
Model-Based Online Learning of POMDPs

Guy Shani, Ronen I. Brafman, and Solomon E. Shimony

Ben-Gurion University, Beer-Sheva, Israel

Abstract. Learning to act in an unknown partially observable domain is a dif-
ficult variant of the reinforcement learning paradigm. Research in the area has
focused on model-free methods — methods that learn a policy without learning
a model of the world. When sensor noise increases, model-free methods provide
less accurate policies. The model-based approach — learning a POMDP model
of the world, and computing an optimal policy for the learned model — may gen-
erate superior results in the presence of sensor noise, but learning and solving a
model of the environment is a difficult problem. We have previously shown how
such a model can be obtained from the learned policy of model-free methods,
but this approach implies a distinction between a learning phase and an acting
phase that is undesirable. In this paper we present a novel method for learning
a POMDP model online, based on McCallums’ Utile Suffix Memory (USM), in
conjunction with an approximate policy obtained using an incremental POMDP
solver. We show that the incrementally improving policy provides superior results
to the original USM algorithm, especially in the presence of increasing sensor and
action noise.

1 Introduction

Consider an agent situated in a partially observable domain: It executes an action that
may change the state of the world; this change is reflected, in turn, by the agent’s sen-
sors; the action may have some associated cost, and the new state may have some asso-
ciated reward or penalty. Thus, the agent’s interaction with this environment is charac-
terized by a sequence of action-observation-reward steps, known as instances. In this
paper we focus our attention on agents with imperfect and noisy sensors that learn to act
in such environments without any prior information about the underlying set of world-
states and the world’s dynamics, except for information about their sensors’ capabilities
(namely, a predefined sensor model). This is a known variant of reinforcement learning
(RL) in partially observable domains (see, e.g. [3]).

Learning in partially observable domains can take one of two forms; the agent can
either learn a policy directly [8, 7], or it can use methods such as the Baum-Welch
algorithm for learning HMMs (see, e.g. [2]) to learn a model of the environment, usually
represented as a Partially Observable Markov Decision Process (POMDP)1 , and solve
it [4, 9]. This approach has not been favored by researchers, as learning a model appears
to be a difficult task, and computing an optimal solution is also difficult.

Moreover, model-free methods naturally support online learning and adapt to
changing environments, whereas this is not always the case with model-based methods.
In this paper, we return to the model-based approach motivated by a number of recent

1 See Section 2.1 for an overview of MDPs and POMDPs.

J. Gama et al. (Eds.): ECML 2005, LNAI 3720, pp. 353–364, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

354 G. Shani, R.I. Brafman, and S.E. Shimony

developments: (1) Our recent work on learning POMDP models is able to leverage poli-
cies of model-free methods for constructing a POMDP and scales much better than the
Baum-Welch algorithm (2) Improvements in approximate POMDP solution methods
no longer make it a bottle-neck for this approach. The main contribution of this paper
is to show how we can adapt the above ideas to provide online model-based learning
of POMDPs, thereby providing a well-rounded approach for model-based learning in
partially observable domains. Our algorithm still suffers from the problem that plagues
model-free and model-based algorithms for this difficult problem: it works in relatively
small domains. However, given the relatively small number of algorithms in this area,
it offers a new entry that is both faster, much more robust to sensor noise, and adaptive.

Some research in RL has focused on the problem of perceptual aliasing [4], where
different actions should be executed in two states where sensors provide the same out-
put. For example, in Figure 1 the left and right corridors are perceptually aliased if sen-
sors can only sense adjacent walls. Model-free methods2 - such as using variant-length
history windows [7] - can be used to disambiguate the perceptually aliased states. When
the agent’s sensors provide deterministic output, learning to properly identify the under-
lying world states reduces the problem to a fully observable MDP, making it possible
for methods such as Q-learning to compute an optimal policy.

(a) (b) (c)

Fig. 1. Three maze domains. The agent receives a reward of 9 upon reaching the goal state
(marked with ‘G’). Immediately afterwards (in the same transition) the agent is transferred to
one of the states marked ‘X’. Arrival at a state marked ‘P’ results in a negative reward of 9.

