracted se-
quence features and multiplexing the euclidean and periodic search we can return
the k-NN matches of both measures in a single index scan. Both result sets are
presented to the user, expanding the possibilities of interactive data exploration,
providing more clues as to the appropriate distance function.

Euclidean

Q 

1−NN 

2−NN 

3−NN 

4−NN 

5−NN 

Periodic

Q 

1−NN 

2−NN 

3−NN 

4−NN 

5−NN 

Fig. 1. 5-NN euclidean and periodic matches on an ECG dataset

A sample output of the proposed index for a database of ECG data is shown
in Fig. 1. For the specific query, all instances returned by the periodic measure
belong to the same class of sequences and correspond to time-shifted variations of
the query sequence. The 1,2,5-Nearest-Neighbor (NN) matches of the Euclidean
metric can also be considered similar to the query, however the 3-NN and 4-NN
would be characterized as spurious matches by a human. The purpose of this
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(rather simplistic) example, is to emphasize that in many cases multiple measures
are necessary, since each metric can harvest a different subset of answers.

Even though other multi-metric distances have been presented in [10,6] (but
for different sets of distance functions), queries needed to be issued multiple times
for retrieving the results of the different measures. Therefore, the presented index
has two distinct advantages:

It supports concurrent euclidean and periodic matching, returning both sets
of Nearest-Neighbor matches in a single index scan. So it allows for both rigid
matching (euclidean distance), or more flexible periodic matching, by identifying
arbitrary time shifts of a query (periodic measure).

Performance is not compromised, but is in fact improved (compared to
the dual index approach) due to the reduced index size and the intelligent tree
traversal.

Given the above characteristics, we expect that the new index structure can
provide necessary building blocks for constructing powerful ‘all-in-one’ tools,
within the scope of applications such as decision support, analysis of causal data
relationships and data visualization.

2 Background

The periodic measure and the hybrid index that we will describe later operate in
the frequency domain, therefore we will succinctly describe important concepts
from harmonic analysis.

2.1 Frequency Analysis

A discrete-time signal x = [x0, . . . , xN−1] of length N can be thought of as a pe-
riod of a periodic signal and represented in terms of its Fourier-series coefficients
{Xk}N−1

k=0 by

xn =
1√
N

N−1∑
k=0

Xke2πj(k/N)n, n = 0, . . . , N − 1,

where j =
√−1 is the imaginary unit. The coefficient Xk is defined by

Xk = ρkejθk =
1√
N

N−1∑
n=0

xne−2πj(k/N)n, k = 0, . . . , N − 1,

and corresponds to the frequency fk = k/N . Here ρk and θk are respectively the
magnitude and the phase of Xk. Parseval’s theorem states that the energy P of
the signal computed in the frequency domain is equal to the energy computed
in the Fourier domain:

P(x) = ‖x‖2 =
N−1∑
k=0

x2
k = P(X) = ‖X‖2 =

N−1∑
k=0

‖Xk‖2.

Many operations are substantially more efficient in the frequency domain than
in the time domain. The use of frequency-domain operations is often appeal-
ing thanks to the existence of the efficient Fast Fourier Transform, which has
computational complexity of O(N log N).
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3 Distance Functions

3.1 Euclidean Distance

Let x and y be two time sequences of length N having Discrete Fourier Trans-
form X and Y, respectively. The Euclidean distance d (x,y) between x and
y (i.e., the �2 norm of x − y) is defined by d (x,y) =

√
(x− y) · (x− y) =√∑N

k=1 |xk − yk|2, where · denotes the inner product. Parseval’s Theorem en-
sures that d (x,y) = d (X,Y). We can decompose the Euclidean distance into
the sum of the magnitude distance and a non-negative term involving both mag-
nitudes and phases:

[d (x,y)]2 =
N−1∑
k=0

‖xk − yk‖2 =
N−1∑
k=0

‖ρkejθk − τkejφk‖2

(a)
=

N−1∑
k=0

(ρk cos (θk)− τk cos (φk))2 + (ρk sin (θk)− τk sin (φk))2

(b)
=

N−1∑
k=0

ρ2
k + τ2

k − 2ρkτk

(
sin θk sin φk + cos θk cosφk

)
(c)
=

N−1∑
k=0

(ρk − τk)2 + 2
N∑

k=1

ρkτk [1− cos (θk − φk)], (1)

where (a) is the Pythagorean theorem, (b) follows from algebraic manipulations
and elementary trigonometric identities, and (c) follows by adding and sub-
tracting 2ρkτk to (b), collecting terms, and using an elementary trigonometric
identity. Having expressed the Euclidean distance using magnitude and phase
terms, we explore its connection with a periodic measure in the following section.

3.2 Periodic Measure

We present a distance measure that can quantify the structural similarity of se-
quences based on periodic features extracted from them. The periodic measure
was discussed, together with applications, in [8] and is explicated here for com-
pleteness of presentation. In this work we make the connection with euclidean
distance in the frequency domain and show how to combine both in an efficient
index.

The introduction of periodic measures is motivated by the inability of shape-
based measures such as the Euclidean to capture accurately the rudimentary
human notion of similarity between two signals. For example two sequences
that are identical except for a small time shift should be considered similar in a
variety of applications (Fig. 2), in spite of the potentially large euclidean distance
between them. Therefore, the periodic measure loosely resembles time-warping
measures, requiring only linear computational complexity, thus rendering it very
suitable for large data-mining tasks.
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C: MotorCurrent: broken bars 1            

D: MotorCurrent: broken bars 2            

A: MotorCurrent: healthy 1                

B: MotorCurrent: healthy 2                

Fig. 2. Dendrogram on 4 sequences using a periodic measure

3.3 Periodic Distance (pDist)

To assess the periodic similarity of two sequences we examine the difference of
their harmonic content. We define the periodic distance between two sequences x
and y, with Fourier transforms X and Y, respectively as the euclidean distance
between their magnitude vectors:

[pDist(X,Y)]2 =
N∑

k=1

(ρk − τk)2.

Notice that the omission of the phase information renders the new similarity
measure shift-invariant in the time domain, allowing for global time-shifting in
O(n) time (another alternative would be the use of using Time-Warping with
O(n2) complexity).

In order to meaningfully compare the spectral power distribution of two
sequences in the database, we normalize them to contain the same amount of
energy by studentizing them (thus producing zero-mean, unit-energy sequences):

x̂(n) =
x(n)− 1

N

N∑
i=1

x(i)√
N∑

i=1
(x(n)− 1

N

N∑
i=1

x(i))2
, n = 1, . . . , N

For the rest of the paper we will assume that all database sequences are stu-
dentized (whether we are considering euclidean or periodic distance). We also
remark a property of the periodic distance that will be useful to provide more
effective traversal of our indexing structure.

Lemma 1. The periodic distance is a lower bound to the Euclidean distance:
pDist(X,Y) ≤ d(X,Y).

This lemma is proved by noting that the first sum on the RHS Equation 1 is the
periodic distance, and that the second sum is non-negative.

4 Lower Bounding and Coefficient Selection

In order to efficiently incorporate a distance measure with an indexing structure,
one needs to: (i) compress a sequence (dimensionality reduction) (ii) provide a
lower bounding function of the original distance using the compressed object.
We will show how both of these can be achieved in an effective way.

After a sequence is transformed in the frequency domain, it can be com-
pressed by recording only a small subset of its coefficients. Therefore, {Xk}k=N−1

k=0
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� {Xk}k∈S , S ⊂ {0, . . . , N − 1}, |S| << N . It is straightforward to show
that the euclidean or periodic distance on the compressed vectors will lower
bound the original distances, because they are a sum of positive numbers:

d(Xk,Yk)k∈S ≤ d(X,Y)

pDist(Xk,Yk)k∈S =
∑
k∈S

(ρk − τk)2 ≤ pDist(X,Y)

The majority of data-mining work has adapted the selection of the first k
coefficients for sequence compression [5], which can provide effective approxima-
tion of signals with low frequency content (e.g., stock price movement). Recent
work also suggested picking the k coefficients for each sequence that preserve
most of its energy [7]. High energy coefficients can provide effective sequence
reconstruction, but are not necessarily suitable for data retrieval purposes (i.e.
incur the least number of accesses to the original data). Consider a dataset where
the k coefficients with the highest energy are the same for all sequences, and the
sequences only differ in the low energy coefficients (i.e. there are some small but
distinct nuances between each sequence). In this case, one needs to select the
coefficients that will discriminate better the sequences. Generally speaking, we
can capture more effectively the data differences by recording those coefficients
that account for most of the data variation. With this observation in mind, we
will record the k coefficients that depict that largest variance:

arg max
k

var(X(j)
k )j=1...m

where Xj
k denotes the kth coefficient of sequence j. We compare the perfor-

mance of various coefficient selection schemes with a comprehensive experiment
on 40 datasets (each containing 1000 sequences of length 1024), obtained from
the UCR time-series archive 1. We perform a 1-NN leave-one-out search and
estimate the pruning power of each method as given by the ratio: (examined
objects)/(total objects). The methods for coefficient selection that we consider
are: (i) first k coefficients, (ii) coefficients with maximum energy (iii) coefficients
with maximum variance.

The results attest to the superiority of the ‘max-variance’ method for Nearest-
Neighbor retrieval, depicting an improvement in 21 out of the 40 datasets. The
average improvement over the next best method is 17.17% (with a maximum of
> 80% in the darwin dataset). Eight datasets do not exhibit any change at all,
which is observed because the set of coefficients selected by the 3 methods were
the same. Finally, 11 datasets depict a deterioration in the k-NN performance
which however is almost negligible (never exceeding -0.5%), with the average
negative improvement being -0.13%. For the remainder of the paper, we will
assume that the coefficients selected from each time-series are the ones exhibiting
the largest variance.

1 http://www.cs.ucr.edu/∼eamonn/TSDMA/
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Fig. 3. Comparison of coefficient selection (smaller numbers are better). Improvement
of max-variance method vs second best is reported next to each performance bar.

5 Index for Euclidean and Periodic Distance

Instead of constructing a different index structure for each measure, we can
exploit the common representation of the euclidean and periodic measure in
the magnitude/phase space, as well as their lower bounding relationship, for
designing a metric index structure that can simultaneously answer queries on
both measures. Our index structure borrows ideas from the family of metric in-
dex structures [1], recursively partitioning the search space into disjoint regions,
based on the relative distance between objects. Our indexing approach has three
important differences from generic metric trees: (i) only compressed sequences
are stored within the index nodes, reducing the index space requirements, (ii)
the index uses a different distance measure for data partitioning on each alter-
nating level of the tree, (iii) a novel tree traversal is presented, that can answer
euclidean and periodic queries in a single index scan.

5.1 MM-Tree Structure

We introduce a hybrid metric structure, the MM-Tree (Multi-Metric Tree). Sim-
ilar to VP-trees, each node of the index contains a reference point (or vantage
point), which is used to partition the points associated with this node into two
distinct and equal sized clusters. Vantage points are chosen to be the sequences
with the highest variance of distances to the remaining objects. The distances
of the node objects to the reference point (sequence) are calculated, distances
are sorted and the median distance μ is identified. Subsequently, any sequence
associated with the examined node, is assigned to a left or a right subtree, de-
pending on whether its distance from the vantage point is smaller or larger than
the median distance. The index tree is constructed by recursively performing
this operation for all subtrees.

The unique structure of the MM-Tree derives from the fact that it uses
a different distance function to partition objects at each alternating tree level.
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Fig. 4. MM-tree structure and space partitioning. Dotted circles/arcs indicate median
distance μ.

Even depth levels (root is zero) are partitioned using the periodic distance, while
odd levels utilize the euclidean (Fig. 4). We follow this construction for providing
a good partitioning on both distance measures, since usage of a single distance
function during the tree construction would have impacted the search on the
other domain (potentially leading to search on both left and right subtrees).

Unlike other metric indexing structures, intermediate tree nodes contain the
compressed representation of a vantage point (in addition to the median distance
μ). For example, in the tree of Figure 4 the vantage points of nodes at even
depth are represented by the magnitudes of the preserved coefficients (and are
called “P-nodes”), while those of nodes at odd depth are represented by both
magnitude and phase (and are called “E-nodes”). Finally, leaf nodes contain
both magnitude and phase information of the compressed data sequences.

5.2 Multiplexing Search for Periodic and Euclidean Distances

We now describe how the MM-Tree can efficiently multiplex searches in the
euclidean and periodic spaces and simultaneously return the nearest-neighbors
in both domains. The key idea of the search algorithm is to identify, in a single
index traversal, the union of the necessary index nodes for both queries. In figure
5 we provide a pseudocode of the multiplexed search.

The combined search employs two sorted lists, BESTp and BESTe, that
maintain the current k closest points using periodic and euclidean distances,
respectively. The algorithm also records a state, depicting whether a visited
node is marked for search in the euclidean, or in the periodic domain, or both.
The root node is marked for search in both domains.

Searching a P-node node. If the node is marked for search only in the eu-
clidean domain, both subtrees are searched in the euclidean domain only. Other-
wise, the algorithm computes the lower bound LBp(q, v) of the periodic distance
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/* perform 1-NN search for query sequence Q */
1NNSearch(Q) {

// farthest results are in Best_P[0] and Best_E[0]
Best_P = new Sorted_List(); // Modified by searchLeaf_Periodic
Best_E = new Sorted_List(); // Modified by searchLeaf_Euclidean
search_Node(Q, ROOT, TRUE);

}

search_Node(Q, NODE, searchPeriodic) {
if (NODE.isLeaf) {
search_Leaf(Q, NODE, searchPeriodic);

} else {
search_Inner_Node(Q, NODE, searchPeriodic);

}
}

search_Inner_Node(Q, NODE, searchPeriodic) {
add_Point_To_Queue(PQ, vantagePoint, searchPeriodic);
if (NODE.E_NODE) { /* E-Node */
if (searchPeriodic) {

search_Inner_Node(Q, NODE.LEFT, searchPeriodic);
} else { /* only search in euclidean space */

if (LowerBoundEuclidean(Q, vantagePoint) - Best_E[0] < median)
search_Inner_Node(Q, NODE.LEFT, searchPeriodic);

}
} else { /* P-Node */
if (searchPeriodic) {

if (LowerBoundPeriodic(Q, vantagePoint) - Best_P[0] < median)
search_Inner_Node(Q, NODE.LEFT, searchPeriodic);

else
search_Inner_Node(Q, NODE.LEFT, FALSE);

} else { /* only search in euclidean space */
search_Inner_Node(Q, NODE.LEFT, searchPeriodic);

}
}
search_Inner_Node(Q, NODE.RIGHT, searchPeriodic);

}

search_Leaf(Q, NODE, searchPeriodic) {
if (searchPeriodic) search_Leaf_Periodic(Q, NODE); // update Best_P
search_Leaf_Euclidean(Q, NODE); // update Best_E

}

Fig. 5. Multiplexing euclidean and periodic search on the MM-Tree

between the vantage point of the node and the query sequence. Let rp be the
periodic distance to the farthest entry in BESTp to the query. Noting that:

median < LBp(q, v)− rp ⇒ median < pDist(q, v)− rp,

where pDist(q, v) is the periodic distance of the corresponding uncompressed
sequences, we conclude that the algorithm should search the left subtree only in
the euclidean domain (but not in the periodic) if median < LBp(q, v)− rp.

Searching an E-node node. If the node is marked for search in both domains,
all subtrees are searched using both measures. Otherwise, the algorithm com-
putes the lower bound LBe(q, v) of the euclidean distance between the vantage
point of the node and the query sequence. Let re be the euclidean distance of
the farthest entry in BESTe to the query. Then, if LBe(q, v)− re > median the
left subspace is discarded. It is also important to note that, for both types of
nodes, since the vantage point is in compressed form and we use lower bounds
to distances, we do not have sufficient information to discard the right subtree,
unless we load the uncompressed representation of the vantage point.
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A global priority queue PQ, whose priority is defined by the lower bounds of
the periodic distances, is employed, in order to efficiently identify the query re-
sults. In particular, whenever the compressed representation of a data sequence v
is accessed, the lower bound of the periodic distance LBp(q, v) between v and the
query sequence is computed and the pair (LBp(q, s), s) is pushed into PQ. When
a sequence s is popped from the PQ, the associated lower bound of the periodic
distance LBp(q, v) is compared against the current BESTp[0] and BESTe[0] val-
ues. If LBp(q, v) is larger than both of those values, the sequence is discarded.
However, if it is smaller than BESTe[0], the lower bound of the euclidean dis-
tance LBe(q, v) is computed and if it is larger than the BESTe[0] value, the
sequence can still be safely discarded. In all other cases, the uncompressed se-
quence is loaded from disk and the actual periodic and euclidean distances are
computed to determine whether it belongs to any of the BESTp or BESTe lists.

6 Experiments

We demonstrate the performance and meaningfulness of results of the MM-tree
for answering simultaneously queries on both euclidean and periodic distance
measures. The experiments reveal that the new index offers better response
time and reduced storage requirements compared to the alternative approach of
using two dedicated indices, one for each distance measure.

EEG−heartrate ERP−data Realitycheck attas

cstr darwin earthquake evaporator

Fig. 6. Sample from the Mixed-Bag dataset

For our experiments we used the same mixture of 40 datasets that was uti-
lized in the coefficient selection section, a sample of which is depicted in figure
6 (MIXEDBAG dataset). We used this dataset to create larger datasets with
increasing data cardinalities of 4000, 8000, 16000 and 32000 sequences, in order
to quantify the index storage requirements and its scalability. All used datasets
can be obtained by emailing the first author.

6.1 Matching Results

We depict the meaningfulness of results returned by the MM-tree index, when
searching in both euclidean and periodic spaces. Using the MIXEDBAG dataset
we retrieve the 5-NN of various queries and the results are plotted in Figure 7. It
is immediately apparent that the periodic measure always returns sequences with
great structural affinity (i.e., belong to the same dataset). The euclidean measure
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Query 1 Query 2

Euclidean Periodic Euclidean Periodic

Query 3 Query 4

Euclidean Periodic Euclidean Periodic

Fig. 7. 5-NN euclidean & periodic matches using the MM-tree (MIXEDBAG dataset)

returns meaningful results only when the database contains sequences that are
very similar to the query (queries 1 & 3). In such cases, the periodic measure
can meaningfully augment the result set of the purely euclidean matches, by
retrieving time-shifted variations of the query. In the cases where there are no
direct matches to the query (queries 2 & 4), the euclidean measure simply returns
spurious matches, while the periodic measure can easily discover instances of the
query that belong in the same class of sequence shapes.

6.2 Index Size

The MM-tree presents also the additional advantage of having reduced space
requirements, compared to the alternative of maintaining 2 separate indices.
Construction of two index structures (one on magnitude and the other on mag-
nitude and phase) results in higher space occupancy, because the magnitude
component of each preserved coefficient is stored twice. This is better illustrated
in Figure 8, where we plot the total size occupied by the proposed MM-tree, as
well as the total disk size occupied by two dedicated metric trees. As expected
MM-tree only requires 2/3 of the space of the dual index approach. Moreover, as
shown in the next section, the information compaction that takes place during
the MM-tree construction, can lead to a significant performance boost of this
new hybrid index structure.

6.3 Index Performance

Finally, we evaluate the performance of the multi-query index traversal on the
MM-tree, which returns euclidean and periodic matches in a single scan. In Fig-
ure 9 we illustrate the performance gain that is realized by this novel tree traver-
sal, for various coefficient cardinalities and kNN index searches, as captured by
metrics such as the pruning power (examined sequences/total sequences) and
the running time. The results compare the MM-tree with the dual index ap-
proach (i.e. total cost of executing one euclidean and one periodic query, each
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Fig. 9. Performance charts: MM-tree vs 2 VP-trees. Improvement over sequential scan
is reported on top of each bar. (Left) Pruning power, (Right) Running time.

on a dedicated metric VP-tree index). Performance comparisons are conducted
with VP-trees, since they have been shown to have superior performance than
other metric structures, as well as R-trees [1]. The index performance charts are
reported as a fraction of the cost incurred by the sequential scan of the data for
the same operation. For sequential scan, the data are traversed just once while
maintaining 2 priority queues, each one holding the kNN neighbors of the spe-
cific distance function. From the graph it is apparent that the performance of the
MM-tree supersedes the dual index execution. The greatest performance margin
is observed when retaining the largest number of coefficients per sequence, where
the speedup of the MM-tree can be 20 faster than the sequential scan, while the
individual metric trees are 16.5 times faster.

This final experiment displays the full potential of the proposed hybrid struc-
ture. The MM-tree due to its unique structure outperforms the dedicated metric
tree structures when answering both distance queries at the same time, because
it can collect the results of both distance measures in a single tree traversal.

7 Conclusion

We have presented a hybrid index structure that can efficiently multiplex queries
on euclidean and periodic spaces. The new index allocates disk space more ju-
diciously compared to two dedicated index structures, and its unique structure
allows for more effective tree traversal, returning k-NN matches on two distance
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measures in the single index scan. We hope that our system can provide the
necessary building blocks for constructing powerful ‘all-in-one’ tools, within the
scope of applications such as decision support, analysis of causal data relation-
ships and data visualization.
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Fast Burst Correlation of Financial Data
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Abstract. We examine the problem of monitoring and identification
of correlated burst patterns in multi-stream time series databases. Our
methodology is comprised of two steps: a burst detection part, followed
by a burst indexing step. The burst detection scheme imposes a variable
threshold on the examined data and takes advantage of the skewed distri-
bution that is typically encountered in many applications. The indexing
step utilizes a memory-based interval index for effectively identifying the
overlapping burst regions. While the focus of this work is on financial
data, the proposed methods and data-structures can find applications
for anomaly or novelty detection in telecommunications and network
traffic, as well as in medical data. Finally, we manifest the real-time re-
sponse of our burst indexing technique, and demonstrate the usefulness
of the approach for correlating surprising volume trading events at the
NY stock exchange.

1 Introduction

“Panta rhei”, said Heraklitos; everything is ‘in flux’. The truth of this famous apho-
rism by the ancient Greek philosopher is so much more valid today. People need to
make decisions about financial, personal or inter-personal matters based on the
observations of various factoring parameters. Therefore, since everything is in con-
stant flow, monitoring the volatility/variability of important measurements over
time, becomes a critical determinant in any decision making process.

When dealing with time sequences, or time-series data, one important indi-
cator of change is the presence of ‘burstiness’, which suggests that more events
of importance are happening within the same time frame. Therefore, the iden-
tification of bursts can provide useful insights about an imminent change in the
monitoring quantity, allowing the system analyst or individual to act upon a
timely and informed decision.

Monitoring and modeling of burst behavior is significant in many areas; first
and foremost, in computer networks it is generally recognized that network traf-
fic can be bursty in various time-scales [9,6]. Detection of bursts is therefore
inherently important for identification of network bottlenecks or for intrusion
detection, since an excessive amount of incoming packets may be a valid indica-
tion that a network system is under attack [13]. Additionally, for applications
such as fraud detection it is very critical to efficiently recognize any anomalous
activity (typically in the form of over-utilization of resources). For example, burst

A. Jorge et al. (Eds.): PKDD 2005, LNAI 3721, pp. 368–379, 2005.
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Network Data Weblog Sunspot 

Fig. 1. Burst examples in time-series data

detection techniques can be fruitfully utilized for spotting suspicious activities in
large stock trading volumes [10] or for identification of fraudulent phone activity
[12]. Finally, in epidemiology and bio-terrorism, scientists are interested in the
early detection of a disease outbreak. This may be indicated by the discovery
of a sudden increase in the number of illnesses or visits to the doctor within a
certain geographic area [16,17].

Many recent works address the problem of burst detection [19,7]. However, in
many disciplines, more effective knowledge discovery can be achieved by identify-
ing correlated bursts when monitoring multiple data sources. From a data-mining
perspective, this task is more exciting and challenging, since it involves the iden-
tification of burst ‘clusters’ and it can also aid the discovery of causal chains
of burst events, which possibly occur across multiple data streams. Instances
of the above problems can be encountered in many financial and stock market
applications, e.g., for triggering fraud alarms. Finally, burst correlation can be
applicable for the discovery and measurement of gene coexpression (in this field,
burst appears under the term ‘up-regulation’), which holds substantial biological
significance, since it can provide insight into functionally related groups of genes
and proteins [5].

Addressing the above issues, this paper presents a complete framework for
effective multi-stream burst correlation. Similar to [15], we represent detected
bursts as a time interval of their occurrence. We provide a new burst detection
scheme, which is tailored for skewed distributions, such as the financial data that
we examine here. Additionally, we introduce a memory-based index structure
for identification of overlapping bursts. The new index structure is based on the
idea of containment-encoded intervals (CEI’s), which were originally used for
performing stabbing queries [18]. Building on the idea of encoded time intervals,
we develop a new search algorithm that can efficiently answer overlapping range
queries. Moreover, we develop an approach to incrementally maintain the index
as more recent data values are added. Using this new index structure we can
achieve more than 3 orders of magnitude better search performance for solving
the problem of burst overlap computation, compared to the B+tree solution
proposed in [15]. Below we summarize the main contributions of this paper:

1. We elaborate on a flexible and robust method of burst extraction on skewed
distributions.
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2. We present a memory-based index structure that can store the identified
burst regions of a sequence and perform very effective overlap estimation of
burst regions.

3. Finally, we depict the real-time response of the proposed index and we
demonstrate the intuitiveness of the matching results on financial stock data
at the NYSE.

2 Problem Formulation

Let us consider a database D, containing m time-series of the form S = s1 . . . sn,
si ∈ R. Fundamental is also the notion of a burst interval b = [tstart, tend),
representing a time-span of a detected burst, with an inclusive left endpoint and
an exclusive right endpoint, where tstart, tend are integers and tstart < tend.

Between two burst intervals q, b one can define a time overlap operator ∩,
such that:

q ∩ b =

⎧⎨⎩
0 if tend

q ≤ tstart
b

0 if tstart
q ≥ teb

min(tend
q , tend

b )−max(tstart
q , tstart

b ) otherwise

We dissect the burst correlation problem into the following steps:

(i) Burst identification on sequences residing in a database D. The burst
detection process will return for each sequence S a set of burst intervals BS =
{b1, . . . , bk}, with a different value of k for every sequence. The set containing
all burst intervals of database D, is denoted as BD.

(ii) Organization of BD in a CEI-Overlap index I.
(iii) Discovery of overlapping bursts with a query Q given index I, where Q

is also a set of burst intervals: Q = {q1, . . . ql}. The output of the index will be
a set of intervals V = {v1, . . . , vr}, vj ∈ BD such that:∑

i

∑
j

qi ∩ vj �= 0

(iv) Return of top-k matches [optional ]. This step involves the ranking of
the returned sequences based on the degree of overlap, between their respective
burst intervals and the query intervals. Since this step is merely a sorting of the
result set, we do not elaborate any further on this for the remaining of the paper.

3 Burst Detection

The burst detection process involves the identification of time regions in a se-
quence, which exhibit over-expression of a certain feature. In our setting, we
consider the actual value of a sequence S as an indication of a burst. That is, if
si > τ , then time i is marked as a burst. The determination of the threshold τ
depends on the distributional characteristics of the dataset. Assuming a gaussian
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data distribution τ could be set as the mean value μ plus 3 times the standard
deviation.

In this work we focus on financial data, therefore we first examine the distri-
bution of their values. In Figure 2 we depict the volume distribution of traded
shares for two stocks (period 2001-2004). Similar shapes were observed for the
majority of stocks. We notice a highly skewed distribution that is also typically
encountered in many streaming applications [1]. We capture the shape of this dis-
tribution using an exponential model, because of its simplicity and intuitiveness
of the produced results. The CDF of the exponential distribution of a random
variable X is given by:

P (X > x) = e−λx

where the mean value μ of X is 1
λ . Solving for x, after elementary calculations

we derive at the following:

x = −μ · ln(P ) = −
∑n

i=1 si · ln(P )
n

In order to calculate the critical threshold above which all values are consid-
ered as bursts, we estimate the value of x by looking at the tail of the distribu-
tion, hence setting P to a very small probability, i.e. 10−4. Figure 2 depicts the
threshold value and the discovered bursts on two stock volume sequences.

Notice that the computed threshold is amenable to incremental computation in
the case of streaming time-series (either for a sliding or aggregate window), because
it only involves the maintenance of the running sum of the sequence values.

However, setting a global threshold might introduce a bias when the range
of values changes drastically within the examined window, i.e. when there is a
‘concept drift’ [8,4]. Therefore, one can compute a variable threshold, dividing
the examined data into overlapping partitions. The distribution in each partition
still remains highly skewed and can be estimated by the exponential distribution,
due to the self similar nature of financial data [11,14]. An example of the modified
threshold (for the second stock of Fig. 2) is shown in Figure 3, where the length of
the partition is 200 and the overlap is 100. At the overlapping part, the threshold
is set as the average threshold calculated by the 2 consecutive windows. We
observe that in this case we can also detect the smaller burst patterns that were
overshadowed by the high threshold value of the whole window (notice that a
similar algorithm can be utilized for streaming sequences).

ARKR, 
trading volume 
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trading volume 
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Fig. 2. Examples of the value distributions of stock trading volumes
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200 400 600 800 1000

DIET (stock volume), variable threshold

Fig. 3. Variable threshold using overlapping subwindows

After the bursts of a sequence are marked, each identified burst is transcribed
into a burst record. Consecutive burst points are compacted into a burst inter-
val, represented by its start and end position in time, such as [m,n), m < n.
Burst points at time m are therefore represented by an interval [m,m+1). In
what follows, we will explicate how these burst regions can be organized into an
efficient index structure.

4 Index Structure

For the fast identification of overlapping burst intervals1, we adapt the notion of
containment-encoded-intervals (CEI’s), which were originally utilized for answer-
ing stabbing queries [18] (CEI-Stab). In this work we present the CEI-Overlap
index, which shares a similar structure with CEI-Stab. We introduce a new ef-
ficient search technique for identifying overlapping bursts regions. Moreover, we
present an effective approach for handling the nonstop progress of time.

4.1 Building a CEI-Overlap index

There are two kinds of intervals in CEI-Overlap indexing: (a) burst intervals
and (b) virtual construct intervals. Burst intervals are identified as described in
section 3. The notion of virtual construct intervals is also introduced for facilitat-
ing the decomposition and numbering of burst intervals, in addition to enabling
an effective search operation. As noted before, burst intervals are represented
by their start and end position in time and the query search regions are also
expressed similarly.

Fig. 4 shows an example of containment-encoded intervals and their local
ID labeling. Assume that the burst intervals to be indexed cover a time-span
between [0, r)2. First, this range is partitioned into r/L segments of length L,
denoted as Si, where i = 0, 1, · · · , (r/L − 1), L = 2k, and k is an integer. Note
that r is assumed to be a multiple of L. In general, the longer the average length
of burst regions is, the larger L should be [18]. Segment Si contains time interval
1 For the remainder of the paper, “burst regions” and “burst intervals” will be used

interchangeably.
2 Section 4.3 will describe how to handle the issue of choosing an appropriate r as

time continues to advance nonstop.
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Fig. 4. Example of containment-encoded intervals and their ID labeling

[iL, (i+1)L). Segment boundaries can be treated as guiding posts. Then, 2L− 1
CEI’s are defined for each segment as follows: (a) Define one CEI of length L,
containing the entire segment; (b) Recursively define 2 CEI’s by dividing a CEI
into 2 halves until the length is one. For example, there are one CEI of length
8, 2 CEI’s of length 4, 4 CEI’s of length 2 and 8 CEI’s of length one in Fig. 4.

These 2L − 1 CEI’s are defined to have containment relationships among
them. Every unit-length CEI is contained by a CEI of size 2, which is in turn
contained by a CEI of size 4, ... and so on. The labeling of CEI’s is encoded with
containment relationships. The ID of a CEI has two parts: the segment ID and
the local ID. The local ID assignment follows the labeling of a perfect binary
tree. The global unique ID for a CEI in segment Si, where i = 0, 1, · · · , (r/L)−1,
is simply computed as l+2iL, where l is the local ID. The local ID of the parent
of a CEI with local ID l is �l/2�, and it can be efficiently computed by a logical
right shift by 1 bit.

To insert a burst interval, it is first decomposed into one or more CEI’s,
then its ID is inserted into the ID lists associated with the decomposed CEI’s.
The CEI index maintains a set of burst ID lists, one for each CEI. Fig. 5 shows
an example of a CEI-Overlap index. It shows the decomposition of four burst
intervals: b1, b2, b3 and b4 within a specific segment containing CEI’s of c1, · · · , c7.
b1 completely covers the segment, and its ID is inserted into c1. b2 lies within
the segment and is decomposed into c5 and c6, the largest CEI’s that can be
used for decomposition. b3 also resides within the segment, but its right endpoint
coincides with a guiding post. As a result, we can use c3, instead of c6 and c7
for decomposition. Similarly, c2 is used to decompose b4. Burst IDs are inserted
into the ID lists associated with the decomposed CEI’s.

4.2 Identification of Overlapping Burst Regions

To identify overlapping burst regions, we must first find the overlapping CEI’s.
One simple approach is to divide the input interval into multiple unit-sized CEI’s
and perform a point search for each of the unit-sized CEI’s using the CEI-Stab
search algorithm. However, replicate elimination is required to remove redundant

Fast Burst Correlation of Financial
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Fig. 6. Example of finding CEI’s overlapping with an input interval

overlapping CEI’s. Fig. 6 shows an example of identifying CEI’s overlapping with
an input interval. There are 9 unique overlapping CEI’s. Using the point search
algorithm of the CEI-Stab index [18], there will be 16 overlapping CEI’s, 4 from
each upward-pointing dotted arrow. Seven of them are replicates. There are 4
replicates of c1, and two duplicates each of c2, c3, c5 and c6, respectively, if we
use the point search algorithm of CEI-Stab for searching overlap CEI’s.

Eliminating redundantCEI’s slows down search time. In this paper, we develop
a new search algorithm for CEI-Overlap that does not involve replicate elimina-
tion. Fig. 7 shows the pseudo code for systematically identifying all the overlapping
bursts for an input region [x, y), where x and y are integers, x < y and [x, y) resides
within two consecutive guiding posts (other cases will be discussed later).

First, we compute the segment ID i = �x/L�. Then, the local IDs of the
leftmost unit-sized CEI, l1 = x − iL + L, and the rightmost unit-sized CEI,
l2 = (y − 1) − iL + L, that overlap with [x, y) are computed. From l1 and l2,
we can systematically locate all the CEI’s overlapping with the input interval.
Any CEI’s whose local ID is between l1 and l2 also overlaps with the input. We
then move up one level to the parents of l1 and l2. This process repeats until
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Search ([x, y)) { // [x, y) resides between two consecutive guiding posts
i = 
x/L�; // segment ID
l1 = x − iL + L; // leftmost unit-sized CEI overlapping with [x, y)
l2 = (y − 1) − iL + L; // rightmost unit-sized CEI overlapping with [x, y)
for (j = 0; j ≤ k; j = j + 1) {

for (l = l1; l ≤ l2; l = l + 1) {
c = 2iL + l; // global ID of an overlap CEI
if (IDList[c] �= NULL) { output(IDList[c]); }
l1 = l1/2; // local ID of parent of l1
l2 = l2/2; // local ID of parent of l2

}
}

}

Fig. 7. Pseudo code for searching overlap bursts

l1 = l2 = c1. Each overlapping CEI is examined only once. Hence, no duplicate
elimination is needed. Fig. 6 shows the identification of overlapping CEI’s, from
which the overlapping bursts can easily be found via the CEI index.

Now we discuss the cases where the input interval does not reside within two
consecutive segment boundaries. Similar to the decomposition process, the input
interval can be divided along the segment boundaries. Any remnant can use the
search algorithm described in Fig. 7. The full segment, if any, has all the 2L− 1
CEI’s within that segment as the overlapping CEI’s.

In contrast toCEI-Stab [18], theremight be duplicate burst IDs in the search re-
sults of CEI-Overlap. Note that, even though the search algorithm of CEI-Overlap
has no duplicate in overlapping CEI’s, it might return duplicates in overlapping
burst ID’s. This is because a burst can be decomposed into one or more CEI’s and
more than one of them can overlap with an input interval. To efficiently eliminate
these duplicates, the burst ID lists are maintained so that the IDs are sorted within
individual ID lists. During search, instead of reporting all the burst IDs within each
overlapping CEI one CEI at a time, we first locate all the overlapping CEI’s. Then,
the multiple ID lists associated with these CEI’s are merged to report the search
result. During the merge process, duplicates can be efficiently eliminated.

4.3 Incrementally Maintaining the Index

Since time continues to advance nonstop, no matter what initial [0, r) is chosen,
current time will exceed at some point the maximal range r. Selecting a large r
to cover a time-span deep in the future is not a good approach because the index
storage cost will increase [18]. A better approach is to choose an r larger than
the maximum window of burst regions at the moment, and to keep two indexes
in memory, similar to the double-buffering concept. More specifically, we start
with [0, r). When time passes r, we create another index for [r, 2r). When time
passes 2r, we create an index for [2r, 3r), but the index for [0, r) will be likely not
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needed any more and can be discarded or flushed into disk. Using this approach
no false dismissals are introduced, since any burst interval covering two regions
can be divided along the region boundary and indexed or searched accordingly.

5 Experiments

We evaluate 3 parameters of the burst correlation scheme: (i) the quality of
results (is the burst correlation useful?), (ii) the index response time (how fast
can we obtain the results?), (iii) indexing scheme comparison (how much better
is it than other approaches?).

5.1 Meaningfulness of Results

Our first task is to assess the quality of results obtained through the burst
correlation technique. To this end, we search for burst patterns in stock trading
volumes during the days before and after the 9/11 attack, with the intention of
examining our hypothesis that financial and/or travel related companies might
have been affected by the events. We utilize historical stock data obtained from
finance.yahoo.com totaling 4793 stocks of length 1000, that cover the period
between 2001-2004 (STOCK dataset). We use the trading volume of each stock
as the input for the burst detection algorithm. Our burst query range is set for
the dates 9/7/2001 - 9/20/2001, while we should note that the stock market
did not operate for the dates between 9/11 and 9/16. Figures 8, 9, 10 illustrate
examples of several affected stocks. The graphs display the volume demand of
the respective stocks, while on the top right we also enclose the stock price
movement for the whole month of September (the price during the search range
is depicted in thicker line style). Stocks like ‘Priceline’ or ‘Skywest’ which are
related to traveling, experience a significant increase in selling demand, which
leads to share depreciation when the stock market re-opens on Sep. 17. At the
same time, the stock price of ‘NICE Systems’ (a provider of air traffic control
equipment) depicts a 25% increase in value. More examples of stocks with bursty
trends in the stock demand within the requested time frame are presented in
Table 1.
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Fig. 8. Volume trading for the Priceline stock. We notice a large selling tendency,
which results in a drop in the share price.
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Fig. 9. Volume trading for the Skywest stock
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Fig. 10. Volume trading for the stock of Nice Systems (provider of air traffic control
systems). In this case, the high stock demand results in an increase of the share price.

Table 1. Some of the stocks that exhibited high trading volume after the events of
9/11/2001

Symbol Name (Description) Price

LIFE Lifeline Systems (Medical Emergency Response) 1.5% ↓
MRCY Mercury Computer Systems 48% ↑
MAIR Mair Holdings (Airline Subsidiary) 36% ↓
NICE NICE Systems (Air traffic Control Systems) 25% ↑
PCLN Priceline 60% ↓
PRCS Praecis Pharmaceuticals 60% ↓
SKYW Skywest Inc 61 % ↓
STNR Steiner Leisure (Spa & Fitness Services) 51 % ↓

5.2 Index Response Time

We compare the performance of the new CEI-Overlap indexing scheme with
the B+tree approach proposed in [15]. Both approaches rely on memory based
indexes, so here we report the time required to identify overlapping burst regions
for a number of burst query ranges. CEI-based indexing has been shown to
outperform other interval indexing schemes for the stabbing case [18], such as
the ‘Interval Skip Lists’ [3] and R-trees [2], therefore due to space limitations
we refrain from reporting such comparisons in this version of the paper.

Because for this experiment the STOCK dataset is quite small, we generate
a larger artificial dataset that simulates the burst ranges returned by a typical
burst detection algorithm. The dataset contains 250,000 burst ranges, at various
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Fig. 11. Artificial dataset and example of 3 burst range queries
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Fig. 12. B+Tree vs CEI-Overlap runtime (log plot)

positions and covering different time-spans. A small sample of this dataset (cor-
responding to the bursts of 100 ‘virtual’ sequences), along with 3 query ranges,
is depicted in Fig. 11. On both the CEI-Overlap and the B+tree we probed 5000
query ranges that cover different positions and ranges.

Intuitively, the cost of the search operation is proportional to the number of
burst intervals that overlap with a given query. Therefore, we order the running
time of each query based on the size of the answer set (more overlaps suggest
longer running time). We create a histogram of the running time by dividing the
range of the answer set into 20 bins and in Fig. 12 we plot the average running
time of all the results that ended in the same histogram bin. The results indi-
cate the superior performance of the CEI-based index, which is approximately
3 orders of magnitude faster than the competing B+tree approach. We should
also notice that the running time is reported in μsecs, which demonstrates the
real-time search performance of the proposed indexing scheme.

6 Conclusion

We have presented a complete framework for efficient correlation of bursts. The
effectiveness of our scheme is attributed not only to the effective burst detection
but also to the efficient memory-based index. The index hierarchically organizes
important burst features of time sequences (in the form of ’burst segments’) and
can subsequently perform very efficient overlap computation of the discovered
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burst regions. We have demonstrated the enhanced response time of the proposed
indexing scheme, and presented interesting burst correlations that we mined from
financial data. Encouraged by the excellent responsiveness and scalability of the
index, in the immediate future we plan to investigate the applicability of the
indexing structure under high data rates and particularly for the online burst
detection and correlation of data-streams.
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Abstract. Problem solving with experiences that are recorded in text form re-
quires a mapping from text to structured cases, so that case comparison can pro-
vide informed feedback for reasoning. One of the challenges is to acquire an
indexing vocabulary to describe cases. We explore the use of machine learning
and statistical techniques to automate aspects of this acquisition task. A proposi-
tional semantic indexing tool, PSI, which forms its indexing vocabulary from new
features extracted as logical combinations of existing keywords, is presented. We
propose that such logical combinations correspond more closely to natural con-
cepts and are more transparent than linear combinations. Experiments show PSI-
derived case representations to have superior retrieval performance to the original
keyword-based representations. PSI also has comparable performance to Latent
Semantic Indexing, a popular dimensionality reduction technique for text, which
unlike PSI generates linear combinations of the original features.

1 Introduction

Discovery of new features is an important pre-processing step for textual data. This
process is commonly referred to as feature extraction, to distinguish it from feature se-
lection, where no new features are created [18]. Feature selection and feature extraction
share the aim of forming better dimensions to represent the data. Historically, there has
been more research work carried out in feature selection [9,20,16] than in extraction for
text pre-processing applied to text retrieval and text classification tasks. However, com-
binations of features are better able to tackle the ambiguities in text (e.g. synonyms and
polysemys) that often plague feature selection approaches. Typically, feature extrac-
tion approaches generate linear combinations of the original features. The strong focus
on classification effectiveness alone has increasingly justified these approaches, even
though their black-box nature is not ideal for user interaction. This argument applies
even more strongly to combinations of features using algebraic or higher mathematical
functions. When feature extraction is applied to tasks such as help desk systems, med-
ical or law document management, email management or even Spam filtering, there is
often a need for user interaction to guide retrieval or to support incremental query elab-
oration. The primary communication mode between system and user has the extracted
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c© Springer-Verlag Berlin Heidelberg 2005



A Propositional Approach to Textual Case Indexing 381

features as vocabulary. Hence, these features should be transparent as well as providing
good dimensions for classification.

The need for features that aid user interaction is particularly strong in the field of
Case-Based Reasoning (CBR), where transparency is an important element during re-
trieval and reuse of solutions to similar, previously solved problems. This view is en-
forced by research presented at a mixed initiative CBR workshop [2]. The indexing
vocabulary of a CBR system refers to the set of features that are used to describe past
experiences to be represented as cases in the case base. Vocabulary acquisition is gen-
erally a demanding knowledge engineering task, even more so when experiences are
captured in text form. Analysis of text typically begins by identifying keywords with
which an indexing vocabulary is formed at the keyword level [14]. It is here that there
is an obvious opportunity to apply feature extraction for index vocabulary acquisition
with a view to learning transparent and effective textual case representations.

The focus of this paper is extraction of features to automate acquisition of index
vocabulary for knowledge reuse. Techniques presented in this paper are suited for ap-
plications where past experiences are captured in free text form and are pre-classified
according to the types of problems they solve. We present a Propositional Semantic In-
dexing (PSI) tool, which extracts interpretable features that are logical combinations of
keywords. We propose that such logical combinations correspond more closely to nat-
ural concepts and are more transparent than linear combinations. PSI employs boosting
combined with rule mining to encourage learning of non-overlapping (or orthogonal)
sets of propositional clauses. A similarity metric is introduced so that textual cases
can be compared based on similarity between extracted logical clauses. Interpretabil-
ity of these logical constructs creates new avenues for user interaction and naturally
leads to the discovery of knowledge. PSI’s feature extraction approach is compared
with the popular dimensionality reduction technique Latent Semantic Indexing (LSI),
which uses singular value decomposition to extract orthogonal features that are linear
combinations of keywords [7]. Case representations that employ PSI’s logical expres-
sions are more comprehensible to domain experts and end-users compared to LSI’s
linear keyword combinations. Ideally we wish to achieve this expressiveness without
significant loss in retrieval effectiveness.

We first establish our terminology for feature selection and extraction, before de-
scribing how PSI extracts features as logical combinations. We then describe LSI, high-
lighting the problem of interpretability with linear combinations. Finally we show that
PSI’s approach achieves comparable retrieval performance yet remains expressive.

2 Feature Selection and Extraction

Consider the hypothetical example in Figure 1 where the task is to weed out Spam from
legitimate email related to AI. To assist with future message filtering these messages
must be mapped onto a set of cases before they can be reused. We will refer to the set of
all labelled documents (cases) as D. The keyword-vector representation is commonly
used to represent a document d by considering the presence or absence of words [17].
Essentially the set of features are the set of wordsW (e.g. “conference”, “intelligent”).
Accordingly a document d is represented as a pair (x, y), where x = (x1, . . . , x|W|) is
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Fig. 1. Features as logical keyword combinations

a binary valued feature vector corresponding to the presence or absence of words inW ;
and y is d’s class label.

Feature selection reduces |W| to a smaller feature subset size m [20]. Information
Gain (IG) is often used for this purpose, where m features with highest IG are retained
and the new binary-valued feature vector x′ is formed with the reduced word vocabulary
set W ′, where W ′ ⊂ W and |W ′| � |W|. The new representation of document d
with W ′ is a pair (x′, y). Selection using IG is the base-line algorithm in this paper
and is referred to as BASE. An obvious shortcoming of BASE is that it fails to ensure
selection of non-redundant keywords. Ideally we want x′ to contain features that are
representative but also orthogonal. A more serious weakness is that BASE’s one-to-one
feature-word correspondence operates at a lexical level, ignoring underlying semantics.

Figure 1 illustrates a proof tree showing how new features can be extracted to cap-
ture keyword relationships using propositional disjunctive normal form clauses (DNF
clauses). When keyword relationships are modelled, ambiguities in text can be resolved
to some extent. For instance “grant” and “application” capture semantics akin to legiti-
mate messages, while the same keyword “application” in conjunction with “debt-free”
suggests Spam messages.

Feature extraction, like selection, also reduces |W| to a smaller feature subset size
m. However unlike selected features, extracted features no longer correspond to pres-
ence or absence of single words. Therefore, with extracted features the new represen-
tation of document d is (x′′, y), but W ′′ �⊂ W . When extracted features are logical
combinations of keywords as in Figure 1, then a new feature w′′ ∈ W ′′, represents a
propositional clause. For example the new feature w′′

2 represents the clause: “intelli-
gent” ∨ “algorithm” ∨ (“grant” ∧ “application”).
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3 Propositional Semantic Indexing (PSI)

PSI discovers and captures underlying semantics in the form of propositional clauses.
PSI’s approach is two-fold. Firstly, decision stumps are selected by IG and refined by
association rule mining, which discovers sets of Horn clause rules. Secondly, a boost-
ing process encourages selection of non-redundant stumps. The PSI feature extraction
algorithm and the instantiation of extracted features appear at the end of this section
after a description of the main steps.

3.1 Decision Stump Guided Extraction

A decision stump is a one-level decision tree [12]. In PSI, a stump is initially formed
using a single keyword, which is selected to maximise IG. An example decision stump
formed with “conference” in its decision node appears in Figure 2. It partitions docu-
ments into leaves, based on whether or not “conference” appears in them. For instance
70 documents contain the word “conference” and just 5 of these are Spam (i.e. +5). It is
not uncommon for documents containing “conference” to still be semantically similar
to those not containing it. So documents containing “workshop” without “conference”
in the right leaf are still contextually similar to those containing “conference” in the
left leaf. A generalised decision node has the desired effect of bringing such seman-
tically related documents closer [19]. Generalisation refines the decision node formed
with a single feature w′, to an extracted feature w′′, containing a propositional clause.
Typically a refined node results in an improved split (see right stump in Figure 2).

conference

1 0

70 cases
[-65, +5]

330 cases
[-145, +195]

1

120 cases
[-110, +10]

280 cases
[-95, +195]

conference V intelligence V 
workshop V,..,V  

0

generalise
node

w’ w" 

V

(edu    register) 

Fig. 2. Node Generalisation

A propositional clause is formed by adding disjuncts to an initial clause containing
just the selected feature w′. Each disjunct is a conjunction of one or more keyword
co-occurrences with similar contextual meaning to that of w′. An exhaustive search for
disjuncts will invariably be impractical. Fortunately the search space can be pruned by
using w′ as a handle over this space. Instead of generating and evaluating all disjuncts,
we generate propositional Horn clause rules that conclude w′ given other logical key-
word combinations.

3.2 Growing Clauses from Rules

Examples of five association rules concluding in “conference” (i.e. w′) appear in Fig-
ure 3. These rules are of the form H ← B, where the rule body B is a conjunction of
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keywords, and the rule head H is a single keyword. These conjunctions are keyword
combinations that have been found to co-occur with the head keyword. Rule bodies
are a good source of disjuncts with which to grow our DNF clause w′′, which ini-
tially contains only the selected keyword “conference”. However, an informed selection
strategy is necessary to identify those disjuncts that are good descriptors of underlying
semantics.

The contribution of each disjunct to clause growth is measured by comparing IG of
w′′ with and without the disjunct (rule body) included in the DNF clause. Disjuncts that
fail to improve IG are filtered out by the gain-filter. Those remaining are passed onto
gen-filter where any specialised forms of a disjunct with a lower IG compared to any
one of its generalised forms are filtered out. The DNF clauses in Figure 3 show how
each rule is converted into a potential DNF clause (difference in IG, used for filtering
appear in brackets). The final DNF clause derived once the filtering step is completed
is: “conference” ∨ “intelligence” ∨ “workshop” ∨ “register”. We use the Apriori [1]
association rule learner to generate feature extraction rules that conclude a selected w′.
Apriori typically generates many rules, but the filters are able to identify useful rules.

3.3 Feature Extraction with Boosting

PSI’s iterative approach to feature extraction employs boosted decision stumps (see Fig-
ure 4). The number of features to be extracted is determined by vocabulary size. The
general idea of boosting is to iteratively generate several (weak) learners, with each
learner biased by the training error in the previous iteration [10]. This bias is expressed
by modifying weights associated with documents. When boosted stumps are used for
feature selection the new document distribution discourages selection of a redundant
feature given the previously selected feature [6]. Here, with extracted features, unlike
with single keyword-based features, we need to discourage discovery of an overlapping
clause given the previously discovered clause. We achieve this by updating document
weights in PSI according to the error of the decision stump created with the new ex-
tracted feature, w′′, instead of w′.

3.4 Feature Instantiation

Once PSI has extracted new features, textual cases are mapped to a new representation.
For a new feature w′′

i , let Si =
∨

j sij , be its propositional clause, where sij =
∧

k xijk
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W ′′ = ∅; n = |D|; vocabulary size = m
Algorithm: PSI

Repeat
initialise document weights to 1 / n
wj = feature with highest IG
W = W \ wj

w′′
j = GROWCLAUSE(wj, W)

W ′′ = W ′′ ∪ w′′
j

stump = CREATESTUMP(w′′
j )

err = error(stump)
update document weights using err

Until ( |W ′′| = vocabulary size)
Return W ′′

Fig. 4. Feature Extraction with PSI

is the jth conjunction in this clause. The new representation of document d = (x′′, y) is
obtained by:

x′′
i =

∑
j

gain inc(sij) ∗ infer(sij)

here gain inc returns the increase in gain achieved by sij when growing Si. Whether
or not sij can be inferred (satisfied) from a document’s initial representation d = (x, y)
(i.e. using all features inW) is determined by:

infer(sij) =
{

1 if (
∧

k xijk) = True
0 otherwise

The PSI-derived representation enables case comparison at a semantic (or conceptual)
level, because instantiated features now capture the degree to which each clause is sat-
isfied by documents. In other words, satisfaction of the same disjunct will contribute
more towards similarity than satisfaction of different disjuncts in the same clause.

4 Latent Semantic Indexing (LSI)

LSI is an established method of feature extraction and dimension reduction. The matrix
whose columns are the document vectors x1, . . . ,x|D|, known as the term-document
matrix, constitutes a vector space representation of the document collection. In LSI,
the term-document matrix is subjected to singular value decomposition (SVD). The
SVD extracts an orthogonal basis for this space, consisting of new features that are lin-
ear combinations of the original features (keywords). Crucially, these new features are
ranked according to their importance. It is assumed that the m highest-ranked features
contain the true semantic structure of the document collection and the remaining fea-
tures, which are considered to be noise, are discarded. Any value of m less than the
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rank of the term-document matrix can be used, but good values will be much smaller
than this rank and, hence, much smaller than either |W | or |D|. These features form a
new lower-dimensional representation which has frequently been found to improve per-
formance in information retrieval and classification tasks [18,22]. Full technical details
can be found in the original paper [7].

Figure 5 shows a hypothetical example from the AI-Spam domain (cf. Figure 1).
The first extracted feature is a combination of “intelligent”, “algorithm”, “grant” and
“application”. Any document containing most of these is likely to be legitimate, so
high values of this feature indicate non-Spam. The second feature has positive weights
for “application”, “debt-free” and “viagra” and a negative weight for “grant”. A high
value for this feature is likely to indicate Spam. The new features are orthogonal, despite
having two keywords in common. The first feature has positive weights for both “grant”
and “application”, whereas the second has a negative weight for “grant”. This shows
how the modifying effect of “grant” on “application” might manifest itself in a LSI-
derived representation. With a high score for the first extracted feature and a low score
for the second, the incoming test case is likely to be classified as legitimate email.

LSI extracted features are linear combinations of typically very large numbers of
keywords. In practice this can be in the order of hundreds/thousands of keywords,
unlike in our illustrative example involving just 8 keywords. Consequently, it is dif-
ficult to interpret these features in a meaningful way. In contrast, a feature extracted
by PSI combines far fewer keywords and its logical description of underlying seman-
tics is easier to interpret. A further difference is that, although both PSI and LSI ex-
ploit word-word co-occurrences to discover and preserve underlying semantics, PSI

also draws on word-class co-occurrences while LSI does not naturally exploit this in-
formation.

5 Evaluation

The goodness of case representations derived by BASE, LSI and PSI in terms of retrieval
performance is compared on a retrieve-only CBR system, where the weighted majority
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vote from the 3 best matching cases are re-used to classify the test case. A modified case
similarity metric is used so that similarity due to absence of words (or words in linear
combinations or in clauses) is treated as less important compared to their presence [19].

Experiments were conducted on 6 datasets; 4 involving email routing tasks and 2
involving Spam filtering. Various groups from the 20Newsgroups corpus of 20 Usenet
groups [13], with 1000 postings (of discussions, queries, comments etc.) per group,
form the routing datasets: SCIENCE (4 science related groups); REC (4 recreation re-
lated groups); HW (2 hardware problem discussion groups, one on Mac, the other on
PC); and RELPOL (2 groups, one concerning religion, the other politics in the middle-
east). Of the 2 Spam filtering datasets: USREMAIL [8] contains 1000 personal emails of
which 50% are Spam; and LINGSPAM [16] contains 2893 messages from a linguistics
mailing list of which 27% are Spam.

Equal-sized disjoint train-test splits were formed. Each split contains 20% of the
dataset and also preserves the class distribution of the original corpus. All text was pre-
processed by removing stop words (common words) and punctuation. Remaining words
were stemmed to formW , where |W| varies from approximately 1,000 in USREMAIL to
20,000 in LINGSPAM. Generally, with both routing and filtering tasks, the overall aim is
to assign incoming messages into appropriate groups. Hence, test set accuracy was cho-
sen as the primary measure of the effectiveness of the case representation as a facilitator
of case comparison. For each test corpus and each method, the accuracy (averaged over
15 trials) was computed for representations with 20, 40, 60, 80, 100 and 120 features.

Paired t-tests were used to find improvements by LSI and PSI compared to BASE

(one-tailed test) and differences between LSI and PSI (two-tailed test), both at the 95%
significance level. Precision1 is an important measure when comparing Spam filters,
because it penalises error due to false positives (Legitimate → Spam). Hence, for the
Spam filtering datasets, precision was tested as well as accuracy.

5.1 Results

Accuracy results in Figure 6 shows that BASE performs poorly with only 20 features,
but gets closer to the superior PSI when more features are added. PSI’s performance is
normally good with 20 features and is robust to the feature subset size compared to both
BASE and LSI. LSI clearly performs better for smaller sizes. This motivated an inves-
tigation of LSI with fewer than 20 features. We found that 10-feature LSI consistently
outperforms 20-feature LSI and is close to optimal. Consequently, 10-feature LSI was
used for the significance testing, in order to give a more realistic comparison with the
other methods.

Table 5.1 compares performance of BASE and PSI (both 20 features) and LSI (10
features). Where LSI or PSI are significantly better than BASE, the results are in bold.
Where LSI and PSI are significantly different, the better result is starred. It can be seen
that LSI is significantly better than BASE on 6 of 8 measures and to PSI on 3. PSI

is better than BASE on 7 measures and better than LSI on 2. We conclude that the
20-dimensional representations extracted by PSI have comparable effectiveness to the
10-dimensional representations extracted by LSI. Generally, BASE needs a much larger

1 Precision = TP/(TP+FP) where TP is no. of true positives and FP is no. of false positives.



388 N. Wiratunga et al.

40
45
50
55
60
65
70
75
80

20 40 60 80 100 120

Feature Subset Size

A
cc

ur
ac

y 
on

 T
es

t S
et

Base LSI PSI

REC
55

60

65

70

75

80

85

20 40 60 80 100 120
Feature Subset Size

A
cc

ur
ac

y 
on

 T
es

t S
et

HW

Base LSI PSI

67

72

77

82

87

92

20 40 60 80 100 120
Feature Subset Size

A
cc

ur
ac

y 
on

 T
es

t S
et

Base LSI PSI

RELPOL

40

45

50

55

60

65

20 40 60 80 100 120

Feature Subset Size

A
cc

ur
ac

y 
on

 T
es

t S
et

SCIENCE

65

70

75

80

85

90

95

20 40 60 80 100 120
Feature Subset Size

A
cc

ur
ac

y 
on

 T
es

t S
et

USREMAIL
75

80

85

90

95

100

20 40 60 80 100 120

Feature Subset Size

A
cc

ur
ac

y 
on

 T
es

t S
et

LINGSPAM

Fig. 6. Accuracy results for datasets

Table 1. Summary of significance testing for feature subset size 20 (10 for LSI)

Routing: Accuracy Filtering: Accuracy (Precision)
Algo. REC HW RELPOL SCIENCE USREMAIL LINGSPAM

BASE 71.7 73.0 88.7 48.1 85.7 (89.5) 94.2 (92.0)
LSI *78.7 65.5 90.4 *71.8 93.9 (*96.8) 96.8 (89.0)
PSI 76.2 *80.1 91.2 59.9 94.1 (95.2) 95.8 (*92.1)

indexing vocabulary to achieve comparable performance. PSI works well with a small
vocabulary of features, which are more expressive than LSI’s linear combinations.

5.2 Interpretability

Figure 7 provides a high-level view of sample features extracted by PSI in the form of
logical combinations (for 3 of the datasets). It is interesting to compare the differences
in extracted combinations (edges), the contribution of keywords (ovals) to different ex-
tracted features (boxes) and the number of keywords used to form conjunctions (usually
not more than 3). We see a mass of interconnected nodes with the HW dataset on which
PSI’s performance was far superior to that of LSI. Closer examination of this data set
shows that there are many keywords that are polysemous given the two classes. For in-
stance “drive” is applicable both to Macs and PCs but combined with “vlb” indicates PC
while with “syquest” indicates Mac. Unlike HW, the multi-class SCIENCE dataset con-
tains several disjoint graphs each relating to a class, suggesting that these concepts are
easily separable. Accuracy results show LSI to be a clear winner on SCIENCE. This fur-
ther supports our observation that LSI operates best only in the absence of class-specific
polysemous relationships. Finally, features extracted from LINGSPAM in figure 7 show
that the majority of new features are single keywords rather than logical combinations.
This explains BASE’s good performance on LINGSPAM.

An obvious advantage of interpretability is knowledge discovery. Consider the SCI-
ENCE tree, here, without the extracted clauses indicating that “msg”, “food” and “chi-
nese” are linked through “diet”, one would not understand the meaning in context of a
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Fig. 7. Logical combinations extracted from datasets

term such as “msg”. Such proof trees, which are automatically generated by PSI, high-
light relations between keywords; this knowledge can further aid with glossary gener-
ation, often a demanding manual task (e.g. FALLQ [14]). Case authoring is a further
task that can benefit from PSI generated trees. For example disjoint graphs involving
“electric” and “encrypt” with many fewer keyword associations may suggest the need
for case creation or discovery in that area. From a retrieval standpoint, PSI generated
features can be exploited to facilitate query elaboration, within incremental retrieval
systems.The main benefit to the user would be the ability to tailor the expanded query
by deactivating disjuncts to suit retrieval needs. Since clauses are granular and can be
broken down into semantically rich constituents, retrieval systems can gather statistics
of which clauses worked well in the past, based on user interaction; this is difficult over
linear combinations of features mined by LSI.

6 Related Work

Feature extraction is an important area of research particularly when dealing with tex-
tual data. In Textual-CBR (TCBR) research the SMILE system provides useful insight
into how machine learning and statistical techniques can be employed to reason with
legal documents [3]. As in PSI, single keywords in decision nodes are augmented with
other keywords of similar context. Unlike PSI, these keywords are obtained by look-
ing up a manually created domain-specific thesaurus. Although PSI grows clauses by
analysing keyword co-occurrence patterns, they can just as easily be grown using ex-
isting domain-specific knowledge. A more recent interest in TCBR involves extraction
of features in the form of predicates. The FACIT framework involving semi-automated
index vocabulary acquisition addresses this challenge but also highlights the need for
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reliance on deep syntactic parsing and the acquisition of a generative lexicon which
warrants significant manual intervention [11].

In text classification and text mining research, there is much evidence to show that
analysis of keyword relationships and modelling them as rules is a successful strat-
egy for text retrieval. A good example is RIPPER [5], which adopts complex optimi-
sation heuristics to learn propositional clauses for classification. A RIPPER rule is a
Horn clause rule that concludes a class. In contrast, PSI’s propositional clauses form
features that can easily be exploited by CBR systems to enable case comparison at a
semantic level. Such comparisons can also be facilitated with the FEATUREMINE [21]
algorithm, which also employs association rule mining to create new features based on
keyword co-occurrences. FEATUREMINE generates all possible pair-wise keyword co-
occurrences converting only those that pass a significance test into new features. What
is unique about PSI’s approach is that firstly, search for associations is guided by an
initial feature selection step, secondly, associations remaining after an informed filter-
ing step are used to grow clauses, and, crucially, boosting is employed to encourage
growing of non-overlapping clauses. The main advantage of PSI’s approach is that in-
stead of textual case similarity based solely on instantiated feature value comparisons
(as in FEATUREMINE), PSI’s clauses enable more fine-grained similarity comparisons.
Like PSI, WHIRL [4] also integrates rules resulting in a more fine-grained similarity
computation over text. However these rules are manually acquired.

The use of automated rule learning in an Information Extraction (IE) setting is
demonstrated by TEXTRISE, where mined rules predict text for slots based on infor-
mation extracted over other slots [15]. The vocabulary is thus limited to template slot
fillers. In contrast PSI does not assume knowledge of case structures and is potentially
more useful in unconstrained domains.

7 Conclusion

A novel contribution of this paper is the acquisition of an indexing vocabulary in the
form of expressive clauses, and a case representation that captures the degree to which
each clause is satisfied by documents. The propositional semantic indexing tool, PSI, in-
troduced in the paper, enables text comparison at a semantic, instead of a lexical, level.
Experiments show that PSI’s retrieval performance is significantly better than that of re-
trieval over keyword-based representations. Comparison of PSI-derived representations
with the popular LSI-derived representations generally shows comparable retrieval per-
formance. However in the presence of class-specific polysemous relationships PSI is the
clear winner. These results are very encouraging, because, although features extracted
by LSI are rich mathematical descriptors of the underlying semantics in the domain,
unlike PSI, they lack interpretability. We note that PSI’s reliance on class knowledge
inevitably restricts its range of applicability. Accordingly, future research will seek to
develop an unsupervised version of PSI.
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Abstract. Several new miners for frequent subgraphs have been pub-
lished recently. Whereas new approaches are presented in detail, the
quantitative evaluations are often of limited value: only the performance
on a small set of graph databases is discussed and the new algorithm is
often only compared to a single competitor based on an executable. It re-
mains unclear, how the algorithms work on bigger/other graph databases
and which of their distinctive features is best suited for which database.
We have re-implemented the subgraph miners MoFa, gSpan, FFSM, and
Gaston within a common code base and with the same level of program-
ming expertise and optimization effort. This paper presents the results of
a comparative benchmarking that ran the algorithms on a comprehensive
set of graph databases.

1 Introduction

Mining of frequent subgraphs in graph databases is an important challenge, espe-
cially in its most important application area “cheminformatics” where frequent
molecular fragments help finding new drugs. Subgraph mining is more challeng-
ing than frequent itemset mining, since instead of bit vectors (i.e., frequent item-
sets) arbitrary graph structures must be generated and matched. Since graph
isomorphism testing is a hard problem [3], fragment miners are exponential in
runtime and/or memory consumption. For a general overview see [1].

The naive fragment miner starts from the empty graph and recursively gen-
erates all possible refinements/fragment extensions by adding edges and nodes
to already generated fragments. For each new possible fragment, it then per-
forms a subgraph isomorphism test conceptually on each of the graphs in the
graph database to determine if that fragment appears frequently (i.e., if it has
enough support). Since a new refinement can only appear in those graphs that
already hold the original fragment, the miner keeps appearance lists to restrict
isomorphism testing to the graphs in these lists.

All possible graph fragments of a graph database form a lattice, see Fig. 1
for an example with just one graph. The empty graph ∗ is given at the top, the
final graph at the bottom of the picture. During the search this lattice will be

A. Jorge et al. (Eds.): PKDD 2005, LNAI 3721, pp. 392–403, 2005.
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pruned at infrequent fragments since their refinements will appear even more
rarely.1 Efficient fragment miners have to solve three main subproblems.
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two circled fragments. The
new subgraph A-C-C-B can be
generated by taking this core
and adding the two edges A-
and B- that only appear in
one of the subgraphs.

Fig. 1. The complete subgraph lattice of the graph shown at the bottom

(A) Purposive refinement. Mining gets faster if instead of all potential
refinements only those are created that might appear in the database. Two basic
approaches exist: on the one hand two graphs can be joined from the previous
level of the lattice that share a common core (Fig. 1). Although this may create
some subgraphs that do not appear in the database, the appearance list of the
refinement (i.e., the intersection of both preceeding appearance lists) is quickly
checked. On the other hand, an existing subgraph can be extended by an edge
and a node (or only an edge if cycles are closed). The node to be extended and
the extension must be chosen carefully based on the appearance list.

(B) Efficient enumeration. Generated duplicates of the fragments have
to be filtered out. One possibility are isomorphism tests on the database, which
are costly. Hence, miners that generate less isomorphic refinements are faster.
Using a canonical graph representation, some time is saved by detecting these
duplicates before isomorphism testing on the database.

(C) Focused isomorphism testing. Known approaches either use efficient
subgraph isomorphism tests, e.g. Nauty [3], or they trade time versus storage
and keep embeddings. An embedding is a mapping of the nodes and edges of a
fragment to the corresponding nodes and edges in the graph it occurs in. When
counting the support of fragments, excessive isomorphism tests are necessary. It
has to be clarified whether embedding lists lead to better results compared to
isomorphism tests.

Early fragment miners generated refinements in a breadth first way, e.g., SUB-
DUE [6] (incomplete beam-search), AGM [7], and FSG [8]. Depth first search
1 Similar to the frequency antimonotone principle in frequent itemset mining [4,5].
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(dfs) approaches need less memory to store appearance lists because the number
of lists that have to be stored in memory is proportional to the depth of the
lattice (i.e. the size of the biggest graph) whereas it is proportional to its width
(i.e. the maximal number of subgraphs in one level) in breadth first searches.
The dfs-algorithms MoFa [9], gSpan [10], FFSM [11], and Gaston [12] attack
the subproblems (A–C) quite differently. But since it is difficult to prove that a
solution is better than another, the authors usually select a few databases and
present benchmarks that demonstrate that their proposed solution works bet-
ter than a competitor based on executables. Since different authors use different
databases there is no general picture. It is unknown which of the solutions to (A–
C) perform best under which conditions. To make things worse, sometimes only
executables of the algorithms are available. Hence, measurements are skewed by
use of different programming language and by exploitation of varying compiler
optimization technology, etc.

In this paper we present an unbiased and detailed comparison of the four
fragment miners MoFa, gSpan, FFSM and Gaston. We implemented them all
from scratch using a common graph framework, i.e. all use the same graph
data structures. In section 2 we briefly characterize how these algorithms solve
subproblems (A–C). Section 3 contains the main body of this paper: the detailed
experimental evaluation of the four contestants.

2 Distinctive Ideas of MoFa, gSpan, FFSM, and Gaston

All four fragment miners work on general, undirected graphs with labeled nodes
and edges. They all are restricted to finding connected subgraphs and traverse
the lattice as mentioned before in depth-first order.

MoFa (Molecule Fragment Miner, by Borgelt and Berthold in 2002 [9]) has
been targeted towards molecular databases, but it can also be used for arbitrary
graphs. MoFa stores all embeddings (both nodes and edges). Extension is re-
stricted to those fragments, that actually appear in the database. Isomorphism
tests in the database can cheaply be done by testing whether an embedding can
be refined in the same way. MoFa uses a fragment-local numbering scheme to
reduce the number of refinements generated from a fragment: MoFa counts the
nodes of a fragment according to the sequence in which they have been added.
When a fragment is extended at node n, later refinements may only occur at
n or at nodes bigger than n. Moreover, all extensions that grow from the same
node n are ordered according to increasing node and edge labels. Although this
local ordering helps, MoFa still generates many isomorphic fragments and then
uses standard isomorphism testing to prune duplicates.

gSpan (graph-based Substructure pattern, by Yan and Han in 2002 [10])
uses a canonical representation for graphs, called dfs-code. A dfs-traversal of
a graph defines an order in which the edges are visited. The concatenation of
edge representations in that order is the graph’s dfs-code. Refinement genera-
tion is restricted by gSpan in two ways: First, fragments can only be extended
at nodes that lie on the rightmost path of the dfs-tree. Secondly, fragment gen-
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eration is guided by occurrence in the appearance lists. Since these two pruning
rules cannot fully prevent isomorphic fragment generation, gSpan computes the
canonical (lexicographically smallest) dfs-code for each refinement by means of
a series of permutations. Refinements with non-minimal dfs-code can be pruned.
Since instead of embeddings, gSpan only stores appearance lists for each frag-
ment, explicit subgraph isomorphism testing must be done on all graphs in these
appearance lists.

FFSM (Fast Frequent Subgraph Mining, by Huan, Wang, and Prins in 2003
[11]) represents graphs as triangle matrices (node labels on the diagonal, edge
labels elsewhere). The matrix-code is the concatenation of all its entries, left
to right and line by line. Based on lexicographic ordering, isomorphic graphs
have the same canonical code (CAM – Canonical Adjacency Matrix). When
FFSM joins two matrices of fragments to generate refinements, only at most
two new structures result. FFSM also needs a restricted extension operation: a
new edge-node pair may only be added to the last node of a CAM. After re-
finement generation, FFSM permutes matrix lines to check whether a generated
matrix is in canonical form. If not, it can be pruned. FFSM stores embeddings
to avoid explicit subgraph isomorphism testing. However, FFSM only stores the
matching nodes, edges are ignored. This helps speeding up the join and exten-
sion operations since the embedding lists of new fragments can be calculated by
set operations on the nodes.

Gaston (GrAph/Sequence/Tree extractiON, by Nijssen and Kok 2004 [12])
stores all embeddings, to generate only refinements that actually appear and to
achieve fast isomorphism testing. The main insight is that there are efficient ways
to enumerate paths and (non-cyclic) trees. By considering fragments that are paths
or trees first, and by only proceeding to general graphs with cycles at the end, a
large fraction of the work can be done efficiently. Only in that last phase, Gas-
ton faces the NP-completeness of the subgraph isomorphism problem. Gaston de-
fines a global order on cycle-closing edges and only generates those cycles that are
“larger” than the last one. Duplicate detection is done in two phases: hashing to
pre-sort and a graph isomorphism test for final duplicate detection.

For gSPan and MoFa several extensions exist that are described in section 3.5.

3 The Comparison

In the following sections we compare the four algorithms based on an analysis
of the main computational parts on detailed experiments and on some special
features of the algorithms.

3.1 Setup of Experiments

The tests were all done on 64bit Linux systems because of the huge memory
requirements of some algorithms on the bigger datasets. Because of the lengthy
tests we used several machines: Most experiments were run on a Dual-Itanium 2
PC running at 1.3 GHz with 10GB of RAM. Here we used IBM’s Java Virtual
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Machine (JVM) 1.4.2 because it produced the best runtime results for all algo-
rithms.2 The maximal heap space available to the JVM was set to 8GB to avoid
swapping influences. For the memory tests we used the SUN JVM3 as the IBM
JVM showed garbage collector artifacts. The test on varying database sizes was
carried out on an SGI Altix 3700 system4 with Itanium 2 processors at 1.3 GHz.
There only BEA Weblogic’s JVM 1.4.2 was available.5 The maximum heap was
set to 14GB. Except for the database size experiments we aborted tests that ran
longer than four hours.

We chose Java as programming language because this kept the implementa-
tion work at a bearable level. This may of course not lead to astonishingly fast
execution times but the relative performance of the algorithms should not be
affected significantly. Also the algorithms could be run on 64bit systems with no
changes at all, which was important for some experiments.

Dataset # mole- average largest # node
cules size molecule labels

# edges # edges
IC93 1,283 28 81 10
HIV 42,689 27 234 58
NCI 237,771 22 276 78
PTE 337 26 213 66
CAN2DA99 32,557 28 236 69
HIV CA 423 42 196 21
HIV CM 1,083 34 234 27

Fig. 2. The molecular datasets used for testing
and their sizes. There are always four edge labels
in molecules.

Because the main application
area of frequent subgraphs
miners are molecular datasets,
experiments were done on the
databases described in Fig. 2.
The IC93 dataset [13] is used to
find out how the algorithms be-
have if the number of found frag-
ments and the fragments itself
get large. At a minimum sup-
port value of 4% the largest fre-
quent fragment has 22 bonds, the
number of fragments is 37,727.
Typically all molecules of the
HIV assay from 19996 are used
for performance evaluations. The complete NCI database7 is used to determine
how the algorithms scale with increasing database size. The found fragments will
very likely have no chemical meaning because the molecules in the dataset are
very diverse.

Only to retest performance comparisons from [14,15] the PTE database8, the
DTP Human Tumor Cell Line Screen (dataset CAN2DA99)9 and parts of the
HIV dataset containing only the confirmend moderately active molecules (HIV
CM) and the confirmed active molecules (HIV CA) were used. Except for the

2 http://www-128.ibm.com/developerworks/java/jdk/index.html
3 http://java.sun.com/
4 http://www.sgi.com/products/servers/altix/index.html
5 http://www.bea.com/framework.jsp/content/products/jrockit/
6 http://dtp.nci.nih.gov/docs/aids/aids data.html
7 http://cactus.nci.nih.gov/ncidb2/download.html
8 See [16] and http://web.comlab.ox.uk/oucl/research/areas/machlearn/PTE/.

The dataset we used was provided by Siegfried Nijssen.
9 http://dtp.nci.nih.gov/docs/cancer/cancer data.html
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CAN2DA99 these datasets are rather small compared to the complete HIV or
the NCI dataset.

3.2 Hotspots

Section 2 has summarized how the four algorithms solve subproblems (A-C) and
which tasks need to be done. Hence, we first show the runtime distribution by
percentage for each task and each algorithm, a measurement, that was not done
before in the literature. We used Quest’s JProbe on a Profiler10 on the PC with
the SUN JVM for monitoring a run on the IC93 dataset with a minimum support
of 5%, see Fig. 3. Using a profiler slows down the runtime a lot, so we took the
biggest databases, that are manageable for this experiment: IC93 and HIV CA
+ HIV CM.

IC93 HIV CA+CM

MoFa gSpan FFSM Gaston MoFa gSpan FFSM Gaston
Duplicate filtering/pruning 11.3% 3.1% 0.1% 1.8% 12.3% 1.4% 0.2% 1.0%
Support computation 9.3% 62.9% 3.7% 9.6% 70.7% 3.3%
Embedding list calculations 19.1% - 60.4% 87.8% 18.1% - 62.7% 95.9%
Extending of subgraphs 29.9% 17.3% 10.2% 31.1% 14.9% 8.1%
Joining of subgraphs - - 0.1% - - - 0.1% -

Fig. 3. The table shows the main parts of the subgraph mining process and how much
time (relative to the total runtime) each of the four algorithms spends for them

Filtering/pruning duplicates plays only a minor role in the whole sub-
graph mining process (0.1% - 12.3% of the total runtime). For MoFa, the time
contains both the graph isomorphism tests for already generated graphs, and
the deletion of extensions that do not comply with the structural pruning rules.

Support Computation or Embedding list calculation is where the
algorithms spend most of their time. Using embedding lists (MoFa and FFSM)
leads to low numbers in support computation, but calculating them is expensive.
Although MoFa’s 19.1% for IC93 seem faster than FFSM’s 60.4% for IC93,
both algorithms have spent about the same number of seconds in this task.
If no embedding lists are used (gSpan), expensive subgraph isomorphism tests
are necessary. For Gaston, it is impossible to separate runtimes for support
computation, embedding list calculation and the extension of fragments. The
87.8% for IC93 includes Gaston’s ability to uniquely generate paths and trees.

Extending or joining subgraphs takes about the same time in MoFa,
gSpan and FFSM. Joining is only done by FFSM and is very cheap compared
to the extension process.

The number for HIV CA + CM do not differ much from the numbers mea-
sured for IC93.
10 http://www.quest.com/jprobe/
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Fig. 4. Total runtime, runtime per found fragment, and the number of found duplicates
for the three datasets IC93, HIV, and NCI measured for varying minimum support

3.3 Tests on Molecular Databases

First we retested successfully the results published in [14,15] (PC, IBM JVM) to
prove that our implementations can compete with the original implementations
and provide qualitatively the same results as given in the literature.

Second we recorded for each algorithm the total time needed at varying sup-
port values, the time needed per found frequent fragment and the number of
found duplicates (which have to be filtered out by the algorithm in some way)
for the IC93, HIV and NCI dataset. A comparison of MoFa11, gSpan, FFSM and
Gaston based on these databases was never published before. Figure 4 shows the
results. The first obvious conclusion is the exponential rise in runtime with lower
support values (left column). This is not very surprising as the number of frag-
ments found also increases exponentially. Therefore, the runtime per found frag-
ment (second column) is more interesting. For all datasets it shrinks with lower
support values which can be explained by the cheaper frequency determination
and calculation of embedding lists. The runtime per graph rises for Gaston on
the NCI dataset for low support values. This is a memory problem as NCI is

11 As for MoFa several extensions (closed fragments, ring mining, fuzzy chains) exist
we did not use in our experiments, this algorithm is marked as MoFa base in the
pictures, see section 3.5.
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the largest database and Gaston needs the most memory of all algorithms, see
Fig. 5 on the left.

There is a more or less clear runtime ranking among the four algorithms:
MoFa is always the slowest. On the big datasets, FFSM is the second slowest
algorithm, only on IC93 it is faster than gSpan. The result of this IC93 test
equals the test result in [15]. The likely reason why gSpan is so slow on the
IC93 dataset is the growing number of subgraph isomorphism tests gSpan has
to do at these low support value (more than 37,000). All other algorithms use
embedding list which speed up these tests especially for large fragments. On the
large datasets, however, gSpan is faster than FFSM. Gaston is the fastest of
all algorithms except at lower support values on the complete NCI dataset. A
reason for this may be the amount of bookkeeping because of the large number
of embeddings. Also a slowdown because of more frequent garbage collections
may be the cause. The fragments found are however rather small so that gSpan
gets by with cheap tests.

The number of found duplicates (right column) gives an insight into the
power of the fragment refinement mechanisms. Also different pruning techniques
minimize the number of duplicates, but as shown in section 3.2 they are not as
relevant. Gaston wins as it does not produce duplicates for non-cyclic graphs.
On the other hand FFSM’s and MoFa’s extension methods and pruning rules
seem to be the weakest. For FFSM a look at relative time spend in filtering out
these duplicates (see table 3), which is only 0.1% like Gaston, indicates that the
canonical representation is very efficient.

Next the memory consumption at varying support values was recorded based
on the SUN JVM. We frequently called the garbage collector and recorded the
maximum heap size. This does not necessarily give the exact value of the mem-
ory consumption, but is a very good approximation. Because it slows down the
runtime dramatically only the values for the HIV dataset were recorded. As can
be seen in Fig. 5, gSpan needs the least memory as it does not use embedding
lists. Although MoFa stores both edges and nodes in the embedding lists whereas
FFSM only stores the nodes, MoFa still needs less memory. This is because MoFa
only needs to store in each node of the search tree the embeddings of one sub-
graph, while in FFSM a search tree node consists of many subgraphs together
with their embeddings. Gaston needs the most memory because embedding lists
for a new fragment are built based on the embedding lists of the parent. Ex-
tensions to the parent’s embedding list are stored with the children. Therefore,
the size of the embedding lists does also depend on the number of children a
fragment has. This results in the rise of the curve for low support values.

Finally the scalability of the algorithms for increasing database size was
tested (Bea JVM, Altix), see Fig. 5, right. The complete NCI database was
split into 119 pieces of 2,000 randomly selected molecules. For 5% support we
have tested the performance for various subsets of the NCI database, each subset
consisting of a growing number of these pieces. An obvious conclusion is, that
all algorithms scale linearly with the database size, but with different factors.
The surprising result is, that in this test Gaston is always slower than gSpan
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Fig. 5. Memory usage on the HIV database and the runtime in dependence of the
database size on the complete NCI database

which was not the case in all other tests. We have performed some tests to be
convinced that this is not an artefact of the different JVMs. Instead it seems that
the uncommon memory architecture of the SGI Altix system penalizes memory
intensive algorithms like Gaston. This also explains the raise in runtime for Gas-
ton for larger databases. Testing Gaston with the IBM JVM on the Itanium on
the same subsets of the NCI database did not result in this steep rise of the
runtime curve.

3.4 Tests on Artificial Graph Databases

Real-world datasets are never “random”. For example typical characteristics of
molecular databases are certain distribution of labels, distinct cycles, and low
node degrees. Although artificial generated graph databases seem to be a way
to do general graph comparisons, there are several obstacles. The main problem
is, that even with some fixed parameters randomly generated graph databases
can be very different from each other and cause a wide spectrum of runtimes.
By considering only the average or median of these results, no valid conclusion
can be drawn.

Nevertheless we did some experiments with synthetical databases by our own
graph generator. The most interesting test was done with graphs of varying edge
densities as molecules mostly have a low edge density. We took a fixed number
of 2000 graphs with an average of 50 nodes (ranging from 1 to 100) and 10
uniformly distributed different nodes and edge labels. Then we increased the
number of edges in the graphs, starting at an edge density of 10% up to 40%
(which means that the graphs contain e.g. 0.1·(#nodes)2

2 edges). The minimum
support was set to 10%. Figure 6 shows the runtime per graph in the left diagram
and the total number of discovered fragments in the right one. Except MoFa,
all other algorithms show a slight increase in the runtime which seems not to be
strongly correlated to the number of found graphs. MoFa however shows a steep
increase in the runtime. One reason is the number of discovered fragments: each
new fragment has to be checked against all others to find out if it has already
been found. The other algorithms rely on canonical representations and the test
for duplicates is independent of the number of already discovered structures.
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Fig. 6. Runtime and number of frequent subgraphs on synthetic datasets with varying
edge density

3.5 Special Features and Possible Extensions

Some of the presented algorithms have special extensions not taken into account
for this comparison, but which might improve the performance of the algorithms.
One example are closed subgraphs. A subgraph is said to be closed if there is
no bigger supergraph containing it that occurs in the same transactions of the
database. Unclosed subgraphs can easily be filtered out after the search (and
partly during the search), but for gSpan and MoFa there exist special extensions
that prune branches of the search tree if only closed subgraphs are to be found
[17,18]. This speeds up the search considerably (on some datasets for gSpan a
speedup of a factor of 10 is reported, for MoFa the runtime is almost halved).

Another issue is the search in directed graphs. FFSM strongly relies on the
triangle matrices, that cannot be used for directed graphs. Gaston’s rules for
uniquely constructing all paths and trees cannot be used for directed graphs
without major changes. It is e.g. unclear how a spanning tree can be constructed
in a directed graph. MoFa is capable of finding directed frequent subgraphs and
also for gSpan only minor changes should be necessary.

Another topic of interest is the search for unconnected subgraphs. An exam-
ple are molecules in which a certain part of the fragment must be present but
the rest of the fragment is not known yet. MoFa can start the search with an
unconnected seed instead of the empty graph. It is unclear how seeds can be
combined with any of the other three algorithms.

For MoFa there also exists an extension for molecular databases that treats
rings as single entities [19]. This not only dramatically reduces the number of
search tree nodes but also avoids the reporting of fragments with open ring sys-
tems that normally make no sense for the biochemists. Another addition enables
MoFa to find fragments with carbon chains of varying lengths [20], because this
length is not important for biochemical reactions.

4 Conclusions

After re-implementing and testing four famous subgraph mining algorithms, the
following conclusions can be drawn:
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– Contrary to common belief embedding lists do not considerably speed up
the search for frequent fragments. Even though gSpan does not use them,
it is competitive to Gaston and FFSM. Only if the fragments become large
(like in the IC93 dataset), gSpan falls off. On the other hand, embedding
lists can cause problems if not enough memory is available or if the memory
throughput is not high enough.

– The power of the pruning strategies to avoid duplicates is not the most
important factor. The generation of candidates and support/embedding lists
computations are much more critical.

– Using canonical representations for detecting duplicates is more efficient than
doing explicit graph isomorphism test. Even better is the complete avoidance
of duplicate fragment generation like Gaston does (at least for non-cyclic
fragments).

– All algorithms scale linearly with the database size though with different
factors.

– Depending on the used Java Virtual Machine results can sometimes differ.
This problem can not be solved by the algorithms themself.

– Pure performance is not everything. Although MoFa is the slowest algo-
rithm in all tests it offers much more functionality than the other miners for
molecular databases and biochemical questions.

It is not yet clear, where the development of frequent subgraph mining will lead
in the future. Possible directions are distributed or parallel search to overcome
memory and performance limits. Exploring new application areas is expected to
lead to new insights.
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Abstract. With the fast expansion of computer networks, it is
inevitable to study data mining on heterogeneous databases. In this pa-
per we propose MDBM, an accurate and efficient approach for classifica-
tion on multiple heterogeneous databases. We propose a regression-based
method for predicting the usefulness of inter-database links that serve
as bridges for information transfer, because such links are automatically
detected and may or may not be useful or even valid. Because of the high
cost of inter-database communication, MDBM employs a new strategy
for cross-database classification, which finds and performs actions with
high benefit-to-cost ratios. The experiments show that MDBM achieves
high accuracy in cross-database classification, with much higher efficiency
than previous approaches.

1 Introduction

The rapid growth of the number of data sources on the internet has brought
great need for computation over multiple data sources, especially knowledge
discovery from multiple data sources. For example, biologists need databases
of genes, proteins, and microarrays in their research; a credit card company
needs data from a credit bureau for building models for handling applications.
Data integration approaches [5,11] may be used to overcome the heterogeneity
problem. However, perfect integration of heterogeneous data sources is a very
challenging problem, and it is often impossible to migrate one whole database to
another site. In contrast, distributed data mining [3,7,8,12,13] aims at discovering
knowledge from a dataset that is stored at different sites. But they focus on a
homogeneous dataset (a single table or a set of transactions) that is distributed
to multiple sites, thus are unable to handle heterogeneous relational databases.

In this paper we study the problem of cross-database classification, which
aims at building accurate classifiers based on multiple heterogeneous databases,
because a single database often contains insufficient information for a classifica-
tion task. For example, Yahoo shopping may want to build a model for predict-
ing customers’ behaviors (as in Figure 1), and thus needs important information
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Fig. 1. Databases of Yahoo shopping and venders

from databases of different vendors. In this example the Customer0 relation in
the Yahoo shopping database is called target relation, whose tuples are target
tuples. The goal of cross-database classification is to build an accurate classifier
for predicting the class labels of target tuples.

There are two major challenges in cross-database classification. The first
is the data heterogeneity problem. To transfer information across hetero-
geneous databases, one must detect inter-database links, which are links be-
tween matched attributes (as in Figure 1) and can serve as bridges for infor-
mation transfer. There are many studies on this issue, such as schema mapping
[5] and mining database structures [4]. However, some links detected may be
vague and sometimes connect unrelated objects. For example, Customer0.name
→ Customers1.name may connect different persons with same name, and Cus-
tomer0.zipcode → Customer1.zipcode may lead to an explosive number of joined
tuples. The second challenge is the efficiency problem. It is often expensive
to transfer information between two databases, which may be far from each
other physically. Thus we must be able to build accurate cross-database classi-
fiers with as low inter-database communication cost as possible. In this paper
we propose MDBM (Multi-Database Miner), an efficient and accurate approach
for classification across multiple heterogeneous databases.

The first contribution of this paper is to propose an approach for predict-
ing the usefulness of links. As mentioned above, some links can lead to useful
features, while some others may be useless and only add burdens to the classifi-
cation procedure. We define the usefulness of a link as the maximum information
gain of any feature generated by propagating information through this link. We
propose a regression-based approach for building a model to predict usefulness
of links based on properties of links. Our experiments show that this approach
achieves reasonably high prediction accuracy.

Our second contribution is economical classification. As many approaches on
relational (or first-order) classification [1,9,10,14], MDBM also uses rule-based
classification. All previous approaches build rules by searching for predicates (or
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literals) with highest information gain (or Foil gain), in order to build accurate
rules. Although this strategy is effective in single databases, it may lead to
high inter-DB communication cost in multi-database classification. With the
prediction model for gainfulness of links, MDBM can predict the gain and cost of
each action of searching for predicates. The strategy of economical classification
always selects the action with highest gain-to-cost ratio, i.e., the action of lowest
price per unit of gain. It can achieve same total gain with much lower cost. Our
experiments show that MDBM achieves as high accuracy as previous approaches,
but is much more efficient in both running time and inter-DB communication.

The rest of the paper is organized as follows. We discuss related work in
Section 2. Section 3 describes the approach for building prediction models for
usefulness of links. We describe the strategy of economical cross-database classi-
fication in Section 4. We present empirical evaluation in Section 5, and conclude
this study in Section 6.

2 Related Work

The traditional way of mining multiple databases is to first integrate the
databases [5,11], then apply data mining algorithms. However, it is often hard to
integrate heterogeneous databases or to migrate one whole database to another
site, because of both efficiency and privacy concerns. Thus in multi-database
mining we need efficient approaches that can produce good mining results with
low inter-database communication cost.