When sensors provide output that is only slightly noisy, model-free methods pro-
duce near-optimal results. However, as noise in the sensors increases, their performance
rapidly decreases [10]. This is because disambiguating the perceptually aliased states
under noisy sensors does not result in an MDP, but rather in a POMDP. POMDP models
are harder to solve, but their solution handles noisy observations optimally.

We have previously shown [11] how well-known model-free methods such as inter-
nal memory and McCallum’s USM algorithm can be adapted to create after convergence
a POMDP model. A solution to such a model provides superior results to the original
policy computed by the model-free methods, especially in the presence of noise. This
approach, much like earlier methods that rely on the Baum-Welch algorithm, has its
disadvantages, as it separates the process into a learning stage and an acting stage. Such
separation is undesirable because it is unclear when we should switch from learning to
acting, and it also does not handle even slowly changing environments very well.

In this paper we present an algorithm for learning a POMDP model together with
its policy online. We adapt the USM algorithm, originally designed for learning a sim-
pler MDP model, for learning the more complicated POMDP model. USM has two

2 As the discussed problems are properly defined as a POMDP, we call methods that do not learn
all the POMDP parameters “model-free”, though they may learn state representations.

Model-Based Online Learning of POMDPs 355

parts — clustering histories to form a state representation and a planning algorithm
based on the learned states. We suggest augmenting the first part to learn a POMDP
model using a predefined sensor model, and replacing the original MDP planner with
an approximate POMDP planner. The algorithm hence updates the POMDP parame-
ters and continuously computes an approximate policy, using an online version of the
Perseus algorithm [12]. Executing policies in a POMDP requires the maintenance of a
belief state. The computational cost of our incremental learning algorithm is no greater
than the time it takes for the required computation of the belief state. Belief states
can also be used to improve the insertion of instances into the POMDP construction
algorithm.

Our algorithm makes one important assumption – the existence of a pre-defined
sensor model. For instance, in the maze domain, it knows the probability by which a
wall is observed given that a wall exists. In general we require a sensor model that
provides a distribution over observations given features of a state (rather than given the
actual state). While not universally applicable, we believe that such sensor models are
quite natural for many domains, robotics in particular.

This paper is structured as follows: we begin (Section 2) with an overview of MDPs,
POMDPs and the USM algorithm. We then explain how the USM algorithm can be
adapted to incrementally maintain a POMDP in Section 3 and how to compute an ap-
proximate policy online in Section 4. We provide an experimental evaluation of our
work in Section 5 and conclude in Section 6.

2 Background

2.1 MDPs and POMDPs

A Markov Decision Process (MDP) [5] is a model for sequential stochastic decision
problems. An MDP is a four-tuple: 〈S, A, R, tr〉, where S is the set of the states of
the world, A is a set of actions an agent can use, R is a reward function, and tr is the
stochastic state-transition function. A solution to an MDP is a policy π : S → A that
defines which action should be executed in each state.

Various exact and approximate algorithms exist for computing an optimal policy,
and the best known are policy-iteration [5] and value-iteration [1]. A value function as-
signs for each state a value V (s) — the expected utility from acting optimally begining
in s and on to infinity. Value iteration computes an optimal value function by iteratively
solving the equation:

Vn+1(s) = max
a

R(s, a) + γ
∑

s′

tr(s, a, s′)Vn(s′) (1)

A standard extension to the MDP model is the Partially Observable Markov Deci-
sion Process (POMDP) model [3]. A POMDP is a tuple 〈S, A, R, tr, Ω, O〉, where
S, A, R, tr define an MDP, Ω is a set of possible observations and O(a, s, o) is the
probability of executing action a, reaching state s and observing o. The agent is unable
to identify the current state and is therefore forced to estimate it given the current ob-
servations (e.g. output of the robot sensors) and the agents’ history. In many application
domains POMDPs are a more precise and natural formalization than an MDP, but using
POMDPs increases the difficulty of computing an optimal solution.