Distributed data mining received much attention in the last several years,
which aims at discovering knowledge from a dataset that is distributed at differ-
ent sites. There are two types of distributed data: (1) horizontally partitioned
data, in which data about different objects with same attributes are owned by
different sites; (2) vertically partitioned data, in which different attributes of the
same set of objects are stored at different sites. Either way of distribution divides
the rows or columns of a table into different parts. Distributed data mining ap-
proaches for horizontally partitioned data include meta-learning [3] that merges
models built from different sites, and privacy preserving techniques including
decision tree [8] and association rule mining [7]. Those for vertically partitioned
data include association rule mining [12] and k-means clustering [13]. Distributed
data mining works on a well-formatted data table stored at different sites. It is
fundamentally different from cross-database data mining, which works on mul-
tiple heterogeneous databases, each containing a set of interconnected relations.

There are many studies on relational (or first-order) classification [1,9,10,14],
which aims at building accurate classifiers in relational databases. Such algo-
rithms search among different relations for useful predicates, by transferring
information across relations. They either build rules by adding good literals (or
predicates), or build decision trees recursively. Such approaches have proven to
be efficient and accurate in single-database scenarios. However, in multi-database
classification, they may have high inter-database communication cost, because
they only focus on finding gainful literals but not on how much data needs to be
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transferred. MDBM follows their main philosophy of classification (rule-based,
greedy classification), but adopts a new strategy called economical classification
which can achieve as high accuracy with much lower cost.

3 Predicting Usefulness of Links

3.1 Propagating Information Across Databases

In [4] an efficient approach is proposed to identify joinable attributes in a rela-
tional database. Its main idea is to compute the set resemblance of sets of values
of different attributes, and it achieves good scalability with a sampling technique.
MDBM uses this approach to find all joinable attributes across databases. For
two attributes A1 and A2 in different databases, if a significant portion (at least
25%) of values of A1 are joinable to A2, or those of A2 are joinable to A1, then
MDBM assumes there is a link between A1 and A2. This approach has the limi-
tation that it can only detect simple links. A recent schema matching approach
[5] that can detect complex links (e.g., “firstname + lastname → name”) can
also be easily integrated into MDBM.
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Fig. 2. Example of Tuple ID Propagation

During cross-database mining, large amounts of data needs to be exchanged
across databases frequently, and we need an approach that transfers minimum
required information to enable effective data mining. In [14] an approach called
Tuple ID Propagation is proposed, which propagates the unique IDs of target
tuples and their class labels across different relations. Tuple ID Propagation is
a method for virtually joining relations, and the propagated IDs can be used
to identify useful features in different relations. As shown in Figure 2, the IDs
can be propagated freely across different relations and databases. As shown in
Figure 1, there are usually a large number of inter-database links. Some links
serve as good bridges for cross-database mining, such as links of trans id. While
some other links are weak or even incorrect, such as links of zipcode and date.
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3.2 Gainfulness of Links

As previous approaches of relational classification [1,9,10,14], MDBM uses rule-
based classification. A rule consists of a list of predicates and a class label. Sup-
pose the class label is whether a customer will buy photo printers. An example
rule is “[Customer0 → Transaction0, Transaction0.amount ≥ 500], [Transac-
tion0 → Product0, Product0.category=‘digital camera’] ⇒ +”. It contains two
predicates: the first one is that the customer buys some product of at least $500,
and the second one is that this product is a digital camera. As in [10,14], we use
Foil gain, a variant of information gain, to measure the usefulness of a predicate.
Foil gain measures how many bits can be saved in representing class labels of
positive tuples, by adding a predicate to the current rule.

Definition 1 (Foil gain). For a rule r, we use P (r) and N(r) to denote the
numbers of positive and negative target tuples satisfying r. We use r+p to denote
the rule constructed by appending predicate p to r. Suppose the current rule is r̂.
The Foil gain of predicate p is defined as

Foil gain(p) = P (r̂ + p) ·
[
log

P (r̂ + p)
P (r̂ + p) + N(r̂ + p)

− log
P (r̂)

P (r̂) + N(r̂)

]
(1)

A link is considered to be a useful one if it brings significant Foil gain, and
vice versa. To build a model for predicting the gainfulness of links, we need
to first define the gainfulness of links in a predictable way. This definition must
indicate the potential gain we can get from a link, but should not be significantly
affected by the problem settings (e.g. usage of different classification goals) other
than the properties of the link itself.

The definition of Foil gain mainly depends on two factors that vary greatly
for different classification goals, even on same dataset. If there are a large number
of positive target tuples, the Foil gain of each link is likely to be large. If the
number of positive tuples is very small compared to that of negative tuples, then
the entropy difference for each positive tuple is large, and Foil gain is likely to
be large. Although these factors are not related to the links, they may affect
their Foil gain greatly. Therefore, we eliminate the influences of these factors
in the definition of gainfulness of links. We define the gainfulness of a link as
the maximum Foil gain we get from it, divided by the number of positive target
tuples, and the maximum possible entropy gain for each positive tuple, as follows.

Definition 2 (gainfulness of link). Suppose there are P positive target tuples
and N negative ones. Suppose pl is the predicate with highest Foil gain that is
found by propagating through link l. The gainfulness of l is defined as

gainfulness(l) =
Foilgain(pl)

P · (− log P
P+N )

(2)

3.3 Building Prediction Model

In order to build a model for predicting gainfulness of links, we need to select
a good set of properties of links that are related to their gainfulness. The first
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property of a link is the type of its source and destination attributes. Each
attribute can be a key, a foreign-key, or a semi-key (an attribute that can almost
distinguish every tuple in a relation). Links between other attributes are not
considered because they seldom convey strong semantic relationships.

Besides the types of links, the following three properties are selected: cover-
age, fan-out, and correlation. For a link l = R1.A → R2.B, they are defined as
follows. The coverage of link l is the proportion of tuples in R1 that are joinable
with R2 via l. Propagating information through a link with high coverage is
likely to generate predicates covering many positive tuples. The fan-out of link
l is the average number of tuples in R2 joinable with each tuple in R1 via l.
Low fan-out usually indicates stronger relationships between linked objects. The
correlation of link l is the maximum information gain of using any attribute of
R2 to predict the value of any attribute of R1

1. It indicates whether link l brings
correlation between some attributes of R1 and R2. For example, the link Prod-
uct0.UPC → Product2.UPC has high correlation because category of Product0
can be predicted by manufacturer and some specifications of Product2.

The coverage, fan-out, and correlation of each link can be computed when
searching for matching attributes between different databases. These properties
can be roughly computed by sampling techniques in an efficient way.

Based on the properties of links, we use regression techniques to predict their
gainfulness. Regression is a well studied field, with many mature approaches
such as linear or non-linear regression, support vector machines, and neural
networks. We finally choose neural networks [6], because it has high scalability
and accuracy, and can model arbitrary functions. A neural network learns to
predict values by keeping adapting itself when training examples are fed into it.

We perform multi-relational classification on some datasets to get properties
and gainfulness of links, in order to get training data and build models. Our
experiments show that these models achieve reasonably high accuracy when
predicting for gainfulness of links on other datasets.

4 Economical Cross-Database Classification

4.1 Classification Algorithm

The procedure of rule-based classification consists of a series of actions of search-
ing for gainful predicates. It keeps performing the following action: propagating
information across a link between two relations, and searching for good predi-
cates based on propagated information. For each action, there is a certain cost
(of inter-database communication, computation, etc.), and a certain benefit (in
predicting class labels of target tuples). The goal of economical cross-database
classification is to achieve high accuracy, with as low cost as possible.

For example, the estimated costs and benefits of four actions are shown in
Figure 3. The main philosophy of economical classification is to always select the
“cheapest” action, i.e., the action with highest benefit-to-cost ratio (the second

1 Numerical attributes are discretized when computing correlation.
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cost=50KB

Fig. 3. Economical cross-database classification

one in Figure 3). In a cross-database classification process, the most gainful
action is usually not the cheapest one, and vice versa. By selecting the cheapest
actions instead of the most gainful ones, MDBM can achieve similar total gain
with a much lower “average price”, thus achieves high accuracy with low cost.

In general MDBM uses the sequential covering algorithm as in [14] to build
rules. At each step of searching for gainful predicates, instead of evaluating all
possible predicates as in [14], it uses the strategy of economical cross-database
classification to select a gainful predicate. At each step, there is a set of candidate
links for propagation, each having an estimated benefit-to-cost ratio. MDBM
conducts the action with highest benefit-to-cost ratio. If the real benefit of this
action mostly meets our expectation, MDBM stops and moves to the next step.
If the real benefit is much lower than estimation, and there is another action with
higher estimated benefit-to-cost ratio, then MDBM will conduct that action.

The benefit of a propagation is defined as the maximum Foil gain of any
feature found by this propagation, which can be estimated by the prediction
model. Suppose there are P positive and N negative tuples satisfying the current
rule. The estimated maximum Foil gain of propagation through a link l is

est Foilgain(l) = gainfulness(l) · P ·
(
− log

P

P + N

)
(3)

We use the communication overhead of a propagation as its cost, which can
be estimated by the properties of link l and statistics of the source relation Rs

of propagation. Suppose there are |Rs| tuples in Rs, and each tuple is associated
with I tuple IDs on average. 2

est cost(l) = l.coverage · |Rs| · I (4)

Now we describe the MDBM classification algorithm, which follows the main
principles of previous relational classification approaches [10,14]. MDBM builds
a set of rules for each class. For a certain class, it builds rules one by one, and
2 Because each propagation leads to some computational cost, the estimated cost of

a propagation is set to MIN COST if it is less than this. This threshold prevents
MDBM from selecting many extremely cheap actions with very low gain.
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removes all positive tuples that are correctly classified by each rule, until more
than a proportion of (1− ε) of positive tuples are covered by any rule. To build
a rule, it keeps searching for gainful predicates and adding them to the current
rule. At each step, MDBM considers all links from the target relation or any
relation used in the current rule. MDBM also utilizes some idea of beam search
[15]. Suppose it builds a rule “p1, p2 ⇒ +”, and this rule only covers a small
portion of the positive tuples covered by p1, then MDBM will try to build another
rule based on those uncovered tuples satisfying p1. By using the idea of beam
search, MDBM tries to utilize all Foil gain of p1, which saves some inter-database
communication cost compared with starting from another empty rule.

4.2 Analysis of the Search Strategy

The strategy of previous rule-based classification algorithms [10,14] is to try
every possible action at each step and select the most gainful one. While our
strategy is to select the cheapest action at each step. Using cheap actions will
lead to the generation of predicates and rules with less Foil gain. For our strategy
to be effective, we need to prove that many cheap actions can achieve similar
classification accuracy as a smaller number of “expensive” actions, if their total
gain are similar.

Theorem 1. Suppose a rule set S contains L rules r1, r2, . . . , rL. Each rule ri

covers pi positive and ni negative tuples, which are not covered by previous rules
(r1, . . . , ri−1). For another rule r that covers (

∑L
i=1 pi) positive and (

∑L
i=1 ni)

negative tuples,
L∑

i=1

Foil gain(ri) ≤ Foil gain(r).

Corollary 1. Suppose a rule set S contains L rules r1, r2, . . . , rL. Each rule ri

covers pi positive and ni negative tuples, which are not covered by previous rules
(r1, . . . , ri−1). If S has higher total Foil gain than a single rule r, then r either
covers less positive tuples or more negative tuples than S.

Theorem 1 and Corollary 1 show that, (1) if a rule set S covers identical
numbers of positive and negative tuples as any single rule r, S will have less
total gain, and (2) if S has total Foil gain of g, then for any single rule r with
Foil gain less than g, r must cover either less positive or more negative examples
than S. Although it cannot be strictly proven, we believe that in most cases if
a rule set S has higher total gain than a rule r, S will have higher classification
accuracy or at least cover more tuples with similar accuracy.

As mentioned before, in cross-database classification we want to achieve high
classification accuracy with as low inter-database communication cost as possi-
ble. Let us compare MDBM with an existing rule-based multi-relational classi-
fication approach (e.g., [10] and [14]). MDBM always selects actions with high
gain-to-cost ratios. Thus if both approaches build rule sets with similar total
gains, MDBM will usually be much more efficient. On the other hand, our ex-
periments show that MDBM achieves similar accuracies as the approach in [14],
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which means that MDBM probably builds a rule set with less total gain (ac-
cording to Corollary 1), and is thus more efficient. The efficiency and accuracy
of MDBM is also verified in our experiments.

Although MDBM usually builds more rules, it uses the same thresholds to
control the complexity of each rule (by limiting the length of rule and minimum
Foil gain of each predicate). Therefore, MDBM will not build overly complex
rules, and overfitting is not a big concern.

5 Empirical Evaluation

We perform comprehensive experiments on both synthetic and real databases.
The experiments are run on a 2.4GHz Pentium 4 PC with 1GB memory, running
Windows XP Pro. The algorithms are implemented with Visual Studio.Net. The
following parameters are used in MDBM: MIN COST=0.5KB, MIN GAIN=
6.0, and ε = 0.1. MDBM is compared with CrossMine [14], a recent approach for
relational classification that is order of magnitude more efficient than previous
approaches. We keep the implementation details and parameters of CrossMine,
and reimplement it to make it capable of performing cross-database classification.
We use the code of neural networks at
http://www-2.cs.cmu.edu/afs/cs.cmu.edu/user/mitchell/ftp/faces.html.

5.1 Experiments on Predicting Gainfulness of Links

We perform experiments on three real datasets to test the accuracy and effi-
ciency of MDBM. The first one is CS Dept + DBLP dataset. CS Dept dataset3

was collected from the web sources of Dept. of CS, UIUC. It contains eight
relations: Student, Advise, Professor, Registration, OpenCourse, Course,
WorkIn, and ResearchGroup. DBLP dataset is retrieved from DBLP web site
and contains three relations: Author, Publication, and Publish. The target re-
lation is Student, and the class labels are their research areas, which are inferred
from their research groups, advisors, and recent publications.

The second dataset is Loan application + Bank dataset. This is from the
financial dataset used in PKDD CUP 99, and is split into two datasets. One
of them contains information about loan applications and has three relations:
Loan, Account, and District. The other is about bank transactions and records
and has five relations: Client, Disposition, Card, Order, and Transaction. The
target relation is Loan. It stores the loan applications and their results (approved
or not), which are used as class labels.

The third dataset is Movie + People dataset. It is from the Movies dataset
in UCI KDD archive, and is split into two databases. One of them contains
information of people and has three relations: Actor, Director, and Studio.
The other contains information about movies and has four relations: Movie,
MovieCategory (a movie may belong to multiple categories), Cast, and Award.

3 http://dm1.cs.uiuc.edu/csuiuc dataset/
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Fig. 4. Accuracy of predicting gainfulness of links

The target relation is Director and the class label is whether a director is old
or new (whether she started her career before or after 1970). All temporal infor-
mation is removed from Director relation before training.

We first test the accuracy of predicting gainfulness of links. Cross-validation
is used in this experiment as well as others, which means that a model is built
based on the links from two datasets, and is used to predict the gainfulness
of links in the third dataset. In this experiment a link is considered as gainful
if its gainfulness is greater than 0.25. The precision, recall, and accuracy of
prediction on each dataset is shown in Figure 4. Recall is more important than
precision because important features may be missed if a gainful link is predicted
as gainless, but it does not hurt much to predict a gainless link as gainful. It can
be seen that we achieve high recall and overall accuracy for predicting gainfulness
of links. This training process only takes about one second.

5.2 Experiments on Classification Accuracy

For each of the three datasets, we compare the accuracy, running time, and inter-
database communication of three approaches: (1) Single-DB CrossMine—the
CrossMine algorithm for single database; (2) Multi-DB CrossMine—the Cross-
Mine algorithm that is able to propagate information and search for features
across databases; (3) MDBM : our cross-database classification algorithm.
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Fig. 5. Accuracy, runtime, and inter-DB communication on CS Dept + DBLP dataset
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The results on CS Dept + DBLP dataset are shown in Figure 5. It can be seen
that using multi-database information can significantly increase classification
accuracy. MDBM achieves much higher efficiency in both running time and inter-
database communication, which shows the effectiveness of our approach.

The results on Loan application + Bank dataset are shown in Figure 6. One
can see that both Multi-DB CrossMine and MDBM achieve high accuracy, and
MDBM is much more efficient in inter-DB communication and running time.
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Fig. 6. Accuracy, runtime, and inter-DB communication on Loan + Bank dataset
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The results on Movie + People dataset are shown in Figure 7. It can be seen
that MDBM achieves higher accuracy than Multi-DB CrossMine. Again MDBM
is much more efficient in inter-database communication (about 10% of that of
Multi-DB CrossMine) and running time. Single-DB CrossMine runs fast because
it cannot generate any meaningful rules.

5.3 Experiments on Scalability

We test the scalability of MDBM w.r.t. number of databases and number of
tuples on synthetic datasets. We use the data generator for CrossMine [14], which
can randomly generate a relational database with |R| relations, each having N
tuples on average. The target tuples are generated according to a set of randomly
generated rules that involve different relations. After a dataset is generated, we
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randomly partition it into several databases, and use database structuring tool
to identify inter-database links.

We first test the scalability of MDBM and Multi-DB CrossMine w.r.t. the
number of databases. Five datasets are generated, with number of databases
being one to five. Each database has five relations, and the expected number
of tuples in each relation is 1000. The accuracy, runtime and inter-database
communication of two algorithms are shown in Figure 8. It can be seen that their
accuracies are close, but MDBM achieves much higher efficiency and scalability
than CrossMine, especially in inter-database communication.

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1 2 3 4 5

#Database

A
cc

ur
ac

y 
  

Cro
ss

0

20

40

60

80

100

120

140

160

180

200

1 2 3 4 5
#Database

R
u

n
tim

e
 (

se
c)

 

Cro
ss

0

5

10

15

20

25

30

35

40

1 2 3 4 5
#Database

In
te

r-
D

B
 c

om
m

un
ic

at
io

n 
(M

B
) 

CrossMine

MDBM

Fig. 8. Scalability w.r.t. number of databases

0.5

0.6

0.7

0.8

0.9

1

2000 5000 10000 20000 50000

Number of tuples

A
cc

u
ra

cy S
er
ie

1

10

100

1000

2000 5000 10000 20000 50000

Number of tuples

R
un

tim
e 

(s
ec

)

Ser
ies
2

0.01

0.1

1

10

2000 5000 10000 20000 50000

Number of tuples

In
te

r-
D

B
 c

om
m

un
ic

at
io

n 
(M

B
) 

CrossMine

MDBM

Fig. 9. Scalability w.r.t. number of tuples

We also test the scalability of MDBM and Multi-DB CrossMine w.r.t. the
number of tuples. Five datasets are generated with identical schemas, each hav-
ing two databases and five relations in each database. The expected number
of tuples in each relation grow from 200 to 5,000. The accuracy, runtime and
inter-database communication of two algorithms are shown in Figure 9. It can
be seen that both algorithms are linear scalable in runtime and inter-database
communication, and MDBM is much more efficient than CrossMine.
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6 Conclusions

In this paper we present MDBM, a new approach for cross-database classifica-
tion. MDBM can perform accurate classification with data stored in multiple
heterogeneous databases, with low inter-database communication. It builds a
prediction model for usefulness of links from cross-database mining processes on
available datasets that can guide the mining tasks. To achieve high classification
accuracy with as low cost as possible, MDBM adopts an economical strategy
for cross-database mining, which selects actions with high gain-to-cost ratio. It
is shown by experiments that MDBM achieves both high accuracy and high ef-
ficiency (especially in inter-database communication) on classification tasks on
both real and synthetic datasets.

References

1. H. Blockeel, L.D. Raedt. Top-down induction of logical decision trees. Artificial
Intelligence, 1998.

2. P. Clark and R. Boswell. Rule induction with CN2: Some recent improvements. In
European Working Session on Learning, 1991.

3. D. W. Cheung, V. T. Ng, A. W. Fu, Y. Fu. Efficient Mining of Association Rules
in Distributed Databases. TKDE, 1996.

4. T. Dasu, T. Johnson, S. Muthukrishnan, V. Shkapenyuk. Mining Database Struc-
ture; Or, How to Build a Data Quality Browser. SIGMOD, 2002.

5. R. Dhamankar, Y. Lee, A. Doan, A. Halevy, P. Domingos. iMAP: Discovering
Complex Semantic Matches between Database Schemas. SIGMOD, 2004.

6. J. Hertz, R. Palmer, A. Krogh. Introduction to the Theory of Neural Computation.
Addison-Wesley, 1991.

7. M. Kantarcioglu, C. Clifton. Privacy-preserving Distributed Mining of Association
Rules on Horizontally Partitioned Data. TKDE, 2004.

8. Y. Lindell, B. Pinkas. Privacy Preserving Data Mining. CRYPTO, 2000.
9. S. Muggleton. Inverse entailment and progol. In New Generation Computing,

Special issue on Inductive Logic Programming, 1995.
10. J. R. Quinlan and R. M. Cameron-Jones. FOIL: A midterm report. In European

Conf. Machine Learning, 1993.
11. E. Rahm, P.A. Bernstein. A Survey of Approaches to Automatic Schema Matching.

VLDB Journal, 2001.
12. J. Vaidya, C. Clifton. Privacy Preserving Association Rule Mining in Vertically

Partitioned Data. KDD, 2002.
13. J. Vaidya, C. Clifton. Privacy-Preserving K-Means Clustering over Vertically Par-

titioned Data KDD, 2003.
14. X. Yin, J. Han, J. Yang, P.S. Yu. CrossMine: Efficient Classification Across Mul-

tiple Database Relations. ICDE, 2004.
15. W. Zhang. Search techniques. Handbook of data mining and knowledge discovery,

Oxford University Press, 2002.



A Probabilistic Clustering-Projection Model
for Discrete Data

Shipeng Yu1,2, Kai Yu2, Volker Tresp2, and Hans-Peter Kriegel1

1 Institute for Computer Science, University of Munich, Germany
2 Siemens Corporate Technology, Munich, Germany

Abstract. For discrete co-occurrence data like documents and words,
calculating optimal projections and clustering are two different but re-
lated tasks. The goal of projection is to find a low-dimensional latent
space for words, and clustering aims at grouping documents based on
their feature representations. In general projection and clustering are
studied independently, but they both represent the intrinsic structure
of data and should reinforce each other. In this paper we introduce a
probabilistic clustering-projection (PCP) model for discrete data, where
they are both represented in a unified framework. Clustering is seen to
be performed in the projected space, and projection explicitly considers
clustering structure. Iterating the two operations turns out to be exactly
the variational EM algorithm under Bayesian model inference, and thus
is guaranteed to improve the data likelihood. The model is evaluated on
two text data sets, both showing very encouraging results.

1 Introduction

Modelling discrete data is a fundamental problem in machine learning, pat-
tern recognition and statistics. The data is usually represented as a large (and
normally sparse) matrix, where each entry is an integer and characterizes the
relationship between corresponding row and column. For example in document
modelling, the “bag-of-words” methods represent each document as a row vec-
tor of occurrences of each word, ignoring any internal structure and word order.
This is taken as the working example in this paper, but the proposed model is
generally applicable to other discrete data.

Data projection and clustering are two important tasks and have been widely
applied in data mining and machine learning (e.g., principal component anal-
ysis (PCA) and k-means [1]). Projection is also referred as feature mapping
that aims to find a new representation of data, which is low-dimensional and
physically meaningful. On the other hand, clustering tries to group similar data
patterns together, and thus uncovers the structure of data. Traditionally these
two methods are studied separately and mainly on continuous data. However in
this paper we investigate them on discrete data and treat them jointly.

Projection on discrete data differs from the case on continuous space, where,
for example, the most popular technology PCA tries to find the orthogonal di-
mensions (or factors) that explains the covariance of data dimensions. However,

A. Jorge et al. (Eds.): PKDD 2005, LNAI 3721, pp. 417–428, 2005.
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one cannot make the same orthogonal assumption on the low-dimensional factors
of discrete data and put the interests on the covariance anymore. Instead, it is
desired to find the independent latent factors that explain the co-occurrence of
dimensions (e.g., words). In text modelling, if we refer the factors as topics, the
projection actually represent each document as a data point in a low-dimensional
topic space, where a co-occurrence factor actually suggests more or less a clus-
ter of words (i.e., a group of words often occurring together). Intuitively, if the
projected topic space is informative enough, it should also be highly indicative
to reveal the clustering structure of documents. On the other hand, a truly dis-
covered clustering structure reflects the shared topics within document clusters
and the distinguished topics across document clusters, and thus can offer evi-
dence for the projection side. Therefore, it is highly desired to consider the two
problems in a unified model.

In this paper a novel probabilistic clustering-projection (PCP) model is pro-
posed, to jointly handle the projection and clustering for discrete data. The
projection of words is explicitly formulated with a matrix of model parameters.
Document clustering is then incorporated using a mixture model on the pro-
jected space, and we model each mixture component as a multinomial over the
latent topics. In this sense this is a clustering model using projected features for
documents if the projection matrix is given, and a projection model with struc-
tured data for words if the clustering structure is known. A nice property of the
model is that we can perform clustering and projection iteratively, incorporating
new information on one side to the updating of the other. We will show that
they are corresponding to a Bayesian variational EM algorithm that improves
the data likelihood iteratively.

This paper is organized as follows. The next section reviews related work.
Section 3 introduces the PCP model and explicitly points out the clustering
and projection effects. In Section 4 we present inference and learning algorithm.
Then Section 5 presents experimental results and Section 6 concludes the paper.

2 Related Work

PCA is perhaps the most well-known projection technique, and has its counter-
part in information retrieval called latent semantic indexing [4]. For discrete data,
an important related work is probabilistic latent semantic indexing (pLSI) [7]
which directly models latent topics. PLSI can be treated as a projection model,
since each latent topic assigns probabilities to a set of words and thus a docu-
ment, represented as a bag of words, can be treated as generated from a mixture
of multiple topics. However, the model is not built for clustering and, as pointed
by Blei et al. [2], it is not a proper generative model, since it treats document
IDs as random variables and thus cannot generalize to new documents. Latent
Dirichlet allocation (LDA) [2] generalizes pLSI by treating the topic mixture
parameters (i.e., a multinomial over topics) as variables drawn from a Dirichlet
distribution. This model is a well-defined generative model and performs much
better than pLSI, but the clustering effect is still missing. On the other side, doc-
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ument clustering has been intensively investigated and the most popular method
is probably partition-based algorithms like k-means (see, e.g., [1]). Non-negative
matrix factorization (NMF) [11] is another candidate and is shown to obtain
good results in [13].

Despite that plenty of work has been done in either clustering or projection,
the importance of considering both in a single framework has been noticed only
recently, e.g., [6] and [12]. Both works are concerned about document clustering
and projection on continuous data, while lacking the probabilistic interpretations
to the connections among documents, clusters and factors. Buntine et al. [3]
noticed this problem for discrete data and pointed out that the multinomial
PCA model (or discrete PCA) takes clustering and projection as two extreme
cases. Another closely related work is the so-called two-sided clustering, like [8]
and [5], which aims to clustering words and documents simultaneously. In [5]
it is implicitly assumed a one-to-one correspondence between the two sides of
clusters. [8] is a probabilistic model for discrete data, but it has similar problems
as in pLSI and not generalizable to new documents.

3 The PCP Model

We consider a corpus D containing D documents, with vocabulary V having V
words. Following the notation in [2], each document d is a sequence of Nd words
that is denoted by wd = {wd,1, . . . , wd,Nd

}, where wd,n is a variable for the nth
word in wd and denotes the index of the corresponding word in V .

To simplify explanations, we use “clusters” for components in document clus-
tering structure and “topics” for projected space for words. Let M denote the
number of clusters and K the dimensionality of topics. Roman letters d, m, k, n, j
are indices for documents, clusters, topics, words in wd, and words in V . They
are up to D, M, K, Nd, V , respectively. Letter i is reserved for temporary index.

3.1 The Probabilistic Model

The PCP model is a generative model for a document corpus. Figure 1 (left)
illustrates the sampling process in an informal way. To generate one document
d, we first choose a cluster from the M clusters. For the mth cluster, the cluster
center is denoted as θm and defines a topic mixture over the topic space. There-
fore θm is a K-dimensional vector and satisfies θm,k ≥ 0,

∑K
k=1 θm,k = 1 for all

m = 1, . . . , M . The probability of choosing a specific cluster m for document d
is denoted as πm, and π := {π1, . . . , πM} satisfies πm ≥ 0,

∑M
m=1 πm = 1.

When document d chooses cluster m, it defines a document-specific topic
mixture θd, which is obtained exactly from the cluster center θm. Note that
everything is discrete and two documents belonging to the same cluster will
have the same topic mixtures. Words are then sampled independently given
topic mixture θd, in the same way as in LDA. Each word wd,n is generated by
first choosing a topic zd,n given the topic mixture, and then sampling the word
given the projection β. β is the K×V matrix where βk,j specifies the probability
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Fig. 1. Informal sampling process (left) and plate model (right) for the PCP model.
In the left figure, dark arrows show dependencies between entities and the dashed line
separates the clustering and projection effects. In the plate model, rectangle means
independent sampling, and hidden variables and model parameters are denoted as
circles and squares, respectively. Observed quantities are marked in black.

of generating word j given topic k, βk,j = p(wj = 1|zk = 1). Therefore each row
βk,: defines a multinomial distribution for all words over topic k and satisfies
βk,j ≥ 0,

∑V
j=1 βk,j = 1.

To complete the model, we put a Dirichlet prior Dir(λ) for all the cluster
centers θ1, . . . , θM , and a symmetric Dirichlet prior Dir(α/M, . . . , α/M) for the
mixing weights π. Note that they are sampled only once for the whole corpus.

Finally we obtain the probabilistic model formally illustrated in Figure 1
(right), using standard plate model. cd takes value {1, . . . , M} and acts as the
indicator variable saying which cluster document d takes on out of the M clus-
ters. All the model parameters are α, λ, β and amount to 1 + M + K × (V − 1).
The following procedure describes the sampling process for the whole corpus:

1. Choose model parameter α, λ, β;
2. For the mth cluster, choose θm ∼ Dir(λ), m = 1, . . . , M ;
3. Choose the mixing weight π ∼ Dir(α/M, . . . , α/M);
4. For each document wd:

(a) Choose a cluster m with mixing weights π, and obtain θd = θm;
(b) For each of the Nd words wd,n:

i. Choose a topic zd,n ∼ Mult(θd);
ii. Choose a word wd,n ∼Mult(βzd,n,:).

Denote θ as the set of M cluster centers {θ1, . . . , θM}, the likelihood of the
corpus D can be written as

L(D; α, λ, β) =
∫

π

∫
θ

D∏
d=1

p(wd|θ, π; β)dP (θ; λ) dP (π; α), (1)

where p(θ; λ) =
∏M

m=1 p(θm; λ), and the likelihood of document d is a mixture:

p(wd|θ, π; β) =
M∑

cd=1

p(wd|θ, cd; β)p(cd|π). (2)
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Given mixture component cd, likelihood term p(wd|θ, cd; β) is then given by

p(wd|θcd
; β) =

Nd∏
n=1

K∑
zd,n=1

p(wd,n|zd,n; β)p(zd,n|θcd
). (3)

3.2 PCP as a Clustering Model

As can be seen from (2) and (3), PCP is a clustering model when the projection
β is assumed known. The essential terms now are the probabilities of clusters
p(m|π) = πm, probabilistic clustering assignment for documents p(wd|θm; β),
and cluster centers θm, for m = 1, . . . , M . Note from (3) that cluster centers θm

are not modelled directly with words like p(w|θm), but with topics, p(z|θm). This
means we are not clustering documents in word space, but in topic space. This
is analogous to clustering continuous data on the latent space found by PCA
[6], and K is exactly the dimensionality of this space. To obtain the probability
that document d belongs to cluster m, we project each word into topic space,
and then calculate the distance to cluster center θm by considering all the words
in wd. This explains (3) from perspective of clustering.

To improve generalization and avoid overfitting, we put priors to θm and π
and treat them as hidden variables, as usually done in mixture modelling. The
prior distributions are chosen to be Dirichlet that is conjugate to multinomial.
This will make model inference and learning much easier (see Section 4).

3.3 PCP as a Projection Model

A projection model aims to learn projection β, mapping words to topics. As can
be seen from (3), the topics are not modelled directly with documents wd, but
with cluster centers θm. Therefore if clustering structure is already known, PCP
will learn β by using the richer information contained in cluster centers, not
just individual documents. In this sense, PCP can be explained as a projection
model with structured data and is very attractive because clustered documents
are supposed to contain less noise and coarser granularity. This will make the
projection more accurate and faster.

As a projection model, PCP is more general than pLSI because document
likelihood (3) is well defined and generalizable to new documents. Although LDA
uses similar equation as (3), the topic mixture θd is only sampled for current
document and no inter-similarity of documents is directly modelled. Documents
can only exchange information via the hyperparameter for θd’s, and thus its
effect to β is only implicit. On the contrary, PCP directly models similarity of
documents and incorporate all information to learn β.

As discussed in [2], projection β can be smoothed by putting a common
prior to all the rows. If only the maximum a posteriori (MAP) estimate of β is
considered, the effect of smoothing turns out to add a common factor to each
entry of β before normalization each row. This is also straightforward in PCP
model and we will not discuss it in detail for simplicity. In the experiments we
will use this smoothing technique.
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4 Inference and Learning

In this section we consider model inference and learning. As seen from Figure 1,
for inference we need to calculate the a posteriori distribution of latent variables

p̂(π, θ, c, z) := p(π, θ, c, z|D, α, λ, β),

including both effects of clustering and projection. Here for simplicity we denote
π, θ, c, z as groups of πm, θm, cd, zd,n, respectively. This requires to compute (1),
where the integral is however analytically infeasible. A straightforward Gibbs
sampling method can be derived, but it turns out to be very slow and inappli-
cable to high dimensional discrete data like text, since for each word we have
to sample a latent variable z. Therefore in this section we suggest an efficient
variational method by introducing variational parameters for latent variables [9].
Then we can maximize the data likelihood by iteratively updating these param-
eters and obtain a variational EM algorithm until convergence. The interesting
thing is that this algorithm is equivalent to performing clustering and projection
iteratively, which we will discuss in detail.

4.1 Variational EM Algorithm

The idea of variational EM algorithm is to propose a joint distribution
q(π, θ, c, z) for latent variables conditioned on some free parameters, and then
enforce q to approximate the a posteriori distributions of interests by minimizing
the KL-divergence DKL(q‖p̂) with respect to those free parameters. We propose
a variational distribution q over latent variables as the following

q(π, θ, c, z|η, γ, ψ, φ) = q(π|η)
M∏

m=1

q(θm|γm)
D∏

d=1

q(cd|ψd)
Nd∏
n=1

q(zd,n|φd,n), (4)

where η, γ, ψ, φ are groups of variational parameters, each tailoring the varia-
tional a posteriori distribution to each latent variable. In particular, η specifies
an M -dim. Dirichlet for π, γm specifies a K-dim. Dirichlet for distinct θm, ψd

specifies an M -dim. multinomial for indicator cd of document d, and φd,n specifies
a K-dim. multinomial over latent topics for word wd,n. It turns out that min-
imization of the KL-divergence is equivalent to maximization of a lower bound
of the log likelihood ln p(D|α, λ, β), derived by applying Jensen’s inequality [9]:

Lq(D) = Eq[ln p(π|α)] +
M∑

m=1

Eq[ln p(θm|λ)] +
D∑

d=1

Eq[ln p(cd|π)]

+
D∑

d=1

Nd∑
n=1

Eq[ln p(wd,n|zd,n, β)p(zd,n|θ, cd)]− Eq[ln q(π, θ, c, z)]. (5)

The optimum is found by setting the partial derivatives with respect to each
variational and model parameter to be zero, which corresponds to the variational
E-step and M-step, respectively. In the following we separate these equations into
two parts and interpret them from the perspective of clustering and projection,
respectively.
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4.2 Updates for Clustering

As we mentioned in Section 3.2, the specific variables for clustering are document-
cluster assignments cd, cluster centers θm, and cluster probabilities π. It turns out
that their corresponding variational parameters are updated as follows:

ψd,m ∝ exp
{ K∑

k=1

[(
Ψ(γm,k) − Ψ(

K∑
i=1

γm,i)
) Nd∑

n=1

φd,n,k

]
+ Ψ(ηm) − Ψ(

M∑
i=1

ηi)
}

, (6)

γm,k =
D∑

d=1

ψd,m

Nd∑
n=1

φd,n,k + λk, ηm =
D∑

d=1

ψd,m +
α

M
, (7)

where Ψ(·) is the digamma function, the first derivative of the log Gamma func-
tion. ψd,m are the a posteriori probabilities p(cd = m) that document d belongs
to cluster m, and define a soft cluster assignment for each document. γm,k char-
acterize the cluster centers θm and are basically the kth coordinate of θm on the
topic space. Finally ηm control the mixing weights for clusters and define the
probability of cluster m. φd,n,k are the variational parameters that measure the
a posteriori probability that word wd,n in document d is sampled from topic k.
They are related to projection of words and assumed fixed at the moment.

These equations seem to be complicated and awful, but they turn out to be
quite intuitive and just follow the standard clustering procedure. In particular,

– ψd,m is seen from (6) to be a multiplication of two factors p1 and p2, where
p1 includes the γ terms in the exponential and p2 the η terms. Since ηm

controls the probability of cluster m, p2 acts as a prior term for ψd,m; p1 can
be seen as the likelihood term, because it explicitly measures the probability
of generating wd from cluster m by calculating the inner product of projected
features and cluster centers. Therefore, (6) directly follows from Bayes’ rule,
and a normalization term is needed to ensure

∑M
m=1 ψd,m = 1.

– γm,k is updated by summing over the prior position λk and the empirical
location, the weighted sum of projected documents that belong to cluster k.

– Similar to γm,k, ηk is empirically updated by summing over the belonging-
nesses of all documents to cluster k. α/M acts as a prior or a smoothing
term, shared by all the clusters.

Since these parameters are coupled, clustering is done by iteratively updating
(6) and (7). Note that the words are incorporated into the clustering process
only via the projected features

∑Nd

n=1 φd,n,k. This means that the clustering is
performed not in word space, but in the more informative topic space.

4.3 Updates for Projection

If ψ, γ, η are fixed, projection parameters φ and β are updated as:

φd,n,k ∝ βk,wd,n
exp

{ M∑
m=1

ψd,m

[
Ψ(γm,k) − Ψ(

K∑
i=1

γm,i)
]}

, (8)

βk,j ∝
D∑

d=1

Nd∑
n=1

φd,n,kδj(wd,n), (9)
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where δj(wd,n) = 1 if wd,n takes word index j, and 0 otherwise. Please recall that
φd,n,k is the a posteriori probability that word wd,n is sampled from topic k, and
βk,j measures the probability of generating word j from topic k. Normalization
terms are needed to ensure

∑K
k=1 φd,n,k = 1 and

∑V
j=1 βk,j = 1, respectively.

Update (9) for βk,j is quite intuitive, since we just sum up all the documents
that word j occurs, weighted by their generating probabilities from topic k.
For update of φd,n,k in (8), βk,wd,n

is the probability that topic k generates
word wd,n and is thus the likelihood term; the rest exponential term defines the
prior, i.e., the probability that document d selects topic k. This is calculated by
taking into account the clustering structure and summing over all cluster centers
with corresponding soft weights. Therefore, the projection model is learned via
clusters of documents, not simply individual ones. Finally we iterate (8) and (9)
until convergence to obtain the optimal projection.

4.4 Discussion

As guaranteed by variational EM algorithm, iteratively performing the given
clustering and projection operations will improve the data likelihood monoton-
ically until convergence, where a local maxima is obtained. The convergence is
usually very fast, and it would be beneficial to initialize the algorithm using
some simple projection models like pLSI.

The remaining parameters α and λ control the mixing weights π and cluster
centers θm a priori, and they can also be learned by setting their partial deriva-
tives to zero. However, there are no analytical updates for them and we have to
use computational methods like Newton-Raphson method as in [2].

The PCP model can also be seen as a Bayesian generalization of the TTMM
model [10], where π and θm are directly optimized using EM. Treating them
as variables instead of parameters would bring more flexibility and reduce the
impact of overfitting. We summarize the PCP algorithm in the following table:

Table 1. The PCP Algorithm

1. Initialize model parameters α, λ and β. Choose M > 0 and K > 0. Choose initial
values for φd,n,k, γm,k and ηk.

2. Clustering: Calculate the projection term
∑Nd

n=1 φd,n,k for each document d and
iterate the following steps until convergence:
(a) Update cluster assignments ψd,m by (6);
(b) Update cluster centers γm,k and mixing weights ηk by (7).

3. Projection: Calculate the clustering term
∑M

m=1 ψd,m

[
Ψ(γm,k) − Ψ(

∑K
i=1 γm,i)

]
for each document d and iterate the following steps until convergence:
(a) Update word projections φd,n,k by (8);
(b) Update projection matrix β by (9).

4. Update α and λ if necessary.
5. Calculate the lower bound (5) and go to Step 2 if not converged.
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5 Empirical Study

In this section we illustrate experimental results for the PCP model. In particular
we compare it with other models in the following three perspectives:

– Document Modelling: How good is the generalization in PCP model?
– Word Projection: Is the projection really improved in PCP model?
– Document Clustering: Will the clustering be better in PCP model?

We will make comparisons based on two text data sets. The first one is Reuters-
21578, and we select all the documents that belong to the five categories money-
fx, interest, ship, acq and grain. After removing stop words, stemming and picking
up all the words that occur at least in 5 documents, we finally obtain 3948
documents with 7665 words. The second data set consists of four groups taken
from 20Newsgroup, i.e., autos, motorcycles, baseball and hockey. Each group has
1000 documents, and after the same preprocessing we get 3888 documents with
8396 words. In the following we use “Reuters” and “Newsgroup” to denote these
two data sets, respectively. Before giving the main results, we illustrate one case
study for better understanding of the algorithm.

5.1 Case Study

We run the PCP model on the Newsgroup data set, and set topic number K = 50
and cluster number M = 20. α is set to 1 and λ is set with each entry being
1/K. Other initializations are chosen randomly. The algorithm runs until the
improvement on Lq(D) is less than 0.01% and converges after 10 steps.

Figure 2 illustrates part of the results. In (a) 10 topics are shown with 10
words that have highest assigned probabilities in β. The topics are seen to be
very meaningful and each defines one projection for all the words. For instance,
topic 5 is about “bike”, and 1, 7, 9 are all talking about “car” but with different
subtopics: 1 is about general stuffs of car; 7 and 9 are specifying car systems
and purchases, respectively. Besides finding topic 6 that covers general terms for
“hockey”, we even find two topics that specify the hockey teams in US (4) and
Canada (8). These topics provide the building blocks for document clustering.

Figure 2(b) gives the 4 cluster centers that have highest probabilities after
learning. They define topic mixtures over the whole 50 topics, and for illustration
we only show the given 10 topics as in (a). Darker color means higher weight. It
is easily seen that they are corresponding to the 4 categories autos, motorcycles,
baseball and hockey, respectively. If we sort all the documents with their true la-
bels, we obtain the document-cluster assignment matrix as shown in Figure 2(c).
Documents that belong to different categories are clearly separated.

5.2 Document Modelling

In this subsection we investigate the generalization of PCP model. We compare
PCP with pLSI and LDA on the two data sets, where 90% of the data are used
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1 2 3 4 5 6 7 8 9 10
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good fly time adirondack shift season oil nyi insur game
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write articl strike moncton time year system la write jai
ve left write hockei work star engin stl cost won

sound time hirschbeck utica problem minnesota spe buf sell clemen

(a)

(b) (c)

Fig. 2. A case study of PCP model on Newsgroup data. (a) shows 10 topics and
10 associated words for each topic with highest generating probabilities. (b) shows 4
clusters and the topic mixture on the 10 topics. Darker color means higher value. (c)
gives the assignments to the 4 clusters for all the documents.

for training and the rest 10% are held out for testing. The comparison metric
is perplexity, which is conventionally used in language modelling and defined as
Perp(Dtest) = exp(− ln p(Dtest)/

∑
d |wd|), where |wd| is the length of document

d. A lower perplexity score indicates better generalization performance.
We follow the formula in [2] to calculate perplexity for pLSI. For PCP model,

we take the similar approach as in LDA, i.e., we run the variational inference and
calculate the lower bound (5) as the likelihood term. M is set to be the number
of training documents for initialization. As suggested in [2], a smoothing term
for β is used and optimized for LDA and PCP. All the three models are trained
until the improvement is less than 0.01%. We compare all three algorithms using
different K’s, and the results are shown in Table 2. PCP outperforms both pLSI
and LDA in all the runs, which indicates that the model fits the data better.

5.3 Word Projection

All the three models pLSI, LDA and PCP can be seen as projection models and
learn the mapping β. To compare the quality, we train a support vector machine
(SVM) on the low-dimensional representations of these models and measure the
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Table 2. Perplexity comparison for pLSI, LDA and PCP on Reuters and Newsgroup

Reuters Newsgroup
K 5 10 20 30 40 50 5 10 20 30 40 50

pLSI 1995 1422 1226 1131 1128 1103 2171 2018 1943 1868 1867 1924
LDA 1143 892 678 599 562 533 2083 1933 1782 1674 1550 1513
PCP 1076 882 670 592 555 527 2039 1871 1752 1643 1524 1493

(a) (b)

Fig. 3. Classification results on Reuters (a) and Newsgroup (b)

classification rate. For pLSI, the projection for document d is calculated as the
a posteriori probability of latent topics conditioned on d, p(z|d). This can be
computed using Bayes’ rule as p(z|d) ∝ p(d|z)p(z). In LDA it is calculated as
the a posteriori Dirichlet parameters for d in the variational E-step [2]. In PCP
model this is simply the projection term

∑Nd

n=1 φd,n,k which is used in clustering.
We train a 10-topic model on the two data sets and then train a SVM for

each category. Note that we are reducing the feature space by 99.8%. In the ex-
periments we gradually improve the number of training data from 10 to 200 (half
positive and half negative) and randomize 50 times. The performance averaged
over all categories is shown in Figure 3 with mean and standard deviation. It is
seen that PCP obtains better results and learns a better word projection.

5.4 Document Clustering

In our last experiment we demonstrate the performance of PCP model on doc-
ument clustering. For comparison we implement the original version of NMF
algorithm [11] which can be shown as a variant of pLSI, and a k-means algo-
rithm that uses the learned features by LDA. For NMF we tune its parameter to
get best performance. The k-means and PCP algorithms are run with the true
cluster number, and we tune the dimensionality K to get best performance.

The experiments are run on both two data sets. The true cluster number
is 5 for Reuters and 4 for Newsgroup. For comparison we use the normalized
mutual information [13], which is just the mutual information divided by the
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Table 3. Comparison of clustering using different methods

NMF LDA+k-means PCP
Reuters 0.246 0.331 0.418

Newsgroup 0.522 0.504 0.622

maximal entropy of the two cluster sets. The results are given in Table 3, and it
can be seen that PCP performs the best on both data sets. This means iterating
clustering and projection can obtain better clustering structure for documents.

6 Conclusions

This paper proposes a probabilistic clustering-projection model for discrete co-
occurrence data, which unifies clustering and projection in one probabilistic
model. Iteratively updating the two operations turns out to be the variational
inference and learning under Bayesian treatments. Experiments on two text data
sets show promising performance for the proposed model.
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Abstract. Collaborate Filtering is one of the most popular recommen-
dation algorithms. Most Collaborative Filtering algorithms work with a
static set of data. This paper introduces a novel approach to providing
recommendations using Collaborative Filtering when user rating is re-
ceived over an incoming data stream. In an incoming stream there are
massive amounts of data arriving rapidly making it impossible to save all
the records for later analysis. By dynamically building a decision tree for
every item as data arrive, the incoming data stream is used effectively
although an inevitable trade off between accuracy and amount of mem-
ory used is introduced. By adding a simple personalization step using
a hierarchy of the items, it is possible to improve the predicted ratings
made by each decision tree and generate recommendations in real-time.
Empirical studies with the dynamically built decision trees show that
the personalization step improves the overall predicted accuracy.

1 Introduction

Nowadays an individual may have access to so many sources of information
that is difficult to find the interesting information. The task of a Recommender
System [1] is to find interesting items among the vast sea of information. Collab-
orative Filtering [2] is a recommender system technology that works by building
a database of Users-Items with the ratings and then using this database to make
recommendations to a user, based on the rating on an item referred to as the
Target Item. The whole idea of using users’ rating database is to automate the
natural social process where people rely on other people’s recommendations,
this phenomenon is also know as “word of mouth”. Collaborative Filtering algo-
rithms can be grouped into two categories: memory-based and model-based [3].
In memory-based algorithms [4], the entire Users-Items database is used to gen-
erate a prediction while in model-based approaches [5] a model of user ratings
is first developed to make predictions.

One fundamental problem of Collaborative Filtering is managing a big Users-
Items database and using it effectively to make predictions about ratings on
target items. Any popular online store receives thousands of orders and visits
per hour, millions each month. Using all this information to provide quick and
quality recommendations using the immense data collected about past users can
be challenging. With an incoming data stream it is not possible to build a static
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Users-Items database because there are massive volumes of records arriving con-
tinuously at a rapid rate. Generating recommendations over a data stream has
the added constraints that the algorithm gets only one look of the data, there
is a limit on the number of records it can store, and the recommendations must
be made in real-time.

The rest of the document is organized as follows: the next section briefly
describes the literature related to collaborative filtering algorithms that aim at
giving recommendations in real-time. In section 3 the proposed approach for
handling an incoming stream of ratings is described. Section 4 describes the
experiments conducted and section 5 finishes with conclusions.

2 Related Work

Linden et al [6] proposed the item-to-item collaborative filtering algorithm that
scales to massive datasets and provides recommendations in real-time by record-
ing items occurring together. However, the similarities among items are calcu-
lated off-line. The off-line batch process is followed by most collaborative filtering
algorithms to provide recommendations in real-time, but this produces an out-
dated model where the quality of the recommendations is low. Online algorithms
in Collaborative Filtering [7] are more suitable for handling an incoming data
stream since these are fast, incremental and there is no need to store all the previ-
ously seen examples. The first online algorithm applied to collaborative filtering
was the Weighted Majority Prediction (WMP) [8], Delgado et al [9] extended
this approach for multi-valued ratings. Papagelis et al [10] developed a method
to incrementally update similarities among users, and Domingos et al [11] pro-
posed VFDT, a system that allows the building of decision trees dynamically to
mine data streams.

3 Proposed Approach

The goal of data stream processing is to mine patterns, process queries and com-
pute different statistics on data streams in real-time [12]. The proposed approach
attempts to deal with the prediction problem of Collaborative Filtering when
the ratings are received over a continuous data stream. The prediction problem
in Collaborative Filtering over a data stream is defined as follows. Having a
list of items I and a set of online users U , an incoming stream S of opinions
〈Ui, {Ij , ..., Ik}, {Oj, ..., Ok}〉 is received, where Ui identifies the i-th online user,
{Ij , ..., Ik} ⊂ I is the set of items rated by Ui, and {Oj , ..., Ok} are the opinions
of user Ui on items {Ij , ..., Ik}. The task is to predict in real-time, the opinion
Ob of the online user Ui on a target item Ib where Ib /∈ {Ij , ..., Ik}.

The main idea of the proposed approach is to build a decision tree for every
item by assuming they are all related to each other, using a very fast algorithm to
handle the rapid incoming stream of ratings effectively and then personalizing the
predicted rating made by the decision tree by scaling it up or down depending on
the hierarchy of items liked by the user. The scaling of the decision trees predicted
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value with the items’ hierarchy deals with the inevitable hit in accuracy that is
introduced when building the decision trees over the incoming stream. The next
sections describe the proposed approach in detail.

3.1 Building Decision Trees Dynamically

Observing the layout of the Users-Ratings database, the prediction of the rating
for a target item by the active user can be seen as a classification problem [13]
where an attribute value is found instead of trying to come up with a number
between the ratings’s range. The classification problem view can be applied easily
to both scaled or binary ratings. With 0-5 rating values, each item has 6 classes
and with binary ratings only 2 (’Disliked’ and ’Liked’). Having N items, the
classification problem involves N − 1 attributes (the rest of the items in the
database) and the class is the target’s item rating.

For every item it is necessary to find other items that have stronger predictive
capacity so they can be used in the prediction of the item’s rating. If someone
purchases a cereal he would eventually need milk, or if someone purchases a lamp
he would need a bulb. The idea is to find these items that are strongly associated
with the target item and use their ratings to predict the target’s rating. Decision
trees are useful for this task, but with an incoming data stream they need to be
built dynamically since it is not possible to load all the examples into memory.
The VFDT learning system [11] allows the building of a decision tree on a data
stream by considering a small subset of cases to find the best attribute to make
a split decision using information gain. By using VFDT, it is possible to build a
decision tree for every item in the database when the ratings are received over a
data stream as shown in figure 1. Nevertheless, the dynamic building of decision
trees for each item brings a trade-off between the accuracy and the amount of
memory used to store the records statistics.

Fig. 1. Building decision trees for every item in the database dynamically

3.2 The Hierarchy of Items

Once the prediction of a rating for an active user has been made, using the dynam-
ically built decision trees, the predicted rating can be improved. Each decision tree
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provides a predicted rating that has been proven to be true with the general sta-
tistical properties of the past examples, no true personalization of the results has
been done. An accuracy hit has also been added to the decision trees by building
them dynamically. There is still the issue of having to operate on a data stream
where there is little or no information at all about past users to use in this person-
alization step. Here is where some information known or derived about the items
can be used online to improve the prediction made by the decision tree.

The hierarchy of items [14] can be used to make certain assumptions about the
users’ interests. One possible way to start understanding a user’s interests is when
he starts pointing out some of the items thatwill be interesting to him. If a hierarchy
of the items liked by the user is built, this hierarchy can be used to look for items
that belong to categories contained in this hierarchyand provide recommendations
for that user. If an item was predicted as disliked by the active user by the item’s
decision tree and this item belongs to one of the categories contained in the active
user’s hierarchy of liked items, it is possible to argue that the decision tree is not
completely applicable to this user and the rating should be scaled up.

There are some important aspects to take into account when using the hier-
archy of items to scale up or down the predicted rating given by the dynamically
built decision trees. Scaling up all the ratings of items belonging to the built hi-
erarchy that were marked as disliked by the decision tree can be too aggressive.
A user might go to purchase groceries at a supermarket where the taxonomy of
items is varied and complex, his list of groceries will include many items of many
taxonomic categories but he will probably only be interested in a few products
that belong to his favorite category (e.g. Cereals) and he usually purchases a lot
of items belonging to this single category. Is in this case where it makes sense to
scale up all the ratings of the items predicted as disliked belonging to the user’s
favorite category or set of favorite categories so he can receive recommendations
about items he hasn’t seen but belong to the favorite category of the active user.

4 Experiments and Results

A series of experiments were conducted to examine the prediction ability of the
decision trees built dynamically for each item and the improving capability of using
a hierarchy of items. In particular, for the decision trees it was important to first
examine which attribute values definition had a better performance for building
dynamically the decision trees and how these performed when exposed to different
number of attributes. VFDT [11] was the algorithm used to build the decision trees
for each item. Finally, the improving ability of using a hierarchical taxonomy of
items to change the predictions given by each decision tree was evaluated.

4.1 Experiments Setup

The proposed approach was evaluated with EachMovie 1. EachMovie is a dataset
ofmovie ratingsmade publicly available byDigital EquipmentCorporation (DEC)
1 http://research.compaq.com/SRC/eachmovie/
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for Collaborative Filtering research. The dataset contains the numeric ratings for
1628 movies given by 72916 users. Each numeric rating is a score from 0.0 to 1.0
with 0.2 spaces that maps linearly to the zero-to-five star rating were a five star
rating stands for a ’liked it very much’ and a 0 star rating for a ’Didn’t or won’t
like it’. Each vote is accompanied by a time stamp. For the experiments a subset of
500 movies with the greatest number of votes was first extracted. The entries were
ordered by the time stamp to simulate an incoming data stream. The evaluation
metrics used were the Mean Absolute Error (MAE) and the Mean Squared Error
(MSE) which are shown in equations 1 and 2 and where pi and qi is the predicted-
rating pair for item i, and N is the total number of items. These two metrics were
measured for the whole database and for each movie.

MAE =
∑N

i=0 |pi − qi|
N

(1)

MSE =
∑N

i=0 |pi − ri|2
N

(2)

4.2 Experiment 1: Decision Trees’ Attributes Evaluation

In our first experiment, the goal was to find out which was the best way to build
the decision trees for every item in terms of the definition of the attributes’
values. The evaluation metrics were calculated with the distance between the
predicted rating class and the real rating given by the user. Only 50 Movies with
the greatest number of votes were used. VFDT’s parameters were initialized to
nominal values: τ = 0.055, δ = 0.0000001 and nmin = 250. The results are shown
in figure 2.

The decision trees built with 7 cardinal valued attributes outperformed the
others built with different attribute values. In this setting, every unknown rating

Fig. 2. Dynamically built decision trees performance with different types of attributes
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was assigned to a new ’Undefined’ class so there weren’t any missing values. The
decision trees built with continuous attributes also performed well compared
with the decision trees built with 6 valued attributes and missing values.

4.3 Experiment 2: Number of Attributes for Decision Trees

To see how the decision trees behaved when exposed to more attributes and
more data sparsity, movies with the greatest number of votes were added from
the unused subset. These experiments used 80 percent of the dataset to build
the decision trees, and the other 20 percent was used to test them measuring
the MAE and MSE as in the first experiment. VFDT’s parameters were set to
τ = 0.1, δ = 0.0000001 and nmin = 250. Results are shown in table 1. The
decision trees performed relatively stable when exposed to more data. The more
attributes are available, the lower the MAE for the best performing decision tree.
This can be explained by the fact that for building each decision tree there are
more items so there is a bigger chance of finding items with stronger predictive
capacity and the target item’s predicted rating is more accurate. On the other
hand, the worst performing decision trees decreased their accuracy with more
attributes because some items didn’t have enough examples to build an accurate
decision tree.

4.4 Experiment 3: Using the Items’ Hierarchy

In order to improve the decision’s trees results using the item’s hierarchy and
face the accuracy trade off by dynamically building the decision trees, the genre
classification about each movie was used. In the EachMovie dataset, each movie
belongs to one or more genres, to deal with this, the set of genres of each movie
were treated as one category; that is, if a movie belonged to the genres action
and drama, a category called ’Action and Drama’ was created and all the movies
belonging to only these two genres were added to the category. The settings of
experiment 4.3 were used and a hierarchy of items was built with the items liked
by the user: those that had a rating greater or equal to 4 stars. If the target
item didn’t belong to any of the genres contained in the hierarchy of items, the
decision trees’ predicted rating were decreased by one if it was liked, if the movie

Table 1. Errors of the dynamically built decision trees

MAE MAE MSE MSE
Movies MAE MSE Best Worst Best Worst

DT DT DT DT

100 0.2062 0.0896 0.1089 0.5401 0.0319 0.4130
200 0.2166 0.0984 0.0676 0.5401 0.0370 0.4130
300 0.2224 0.1043 0.0676 0.5581 0.0291 0.4327
400 0.2238 0.1062 0.0676 0.5687 0.0336 0.4327
500 0.2287 0.1111 0.0676 0.7526 0.0336 0.6071
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belonged to the most popular set of genres in the hierarchy of liked items by the
user, the decision trees’ predicted rating was increased by one if it was disliked
(less than or equal to ’3’), otherwise the decision trees’ predicted rating was left
unchanged. Results are shown in table 2.

Table 2. Hierarchy Personalization Errors

MAE MAE MSE MSE
Movies MAE MSE Best Worst Best Worst

DT DT DT DT

100 0.2039 0.0818 0.1074 0.5051 0.0296 0.3608
200 0.2127 0.0891 0.0692 0.4801 0.0316 0.3224
300 0.2185 0.0946 0.0668 0.5437 0.0302 0.3866
400 0.2203 0.0965 0.0721 0.5424 0.0331 0.3853
500 0.2242 0.1002 0.0709 0.7522 0.0331 0.6065

The use of the liked items hierarchy per user effectively improved the decision
trees’ results. Each decision tree was built dynamically so there was an inevitable
tradeoff in the accuracy of the predicted rating and the amount of memory used.
As we can see from table 4 that the MSE was lowered, meaning that the big
errors produced by the decision trees were reduced. In all cases the performance
of prediction, with the worst-case errors, is improved.

5 Conclusions

This paper introduced a novel approach to providing recommendations with Col-
laborative Filtering over an incoming data stream containing user rating over
items. By dynamically building decision trees for every item, it is possible to
deal with an incoming data stream and use all received data to generate rec-
ommendations. A hierarchy of items was used to improve the personalization of
each generated decision tree. Moreover, by using different types of hierarchies
of items, the same set of decision trees may behave differently for the different
mappings between the items and their categories. So, different item hierarchies
can lead to different predictions. For example a hierarchy of items might be a
taxonomy that focuses on understanding of user profile. Then the recommenda-
tion will be based on user tastes. While another hierarchy could group popular
and unpopular items that will lead to some novel recommendations.

The results of our experiments have shown that our proposed approach of
building the multiple decision trees on the fly for the real-time recommendation
is effective and efficient.
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Abstract. In this paper we investigate the relationship between closed
itemset mining, the complete pruning technique and item ordering in
the Apriori algorithm. We claim, that when proper item order is used,
complete pruning does not necessarily speed up Apriori, and in databases
with certain characteristics, pruning increases run time significantly. We
also show that if complete pruning is applied, then an intersection-based
technique not only results in a faster algorithm, but we get free closed-
itemset selection concerning both memory consumption and run-time.

1 Introduction

Frequent itemset mining (FIM) is a popular and practical research field of data
mining. Techniques and algorithms developed here are used in the discovery
of association rules, sequential patterns, episode rules, frequent trees and sub-
graphs, and classification rules. The set of frequent closed itemsets (FC) is an
important subset of the frequent itemsets (F ) because it offers a compact repre-
sentation of F . This means that FC contains fewer elements, and from FC we
can completely determine the frequent itemsets [1].

Over 170 FIM and FCIM algorithms have been proposed in the last decade,
each claiming to outperform its existing rivals [2]. Thanks to some comparisons
from independent authors (the FIMI competitions [2] are regarded to be the
most important), the chaos seems to be settling. The most successful algorithms
are Apriori [3], ECLAT [4][5], FP-growth [6] and variants of these. Adaptations
of these algorithms used to extract closed itemsets are also the most popular
and most efficient FCIM algorithms.

Apriori is regarded to be the first FIM algorithm that can cope with large
datasets. One of the most important surprises of the FIM competition was that
� This work was supported in part by OTKA Grants T42481, T42706, TS-044733 of

the Hungarian National Science Fund, NKFP-2/0017/2002 project Data Riddle and
by a Madame Curie Fellowship (IHP Contract nr. HPMT-CT-2001-00251).
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this algorithm is competitive regarding run time (particularly at high support
thresholds), and its memory need was outstandingly low in many cases. More-
over, the resulting closed extension, Apriori-Close [1], is the best algorithm for
certain sets of test. An inherent feature of Apriori is complete pruning, which only
allows the generation of candidates that possess only frequent subsets. Due to
complete pruning Apriori never generated more candidates than those algorithms
which traverse the itemset space in a depth-first manner (DFS algorithms), as
do Eclat and FP-growth. Complete pruning in Apriori is considered to be so
essential, that the frequent pattern mining community has accepted it as a rule
of thumb.

In this paper, we investigate the efficiency of complete pruning, and draw
the surprising conclusion, that this technique is not as necessary as once be-
lieved. If the database has a certain characteristic, then pruning may even slow
down Apriori. We also show, that the efficiency of pruning depends on the item
ordering used during the algorithm.

We also investigate the connection between pruning and closed-itemset se-
lection. By presenting a novel pruning strategy, we will show that closed-itemset
mining comes for free. In Apriori-Close, this does not hold because closed itemset
selection is merged into the phase where infrequent candidates are removed, and
requires many scans of the data structure which stores the frequent itemsets.
This can be saved by applying our new pruning strategy.

2 Problem Statement

Frequent itemset mining came from efforts to discover useful patterns in cus-
tomers’ transaction databases. A customers’ transaction database is a sequence
of transactions (T = 〈t1, . . . , tn〉), where each transaction is an itemset (ti ⊆ I).
An itemset with k elements is called a k-itemset. The support of an itemset
X in T, denoted as suppT(X), is the number of transactions containing X , i.e.
suppT(X) = |{tj : X ⊆ tj}|. An itemset is frequent if its support is greater than a
support threshold, originally denoted by min supp. The frequent itemset mining
problem is to discover all frequent itemsets in a given transaction database.

Itemset I is closed if no proper superset of I exists that has the same support
as I. The set of closed itemsets is a compact representation of the frequent
itemsets. All frequent itemsets together with their supports can be generated if
only the closed itemsets and their supports are known. In some databases the
number of closed itemsets is much smaller than the number of frequent sets, thus
it is an important data mining task to determine FCI.

The concepts of negative border and order-based negative border play an
important role in our contributions. Let F be the set of frequent itemsets, and
≺ a total order on the elements of 2I. The negative border of F is the set of
itemsets, whose elements are infrequent, but all their proper subsets are frequent
(formally: NB(F ) = {I|I �∈ F, ∀I ′ ⊂ I, I ′ ∈ F}). The order-based negative
border (denoted by NB≺(F )) is a superset of NB(F ). An itemset I is element
of NB≺(F ), if I is not frequent, but the two smallest (|I| − 1)-subsets of I
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are frequent. Here “smallest” is understood with respect to a fixed ordering
of items. For example, if I = {A, B, C} and F = {∅, A, B, C, AB, AC} then
NB(F ) = {BC} and NB≺(F ) = {BC, ABC} if ≺ is the alphabetic order.

In the rest of the paper the ascending and descending order according to
supports of the items are denoted by ≺D and ≺A respectively.

The Apriori algorithm plays a central role in frequent itemset mining. Al-
though it is one of the oldest algorithms, the intensive researches that polished
its data structure and implementation specific issues [7] [8] have raised it to a
competitive algorithm which outperforms the newest DFS algorithms in some
cases [2]. We assume that the reader is familiar with the Apriori algorithm. In
this paper we concentrate on its candidate generation method.

3 Candidate Generation of Apriori

To understand our claims we also need to understand the main data structure
of Apriori, i.e. the trie (also called prefix-tree). The data structure trie was
originally introduced by de la Briandais [9] and Fredkin to store and efficiently
retrieve words (i.e. sequence of letters) of a dictionary. In the FIM setting the
alphabet is the set of items, and the itemsets are converted to sequences by a
predefined order. A trie is a rooted, (downward) directed tree. The root is defined
to be at depth 0, and a node at depth d can point to nodes at depth d + 1. A
pointer is also called edge or link, which is labeled by an item. If node u points
to node v, then we call u the parent of v, and v is a child node of u. Nodes with
no child are called leaves.

Every leaf � represents an itemset which is the union of the letters in the path
from the root to �. Note that if the first k letters are the same in two words, then
the first k steps on their paths are the same as well. In the rest of the paper the
node that represents itemset I is referred to node I. For more details about the
usage of the trie data structure in Apriori the reader is referred to [7][8].

In Apriori’s candidate generation phase we generate (� + 1)-itemset candi-
dates. Itemset I becomes a candidate if all proper subsets of I are frequent.
The trie that stores the frequent items, supports this method. Each itemset that
fulfills the complete pruning requirement can be obtained by taking the union of
the representations of two sibling nodes. In the so called simple pruning we go
through all nodes at depth �−1, take the pairwise union of the children and then
check all subsets of the union if they are frequent. Two straightforward modi-
fications can be applied to reduce unnecessary work. On one hand, we do not
check those subsets that are obtained by removing the last and the one before
the last elements of the union. On the other hand, the prune check is terminated
as soon as a subset is infrequent, i.e. not contained in the trie.

3.1 Pruning by Intersection

A problem with the simple pruning method is that it unnecessarily travels some
part of the trie many times. We illustrate this by an example. Let ABCD,
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ABCE, ABCF , ABCG be the four frequent 4-itemsets. When we check the
subsets of potential candidates ABCDE, ABCDF , ABCDG then we travel
through nodes ABD, ACD and BCD three times. This gets even worse if we
take into consideration all potential candidates that stem from node ABC. We
travel to each subset of ABC 6 times.

To save these superfluous traversals we propose an intersection-based pruning
method. We denote by u the current leaf that has to be extended, the depth of
u by �, the parent of u by P and the label that is on the edge from P to u
by i. To generate new children of u, we do the following. First determine the
nodes that represent all the (�− 2)-element subsets of the (�− 1)-prefix. Let us
denote these nodes by v1, v2, . . . , v	−1. Then find the child v′j of each vj that is
pointed by an edge with label i. If there exists a vj that has no edge with label i
(due to the dead-end branch removal), then the extension of u is terminated and
the candidate generation continues with the extension of u’s sibling (or with the
next leaf, if u does not have any siblings). The complete pruning requirement is
equivalent to the condition that only those labels can be on an edge that starts
from u, which are labels of an edge starting from v′j and labels of one starting
from P . This has to be fulfilled for each v′j , consequently, the labels of the new
edges are exactly the intersection of labels starting from v′j and P nodes.

The siblings of u have the same prefix as u, hence, in generating of the
children of siblings, we can use the same v1, v2, . . . , v	−1 nodes. It is enough
to find their children with the proper label (the new v′j nodes) and to make the
intersection of the labels of edges that starts from the prefix and the new v′1, v′2,
. . . , v′	−1. This is the real advantage of this method. The (� − 2)-subset nodes
of the prefix are reused, hence the paths representing the subsets are traversed
only once, instead of

(
n
2

)
, where n is the number of the children of the prefix.

As an illustrative example let us assume that the trie that is obtained after
removing infrequent itemsets of size 4 is depicted in Fig. 1.

To get the children of node ABCD that fulfill complete pruning requirement
(all subsets are frequent), we find the nodes that represent the 2-subsets of the
prefix (ABC). These nodes are denoted by v1, v2, v3. Next we find their children
that are reached by edges with label D. These children are denoted by v′1, v′2

v1 v2 v3

v′
1 v′

2 v′
3

u

A

B

B

C
C

C

D
D D

F

D E
F G

E
F

G
F

G F G

Fig. 1. Example: intersection-based pruning



The Relation of Closed Itemset Mining 441

and v′3 in the trie. The intersection of the label sets associated to the children
of the prefix, v′1, v′2 and v′3 is: {D, E, F, G} ∩ {E, F, G} ∩ {F, G} ∩ {F} = {F},
hence only one child will be added to node ABCD, and F will be the label of
this new edge.

3.2 Closed Itemset Selection

Closed itemsets can be retrieved from frequent itemsets by post-processing, but
it results in a faster solution, if the selection is pushed into the FIM algorithm. In
Apriori-Close the infrequent candidate deletion is extended by a step, where the
subsets of the frequent candidate are checked. By default all subsets are marked
as closed, which is changed if the subsets’ support equals to the candidate’s
actually examined. Consequently, in Apriori-Close all subsets of the frequent
candidates are generated, which mean many travels in the trie.

These superfluous travels are avoided if the closed itemset filtering is done in
the candidate generation phase and intersection-based pruning is applied. In this
method the subsets are already determined, hence checking support equivalence
does not require any extra travels.

4 Item Ordering and the Pruning Efficiency

Our previous work has [8] shown that the order of items used in the trie to
convert itemsets to sequences greatly affects both run-time and memory need of
the Apriori. Next we show that the efficacy of complete pruning is also influenced
by this factor.

The advantage of the pruning is to reduce the number of candidates. The
number of candidates in Apriori equals to the number of frequent itemsets plus
the number of infrequent candidates, i.e. the negative border of the frequent
itemsets. If pruning is not used then the number of infrequent candidates be-
comes the size of the order-based negative border, where the order corresponds
to the order used in the trie. It follows, that if we want to decrease the redun-
dant work (i.e determining a support of the infrequent candidates) then we have
to use the order that results in the smallest order-based negative border. This
comes into play in all DFS algorithms, so we already know the answer: the as-
cending order according to supports achieves in most cases the best result. This
is again a rule of thumb, that works well on real and synthetic datasets. The
statement cannot be proven unless the distribution of the items is known and
the independence of the items is assumed.

The disadvantage of the pruning strategy is simple: we have to traverse some
part of the trie to decide if all subsets are frequent or not. Obviously this needs
some time.

Here we state that pruning is not necessarily an important part of Apriori.
This statement is supported by the following observation, that applies in most
cases:

|NB≺A(F ) \NB(F )| � |F |.
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The left-hand side of the inequality gives the number of infrequent itemsets
that are not candidates in the original Apriori, but are candidates in Apriori-
NOPRUNE. So the left-hand side is proportional to the extra work to be done
by omitting pruning. On the other hand, |F | is proportional to the extra work
done with pruning. Candidate generation with pruning checks all the subsets of
each element of F , while Apriori-NOPRUNE does not. The outcomes of the two
approaches are the same for frequent itemsets, but the pruning-based solution
determines the outcome with much more work (i.e traverses the trie many times).

Although the above inequality holds for most cases, this does not imply
that pruning is unnecessary, and slows down Apriori. The extra work is just
proportional to the formulas above. Extra work caused by omitting pruning
means determining the support of some candidates, which is affected by many
factors, such as the size of these candidates, the number of transactions, the
number of elements in the transactions, and the length of matching prefixes in
the transaction. The extra work caused by pruning comes in a form of redundant
traversals of the tree during checking the subsets.

As soon as pruning strategy is omitted, Apriori can be further tuned by
merging the candidate generation and the infrequent node deletion phases. After
removing the infrequent children of a node, we extend each child the same way
as we would do in candidate generation. This way we spare an entire traversal
of the trie.

5 Experiments

All tests were carried out on 16 public “benchmark” databases, which can be
downloaded from the FIMI repository1. Results would require too much space,
hence only the most typical ones are shown below. All results, all programs as
well as the test scripts can be downloaded from http://www.cs.bme.hu/˜bodon/
en/fim/test.html. For Apriori implementation we have used an improved version
of our code, that took part in the FIMI’04 competition, and reached many times
outstanding results concerning memory requirement. Due to the improvements
it is now a true rival of the best Apriori implementation [7] and outperforms
it in many cases. The code can be downloaded from http://fim.informatik.uni-
freiburg.de.

Comparing just pruning techniques, Apriori-IBP (Apriori that uses
intersection-based pruning) was always faster than Apriori-SP (simple prun-
ing), however, the differences were insignificant in many cases. The intersection-
based pruning was 25% - 100% faster than the original solution at databases
BMS-WebView-1, BMS-WebView-2, T10I5N1KP5KC0.25D200K.

It is not so easy to declare a winner in the competition of Apriori-IBP and
Apriori-NOPRUNE. Apriori-NOPRUNE was faster in 85% of the tests, however
in most cases the difference was under 10%. Using low support threshold six
measurements showed significant differences. In the case of BMS-WebView-1 and

1 http://fimi.cs.helsinki.fi/data/
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Fig. 2. Candidate generation with different pruning strategies

BMS-WebView-2 Apriori-NOPRUNE was fast twofold faster than Apriori-IBP,
but in T10I4D100K the contrary was true. Figure 2 shows the run-times of
these cases, and the run-time of a typical result (Apriori-IBP slightly faster than
Apriori-SP; Apriori-NOPRUNE is 10%-20% faster than Apriori-IBP).

To understand why Apriori-IBP was the faster in the first case and why
Apriori-NOPRUNE in the second, we have to examine the number of candidates
generated by the two algorithms and the number of frequent itemsets. These data
are summarized in the next table (for the sake of better readability the numbers
of itemsets are divided by 1000).

Table 1. Number of frequent itemsets and number of candidates

database
min |F | |NB(F )| |NB≺A | |NB≺D | |NB≺A | − |NB|
supp |F |

T10I4D100K 3 5 947 39 404 92 636 166 461 8.95
BMS-WebView-2 4 60 083 3 341 9 789 197 576 0.11

The data support our hypothesis. The ratio of number of frequent itemset to
the difference of the two negative borders greatly determines pruning efficiency.
Obviously, if the number of extra candidates is insignificant compared to the
number of frequent itemsets, then pruning slows down Apriori. The table also
shows the importance of the proper order. In the case of T10I4D100K the |NB≺D |
is so large that the algorithm did not fit in the 2GB of main memory. This does
not occur at BMS-WebView-2, but the number of infrequent candidates was 20-
fold more compared to the ascending order based solution.

6 Conclusions

In this paper, we have proposed an intersection-based pruning strategy that
outperforms the classic candidate-generation method. The other advantage of the
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method is that closed-itemset selection comes for free. Since the new candidate-
generation method does not affect any other part of the algorithm, it can also
be applied in Apriori-Close to obtain an improved version.

The major contribution of the paper is the investigation of the pruning effi-
ciency in Apriori. We claim that, if ascending order is used, then pruning does
not necessarily speed-up the algorithm, and if (|NB≺A(F )| − |NB(F )|)/|F | is
small, then the run-time increases in most cases. Note that this conclusion does
not only affect Apriori and its variants, but also all those Apriori modifications
that discover other type of frequent patterns, like sequences, episodes, boolean
formulas, trees or graphs. Since in such cases subpattern inclusion check is more
complicated (for example in the case of labeled graphs this requires a graph
isomorphism test) the difference can be more significant, and thus needs to be
investigated.
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Abstract. Social network analysis has attracted much attention in re-
cent years. Community mining is one of the major directions in social
network analysis. Most of the existing methods on community mining as-
sume that there is only one kind of relation in the network, and moreover,
the mining results are independent of the users’ needs or preferences.
However, in reality, there exist multiple, heterogeneous social networks,
each representing a particular kind of relationship, and each kind of re-
lationship may play a distinct role in a particular task. In this paper,
we systematically analyze the problem of mining hidden communities on
heterogeneous social networks. Based on the observation that different
relations have different importance with respect to a certain query, we
propose a new method for learning an optimal linear combination of these
relations which can best meet the user’s expectation. With the obtained
relation, better performance can be achieved for community mining.

1 Introduction

With the fast growing Internet and the World Wide Web, Web communities and
Web-based social networks are flourishing, and more and more research efforts
have been put on Social Network Analysis (SNA) [1][2]. A social network is
modeled by a graph, where the nodes represent individuals, and an edge between
nodes indicates that a direct relationship between the individuals. Some typical
problems in SNA include discovering groups of individuals sharing the same
properties [3] and evaluating the importance of individuals [4][5]. In a typical
social network, there always exist various relationships between individuals, such
as friendships, business relationships, and common interest relationships.

Most of the existing algorithms on social network analysis assume that there
is only one single social network, representing a relatively homogenous relation-
ship (such as Web page linkage). In real social networks, there always exist
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various kinds of relations. Each relation can be treated as a relation network.
Such kind of social network can be called multi-relational social network or
heterogeneous social network, and in this paper the two terms will be used in-
terchangeably depending on the context. These relations play different roles in
different tasks. To find a community with certain properties, we first need to
identify which relation plays an important role in such a community. Moreover,
such relation might not exist explicitly, we might need to first discover such a
hidden relation before finding the community on such a relation network.

Such a problems can be modeled mathematically as relation selection and
extraction in multi-relational social network analysis. The problem of relation
extraction can be simply stated as follows: In a heterogeneous social network,
based on some labeled examples (e.g., provided by a user as queries), how to
evaluate the importance of different relations? Also, how to get a combination
of the existing relations which can best match the relation of labeled examples?
In this paper, we propose an algorithm for relation extraction and selection.
The basic idea of our algorithm is to model this problem as an optimization
problem. Specifically, we characterize each relation by a graph with a weight
matrix. Each element in the matrix reflects the relation strength between the
two corresponding objects. Our algorithm aims at finding a linear combination
of these weight matrices that can best approximate the weight matrix associated
with the labeled examples. The obtained combination can better meet user’s
desire. Consequently, it leads to better performance on community mining.

The rest of this paper is organized as follows. Section 2 presents our algo-
rithm for relation extraction. The experimental results on the DBLP data set
are presented in Section 3. Finally, we provide some concluding remarks and
suggestions for future work in Section 4.

2 Relation Extraction

In this section, we begin with a detailed analysis of the relation extraction prob-
lem followed by the algorithm.

2.1 The Problem

A typical social network likely contains multiple relations. Different relations can
be modeled by different graphs. These different graphs reflect the relationship of
the objects from different views. For the problems of community mining, these
different relation graphs can provide us with different communities.

As an example, the network in Figure 1 may form three different relations.
Suppose a user requires the four colored objects belong to the same community.
Then we have:

1. Clearly, these three relations have different importance in reflecting the user’s
information need. As can be seen, the relation (a) is the most important one,
and the relation (b) the second. The relation (c) can be seen as noise in
reflecting the user’s information need.
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(a) (b) (c)

Fig. 1. There are three relations in the network. The four colored objects are required
to belong to the same community, according to a user query.

2. In the traditional social network analysis, people do not distinguish these re-
lations. The different relations are equally treated. So, they are simply com-
bined together for describing the structure between objects. Unfortunately, in
this example, the relation (c) has a negative effect for this purpose. However,
if we combine these relations according to their importance, the relation (c)
can be easily excluded, and the relation (a) and (b) will be used to discover
the community structure, which is consistent with the user’s requirement.

3. In the above analysis, the relationship between two objects is considered as a
boolean one. The problem becomes much harder if each edge is assigned with
a real value weight which indicates to what degree the two objects are related
to each other. In such situation, an optimal combination of these relations
according to the user’s information need cannot be easily obtained.

Different from Figure 1, a user might submit a more complex query in some
situations. Take Figure 2 as another example. The relations in the network are
the same as those in Figure 1. However, the user example (prior knowledge)
changes. The two objects with lighter color and the two with darker color should
belong to different communities. In this situation, the importance of these three
relations changes. The relation (b) becomes the most important, and the relation
(a) becomes the useless (and even negative) one.

(a) (b) (c)

Fig. 2. Among the three relations in the network, the two objects with lighter color
and the two with darker color should belong to different communities, as user required

As we can see, in multi-relational social network, community mining should
be dependent on the user’s example (or information need). A user’s query can be
very flexible. Since previous community mining techniques only focus on single
relational network and are independent of the user’s query, they cannot cope
with such a complex situation.

In this paper, we focus on the relation extraction problem in multi-relational
social network. The community mining based on the extracted relation graph
is more likely to meet the user’s information need. For relation extraction, it
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can be either linear or nonlinear. Due to the consideration that in real world
applications it is almost impossible for a user to provide sufficient information,
nonlinear techniques tend to be unstable and may cause over-fitting problems.
Therefore, here we only focus on linear techniques.

This problem of relation extraction can be mathematically defined as follows.
Given a set of objects and a set of relations which can be represented by a set of
graphs Gi(V, Ei), i = 1, . . . , n, where n is the number of relations, V is the set
of nodes (objects), and Ei is the set of edges with respect to the i-th relation.
The weights on the edges can be naturally defined according to the relation
strength of two objects. We use Mi to denote the weight matrix associated with
Gi, i = 1, . . . , n. Suppose there exists a hidden relation represented by a graph
Ĝ(V, Ê), and M̂ denotes the weight matrix associated with Ĝ. Given a set of
labeled objects X = [x1, · · · ,xm] and y = [y1, · · · , ym] where yj is the label
of xj (Such labeled objects indicate partial information of the hidden relation
Ĝ), find a linear combination of the weight matrices which can give the best
estimation of the hidden matrix M̂ .

2.2 A Regression-Based Algorithm

The basic idea of our algorithm is trying to find an combined relation which
makes the relationship between the intra-community examples as tight as possi-
ble and at the same time the relationship between the inter-community examples
as loose as possible.

For each relation, we can normalize it to make the biggest strength (weight
on the edge) be 1. Thus we construct the target relation between the labeled
objects as follows:

M̃ij =

⎧⎨⎩
1, example i and example j have

the same label;
0, otherwise.

where M̃ is a m×m matrix and M̃ij indicates the relationship between examples
i and j. Once the target relation matrix is built, we aim at finding a linear
combination of the existing relations to optimally approximate the target relation
in the sense of L2 norm. Sometimes, a user is uncertain if two objects belong
to the same community and can only provide the possibility that two objects
belong to the same community. In such case, we can define M̃ as follows.

M̃ij = Prob(xi and xj belong to the same community)

Let a = [a1, a2, · · · , an]T ∈ Rn denote the combination coefficients for differ-
ent relations. The approximation problem can be characterized by solving the
following optimization problem:

aopt = argmin
a
‖M̃ −

n∑
i=1

aiMi‖2 (1)
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This can be written as a vector form. Since the matrix Mm×m is symmetric,
we can use a m(m− 1)/2 dimensional vector v to represent it. The problem (1)
is equivalent to:

aopt = argmin
a
‖ṽ −

n∑
i=1

aivi‖2 (2)

Equation (2) is actually a linear regression problem [6]. From this point of
view, the relation extraction problem is interpreted as a prediction problem.
Once the combination coefficients are computed, the hidden relation strength
between any object pair can be predicted. There are many efficient algorithms
in the literature to solve such a regression problem [7].

The objective function (2) models the relation extraction problem as an
unconstrained linear regression problem. One of the advantages of the uncon-
strained linear regression is that, it has a close form solution and is easy to
compute. However, researches on linear regression problem show that in many
cases, such unconstrained least squares solution might not be a satisfactory so-
lution and the coefficient shrinkage technique should be applied based on the
following two reasons [6].

1. Prediction accuracy: The least-squares estimates often have low bias but large
variance [6]. The overall relationship prediction accuracy can sometimes be
improved by shrinking or setting some coefficients to zero. By doing so we
sacrifice a little bit of bias to reduce the variance of the predicted relation
strength, and hence may improve the overall relationship prediction accuracy.

2. Interpretation: With a large number of explicit (base) relation matrices and
corresponding coefficients, we often would like to determine a smaller subset
that exhibit the strongest effects. In order to get the “big picture”, we are
willing to sacrifice some of the small details.

Our technical report [8] provides an example to explain such consideration.
This problem can be solved by using some coefficient shrinkage techniques [6].

Thus, for each relation network, we normalize all the weights on the edges in
the range [0, 1]. And, we put a constraint

∑n
i=1 a2

i ≤ 1 on the objective function
(2). Finally, our algorithm tries to solve the following minimization problem,

aopt = arg min
a
‖ṽ−

n∑
i=1

aiei‖2

subject to
n∑

i=1

a2
i ≤ 1

(3)

Such a constrained regression is called Ridge Regression [6] and can be solved
by some numerical methods [7]. When we use such constrained relation extraction,
the coefficients of the extracted relation for the above example are 1, 0, 0, 0. This
shows that our constrained relation extraction can really solve the problem. For
more details on our relation extraction algorithm, please refer to [8].
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3 Mining Hidden Networks on the DBLP Data

In this part, we present our experimental results based on DBLP (Digital Bibli-
ography & Library Project) data. The DBLP server (http://dblp.uni-trier.de/)
provides bibliographic information on major computer science journals and pro-
ceedings. It indexes more than 500000 articles and more than 1000 different
conferences (by May 2004).

Taking the authors in DBLP as objects, there naturally exist multiple re-
lations between them. Authors publish paper in difference conferences. If we
treat that authors publish paper(s) in the same conference as one kind of re-
lation, these 1000 conferences provide us 1000 different relations. Given some
examples (e.g., a group of authors), our experiment is to study how to extract a
new relation using such examples and find all the other groups in the relation.
The extracted relation can be interpreted as the groups of authors that share a
certain kind of similar interests.

3.1 Data Preparation and Graph Generation

The DBLP server provides all the data in the XML format as well a simple
DTD. We extracted the information of author, paper and conference.

We generate different kinds of graphs (social networks) based on the ex-
tracted information. For each proceeding, we construct a graph with researchers
as the nodes, which is called proceeding graph thereafter. If two researchers have
paper(s) in this proceeding, the edge between the two corresponding nodes is
set to 1. Otherwise, it is set to 0. For each conference, we add up the proceed-
ing graphs of the same conference over years, which is called conference graph
thereafter. Finally, we choose the top 70 conference graphs based on the number
of distinct authors in that conference.

Every conference graph reflects the relationship between the researchers per-
taining to a certain research area. Generally, if two researchers are connected by
an edge in the conference graph, they may share the same research interests.

For each graph, we normalize the edge weight by dividing the maximum
weight in the whole graph. The resulting weight has a range [0, 1]. The greater
the weight is, the stronger the relation is.

3.2 Experiment Results

In this experiment, we provide the system with some queries (some groups of
researchers) to examine if our algorithm can capture the hidden relation between
the researchers. We only show one example in this paper, please refer to [8] for
more example queries.

Experiment 1. In the first case, there are two queries provided by the user.

1. Philip S. Yu, Rakesh Agrawal, Hans-Peter Kriegel, Padhraic Smyth, Bing
Liu, Pedro Domingos.
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2. Philip S. Yu, Rakesh Agrawal, Hans-Peter Kriegel, Hector Garcia-Molina,
David J. DeWitt, Michael Stonebraker.

Both of the two queries contain 6 researchers. The first three researchers are the
same in the two queries.

Table 1. Coefficients of different conference graphs for two queries (sorted on the
coefficients)

Query 1 Query 2
Conference Coefficient Conference Coefficient

KDD 0.949 SIGMOD 0.690
SIGMOD 0.192 ICDE 0.515

ICDE 0.189 VLDB 0.460
VLDB 0.148 KDD 0.215

Table 1 shows the coefficients of the extracted relation for the two queries.
KDD is a data mining conference, and high weight on the KDD graph indicates
the common interest on data mining. On the other hand, SIGMOD, VLDB and
ICDE are three database conferences. High weights on these conference graphs
indicate the common interest on database area. The extracted relation for query
1 has KDD graph with weighting 1, which tells us that the researchers in query 1
share common interest on data mining. For query 2, the extracted relation tells
us those researchers share common interest on database.

Table 2. Researchers’ activities in conferences

Researcher KDD ICDE SIGMOD VLDB
Philip S. Yu 7 15 10 11

Rakesh Agrawal 6 10 13 15
Hans-Peter Kriegel 7 9 11 8
Padhraic Smyth 10 1 0 0

Bing Liu 8 1 0 0
Pedro Domingos 8 0 2 0

Hector Garcia-Molina 0 15 12 12
David J. DeWitt 1 4 20 16

Michael Stonebraker 0 12 19 15

Table 3. Combined Coeffi-
cients

Conference Name Coefficient
SIGMOD 0.586

KDD 0.497
ICDE 0.488
VLDB 0.414

While we examine the publication of these researchers on these four confer-
ences as listed in Table 2, we clearly see the extracted relation really captures
the semantic relation between the researchers in the queries.

Furthermore, with the extracted relation graph, we applied the community
mining algorithm threshold cut [8] and obtained the corresponding communities.
For each query, we list one example community below:
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1. Community for query 1: Alexander Tuzhilin, Bing Liu, Charu C. Aggarwal,
Dennis Shasha, Eamonn J. Keogh, . . . .

2. Community for query 2: Alfons Kemper, Amr El Abbadi, Beng Chin Ooi,
Bernhard Seeger, Christos Faloutsos, . . . .

Let us see what will happen if we only submit the first three names in one
query. The extracted relation is shown in Table 3. The extracted relation really
captures the two areas (data mining and dababase) in which these researchers
are interested.

4 Conclusions

Different from most social network analysis studies, we assume that there exist
multiple, heterogeneous social networks, and the sophisticated combinations of
such heterogeneous social networks may generate important new relationships
that may better fit user’s information need. Therefore, our approach to social
network analysis and community mining represents a major shift in methodology
from the traditional one, a shift from single-network, user-independent analysis
to multi-network, user-dependant, and query-based analysis. Our argument for
such a shift is clear: multiple, heterogeneous social networks are ubiquitous in the
real world and they usually jointly affect people’s social activities.

Based on such a philosophy, we worked out a new methodology and a new
algorithm for relation extraction. With such query-dependent relation extraction
and community mining, fine and subtle semantics are captured effectively. It is
expected that the query-based relation extraction and community mining would
give rise to a lot of potential new applications in social network analysis.
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Abstract. In the last few years, the data mining community has proposed a 
number of objective rule interestingness measures to select the most interesting 
rules, out of a large set of discovered rules. However, it should be recalled that 
objective measures are just an estimate of the true degree of interestingness of a 
rule to the user, the so-called real human interest. The latter is inherently sub-
jective. Hence, it is not clear how effective, in practice, objective measures are. 
More precisely, the central question investigated in this paper is: “how effective 
objective rule interestingness measures are, in the sense of being a good esti-
mate of the true, subjective degree of interestingness of a rule to the user?” This 
question is investigated by extensive experiments with 11 objective rule inter-
estingness measures across eight real-world data sets. 

1   Introduction 

Data mining essentially consists of extracting interesting knowledge from real-world 
data sets. However, there is no consensus on how the interestingness of discovered 
knowledge should be measured. Indeed, most of the data mining literature still avoids 
this thorny problem and implicitly interprets “interesting” as meaning just “accurate” 
and sometimes also “comprehensible”. Although accuracy and comprehensibility are 
certainly important, they are not enough to measure the real, subjective interestingness 
of discovered knowledge to the user. Consider, e.g., the classic example of the fol-
lowing rule: IF (patient is pregnant) THEN (patient is female). This rule is very accu-
rate and comprehensible, but it is not interesting, since it represents an obvious pat-
tern. As a real-world example, [8] reports that less than 1% of the discovered rules 
were found to be interesting to medical experts. It is also possible that a rule be inter-
esting to the user even though it is not very accurate. For instance, in [9] rules with an 
accuracy around 40%-60% represented novel knowledge that gave new insights to 
medical doctors. Hence, there is a clear motivation to investigate the relationship 
between rule interestingness measures and the subjective interestingness of rules to 
the user – an under-explored topic in the literature. 
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Rule interestingness measures can be classified into two broad groups: user-driven 
(subjective) and data-driven (objective) measures. User-driven measures are based on 
comparing discovered rules with the previous knowledge or believes of the user. A 
rule is considered interesting, or novel, to the extent that it is different from the user’s 
previous knowledge or believes. User-driven measures have the advantage of being a 
direct measure of the user’s interest in a rule, but they have a twofold disadvantage. 
First, they require, as input, a specification of the user’s believes or previous knowl-
edge – a very time-consuming task to the user. Second, they are strongly domain-
dependent and user-dependent. To avoid these drawbacks, the literature has proposed 
more than 40 data-driven rule interestingness measures [5], [7], [3]. These measures 
estimate the degree of interestingness of a rule to the user in a user-independent, do-
main-independent fashion, and so are much more generic. Data-driven measures have, 
however, the disadvantage of being an indirect estimate of the true degree of interest-
ingness of a rule to the user, which is an inherently subjective interestingness. 

This begs a question rarely addressed in the literature: how effective data-driven 
rule interestingness measures are, in the sense of being a good estimate of the true, 
subjective degree of interestingness of a rule to the user? The vast majority of works 
on data-driven rule interestingness measures ignore this question  because they do not 
even show the rules to the user. A notable exception is the interesting work of [5], 
which investigates the effectiveness of approximately 40 data-driven rule interesting-
ness measures, by comparing their values with the subjective values of the user’s 
interest – what they called real human interest. Measuring real human interest in-
volves showing the rules to the user and ask her/him to assign a subjective interest-
ingness score to each rule. Therefore, real human interest should not be confused with 
the above-mentioned user-driven rule interestingness measures.  

This paper follows the same general line of research. We investigate the effective-
ness of 11 data-driven rule interestingness measures, by comparing them with the 
user’s subjective real human interest. Although we investigate a smaller number of 
rule interestingness measures, this paper extends the work of [5] by presenting results 
for eight data sets, whereas [5] did experiments with just one medical data set, a limi-
tation from the point of view of generality of the results.  

2   Objective (Data-Driven) Rule Interestingness Measures 

This work involves 11 objective rule interestingness measures – all of them used to 
evaluate classification rules. Due to space limitations we mention here a brief defini-
tion of each of those measures – which are discussed in more detail in the literature. 
The measures defined by formulas (1)–(8) [5], [7] are based on the coverage and 
accuracy of a rule. Their formulas are expressed using a notation where A denotes the 
rule antecedent; C denotes the rule consequent (class); P(A) denotes the probability of 
A – i.e., the number of examples satisfying A divided by the total number of exam-
ples; P(C) denotes the probability of C; “¬A” and “¬C” denote the logical negation of 
A and C. The measures defined by formulas (9)-(11) [2] use the same notation of A 
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and C to denote a rule’s antecedent and consequent, but they also involve heuristic 
principles based on variables other than a rule’s coverage and accuracy.  

The Attribute Surprisingness measure – formula (9) – is based on the idea that the 
degree of surprisingness of an attribute is estimated as the inverse of its information 
gain. The rationale for this measure is that the occurrence of an attribute with a high 
information gain in a rule will not tend to be surprising to the user, since users often 
know the most relevant attributes for classification. However, the occurrence of an 
attribute with a low information gain in a rule tends to be more surprising, because 
this kind of attribute is usually considered little relevant for classification. In formula 
(9), Ai denotes the attribute in the i-th condition of the rule antecedent A, m is the 
number of conditions in A, and #classes is the number of classes.  

Φ-Coefficiente = (P(A,C)-P(A)P(C))/ P(A)P(C)(1-P(A))(1-P(C)) (1) 

Odds Ratio = P(A,C)P(¬A,¬C)/P(A,¬C)P(¬A,C) (2) 

Kappa=(P(A,C)+P(¬A,¬C)-P(A)P(C)-P(¬A)P(¬C)) 

                                  / (1-P(A)P(C)-P(¬A)P(¬C)) 

(3) 

Interest = P(A,C)/(P(A)*P(C)) (4) 

Cosine = P(A,C) / (P(A)*P(C)) (5) 

Piatetsky-Shapiro’s = P(A,C)-P(A)P(C) (6) 

Collective Strength = ((P(A,C)+P(¬A,¬C))/(P(A)P(C)+P(¬A)P(¬C))) *  

                                     ((1-P(A)P(C) – P(¬A)P(¬C))/(1-P(A,C)-P(¬A,¬C)) 

(7) 

Jaccard = P(A,C) / (P(A)+ P(C) – P(A,C) (8) 

                                                          m 

Attribute Surprisingness = 1 – ( ( Σ InfoGain(Ai) / m ) / log2(#classes) ) 
                                                     i=1 

(9) 

MinGen = N / m (10) 

InfoChange-ADT = IAB1 - IABo (11.1) 

IABo = (- Pr(X|AB) log 2 Pr(X|AB) +  (- Pr(¬X |AB) log 2 Pr(¬X |AB))) (11.2) 

IAB1 = – Pr(X|AB) [log 2 Pr(X|A) + log 2 Pr(X|B)] 
                                 – Pr(¬X |AB) [log 2 Pr(¬X|A)+ log 2 Pr(¬X|B)] 

(11.3) 

The MinGen measure – formula 10 –considers the minimum generalizations of the 
current rule r and counts how many of those generalized rules predict a class different 
from the original rule r. Let m be the number of conditions (attribute-value pairs) in 
the antecedent of rule r. Then rule r has m minimum generalizations. The k-th mini-
mum generalization of r, k=1,...m, is obtained by removing the k-th condition from r. 
Let C be the class predicted by the original rule r (i.e., the majority class among the 
examples covered by the antecedent of r) and Ck be the class predict by the k-th  
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minimum generalization of r (i.e., the majority class of the examples covered by the 
antecedent of the k-th minimum generalization of r). The system compares C with 
each Ck, k=1,…, m, and N is defined as the number of times where C is different  
from Ck. 

InfoChange-ADT (Adapted for Decision Trees) is a variation of the InfoChange 
measure proposed by [4]. Let A → C be a common sense rule and A, B → ¬ C be an 
exception rule. The original InfoChange measure computes the interestingness of an 
exception rule based on the amount of change in information relative to common 
sense rules. In formulas (11.1), (11.2) and (11.3), IABo denotes the number of bits 
required to describe the specific rule AB → C in the absence of knowledge repre-
sented by the generalized rules A → C and B → C, whereas IAB1 is the corresponding 
number of bits when the relationship between C and AB is rather described by the two 
rules A → C and B → C. One limitation of the original InfoChange measure is that it 
requires the existence of a pair of exception and common sense rules, which is never 
the case when converting a decision tree into a set of rules – since the derived rules 
have mutually exclusive coverage. In order to avoid this limitation and make In-
foChange useful in our experiments, the new version InfoChange-ADT is introduced 
in this paper, as follows. A path from the root to a leaf node corresponds to an excep-
tion rule. The common sense rule for that exception rule is produced by removing the 
condition associated with the parent node of the leaf node. This produces a common 
sense rule which is “the minimum generalization” of the exception rule. Even with 
this modification, InfoChange-ADT still has the limitation that its value cannot al-
ways be computed, because sometimes the minimum generalization of an exception 
rule predicts the same class as the exception rule, violating the conditions for using 
this measure.  

For all the 11 rule interestingness measures previously discussed, the higher the 
value of the measure, the more interesting the rule is estimated to be.  

3  Data Sets and Experimental Methodology 

In order to evaluate the correlation between objective rule interestingness measures 
and real, subjective human interest, we performed experiments with 8 data sets. Pub-
lic domain data sets from the UCI data repository are not appropriate for our experi-
ments, simply because we do not have access to any user who is an expert in those 
data sets. Hence, we had to obtain real-world data sets where an expert was available 
to subjectively evaluate the interestingness of the discovered rules. Due to the difficult 
of finding available real-world data and expert users, our current experiments in-
volved only one user for each data set. This reduces the generality of the results in 
each data set, but note that the overall evaluation of each rule interestingness measure 
is (as discussed later) averaged over 8 data sets and over 9 rules for each data set, i.e. 
each of the 11 measures is evaluated over 72 rule-user pairs. The 8 data sets are sum-
marized in Table 1. Next, we describe the five steps of our experimental  
methodology. 
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Table 1. Characteristics of data sets used in the experiments 

Data Set Nature of Data # Examp. # Attrib. 
CNPq1 Researchers’ productivity (# publications), data 

from the Brazilian Research Council (CNPq) 
5690 23 

ITU Patients in Intensive Care Unit 7451 41 
UFPR-CS Students’ performance in comp. sci. admiss. exam 1181 48 
UFPR-IM Students’ performance in info. manag. admis. exam 235 48 
UTP-CS Comp. Sci. students’ end of registration 693 11 
Curitiba Census data for the city of Curitiba, Brazil 843 43 
Londrina Census data for the city of Londrina, Brazil 4115 42 
Rio Branco Census data for city of Rio Branco do Ivai, Brazil 223 43 

Step 1 – Discovery of classification rules using several algorithms 
We applied, to each data set, 5 different classification algorithms. Three of them are 
decision-tree induction algorithms (variants of C4.5 [6]), and two are genetic algo-
rithms (GA) that discover classification rules. In the case of the decision tree algo-
rithms, each path from the root to a leaf node was converted into an IF-THEN classi-
fication rule as usual [6]. A more detailed description of the 5 algorithms can be 
found in [1], where they are referred to as default C4.5, C4.5 without pruning, “dou-
ble C4.5”, “Small-GA”, “Large-GA”. The Rule Interestingness (RI) measures were 
applied to each of the discovered rules (after all the classification algorithms were 
run), regardless of which classification algorithm generated that rule.  

Step 2 – Ranking all rules based on objective rule interestingness measures 
For each data set, all classification rules discovered by the 5 algorithms are ranked 
based on the values of the 11 objective RI measures, as follows. First, for each rule, 
the value of each of the 11 RI measures is computed. Second, for each RI measure, all 
discovered rules are ranked according to the value of that measure. I.e., the rule with 
the best value of that RI measure is assigned the rank number 1, the second best rule 
assigned the rank number 2, and so. This produces 11 different rankings for the dis-
covered rules, i.e., one ranking for each RI measure. Third, we compute an average 
ranking over the 11 rankings, by assigning to each rule a rank number which is the 
average of the 11 rank numbers originally associated with that rule. This average rank 
number is then used for the selection of rules in the next step. 

Step 3 – Selection of the rules to be shown to the user 
Table 2 shows, for each data set, the total number of rules discovered by all the 5 
algorithms applied to that data set. It is infeasible to show a large number of discov-
ered rules to the user. Hence, we asked each user to evaluate the subjective degree of 
interestingness of just 9 rules out of all rules discovered by all algorithms. The set of 9 
rules showed to the user consisted of: (a) the three rules with the lowest rank number 
(i.e., rules with rank 1, 2, 3, which were the three most interesting rules according to 
the objective RI measures); (b) the three rules with the rank number closest to the 
median rank (e.g., if there are 15 rules, the three median ranks would be 7, 8, 9); and 
(c) the three rules with the highest rank number (least interesting rules). The selection 
of rules with the lowest, median and highest rank numbers creates three distinct 
groups of rules which ideally should have very different user-specified interestingness 
scores. The correlation measure calculated over such a broad range of different  
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objective ranks is more reliable than the correlation measure that would be obtained if 
we selected instead 9 rules with very similar objective ranks. 

Step 4 – Subjective evaluation of rule interestingness by the user 
For each data set, the 9 rules selected in step 3 were shown to the user, who assigned 
a subjective degree of interestingness to each rule. The user-specified score can take 
on three values, viz.: <1> – the rule is not interesting, because it represents a relation-
ship known by the user; <2> – the rule is somewhat interesting, i.e., it contributes a 
little to increase the knowledge of the user; <3> – the rule is truly interesting, i.e., it 
represents novel knowledge, previously unknown by the user. 

Step 5 – Correlation between objective and subjective rule interestingness 
We measured the correlation between the rank number of the selected rules – based 
on the objective RI measures – and the subjective RI scores – <1>, <2>, <3> – as-
signed by the user to those rules. As a measure of correlation we use the Pearson 
coefficient of linear correlation, with a value in [–1...+1], computed using SPSS. 

Table 2. Total number of discovered rules for each data set 

Data 
Set: 

CNPq1 ITU UFPR-
CS 

UFPR-
IM 

UTP-
CS 

Curitiba Londrina Rio Branco 
do Ivai 

# Rules: 20,253 6,190 1,345 232 2,370 1,792 1,261 486 

4   Results 

Table 3 shows, for each data set, the correlation between each objective RI measure 
and the corresponding subjective RI score assigned by the user. These correlations are 
shown in columns 2 through 9 in Table 3, where each column corresponds to a data 
set. To interpret these correlations, recall that the lower the objective rank number the 
more interesting the rule is estimated to be, according to the objective RI measure; 
and the higher the user’s subjective score the more interesting the rule is to the user. 
Hence, an ideal objective RI measure should behave as follows. When a rule is as-
signed the best possible subjective score (<3>) by the user, the RI measure should 
assign a low rank number to the rule. Conversely, when a rule is assigned the worst 
possible subjective score (<1>) by the user, the RI measure should assign a high rank 
number to the rule. Therefore, the closer the correlation value is to –1 the more effec-
tive the corresponding objective RI measure is in estimating the true degree of inter-
estingness of a rule to the user. In general a correlation value ≤ –0.6 can be consid-
ered a strong negative correlation, which means the objective RI measure is quite 
effective in estimating the real human interest in a rule. Hence, in Table 3 all correla-
tion values ≤ –0.6 are shown in bold. 

In columns 2 through 9 of Table 3, the values between brackets denote the ranking 
of the RI measures for each data set (column). That is, for each data set, the first rank 
(1) is assigned to the smallest (closest to –1) value of correlation in that column, the 
second rank (2) is assigned to the second smallest value of correlation, etc. Finally, 
the last column of Table 3 contains the average rank number for each RI measure – 
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i.e., the arithmetic average of all the rank numbers for the RI measure across all the 
data sets. The numbers after the symbol “±” are standard deviations. 

Two cells in Table 3 contain the symbol “N/A” (not applicable), rather than a cor-
relation value. This means that SPSS was not able to compute the correlation in ques-
tion because the user’s subjective RI scores were constant for the rules evaluated by 
the user. This occurred when only a few rules were shown to the user. In general each 
correlation was computed considering 9 rules selected shown to the user, as explained 
earlier. However, in a few cases the value of a given objective RI measure could not 
be computed for most selected rules, and in this case the rules without a value for an 
objective RI measure were not considered in the calculation of the correlation for that 
measure. For instance, the N/A symbol in the cell for InfoChange-ADT and data set 
UFPR-CS is explained by the fact that only 2 out of the 9 selected rules were assigned 
a value of that objective RI measure, and those two rules had the same subjective RI 
score assigned by the user.  

Table 3. Correlations between objective rule interestingness measures and real human interest; 
and ranking of objective rule interestingness measures based on these correlations 

Data Set 
Rule interestingness 
measure ITU 

UFP
R-CS

UTP-
CS 

Curi-
tiba 

UFP
R-IM

Lond
rina 

CNP
q1 

Rio 
Bran 

Avg. 
Rank 

Φ-Coefficient 
-0.63  
(1) 

-0.91 
(4) 

-0.69 
(7) 

-0.17 
(5) 

-0.97 
(2) 

0.01 
(4) 

-0.48 
(4) 

0.45 
(10) 

4.63 
±2.8 

Infochange-ADT (*) 
-0.18 
(10) N/A 

-0.17 
(11) 

-0.70 
(1) 

-1.00 
(1) 

-0.54 
(2) 

0.15 
(8) 

-1.00 
(1) 

4.86 
±4.6 

Kappa 
-0.44  
(6) 

-0.94 
(3) 

-0.74 
(5) 

-0.12 
(6) 

-0.87 
(4) 

0.12 
(5) 

-0.18 
(7) 

-0.56 
(3) 

4.88 
±1.5 

Cosine 
-0.55  
(3) 

-0.79 
(6) 

-0.93 
(2) 

-0.49 
(2) 

-0.81 
(7) 

0.37 
(8) 

-0.64 
(1) 

0.79 
(11) 

5.00 
±3.6 

Piatesky Shapiro 
-0.45  
(5) 

-0.95 
(1) 

-0.68 
(8) 

-0.09 
(9) 

-0.87 
(5) 

0.19 
(7) 

-0.49 
(3) 

-0.55 
(4) 

5.25 
±2.7 

Interest 
-0.40  
(8) 

-0.77 
(7) 

-0.85 
(3) 

-0.44 
(3) 

-0.87 
(6) 

-0.61 
(1) 

0.28 
(9) 

-0.22 
(7) 

5.50 
±2.8 

Collective Strength  
-0.44  
(7) 

-0.94 
(2) 

-0.66 
(9) 

-0.10 
(7) 

-0.88 
(3) 

0.19 
(6) 

0.35 
(10) 

-0.56 
(2) 

5.75 
±3.1 

Jaccard 
-0.49  
(4) 

-0.69 
(8) 

-0.93 
(1) 

-0.10 
(8) 

-0.30 
(9) 

0.41 
(9) 

-0.45 
(5) 

-0.52 
(5) 

6.13 
±2.9 

Odds Ratio  
-0.59  
(2) 

-0.91 
(5) 

-0.85 
(4) 

-0.28 
(4) N/A 

0.48 
(10) 

0.43 
(11) 

0.19 
(9) 

6.43 
±3.5 

MinGen 
-0.36  
(9) 

-0.60 
(9) 

-0.71 
(6) 

0.00 
(10) 

0.36 
(10) 

-0.22 
(3) 

-0.53 
(2) 

-0.23 
(6) 

6.88 
±3.1 

Attsurp 
0.42 
(11) 

-0.46 
(10) 

-0.54 
(10) 

0.63 
(11) 

-0.62 
(8) 

0.59 
(11) 

-0.37 
(6) 

-0.10 
(8) 

9.38 
±1.9 

(*) Although InfoChange-ADT obtained the second best rank overall, it was not pos-
sible to compute the value of this measure for many discovered rules (see text).  
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As shown in Table 3, the strength of the correlation between an objective RI meas-
ure and the user’s subjective RI score is quite dependent on the data set. In three data 
sets – namely UFPR-CS, UTP-CS and UFPR-IM – the vast majority of the objective 
RI measures were quite effective, having a strong correlation (≤ –0.6, shown in bold) 
with the user’s true degree of interestingness in the rules. On the other hand, in each 
of the other five data sets there was just one objective RI measure that was effective, 
and in most cases the effective measure (with correlation value shown in bold) was 
different for different data sets. Correlation values that are very strong (≤ –0.9) are 
rarer in Table 3, but they are found for five RI measures in the UFPR-CS data set, and 
for one or two RI measures in three other data sets.  

Consider now the average rank number of each measure shown in the last column 
of Table 3. The RI measures are actually in increasing order of rank number, so that, 
overall, across the eight data sets, the most effective RI measure was the Φ-
Coefficient, with an average rank of 4.63. However, taking into account the standard 
deviations, there is no significant difference between the average rank of Φ-
Coefficient and the average rank of the majority of the measures. The only measure 
which performed significantly worse than Φ-Coefficient was Attribute Surprising-
ness, the last in the average ranking. 

There is, however, an important caveat in the interpretation of the average ranking 
of InfoChange-ADT. As explained earlier, there are several rules where the value of 
this RI measure cannot be computed. More precisely, out of the 9 rules selected to be 
shown to the user for each data set, the number of rules with a value for InfoChange-
ADT varied from 2 to 5 across different data sets. This means that the average rank 
assigned to InfoChange-ADT is less reliable than the average rank assigned to other 
measures, because the former was calculated from a considerably smaller number of 
samples (rules). In particular, the correlation value of InfoChange-ADT was –1 (the 
best possible value) in two data sets, viz. UFPR-IM and Rio Branco, and in both data 
sets only 2 out of the 9 selected rules had a value for InfoChange-ADT. 

5   Conclusions and Future Research 

The central question investigated in this paper was: “how effective objective rule 
interestingness measures are, in the sense of being a good estimate of the true, subjec-
tive degree of interestingness of a rule to the user?” This question was investigated by 
measuring the correlation between each of 11 objective rule interestingness measures 
and real human interest in rules discovered from 8 different data sets. Overall, 31 out 
of the 88 (11 × 8) correlation values can be considered strong (correlation ≥ 60%). 
This indicates that objective rule interestingness measures were effective (in the sense 
of being good estimators of real human interest) in just 35.2% (31 / 88) of the cases. 
There was no clear “winner” among the objective measures – the correlation values 
associated with each measure varied considerably across the 8 data sets. 

A research direction would be to try to predict which objective rule interestingness 
measure would be most correlated with real human interest for a given target data set, 
or to predict the real human interest in a rule using a combination of results from 
different objective measures. This could be done, in principle, using a meta-learning 
framework, mining data from previously-computed values of the correlation between 
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objective interestingness measures and subjective human interest for a number of 
rules that have been previously evaluated by a given user.  
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Abstract. In this paper we propose a method for learning the reasons why 
groups of consumers prefer some food products instead of others. We empha-
size the role of groups given that, from a practical point of view, they may rep-
resent market segments that demand different products. Our method starts rep-
resenting people’s preferences in a metric space; there we are able to define a 
kernel based similarity function that allows a clustering algorithm to discover 
significant groups of consumers with homogeneous tastes. Finally in each clus-
ter, we learn, with a SVM, a function that explains the tastes of the consumers 
grouped in the cluster. To illustrate our method, a real case of consumers of 
beef meat was studied. The panel was formed by 171 people who rated 303 
samples of meat from 101 animals with 3 different aging periods. 

1   Introduction 

Consumer preferences for food products address the strategies of industries and 
breeders, and should be carefully considered when export and commercial policies are 
designed. In this paper we present a method to deal with data collected from panels of 
consumers in order to discover groups with differentiated tastes; these groups may 
constitute significant market segments that demand different kinds of food products. 
Additionally, our approach studies the factors that could contribute to the success or 
failure of food products in each segment. 

From a conceptual point of view, consumer panels are made up of untrained con-
sumers; these are asked to rate their degree of acceptance or satisfaction about the 
tested products on a scale. The aim is to be able to relate product descriptions (human 
and mechanical) with consumer preferences. Nevertheless, the Market is not inter-
ested in tastes of individual consumers, the purpose of marketing studies of sensorial 
data is to discover, if there exist widespread ways to appreciate food products that can 
be considered as market segments. These segments can be seen as clusters of con-
sumers with similar tastes. In this paper, we will show that the similarity of preference 
criteria of consumers can be computed in a high dimension space; for this purpose, we 
present here a kernel-based method. To illustrate our method, we used a data set that 
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collects the ratings of a panel of beef meat consumers. The panel studied was formed 
by 171 people rating samples of 303 different kinds of beef meat [1] from different 
breeds, live weights, and aging periods. 

2   Description of the General Approach 

The main assumption behind the approach presented in this paper is that we are able 
to map people’s preferences into a metric space in such a way that we can assume 
some kind of continuity. A first attempt to provide such a mapping would consist in 
associating, to each consumer, the vector of his or her ratings, taking the set of sam-
ples as indexes. However, this is not a wise option since ratings have only a relative 
meaning, and therefore they cannot assume an absolute role. There is a kind of batch 
effect: a product will obtain a higher/lower rating when it is assessed together with 
other products that are clearly worse/better. In fact, if we try to deal with sensory data 
as a regression problem, we will fail [2]; due to this batch effect, the ratings have no 
numerical meaning: they are only a relative way to express preferences between 
products of the same session. 

To overcome this, instead of ratings, we can assign to each product its ordinal posi-
tion in the ranking of preferences. Unfortunately, this is not always possible given 
that, in general, the size of the sample of food prevents panelists from testing all 
products. Hence, we cannot ask our panelists to spend long periods rating the whole 
set of food samples. Typically, each consumer only participates in one or a small 
number of testing sessions, usually in the same day. Notice that tasting a large sample 
of food may be physically impossible, or the number of tests performed would dam-
age the sensory capacity of consumers. The consequence is that consumers’ rankings 
are not comparable because they deal with different sets of products. Thus, in this 
case we will codify people preferences by the weighting vector of a linear function 
(called preference or ranking function) in a high dimensional space: the space of fea-
tures where we represent the descriptions of food products. Then, the similarity is 
defined by means of the kernel attached to the representation map. 

Once we have people preferences represented in a metric space, and we have de-
fined a similarity function, then we use a clustering algorithm. Finally, we only need 
to explain the meaning and implications of each cluster in the context of the food 
products. For this purpose, we will learn a preference or ranking function from the 
union of preference judgments expressed by the member of the cluster; this will pro-
vide the consensus assessment function of the cluster. 

3   Description of the Beef Meat Experiment 

To illustrate our method we used a database described in [1]. The data collects the 
sensory ratings of a panel of beef meat consumers about three aspects: flavour, ten-
derness, and acceptability. 

For this experience, more than 100 animals of 7 Spanish breeds were slaughtered 
to obtain two kinds of carcasses: lights, from animals with a live weight around 300–
350 kg (light); and heavies, from animals at 530–560 kg. The set of animals was uni-
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formly distributed by breeds and weights. Additionally, to test the influence of aging 
in consumers’ appreciation, each piece of meat was prepared with 3 aging periods, 1, 
7, and 21 days. On the other hand, the 7 breeds used constitute a wide representation 
of beef cattle. These breeds can be divided into four types: double muscled (DM, one 
breed), fast growth (FG, two breeds), dual purpose (DP, one breed), and unimproved 
rustic type (UR, three breeds). In Table 1 for each breed, we show the average per-
centages of fats, muscle and bone. 

Table 1. Carcass compositions of 7 Spanish beef breeds used in the experiment 

Breed Fat % Bone Muscle Intramuscular 
Name Type inter-muscular subcutaneous % % fat % 
Asturiana Valles DM 4.77 0.89 16.00 78.34 0.90 
Avileña UR 13.17 3.53 19.25 64.05 2.28 
Morucha UR 12.46 3.46 19.28 64.80 2.10 
Parda Alpina DP 9.65 2.32 20.86 67.17 1.82 
Pirenaica FG 9.02 3.01 17.33 70.63 1.48 
Retinta UR 14.16 4.75 20.89 60.20 2.13 
Rubia Gallega FG 5.73 1.20 16.56 76.52 1.12 

 

Each kind of meat was also described by a panel of 11 trained experts who rate 12 
traits of products such as fibrosis, flavor, odor, etc.. In this paper, we considered the 
average rate of each trait. The characterization of meat samples was completed with 6 
physical features describing its texture.  

4   Vectorial Representation of Preference Criteria 

As was explained above, in order to compare the preference criteria of consumers we 
need to state a common language. We cannot use for this purpose the ratings assigned 
by consumers to food products, since they have rated, in general, different sets of 
samples. Then we are going to induce a reasonable extension of the preferences ex-
pressed by each consumer to obtain a function able to capture the pairwise orderings, 
not the rates. Then we will manage to define similarities in the space of those func-
tions. 

Although there are other approaches to learn preferences, we will follow [3, 4, 5]. 
Then we will try to induce a real preference, ranking, or utility function f from the 
input space of object descriptions, say Rd, in such a way that it maximizes the prob-
ability of having f(v) > f(u) whenever v is preferable to u; we call such pairs, pref-
erence judgments. This functional approach can start from a set of objects endowed 
with a (usually ordinal) rating, as in regression; but essentially, we only need a collec-
tion of preference judgments. 

When we have a set of ratings given by a consumer c, we most take into account 
the session where the ratings have been assessed [6, 7], as was explained in section 2. 
Thus, for each session we include in the set of preference judgments, PJc, the pairs (v, 
u) whenever consumer c assessed to sample represented by v a higher rating than to 
the sample represented by u. In order to induce the ranking function, as in [3], we 
look for a function Fc: Rd × Rd → R such that 
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Notice that the right hand side of (1) establishes an ordering of functional expressions 
of a generic couple (x, y) of objects representations. This suggests the definition 

fc: Rd → R, fc(x) = Fc(x,0) (2) 

The idea is then to obtain ranking functions fc from functions like Fc, as in (2), 
when Fc fulfils (1). Thus, given the set of preference judgments PJc, we can specify Fc 
by means of the constraints 

∀ (v, u) ∈ PJc, Fc(v, u) > 0 and Fc(u, v) < 0 (3) 

Therefore, PJc gives rise to a set of binary classification training set to induce Fc 

Ec = {(v, u, +1), (u, v, -1): (v, u) ∈ PJc} (4) 

Nevertheless, a separating function for Ec does not necessarily fulfill (1). Thus, we 
need an additional constraint. So, if we represent each object description x in a higher 
dimensional feature space by means of φ(x), then we can represent pairs (x, y) by 
φ(x) - φ(y). Hence, a classification SVM can induce from Ec a function of the form: 
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where <x, y> stands for the inner product of vectors x and y; S(c) is the set of sup-
port vectors, notice that they are formed by two d-dimensional vectors ),( )2(

s
)1(

s xx , 

while the scalars zs represent the class +1 or -1. Trivially, Fc fulfils the condition (1). 
Let us remark that if k is a kernel function, defined as the inner product of two objects 
represented in the feature space, that is, k(x, y) = <φ(x), φ(y)>, then the kernel 
function used to induce Fc is 

K(x1, x2, x3, x4) = k(x1, x3)  k(x1, x4)  k(x2, x3) + k(x2, x4) (6) 

Usually it is employed a linear or a simple polynomial kernel; that is, k(x, y) = 
x, y , or k(x, y) = ( x, y + 1)g, with g = 2. 

Once we have a function Fc for a consumer c fulfilling (1), then, using (2), a rank-
ing or preference or utility function fc is given (but for an irrelevant constant) by 
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Therefore, fc can be represented by the weight vector wc in the higher dimensional 
space of features such that 
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∈

φ−φα=φ=
)(

)2()1( )()(,)(,)(
cSs

ssss

cc

c zf xxwxwx        (8) 

Notice that (8) defines the ranking of an object represented by a vector x. This is 
not an absolute value; its importance is the relative position that gives to x against to 
other objects y in the competition for gaining the appreciation of consumer c. Now we 
only need to define the distance of consumers’ preferences. Given that preferences are 
codified by those weighting vectors, we define the similarity of the preferences of 
consumer c and c’ by the cosine of their weighting vectors. In symbols, 
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Given that this definition uses scalar products instead of coordinates of weighting 
vectors, we can easily rewrite (10) in terms of the kernels used in the previous deriva-
tions. The essential equality is: 
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5   Clustering Consumers with Homogeneous Tastes 

In the previous section we have associated one data point for each consumer in the 
space of preference criteria represented by ranking or preference functions. Moreover, 
we have defined a reasonable similarity measure for preference criteria; now we pro-
ceed to look for clusters of consumers with homogeneous tastes. For this purpose, we 
applied a nonparametric pairwise algorithm [8]. 

Let S = (sij) be a square matrix where sij stands for the similarity between data 
points i and j; in our case, data points are the vectorial representation of the preference 
criteria of consumers, and similarities are given by equation (9). Then, matrix S is 
transformed iteratively, following a two step procedure that converges to a two values 
matrix (1 and 0), yielding a bipartition of the data set into two clusters. Then, recur-
sively, the partition mechanism is applied to each of the resulting clusters represented 
by their corresponding submatrices. To guarantee that only meaningful splits take 
places, in [8] the authors provide a cross validation method that measures an index 
that can be read as a significance level; we will only accept splits which level is above 
0.90. 

The first step normalizes the columns of S using the L∞ norm; then the proximities 
are re-estimated using the Jensen-Shannon divergence. The idea is to formalize that 
two preference criteria are close (after these two steps) if they were both similar and 
dissimilar to analogous sets of criteria before the transformation. 

6   Experimental Results 

In this section, we report the outputs obtained with the database of beef meat consum-
ers. In order to consider significant opinions, we first selected those people involved 
in our consumers’ panel whose ratings gave rise to at least 30 preference judgments; 
these yielded us to consider a set of 171 panelists that tested from 9 to 14 samples of 
meat of 101 different animals. The total amount of different samples was 303, since 
the meat from each animal was prepared with 3 different aging periods: 1, 7, and 21 
days. Then the opinions of our panelists can be estimated inducing a preference or 
ranking function as was explained in section 4. Notice that only such functions can be 
used in order to compare the preferences of different consumers; in general, two arbi-
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trary consumers have not tested samples of the same animal prepared with the same 
aging. However, it is possible to compare the preference functions of any couple of 
consumers as vectors in a high dimension space following the kernel based method of 
section 4. 

The clustering algorithm [8] returns the trees depicted in Figure 1. Split nodes 
achieved a confidence level of 91% for tenderness dataset, and 97% for acceptance. 
The leaves of these trees and the dataset of flavor reached lower confidence levels, 
and therefore they were rejected. 

 

Acceptability 
(104) 

Left 
(48)

Right 
(56)

Tenderness
(124)

Left
(63)

Right 
(61)

 

Fig. 1. Trace of the clustering algorithm. In each node we report the number of consumers 

 
The job of clustering is to compute groups with minimal intra-group and maximal 

inter-group distances or differences. In our case, the relevance of clusters can be esti-
mated, in part, by the coherence of consumers included into the same cluster, which 
can be measured by the classification error of the SVM used to compute the ranking 
or preference function of each cluster. Let us notice that the union of preference 
judgments of the members of the same cluster has some disagreements; if for each 
pair of samples we choose the most frequent relative ordering, then about 16% of 
preference pairs of each cluster express a particular disagreement with the majority 
opinion of the cluster, see Table 2. However, every preference judgment is included 
in the training set of each cluster; this sums more than 2000 preference judgments, 
what means (see equation 4 in section 4) more than 4000 training instances for the 
corresponding classification sets. When we use a polynomial kernel of degree 2, the 
errors range from 19.20% to 21.12%; we used this kernel following [2, 6, 7]. Never-
theless, if we apply the induced classification function of each cluster to the other one, 
then the errors rise to more than 50% in the case of acceptance, and more than 60% in 
the case of tenderness. Notice that in both cases we are ranking the same samples and 
these errors can be understood as the probability of reversing the order given by one 
of such clusters when we use the criteria of the other one. Therefore, 50% of error 

Table 2. For clusters of acceptance and tenderness datasets, this table reports the number of 
preference judgments (PJ), percentage of disagreements, and classification errors achieved 
into clusters with their own ranking or preference function, and using the function of the 
other cluster 

 classification errors 
using function  

Dataset cluster PJ disagreements % own % other % 
acceptance   left 1927 16.19 19.20 50.96 

   right 2150 17.07 21.12 54.95 
tenderness   left 2487 15.96 19.38 61.98 

   right 2432 15.21 19.59 61.06 
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means a random classification, and over that threshold means that ranking criteria is 
approaching the exactly opposite, see Table 2. 

In general, it is well known that meat qualities are mainly the result of a set of 
complex factors. In this study, we are interested in knowing if there are different 
groups of people who prefer some breeds to others. To gain insight into the meaning 
of the preference criteria of each cluster, we used the ranking or preference functions 
to order the samples of meat; then we assessed 10 points to those samples included in 
the first decile, 9 to the second decile, and so on. Graphical representations of the 
average points obtained by each breed are shown in Figure 2; notice that the average 
score of all samples is 5.5. The results are quite the same if we use quartiles instead of 
deciles or any other division of the relative rankings of each cluster. 

In the acceptance dataset (Fig. 2 left), let us emphasize the opposite role played by 
Retinta and Asturiana breeds: they were first and last (or almost last) in each cluster 
alternatively. In [6, 7] we used Boolean attributes to include the breed in the descrip-
tion of each sample, and then Retinta and Asturiana were found to be the most rele-
vant Boolean features in order to explain consumer’s acceptance of meat. Addition-
ally, these two breeds have significant differences in carcass composition (see Table 
1). Notice that Asturiana breed is the only double muscled breed of the sample, and 
then it has the lowest values in percentages of subcutaneous and inter-muscular fat, 
and bone; while Retinta is the unimproved rustic breed with the highest percentages 
of fat and bone. Therefore, there are some reasons so as to assign opposite ratings to 
samples of these two breeds, although, in general, the final acceptance scorings rely 
on a complex set of features. 

In tenderness dataset (Fig. 2 right), meat from Pirenaica and Retinta breeds are the 
tenderest for people in left cluster, however they are ranked in low positions in right 
cluster. We can say exactly the opposite of meat from Asturiana and Parda breeds. 
Again, Asturiana and Retinta breeds play opposites roles in each cluster.  
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Abstract. This paper introduces an unsupervised algorithm that col-
lects senses contained in WordNet to explain words, whose meaning is
unknown, but plenty of documents are available that contain the word in
that unknown sense. Based on the widely accepted idea that the mean-
ing of a word is characterized by its context, a neural network archi-
tecture was designed to reconstruct the meaning of the unknown word.
The connections of the network were derived from word co-occurrences
and word-sense statistics. The method was tested on 80 TOEFL syn-
onym questions, from which 63 questions were answered correctly. This
is comparable to other methods tested on the same questions, but using
a larger corpus or richer lexical database. The approach was found robust
against details of the architecture.

1 Introduction

The Internet is an immensely large database; large amount of domain specific
text can be found. Intelligent tools are being developed to determine the meaning
of documents, and manually created lexical databases are intended to provide
help for such tools. However, manually assembled lexical databases are unable to
cover specific, emerging subjects, thus documents may contain words of unknown
meanings; words that are not contained in the lexical databases, or the contained
meanings do not fit into the context found in the documents. However, the
meaning of these words can often be inferred from their contexts of usage. The
aim of our method is to explain words that are unknown to a human or machine
reader, but are contained in many documents in the same sense.

To achieve this goal, our method looks for WordNet senses that are semanti-
cally close to the unknown meaning of the word. We rely on the common practice
of measuring the similarity of words based on their contextual features, and de-
signed a neural network architecture by means of three databases as sources of
information. The first is WordNet1, where the words are grouped into synonym
sets, called synsets. The second source of information that our method exploits
is SemCor2, which is a corpus tagged with WordNet senses. SemCor was used
� Corresponding author
1 http://www.cogsci.princeton.edu/∼wn/
2 http://www.cs.unt.edu/∼rada/downloads/semcor/semcor2.0.tar.gz
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to obtain information on the statistical distributions of the senses of the words.
The third database used is the British National Corpus (BNC3), a collection of
English texts of 100 million words. Our assumption is that the meaning of a
word is similar to the meaning of a sense, if they appear in the same context,
where we define context by the senses that they often co-occur with4.

Testing of any new method requires a controllable benchmark problem. Our
method was evaluated on 80 synonym questions from the Test of English as a
Foreign Language (TOEFL5). The system scored 78.75% (63 correct answers).
Many other studies had also chosen this TOEFL benchmark problem: Landauer
and Dumais’s Latent Semantic Analysis (LSA) [1] is based on co-occurrences in
a corpus, and it provides generalization capabilities. It was able to answer 64.4%
of the questions correctly. Turney’s Pointwise Mutual Information Information
Retrieval (PMI-IR) algorithm [2] performed 73.25% on the same set of ques-
tions. This is also a co-occurrence based corpus method, which examines noun
enumerations. It uses the whole web as a corpus and exploits AltaVista’s spe-
cial query operator, the NEAR operator. Terra and Clarke [3] compared several
statistical co-occurrence based similarity measures on a one terabyte web cor-
pus, and scored 81.25%. Jarmasz and Szapakovicz constructed a thesaurus-based
method [4], which performed 78.75% on these questions. They utilized Roget’s
Thesaurus to calculate path lengths in the semantic relations graph between two
words, from which a semantic similarity measure could be derived.

This paper is organized as follows: Section 2 details the neural network
method. Section 3 describes the various test cases and presents the results. Dis-
cussion is provided in Section 4, conclusions are drawn in Section 5.

2 Methods

As it was already mentioned, our method exploits three databases (Fig. 1(A)).
BNC is used to obtain word co-occurrence statistics. The following estimations
are also required: given a synset, how frequently is one of its words used to express
that sense, and, on the other hand, if a word is used, how frequently is it used in
one of its senses. Database SemCor was used to obtain these statistics. Since all
these pieces of information are needed, we only used words and synsets which
occur in SemCor at least once. This means 23141 words and 22012 synsets.
Later, we extended these sets by adding the trivial synsets, which contained
single words. Then we could experiment with 54572 words and 53443 synsets.

2.1 Co-occurrence Measures

The aim of our method is to find semantically close synsets to an unknown
word. Two words that occur in similar contexts can be considered as similar in
3 http://www.natcorp.ox.ac.uk/
4 The words sense and synset is used interchangeably in this paper.
5 http://www.ets.org/
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Neural net

British National Corpus

word co-occurrence statistics

WordNet

words and synsets

SemCor

word sense statistics

unknown word

similar synsets

QW

x input layer

a hidden representation layer

connectivity matrices

(A) (B)

Fig. 1. Databases and reconstruction network architecture (A): Scheme of our method.
(B): Basic computational architecture. Input layer (x) and hidden representation (a)
are connected by bottom-up (W ) and top-down (Q) matrices.

meaning. Therefore, we need to express the measures of co-occurrence between
words and synsets; i.e. values indicating how often words and synsets co-occur.

The probability that word w1 occurs near word w2 can be estimated as fol-
lows: P (w1|w2) = f(w1,w2)

f(w2)
, where f(w1, w2) is the number of times w1 and

w2 co-occur in a 5 wide context window6 and f(w) is the frequency of word
w. We say that w1 and w2 are near words of each other, if both P (w1|w2) and
P (w2|w1) are high, meaning that w1 and w2 are likely to co-occur. The following
measure derived from mutual co-occurrences expresses this idea: N(w1, w2) =
min(P (w1|w2), P (w2|w1)). It is expected that this co-occurrence measure de-
scribes the contexts of the words. Given a word w, we call the near word list of
w is the 100 words wi for which the N(w,wi) values are the highest. This near
word list can be represented as a feature vector of the word, the entries of the
vector are the N(w,wi) values. Then the co-occurrence information about the
words can be summarized in a quadratic and symmetric matrix NW , where the
ith row of the matrix is the feature vector of the ith word: NW (i, j) = N(wi, wj),
where wj is the jth word in our vocabulary.

In SemCor, every occurrence of a word is tagged with a WordNet synset
that expresses the meaning of the actual occurrence of the word. By counting
these tags we can compute the desired probabilities. The probability that for a
given word w, the expressed sense is s, can be estimated as P (s|w) = f(w,s)

f(w) ,
where f(w, s) is the frequency of word w in sense s and f(w) is the frequency of
word w in any of its senses. We also need the probability that a given sense s is
expressed by word w, which can be estimated as: P (w|s) = f(w,s)

f(s) , where f(s) is
the frequency of sense s, whichever word it is expressed by. These probabilities
can also be summarized in matrix forms, denoted by SW and WS : SW (i, j) =
P (si|wj) and WS(i, j) = P (wi|sj).

Using the measures introduced, a co-occurrence measure between synsets
can be derived. The idea is the following: given a synset s, the near synsets
of s are the synsets of the near words of the words expressing s. This idea is

6 Increasing the context window by a factor of 2 had no significant effects.
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expressed by the appropriate concatenation of the three matrices introduced
above: NS = SW NW WS .

2.2 Reconstruction Networks

The basic reconstruction network model has two neuron layers. Connections
bridge these layers. The lower layer is the input layer of the network, and the
upper layer is called the hidden or internal representation layer (Fig. 1(B)). The
network reconstructs its input by optimizing the hidden representation. For this
reason, we call it reconstruction network. Formally, the following quadratic cost
function is involved [5]:

J(a) = ||x−Qa||22 , (1)

where Q is the connectivity matrix, x is the input vector, a is the hidden repre-
sentation vector. The columns of the connectivity matrix can be thought of as
basis vectors, which must be linearly combined with the appropriate coefficients
so that the combination falls close to the input. The optimization can either be
solved directly

a = (QT Q)−1QT x , (2)

or iteratively
Δa ∝ W (x−Qa) , (3)

where W = QT , which can be derived from the negative gradient of cost function
(1). The form of (3) is more general than required by (1) but it still suitable as
long as WQ is positive definite. Both methods have advantages and disadvan-
tages. Directly solving the optimization returns the exact solution, but might
require a considerable amount of memory, while the iterative solution requires
less resources, but is computationally intensive.

The reconstruction network described above shall be called ‘one-tier’ net-
work. We designed both ‘one-tier’ and ‘two-tier’ networks for the word-sense
reconstruction. The two-tier network has two one-tiers on the top of each other.
The internal representation layer of the first tier serves as input for the second
tier. There are differences between the two architectures in computation speed
and in numerical precision.

The feature vector representation of the context of the unknown word serves
as input for the network. In the hidden layer, the neurons represent the candidate
synsets. In the one-tier network (Fig. 2(A)), the top-down and bottom-up matri-
ces are defined as follows: Q = WSNS and W = NT

S SW
7. Thus, in the one-tier

method, hidden synset activities are (a) transformed to near synset activities and
then (b) the activities of the near words are generated. An illustrative iteration
is depicted in Fig. 2(B): The activities in the topmost layer change during the
reconstruction of the input word frog. It can be seen that only a few activities
become high, others remain small. Note the horizontal scale: there were about
23,000 neurons in the topmost layer in this iteration.
7 However, we found that Q̃ = NW WS and W̃ = Q̃T = W T

S NT
W are simpler, express

the same relations and converge faster, thus these were used in the computations.
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Fig. 2. One-tier and two-tier networks (A) and (C): one and two tier networks.
The input of the ith node of the lowest layer is N(w, wi), where w is the un-
known word. SW (i, j) = P (si|wj), WS(i, j) = P (wi|sj), NS = SW NW WS , where
NW (i, j) = N(wi, wj) for all i, j. The result of the computation is the synset repre-
sented by the highest activity unit of the top layer after running the network. (B):
Convergence of the iterative approximation. Input word is frog. High activity nodes
correspond to sense toad and croak.

In the ‘two-tier’ network (Fig. 2(C)) the two steps of the transformation are
separated. The nodes in the intermediate layer correspond to the near synsets
of the unknown word. The bottom-up and top-down matrices are the SW and
the WS matrices, respectively. In the second tier the connectivity matrix is NS

in both directions, which contains the synset near values. This captures the idea
mentioned in the introduction; the meaning of the unknown word is similar to
the meaning of a synset if they have the same near synsets.

3 Tests and Results

We tested our method on 80 TOEFL synonym questions, each question consisted
of a question word (for example grin) and four candidate answer words, (for
example: exercise, rest, joke, smile). The task was to find the candidate word
that was the most similar in meaning to the question word (smile).

To meet our goals, we considered the question word the unknown word.
We simulated the situation of the question word being unknown by erasing all
information about the question word and its meaning from the SemCor statistics
and WordNet synsets. After running the network for the context of the question
word as input, we examined the activities corresponding to the synsets of the
candidate words, and assigned a value to each candidate word equal to the
highest activity of the synsets of the candidate word in the upper layer of the
network. The candidate word with the highest value was the chosen answer.

In the one-tier network and in the second tier of the two-tier network, the
huge number of connections between the nodes required the application of the
less precise iterative method. However, the first tier of the two-tier network
could be optimized directly, because the connectivity matrices were very sparse.
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In some cases we have additional – top-down (TD) – information about the
unknown word, for example its part-of-speech or the candidate answer words,
this reduces the set of candidate synsets. The implementation of this filtering is
simple in our system, since we can simply leave out the unnecessary synsets.

In order to test whether or not using synsets increases the efficiency of the
system, we constructed a one tier control network which used only words. The
input of the network was the same, however, the nodes in the upper layer cor-
responded to words. The connectivity matrix between the two layers is NW , as
defined in 2.1. The activities of the upper layer were examined; words having
similar context as the input word were returned.

The number of correct answers in the various cases can be seen in Table 1.
The best result, 63 correct answers (78.75%), was produced with part-of-speech
constraint with the 23141 word data set and also without TD constraint with
the 54572 word data set, utilizing the one-tier network. However, the best first
iterations were achieved by the two-tier network. It can be seen, that iteration has
improved the precision in almost all the cases. The control network started from
53 and 54 correct answers for the two word sets and reached 60 and 59 correct
answers, respectively, by iterations. These results are considerably smaller than
those of without the synsets, which supports our starting assumptions. We should
note that if information related to the question words are not deleted from the
database, then the number of correct answers is 68, which amounts to 85%.

Table 1. Results No constr : No constraint is applied. PoS : Synsets in the upper
layer correspond to the part-of-speech of the word. Candidate: Only the synsets of the
candidate words are used. Control : Single tier control network. Direct : non-iterative
solution.

23141 words No constr PoS Candidate Control
1 tier 2 tiers 1 tier 2 tiers 1 tier 2 tiers 1 tier

1 iter 55 58 55 58 55 58 53
10 iter 60 57 61 59 55 58 56
100 iter 61 60 63 58 58 56 60
direct - - - - 57 55 -

54572 words No constr PoS Candidate Control
1 tier 2 tiers 1 tier 2 tiers 1 tier 2 tiers 1 tier

1 iter 56 59 56 59 56 59 54
10 iter 62 60 59 58 56 59 56
100 iter 63 61 62 58 57 56 59
direct - - - - 57 57 -

By examining the activities corresponding to the candidate answer words,
decision points can be incorporated. Then the system may deny to answer a
question, if the answer is uncertain. We could improve precision but the number
of answers decreased considerably. Still, this property should be useful in multiple
expert schemes, where experts may be responsible for different domains.
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4 Discussion

Compared to the other methods, LSA performs relatively poorly (64.5%). How-
ever, the original intention of LSA was not to serve as an efficient TOEFL solver,
but to model human memory. LSA reads the dictionary (the text database of the
experiment) and runs the singular value decomposition only once and without
knowing anything about the questions beforehand. After this procedure LSA
can immediately answer the questions. While the first phase in LSA models a
person’s general learning process, this second phase imitates how someone solves
questions without relying on any external aid [6]. By contrast, many other meth-
ods are allowed to use their databases after they have observed the questions.

Our method resembles LSA. Alike LSA, it works by the optimization of
reconstruction using hidden variables over Euclidean norm. We also build a kind
of memory model (the connectivity matrices of the neural network) before the
questions are observed. When the questions are observed, the answer can be
produced by running the network. Alike to LSA, our method was not developed
for solving TOEFL questions, but for explaining unknown words. Considering
this, our comparably high score (78.75%) is promising. True though, the original
network incorporates information contained in WordNet and SemCor, however,
the strength of the approach is shown by the control network, which did not use
any lexical information, and gave 60 correct answers (i.e., 75%).

The Hyperspace Analogue to Language (HAL) model [7] works in high di-
mensions alike to our method. According to the HAL model, the strength of a
term–term association is inversely proportional to the Euclidean distance be-
tween the context and the target words. Alike to HAL, our method makes use of
the whole table of co-occurrences. This seems important; the larger table gave
better result for us. Our method combines the advantages of LSA and HAL: it
makes use of all information like HAL and adopts hidden variables like LSA.

We also included other information, the uncertainty of the answer, that goes
beyond the statistics of co-occurrences. It may be worth noting here that our
approach can be generalized to hidden, overcomplete, and sparse representations
[8]. Such non-linear generalizations can go beyond simple computational advan-
tages when additional example based information [9] or supervisory training are
to be included.

A recent paper on meaning discovery using Google queries [10] thoroughly
details the development of semantic distances between words. The method uses
first order co-occurrence counts (Google page counts) to determine the semantic
distance of two words. The article describes a semantic distance called Normal-
ized Google Distance (NGD), derived from the same formula that we use to
calculate the co-occurrence measure of two words. However, in our case, the
formula was used to examine second order co-occurrences instead of first order
co-occurrences. We conducted two studies with NGD. First, we solved the 80
TOEFL synonym questions using NGD as described in the paper; we measured
the distance of the question word and each candidate word, and chosen the one
with the smallest distance. Depending on the database we used to collect word
frequencies, the results were different, however, surprisingly low: 30 correct an-
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swers (37.5%) when BNC was used, and 40 correct answers (50.0%) when Google
was used to return the page counts needed for NGD. In the other study we used
our neural network method based on NGD instead of our co-occurrence measure.
Results in this case were almost identical to the original setting, when we used
our own co-occurrence measure, indicating the robustness of our solution against
these details.

5 Conclusions

We have studied neural network architectures for explaining unknown words by
known senses, senses that are contained in our lexical databases. We tested the
method on TOEFL synonym questions. It was found that the networked solution
provided good results, and was found robust against the details. At the cost of
decreasing recall, the precision of the system can be improved. These features
make our method attractive for various circumstances.
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Abstract. This paper presents a novel, generic, scalable, autonomous,
and flexible supervised learning algorithm for the classification of multi-
variate and variable length time series. The essential ingredients of the
algorithm are randomization, segmentation of time-series, decision tree
ensemble based learning of subseries classifiers, combination of subseries
classification by voting, and cross-validation based temporal resolution
adaptation. Experiments are carried out with this method on 10 syn-
thetic and real-world datasets. They highlight the good behavior of the
algorithm on a large diversity of problems. Our results are also highly
competitive with existing approaches from the literature.

1 Learning to Classify Time-Series

Time-series classification is an important problem from the viewpoint of its mul-
titudinous applications. Specific applications concern the non intrusive moni-
toring and diagnosis of processes and biological systems, for example to decide
whether the system is in a healthy operating condition on the basis of measure-
ments of various signals. Other relevant applications concern speech recognition
and behavior analysis, in particular biometrics and fraud detection.

From the viewpoint of machine learning, a time-series classification problem
is basically a supervised learning problem, with temporally structured input
variables. Among the practical problems faced while trying to apply classical
(propositional) learning algorithms to this class of problems, the main one is to
transform the non-standard input representation into a fixed number of scalar
attributes which can be managed by a propositional base learner and at the same
time retain information about the temporal properties of the original data.

One approach to solve this problem is to define a (possibly very large) col-
lection of temporal predicates which can be applied to each time-series in order
to compute (logical or numerical) features which can then be used as input rep-
resentation for any base learner (e.g. [7,8,10,11]). This feature extraction step
can also be incorporated directly into the learning algorithm [1,2,14]. Another
approach is to define a distance or similarity measure between time-series that
takes into account temporal specific peculiarities (e.g. invariance with respect to

A. Jorge et al. (Eds.): PKDD 2005, LNAI 3721, pp. 478–485, 2005.
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time or amplitude rescaling) and then to use this distance measure in combina-
tion with nearest neighbors or other kernel-based methods [12,13]. A potential
advantage of these approaches is the possibility to bias the representation by ex-
ploiting prior problem specific knowledge. At the same time, this problem specific
modeling step makes the application of machine learning non autonomous.

The approach investigated in this paper aims at developing a fully generic
and off-the-shelf time-series classification method. More precisely, the proposed
algorithm relies on a generic pre-processing stage which extracts from the time-
series a number of randomly selected subseries, all of the same length, which
are labeled with the class of the time-series from which they were taken. Then a
generic supervised learning method is applied to the sample of subseries, so as to
derive a subseries classifier. Finally, a new time-series is classified by aggregating
the predictions of all its subseries of the said size. The method is combined with
a ten-fold cross-validation wrapper in order to adjust automatically the size of
the subseries to a given dataset. As base learners, we use tree-based methods
because of their scalability and autonomy.

Section 2 presents and motivates the proposed algorithmic framework of seg-
mentation and combination of time-series data and Section 3 presents an em-
pirical evaluation of the algorithm on a diverse set of time-series classification
tasks. Further details about this study may be found in [4].

2 Segment and Combine

Notations. A time-series is originally represented as a discrete time finite dura-
tion real-valued vector signal. The different components of the vector signal are
called temporal attributes in what follows. The number of time-steps for a given
temporal attribute is called its duration. We suppose that all temporal attributes
of a given time-series have the same duration. On the other hand, the durations of
different time-series of a given problem (or dataset) are not assumed to be identi-
cal. A given time series is related to a particular observation (or object). A learn-
ing sample (or dataset) is a set (ordering is considered irrelevant at this level) of
N preclassified time-series denoted by LSN =

{(
a(td(o), o), c(o)

)∣∣ o = 1, . . . , N
}

,
where o denotes an observation, d(o) ∈ IN stands for the duration of the time-
series, c(o) refers to the class associated to the time-series, and

a(td(o), o) = (a1(td(o), o), . . . , an(td(o), o))′, ai(td(o), o) = (ai(1, o), . . . , ai(d(o), o))′,

represents the vector of n real-valued temporal attributes of duration d(o).
The objective of the time-series classification problem is to derive from LSN

a classification rule ĉ(a(td(o), o)) which predicts output classes of an unseen time-
series a(td(o), o) as accurately as possible.

Training a subseries classifier. In its training stage, the segment and combine
algorithm uses a propositional base learner to yield a subseries classifier from
LSN in the following way:
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Subseries sampling. For i = 1, . . . , Ns choose oi ∈ {1, . . . , N} randomly, then
choose a subseries offset ti ∈ {0, . . . , d(oi) − �} randomly, and create a scalar
attribute vector

a	
ti

(oi) = (a1(ti + 1, oi), . . . , a1(ti + �, oi), . . . , an(ti + 1, oi), . . . , an(ti + �, oi))

concatenating the values of all n temporal attributes over the time interval ti +
1, . . . , ti + �. Collect the samples in a training set of subseries

LS	
Ns

=
{

(a	
ti

(oi), c(oi))
∣∣ i = 1, . . . , Ns

}
.

Classifier training. Use the base learner on LS	
Ns

to build a subseries classifier.
This “classifier” is supposed to return a class-probability vector P 	

c (a	).

Notice that when Ns is greater than the total number of subseries of length �,
no sampling is done and LS	

Ns
is taken as the set of all subseries.

Classifying a time-series by votes on its subseries. For a new time-
series a(td(o), o), extract systematically all its subseries of length �, a	

i(o), ∀i ∈
{0, . . . , d(o) − �}, and classify it according to

ĉ(a(td(o), o))
�
= argmax

c

⎧⎨⎩
d(o)−	∑

i=0

P 	
c (a	

i(o))

⎫⎬⎭ .

Note that if the base learner returns 0/1 class indicators, the aggregation step
merely selects the class receiving the largest number of votes.

Tuning the subseries length �. In addition to the choice of base learner
discussed below, the sole parameters of the above method are the number of
subseries Ns and the subseries length �. In practice, the larger Ns, the higher the
accuracy. Hence, the choice of the value of Ns is only dictated by computational
constraints. On the other hand, the subseries length � should be adapted to the
temporal resolution of the problem. Small values of � force the algorithm to focus
on local (shift-invariant) patterns in the original time-series while larger values
of � amount to considering the time-series more globally. In our method, we
determine this length automatically by trying out a set of candidate values �i ≤
mino∈LSN d(o), estimating for each �i the error-rate by ten-fold cross-validation
over LSN , and selecting the value �∗ yielding the lowest error rate estimate.

Base learners. In principle, any propositional base learner (SVM, kNN, MLP
etc.) could be used in the above approach. However, for scalability reasons, we
recommend to use decision trees or ensembles of decision trees. In the trials in
the next section we will compare the results obtained with two different tree-
based methods, namely single unpruned CART trees and ensembles of extremely
randomized trees. The extremely randomized trees algorithm (Extra-Trees) is
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Table 1. Summary of datasets

Dataset Src. Nd n c d − d Protocol Best Ref {i}, {si}
CBF 1 798 1 3 128 10-fold cv 0.00 [7] 1,2,4,8,16,32,64,96,128
CC 2 600 1 6 60 10-fold cv 0.83 [1] 1,2,5,10,20,30
CBF-tr 1 5000 1 3 128 10-fold cv – 1,2,4,8,16,32,64,96,128
Two-pat 1 5000 1 3 128 10-fold cv – 1,2,4,8,16,32,64,96,128
TTest 1 999 3 3 81-121 10-fold cv 0.50 [7] 3,5,10,20,40,60
Trace 3 1600 4 16 268-394 holdout 800 0.83 [1] 10,25,50,100,150,200,250
Auslan-s 2 200 8 10 32-101 10-fold cv 1.50 [1] 1,2,5,10,20,30
Auslan-b 5 2566 22 95 45-136 holdout 1000 2.10 [7] 1,2,5,10,20,30,40
JV 2 640 8 10 7-29 holdout 270 3.80 [8] 2,3,5,7
ECG 4 200 2 2 39-152 10-fold cv – 1,2,5,10,20,30,39

1http://www.montefiore.ulg.ac.be/∼geurts/thesis.html 2 [5] 3http://www2.ife.no
4http://www-2.cs.cmu.edu/∼bobski/pubs/tr01108.html

5http://waleed.web.cse.unsw.edu.au/new/phd.html

described in details in [4]. It grows a tree by selecting the best split from a small
set of candidate random splits (both attribute and cut-point are randomized).
This method allows to reduce strongly variance without increasing bias too much.
It is also significantly faster in the training stage than bagging or boosting which
search for optimal attribute and cut-points at each node.

Notice that because the segment and combine approach has some intrinsic
variance reduction capability, it is generally counterproductive to prune single
trees in this context. For the same reason, the number of trees in the tree en-
semble methods can be chosen reasonably small (25 in our experiments).

3 Empirical Analysis

3.1 Benchmark Problems

Experiments are carried out on 10 problems. For the sake of brevity, we only
report in Table 1 the main properties of the 10 datasets. We refer the interested
reader to [4] and the references therein for more details. The second column gives
the (web) source of the dataset. The next four columns give the number Nd of
time-series in the dataset, the number of temporal attributes n of each time-
series, the number of classes c, and the range of values of the duration d(o); the
seventh column specifies our protocol to derive error rates; the eighth and ninth
columns give respectively the best published error rate (with identical or com-
parable protocol to ours) and the corresponding reference; the last column gives
the trial values used for the parameters � and s. The first six problems are artifi-
cial problems specifically designed for the validation of time-series classification
methods, while the last four problems correspond to real world problems.

3.2 Accuracy Results

Accuracy results on each problem are gathered in Table 2. In order to assess
the interest of the segment and combine approach, we compare it with a simple
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Table 2. Error rates (in %) and optimal values of s and 

Temporal normalization Segment&Combine (Ns = 10000)
ST ET ST ET

Dataset Err% s∗ Err% s∗ Err% ∗ Err% ∗

CBF 4.26 24.0 ± 8.0 0.38 27.2 ± 7.3 1.25 92.8 ± 9.6 0.75 96.0 ± 0.0
CC 3.33 21.0 ± 17.0 0.67 41.0 ± 14.5 0.50 35.0 ± 6.7 0.33 37.0 ± 4.6
CBF-tr 13.28 30.4 ± 13.3 2.51 30.4 ± 4.8 1.63 41.6 ± 14.7 1.88 57.6 ± 31.4
Two-pat 25.12 8.0 ± 0.0 14.37 36.8 ± 46.1 2.00 96.0 ± 0.0 0.37 96.0 ± 0.0
TTest 18.42 40.0 ± 0.0 13.61 40.0 ± 0.0 3.00 80.0 ± 0.0 0.80 80.0 ± 0.0
Trace 50.13 50 40.62 50 8.25 250 5.00 250
Auslan-s 19.00 5.5 ± 1.5 4.50 10.2 ± 4.0 5.00 17.0 ± 7.8 1.00 13.0 ± 4.6
Auslan-b 22.82 10 4.51 10 18.40 40.0 ± 0.0 5.16 40.0 ± 0.0
JV 16.49 2 4.59 2 8.11 3 4.05 3
ECG 25.00 18.5 ± 10.0 15.50 19.0 ± 9.4 25.50 29.8 ± 6.0 24.00 32.4 ± 8.5

normalization technique [2,6], which aims at transforming a time-series into a
vector of fixed dimensionality of scalar numerical attributes: the time interval of
each object is divided into s equal-length segments and the average values of all
temporal attributes along these segments are computed, yielding a new vector of
n · s attributes which are used as inputs to the base learner. The two approaches
are combined with single decision trees (ST) and ensembles of 25 Extra-Trees
(ET) as base learners. The best result in each row is highlighted.

For the segment and combine method, we randomly extracted 10,000 sub-
series. The optimal values of the parameters � and s are searched among the
candidate values reported in the last column of Table 1. When the testing pro-
tocol is holdout, the parameters are adjusted by 10-fold cross-validation on the
learning sample only; when the testing protocol is 10-fold cross-validation, the
adjustment of these parameters is made for each of the ten folds by an internal
10-fold cross-validation. In this latter case average values and standard devia-
tions of the parameters s∗ and �∗ over the (external) testing folds are provided.

From these results we first observe that “Segment and Combine” with Extra-
Trees (ET) yields the best results on six out of ten problems. On three other
problems (CBF, CBR-tr, Auslan-b) its accuracy is close to the best one. Only on
the ECG problem, the results obtained are somewhat disappointing with respect
to the normalization approach. On the other hand, it is clear that the combi-
nation of the normalization technique with single trees (ST) is systematically
(much) less accurate than the other variants.

We also observe that, both for “normalization” and “segment and combine”,
the Extra-Trees always give significantly better results than single trees.1 On the
other hand, the improvement resulting from the segment and combine method
is stronger for single decision trees than for Extra-Trees. Indeed, error rates of
the former are reduced in average by 65% while error rates of the latter are

1 There is only one exception, namely CBF-tr where the ST method is slightly better
than ET in the case of “segment and combine”.
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only reduced by 30%. Actually, with “segment and combine”, single trees and
Extra-Trees are close to each other in terms of accuracy on several problems,
while they are not with “normalization”. This can be explained by the intrinsic
variance reduction effect of the segment and combine method, which is due to the
virtual increase of the learning sample size and the averaging step and somewhat
mitigates the effect variance reduction techniques like ensemble methods (see [3]
for a discussion of bias and variance of the segment and combine method).

From the values of �∗ in the last column of Table 2, it is clear that the
optimal �∗ is a problem dependent parameter. Indeed, with respect to the average
duration of the time-series this optimal values ranges from 17% (on JV) to 80%
(on TTest). This highlights the usefulness of the automatic tuning by cross-
validation of �∗ as well as the capacity of the segment and combine approach to
adapt itself to variable temporal resolutions.

A comparison of the results of the last two columns of Table 2 with the eighth
column of Table 1, shows that the segment and combine method with Extra-Trees
is actually quite competitive with the best published results. Indeed, on CBF,
CC, TTest, Auslan-s, and JV, its results are very close to the best published
ones.2 Since on Trace, and to a lesser extent on Auslan-b, the results were less
good, we ran a side-experiment to see if there is room for improvement. On Trace
we were able (with Extra-Trees and Ns = 15000) to reduce the error rate from
5.00% to 0.875% by first resampling the time series into a fixed number of 268
time points. The same approach with 40 time points decreased also the error
rate on Auslan-b from 5.16% to 3.94%.

3.3 Interpretability

Let us illustrate the possibility to extract interpretable information from the
subseries classifiers. Actually, these classifiers provide for each time point a vec-
tor estimating the class-probabilities of subseries centered at this point. Hence,
subseries that correspond to a high probability of a certain subset of classes can
be considered as typical patterns of this subset of classes.

Figure 1 shows for example, in the top part, two temporal attributes for
three instances of the Trace problem respectively of classes 1, 3, and 5, and
in the bottom part the evolution of the probabilities of these three classes as
predicted for subseries (of length � = 50) as they move progressively from left
to right on the time axis. The Class 3 signal (top middle) differs from the Class
1 signal (top left) only in the occurrence of a small sinusoidal pattern in one of
the attribute (around t = 200); on the other hand, Class 1 and 3 differ from
Class 5 (top right) in the occurrence of a sharp peak in the other attribute
(around t = 75 and t = 100 respectively). From the probability plots we see
that, for t ≤ 50 the three classes are equally likely, but at the time where the
peak appears (t ∈ [60 − 70]) the probability of Class 5 decreases for the two

2 Note that on CBF, CC, TTest, and Auslan-s, our test protocols are not strictly
identical to those published since we could not use the same ten folds. This may be
sufficient to explain small differences with respect to results from the literature.
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Fig. 1. Interpretability of “Segment and Combine” (Trace dataset, Ns = 10000, ET)

first series (where a peak appears) and increases for the right-most series (where
no peak appears). Subsequently, around t = 170, the subseries in the middle
instance start to detect the sinusoidal pattern, which translates into an increase
of the probability of Class 3, while for the two other time-series Classes 1 and 5
become equally likely and Class 3 relatively less. Notice that the voting scheme
used to classify the whole time-series from its subseries amounts to integrating
these curves along the time axis and deciding on the most likely class once all
subseries have been incorporated. This suggests that, once a subseries classifier
has been trained, the segment combine approach can be used in real-time in
order to classify signals through time.

4 Conclusion

In this paper, we have proposed a new generic and non-parametric method for
time-series classification which randomly extracts subseries of a given length
from time-series, induces a subseries classifier from this sample, and classifies
time-series by averaging the prediction over its subseries. The subseries length
is automatically adapted by the algorithm to the temporal resolution of the
problem. This algorithm has been validated on 10 benchmark problems, where it
yielded results competitive with state-of-the-art algorithms from the literature.
Given the diversity of benchmark problems and conceptual simplicity of our
algorithm, this is a very promising result. Furthermore, the possibility to extract
interpretable information from time-series has been highlighted.

There are several possible extensions of our work, such as more sophisticated
aggregation schemes and multi-scale subseries extraction. These would allow to
handle problems with more complex temporally related characteristic patterns
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of variable time-scale. We have also suggested that the method could be used
for real-time time-series classification, by adjusting the voting scheme.

The approach presented here for time-series is essentially identical to the work
reported in [9] for image classification. Similar ideas could also be exploited to
yield generic approaches for the classification of texts or biological sequences.
Although these latter problems have different structural properties, we believe
that the flexibility of the approach makes it possible to adjust it to these contexts
in a straightforward manner.
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Abstract. The primary goal of cluster analysis is to produce clusters
that accurately reflect the natural groupings in the data. A second objec-
tive is to identify features that are descriptive of the clusters. In addition
to these requirements, we often wish to allow objects to be associated
with more than one cluster. In this paper we present a technique, based
on the spectral co-clustering model, that is effective in meeting these ob-
jectives. Our evaluation on a range of text clustering problems shows that
the proposed method yields accuracy superior to that afforded by exist-
ing techniques, while producing cluster descriptions that are amenable
to human interpretation.

1 Introduction

The unsupervised grouping of documents, a frequently performed task in in-
formation retrieval systems, can be viewed as having two fundamental goals.
Firstly, we seek to identify a set of clusters that accurately reflects the topics
present in a corpus. A second objective that is often overlooked is the provision
of information to facilitate human interpretation of the clustering solution.

The primary choice of representation for text mining procedures has been the
vector space model. However, corpora modelled in this way are generally charac-
terised by their sparse high-dimensional nature. Traditional clustering algorithms
are susceptible to the well-known problem of the curse of dimensionality, which
refers to the degradation in algorithm performance as the number of features in-
creases. Consequently, these methods will often fail to identify coherent clusters
when applied to text data due to the presence of many irrelevant or redundant
terms. In addition, the inherent sparseness of the data can further impair an
algorithm’s ability to correctly uncover the data’s underlying structure.

To overcome these issues, a variety of techniques have been proposed to
project high-dimensional data to a lower-dimensional representation in order to
minimise the effects of sparseness and irrelevant features. In particular, dimen-
sion reduction methods based on spectral analysis have been frequently applied
to improve the accuracy of document clustering algorithms, due to their ability
to uncover the latent relationships in a corpus. However, from the perspective
of domain users, the production of clear, unambiguous descriptions of cluster
content is also highly important. A simple but effective means of achieving this
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goal is to generate weights signifying the relevance of the terms in the corpus
vocabulary to each cluster, from which a set of cluster labels can be derived. The
provision of document weights can also help the end-user to gain an insight into
a clustering solution. In particular, when a document is assigned to a cluster,
one may wish to quantify the confidence of the assignment. Additionally, the use
of soft clusters allows us to represent cases where a given document relates to
more than one topic.

In this paper, we introduce a co-clustering technique, based on spectral anal-
ysis, that provides interpretable membership weights for both terms and docu-
ments. Furthermore, we show that by applying an iterative matrix factorisation
scheme, we can produce a refined clustering that affords improved accuracy and
interpretability. We compare our algorithms with existing methods on a range of
datasets, and briefly discuss the generation of useful cluster descriptions. Note
that an extended version of this paper is available as a technical report with the
same title [1].

2 Matrix Decomposition Methods

In this section, we present a brief summary of two existing dimension reduction
methods that have been previously applied to document clustering. To describe
the algorithms discussed in the remainder of the paper, we let A denote the m×n
term-document matrix of a corpus of n documents, each of which is represented
by an m-dimensional feature vector. We assume that k is an input parameter
indicating the desired number of clusters.

2.1 Spectral Co-clustering

Spectral clustering methods have been widely shown to provide an effective
means of producing disjoint partitions across a range of domains [2,3]. In simple
terms, these algorithms analyse the spectral decomposition of a matrix repre-
senting a dataset in order to uncover its underlying structure. The reduced space,
constructed from the leading eigenvectors or singular vectors of the matrix, can
be viewed as a set of semantic variables taking positive or negative values.

A novel approach for simultaneously clustering documents and terms was
suggested by Dhillon [4], where the co-clustering problem was formulated as the
approximation of the optimal normalised cut of a weighted bipartite graph. It was
shown that a relaxed solution may be obtained by computing the singular value
decomposition (SVD) of the normalised matrix An = D1

−1/2AD2
−1/2, where

[D1]ii =
∑n

j=1 Aij and [D2]jj =
∑m

i=1 Aij are diagonal matrices. A reduced
representation Z is then constructed from the the left and right singular vectors
of An, corresponding to the log2 k largest non-trivial singular values. Viewing
the matrix Z as a l-dimensional geometric embedding of the original data, the
k-means algorithm is applied in this space to produce a disjoint co-clustering.



488 D. Greene and P. Cunningham

2.2 Non-negative Matrix Factorisation (NMF)

Non-Negative Matrix Factorisation (NMF) [5] has recently been identified as
a practical approach for reducing the dimensionality of non-negative matrices
such as the term-document representation of a text corpus [6]. Unlike spectral
decomposition, NMF is constrained to produce non-negative factors, providing
an interpretable clustering without the requirement for further processing.

Given the term-document matrix A, NMF generates a rank-k approximation
of the corpus in the form of the product of two non-negative matrices A ≈ UVT .
The factor U is a m×k matrix consisting of k basis vectors, which can be viewed
as a set of semantic variables corresponding to the topics in the data, while V
is a n× k matrix of coefficients describing the contribution of the documents to
each topic. The factors are determined by a given objective function that seeks
to minimise the error of the reconstruction of A by the approximation UVT.

3 Soft Spectral Clustering

In this section, we discuss the problem of inducing membership weights from a
disjoint partition, and we propose an intuitive method to produce soft clusters
based on the spectral co-clustering model.

For the task of generating feature weights from a hard clustering, a common
approach is to derive values from each cluster’s centroid vector [7]. However,
an analogous technique for spectral clustering is not useful due to the presence
of negative values in centroid vectors formed in the reduced space. Another
possibility is to formulate a document’s membership weights as a function of the
document’s similarity to each cluster centroid [8].

The success of spectral clustering methods has been attributed to the trunca-
tion of the eigenbasis, which has the effect of amplifying the association between
points that are highly similar, while simultaneously attenuating the association
of points that are dissimilar [3]. However, while this process has been shown to
improve the ability of a post-processing algorithm to identify cohesive clusters,
the truncation of the decomposition of A to k � m singular vectors introduces a
distortion that makes the extraction of natural membership weights problematic.
As a consequence, we observe that directly employing embedded term-centroid
similarity values as membership weights will not provide intuitive cluster labels.

3.1 Inducing Soft Clusters

As a starting point, we construct a reduced space based on the spectral co-
clustering model described in Section 2.1. However, we choose to form the em-
bedding Z from the leading k singular vectors, as truncating the eigenbasis to
a smaller number of dimensions may lead to an inaccurate clustering [2]. By
applying the classical k-means algorithm using the cosine similarity measure, we
generate k disjoint subsets of the points in the embedded geometric space. We
represent this clustering as the (m + n) × k partition matrix P = [P1, . . . , Pk],
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where Pi is a binary membership indicator for the i-th cluster. We denote the k
centroids of the clustering by {μ1, . . . , μk}.

As the spectral co-clustering strategy is based on the principle of the dual-
ity of clustering documents and terms [4], we argue that we can induce a soft
clustering of terms from the partition of documents in Z and a soft clustering of
documents from the partition of terms. Note that the matrix P has the structure:

P =
[
P1
P2

]
where P1 and P2 indicate the assignment of terms and documents respectively.
An intuitive approach to producing term weights is to apply the transformation
AT P̂1, where P̂1 denotes the matrix P1 with columns normalised to unit length.
This effectively projects the centroids of the partition of documents in Z to the
original feature space. Similarly, to derive document-cluster association weights
V, we can apply the transformation AP̂2, thereby projecting the embedded
term cluster centroids to the original data.

However, the above approach will not reflect the existence of boundary points
lying between multiple clusters or outlying points that may be equally distant
from all centroids. To overcome this problem, we propose the projection of the
centroid-similarity values from the embedded clustering to the original data. Due
to the presence of negative values in Z, these similarities will lie in the range
[−1, 1]. We rescale the values to the interval [0, 1] and normalise the k columns
to unit length, representing them by the matrix S as defined by:

Sij =
1 + cos(zi, μj)

2
, Sij ← Sij∑

l Slj
(1)

As with the partition matrix of the embedded clustering, one may divide S into
two submatrices, where S1 corresponds to the m × k term-centroid similarity
matrix and S2 corresponds to the n× k document-centroid similarity matrix:

S =
[
S1
S2

]
By applying the projections AT S1 and AS2, we generate membership weights
that capture both the affinity between points in the embedded space and the
raw term-frequency values of the original dataset.

3.2 Soft Spectral Co-clustering (SSC) Algorithm

Motivated by the duality of the co-clustering model, we now present a spectral
clustering algorithm with soft assignment of terms and documents that employs a
combination of the transformation methods described in the previous section. We
formulate the output of the algorithm as a pair of matrices (U,V), representing
the term-cluster and document-cluster membership functions respectively. As a
document membership function, we select the projection AT S1, on the basis
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that the use of similarity values extracts more information from the embedded
clustering than purely considering the binary values in P. We observe that this
generally leads to a more accurate clustering, particularly on datasets where the
natural groups overlap.

The requirements for a term membership function differ considerably from
those of a document membership function, where accuracy is the primary con-
sideration. As the production of useful cluster descriptions is a central objective
of our work, we seek to generate a set of weights that results in the assign-
ment of high values to relevant features and low values to irrelevant features.
Consequently, we select the projection AP̂2 as previous work has shown that
centroid vectors can provide a summarisation of the important concepts present
in a cluster [7]. Our choice is also motivated by the observation that the binary
indicators in P̂1 result in sparse discriminative weight vectors, whereas the pro-
jection based on S2 leads to term weights such that the highest ranking words
tend to be highly similar across all clusters. We now summarise the complete
procedure, which we refer to as the Soft Spectral Co-clustering (SSC) algorithm:

1. Compute the k largest singular vectors of An to produce the truncated
factors Uk = (u1, . . . , uk) and Vk = (v1, . . . , vk).

2. Construct the embedded space Z by scaling and stacking Uk and Vk:

Z =
[
D1

−1/2Uk

D2
−1/2Vk

]
3. Apply the k-means algorithm with cosine similarity to Z to produce a disjoint

co-clustering, from which the matrices S1 and P̂1 are computed.
4. Form soft clusters by applying the projections U = AP̂2 and V = AT S1.

We employ a cluster initialisation strategy similar to that proposed in [2], where
each centroid is chosen to be as close as possible to 90o from the previously
selected centroids. However, rather than nominating the first centroid at random,
we suggest that accurate deterministic results may be produced by selecting the
most centrally located data point in the embedded space.

4 Refined Soft Spectral Clustering

We now present a novel technique for document clustering by dimension reduc-
tion that builds upon the co-clustering techniques described in Section 3.

The dimensions of the space produced by spectral decomposition are con-
strained to be orthogonal. However, as text corpora will typically contain docu-
ments relating to multiple topics, the underlying semantic variables in the data
will rarely be orthogonal. The limitations of spectral techniques to effectively
identify overlapping clusters has motivated other techniques such as NMF, where
each document may be represented as an additive combination of topics [6]. How-
ever, the standard approach of initialising the factors (U,V) with random values
can lead to convergence to a range of solutions of varying quality. We argue that
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initial factors, produced using the soft cluster induction techniques discussed
previously, can provide a set of well-separated “core” clusters. By subsequently
applying matrix factorisation with non-negativity constraints to the membership
matrices, we can effectively uncover overlaps between clusters.

4.1 Refined Soft Spectral Co-clustering (RSSC) Algorithm

In the SSC algorithm described in Section 3.1, our choice of projection for the
construction of the term membership matrix was motivated by the goal of pro-
ducing human-interpretable weights. However, the projection AS2 retains addi-
tional information from the embedded clustering, while simultaneously consid-
ering the original term frequencies in A. Consequently, we apply soft spectral
co-clustering as described previously, but we select U = AT S1 and V = AS2
as our initial pair of factors.

We refine the weights in U and V by iteratively updating these factors in
order to minimise the divergence or entropy between the original term-document
matrix A and the approximation UVT as expressed by

D(A||UVT ) =
m∑

i=1

n∑
j=1

(
Aij log

Aij

[UVT ]ij
−Aij + [UVT ]ij

)
(2)

This function can be shown to reduce to the Kullback-Leibler divergence mea-
sure when both A and UVT sum to 1. To compute the factors a diagonally
scaled gradient descent optimisation scheme is applied in the form of a pair of
multiplicative update rules that converge to a local minimum. We summarise
the Refined Soft Spectral Co-clustering (RSSC) algorithm as follows:

1. Decompose An and construct the embedded space Z as described previously.
2. Apply k-means to the rows of Z to produce a disjoint clustering, from which

S1 and S2 are constructed.
3. Generate the initial factors U = AT S1 and V = AS2.
4. Update V using the rule

vij ← vij

[(
Aij

[UVT ]ij

)T

U

]
ij

(3)

5. Update U using the rule

uij ← uij

[
Aij

[UVT ]ij
V
]

ij

, uij ← uij
Uij∑m
l=1 Ulj

(4)

6. Repeat from step 4 until convergence.

To provide a clearer insight into the basis vectors, we subsequently apply a
normalisation so that the Euclidean length of each column of U is of unit length
and we scale the factor V accordingly as suggested in [6].
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5 Experimental Evaluation

In our experiments we compared the accuracy of the SSC and RSSC algorithms
to that of spectral co-clustering (CC) based on k singular vectors and NMF
using the divergence objective function given in (2) and random initialisation.
Choosing the number of clusters k is a difficult model-selection problem which
lies beyond the scope of this paper. For the purpose of our experiments we set
k to correspond to the number of annotated classes in the data.

The experimental evaluation was conducted on a diverse selection of datasets,
which differ in their dimensions, complexity and degree of cluster overlap. For a
full discussion of the datasets used in our experiments, consult [1]. To pre-process
these datasets, we applied standard stop-word removal and stemming techniques.
We subsequently excluded terms occurring in less than three documents. No
further feature selection or term normalisation was performed.

5.1 Results

To compare algorithm accuracy, we apply the normalised mutual information
(NMI) external validation measure proposed in [9]. We elected to evaluate hard
clusterings due to the disjoint nature of the annotated classes for the datasets
under consideration, and to provide a means of comparing the non-probabilistic
document weights generated by our techniques with the output of the spectral co-
clustering algorithm. Therefore, we induce a hard clustering from V by assigning
the i-th document to the j-th cluster if j = arg maxj(vij).

Table 1 summarises the experimental results for all datasets as averaged
across 20 trials. In general, the quality of the clusters produced by the SSC
algorithm was at least comparable to that afforded by the spectral co-clustering
method described in [4]. By virtue of their ability to perform well in the presence
of overlapping clusters, both the NMF and RSSC methods generally produced
clusterings that were superior to those generated using only spectral analysis.
However, the RSSC algorithm’s use of spectral information to seed well-separated
“core clusters” for subsequent refinement leads to a higher level of accuracy on
most datasets. When applied to larger datasets, we observe that the NMF and
CC methods exhibit considerable variance in the quality of the clusters that they

Table 1. Performance comparison based on NMI

Dataset CC NMF SSC RSSC
bbc 0.78 0.80 0.82 0.86
bbcsport 0.64 0.69 0.65 0.70
classic2 0.29 0.34 0.46 0.79
classic3 0.92 0.93 0.92 0.93
classic 0.63 0.70 0.62 0.87
ng17-19 0.39 0.36 0.45 0.50

Dataset CC NMF SSC RSSC
ng3 0.68 0.78 0.70 0.84
re0 0.33 0.39 0.35 0.40
re1 0.39 0.42 0.41 0.43
reviews 0.34 0.53 0.40 0.57
tr31 0.38 0.54 0.51 0.65
tr41 0.58 0.60 0.67 0.67
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produce, whereas the deterministic nature of the initialisation strategy employed
by the newly proposed algorithms leads to stable solutions.

5.2 Cluster Labels

Given the term membership weights produced by the SSC and RSSC algorithms,
a natural approach to generating a set of labels for each cluster is to select
the terms with the highest values from each column of the matrix U. Due to
space restrictions, we only provide a sample of the labels selected for clusters
produced by the RSSC algorithm on the bbc dataset in Table 2, where the natural
categories are: business, politics, sport, entertainment and technology.

Table 2. Labels produced by RSSC algorithm for bbc dataset

Cluster Top 7 Terms
C1 company, market, firm, bank, sales, prices, economy
C2 government, labour, party, election, election, people, minister
C3 game, play, win, players, england, club, match
C4 film, best, awards, music, star, show, actor
C5 people, technology, mobile, phone, game, service, users

6 Concluding Remarks

In this paper, we described a method based on spectral analysis that can yield
stable interpretable clusters in sparse high-dimensional spaces. Subsequently, we
introduced a novel approach to achieve a more accurate clustering by applying
a constrained matrix factorisation scheme to refine an initial solution produced
using spectral techniques. Evaluations conducted on a variety of text corpora
demonstrate that this method can lead to the improved identification of over-
lapping clusters, while simultaneously producing document and term weights
that are amenable to human interpretation.
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Abstract. Hoeffding trees are state-of-the-art in classification for data
streams. They perform prediction by choosing the majority class at each
leaf. Their predictive accuracy can be increased by adding Naive Bayes
models at the leaves of the trees. By stress-testing these two prediction
methods using noise and more complex concepts and an order of mag-
nitude more instances than in previous studies, we discover situations
where the Naive Bayes method outperforms the standard Hoeffding tree
initially but is eventually overtaken. The reason for this crossover is
determined and a hybrid adaptive method is proposed that generally
outperforms the two original prediction methods for both simple and
complex concepts as well as under noise.

1 Introduction

The Hoeffding tree induction algorithm [2] has proven to be one of the best
methods for data stream classification. Standard Hoeffding trees use the majority
class at each leaf for prediction. Previous work [3] has shown that adding so-
called functional (or Naive Bayes) leaves to Hoeffding trees for both synthetically
generated streams, and real datasets of sufficient size, as well as in the presence
of noise outperforms standard Hoeffding trees.

In this paper we use an experimental evaluation methodology for data
streams, where every single instance in the stream is used for both learning
and testing. Using this methodology and an order of magnitude more data we
discover situations were the standard Hoeffding tree unexpectedly outperforms
its Naive Bayes counterpart. We investigate the cause and propose modifications
to the original algorithm. An empirical investigation compares these modifica-
tions to both the standard Hoeffding tree and its Naive Bayes variant, and shows
that one of the possible modifications is very robust across all combinations of
concept complexity and noise. The modifications only concern the method of
prediction. The standard Hoeffding tree learning algorithm is used in all cases.

The paper is arranged as follows. Section 2 contains an evaluation of Ho-
effding trees with an unexpected result. Section 3 proposes several solutions to
address the problem, and Section 4 evaluates and discusses them. Finally Sec-
tion 5 concludes the paper.

A. Jorge et al. (Eds.): PKDD 2005, LNAI 3721, pp. 495–502, 2005.
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2 Examining Hoeffding Trees

Data streams present unique opportunities for evaluation, due to the volume of
data available and the any-time property of the algorithms under examination.
We consider a method of evaluation that exploits this property whilst maximizing
use of the data. This is achieved by using every instance as a testing example
on the current model before using it to train the model, incrementally updating
statistics at each point.

The particular implementation of Hoeffding Tree induction discussed in this
paper uses information gain as the split criterion, the original VFDT Hoeffding
bound formulation [2] to determine when to split (using parameters δ = 10−6,
τ = 5%, and nmin = 300), and handles numeric attributes by Gaussian approx-
imation (throughout ht refers to this algorithm and htnb the same algorithm
with Naive Bayes prediction at the leaves).

Our first analysis looks at the difference in accuracy between ht and htnb.
We start with data generated by a randomly constructed decision tree consisting
of 10 nominal attributes with 5 values each, 10 numeric attributes, 2 classes,
a tree depth of 5, with leaves starting at level 3 and a 0.15 chance of leaves
thereafter (the final tree had 741 nodes, 509 of which were leaves)—which we
shall refer to as the simple random tree. Note that for all graphs in this paper
we have averaged over 10 runs to eliminate order effects.

Figure 1 shows the result of evaluating over 10 million instances with no
noise present. As in previous studies, it is clear that htnb gives an improvement
in classification accuracy, with both variants performing well, reaching around
99% accuracy in the long run.

Figure 2 shows the impact that noise has. 10% noise was introduced to the
data with uniform randomness. A different picture emerges—htnb looks better
initially but somewhere before 2 million instances the graphs cross over and in
the long run htnb is worse.

Next, the tree generator is adjusted to produce a complex random tree—50
nominal attributes with 5 values each, 50 numeric attributes, 2 classes, a tree

 91

 92

 93

 94

 95

 96

 97

 98

 99

 100

 0  2e+06  4e+06  6e+06  8e+06  1e+07

%
 c

or
re

ct
ly

 c
la

ss
ifi

ed

number of instances processed

ht
htnb

Fig. 1. Simple random tree generator
with no noise

 75

 76

 77

 78

 79

 80

 81

 82

 83

 0  2e+06  4e+06  6e+06  8e+06  1e+07

%
 c

or
re

ct
ly

 c
la

ss
ifi

ed

number of instances processed

ht
htnb

Fig. 2. Simple random tree generator
with 10% noise



Stress-Testing Hoeffding Trees 497

 74

 76

 78

 80

 82

 84

 86

 88

 90

 92

 0  2e+06  4e+06  6e+06  8e+06  1e+07

%
 c

or
re

ct
ly

 c
la

ss
ifi

ed

number of instances processed

ht
htnb

Fig. 3. Complex random tree generator
with no noise

 65

 66

 67

 68

 69

 70

 71

 72

 73

 74

 0  2e+06  4e+06  6e+06  8e+06  1e+07

%
 c

or
re

ct
ly

 c
la

ss
ifi

ed

number of instances processed

ht
htnb

Fig. 4. Complex random tree generator
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depth of 10, with leaves starting at level 5 and a 0.15 chance of leaves thereafter
(the final tree had 127,837 nodes, 90,259 of which were leaves).

Figures 3 and 4 show the learning curves resulting from the complex random
tree data, both clean and noisy. The same pattern is observed, only this time
htnb is worse from the outset.

Testing the simple tree with other noise levels gives result similar to Figure 2,
at 5% noise the crossover occurs later, and at 20% it occurs earlier than the 10%
case. On the complex tree data the gap in Figure 4 widens as the noise increases.

3 Possible Solutions to the Problem

The evaluation uncovered cases where htnb is less accurate than ht. This be-
haviour appears when noise is introduced, and becomes more pronounced when
the concept is more difficult to learn. The problem shows up on other datasets
also, though sometimes it is less apparent due to the millions of instances that
are needed before crossover occurs.