356 G. Shani, R.I. Brafman, and S.E. Shimony

History may be represented by a belief state b(s) = p(s|h) — the probability of
being in state s after executing and observing history h. The next belief state bo

a resulting
by executing action a and observing o in belief state a can be computed using:

bo
a(s) =

O(a, s, o)
∑

s′ b(s′)tr(s′, a, s)
pr(o|b, a)

(2)

2.2 Approximate Solutions to POMDPs

Solving a POMDP is an extremely difficult computational problem, and various at-
tempts have been made to compute approximate solutions that work reasonably well in
practice.

Early research [6] suggested the use of an optimal policy for the underlying MDP
in conjunction with the belief state to provide a number of approximations that define a
policy over belief states.We can select the action that:

– Most Likely State (MLS): corresponds to the maximal Q-value of the state that is
most likely given the current belief state.

πMLS(b) = argmaxa Q(argmaxs b(s), a) (3)

– Voting: recommended by most states, weighted by the state probability.

πV oting(b) = argmaxa

∑

s

b(s)δ(s, a) (4)

where δ(s, a) = 1 ⇔ a = argmaxa′ Q(s, a) and 0 otherwise.
– QMDP : has the highest Q-value weighted by the state probabilities.

πQMDP (b) = argmaxa

∑

s

b(s)Q(s, a) (5)

An exact solution to a POMDP can be computed using the belief state MDP —
an MDP over the belief space of the POMDP. A value function for a POMDP can be
described using a set of |S| dimensional vectors defining the expected utility, where
each vector αa ∈ V corresponds to an action a. We can compute the value function
over the belief state MDP iteratively:

Vn+1(b) = max
a

[b · ra + γ
∑

o

pr(o|a, b)Vn(bo
a)] (6)

where ra(s) = R(s, a) and α · β =
∑

i α(i)β(i). The computation of the next value
function Vn+1(b) out of the current one Vn (Equation 6) is known as a backup step.
Using such a value function V we can define a policy πV over the belief state:

πV (b) = argmaxa:αa∈V αa · b (7)

A point-based algorithm is an algorithm that computes a value function over a finite set
of belief points (belief states). Point based algorithms compute an approximate solution
as they do not iterate over the entire (infinite) belief space.

Spaan et al. explore randomly the world to gather a set B of belief points and then
execute the Perseus algorithm (Algorithm 1). Spaan et al. also explain how backups can
be computed efficiently. Perseus appears to provide good approximations with small
sized value functions rapidly.

Model-Based Online Learning of POMDPs 357

Algorithm 1. Perseus
Input: B — a set of belief points
1: repeat
2: B̃ ← B
3: V ′ ← φ
4: while B̃ not empty do
5: Sample b ∈ B̃
6: α ← backup(b)
7: if α · b > V (b) then
8: V ′ ← V ′ ∪ {α}
9: else

10: V ′ ← V ′ ∪ {maxβ∈V β · b}
11: B̃ ← {b ∈ B̃ : V ′(b) < V (b)}
12: V ← V ′

13: until V has converged

2.3 Model Based Approaches

The idea of learning a POMDP model of the environment was examined by early re-
searchers [4, 7] who used a variant of the Baum-Welch algorithm for learning hidden
Markov models, refining the state space when it was observed to be inadequate. These
methods were slow to converge and could not outperform the rapid convergence and
reasonable results generated by model-free methods.

Weirstra and Weiring [13] recently proposed an improvement to McCallums’ UDM
algorithm allowing it to look farther into the past and speeding its convergence. They
however compute an approximate policy using Q-values for the underlying MDP and
not by any modern policy computation mechanism. We note that their algorithm is not
truly online as it is split into as exploration stage and then a model update stage in order
to avoid the long update time of the Baum-Welch algorithm.