We speculate that the problem is due to small disjuncts in the tree in combi-
nation with noisy data. The leaves see only an insufficient number of examples,
and the ones they do see are noisy, causing htnb to be less accurate than ht.

Experiments with severely limited maximum tree sizes supported this hy-
pothesis: htnb eventually outperformed ht once tree growth was artificially
stopped.

If the problem with htnb under noise is due to the models being unreliable
in their early stages, then there are several ways the problem could be solved.

One solution has been proposed by Gama who in [3] suggests the use of a
short term memory cache housing some of the recently seen instances. A problem
with this solution is determining a sufficient size for the cache. As the tree grows
in complexity, fewer of the instances in the cache will be applicable to the new
leaves deep in the tree (we refer to this as htnb-stmx where x is the cache size).

Another idea is to inherit information from the parent once a split has been
chosen. For an attribute split, it is possible to approximate the distribution of
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values resulting from the split. For the other attributes, less information is known
about the result of the new split, but we can assume that the distribution is the
same as in the parent. This approximation may be grossly incorrect, but at least
it gives the model a starting point rather than starting with no information
(htnbp).

A potentially serious problem with this approach is that if the statistics used
to make split choices are primed then the split decisions will be altered, having
an impact on the tree structure. As will be shown in Section 4, this generally
has a detrimental effect on accuracy.

A solution to this is to maintain a separate model per leaf that is used for
prediction purposes only, and leave the split decision statistics untouched. This
effectively doubles the storage requirement per leaf (htnbps).

An adaptive solution is to see how often the Naive Bayes leaves make clas-
sification errors compared with choosing the majority class, using Naive Bayes
leaves only when their measured accuracy is higher. The data stream setting af-
fords us the ability to do this as we can monitor performance on unseen instances
in the same way that the overall evaluation is performed (htnba).

The method works by performing a Naive Bayes prediction per training in-
stance, comparing its prediction with the majority class. Counts are stored to
measure how many times the Naive Bayes prediction gets the true class correct
as compared to the majority class. When performing a prediction on a test in-
stance, the leaf will only return a Naive Bayes prediction if it has been more
accurate overall than the majority class, otherwise it resorts to a majority class
prediction.

To complete the experimentation, we added priming and model separation
to htnba, these are referred to as htnbap and htnbaps respectively.

Table 1 summarizes the costs associated with the candidates, beyond that
needed for htnb. The costs associated with the adaptive choice are minor—
a few extra counts and a single comparison per prediction. The Naive Bayes
prediction per training instance is a cost that can be shared with the evaluation
mechanism. The costs associated with maintaining a separate prediction model
are the greatest—effectively doubling the storage and update time per leaf. As
splitting is a much less frequent operation than anything else, higher splitting
costs usually do not have much impact on the overall total cost.

4 Results and Discussion

Figures 5 to 8 show the result of the various prediction strategies on the simple
and complex tree data, with and without noise.

Figure 5 shows that the two methods of priming without separate models
(htnbp and htnbap) do worse than ht. All other Naive Bayes methods out-
perform ht by roughly equal amounts. Introducing noise in Figure 6 sees htnb
doing worst overall, even worse than htnbp and htnbap. The other methods
(besides those using short term memory) successfully overcome the problem with
little between them.
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Table 1. Additional space/time costs beyond htnb requirements

space per tree space per leaf time per
training
instance

time per test
instance

time per split

htnb-stmx cache of x in-
stances

cache update pass instances
to leaves +
NB updates

htnbp distribution
estimation

htnbps NB model NB update distribution
estimation

htnba error count NB prediction
count update

decide MC or
NB

htnbap error count NB prediction
count update

decide MC or
NB

distribution
estimation

htnbaps error count
NB model

NB prediction
count update
NB update

decide MC or
NB

distribution
estimation

Figure 7 explores the case of a more complex but still noise-free concept. Re-
sults are similar to the simple tree case (Figure 5). There is not much separation
within the group of methods that outperform ht. Once again both htnbp and
htnbap perform worse than ht.

Adding noise to more complex concepts results in the greatest separation
between the techniques. Figure 8 shows the short term memory solution to be
unsatisfactory. A short term memory of 1000 instances hardly does better than
htnb, which is the worst performer. Increasing the cache size to 10000 instances
does little to improve the situation.

Figure 8 demonstrates the superiority of the adaptive method. htnbp and
htnbps fall short of ht, while all of the adaptive methods do better. The best
performing method is also the most costly one (htnbaps), with the less expensive
htnba not far behind.

To investigate whether these findings hold more generally, experiments on
two additional UCI datasets [1] were conducted. The LED dataset is a synthetic
generator allowing us to generate the desired 10 million instances. The particu-
lar configuration used of the LED generator produced 24 binary attributes, 10
classes, and 10% noise.

The results in Figure 9 exhibit slightly different looking curves. The majority
of the methods hover around 26% error which is known to be the optimal Bayes
error for this problem. The exceptions are ht (which has a much slower learning
curve without the aid of Naive Bayes leaves), and htnb. The failure of htnb
shows that the problem extends beyond tree generated data. The success of the
others show that the problem can be alleviated.

These results contradict those reported by Gama et al. [3,4], whose conclusion
was that Naive Bayes leaves are always better on the LED data. They used a
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Table 2. Final accuracies achieved on tree generators

simple tree simple tree complex tree complex tree
no noise 10% noise no noise 10% noise

ht 99.056 ± 0.033 82.167 ± 0.031 89.793 ± 0.168 73.644 ± 0.151
htnb 99.411 ± 0.026 81.533 ± 0.021 90.723 ± 0.153 71.425 ± 0.118
htnb-stm1k 99.407 ± 0.027 81.544 ± 0.019 90.768 ± 0.150 71.527 ± 0.108
htnb-stm10k 99.409 ± 0.025 81.593 ± 0.018 91.008 ± 0.153 71.658 ± 0.085
htnbp 97.989 ± 0.058 81.853 ± 0.042 88.326 ± 0.209 73.029 ± 0.121
htnbps 99.376 ± 0.028 82.456 ± 0.023 90.598 ± 0.153 73.063 ± 0.124
htnba 99.408 ± 0.027 82.510 ± 0.024 90.874 ± 0.153 74.089 ± 0.141
htnbap 98.033 ± 0.057 81.938 ± 0.040 88.609 ± 0.211 73.675 ± 0.127
htnbaps 99.375 ± 0.028 82.545 ± 0.024 90.935 ± 0.148 74.249 ± 0.134

Table 3. Final accuracies achieved on other datasets

LED Covertype
ht 72.851 ± 0.031 66.832 ± 0.163
htnb 71.645 ± 0.013 69.064 ± 0.135
htnbp 73.928 ± 0.005 68.476 ± 0.040
htnbps 73.799 ± 0.041 69.049 ± 0.145
htnba 73.935 ± 0.005 70.998 ± 0.087
htnbap 73.961 ± 0.004 71.388 ± 0.037
htnbaps 73.996 ± 0.005 71.054 ± 0.095

hold out test set and quoted the final accuracy attained. The largest training
set used in their work was 1.5 million instances. In our experiment the problem
does not occur until about 4 million instances.

Finally, the algorithms were tested on real data using the Forest Covertype
dataset. This consists of 581,012 instances, 10 numeric attributes, 44 binary
attributes and 7 classes. To do 10 runs over this data the instances were randomly
permuted 10 different ways. In Figure 10 we see three distinct groups. The
worst performer is ht. The next group consists of the non-adaptive methods
htnb, htnbp and htnbps. The group of best performers are the adaptive ones.
This result demonstrates that even in cases where htnb is not obviously under-
performing, adding the adaptive modification can enhance performance.

Tables 2 and 3 show the final accuracies achieved along with the standard
error for all of the graphs displayed in Figures 5 through 10.

Overall these results support the conclusion that priming the leaf models
without using a separate model per leaf results in poor performance. Without
the separate model, the split decisions are altered in such a way that the tree is
less accurate. Inclusion of the separate model improves the situation (at a cost),
but it appears not as helpful as using the adaptive method.

Our experiments demonstrate that htnba provides a good compromise be-
tween accuracy and cost. In some cases it did slightly worse than htnbaps, but
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the difference does not justify the extra cost. The adaptive approach of htnba
has a relatively low overhead, meaning it can be justified over ht, and especially
over htnb, in all but the most extreme resource-bounded situations.

 91

 92

 93

 94

 95

 96

 97

 98

 99

 100

 0  2e+06  4e+06  6e+06  8e+06  1e+07

%
 c

or
re

ct
ly

 c
la

ss
ifi

ed

number of instances processed

ht
htnb

htnb-stm1k
htnb-stm10k

htnbp
htnbps
htnba

htnbap
htnbaps

Fig. 5. Simple random tree generator
with no noise

 75

 76

 77

 78

 79

 80

 81

 82

 83

 0  2e+06  4e+06  6e+06  8e+06  1e+07
%

 c
or

re
ct

ly
 c

la
ss

ifi
ed

number of instances processed

ht
htnb

htnb-stm1k
htnb-stm10k

htnbp
htnbps
htnba

htnbap
htnbaps

Fig. 6. Simple random tree generator
with 10% noise

 74

 76

 78

 80

 82

 84

 86

 88

 90

 92

 0  2e+06  4e+06  6e+06  8e+06  1e+07

%
 c

or
re

ct
ly

 c
la

ss
ifi

ed

number of instances processed

ht
htnb

htnb-stm1k
htnb-stm10k

htnbp
htnbps
htnba

htnbap
htnbaps
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with no noise
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5 Conclusions

By using noise and synthetically generating large and complex concepts we have
performed experiments that stress-test Hoeffding trees. Our focus has been on
the two common prediction methods used in association with these trees: ma-
jority class prediction and Naive Bayes leaf prediction. In this experimental
environment we uncovered an unexpected problem with Naive Bayes leaf pre-
diction. Multiple improvements to the shortcomings of this method were invented
and empirically evaluated. The best solution adaptively decides when the Naive
Bayes leaves are accurate enough to be trusted. This adaptive method only im-
poses a minor additional cost on the algorithm, yet seems to almost guarantee
equal or better accuracy than a simple majority class prediction.

References

1. C.L. Blake and C.J. Merz. UCI repository of machine learning databases, 1998.
2. Pedro Domingos and Geoff Hulten. Mining high-speed data streams. In Knowledge

Discovery and Data Mining, pages 71–80, 2000.
3. Joao Gama, Pedro Medas, and Ricardo Rocha. Forest trees for on-line data. In SAC

’04: Proceedings of the 2004 ACM symposium on Applied computing, pages 632–636,
New York, NY, USA, 2004. ACM Press.

4. Joao Gama, Ricardo Rocha, and Pedro Medas. Accurate decision trees for mining
high-speed data streams. In KDD ’03: Proceedings of the ninth ACM SIGKDD
international conference on Knowledge discovery and data mining, pages 523–528,
New York, NY, USA, 2003. ACM Press.



Rank Measures for Ordering

Jin Huang and Charles X. Ling

Department of Computer Science,
The University of Western Ontario,
London, Ontario, Canada N6A 5B7

{jhuang33, cling}@csd.uwo.ca

Abstract. Many data mining applications require a ranking, rather than a mere
classification, of cases. Examples of these applications are widespread, includ-
ing Internet search engines (ranking of pages returned) and customer relationship
management (ranking of profitable customers). However, little theoretical foun-
dation and practical guideline have been established to assess the merits of dif-
ferent rank measures for ordering. In this paper, we first review several general
criteria to judge the merits of different single-number measures. Then we pro-
pose a novel rank measure, and compare the commonly used rank measures and
our new one according to the criteria. This leads to a preference order for these
rank measures. We conduct experiments on real-world datasets to confirm the
preference order. The results of the paper will be very useful in evaluating and
comparing rank algorithms.

1 Introduction

Ranking of cases is an increasingly important way to describe the result of many data
mining and other science and engineering applications. For example, the result of doc-
ument search in information retrieval and Internet search is typically a ranking of the
results in the order of match. This leaves two issues to be addressed. First, given two
orders of cases, how do we design or choose a measure to determine which order is
better? Second, given two different rank measures of ordering, how do we tell which
rank measure is more desirable?

In previous research, the issue of determining which order is better is usually ad-
dressed using accuracy and its variants, such as recall and F-measures, which are typi-
cally used in information retrieval. More recently, AUC (Area Under Curve) of the ROC
(Receiver Operating Characteristics) has gained an increasing acceptance in comparing
learning algorithms [1] and constructing learning models [2,3]. Bradley [4] experimen-
tally compared popular machine learning algorithms using both accuracy and AUC, and
found that AUC exhibits several desirable properties when compared to the accuracy.

However, accuracy is traditionally designed to judge the merits of classification
results, and AUC is simply used as a replacement of accuracy without much reasoning
for why it is a better measure, especially for the case of ordering. The main reason
for this lack of understanding is that up to now, there has been no theoretical study on
whether any of these measures work better than others, or whether there are even better
measures in existence.

A. Jorge et al. (Eds.): PKDD 2005, LNAI 3721, pp. 503–510, 2005.
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In this paper, we first review our previous work [5] on general criteria to compare
two arbitrary single-number measures (see Section 2.1). Then we compare six rank
measures for ordering using our general criteria. Our contributions in this part consist
of a novel measure for the performance of ordering (Section 2.4), and a preference or-
der discovered for these measures (Section 3.1). The experiments on real-world datasets
confirm our analysis, which show that better rank measures are more sensitive in com-
paring rank algorithms (see Section 3.2).

2 Rank Measures for Ordering

In this section, we first review the criteria proposed in our previous work to compare two
arbitrary measures. We then review five commonly used rank measures, and propose
one new rank measure, OAUC. Then based on the comparison criteria, we will make
a detailed comparison among these measures, which leads to a preference order of the
six rank measures. Finally, we perform experiments with real-world data to confirm our
conclusions on the preference order. The conclusions of the paper are significant for
future machine learning and data mining applications involving ranking and ordering.

2.1 Review of Formal Criteria for Comparing Measures

In [5] the degree of consistency and degree of discriminancy of two measures are pro-
posed and defined. The degree of consistency between two measures f and g, denoted
as Cf,g, is simply the fraction (probability) that two measures are consistent over some
distribution of the instance space. Two measures are consistent when comparing two
objects a and b, if f stipulates that a is better than b, g also stipulates that a is better
than b. [5] define that two measures f and g are consistent iff the degree of consistency
Cf,g > 0.5. That is, f and g are consistent if they agree with each other on over half of
the cases.

The degree of discriminancy of f over g, denoted as Df/g, is defined as the ratio of
cases where f can tell the difference but g cannot, over the cases where g can tell the
difference but f cannot. [5] define that a measure f is more discriminant (or finer) than
g iff D f/g > 1. That is, f is finer than g if there are more cases where f can tell the
difference but g cannot, than g can tell the difference but f cannot.

2.2 Notation of Ordering

We will use some simple notations to represent ordering throughout this paper. Without
loss of generality, for n examples to be ordered, we use the actual ordering position of
each example as the label to represent this example in the ordered list. For example,
suppose that the label of the actual highest ranked example is n, the label of the actual
second highest ranked example is n− 1, etc. We assume the examples are ordered in-
crementally from left to right. Then the true-order list is l = 1,2, . . . ,n. For any ordered
list generated by an ordering algorithm, it is a permutation of l. We use π(l) to denote
the ordered list generated by ordering algorithm π. π(l) can be written as a1,a2, . . . ,an,
where ai is the actual ordering position of the example that is ranked ith in π(l).
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Table 1. An example of ordered lists

l 1 2 3 4 5 6 7 8

a1 a2 a3 a4 a5 a6 a7 a8

π(l) 3 6 8 1 4 2 5 7

Table 1 gives an instance of ordered lists with eight examples. In this table, l is the
true-order list and π(l) is the ordered list generated by an ordering algorithm π. In π(l)
from left to right are the values of ai. We can find that a1 = 3, a2 = 6, . . ., a8 = 7.

2.3 Previous Rank Measures for Ordering

We first review five most commonly used rank measures. Later we will invent a new
rank measure which we will evaluate among the rest.

We call some of the rank measures “true-order” rank measures, because to obtain
the evaluation values, we must know the true order of the original lists. Some other
rank measures, however, are not true-order rank measures. They do not need the true
order to obtain evaluation values; instead, only a “rough” ordering is sufficient. For
example, accuracy and AUC are not true-order rank measures. As long as we know the
true classification, we can calculate their values. In a sense, positive examples can be
regarded as “the upper half”, and negative examples are the “lower half” in an ordering,
and such a rough ordering is sufficient to obtain AUC and accuracy.

1. Euclidean Distance (ED)
If we consider the ordered list and the true order as a point (a1,a2, . . . ,an) and a
point (1,2, . . . ,n) in an n-dimensional Euclidean space, then ED is the Euclidean
Distance between these two points, which is

√
∑n

i=1(ai− i)2. For simplicity we use
the squared value of Euclidean distance as the measure. Then ED = ∑n

i=1 (ai− i)2.
Clearly, ED is a true-order rank measure.
For the example in Table 1, It is easy to obtain that ED = (3−1)2 +(6−2)2 +(8−
3)2 +(1−4)2 +(4−5)2 +(2−6)2 +(5−7)2 +(7−8)2 = 76.

2. Manhattan Distance (MD)
This measure MD is similar to ED except that here we sum the absolute values
instead of sum squared values. It is also a true-order rank measure. For our order
problem MD = ∑n

i=1 |ai− i|. For the example in Table 1, it is easy to obtain that
MD = |3−1|+ |6−2|+ |8−3|+ |1−4|+ |4−5|+ |2−6|+ |5−7|+ |7−8|= 22.

3. Sum of Reversed Number (SRN)
This is roughly the sum of the reversed pairs in the list. That is, SRN = ∑n

i=1 s(i). It
is clearly a true-order measure.
For the ith example, its reversed number s(i) is defined as the number of examples
whose positions in π(l) are greater than i but the actual ranked positions are less
than i. For the example in Table 1, we can find that the examples of 1 and 2 are both
ranked higher than the first example 3 in π(l). Thus s(1) = 1 + 1 = 2. Similarly
we have s(2) = 4, s(3) = 5, etc. Therefore the SRN for the ordered list π(l) is
SRN = 2 + 4 + 5 + 0+1+0+0+0 = 12.
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4. Area Under Curve (AUC)
The Area Under the ROC Curve, or simply AUC, is a single-number measure
widely used in evaluating classification algorithms, and it is not a true-order mea-
sure for ranking. To calculate AUC for an ordered list, we only need the true classifi-
cation (positive or negative examples). For a balanced ordered ranked list with n ex-
amples (half positive and half negative), we treat any example whose actual ranked
position is greater than n

2 as a positive example; and the rest as negative. From left
to right we assume the ranking positions of positive examples are r1,r2, . . . ,r$ n

2 %.

Then AUC =
∑ari >n/2(ri−i)

n2 [6].
In Table 1, 5, 6, 7, and 8 are positive examples positioned at 2, 3, 7, and 8 respec-
tively. Thus, AUC = (2−1)+(3−2)+(7−3)+(8−4)

4×4 = 5
8 .

5. Accuracy (acc)
Like AUC, accuracy is also not a true-order rank measure. Similar to AUC, if we
classify examples whose rank position above half of the examples as positive, and
the rest as negative, we can calculate accuracy easily as acc = t p+tn

n , where t p and tn
are the number of correctly classified positive and negative examples respectively.
In the ordered list π(l) in Table 1, 5, 6, 7, and 8 are positive examples, others are
negative examples. Thus t p = 2, tn = 2. acc = 2+2

8 = 1
2 .

2.4 New Rank Measure for Ordering

We propose a new measure called Ordered Area Under Curve (OAUC), as it is similar
to AUC both in meaning and calculation. The only difference is that each term in the
formula is weighted by its true order, and the sum is then normalized. Thus, OAUC is a
true-order measure. This measure is expected to be better than AUC since it “spreads”
its values more widely compared to AUC.

OAUC is defined as follows:

OAUC = ∑ ari(ri− i)

� n
2�∑

$ n
2 %

i=1 (� n
2�+ i)

In the ordered list in Table 1, the positive examples are 5, 6, 7, 8 which are positioned
at 7, 2, 8 and 3 respectively. Thus r1 = 2, r2 = 3, r3 = 7, r4 = 8, and ar1 = 6, ar2 = 8,

ar3 = 5,ar4 = 7. OAUC = 6(2−1)+8(3−2)+5(7−3)+7(8−4)
4((4+1)+(4+2)+(4+3)+(4+4)) = 31

52 .

3 Comparing Rank Measures for Ordering

We first intuitively compare some pairs of measures and analyze whether any two mea-
sures satisfy the criteria of consistency and discriminancy. To begin with, we consider
ED and MD because these two measures are quite similar in their definitions except that
ED sums the squared distance while MD sums the absolute value. We expect that these
two measures are consistent in most cases. On the other hand, given a dataset with n
examples there are a total of O(n3) different ED values and O(n2) different MD values.
Thus ED is expected to be more discriminant than MD. Therefore we expect that ED is
consistent with and more discriminant than MD.
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For AUC and OAUC, since OAUC is an extension of AUC, intuitively we expect
that they are consistent. Assuming there are n1 negative examples and n0 positive ex-
amples, the different values for OAUC is n1 ∑n0

i=1 (n1 + i), which is greater than the
different values of AUC (n0n1). We can also expect that OAUC is more discriminant
and therefore better than AUC.

However for the rest of the ordering measures we cannot make these intuitive claims
because they have totally different definitions or computational methods. Therefore, in
order to perform an accurate and detailed comparison and to verify or overturn our
intuitions, we will conduct experiments to compare all measures.

3.1 Comparing Rank Measures on Artificial Datasets

To obtain the average degrees of consistency and discriminancy for all possible ranked
lists, we use artificial datasets which consist of all possible ordered list of length 8. 1

We assume that the ordered lists are uniformly distributed. We exhaustively compare
all pairs of ordered lists and calculate the degree of consistency and degree of discrimi-
nancy between two rank measures for ordering.

Table 2 lists the degree of consistency between every pair of six rank measures
for ordering. The number in each cell represents the degree of consistency between
the measures in the same row and column of the cell. We can find that the degree
of consistency between any two measures are greater than 0.5, which indicates that
these measures are “similar” in the sense that they are more likely to be consistent than
inconsistent.

Table 3 shows the degree of discriminancy among all 6 rank measures. The number
in the cell of the ith row and the jth column is the degree of discriminancy for the
measure in ith row over the one in jth column.

From these two tables we can draw the following conclusions. First, these results
verified our previous intuitive conclusions about the relations between ED and MD, and
between AUC and OAUC. The degree of consistency between ED and MD is 0.95, and
between AUC and OAUC 0.99, which means that ED and MD, and AUC and OAUC
are highly consistent. The degree of discriminancy for ED over MD, and for OAUC
over AUC are greater than 1, which means that ED is better than MD, and OAUC is
better than AUC.

Table 2. Degree of consistency between pairs of rank measures for ordering

AUC SRN MD ED OAUC acc
AUC 1 0.88 0.89 0.87 0.99 0.98
SRN 0.88 1 0.95 0.98 0.89 0.91
MD 0.89 0.95 1 0.95 0.90 0.95
ED 0.87 0.98 0.95 1 0.88 0.90

OAUC 0.99 0.89 0.90 0.88 1 0.97
acc 0.98 0.91 0.95 0.90 0.97 1

1 There are n! different ordered lists for length n, so it is infeasible to enumerate longer lists.
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Table 3. Degree of discriminancy between pairs of rank measures for ordering

AUC SRN MD ED OAUC acc
AUC 1 0.88 1.42 0.21 0.0732 14.0
SRN 1.14 1 1.84 0.242 0.215 9.94
MD 0.704 0.54 1 0.117 0.116 6.8
ED 4.76 4.13 8.55 1 0.87 38.2

OAUC 13.67 4.65 8.64 1.15 1 94.75
acc 0.071 0.10 0.147 0.026 0.011 1

Second, since all values of the degree of consistency among all measures are greater
than 0.5, we can decide which measure is better than another only based on the value
of degree of discriminancy. Recall (Section 2.1) that a measure f is better than another
measure g iff Cf,g > 0.5 and Df/g > 1. The best measure should be the one whose degrees
of discriminancy over all other measures are greater than 1. From Table 3 we can find
that all the numbers in the OAUC row are greater than 1, which means that the measure
OAUC’s degrees of discriminancy over all other measures are greater than 1. Therefore
OAUC is the best measure. In the same way we can find that ED is the second best
measure, and SRN is the third best. The next are AUC, MD, and acc is the worst.

Finally we can obtain the following preference order of for all six rank measures for
ordering:

OAUC & ED& SRN & AUC &MD& acc

From the preference order we can conclude that OAUC, a new measure we design
based on AUC, is the best measure. ED is the close, second best. The difference for these
two measures are not very large (the degree of discriminancy for OAUC over ED is only
1.15). Therefore we should use OAUC and ED instead of others to evaluate ordering
algorithms in most cases. Further, the two none-true-order classification measures AUC
and accuracy do not perform well as compared with the true-order measures ED and
SRN. This suggests that generally we should avoid using classification measures such
as AUC and accuracy to evaluate ordering. Finally, MD is the worst true-order measure,
and it is even worse than AUC. It should be avoided.

3.2 Comparing Rank Measures with Ranking Algorithms

In this section, we perform experiments to compare two classification algorithms in
terms of the six rank measures. What we hope to conclude is that the better rank mea-
sures (such as OAUC and ED) would be more sensitive to the significance test (such
as the t-test) than other less discriminant measures (such as MD and accuracy). That is,
OAUC and ED are more likely to tell the difference between two algorithms than MD
and accuracy can. Note that here we do not care about which rank algorithm predicts
better; we only care about the sensitivity of the rank measures that are used to compare
the rank algorithms. The better the rank measure (according to our criteria), the more
sensitive it would be in the comparison, and the more meaningful the conclusion would
be for the comparison.
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We choose Artificial Neural Networks (ANN) and Instance-Based Learning algo-
rithm (IBL) as our algorithms as they can both accept and produce continuous tar-
get. The ANN that we use has one hidden layer; the number of nodes in the hidden
layer is half of the input layer (the number of attributes). We use real-world datasets to
evaluate and compare ANN and IBL with the six rank measures. We select three real-
world datasets Wine, Auto-Mpg and CPU-Performance from the UCI Machine Learning
Repository [7].

In our experiments, we run ANN and IBL with the 10-fold cross validation on the
training datasets. For each round of the 10-fold cross validation we train the two algo-
rithms on the same training data and test them on the same testing data. We measure
the testing data with six different rank measures (OAUC, ED, SRN, AUC, MD and
acc) discussed earlier in the paper. We then perform paired, two-tailed t-tests on the 10
testing datasets for each measure to compare these two algorithms.

Table 4 shows the significance level in the t-test. 2 The smaller the values in the table,
the more likely that the two algorithms (ANN and IBL) are significantly different, and the
more sensitive the measure is when it is used to compare the two algorithms. Normally
a threshold is set up and a binary conclusion (significantly different or not) is obtained.
For example, if we set the threshold to be 0.95, then for the artificial dataset, we would
conclude that ANN and IBL are statistically significantly different in terms of ED, OAUC
and SRN, but not in terms of AUC, MD and acc. However, the actual significance level
in Table 4 is more discriminant for the comparison. That is, it is “a better measure” than
the simple binary classification of being significantly different or not.

Table 4. The significance level in the paired t-test when comparing ANN and IBL using different
rank measures

Measures Wine Auto-mpg CPU
OAUC 0.031 8.64×10−4 1.48×10−3

ED 0.024 1.55×10−3 4.01×10−3

SRN 0.053 8.89×10−3 5.91×10−3

AUC 0.062 5.77×10−3 8.05×10−3

MD 0.053 0.0167 5.97×10−3

acc 0.126 0.0399 0.0269

From Table 4 we can obtain the preference order from the most sensitive measure
(the smallest significance level) to the least sensitive measure (the largest significance
level) for each dataset is:

– Wine: ED, OAUC, SRN = MD, AUC, acc.
– Auto-mpg: OAUC, ED, AUC, SRN, MD, acc.
– CPU-Performance: OAUC, ED, SRN, MD, AUC, acc.

These preference orders are roughly the same as the preference order of these mea-
sures discovered in the last section:

2 The confidence level for the two arrays of data to be statistically different is one minus the
values in the table.
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OAUC & ED& SRN & AUC &MD& acc

The experimental results confirm our analysis in the last section. That is, OAUC
and ED are the best rank measures for evaluating orders. In addition, MD and accu-
racy should be avoided as rank measures. These conclusions will be very useful for
comparing and constructing machine learning algorithms for ranking, and for applica-
tions such as Internet search engines and data mining for CRM (Customer Relationship
Management).

4 Conclusions

In this paper we use the criteria proposed in our previous work to compare five com-
monly used rank measures for ordering and a new proposed rank measure (OAUC). We
conclude that OAUC is actually the best rank measure for ordering, and it is closely fol-
lowed by the Euclidian distance (ED). Our results indicate that in comparing different
algorithms for the order performance, we should use OAUC or ED, and avoid the least
sensitive measures such as Manhattan distance (MD) and accuracy.

In our further work, we plan to improve existing rank learning algorithms by opti-
mizing the better measures, such as OAUC and ED, discovered in this paper.
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Abstract. Ensemble learning has been shown to be very successful in data min-
ing. However most work on ensemble learning concerns the task of classification.
Little work has been done to construct ensembles that aim to improve ranking.
In this paper, we propose an approach to re-construct new ensembles based on
a given ensemble with the purpose to improve the ranking performance, which
is crucial in many data mining tasks. The experiments with real-world data sets
show that our new approach achieves significant improvements in ranking over
the original Bagging and Adaboost ensembles.

1 Introduction

Classification is one of the fundamental tasks in knowledge discovery and data mining.
The performance of a classifier is usually evaluated by predictive accuracy. However,
most machine learning classifiers can also produce the probability estimation of the
class prediction. Unfortunately, this probability information is ignored in the measure
of accuracy.

In many real-world data mining applications, however, we often need the probabil-
ity estimations or ranking. For example, in direct marketing, we often need to promote
the most likely customers, or we need to deploy different promotion strategies to cus-
tomers according to their likelihood of purchasing. To accomplish these tasks we need a
ranking of customers according to their likelihood of purchasing. Thus ranking is often
more desirable than classification in these data mining tasks.

One natural question is how to evaluate a classifier’s ranking performance. In recent
years, the area under the ROC (Receiver Operating Characteristics) curve, or simply
AUC, is increasingly received attention in the communities of machine learning and
data mining. Data mining researchers [1,2] have shown that AUC is a good summary in
measuring a classifier’s overall ranking performance. Hand and Till [3] present a simple
approach to calculating AUC of a classifier for binary classification.

Â =
S0−n0(n0 + 1)/2

n0n1
, (1)

where n0 and n1 are the numbers of positive and negative examples respectively, and
S0 = ∑ri, where ri is the rank of the ith positive example in the ranked list.

Ensemble is a general approach which trains a number of classifiers and then com-
bines their predictions in classification. Many researches [4,5,6] have shown that the

A. Jorge et al. (Eds.): PKDD 2005, LNAI 3721, pp. 511–518, 2005.
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ensemble is quite effective in improving the classification accuracy compared with a
single classifier. The reason is that the prediction error of an individual classifier can be
counteracted by the combination with other classifiers. Bagging [5] and Boosting [7]
are two of the most popular ensemble techniques.

Most previous work of ensemble learning is focussed on classification. To our
knowledge, there is little work that directly constructs ensembles to improve proba-
bility estimations or ranking. [8] compared the probability estimations (ranking) per-
formance of different learning algorithms by using AUC as the comparison measure
and demonstrated that Boosted trees and Bagged trees perform better in terms of rank-
ing than Neural Networks and SVMs. [9] used the boosting technique on the general
preference learning (ranking) problem and proposed a new ranking boosting algorithm:
RankBoost.

In this paper, we propose a novel approach to improve the ranking performance
over a given ensemble. The goal of this approach is to select some classifiers from
the given ensemble to re-construct new ensembles. It first uses the k-Nearest Neighbor
method to find training data subsets which are most similar to the test set, then it uses
the measure SAUC (see Section 2.2) as heuristic to dynamically choose the diverse
and well performed classifiers. This approach is called DERC (Dynamic Ensemble Re-
Construction) algorithm. The new ensembles constructed by this approach are expected
to have better ranking performance than the original ensemble.

The paper is organized as follows. In Section 2 we give detailed description for our
new algorithm. In Section 3 we perform experiments on real world data sets to show
the advantages of the new algorithm.

2 DERC (Dynamic Ensemble Re-Construction) Algorithm

In an ensemble, the combination of the predictions of several classifiers is only useful
if they disagree to some degree. Each ensemble classifier may perform diversely during
classification. Our DERC algorithm is motivated by this diversity property of ensemble.
The diversity implies that each ensemble classifier performs best in probability estima-
tion (ranking) only in a subset of training instances. Thus given a test (sub)set, if we
use the k-Nearest Neighbor method to find some training subsets that are most similar
to it, the classifiers that perform diversely and accurately on those similar training sub-
sets are also expected to perform well on the test (sub)set. Therefore the new ensembles
constructed are expected to have better ranking performance than the original ensemble.

Our DERC algorithm involves two basic steps: finding the most similar training
(sub)sets, and selecting the diverse and accurate classifiers.

Now we use Figure 1 to illustrate how DERC algorithm works. Suppose that we are
given an ensemble E with multiple classifiers built on a training set S, and we have an
unlabeled test set T at hand. Our goal is to select some classifiers from the ensemble E
to build one or more new ensembles to perform ranking on test set T .

2.1 Finding the Most Similar Training Subsets

The first step is to stratify the test set to some equal parts and find the most similar
training subsets corresponding to test partitions. Since the labels of test instances are
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unknown, we randomly pick a classifier from ensemble E to classify the test set T to
obtain the predicted labels. Assume that we want to construct 3 new ensembles. Ac-
cording to the predicted class labels we stratify (partition with equal class distributions)
the test set T into 3 equal sized parts: T1, T2, and T3. We want to select some classifiers
from ensemble E to build 3 different new ensembles which are responsible for ranking
T1, T2 and T3 respectively.

S12

S13

S14

S15

T1

T2

T3

test set

train set

d11
d12

d14

d15

d13

S

S11

Fig. 1. An example for the similar sets

For each stratified test subset we use the k-Nearest Neighbor method to find k sub-
sets of training set which are most similar to that test set part. For each instance of the
test subset, we compute the distances from this instance to all training instances and find
the nearest k instances. We use the following method to compute the distance between
two instances u and v, which are from the test subset and training dataset, respectively.
Suppose that an instance has k1 nominal attributes Ai and k2 numerical attributes Bi.
We use the simplified VDM measure proposed in [10] to compute the distance of all
nominal attributes.

VDM(u,v) = ∑
C

k1

∑
i=1

(
NAi=au,C=c

NAi=au

− NAi=av,C=c

NAi=av

)2

where NAi=au is the number of instances in test subset holding value au on attribute Ai,
NAi=au,C=c is the number of instances in test subset which are predicted belonging to
class c and hold value au on attribute Ai. Here note that since test set is unlabeled, we
use the class labels predicted in the first step.

We simply use the Euclidean distance to compute the difference of numerical at-
tributes. ED(u,v) = ∑k2

i=1(bui − bvi)
2, where bui is instance u’ value on numerical at-

tribute Bi.
The distance of u and v is

d(u,v) = VDM(u,v)+ ED(u,v)
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After the distances are computed, we randomly pick one from the k nearest instances of
each test instance and use them to form a training subset. This subset is most similar to
the test subset. We can use this method to find a desired number of most similar training
subsets. The distance between two similar data sets is simply the average distances of
each test subset instance with its corresponding nearest training instance. As shown in
Figure 1, assume that S11, S12, S13, S14 and S15 are T1’s 5 most similar training subsets.
Their distances to T1 are computed as d11, d12, d13, d14 and d15, respectively.

2.2 Selecting Diverse and Accurate Classifiers

After the most similar training subsets are found, we use the following strategy to select
diverse and accurate classifiers from original ensemble. Instead of directly using AUC
as the criterion to choose classifiers, we propose a new measure SAUC (Softened Area
Under the ROC Curve) as the heuristic.

For a binary classification task, SAUC is defined as

SAUC(γ) =
∑m

i=1 ∑n
j=1 U(p+

i − p−j )γ

mn
(2)

U(x) =
{

x if x≥ 0
0 if x < 0

where γ ≥ 0, p+
i , p−j represent the predicted probabilities of being positive for the ith

positive and the jth negative examples in all m positive examples and n negative exam-
ples, respectively.

We choose a series of measures SAUC(γ1), SAUC(γ2), · · ·, SAUC(γn) as heuristics.
We use SAUCs as heuristics for two reasons. First, SAUC with different powers γ may
have different sensitivities and robustness to instance ranking variations. Thus using
SAUCs with varied power γ as heuristics can more reliably select diverse classifiers in
terms of ranking. Second, SAUC is a softened version of AUC and thus it is basically
consistent with AUC. From Equation 2 we can see that SAUC(0) = AUC. Thus using
SAUCs as criteria can select the classifiers with accurate ranking performance.

As shown in Figure 1 we use each classifier Ct of ensemble E to classify S11, S12,
S13, S14 and S15 to obtain the respective SAUC(γ1) as SA11, SA12, SA13, SA14, SA15.
We then compute a score for Ct , which is the weighted average of the SAUC(γ1) values
obtained above. It is St = ∑5

i=1
SA1i
d1i

. We choose the classifier with the highest score. We
repeat the above step n times by using a different SAUC(γi) each time to select a new
classifier.

Finally we use all the classifiers selected to construct a new ensemble. This ensem-
ble is responsible for ranking T1. The new ensemble combination method is weighted
averaging, in which a classifier’s weight is its score computed above. Using the same
method we can construct two other ensembles which are responsible for ranking T2 and
T3, respectively. We give the pseudo-code of this algorithm in Table 1.

One natural question about the DERC algorithm is that how many new ensembles
should be constructed to give the best ranking performance. Since the number of test
set partitions equals to the number of new ensembles, this question is equivalent to
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Table 1. The pseudo code for DERC algorithm

DERC(E,S,T,n)
Input:
E : An ensemble with classifiers C1, · · · ,CN
S : Training data set
T : Test data set
n : The number of test set partitions

choose a classifier from E to classify T
stratify T into T1,T2, · · · ,Tn

for each partition Ti do
E∗i ← φ
find the most similar training subsets Si1,Si2, · · · ,Sik
compute the distances di1,di2, · · · ,dik from Ti to Si1, · · · ,Sik respectively
for each measure SAUC(γu) do

for each classifier Ct do
run Ct on Si1,Si2, · · · ,Sik
obtain the SAUC(γu) of Ct as SAti1 , · · · ,SAtik
compute the ranking score for classifier Ct

rt ← ∑k
j=1

SAti j

di j

endfor
choose the classifier CC with highest score rt

E∗i ← E∗i ∪CC
endfor

endfor
return all E∗i

how to choose an optimal number of test set partitions. Clearly, a small number of
partitions generally means large partitioned test subsets, which corresponds to large
similar training subsets. Thus the corresponding new ensemble may not specialize on
all instances of the similar training subsets. Therefore our algorithm may not perform
best on a small number of partitions. On the contrary for very large number of partitions,
the size of similar training subsets will be very small. In this case there is a danger
of overfitting. Therefore we can claim that generally too small or too large number of
partitions should be avoided. We will perform experiments in the next section to confirm
this claim.

3 Experimental Evaluation

To evaluate the performance of our algorithm, we extract 16 representative binary data
sets from UCI [11].

We use Bagging and Adaboost as the ensembling methods and Naive Bayes as the
base learner. We choose WEKA [12] as the implementations. In order to increase the
ensemble diversity, we randomly select half of the training data for each bootstrap in our
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Bagging process. This can guarantee that the bagging classifiers are diverse to some de-
gree. We compare the performance of DERC with Bagging and Adaboost respectively.

In our DERC algorithm we use SAUC(γi) as criteria to select classifiers. We have
to determine the suitable number and scores of the powers γi by taking into account
the tradeoff between the quality of results and computational costs. We test the SAUC
with a wide ranges of powers γ by using all the 16 datasets in the our experiments. The
analysis of these measures’ performance shows that the power range of [0,3] is a good
choice for SAUC. We choose 9 different SAUC with the powers of 0, 0.1, 0.4, 0.8, 1.0,
1.5, 2, 2.5, 3 in our experiment.

We follow the procedure below to perform our experiment:

1. We discretize the continuous attributes in all data sets using the entropy-based
method described in [13].

2. We perform 5-fold cross validation on each data set. In each fold we train an en-
semble with 15 classifiers using Bagging and Adaboost methods, respectively. We
then run our DERC algorithm on the ensemble trained. By varying the number of
test set partitions, we have a number of different DERC algorithm models.

3. We run the second step 20 times and we compute the average AUC for all the
predictions.

We use a common statistic to compare the learning algorithms across all data sets.
We performed two tailed paired t-test with 95% confidence level to count in how many
datasets one algorithm performs significantly better, same, and worse than another al-
gorithm respectively. We use win/draw/loss to represent this.

The experimental results are listed in Table 2 and Table 3.

Table 2. Comparing the predictive AUC of DERC algorithms with Bagging

Dataset Bagging DERC(1) DERC(2) DERC(3) DERC(4) DERC(6)
breast 98.84 ± 0.56 98.84 ± 0.53 98.83 ± 0.50 98.85 ± 0.59 98.86 ± 0.55 98.81 ± 0.59
cars 93.56 ± 3.0 94.77 ± 2.2 94.9 ± 2.7 94.83 ± 2.7 94.87± 2.9 95.02 ± 2.1

credit 92.89 ± 1.2 93.43 ± 1.1 93.36 ± 1.2 93.32 ± 1.2 93.3 ± 1.4 93.3 ± 1.1
echocardio 72.34 ± 8.4 72.34 ± 8.4 74.21 ± 8.3 74.11 ± 8.4 74.11 ± 8.4 73.09 ± 8.4

eco 99.28 ±0.84 99.34 ± 1.1 99.34 ± 1.0 99.32 ± 0.84 99.3 ± 1.0 99.33 ± 0.84
heart 85.89 ± 0.45 86.01 ± 0.5 86.97± 0.5 86.81 ± 0.64 86.06 ± 1.7 85.92 ± 2.6

hepatitis 86.73 ± 2.6 87.06 ± 2.6 87.5 ± 2.9 89.14 ± 2.6 88.59 ± 2.4 88.2 ± 1.8
import 97.75 ± 2.6 97.75 ± 2.6 97.59 ± 2.8 97.72 ± 2.6 97.72 ± 2.6 97.74 ± 2.6
liver 61.77 ± 1.6 61.33 ± 0.45 61.64 ± 0.6 61.4 ± 0.18 61.26 ± 0.3 61.19 ± 3.7
pima 77.27 ± 8.9 79.33 ± 7.6 79.29 ± 7.7 79.26 ± 8.0 79.14 ± 8.6 79.22 ± 8.7

thyroid 95.12 ± 1.7 95.19 ± 1.6 95.10 ± 1.6 95.16 ± 1.9 95.24 ± 1.9 95.29 ± 1.5
voting 96.00 ±0.36 96.08 ± 0.36 96.07 ± 0.36 96.27 ± 0.36 95.99 ± 0.36 96.01 ± 0.36
sick 96.84 ±1.56 95.20 ±2.48 •94.27 ±2.11 •94.27±3.47 •93.99±2.79 •94.08±3.02

ionosphere 94.59 ±3.21 94.80 ± 3.22 95.96 ±3.47 95.85±2.63 95.84±2.79 95.84 ± 3.92
german 84.26 ±4.02 87.58 ± 4.33 87.40 ± 4.1 87.23 ± 4.21 87.44 ± 4.2 87.4 ± 4.17

mushroom 99.89 ±0.04 99.79 ± 0.04 99.88 ± 0.04 99.90 ± 0.04 99.89 ± 0.04 99.89 ± 0.04
w/d/l 4/12/0 7/8/1 8/7/1 8/7/1 7/8/1
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Table 3. Comparing the predictive AUC of DERC algorithms with Adaboost

Dataset AdaBoost DERC(1) DERC(2) DERC(3) DERC(4) DERC(6)
breast 98.99 ± 2.1 98.39± 2.4 98.41 ± 2.1 98.46± 2.1 98.51 ± 2.1 98.53 ± 2.1
cars 91.74 ± 5.0 93.21± 5.0 93.14± 5.0 94.72± 5.0 93.89± 5.0 93.21± 5.0

credit 92.06 ± 3.7 92.04 ± 3.7 92.06 ± 3.5 92.08± 4.8 92.10 ± 5.3 91.77 ± 4.7
echocardio 72.02 ± 4.8 73.94 ± 4.8 73.94 ± 4.8 73.94± 4.8 73.94 ± 4.8 73.94 ± 4.8

eco 99.30 ± 1.0 99.13 ± 1.0 99.02 ± 1.0 99.24± 1.0 99.27 ± 1.0 99.62 ± 1.0
heart 88.03 ± 0.28 88.51 ± 0.31 90.39 ± 0.28 89.72± 1.22 89.34 ± 1.6 89.58 ± 1.24

hepatitis 85.25 ± 8.6 •83.16 ±5.8 •83.03 ± 5.6 •83.24±8.6 •83.9±8.8 •83.84 ± 5.4
import 98.99 ± 1.7 98.90 ± 0.0 98.98 ± 3.6 98.73± 0.0 98.68 ± 5.2 98.88 ± 0.0
liver 65.45 ± 6.2 66.44 ± 4.1 66.20 ± 5.1 67.08 ± 5.1 67.77 ± 5.1 66.29 ± 5.1
pima 75.99 ± 8.3 74.92 ± 8.1 74.89 ± 7.2 77.81± 8.3 77.99 ± 6.5 78.13± 8.4

thyroid 95.61 ±0.35 95.55 ± 0.8 95.64 ± 0.27 95.65±0.18 95.58 ± 0.71 95.58 ± 0.35
voting 96.37 ±2.9 96.32 ±2.9 96.39 ± 3.3 96.5 ± 1.4 96.37 ± 1.4 96.37 ± 2.9
sick 97.02 ±1.56 97.08 ± 1.51 97.07 ± 1.43 97.02 ± 1.5 96.99 ± 1.24 97.08 ± 2.54

ionosphere 94.56 ±3.21 94.80 ± 3.47 95.96 ±4.37 95.85±4.26 95.84±3.97 95.84 ± 3.68
german 86.41 ±4.02 88.24 ± 4.33 88.21 ± 4.1 88.21±4.21 88.19±4.2 88.19± 4.17

mushroom 99.92 ±0.04 99.79 ± 0.04 99.88 ± 0.04 99.90 ± 0.04 99.89 ± 0.04 99.89 ± 0.04
w/d/l 3/12/1 4/11/1 5/10/1 5/10/1 4/11/1

Table 2 shows the AUC values for the Bagging algorithm and the DERC algorithms
with different settings on various data sets. We use DERC(i) to denote the corresponding
DERC algorithm which generate a number of i new ensembles. Each data cell represents
the average AUC value of the 20 trials of 5-fold cross validation for the corresponding
algorithm and data set. The data in bold shows the corresponding algorithm performs
significantly better than Bagging on the corresponding data set. The data with a “•”
means it is significantly worse than that of Bagging.

From this table, we can see that DERC outperforms the original Bagging algorithm.
The w/d/l statistics shows that all DERCs with different settings have much more wins
than losses compared with Bagging algorithm. If we rank them according to the w/d/l
number, we can see that the DERC with 3 or 4 partitions performs best, the DERC with
2 or 6 partitions the second best, while the DERC with 1 partition the worst.

We can also see how the partition numbers influences the dynamic re-construction
performance. We can observe that generally the dynamic re-constructions with the par-
tition numbers of 3 or 4 perform best. It shows that dynamic re-construction with inter-
mediate number of partitions outperforms that with large or small number of partitions.
This result confirms our discussion in the previous section.

We also compare our DERC algorithm with Adaboost and report the results in Table
3. The similar comparisons show that DERC also significantly outperforms Adaboost in
terms of AUC. DERC(3) wins in 5 datasets, ties in 10 datasets on loses only in 1 dataset.

4 Conclusions and Future Work

In this paper we propose a novel dynamic re-construction technique which aims to
improve the ranking performance of any given ensemble. This is a generic technique
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which can be applied on any existing ensembles. The advantage is that it is independent
of the specific ensemble construction method. The empirical experiments show that this
dynamic re-construction technique can achieve significant performance improvement in
term of ranking over the original Bagging and Adaboost ensembles, especially with an
intermediate number of partitions .

In our current study we use Naive Bayes as the base learner. For our future work, we
plan to investigate how other learning algorithms perform with the DERC technique.
We also plan to explore whether DERC is also effective when it is applied on other
ensemble methods.
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Abstract. The paper presents an example of exploratory data analy-
sis of climate measurements using a recently developed denoising source
separation (DSS) framework. We analysed a combined dataset contain-
ing daily measurements of three variables: surface temperature, sea level
pressure and precipitation around the globe. Components exhibiting slow
temporal behaviour were extracted using DSS with linear denoising.
These slow components were further rotated using DSS with nonlin-
ear denoising which implemented a frequency-based separation criterion.
The rotated sources give a meaningful representation of the slow climate
variability as a combination of trends, interannual oscillations, the an-
nual cycle and slowly changing seasonal variations.

1 Introduction

One of the main goals of statistical analysis of climate data is to extract physi-
cally meaningful patterns of climate variability from highly multivariate weather
measurements. The classical technique for defining such dominant patterns is
principal component analysis (PCA) or empirical orthogonal functions (EOF)
as it is called in climatology (see, e.g., [1]). However, many researchers pointed
out that the maximum remaining variance criterion used in PCA can lead to
such problems as mixing different physical phenomena in one extracted compo-
nent [2,3]. This makes PCA a useful tool for information compression but limits
its ability to isolate individual modes of climate variation.

To overcome this problem, rotation of the principal components proved useful
[2]. The different rotation criteria reviewed in [2] are based on the general “simple
structure” idea aimed at, for example, spatial or temporal localisation of the
rotated components. The rotation of EOFs can be either orthogonal or oblique,
which potentially leads to better interpretability of the extracted components.

Independent component analysis (ICA) is a recently developed statistical
technique for component extraction which can also be used for rotating principal
components. The basic assumption made in ICA is the statistical independence of
the extracted components, which may lead to a meaningful data representation in
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a number of applications (see, e.g., [4] for introduction). ICA is based on higher-
order statistics and in this respect bears some similarity to classical rotation
techniques such as the Varimax orthogonal rotation [2]. Several attempts to
apply ICA in climate research have already been made [5,6].

In this paper, we analyse weather measurements using a novel extension of
ICA called denoising source separation [7]. DSS is a general separation framework
which does not necessarily exploit the independence assumption but rather looks
for hidden components which have “interesting” properties. The interestingness
of the properties is controlled by means of a denoising procedure. For example,
in [8], the sources with most prominent interannual oscillations were identified
using DSS with linear filtering as denoising. The leading components were clearly
related to the well-known El Niño–Southern Oscillation (ENSO) phenomenon
and several other interesting components were extracted as well.

In the present work, we use DSS with linear denoising as the first, prepro-
cessing step of climate data analysis. A wider frequency band in the denoising
filter is used to identify the slow subspace of the climate system. The found
slow components are further rotated using an iterative DSS procedure based on
nonlinear denoising. The rotation is done such that the extracted components
would have distinct power spectra.

The extracted components turned out to represent the subspace of the slow
climate phenomena as a linear combination of trends, decadal-interannual oscil-
lations, the annual cycle and other phenomena with distinct spectral contents.
Using this approach, the known climate phenomena are identified as certain sub-
spaces of the climate system and some other interesting phenomena hidden in
the weather measurements are found.

2 DSS Method

DSS is a general algorithmic framework which can be used for discovering in-
teresting phenomena hidden in multivariate data [7]. Similarly to PCA, ICA or
other rotation techniques, DSS is based on the linear mixing model. The basic
assumption is that there are some hidden components s(t) (also called sources
or factors) which are reflected in the measurements x(t) through a linear map-
ping: x(t) = As(t). The mapping A is called the mixing matrix in the ICA
terminology or the loading matrix in the context of PCA.

The goal of the analysis is to estimate the unknown components s(t) and the
corresponding loading vectors (the columns of A) from the observed data x(t).
In the climate data analysis, the components usually correspond to the time-
varying states of the climate system and the loading vectors are the spatial maps
showing the typical weather patterns corresponding to the found components.
The components s(t) are usually normalised to unit variances, and therefore the
spatial patterns have a meaningful scale.

The first step of DSS is so-called whitening or sphering (see Fig. 1). The
goal of whitening is to uniform the covariance structure of the data in such
a way that any linear projection of the data has unit variance. The positive



Frequency-Based Separation of Climate Signals 521

�X
Whitening �Y Source

estimation
S = W Y

�S
Denoising �f(S) Demixing

reestimation

W�

�S

�X
Whitening �Y Linear

denoising
�f(Y )

PCA �S

Fig. 1. The steps of the DSS algorithm in the general case (above) and in the case of
linear denoising (below)

effect of such transformation is that any orthogonal basis in the whitened space
defines uncorrelated sources. Therefore, whitening is used as a preprocessing
step in many ICA algorithms, which allows restricting the mixing matrix to be
orthogonal afterwards. Whitening is usually implemented by PCA.

The following stage is an orthogonal rotation of the white components Y
based on the source separation criterion defined in the form of a denoising pro-
cedure. It is in general done using an iterative algorithm with three steps: source
estimation, denoising of the source estimates and reestimation of the demixing
matrix. Without denoising, this procedure is equivalent to the power method for
computing the principal component of Y . Since Y is white, all the eigenvalues
are equal and the solution without denoising becomes degenerate. Therefore,
even slightest changes made by denoising can determine the DSS rotation. Since
the denoising procedure emphasises the desired properties of the sources, DSS
can find the rotation where the properties of interest are maximised.

Linear denoising is a simpler case as it does not require the described it-
erative procedure. DSS based on linear denoising can be performed in three
steps: whitening, denoising and PCA on the denoised data (see Fig. 1). The
idea behind this approach is that denoising renders the variances of the sphered
components different and PCA can identify the directions which maximise the
properties of interest. The eigenvalues given by PCA tell the ratio of the vari-
ance of the sources after and before filtering which is the objective function in
linear denoising. The components are ranked according to the prominence of the
desired properties the same way as the principal components in PCA are ranked
according to the amount of variance they explain.

More general nonlinear denoising can implement more complicated separa-
tion criteria (see [7,9] for several examples). The objective function is usually
expressed implicitly in the denoising function. Therefore, ranking the compo-
nents is more difficult in this case and depends on the exact separation criterion
used in the denoising procedure.

In the present work, DSS is exploited twice. First, DSS with linear denoising
extracts components which exhibit most prominent variability in the slow time
scale. Therefore, linear denoising is implemented using a low-pass filter whose
frequency response is shown in Fig. 2. A similar approach (but with another
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Fig. 2. Frequency response of the filter used in DSS with linear denoising. The abscissa
is linear in frequency but is labeled in terms of periods, in years.

type of filter) was introduced in [8] to identify the subspace with most prominent
interannual variability.

After that, the slow components are rotated such that they would have dis-
tinct power spectra. This is done by DSS with the general iterative procedure in
which denoising implements a frequency-based separation criterion. Practically,
the denoising procedure is based on whitening smoothed discrete cosine trans-
form (DCT) power spectra of the components and using inverse DCT to calculate
the denoised sources f(S). This denoising mechanism is somewhat similar to the
whitening-based estimation of the source variance proposed in [9]. The algorithm
also tries to order the sources according to their frequencies using topographic
ideas somewhat similar to [10].

3 Data and Preprocessing Method

The proposed technique is applied to measurements of three major atmospheric
variables: surface temperature, sea level pressure and precipitation. This set of
variables is often used for describing global climate phenomena such as ENSO
[11]. The datasets are provided by the reanalysis project of the National Cen-
ters for Environmental Prediction–National Center for Atmospheric Research
(NCEP/NCAR) [12].1

The data represent globally gridded measurements over a long period of time.
The spatial grid is regularly spaced over the globe with 2.5◦ × 2.5◦ resolution.
Although the quality of the data is worse for the beginning of the reanalysis
period and it considerably varies throughout the globe, we used the whole period
of 1948-2004.

The long-term mean was removed from the data and the data points were
weighed similarly to [8] to diminish the effect of a denser sampling grid around
the poles. Each data point was multiplied by a weight proportional to the square
root of the corresponding area of its location. The spatial dimensionality of the
data was reduced using the PCA/EOF analysis applied to the weighed data. For
each dataset, we retained 100 principal components which explain more than 90%
of the total variance. The DSS analysis was then applied to the combined data
containing the measurements of the three variables.
1 The authors would like to thank the NOAA-CIRES Climate Diagnostics Center,

Boulder, Colorado, USA, for providing NCEP Reanalysis data from their Web site
at http://www.cdc.noaa.gov.
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4 Results

First, we identified the subspace of slow climate phenomena by applying DSS
with low-pass filtering as linear denoising to the daily weather measurements.
The time course of the most prominent slow components extracted from highly
multidimensional data is shown in the leftmost column of Fig. 3. The annual cycle
appears in the two leading components as the clearest slow source of the climate
variability. The following components also possess interesting slow behaviour.

However, the sources found at this stage appear to be mixtures of several
climate phenomena. For example, the third and the fourth components are mix-
tures of slow trends and the prominent ENSO oscillations. Similar mixed phe-
nomena can be found in other components as well. This effect is also seen from
the power spectra of the components (not shown here). Many components pos-
sess very prominent slowest, decadal or close-to-annual frequencies. Except for
the two annual cycle sources, none of the components has a clear dominant peak
in its power spectrum.

The first sixteen slow components extracted by DSS with linear denoising
were further rotated using frequency-based DSS described in Section 2. To dis-
card high-frequency noise, the monthly averages of the slow components were
used at this stage. The time course of the rotated sources is presented in Fig. 3
and the spatial patterns corresponding to some of the sources are shown in Fig. 4.
The components now have more clear interpretation compared to the original
slow components.

The power spectra of the rotated components are more distinct (see the right-
most column of Fig. 3). However, some of the power spectra look quite similar
and we can roughly categorise the found sources into three subspaces with dif-
ferent variability time scales: trends (components 1–5), interannual oscillations
(components 6–11) and components 12–16 with dominating close-to-annual fre-
quencies in their spectra. The subspaces are identified reliably due to the distinct
differences in the corresponding power spectra but the components within the
subspaces may remain mixed.

Among the slowest climate trends, the most prominent one is component 3
which has a constantly increasing time course. This component may be related
to global warming as the corresponding surface temperature map has mostly
positive values all over the globe (see Fig. 4). The highest temperature loadings
of this component are mainly concentrated around the North and South Poles,
the sea level pressure map has a clear localisation around the South Pole and
the precipitation loadings are mostly located in the tropical regions.

Components 6–11 exhibit prominent oscillatory behaviour in the interannual
time scale. The most prominent sources here are components 7 and 8 which
are closely related to the ENSO oscillations both in the time course and in the
corresponding spatial patterns (see Fig. 4). They are very similar to the first
two components extracted in [8]: component 7 is similar to the ENSO index and
component 8 bears resemblance with the differential ENSO index. Component
6 may be related to the slower behaviour of ENSO. Component 10 has very
distinct spatial patterns with a prominent dipole structure over the continents
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Fig. 3. Left: The monthly averages of the components extracted by DSS with linear
denoising. Middle: The rotated slow components estimated by frequency-based DSS.
The variances of all the components are normalised to unity. Right: The power spectra
of the components found by frequency-based DSS. The abscissa is linear in frequency
but is labeled in terms of periods, in years.

in the Northern Hemisphere in the temperature maps. A similar source was also
extracted in [8].

Components 12–16 have prominent close-to-annual frequencies in their power
spectra. The annual cycle now appears in components 15–16. The rest of the
sources resemble the annual oscillations modulated (multipiled) by some slow
signals. Thus, this set of components may be related to some phenomena slowly
changing the annual cycle. However, as we already pointed out, the found rota-
tion within this subspace may not be most meaningful.
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Fig. 4. The spatial patterns of several components found by frequency-based DSS. The
label on the left indicates the number of the component in Fig. 3.

5 Discussion

In this paper, we showed how the DSS framework can be applied to exploratory
analysis of climate data. We used a frequency-based separation criterion to iden-
tify slow varying climate phenomena with distinct temporal behaviour. The pre-
sented algorithm can be used for both finding a physically meaningful repre-
sentation of the data and for an easier interpretation of the complex climate
variability. It can also be useful for making predictions of future measurements
or for detecting artifacts produced during the data acquisition.

Representing climate variability as a combination of hidden phenomena does
not have a unique solution because of the high complexity of the climate system
where different phenomena constantly interact with each other. This task always
allows some subjectivity where the exact details of the separation procedure de-
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pend on the ultimate goal of research. A good example of such subjectivity
is choosing the number of extracted components in the proposed DSS proce-
dure. In the presented experiments, we chose this number such that the compo-
nents would easily be interpretable. According to our experience, increasing the
number of components usually results in describing one phenomenon by several
components having slightly different frequency contents. This may be useful for
better understanding of well-known climate phenomena or for discovering new,
not easily observable phenomena, but it may also be counter-productive if the
solution becomes overfitted.

Note also that the proposed method may sometimes identify reliably only the
subspaces of components having similar power spectra and the rotation within
the subspaces may not be most meaningful. Some other separation criteria based
on, for instance, dynamical modelling or the interaction with the seasonal vari-
ations is an important line of future research.
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Abstract. Existing methods for top-k ranked query employ techniques in-
cluding sorting, updating thresholds and materializing views. In this paper,
we propose two novel index-based techniques for top-k ranked query: (1) in-
dexing the layered skyline, and (2) indexing microclusters of objects into a
grid structure. We also develop efficient algorithms for ranked query by locat-
ing the answer points during the sweeping of the line/hyperplane of the score
function over the indexed objects. Both methods can be easily plugged into
typical multi-dimensional database indexes. The comprehensive experiments
not only demonstrate that our methods outperform the existing ones, but also
illustrate that the application of data mining technique (microclustering) is a
useful and effective solution for database query processing.

1 Introduction

Rank-aware query processing is important in database systems. The answer to a top-k
query returns k tuples ordered according to a specific score function that combines the
values from participating attributes. The combined score function is usually linear and
monotone with regard to the individual input. For example, given a hotel database
with attributes of x (distance to the beach) and y (price), and the score function
f(x, y) = 0.3x + 0.7y, the top-3 hotels are the best three hotels that minimize f .

The straightforward method to answer top-k queries is to first calculate the score
of each tuple, and then output the top-k tuples from them. This fully-ranked approach
is undesirable for querying a relatively small number k of a large number of objects.
Several methods towards improving the efficiency of such queries have been developed,
but they are either specific to joined relations of two dimensions [16], or incompatible
with other database indexing techniques [4,8], or computationally expensive [11]. In
this paper, we propose two novel index-based techniques for top-k ranked query. The
first method is indexing the layered skyline based on the skyline operator [2], whereas
the second, motivated by a major data mining technique-microclustering, is index-
ing microclusters of the dataset into a grid structure. We develop efficient algorithms
for answering the ranked query by locating the answer points during sweeping the
line/hyperplane of the score function over the indexed objects. Both methods can
easily be plugged into typical multi-dimensional database indexes. For example, the

� The work was supported in part by Canada NSERC and U.S. NSF IIS-02-09199.

A. Jorge et al. (Eds.): PKDD 2005, LNAI 3721, pp. 527–535, 2005.
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layered skyline can be maintained in a multi-dimensional index structure with blocks
described by (1) MBR (Minimum Bounded Rectangle) such as R-tree [9] and R*-tree
[3], or (2) spherical Microcluster such as CF-tree [19] and SS-tree [18]. The compre-
hensive experiments not only demonstrate the high performance of our methods over
the existing ones, but also illustrate that the microclustering technique is an effective
solution to top-k query processing.

The rest of the paper is organized as follows. Section 2 presents the foundations
of this paper. Section 3 and Section 4 give KNN-based and Grid-based sweeping
algorithms for the ranked queries respectively and illustrate their plug-in adaptations
for R-trees and CF-trees. Section 5 reviews related work. We present our experimental
results in Section 6 and conclude the paper in Section 7.

2 Foundations

Let a d-dimensional dataset be X , and a linear monotone score function be f(x) =∑d
i=1 ai · xi where x ∈ X , and ai is the weight on the attribute value xi of x such that∑d
i=1 ai = 1, 0 ≤ ai ≤ 1. Without loss of generality, we assume the lower the score

value, the higher the rank of the object. A top-k ranked query returns a collection
T ⊂ X of k objects ordered by f , such that for all t ∈ T , x ∈ X and x /∈ T , f(t) ≤
f(x). We say p = (p1, . . . , pd) ∈ X dominates another object q = (q1, . . . , qd) ∈ X ,
denoted as p & q, if pi ≤ qi (1 ≤ i ≤ d) and at least there is one attribute, say,
the jth attribute (1 ≤ j ≤ d), pj < qj . Hence, q is a dominated object. The skyline
operator [2] is defined as objects {s1, s2, . . ., sm} ⊂ X that are not dominated by
any other object in X . A multilayered skyline [6], which is regarded as a stratification
of the dominating relationship in the dataset, is organized as follows: (1) the first
layer skyline L1 is the skyline of X , and (2) the ith layer (i > 1) skyline Li is the set
of skyline objects in X − ⋃i−1

j=1 Lj. As for two objects p ∈ X, q ∈ X , if p & q then
f(p1, . . . , pd) < f(q1, . . . , qd), so we can derive the following interesting properties.

Lemma 1. Given X and f , for any i < j, if object q ∈ Lj, there exists at least one
object p ∈ Li s.t. f(p1, . . . , pd) < f(q1, . . . , qd).

Theorem 1. Given K(K ≥ k) layers of skyline L1, . . . , LK, any top-k tuples w.r.t.
f must be contained in

⋃K
j=1 Lj, i.e. in the first K skyline layers.

Definition 1. (MicroCluster[19]) The MicroCluster C for n objects is represented
as (n, CF1(C), CF2(C), CF3(C), r), where the linear sum and the sum of the squares
of the data values are maintained in CF1(C), CF2(C) respectively. The centroid of
C is CF3(C) = CF1(C)

n , the radius of C is r = (CF2(C)
n − (CF1(C)

n )2)
1
2 .

Therefore, maintaining K layers of skylines is enough to answer any top-k ranked
query with k ≤ K. The layered skyline can be organized into rectangle-like and
sphere-like blocks, hence supported by two types of multi-dimensional database in-
dexes. We choose R-tree and CF-tree as typical representatives of these two types
of indexes. The basic storage of a block in R-tree is a MBR in a leaf node, and is a
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microcluster in leaf node in CF-tree [19]. We compute the K(k ≤ K) layers of skyline
objects by recursively applying existing skyline computing algorithms such as [14],
and only store layered skyline as blocks in the leaf nodes of index structures.

3 A KNN-Based Sweeping Approach for Top-k Queries

Here we present methods of two levels of a hyperplane sweeping: (1) sweeping over
blocks such that the I/O cost of accessing blocks is minimized, and (2) sweeping within
a block such that the CPU cost of processing objects within a block is minimized.
(1) Sweeping over blocks. During the sweeping process, the hyperplane always
contacts the best point first, the next best point second, and so on. Based on the
indexed K skyline layers, we develop an efficient branch-and-bound algorithm for
top-k query similar to the optimal KNN search algorithm [15] [16]. Each block has
a lowest/highest point corresponding to the lowest/highest score. In the algorithm,
a sorted queue Q is used to maintain the processed points and blocks in ascending
order of their score. The algorithm starts from the root node and inserts all its blocks
to the queue. The score for a data block is the score for its lowest point. The first
block in the queue will then be expanded. If the entry is a leaf block, we will access its
data with some strategy. In the expanding process, we also keep track of how many
data points are already present, and if an object or a block is dominated by enough
(> k) objects (in some blocks) lining in the queue before it, then it can be pruned.
The expanding process stops when the queue has k objects in the front.

Algorithm 1 Branch-and-Bound Ranking (BBR) Method.
Input: k, and a multi-dimensional index tree
Output: Top-k answer in Q
Method:

1. Q := Root Block;
2. WHILE top-k tuples not found DO
3. F := the first non-object element from Q;
4. S := SweepIntoBlock(F ); //S is a set of blocks and/or objects
5. FOR each block/object s in S Do
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6. IF more than k objects in Q having smaller score than s
7. Discard s;
8. ELSE Insert s to Q;
9. Output k objects from Q;

Algorithm 1 have different implementations for SweepIntoBlock. It can simply
expand the block and access all the belonged objects (noted as BBR1). For a MBR
in R-tree, the lowest/highest points are the lower/upper right corner points, while for
a microcluster in CF-tree, these are two contact points of the sweeping hyperplane to
the sphere, shown as p and q in Fig. 1(a). Given a sweeping hyperplane y =

∑d
i=1 ai ·xi

and a microcluster F with radius R of the origin: F (x1, . . . , xd) =
∑d

i=1 xi
2−R2 = 0

(1). To obtain p and q, we only need solve ∇F (x′
1, . . . , x

′
d) = c ·A (2) together with

(1). Here c is a free variable, A = a1, . . . , ad, and ∇F (x1, . . . , xd) which works as the
gradient of F at X(x′

1, . . . , x
′
d), is ( ∂F

∂ x1
(x,

1, . . . , x
,
d), . . . , ∂F

∂ xd
(x,

1, . . . , x
,
d) ).

(2) Sweeping within layered blocks. In order to avoid processing unnecessary
objects in each block, we make use of the layered skylines since they give a contour of
the data distribution, and develop an efficient sweeping within-layered-blocks method
(noted as BBR2), as a procedure SweepIntoBlock in Algorithm 1. Suppose the block
in a leaf node has m layers of skylines, the lowest/highest object as well as the total
number of objects for that layer is maintained. As shown the node in Fig. 1(b), objects
e, f , g and h are layer-1 skyline objects in node N4, we put all skyline objects in layer
1 minimally hyperectangle-bounded by a pseudo-node denoted as L1 N4. The linked
list storage structure for the layered skylines is shown in Fig. 1(c), where the header
is the summarization information of the pseudo-node which links to its bounding
skyline objects. Now if a leaf block is chosen from the queue, we only expand the
pseudo-node that has the best lowest point according to the score function.

4 A Grid-Based Sweeping Approach for Top-k Queries
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Although the KNN-based ap-
proach can efficiently obtain the
top-k objects, it may still visit
and compare all the objects in
a block even when the layering
technique is applied. In this sec-
tion, we present an alternative
grid-based method for more ef-
ficiently organizing the objects.
Since the user-specified weights
of a score function will often have
a fuzzy rather than a crisp se-
mantic, approximate, query pro-
cessing seems to be acceptable if
this allows significantly improved response time. The basic idea is to build a grid-like
partition of the blocks and access the objects within a block along the grid. For CF-
tree, a shell-grid partition is made (the R-tree case can be adapted by bounding a
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MBR over any microcluster). The block entries are then assigned to the grid cells,
and the sweeping algorithm is applied. All objects of the current grid cell are accessed
before those of other grid cells. This approach reduces the number of comparisons,
but it may lead to a non-exact result if k answer objects are found before a further
grid cell with better objects is accessed. The overview of CF-tree with the shell grid
partition is shown in Fig. 2, where 2(b) depicts the anatomy of an intermediate mi-
crocluster node D in 2(a). A single shell grid cell (or cell) is shown in 2(c). We can
enforce the radius of the leaf microcluster to be smaller than ε when building the CF-
tree [13]. Motivated by the Pyramid indexing [1], we propose a novel idea of building
shell grid partitions for microcluster nodes. The partition made is in partial shells
and the center of the sphere is pre-computed. Assume the center is o = (o0, . . . , od−1).
We split the spherical space into 2d−1 ·2d fan-shaped partitions, each having the cen-
ter as the top, and 1/(2d−1 · 2d) of the (d − 1)-dimensional spherical surface as the
base. The sphere is split into 2d sectors P0, . . . , P2d−1 according to the square cube
with 2d surfaces (dashed in Fig. 2(b) enclosing the sphere is 2-dimension case), as P3
in Fig. 2(d). Using hyperplane perpendicular to each axis and passing through the
sphere center to split the whole space, each sector Pi is divided into 2d−1 subsectors
Pi0, . . . , Pi(2d−1−1), as P31 and P30 in Fig. 2(d). Then the whole space is divided with
parallel spherical shells starting from the center. We have the following property:

Lemma 2. For any object x in sector Pi where i < d, it satisfies: for any dimension
j, 0 ≤ j < d, i �= j, |oi − xi| ≤ |oj − xj |; for sector Pi where i ≥ d, it satisfies: for
any dimension j, 0 ≤ j < d, j �= (i− d), |oi−d − xi−d| ≥ |oj − xj |.

We further number these subsectors from 0 to 2d−1 − 1 in (d − 1) binary format
s0, . . . , sd−1. If i < d, the bit si does not exist in the binary string, otherwise si−d is
excluded. For each subsector, if sj = 1, the belonged points have xj > xi, and it is
opposite for sj = 0. Each subsector has 2d−1− 1 direct neighbors in the same sector,
and another (d− 1) · 2d−2 in the neighboring sector. As illustrated in Fig. 3, a useful
sweeping property is: the sweeping process explores first the outmost shell grid cell of
the sector which the sweeping hyperplane tangent contacts, then goes to its directed
neighboring cells in the same shell. If there is no data in those neighboring cells,
sweeping should go to the inner cell in the same sector directly. Generally we can first
calculate the two contacting points and the sector number Pmn that the sweeping
plane contacts first, and then start the hierarchical sweeping process. A sorted queue
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Q is used to store the expanding entities including microclusters and a pseudo-node
that has candidate sector number and shell number information.

Algorithm 2 A Shell-Grid Ranking(SGR) Method.
Input: CF-tree with Grid Shell Partitions, k.
Output: Top-k answers in list T .
Method:

1. Calculate standard contacting points and subsector number Pmn; Q = ∅; T = ∅;
2. Insert into Q the outmost cell of root node of CF;
3. WHILE the first k tuples are not found DO
4. Remove the first entity E in Q;
5. IF E is a cell
6. insert blocks in subsector Pmn and its direct neighbors with

pseudo-entities;
7. ELSE IF E is an intermediate node
8. insert into Q the outmost cell of E;
9. ELSE IF E is a pseudo-entity
10. insert into Q blocks in its neighbor subsectors of the same

cell with pseudo-entities;
11. ELSE IF E is a leaf
12. add E to T ;
13. Output k points from T ;

To analyze the error bound measured in the score difference of the objects, we
observe the sweeping process in Fig. 4, some objects in other microcluster (i.e., MC2)
are better than those in the current selected microcluster (i.e., MC1). In the extreme
case, q=(x′

1, . . . , x
′
d) is computed as part of the answer instead of w whose score is

slightly larger than that of p = (x1, . . . , xd). f(q) − f(w) < f(q) − f(p) = a1 · (x′
1 −

x1) + · · ·+ ad · (x′
d − xd) < 2 · ε ·∑ ai = 2 · ε, so the maximum error is O(ε).

5 Experiments

In this section, we report the results of our experiments performed on a Pentium III
800MHz machine of 512M RAM running WindowsXP. We implemented our methods
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Fig. 4. Error Bound
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and Onion in C++, and obtain PREFER in www.db.ucsd.edu/prefer. Two types of
datasets of 100,000 records with 5 attributes in independent/correlated distribution
were generated by the data generator of [2].
(1) Comparison of BBR and SGR. Figs. 5 and 6 show that all the algorithms
have better performance for the correlated dataset. BBR2 runs much faster than
BBR1 due to its smaller number of visited objects, while SGR (ε = 10) is best and
is an order of magnitude faster than BBR2. When ε changes from 5 to 10 and 15 in
the independent dataset, runtime decreases due to the decreasing number of visited
microclusters, and the error rate as well as coverage rate become relatively higher
due to the increasing size of microclusters (Figs. 7, 8 and 9).
(2) Comparison with Onion and PREFER. We compare the time to construct
K layers of skylines for BBR, SGR, and K layers of convex hulls for Onion(K = 200).
When the dimension varies from 2 to 5, SGR uses the least time (Fig. 10). BBR2 is
much faster than Onion when the dimension increases, as the complexity of computing
convex hull increases exponentially with dimensions. When k changes, all perform
better on the correlated dataset due to the smaller number of skyline objects. SGR
is still the best due to its high efficient sweeping, BBR2 ranks second and PREFER
queries faster than Onion (Figs. 11, 12). When k increases, the coverage rate of the
answers of SGR is higher than that of PREFER (Figs. 13 and 14). Because correlated
dataset has less number of skyline, the size of materialized views for PREFER will
be reduced, which leads to the lower coverage rate than the independent dataset.

6 Related Work

The top-k ranked query problem was proposed by Fagin in the context of multimedia
database systems [7], and methods can be categorized into three types: (1) Sorted
accessing and ranking mainly applies some strategies to sequentially search the
sorted list of each attributes until the top-k tuples are retrieved. [17] proposed different
ways to improve that in [7]. Further, a “threshold algorithm (TA)” [8] is developed to
scan all query-relevant index lists in an interleaved manner. (2) Random accessing
and ranking supports mainly random access over the dataset until the answers have
been retrieved. [10] uses foot-rule distance to measure the two rankings and model the
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rank problem as the minimum cost perfect matching problem, whereas [5] proposes to
translate the top-k query into a range query in database. (3) Pre-materialization
and rank indices organizes the tuples in a special way, then applies similarity match
for the answer of ranked query. In [4], an index is built on layered convex hulls for
all points. Such index for large databases is expensive due to the convex hull finding
complexity. [11,12] propose to pre-materialize views of different top-k query answers.
When the query’s score function is close to a view’s, a small number of the tuples in
that view is necessary for the top tuples, and the query result can be produced in a
pipelined fashion. As there is no guarantee how many tuples should each view store
for query, it often stores the whole dataset in each view. [16] proposes a ranked index
to support top-k query(k ≤ K) but it only applies to two dimensions and can have a
huge number of materialized partitions.

7 Conclusions

Rank-aware query processing has recently emerged as an important paradigm in
database systems, and only few existing methods exploit materialization and index
structures. In this paper, we propose indexing layered skyline and shell-grid micro-
clusters for top-k ranked query, and present methods sweeping the hyperplane of the
score function over the indexed objects. Our methods can be easily adapted to ex-
isting multi-dimensional index structures. The experimental results demonstrate the
strength of our methods and the usefulness of the microclustering technique in top-k
query processing.
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Abstract. Mass spectrometry is becoming an important tool in pro-
teomics. The representation of mass spectra is characterized by very
high dimensionality and a high level of redundancy. Here we present
a feature extraction method for mass spectra that directly models for
domain knowledge, reduces the dimensionality and redundancy of the
initial representation and controls for the level of granularity of feature
extraction by seeking to optimize classification accuracy. A number of
experiments are performed which show that the feature extraction pre-
serves the initial discriminatory content of the learning examples.

1 Proteomics and Mass Spectrometry

Clinical proteomics aims at investigating changes in protein expression in order
to discover new disease markers and drug targets. Mass spectrometry is emerging
as an important tool for biomarker discovery in proteomics. To discover these
biomarker patterns, the data miner must face a number of technical challenges,
foremost among which is the extremely high-dimensionality and high redundancy
of mass spectra.

In this paper we will present a method of feature extraction from mass spec-
tra that retains as much as possible the initial information content of learning
examples, extracts biologically meaningful features, reduces the degree of spatial
redundancy, and achieves a significant level of dimensionality reduction.

One of the main problems in preprocessing and feature extraction from mass
spectra is the appropriate selection of the preprocessing parameters. This is
qualitative relying on systematic experimentation and visual inspection of the
resulting spectra. There is a strong need for automatic and objective methods
of parameter selection, [1]. The problem is that it is not obvious what should be
the measure that a given parameter set should optimize. However when the goal
is classification and biomarker discovery one obvious measure to optimize is clas-
sification accuracy. We propose a solution that tightly couples the preprocessing
and feature extraction steps with the learning task and uses the estimated clas-
sification performance of the latter to guide the selection of the appropriate set
of parameters. In order to do that we exploit a common practice in machine
learning in which cross-validation is used for parameter selection, [2].

A. Jorge et al. (Eds.): PKDD 2005, LNAI 3721, pp. 536–543, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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The paper is organized as follows: section 2 describes the preprocessing that
we apply on a mass spectrometry problem; section 3 explains which steps of pre-
processing, and how, are related with feature extraction and how to control the
dimensionality in the new representation; in section 4 we investigate the degree
of dimensionality reduction brought by feature extraction, we perform a series
of classification experiments in order to establish its classification performance,
and exhibit how we can automatically select the appropriate parameter values
for preprocessing and feature extraction; finally we conclude in section 5.

2 Mass Spectra Preprocessing

A mass spectrum of a biological sample is a one-dimensional signal. The x-axis
corresponds to the mass, m/z value, of proteins detected in the biological sample
and the y-axis to the intensity of these masses, the latter is strongly related to the
concentration of the corresponding proteins in the sample. A mass spectrum is a
vector whose dimensionality is equal to the number of m/z values recorded by the
spectrometer, the value of each dimension is the intensity of the corresponding
m/z value. Intensities of neighboring m/z values are highly correlated, resulting
in high spatial redundancy among the features of a mass spectrum.

Mass spectra demand considerable effort for preprocessing, which can be
roughly divided to: baseline removal, denoising, smoothing, normalization, peak
detection and calibration, [1]. We will describe now how we tackled each of them.

The baseline is an offset of the intensities of masses, which happens mainly
at low masses, and varies between different spectra. In order for comparisons
between intensities of m/z values to be meaningful it has to be subtracted. To
compute the baseline we used a local weighted quadratic fitting on the list of
the local minima extracted from the spectrum. On the new fitted values of local
minima a new search for local minima was performed, the first fitting smooths
out small variations. Using the new local minima the signal is split to piecewise
constant parts and the final baseline is simply computed by the reapplication of
the initial local weighted quadratic fitting, on the piecewise constant signal.

To denoise and smooth the signal we used wavelet decomposition coupled
with a median filter; a detailed description is given in section 3. Signal intensities
are normalized, to be less dependent on experimental conditions, via total ion
current which is equivalent to normalizing with the L1 norm of the spectrum.

Peak detection is the detection of local maxima in the mass spectrum. A peak
collectively represents all the m/z values that define it, that is: starting from its
left closest local minimum and moving to its right closest local minimum. The
intensities of all these neighboring m/z values exhibit a high level of redundancy,
thus by representing a spectrum only via its peaks we considerably reduce the
level of spatial redundancy. Peak calibration establishes which peaks among
different spectra correspond to the same peak, i.e. the same protein. We used
the approach followed in [3] which is essentially complete linkage hierarchical
clustering with some additional domain constraints. The final clusters contain
masses from different spectra that correspond to the same peak.
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3 Feature Extraction

Feature extraction is the combined effect of all the preprocessing steps. However
three of them are central: denoising-smoothing, peak detection and peak cali-
bration. The first step determines how many peaks-features will be preserved in
the preprocessed spectrum, it thus, indirectly, determines the dimensionality of
the finally constructed feature space (later in this section we will see how this is
achieved). The two latter steps are the actual steps of feature extraction. Clus-
ters established in the peak calibration step become the extracted features. The
feature value of a learning instance in the new representation for the feature that
is associated with a given cluster will be simply the intensity in the preprocessed
mass spectrum at the mass value that is associated with that cluster.

Wavelets are very popular in signal processing because they are able to ana-
lyze both local and global behavior of functions, a phenomenon dubbed time and
frequency localization [4]. Classical tools like the Fourier transform are of global
nature and assume stationary signals, which is not the case for the signals found
in mass spectra. This is why wavelets have recently received attention as a tool
for preprocessing mass spectra [1]. Wavelet decomposition reconstructs a signal
as a linear combination of some basis functions. By thresholding the coefficients
of the basis functions we get a denoised version of the signal.

We work with the decimated wavelet transform and perform the wavelet de-
composition using Mallat’s pyramid algorithm, [4]. As wavelet basis we have
chosen Daubechies, which has been reported previously to have a good perfor-
mance on mass spectrometry data, [1]. We have opted for hard thresholding
and in order to further smooth the produced signal we apply a moving median
window filter (window size equals nine points). Smooth behavior is essential for
peak detection, if the signal is not smooth enough a very high number of local
maxima would be detected that are rather the result of random fluctuations.

To perform the thresholding we create the distribution-histogram of the
wavelet coefficients. By specifying a percentile on that distribution, all the coeffi-
cients falling within it will be set to zero and the signal will be reconstructed from
the remaining coefficients. The threshold of the wavelet coefficients controls the
dimensionality of the finally produced feature space after peak detection. Large
values of the threshold result in fewer detected peaks and thus lower dimension-
ality. The question is how to select the wavelet threshold without relying on a
visual and qualitative inspection of the resulting signals. We should strive for a
careful balance; as values of the wavelet threshold become higher and higher we
do not remove only noise but we also start removing a part of the signal that
potentially contains valuable discriminatory information.

4 Experimentation

We worked with three different mass spectrometry datasets, one for ovarian
cancer [5], (version 8-07-02), one for prostate cancer [6] and an extended version
of the early stroke diagnosis dataset used in [3]. A short description of these
datasets is given in table 1. They are all two class problems, diseased vs controls.
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The learning algorithms used are: a decision tree algorithm J48, with M=2,
C=0.25, a one nearest neighbor algorithm, IBL, and a support vector machine
algorithm, SMO, with a simple linear kernel and C=0.5. The implementations
of the algorithms were those of the WEKA machine learning environment, [7].
The three learning algorithms were chosen so that they represent a diverse set of
learning biases. Performance estimation was done using 10-fold stratified cross-
validation and controlling for significant differences using McNemar’s test with
a level of significance of 0.05.

We explored three issues: the degree of dimensionality reduction achieved
by the feature extraction mechanism, the amount of discriminatory information
preserved by the different levels of preprocessing, namely denoising and feature
extraction, and finally how preprocessing could be optimized.

Dimensionality Reduction. We varied the wavelet threshold from 0.5 to 0.95 with
a step of 0.05, and from 0.95 to 0.99 with a step of 0.01. The degree of dimen-
sionality reduction ranges from 60% to 95% of the initial number of features in
the complete mass spectrum depending on the threshold and the dataset. Due to
lack of space we list some of the results in table 2. The dimensionality reduction
is done in such a way that it reflects domain knowledge and reduces the spatial
redundancy of the initial representation.

Table 1. Description of mass spectrometry datasets considered

dataset # controls #diseased mass range (Daltons) # features
ovarian 91 162 0-20k 15154
prostate 253 69 0-20k 15154
stroke 101 107 0-70k 28664

Table 2. Feature reduction for different values of the wavelet threshold. For each
dataset and wavelet threshold, θ, we give: the number of features after feature extrac-
tion (# features), and the percentage of feature reduction (reduction %).

prostate ovarian stroke
θ # features reduction % #features reduction % #features reduction %
0.5 3779 75.06 1591 89.50 11983 58.19
0.6 3538 76.65 1371 90.95 11294 60.59
0.7 3223 78.73 991 93.46 9780 65.88
0.8 2616 82.73 865 94.29 6954 75.73
0.9 1668 88.99 775 94.88 3154 88.99
0.99 1009 93.34 668 95.59 1255 95.62

Preprocessing and Discrimination. To see whether the various steps of prepro-
cessing preserve the discriminatory information we evaluated the learning algo-
rithms on three different representations of the classification problems: 1) the
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initial complete mass spectra where we only performed baseline removal and nor-
malization, bl-tic, this is a single dataset; 2) the complete mass spectra where
baseline removal, normalization, noise removal with different wavelet thresholds,
and smoothing are performed, this is a group of datasets collectively identified
as all, each dataset corresponds to a specific wavelet threshold; 3) the datasets
produced after feature extraction, collectively identified as peaks. bl-tic will pro-
vide us with a performance baseline since it contains all the initially available
information. Comparing the performance of learning on all and bl-tic we can see
how denoising and smoothing affects the discriminatory content of the learn-
ing examples, while comparisons between peaks and bl-tic allows us to establish
the effect of feature extraction on the discriminatory content. The estimated
performances (accuracies) are given in figure 1.

A close examination of figure 1 shows that in general the accuracies of the
learning algorithms on the all and peaks representations are similar to the base-
line accuracy on bl-tic. There is no clear trend associated with the level of de-
noising, and no systematic difference that would show a clear advantage or dis-
advantage of denoising-smoothing and feature extraction.

To establish a precise picture of the effect of denoising-smoothing and feature
extraction on discrimination content we computed the significance level of the
accuracy differences on the bl-tic representation and on each of the all, and
peaks representations, i.e., for each value of the wavelet threshold, the results are
summarized in table 3 in terms of significant wins and losses.

Table 3. Significant wins and losses table summarized over the different threshold
values. A triplet w/t/l for a pair of representations x vs y gives the number of significant
wins (w), ties (t), and significant losses for x.

bl-tic vs all bl-tic vs peaks

SMO J48 IBL SMO J48 IBL
ovarian 0/14/0 0/14/0 1/13/0 0/14/0 8/6/0 0/14/0
prostate 6/8/0 0/14/0 0/14/0 0/14/0 1/11/2 0/14/0
stroke 2/12/0 0/14/0 0/14/0 1/13/0 0/14/0 1/13/0

Denoising and smoothing in general preserve the discriminating information
contained within the learning examples, table 3, column bl-tic vs all. However
there are threshold values for which classification accuracy significantly deterio-
rates compared to the baseline; a fact that calls for an informed way of selecting
the appropriate threshold value. A similar picture arises when we examine the
performance of feature extraction for the different values of the wavelet thresh-
old, table 3, column bl-tic vs peaks. In most of the cases feature extraction retains
a discriminatory content similar to that of the bl-tic representation, nevertheless
here also the wrong choice of the wavelet threshold can lead to a significant drop
in classification accuracy compared with the baseline accuracy.

The optimal value of the wavelet threshold depends not only on the dataset
but also on the learning algorithm used. A good or bad selection of the wavelet
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Fig. 1. Accuracy results for each dataset and learning algorithm. Each graph gives the
accuracy of a given algorithm for all wavelet thresholds using: the complete spectrum,
all, only the peaks, peaks. The horizontal lines correspond to the accuracy on the bl-tic
version of the dataset. The y-axis gives the accuracy %, note the differences in scales.

threshold can lead to a performance that is, respectively, significantly better or
worse than the baseline performance. Thus all these raise again the issue of the
optimal selection of the wavelet threshold in order to optimize feature extraction.
Clearly this selection should be guided not only by the dataset but also by the
learning algorithm that we are planning to use for classification.

Optimizing Denoising and Feature Extraction. We would like to select that
wavelet threshold that would have the highest chances of maximizing classifi-
cation performance on the testing instances for a given learning algorithm. To
achieve that we tightly integrate the whole preprocessing pipeline to the learn-
ing process and adopt a commonly used technique for parameter tuning that
is based on cross-validation. More precisely the user gives an initial list of in-
teresting parameter values and selects a learning algorithm. Then as a part of
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the training phase the preprocessing and the learning algorithm are cross vali-
dated (ten folds) tightly coupled for each value. The value that gave the highest
accuracy is chosen, the training set is preprocessed with the chosen value, the
learning algorithm is trained on the preprocessed training set and tested on the
test set.

Evaluation was done with ten fold stratified cross validation. The threshold
values among which selection is performed are the same as in the previous ex-
periments. For each dataset again two representations were considered: all that
contains all the features where only denoising and smoothing is performed, and
peaks where feature extraction was also performed, results are given in table 4.

Denoising with automatic selection of the appropriate wavelet threshold re-
tains the discriminatory information of the learning examples when compared
with the bl-tic representation. For any learner and any dataset, classification
performances on the all representation are very similar with those on the bl-
tic representation, no statistically significant differences are observed (statistical
significance data not shown). The same holds when we compare the classification
performance of feature extraction with the classification performance on bl-tic,
performances are similar and no statistical significant difference is observed.

Table 4. Classification accuracy with automatic parameter selection. Automatic pa-
rameter selection is only performed for all and peaks, bl-tic is repeated for comparison
reasons.

dataset bl-tic all peaks
SMO J48 IBL SMO J48 IBL SMO J48 IBL

ovarian 99.60 94.07 92.09 99.20 95.25 96.04 99.20 92.49 92.88
prostate 92.54 84.78 86.95 92.23 86.95 86.95 92.54 84.78 90.06
stroke 85.09 63.46 62.50 81.73 65.86 56.73 81.73 62.01 62.01

Overall automatic selection of the wavelet threshold avoids the pitfalls of
manual selection. It reduces the chances of selecting a threshold value that would
result in a significant deterioration of the classification performance. Equally
important it eliminates the need for a visual and qualitative inspection of the
results of denoising in order to select the appropriate threshold, thus relieving the
analyst from a significant burden, while on the same time it replaces a qualitative
approach (visual inspection) with an objective criterion (classification accuracy).

5 Conclusion

Mass spectrometry data are characterized by very high dimensionality and very
high levels of redundancy among their features. In this paper we exploited do-
main knowledge in order to reduce dimensionality and on the same time remove
redundancy from the initial representation by feature extraction. One of our
central tools was wavelet decomposition. Wavelets have been used before in
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mass spectrometry [8,9] and in other domains like measuring time series similar-
ities [10]. Nevertheless they all worked with the wavelet coefficients. We return
to the initial representation of the signal and extract features from that, thus the
extracted features are of direct biological relevance. [1] use wavelets to extract
peaks from mass spectra but they did not follow up with classification, moreover
they stressed the problem of the appropriate level of denoising and parameter
selection. To address these issues we tightly coupled feature extraction with clas-
sification and provided an effective and automatic way to control the granularity
of feature extraction with a view to maximizing classification accuracy.

We should note here that what we propose is not a feature selection method.
Our goal is not to minimize the number of features that can be used to effectively
perform classification but to extract a high level, more compact, less redundant
and well understood representation of the mass spectra that retains as much
as possible the initial discriminatory content of the training examples. The new
extracted representation seems, according to the experimental evidence, to retain
the discriminatory content of the learning examples. Once the new representation
is extracted one may proceed to a typical data analysis scenario where aggressive
methods of feature selection could now be used on the new representation.

References

1. Morris, J., Coombes, K., Koomen, J., Baggerly, K., Kobayashi, R.: Feature extrac-
tion and quantification for mass spectrometry in biomedical applications using the
mean spectrum. Bioinformatics (2005) Advanced publication.

2. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning.
Springer (2001)

3. Prados, J., Kalousis, A., Sanchez, J.C., Allard, L., Carrette, O., Hilario, M.: Min-
ing mass spectra for diagnosis and biomarker discovery of cerebral accidents. Pro-
teomics 4 (2004) 2320–2332

4. Mallat, S.: A wavelet tour of signal processing. Academic Press (1999)
5. Petricoin, E., et al: Use of proteomic patterns in serum to identify ovarian cancer.

The Lancet 395 (2002) 572–577
6. Petricoin, E., et al: Serum proteomic patterns for detection of prostate cancer.

Journal of the NCI 94 (2002)
7. Witten, I., Frank, E.: Data Mining: Practical Machine Learning Tools and Tech-

niques with Java Implementations. Morgan Kaufmann (1999)
8. Qu, Y., et al: Data reduction using a discrete wavelet transform in discriminant

analysis of very high dimensional data. Biometrics 59 (2003) 143–151
9. Lee, K.R., Lin, X., Park, D., Eslava, S.: Megavariate data analysis of mass spec-

trometric proteomics data using latent variable projection method. Proteomics 3
(2003)

10. Zbigniew R. Struzik, A.S.: The haar wavelet transform in the time series similarity
paradigm. In: Principles of Data Mining and Knowledge Discovery, Third European
Conference, Springer (1999) 12–22



A. Jorge et al. (Eds.): PKDD 2005, LNAI 3721, pp. 544 – 551, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

Numbers in Multi-relational Data Mining 

Arno J. Knobbe1,2 and Eric K.Y. Ho1 

1 Kiminkii, Postbus 171, NL-3990 DD, Houten, The Netherlands 
{a.knobbe, e.ho}@kiminkii.com 

2 Utrecht University, P.O. box 80 089, NL-3508 TB Utrecht, The Netherlands 

Abstract. Numeric data has traditionally received little attention in the field of 
Multi-Relational Data Mining (MRDM). It is often assumed that numeric data 
can simply be turned into symbolic data by means of discretisation. However, 
very few guidelines for successfully applying discretisation in MRDM exist. 
Furthermore, it is unclear whether the loss of information involved is negligible. 
In this paper, we consider different alternatives for dealing with numeric data in 
MRDM. Specifically, we analyse the adequacy of discretisation by performing 
a number of experiments with different existing discretisation approaches, and 
comparing the results with a procedure that handles numeric data dynamically. 
The discretisation procedures considered include an algorithm that is insensitive 
to the multi-relational structure of the data, and two algorithms that do involve 
this structure. With the empirical results thus obtained, we shed some light on 
the applicability of both dynamic and static procedures (discretisation), and give 
recommendations for when and how they can best be applied. 

1   Introduction 

Whereas numeric data is at the core of the majority of propositional Data Mining 
systems, it has been largely overlooked in Multi-Relational Data Mining (MRDM). 
Most MRDM systems assume that the data is a mixture of symbolic and structural 
data, and if the source database contains numbers, they will either have to be filtered 
out or pre-processed into symbolic values. Apart from historical reasons – symbolic 
representations are popular in the logical roots of MRDM –, the full treatment of 
numeric data comparable to propositional approaches is mostly ignored for reasons of 
simplicity and efficiency. MRDM is characterised by large hypothesis spaces, and the 
inclusion of continuous domains that offer a large range of (very similar) refinements 
is thought to make MRDM intractable. Most multi-relational systems rely on so-
called discretisation procedures to reduce the continuous domains to more 
manageable symbolic domains of low cardinality, such that the search remains 
realistic. The resulting loss of precision is assumed to be negligible. 

In this paper, we survey a number of existing approaches to dealing with numeric 
data in MRDM, with the aim of empirically determining the value of each of these 
approaches. These approaches include a number of pre-processing procedures 
suggested recently [6, 2], as well as one of the few MRDM algorithms that deal with 
numbers dynamically, developed by the authors of this paper [2, 4]. The discretisation 
procedures include a simple algorithm that considers each table in isolation, and 
discretises each numeric attribute on the basis of the distribution of its values, 
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regardless of any other tables connected to the current table. Two further 
discretisation procedures do involve the multi-relational structure of the database, and 
aim at finding good intervals, keeping in mind that the resulting symbolic attributes 
will be used in the context of the other tables in the database. The algorithm that deals 
with numbers dynamically does not require any pre-processing of the data. Rather 
than fixing a number of intervals prior to the analysis, it will consider the numeric 
data for a hypothesis at hand, and determine thresholds that are optimal for the given 
context. Especially at deeper levels of the search, where reasonably specific 
subgroups are considered, relevant thresholds will differ significantly from those 
determined on the whole dataset. 

We test the four approaches experimentally on four well-known multi-relational 
datasets where numeric attributes play an important role: Mutagenesis (two varieties), 
Financial and Musk. With these experiments, we aim to shed some light on when and 
how each approach can best be applied. Furthermore, we hope to get some guidelines 
for important parameters of the discretisation procedures, such as the coarseness of 
the discretisation and the choice of representation. The experimental results are 
compared to those obtained on databases where all numeric information is removed, 
in order to get a baseline for the procedures that do (to some extent) involve the 
continuous domains. 

2   Foundations 

In the class of discrete patterns that we aim at (decision trees, rules, etc.), dealing with 
numeric data comes down to choosing numeric thresholds that form useful subgroups. 
Clearly, the distribution of numeric values, and how the target concept depends on 
this distribution is essential. In propositional data mining, choosing thresholds is fairly 
straightforward, as there is a one-to-one correspondence between occurring values 
and individuals. In MRDM however, we are dealing with non-determinate (i.e. one-
to-many) relations between tables. In many cases, numeric attributes do not appear in 
the target table, and multiple values of the attribute are associated with a single 
structured individual. Whereas in propositional data mining, we can think of the 
whole database as a ‘cloud’ of points, in MRDM each individual forms a cloud. The 
majority of pattern languages in MRDM characterise such individuals by testing for 
the presence of values that exceed a given threshold. As the following lemma shows, 
only the largest and smallest values within each individual are relevant to include or 
exclude an individual on the basis of a single numeric test. Only these values will 
therefore be candidates for numeric thresholds. 

 
Lemma 1. Let B be a bag of real numbers, and t some real, then 

   ∃v∈B: v ≥ t  iff  max(B) ≥ t, 
   ∃v∈B: v ≤ t  iff  min(B) ≤ t. 
 
Lemma 1 furthermore demonstrates that there is a difference between the set of 

thresholds appropriate for the ≤ and the ≥ operator. This means that any procedure 
that selects thresholds will have to be performed separately for each operator. 
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Choosing thresholds can roughly be done in two ways: dynamically and statically. 
A dynamic approach (see Section 3) considers the hypothesis at hand, and determines 
a collection of thresholds on the basis of the information contained in the individuals 
covered by the hypothesis in question. A static approach (see Section 4) on the other 
hand considers the entire database prior to analysis and determines a collection of 
thresholds once and for all. Typically these thresholds are then used to pre-process the 
data, replacing the numeric data with symbolic approximations. We refer to such a 
pre-processing step as discretisation. Clearly, a dynamic approach is preferable from 
an accuracy standpoint, as optimal thresholds are computed for the situation at hand. 
On the other hand, dynamic computation of thresholds makes algorithms more 
complex, and less efficient. 

In the context of discretisation, we refer to numeric thresholds as cut points. A 
collection of n-1 cut points splits the continuous domain into n intervals. A group of 
values falling in a specific interval is referred to as a bin. 

In MRDM, it makes sense to not just consider the available numeric values in the 
computation of cut-points, by also the multi-relational structure of the database. In 
general, a table is connected to other tables by associations, some of which may be 
non-determinate (a single record in one table corresponds to multiple records in 
another table). The effect of such associations is thus that records in a table can be 
divided into groups, depending on the relation to records in the associated table. 
Considering the multi-relational structure in the computation of cut points is hence 
tantamount to considering the numeric value, as well as the group the value belongs 
to. In the remainder of this paper, we refer to groups as the sets implied by this multi-
relational structure.  

3   Dynamic Handling of Numbers 

An MRDM algorithm that handles numbers dynamically considers a range of cut 
points for a given numeric attribute, and determines how each of these tentative cut 
points influences the quality of a multi-relational hypothesis under consideration. As 
the optimal cut point depends on the current hypothesis, and many hypotheses are 
considered by an MRDM algorithm, the set of relevant cut points cannot be 
determined from the outset. Rather, we will have to consider the subgroup at hand, 
and query the database for a list of relevant cut points, and associated statistics. 

In general, all values for the numeric attribute that occur in the individuals covered 
by the hypothesis at hand can act as candidate cut points. In theory, this set of values 
can be quite large, which can make the dynamic generation of cut points very 
inefficient. The MRDM system Safarii [2, 4] uses an approach that considers only a 
subset of these values, thus reducing some of the work. It relies on the observation 
from Lemma 1 that only the extreme values within a bag of numbers are relevant in 
order to test the presence of values above or below a certain cut point. Safarii uses a 
database primitive (a predefined query template) called NumericCrossTable [2] that 
selects the minimum (maximum) value within each individual covered by the current 
hypothesis, and then groups over these extreme values to produce the desired counts. 
We thus get a more reasonable number of candidate refinements. 
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Unfortunately it is still not realistic to continue the search on the basis of each of 
these refinements. Safarii therefore selects from the reduced set of candidate 
refinements only the optimal one for further examination. Because the operators ≤ and 
≥ produce two different sets of candidate refinements, we essentially get two 
refinements per hypothesis and numeric attribute encountered. Note that keeping only 
the optimal refinements introduces a certain level of greediness into the algorithm. 

4   Discretisation 

In this section, we briefly outline the three methods for discretising numeric data to be 
used in our experiments. We refer to [3] for a full description. Conceptually, 
discretisation entails defining a number of consecutive intervals on the domain of a 
numeric attribute, and replacing this attribute with a nominal attribute that represents 
the interval values fall into. The three methods are identical in how numeric attributes 
are transformed based on the intervals defined. The essential difference between the 
methods lies in how the cut points between intervals are computed. 

The first method presented computes a (user-determined) number of cut points 
based on the distribution of values of the numeric attribute. It ignores the fact that 
data in a particular table will generally be considered in the context of that in other 
tables. The remaining two methods do consider the multi-relational structure of the 
data, and compute cut points assuming that discretised values will be considered after 
joining with tables that are directly attached to the table at hand. 

Because the numeric data typically appears in tables other than the target table, it is 
not always straightforward to assign a class (which is related to the target table) to the 
value. All three methods are therefore class-blind (or unsupervised): the methods do 
not consider a predefined target concept. As a result, the transformed data can be used 
on a range of class-definitions. 

Equal Height Histogram. The first algorithm computes cut points regardless of any 
multi-relational structure. It simply considers every numeric attribute in every table in 
turn and replaces it by a nominal attribute that preserves as much of the information in 
the original attribute as possible. A collection of cut points is computed that produces 
bins of (approximately) equal size. Such a procedure is known as equal interval 
frequency, or equal height histogram, which is the term we will adopt. 

Equal Weight Histogram. The second discretisation procedure involves an idea 
proposed by Van Laer et al. [6]. The algorithm considers not only the distribution of 
numeric values present, but also the groups they appear in. It is observed that larger 
groups have a larger impact on the choice of cut points because they have more 
contributing numeric values. In order to compensate for this, numeric values are 
weighted with the inverse of the size of the group they belong to. Rather than producing 
bins of equal size, we now compute cut points to obtain bins of equal weight. 

Aggregated Equal Height Histogram. Like the EqualWeight algorithm, the 
AggregatedEqualHeight algorithm proposed in [2] takes the multi-relational structure 
of the database into account in the computation of the cut points. The algorithm is 
centred around the idea that not all values within a group are relevant when inquiring 
about the presence of numeric values above or below some threshold. As was outlined 
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in Section 2, it suffices to consider the minimum and maximum value within a group. 
The idea of the AggregatedEqualHeight algorithm is hence to take the minimum 
value per group and compute an equal height histogram on these values, in order to 
discretise all values. The process is then repeated for the maximum per group. We 
thus get two new attributes per numeric attribute.  

Representation. In our discussion of the different discretisation procedures, we have 
assumed that the outcome is a collection of nominal attributes, where each value 
represents one of the computed intervals. In fact when we produce n nominal values, 
we do not only lose some amount of precision (which we assume to be minimal), but 
also the inherent order between intervals. Although the inability to handle ordered 
domains (numeric or ordinal) is part of our motivation for applying discretisation, we 
can choose a representation that preserves the order information without having to 
accommodate for it explicitly. This representation involves n-1 binary attributes per 
original numeric attribute, one for each cut point. Rather than representing each 
individual interval, the binary attributes represent overlapping intervals of increasing 
size. By adding such attributes as conjuncts to the hypothesis through repeated 
refinements, a range of intervals can be considered. A further advantage of this 
representation is that the accuracy is less sensitive to the number of intervals as the 
size of the intervals does not decrease with the number of intervals. An important 
disadvantage of this representation is the space it requires. Especially with larger 
numbers of intervals, having n-1 new binary attributes per original attribute can 
become prohibitive. 

In our experiments, we will consider both the nominal and the binary 
representation, and compare the results to determine the optimal choice. We will refer 
to the latter representation as cumulative binary. 

5   Experiments 

Although we have multiple approaches to dealing with numeric data to test, we have 
chosen to apply a single mining algorithm. This allows us to sensibly compare results. 
The algorithm of choice is the Rule Discovery algorithm contained in the Safarii 
MRDM package produced by the authors [2, 4]. This algorithm produces a set of 
independent multi-relational rules. The algorithm includes the dynamic strategy for 
dealing with numbers described in Section 3. In order to test the discretisation 
procedures, we have pre-processed the different databases by generating the desired 
discretised attributes, and removing the original numeric attributes. The different 
discretisation procedures were implemented in the pre-processing companion to 
Safarii, known as ProSafarii. 

Although a range of evaluation measures and search strategies is available in 
Safarii, we have opted for rules of high novelty, discovered by means of beam search 
(beam width 100, maximum depth 6). A time limit of 30 minutes per experiment was 
selected. The algorithm offers filtering of rules by means of a computed convex hull 
in ROC space [2]. The area under the ROC curve gives a good measure of the quality 
of the discovered rule set, as it is insensitive to copies or redundant combinations of 
rules. We will use this measure (values between 0.5 and 1) to compare results. 
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We will test the different algorithms on the following three well-known multi-
relational databases: 

• Mutagenesis [5]. A database containing structural descriptions of molecules. 
We use two varieties, called B2 and B3. B2 contains symbolic and structural 
information as well as a single numeric attribute describing the charge of each 
atom. B3 contains two additional attributes on the molecule-level. 

• Financial [7, 2]. A database containing seven tables, describing various 
activities of customers of a Czech bank.  

• Musk [1]. A database describing 166 continuous features of different 
conformations molecules may appear in. 

In [3] we present a detailed overview of the results obtained. We summarize the 
main conclusions in the paragraphs below. 

Discretisation Procedures. Let us begin by considering how well the discretisation 
procedures perform. The table below summarises how often each procedure is 
involved in a win or a tie (no other procedure is superior). Procedures are compared 
per setting of the number of bins, in order to get comparable results. It turns out that 
AggregatedEqualHeight is clearly the best choice for Financial and Musk. 
Surprisingly, the propositional procedure EqualHeight performs quite well on 
Mutagenesis B2. The results for EqualHeight and EqualWeight on Mutagenesis B3 
are virtually identical, which should come as no surprise, as this database contains 
two powerful attributes in the target table. The multi-relational data is mostly ignored. 

In every case, the use of discretised attributes is better than not using the numeric 
information altogether, although in a few cases the advantage was minimal.  

 EqualHeight EqualWeight AggregatedEqualHeight 
Mutagenesis B2 62.5% 50.0% 37.5% 
Mutagenesis B3 75.0% 87.5% 75.0% 

Financial 0% 12.5% 87.5% 
Musk 0% 25% 75.0% 

Discretisation vs. Dynamic Handling. So can the discretisation procedures compete 
with the dynamic approach to numeric data, or is it always best to use the latter? In 
the table below, we compare the performance of the collection of discretisation 
procedures to dynamic handling of numbers. Each row shows in how many of the 
3×4×2=24 runs discretisation outperforms the dynamic approach. In the majority of 
cases, the dynamic approach outperforms the discretisation procedures, as was 
expected. However, for every database, there are a number of choices of algorithm, 
representation and number of bins, for which discretisation can compete, or even give 
slightly better results (see [3] for details).  

If the set of cut points considered by the dynamic approach in theory is a superset 
of that considered by any discretisation procedure, how can we explain the moderate 
performance of the dynamic algorithm in such cases? The main reason is that the 
dynamic algorithm is more greedy than the discretisation procedures, because of the 
way numeric attributes are treated. Of the many refinements made possible by the 
numeric attribute, only the optimal pattern is kept for future refinements. Therefore, 
good rules involving two or more numeric conditions may be overlooked. On the 
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other hand, the nominal attributes resulting from discretisation produce a candidate 
for each occurring value, rather than only the optimal one. Because beam search 
allows several candidates to be considered, it may occur that sub-optimal initial 
choices may lead to optimal results in more complex rules. 

 discretisation dynamic 
Mutagenesis B2 5 19 
Mutagenesis B3 9 15 

Financial 0 24 
Musk 1 23 

Choice of representation. The comparison between the two proposed representations 
is clear-cut: the cumulative binary representation generally gives the best results (see 
table below). The few cases where the nominal representation was (slightly) superior 
can be largely attributed to lower efficiency caused by the larger hypothesis space of 
the cumulative binary approach.  

Although the cumulative binary representation is very desirable from an accuracy 
point of view, in terms of computing resources and disk space, the cumulative binary 
approach can become quite impractical, especially with many bins. Particularly in the 
Musk database, which contains 166 numeric attributes, several limits of the database 
technology used were encountered. 

 nominal cumulative binary ties 
Mutagenesis B2 3 5 4 
Mutagenesis B3 0 9 3 

Financial 2 6 4 
Musk 5 4 7 

Effect of Number of Bins. As has become clear, the number of bins is an important 
parameter of the discretisation procedures considered. Can we say something about the 
optimal value for this parameter? It turns out that the answer to this question depends on 
the choice of representation. Let us consider the cumulative binary representation. The 
performance roughly increases as more cut points are added (see the diagrams on the 
next page). This is because extra cut points just add extra opportunities for refinement 
and thus extra precision. The only exception to this rule is when severe time constraints 
are present. Because of the larger search space, there may be no time to reach the 
optimal result. For the nominal representation, there appears to be an optimal number of 
cut points that depends on specifics of the database in question. Having fewer cut points 
has a negative effect on the precision, whereas too many cut points results in rules of 
low support, because each nominal value only represents a small interval. For the 
Mutagenesis and Musk database, the optimal value is relatively low: between 2 and 4. 
The optimal value for Financial is less clear. 

6   Conclusion 

In general, we can say that the dynamic approach to dealing with numbers 
outperforms discretisation. This should come as no surprise, as the dynamic approach 
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is more precise in choosing the optimal numeric cut points. It is surprising however to 
observe that in some cases, it is possible to choose parameters and set up the 
discretisation process such that it is superior. Unfortunately, it is not immediately 
clear when faced with a new database what choice of algorithm, representation and  
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coarseness produces the desired result. Essentially, it is a matter of some 
experimentation to come up with the right settings. Even then, there is no guarantee 
that the extra effort of pre-processing the data provides a substantial improvement 
over the dynamic approach. Of course, when working with a purely symbolic MRDM 
system, discretisation is mandatory. 

For discretisation, we recommend that the AggregatedEqualHeight procedure be 
tried first, as it has proven to give good results. It is worth the effort to consider 
EqualHeight as an alternative. The added value of the EqualWeight procedure over 
EqualHeight is negligible, and can therefore be ignored. 

Our experimentation shows that in general, the simple nominal representation 
commonly used in MRDM projects is sub-optimal. Moreover, this representation is 
rather sensitive to the selected number of bins. In most cases the cumulative binary 
representation is preferable. This representation should be applied with as many bins 
as is realistic, given space and time limitations. Only when time restrictions can be 
expected to have a detrimental effect on the search depth, should lower numbers be 
considered. 
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Abstract. We describe a methodology to assist scientists in quantifying the de-
gree of evidence in favor of a new proposed theory compared to a standard base-
line theory. The figure of merit is the log-likelihood ratio of the data given each
theory. The novelty of the proposed mechanism lies in the likelihood estimations;
the central idea is to adaptively allocate histogram bins that emphasize regions in
the variable space where there is a clear difference in the predictions made by the
two theories. We describe a software system that computes this figure of merit in
the context of particle physics, and describe two examples conducted at the Teva-
tron Ring at the Fermi National Accelerator Laboratory. Results show how two
proposed theories compare to the Standard Model and how the likelihood ratio
varies as a function of a physical parameter (e.g., by varying the particle mass).

1 Introduction

Common to many scientific fields is the problem of comparing two or more compet-
ing theories based on a set of actual observations. In particle physics, for example, the
behavior of Nature at small distance scales is currently well described by the Standard
Model. But compelling arguments suggest the presence of new phenomena at distance
scales now being experimentally probed, and there exists a long array of proposed ex-
tensions to the Standard Model.

The problem of assessing theories against observations can be solved in various
ways. Some previous work bearing an artificial intelligence flavor has attempted to use
observations to explain processes in both particle physics and astrophysics [4]. From
a statistical view, a common solution is to use a maximum-likelihood approach [1,2],
that selects the theory T maximizing P(D|T ) (i.e., the conditional probability of a set
of actual observationsD assuming T is true). Implicit to this methodology is the–often
false–assumption that the form of the distributions characterizing the set of competing
theories is known. In practice, a scientist suggests a new theory in the form of new
equations or new parameters (e.g., new suggested mass for an elementary particle). In
particle physics, a software is then used to simulate the response of the particle detector
if the new proposed theory T were true, resulting in a data file made of Monte Carlo
events from which one can estimate the true distribution characterizing T . At that point
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one can compare how close T matches the actual observations (stored in D) obtained
from real particle colliders.

To estimate the true distribution of a theory T , we take the Monte Carlo data and
follow a histogram approach [5]. We create a series of bins {bk} over the variable
space and attempt to predict the number of events expected in every bin bk if theory T
were true. The novelty of our approach lies in the adaptive mechanism behind this bin
allocation. Bins are selected to emphasize regions where the number of events predicted
by T is significantly different from those predictions generated by competing theories,
in a sense discovering regions in the variable space where a discrepancy among theories
is evident.

This paper is organized as follows. Section 2 provides background information and
notation. Section 3 provides a general description of the mechanism to compute like-
lihood ratios. Section 4 describes a solution to the problem of adaptive bin allocation.
Section 5 reports on the experimental analysis. Lastly, Section 6 gives a summary and
discusses future work.

2 Background Information and Notation

In modern particle accelerators, collisions of particles travelling at nearly the speed
of light produce debris that is captured by signals from roughly one million channels
of readout electronics. We call each collision an event. Substantial processing of the
recorded signals leads to an identification of the different objects (e.g., electrons (e±),
muons (μ±), taus (τ±), photons (γ), jets (j), b-jets (b), neutrinos (ν), etc.) that have
produced any particular cluster of energy in the detector. Each object is characterized
by roughly three variables, corresponding to the three components of the particle’s mo-
mentum. An event is represented as the composition of many objects, one for each
object detected out of the collision. These kinematic variables can be usefully thought
of as forming a variable space.

We store events recorded from real particle accelerators in a dataset D = {ei},
where each event e = (a1, a2, · · · , an) ∈ A1 × A2 × · · · × An is a variable vector
characterizing the objects identified on a particular collision. We assume numeric vari-
ables only (i.e., ai ∈ () and thatD consists of independently and identically distributed
(i.i.d.) events obtained according to a fixed but unknown joint probability distribution
in the variable space.

We assume two additional datasets, D̃n and D̃s, made of discrete Monte Carlo
events generated by a detector simulator designed to imitate the behavior of a real parti-
cle collider. The first dataset assumes the realization of a new proposed theory TN ; the
second dataset is generated under the assumption that the Standard Model TS is true.
Events follow the same representation on all three datasets.

3 Overview of Main Algorithm

In this section we provide a general description of our technique. To begin, assume a
physicist puts forth an extension to the Standard Model through a new theory TN . We
define our metric of interest as follows:
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L(TN ) = log10
P(D|TN )
P(D|TS)

(1)

where D is the set of actual observations obtained from real particle colliders. Metric
L can be conveniently thought of as units of evidence for or against theory TN . The
main challenge behind the computation of L lies in estimating the likelihoods P(D|·).
We explain each step next.

3.1 Partitioning Events into Final States

Each event (i.e., each particle collision) may result in the production of different ob-
jects, and thus it is appropriate to represent events differently. As an example, one class
of events may result in the production of an electron; other events may result in the pro-
duction of a muon. The first step consists of partitioning the set of events into subsets,
where each subset comprises events that produced the same type of objects. This parti-
tioning is orthogonal; each event is placed in one and only one subset, also called final
state. Let m be the number of final states; the partitioning is done on all three datasets:
D = {Di}m

i=1, D̃n = {D̃ni}m
i=1, and D̃s = {D̃si}m

i=1. Each particular set of subsets
{Di, D̃ni, D̃si} is represented using the same set of variables. Estimations obtained
from each set of subsets are later combined into a single figure (Section 3.3).

3.2 Computation of Binned Likelihoods

The second step consists of estimating the likelihoods P(D|·) adaptively by discovering
regions in the variable space where there is a clear difference in the number of Monte
Carlo event predictions made by TN and TS . Since we treat each subset of events (i.e.,
each final state) independently (Section 3.1), in this section we assume all calculations
refer to a single final state (i.e. a single set of subsets of events {Di, D̃ni,D̃si}).

We begin by putting aside for a moment the real-collision dataset Di. The discrete
Monte Carlo events predicted by TN and TS in datasets D̃ni and D̃si are used to con-
struct smooth probability density estimates Pi(e|TN) and Pi(e|TS). Each density esti-
mate assumes a mixture of Gaussian models:

Pi(e|T ) = PT
i (e) =

r∑
l=1

αl φ(e; μl, Σl) (2)

where r is the number of Gaussian models used to characterize the theory T under
consideration. The mixing proportions αl are such that

∑
l αl = 1, and φ(·) is a multi-

variate normal density function:

φ(e; μ, Σ) =
1

(2π)d/2|Σ|1/2 exp [−1
2
(e− μ)tΣ−1(x− μ)] (3)

where e and μ are d-component vectors, and |Σ| and Σ−1 are the determinant and
inverse of the covariance matrix.
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At this point we could follow the traditional approach to Maximum Likelihood es-
timation by using the real-collision dataset Di and the above probability density esti-
mates:

P(Di|T ) =
∏
j

Pi(ej |T ) =
∏
j

PT
i (ej) (4)

where T takes on TN or TS and the index j goes along the events in Di.
The densities Pi(e|T ) can in principle be used to compute an unbinned likelihood

ratio. But in practice, this ratio can suffer from systematic dependence on the details of
the smoothing procedure. Over-smoothed densities cause a bias in favor of distributions
with narrow Gaussians, while the use of under-smoothed densities cause undesired de-
pendence on small data irregularities. The calculation of a binned likelihood ratio in the
resulting discriminant reduces the dependence on the smoothing procedure, and has the
additional advantage that it can be used directly to highlight regions in the variable space
where predictions from the two competing theories TN and TS differ significantly. We
thus propose to follow a histogram technique [5] as follows.

Constructing a Binned Histogram

We begin by defining the following discriminant function:

D(e) =
Pi(e|TN)

Pi(e|TN ) + Pi(e|TS)
(5)

The discriminant function D takes on values between zero and unity, approaching zero
in regions in which the number of events predicted by the Standard Model TS greatly
exceeds the number of events predicted by the new proposed theory TN , and approach-
ing unity in regions in which the number of events predicted by TN greatly exceeds
the number of events predicted by TS . We employ function D for efficiency reasons: it
captures how the predictions of TN and TS vary in a single dimension.

We use D to adaptively construct a binned histogram. We compute the value of the
discriminant D at the position of each Monte Carlo event predicted by TN (i.e., every
event contained in D̃n) and TS (i.e. every event contained in D̃s). The resulting distri-
butions in D are then divided into a set of bins that maximize an optimization function.
This is where our adaptive bin allocation strategy technique is invoked (explained in de-
tail in Section 4). The result is a set of bins that best differentiate the predictions made
by TN and TS . The output of the Adaptive-Bin-Allocation algorithm is an estimation
of the conditional probability P(Di|T ).

As an illustration, Figure 1 (left) shows the resulting binned histogram in D for a
real scenario with a final state e+e− (i.e., electron and positron). The Adaptive-Bin-
Allocation algorithm chooses to consider only two bins, placing a bin edge at D = 0.4.
Note events from TS (line L2) tend to lie at values for which D(e) is small, and events
from TN (line L3) tend to lie at values for which D(e) is large.

Figure 1 (right) shows how the two bins in the discriminant map back onto the
original variable space defined on me+e− (the invariant mass of the electron positron
pair), and positron pseudorapidity. The dark region corresponds to points e in the vari-
able space for which D(e) < 0.4; similarly the light region corresponds to points e
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Fig. 1. (Left) The optimally-binned histogram of the discriminant D for the predictions of TS

(line L2), TN (line L3), and real data D (line L1). (Right) The mapping of the bins in D back
into regions in the original variable space. The dark region corresponds to points e in the variable
space for which D(e) < θ; the light region corresponds to points e in the variable space for
which D(e) > θ (θ = 0.4).

for which D(e) > 0.4. Each region is assigned a binned probability (Section 4); all
probabilities are then combined into a final state probability P(Di|T ).

3.3 Combining Likelihoods and Incorporating Systematic Errors

Once we come up with an estimation of P(Di|T ), the next step consists of combining
all probabilities from individual final states into a single probability for the entire ex-
periment through the product P(D|T ) =

∏
i P(Di|T ), where T takes on TN or TS and

the index i goes along all final states. As a side note, a single particle accelerator has
normally several experiments running that can also be combined through such products.

Finally, systematic uncertainties are introduced into the analysis to reflect possible
imperfections in the modelling of the response of the physical detector. There are usu-
ally roughly one dozen sources of systematic error, ranging from possible systematic
bias in the measurements of particle energies to an uncertainty in the total amount of
data collected.

4 Adaptive Bin Allocation

We now explain in detail our approach to estimate the likelihood P(Di|T ) for a particu-
lar final state. To begin, assume we have already computed the value of the discriminant
D at the position of each Monte Carlo event predicted by TN and TS (Section 3.2), and
decided on a particular form of binning that partitions D into a set of bins {bk}. Let
μk|T be the number of events expected in bin k if theory T is true1. Often in the phys-
ical sciences the distribution of counts in each bin is Poisson; this is assumed in what
follows. The probability of observing λk events in a particular bin k is defined as:

1 Recall T is either the new theory TN or the Standard Model TS .
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P(λk|T ) =
e−μk|T μk|T λk

λk!
(6)

Now, the probability of observing the real data Di assuming the correctness of T and
neglecting correlated uncertainties among the predictions of T in each bin, is simply:

P(Di|T ) =
∏
k

P(λk|T ) (7)

where the index k runs along the bins and λk is the number of events observed in the
real data Di within bin k.

The question we now pose is how should the bins be chosen? Many finely spaced
bins allow finer sampling of differences between TN and TS, but introduce a larger un-
certainty in the prediction within each bin (i.e., the difference in the events predicted
by TN and TS under finely spaced bin comes with low confidence levels). On the other
hand, a few coarsely spaced bins allow only coarse sampling of the distributions pre-
dicted by TN and TS , but the predictions within each bin are more robust. The question
at hand is not only how many bins to use, but also where to place their edges along the
discriminant D [3].

4.1 Searching the Space of Binnings

In selecting an optimal binning we focus our analysis on the two theories TN and TS

exclusively (choosing a set of optimal bins is independent of the real data used for
theory validation). Our goal is to produce a set of bins {bk} that maximize the difference
in predictions between the two theories. We start by defining an optimization function
over the space of binnings. We merit partitions that enhance the expected evidence in
favor of TN , E(TN ), if TN is correct, plus the expected evidence in favor of TS, E(TS),
if TS is correct. Given a particular set of bins, {bk}v

k=1, the proposed optimization
function is defined as follows:

O({bk}) = E(TN , {bk}) + E(TS , {bk}) (8)

The evidence for each theory is as follows:

E(TN , {bk}) =
∑
λ1

∑
λ2

· · ·
∑
λv

(∏
k

P(λk|TN)

)
× log10

(∏
k P(λk|TN )∏
k P(λk|TS)

)
(9)

and similarly for E(TS , {bk}). Each summation on the left varies over the range [0,∞].
The evidence for each theory has a straightforward interpretation. Recall that∏

k P(λk|T ) = P(Di|T ) and therefore each evidence E is the relative entropy of the
data likelihoods (if log10 is replaced with log2), averaged over all possible outcomes on
the number of real events observed on each bin. The two components in equation 8 are
necessary because relative entropy is not symmetric. The representation for O can be
simplified as follows:
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Algorithm 1: Adaptive-Bin-Allocation
Input: D, D̃ni, D̃si

Output: Set of bins {bk}
ALLOCATE-BINS(D,D̃ni,D̃si)
(1) Evaluate D at each discrete Monte Carlo event in D̃ni and D̃si.
(2) Estimate probability densities f(μk|T ) for T = TN and T = TS .
(3) Initialize set of bins {b0}, where b0 covers the entire domain of D.
(4) repeat
(5) Search for a cut point c over D that maximizes function O.
(6) Replace the bin bk where c falls with the two corresponding new bins.
(7) until The value o∗ maximizing O(·) is such that o∗ < ε
(8) end
(9) return {bk}

Fig. 2. Steps to generate a set of bins that maximize the distance between the events predicted by
theory TN and theory TS

O({bk}) =
∑

k

∑
λk

(P(λk|TN )− P(λk|TS))× (log10 P(λk|TN)− log10 P(λk|TS)) ,

(10)
In practice one cannot evaluate O by trying all possible combinations in the number of
real events observed on each bin. Instead we estimate the expected number of events in
bin k if theory T is true, μk|T , and consider ±s standard deviations (s is user-defined)
around that expectation, which can be quickly evaluated with arbitrary accuracy by
explicitly computing the sum for those bins with expectation μk|T ≤ 25 and using a
gaussian approximation for those bins with expectation μk|T > 25.

Although in principle maximizing O requires optimizing the positions of all bin
edges simultaneously, in practice it is convenient to choose the bin edges sequentially.
Starting with a single bin encompassing all points, this bin is split into two bins at a
location chosen to maximizeO. At the next iteration, a new split is made that improves
O. The algorithm continues iteratively until further division results in negligible or
negative change in O. Figure 2 (Algo. 1) illustrates the mechanism behind the binning
technique. The complexity of the algorithm is linear in the size of the input space (i.e.,
in the size of the two datasets D̃ni and D̃si).

4.2 Example with Gaussians of Varying Width

To illustrate the mechanism behind the bin-allocation mechanism, assume a scenario
with two Gaussian distributions of different widths over a variable x. Figure 3(left)
shows the true (but unknown) distributions f1(x) and f2(x), where
fi(x) = n√

2πσi
e(−(x−μ)2/2σi

2) with i = {1, 2} and parameter values n = 100, μ = 25,
σ1 = 5, and σ2 = 8. The units on the vertical axis are the number of events expected in
the data per unit x. We used one thousand points randomly drawn from f1(x) and from
f2(x). These points are shown in the histogram in Fig. 3(right), in bins of unit width in
x. The algorithm proceeds to find edges sequentially before halting, achieving a final
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Fig. 3. (Left) Two Gaussian distributions, f1 and f2, with same mean but different variance.
(Right) The bin-allocation mechanism identifies those regions where f1 and f2 cross.

figure of merit. The resulting bins are concentrated in the regions x ≈ 20 and x ≈ 30,
where f1(x) and f2(x) cross.

5 Experiments

We describe two examples conducted at the Tevatron ring at the Fermi National Accel-
erator Laboratory in Chicago, Illinois. The accelerator collides protons and anti-protons
at center of mass energies of 1960 GeV (i.e., giga electron volts). A typical real-collision
dataset of this collider is made of about 100 thousand events.

We divide each of the Monte Carlo data sets D̃n, and D̃s into three equal-size sub-
sets. The first subset is used to compute the probability densities Pi(e|TN ), Pi(e|TS)
(Section 3.2); the second subset is used to run the adaptive bin-allocation mechanism
(Section 4); the last subset is used to estimate the figure of merit L(TN ) =
log10

P(D|TN )
P(D|TS)

(Section 3). Each experiment produces several hundreds of final states.

The running time for each experiment was approximately one hour on a Linux machine
with a Pentium 3 processor and 1 GB of memory.

Searching for Leptoquark Pair Production. The first experiment is motivated by a
search for leptoquark pair production as a function of assumed leptoquark mass. We show
how a theory that advocates leptoquarks with small masses –that if true would result in
an abundance of these particles compared to their heavier counterparts– is actually dis-
favored by real data. Figure 4 (left) shows the log likelihood ratio L(TN ) (equation 1)
for different leptoquark masses. Units on the horizontal axis are GeV. The new proposed
theory is disfavored by the data for small mass values, but becomes identical to the Stan-
dard Model for large mass values. Figure 4 (second left) shows the posterior distribution
p(MLQ|D) obtained from a flat prior and the likelihood on the left.

Searching for a Heavy Z ′ Particle. The second experiment is similar in spirit to the
previous one. Figure 4(third from left) shows a search for a heavy Z ′ as a function of
assumed Z ′ mass. Z ′s with small masses, which would be more copiously produced in
the Tevatron than their heavier counterparts, are disfavored by the data. The posterior
probability p(mZ′ |D) flattens out beyond mZ′ ≈ 250 GeV (Figure 4, right), indicating
that the data is insufficiently sensitive to provide evidence for or against Z ′s at this mass.
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Fig. 4. (left) The log likelihood ratio L(TN) (equation 1) for different leptoquark masses. (second
left) The posterior distribution p(MLQ|D) obtained from a flat prior and the likelihood on the
left. (third left) The log likelihood ratio for different Z′ masses. (right) The posterior probability
p(mZ′ |D) flattens out beyond mZ′ ≈ 250 GeV. Units on the horizontal axis are GeV.

6 Conclusions and Future Work

This paper describes an approach to quantify the degree of evidence in favor of a new
proposed theory compared to a standard baseline theory. The mechanism adaptively
allocates histogram bins that emphasize regions in the variable space where there is a
clear difference in the predictions made by the two theories. The proposed mechanism
carries two important benefits: 1) it simplifies substantially the current time needed to
assess the value of new theories, and 2) it can be used to assess a family of theories by
varying a particular parameter of interest (e.g., particle mass).

We expect the procedure outlined here to have widespread application. The calcu-
lation of likelihood ratios is common practice in the physical and social sciences; the
main algorithm can be easily adapted to problems stemming from other scientific fields.
One barrier lies in generating Monte Carlo data to model a theory distribution. Parti-
cle physicists have invested huge amounts of effort in producing a detector simulator
designed to imitate the behavior of real particle colliders.
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Abstract. Naive Bayes has been an effective and important classifier
in the text categorization domain despite violations of its underlying as-
sumptions. Although quite accurate, it tends to provide poor estimates
of the posterior class probabilities, which hampers its application in the
cost-sensitive context. The apparent high confidence with which certain
errors are made is particularly problematic when misclassification costs
are highly skewed, since conservative setting of the decision threshold
may greatly decrease the classifier utility. We propose an extension of
the Naive Bayes algorithm aiming to discount the confidence with which
errors are made. The approach is based on measuring the amount of
change to feature distribution necessary to reverse the initial classifier
decision and can be implemented efficiently without over-complicating
the process of Naive Bayes induction. In experiments with three bench-
mark document collections, the decision-reversal Naive Bayes is demon-
strated to substantially improve over the popular multinomial version
of the Naive Bayes algorithm, in some cases performing more than 40%
better.

1 Introduction

In certain binary classification problems one is interested in very high preci-
sion or very high recall with respect to the target class, especially if the cost of
false-positive or false negative misclassifications is disproportionally high. Even
though probabilistic cost-sensitive classification frameworks have been proposed,
the complicating factor of their successful deployment is uncertainty of precise
misclassification costs and the fact that estimation of posterior class probabilities
is often inaccurate, especially when dealing with problems involving large num-
bers of attributes, such as text. As a result, the region within which a classifier
can actually benefit the target application may be quite narrow.

In this work, we focus on the problem of extending the utility of the Naive
Bayes classifier for problems involving extremely asymmetric misclassification
costs. Concentrating on text applications we discuss why certain misclassification
errors may be committed with an apparent high confidence and propose an
effective method of adjusting the output of Naive Bayes at classification time so
as to decrease its overconfidence.

A. Jorge et al. (Eds.): PKDD 2005, LNAI 3721, pp. 561–568, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



562 A. Ko�lcz and A. Chowdhury

2 Classification with Extremely Asymmetric
Misclassification Costs

Let us assume a two-class problem {(x, y) : y ∈ {0, 1} and x ∈ X}, where y = 1
designates that x belongs to class C (target) and y = 0 designates that x ∈ C.
Assuming no costs associated with making the correct decision, the expected
misclassification cost of a classifier F over input domain X is defined as

cost (F ) = c01P (F = 0 ∧ x ∈ C) + c10P (F = 1 ∧ x ∈ C)

where c01 is the cost of misclassifying the target as non-target and c10 is the cost
of making the opposite mistake. If accurate estimates of P (C|x) are available,
the optimum class assignment for input x results from minimizing the expected
loss. In problems with highly asymmetric misclassification costs, assigning x to
the more expensive class may be preferable even if its posterior probability is
quite low. If c10 ) c01, the application dictates very low tolerance for false
positives and an acceptable classifier needs to be close to 100% correct when
assigning objects to class C. Conversely, if c01 ) c10 then false-negatives are
highly penalized and an acceptable classifier needs to be characterized by nearly
perfect recall in detecting objects belonging to C. Perfect precision in detecting
C is equivalent to perfect recall in detecting C, but while perfect recall is always
possible, perfect precision may not be, especially if the target class is also the
one with least examples. In this work we will focus on the problem on achieving
near-perfect recall with respect to the target class.

3 Sources of Overconfidence in Naive Bayes Classification

3.1 The Multinomial Model

Naive Bayes (NB) is one of the most widely used classifiers, especially in the text
domain where it tends to perform quite well, despite the fact that many of its
model assumptions are often violated. Several variants of the classifier have been
proposed in the literature [1] but in applications involving text, the multinomial
model has been found to perform particularly well [2].

Naive Bayesian classifiers impose the assumption of class conditional feature
independence which, although rarely valid, has proved to be of surprisingly lit-
tle significance from the standpoint of classification accuracy [3]. Given input
x, NB computes the posterior probability of class C using the Bayes formula
P (C|x) = P (C) P (x|C)

P (x) . Input x is assigned to the class with the highest ex-
pected misclassification cost which, assuming feature independence and when
only two classes are present, is determined by the log-odds score:

score (x) = const +
∑

i

log
P (xi|C)
P
(
xi|C

) (1)
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3.2 Overconfidence in Decision Making

It has been recognized that Naive Bayes, while being often surprisingly accurate
as a classifier (in terms of the 0/1 loss), tends to be poor when it comes to
assessing the confidence of its decisions [4][3]. In particular, the class-probability
estimates of NB tend to be clustered near the extreme values of 0 and 1. As shown
in [5], this is particularly true in the text domain. When classifying documents
with many features, their correlations may compound each other, thus leading to
exponential growth in the odds. This effect can intensify in areas only sparsely
populated by the training data. Since the log odds in (1) depend on the ratio
of class-conditional probabilities, they can be quite high even if the values of
the probabilities themselves are very low. But probability estimates for features
that were seen relatively rarely in the training data are likely to be more “noisy”
than the ones obtained for features with substantial presence. This may result
in NB outcomes that appear quite confident even if the neighborhood the test
input was only weakly represented in the training set.

Figure 1 illustrates the scatter of NB scores for erroneously classified doc-
uments vs. the maximum document frequency (DF) for features contained by
these documents. The maximum DF of features in x provides a rough measure
of how well the region of containing x was represented by the training data.
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Fig. 1. Scores of Naive Bayes misclassifiications (at default decision threshold) vs.
maximum training-set document frequency for features belonging to the misclassified
documents (for the collections of: Reuters-21578, 20-Newsgroups and TREC-AP). Mis-
classifications of documents falling into sparsely populated regions are likely to be made
with higher confidence (signified by high absolute score values) than those made for
documents for which the training data contained much of related content.

Thus scarcity by itself appears to be a good indicator of overconfidence,
although in practice it may be interacting with other factors, such as local class
imbalance and document length (e.g., a large number of “noisy” features).

In [6] it was argued that the trust put in the posterior probability estimates
of a classifier should decrease with a suitably defined distance between the test
input and the training data. In [7] it was suggested that for learners capable
of fast incremental learning, the reliability of their posterior estimates can be
improved within the framework of transductive learning. Given that a classifier
assigns x to class C, it is assumed that a confident decision is one that is little
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affected by adding x to the training pool of C. With augmented training data,
an updated estimate of P (C|x) is obtained, where its difference to the original
is used to gauge the sensitivity of the classifier. The techniques of [6] and [7]
both rely on modulating the posterior probability estimate of the base classifier
with a normalized reliability indicator, which is interpreted as probability, i.e.,

P̂ (C|x) = P (C|x) ·R (C|x) (2)

where R (C|x) monotonically approaches 1 as the reliability increases.

4 Changing Naive Bayes’ Mind: A New Reliability
Measure

The log-odds score of NB has the natural geometric interpretation of the projec-
tion of the input onto the weight vector normal to the decision hyperplane. On
the other hand, the reliability metrics of [6] and [7], while providing a measure
of classifier uncertainty, do not offer a similar interpretation of a margin within
which a particular classification is made. We propose a novel reliability met-
ric for Naive Bayes, based on the concept of gauging the difficulty of reversing
the classification outcome of NB for a given input. Our motivation comes from
applying Naive Bayes to on-line learning. Unlike discriminative models such as
decision trees, generative learners such as NB can be expected to be stable under
small adjustments of the training data. Thus, in order for NB to correct itself, a
more extensive change to the distribution of the training data may be needed.

To provide a concrete example, let us consider applying a NB classifier to
the problem of spam detection, where a user is given a way to correct classifier
mistakes by adding a particular email message to the appropriate pool of training
data. Take a scenario where arrival of a spam message finds prompts a corrective
action. If an “identical” spam appears again the user responds with another
training event, and so on until the classifier correctly identifies the message as
spam. In this scenario, the confidence of NB in its initial (mistaken) decision
can be linked to the number of training events necessary to correct its outcome,
which in turn translates to the amount of change to the training distribution
needed for decision reversal. Intuitively, decisions that are confident will require
more extensive adjustment of the distribution than less confident ones.

Thus, given that the classifier declares that x belongs to class C, we want
to ask how much training with x would it take to reverse its opinion. Since
the classifier outcome (1) is determined by its score and assuming the decision
threshold of 0 and that the perturbation of the training data does not alter class
priors, in order to achieve a decision reversal, one needs to satisfy

log P (x|C)− log P
(
x|C) = log P̃

(
x|C)− log P̃ (x|C)− score (3)

where score is the original output score, while P̃ (x|C) and P̃
(
x|C) denote

estimates over the altered training data.
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A question arises as how best to measure the effected change to the training
distribution. Here we consider the Kullback-Leibler (KL) divergence, i.e.,

rdist(x) = KL
(
P
(
x|C) , P̃ (x|C)) =

∑
xi

P
(
xi|C

)
log

P
(
xi|C

)
P̃
(
xi|C

) (4)

Once the KL divergence (4) is computed, a straightforward combination method
is to scale (see eq. (2)) the original posterior estimate (for the predicted class)
with a suitably defined function of the KL divergence, similarly to the approaches
taken in [6] and [7]. Here the difficulty lies in an appropriate choice of the nor-
malization function R (C|x) : rdist(x) → [0, 1], but an additional problem with
such an approach in the context of Naive Bayes is that the original posterior
estimates produced by the NB are already very close to 1 or very close to 0.
Thus the modulation of (4) essentially boils down to substituting R (C|x) for
P (C|x)1. Given that in the case of extreme misclassification costs one is pri-
marily interested in the narrow region where posterior probabilities are close
to 1 or 0, the substitution effect may be undesirable since one loses the original
degree-of-confidence information. Therefore, we consider directly modulating the
raw log-odds score returned by NB, which typically have a much larger dynamic
range: ̂score (x) = score (x) · rdist (x) (5)

Other score transformations could be considered. In this work we will also use a
function KL distance in the form of:

̂score (x) = score (x) · exp (−γ · rdist (x)) (6)

as an alternative to (5).

5 Experimental Setup

In the experiments described below we compare classifiers at the point where
they achieve 100% test-set recall for the target class. At this operating setting,
a classifier’s utility is measured by its specificity (true-negative rate), i.e., the
fraction of non-target documents that are classified correctly. Arguably, this
measure is very sensitive to class noise and in practice one would have to account
for such a possibility, e.g., via interactive or automatic data cleansing procedures.

We compared the proposed decision-reversal extension to Naive Bayes (la-
beled as NB-KL) with the following:

– NB: Unmodified multinomial Naive Bayes (baseline).
– NB-Trans: Kukar’s transductive reliability estimator [7] (this is the method

closest in spirit to the one proposed here).

1 In fact [7] does it directly by substituting the posterior estimate of P (C|x) with
prec · R(C|x), where prec refers to the overall precision of the classifier.
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Table 1. Steps involved in the decision-reversal Naive Bayes. The most computation-
ally expensive part is step 2, in which one needs to estimate how many corrective
events need to take place before the initial decision of the classifier is changed. A naive
implementation would keep on generating such events and updating the model, but
since in some cases the number of events may be on the order of hundreds or more,
this would add significantly to the evaluation time. Instead, we treat the score as a
function of the corrective event count a and identify the zero-crossing of score(alpha).
In our implementation of the Newton method, usually only 1–7 iterations are needed.

Algorithm
1. Classify input x using a trained NB model.

2. Estimate the multiplicity α with which x needs to be added to
the opposite class to achieve decision reversal.

3. Measure the KL divergence (eq.(4)) between the original
and the perturbed distribution of features for the class
opposite to the one originally predicted.

4. Modulate the original score (eq.(5) or (6)).

Multi-class problems were treated as a series of two-class tasks, with one class
serving as the target and the remaining categories ones as the anti-target, i.e.,
one-against-the-rest. The results obtained by each classifier and for each dataset
are reported by macro-averaging the specificity obtained in the constituent two-
class tasks.

5.1 Data Sets

We chose three document collections that have often been extensively used in
text categorization literature. In each case the collection was split (in the stan-
dard way for these collections) into a training set and a test set, which were
defined as follows:

– Reuters-21578 (101 categories, 10,724 documents): We used the standard mod apte
split of the data.

– 20 Newsgroups (20 categories, 19,997 documents): A random sample of 2/3 of the
dataset was chosen for training with the remaining documents used for testing.

– TREC-AP (20 categories, 209,783 documents): The training/test split described
in [?] was used.

Features were extracted by removing markup and punctuation, breaking the
documents on whitespace, and converting all characters to lowercase. No stop-
word removal or stemming was performed. In a modification of the standard bag
of words representation, in-document frequencies of terms were ignored.
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Table 2. Macro-averaged classification performance (non-target specificity) captured
at the point of perfect target recall. The decision-reversal variant of Naive Bayes con-
sistently outperformed the baseline, while the transductive method consistently under-
perfomed in all three cases.

Dataset NB NB-Trans NB-KL Δ(NB-KL−NB)
NB [%]

Reuters-21578 0.4743 0.3070 0.6693 41
20 Newsgroups 0.4033 0.3297 0.5379 33
TREC-AP 0.5004 0.1871 0.5954 19

In all two-class experiments, the feature set was reduced to the top 5, 000 at-
tributes with the highest values of Mutual Information (MI) between the feature
variable and the class variable estimated over the training set.

6 Results

Table 2 shows the results. For all three datasets, NB-KL provided a substantial
improvement over the baseline NB. The transductive method [7] generally under-
performed the baseline NB. With hindsight, this is perhaps not too surprising.
To achieve high specificity at 100% target class recall, one needs to discount
errors for the target class where classification is made with an apparently high
confidence. In such cases, the probability of a test document belonging to the
target class is estimated by NB to be almost one. The transductive step will
increase the probability even further, but this is likely to produce only a very
small difference between the original and the final class-probability distributions.
Thus the original decision made by NB proves in such cases to be quite stable.
It appears therefore that the utility of the transductive method may be highest
in cases where the apparent confidence of NB decisions is low.
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Fig. 2. at the point of perfect target recall. The results for best parameter settings in
(6) are compared to the baseline NB, NB-Trans and the default settings of NB-KL. In
the case of Reuters-21578 and TREC-AP exponential discounting results in substantial
increase in specificity. For 20-Newsgroups, however, the original formulation of NB-KL
works better.
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To examine the effect of an alternative form of score transformation, we evalu-
ated the performance of NB-KL using the exponential formula (6) with the choice
if γ in [0.001, 50]. The best optimization results obtained for NB-KL parametrized
according to (6) are compared in Figure 2 with the baseline NB, NB-Trans and
the default results for NB-KL. In some cases parameter optimization can substan-
tially improve the performance of NB-KL. The parametric formula (6) was un-
able however to outperform the regular NB-KL in the case of the 20-Newsgroups
dataset. The optimum way of incorporating the decision-reversal information
may thus need to be investigated further.

7 Conclusions

The decision-reversal NB proved to be effective in increasing Naive Bayes speci-
ficity and countering its native overconfidence. Although the original form of
the algorithm performed quite well, further improvements were achieved (in 2
out of 3 datasets) by considering an alternative exponential form of discounting
the perturbation distance. The dependence of the effectiveness of incorporating
the decision reversal information on the form of the discounting function will be
the subject of future work. We are also intending to investigate the effects of
combining the proposed method of curbing the overconfidence with techniques
motivated by explicit reduction of feature interdependence (e.g., as realized by
feature selection).
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Clustering and Prediction of Mobile User
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Abstract. Location-awareness and prediction of future locations is an
important problem in pervasive and mobile computing. In cellular sys-
tems (e.g., GSM) the serving cell is easily available as an indication of the
user location, without any additional hardware or network services. With
this location data and other context variables we can determine places
that are important to the user, such as work and home. We devise online
algorithms that learn routes between important locations and predict
the next location when the user is moving. We incrementally build clus-
ters of cell sequences to represent physical routes. Predictions are based
on destination probabilities derived from these clusters. Other context
variables such as the current time can be integrated into the model. We
evaluate the model with real location data, and show that it achieves
good prediction accuracy with relatively little memory, making the algo-
rithms suitable for online use in mobile environments.

1 Introduction

Location awareness has a large role in ubiquitous computing. Several applications
have been proposed that rely on knowing or predicting the location of the user. In
this paper we present an algorithm for predicting user movement with respect
to cell-based location data. Such location data consists of a sequence of cells,
with no regard to physical locations or topology. With this data the task is to
learn, on user’s personal mobile device, places that are personally important to
that user, and to make predictions about the place the user is moving to. Such
predictions are useful in, e.g., a presence service, which makes the whereabouts
of the user available to other people. Many other proactive applications, such as
early-reminder systems [1,2] and traffic planning [3] become possible if we can
anticipate the future location of the user.

This paper works with the conceptual model presented in Laasonen et al.
[4]. The contribution of the present paper is a novel algorithm for predicting
routes. The algorithm analyzes whole paths using clustering techniques, instead
of relying on the short path fragments of the earlier paper. This both conserves
memory and offers better prediction accuracy. The presented approach also re-
spects users’ privacy by doing all processing on the mobile phone.

A. Jorge et al. (Eds.): PKDD 2005, LNAI 3721, pp. 569–576, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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Most previous work on determining user locations and routes uses GPS co-
ordinate data [1,2,3]. However, GPS can be problematic in urban areas due
to signal shadowing. GPS receivers are also nowhere as ubiquitous as mobile
phones. Ashbrook and Starner [1] cluster coordinate data to infer locations, but
movement times can be used as well [5]. Alternative methods of prediction of
future locations include first or second-order Markov models [1], and Bayes clas-
sifiers [2,6].

Our data takes the form of a sequence of cell identifiers. An interesting ap-
proach to clustering sequences is with probabilistic suffix trees [7]. Such methods
unfortunately require too much memory and processing capacity to be useful in
mobile phones.

2 Problem Setting

A GSM phone communicates over the air with a base station. In any given
location there may be several base stations whose radio signal reaches the phone.
The phone chooses one of them, and switches transparently over to a new base
station as needed. A cell is the area covered by a single base station; when we
say the phone is in some cell, we mean that the phone is in the area of the
corresponding base station.

In this paper we work with GSM cell data, for a number of reasons. Mobile
phones are ubiquitous and cellular networks are present almost everywhere. Since
no operators or external service infrastructure are involved, data gathering is easy
and inexpensive. On the other hand, cells may overlap, they vary widely in size,
and signal shadowing can make cells appear non-contiguous. Finally, a certain
physical location does not have one-to-one correspondence to cells because of
radio interference, phone network load and various other issues.

The data consists of cell transitions. At the lowest level each cell is represented
by an opaque numeric identifier (e.g., “Sonera.3286.15754”). Our location data
is a time-stamped sequence of such identifiers. We can visualize the data by a
graph where the vertices are the observed cells, and there is an edge (ci, cj) if
(and only if) a transition occurred from cell ci to cj. A fragment of such a graph
is shown in Fig. 1. This graph shows both the author’s daily commute from
home (“Vuosaari”) to work and trips from home to downtown Helsinki. It does
not include transitions in the opposite direction. (For illustrative purposes, some
of the cells have been named.)

From our earlier work we will be building on the concepts of cell clusters and
bases. If overlapping cells have approximately equal signal strength, the phone
may hop between cells even when the user is not moving. This oscillation is
handled by clustering cells with our earlier method [4]. Intuitively, a cell cluster
is a group of nearby cells where most transitions happen within the cluster.

A location is either a cell cluster or a single cell. Locations are identifiable in
the sense that we can reliably detect the user entering and leaving them. Finally,
locations that are important to the user are called bases. A location is considered
to be a base when the time spent there as a portion of the total time the software
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Fig. 1. A partial cell transition graph for routes from “Vuosaari” to either “Work” or
“Downtown.”Unlabeled dots represent cells that have not been named. The data comes
from 69 separate trips.

has been run goes above a certain threshold. The set of bases can change over
time, as new places become important or old ones are visited less often. The
problem of determining bases is covered in [4]; in this paper we work with a set
of known bases. In an actual implementation, learning bases and routes occurs
in parallel.

We can now define the problem of route prediction as follows: when the user
is not in a base, what is the most probable next base? A secondary task is to give
some useful characterization of the direction of movement. Furthermore, because
the prediction software is run on a mobile phone, there will be tight constraints
on the amount of memory and processing power that is available.

Perhaps the most important consequence of using cell-based location data
is that we lack the physical topology of the cell network. This includes both
the correspondence between cells and physical locations, and all indications of
direction. The approach of the present paper is to look at entire routes between
two bases, and attempt to learn all different physical routes as strings of cell
identifiers. Whenever the user completes a route r between bases a and b, we
determine if an existing route between a and b is similar to r. If such a route
is found, the two routes are clustered together. Figure 2 shows the effect of
applying such route clustering to the data of Fig. 1. There are five different
physical routes; the two most frequently traveled are shown in the figure. The
graph is obviously much simpler, and furthermore corresponds quite closely to
the routes actually traveled in the real world.

Using entire paths makes it also possible to detect fork points, which are
places where overlapping paths diverge, such as “Sörnäinen” in Fig. 2. When
there are several good similarity matches, we can offer a fork prediction as an
insurance against the actual base prediction going amiss. From the point of a
presence service, a high-confidence prediction of the fork is probably more useful
than several low-confidence base predictions.
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Fig. 2. The most frequent composite routes from “Vuosaari” to “Work” (thin line) or
to “Downtown” (dashed line). Edges appearing on both routes are shown with a heavy
line. Unnamed cells have numeric identifiers only.

3 Prediction Algorithm

The goal is to predict the next actual base b∗, given that the user’s last base
was a and since then we have seen a cell sequence c1, . . . , ck. When the user is
not in any base, at each cell transition we make a prediction, which is a set of
pairs (b, p), where b is a possible future base and p the probability of the user
going there. When the user arrives at base b∗, the entire route a, c1, . . . , cn, b∗ is
used to make better subsequent predictions.

3.1 Route Clustering

A route is simply a string of cell identifiers. For each pair (a, b) of bases we
maintain a set of routes Rab. Instead of storing in Rab all cell paths between
a and b, we aim to keep only “typical” paths. Not only does this decrease the
memory requirements substantially, but it also proves crucial in estimating the
relevance of a given route.

A new route p = a, c1, . . . , cn, b is added to the database when the user arrives
at base b, using incremental clustering (Algorithm 1). First p is processed so
that only unique cells remain: nearby duplicate cells are collapsed into one. Next
(line 3) we determine the similarity of the new path against the existing routes
in Rab. If p is similar enough with some route r∗, it is merged with it; otherwise
we add p as a new distinct route between a and b.

The similarity function sim(r, p) tries to approximate the scheme described by
Mannila and Moen [8], who use edit distance coupled with item-level similarity.
Our version is a heuristic that resembles the Jaccard measure |r∩p| / |r∪p|, but
enforces ordering for the items. That is, strings r and p are considered equivalent
if every element in p appears in r in the same order. Elements in r but not in p
are ignored. This asymmetry derives from the fact that a route cluster typically
contains more cells than there are in any actual instance of that route. (Algorithm
for computing sim(r, p) is omitted due to space constraints.)

The purpose of merging two paths is to produce a composite path that retains
the features of both (similar) participants. We first find the optimal alignment
of the two path strings (line 4). Computing the alignment of two strings inserts
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Add-Route(p)
Input : Cell sequence p = a, c1, . . . , cn, b, routes Rab between a and b

1 Collapse nearby duplicate cells in p
2 r∗ = argmax

{
sim(r, p)

∣∣ r ∈ Rab

}
3 if sim(r∗, p) > σ
4 then r1, p1 ← align(r∗, p) � Merge p with r∗ (see text)
5 X ← set of letters in r1 ∪ p1

6 for each x ∈ X do v(x) ← average position of x in r1 and p1

7 Replace r∗ with an ordering of all xi ∈ X such that v(xi) ≤ v(xi+1)
8 else Rab ← Rab ∪ {p} � Add a new distinct route

Algorithm 1. Clustering routes

empty elements (“spaces”) into both strings so that identical elements will ap-
pear, as much as possible, in the same position [9]. For example, the alignment
of “timers”and“tries”yields “t�imers”and“tri�e�s”. Finally, the merging is
completed by ordering all cell identifiers in ascending order by average position
in the aligned strings (lines 5–7).

3.2 Making Predictions

Predictions are computed by Algorithm 2, using the previous base a and a his-
tory h of m most recently encountered cells. We start by finding S, a set of
candidate bases. If b ∈ S, a trip a → b has been observed. For each b, line 3
computes the similarity of the history h against all possible routes leading to b. A
simple prediction system would stop here, and predict that the next base b is the
one that maximizes sb. However, several routes can have nearly equal similarities
and still lead to different destinations.

Predict-Base(h, a, A,C, R)
Input : Recent history h, previous base a, context A, context model C, routes R

1 S = { b | Rab �= ∅ } � Set of candidate bases
2 for each b ∈ S
3 do sb = max

{
sim(r, h)

∣∣ r ∈ Rab

}
4 Given a and b, find past context data Cab ∈ C
5 Compute pb = sbP (b | a, A, Cab) � See text
6 b = argmaxb∈S pb

7 return (b, pb/
∑

k∈S pk) � Return the prediction and its probability

Algorithm 2. Prediction of the next base b

We can choose between destinations by conditioning on additional context
variables, such as time of day, weekday and route frequency. We maintain a
context database C that stores information from past instances of trips between
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pairs of bases. In the most straightforward model we set Cab =
〈
n, Td(a), Tw(a)

〉
;

this means that for each base pair (a, b) we store n, the number of trips, followed
by Td(a) and Tw(a), distributions of time of day and weekday when the trip
started (user left base a). In this case the current context A in algorithm 2 is
simply the current time t = (td, tw). We have

P (b | a, t, Cab) ∝ P (b, t | a, Cab) = P (t | a, b, Cab)P (b | a, Cab)
∝ P (t | a, b, Cab) · n,

by the definition of conditional probability and the chain rule.
The remaining task is to find the probability of being on the given route

at time t. A simple assumption is that the time of day td of any given route
follows a normal distribution, so we need to store in Td(a) the sum and the
square sum of the previous event times. This allows for later reconstruction of
the distribution. For the weekday tw the normality assumption works less well,
so the frequency is used instead. Since td and tw are not really independent,
we maintain a separate normal distribution for each weekday, and in the end
compute the joint probability as P (tw, td) = P (tw)P (td|tw).

4 Evaluation

The algorithms were evaluated on the real dataset presented in [4]. The data was
collected during six months in 2003 with an early version of the ContextPhone
software [10] running on a Nokia 7650 phone. The movements of three volunteers
were tracked both at work and at leisure. The movement patterns range from
very simple (daily commute, weekend and holiday trips) to moderately complex.

The baseline algorithm is the fragment-based method [4], which was tested
with several window sizes k. Since the algorithms are intended for small devices,
their memory consumption is also investigated. To simplify the evaluation, both
algorithms were tested with offline-given bases, i.e., we did not try to learn both
bases and routes at the same time. The algorithms received cell transition events
one at a time, supplying a ranked set of predictions for the next base. The top-
ranked prediction was then compared to the actual base. Following [4, sect. 4.4],
we exclude cases when the user is apparently not moving (stationary).

Figure 3 shows how the different methods compare. Each graph shows how
the various prediction algorithms performed. The F2 and F4 are the fragment
method with a window size of 2 and 4, respectively. The symbol C denotes the
route prediction algorithm described in Section 3.2. The model C′ additionally
includes all intermediate cells and their time distributions. Finally, the bar C3
shows what happens when the algorithm is allowed to learn each route for the
first two times it was seen: prediction results for these instances are not included
in the score.

A prediction is correct if it matches the actual next base and the probability
of the given prediction is larger than u = 0.3. A low correct prediction is one
that is correct, but probability is less than u, or the second-best prediction is
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Fig. 3. Route recognition accuracy. Methods F2 and F4 are fragment-based. Method
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correct with nearly equal probability (e.g., p1 = 0.55 and p2 = 0.44), or the fork
point was predicted correctly. A low fail prediction was wrong, but with a low
probability value. Finally, a fail -type prediction was a high-confidence prediction
that went wrong, or no prediction at all.

For all persons, the route-based method yielded more predictions that
succeeded. Taking into account also the low-confidence correct predictions, how-
ever, we see more moderate improvements. However, the results so far do not allow
for learning. As the last (C3) case of Fig. 3 shows, the prediction quality improves
if the algorithm is given time to learn each route. The score is tallied when the pair
(a, b) has been seen at least q = 3 times. As Fig. 4(a) shows, accuracy improves
rapidly with increasing q. The conclusion is that the route-based method is a clear
improvement on the fragment method when it comes to prediction accuracy.

Although models C and C′ are very similar in their prediction accuracy, the
former uses much less memory, as shown in Fig. 4(b). But even model C′ con-
sumes less memory than any fragment-based method. For the latter, memory
use consists of the fragments themselves and the associated storage for context
predictors. The route-based method needs less predictor memory, preferring com-
pact route descriptions.
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Because the proposed algorithm is a combination of two separate predictors,
it is fairly oblivious to parameter changes. The tests were run with σ = 0.7
and m = 12, which provide a good compromise between quality and efficient use
of memory.

5 Conclusion

We have presented a method for predicting user movement from cellular data
gathered with user’s own mobile phone. The algorithm tackles the problem by
attempting to recognize physical routes traveled by the user. The idea is that
distinct physical routes correspond to clusters of cell sequences. Later predictions
are based on matching the current cell history against known routes. The current
time provides additional context to aid prediction. Evaluation of the method with
real dataset shows that the method is able to learn and predict routes with good
accuracy, while still consuming little memory.
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Abstract. We consider a problem of elastic matching of time series. We
propose an algorithm that automatically determines a subsequence b′ of
a target time series b that best matches a query series a. In the proposed
algorithm we map the problem of the best matching subsequence to the
problem of a cheapest path in a DAG (directed acyclic graph). Our ex-
perimental results demonstrate that the proposed algorithm outperforms
the commonly used Dynamic Time Warping in retrieval accuracy.

1 Motivation

For many datasets we can easily and accurately extract the beginning and ending
of patterns of interest. However in some domains it is non-trivial to define the ex-
act beginning and ending of a pattern within a longer sequence. This is a problem
because if the endpoints are incorrectly specified they can swamp the distance
calculation in otherwise similar objects. For concreteness we will consider an ex-
ample of just such a domain and show that Minimal Variance Matching (MVM),
proposed in this paper, can be expected to outperform Dynamic Time Warping
(DTW) and Euclidean distance. There is increasing interest in indexing sports
data, both from sports fans who may wish to find particular types of shots or
moves, and from coaches who are interested in analyzing their athletes perfor-
mance over time. Let us consider the high jump. We can automatically collect
the athletes center of mass information from video and convert to time series.
In Fig. 1, we see 3 time series automatically extracted from 2 athletes.

Both sequence A and B are from one individual, a tall male, and C is from
a (relatively) short female with a radically different style. The difference in their
technique is obvious even to a non-expert, however A and C where automati-
cally segmented in such a way that the bounce from the mat is visible, whereas
in B this bounce was truncated. In Fig. 1(middle) we can see that DTW is
forced to map this bounce section to the end of sequence B, even though that
sequence clearly does not have a truly corresponding section. In contrast MVM
is free to ignore the sections that do not have a natural correspondence. It is this
difference that enables MVM to produce the more natural clustering shown in

A. Jorge et al. (Eds.): PKDD 2005, LNAI 3721, pp. 577–584, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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Fig. 1. (top) Three examples of athletes trajectories as they attempt a high jump.
The sequence shows the height of their center of mass (with possible parallax effects).
Reading left to right we can see their bounding run followed by the takeoff and landing.
(middle) The alignment achieved by DTW and MVM on two of the sequences. (bottom)
The clustering achieved by DTW and MVM.

Fig. 1(bottom). While this is a somewhat contrived example on a specialized do-
main, similar remarks apply to many commercially important domains including
medical data mining and oil exploration.

2 Related Work

Because time series are a ubiquitous and increasingly prevalent type of data,
there has been much research effort devoted to time series data mining in recent
years. Many data mining algorithms have similarity measurement at their core.
Examples include motif discovery [1], anomaly detection [2], rule discovery [3],
classification [4] and clustering [5]. In this paper we deal with computation of
time series distances based on elastic time series matching.

As many researchers have mentioned in their work [3,4,6], the Euclidean
distance is not always the optimal distance measure for similarity searches. For
example, in some time series, different parts have different levels of significance
in their meaning. Also, the Euclidean distance does not allow shifting in time
axis, which is not unusual in real life applications.
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To solve the problem of time scaling in time series, Dynamic Time Warping
(DTW) [7,8] aligns the time axis prior to the calculation of the distance. DTW
distance between time series is the sum of distances of their corresponding ele-
ments. Dynamic programming is used to find corresponding elements so that this
distance is minimal. The DTW distance has been shown to be superior to the
Euclidean in many cases [5,9,10,11]. See [12] for a detailed discussion of DTW.
As illustrated in Section 1, DTW requires the matched time series to be well
aligned, and it is particularly sensitive to outliers, since it is not able to skip any
elements of the target series. DTW always matches the query time series to the
whole target time series.

The Longest Common Subsequence (LCSS) measure has been used in time
series [13,14] to deal with the alignment and outliers problems. Given a query
and a target series, LCSS determines their longest common subsequence, i.e.,
LCSS finds subsequences of the query and target (of the same length) that
best correspond to each other. The distance is based on the ratio between the
length of longest common subsequence and the length of the whole sequence.
The subsequence does not need to consist of consecutive points, the order of
points is not rearranged, and some points can remain unmatched. When LCSS
is applied to time series of numeric values, one needs to set a threshold that
determines when values of corresponding points are treated as equal [14]. The
performance of LCSS heavily depends on correct setting of this threshold, which
may be a particularly difficult problem for some applications.

The proposed MVM (Minimal Variance Matching) computes the distance
value between two time series directly based on the distances of corresponding
elements, just as DTW does, and it allows the query sequence to match to only
subsequence of the target sequence, just as LCSS does. The main difference be-
tween LCSS and MVM is that LCSS optimizes over the length of the longest
common subsequence (which requires the distance threshold), while MVM di-
rectly optimizes the sum of distances of corresponding elements (without any
distance threshold). The main difference between DTW and MVM is that MVM
can skip some elements of the target series when computing the correspondence.

While DTW requires that each point of the query sequence is matched to
each element of the target sequence, MVM allows skipping elements of the tar-
get sequence. LCSS allows skipping elements of both query and target sequence.
Therefore, MVM should be used when one is interested in finding the best match-
ing part of the target sequence for a given query sequence, since it guarantees
that the whole query sequence will be matched. This is, for example, the case,
when the query is a model sequence, one wants to find in a given data set. How-
ever, when the query sequence contains outliers and skipping them is allowed,
then LCSS should be used.

3 Minimal Variance Matching

We now present an algorithm for elastic matching of two time series of different
lengths m and n, which we will call Minimal Variance Matching (MVM).



580 L.J. Latecki et al.

More specifically, for two finite sequences of real positive numbers a = (a1, ..., am)
and b = (b1, ..., bn) with m < n, the goal is to find a subsequence b′ of b of
length m such that a best matches b′. Thus, we want to find the best possible
correspondence of sequence a to a subsequence b′ of b. Formally we define a
correspondence as a monotonic injection f : {1, ..., m} → {1, ..., n}, (i.e., a
function f such that f(i) < f(i + 1)) such that ai is mapped to bf(i) for all
i ∈ {1, ..., m}. The set of indices {f(1), ..., f(m)} defines the subsequence b′ of b.
Recall that in the case of DTW, the correspondence is a relation on the set of
indices {1, ..., m} × {1, ..., n}, i.e., a one-to-many and many-to-one mapping.

Once the correspondence is known, it is easy to compute the distance between
the two sequences. We do not have any restrictions on distance functions, i.e.,
any distance function is possible. To allow for comparison to the existing time
series matching techniques, we use the Euclidean distance in this paper:

d(a, b, f) =

√√√√ m∑
i=1

(bf(i) − ai)2. (1)

Our goal is to find a correspondence f so that d(a, b, f) is minimal. More
precisely, an optimal correspondence f̂ of numbers in series a to numbers in
series b is defined as the one that yields the global minimum of d(a, b, f) over all
possible correspondences f :

f̂ = argmin{d(a, b, f) : f is a correspondence}. (2)

Finally, the optimal distance is obtained as d(a, b) = d(a, b, f̂), i.e., d(a, b) is the
global minimum over all possible correspondences.

We can also state the correspondence problem in a statistical framework. Let
us assume that there is a subsequence b′ of b that is a noisy version of a such that
a ∼ b′−N (0, v), whereN (0, v) denotes a zero-mean Gaussian noise variable with
variance v, i.e., b′ = (bf(i))i for i ∈ {1, ..., m}. Since the mean of the differences
(bf(i) − ai)i is zero, i.e., b′ − a ∼ N (0, v), the variance σ2 of difference sequence
(bf(i) − ai)i is given by

σ2(a, b, f) =
1
m

m∑
i=1

(bf(i) − ai)2. (3)

Clearly, σ2(a, b, f) = v (the variance of the Gaussian noise). Observe that in
this case the variance corresponds to the Euclidean distance (1). Thus, the vari-
ance of the difference sequence is minimal when mapping f establishes a correct
correspondence of elements of both sequences.

Now we describe the method used to minimize (3). We first form the differ-
ence matrix

r = (rij) = (bj − ai).

It is a matrix with m rows and n columns with m < n. For example, the difference
matrix for two time series t1=( 1, 2, 8, 6, 8) and t2=( 1, 2, 9, 3, 3, 5, 9) is shown
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r =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 8 2 2 4 8

−1 0 7 1 1 3 7

−7 −6 1 −5 −5 −3 1

−5 −4 3 −3 −3 -1 3

−7 −6 1 −5 −5 −3 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Fig. 2. In order to compute f̂ for t1=( 1, 2, 8, 6, 8) and t2=( 1, 2, 9, 3, 3, 5, 9), we
first form the difference matrix with rows corresponding to elements of t1 and columns
to elements of t2

in Fig. 2. Observe that t1 and t2 are similar if we ignore the two elements in t2
with value 3.

Clearly, (rij) can be viewed as a surface over a rectangle of size m by n,
where the height at point (i, j) is the value rij . We obtain the correspondence
with minimal variance by solving the least-value path problem on the difference
matrix. To obtain the solution, we treat (rij) as a directed graph with the links:
rij is directly linked to rkl if and only if (1) k − i = 1 and (2) j < l. When
traversing the obtained directed graph, the meaning of both conditions is as
follows. For any two consecutive points rij , rkl in each path (1) means that we
always go to the next row, while (2) means that we can skip some columns, but
cannot go backwards.

Our goal is to have a least-value path with respect to the following cost
function for each directed link: linkcost(rij , rkl) = (rkl)2. Each path can start in
first row, between columns 1 and n−m, i.e., at r1j for j = 1, ..., n−m and the
path can end at rmj for j = n−m, ..., n. The conditions (1) and (2) imply that
we can obtain a DAG (directed acyclic graph) G whose nodes are the elements
of (rij)ij and weights are defined by the function linkcost. It is well known that
we can solve the least-value path problem using the shortest path algorithm
on G. The obtained least-value path defines exactly correspondence f̂ , which
minimizes (3) in accordance with (2).

The shortest path for the example matrix in Fig. 2 is marked with boxes.
Following the boxes, the optimal correspondence f̂ is given by

f̂(1) = 1, f̂(2) = 2, f̂(3) = 3, f̂(4) = 6, f̂(5) = 7.

Finally, from (1) we obtain the distance d(t1, t2) =
√

3 ≈ 1.732.
The obtained optimal correspondence f̂ automatically determines a subse-

quence b′ = f̂(a) of a target time series b that best matches a query series a. In
particular, two cases are possible: Whole Sequence Matching: Subsequence
b′ is dense in b, which indicates a similarity of a to b. Subsequence Match-
ing: Subsequence b′ is not dense in b but is dense in part of b which indicates a
similarity of a to part of b.
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4 Experimental Results

We compare the results of MVM to the DTW results on three data sets Face,
Leaf, and Gun from [12]. A detailed description of these data sets is given in [12].
We briefly mention that Face dataset is composed of 112 sequences representing
head profiles of 4 different individuals. The length of each sequence ranges from
107 to 240 points. Leaf dataset is composed of 442 sequences representing con-
tours of six different leaf species. The length of each sequence ranges from 22 to
475 points. Gun dataset is composed of 200 sequences representing gun drawing
events by two different actors. The length of each sequence is 150 points.

Following [12], we measure the classification accuracy of 1-NN (Nearest Neigh-
bor) classifier applied to the distance matrices obtained by the evaluated meth-
ods. The obtained results are shown in Table 1. As can be seen MVM systemat-
ically outperforms DTW. The DTW results are cited from [12], where all possi-
ble sizes of warping windows for DTW were examined and the optimal warping
window size was determined for each data set. We did not use any warping or
correspondence window bound for MVM.

Table 1. 1-NN classification accuracy. The DTW results are cited from [12].

Face Gun Leaf

MVM 98.21 100 97.29
DTW 96.43 99.00 96.38

Although the proposed method does not require any length normalization,
we used length normalized time series in order to allow for a comparison to the
results in [12]. When calculating the distance between a pair of time series with
MVM, we resampled the query series so that its length is approximately 75% of
the length of the target series. This means that the total elasticity amount for
MVM is about 25% of the length of the second time series. We obtained nearly
identical results with elasticity varying from 25% to 50%. The values of each
time series were zero-mean normalized in the standard way. That is, each time
series X is normalized as: X = (X−μ(X))

σ(X) , where μ(X) is the mean value of X
and σ(X) is its standard deviation.

The superior performance of MVM reported in Table 1 is due to MVM ability
to correctly align matched sequences in that bad matching elements of the target
sequence are excluded from the correspondence. One example of this fact is given
in Section 1. Here we use the Face dataset in order to directly link this fact to the
superior classification accuracy of MVM. The face dataset is a particularly good
dataset on which to demonstrate this fact. It consists of head profiles converted
to time series representing the curvature at sample points. Because the face
is intrinsically elastic, as the subject smiles or grimaces, Euclidean distance in
unsuitable here, and we therefore would consider a more elastic distance measure
such as DTW or MVM.
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As one might imagine, the parts of the signal that correspond to the face
contain the most useful information, and the parts of the signal that correspond
to the back of the head contain much less information. In fact the parts of the
signal that correspond to the back of the head may actually contain misleading
information, since the texture of hair causes problems for the time series gener-
ation algorithm. The problem with DTW is that it is forced to align everything,
thus may be forced to align this poor quality data from the back of the head in
one signal to poor quality data in another. A small amount of such poor qual-
ity data can rapidly swamp the distance calculation. In contrast, MVM has the
ability to simply ignore the poor quality data, as shown in Fig. 3. Note that in
this simple contrived example we might be able to achieve better results simply
by truncating the back of the head section of the signals. However this begs a
nontrivial question of finding a good segmentation algorithm. In any case in data
mining we generally assume that we do not have such a priori knowledge about
the domain in question.

MVM

DTW

MVM

DTW

Fig. 3. Three time series from Face dataset, derived from profiles, compared using
DTW and MVM. Two time series of the same person are correctly identified by MVM
which is not the case for DTW.

5 Conclusions

The proposed new method for time series matching, called MVM, performs the
following tasks simultaneously (1) automatically determines whether the query
sequence best matches the whole target sequence or only part of the target
sequence, (2) automatically skips outliers that are present in the target se-
quence, (3) minimizes the statistical variance of dissimilarities of corresponding
elements. The reported experiments show that this method outperforms DTW.
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By mapping the problem of elastic matching of sequences to finding a cheapest
path in a DAG, we provide an efficient algorithm to compute MVM.
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Abstract. This paper proposes a new method for generating multi-
dimensional sequential patterns. While the current sequential pattern
methods are generating patterns within a single attribute, the proposed
method is able to detect them among different attributes. We employ an
information theoretic method for generating multi-dimensional sequen-
tial patterns with the use of Hellinger entropy measure. A number of
theorems are proposed to reduce the computational complexity of the
sequential pattern systems. The proposed method is tested on some syn-
thesized transaction databases.

1 Introduction

Among many techniques in data mining, sequential pattern is a technique which
can discover more meaningful information by considering time attribute, to-
gether with other traditional attributes. Sequential patterns can be widely used
in many different applications, such as mining banking patterns from bank ac-
counts, and predicting certain kind of disease from history of symptoms.

Almost all of the current methods for mining sequential patterns are based
on the Apriori algorithm [1], SPIRIT [6], FreeSpan [4], PrefixSpan [5], SPADE
[9], CloSpan [8], and TSP [7]. After that, a series of Apriori-like algorithms
have been proposed. However, one of the limitations of the current sequential
pattern algorithms is that they mine only one dimension. They only consider
one attribute, and thus can not detect sequential patterns hiding across different
attributes.

On the other hand, multi-dimensional sequential pattern mining attempts to
find sequential patterns across several dimensions of attribute. By incorporating
the additional attributes, the sequential patterns found are richer and more
informative to the user. The aim of this multi-dimensional sequential pattern
mining is to get more interesting sequential patterns with different dimensional
attributes.

However, there is very little study on mining sequential patterns in multi-
dimensional circumstances(e.g. UniSeq [3]).

In this paper, we propose a new paradigm for generating multi-dimensional
sequential patterns. We use an entropy function, called Hellinger measure, as an
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underlying tool for developing multi-dimensional sequential patterns. Therefore
this method could provide more theoretic background in sequential pattern gen-
eration. Also, we replaced the traditional measures of sequential patterns(like
support and confidence) by more sophisticated, information-theoretic measure.
The proposed method could calculate the significance of each sequential pat-
tern(called H measure) as a numeric value, and those sequential patterns are
given in a sorted order. The H measure can be interpreted as the importance or
significance of sequential patterns.

2 Problem Description

The format of sequential patterns generated in this paper is as follows:

A = a ∧B = b ∧ · · · → T = t with α, β, and H

where A, B and T are attributes with a, b and t being values in their respec-
tive discrete alphabets. We restrict the right-hand expression to being a single
value assignment expression while the left-hand side may be a conjunction of
such expressions. The semantics of above format is that if a person does an ac-
tion(e.g., purchase) based on the condition(left-hand side) of above pattern at
a given time, then he/she will later do an action described in right-hand side
with high possibility H . Each sequential pattern comes with three numeric val-
ues such as α, β, and H . The α, β, and H represent the information content,
the generality, and the significance of sequential pattern, respectively. The inter-
pretation of these numeric terms will be explained in the following section. The
final sequential patterns generated from the database are sorted based on the H
value.

Since our sequential pattern method handles multi-dimensional databases,
the format of database is different from the format used by traditional sequen-
tial pattern methods. Each transaction of database is associated with different
attributes for multi-dimensional sequential patterns mining.

The transaction database is in its first normal form(each attribute, including
the items, contains only one value). The database consists of a set of tuples

< cid, tid, a1, a2, . . . , an, c >

where cid is an identification of the customer and tid the time. Let a1, a2, . . . , an

denote the multi-dimensional attributes with respect to the customer, product,
or transaction, and c means the item bought by the customer cid. In case multiple
items are purchased together, each of them is represented in different tuples with
the same cid and tid. In addition, the entire transaction database is sorted based
primarily on customer-id(cid) and secondly on transaction-time(tid).

Information Contents of Sequential Patterns

The basic idea of sequential pattern generation in this paper starts with the as-
sumption that the value assignments in the left hand side of each sequential pat-
tern affects the probability distribution of the right-hand side(target attribute).
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Intuitively speaking, if a certain value assignment has significantly changed the
probability distribution of the target, it is clear that the given value assignment
plays an important role in determining the class values of the target attribute.
Therefore, it is a natural definition, in this paper, that the significance of a sequen-
tial pattern is interpreted as the degree of dissimilarity between a priori probabil-
ity distribution and a posteriori probability distribution of the target attribute.

In this paper, this dissimilarity is defined as instantaneous information, which
is the information content of the sequential pattern given that the left-hand side
happens. The critical part now is how to define or select a proper measure which
can correctly measure the instantaneous information.

We employ an entropy function, called Hellinger measure, as a tool for defin-
ing the information content of sequential pattern rules. The Hellinger measure
was originally introduced by Beran [2], and is defined as√∑

i

(√
p(ti)−

√
p(ti|a)

)2
(1)

where ti denotes the value of attribute T . It becomes zero if and only if both
a priori and a posteriori distributions are identical, and ranges from 0 to 1.
Unlike other information measures, this measure is applicable to every possible
case of probability distributions. It can be interpreted as a distance measure
where distance corresponds to the amount of divergence between a priori and a
posteriori distribution. Therefore, we employ Hellinger measure as a measure of
divergence, which will be used as the information amount of sequential patterns.

3 Contents of H Measure

In terms of the probabilistic sequential pattern rules, let us interpret the event
A = a as the target concept to be learned and the event(possibly conjunctive)
B = b as the hypothesis describing this concept. The information content of the
sequential pattern rule is defined as[√

P (a|b)−
√

P (a)
]2

+
[√

1− P (a|b)−
√

1− P (a)
]2

(2)

where P (a|b) means the conditional probability of A = a under the condition
B = b has happened beforehand. Notice that Equation (2) has a different form
of definition from that of Equation (1). In sequential pattern generation, one
particular value of class attribute appears in the right hand side of the pattern,
and thus the probabilities for all other values are included in 1− P (a). In addi-
tion, we squared the original form of Hellinger measure because, by squaring the
original form of Hellinger measure, we could derive a boundary of the Hellinger
measure, which allows us to reduce drastically the search space of possible se-
quential pattern rules.

Another criteria we have to consider is the generality of the sequential pat-
terns. The generality is similar to the support in Apriori-like methods. The basic
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idea behind generality is that the more often left-hand side occurs for a sequen-
tial pattern, the more useful the pattern becomes. In this paper, we use

√
P (b)

to represent the probability that the sequential pattern will occur and, as such,
can be interpreted as the measure of sequential pattern generality. The reason
for using the square root form of the original probability is that, by using the
square root form, we could derive some boundaries of H measure.

As a result, by multiplying the generality with the information content of the
sequential pattern rules, we have the following term√

P (b)[
(√

P (a|b)−
√

P (a)
)2

+
(√

1− P (a|b)−
√

1− P (a)
)2

]

which possesses a direct interpretation as a multiplicative measure of the gener-
ality and information content of a given sequential pattern rule. In this paper,
we call above multiplicative term as H measure of sequential patterns.

4 Sequential Pattern Generation

We will now define the algorithm and discuss its basic ideas. The algorithm takes
time-related database in the form of discrete attribute vectors and generates a
set of K sequential patterns, where K is a user-defined parameter. The set of
generated sequential patterns are the K most informative(significant) sequential
patterns from the database as defined by the H measure.

The algorithm employs branch-and-bound with depth-first search over possi-
ble left-hand sides. The algorithm first generates all possible cases of first-order
sequential patterns. The first-order sequential patterns are sequential patterns
that have single value assignment in left-hand side, described as follows,

Bi = bij → A = ak

where Bi, Bij , and Ak represent i-th attribute, the value of i-th attribute, and
the target value, respectively.

The algorithm proceeds then calculating the H measures of each first-order
sequential patterns, finding K most informative sequential patterns in terms of
H measure, and then placing these K sequential patterns in an ordered list,
called BEST. The smallest H measure, that of the Kth element of BEST, is
then defined as the running minimum H∗. The critical part of the algorithm is
the specialization criterion since it determines how much of the exponentially
large hypothesis space actually needs to be explored by the algorithm.

From that point onwards, new patterns which are candidates for inclusion in
the sequential pattern set have their H measure compared with H∗. If greater
than H∗, they are inserted in the list and the Kth sequential pattern is deleted.
And H∗ is updated with the value of the H measure of whatever sequential
pattern is now Kth on the list. The algorithm systematically tries to specialize
all first-order sequential patterns and terminates when it has determined that
no more sequential patterns exist which can be specialized to achieve a higher
H measure than H∗.
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Figure 1 describes the pseudo code of decision whether to continue special-
izing or to back-up on the depth-first search. The H measure of each sequential
pattern can be considered as the weight of the sequential pattern.

if success rate of Hg �= 1
then

calculate the value of Hs using Theorem 1
if Hs ≤ H∗ then cease to specialize; /* Theorem 1 */

else
cease to specialize; /* Theorem 2 */

Fig. 1. Algorithm for specialization

5 Characteristics of H Measure

The characteristic of the specialization behavior is critical to the performance
of the algorithm. Therefore, it is important to derive some quantitative bounds
on the nature of specialization, which can be used to improve computational
performance.