Nikovski [9] used McCallum’s earlier model-free method, Nearest Sequence Mem-
ory (NSM) [7], to identify the states of the world and learn the transition, reward, and
observation functions. He showed that the learned models produced superior results to
the models obtained by using the Baum-Welch algorithm. His models, however, were
tested on domains with little noise, and are much less adequate when sensors are noisy.
This is to be expected, as NSM handles noisy environments poorly, where USM can still
produce reasonable results, though in no way optimal. Nikovski also did not maintain
an incremental model, splitting the learning into a learning phase, followed by model
construction and then used the resulting model.

2.4 Utile Suffix Memory

Instance-based state identification [7] resolves perceptual aliasing with variable length
short term memory. An instance is a tuple Tt = 〈Tt−1, at−1, ot, rt〉 — the individ-
ual observed raw experience. Algorithms of this family keep all the observed raw
data (sequences of instances), and use it to identify matching subsequences. It is as-
sumed that two sequences with similar suffixes were likely generated in the same
world state.

358 G. Shani, R.I. Brafman, and S.E. Shimony

Utile Suffix Memory creates a tree structure, based on suffix trees for string oper-
ations. This tree maintains the raw experiences and identifies matching suffixes. The
root of the tree is an unlabeled node, holding all available instances. Each immedi-
ate child of the root is labeled with one of the observations encountered during the
test. A node holds all the instances Tt = 〈Tt−1, at−1, ot, rt〉 whose final observation
ot matches the node’s observation. At the next level, instances are split based on the
last action of the instance at. We split again based on (the next to last) observation
ot−1, etc. All nodes act as buckets, grouping together instances that have matching
history suffixes of a certain length. Leaves act as states, holding Q-values and up-
dating them. The deeper a leaf is in the tree, the more history the instances in this
leaf share.

The tree is built on-line during the test run. To add a new instance to the tree,
we examine its percept, and follow the path to the child node labeled by that per-
cept. We then look at the action before this percept and move to the node labeled by
that action, then branch on the percept prior to that action and so forth, until a leaf is
reached.

When sensors provide noisy outputs, it is possible that an instance corresponding
to a certain location in the world will be inserted into a leaf that represents a different
location, due to a noisy observation[10]. Such noisy observations can be reduced by
maintaining a belief state. Instead of refereing to a single (possibly noisy) observation,
we can consider all possible observations weighted by their probability p(o|b) where
b is the current belief state. In USM, p(o|b) is easy to compute as each state (leaf)
corresponds to a specific assignment to world features (for example, a specific wall
configuration), and therefore p(o|b) =

∑
s∈So

b(s) where So is the set of all states that
correspond to world configuration o.

We can hence insert a new instance Tt into all states, weighted by p(o|bt), or
replace the noisy observation ot with the observation with maximal probability
argmaxo p(o|bt). In the experiments reported below we take the second approach.

Leaves should be split if their descendants show a statistical difference in expected
future discounted reward associated with the same action. We split a node if knowing
where the agent came from helps predict future discounted rewards. Thus, the tree must
keep what McCallum calls fringes, i.e., subtrees below the “official” leaves. Figure 2.4
presents an example of a possible USM tree, without fringe nodes.

�
��

����������	���

����
���	���

����������	���

� �

�
���
�����

Fig. 2. A possible USM suffix tree generated by the maze in Figure 1. Below is a sequence of
instances demonstrating how some instances are clustered into the tree leaves. The two bolded
leaves correspond to the same state — the right perceptually aliased corridor. During most exe-
cutions under deterministic sensor output the above tree structure was generated.

Model-Based Online Learning of POMDPs 359

After inserting new instances into the tree, we update Q-values in the leaves using:

R(s, a) =

∑
Ti∈T (s,a) ri

|T (s, a)| (8)

Pr(s′|s, a) =
|∀Ti ∈ T (s, a), L(Ti+1) = s′|

|T (s, a)| (9)

Q(s, a) = R(s, a) + γ
∑

s′

Pr(s′|s, a)U(s′) (10)

where L(Ti) is the leaf associated with instance Ti and U(s) = maxa(Q(s, a)). We
use s and s′ to denote the leaves of the tree, as in an optimal tree configuration for
a problem the leaves of the tree define the states of the underlying MDP. The above
equations correspond to a single step of the value iteration algorithm (see Section 2.1).