Specialization is the process by which we try to increase a sequential pattern’s
information content by adding an extra condition to the pattern’s left-hand side.
The consequent necessary decrease in generality of the sequential pattern should
be less than an increase in the information content to the extent that the overall
H measure is increased. We will examine specialization, using the H measure
as the definition of sequential pattern goodness, with

√
p(a) corresponding to

generality and Equation (2) corresponding to information content. If we define
Hs and Hg as the H measures of the specialized and general sequential patterns,
respectively, is it possible to find a bound of Hs in terms of Hg ?

Suppose we have a sequential pattern

B = b→ A = a . (3)

We would like to specialize this sequential pattern by adding a condition C = c
so that we have a specialized sequential pattern

B = b ∧C = c → A = a . (4)

For the sake of illustration, sequential patterns in formula (3) and (4) are denoted
as Rg and Rs, respectively. In this paper, we deal with a sequential pattern which
contains only one condition and try to specialize it. More general cases which have
more than one condition in the left hand side can be easily understood. Suppose
Hg and Hs are the H measures of the sequential patterns Rg and Rs, respectively.
Our goal is to answer the question “Can we describe the bound of Hs in terms of
Hg ?” In other words, is it possible to estimate the maximum value of Hs with-
out knowing any information about attribute C ? The motivation for bounding
Hs in this manner is two-folds. Firstly, it produces some theoretical insight into
specialization, while secondly, the bound can be used by the sequential pattern
algorithm to search the search space(hypothesis space) efficiently.
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Consider that we are given a general sequential pattern whose H measure,
Hg, is defined as

Hg =
√

P (b)
[
2− 2

√
P (a|b)P (a)− 2

√
(1− P (a|b))(1 − P (a))

]
We try to calculate the bound of

Hs =
√

P (c|b)
√

P (b)[2− 2
√

P (a|bc)P (a)−
2
√

(1− P (a|bc))(1 − P (a))]

Given no information about C, we can state the following results.

Theorem 1. If the H measure of a specialized pattern satisfies the following
boundary:

Hs ≤ max{
√

P (a|b)
√

P (b)
[
2
√

m− 2
√

P (a)
]
,

2
√

P (b)−
√

1− P (a|b)
√

P (b)
[
2
√

P (a) + 2
√

1− P (a)
]
}

where m represents the number of class in the target attribute, the general pattern
discontinues specializing.

Proof is omitted due to space limit. As a special case of Theorem 1, if the
success rate, conditional probability(P (a|b)), of general pattern becomes 1, the
H measure of the specialized pattern is always less than or equal to that of
general pattern.

Theorem 2. If the conditional probability(P (a|b)) of general pattern is 1, H
measure of specialized pattern cannot be greater than that of general pattern.
Therefore, the general pattern discontinues specializing.

Proof is omitted due to space limit. As a consequence of these theorems we
note that since the bound of specialized sequential pattern is achievable without
further information about C, we can decide in advance that the specialized
sequential pattern cannot be improved with respect to H Measure. The logical
consequence of this statement is that it precludes using the bound to discontinue
specializing based on the value of Hg alone. In particular, if the bound is less
than the information content of the worst sequential pattern, then specialization
cannot possibly find any better sequential pattern. This principle will be the
basis for restricting the search space of the system.

6 Experimental Results

In order to test the functionality of the algorithm proposed in this paper, we as-
sumed an artificial transaction database with 14 attributes, and synthesized two
sets of artificial databases. The proposed algorithm was tested on two synthetic
databases. Each database contains 20,000 records, and data values are generated
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Table 1. Sequential patterns using database I

Sequential Patterns Conf. H

Price=20-29 → Item=P07 0.13137 0.00023
Gender=male & Item=P06 → Item=P02 0.11015 0.00021
Qty=1 → Item=P09 0.11800 0.00021
Item=P09 → Item=P01 0.11067 0.00019
SaleorNot=sale → Item=P00 0.11207 0.00017
Age=20-29 & Qty=over 5 → Item=P03 0.10592 0.00015
Price=30-39 & Qty=1 → Item=P02 0.10559 0.00015

using random numbers. For each data set, the entire data set is read and then
100 most informative sequential patterns were generated.

The topmost 6 sequential patterns from the first database is shown in Table
1. For each pattern in Table 1, its corresponding values for confidence(Conf.)
and H measure are shown, and the resulting patterns are sorted based on their
H measure values. The confidence means the number of transactions satisfying
both left-hand side and right-hand side of the pattern divided by the number of
transactions satisfying left-hand side only.

The topmost pattern in Table 1 means that customers who purchased items
(whatever the items are) of which price are between 20-29 later purchase item
P07. This type of patterns can not be acquired from traditional sequential pat-
tern methods. The 4th pattern shows a sequential pattern equivalent to the one
generated from Apriori-like method. It illustrates that the functionality of our
method includes that of traditional sequential pattern methods.

The second database also contains 20,000 records, and data values are gen-
erated using random numbers. However, in the second database, we assumed
that there are a number of sequential patterns hiding in the real world, and
the database is generated based on those sequential patterns. The sequential
patterns we have assumed are as follows.

– Color=white & Qty=1 → Item=P05
– Region=city & Item=10-19 → Item=P08

The goal of this experiment is to verify whether the proposed algorithm is
able to detect these sequential patterns hidden in the database. For the second

Table 2. Sequential patterns using database II

Sequential Patterns Conf. H

Item=1 → Item=P07 0.17834 0.000181
Color=white & Qty=1 → Item=P05 0.15481 0.000103
Price=10-19 → Item=P03 0.13250 0.000065
Price=30-39 → Item=P09 0.14624 0.000051
Region=city & Item=10-19 → Item=P08 0.11951 0.000040
Color=white & Qty=1 → Item=P08 0.11440 0.000040
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experiment, the entire data set is read and then 100 most informative sequential
patterns were generated. The topmost 6 sequential patterns from the second
database is shown in Table 2. The sequential patterns we have assumed are
generated from the system and shown in Table 2 as the 2nd and 5th pattern,
respectively. We could also see many other multi-dimensional sequential patterns
in Table 2. This experiment illustrates that our proposed algorithm is able to
effectively detect the sequential patterns hidden within the database.

7 Conclusion

In this paper we have introduced a new method for generating multi-dimensional
sequential patterns from transaction databases. We developed an information
theoretic measure, called H measure, which becomes the criteria for selecting
and sorting inductive sequential patterns generated. The boundary of the H
measure is analyzed and two heuristics are developed to reduce the computa-
tional complexity of the system. In addition, missing values can be handled by
considering them as separate categories. The algorithm is applied to some syn-
thetic transaction databases. The resulting sequential patterns generated from
the data sets show how the system detects the hidden multi-dimensional sequen-
tial patterns of data sets effectively.
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Abstract. Most real-world datasets are, to a certain degree, skewed. When con-
sidered that they are also large, they become the pinnacle challenge in data anal-
ysis. More importantly, we cannot ignore such datasets as they arise frequently in
a wide variety of applications. Regardless of the analytic, it is often that the effec-
tiveness of analysis can be improved if the characteristic of the dataset is known in
advance. In this paper, we propose a novel technique to preprocess such datasets
to obtain this insight. Our work is inspired by the resonance phenomenon, where
similar objects resonate to a given response function. The key analytic result of
our work is the data terrain, which shows properties of the dataset to enable ef-
fective and efficient analysis. We demonstrated our work in the context of various
real-world problems. In doing so, we establish it as the tool for preprocessing
data before applying computationally expensive algorithms.

1 Introduction

The subfield of data analysis is essentially a collection of algorithms that focused on
analyzing large datasets of high-dimensionality. Often than not, the cornerstone of these
algorithms is to address the dimensionality curse when trying to provide effective and
efficient results for a given user query. Towards this, there have been many research
done; including cluster analysis to find clusters embedded in subspaces (also known as
subspace clustering or biclustering), and dimensionality reduction.

In cluster analysis, most models are based on distance or similarity measures, or cor-
relation measures of feature subsets or objects. While they unveil the details of subspace
clusters, most are of no interest to the user. For example, more than 10, 000 clusters
were obtained through OP-clustering [1] on a drug activity dataset with a dimension of
10, 000× 30. Clearly, this is overwhelming to the user trying to find insights about the
data in question, e.g., the relationship among patterns rather than a list of patterns. Usu-
ally, closer inspection would suggest close relationships among clusters. And if high
level insights is what the user is after, then this level of pattern redundancy would be
inappropriate. Yet, a combinatorial explosion of patterns (satisfying the query) occur
as the size and dimensionality of the dataset increases. Dimension reduction is one al-
ternative to ‘curb’ the combinatorial explosion of patterns by passing a reduced space
to the analytical algorithms. The drawback, however, is the loss of patterns embedded
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Fig. 1. The rating matrix for 4 reviewers and 5 movies, biclusters and PCA 2-dimensional space

in the subspace of the original space. This happens because most reduction techniques
made use of distance or similarity measures over the full dimension, and therefore lack
the mechanism to find the embedded patterns that are subtle but important.

In this paper, we introduce the concept of data terrain to visualize high-dimensional
datasets while overcoming the limitations of subspace clustering and dimension reduc-
tion. Our proposal effectively reveals the relationship among subspace clusters, and
allows the user to explore the data at different levels of details. We show, by means of
real-world applications (e.g., biclusters, outliers, and frequent itemsets), how the data
terrain can help discover generic patterns that can be utilized to effectively analyze the
patterns embedded in the original space. Unfortunately, to find this data terrain under
varying conditions proved to be NP-hard. Thus, our contribution in this paper includes
the proposal of efficient techniques to find the data terrain. We next show a motivating
example to illustrate the relevance of data terrains in analysis. We then introduce the
resonance model in Section 3 and summarize our work in Section 4.

2 Motivating Example

We begin by introducing the concept of data terrain and show by means of an example,
how it facilitates better data analysis; and why it is better than other techniques like
biclustering and dimension reduction. Our example is based on the survey of popular
movies. Fig. 1(a) shows the rating matrix W of 4 reviewers (Ri) on 5 movies (Mj),
where each movie is rated on a scale of 1 to 20.

We first use biclustering to analyze the relationship between the reviewers and the
movies. If requiring biclusters with at least 2 rows and columns, more than 10 biclus-
ters can be discovered. Fig. 1(c) – (f) are the distinct biclusters found in this case.
While these biclusters precisely characterized the reviewers’ ‘rating style’ on movies,
there is too much redundancy in the solution for such a small dataset. In real-world
situations where the dataset is much larger, it will take much longer before the an-
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alyst is able to come to a conclusion. Worse, the analyst is likely to become con-
fused on the real relationship between the reviewers and the movies if they were to
work at this level of detail. The other approach would be to use dimension reduc-
tion techniques. We consider using a popular technique known as Principal Compo-
nent Analysis (PCA). The PCA’s output is shown in Fig. 1(g) and (h). Again, the rela-
tionship between the reviewers and movies is revealed. However, as PCA runs across
the full dimension of the data, we loose many subtle and local insights about review-
ers and movies. For example, movies M2, M4 and M5 are perceived as different in
Fig. 1(g). Yet, if we check back on our analysis using biclustering, we can see from
Fig. 1(d) that they are actually quite similar if we consider the ratings from reviewer
R2 and R3. Thus, if only PCA is performed, we will not be able to arrive at this
conclusion.

Interestingly, if we view W in 3D space, we can capture the relationships that both
biclustering and PCA revealed. As Fig. 1(b) shows, a direct 3D ‘plot’ of W does not
seem to reveal any interesting insights – but if we were to reorder W into W ′ as shown
in Fig. 2(a) (and also Fig. 2(c) – (f); where every bicluster can be shown in this man-
ner [1]), we have a 3D terrain of W ′ as depicted in Fig. 2(b). Notably, this terrain
provides the insights that earlier requires both biclustering and PCA analysis.

To illustrate this, notice that any bicluster from Fig. 2(c) – (f) can be obtained by
selecting some points from the ‘mountains’ and ‘plains’ in this terrain. At the same
time, we can also make conclusions that would otherwise be obtained through PCA: (i)
there are primarily two groups of movies and reviewers; (ii) M3 and M5 have higher
similarity than M2 despite being in the same group; and (iii) the ‘rating style’ of R2
and R3 is opposite that of R1 and R4. Thus, the terrain captures both local and global
relationships about the data in an intuitive and effective manner. Of course, real-world
datasets are much more complex that result in more complicated terrains. Consequently,
trying to discover such a terrain proved to be a NP-hard problem.



596 W. Li, K.-L. Ong, and W.-K. Ng

3 Discovering Data Terrains

Conceptually, moving from W to W ′ is simply the reordering of the matrix to form
the ‘mountains’ and ‘plains’. Yet, this ordering on both dimensions can be difficult
to achieve efficiently on massive datasets. To prove the hardness of this problem, we
first give the following definitions. Let O be a set of objects, where o ∈ O is defined
by a set of attributes A. Further, let wij be the magnitude of oi over aj ∈ A. Then
we can represent the relationship of all objects and their attributes in a matrix W =
(wij)|O|×|A| for the weighted bipartite graph G = (O,A, E, W ), where E is the set
of edges. Thus, discovering the ‘mountains’ transforms into the problem of evaluating
subgraphs where the magnitude of all its edges are above some ‘altitude’, i.e., wij � σ.
Formally, the concept of a ‘mountain’ in this data terrain is called a BLOCK.

Definition 1. Given a weighted bipartite graph G, a σ-BLOCK (or simply σ-B) is a
subgraph G′ = (O′,A′, E′, W ′) of G satisfying wij � σ for any i ∈ O′ and j ∈ A′.

From Definition 1, σ-B can be intuitively viewed as a plane (or a transverse section)
with a specified altitude σ that ‘cuts’ across W . In the case of Fig. 1(b), we set the plane
at σ=10 to obtain two 10-Bs as shown in Fig. 2(b): {R1, R4, R2} × {M2, M5} and
{R2, R3}× {M4, M1}. Therefore, a series of σ-Bs can be generated when considering
planes with different σ values. Once this set of BLOCKs relevant to G is found, we can
order them to find the data terrain.

Definition 2. Given a bipartite graph G = (O,A, E, W ) and a set of BLOCKs {B1,
B2, . . . , Bk} found from G, the terrain of W is two ordered sequences of O and A,
such that these BLOCKs are placed consecutively in the reordered W .

It is interesting to note that sorting both dimensions, i.e.,O andA, is an extension of
sorting a single dimensional array to determine its distribution. However, sorting both
dimensions simultaneously to get the 2-dimensional distribution is practically infeasi-
ble, i.e., finding the σ-BLOCKs by iteratively decreasing σ from the maximum value
of W is NP-hard. In fact, finding a single σ-B is NP-hard.

Theorem 1. Finding the largest σ-BLOCK (|O′|×|A′|) is NP-hard.

Proof. Our problem can be reduced from the maximum edge biclique [2], which is NP-
complete. Details of this proof can be referred to [3].

Given the difficulty of finding σ-Bs, we seek alternative methods to discover the
data terrain. Since our objective is to find the ‘mountains’ and ‘plains’ but not where
they are on the terrain, then some approximation to the actual terrain (that is compu-
tationally efficient) should suffice. The insignificance of the specific locations of the
‘mountains’ and ‘plains’ can be demonstrated from Fig. 2(g) and (h), where the same
set of insights are obtained from both figures. As this terrain is approximated, we called
it the macro-view1. To obtain the macro-view of a terrain for a dataset, we used a novel

1 The complete work of this paper includes a micro-view of the data terrain. Together, they pro-
vide a complete solution for analysis of high-dimensional datasets. Due to space constraints,
the reader is referred to [3] for the details.
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linear model R(O,A, W, I, I)

Fig. 3. The model and the effectiveness of the linear instance

model inspired by the physics of resonance. This resonance model is very efficient even
on very large and high-dimensional datasets. Instead of checking every σ-B, we can
simulate a resonance experiment by injecting a response function to elicit objects of
interest to the analyst. Proofs of all theorems in this section are omitted and refer to [3].

3.1 The Model

To simulate a resonance phenomenon, we require a forcing object õ, such that when
an appropriate response function r is applied, õ will resonate to elicit those objects
{oi, . . . } ⊂ O in G, whose ‘natural frequency’ is similar to õ. This ‘natural frequency’
represents the characteristics of both õ and the objects {oi, . . . } who resonated with õ
when r was applied. For the weighted bipartite graph G = (O,A, E, W ) and W =
(wij)|O|×|A|, this ‘natural frequency’ of oi ∈ O is oi = (wi1, wi2, . . . , wi|A|). Since a
one-dimensional array (or vector) can be sorted to obtain its own terrain, we also refer
oi as the terrain of the object oi. Likewise, the terrain of the forcing object õ is defined
as õi = (w̃1, w̃2, . . . , ˜w|A|).

Put simply, if two objects of the same ‘natural frequency’ will resonate and there-
fore, should have a similar terrain. The evaluation of resonance strength between ob-
jects oi and oj is given by the response function r(oi,oj) : Rn ×Rn → R. We defined
this function abstractly to support different measures of resonance strength. For exam-
ple, one existing measure to compare two terrains is the well-known rearrangement
inequality theorem, where I(x,y) =

∑n
i=1 xiyi is maximized when the two positive

sequences x = (x1, . . . , xn) and y = (y1, . . . , yn) are ordered in the same way (i.e.
x1 � x2 � · · · � xn and y1 � y2 � · · · � yn) and is minimized when they are ordered
in the opposite way (i.e. x1 � x2 � · · · � xn and y1 � y2 � · · · � yn).

Notice if two vectors maximizing I(x,y) are put together to form M = [x;y] (in
MATLAB format), we obtain the terrain. More importantly, all σ-Bs are immediately
obtained from this terrain with the need to search every σ-B! This is why the model
is efficient – it only needs to consider the resonance strength among objects once the
appropriate response function is selected. For example, the response function I is a
suitable candidate to characterize the similarity of terrains of two objects. Likewise,
E(x,y) = exp(

∑n
i=1 xiyi) is also an effective response function.

To find the ‘mountains’ and ‘plains’, the forcing object õ evaluates the resonance
strength of every objects oi against itself to locate a ‘best fit’ based on the contour of
its terrain. By running this iteratively, those objects that resonated with õ are discovered
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and placed together to form the ‘mountains’ within the 2-dimensional matrix W . In
the same fashion, the ‘plains’ are discovered by combining those objects that resonated
weakly with õ. This iterative learning process between õ and G is outlined below.

Initialization. Set up õ with a uniform distribution: õ = (1, 1, . . . , 1); normalize it as
õ = norm(õ)2; then let k = 0; and record this as õ(0) = õ.

Apply Response Function. For each object oi ∈ O, compute the resonance strength
r(õ,oi); store the results in a vector r =

(
r(õ,o1), r(õ,o2), . . . , r(õ,o|O|)

)
; and

then normalize it, i.e., r = norm(r).
Adjust Forcing Object. Using r from the previous step, adjust the terrain of õ for all

oi ∈ O. To do this, we define the adjustment function c(r, aj) : R|O|×R|O| → R,
where the weights of the j-th attribute is given in aj = (w1j , w2j , . . . , w|O|j). For
each attribute aj , w̃j = c(r,aj) integrates the weights from aj into õ by evaluating
the resonance strength recorded in r. Again, c is abstract, and can be materialized
using the inner product c(r, aj) = r • aj =

∑
i wij · r(õ,oi). Finally, we compute

õ = norm(õ) and record it as õ(k+1) = õ. We denote the resonance model as
R(O,A, W, r, c), where the instances of functions r and c can be either I or E.

Test Convergence. Compare õ(k+1) against õ(k). If the result converges, go to the next
step; else apply r on O again (i.e., forcing resonance), and then adjust õ.

Macro-View of Terrain. Sort the objects oi ∈ O by the coordinates of r in descending
order; and sort the attributes ai ∈ A by the coordinates of õ in descending order.

3.2 Properties of the Model

The abstract view of the general model is given in Fig. 3(a). Depending on the re-
sponse and adjustment function, the abstract model instantiates into different imple-
mentations. In practice, we have the linear model R(O,A, W, I, I), and the non-linear
model R(O,A, W, E, E). We shall discuss some important properties of our model in
this section. In particular, we show that the model gives a good approximation to the
actual terrain, and that its iterative process converges quickly.

Approximation to Actual Terrain. Using the synthetic data from Fig. 2(g), we can
see how well both implementations approximate the actual terrain. The linear and non-
linear model converges to a precision of ε = 0.001, i.e., once ‖õk+1 − õk‖ � ε,
terminates. The reordered matrices are the same as Fig. 2(h). We then performed the
same test on the movie-rating example. Result of linear model is shown in Fig. 3(b)
and the non-linear model in Fig. 2(a). Obviously, R(O,A, W, E, E) gives a better ap-
proximation, where the ‘mountains’ and ‘plains’ are easily distinguishable. Thus, we
can conclude that the different instances of R may give an approximate of the actual
terrain. These conclusions are also empirically proven in [3].

Convergence. Since the resonance model is iterative, it is essential that it converges
quickly to be efficient. Essentially, the model can be seen as a type of discrete dynamical
system [4]. The convergence of linear and non-linear models is proven below.

Theorem 2. R(O,A, W, r, c), where r, c are I or E, converges in limited iterations.

2 norm(x) = x/‖x‖2, where ‖x‖2 = (
∑n

i=1 x2
i )1/2 is 2-norm of vector x = (x1, . . . , xn).
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(a) macro-view of the terrain (b) the local terrain

Fig. 4. A case of data analysis by macro-view of the terrain: visualization of MovieLens data
(with 943 users, 1,682 movies and 100,000 ratings on the scale of 1 to 5. It is available at
http://www.grouplens.org), and analysis of its local terrain. We obtain the macro-view
using R(O,A, W,I, I) to get the terrain in (a). It is possible that the user is not satisfied with an
overview of the dataset and might be interested in further analysis. A case of ‘zoom in’ on the
‘crowded’ but a local terrain of the macro-view is shown in (b).

In practice, the model is very efficient because we are only interested in the con-
vergence of orders of coordinates in õk and rk . With k iterations, the complexity is
O(k × |O| × |A|). In our experiments, our model converges within 50 iterations even
on the non-linear configurations giving a time complexity of O(|O|× |A|). In all cases,
the complexity is sufficiently low to efficiency handle large datasets.

Average Inter-resonance Strength 1
(k
2)
∑

i�=j∈O′
|O′|=k

r(oi,oj) among Objects. Theorem 3

is in fact an optimization process to find the best kobjects, whose average inter-resonance
strength is the largest among any subset of k objects. Next, we exploit this property to
unveil the relationship between the macro-view of the data terrain and the biclusters.

Theorem 3. Given the macro-view terrain W ′, the average inter-resonance strength
1

(k
2)
∑

1�i�=j�k r(oi,oj) of the first k objects, w.r.t. the resonance strength with õ, is

largest for any subset with k objects.

Approximation to Maximum Edge Biclique (MEB). The non-linear configuration of
our model, i.e., R(O,A, W, E, E) has such capability. Details refer to [3].

3.3 Real World Examples

A demonstration of how a macro-view of the data terrain can help the user in analysis is
shown by a real-world case in Fig. 4. Next we show how it can have applications in data
mining for finding frequent itemsets and biclustering in theory. All empirical evidences
refer to [3].

Finding Frequent Itemsets. A transaction dataset can be constructed as a matrix,
where each transaction is an object, and each item is an attribute whose value wij in
W|O|×|A| is 1 if the j-th item occurs in the i-th record, and 0 otherwise. We therefore
have the following that relates frequent itemsets and BLOCKs.
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Theorem 4 (Frequent Itemsets and BLOCKs). A frequent itemset is the attribute set
of a 1-BLOCK, and its support is the number of objects in the BLOCK.

Discovering Biclusters. A popular measure for biclusters [5] is defined as Eqn. (1).
The residue H(W ) of given a matrix W is a δ-bicluster if H(W ) � δ.

H(W ) =
1

mn

∑
1�i�m
1�j�n

(wij − wiJ − wIj + |W |)2 (1)

where wiJ = 1
n

∑n
j=1 wij , wIj = 1

m

∑m
i=1 wij , and |W | = 1

mn

∑
1�i�m
1�j�n

wij .

Theorem 5 (Bicluster and Average Resonance Strength of Macro-View Terrains).
Given a matrix W = (wij)m×n, whereO are the rows andA are columns, we have the
inverse relation of the average inter-resonance strength and H(W ) as follows

H(W ) = ‖W‖2 + |W |2 − 1
n
r(W )− 1

m
r(WT ) (2)

where ‖W‖ =
√

1
mn

∑
1�i�m
1�j�n

w2
ij , r(W ) = 1

(m
2 )
∑

1�i,j�m
i�=j

I(wi ,wj ) is the average

inter-resonance strength among wi , and r(WT ) = 1
(n
2)
∑

1�i,j�n
i�=j

I(w i,w j) is the

average inter-resonance strength among w j , and wi is the i-row vector of W with
w j the j-column vector of W .

It can be interpreted as follows. Since ‖W‖ and |W | are sum of W in different
forms, we can consider them as fixed constant. If the average inter-resonance strength of
W and WT , i.e., r(W ) and r(WT ), is higher, then H(W ) is lower and thus, W behaves
like a bicluster. For R(O,A, W, I, I) and R(A,O, WT , I, I), we conclude that if we
select the first k rows and columns of W with large resonance strength r(oi, õ) to form
W ′, it is straightforward that we will have a smaller H(W ′) and thus, W a bicluster.

4 Summary

In this paper, we proposed the data terrain as a means to visualize and analyze high-
dimensional datasets. With this terrain, patterns in subspaces can be visualized and ana-
lyzed. We provided a novel solution to obtain the the macro-view of a terrain efficiently,
and demonstrated its real-world application.

References

1. Liu, J., Wang, W.: Op-cluster: Clustering by tendency in high dimensional space. In: Proceed-
ings of ICDM, Melbourne, Florida (2003) 187

2. Peeters, R.: The maximum edge biclique problem is NP-complete. Disc. App. Math. 131
(2003) 651–654

3. Li, W., Ong, K.L., Ng, W.K.: Visual terrain analysis of high dimensional datasets. Technical
Report (www.deakin.edu.au/ leong/tr0406) (TRC04/06), Deakin University (2005)

4. Sandefur, J.T.: Discrete Dynamical Systems. Oxford: Clarendon Press (1990)
5. Cheng, Y., Church, G.M.: Biclustering of expression data. In: Proceedings of the 8th Interna-

tional Conference on Intelligent System for Molecular Biology. (2000)



A. Jorge et al. (Eds.): PKDD 2005, LNAI 3721, pp. 601 – 608, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

An Auto-stopped Hierarchical Clustering Algorithm for 
Analyzing 3D Model Database 

Tian-yang Lv1,2, Yu-hui Xing2, Shao-bing Huang1, Zheng-xuan Wang2, 
and Wan-li Zuo2 

1 College of Computer Science and Technology, Harbin Engineering University, 
Harbin, China 

2 College of Computer Science and Technology, Jilin University, Changchun, China 
raynor1979@163.com, wanli@mail.jlu.edu.cn 

Abstract. In the research of shape-based 3D model retrieval, the analysis and 
classification of 3D model database is an important topic for improving the re-
trieval performance. However, it encounters difficulties due to lack of valuable 
prior knowledge and the semantic gaps exist in 3D model retrieval. The paper 
proposes a new auto-stopped hierarchical clustering algorithm overcome these 
problems, which combines outlier detection with clustering. The Princeton 
Shape Benchmark along with 2 data sets from UCI is employed to evaluate the 
performance of the algorithm. And the new algorithm outperforms other auto-
stopped algorithms and obtains better classification of 3D model database. 

Keywords: shape-based 3D model retrieval; clustering; outlier detection. 

1   Introduction 

With the proliferation of 3D models and their wide spread through internet, 3D model 
retrieval, especially shape-based 3D model retrieval, becomes a new emerging re-
search field [1]. However, as an important subtopic, the analysis and organization of 
the 3D model databases encounters difficulties due to lack of the valuable domain 
knowledge. For instance, little is known about the number of models’ classes. More-
over, the two-level semantic gaps exist in 3D model retrieval: one is the gap between 
the shape of model and its feature, which means models with similar shape have great 
different feature; the other is the gap between the shape of model and its meaning in 
real-life, which results in the mistakes in manually classifying the 3D model database.  

The paper explores the application of the clustering techniques in analyzing 3D 
model database. And the clustering result is treated as the classification of 3D model 
database, since models of the same cluster have similar feature.  

The topic has not been thought much in the previous works. For example, it is very 
difficult to pre-decide an appropriate number of final clusters k for 3D model data-
base, while k is required by many traditional clustering algorithms, such as the hierar-
chical clustering algorithms CURE [2] and the partitioning algorithm K-means.  

Thus, the paper proposes an auto-stopped hierarchical clustering algorithm, which 
integrates a new outlier mining method in clustering and cancels the parameter k. It is 
based on the following observation: the distances among data or clusters not only 
show their similarity degree, but also demonstrate the dissimilarity. With the pro-
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gressing of clustering, the dissimilarity D(CNN-A, CNN-B) between the two most similar 
clusters CNN-A and CNN-B at present is increasing. And the clustering should stop at the 
moment when CNN-A and CNN-B are so diverse from each other. The outlier-mining 
process can provide that suitable “diverse degree” since outliers are detected accord-
ing to their “great difference” from the others. 

The rest of paper is organized as follows: after introducing related works in section 
2, section 3 proposes the new clustering algorithm; section 4 gives the experimental 
result; finally, section 5 summarizes the paper. 

Table 1. Important Notations 

Notation Description 

N Total number of Data 

M Dimensionality of Data 

Ci The i th Cluster 

D(Ci, Cj) Distance between Ci and Cj 

2   Related Works 

CURE algorithm [2] employs the novel concept of representative to represent a cluster 
and r representatives are shrunk towards the cluster’s centroid by a fraction α  before 
computing clusters’ distance to avoid noise. However, CURE needs the parameter k 
and does not consider clusters’ density in merging decisions.  

Some researches try to make clustering algorithm optimally estimate k. [3] pro-
poses a method based on dissimilarity increment. But it is short at handling outlier 
and detecting clusters with complex shape, like the linearly inseparable datasets. 

To achieve the property of rotation invariance, [1] states a method using spherical 
harmonic transformation on voxel descriptors of 3D model. Its overview is: first, the 
3D model is projected into a 2R×2R×2R voxel grid and set the corresponding value of 
a voxel 1, if it contains point of polygonal surface, otherwise set the value of 0; then, 
normalize the model with translation and scale; thus, for each sphere with the radius r, 
the spherical function of a 3D model can be defined as:  

( , ) ( sin( ) cos( ) , cos( ) , sin( ) sin( ) )rf Voxel r R r R r Rθ ϕ θ ϕ θ θ ϕ= + + +       (1) 

where ]2,0[],,0[ πϕπθ ∈∈ and [0, ]r R∈ . And for each spherical harmonic function 

rf can be decomposed as the sum of different frequencies, like:  

),(),(
1

ϕθϕθ
−

=

=
B
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l
rr ff , ),(),( , ϕθϕθ m

l

l

lm

ml
l

r Yaf
−=

=                           (2) 

Where ),( ϕθm
lY  is the harmonic homogeneous polynomial of l. Combining the signa-

ture { ||,...||||,|| 10
rr ff } for rf with different r, the shape descriptor for the 3D model is 

obtained, whose dimensionality depends on B and R with R usually equals 32. 
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3    An Auto-stopped Hierarchical Clustering Algorithm 

Based on the traditional hierarchical clustering process, the Auto-Stopped Clustering 
Algorithm using Representatives ASCAR shows its uniqueness in three aspects: (1) 
adopts a new distance-based outlier detection method before clustering to detect out-
liers and exclude their disturbance for the clustering process; (2) employs the repre-
sentatives and considers clusters’ density in computing clusters’ distance; (3) stops 
clustering automatically according to the dissimilarity reflected by the outliers. 

3.1   The Outlier Detection Method Based on Even-Distribution Pattern 

The basic idea of distance-based outlier detection method is: if the distances between 
data a and most other data are larger than the threshold Dout, a is an outlier [4]. It is 
critical but usually difficult to decide an appropriate Dout. This method also ignores 
the local distribution feature of one data.  

The new method decides Dout according to the even distribution pattern of data. It 
is a very useful reference, since clusters and outliers exist only if the real-life data 

distribute unevenly. In that case, the distances NND  between each data and its nearest 

neighbor are the same. NND  is approximately decided according to equation 3, where 
( )
max
ia  and ( )

min
ia  is the maximum and the minimum of all data’s i th-dimension. And 

Dout= NND β , where  is a parameter to describe the diversity of the realistic distribu-

tion situation from the even pattern. 

                                   ( ) ( ) 2
max min

1

(( ) / )
M

i i M
NN

i

D a a N
=

= −                                      (3) 

Factor  is adopted to evaluate the local distribution feature of a data. For data a, 
(a)=DNN(a)/DNN(b), where DNN(a) is the distance between a and its nearest-neighbor 

and so is DNN(b). The value of (a) shows the isolation degree of a from its neighbors. 
Special method is used for very similar or duplicate data. And, the equation of (a) is: 

                                
4( ) / ( ) ( ( ) 10 )

( )
1

NN NN NND a D b if D b
a

else
ξ

−>
=                        (4) 

Therefore, the outlier evaluation criterion is stated as follows: 

Data a is an outlier, if 

( ) ( ) 2
max min

1

(( ) / )

( )* ( ) ( )

M
i i M

i
NN

a a N

D a aξ
β

=
−

>   

Since outliers are extremely far away from the others while the normal are rela-
tively near to each other, a method is proposed to decide the appropriate : 

(1) name Step as the step length and ( ) ( ) NNStep NN farest farestD a a Dβ ξ= × , 

where
faresta  satisfies ( ) ( ) ( ) ( )NN farest farest NND a a D b bξ ξ× ≥ ×  for any b; (2) observe the 

increasing speed V of the detected outlier number outn under different value of , 
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viz.
out out StepV n nβ β= ∇ ∇ = ∇  , where 

Steplβ β= × and l={1, 2 …}, call l the step 

Num. ; (3) if V reaches its first peak when 
i Stepl β× , ( 1)i Steplβ β= − × . 

3.2    The Computation of the Clusters’ Distance 

The algorithm ASCAR adopts representative from CURE algorithm to improve clus-
tering performance. But ASCAR excludes the influence of “noise” by adopting a 
professional outlier mining method without using the parameter α . And ASCAR also 
considers the cluster’s density in deciding whether clusters should be merged. 

The algorithm decides the distance D(Ci, Cj) between Ci and Cj according to two 
factors: first, the distance Dmin(Ci, Cj) of the nearest representatives coming from Ci 
and Cj respectively; second, the factor  measuring the change of cluster’s density 
Den. The density of Ci or Cj approximately equals the average distances among its 
representatives. For the new-borne cluster Cnew created by merging Ci and Cj, 
Den(Cnew)=Dmin(Ci,Cj). Then, (Ci) is defined as follows and so is (Cj):  

( ) / ( ) ( ( ) ( ))
( )

( ) / ( )
i New i New

i
New i

Den C Den C if Den C Den C
C

Den C Den C otherwise
δ

>
=                (5) 

Since it is impossible to compute the density of the cluster with only one data, de-
fine D(Ci,Cj)=Dmin(Ci,Cj) in that case. And the way to compute D(Ci,Cj) is:  

( , ) ( ( ) ( )) / 2 ( 1) & &( 1)
( , )

( , )
Min i j i j i j

i j
Min i j

D C C C C if n n
D C C

D C C otherwise

δ δ× + > >
=       (6) 

Factor  reflects the influence of cluster’s density on merging decision. That is, the 
bigger the difference between the density of Ci or Cj with that of Cnew, the less possi-
bility for Ci and Cj to be merged. 

3.3    Automatic Stop 

Without user-specified condition to stop clustering, it is necessary to extract this in-
formation from the processed data. As stated in former parts, it is a suitable opportu-
nity to stop clustering if the clusters to be merged are too dissimilar. We propose Dout 
as the dissimilarity threshold to decide this opportunity for two reasons: (1) Dout is 
used to detect outliers, while the major characteristic of outliers is their dissimilarity 
from the others; (2) Dout is decided according to the even distribution pattern, which is 
also a useful reference for cluster analysis since the existence of clusters shows the 
diversity of the realistic distribution situation from the even pattern. 

And the stop criterion of clustering is :  
Suppose CNN-A and CNN-B are the most similar clusters at present, stop clustering if 

D(CNN-A,CNN-B)>Dout. 

3.4   Complexity Analysis and Overview of ASCAR 

The complexity of traditional hierarchical algorithm is O(N2). Since ASCAR is con-
structed on the traditional method, it is only necessary to analyze the complexity of 
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each change. The complexity increases by O(N) to perform one more scan to detect 
outliers. The complexity increases by O((r*ni+r2)*(N-k)) at most in computing clus-
ters’ distance. Thus, the complexity increases by O((r*ni+r2)*(N-k) +N) in total. Since 
r2<N in most cases, the complexity of ASCAR equals O(N2).  

The overview of the proposed algorithm ASCAR is listed in Figure 1. 

 

Algorithm ASCAR( r, β  ) 

1.{ Read all data and decide vector amax and amin; 

2.  Treat each data as a separate cluster; 

3.  Compute each cluster’s nearest-neighbor; 

4.  Determine the value of β Step; 

5.  Dout = outlier(amax, amin, β Step); 

6.  Name the nearest clusters at present as CNN-A, CNN-B; 

7.  while (D(CNN-A, CNN-B) <= Dout) 

8.  {  Merge clusters CNN-A and CNN-B; 

9.     Update CNN-A and CNN-B; } 

10. }  //End of ASCAR 

Fig. 1. The Auto-stopped Hierarchical Clustering Algorithm ASCAR 

4    Experiment and Analysis 

The evaluation of the new algorithm is undertook in two aspects: first, the real-life 
datasets Iris and Wine of UCI Machine Learning Repository [5] are adopted; then 
ASCAR is applied in analyzing the Princeton Shape Benchmark[8]. 

4.1    Data Sets of UCI 

The criterions Entropy and Purity of [6] are adopted to measure the clustering results’ 
quality for Iris and Wine datasets. And the better the clustering result, the smaller is  
 

Table 2. Overview of the clustering results of ASCAR and other algorithms 

 Dataset Parameters k Entropy Purity nout 
Iris =2.2, r=5 5 0.3542 0.8121 5 

ASCAR 
Wine =1.8, r=4 14 0.1837 0.8864 3 
Iris =4.0 2 0.4206 0.6667 -- 

Frozen 
Wine =0.5 13 0.4998 0.7247 -- 
Iris =0.7, MPts=3 2 0.4077 0.6867 -- 

DBScan 
Wine =35, MPts=3 6 0.5866 0.6798 -- 
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Fig. 2. Changes of V with the Increase of l      Fig. 3. Average of each dimension f 

the Entropy and the bigger is the Purity. The clustering performance of ASCAR is 
listed in Table 2 along with the detected number of outlier. To be more persuasive, 
Table 2 also gives the best clustering results of DBScan[7] and Frozen. Figure 2 shows 
the change of V with the increasing of step num. l. 

4.2    Princeton Shape Benchmark 

The feature extraction method of section 2 with R=32 and B=10 is applied to obtain 
the shape feature from 3D models. Obviously, the model feature with the dimension-
ality 320 will greatly reduce the clustering performance. Figure 3 shows that the first 
element of the transformation result for each ( , )rf θ ϕ  plays the most important role in 

distinguishing model. Therefore, we select that element and obtain the shape feature 
with M=32. In experiment, the Euclidean distance is adopted.  

Table 3. Cluster’s detail of C90 and C160 

No Cluster’s Detail 

C90 

 

C160 
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Table 4. Part of the detected outliers and the respective value of step num l 

M741 (L=1) M737(L=2) M416(L=2) M1401(L=3) M286(L=3) 

     

Since there is no valuable knowledge of the classification of the models in PSB, we 
have to list the details of the result cluster. When r=4 and =0.8*5, ASCAR obtains 
160 clusters with the smallest size of 2. Due to space limit, Table 3 just lists the de-
tails of C90 and C160. Comparing to the manual classification result of PSB, ASCAR 
achieves very similar classes’ number. But, ASCAR clusters the models with similar 
shape together no matter what real-life meaning they represent, especially if the fea-
ture extraction method satisfies the request that models with similar shape have simi-
lar feature. However, this cannot is not always satisfied and clustering mistakes can 
be observed in Table 3. Table 4 lists part of the detected outliers along with step num 
l, under which they are pruned. 

We also applied the auto-stopped algorithms DBScan and Frozen in analyzing 
PSB. Under all possible value of parameters, Frozen algorithm obtains over 1200 
clusters, while DBScan tends to obtain a little huge clusters. For instance, when =0.2 
and MPts=2, DBScan gets 66 clusters with n0=715, n1=1028, n2, n3…n7=2, and n8, n9…n65=1. 
Obviously, these results are not acceptable as a classification of the database. 

5   Conclusion 

To analyze the 3D model database, the paper proposes a new strategy that integrates 
outlier detection with clustering and introduces an auto-stopped hierarchical cluster-
ing algorithm ASCAR. Experimental results show ASCAR’s good performance in 
clustering the Princeton Shape Benchmark and 2 datasets from UCI. The future works 
will concentrate on the study of using the representations of the clustering result to 
establish the index of 3D model database.  
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Abstract. When the data consists of a set of objects described by a
set of variables, we have recently proposed a new mixture model which
takes into account the block clustering problem on the both sets and have
developed the block CEM algorithm. In this paper, we embed the block
clustering problem of contingency table in the mixture approach. In us-
ing a Poisson model and adopting the classification maximum likelihood
principle we perform an adapted version of block CEM. We evaluate its
performance and compare it to a simple use of CEM applied on the both
sets separately. We present detailed experimental results on simulated
data and we show the interest of this new algorithm.

1 Introduction

Cluster analysis is an important tool in a variety of scientific areas such as pat-
tern recognition, information retrieval, micro-array, data mining, and so forth.
Although many clustering procedures such as hierarchical clustering, k-means or
self-organizing maps, aim to construct an optimal partition of objects or, some-
times, of variables, there are other methods, called block clustering methods,
which consider simultaneously the two sets and organize the data into homoge-
neous blocks.

A wide variety of procedures have been proposed for finding patterns in
data matrices. These procedures differ in the pattern they seek, the types of
data to which they apply, and the assumption on which they rely. Let us men-
tion the works of Hartigan (1975), Bock (1979), Garcia and Proth (1986), Mar-
chotorchino (1987), Govaert (1983, 1995), Arabie and Hubert (1990), Duffy and
Quiroz (1991) and Ritschard et al. (2001) who have proposed some algorithms
dedicated to different kinds of matrices.

These last years, block clustering (also called biclustering) has become an
important challenge in data mining context. In the text mining field, Dhillon
(2001) has proposed a spectral block clustering method by exploiting the duality
between rows (documents) and columns (words). In the analysis of micro-array

A. Jorge et al. (Eds.): PKDD 2005, LNAI 3721, pp. 609–616, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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data where data are often presented as matrices of expression levels of genes
under different conditions, block clustering of genes and conditions has permitted
to overcome the problem of the choice of similarity on the both sets found in
conventional clustering methods (Cheng and Church, 2000). Also, these kinds
of methods have practical importance in a wide of variety of applications such
as text and market basket data analysis. Typically, the data that arises in these
applications is arranged as a two-way contingency or co-occurrence table.

In this paper, we will focus on these kinds of data. The data which we consider
is noted x ; it is a r × s data matrix defined by x = {(xij); i ∈ I, j ∈ J},
where I is a categorical variable with r categories and J a categorical variable
with s categories. In exploiting the duality between I and J , we will study
the block clustering problem in embedding it in the mixture approach. We will
propose a block mixture model which takes into account the block clustering
situation and perform an innovative co-clustering algorithm. This one is based
on the alternated application of Classification EM (Celeux and Govaert, 1992) on
intermediate data matrices. To propose this algorithm, we set this problem in the
classification maximum likelihood (CML) approach (Symons, 1981). This paper
deals to compare block CEM and two-way CEM, i.e. CEM applied separately
on I and J . Results on simulated data are given, confirming that block CEM
gives much better performance than two-way CEM.

The paper is organized as follows. In Section 2, we give the necessary back-
ground CML approach and we describe the CEM algorithm and its steps when
the data is arranged as a two-way contingency. In Section 3, we start by re-
calling our block mixture model and we describe the block CEM algorithm. In
order to compare two-way CEM and block CEM, in Section 4, we perform nu-
merical Monte Carlo simulations. A final section summarizes and indicates the
recommended algorithm.

2 Mixture Model and Clustering

For convenience, we represent a partition of I into g clusters by z = (z1, . . . , zr)
where zi, which indicates the component of the row i, is represented by zi =
(zi1, . . . , zig) with zik = 1 if row i is in cluster k and 0 otherwise. Then, the kth
cluster corresponds to the set of rows i such that zik = 1. We will use similar
notation for a partition w into m clusters of the set J . In the following, to
simplify the notation, the sums and the products relating to rows, columns or
clusters will be subscripted respectively by letters i, j or k without indicating
the limits of variation, which will be thus implicit. Thus, for example, the sum∑

i stands for
∑r

i=1 or
∑

i,j,k,� stands for
∑r

i=1
∑s

j=1
∑g

k=1
∑m

�=1.

2.1 CML Approach and the CEM Algorithm

In the model-based clustering (see for instance (McLachlan and Peel, 2000), it
is assumed that the data are generated by a mixture of underlying probability
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distributions, where each component k of the mixture represents a cluster. Thus,
the density of the observed data x is expressed as

f(x;θ) =
∏

i

∑
k

πkϕk(xi;αk) (1)

where θ = (π1, ..., πg, α1, ..., αg), (π1, ..., πg) are the mixing proportions and
(α1, ..., αg) are the parameters of the density components ϕk.

The clustering problem can be studied under mixture model using two differ-
ent approaches: the maximum likelihood (ML) approach and the classification
maximum likelihood (CML) approach (Symons, 1981). In this paper we focus
on the second approach.

The ML approach estimates the parameters of the mixture and the parti-
tion is derived from these parameters using the maximum a posteriori principle
(MAP). In the CML, the partition is added to the parameters to be estimated.
The CML approach consists in estimating the parameters of the mixture and the
partition. The maximum likelihood estimation of these new parameters leads to
optimize in θ and z the complete data log-likelihood

LC(z,θ) = L(θ;x, z) = log f(x, z;θ) =
∑
i,k

zik log (pkϕk(xi;αk)) .

This optimization can be done by the Classification EM (CEM) algorithm (Celeux
and Govaert, 1992), a variant of EM (Dempster, Laird and Rubin, 1977), which
converts the posterior probabilities tik’s to a discrete classification in a C-step
before performing the M-step.

2.2 Application to Contingency Table

In this situation, the contingency table x is a r × s data matrix defined by
x = {(xij); i ∈ I, j ∈ J}, where I and J are categorical variables with r and
s categories. The sum of each row i will be denoted xi.. Thus, if we note θ =
(π1, . . . , πg, α11, . . . , αgs) the parameter of the model and ϕ is the multinomial
distribution of the k-th component, the log-likelihood (up to a constant) can
be written as L(θ;x) =

∑
i log

∑
k πkαxi1

k1 . . .αxis

ks , and the complete data log-
likelihood as L(θ;x, z) =

∑
i,k zik

(
lnπk +

∑
j xij log αkj

)
.

In clustering context, the use of the mixture model deals to find the compo-
nent from which each row arises. The CEM algorithm allows us to achieve this
goal and the different steps of CEM in this situation are

– E-step: compute the posterior probabilities t
(c)
ik ∝ πkαxi1

k1 . . .αxis

ks ;
– C-step: the kth cluster of z(c+1) is defined with z

(c+1)
ik = 1 if

k = argmaxk=1,...,g t
(c)
ik and z

(c+1)
ik = 0 otherwise;

– M-step: by standard calculations, one arrives at the following re-estimations

parameters π
(c+1)
k = n

(c+1)
k

r and α
(c+1)
kj = xkj

xk.
where n

(c+1)
k is the cardinality

of the kth cluster of z(c+1), xkj =
∑

i z
(c+1)
ik xij and xk. =

∑
j xkj .
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Having found the estimate of the parameters and noting fkj = xkj

x..
where

x.. =
∑

i,j xij , we can show that, when the proportions are fixed, the maximiza-
tion of L(θ;x, z) is equivalent to the maximization of the mutual information
I(z,J) =

∑
k,j fkj log fkj

fk.f.j
and approximately equivalent to the maximization

of the chi-square criterion χ2(z,J) = x..

∑
k,j

(fkj−fk.f.j)2

fk.f.j
. Hence the use of the

both criteria χ2(z,J) and I(z,J) supposes implicitly that the data arise from a
mixture of multinomial distributions. To tackle the block clustering problem, we
can obviously use the CEM on I and J separately (noted 2CEM) but unfortu-
nately it is unaware of the correspondence between I and J . It will be seen later
that this process is ineffective to detect homogeneous blocs.

3 Block Mixture Model for Contingency Table

To study the block clustering problem, we have extended (Govaert and Nadif,
2003) the mixture model to propose a block mixture model defined by the fol-
lowing probability density function

f(x;θ) =
∑

(z,w)∈Z×W

∏
i

πzi

∏
j

ρwj

∏
i,j

ϕ(xij ;αziwj
)

where θ = (π,ρ,α11, . . . ,αgm), π = (π1, . . . , πg) and ρ = (ρ1, . . . , ρm) are the
mixing proportions and ϕ(x,αk�) is a probability density function defined on
the real set R.

Counts in the r × s cells of a contingency table are typically modelled as
random variables. In our situation, we assume that for each block k� the values
xij are distributed according the Poisson distribution P(αiβiδk�) for which the
probability mass function is

e−αiβjδk�(αiβjδk�)xij

xij !
.

The Poisson parameter is split into αi and βj the effects of the row i and the
column j and δk� the effect of the block k�. Because the aim is to maximize the
complete data log-likelihood not only depending on θ but on z,w, an adapted
re-parametrization of the Poisson distribution becomes necessary. To this end,
we impose some constraints and we assume that

∑
� β�δk� = 1 and

∑
k αkδk� = 1

with αk =
∑

i,k zikαi β� =
∑

j,� wj�βj .
To tackle the simultaneous partitioning problem, we will use the CML ap-

proach, which aims to maximize the classification log-likelihood called complete
data log-likelihood associated to the block mixture model. With our model, the
complete data are (z,w,x) and the classification log-likelihood is given by

Lc(z,w,θ) = L(θ;x, z,w) = log(p(z;θ)p(w;θ)f(x|z,w;θ)).

To maximize Lc(z,w,θ), like in Govaert and Nadif (2003) we propose to
maximize alternatively the classification log-likelihood with w and ρ fixed and
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then with z and π fixed. By noting xi� =
∑

j wj�xij , the classification log-
likelihood can be written as

Lc(z,w,θ) =
∑
i,k

zik log πk +
∑
j,�

wj� log ρ� +
∑
i,k

zik

∑
�

xi� log δk�.

If we note ui = (xi1, . . . , xi�, . . . , xim) and γk� = x.�δk�, the classification
log-likelihood can be decomposed into two terms

Lc(z,w,θ) = Lc(z,θ/w) + g(x,w,ρ)

where the first one, can be written as

Lc(z,θ/w) =
∑
i,k

zik log(πkΦ(ui,γk))

where Φ(ui,γk) is the multinomial distribution for xi1, . . . , xim with the proba-
bilities γk1, . . . , γkm and the second one can be written as

g(x,w,ρ) =
∑
j,�

wj� log ρ� −
∑

�

x.� log x.�.

Hence, Lc(z,θ/w), called in the followings conditional classification log-
likelihood, corresponds to the complete log-likelihood associated to a classical
mixture model defined on the samples u1, . . . ,ur. As g(x,w,ρ) does not depend
on z, maximizing Lc(z,w,θ) for w fixed is equivalent to maximize the condi-
tional classification log-likelihood Lc(z,θ/w), which can be done by the CEM
algorithm applied to the multinomial mixture model. The different steps of CEM
are

– E-step: compute the posterior probabilities t
(c)
ik ;

– C-step: the kth cluster of z(c+1) is defined with z
(c+1)
ik = 1 if

k = argmaxk=1,...,g t
(c)
ik and z

(c+1)
ik = 0 otherwise.

– M-step: by standard calculations, one arrives at the following re-estimations
parameters

π
(c+1)
k =

#z
(c+1)
k

r
and δ

(c+1)
k� =

xk�

xk.x.�

where # denotes the cardinality and

xk� =
∑

i

z
(c+1)
ik xi� =

∑
ij

z
(c+1)
ik wj�xij .

In the same way, we can show that

Lc(z,w,θ) = Lc(w,θ/z) + g(x, z,π)

where
g(x, z,π) =

∑
i,k

zik log πk −
∑

k

xk. log xk.
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does not depend on w and Lc(w,θ/z) corresponds to the complete log-likelihood
associated to a classical mixture model defined on the samples v1, . . . ,vs where
vj = (x1j , . . . , xkj , . . . , xgj) with xkj =

∑
i zikxij and therefore develop the dif-

ferent steps of the CEM algorithm applied on v1, . . . , vs to maximize Lc(z,w,θ)
for z fixed.

Finally, we can describe easily the different steps of the algorithm called block
CEM and noted BCEM:

1. Start from an initial position (z(0),w(0),θ(0)).
2. Computation of (z(c+1),w(c+1),θ(c+1)) starting from (z(c),w(c),θ(c)):

(a) Computation of z(c+1),π(c+1), δ(c+ 1
2 ) using the CEM algorithm on the

data (u1, . . . ,ur) starting from z(c),π(c), δ(c).
(b) Computation of w(c+1),ρ(c+1), δ(c+1) using the CEM algorithm on the

data (v1, . . . ,vs) starting from w(c),ρ(c), δ(c+ 1
2 ).

3. Iterate the steps 2 until the convergence.

4 Numerical Experiments

To illustrate the behavior of our algorithms BCEM and 2CEM, we studied their
performances on simulated data. We selected twenty five kinds of data arising
from 3× 2-component Poisson block mixture in considering firstly the situation
where the proportions are equal proportions (π1 = π2 = π3 and ρ1 = ρ2). These
data are obtained by varying the following parameters: the degree of overlapping
which depends on the parameters θ = (π,ρ, δ), and the sizes r and s. This degree
of overlapping can be measured by the Bayes error corresponding to our model.
Its computation being theoretically difficult, we used Monte Carlo simulations
and evaluated this error by comparing the simulated partitions and those we
obtained by applying a C-step. Five degrees of overlapping have been considered
and are approximatively equal to 6%, 11%, 16%, 18%, 20%. Concerning the size,
we took r× s = (30× 100), (50× 100), (100× 100), (500× 100) and (1000× 100).

For each of these 25 data structures, we generated 30 samples and for each
sample, we ran BCEM and CEM 100 times starting from random situations and
selected the best solution for each method. In order to summarize the behavior
of these algorithms, we used the proportion of misclassified points "error rate"
occurring for each sample.

The results obtained are displayed in Table 1. For each data set and each
algorithm, we summarize the 30 trials with the means and standard deviations of
error rates obtained by comparing the partitions obtained by the both methods
and the simulated partitions. In Table 2, we report the means and standard
deviations of running times.

From these experiments, the main point arising are the following.

– The version 2CEM working on the two sets separately is suitably effective
only when the clusters are well separated. This shows the risk of the use of
such methods when the clusters are ill-separated.
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Table 1. Comparison of BCEM and 2CEM for 30 kinds of data : means and standard
deviations of error rates

Overlap
Size 1 2 3 4 5

BCEM 0.177 ( 0.084) 0.321 ( 0.186) 0.560 ( 0.164) 0.665 ( 0.106) 0.657 ( 0.135)
30 2CEM 0.309 ( 0.066) 0.427 ( 0.134) 0.625 ( 0.124) 0.663 ( 0.092) 0.678 ( 0.101)

BCEM 0.105 ( 0.055) 0.239 ( 0.076) 0.488 ( 0.126) 0.707 ( 0.116) 0.682 ( 0.146)
50 2CEM 0.262 ( 0.066) 0.350 ( 0.090) 0.581 ( 0.103) 0.701 ( 0.086) 0.710 ( 0.102)

BCEM 0.063 ( 0.024) 0.155 ( 0.015) 0.335 ( 0.062) 0.449 ( 0.160) 0.623 ( 0.155)
100 2CEM 0.183 ( 0.056) 0.281 ( 0.049) 0.477 ( 0.101) 0.570 ( 0.086) 0.658 ( 0.124)

BCEM 0.061 ( 0.011) 0.123 ( 0.011) 0.166 ( 0.019) 0.198 ( 0.022) 0.255 ( 0.040)
500 2CEM 0.098 ( 0.019) 0.195 ( 0.024) 0.277 ( 0.043) 0.375 ( 0.070) 0.446 ( 0.080)

BCEM 0.065 ( 0.005) 0.118 ( 0.007) 0.162 ( 0.012) 0.187 ( 0.016) 0.212 ( 0.029)
1000 2CEM 0.083 ( 0.012) 0.190 ( 0.022) 0.247 ( 0.025) 0.300 ( 0.052) 0.376 ( 0.037)

Table 2. Comparison of BCEM and 2CEM for 30 kinds of data : means and standard
deviations of running times

Overlap
Size 1 2 3 4 5

BCEM 2.102 ( 0.126) 2.162 ( 0.187) 1.934 ( 0.176) 1.870 ( 0.131) 1.871 ( 0.094)
30 2CEM 1.422 ( 0.058) 1.490 ( 0.048) 1.565 ( 0.198) 1.476 ( 0.039) 1.461 ( 0.037)

BCEM 2.314 ( 0.274) 2.901 ( 0.173) 2.823 ( 0.553) 2.394 ( 0.098) 2.444 ( 0.084)
50 2CEM 2.440 ( 0.150) 2.418 ( 0.141) 2.689 ( 0.693) 2.437 ( 0.149) 2.349 ( 0.157)

BCEM 2.282 ( 0.147) 3.386 ( 0.192) 3.785 ( 0.335) 3.230 ( 0.225) 2.827 ( 0.169)
100 2CEM 4.599 ( 0.071) 4.607 ( 0.070) 4.685 ( 0.061) 4.653 ( 0.104) 4.560 ( 0.053)

BCEM 6.346 ( 0.435) 7.387 ( 0.758) 8.784 ( 0.933) 7.800 ( 0.833) 6.868 ( 0.729)
500 2CEM26.760 ( 0.250)26.430 ( 0.227)26.719 ( 0.364)26.540 ( 0.436)26.407 ( 0.183)

BCEM 9.460 ( 1.130) 10.521 ( 0.981)10.189 ( 0.874) 8.382 ( 0.609) 7.916 ( 0.626)
10002CEM54.566 ( 0.280)54.453 ( 0.318)54.387 ( 0.348)54.796 ( 0.443)54.277 ( 0.186)

– Incontestably BCEM outperforms 2CEM. The results are very encouraging
and its performance increases with the size of data.

– It appears clearly that BCEM is undoubtedly faster as soon as the size is
large enough.

We carried out other simulations on large data sets with proportions dramatically
different, not included in this text, which confirms these remarks.
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5 Conclusion

Setting the problem of block clustering under the CML approach, we have com-
pared block CEM and two-way CEM. The first one gives encouraging results
on simulated data and real data and is therefore strongly recommended : it is
faster and better than two-way CEM. Currently, we are evaluating block CEM
on other large real data sets. In this paper, we have considered the block clus-
tering for contingency tables under the CML approach and, as in Govaert and
Nadif (2005a, 2005b) for binary data, it would be interesting to study the block
clustering of contingency table under the ML and fuzzy approaches.
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Abstract. Imbalanced data learning has recently begun to receive much
attention from research and industrial communities as traditional ma-
chine learners no longer give satisfactory results. Solutions to the prob-
lem generally attempt to adapt standard learners to the imbalanced data
setting. Basically, higher weights are assigned to small class examples to
avoid their being overshadowed by the large class ones. The difficulty
determining a reasonable weight for each example remains. In this work,
we propose a scheme to weight examples of the small class based solely
on local data distributions. The approach is for categorical data, and a
rule learning algorithm is constructed taking the weighting scheme into
account. Empirical evaluations prove the advantages of this approach.

1 Introduction

It a practical sense, applying standard machine learning methods to real world
tasks when their class distribution is imbalanced is problematic. This is the
case of a data set, in which the number of examples of one class is substantially
smaller than the others. For instance,if one class accounts for only 2% of the total
number of examples in the data set, a classifier can get a high accuracy of 98%
just by assigning all its examples to the large class. However, in such a case, the
classifier completely fails to learn the small class, which is usually of interest. In
practice, researchers have encountered this problem in many domains, including
the detection of fraudulent transactions [1], network intrusion detections [2] and
oil spills in satellite radar images [3].

The reason that standard classifiers can no longer give a satisfactory per-
formance on such data sets is because they make the fundamental assumption
that frequencies of classes are equally distributed. Adaptations to imbalanced
data sets are usually made by giving small class examples higher weights. One
simple way is resampling, which duplicates small class examples or selects only
a subset of large class ones. Such approaches do not have high performance, as
reported in [4], because various examples are affected differently by the class
imbalance problem. SMOTE [5] combines synthetic example generation with
downsampling, but the resampling degree is not specified. Resampling to reflect
relative weights between examples or classes still remains an art.

It is believed to be more promising to weight examples differently, and various
approaches have been proposed. Kubat et al. [3] insist that large class examples
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in a mixed region should be weighted zero as long as that increases performance
measure. Learning on a cluster basis is used [6] to weight examples accordingly.
Learning decision trees (DT) [7] is made independent of class frequencies by
using the Area Under the ROC Curve (AUC) as a splitting criterion, which
is equivalent to weighting examples according to their distribution in the set
of examples covered by the splitting nodes. A general way to optimally weight
examples (in Bayes risk sense) is using MetaCost [8], by bagging and then prob-
ability estimation. However, in highly imbalanced data sets, examples of small
class are rarely learned, making their optimal costs extremely high. Again, it is
still a challenge to weight examples optimally for the imbalanced data problem.

We propose a method to estimate the optimal weight of each small class
example basing solely on local data distributions. The intuition is that by looking
more closely into local data distribution, we have more chance to reveal useful
information about the effect of class imbalance. To this end, we first define
the concept of vicinity, which characterizes local data distribution and then
determines examples’ weights with the aiming of maximizing AUC in the vicinity.
The weight is integrated into a rule induction algorithm at the rule pruning step.

The paper is organized as follows. Section 2 is the foundation and formu-
lation of our locally adaptive weighting scheme. Integration of the weighting
scheme into our rule learning algorithm is described in Section 3. In Section
4, we show experimental evaluations of the scheme to other imbalanced data
classifiers. Conclusions are presented and future work is discussed in section 5.

2 Locally Adaptive Weighting Scheme

We approach the imbalanced data problem by giving a weight adaptively for
each small class example, while keeping the weights of large class examples at a
default value (i.e. 1). The key idea is to weight each small class based on its local
neighborhood (hence, it is locally adaptive), which is defined as the vicinity of
the rule covering it. This section will define the concept of vicinity and derive the
formulation of example weighting based on vicinity using AUC as the criterion.

Vicinity: The idea behind vicinity is as follows. Consider two rules Ri, i = 1, 2
with the same coverage for every class (Ri covers ni, pi examples from large and
small classes respectively, n1 = n2, p1 = p2). Conventionally, the two rules are
evaluated as the same goodness (e.g., precision for small class pi

pi+ni
). Assume

that we have some way to define the surround of a rule, called a neighborhood. If
R1 is likely to be pruned to a better one, then in its neighborhood there must be
some examples of the same class as the predicting class of R1. On the other hand,
R2 is surrounded by examples from other classes, hence it cannot be pruned to
a better one. Our idea is to evaluate the two rules differently, R1 to be higher
than R2, reflecting their ability to be pruned. This different evaluation is based
on the fact that there is a set of examples in each rule’s neighborhood, which
creates the difference in pruning ability. By vicinity, then, we mean this set of
examples. We define vicinity based on the concept of k-vicinity.
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Definition: The distance from a rule to an example is the minimum number
of attribute value pairs in the body of the rule that must be removed in order to
make the rule cover the example.
Definition: The k-vicinity of a rule R for a training data set D is the set of
examples in D that are less than or equal to a distance of k to the rule.

k-vicinity(R) = {x | x ∈ D, Distance(R, x) ≤ k} (1)

K-vicinity is a subset the training data set, which is potentially covered by
the rule after k steps of generalization. The smaller k is, the higher the influence
the examples in k-vicinity may have on the generalization (pruning) ability of
the rule. For example, 0-vicinity is the set of examples covered by the rule, m-
vicinity is the whole data set if m is the number of attribute-value pairs in the
rule body. The set of all k-vicinities is a nested chain of subsets of the data set,
meaning: 0-vicinity ⊆ 1-vicinity ⊆ ... ⊆ m-vicinity. We define vicinity using this
chain with weights. Formally, vicinity is a function f over k-vicinities.

vicinity = f{1-vicinity , 2-vicinity , ..., m-vicinity} (2)

Estimating vicinity is a difficult task. However, the way around the problem
is to let the vicinity of a rule remain a virtual concept. We only need to calculate
the ratio of class distribution in the vicinity as in the weighting scheme discussed
in the next section.
Example Weighting and Rule Evaluation: As a vicinity is expected to con-
tain examples that influence the pruning ability of a rule, we use this assumption
to define the best rule as the one giving optimal classification within its vicinity.
Our idea is to weight examples in the vicinity such that the optimal classification
coincides with the lowest misclassification cost. Defining optimal classification
on a vicinity results in a locally adaptive weighting scheme.

We define optimal classification as the one that gives the largest AUC. AUC
is a popular metric for comparing classifiers’ performance [9, 10] when the mis-
classification costs are unknown. When a classifier is a set of rules, as in Figure 1
(a), the ROC curve contains a set of line segments. Here, the classifier is assumed
to have four rules, sorted in decreasing order of their precision for a class. For
simplicity, we assume that there is only one rule for small class in a vicinity.
Then, the ROC curve of a classifier (by R or R2) in its vicinity would look like
Figure 1 (b). The classifier here consists of a rule (say R) and the default rule
predicting the large class. Suppose R covers p small and n large class exam-
ples, and the vicinity contains P small and N large class examples. The rule
evaluation metric, defined to be AUC above, is calculated [7] as:

AUC(R) =
p

2P
− n

2N
+

1
2

(3)

The above formula implies that the weight of a small class example in this
vicinity is N

P when the weight of a large class example is the default value 1.
The rule evaluation metric is used to compare different rules for search bias.

However, it is not natural to compare AUC in different contexts (vicinities).



620 C.H. Nguyen and T.B. Ho

(a) (b)

Fig. 1. The ROC space: (a) plot of a rule learner. (b) for rule comparison in a vicinity.

Hence, we propose a comparison strategy that rule R1 is considered better than
rule R if and only if it gives a higher AUC in the vicinity of R. Equivalently, R1
is considered better than R if their AUC difference (in formula 4) is positive.

AUC(R1)−AUC(R) = 1
2 (p1−p

P − n1−n
N ) = 1

2 [(p1 − p)N
P − (n1 − n)] 1

N
(4)

For the purpose of comparing rules for search bias, it is sufficient to know N
P .

This is the reason we allow vicinity to remain an abstract concept, while we
heuristically estimate N

P directly. From equation 2, we propose to estimate class
distribution ratio N

P in the vicinity to be:

N

P
=

m∑
k=1

wk ∗ Nk

Pk
(5)

where m is the number of vicinities. In this formula, Nk

Pk
is class distribution

ratio in k-vicinity and wk is its associated weight, with
∑

wk = 1. This just
smooths out the class distribution ratios of different k-vicinities to estimate that
of the vicinity, in similar fashion to a shrinkage estimator, to make it robust. The
definition of vicinity is tunable by its weighting scheme, namely the set {wk}. If
wk is large for small k-s, vicinity reflects more local information. If wk is large
for large k-s, vicinity is more global. If we want to define vicinity to be the whole
data set, then set wm = 1. Having tunable set of {wk} is a generalization of a
simple cost sensitive classification. In this algorithm, we fix the default as:

wk =
1
m

, k = 1, m (6)

Such weights can also be set adaptively by users.
Discussion: The key point which makes this example weighting scheme suitable
for imbalanced data is the use of a local neighborhood. Having a myopic view
around a rule gives us a better picture of how much the imbalance may hinder
classification rules. Examples far away from the boundaries of classes may not
participate in any vicinity, also not affecting class discrimination (this is similar
to the idea behind SVMs).
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IDL
1. Generate a candidate rule set
2. Prune rules from high coverage to low

GenerateRuleSet
1. Generate a decision tree
2. Stop when leaf nodes contain only example from one class
3. Extract the set of leaf nodes that contain only examples of small class
4. Convert those nodes into rules and return

PruneRules
1. Sort rules according to coverage
2. From high to low coverage rule do
3. Remove best attribute value pair
4. Until no more AUC is gained
5. Return pruned rules

Fig. 2. IDL algorithm

3 IDL: Imbalanced Data Learner

IDL is a rule induction algorithm, which uses an one-sided selection strategy,
taking example weights into account to learn rules for a small class. IDL consists
of two steps. First, it generates a set of candidate rules for the small class by
growing a decision tree, which are meant to be complete and of high precision.
Then it prunes these rules by greedily removing attribute value pairs to make
them robust. Example weighting is used in rule pruning step using Formula 3 as
the rule evaluation metric. The overall strategy is depicted in Figure 2.

In the candidate rule set generation step, IDL grows a decision tree and only
stops when the leaf nodes contain examples from one class. As recommended in
[11], IDL takes the impurity (2

√
p(1− p)) gain as the splitting criterion. After

the decision tree is fully grown, the set of leaf nodes that contain only small
class examples are collected and turned into a set of rules. In the second step,
the collected rules for the small class are sorted in decreasing order of coverage.
Starting from the highest coverage one, each rule is pruned by removing the
best attribute value pair (the one having the highest AUC difference), according
to formula 4. It stops when removing does not improve either AUC or when
the precision of the rule (calculated without taking weights into account) falls
under a certain threshold. The examples covered by a rule are marked so that if
they are covered again, only half of their weights are retained. This makes the
rules overlap, and also greatly improves the recall of the classifier. The threshold
represents the minimum precision a rule should achieve, reflecting the amount of
noise in the data. This threshold is generally set by the users, and is estimated in
IDL as follows. First, set it to 80%, then do a 10-fold stratified cross-validation
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on the data set to estimate its difficulty to learn. Taking the F-measure on the
small class, say f (percent), then the threshold takes the value max(50, f − 10).

In the first step, IDL constructs an unpruned decision tree, which is of O(ea)
time complexity, where e is the number of examples and a is the number of
attributes. In the second step, suppose it generates k rules, each has maximum
nk attribute value pairs. As each pruning operation requires a pass of the data
set to calculate the class distribution ratio in the vicinity, the time complexity
of this step is at most O(eknk).

4 Experimental Evaluation

We evaluated IDL on its ability to learn a small class, and compared it to other
approaches. The first of these was SMOTE-NC (over C4.5) [5], the nominal
categorical version of what is arguably best method (SMOTE) for learning im-
balanced data. Since SMOTE is sensitive to its degree of sampling parameters,
we ran it on three degrees of small class upsampling, namely N=100%, N= 300%
and N=700%. We also compared IDL to a general classifier of C4.5, with and
without cost sensitive setting. In cost sensitive setting (C.S.), the relative cost
is just the ratio of class distribution of the data set. Boosting is also capable
of enhancing imbalanced data learners [12], so AdaBoost over C4.5 was also
compared. We used these classifiers from WEKA1. All algorithms ran with their
default parameters. We used F-measure on the small class as the performance
criterion, instead of the AUC measure (since we learn only small class rules).

F −measure =
2 ∗ precision ∗ recall

precision + recall
(7)

We evaluated those algorithms on selected fifteen UCI data sets 2, where
smallest class was chosen to be small class, and the other classes were merged
to become the large class. As the algorithm is for categorical data, all data sets
were discretized. We split data sets with a ratio of 75-25 randomly in a stratified
manner, the large parts were used for training and the small parts for testing.
Table 1 shows the result of testing on the small part of the data. The columns are
names, percentage of small class proceeded with class index and then classifiers
(SMOTE is tested with three parameters). All numbers are in percentage. The
last line shows average performance of on all data sets.

The table shows that our approach outperforms general classifiers by a large
margin, and is competitive to all three parameters for SMOTE. IDL shows an
improvement of 11.74% in terms of F measure on the small class compared
to a standard classifier of C4.5. For the cost sensitive setting of C4.5 (C.S),
it also improves by 3.81%. Compared to AdaBoost, IDL’s accuracy is 2.85%
higher. This means that IDL is more suitable for imbalanced data than general
classifiers. Comparing IDL to a imbalanced data learner of SMOTE (SMOTE-
NC version), IDL is also competitive to the three parameter settings; the average
1 www.cs.waikato.ac.nz/ml/weka/
2 http://www.ics.uci.edu/ mlearn/MLRepository.html
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Table 1. Comparison of Classifiers on UCI data

Name % C4.5 C.S.
SMOTE

A.Boost IDL
100 300 700 average

annealing1 11.0 73.9 62.3 77.4 71.0 66.7 71.7 70.6 96.2
car3 3.7 66.7 84.2 77.4 80.0 80.0 79.1 80.0 76.9
flare4 8.0 0.0 36.9 30.4 36.1 38.6 35.0 32.7 29.0
glass3 13.5 93.3 73.7 93.3 82.4 82.4 86.0 80.0 85.7
hypo0 5.0 85.7 81.9 85.7 83.1 83.1 84.0 84.6 84.6
inf0 6.3 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

krkopt16 0.9 85.7 82.8 88.4 88.4 90.1 89.0 84.1 87.1
krkopt4 0.7 58.0 69.1 66.7 71.8 66.7 68.4 61.3 75.9

led7 8.4 59.8 59.9 63.9 61.6 50.5 58.7 50.7 62.4
letter0 3.9 91.0 90.0 92.0 91.8 89.7 91.2 96.0 92.0

satimage3 9.7 51.5 52.8 57.9 51.8 51.3 53.7 57.9 50.3
segmentation5 14.1 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

sick1 6.5 82.8 69.6 82.8 81.8 73.8 79.5 82.8 80.9
vowel5 9.1 0.0 75.2 67.8 69.4 65.5 68.2 80.0 60.0
yeast4 3.4 0.0 30.8 33.3 44.4 40.0 39.2 21.1 43.5

Average 6.94 63.23 71.16 74.59 74.24 71.89 73.57 72.12 74.97
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Fig. 3. Improvement of IDL versus SMOTE

performance of SMOTE is 1.40% lower than that of IDL. It is noteworthy that
there is no systematical way to determine the resampling degree for SMOTE.

It is interesting to look at the improvement of IDL over C4.5 compared to
the average improvement of that of SMOTE over C4.5 in Figure 3. X axis is
the performance improvement of SMOTE (averaging all parameters), while y
axis is for IDL. The set of points shows a near linear relation. This means that
improvement of IDL is proportionate with that of SMOTE, meaning that IDL
is consistently similar to SMOTE.

5 Conclusion

We have proposed a method to weight examples for a small class based on their
local neighborhood. Neighborhood is defined as the virtual concept of vicin-
ity, while computation is based on k-vicinities. The algorithm is clearly more
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accurate than general classifiers, including Adaboost and MetaCost, and is com-
petitive to SMOTE while having the advantage of not requiring resampling pa-
rameters. From this, we can conclude that the information of neighborhood of
an example is useful for weighting it, in order to compensate imbalanced data.

The clear limitation of this method is how to define the weighting scheme
for a vicinity. For the moment, computational complexity is its main problem,
which should be reduced for large data sets. Applying the weighting scheme to
other classifiers for imbalanced data is a natural extension. Whether local data
distribution can be used to improve classifiers in general is an open question.

References

[1] Fawcett, T., Provost, F.: Combining data mining and machine learning for ef-
fective user profiling. In Simoudis, Han, Fayyad, eds.: The Second International
Conference on Knowledge Discovery and Data Mining, AAAI Press (1996) 8–13

[2] Lazarevic, A., Ertoz, L., Ozgur, A., Srivastava, J., Kumar, V.: ”evaluation of
outlier detection schemes for detecting network intrusions”. In: Third SIAM In-
ternational Conference on Data Mining. (2003)

[3] Kubat, M., Holte, R.C., Matwin, S.: Machine learning for the detection of oil
spills in satellite radar images. Machine Learning 30 (1998) 195–215

[4] Japkowicz, N.: The class imbalance problems: Significance and strategies. In:
Proceedings of the 2000 International Conference on Artificial Intelligence (IC-
AI’2000). Volume 1. (2000) 111–117

[5] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: Synthetic
minority over-sapling technique. Journal of Artificial Intelligence Research 16
(2002) 321–357

[6] Nickerson, A., Japkowicz, N., Milios, E.: Using unsupervised learning to guide
re-sampling in imbalanced data sets. In: Eighth International Workshop on AI
and Statitsics. (2001) 261–265

[7] Ferri, C., Flach, P., Hernandez-Orallo, J.: Learning decision trees using the area
under the roc curve. In Sammut, C., ed.: Nineteenth International Conference on
Machine Learning ICML’02, Morgan Kaufmann (2002)

[8] Domingos, P.: Metacost: A general method for making classifiers cost-sensitive.
In: Knowledge Discovery and Data Mining. (1999) 155–164

[9] Provost, F., Fawcett, T.: Robust classification for imprecise environments. Ma-
chine Learning 42 (2001) 203–231

[10] Furnkranz, J., Flash, P.: An analysis of rule evaluation metrics. In: The Twentieth
International Conference on Machine Learning (ICML’03), AAAI Press (2003)
202–209

[11] Elkan, C.: The foundations of cost-sensitive learning. In: Seventeenth Interna-
tional Joint Conference on Artificial Intelligence (IJCAI’01). (2001) 973–978

[12] Joshi, M.V., Agarwal, R.C., Kumar, V.: Predicting rare classes: can boosting
make any weak learner strong? In: Proceedings of the eighth ACM international
conference on Knowledge discovery and data mining, ACM Press (2002) 297–306



 

A. Jorge et al. (Eds.): PKDD 2005, LNAI 3721, pp. 625 – 633, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

Improvements in the Data Partitioning Approach for 
Frequent Itemsets Mining 

Son N. Nguyen and Maria E. Orlowska 

School of Information Technology and Electrical Engineering, 
The University of Queensland, QLD 4072, Australia 

{nnson, maria)@itee.uq.edu.au 

Abstract. Frequent Itemsets mining is well explored for various data types, and 
its computational complexity is well understood. There are methods to deal ef-
fectively with computational problems. This paper shows another approach to 
further performance enhancements of frequent items sets computation.  

We have made a series of observations that led us to inventing data pre-
processing methods such that the final step of the Partition algorithm, where a 
combination of all local candidate sets must be processed, is executed on sub-
stantially smaller input data. The paper shows results from several experiments 
that confirmed our general and formally presented observations. 

Keywords: Association rules, Frequent itemset, Partition, Performance. 

1   Introduction 

Since the association rules mining introduction by Argawal et al. [5], many algo-
rithms and their subsequent improvements have been proposed to solve association 
rules mining, especially frequent itemsets mining problems.  

In this paper, we review the state of the art in association rules mining with a focus 
on frequent itemsets mining. There are many well-accepted approaches such as “Ap-
riori” by Argawal et al. [1], ECLAT by Zaki [7], and more recently “FP-growth” by 
Han et al. [8]. Another interesting class of solutions is based on the data partitioning 
approach. This fundamental concept was originally proposed as a Partition algorithm 
by Savaserse et al. [2], and it was improved later in AS-CPA by Lin et al. [4] and 
ARMOR by Pudi et al. [11]. A common feature of these results is their target, namely 
the limitation of I/O operations by considering data subsets dictated by the main 
memory size. 

An intriguing question is whether we could improve the overall performance of 
mining large data sets by a smarter but not too ‘expensive’ design of the data frag-
ments - rather than determine them by a sequential transaction allocation based on the 
fragment size only. 

The main goal of this paper is to demonstrate our observations, generalize, and 
specify corresponding data pre-processing for the Partitioning approach in order to 
improve the performance. Our study is supported by a series of experiments which 
indicate a dramatic improvement in the performance of the Partitioning approach with 
our fragmentation method, in contrast to the traditional one [2].  
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The remainder of the paper is organised as follows. Section 2 introduces the basic 
concepts related to frequent itemsets mining. Section 3 reviews the current state of art 
in the field, especially for frequent itemsets mining and the Partitioning approach. 
Section 4 presents our observations and open issues. We propose the pre-processing 
data fragmentation solution in section 5. Section 6 shows the result from our experi-
ment, and finally, we present our concluding remarks in section 7. 

2   Preliminary Concepts 

For the completeness of this presentation and to establish our notation, this section 
gives a formal description of the problem of mining frequent itemsets . It can be 
stated as follows [1]:  

Let I = {i1, i2, …, im} be a set of m distinct literals called items. Transaction data-
base D is a set of variable length transactions over I.    

Each transaction contains a set of items {ij, ik, …, ih} ⊆  I, ij < ik <… < ih. Each 
transaction has an associated unique identifier called TID.  

For an itemset X ⊆  I, the support is denoted supD(X), equals to the fraction of 
transactions in D containing X.  

The problem of mining frequent itemsets is to generate all frequent itemsets X that 
have supD(X) no less than user specified minimum support threshold.  

3   Review Frequent Itemsets Mining 

Throughout the last decade, there have been many attempts and well-known algo-
rithms that target an efficient solution of the frequent itemsets mining problem. How-
ever, the performance of these algorithms depends on many, often very specific input 
data features and additionally, implementation environments. As a result, several 
claims made in earlier papers were later debated by other authors.  

3.1   Partitioning Approach for Frequent Itemsets Mining 

Savaserse et al. [2] proposed the Partition algorithm based on the following principle. 
A fragment P ⊆  D of the database is defined as any subset of the transactions con-
tained in the database D. Further, any two different fragments are non-overlapping. 
Local support for an itemset is the fraction of transactions containing that itemset in a 
fragment.  Local candidate itemset is being tested for minimum support within a 
given fragment. A Local frequent itemset is an itemset whose local support in the 
fragment is no less than the minimum support. Global support, Global candidate 
itemset, Global frequent itemset are defined as above except they are in the context of 
the entire database. The goal is to find all Global frequent itemsets.  

The following Lemma 1 supports the main principle of the Partition algorithm. 

Lemma 1: If X is a frequent itemset in database D, which is partitioned into n fragments 
P1, P2, ... , Pn, then X must be a frequent itemset in at least one of the n fragments. 

Proof:  Due to the limit space, the proof can be seen in [10] 
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The Partition algorithm divides D into n fragments. The algorithm first scans 
fragment Pi in the main memory at a time, for i = 1,…,n, to find the set of all Local 
frequent itemsets in Pi, denoted as LPi. Then, by taking the union of LPi, a set of can-
didate itemsets over D is constructed, denoted as CG. Based on Lemma 1, CG is a 
superset of the set of all Global frequent itemsets in D. Finally, the algorithm scans 
each fragment for the second time to calculate the support of each itemset in CG and 
to find the Global frequent itemsets.  

3.2   Related Work in Partitioning Approach 

One of the Partition algorithm derivatives is AS-CPA (Anti-Skew Counting Partition 
Algorithm) by Lin et al. [4]. Recently, there has been another development based on 
the partitioning approach in the ARMOR algorithm by Pudi et al. [11]. 

All the above algorithms mainly attempt to reduce the number of false candidates 
as early as possible. However, they do not consider any features and characteristics of 
data sets in order to partition the original data set more suitably for further processing.  

Further in this paper, we demonstrate that looking more closely into the data itself 
may deliver good gains in overall performance. As a result, the Local frequent item-
sets can be dramatically reduced. Furthermore, in many cases that leads to a larger 
number of common Global candidates among fragments. Finally, as a consequence, 
this approach reduces substantially the Global candidates (CG set). 

4   Observations in the Partitioning Approach 

We begin by considering the first and very obvious measurable data-partitioning at-
tribute – the size of fragments and their impact on the efficiency of the frequent items 
search process. Further on we examine more closely the composition of fragments at 
the design time to ensure that selection of transactions satisfy some desired properties. 

4.1   Reasoning About Size of Fragment 

It is not hard to observe that the size of the fragments is inverse-proportional to the 
size of the output of Local computation. Hence, the question is: What is a ‘good’ 
fragment size? We consider several heuristic methods to identify the suitable size of 
fragments.  

We note the following observation: the smaller fragment generates a more negative 
effect on the number of Local frequent itemsets. Clearly, the best partitioning of data 
set D into n fragments is defined as a method that generates the smallest number of 
Global candidates. We denote this smallest number as Gn. Note that the perfect solu-
tion would have to exhibit the following property; every fragment of the data gener-
ates identical Local frequent itemsets.  

We generalise these observations as follows; 

Lemma 2: If database D is partitioned into (n+1) fragments P1, P2, … , Pn+1  then the 
number of Global candidates, denoted |CG

n+1|, is always greater than or equal to Gn; 
|CG

n+1|  Gn 

Proof: Due to the limit space, the proof can be seen in [10] 
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As a consequence, the size of a fragment should maintain proper balance in order 
to control the number of Local frequent itemsets. 

4.2   Some Characteristics of Fragment Data 

Data skew has a negative impact on the Partitioning approach. Basically, data skew 
causes the Local frequent itemsets generated from different fragments to have very 
few common elements. In such situations, the number of Global candidates (being the 
union of all LPi) is rather large.  

Obviously, fragments that have many dissimilar transactions (transactions with 
small or empty intersections) generate a small number of Local frequent itemsets. In 
this paper we call them dissimilar fragments. 

These observations confirm our initial hypothesis that there are some relationships 
between the composition of fragments and the amount of computation required at the 
end. We illustrate the fact that a larger number of fragments increase the size of the 
computation space. In addition, for given number of fragments n, a different partition 
also impacts on the number of Global candidates. Furthermore, the gap in perform-
ance is increased dramatically when the support threshold is decreased and the num-
ber of fragments is increased.  

5   Data Set Pre-processing 

We present the following algorithms for original data pre-processing. 

5.1   Naive Algorithm 

One of the simplest techniques to be considered is the skipping technique. Before 
formalising this concept we show a simple example to illustrate its main principle.  

Consider data set D represented by a straight line on figures below. We partition D 
into 2 fragments as illustrated on the Figure 1. When a Skipping technique is used 
then D is initially divided into 4 small sequential parts. Each fragment is created by 
taking the union of 2 small skipping parts as it is shown on Figure 2. 

Sequential fragments             Skipping fragments  
   

 

One can easily generalise such partition process for any higher number of expected 
fragments. 

5.2   An incremental Clustering Algorithm 

The incremental clustering algorithm is our idea for pre-processing. The data set will 
be scanned only once and all clusters (fragments) containing mostly dissimilar trans-
actions are generated at the end of that scan. We introduce some basic definitions. 

p1 p2 
Fig. 1. 

p11 p12 p21 p22 
Fig. 2.
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Definition 5.1: Cluster Centroid is a set of all Items in the cluster, we denote it Ci = 
{I1, I2,.., In}. Additionally, each item in Ci has its associated weight which is its num-
ber of occurrences  in the cluster; {w1, w2, …, wn} 

Definition 5.2: Similarity function between two item sets, in particular a transaction 
and a cluster centroid, is denoted Sim (Ti, Cj) and defined as follows;    

Sim (Ti, Cj)  R+ ; Calculation of this function: 
   1. Let S be the intersection between the arguments of Sim function, S = Ti I  Cj 

   2. If S = O/  then Sim (Ti, Cj) = 0. Otherwise, S = { I1, I2,  …, Im }  with the cor-
responding weights { w1, w2,  …, wm } in cluster Cj, respectively, therefore           
Sim (Ti, Cj)  =   w1 + w2 +  … + wm 

Cluster Construction:  

Informally, each transaction is evaluated in terms of the following criteria;   
a) We sssign a new transaction Ti to cluster Cj which has the minimum    

Sim(Ti, Cj) value among open clusters (a cluster is open if has not exceeded 
its expected size in terms of number of transactions).  

b) Each new allocation to a cluster Cj, updates the cluster centroid Cj. All al-
ready existing common items’ weight is increased by 1, and the other new 
items are added to Cj with the weight of value 1. 

Reasoning about the size of clusters: based on the observation in section 4.1, the clus-
ter sizes should be well balanced. 

The pseudo incremental clustering algorithm is described as the following 

Input: Transaction database: D; k – number of output clusters 
Output: k clusters based on the above criteria for Partition approach. 

Begin 
1. Assign the first k transactions to all k clusters, and initialize the all Cluster 

Centroids: {C1, C2, …, Ck} 
2. Consider the next k transactions: {T1, T2, …, Tk}. These k transactions are 

assigned to k different clusters. These operations are done based on the fol-
lowing criteria: (i) the minimum similarity between the new transaction and 
the suitable clusters; (ii) the sizes of these clusters are controlled to keep the 
balance. The following are more detail about this processing. 

Let Crun = {C1, C2, …, Ck } is a set of all k clusters; Trun = {T1, T2, …, Tk } 
For each transaction Ti in Trun : T1 to Tk 

Begin 
a) Calculate the similar functions between Ti and all the  clusters in Crun ; 

determine the minimum similar function value, denoted Sim(Ti, Cj) 
b) Assign Ti to cluster Cj which has the minimum Sim(Ti, Cj) value. Up-

date the cluster centroid Cj 
c) Remove Cj from the set of all the suitable clusters in order to keep the 

same size constraint. Crun  = Crun – { Cj}; 
      End 

3. Repeat step 2 till all transactions in D are clustered 
End 
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The time complexity of this incremental clustering algorithm is about O(|D| * k *m) 
where |D| is the number of all transactions, k is the given number of clusters, and m is 
the number of all items in D.  

6   Experiments 

In this section, we conducted experiments on: one synthetic data set [1], and 3 real 
data sets [13]. These data sets are converted to format as the above definitions.  

Table 1. The characteristics of data sets 

Data sets Transactions Items DB Size (~MB) 
T10I4D100K 100K 870 4 
WebView-1 26K 492 0.7 
WebView-2 52K 3335 2 
BMS-POS 435K 1657 10 

Our goal is to compare the cardinality of the outputs from two phases of the Parti-
tioning algorithm; at the Local level and the Global level, before and after application 
of our pre-processing. Firstly, data set is partitioned into fragments; secondly the 
Apriori algorithm (by Zhu T. [12]) is applied to find Local frequent itemsets (LPi) for 
each fragment. Subsequently, union of these LPi generates the Global candidates. 

Resulting figures for each data set are represented in following template table 2. 
The 2nd, 3rd and 4th columns’ names indicate three techniques for data preparation: 
Sequent fragments correspond to loading clusters with original data, Skipping frag-
ments are constructed as described in section 5.1; and the Clustering fragments are 
the pre-processed data as presented by our clustering method described in section 5.2.  

The data sets used are indicated on the top of each table segment. We present three 
different scenarios; each data set is partitioned into 1, 2 and 5 fragments. The Sequent 
column represents the numbers of the Local level (LP1, LP2, …, LPn), the number of 
Global candidates. Note that this figure is presented by showing its two components; 
for example, 16 + (378) indicates that there are 16 candidates to be checked and 378 
common candidates don’t need additional check.  

Using the same convention, the Skipping and Clustering columns represent the 
figures for the Skipping technique and the Clustering pre-processing, respectively. 