Now that the Q-values have been updated, the agent chooses the next action to
perform based on the Q-values in the leaf corresponding to the current instance Tt:

at+1 = argmaxaQ(L(Tt), a) (11)

McCallum uses the fringes of the tree for a smart exploration strategy. In our imple-
mentation we use a simple ε-greedy technique for exploration.

We note that if a perceptually aliased state can be reached from two different loca-
tions, it may have two different leaves that represent it. For example, consider the two
leaves in thick line-style in Figure 2.4, corresponding to arriving at the right corridor
from above or from below. This phenomenon gives rise to two problems: relevant in-
formation is split between leaves, thus requiring a longer learning process, and more
seriously, this can lead to a non-compact state space. This is a fundamental problem
with USM, and future research should focus on better structures that avoid this dupli-
cation, such as using a DAG instead of a tree structure. We note that given any such
improvement to USM our algorithms can be modified accordingly.

3 Constructing a POMDP Model over Utile Suffix Memory

Obtaining the POMDP parameters from the USM tree structure is straightforward. The
state space (S) is defined as the set of (constantly expanding) tree leaves computed by
USM. The actions (A) and observations (Ω) are known to the agent prior to learning
the model. The transition function (tr) is defined by Equation 9 and the reward function
(R) by Equation 8, as in the original USM. These functions are refined throughout the
learning process.

Learning the observation function is harder, as in USM a state always corresponds
to a single “true” observation, and all instances mapped to the state hence observe the
same sensor output. This “true” state observation is defined by the topmost node be-
low the root, on the path to the state leaf, corresponding to the latest observation in
every instance that was added to the leaf. It is therefore unclear how to learn pr(o|a, s)
— the probability of observing o after reaching state s with action a. We are able
to learn a different probability function — the probability of observing o after exe-
cuting action a from state s, but in most of the domains modelled by POMDPs the
observation depends on the target state, not on the source state, making the latter
definition improper.

360 G. Shani, R.I. Brafman, and S.E. Shimony

It is, however, possible to measure the accuracy of sensors offline, prior to the learn-
ing process. For example, we can place a robot in front of an obstacle and measure how
likely are its sensors to identify the obstacle. Similarly, it is possible to measure the
temperature of a patient multiple times to obtain an error model of the thermometer.

We therefore adopt the approach taken by Shani et al. [10, 11], where an observa-
tion model is assumed, and define the observation function based on the observation
model. We assume that the agent has some sensor model defining pr(o|w) — the prob-
ability that the agent will observe o in world state w. Note that the requirement of a
sensor model (which is sufficient for us) is often weaker than the requirement for an ob-
servation function. For instance, in maze domains, different rooms with identical wall
configurations correspond to different states. However, we only require the ability to
assess the likelihood of a certain wall configuration given the sensor’s signals, not of
the actual state. Thus, in general, it is possible to define a good observation function
based on the state’s features (which are uniquely determined by the state: the walls are
the features in our experiment), but without knowledge of the actual state space (i.e.,
which rooms actually exist and where).

4 Online POMDP Policy Computation

The Perseus algorithm (Algorithm 1) is executed using a POMDP and a set of be-
lief points. However, since convergence of the algorithm still takes considerable time,
we would like to incrementally improve a value function (and hence, a policy) as we
learn and act, without requiring the complete execution of Perseus after each step. Our
method is an online version of the Perseus algorithm — an algorithm that receives a
single belief point and adjusts the computed value function accordingly.

Algorithm 2 is an adaptation of the original algorithm, using two value functions -
the current function V and the next function V ′. V ′ is updated until no change has been
noted for a period of time, upon which V ′ becomes the active function V .