As can be seen from Table 2 and 3, there are big gains from the careful data pre-
processing. Further, to discuss the impact of threshold level, let us denote the cardi-
nality of checked Global candidate set as |Cn

G|, where n is the number of fragments. 
|Cn

G| is reduced for all data sets for all support thresholds. For example, if 
T10I4D100k is partitioned into 2 fragments, |C2

G| decreases from 16 for Sequent to 3 
for Clustering with the support threshold 0.01. This reduction is also present when 
considering other real data sets that are partitioned into 2 fragments. Its value reduces 
from 1,820 to 348 with the threshold 0.005 for very large data set BMS-POS. More-
over, if data sets are partitioned into 5 fragments, this gap among 3 techniques is even 
greater. For example, if T10I4D100k is partitioned into 5 fragments, |C5

G| decreases 
from 48 for Sequent to 24 for Clustering with the threshold 0.01, and 698 to 373 with 
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Table 2. The figures with a threshold 0.01  Table 3. The figures with threshold 0.005 

 Sequent Skipping Clustering 

T10I4D100K 

1-fragment: 385 Frequent Itemsets 
2 fragments  
LP1 385 387 385 
LP2 387 386 386 
C2

G 16+ (378) 17 + (378) 3 + (384) 
5 fragments 
LP1 392 386 387 
LP2 381 388 387 
LP3 393 388 384 
LP4 386 387 388 
LP5 390 391 388 
C5

G 48+ (366) 57 + (362) 24+ (375) 

WebView-1 

1-fragment: 208 Frequent Itemsets 
LP1 227 241 210 
LP2 229 201 213 
C2

G 152+ 152) 116 + (163) 17+ (203) 
5 fragments 
LP1 284 250 226 
LP2 197 230 221 
LP3 241 254 213 
LP4 255 242 207 
LP5 266 205 205 
C5

G 425+ (92) 228 + (141) 74+ (181) 
WebView-2 

1-fragment: 186 Frequent Itemsets 
LP1 279 156 192 
LP2 221 236 179 
C2

G 292+(104) 120 + (136) 19+ (176) 
5 fragments 
LP1 133 197 188 
LP2 558 182 209 
LP3 384 184 193 
LP4 244 180 169 
LP5 227 247 195 
C5

G 756+ (55) 157 + (135) 64+ (160) 

BMS-POS 

1-fragment: 1,503 Frequent Itemsets 
LP1 1,400 1,353 1,512 
LP2 1,662 1,680 1,498 
C2

G 390+ 
(1,336) 

341+ 
(1,346) 

60+  
(1,475) 

5 fragments 
LP1 1,996 1,719 1,150 
LP2 1,334 1,146 1,471 
LP3 744 1,639 1,864 
LP4 1,348 1,810 1,822 
LP5 2,885 1,377 1,364 
C5

G 2,263+ 
(689) 

950+ 
(1,067) 

894+ 
(1,121) 

 Sequent Skipping Clustering 

T10I4D100K 

1-fragment: 1,073 Frequent Itemsets 
2 fragments  
LP1 1,079 1,101 1,068 
LP2 1,101 1,077 1,092 
C2

G 158 + (1,011) 148 +(1,015) 70 + (1,045) 

5 fragments 
LP1 1,150 1,181 1,089 
LP2 1,141 1,074 1,110 
LP3 1,248 1,091 1,059 
LP4 1,110 1,122 1,135 
LP5 1,120 1,135 1,098 
C5

G 698 + (893) 578 + (889) 373 + (941) 

WebView-1 

1-fragment: 633 Frequent Itemsets 
LP1 644 774 659 
LP2 755 612 641 
C2

G 503 + (448) 416 + (485) 94 + (603) 
5 fragments 
LP1 1,107 771 779 
LP2 489 842 733 
LP3 839 941 676 
LP4 894 769 663 
LP5 977 517 597 
C5

G 1,806 + (271) 1,069 + (374) 497 + (493) 

WebView-2 

1-fragment: 996 Frequent Itemsets 
LP1 1,980 738 1,064 
LP2 1,058 1,422 941 
C2

G 2,150 + (444) 808 + (676) 191 + (907) 

5 fragments 
LP1 682 1,130 1,067 
LP2 8,546 997 1,355 
LP3 2,899 911 986 
LP4 1,271 957 791 
LP5 1,257 1,412 1,069 
C5

G 10,007+(230) 1,114 +  (625) 751 +  (723) 

BMS-POS 

1-fragment: 6,017 Frequent Itemsets 
LP1 5,419 5,311 6,024 
LP2 6,709 6,729 5,972 
C2

G 1,820+ 
(5,154) 

1,468+ 
(5,286) 

348+ (5,824) 

5 fragments 
LP1 8,480 7,014 4,339 
LP2 4,975 4,290 5,932 
LP3 2,541 6,619 7,530 
LP4 5,177 7,315 7,443 
LP5 12,755 5,287 5,289 
C5

G  10,718+ 
(2,346) 

4,353+  
(3,956) 

4,075+  
(4,191) 
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the threshold 0.005, respectively. Exceptional performance for WebView-2 data set 
with the threshold 0.005 the reduction is from 10,007 to only 751 when data set is 
partitioned into 5 fragments.  

Hence naturally, another interesting and encouraging trend can be found in the 
growth of the number of common candidates between LPi for fragmented data sets. 
For example, if data sets are partitioned into 5 fragments, this common number in-
creases from 689 to 1,121 for BMS-POS with the threshold 0.01 as well as from 230 
to 723 for WebView-2 with the threshold 0.005. 

In summary, the figures from 2 above tables show that the Clustering pre-
processing technique can significantly improve the Partitioning approach. It is deliv-
ered in form of two strongly related benefits; reduction of the number of Global can-
didates requiring the final check and increase of the common candidates numbers that 
don’t require any additional checks. 

7   Conclusion 

This paper considers a new approach for further performance improvements in fre-
quent itemsets computation. Based on the original Partition algorithm, we show that 
the composition of fragments and the number of fragments generated, impact on the 
size of the data used by this algorithm.  

We propose a pre-processing method (an incremental clustering algorithm), mainly 
to demonstrate that there is potential in the direction of performance improvement. 
Figures from the experiments show that this pre-processing offers good benefits al-
ready. The main question which still deserves consideration is related to the identifi-
cation of methods that will deliver an even better partition for the original data sets. 
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Abstract. We present a browser extension to dynamically learn to filter
unwanted Uniform Resource Locators (such as advertisements or flashy
images) based on minimal user feedback. Our extension builds upon one
of the top ten of Mozilla firefox plug-ins which filters URLs without learn-
ing capabilities. We apply a weighted majority-type learning algorithm
working on regular expressions. Experimental results confirm that the
accuracy of the predictions converges quickly to very high levels, with
other key parameters: recall, specificity and precision.

1 Introduction

Many attempts have been made to make Web browsing more pleasant by allow-
ing the user to remove big pictures and unwanted animations that interfere with
reading. Some browsers such as Netscape or Mozilla allow the user to collapse
such pictures or even create blacklists of internet domains that supply them.

But the most sophisticated approach so far has been proposed by the devel-
opers of AdBlock. AdBlock [1] is, according to ”Mozdev update” data [6], in the
top ten of the most popular extension to the Mozilla Firefox web browser [5],
with about 100000 downloads. To use AdBlock, the user has to come up with a
collection of regular expressions that describe the URL patterns of images that
they want to see filtered. As a result, whenever the browser is pointed to an item
whose URL is matched by a regular expression, it is simply ignored, which not
only ”cleans up” the web page, but also makes page downloading faster.

/[^a-z\d=+%](\w*\d+x\d)?\d*(show)?(\w{3,}%20|alligator|avs|barter|blog|box|central|d?html|i?frame|front|fuse|get|house|inline|

instant|live|main|net|partner|primary|provider|rotated?|secure|side|smart|sponsor|story|text|view)?_?ads?(v?(bot|brite|broker|

bureau|butler|center|click|client|creative|content|coun(cil|t)|data|engage|er(tis\w+|t(pro)?|ve?r?)|farm|force|frame|gif|group

id|head|id|ima?ge?|info|js|juggler|legend|link|log|man(ager)?|max|mentor|meta\.com|net|optimi[sz]er|pic|popup|proof|q\.nextag|

quest\.nl|redire?c?t?|remote|revolver|rotator|sale|sdk|sfac|solution|sonar|source|space|srv|stat.*\.asp|sys|track|trix|view|ty

pe|zone))?\d*(s|status)?\d*[\W_](?!\w+\.edu|aware|adurl=|block|login|nl/|.*(&sbc|\.(wmv|rm)))/

Fig. 1. Example of a long regular expression found on AdBlock’s forum

However, as often discussed in the AdBlock online forum, coming up with reg-
ular expressions is a difficult task, especially for the non-computer savvy. Writing
and mastering them accurately requires extensive readings [2], and those pub-
lished on-line can be especially hard to read and understand. Figure 1 presents

A. Jorge et al. (Eds.): PKDD 2005, LNAI 3721, pp. 634–642, 2005.
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the example of a regular expression posted on AdBlock’s forum. Most of the reg-
ular expressions posted are smaller than this one, but some of them appear to be
much more complicated to understand. Thus, the user faces the risk of obtaining
unwanted browsing/blocking behaviors, sometimes without really knowing how
to correct them. The problem cannot be solved from a global standpoint, as it
would be impossible to come up with a general set of filters that would satisfy
every user. Finally, as the advertisement suppliers and browsing habits change,
so should the set of regular expressions that are needed. The behavior of AdBlock
is too static to be suited to these dynamic interactions, but moving to a dynamic
interaction between the user and the filter is everything but trivial. The comfort
the extension brings to the user has to be greater than its eventual drawbacks,
and the complexity of the algorithm is clearly such a potential drawback.

To address this problem, we propose a fast machine learning approach that
would create filters based on minimal interaction with the user. The user is
not required to know how to create regular expressions; all that is required is
for the user to click on URLs (e.g. images) that he/she wants to see blocked.
Conversely, from time to time the user will need to unblock URLs that shouldn’t
have been blocked by the adaptive filter. Based on this simple feedback, our
proposed method, an adaptation of the well known Weighted Majority algorithm
[4], builds a set of ”experts” (simple regular expressions on URLs) that vote on
whether a given URL should be blocked or not.

In the following Section, we review some works related to our topic. Then, the
next Section is devoted to a formal presentation of the algorithm. After a Section
presenting the browser extension, a Section presents and discusses experimental
results. A last Section concludes and presents relevant issues on the topic.

2 Related Work

Our approach is inspired by the concept of Interface Agents [3]. An interface
agent is a piece of software that assists a user of a complex system by observing
his/her behavior and detecting patterns that it could reproduce in order to
automate tedious tasks. Typically such programs use some kind of incremental
machine learning algorithm to build the knowledge base. [3] devised interface
agents that used k-nearest neighbor to classify mail and even share the filters
with other agents. In a previous work, we used an adaptation of the Version
Spaces algorithm to automate simple network management tasks [7].

But the closest work is perhaps the use of Bayesian filtering for detecting
email spam [8], which is now a standard feature in mainstream email programs.
Bayesian methods for filtering emails have the advantage of being conceptually
simple, and a great body of previous work has made them tailored to common
text classification tasks.

In our case, however, the setting makes them a priori not the best classifica-
tion tool suited for web browsing. Classification is indeed made on-line. This is a
crucial remark because the frequency of browsing through URLs is much higher
than that of email receipt for the average user. This makes it necessary to have
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an ultra-fast classification tool with easy updates on the classifier, to filter the
URLs as they come. In the case of email spam detection, it is already necessary
to have efficient feature selection algorithms to reduce the vector space to a small
set prior to using Bayesian methods [8]. Making the additional heavy-weight on-
line updates for URL filtering, such as the computation of the probability table
for each feature, would rapidly slow down the browser and make its use very
uncomfortable. Furthermore, Bayesian methods rely on independence assump-
tions (at best partially relaxed) on the features to make the classification sound
[8]. This is clearly not a desirable assumption for URL classification, since it
partially omits token positions and contexts in an URL.

3 Theoretical Setting

Very informally, the algorithm can be reduced to the following infinite loop: get
an example, update a set of experts and update the weights of each expert. Any
time during the algorithm, a prediction is possible on an observation by using a
weighted majority over the current set of experts.

More formally, each observation belongs to a set X , which contains all possi-
ble observations. Each observation is an URL (Uniform Resource Locator). From
the user’s standpoint, X can be partitioned into two subsets. The first one con-
tains the URLs he would like to block, i.e. refrain from loading. The other one
contains all the other URLs, i.e. those he wishes to leave unblocked. To each URL
can thus be associated a status which we call a class or label (block/unblock),
and our objective is to predict the class of each URL as accurately as possible
with respect to the user, given that any two different users may probably cor-
respond to different partitions of X . Our algorithm builds therefore a decision
function (or classifier) from X onto {−1, +1}, with “+1” denoting the class of
the URLs to be blocked (also called the positive class), and “-1” the class of the
URLs to leave unblocked (the negative class).

We denote a couple (observation, class) obtained from the user as an example.
We let (x1, y1), (x2, y2), ... denote the stream of examples observed from the user,
and (xt, yt) is thus the tth example of the stream. We build a set of experts E which
is growing with time; to keep notations clear, we do not use the time subscript on
E: it should be clear from context which set of experts we use. Each expert of E
is a couple (hypothesis, weight). An hypothesis is a function h : X → {−1, 0, +1}
which is allowed to abstain (this is the output “0”). More precisely, each hypothe-
sis’ output is either {−1, 0} or {0, +1}, which means that the corresponding expert
is authorized to say ”I don’t know”, thus delegating the decision on the class of
an observation to the other experts. The weight associated to hypothesis h is de-
noted wt(h) ∈ IR+. It is a function of t since it is updated each time an example is
received. At the very beginning of the algorithm, prior to seeing the first example,
we initialize the following set of parameters:

– β ∈ (0, 1) is a learning constant chosen by the user,
– E← ∅ is the initial set of experts,
– t← 1 is the ”time stamp” labeling the examples received.
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Algorithm 1 below displays more formally what happens when example (xt, yt)
is received.

Algorithm 1: Receive New Example((xt, yt))
Input: example (xt, yt)
N ← Create Hypotheses((xt, yt));
Update Experts (N);
foreach (h, wt(h)) ∈ E do

wt+1(h) ← wt(h) × u(β, h, t);

t ← t + 1;

There are two possible choices for function u(β, h, t):

u(β, h, t) =
1 + yth(xt)

2β
+

(1− yth(xt))β
2

. (1)

There are two procedures in Algorithm 1. Create Hypotheses(.) takes an exam-
ple as input, and outputs a set of hypotheses (i.e. regular expressions). Since the
theory underlying the algorithm does not depend on this procedure, we postpone
the details and its implementation to the experimental section.

Update Experts (.) takes as input a set of hypotheses, and creates a set of
experts which is used to grow E. In other words, it initializes the weights of
the hypotheses. Details are given in Algorithm 2 (here, “0” denotes the function
which is zero everywhere in IR).

Algorithm 2: Update Experts(N)
Input: hypothesis set N

foreach h ∈ N do
wt(h) ← (u(β, 0, t))t−1;
E ← E ∪ {(h, wt(h))};

Weight initialization for new experts makes it possible to consider from the
theoretical standpoint that each of them was created at the beginning of the
algorithm, as everything is like if it were abstaining until “really” put into E.
There remains to give the way E is used to classify an observation x ∈ X . Just
prior to receiving example t + 1, the decision made out of E, HE,t, relies on an
ordinary majority vote: ∀x ∈ X, HE,t(x) = sign(

∑
(h,wt(h))∈E wt(h)× h(x)).

4 Design of the Browser Extension

The Mozilla Firefox Web browser [5] is an open source product with an archi-
tecture specifically designed for allowing 3rd party extensions. This makes it
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possible to easily modify the browser behavior by overriding or augmenting the
existing UI components, intercepting and reacting to browser events, and ac-
cessing environment variables. Our filtering algorithm and the test drivers were
both implemented as such extensions in Javascript.

4.1 User Interface Elements

As a principle, a learning interface agent must remain as unobtrusive as possible,
and therefore the user interface additions were kept to a minimum. We have only
provided two extra menu items in the browser’s context menu:

– one called ”Block Me” which appears only when the user right-clicks on an
URL (e.g. an image) that he/she wishes to block;

– the other called ”Unblock” which is always available should the user want
to unblock an URL that appears to be blocked by mistake. Selecting this
item brings up the list of blocked items for the page, and the user can then
choose which URL needs to be unblocked.

The ”Block Me” button is the way the user provides the positive examples
to the algorithm, while the ”Unblock” button provides the negative ones. One
could envisage that the non-blocked items that were correctly classified as such
should also be fed to the algorithm (once the user has left the given page, thus
confirming that they were correctly left unblocked) for weight reinforcement
purposes, but we have decided against it, as we thought that if the user is the
sole trigger for example provision, he/she will have a better feel for what is
happening behind the scenes. This remark also holds for the blocked items that
were not unblocked by the user. Finally, this way the user has control over the
creation and potential proliferation of experts, which otherwise could slow down
the browser without much benefit. Notice that updates of the expert weights
occur only when receiving misclassified examples: false positives decrease the
weight of ”positive” experts (voting for the “Block” class), while false negatives
decrease the weight of negative experts (voting for the “Unblock” class).

4.2 Implementation of Create Hypotheses(.)

To generate the new set of experts N in Algorithm 1, we tokenize the example
URLs using the character ”/” as delimiter. The tokens obtained represent items
such as domain names, folders, but exclude file names. In that last case indeed,
filenames are often generated automatically for the URLs to block (e.g. by ad-
vertisement sites), and the resulting filenames generally have little significance.
Furthermore, this helps to keep the list simple to manipulate manually. This very
simple choice of tokenization seems to be chosen by a significant proportion of
users sharing their regular expressions on AdBlock’s forums. Notice that “http”
is also a resulting token. The user may view its weight as the balance between the
rate of false positives and the rate of false negatives achieved through learning,
or, similarly, as an indication of the ratio between precision and recall.
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The obtained tokens are then compared with the corresponding existing set
of experts. By ”corresponding” we mean that tokens obtained from positive
(resp. negative) examples are compared to the ”positive” (resp. negative) set of
experts. If no match is found, the new token is added to the corresponding list
of experts, and its weight is initialized using Algorithm 2. More tokens could
obviously be generated. For instance, we could also use the full URL itself as
an expert. Also, the character ”.” could be used as a delimiter, to help identify
the parts of a domain name that are key to its classification (e.g. host name or
domain extension). Finally, one could create experts that capture the importance
of the order in which significant tokens appear in a URL. The factor to consider
however is to avoid the proliferation of experts.

5 Experimental Results

In our experiments, we have fixed β = 1/
√

e ≈ 0.61 in update rule (1). In order
to obtain results that are independent from any particular browsing habit, we
needed to provide a test setting that could be used seamlessly by any kind of
user. To do so, in addition to providing the standalone extension described in
the previous section, we embedded our algorithm inside the AdBlock extension
code.

The AdBlock user is asked to set up filters as usual in the form of regular ex-
pressions, creating as a result an oracle for the embedded learner. The AdBlock
filters override the learner’s classification in order to remain transparent to the
end user. This means that to the user, the extension is behaving no differently
than the regular AdBlock. However, all learner misclassifications (i.e. false pos-
itives and false negatives) are fed back as such to the algorithm, leading to the
expert creation and weight adjustments described above.

At each step consisting of k observations (e.g. visited image URLs), we freeze
a copy of the learner’s knowledge base up to that point. While the unfrozen ver-
sion keeps evolving and accepting feedback from the oracle, the frozen copy is
used to evaluate the learning accuracy of the accumulated knowledge so far by
populating a confusion matrix based on its predictions on the incoming exam-
ples. After n such steps, and for a total of n×k observations, the user is notified
that the testing is finished, and the logs are collected. We can therefore compare
the learner at each step and observe the evolution of its ability to classify the
upcoming observations. However, as we get close the final steps of each test, the
number of observations available to the more recent learners decreases, and the
statistical confidence in the more recent results decreases as well. To reduce this
phenomenon, we allow some more observations to be collected after the last step.

5.1 AdBlocking on a Single Commercial Website

Our first set of tests were designed to see whether our algorithm was able to
correctly predict which URLs to block on a single ”busy” (i.e. littered with an-
noying images) web page, and if so, after how many visits. We used a common
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Fig. 2. From left to right: accuracy, recall, specificity and precision. From up to bottom:
websites of CNN, Fox News and MSN (x-axis=step number, see text for details).

set of AdBlock regular expressions, as collaboratively devised on AdBlock dis-
cussion forums, as oracle. On three popular and large commercial websites, we
have run AdBlockLearner with k = 1 and n = 100. The total 100 observations
were usually reached very quickly. Figure 2 plots the evolution of four key pa-
rameters throughout learning. If we denote by TP the number of true positives,
TN the number of true negatives, FP the number of false positives and FN
the number of false negatives, then the specificity is TN/(TN + FP ), the re-
call is TP/(TP + FN), and the precision is TP/(TP + FP ). As can be seen,
the algorithm converges quickly to very good prediction, in terms of all four
parameters. This is good given that commercial web sites use dynamic loading
of advertisements using cookies, and as a result hitting reload usually brings up
a different set of images and URLs. However it is important to point out that
to obtain similar results in a non-test setting, the misclassifications that were
detected by the oracle would have to correspond to as many direct feedbacks by
the user. In practice, in the absence of so many interactions, the four parameters
can be suboptimal, but it is definitely acceptable.

5.2 AdBlocking While Surfing to Different Websites

The next set of tests measures robustness to overfitting. How does the learned
knowledge ”travel” over to other web sites, are the rules learned so far useful
to new websites, and how much more learning is left to do? Our intuition was
that the amount of misclassifications would decrease over time, as usually the
providers of invasive advertisements are the same in many different commercial
sites. We asked the users to simply follow their usual browsing habits, and we
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Fig. 3. Evolution of the four parameters during a typical browsing session (conventions
follow figure 2, see text for details)

set k = 10 (to absorb some of the variability) and n = 50. To make the task
harder, we requested that each chosen web site had to be visited only once.
The results are charted on figure 3. It is quite remarkable that the accuracy,
the specificity and the recall all generally remained at very high values after a
short period, given the tough experimental setting. However, the fact that the
precision decreases tends to indicate that there is a significant increase in FP (to
make the precision decrease) and in TN (to make the specificity remains at high
values). This may display the fact that the number of negative examples tends
to increase, but the experts might be too simple to fit to the growing amount of
information, to discriminate all the examples that come from various websites.
In case false positives are deemed unacceptable by the user, i.e. the user does not
want to have to manually unblock erroneously blocked URLs, it is possible to
alter the utility of the weighted majority vote by giving more weight to negative
votes, as also indicated by [8]. The trade-off would be a drop in overall accuracy
and an increase in the rate of false negatives.

6 Conclusion and Future Work

In this paper, we have experimentally demonstrated the efficiency of a careful
adaptation of weighted majority. Compared to usual weighted majority, our set-
ting makes use of the fact that experts may abstain instead of always predicting
a class. This raises an important theoretical issue, as the efficiency of weighted
majority is usually measured with respect to its number of mistakes [4]. In our
setting, we would certainly appreciate this quantity to be as small as possible,
but we would also appreciate the number of abstention to be small. Since mistake
bounds do not take into account the number of abstentions, this raises both the
problem of finding accurate quantities to minimize, and relevant bounds that
our adaptation of weighted majority satisfies.
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Abstract. Bi-clustering is a promising conceptual clustering approach.
Within categorical data, it provides a collection of (possibly overlap-
ping) bi-clusters, i.e., linked clusters for both objects and attribute-value
pairs. We propose a generic framework for bi-clustering which enables to
compute a bi-partition from collections of local patterns which capture
locally strong associations between objects and properties. To validate
this framework, we have studied in details the instance CDK-Means. It
is a K-Means-like clustering on collections of formal concepts, i.e., con-
nected closed sets on both dimensions. It enables to build bi-partitions
with a user control on overlapping between bi-clusters. We provide an
experimental validation on many benchmark datasets and discuss the
interestingness of the computed bi-partitions.

1 Introduction

Many data mining techniques have been designed to support knowledge discov-
ery from categorical data which can be represented as Boolean matrices: the rows
denote objects and the columns denote Boolean attributes that enable to record
object properties as attribute-value pairs. For instance, given r in Table 1, we say
that object t2 satisfies properties g2 and g5. Clustering is one of the major data
mining tasks and it has been studied extensively, including for the special case
of categorical or Boolean data. Its main goal is to identify a partition of objects
and/or properties such that an objective function which specifies its quality is op-
timized [1]. Thanks to local search optimizations, many efficient algorithms can
provide good partitions but suffer from the lack of explicit cluster characteriza-
tion. It has motivated the research on conceptual clustering [2] and bi-clustering
[3,4,5] whose goal is to compute bi-clusters, i.e., associations of (possibly over-
lapping) sets of objects with sets of properties. An example of an interesting bi-
partition in r (Table 1) is {{{t1, t3, t4}, {g1, g3, g4}}, {{t2, t5, t6, t7}, {g2, g5}}}.
The first bi-cluster indicates that {t1, t3, t4} almost always share properties
{g1, g3, g4}. A major problem is that most of the bi-clustering algorithms com-
pute non overlapping bi-partitions, while in many application domains, it makes
sense to have objects and properties belonging to more than one bi-cluster. It
motivates more research on the computation of relevant collections of possibly

A. Jorge et al. (Eds.): PKDD 2005, LNAI 3721, pp. 643–650, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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Table 1. A Boolean context r

g1 g2 g3 g4 g5
t1 1 0 1 1 0
t2 0 1 0 0 1
t3 1 0 1 1 0
t4 0 0 1 1 0
t5 1 1 0 0 1
t6 0 1 0 0 1
t7 0 0 0 0 1

overlapping bi-clusters. Formal concept analysis [6] might be a solution. Infor-
mally, a formal concept is a bi-set (T, G) where the set of objects T and the
set of properties G form a maximal (combinatorial) rectangle of true values,
e.g., ({t1, t3}, {g1, g3, g4}) in r. Unfortunately, we generally get huge collections
of formal concepts which are difficult to interpret by end-users. In our example,
{{t1, t3, t4}, {g1, g3, g4}} is not a formal concept ((t4, g1) �∈ r) but can be built
from {{t1, t3}, {g1, g3, g4}} and {{t1, t3, t4}, {g3, g4}} which are “similar enough”
formal concepts. It provides the intuition of our approach.

The contribution of this paper is twofold. First we propose a new bi-clustering
framework which enables to compute bi-partitions by grouping local patterns
which capture locally strong associations between objects and properties, i.e.,
bi-sets which satisfy some user-defined constraints. Various local patterns are
candidates for such a process, e.g., frequent sets of properties associated to their
supporting set of objects, formal concepts, etc. Secondly, we study one instance of
this framework, the CDK-Means algorithm, which builds simultaneously linked
partitions on objects and properties. More precisely, we apply a K-Means-like
algorithm to a collection of bi-sets (formal concepts in our experiments). As a
result, objects and properties are intrinsically associated to clusters, depending
on their weights in the finally computed centroids. Our experimental validation
confirms the added-value of CDK-Means w.r.t. other (bi-)clustering algorithms.

In Section 2, we set up our clustering framework and we survey related
work. Section 3 discusses our experimental validation methodology and it con-
tains many experimental results on various benchmark datasets. A comparison
between CDK-Means, two bi-clustering algorithms (Cocluster [4] and Bi-
Clust [3]), and two classical clustering algorithms (K-Means and EM [1]) is
given. Scalability issues are discussed and Section 4 concludes.

2 Clustering Model

Assume a set of objects O = {t1, . . . , tm} and a set of Boolean properties P =
{g1, . . . , gn}. The Boolean context to be mined is r ⊆ O × P , where rij = 1 if
property gj is satisfied by object ti. We define the bi-clustering task as follows:
we want to compute a partition of K clusters of objects (say {Co

1 . . . Co
K}) and a

partition of K clusters of properties (say {Cp
1 . . . Cp

K}) with a mapping between
both partitions such that each cluster of objects is characterized by a cluster of
properties. Our idea is that bi-partitions can be computed from bi-sets and it will
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be instantiated later on formal concepts. Formally, a bi-set is an element bj =
(Tj , Gj) (Tj ⊆ O, Gj ⊆ P) and we assume that a collection of a priori interesting
bi-sets denoted B has been extracted from r beforehand. Let us now describe
bj by the Boolean vector < tj >, < gj >=< tj1, . . . , tjm >, < gj1, . . . , gjn >
where tjk = 1 if tk ∈ Tj (0 otherwise) and gjk = 1 if gk ∈ Gj (0 otherwise).
We are looking for K clusters of bi-sets {C1, . . . , CK} (Ci ⊆ B). Let us define
the centroid of a cluster of bi-sets Ci as μi =< τi >, < γi >=< τi1, . . . , τim >,
< γi1, . . . , γin > where τ and γ are the usual centroid components:

τik =
1
|Ci|

∑
bj∈Ci

tjk, γik =
1
|Ci|

∑
bj∈Ci

gjk

We now define our distance between a bi-set and a centroid:

d(bj , μi) =
1
2

( |tj ∪ τ i| − |tj ∩ τ i|
|tj ∪ τ i| +

|gj ∪ γi| − |gj ∩ γi|
|gj ∪ γi|

)
It is the mean of the weighted symmetrical differences of the set components. We
assume |tj ∩ τ i| =

∑m
k=1 ak

tjk+τik

2 and |tj ∪ τ i| =
∑m

k=1
tjk+τik

2 where ak = 1
if tjk · τik �= 0, 0 otherwise. Intuitively, the intersection is equal to the mean
between the number of common objects and the sum of their centroid weights.
The union is the mean between the number of objects and the sum of their
centroid weights. These measures are defined similarly on properties.

Objects tj (resp. properties gj) are assigned to one of the K clusters (de-
noted i) for which τij (resp. γij) is maximum. We can enable that a number
of objects and/or properties belong to more than one cluster by controlling the
size of the overlapping part of each cluster. Thanks to our definition of cluster
membership determined by the values of τ i and γi, we just need to adapt the
cluster assignment step. For this purpose, let us introduce parameters δo and δp

in [0,1] to quantify the membership of each element to a cluster. We say that
an object tj belongs to a cluster Co

i if τij ≥ (1 − δo) ·maxi(τij). Analogously, a
property gj belongs to a cluster Cp

i if γij ≥ (1 − δp) ·maxi(γij). Obviously the
number of overlapping objects (resp., properties) depends on the distribution of
the values of τ i (resp. γi). Notice that if overlapping is allowed, δ = 0 does not
imply that each object or property is assigned to a single cluster. The choice
of a relevant value for δ is clearly application-dependent. When a bi-clustering
structure holds in the data, little values of δ are not enough to provide relevant
overlapping. On another hand, in noisy contexts, even little values of δ can give
rise to significant overlapping zones.

We can now provide details about the studied instance of this framework:
a bi-clustering based on formal concepts. Many efficient algorithms have been
developed that can extract complete collections of formal concepts under con-
straints. We use D-Miner [7].

Our instance CDK-Means is presented in Table 2. It computes a bi-partition
of a dataset r given a collection of bi-sets B extracted from r beforehand (e.g.,
formal concepts), the desired number of clusters K, the threshold values for δo
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Table 2. CDK-Means pseudo-code

CDK-Means (r is a Boolean context, B is a collection of bi-sets in r, K is the
number of clusters, MI is the maximal iteration number, δo and δp are thresholds
values for controlling overlapping)

1. Let μ1 . . . μK be the initial cluster centroids. k := 0.
2. Repeat

(a) For each bi-set c ∈ B, assign it to cluster C s.t. d(c, μi) is minimal.
(b) For each cluster Ci, compute τi and γi .
(c) k := k + 1.

3. Until centroids are unchanged or k = MI .
4. If overlap is allowed, for each tj ∈ O (resp. gj ∈ P), assign it to each cluster

Co
i (resp. Cp

i ) s.t. τij ≥ (1− δo) ·maxi(τij) (resp. γij ≥ (1− δp) ·maxi(γij)).
5. Else, for each tj ∈ O (resp. gi ∈ P), assign it to the first cluster Co

i (resp.
Cp

i ) s.t. τij (resp. γij) is max.
6. Return {Co

1 . . . Co
K} and {Cp

1 . . . Cp
K}

and δp, and a maximum number of iterations MI. On our example r, CDK-
Means provides the bi-partition given in Section 1. The complexity is linear in
B and scalability issues are discussed in Section 3.

Related work. [3] and [4] bi-clustering methods alternatively refine a partition
when the other one is fixed, optimizing respectively the Goodman-Kruskal’s τ
coefficient and the loss in mutual information. The first interesting difference
is instead of considering objects and properties as separated entities during the
bi-clustering task (even if objective functions are computed on both sets), CDK-
MEANS considers their associations as the elements to process. The second one
is that CDK-Means can easily compute partitions with overlapping clusters.

3 Experimental Validation

Different techniques can be used to evaluate the quality of a partition. An exter-
nal criterion consists in comparing the computed partition with a “correct” one.
It means that data instances are already associated to some correct labels and
that one quantifies the agreement between computed labels and correct ones. A
popular measure is the Jaccard coefficient [1].

To evaluate the quality of our bi-clustering using an internal criterion we use
Goodman and Kruskal’s τ coefficient [8]. It is evaluated in a co-occurrence table
p and it discriminates well bi-partitions w.r.t. the intensity of the functional link
between both partitions [3]. pij is the frequency of relations between an object
of a cluster Co

i and a property of a cluster Cp
j . pi. =

∑
j pij and p.j =

∑
i pij .

The τQ coefficient evaluates the proportional reduction in error given by the
knowledge of Co on the prediction of Cp (τO will denote the measure when
exchanging the partitions):
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τQ =

∑
i

∑
j

p2
ij

pi.
−∑j p2

.j

1−∑j p2
.j

We report on experiments using eight well-known datasets taken from the
UCI ML Repository1 and from the JSE Data Archive2. All the experiments
have been performed on a PC with 1 Gb RAM and a 3.0 GHz P4 processor.
First, without considering the class variable, we have processed each dataset
with D-Miner [7]. Minimal set size constraints have been used for mushroom
and credit-a (minimal itemset and objectset sizes (13, 15) and (6, 15)) to obtain
complete collections of formal concepts before using CDK-Means.

Table 3. Goodman-Kruskal’s coefficient values for different bi-clustering algorithms
(mr-2 and mr-5 refer to mushroom with 2 and 5 clusters)

Bi-Clust Cocluster CDK-means
Dataset Dim. Max Max Mean Max Mean
voting 435×48 0.320 0.320 0.315±0.002 0.311 0.311±0.000
titanic 2201×8 0.332 0.321 0.226±0.076 0.314 0.160±0.109
iris-2 150×8 0.543 0.543 0.357±0.195 0.543 0.474±0.056
iris-3 150×8 0.544 0.390 0.379±0.045 0.523 0.329±0.080
zoo-2 101×16 0.191 0.186 0.157±0.034 0.192 0.165±0.020
zoo-7 101×16 - 0.080 0.065±0.009 0.083 0.049±0.015
breast-w 699×18 0.507 0.507 0.474±0.121 0.498 0.498±0.000
credit-3 690×52 0.104 0.014 0.003±0.003 0.110 0.091±0.015
credit-2 690×52 - 0.012 0.006±0.004 0.096 0.055±0.011
mr-2 8124×126 - 0.198 0.158±0.026 0.176 0.157±0.017
mr-5 8124×126 0.187 0.119 0.097±0.009 0.116 0.112±0.004
ads 3279×1555 - 0.006 0.003±0.001 0.538 0.137±0.109

We compared CDK-Means bi-partitions with those obtained by Coclus-
ter [4], and Bi-Clust [3]. As the initialization of these algorithms is random-
ized, we executed them 100 times on each dataset and we selected the result
which returned the best Goodman-Kruskal’s coefficient. The number of desired
clusters for each experiment has been set to the number of class variable values,
except for Bi-Clust which automatically determines the number of clusters.
Bi-Clust is available within WEKA3 and we were not able to process internet-
ads (more than 1500 properties). We summarize these results in Table 3. We
provide only the τQ coefficients. The corresponding τO coefficients are equal or
not significantly different. Notice that, when CDK-Means has the worst results,
the Goodman-Kruskal’s coefficient is not significantly dissimilar from other al-
gorithm coefficients. On the other hand, for internet-ads, the coefficient obtained
with CDK-Means is considerably higher than the one obtained with Coclus-
ter. This is due to the high dimension of the dataset which is not well handled
by the other algorithms. Also the average behavior is similar to the one of Co-
cluster. The average values of the two algorithms are often similar, as well
1 http://www.ics.uci.edu/˜mlearn/MLRepository.html
2 http://www.amstat.org/publications/ jse/jse data archive.html
3 http://www.cs.waikato.ac.nz/ml/weka/
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Table 4. Jaccard coefficient values w.r.t. class variable for different algorithms

Dataset Bi-Clust Cocluster K-Means EM CDK-means
voting 0.6473 0.6473 0.6027 0.6459 0.6737
titanic 0.4281 0.4651 0.3697 0.3697 0.4745
iris-2 0.4992 0.4992 0.5117 0.4992 0.4992
iris-3 0.4932 0.5240 0.5394 0.5394 0.5144
zoo-2 0.5141 0.5630 0.5027 0.5179 0.5141
zoo-7 - 0.1647 0.1843 0.2325 0.2212
breast-w 0.8246 0.8287 0.7777 0.8328 0.7666
credit-3 0.4233 0.3869 0.3765 0.3405 0.4452
credit-2 - 0.4360 0.4698 0.4442 0.4915
mr-2 - 0.6819 0.3496 0.6976 0.6356
mr-5 0.5068 0.3450 0.3192 0.3364 0.3375
ads - 0.4317 - - 0.8019

as the standard deviation values. Notice that for voting-records and breast-w,
CDK-Means has always produced the same bi-partition.

CDK-Means generally needs for more execution time than the other al-
gorithms because it processes possibly large collections of formal concepts. In
these benchmarks, the extraction of formal concepts by itself is not that expen-
sive (from 1 to 20 seconds). Using minimal size constraints during the formal
concept extraction phase enables to reduce the collection size and it will be dis-
cussed later. For titanic, iris, and zoo, CDK-Means performs in less than one
second, while for breast-w, credit-a and internet-ads, the average execution time is
less than one minute. For mushroom, the average execution time is about seven
minutes since more than 50 000 formal concepts have to be processed.

We also used the Jaccard index to compare the agreement of the object par-
titions with those determined by the class variables. Here again, we have selected
the bi-partition with the highest τQ coefficient4. We provide the comparisons in
Table 4. Again, our algorithm is competitive w.r.t. the other bi-clustering meth-
ods. With the exception of breast-w, our algorithm always performs as or better
than Bi-Clust, and most of the times better than Cocluster.

Finally, we have compared our results, w.r.t. two classical clustering algo-
rithms, the WEKA implementations of K-Means and EM (see Table 4). Except
for breast-w, our algorithm is competitive w.r.t the other ones. For most datasets,
CDK-Means performs better than K-Means and EM. Once again, when our
algorithm obtains the best result, the difference with the score of the others is
significant (except on breast-w). These results show that our clustering of formal
concepts is a relevant approach for both partitioning and bi-partitioning tasks.

Scalability Issues. Collections of formal concepts are usually huge, especially
in intrinsically noisy data. Since CDK-Means has a linear complexity in the
number of bi-sets, it can be time-consuming. An obvious solution is to select
some formal concepts, for instance the ones which involve enough objects and/or
properties. Interestingly, such minimal size constraints can be pushed into for-
mal concept mining algorithms [7]. Not only it enables the extraction in hard

4 Clearly, it does not lead to the highest Jaccard’s index.
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Table 5. Clustering results on ads-internet with different minimal size constraints

(σp,σo) |B| time(s) τ(mean) τ(max) J-class J-ref
(0,0) 7682 33 0.137 ± 0.109 0.538 0.8019 1
(4,4) 2926 8 0.194 ± 0.137 0.565 0.6763 0.6737
(5,5) 2075 5 0.254 ± 0.148 0.565 0.6862 0.7490
(5,10) 1166 2.5 0.223 ± 0.119 0.511 0.6745 0.7405
(7,10) 873 2 0.204 ± 0.095 0.549 0.6172 0.6658
(10,10) 586 1.5 0.227 ± 0.125 0.543 0.6080 0.7167

contexts, but also, intuitively, it removes formal concepts which might be due
to noise. We therefore guess that this can increase the quality of the clustering
result. Let σo be the minimal size of the object set and σp be the minimal size
of the property set. Properties (resp. objects) that are in relation with less than
σo objects (resp. σp properties) will not be included in any formal concept. As
our bi-partitioning method is based only on a post-processing of these patterns,
these objects and/or properties can not be included in the final bi-partition.
This is not necessarily a problem if we prefer a better robustness to noise. How-
ever, one can be interested in finding a bi-partition that includes all objects and
properties. An obvious solution is to add the top and bottom formal concepts
(O, ∅) and (∅,P). This has been done in some experiments (mushroom, credit-a)
and we noticed that the decrease of the Jaccard and Goodman-Kruskal’s co-
efficients were not significant. We made further experiments to understand the
impact of using minimal size constraints on both the execution time and the qual-
ity of the computed bi-partition. We have considered internet-ads as the most
suitable for these experiments (high cardinality for both object and property
sets). We extracted formal concepts by setting some combinations of constraints
(0 ≤ σp < 10 and 0 ≤ σo < 10) and by adding (O, ∅) and (∅,P).The results
are summarized in Table 5. It shows that, increasing the minimal size thresh-
old considerably reduces the number of extracted formal concepts and thus the
average execution time. Also the extraction time decreases from 4 seconds (for
σp = σo = 0) to one second (for σp = σo = 10). Moreover, the maximum
Goodman-Kruskal’s coefficient does not change significantly. In some cases it is
greater than the coefficient computed when no size constraint is used. Also the
average values of the Goodman-Kruskal’s measures are better in general (while
standard deviation values are similar). We then computed the Jaccard index of
the different partitions w.r.t. the class variable (J-class column) and the partition
obtained without setting any constraint (J-ref column). The slight variability of
the Jaccard indexes and the high values of the τ measures show that they are
still consistent w.r.t. the class one. Finally, results are always better than those
obtained by using Cocluster (see Fig. 3 and Fig. 4) whose average execution
time is about 4.2 seconds. In other terms, increasing σp and σo can eliminate the
impact of noise due to sparse sub-matrices. In particular, grouping larger formal
concepts can improve the relevancy of bi-partitions. Notice that if we do not add
(O, ∅) and (∅,P), we get better results involving a subset of the original matrix:
constraints can be triggered to trade-off between the coverage of the bi-partition
and the quality of the result.
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4 Conclusion and Future Work

We have introduced a new bi-clustering framework which exploits local patterns
in the data when computing a collection of (possibly overlapping) bi-clusters.
The instance CDK-Means builds simultaneously a partition on objects and a
partition on properties by applying a K-Means-like algorithm to a collection
of extracted formal concepts. Our experimental validation has confirmed the
added-value of CDK-Means w.r.t. other (bi-)clustering algorithms. We demon-
strated that such a “from local patterns to a relevant global pattern” approach
can work. Due to the lack of space, we omitted the experimental results on real
data and the study of overlapping clusters [9]. Many other instances of the frame-
work might be studied. For instance, given extracted local patterns, alternative
clustering techniques can be considered. Also, other kinds of local patterns (i.e.,
relevant bi-sets which are not formal concepts) could be considered. Finally, an
exciting challenge concerns constraint-based clustering. Our framework gives rise
to opportunities for pushing constraints at two different levels, i.e., during local
pattern mining but also when building bi-partitions from them.
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Abstract. Collaborative filtering (CF) systems are widely used by E-
commerce sites to provide predictions using existing databases comprised
of ratings recorded from groups of people evaluating various items, some-
times, however, such systems’ ratings are split among different parties.
To provide better filtering services, such parties may wish to share their
data. However, due to privacy concerns, data owners do not want to
disclose data. This paper presents a privacy-preserving protocol for CF
grounded on vertically partitioned data. We conducted various experi-
ments to evaluate the overall performance of our scheme.

1 Introduction

Collaborative filtering (CF) is a recent technique that helps users cope with infor-
mation overload using other users’ preferences. It is widely used by E-commerce,
direct recommendations, and search engines [1,2]. The goal is to predict how well
a user (an active user) will like an item that he/she did not buy before based
on other users’ preferences [4].

Data collected for CF purposes might be vertically partitioned between differ-
ent parties where the parties hold disjoint sets of items’ ratings collected from the
same users. An individual’s preferences for products might be split among differ-
ent E-commerce companies such as Amazon.com and MovieFinder.com. Online
vendors can produce better referrals if they share information about their cus-
tomers with other vendors. Joint data is beneficial for E-commerce sites because
customers prefer returning to stores with better referrals and they search for
more products to purchase. Shared information will also benefit customers by
making it more likely to receive more accurate and reliable recommendations.
Combining vertically partitioned data (VPD) is helpful when CF systems have
limited rated items. To find more reliable matchings and provide more accu-
rate referrals, the overlap between users should be large enough; this might be
achieved by integrating VPD. However, due to privacy concerns, data owners do
not want to collaborate and disclose their data to each other.
� This work was supported by Grants ISS-0219560 and ISS-0312366 from the United

States National Science Foundation.

A. Jorge et al. (Eds.): PKDD 2005, LNAI 3721, pp. 651–658, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



652 H. Polat and W. Du

VPD-based CF is essential and can be achieved if privacy measures are
introduced to data owners. We study the privacy-preserving collaborative fil-
tering (PPCF) on VPD problem: To maximize mutual advantages, two online
vendors (A and B) holding disjoint sets of items’ ratings gathered from the same
users, want to provide CF services to their future customers using the joint data.
How can they provide such services using the integrated data while preserving
their privacy?

We propose a protocol to achieve PPCF on VPD. Privacy, accuracy, and
efficiency are conflicting goals. Therefore, the proposed protocol should achieve
a good balance between them. Our scheme consists of off-line and online com-
putation components. We conduct some computations off-line to achieve data
exchange between parties with privacy. During the online computation, a new
customer (an active user a) communicates with both parties. They then perform
data exchange through a with privacy. The company that does not hold ratings
of the target item (the item that a is looking for a prediction) finds prediction
and tells a. Since data exchanges are required whenever a new customer wants
a prediction and either party can act as an active user in multiple scenarios to
learn about other party’s data, the proposed protocol should be secure against
such attacks coming from both parties.

Canny proposes two schemes for PPCF [1,2]. A community of users can com-
pute personalized recommendations without exposing individual data using such
schemes. Polat and Du use randomized perturbation techniques for PPCF [6,7].
Vaidya and Clifton [8,9,10] present privacy-preserving methods for association
rule mining, näıve Bayes classifier, and K-means clustering based on VPD. We
used the CF algorithm proposed by [4]. If vij is user i’s vote on item j, and vi

and σi are the mean vote and the standard deviation of the user i’s ratings, re-
spectively, then the z-scores (zij) can be defined as zij = (vij −vi)/σi. Herlocker
et. al find predictions as follows where n is the number of users:

paq = va + σa ·

n∑
i=1

wai · ziq

n∑
i=1

wai

wai =
∑

k

zak · zik (1)

where k is the item set both a and the user i have rated and q is the target item.
σa and σi are standard deviations of a’s ratings and i’s ratings, respectively.
paq is the prediction for a on q and wai is similarity between a and i. We used
homomorphic property for our proposed protocol: Ek(x) ∗ Ek(y) = Ek(x + y).
Many such systems exist, and an example is the system by Paillier [5]. A useful
property of homomorphic encryption schemes is that an addition operation can
be conducted based on the encrypted data without decrypting them.

2 PPCF on VPD

Without privacy as a concern, data owners exchange their data to provide CF
services. However, with privacy as a concern, the companies should not be able
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to learn each other’s data. We can write Eq. (1) as paq = va + σa · P where P
can be defined as follows:

P =

n∑
i=1

[∑
k

zakzik

]
ziq

n∑
i=1

∑
k

zakzik

=

∑
k

zak

[
n∑

i=1

zikziq

]
∑

k

zak

[
n∑

i=1

zik

] (2)

CF systems can tell whether a will like q or not, rather than telling how much
he/she will like it. To do this, paq is compared with a threshold (τ). If paq ≥ τ ,
q is recommended as like, otherwise it is recommended as dislike. If the ratings
vary from 1 to 5, τ is set to 3.5 while it is set to 2 if they range from -10 to 10.
Since A’s and B’s data is used to calculate P , Eq. (2) can be written as:

P =

∑
kA

zakA

[
n∑

i=1

zikAziq

]
+
∑
kB

zakB

[
n∑

i=1

zikB ziq

]
∑
kA

zakA

[
n∑

i=1

zikA

]
+
∑
kB

zakB

[
n∑

i=1

zikB

] =
AN + BN

AD + BD
(3)

where k = kA + kB, and kA and kB represent the item sets both a and i have
rated among the items held by A and B, respectively.

2.1 Off-Line Computation

The denominator part in Eq. (3) can be easily computed because A and B can
find AD and BD using their own data. However, the party who does not own q
needs to have ziq values for all i = 1, . . . , n to compute

∑n
i=1 zikj ziq necessary

for the numerator. Since A and B follow the same steps, we only explain the
procedure for A. A horizontally divides its n × mA data matrix into cA sub-
matrices where each sub-matrix consists of n/cA users and their ratings for items
held by A, where mA is the number of items A owns. It then disguises data in
each sub-matrix independently. For i = 1, . . . , cA, A performs the followings:

Step 1. Permutes mA column vectors using a permutation function ΠAi.
Step 2. For j = 1, . . . , mA, divides the permuted column vector ΠAi(Iij) into
dij random vectors where ΠAi(Iij) =

∑dij

z=1 Xijz and dij is an integer chosen
with uniform random distribution over the range [1, βA].
Step 3. Permutes Xi11, Xi12, . . . , Xi1di1 , Xi21, Xi22, . . . , Xi2di2 , . . . , XimA1,
XimA2, . . . , XimAdimA

random vectors found in step 2 using πAi.
Step 4. A sends DAi permuted random vectors to B where DAi = di1 + di2 +
. . . + dimA . B computes the scalar products between these permuted random
vectors and its mB column vectors using the corresponding parts of them and
finds DAimB scalar product results.
Step 5. B encrypts the scalar product results using a homomorphic encryption
scheme and its public key eb and sends DAimB encrypted values to A.
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Step 6. Since A knows ΠAi and πAi and homomorphic encryption is used,
it finds the scalar product results of its mA and B’s mB column vectors in
encrypted forms using homomorphic encryption property. After conducting these
steps for all i = 1, . . . , cA, A gets encrypted scalar product results for its all cA

sub-matrices. Since A’s data is horizontally divided, it again uses homomorphic
encryption property to find the final scalar product results in encrypted forms.

A creates a matrix ΣA consisting of eb(Σij) for i = 1, . . . , mA and j =
1, . . . , mB where eb(Σij) represents the encrypted scalar product between ith

column vector of B and the jth column vector of A. It generates large enough
vij random numbers for i = 1, . . . , mB and j = 1, . . . , mA, encrypts them using
eb, and adds them to the eb(Σij) values using homomorphic encryption property.
It finds matrix Σ′

A consisting of eb(Σ′
ij) where Σ′

ij = Σij + vij and stores vij

values in a matrix VA. It sends Σ′
A to B that decrypts the encrypted values and

finds the matrix Σ′′
A consisting of Σ′

ij values and stores it. By following the same
procedure, B finds matrices ΣB, Σ′

B, and VB . B stores VB and A finds Σ′′
B, and

then stores it. A and B compute the item mean votes and store them in mA× 1
and mB × 1 matrices, respectively.

2.2 Online Computation

Since either party can act as an active user in multiple scenarios, online compo-
nent should be secure against such attacks. The steps are as follows:

Step 1. a sends his/her data and a query to the company that owns q. Assume
that B owns q. B computes BN and BD. However, since A can act as an active
user in multiple scenarios to learn them, B uses private BN & BD computation
protocol, which is explained in the following, to compute them.
Step 2. B can compute A′

N value using the data from the qth row of the matrix
Σ′′

A and a’s corresponding data where A′
N = AN + Rq. The data from the qth

row of the matrix Σ′′
A represents

∑n
i=1 zikAziq values disguised by vqkA random

numbers for all kA. A can compute Rq =
∑

kA
zakAvqkA where kA represents the

items rated by a among the items held by A.
Step 3. B computes AN+Rq+B′

N and B′
D and sends them together with a’s new

mean vote, standard deviation, and the z-scores for those items rated by a among
items held by A to A through a. A computes Rq, finds AN +B′

N = A′
N +B′

N−Rq

and AD, and estimates P ′ using Eq. 3 based on the query.
A computes p′aq, tells a whether he/she will like q or not by comparing p′aq

with τ . Since B can act as an active user, A uses a random threshold to prevent
B from learning AD and AN . It generates a uniform random number (rAτ ) from
a range [−αA, αA], finds τ + rAτ , and uses it as a random threshold.

Our scheme can be extended to multi-party. Each vendor exchanges data
off-line with others and stores it as in two-party scheme. During online phase, a
sends his/her data to the party that owns q. That party computes the required
data like it does in two-party scheme and sends results to a. Then one party acts
as a master site. Other parties computes the values required for numerator and
denominator parts. Each company creates a large enough uniform random num-
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ber from a range [−γ, γ], adds it to the values for numerator and denominator
parts, and sends them through a to master site, which estimates the prediction.

Private BN & BD Computation Protocol. We explain the protocol only for
B. After B gets a’ data, it finds the number of rated items (CB) that a rated
among the items it holds. If CB is less than �mB/2�, then B finds the items that
a did not rate among the items B owns. B generates a uniform random integer
SBa from the range [1, mB − CB], randomly selects SBa unrated items among
the items it owns, and fills their cells in the a’s ratings vector with their mean
votes. If CB is bigger than �mB/2�, B finds the items that a rated among the
items B owns and creates a uniform random integer SBr from the range [1, CB].
It randomly selects SBr rated items and removes their ratings from a’s ratings
vector. B computes B′

N and B′
D using the new ratings vector of a and finds a

ratings’ new mean and standard deviation and computes the z-scores.

3 Privacy and Overhead Costs Analysis

In this section we first investigated privacy.

Claim 1. After B gets the required data from A, the probability of guessing
the A’s data for B is 1 out of

(
mA!DA!(βA)mA

)cA . Since A uses ΠAis for all
i = 1, . . . , cA to permute its mA column vectors in each sub-matrix, for B, the
probability of guessing the correct positions of them is 1 out of mA!. A divides
each of its permuted column vectors into random vectors where it decides how
many random vectors a permuted vector be divided into based on a uniform
random integer from the range [1, βA]. Therefore, the probability of guessing the
number of random vectors that each vector is divided into is 1 out of (βA)mA .
A uses πAis for all i = 1, . . . , cA to permute random vectors. Therefore, guessing
their correct positions is 1 out of DA! with the assumption that all DAi values
are same and equal to DA. Since A horizontally divides its data into cA parts,
the probability of guessing the A’s data for B is 1 out of

(
mA!DA!(βA)mA

)cA .
Claim 2. A is not able to learn BN and BD due to the private BN & BD

computation protocol. Since B uses random integer SBa and randomly selects SBa

unrated items among the items it owns, the probability of guessing the correct
SBa and which SBa unrated items are selected is 1 out of

(
(mB − CB)(mB −

CB)!
)
/
(
SBa!(mB − CB − SBa)!

)
. B also fills unrated items’ cells in a’s ratings

vector with their mean votes, which are only known by it.
Claim 3. B is not able to learn AN and AD when it acts as an active user in
numerous scenarios. Since A tells a that he/she will like or dislike q and produces
referrals using a random threshold, B will not learn AN and AD.
Claim 4. A will not learn scalar product results conducted by B due to encryption
and B is not able to derive Σijs from Σ′′

ijs due to random numbers.
Unlike off-line communication cost, online communication cost is vital and

the number of online communications is only 4 for our scheme. The additional
storage costs due to privacy issues are O(mAmB +mA) and O(mAmB +mB) for
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A and B, respectively. Although off-line computation cost is not critical, online
computation cost is essential.
Claim 5. Additional computation costs due to privacy concerns during the online
phase are insignificant.
Claim 6. The costs due to the encryptions and the decryptions done off-line are
O(cBDB +mAmB) and O(cADA +mAmB) for A and B, respectively where DA

and DB represent the average number of random vectors for each sub-matrix.
Claim 7. The costs due to the multiplications done off-line are O(nmADB) and
O(nmBDA) for A and B, respectively.

4 Experiments

We used Jester and MovieLens (ML) data sets. Jester [3] has 100 jokes and records
of 17,988 users. The ratings range from -10 to +10. ML (www.cs.umn.edu/
research/Grouplens) consists of ratings for 3,592 movies made by 7,463 users. Rat-
ings are made on a 5-star scale. We measured the accuracy of our approach using
classification accuracy (CA) and F -measure (FM), which is a weighted combina-
tion of precision and recall.

4.1 Methodology

We randomly selected 2,000 users for training from Jester and ML. Since we
conducted different sets of experiments with varying number of rated items (M),
we found those users who rated certain number of items and randomly selected
400 test users among them for each experiment. For each test user, we randomly
selected 5 rated items, withheld a single rated item for each test user, and tried
to predict its value given all other ratings. We did this for all 5 test items. We
replaced the test item’s entry as null. We ran the selection of the subset of rated
or unrated items protocol 10 times for each test item. We created rτ uniform
random numbers while varying the range to evaluate random threshold. For each
test item, we created 10 uniform random numbers for those experiments testing
accuracy with random threshold. We converted the withheld items’ ratings into
binary ratings. We then compared the recommendations on our scheme with the
withheld items’ converted ratings and found CA and FM values.

4.2 Experimental Results

Number of Rated Items (M). We hypothesize that since prediction quality
improves with increasing M , when two parties conduct CF on the joint data,
accuracy improves. To show the effects of different M values, we conducted
experiments using ML data while varying M . Table 1 shows CAs and FMs
with varying M . Based on the settings of each experiment, we selected those
users for testing who rated M number of items. Overall performance increases
with increasing M . If there is limited number of rated items, with increasing
M values, we gain significant improvement. However, the improvement becomes
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Table 1. Prediction Quality vs. M

M M < 50 40 < M < 100 100 ≤ M < 200 200 ≤ M < 400
CA 0.6645 0.7010 0.7100 0.7140
FM 0.7313 0.7686 0.7713 0.7743

stable when enough ratings are available. CA is 0.6645 when M is less than 50
while it increases to 0.7010 when 40 < M < 100. Besides CA, FM also increases
from 0.7313 when M < 50 to 0.7686 when 40 < M < 100.

Number of Removed Ratings (Sr). We conducted experiments while varying
Sr using Jester and ML, and showed CAs in Fig. 1. 400 test users were randomly
selected among those users who rated more than 200 and 80 items for ML and
Jester, respectively. As seen from Fig. 1, accuracy slightly becomes worse with
increasing Sr because the available ratings are decreasing. When we increased
Sr from 0 to 100, we lost 0.0065 accuracy for ML. This means that if there are
significantly large number of ratings available, removing some of them does not
affect accuracy too much.

0 20 40 60 80 100
0.709

0.71

0.711

0.712

0.713

0.714

0.715

0.716

0.717

0.718

Total Number of Removed Ratings (S
r
)

C
la

ss
ifi

ca
tio

n 
A

cc
ur

ac
y

Classification Accuracy

(a) ML (rating range: 1–5)

0 10 20 30 40 50
0.708

0.71

0.712

0.714

0.716

0.718

0.72

0.722

Total Number of Removed Ratings (S
r
)

C
la

ss
ifi

ca
tio

n 
A

cc
ur

ac
y

Classification Accuracy

(b) Jester (rating range: -10–10)

Fig. 1. Prediction Quality vs. Sr

Number of Appended Ratings (Sa). Since accuracy improves with increas-
ing available ratings, appending more ratings may improve accuracy. However,
since empty cells are filled with the item mean votes, which can be considered
default votes for a and may not match with his/her true ratings for those items,
that might make accuracy worse. We performed experiments using ML with
varying Sa. 400 test users were randomly selected among those users who rated
more than 40 and less than 100 items. CA improves with increasing Sa up to 60
appended ratings. When Sa is 100, CA becomes worse and it is 0.7035; but it is
still better than the CA, which is 0.7010, when Sa is 0.



658 H. Polat and W. Du

Range of Uniform Random Values (α). To show how different α values af-
fect our results, we ran experiments while using uniformly created rτ values from
the range [−α, α] with varying α values using ML. 400 test users were randomly
selected among those users who rated more than 40 and less than 100 items. The
results slightly become worse with increasing α because with increasing range, rτ

values become larger, the random threshold (τ + rτ ) fluctuates more and causes
a loss in the performance. When we increased α from 0 to 0.1, CA degrades by
0.0015 while FM decreases by 0.0032.

5 Conclusions and Future Work

We have presented a solution to the PPCF based on VPD problem. Our solution
makes it possible for two parties to conduct filtering services using their joint data
without disclosing their data to each other. Our experiment results have shown
that our solution produces accurate referrals compared with the true ratings.
We will study multi-party scheme in detail and show how accuracy and privacy
change compared to two-party scheme and with varying number of parties.
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Abstract. Sequential pattern mining has been an emerging problem in data 
mining. In this paper, we propose a new algorithm for mining frequent se-
quences. It processes only one scan of the database thanks to an indexed struc-
ture associated to a bit map representation. Thus, it allows a fast data access and 
a compact storage in main memory. The experimental results show the effi-
ciency of our method compared to existing algorithms. It has been tested on 
synthetic data and on real data containing sequences of activities of a urban 
population time-use survey. 

1   Introduction 

The problem of mining sequential patterns was first introduced in the context of cus-
tomer transactions analysis [2]. It aims to retrieve frequent patterns in the sequences 
of products purchased by customers through time ordered transactions. Several algo-
rithms have been proposed in order to improve the performances and to reduce re-
quired space in memory [5], [9], [6]. Other works have concerned mining frequent 
sequences in DNA [8] or Web Usage Mining [3]. Finally, notice the use of bit map 
structure in providing a compact representation and good performances [5]. 

The target application in this paper is related to population time-use analysis and 
more precisely their daily displacements [4]. Our data are related to daily activities 
carried out by each surveyed person at the scale of a whole urban area. Thus, for each 
person of a surveyed household, it captures the activity program [7], the transport 
mode used between two activities, the departure time, and the duration of the trip. For 
example, during a day, an individual can leave home, take children to school, go to 
work, pick children up from school, and come back home. Activity programs of most 
individuals may be the same or be similar. Each activity program could be seen as a 
sequence of single values, making it possible to discover frequent activity sequences 
that characterise groups of the surveyed individuals. This allows analyzing the mobil-
ity of this urban population. Likewise, when considering transport mode, schedules or 
duration sequences, it would be possible to determine a typology of used transport 
modes, schedules, and so on. 

Existing algorithms are either inappropriate or not enough efficient to our specific 
case. Most works [1], [2], [6] make multiple scan of the database, which can be con-
sidered as the main bottleneck of algorithms of frequent sequence mining. Further-
more, unlike the analysis of sequential transactions where each transaction is an item 
set, our context only focuses on the analysis of sequences of items. 
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Although existing works [9], [10], [12] can be applied in this context, we propose 
here a new algorithm more appropriate to this particular case. This algorithm only 
makes one scan of the database. The indexed bit map structure needs few spaces in 
the main memory and allows a fast access to the data. The experimental results, using 
real or synthetic data, show that our algorithm outperforms existing ones. 

The paper is organised as follows: section 2 presents related works, then, section 3 
describes the proposed algorithm, section 4 proposes an optimisation, section 5 relates 
the experimentation and performance study, and finally, a general conclusion summa-
rizes our contribution and traces some perspectives. 

2   Related Works 

Most works related to mining frequent sequences are in the field of customer transac-
tion analysis. Early work on frequent patterns -Apriori algorithm- only considered 
transactions, not sequence of transactions [1]. This algorithm is costly because it 
carries out multiple scans of the database to determine frequent subsets of items. 
Three algorithms dealing with sequence of transactions are presented and compared in 
[2]: AprioriAll, AprioriSome and DynamicSome. AprioriAll algorithm is an adaptation 
of Apriori to sequences where candidate generation and support are computed differ-
ently. AprioriAll, and AprioriSome only compute maximal frequent sequences. Their 
principle is to jump to candidates of size k+next(k) in the next scan, where next(k)>1. 
Maximum frequent sequences of lower size that have not been calculated are given in 
the backward phase. The value of next(k) increases with Pk = |Lk|/|Ck|, where Lk 
stands for frequent sequences of size k, and Ck the whole generated candidates of size 
k. DynamicSome algorithm is based on AprioriSome but uses a jump by a multiple of 
user defined step. 

SPAM algorithm [5] uses a bitmap representation of transaction sequences once the 
entire database has been loaded in a lexicographic tree. But this algorithm considers 
that the entire database and all used data structures should completely fit into main 
memory, and then do not adapt for large datasets. 

The GSP algorithm [6] exploits the property that all contiguous subsequences of a 
frequent sequence also have to be frequent. As Apriori, it generates frequent se-
quences, then candidate sequences by adding one or more items.  

PrefixSpan [10] first finds the frequent items after scanning the database once. The 
sequence database is then projected, according to the frequent items, into several 
smaller databases. Finally, all sequential patterns are found by recursively growing 
subsequence fragments in each projected database. Employing a divide-and-conquer 
strategy with the PatternGrowth methodology, PrefixSpan efficiently mines the com-
plete set of patterns. 

3   IBM Algorithm 

We are now going to focus on the specific case where the considered sequences are 
basic since they are composed of single items, not of a set of items. This is the case in 
DNA [8], Web usage data [3] or activity program sequences [7]. Our algorithm will 
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be compared to PrefixSpan, one of the most efficient among the above mentioned 
methods. 

A sequence is said frequent if it is included in a number of sequences greater than a 
support given by the user. The inclusion between two sequences s1 = (a1, .., an) and s2 
= (b1, …, bn):  s1 ⊂ s2 is defined by :  ∃ bi1 = a1,…, bin = an  such that   i1 < i2< …<in. 

3.1   Principle of the Algorithm 

The proposed approach is two phases. The first stage is the data encoding into a 
memory resident data structures. The second one is the frequent generation that in 
turn is composed of candidate generation, and candidate support checking. 

The data structure is based on four components: (i) a Bit Map (IBM) is a binary ma-
trix representing the distinct sequences of the database, (ii) an SV vector encodes all the 
ordered combinations of sequences, (iii) an index (INDEX) on the Bit Map allows a 
direct access to sequences according to their size, (iv) an NB table associated to the Bit 
Map which informs about the frequency of each distinct sequence (figure 1). 

This algorithm only makes one scan of the database during which the total number 
of distinct sequences, the frequency of these sequences and the number of sequence 
by size are computed. This allows computing the support of each generated sequence. 
These sequences are classified by decreasing size in the IBM and only distinct se-
quences are stored in the Bit Map. An index by size allows a direct access to se-
quences according to their size. This structure provides an optimisation since a gener-
ated sequence s of size t will be directly compared with the sequences of the same or 
greater size stored in the IBM (figure 1). 
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Fig. 1. The data structure 

In order to simplify the notations, we represent each activity by a specific charac-
ter, e.g. HSWSH standing for (Home, School, Work, School, Home). In the figure 1, 
the sequence vector (SV) is made of 5 ordered activities (H,W,S,M,H). In this exam-
ple one supposes that the database is composed of six distinct sequences of size 1 to 5 
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encoded in the IBM. The bit 1 indicates the items present in the sequence according to 
the SV and bit 0, those that are not. Here, there are 6 distinct sequences: (H), (W), 
(HRS), (HSH), (HSMH) and (HSRWH). In the above example (figure 1), each cell of 
the INDEX indicates the first line where the corresponding size of sequence is stored. 
For example, the cell number 5 (with value 6) corresponds to the line number 6 of the 
first sequence of size 5 encoded in the IBM. The table NB associates to the IBM 
stores the frequency of each distinct sequence. Thus the sequence (HSMH) of size 4 
occurs 20 times in the database.  In this algorithm, INDEX, SV, NB and IBM are built 
on the fly during one pass. At each insertion of a sequence, the IBM may become 
larger, and a set of shifting operations are applied to the bit values stored in this table. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 2. IBM algorithm 

Figure 2 shows the general IBM algorithm that takes as parameters: the database of 
sequences DB and a threshold t. This value (t) stands for the minimum frequency of 
the sequences which will be taken into account for the generation of the candidates. 
Then for each sequence s reads from the database during the scan, the SV (line 01) is 
generated using a merging process (see section 3.2). If the sequence already exists in 
SV, only the NB table is updated (line 03): the line corresponding to this sequence in 
NB (and encoded in the IBM) is incremented. So, the frequency corresponding to this 
value is incremented. Else, if the sequence is not presented in SV, it is generated by 
the Gen-sequence-vector(s) function (section 3.2). The height of the IBM is increased 
to one line (line 02), the length is increased to the SV length, and the INDEX (line 04) 
is updated. Then, a set of shifting operations is applied to the IBM in order to preserve 
the initial values of existing sequences while encoding the new one. 

Once all the data have been encoded in this structure (SV, IBM, NB, INDEX), new 
candidates (line 09) are generated (see section 3.3) and compared to the data stored in 
the IBM (line 10) with a fast access thanks to the index (INDEX).  

3.2   Generation of the Sequence Vector 

The sequence vector is generated during the unique scan of the database according to 
the algorithm of figure 3. Here, s stands for a sequence of the database read during the 

IBM (sequence database DB, threshold t) 
00 For each sequence s in DB 
01  Gen-sequence-vector(s) 
02  Encode and Insert s in the IBM 
03  Update NB  
04  Update INDEX 
05 End For 
06 Integer k := 1; 
07 While exists frequent sequence of size k 
08  k := k+1;                                        
09  Generate Ck 
10  Get-frequent-sequences (t) 
11 End While
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scan, and position(x) stands for the cell number of value x in the SV. If an item a of s 
already exists in SV, then there is nothing to do, otherwise, there are two possibilities: 
if there exists an item b such that the cell number of b is greater than the cell number 
of a and b is in SV (line 04 and 05), then a is inserted before the value b in SV; oth-
erwise, a is inserted at the end of SV (line 06). Thus all the distinct sequences of the 
database are represented in the SV using a merging process. 

 
 
 
 
 

 

 
 
 
 

Fig. 3. Sequence Vector generation 

3.3   Candidate Generation 

During the scan, the frequencies of all items are computed. Those whose support is 
underneath the one specified by the user are deleted. Then, candidates are generated 
from these frequent items, using the fusion process as in GSP algorithm [6]. 

3.4   Candidate Support Counting 

For a given candidate C of size S, the algorithm first accesses the first sequence of 
size S encoded in IBM, which corresponds to the line l=INDEX(S). For each line 
starting from the line l to the last line of IBM table, the algorithm determines using 
the SV vector if C is contained in each line of IBM. If so, the corresponding fre-
quency of this sequence stored in the NB table, is added to the frequency of the can-
didate. After the comparison with each line until the last one, the support of C is  
computed. 

4   Implementation and Optimization 

The IBM algorithm has been implemented in Java. It takes few spaces in the main 
memory. But whereas the bit variable is not provided in programming languages like 
Java or C++, some shifting operations are required to access the target value stored in 
the bit map and corresponding to the value stored in SV. In order to avoid these super-
fluous computations, we have proposed a variant with IBM2 algorithm, where the bit 
map is replaced by a Boolean matrix, i.e. where cells are declared of Boolean type, 
which takes 8 bits for each cell. Although this solution requires more space in mem-

Gen-sequence-vector(s):
00 var SV := φ;  {SV empty at the beginning}; 
01 Integer current_position := 0; {position in SV}; 
02 For each item a of s 
03  If a ∉ SV 
04    If ∃ b ∈ s such that (b ∈ SV and position(b) > 
position(a) in s and position(b) > current_position) 
05     Insert a before b 
06     Else insert a at the end of SV  
07      current_position := position(a) in SV; 
08 End For
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ory, the access to the target value stored in the Boolean matrix is done directly with-
out shifting computations. The result of their respective performances is detailed in 
the next section and compared with PrefixSpan. 

5   Experimental Results 

The experiments were performed on a 2.5 GHz Pentium IV with 1.5 GB of memory 
running Microsoft Windows XP Professional. Our implementation of IBM and IBM2 
has been compared with PrefixSpan, based on the package PrefixSpan-0.4.tar.gz1. 
This test has concerned the scalability of the algorithm, by measurements of runtime 
and memory occupancy while varying the dataset size, and the support threshold. 
Moreover, we have tested the impact of the number of distinct items. Four synthetic 
datasets have been generated for the experimentations, with different sizes: 100000, 
300000, 600000 and 1000000 rows. The size of sequences is randomly generated 
from 2 to 60, and the number of distinct items is about 10 for figures 4 to 7. This 
number has been pushed to 35 distinct items in order to test its impact.  
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     Fig. 4. Performances with 100,000 rows            Fig. 5. Performances with 300,000 rows 

Although IBM and IBM2 have been implemented in Java, and PrefixSpan in C++ - 
a priori more optimal than Java -, IBM and IBM2 outperform PrefixSpan. The ex-
perimentations show that the larger is the database size, the more IBM and IBM2 win 
PrefixSpan (Figures 4 to 7). This is because IBM and IBM2 make only one scan of 
the database and the Indexed Bit Map structure allows a faster access to the sequences 
than the structure used in PrefixSpan. Moreover, as the support threshold decreases, 
the gap between IBM and PrefixSpan increases. Concerning the resource consump-
tion, the size of the bit map depends on the size of SV, which may increase with the 
number of distinct sequences. Notice that SV size only increases when the encoun-
tered sequence can not be encoded using the current SV. Moreover, not all the items 
of the inserted sequence are added in SV, but only those that are not present in the 
                                                           
1 http://chasen.org/~taku/software/prefixspan/ 
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same order. Finally, since the probability to find common ordered items between SV 
and the current sequence becomes high as the building process advances, SV size 
becomes stable regardless of the size of the database. For instance, with a database 
composed of 600,000 rows, SV contains about 265 values for 90,000 distinct rows. 
The size of the Boolean Map is then equal to: 265*90,000 = 23.85 Mega Bytes. As 
IBM is 8 times more compact, the size of the Bit Map is less than 3 MB. With 
1,000,000 rows (figure 7), SV contains 370 elements for 160,000 distinct rows. Then, 
the size of the Boolean Map reaches 59.2 MB, whereas the size of the Bit Map fits in 
7.5 MB. Concerning the impact of distinct item number, for 100,000 rows until 20 
distinct items, IBM and IBM2 perform better than PrefixSpan. Between 20 and 35 
distinct items, IBM2 performs better than PrefixSpan, which becomes faster than 
IBM. But above 35 distinct items, PrefixSpan is faster than IBM and IBM2. 
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           Fig. 6. Performances with 600,000 rows      Fig. 7. Performances with 1,000,000 rows 

These results also show that IBM is more appropriate than IBM2 for very large da-
tabases, due to data compression. However, IBM2 runs faster than IBM. This is due 
to the costs of shifting operations necessary to access target values, while IBM2 di-
rectly accesses the target sequences.  

6   Conclusion and Perspectives 

This paper has presented a new algorithm IBM and its variant IBM2. The aim of this 
algorithm is to find all frequent sequences in item sequences. It has been applied to 
discover all frequent activity sequences in the time use mobility database within an 
urban environment. IBM only makes one scan of the database and provides an effi-
cient data structure saving runtime and memory space. The use of the specified index 
provides another optimization of comparisons during candidate counting. Experimen-
tal results show that in most cases, IBM2 outperforms IBM, which in turn outper-
forms PrefixSpan for large and very large databases, with limited distinct items. Ex-
tensive experiments have been conducted that attest for the effectiveness and the 
efficiency of the proposed method, and are detailed in [11]. In perspective, IBM will 
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be extended to multidimensional sequences (e.g. with attributes) and spatial se-
quences (such as trajectories). Other application fields will be explored, like pattern 
mining from DNA, Web Usage Mining or extension to customer transaction analysis. 
Finally, the proposed data structure adapts to similarity analysis of sequences and may 
be a good basis for efficient sequence clustering. 
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Abstract. The Feature Selection problem involves discovering a sub-
set of features such that a classifier built only with this subset would
have better predictive accuracy than a classifier built from the entire
set of features. Ensemble methods, such as Bagging and Boosting, have
been shown to increase the performance of classifiers to remarkable levels
but surprisingly have not been tried in other parts of the classification
process. In this paper, we apply the ensemble approach to feature selec-
tion by proposing a systematic way of combining various outcomes of a
feature selection algorithm. The proposed framework, named STochFS,
have been shown empirically to improve the performance of well-known
feature selection algorithms.

1 Introduction

The Feature Selection problem involves discovering a subset of features such that
a classifier built only with this subset would have better predictive accuracy than
a classifier built from the entire set of features.

Ensemble methods aim at improving the predictive performance of a given
learning algorithm. Its general principle is to construct a combination of some
learning models through a systematic process, instead of using a single model.
Several combination methods, such as bagging [4] and boosting [6], have been
shown to improve the performance of classifiers to remarkable levels. Given the
benefits of classifier combinations of the type described above, it is surprising
that other parts of the classification process (and in particular, Feature Selection)
have not been tried in a systematic combined manner. In this paper, we will
apply the ensemble approach to feature selection by proposing a systematic way
of combining various outcomes of a feature selection algorithm.

2 Feature Selection

Feature subset selection algorithms can be classified into three broad categories
based on whether or not feature selection is performed independently of the

A. Jorge et al. (Eds.): PKDD 2005, LNAI 3721, pp. 667–674, 2005.
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learning algorithm used to construct the classifier. If feature selection is per-
formed independently of the learning algorithm, the technique is said to follow
a filter approach. Otherwise, it is said to follow a wrapper approach. While the
filter approach is generally computationally more efficient than the wrapper ap-
proach, its major drawback is that an optimal selection of features may not
be independent of the inductive and representational biases of the learning al-
gorithm that is used to construct the classifier. The wrapper approach on the
other hand, involves the computational overhead of evaluating candidate feature
subsets by executing a selected learning algorithm on the dataset represented
using each feature subset under consideration.

A combination of these two approaches, that is, the use of two evaluation
methods (a filter-type evaluation function and a classifier) creates a hybrid solu-
tion. Hybrid solutions attempt to combine the good characteristics of both filters
and wrappers1. The combinations of approaches performed by hybrid feature se-
lection algorithm, however, are heuristic in nature and cannot be systematically
applied or analyzed.

In this paper, we propose the systematic combination of the outcomes of
feature selection algorithms using the Bagging technique via a stochastic process.

3 The Framework

The STochFS framework combines the results of a feature selection algorithm
in a stochastic manner by summarizing these outcomes in a single structure and
using it as a seed in the generation of new feature selection subsets which are
evaluated with a learning algorithm.

Initially, the NumOuts best subsets returned by a single run of a feature
selection system fs (or the single results of NumOuts different runs, if such
an algorithm returns only one best subset per execution) are stored into a two-
dimensional array, see Figure 1. This array will then be condensed into a new
array, called Adam, that will simply store the number of times each feature ap-
peared in the NumOuts best subsets. Next, STochFS will iteratively (NumIter
times) generate new subsets of features in a stochastically guided fashion using
Adam as a seed and evaluate them with a learning system over the dataset D.
The generation of a new subset is such that features with high value in Adam
have a better chance of being selected than those with a low one at each itera-
tion. At the end, the subset with best accuracy will be returned. If subsets tie
it terms of accuracy, the one with the lowest cardinality is returned.

Each of the procedures used in this framework are described next.

GenerateOutcomes(fs, D, NumOuts) executes the feature selection algo-
rithm, fs, NumOuts times and stores its outcomes in O. This procedure
works differently, as described in the next two sections, depending on whether
the feature selection algorithm to be used in probabilistic or deterministic.

1 A description of recently proposed hybrid feature selections algorithms can be found
in [13], [14], [2],[5] and [12].
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STochFS(fs, D, NumIter,NumOuts)

O = GenerateOutcomes(fs, D, NumOuts)
Adam = CalculateAdam(O)
for j = 1 to NumIter

S = GenerateSubset(Adam)
if Error(S, D) < Error(Sbest, D) then

Sbest = S
else

if Error(S, D) = Error(Sbest, D) and
Card(S) < Card(Sbest) then
Sbest = S

return Sbest

Fig. 1. The STochFS Framework

CalculateAdam(O) uses the following equation:

Adam = {ai, 1 ≤ i ≤ n}

where: ai =
∑

oji, with 1 ≤ j ≤ k and 1 ≤ i ≤ n.
to create the Adam vector. Adam stores the number of occurrences of each
feature in O, which represent the number of times each feature was selected
by fs as a relevant feature.

GenerateSubset(Adam) generates a new subset of features S in a stochasti-
cally guided fashion using Adam as a seed. The generation process works
as described below. Let i denote a particular feature in Adam. Let S be a
vector of n elements where n is the total number of features in O. Element
Si (of S) = 1 if feature i is included in the subset of features represented by
S. Si = 0, otherwise. Vector S is computed as follows:

Si = 1, if ai > random(k) and Si = 0 otherwise,
where random(k) returns a random number between 0 and k.

This procedure is such that features with high frequency have a better chance
of being selected than those with a low one at each iteration.

Error(S, D) makes use of a learning algorithm, inputting the subset S to gener-
ate a prediction model and receiving the error rate calculated for this model
over dataset D.

In order to deal with the problem generated by deterministic feature selection
algorithms, we have adapted STochFS to combine outcomes from both probabilis-
tic and deterministic algorithms. Section 3.1 describes its use with probabilistic
algorithms while section 3.2 details its use with deterministic algorithms.
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3.1 Combining Outcomes of Probabilistic Feature Selection
Algorithms

In the case the feature selection algorithms used in STochFS, fs, is a probabilistic
algorithm, GenerateOutcomes(fs, D, NumOuts) proceeds as follows:

GenerateOutcomes(fs, D, NumOuts)

for i = 1 to NumOuts
O[i] = FeatureSelection(fs, D)

Fig. 2. GenerateOutcomes() for Probabilistic Algorithms

where

FeatureSelection(fs, D) runs a feature selection system fs over D and stores
its outcome in O[i].

Since probabilistic algorithms present random components, we apply such
algorithms directly in our framework.

3.2 Combining Outcomes of Deterministic Feature Selection
Algorithms

On the other hand, if fs is deterministic, the outcomes are generates as follows:

GenerateOutcomes(fs, D, NumOuts)

for i = 1 to NumOuts
D[i] = Resample(D)
O[i] = FeatureSelection(D[i])

Fig. 3. GenerateOutcomes() for Deterministic Algorithms

where

Resample(D) creates samples of the original dataset D by bootstrap aggrega-
tion. [4]. Each bootstrap replicate, stores in D[i], contains on the average
63.2% of the instances in D2.

FeatureSelection(D[i ]) runs a feature selection system fs over D[i] and stores
its outcome in O[i].

This procedure would add some randomness to the selection process and
allow for a more open space to be considered by the stochastic search based on
Adam performed in STochFS.
2 This is the same sampling technique used in Bagging.



STochFS: A Framework for Combining Feature Selection Outcomes 671

4 STochFS Evaluation

In order to evaluate STochFS we have selected four selection systems that vary
according to how stochastic they are. First, the LVF algorithm [11] uses a Las
Vegas approach to generate new subsets and can in fact be considered the most
random selection algorithm of all. The Relief algorithm [9] uses randomness to
select an instance which will be used to update the relevance weights for all
features. Therefore, it deals with chance but clearly less directly as in LVF.
We have also considered two deterministic algorithms, Focus [1] and RelieveD
[8], where Focus finds the smallest subset that perfectly represents the original
dataset and RelieveD is the deterministic version of Relief that uses all instances
in the dataset to update the feature weights. For these two approaches, we have
added randomness by using bootstrap aggregation, as described in section 3.2.

For each feature selection algorithm we performed a series of experiments
using three different classifiers (C4.5, Naive Bayes and k-Nearest Neighbor) and
13 datasets from the UCI Repository [3]: Credit (15 features, 690 instances),
Labor (16, 57), Vote (16, 435), Primary Tumor (17, 339), Lymph (18, 148),
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Fig. 4. Summary of the experimental results (error rates). Points under the line indicate
that STochFS performed better than its underlying algorithm. Red circles indicate
results for C4.5, blue triangles indicate results for Naive Bayes and green plus signs
results for kNN.
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algorithm

LVF FOC
STFS(LVF) STFS(REL) STFS(RLD)STFS(FOC)
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Fig. 5. Number of experiments (out of 39) which each algorithm performed the best
or tied with the best. LVF = LVF, STFS(LVF) = STochFS using LVF, REL = Relief,
STFS(REL) = STochFS using Relief, FOC = Focus, STFS(FOC) = STochFS using
Focus, RLD = RelieveD and STFS(RLD) = STochFS using RelieveD.

Mushroom (22, 8124), Colic (23, 368), Autos (25, 205), Ionosphere (34, 351),
Soybean (35, 683), Splice (60, 3190), Sonar (60, 208), Audiology (69, 226).

The following configurations were used in the experiments: for LVF the in-
consistency threshold is the initial inconsistency of the dataset and the number
of iterations is 77 · N5 (both as suggested in [11]), where N is the number of
features in the original dataset. The number of iterations in Relief is half of
the instances in the dataset, the number of NearHits and NearMisses consid-
ered was set to 10 ([10]) and the selection threshold to 0.01 ([7]). For RelieveD,
the Relief algorithms was executed using all instances. Finally, for STochFS the
number of iterations was set to 10 ·N and NumOuts was set to 103.

The results of our experiments are summarized in Figures 4 and 5 and Table
1. Figure 4 shows that combining the subsets that result from LVF, Relief and
Focus executions can indeed generate more accurate outcomes in most cases. In
addition, compared to the RelieveD algorithm, STochFS does not seem to result
in improved subsets. These observations are confirming when analyzing Table
1, which shows the number of experiments each algorithm performed better
within each significance level calculated with the student’s t-test. From this
table we can verify the drastic selection improvement obtained by STochFS when
combining LVF outcomes. Also, as suggested by Figure 4, the gains achieved by
the application of STochFS over Relief and Focus are also significant. Finally,
the experimental tests could not demonstrate any relevant improvement when
considering RelieveD outcomes.

By considering the influence of randomness in each underlying algorithm,
we can try to explain some of the experimental results. First, as discussed ear-
lier, random approaches will result in open search spaces, which could allow for
better predictive improvements. This suggestion was clearly confirmed in the
experiments. For the extremely random LVF algorithm, for instance, STochFS

3 To get to this number, we have tried different values for several datasets of small
and medium sizes (up to 69 features) and the results showed that the STochFS
performance is hurt, in several cases, if we use less than ten outcomes. Furthermore,
using more than ten does not improve its performance in most situations.
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Table 1. Score of the number of experiments (out of 39) each algorithm performed
better within each significance level (calculated with the student’s t-test). A score “A
x B” for a certain algorithm f and significance level s means that STochFS performed
better than f within s A times. Similarly, it also means that algorithm f outperformed
STochFS B times within s.

<0.001 <0.005 <0.01
STochFS vs LVF 19 x 0 4 x 0 4 x 1
STochFS vs Relief 12 x 3 3 x 0 4 x 2
STochFS vs Focus 7 x 3 6 x 1 3 x 0
STochFS vs RelieveD 6 x 6 2 x 1 2 x 2

generated the most significant improvements. Yet for Relief, a less stochastic
solution, the improvements were less visible. In addition, STochFS was less ag-
gressive when dealing with the two deterministic algorithms Focus and RelieveD.

In order to measure the overall effectiveness of STochFS in selecting relevant
features and not only its power in boosting the performance of other feature
selection algorithm, we have identified for each pair dataset-classifier the best
subset generated by all selection algorithms, including LVF, Relief, Focus and
RelieveD and the STochFS variants employing these four algorithms as underly-
ing solutions. The results are summarized in Figure 5, which shows the number
of times each algorithm performed the best or tied with the best. This table
brings an interesting observation. Out of the 39 experiments (combination of
3 classifiers and 13 datasets), the application of STochFS in one algorithm or
another generated the best subset of all (or tied with the best) in 36 cases.
This impressive result can be explained by the use of the learning algorithm as
evaluation function and the effective search heuristic employed by STochFS.

5 Conclusion

In this paper, we have applied the ensemble approach to feature selection by
proposing a systematic way of combining various outcomes of a feature selection
algorithm. The proposed framework, named STochFS, is similar to the process
of Bagging in that randomness is used to generate various outcomes of a feature
selection algorithm on the same problem, but it is different in the way these
various outcomes are combined: instead of voting we use a stochastic process
seeded in a summary of these outcomes.

Experimental results have shown that the performance of well-known fea-
ture selection algorithms can be significantly improved, especially when random-
ness plays a significant role in such underlying solutions. In addition, STochFS
achieved an overall superior performance when compared to the considered base
selection algorithms.

The research results presented and discussed in this paper can give a consid-
erable but partial understanding of the proposed framework. For future research
directions, we expect to consider not only the selection power of STochFS but
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also its time efficiency. In addition, in this paper we only consider the combina-
tion of outcomes generated from the same feature selection algorithm. However,
the STochFS framework can be used to compose results from different selection
systems. This study could identify complementary solutions that together may
work better than far apart.
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Abstract. Logistic Model Trees have been shown to be very accurate
and compact classifiers [8]. Their greatest disadvantage is the computa-
tional complexity of inducing the logistic regression models in the tree.
We address this issue by using the AIC criterion [1] instead of cross-
validation to prevent overfitting these models. In addition, a weight trim-
ming heuristic is used which produces a significant speedup. We compare
the training time and accuracy of the new induction process with the
original one on various datasets and show that the training time often
decreases while the classification accuracy diminishes only slightly.

1 Introduction

Logistic Model Trees (LMTs) are born out of the idea of combining two com-
plementary classification schemes: linear logistic regression and tree induction.
It has been shown that LMTs perform competitively with other state-of-the-art
classifiers such as boosted decision trees while being easier to interpret [8]. How-
ever, the main drawback of LMTs is the time needed to build them. This is due
mostly to the cost of building the logistic regression models at the nodes. The
LogitBoost algorithm [6] is repeatedly called for a fixed number of iterations,
determined by a five fold cross-validation. In this paper we investigate whether
cross-validation can be replaced by the AIC criterion without loss of accuracy.
We also investigate a weight trimming heuristic and show that it improves train-
ing time as well.

The rest of this paper is organized as follows. In Section 2 we give a brief
overview of the original LMT induction algorithm. Section 3 describes the mod-
ifications made to various parts of the algorithm. In Section 4, we evaluate the
modified algorithm and discuss the results, and in Section 5 we draw some con-
clusions.

2 Logistic Model Tree Induction

The original LMT induction algorithm can be found in [8]. We give a brief
overview of the process here, focusing on the aspects where we have made im-

A. Jorge et al. (Eds.): PKDD 2005, LNAI 3721, pp. 675–683, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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LogitBoost (J classes)

1. Start with weights wij = 1/n, i = 1, . . . , n, j = 1, . . . , J, Fj(x) = 0
and pj(x) = 1/J ∀j

2. Repeat for m = 1, . . . , M :

(a) Repeat for j = 1, . . . , J :

i. Compute working responses and weights in the jth class

zij =
y∗

ij − pj(xi)
pj(xi)(1 − pj(xi))

wij = pj(xi)(1 − pj(xi))

ii. Fit the function fmj(x) by a weighted least-squares regression
of zij to xi with weights wij

(b) Set fmj(x) ← J−1
J

(fmj(x) − 1
J

∑J
k=1 fmk(x)), Fj(x) ← Fj(x) + fmj(x)

(c) Update pj(x) = e
Fj(x)∑J

k=1 eFk(x)

3. Output the classifier argmax
j

Fj(x)

Fig. 1. LogitBoost algorithm

provements. We begin this section with an overview of the underlying founda-
tions and conclude it with a synopsis of the original LMT induction algorithm.

2.1 Logistic Regression

Linear logistic regression models the posterior class probabilities Pr(G = j|X =
x) for the J classes via functions linear in x and ensures that they sum to one
and remain in [0, 1]. The model is of the form

Pr(G = j|X = x) =
eFj(x)∑J

k=1 eFk(x)
, (1)

where Fj(x) = βT
j · x. Numeric optimization algorithms that approach the max-

imum likelihood solution iteratively are used to find the estimates for βj .
One such iterative method is the LogitBoost algorithm [6], shown in Figure 1.

In each iteration, it fits a least-squares regressor to a weighted version of the
input data with a transformed target variable. Here, y∗

ij are the binary pseudo-
response variables which indicate group membership of an observation like this

y∗
ij =

{
1 if yi = j,

0 if yi �= j
, (2)

where yi is the observed class for instance xi.
If we constrain fmj to be linear in x, then we achieve linear logistic regression

if the algorithm is run until convergence. If we further constrain fmj to be a linear
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function of only the attribute that results in the lowest squared error, then we
arrive at an algorithm that performs automatic attribute selection. By using
cross-validation to determine the best number of LogitBoost iterations M , only
those attributes are included that improve the performance on unseen instances.
This method is called “SimpleLogistic” [8].

2.2 Logistic Model Trees

For the details of the LMT induction algorithm, the reader should consult [8].
Here is a brief summary of the algorithm:

– First, LogitBoost is run on all the data to build a logistic regression model
for the root node. The number of iterations to use is determined by a five
fold cross-validation. In each fold, LogitBoost is run on the training set up
to a maximum number of iterations (200). The number of iterations that
produces the lowest sum of errors on the test set over all five folds is used
in LogitBoost on all the data to produce the model for the root node and is
also used to build logistic regression models at all nodes in the tree.

– The data is split using the C4.5 splitting criterion [10]. Logistic regression
models are then built at the child nodes on the corresponding subsets of the
data using LogitBoost. However, the algorithm starts with the committee
Fj(x), weights wij and probability estimates pij inherited from the parent.

– As long as at least 15 instances are present at a node and a useful split is
found (as defined in the C4.5 splitting scheme), then splitting and model
building is continued in the same fashion.

– The CART cross-validation-based pruning algorithm is applied to the
tree [3].

3 Our Modifications

In the following we discuss the additions and modifications we made to the
algorithms that make up LMT induction.

Weight Trimming. The idea of weight trimming in association with Logit-
Boost is mentioned in [6]. It is a very simple, yet effective method for reducing
computation of boosted models. In our case, only training instances carrying
100 · (1 − β)% of the total weight mass are used for building the simple linear
regression model, where β ∈ [0, 1]. Typically β ∈ [0.01, 0.1]. We used β = 0.1. In
later iterations more of the training instances become correctly classified with a
higher confidence; hence, more of them receive a lower weight and the number
of instances carrying 100 · (1− β)% of the weight becomes smaller.

The computation needed to build the simple linear regression model thus
decreases as the iterations proceed. Of course, the computational complexity
is still O(n · a); however, n is reduced by a potentially large constant factor
and in practice, a reduction in computation time is achieved without sacrificing
predictive accuracy (see Section 4).
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Automatic Iteration Termination. In the original induction algorithm for
LMTs the number of LogitBoost iterations for all nodes is determined by a five
fold cross-validation at the root and used for all nodes. This, of course, is a
time consuming process when the number of attributes and/or instances in the
training data is large. The aim is to terminate the LogitBoost iterations when
the model performs well on the training data, yet does not overfit it.

A common alternative to cross-validation for model selection is the use of
an in-sample estimate of the generalization error, such as Akaike’s Information
Criterion (AIC) [1]. We investigated its usefulness in selecting the optimum
number of LogitBoost iterations and found it to be a viable alternative to cross-
validation in terms of classification accuracy and far superior in training time.

AIC provides an estimate of the generalization error when a negative log-
likelihood loss function is used. Let this function be denoted as loglik and let N
be the number of training instances. Then AIC is defined as

AIC = − 2
N

loglik + 2
d

N
, (3)

where d is the number of inputs or basis functions. If the basis functions are
chosen adaptively, then d must be adjusted upwards [7]. In this case, d denotes
the effective number of parameters, or degrees of freedom, of the model. It is
not clear what value to use for d in SimpleLogistic. In [4] the effective number
of parameters is computed for boosting methods using the “boosting operator”
which is a linear combination of the hat matrices of the basis functions. Our
implementation of this method led to a large computational overhead which
actually made it slower than cross-validation.

Intuitively, the logistic regression model built via SimpleLogistic should be
penalized (i.e. d should increase) each time a new attribute is introduced to the
model. We could just use the number of attributes used in a committee function
Fj for any class j. However, when an iteration introduces no new attributes,
the model is not penalized, although it has become more complex. At the other
end of the spectrum, we could penalize each iteration equally which leads to
another estimate, d = i, where i is the iteration number. As i increases, the first
term in Equation 3 decreases (because LogitBoost performs quasi-Newton steps
approaching the maximum log-likelihood [6]) and the second term (the penalty
term) always increases. Empirically, this was found to be a good estimate (see
Section 4).

The optimal number of iterations is the i which minimizes AIC. So, in order
to determine the optimal number i∗, LogitBoost must be run up to a maximum
number of iterations (in LMT induction, this is 200), and then run again for i∗

iterations. Just as with the cross-validation process in the original LMT induc-
tion algorithm, we performed the AIC procedure at the root node of the logistic
model tree and used i∗ throughout the tree. Also, if no minimum was found
for 50 iterations, then no more iterations were performed and the iteration that
produces the minimum AIC was used as i∗. This is analogous to the heuristic
employed for the cross-validation method in [8]. However, we found that we can
modify this process to achieve a speed-up without loss of accuracy.
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We tested the AIC-based model selection method on 13 UCI datasets [2] (see
Section 4) and observed that, for every dataset, AIC only had one global mini-
mum over all iterations. Hence we can attempt to speed up the aforementioned
model selection method. We stop searching as soon as AIC no longer decreases.
Determining the optimal number of iterations in this fashion will be called the
First AIC Minimum (FAM) method in the remainder of this paper.

FAM allows us to efficiently compute (an approximation to) the optimal
number of iterations at each node in the tree. This is advantageous in two ways:

– Instead of iterating up to a maximum number of iterations five times (in
the cross-validation case) or once (in the AIC case) and then building the
model using the optimal number of iterations i∗, LogitBoost can be stopped
immediately when i∗ is found.

– As we move down the tree, the sets of training instances become smaller
(they are subsets of the instances observed at the parent node). AIC is
inversely related to the number of instances N , so as N becomes smaller,
not only will simpler models be selected, but training time decreases as fewer
iterations are needed. It is also much more intuitive that a different number
of iterations is appropriate for different datasets occuring in a tree.

In addition, we no longer need to set a maximum number of iterations to be
performed. As mentioned in [8] the limit of 200 was appropriate for the observed
datasets; however it is not clear whether this is enough for all datasets.

4 Experiments

This section evaluates the modified LMT induction algorithm and its base learner
SimpleLogistic by comparing them against the original implementation. For the
evaluation we measure training times and classification accuracy. All experiments
are ten runs of a ten-fold stratified cross-validation. The mean and standard
deviation over the 100 results are shown in all tables presented here. In all
experimental results, a corrected resampled t-test was used [9] instead of the
standard t-test to test the difference in training times and accuracy, at a 5%
significance level. This corrects for the dependencies in the estimates of the
different data points, and is thus less prone to false-positives.

We used 13 datasets with a nominal class variable available from the UCI
repository [2]. We used only datasets that have approximately 1000 training
instances or more (vowel was the exception with 990 instances). Both numeric
and nominal attributes appear in all of the UCI datasets.

All experiments were run using version 3.4.4 of the Weka machine learning
workbench [11]. Almost all experiments were run on a pool of identical machines
with an Intel Pentium 4 processor with 2.8GHz and 512MB ram1, Linux kernel
2.4.28 and Java 1.5.0-b64.
1 All LMT algorithms required more memory for the adult dataset and were thus run

on an Intel Pentium 4 processor with 3.0GHz and 1GB ram.
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Table 1. Training time and accuracy for SimpleLogistic and SimpleLogistic using
weight trimming

Training Time Accuracy
Dataset SimpleLog. SimpleLog. SimpleLog. SimpleLog.

(WT) (WT)
vowel 77.94±23.59 39.67±12.72 • 81.98±4.10 82.07±3.82
german-credit 7.97±1.94 6.79±1.55 75.37±3.53 75.35±3.48
segment 50.55±14.82 20.02±5.61 • 95.10±1.46 86.71±25.67
splice 253.96±38.83 79.02±9.55 • 95.86±1.17 95.87±1.09
kr-vs-kp 57.28±15.09 25.98±8.35 • 97.06±0.98 97.07±0.92
hypothyroid 104.76±27.17 47.88±10.72 • 96.61±0.71 96.55±0.72
sick 25.40±6.10 12.09±3.39 • 96.68±0.71 96.63±0.70
spambase 119.28±18.73 43.19±4.38 • 92.75±1.12 92.40±1.24
waveform 65.53±9.31 25.42±3.77 • 86.96±1.58 86.90±1.55
optdigits 659.33±123.68 111.32±21.35 • 97.12±0.67 97.17±0.67
pendigits 489.51±148.34 257.86±84.23 • 95.44±0.62 95.51±0.61
nursery 266.51±25.56 119.19±11.36 • 92.61±0.68 92.60±0.77
adult 2953.77±849.82 1866.15±344.05 • 85.61±0.38 85.56±0.38

• statistically significant improvement

4.1 SimpleLogistic

We first evaluated the SimpleLogistic learner for logistic regression, measuring
the effects of weight trimming and investigating the use of FAM for determining
the optimum number of LogitBoost iterations.

Weight Trimming in SimpleLogistic. From Table 1 it can be seen that
weight trimming consistently reduces the training time of SimpleLogistic on
all datasets (with the exception of german-credit) while not affecting classifica-
tion accuracy. The greatest effect of weight trimming was seen on the optdigits
dataset. Here, a speedup of almost 6 was recorded. Overall, weight trimming is
a safe heuristic (i.e. it does not affect accuracy) that can result in significant
speedups.

FAM in SimpleLogistic. This section deals with the evaluation of SimpleL-
ogistic implemented with FAM, introduced in Section 3. SimpleLogistic with
FAM is compared with the original cross-validation-based approach.

Table 2 shows the training time and classification accuracy for both algo-
rithms on the 13 UCI datasets. FAM consistently produced a significant speedup
on all datasets. This ranged from 3.3 on the splice dataset to 14.8 on the segment
dataset. Looking at the classification accuracy, we can see that FAM performs
significantly worse on two datasets (kr-vs-kp and hypothyroid), but the degra-
dation is within reasonable bounds.

4.2 Logistic Model Trees

We can now observe the impact of our modifications on the LMT induction al-
gorithm. Table 3 compares the original LMT version with the modified LMT
induction algorithm (using FAM and weight trimming). As expected, our mod-
ifications result in the algorithm being much faster on all of the datasets. The
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Table 2. Training time and accuracy for SimpleLogistic using cross-validation and
FAM

Training Time Accuracy
Dataset SimpleLog. SimpleLog. SimpleLog. SimpleLog.

(CV) (FAM) (CV) (FAM)
vowel 77.94±23.59 6.87±0.31 • 81.98±4.10 80.85±3.69
german-credit 7.97±1.94 0.59±0.05 • 75.37±3.53 75.34±3.70
segment 50.55±14.82 3.42±0.45 • 95.10±1.46 94.67±1.66
splice 253.96±38.83 77.48±3.69 • 95.86±1.17 95.87±1.06
kr-vs-kp 57.28±15.09 6.69±0.37 • 97.06±0.98 96.38±1.14 ◦
hypothyroid 104.76±27.17 8.89±1.16 • 96.61±0.71 95.89±0.65 ◦
sick 25.40±6.10 1.57±0.14 • 96.68±0.71 96.50±0.76
spambase 119.28±18.73 15.74±1.28 • 92.75±1.12 92.69±1.19
waveform 65.53±9.31 7.75±0.39 • 86.96±1.58 86.84±1.59
optdigits 659.33±123.68 135.61±26.47 • 97.12±0.67 97.12±0.66
pendigits 489.51±148.34 59.43±1.58 • 95.44±0.62 95.45±0.62
nursery 266.51±25.56 49.36±1.42 • 92.61±0.68 92.58±0.68
adult 2953.77±849.82 381.92±10.13 • 85.61±0.38 85.59±0.38

•, ◦ statistically significant improvement or degradation

Table 3. Training time and accuracy for LMT and LMT using FAM and weight
trimming

Training Time Accuracy
Dataset LMT LMT LMT LMT

(FAM+WT) (FAM+WT)
vowel 408.11±80.95 15.86±0.84 • 94.06±2.40 93.56±2.94
german-credit 32.74±10.87 3.25±0.16 • 75.50±3.65 71.83±3.40 ◦
segment 143.75±52.64 10.58±1.77 • 97.06±1.31 97.06±1.25
splice 785.51±202.14 71.55±1.42 • 95.89±1.14 95.19±1.19 ◦
kr-vs-kp 250.79±64.58 12.17±0.36 • 99.64±0.33 99.57±0.37
hypothyroid 405.73±94.04 7.39±0.64 • 99.54±0.36 99.61±0.30
sick 139.31±50.79 6.83±0.73 • 98.95±0.58 98.93±0.62
spambase 746.71±123.57 54.93±1.65 • 93.56±1.14 93.58±1.13
waveform 175.53±63.26 43.67±0.80 • 86.86±1.60 86.49±1.52
optdigits 3162.37±781.49 133.15±7.08 • 97.38±0.57 97.36±0.64
pendigits 3535.06±765.34 185.15±4.96 • 98.58±0.33 98.73±0.33
nursery 634.96±85.82 72.44±7.08 • 98.95±0.34 98.64±0.32 ◦
adult 26935.85±9112.20 1429.93±54.76 • 85.58±0.42 85.43±0.37

•, ◦ statistically significant improvement or degradation

greatest speedup recorded was 55 on the hypothyroid dataset. Most common was
a speedup between 10 and 25. Only on the german-credit, waveform, and nursery
datasets was the speedup around 10 or less (10.1, 4.0, and 8.8, respectively).

On german-credit, splice and nursery the modified version’s classification per-
formance was significantly worse than that of the original version, although only
on german-credit was the performance worse by more than one percent. Other-
wise, the modified version performed competitively with the original version.

As a closing note to our experiments, we would like to compare the modified
version of logistic model trees to boosted C4.5 decision trees. For the comparison
we chose AdaBoost [5] using 100 iterations and the LMT version using FAM
and weight trimming. The results can be seen in Table 4. 100 iterations are too
many for a few of the datasets, but moving from 10 to 100 iterations results in
an improvement in accuracy in many cases [8].

The training time of the two algorithms is fairly equal, with a slight advantage
for the modified LMT algorithm. It was faster on 9 of the 13 datasets, with a
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Table 4. Training time and accuracy for AdaBoost using C4.5 with 100 iterations and
LMT using FAM and weight trimming

Training Time Accuracy
Dataset AdaBoost LMT AdaBoost LMT

(FAM+WT) (FAM+WT)
vowel 29.32±0.38 15.86±0.84 • 96.74±1.89 93.56±2.94 ◦
german-credit 7.42±0.17 3.25±0.16 • 74.40±3.23 71.83±3.40
segment 45.53±0.67 10.58±1.77 • 98.58±0.76 97.06±1.25 ◦
splice 11.89±5.46 71.55±1.42 ◦ 94.94±1.24 95.19±1.19
kr-vs-kp 21.14±6.44 12.17±0.36 • 99.60±0.31 99.57±0.37
hypothyroid 19.07±11.46 7.39±0.64 • 99.70±0.31 99.61±0.30
sick 49.40±2.32 6.83±0.73 • 99.06±0.45 98.93±0.62
spambase 70.22±63.21 54.93±1.65 95.34±0.87 93.58±1.13 ◦
waveform 463.38±4.18 43.67±0.80 • 85.01±1.77 86.49±1.52 •
optdigits 402.52±3.06 133.15±7.08 • 98.55±0.50 97.36±0.64 ◦
pendigits 274.59±2.72 185.15±4.96 • 99.41±0.26 98.73±0.33 ◦
nursery 24.90±0.48 72.44±7.08 ◦ 99.79±0.14 98.64±0.32 ◦
adult 796.01±64.89 1429.93±54.76 ◦ 82.18±0.46 85.43±0.37 •

•, ◦ statistically significant improvement or degradation

speedup of usually between 1 and 2. The exceptions are the sick dataset (7.2)
and the waveform dataset (10.6). AdaBoost was faster on three datasets, the
greatest improvement being on the splice dataset (6.0). In terms of classification
accuracy, the new LMT version exhibits results similar to those reported in [8] for
the original LMT algorithm. On six datasets AdaBoost performed significantly
better, while on two datasets LMT was the better classifier.

5 Conclusions

We have proposed two modifications to the SimpleLogistic algorithm employed
by LMT that are designed to improve training time. The use of AIC instead
of cross-validation to determine an appropriate number of LogitBoost iterations
resulted in a dramatic speedup. It resulted in a small but significant decrease
in accuracy in only two cases when performing stand-alone logistic regression.
The simple heuristic of weight trimming consistently improved the training time
while not affecting accuracy at all.

The use of AIC and weight trimming in LMT have resulted in training times
up to 55 times faster than the original LMT algorithm while, in most cases, not
significantly affecting classification accuracy. These results were measured on
datasets of relatively low size and dimensionality. We would expect the speedup
to be even greater on larger and high-dimensional datasets.
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Abstract. In applications such as fraud and intrusion detection, it is of great
interest to measure the evolving trends in the data. We consider the problem
of quantifying changes between two datasets with class labels. Traditionally,
changes are often measured by first estimating the probability distributions of the
given data, and then computing the distance, for instance, the K-L divergence,
between the estimated distributions. However, this approach is computationally
infeasible for large, high dimensional datasets. The problem becomes more chal-
lenging in the streaming data environment, as the high speed makes it difficult for
the learning process to keep up with the concept drifts in the data. To tackle this
problem, we propose a method to quantify concept drifts using a universal model
that incurs minimal learning cost. In addition, our model also provides the ability
of performing classification.

1 Introduction

In this paper, we study the distance between two data distributions instead of two vec-
tors or two sequences. Assume tuples in a training set D are drawn from an unknown
distribution F (x, t). Each tuple is of the form (x, t), where x is a vector and t is the
class label of x. The task of supervised learning or classification is to learn the unknown
relationship between x and t, that is, to find a model f∗(x), such that the averaged dif-
ference between f∗(x) and t is minimum.

We assume there are concept drifts in the unknown data distribution F (x, t). How
do we quantify the concept drift by defining and computing the distance between the
original dataset D and a new data set D′, which is drawn from the changed unknown
distribution? Furthermore, how quantified changes can be used to tune the model f∗(x)
we learned before so that it maintains high accuracy on the changed data?

In the field of information theory, relative entropy, or the Kullback Leibler (K-L)
divergence, has been suggested as an appropriate measure for comparing data distri-
butions [5]. However, such methods are not computationally feasible for large, high
dimensional datasets, or data coming from continuous streams. In the field of data min-
ing, several works have studied how to detect changes of data distributions over streams
and sequences [1,10]. However, more often than not, change detection only serves to
trigger a costly learning process, and the change itself is not used to mend the current
prediction model directly. Recently, several works [8,13] have studied how to update
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the current model f∗(x) in response to the concept drifts in data streams, for instance,
by assimilating new instances in D′ and forgetting old instances in D. These can be
very costly undertakings since they do not handle changes directly on the probability
distribution level, but rely on a lot of learning and re-learning.

We aim at devising an efficient method to measure distribution changes in high-
dimensional, labeled datasets. We assign a signature to each dataset, and compare dis-
tribution changes by comparing the signatures. Furthermore, the signature should also
enable us to make predictions.

2 A Model-Based Naive Approach

In this section, we introduce a naive but computationally feasible method for measuring
distances between two datasets. We analyze the prediction error of this naive approach
through bias/variance decomposition, and we study its impact on the distance measure.
In the next section, we introduce a general approach based on the lessons learned here.
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Y>y? Y>y’?

[0,30][10,0][0,20] [40,0]

(a) (b)

F T
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Fig. 1. Model-based description
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Fig. 2. Distribution Changes

2.1 Measuring Distribution Changes Using a Classification Model

Assume we are given a dataset D which consists of a set of tuples (x, t), where x is a
vector and t is the class label of x. We learn a decision tree classifier TD from D. The
decision tree classifier TD can be regarded as a summarization of the class distribution
of dataset D. More specifically, let n1, n2, ..., nk be the leaf nodes of TD. Each leaf
node ni is associated with a class distribution (number of objects belonging to each
class). Together, (n1, n2, ..., nk) forms a special histogram of frequency counts.

For instance, in Figure 1(a) we show a two dimensional dataset where the shaded
areas in the top-left and bottom-right corner are populated with objects of one class, and
the rest of the area is populated with objects of the other class. In the rest of the paper,
we assume the number of objects in an area is proportional to the size of the area.

From the dataset, we learn a decision tree classifier, which partitions the two di-
mensional space into 4 areas, each represented by a leaf node as shown in Figure 1(b).
Each leaf node is associated with the number of objects of each class in that area. For
instance, the second leaf node to the left represents the top-left area, where we assume
[40,0] are the number of objects of the two classes in that area. All together, we can use
the class distribution of the objects in the leaf nodes to describe the dataset. We call it
the signature of the data:

([0, 20], [40, 0], [10, 0], [0, 30]) (1)
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Assume now there is some distribution change in the underlying dataset. In one case,
the boundary of the shaded area moved from x to x∗ horizontally and from y to y∗

vertically, as shown in Figure 2(a).
We want to quantify the change using the model we learned from the original

dataset. Here, we use the decision tree to classify the changed data set, and use the
classification error to quantify the change. To a certain extent, the classification error
represents the magnitude of the change, but certainly not the change itself. Because, for
instance, datasets in Figure 2(a) and 2(b) will have the same classification error (com-
pared with the original data set in Figure 1(a), they have the same amount of shaded
area “out of the place”), but they have very different data distributions. Apparently, the
error-based distance measure cannot be used to replace or tune the predictions made by
the original decision tree for the changed data.

To ensure that the measure can represent, to a certain extent, the distribution of the
change so that it can be used to help make predictions without learning a new model
from the changed dataset, we simply ‘throw’ the objects in Figure 2(a) into the decision
tree learned from the original dataset. The class distribution in the leaf nodes is now the
signature of the changed dataset:

([0, 20], [38, 2], [10, 0], [2, 28]) (2)

Now, the dataset in Figure 2(b) results in a different signature: ([0, 20], [40, 0], [10, 0],
[4, 26]), which means signatures are better than prediction errors in representing distri-
butions.

Although we didn’t learn a decision tree from the new datasets, the signature, which
combines the original decision tree structure and the new class distributions in the leaf
nodes, give us some ability to make predictions. Take the dataset in Figure 2(a) and its
signature Eq (2) for example. If a test object is classified into the 2nd leaf node to the
left, the prediction that the object belong to the positive class will be the probability
output n1

n1+n2
= 38

38+2 , where n1 and n2 are the number of positive and negative nodes
in that leaf node respectively.

The signatures also enable us to quantify the differences between the two datasets.
If we treat the signature as a vector, we can use any Lp metric to compute their distance.
For example, the distance function Eq (3) between two signatures a and b is based on
the Manhattan distance:

Dists(a, b) =
1
2

n∑
j=1

c∑
k=1

|na,j,k

Na
− nb,j,k

Nb
| (3)

where n is the number of leaf nodes, c is the number of different classes, na,j,k is the
number of nodes in the j-th leaf node that are of class label k, and Na is the total number
of objects in dataset a.For any two signatures a and b, we have 0 ≤ Dists(a, b) ≤ 1.

This naive approach gives us the following benefits. First, it is computationally effi-
cient to compare the differences of two data distributions. Second, the data descriptors
can be used to make predictions. However,this naive method is also flawed.
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2.2 Error Analysis

In the naive method, the model used to describe other datasets is partially learned from
a dataset which may have a very different data distribution. This can result in significant
prediction error and create problems for the distance measure. In this section, we first
reveal such problems, then we use bias-variance decomposition to study their cause.

positive:

v

x>v?

(a) Da (d)(b) Db (c)

x>v?

(e)

x>v?

(f)

negative:

[7,0]       [0,4]      [3,1]      [1,3] [3,1]       [1,3]

Fig. 3. A Greedy Learner

From Da in Figure 3(a), we learn a decision tree, and we show the tree hierarchy in
Figure 3(d). We then populate the leaf nodes of the decision tree with objects in other
datasets. Figure 3(b) and 3(c) represent two very different data distributions. However,
because of the tree structure learned from Da, a same signature, ([3, 1], [1, 3]), will be
assigned to both datasets. Thus, the distance between the two very different distributions
is 0. The signature is thus inaccurate because of the possible large variance introduced
by training datasets such as Da.

For similar reasons, using signatures assigned by the naive method for prediction
is also flawed. We populate the leaf nodes of the decision tree learned from Da in
Figure 3(a) with objects in dataset Db in Figure 3(b). This results in a signature of
([3, 1], [1, 3]). Such a signature apparently has large prediction error – even when it is
applied on Db itself, the error can be as large as 25% under zero-one loss.

Clearly, this is due to the fact that Da’s data distribution is very different from
Db’s. Decision trees are built in a divide-and-conquer, greedy manner, and in this case,
there is no need to make a split on the Y axis for training set Da, although such a
split will result in the largest information gain as far as training set Db is concerned.
The difference of the two data distributions, combined with the greedy nature of the
decision tree construction process, results in a large prediction error.

We observe samples (x, t) drawn independently from some unknown distribution.
We want to learn the unknown relationship between x and t. That is, we want to find
a function, f∗(x), that minimizes a certain loss function L(t, f∗(x)), where L can be
zero-one loss, square loss, absolute loss, etc.

We use the notation f∗(x|D) to indicate that the prediction model we learn depends
on the training dataset D. We decompose the expected prediction error (EPE) into
three terms: noise (σ2), bias, and variance:

EPE(x) = σ2 + Bias(f∗(x|D))2 + V ar(f∗(x|D))

Let ED(f∗(x|D)) be the predicted value for sample x averaged over all the training
datasets. The variance can be expressed by:

ED(EDf∗(x|D)− f∗(x|D))2
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The variance term measures how sensitive the predicted value at x is to random fluc-
tuations in the training dataset. Traditionally, a model is learned from a training dataset
D drawn from the data distribution we try to learn. In our case, we have two training
sets, Da and Db. From Da we learn the structure of the histogram (or equivalently the
hierarchy of a decision tree), and from Db we learn the data distributions within the
structure or within the hierarchy. The variance can thus be expressed by:

EDa,Db
(EDa,Db

f∗(x|Da, Db)− f∗(x|Da, Db))2

Since Da might be drawn from a data distribution different from the distribution
of Db, which is the distribution we want to learn, by including both Da and Db in the
condition, the variance is increased because of the added fluctuations.

3 A Universal Model

As discussed in the previous section, the majority of variance and bias is introduced due
to training set Da, from which we learn the structure of a histogram, or a hierarchy of a
decision tree. Furthermore, it constitutes the major part of the learning cost. When the
change of data distributions between Da and Db is non-trivial, the benefits of learning
the tree structure from Da becomes insignificant, since there is no guarantee that such
a tree structure will fit the training dataset of Db well. In this case, it becomes obvious
that using an arbitrary tree structure not only serves the same purpose but at the same
time eliminates the cost of learning such a structure.

Our goal is to find such an ‘arbitrary’ structure. It must be general and universal so
that it can fit ‘any’ dataset Db well, thus we can avoid the bias and variance component
in the prediction error such as those introduced by one particular dataset Da.

3.1 Distance by Random Signatures

A decision tree assigns a signature to a dataset. A signature can be regarded as a special
histogram. Each bin, which corresponds to a leaf node in the decision tree, is ‘cut out’ or
defined by the splitting conditions on the path from the root node to that leaf node. The
learning procedure determines those conditions as well as their applying order through
the computation of information gain.

Take the training set Da in Figure 4 as an example. It is a two dimensional dataset
with two class labels. From Da, we learn a decision tree, which partitions the two
dimensional space into a set of ‘bins’, each of which is in fact a leaf node in the decision
tree. The signature is created by an entropy-based partition, since a decision tree is
often constructed through the computation of information gain. Note that this learning
procedure has super-linear complexity.

We propose to create signatures by randomly partitioning the multi-dimensional
space into a set of bins. Figure 5 is such an example. The positions and the order of
the splits are totally random, and instead of creating one histogram, we create multiple
histograms, each of which is independently and randomly partitioned. In the following,
we study two different ways of random partitioning.
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Fig. 5. Random Forest Histograms

Random Forest. We use the following procedure to create a random decision tree for a
training dataset D.

1. partition(D): randomly pick an unused attribute to partition D into D1, · · · , Dn;
2. for each partition Di (1 ≤ i ≤ n), recursively invoke partition(Di) till the k-th

recursive level.

We repeat this process N times to create a forest of N random trees [3]. Each tree
defines a signature, and the random forest consists of N signatures for the dataset.

Random Histograms. We use the following procedure to create a random histogram for
a training dataset D.

1. Randomly pick k attributes, a1, · · · , ak, as well as one value for each attribute, such
that {a1 = v1, · · · , ak = vk} defines a bin in the histogram.

2. Repeat the above step M times so that we have a histogram of M bins.

We repeat the above process N times to create N random histograms.

Each of the above methods creates N random structures. Given a dataset Dx, we
populate the random structures with objects in Dx, which results in N signatures
Sx,1, · · · , Sx,N for Dx. We use the same random structures for all datasets. Clearly,
for any two datasets, Da and Db, signatures Sa,i and Sb,i have the same number
of bins and each bin defines the same subspace in the multi-dimensional data space.
We then define the distance between two datasets Da and Db as: Dist(Da, Db) =
1
N

∑N
i=1 Dists(Sa,i, Sb,i), where Dists is the distance between two signatures defined

in Eq (3), and we have 0 ≤ Dist(Da, Db) ≤ 1.
The difference between this method and the naive method is that in this method,

i) the structure of a signature does not rely on one dataset (which is known as Da in
the naive method), and ii) instead of having one signature, it uses multiple signatures.
As will be discussed in detail in the following sections, the multiple random signatures
is capable of ‘fitting’ any dataset, which means the distance metric and the prediction
model will have high accuracy.

3.2 Classification by Random Signatures

A signature is composed of a set of histograms, each of which can be expressed by a
vector [n1, · · · , nc], where ni is the number of objects that belong to class i.
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The signature is used for prediction: an testing object that falls into a bin with class
histogram [n1, · · · , nc] is classified to be of class i if i = arg maxi

ni∑
ni

. However, a
random signature is often a “weak” classifier.

The weakness of a single random signature can often be averted as our random
methods create N signatures for a training dataset. The final prediction is a voted com-
bination of all signatures. In other words, each signature is a classifier, and the N sig-
natures form a classifier ensemble.

Combining an ensemble of classifiers is an established research area [2,6,12]. Par-
ticularly, for random forests, the prediction accuracy is shown to be no less than that
of normal decision trees. Although each random signature is possibly a very “weak”
classifier, it has been shown that if each classifier in the ensemble is independent in the
production of its error, the expected error of the ensemble can be reduced to zero as the
number of the classifiers goes to infinity [7].

3.3 Signatures’ Structural Diversity

Whether the signature-based distance metric and prediction model are meaningful de-
pends on whether the random signatures can “fit” any dataset. The strength of an ensem-
ble comes from its diversity [9]. In this section, we discuss how to guarantee signatures’
structural diversity.

In an ensemble, a classifier is valuable if it disagrees on some inputs with the other
classifiers. Building a diverse ensemble in which each hypothesis is as different as pos-
sible is important to an ensemble method. Normally, diversity is measured by predic-
tion disagreements among ensemble classifiers. In our case, random structures are cre-
ated without a training dataset, which means we can only measure diversity by directly
studying the differences of their internal structures. In a signature, each bin corresponds
to a set of attribute values. We use the number of different attribute combinations as a
measure of diversity. Let A be the number of attributes of the datasets. For simplicity,
in our discussion we assume each attribute has v unique values.

– In a random forest, each tree of height k has vk leaf nodes. The path from the root
node to any leaf node has k−1 edges. Thus, the diversity of attribute combinations
in one random tree is at most min(vk−1,

(
k−1
A

)
). In the worst case, all leaf nodes

(bins) share one attribute combination.
Furthermore, attribute combinations may be correlated.

– For random histograms, each bin is defined independently by k attribute values. To
compare with the above methods, we create vk bins. The diversity can be as high
as min(vk,

(
k
A

)
). In the worst case, all bins share one attribute combination. This

occurs when all attributes are used (k = A), or each random selection returns the
same set of attributes.

In summary, random histograms provide the most diverse set of attribute combina-
tions with low correlation.

Our second question is how many bins should we keep in each random structure?
We answer this question for random histograms. For random histograms, the number
of attribute combinations is at most min(vk,

(
k
A

)
). Note that

(
k
A

)
reaches maximum
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when k = A/2. Thus, when vA/2 >
(
A/2
A

)
, we shall use k = A/2 attributes for

random histograms; otherwise, we shall use k attributes where k satisfies vk >=
(

k
A

)
and vk−1 <

(
k−1
A

)
.

4 Conclusion

The ability to quantify the similarity between two datasets is important to many ap-
plications, especially data stream applications that deal with time-changing data dis-
tributions. Statistical methods, such as K-L divergence and Kriging, are usually not
computationally feasible for large, high speed datasets. In this paper, we propose a new
approach based on the theory of random forests and classifier ensemble. To measure
the difference between two data distributions, our approach measures the difference be-
tween the models derived from the datasets. To do this, we must use models that can
truthfully represent the dataset, and models that can be trained efficiently. The mod-
els we propose for this purpose is the random histograms. The random histograms as-
sign datasets signatures, which serve for two purposes: i) to measure distance between
datasets by directly comparing signatures; and ii) to perform classification.
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Abstract. Most approaches of Class Association Rule (CAR) based
classification have not intensively addressed the classification of instances
including numeric attributes. In this paper, a levelwise subspace cluster-
ing method deriving hyper-rectangular clusters is proposed to efficiently
provide quantitative, interpretative and accurate CARs.

1 Introduction

“Class Association Rules (CARs)” for classification has been proposed in recent
studies [1,2,3]. These rules have the form “{< p1 : q1 >, ..., < pm : qm >} ⇒ cl”
where < p : q > is an item and cl a class. p represents an attribute and q its
value. An example is “{< Age : [30, 39] >, < Married : Y es >, < NumCars :
[2, 2] >} ⇒ Houseowner” stating “A person who is in his/her thirties, married,
and owns two cars belongs to the class Houseowner.” Here, a “numeric item” has
a numeric interval value whereas a “categorical item” has a categorical value. A
numeric item < p : q > in the CAR is supported by a numeric item < pt : qt > in
an instance t if pt = p and qt ⊆ q where ⊆ states that the range of qt is within the
range of q. Hence, “t1 = {< Age : [35, 37] >, < Married : Y es >, < NumCars :
[2, 2] >, < Child : [3, 3] >}” supports the aforementioned rule body, whereas
“t2 = {< Age : [29, 31] >, < Married : Y es >, < NumCars : [2, 2] >, < Child :
[3, 3] >}” does not, because < Age : [29, 31] > is not within < Age : [30, 39] >.
Given a training data set D which is a table (or a set) of class labeled instances
(transactions), let Dcl be a set of all instances having a class cl in D. The body
of a CAR including numeric items is a “quantitative frequent itemset,” QFI in
short, which is supported by Dcl more frequently than a “minimum support
(minsup)” threshold. The numeric part of a QFI corresponds to an axis-parallel
and hyper-rectangular region in an attribute subspace of D.

CBA, CMAR and CAEP are the representatives of the CAR based classifica-
tion [1,2,3]. Especially CAEP, using the strength of all CARs, widely shows the
best performance among many rule-based classifiers including C4.5. However, it
discretizes each numeric attribute by an entropy measure without considering
the dependency of the distributions among multiple attributes, and thus a cluster
of instances having the same class can often be fragmented. An effective solu-
tion for this issue is the introduction of the clustering in every numeric attribute

A. Jorge et al. (Eds.): PKDD 2005, LNAI 3721, pp. 692–700, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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subspace to derive strong rule bodies. CLIQUE, DOC and SUBCLU seek dense
clusters in every subspace [4,5,6]. However, they do not provide QFIs covering
both numeric and categorical attributes and corresponding to axis-parallel and
hyper-rectangular clusters in an efficient manner. The approaches to mine quan-
titative association rules have addressed this issue [7,8]. However, they discretize
each attribute without considering the dependency among attributes, and thus
can result in the aforementioned fragmentation.

In this study, a novel and efficient approach to the exhaustive, axis-parallel
and hyper-rectangular subspace clustering is proposed. Moreover, the combined
use of this clustering and CAEP is evaluated. The proposed clustering algorithm
has a levelwise structure. While this is similar to SUBCLU, our approach can
derive clusters on both numeric and categorical items, and the numeric items
having interval values can be processed.

2 CAEP

CAEP is briefly explained at first [3]. The training phase of CAEP consists of
two processes. The first is to derive all rule bodies. Let the support of an itemset
a by Dcl be supportDcl

(a) = |{t ∈ Dcl|a ∈ t}|/|Dcl|. For every cl, a set of QFIs,
LQFI(cl), in which every itemset a satisfies supportDcl

(a) ≥ minsup, is derived
from Dcl. Subsequently, for every a ∈ LQFI(cl), the following “growth rate” for
a class cl is calculated. Let D̄cl = D −Dcl be the opponent instances of cl.

Growth rate:
If supportD̄cl

(a) �= 0, growth rateD̄cl→Dcl
(a) = supportDcl

(a)
supportD̄cl

(a) ,

If supportD̄cl
(a) = 0 and supportDcl

(a) �= 0, growth rateD̄cl→Dcl
(a) =∞,

Otherwise growth rateD̄cl→Dcl
(a) = 0.

When the growth rate of a is more than a “growth rate threshold” ρ(> 1), i.e.,
growth rateD̄cl→Dcl

(a) ≥ ρ, a is called an “emerging pattern (EP)”and selected
as a rule body where its head has the class cl, i.e., a ⇒ cl. Let LEP (cl) be a set
of all EPs selected from LQFI(cl) under this measure. The underlying principle
here is to select the rule bodies having the strength to differentiate the class cl
from the others. Even if the rule confidence is high in Dcl, the rule can match
many instances in D̄cl. Such rules are weak for classification.

The second process is to derive a “base score.” First, the strength of an EP a
based on the relative difference between supportDcl

(a) and supportD̄cl
(a)

is introduced as supportDcl
(a)/(supportDcl

(a) + supportD̄cl
(a)) =

growth rateD̄cl→Dcl
(a) /(growth rateD̄cl→Dcl

(a) + 1). The following “ag-
gregate score” represents the possibility of t to be classified into cl by EPs in
LEP (cl).
Aggregate score:

score(t, cl) =
∑

a⊆t,a∈LEP (cl)

growth rate(a)
growth rate(a) + 1

∗ supportDcl
(a). (1)

Because the number of EPs for each cl may not be balanced, instances may get
higher scores for some classes. A base score is introduced to eliminate this bias.
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Base score:
base score(cl) is the median of all aggregate scores in {score(t, cl)|t ∈ Dcl}.

The testing phase uses base score(cl), growth rate(a) and supportDcl
(a) ob-

tained in the training phase. Given a test instance t, its aggregate score for cl,
score(t, cl), is computed from these results and Eq.(1). Then, it is normalized
by base score(cl) to eliminate the aforementioned bias as follows.
Normalized score:

norm score(t, cl) = score(t,cl)
base score(cl) .

cl having the maximum normalized score is assigned to the class of t. Except
the derivation of LQFI(cl) for all cl, the computational complexity of CAEP is
O(N) where N = |D|, since it scans the training data only twice.

3 Mining Rule Bodies of CARs

3.1 Levelwise Subspace Clustering

First we focus on the clustering of instances consisting of numeric items only. In
our approach, the density of instances in a subspace is defined on their projected
distribution to every attribute axis while ensuring the exhaustive finding of the
clusters. The computational complexity is around O(N log N) as discussed later.

Let t and t′ be instances sharing a numeric attribute p with interval val-
ues q and q′ respectively. The “Δp-neighborhood” NΔp(t) on p is defined by
NΔp(t) = {t′ ∈ Dcl|Distp(q, q′) ≤ Δp} where “permissible range” Δp is a real
positive number on p. If intervals q and q′ overlap, then Distp(q, q′) = 0, oth-
erwise Distp(q, q′) is the distance between their boundaries facing each other.
An instance t ∈ Dcl is called a “core instance” on p if NΔp(t) contains at least
MinPts instances, i.e., |NΔp(t)| ≥MinPts. When a core instance t is contained
in NΔp(t′) of another core instance t′, t and t′ have a “connection.”

Definition 1 (Density-Connected Set). A non-empty subset C ⊆ Dcl is a
“density-connected set” on p if C is the union of the Δp-neighborhoods of core
instances where all the core instances are in a chain of connections on p.

Definition 2 (Dense Cluster). A “dense cluster” CS ⊆ Dcl in a subspace
formed by a set of numeric attributes S is defined as a maximal set of instances
which is a density-connected set on every p ∈ S in Dcl.

Definition 3 (Quantitative Frequent Itemset). Let CS ⊆ Dcl be a dense
cluster in a subspace S and a(CS) = {< p : q > | p ∈ S, q = [minp(CS),
maxp(CS)]} an itemset where minp(CS) and maxp(CS) are the minimum and
the maximum interval boundaries of instances in CS on p. If |CS | ≥ minsup,
i.e., supportDcl

(a(CS)) ≥ minsup, then a(CS) is a “quantitative frequent
itemset (QFI).” When the dimension of S is k, it is called a k-QFI.

A QFI is a dense, axis-parallel and monotone hyper-rectangular region having
a maximal volume in the subspace. Similarly to the dense clusters of SUBCLU,
the following (anti-)monotonicity property of QFIs holds.
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Table 1. An example of transaction data set of cl = Houseowner; DHouseowner

t1 = ({< Age : [20, 23] >, < Child : [2, 3] >, < NumCars : [2, 2] >}, Houseowner)
t2 = ({< Age : [30, 30] >, < Child : [4, 5] >, < NumCars : [1, 1] >,

< Savings : [10K, 10K] >}, Houseowner)
t3 = ({< Age : [30, 30] >, < Child : [2, 2] >, < NumCars : [5, 5] >,

< Savings : [11K, 11K] >}, Houseowner)
t4 = ({< Age : [30, 35] >, < Child : [5, 5] >, < NumCars : [1, 1] >}, Houseowner)
t5 = ({< Age : [35, 37] >, < Child : [2, 2] >, < NumCars : [2, 2] >,

< Savings : [5K, 5K] >}, Houseowner)
t6 = ({< Age : [36, 39] >, < Child : [2, 2] >, < NumCars : [2, 3] >}, Houseowner)

Table 2. Process of levelwise subspace clustering of DHouseowner

1-QFIs
({< Age : [30, 39] >}, {t2, t3, t4, t5, t6}), ({< Child : [2, 5] >}, {t1, t2, t3, t4, t5, t6})
({< NumCars : [1, 3] >}, {t1, t2, t4, t5, t6}), ({< Savings : [10K, 11K] >}, {t2, t3})
2-QFIs
({< Age : [30, 39] >, < Child : [2, 2] >}, {t3, t5, t6})
({< Age : [30, 35] >, < Child : [4, 5] >}, {t2, t4})
({< Age : [30, 39] >, < NumCars : [1, 3] >}, {t2, t4, t5, t6})
({< Age : [30, 30] >, < Savings : [10K, 11K] >}, {t2, t3})
({< Child : [2, 5] >, < NumCars : [1, 3] >}, {t1, t2, t4, t5, t6})
3-QFIs
({< Age : [35, 39] >, < Child : [2, 2] >, < NumCars : [2, 3] >}, {t5, t6})
({< Age : [30, 35] >, < Child : [4, 5] >, < NumCars : [1, 1] >}, {t2, t4})

Lemma 1 (Monotonicity). ∀T ⊆ S, if a(CS) is a QFI in S, then a QFI
a(CT ) supported by a(CS), i.e., a(CS) ⊆ a(CT ), exists in T .

Proof. Because CS is a density-connected set on ∀p ∈ S, it is a density-
connected set on ∀p ∈ T , and hence CS ⊆ CT . Therefore, ∀p ∈ T , [minp(CS),
maxp(CS)] ⊆ [minp(CT ), maxp(CT )], and a(CT ) is supported by a(CS).

Accordingly, a levelwise bottom up approach is applicable to search all QFIs. We
exemplify its operation by using the dataset in Table 1. Each instance (transac-
tion) ti consists of a numeric itemset and a class cl = Houseowner. We perform
the clustering under parameters of ΔAge = 5, ΔChild = 1, ΔNumCars = 1,
ΔSavings = 1K, MinPts = 1 and minsup = 2. First, the items in each ti are
lexicographically ordered by the attribute names. This has been already done in
this table. Subsequently, 1-QFIs are searched, where the instances are maximally
density-connected on an attribute. For Age, a 1-QFI, {< Age : [30, 39] >}, exists
since the items densely range from 30 to 39 under ΔAge = 5, and its support
5 is more than minsup. This 1-QFI with its “transaction id list (TID-List)” is
indicated in Table 2. Each attribute has an 1-QFI in this example.

In the next step, the levelwise search for k-QFIs (k > 1) starts. Index lists
named TID−List are used to point instances in Dcl similarly to AprioriTid al-
gorithm [9]. Assuming that all (k−1)-QFIs are known, the following “Candidate-
Generation” operation derives all candidate k-QFIs.

Definition 4 (Candidate-Generation).
Join Phase: For two (k − 1)-QFIs sharing k − 2 attributes,

((k − 1) − QFI = {< p1 : q1 >, < p2 : q2 >, ..., < pk−2 : qk−2 >, < pk−1 : qk−1 >}, TID − List),

((k − 1) − QFI′ = {< p1 : q′
1 >, < p2 : q′

2 >, ..., < pk−2 : q′
k−2 >, < pk : q′

k >}, TID − List′),

their join is derived as follows:
(candidate− k−QFI = {< p1 : qc

1 >, ..., < pk−1 : qc
k−1 >, < pk : qc

k >}, T ID−Listc).
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QFI-Count(candidate−k−QFI, TID −Listc);
(1) k − QFIS = φ, TIDLS = φ;
(2) If |TID−Listc| < minsup return k−QFIS;
(3) S = {p| < p : q >

∈ candidate − k − QFI, p is numeric.};
(4) TIDLS.temp = {TID − Listc};
(5) while TIDLS �= TIDLS.temp do begin
(6) TIDLS = TIDLS.temp;
(7) forall p ∈ S do begin
(8) TIDLS.temp =

MDCS(TIDLS.temp, p);
(9) end

(10) end
(11) forall TID − List ∈ TIDLS do begin
(12) k − QFIS = k − QFIS+

(QFI(S, TID − List), TID − List);
(13) end
(14) return k − QFIS;

Fig. 1. Algorithm of QFI-Count

(1) For each numeric attribute, create an index
list sorted with the ascending order of D.
Sort items in each t ∈ D lexicographically.

(2) L1 = {(1 − QFI, TID − List)};
(3) for (k=2; Lk−1 �= φ; k + +) do begin
(4) Ck =

{(candidate−k−QFI, TID−Listc)} =
Extended − Candidate−
Generation(Lk−1);

(5) forall (candidate − k − QFI,
TID − Listc) ∈ Ck do begin

(6) Lk = Lk∪
QFI − Count(candidate − k − QFI,
TID − Listc)

(7) end
(8) end
(9) Answer L =

⋃
k Lk;

Fig. 2. Entire algorithm

where qc
i is the intersection of the two intervals qi ∩ q′i for i = 1, ..., k − 2,

qc
k−1 = qk−1, qc

k = q′k and TID − Listc = TID − List ∩ TID − List′. If some
qc
i = φ, the two (k − 1)-QFIs are not joined.

Prune Phase: For all (k−1)-subsets s of this candidate-k-QFI, if the following
(k − 1)-QFI exists:

∀ < pi : qc
i >∈ s, ∃ < pi : qi >∈ (k − 1)−QFI, qc

i ∩ qi �= φ, (2)

the candidate-k-QFI is retained, and TID − Listc is a candidate dense cluster
ĈS where |S| = k. Otherwise the candidate-k-QFI is pruned.

This prune phase is based on Lemma 1. As far as qc
i intersects with qi in Eq.(2),

the possibility that s and (k− 1)−QFI shares more than minsup transactions
is not negligible. Thus the candidate k-QFI is retained under this condition.
In Table 2, a candidate-2-QFI, {< Age : [30, 39] >,< Child : [2, 5] >} with
TID−Listc = {t2, t3, t4, t5, t6} is derived from two 1-QFIs, {< Age : [30, 39] >}
and {< Child : [2, 5] >}. This passes the prune phase.

“QFI-Count” shown in Fig.1 derives dense clusters CS = TID − List and
their corresponding k-QFIs, if they exist, by assessing the density of instances
in ĈS based on Definition 2 and 3. In the inside loop from (7) to (9), a maximal
density-connected set C is searched on p within ĈS at first in a function MDCS
along with Definition 1 under given Δp and MinPts. Multiple C can be found
when multiple dense clusters are included in ĈS . MDCS repeats to update C on
p from every C derived and kept in TIDLS.temp at the previous loop iteration.
C having a size less than minsup is discarded in MDCS. This update continues
in the outer loop from (5) to (10), until each C converges to CS where each CS is
independent of the convergence process due to the (anti-)monotonicity property.
In the loop from (11) to (13), each QFI corresponding to CS = TID − List
is computed by Definition 3 in a function QFI and returned as the output.
In the example, the candidate-2-QFI, {< Age : [30, 39] >, < Child : [2, 5] >}
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with TID − Listc = {t2, t3, t4, t5, t6} is given to this QFI-Count. In the inside
loop, MDCS derives TIDLS.temp = {{t2, t3, t4, t5, t6}} on Age. Next, it derives
TIDLS.temp = {{t3, t5, t6}, {t2, t4}} on Child. Further applications of MDCS
do not change TIDLS.temp. Since the sizes of candidates are more or equal to
minsup = 2, two 2-QFIs, ({< Age : [30, 39] >, < Child : [2, 2] >}, {t3, t5, t6})
and ({< Age : [30, 35] >, < Child : [4, 5] >}, {t2, t4}), are derived.

3.2 Deriving QFIs of Numeric and Categorical Items

Candidate-Generation is extended to derive QFIs consisting of numeric and cat-
egorical items. The categorical items in the joined itemset are given in the same
way as in the AprioriTid algorithm. In the join phase of Definition 4, if qc

i = φ
for some numeric item or qi �= q′i for some categorical item, the two given (k−1)-
QFIs are not joined. Otherwise they are joined as qc

i = qi ∩ q′i for each numeric
item and qc

i = qi = q′i for each categorical item. In the prune phase, the condition
qc
i = qi for a categorical item is applied in addition to qc

i ∩ qi �= φ for a numeric
item in Eq.(2). The algorithm QFI-Count of Fig.1 is also altered. When the
candidate-k-QFI consists of categorical items only, the loop from (5) to (10) is
skipped, and TIDLS = TIDLS.temp is applied. The function QFI at step (12)
is also altered. For a categorical attribute pi, its value is set to be qc

i = qi = q′i.
The entire algorithm to derive QFIs from D is indicated in Fig.2. Required

parameters are Δp for all numeric attributes, MinPts and minsup. First,
some index lists are created for the efficient processing in Extended-Candidate-
Generation and QFI-Count. Subsequently, all QFIs are computed in L by the
adaptation of the AprioriTid Algorithm. In the implementation, the inversed
indexing (ti, {candidate− k − QFI}) from each ti to its containing candidate-
k-QFIs is used instead of (candidate− k −QFI, T ID − Listc) similarly to the
standard AprioriTid. This approach is applied to Dcl of every class cl to derive
LQFI(cl) required by CAEP described in the previous section.

4 Experimental Evaluation

4.1 Computational Efficiency

The most expensive task is the derivation of QFIs for CAR’s bodies. Thus, its
computational efficiency is evaluated by using artificial data sets. First, a set of
seed items, SSI, is randomly generated where rn% of them are numeric and the
rest categorical. Second, a set of seed QFIs, SQFI, is generated by randomly
selecting seed items from SSI. The size of each QFI is determined by uniform
random distribution having its average at |QFI|. Third, a set of instances (trans-
actions) D is generated where each instance t is made by randomly selecting a
QFI from SQFI and further randomly adding extra 2|QFI| seed items taken
from SSI in the average. Finally, the values of numeric items in each t are dis-
torted by introducing Gaussian noise having 5% amplitude. Our algorithm is
tested on a Pentium 4 2.7 GHz PC with 2GB RAM. The default parameters for
the test are |SSI| = 1000, rn = 50%, |SQFI| = 10, |t| = 12, N = |D| = 40000,
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Table 3. Complexity of clustering

Para- Range of Dependency of
meter Assessment Comp.Time Mem.Cons.
|SSI| [20, 20000] constant constant
rn [0%, 100%] constant constant
|SQFI| [1, 50] O(|SQFI|) O(|SQFI|)
|̄t| [8, 100] exp. inc. exp. inc.
minsup [0.2%, 10%] exp. dec. exp. dec.
Δp [0.1%, 100%] inc. const. inc. const.
MinPts [1, 8000] dec. const. dec. const.
N [200, 106] O(N log N) O(N)
exp. inc./dec. : exponential increase/decrease.
inc./dec. const. : increase/decrease and saturation.

Fig. 3. N vs. Comp. Time

minsup = 5%, MinPts = 1 and Δp = 20% (in relative width of the maximum
and minimum values of the instances on each numeric attribute).

The qualitative dependencies of computation time and memory consumption
on the parameters summarized in Table 3 are similar to the AprioriTid. Their
rapid increases are observed under the small values of Δp and MinPts where
the values are comparable with the average gap among two different instances
values. The dependency of the computation time on N shown in Fig.3 is almost
O(N log N) up to 1 million instances, while SUBCLU requiring the range query
of each instance shows O(N2) where a dense cluster is such that for each instance
in the dense cluster the neighborhood of a given radius ε has to contain at least a
minimum number of MinPts instances [6]. The memory consumption is O(N),
because the size of the inversed TID-List is proportional to N .

4.2 Classification Performance and Interpretability

CAEP combined with QFI derivation is called LSC-CAEP in this paper. Its
10CV accuracy has been compared with C4.5, CBA, CMAR and the origi-
nal CAEP by using the UCI repository data as indicated in Table 4. These
data sets were selected so that the accuracy by various approaches has been
reported [1,2,3]. The parameters of LSC-CAEP was set as minsup = 12%,
MinPts = 1, Δp = 16% and ρ = 1.1, where their optimality has been con-
firmed through empirical surveys. The bold faces in the table are the best. The
standard deviations of the accuracies over 10CV by C4.5, CBA and LSC-CAEP
are 2.6%, 3.4% and 4.0% respectively, while the average discrepancies of the
accuracies of LSC-CAEP are 5.6% from C4.5 and 4.5% from CBA in Table 4.
LSC-CAEP performs moderately better than C4.5 and better or equal at least
to CBA. As shown in the last column of Table 4, the computation times of LSC-
CAEP ranges from 0.1 to 87sec, while C4.5 and CBA are from 0.3 to 2.2sec. The
speed of LSC-CAEP usually remains practical due to its aforementioned good
scalability, though it is affected by the dependency among attributes similarly
to the Apriori algorithm.

The interpretability of the rules is important but a quite subjective matter.
The following two QFIs having large support values are found by LSC-CAEP
in Labor Relations Database in UCI repository.
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Table 4. Comparison of accuracies

dataset num. of num. of num. of C4.5 CBA CMAR CAEP LSC-CAEP
records attributes(numeric) classes [comp. time (sec)]

Cleve 303 13(5) 2 .782 .828 .822 .833 .789 [38]
Ecoli 336 8(7) 8 .824 - - - .831 [22]
Heart 270 13(6) 2 .808 .819 .822 .837 .845 [87]

Hepatitis 155 19(6) 2 .806 .818 .805 .830 .852 [26]
Iris 150 4(4) 3 .953 .947 .940 .947 .967 [0.1]

Glass 214 9(9) 7 .687 .739 .701 - .681 [19]
Labor 57 16(8) 2 .793 .863 .897 - .943 [0.1]
Wine 178 13(13) 3 .927 .950 .950 .971 .972 [52]
Zoo 101 16(0) 7 .922 .968 .971 - .911 [19]

support=19: {class:good, duration-years:[2,2], working-hours:[33,40], wage-inc.-2nd-year(%):[4.0,5.8]}.
support=16: {class:good, duration-years:[3,3], working-hours:[35,40], wage-inc.-2nd-year(%):[3.5,5.0]}.
These QFIs suggest an assumption that the increase of job stability from 2 years
to 3 years balances with admitting slightly longer working hours and 0.5% ∼
0.8% less wage increase. The following two CARs having high growth rates are
found in Iris data. The insights on the species of iris can be learned.
growth rate=4.5: petal width:[1.4-2.5]) → class:virginica
growth rate=1.9: sepal length:[4.9-7.0], sepal width:[2.0-3.4] → class:setosa.
The fine granularity of the interval boundaries helps the interpretation.

5 Discussion and Conclusion

To check the applicability of LSC-CAEP to large data sets, LSC-CAEP, C4.5
and CBA were applied to Census-Income data containing 199523 instances and
40 attributes (numeric: 7 categorical: 33) in UCI KDD Archive, and confirmed
that the accuracy achieved by LSC-CAEP is 92.4%, which is comparable with
94.3% and 94.0% of C4.5 and CBA respectively. Further improvement of the
performance of LSC-CAEP will be addressed in future study.

The most expensive tasks in LSC-CAEP are the sort which is O(N log N)
and QFI-Count of Fig.1. The maximal density-connected sets on every numeric
attribute p are easily derived in one scan of TIDLS.temp in MDCS by using the
sort index list built at the first step in Fig.2. Hence it is O(N) at maximum. The
iteration of the outer loop from (5) to (10) in QFI-Count varies extensively. In
the worst case, an instance is removed in each loop path from the edge of a region
where instances are ranged in a periodic manner, and the loop becomes O(N2).
However, in the most likely case which is an exponential density distribution,
a portion 0 < r < 1 of the instances in the average are retained in each loop
path. The loop finishes by the time rmN becomes less than minsup where m
is the number of loop paths. Thus minsup ≤ rmN , and m is around O(log N).
Accordingly, the entire algorithm is expected to be O(N log N).

Our proposal enabled efficient subspace clustering on the mixtures of nu-
meric and categorical data in a levelwise algorithm. Further new approaches of
clustering and classification for large data sets can be developed along this line.
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Abstract. This paper presents an efficient algorithm for maintaining the genera-
tor representation in dynamic datasets. The generators representation is a kind 
of lossless, concise representation of the set of frequent itemsets. Furthermore, 
the algorithm utilizes a novel optimization based on generators borders for the 
first time in the literature. Generators borders are the borderline between fre-
quent generators and other itemsets. New frequent generators can be generated 
through monitoring them. Experiments show that our algorithm is more effi-
cient than previous solutions. 

1   Introduction 

Frequent itemsets mining [1] is an important subject in many data mining applications, 
such as the discovery of association rules, correlations, sequential rules and episodes. 
A lot of algorithms have been proposed for this domain. But most algorithms assume 
that all transactions are available prior to the execution of the algorithm. However, in 
most cases this assumption does not hold. Many datasets are updated with blocks of 
data at regular time intervals. Recognizing the importance of the problem, many re-
searchers [2-6, 11, 12] have proposed their solutions and efficient algorithms. The 
first incremental frequent itemsets mining algorithm, FUP, was proposed by Cheung 
et al. [3]. FUP2 [4] algorithm, adapted from FUP, can simultaneously handle dele-
tions and additions. Two algorithms both adopt a level-wise search strategy like Apri-
ori algorithm [1] and use the previous result for guiding the update. Feldman et al. [6] 
and Thomas et al. [11] proposed two similar algorithms respectively. The main idea 
of two algorithms is to keep track of frequent itemsets and the negative border that 
contains the itemsets form the borderline between frequent itemsets and infrequent 
itemsets. New frequent itemsets can be found by monitoring the negative border. 
Ayan et al. [2] presented UWEP algorithm, which follows the approach of FUP2. 
UWEP prunes the itemsets that will become infrequent by a look-ahead pruning strat-
egy. ZIGZAG algorithm [12] is enlightened by GenMax [7] algorithm, an algorithm 
for discovering maximal frequent itemsets. It incrementally computes maximal fre-
quent itemsets combining previous knowledge. But it may scan the dataset again to 
compute support values of some frequent itemsets that are not maximal frequent  
itemsets. Chi et al. [5] proposed Moment algorithm, which uses an in-memory data 
structure to monitor frequent closed itemsets and the itemsets that form the boundary 
between the frequent closed itemsets and the rest of the itemsets. Moment handles 
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new transactions or deleted transactions one by one, which may cause frequent 
changes of the boundary and affect the performance of the algorithm.  

In this paper we present an efficient algorithm, called GBorder2, to maintain the 
generators representation in dynamic datasets. The generators representation is a kind 
of lossless, concise representation of the set of frequent itemsets. The usage of the 
generators representation can significantly reduce the times of data scans and the 
number of candidates in that the generators representation can be orders of magnitude 
smaller than the set of all frequent itemsets. Moreover, to the best of our knowledge, 
the algorithm introduces a novel optimization utilizing generators borders for the first 
time. Generators borders are the borderline between frequent generators and other 
itemsets. This optimization provides significantly computational or I/O savings as 
new frequent generators can be generated through monitoring generators borders. 

2   Problem Definition 

Let I be a set of items. A subset X⊆I is called an itemset. An itemset with k items is 
called k-itemset. Let D be a transactional database, where each transaction is a subset 
of I. The number of transactions in D is denoted by |D|. During each update, obsolete 
transactions are removed and new transactions are added. Let d+ be the set of newly 
added transaction, d− be the set of deleted transactions and N be the updated dataset, 
i.e. N=(D−d−)∪d+. 

The support value of an itemset X, Sup(X), is the number of the transactions that 
contain X. An itemset is frequent if it satisfies the minimum support threshold (θ). Let 
F be the set of frequent itemsets, i.e. F={X|Sup(X) θ|D|}.  

An itemset is a generator if none of its proper subsets has the same support as it 
has. We denote the set of generators by G and the set of frequent generators by FG, 
i.e. FG=F∩G. Negative generators border, GB−, is defined as the set of infrequent 
generators whose proper subsets are frequent generators. Positive generators border, 
GB+, is defined as the set of frequent non-generators whose proper subsets are genera-
tors. The generators representation consists of two components: (a) FG enriched by 
the support value for each itemset X∈FG; (b) GB−. The following lists two important 
conclusions. Please refer to [8, 9] for more details. 

Theorem 1. X∈G ∀S⊂X, S∈G; X∉G ∀S⊃X, S∉G. 

Theorem 2. Let X⊆I. If ∃Z∈GB−
 and Z⊆X, then X∉F. Otherwise, X∈F and Sup(X) 

= min({Sup(S)|S∈FG∧S⊆X}). 

3   GBorder2 Algorithm 

GBorder2 algorithm is enlightened by the idea of the negative border [6, 10, 11]. 
GBorder2 maintains two kinds of generators borders: GB− and GB+. GB− defines the 
borderline between frequent generators and infrequent generators, and GB+ defines 
the borderline between frequent generators and frequent non-generators. Most item-
sets do not change their status (from frequent to infrequent, from infrequent to  
frequent, from generator to non-generator or from non-generator to generator) when a 
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small number of new transactions are added or a small portion of the dataset is re-
moved. If the itemset does not change its status, nothing needs to be done except for 
updating its support value. Otherwise, as we shall present, the changes must come 
through generators borders. 

Theorem 3. Let ChangedGB be a set of itemsets that belong to FG in N and belong to 
GB+ or GB− in D. If X is a frequent generator in N and is not a frequent non-generator 
in D, then there exists a subset Y⊆X, Y∈ChangedGB. 

Proof: There are two possible cases for X: 

1. X is a frequent non-generator in D. Let Y be the smallest subset of X that is a fre-
quent generator in N but a frequent non-generator in D. As Y has minimal size, all 
its proper subsets are frequent generators in D. Thus Y belongs to GB+ in D and Y 
belongs to ChangedGB. 

2. X is an infrequent itemset in D. Let Y be the smallest subset of X that is a frequent 
generator in N but an infrequent generator in D. As Y has minimal size, all its 
proper subsets are frequent generators in D. Thus Y belongs to GB− in D and Y be-
longs to ChangedGB. 

3.1   Algorithm Description 

The pseudo-code for GBorder2 algorithm is given in Fig. 1. We assume that each 
itemset X that belongs to frequent generators or generators borders (OldFG, OldGB− 
or OldGB+) and its support value in D, sup(X, D), are already known. 

The approach starts by scanning d+, d− and computing the support values of all 
itemsets of OldFG, OldGB− and OldGB+ in d+ and d− respectively (Lines 1-3). Since 
the addition of new transactions and the deletion of obsolete transactions, some item-
sets of OldFG, OldGB− or OldGB+ may change their status. Thus the frequent genera-
tors and the generators borders are determined again (Lines 4-6). ChangedGB con-
tains the new frequent generators that originally belong to the generators borders in D 
(Line 7). It is used to generate candidates in the later steps. 

Next, the candidates are generated and tested level by level like the classical Apri-
ori algorithm [1] (Lines 8-26). (i+1)-candidates (Ci+1), is generated based on i-
itemsets of ChangedGB (ChangedGBi), new i-generators calculated in the last while-
loop steps (Gi), i-generators (NewFGi) (Line 12). For each candidate X, the algorithm 
first determines Sup(X,d+) and Sup(X,d−) by scanning d+ and d− (Line 14). Then there 
are two possible cases when Sup(X,D) is calculated. If X is infrequent in D, the algo-
rithm has to scan D and determines its support value (Line 15-16). Otherwise, its 
support value can be directly retrieved from OldFG according to Theorem 2 (Lines 
17-18). Finally the qualified candidates are added into NewFG (Line 23), NewGB− 
(Line 21) or NewGB+ (Line 25) respectively after updating their support values.  

The while-loop steps (Lines 10-26) are performed only if ChangedGB is not 
empty. Thus unnecessary computing and I/O requirements are avoided if there is no 
new generator generated. Furthermore, the number of candidates can be considerably 
reduced even though these steps are performed. 
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3.2   Discussions  

GBorder2 handles the general case for transaction insertions as well as deletions. For 
the add-only case (d+≠∅ and d−=∅) or the delete-only case (d+=∅ and d−≠∅), there 
exists some improvements on the implementation of the algorithm.  

For the add-only case, as we shall present in Theorem 4, a generator in D is still a 
generator in N. Then we can optimize GBorder2 by modifying Line 4-6 in Fig.1. The 
changes are shown in Fig. 2.  

Theorem 4. Let X be a generator in D. If d−=∅, i.e. N=D∪d+, then X is still a genera-
tor in N. 

Input: OldFG, OldGB−, OldGB+, N (N=(D−d−)∪d+) and θ 
Output: NewFG, NewGB− and NewGB+ 
 1) for X∈OldFG∪OldGB−∪OldGB+ 
 2)   Scan d+, d− and calculate Sup(X, d+), Sup(X, d−) 
 3)   Sup(X, N)=Sup(X,D)+Sup(X, d+)−Sup(X, d−) 
 4) NewFG={X|X∈OldFG∪OldGB−∪OldGB+∧Sup(X,N)≥θ|N|∧∀S⊂X, 
Sup(X,N) <Sup(S,N)} 
 5) NewGB−={X|X∈OldFG∪OldGB−∪OldGB+∧Sup(X,N)<θ|N|∧∀S⊂X, 
S∈NewFG∧∀S⊂X, Sup(X,N)<Sup(S,N)} 
 6) NewGB+={X|X∈OldFG∪OldGB−∪OldGB+∧Sup(X,N)≥θ|N|∧∀S⊂X, 
S∈NewFG∧∃S⊂X, Sup(X,N)=Sup(S,N)} 
 7) ChangedGB={X|X∈OldGB−∪OldGB+∧X∈NewFG} 
 8) n=max({i|ChangedGBi≠∅}), 
 9) G0=∅, i=0 
10) while (Gi≠∅∨i≤n) 
11)   Gi+1=∅ 
12)   Ci+1={X||X|=i+1∧∃ i-subset S⊂X, S∈ChangedGBi∪Gi∧∀ 
i-subset S⊂X, S∈NewFGi∪ChangedGBi} 
13)   for X∈Ci+1  

14)     Scan d+, d− and calculate Sup(X, d+), Sup(X, d−) 
15)     if ∃S⊂X∧S∈OldGB− then  
16)       Scan D and calculate Sup(X, D) 

17)     else 
18)       Sup(X,D)=min{Sup(S,D)|S⊂X∧S∈OldFG} 
19)     Sup(X,N)= Sup(X,D)+Sup(X, d+)−Sup(X, d−) 
20)     if Sup(X,N)<θ|N| then  
21)       Add X into NewGB− 

22)     else if ∀S⊂X, Sup(X,N)<Sup(S,N) then 
23)       Add X into Gi+1 

24)     else 
25)       Add X into NewGB+ 
26)   NewFG=NewFG∪Gi+1, i=i+1 

Fig. 1. GBorder2 Algorithm 
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Proof. Let S be an arbitrary subset of X. According the definition of generators, 
Sup(X,D)<Sup(S,D). AS S is a subset of X, Sup(X,d+) Sup(S,d+). Then 
Sup(X,N)=Sup(X,D)+Sup(X,d+)<Sup(S,D)+Sup(S,d+) =Sup(S,N). 

So X is a generator in N. 
For the delete-only case, a non-generator in D is still a non-generator in N (See 

Theorem 5). So any new generator must be infrequent generator in D. We have two 
improvements over the pseudo-code of GBorder2. The first one is presented in Fig. 3. 
The second one is that Lines 15-18 are replaced with Line 16 as none of the candi-
dates are frequent in D. 

 

Theorem 5. Let X be a non-generator in D. If d+=∅, i.e. N=D−d−, then X is still a 
non-generator in N. 

Proof. Let S be an proper subset of X and Sup(X,D)=Sup(S,D).  Obviously, any trans-
action in D that contains S also contain X. d− is a portion of D and thus 
Sup(X,d−)=Sup(S,d−). Then Sup(X,N)= Sup(X,D)−Sup(X,d−)= Sup(S,D)−Sup(S,d−)= 
Sup(S,N). So X is a non-generator in N. 

4   Experimental Results 

We performed extensive experiments to evaluate GBorder2 algorithm. We compared 
it with FUP2 algorithm. We implemented two algorithms using Microsoft Visual C++ 
6.0. We used the same data structures and subroutines in order to minimize any  
performance differences caused by minor differences in implementation. The two 

 4) NewFG={X|X∈OldFG∪OldGB−∧Sup(X,N)≥θ|N|∧∀S⊂X, 
Sup(X,N)<Sup(S,N)} 
 5) NewGB−={X|X∈OldFG∪OldGB−∧Sup(X,N)<θ|N|∧ 
∀S⊂X,S∈NewFG∧ ∀S⊂X,Sup(X,N)<Sup(S,N)} 
 6) NewGB+={X|X∈OldFG∪OldGB−∧Sup(X,N)≥θ|N|∧∀S⊂X, 
S∈NewFG∧∃S⊂X, Sup(X,N)=Sup(S,N)}∪ 
{X|X∈OldGB+∧Sup(X,N)≥θ|N|∧∀S⊂X, S∈NewFG} 
 7) ChangedGB={X|X∈OldGB−∧X∈NewFG} 

Fig. 3. Optimizations for delete-only case 

 4) NewFG={X|X∈OldFG∪OldGB−∧Sup(X,N)≥θ|N|}∪{X|X∈OldGB+∧ 
Sup(X,N)≥θ|N|∧∀S⊂X, Sup(X,N)<Sup(S,N)} 
 5) NewGB−={X|X∈OldFG∪OldGB−∧Sup(X,N)<θ|N| 
∧∀S⊂X,S∈NewFG}∪{X|X∈OldGB+∧Sup(X,N)<θ|N|∧ 
∀S⊂X,S∈NewFG∧ ∀S⊂X,Sup(X,N)<Sup(S,N)} 
 6) NewGB+={X|X∈OldGB+∧Sup(X,N)≥θ|N|∧∀S⊂X, 
S∈NewFG∧∃S⊂X, Sup(X,N)=Sup(S,N)} 

Fig. 2. Optimizations for add-only case 
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algorithms are not fully optimized due to the time limitation. They were performed on 
a Pentium 1.2G processor with 1G MB, running Windows 2000.  

We choose four datasets for the performance tests, which are publicly available 
from IBM Almaden Research Center (www.almaden.ibm.com/cs/quest/demos.html). 
The T10I4D100K dataset and the T40I10D100K dataset are synthetic datasets, while 
the connect dataset and the gazelle dataset are real-world datasets. Their characteris-
tics are shown in Table 1. 

 
We first conducted several experiments to evaluate the speed up of GBorder2 over 

FUP2. Without loss of generality, let |D|=100K and |d+|=|d−|=10K. We duplicated and 
randomized each original dataset to obtain 110K transactions. Fig. 4 shows the results 
over different datasets. There are two interesting trends we observe: 

1) For synthetic datasets, GBorder2 shows better performance for high support 
thresholds than low support thresholds. The reason is that the probability of genera-
tors borders expanding is higher at low support thresholds and as a result GBorder2 
may have to san the whole dataset. 
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Fig. 4. Performance experiments 

Table 1. Characteristics of four datasets 

Dataset #Items #Trans. Avg. Trans. Len. Max. Trans. Len. 
T10I4D100K 1,000 100,000 3.7 31 

T40I10D100K 1,000 100,000 8.5 77 
gazelle 498 59,601 2.5 267 
connect 130 67,557 43 43 
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2) For real-world datasets, GBorder2 outperforms FUP2 throughout the entire 
range. Moreover, the performance gain of GBorder2 is larger for higher support 
thresholds. The phenomenon should be caused by the characteristics of real-world 
datasets. Real-world datasets are always strongly correlated datasets and a large num-
ber of frequent itemsets are non-generators for them. On the contrary, most frequent 
itemsets are generator for synthetic datasets. 

Next, we conducted some experiments to find out if GBorder2 is able to deal with 
large datasets. Let |D|=x and |d+|=|d−|=x/10, where x is varied in the experiments. We 
used a support threshold of 0.02% for the T10I4D100K dataset and 0.06% for the 
gazelle dataset. The results are plotted in Fig. 5. Obviously, the execution time of 
GBorder2 increases linearly as x increase, which implies that GBorder2 can handle 
large datasets well. 

5   Conclusion 

The paper focuses on the problem of frequent itemsets mining in dynamic datasets. 
Unlike existing incremental approaches, we propose an efficient algorithm to dis-
cover the generators representation using generators borders. The generators repre-
sentation is a lossless, concise representation of frequent itemsets. New frequent 
generators can be computed by monitoring generators borders alone. To the best of 
our knowledge, it is the first incremental approach that combines the border tech-
nique and the generators representation. The usage of two techniques provides sig-
nificant computational and I/O savings. Extensive experimental results show the 
efficiency of our approach. 

A number of lossless concise representations have been proposed [8]. All these 
representations, except for frequent closed itemsets, consist of two components: one 
main component and several borders. All border representations, except for the gen-
erators representation, are about two orders of magnitude more concise than frequent 
closed itemsets in practice. Due to the common characteristics of all border represen-
tations, our algorithm can be extended to update other border representations in an 
incremental manner. 
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Abstract. This work presents a technique that integrates the heuris-
tics tabu search, simulated annealing, genetic algorithms and backprop-
agation. This approach obtained promising results in the simultaneous
optimization of the artificial neural network architecture and weights.

1 Introduction

Optimization is the process of finding the best solution for a problem from a
group of possible solutions. An optimization problem has an objective func-
tion and a group of restrictions, both related to the decision variables of the
problem. Genetic Algorithms (AG) [3], Simulated Annealing (SA) [1] and Tabu
Search (TS) [2] are iterative algorithms used to solve different combinatorial op-
timization problems. These three algorithms are the most popular from a class
of optimization algorithms known as general iterative algorithms. All three opti-
mization heuristics have similarities [4]: (1) They are approximation (heuristic)
algorithms, i.e., they do not assure the finding of an optimal solution; (2) They
are blind in that they do not know when they have reached an optimal solu-
tion, and therefore, must be told when to stop; (3) They have a ”hill climbing”
property, i.e., they occasionally accept uphill (bad) moves; (4) They are general,
i.e., they can easily be engineered to implement any combinatorial optimization
problem; all that is required is to have a suitable solution representation, a cost
function, and a mechanism to traverse the search space; and (5) Under certain
conditions, they asymptotically converge to an optimal solution.

This paper presents a new technique that integrates the main potentialities
of these three heuristics. This technique is evaluated in the simultaneous op-
timization of the number of connections and weight connection values among
processing units of the Multi-Layer Perceptron neural network (MLP) [5].

The MLP trained by the backpropagation algorithm (BP) is one of the most
used connectionist models in the literature. To obtain successful use, the network
topology plays a very important role. A lack of connections can render the network
incapable of solving the investigated problem as a result of the inadequacy of ad-
justable parameters, whereas an excess of connections can cause overfitting in the
training data and fail to have an adequate generalization capacity. In general, the
training of the MLP neural networks is accomplished through successive attempts

A. Jorge et al. (Eds.): PKDD 2005, LNAI 3721, pp. 709–716, 2005.
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with different network topologies until reaching satisfactory results for the prob-
lem. Besides consuming time, this process can establish network architectureswith
unnecessary connections and nodes. Moreover, the larger the topology, the more
complex the value adjustment of these connections becomes. Thus, the simulta-
neous optimization of architectures and weights of artificial neural networks is an
interesting approach to the generation of efficient networks with small topologies.

2 Search Heuristics Description

The genetic algorithm is characterized by a parallel search of the state space as
against a point-by-point search through conventional optimization techniques.
The parallel search is accomplished by keeping a set of possible solutions for the
optimization problem, called population. An individual in the population is a
string of symbols and is an abstract representation of the solution. The symbols
are called genes and each string of genes is termed a chromosome. The individuals
in the population are evaluated through a fitness measure. The population of
chromosomes evolves from one generation to the next through the use of two
types of genetic operators: (1) unary operators, such as mutation and inversion,
which alter the genetic structure of a single chromosome; and (2) higher-order
operator, referred to as crossover, which consists of obtaining a new individual by
combining genetic material from two selected parent chromosomes. The parent
chromosomes are chosen by way of selection techniques [3].

In the experiments performed, each chromosome is represented as described
in Section 3. The initial population was defined with a size of 10 chromosomes.
The chromosomes are classified by Rank Based Fitness Scaling [8]. The parents
chosen for the next generation is accomplished in a probabilistic manner, using
Universal Stochastic Sampling [8]. Elitism was also used, with a probability of
10%. For the combination of the parent chromosomes, the crossover operator
Uniform Crossover [9] was used, with a probability of 80%. The mutation oper-
ator used was the Gaussian Mutation [6], with a probability of 10%. The stop
criteria were: (1) the GL5 criterion, this criterion provides an idea of the gen-
eralization loss during training and it is sufficiently useful to avoid overfitting.
It is defined as the increase in the validation error in relation to the minimum
validation error; and (2) a maximum number of 500 generations.

The simulated annealing method is different of the others search methods in
that uphill moves are occasionally accepted to escape of local minima. The search
process consists of a sequence of iterations. Each iteration consists of randomly
changing the current solution to create a new solution in its neighborhood. Once
a new solution is created, the corresponding change in the cost function is com-
puted to decide if the new solution can be accepted. If the new solution cost
is lower than the current solution cost, is accepted. Otherwise, the Metropolis’s
criterion is verified [10], based on the Boltzmann probability. A random number
d in [0, 1] interval is generated from a uniform distribution. If δ ≤ e

ΔE
T , where

ΔE is the change in the cost function and T is a parameter called temperature,
then the new solution is accepted as the current solution. If not, the current
solution is unchanged and the process continues from the current solution.
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The algorithm was originally derived from thermodynamic simulations. Thus,
the parameter T is referenced as temperature and the temperature reduction
process is called the cooling process. The chosen cooling strategy was geometric
cooling rule. According to this rule, the new temperature is equal to the current
temperature multiplied by a temperature factor (smaller than one, but close to
one) [11]. The initial temperature is set to 1, and the temperature factor is set
to 0.9. The temperature is decreased at each 10 iterations, with a maximum
number of 1.000 iterations. The stop criterion GL5 also was used.

Tabu search is an iterative search algorithm characterized by the use of a flex-
ible memory. In this method, each iteration consists of the evaluation of a certain
amount of new solutions (neighborhood moves). The best of these solutions (in
terms of cost function) is accepted. However, the best candidate solution may
not improve the current solution. Thus, the algorithm chooses the new solution
that produces the largest improvement or the smallest deterioration in the cost
function. This strategy allows the method to escape from local minima. A tabu
list is used to store a certain amount of recently visited solutions. The solutions
in tabu list are marked as forbidden to subsequent iterations. The tabu list reg-
isters T last visited solutions. When the list is full, a new movement is registered
in substitution to the older solution kept on the list.

In the present work, a neighborhood with 20 solutions is used, and the algo-
rithm chooses the best non-tabu solution. The proximity criterion [6] was used
to compare solutions. A new solution is considered identical to the tabu solution
one if: (1) each connectivity bit in the new solution is identical to the correspond-
ing connectivity bit in the tabu solution; and (2) each connection weight in the
new solution is within ±N of the corresponding connection weight in the tabu
solution. The parameter N is a real number with a value of 0.001. A maximum
number of 100 iterations is allowed. The stop criterion employed was also GL5.

3 Integration of Simulated Annealing, Tabu Search and
Genetic Algorithms

The simulated annealing method has the ability to escape from local minima
through the choice between accepting or discarding a new solution that increases
cost (uphill moves). The tabu search method, in contrast, evaluates one group
of new solutions at each iteration (instead of only one solution as in simulated
annealing). This makes a tabu search faster, as it generally needs less iterations
to converge. The genetic algorithm evolution, in turn, involves a sequence of
iterations, where a group of solutions evolves through selection processes and
reproduction. This process, which is more elaborate than the other algorithms,
can result in solutions with a better quality.

These observations motivated the proposal of an optimization technique
(GaTSa) that combines the main potentialities of genetic algorithms, simulated
annealing and tabu search in an effort to avoid their limitations. In general
terms: at each iteration, a group of new solutions is generated, starting from the
micro-evolution of the current population, as in genetic algorithms. The cost of
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each solution is evaluated, and the best solution is chosen, as in tabu search.
However, differently from a tabu search, this solution is not always accepted.
The acceptance criterion is the same used in the simulated annealing algorithm
- if the chosen solution has a smaller cost than the current solution, it is ac-
cepted; otherwise, it can either be accepted or not, depending on a probability
calculation. This probability is given by the same expression used in the simu-
lated annealing method. The visited solutions are marked as tabu, as in a tabu
search. During the optimization process, only the best solution found is stored,
that is, the final solution comes back through the method.

Algorithm 1. Proposed algorithm Pseudo-code
1. P0 ← initial population with K solutions sk

2. T0 ← initial temperature
3. IT ← iterations number
4. Update SBSF with sk of the P0 (best solution found so far)
5. For i = 0 to Imax − 1
6. If i + 1 is not a multiple of IT

7. Ti+1 ← Ti

8. Else
9. Ti+1 ← new temperature
10. If validation based stopping criteria are not satisfied
11. Stop global search execution
12. For j = 0 to gn

13. Generate a new population P ′ from Pi

14. Pi ← P ′

15. Choose the best solution sk from Pi

16. If f(s′) < f(sk)
17. sk+1 ← s′

18. Else
19. sk+1 ← s′ with probability e

f(s′)−f(sk)
Ti+1

20. If f(sk+1) < f(SBSF )
21. Update SBSF

22. End For
23. Keep the topology contained in SBSF constant and use the weights as initial
ones for training with the backpropagation algorithm

The proposed method pseudo-code is presented in Algorithm 1. Let S be a
group of solutions and f a real cost function, the proposed algorithm searches the
global minimum s, such that f(s) ≤ f(s′), ∀ s′ ∈ S. The process finishes after
Imax iterations or if the stop criterion based on the validation error is satisfied.
The best found solution SBSF (best so far) is returned. The cooling process
updates the temperature Ti of the iteration i at each IT algorithm iterations.
At each iteration, a new population with k solutions is generated. A genetic
micro-evolution of gn generations is used to generate this population from the
current population. Moreover, at the end of the global search (GaTSa), a hybrid
training is used, combining the proposed method with a local search technique.
The local search technique can be implemented, for instance, by the well-known
backpropagation algorithm.

Each solution is codified in a vector. This vector represents the connections
among the processing units of the MLP artificial neural network. Each of these
connections is specified by two parameters: (a) the connectivity bit, a boolean
value that simbolizes the existence or absence of a connection; and (b) the con-
nection weight, which is a real number. If the connectivity bit is equal to zero,
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its associated weight is not considered, for the connection does not exist in the
network. All possible connections among adjacent layers are considered.

Different from the constructive algorithms that only generate one solution
at the end of the process, iterative algorithms originate possible (candidate) so-
lutions at each iteration. The cost function is used to evaluate the performance
among consecutive iterations and select the solution that minimizes (or maxi-
mizes) an objective function.

The cost function for the investigated problem is the arithmetic average be-
tween: (1) the classification error of the training set (percentage of incorrectly
classified training patterns); and (2) the percentage of connections used by the
artificial neural network. Therefore, the algorithms try to minimize both network
performance and processing complexity. Only valid networks (i.e., networks with
at least one unit in the hidden layer) were considered.

The operator for the generation of neighbors is used to derive new solutions
from the current solution. The method used in simulations is defined as follows:
(1) the connectivity bits for the current solution are changed according to a given
probability, which in the present work is set to 20%. This operation deletes some
network connections and creates new ones. Next, a random number taken from
a uniform distribution in [-1; +1] is added to each connection weight. These
two steps can change both topology and connection weights to produce a new
neighbor solution.

4 Experiments and Results

Real data is used in the experiments. The problem aims to classify odor patterns
obtained through an artificial nose. The odorant compositions analyzed are from
three different vintages (years 1995, 1996 and 1997) of the same commercial red
wine (Almadm, Brazil) produced with merlot-type grapes. The artificial nose
used is composed of six distinct conducting polymer sensors constructed with an
electrochemical deposition of polypyrrole using different types of dopants. Three
data acquisitions were performed. In each acquisition for each wine vintage, the
resistance value of each sensor was recorded for five seconds. A set of six values
from the six sensors at the same time was considered a pattern. Thus, each
acquisition contains 1.800 patterns (600 from each vintage). There were three
acquisitions and 5.400 patterns of data.

In previous works with this data base, the best performance obtained by
the MLP was achieved by an architecture with 6 processing units in the input
layer, 4 processing units in the hidden layer and 3 processing units in the output
layer [7]. This topology was keep constant as the maximum architecture in the
optimization experiments performed. In all investigated algorithms, the param-
eter configurations were maintained at the standard configuration or adjusted
based on previous experiments. The values used may not be the best values
for the problem, but the objective of the present paper is to demonstrate the
potentialities of the techniques and not the ideal algorithms configuration.

Table 1 presents the average performance of each investigated optimization
technique. These results were obtained for each technique in the optimization
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of the number of connections and weight connection values of an MLP artificial
neural network. The parameters evaluated were: (1) Squared Error Percentage
(SEP) and the classification error (Class) of training, validation and test sets;
(2) algorithm iteration number; (3) artificial neural network connection number;
and (4) the temperature value. The following table displays the average results
of 10 simulations. Each simulation contains 30 different runs of the algorithm.

Table 1. Optimization techniques performance

Training Validation Test
Technicque SEP Class SEP Class SEP Class Iterations Connections Temperature

TS 18,74 5,44 18,86 5,88 18,75 5,3805 51 11,42 -
SA 19,65 6,91 19,76 7,47 19,65 6,9331 715 11,77 0,0085
GA 21,66 15,88 21,73 16,52 21,66 15,9240 315 16,64 -
GaTSa 18,69 3,58 18,76 3,81 18,69 3,5664 46 8,33 0,7098
GaTSa + BP 4,78 - 2,41 - 2,14 2,8684 86 8,33 0,7098
BP 6,25 - 3,15 - 2,84 6,7854 90 36 -

The technique that combines the heuristics of tabu search, simulated anneal-
ing and genetic algorithms obtained the best result performance. This technique
was better even without using the local search heuristic to optimize the artificial
neural network connection values. The average classification error obtained was
2.87%, with an average of 8 connections from 36 possible connections in a fully
connected neural network. Using a full connected network, the local optimization
technique backpropagation obtained an average error of 6.78%.

The genetic algorithms, tabu search and simulated annealing methods in-
corporate domain specific knowledge in their own search heuristics. They also
tolerate some elements of non-determinism, which helps the search escape from
local minima. They rely on the use of a suitable cost function that provides feed-
back to the algorithm as the search progresses. The main difference among them
is how and where domain-specific knowledge is used. For example, in simulated
annealing such knowledge is mainly included in the cost function. Solutions in-
volved in a perturbation are selected randomly, and perturbations are accepted
or rejected according to a probability.

In the case of genetic algorithms, domain specific knowledge is exploited in
all phases. The fitness of individual solutions, the reproduction selection, genetic
operators, as well as the generation of the new population, incorporate domain-
specific knowledge. Tabu search is different from the above heuristics in that it
has an explicit memory component. At each iteration, the neighborhood of the
current solution is partially explored, and a move is made to the best non-tabu
solution in that neighborhood. The neighborhood function, together with the
size and content of the tabu list, is problem specific. The direction of the search
is also influenced by memory structures.

The proposed integration uses a larger amount of information on the problem
domain and uses this information in practically all search phases. This is possible
through the integration of the main potentialities of the three investigated search



Hybrid Technique for Artificial Neural Network Architecture 715

Fig. 1. Result analysis

heuristics. Moreover, the proposed technique has two well-defined stages: a global
search phase, where it makes use of the capacity for generating new solutions for
the genetic algorithms, the cooling process and cost function of the simulated
annealing as well as the memory characteristics of the tabu search technique;
and a local search phase, where it makes use of characteristics such as gradient
descending for a more precise solution adjustment. These characteristics can
obtain better solutions for the investigated problems, with a short search time,
low computational cost and minimal investigated search space.

Figure 1 presents graphs comparing the performance of the investigated tech-
niques. The proposed technique obtained the best results regarding the classi-
fication error, final network connection number and the number of iterations
needed for architecture optimization.

5 Final Remarks

This work presented a technique that integrates the heuristics of tabu search,
simulated annealing, genetic algorithms and backpropagation. In the simultane-
ous optimization of the connection number and connection values of the Multi-
Layer Perceptron neural network, this technique obtained promising results
in comparison with the isolated techniques. The proposed technique combines
strategies of global and local searches, presenting promising results regarding
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the investigated solution space, computacional cost and search time. The inves-
tigated problem involves a critical subject, the stability versus plasticity relation
in the training of artificial neural networks.

Without a deeper investigation, it is not possible to say if these results can
be extended to other problem classes. An interesting theoretical study proved a
number of theorems stating that the average performance of any pair of iterative
(deterministic or non-deterministic) algorithms across all problems is identical.
Thus, if an algorithm performs well on a certain class of investigated problems,
it necessarily pays for that with degraded performance on the remaining set
of problems [12]. Future investigations should consider this presupposition and
verify the performance of this optimization technique on other problems.
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Gábor, Bálint 470
Geurts, Pierre 478
Giannotti, Fosca 10
Govaert, Gérard 609
Greene, Derek 486
Greiner, Russell 121
Guo, Jun 264
Gyenes, Viktor 470

Hall, Mark 675
Han, Jiawei 404, 445, 527
He, Xiaofei 445
He, Xiaofeng 71
Hilario, Melanie 536
Ho, Eric K.Y. 544
Ho, Tu Bao 321, 617
Hoffmann, Daniel 285
Holmes, Geoffrey 495
Huang, Jin 503, 511
Huang, Shao-bing 601

Ilin, Alexander 519

Japkowicz, Nathalie 667
Jin, Wen 527

Kaiser, Rolf 285
Kalousis, Alexandros 536
Keogh, Eamonn 6, 577
Kirkby, Richard 495
Kleinberg, Jon 133
Knobbe, Arno J. 544



718 Author Index

Knuteson, Bruce 552
Kohavi, Ron 7
Ko�lcz, Aleksander 561
Korn, Klaus 285
Koychev, Ivan 380
Kramer, Stefan 84
Kriegel, Hans-Peter 417

Laasonen, Kari 569
Lakaemper, Rolf 577
Latecki, Longin Jan 577
Laurent, Anne 205
Laurent, Dominique 205
Law, Yan-Nei 108
Lee, Chang-Hwan 585
Lee, Chi-Hoon 121
Lengauer, Thomas 285
Leskovec, Jurij 133
Levene, Mark 34
Li, Haiquan 146
Li, Jinyan 146
Li, Ling 157
Li, Qunxia 264
Li, Wenyuan 593
Li, Xue 429
Lin, Hsuan-Tien 157
Ling, Charles X. 274, 503, 511
Liu, Gang 264
Lőrincz, András 470
Lothian, Rob 380
Ludermir, Teresa Bernarda 709
Lv, Tian-yang 601

Malerba, Donato 169
Matias, Yossi 8
Matwin, Stan 667
Mavroeidis, Dimitrios 181
McGinty, Lorraine 228
Megalooikonomou, Vasilis 577
Meinl, Thorsten 392
Motoda, Hiroshi 692

Nadif, Mohamed 609
Nakanishi, Koutarou 692
Nattkemper, Tim 331
Ng, Wee-Keong 593
Nguyen, Canh Hao 617
Nguyen, Son N. 625
Nock, Richard 634

Oette, Mark 285
Olivetti, Emanuele 343
Ong, Kok-Leong 593
Orlowska, Maria E. 625
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