Algorithm 2. Iterative Perseus
Input: b — a single belief point
1: if V ′(b) < V (b) then
2: α ← backup(b)
3: if α · b > V (b) then
4: V ′ ← V ′ ∪ {α}
5: else
6: V ′ ← V ′ ∪ {maxβ∈V β · b}
7: if V ′ has not been updated in a long while then
8: V ← V ′

9: V ′ ← φ

In the original, offline version of Perseus, belief points for updating are selected
randomly. The iterative version we suggest selects the points we update not randomly,
but following some track through the environment. If this track is chosen wisely (i.e.
using a good exploration policy) we can hope that the points that are updated are ones
that improve the solution faster.

Model-Based Online Learning of POMDPs 361

Using Perseus in conjunction with a model learning algorithm can be problematic,
due to the greedy nature of the algorithm. As the value of the next value function over
all (tested) belief points always increases, wrong over-estimates, originating from some
unlearned world feature, can be persisted in the value function even though they can not
be achieved. Such maxima can be escaped using some randomization technique, such
as occasionally removing vectors, or by slowly decaying older vectors. We note this
problem, even though it does not manifest in our experiments.

5 Experimental Results

In our experiments we ran the USM-based POMDP on the toy mazes in Figure 1. While
these environments are uncomplicated compared to real world problems, they demon-
strate important problem features such as multiple perceptual aliasing (Figure 1(b)) and
the need for an information gain action (Figure 1(c)). While USM is limited in scaling
up to real-world problems, its successor, U-Tree, handles larger domains, and we note
that all our methods can be implemented on U-Tree much the same way as for USM.

During execution the model maintains a belief state and states were updated as ex-
plained in Section 2.4. The system also ran the iterative Perseus algorithm (Algorithm 2)
for each observed belief state. During the learning phase, the next action was selected
using the MLS (most likely state) technique (Section 2.1). Once the average reward
collected by the algorithms passed a certain threshold, exploration was stopped (as the
POMDP policy does not explore).

From this point onwards, learning was halted and runs were continued for 5000
iterations for each approximation technique to calculate the average reward gained —
MLS, Voting, QMDP and the policy computed by the iterative Perseus algorithm. In
order to provide a gold standard, we manually defined a POMDP model for each of the
mazes above, solved it using Perseus and ran the resulting policy for 5000 iterations.

Execution time in our tests was around 6 milliseconds for an iteration of USM,
compared to about 234 milliseconds for an iteration of the POMDP learning (including
parameter and policy updates), on the maze in Figure 1(b) with sensor accuracy 0.9, on
a Pentium 4 with 2.4 GHz CPU and 512 MB memory. The performance of the POMDP
learning algorithm is much slower (about n3) but still feasible for online robotic ap-
plication, where an action execution is usually measured in seconds. Moreover, much
of that time is required for simply updating the belief state, an operation required even
for only executing a POMDP policy. For example, the executed policy of the manually
defined model (without any learning), takes about 42 milliseconds per iteration.

The agent in our experiments has four sensors allowing it to sense an immediate
wall above, below, to the left, and to the right of its current location. Sensors have
a boolean output with probability p of being correct. The probability of all sensors
providing the correct output is therefore p4. We assume that the agent knows in advance
the probability of sensing a wall if a wall exists, and compute the observation function
from this information. In the maze there is a single location that grants the agent a
reward of 9. In the maze in Figure 1(c) there are two locations where the agent receives
a negative reward (punishment) of 9. Upon receiving a reward or punishment, the agent
is transformed to any of the states marked by X. If the agent bumps into a wall it pays a
cost (a negative reward) of 1. For every move the agent pays a cost of 0.1.

362 G. Shani, R.I. Brafman, and S.E. Shimony

���

���

���

�

���

���

��������������	�����

(a) Action noise 0.0.

��	

���

���

���

���

��������������	�����

(b) Action noise 0.1.

��

��	

���

���

���

��������������	�����

(c) Action noise 0.2.

Results for the maze in Figure 1(a).

���

���

���

�

���

���

���

���

��������������	�����

(d) Action noise 0.0.

��	

���

���

���

���

���

���

��������������	�����

(e) Action noise 0.1.

��

��	

���

���

���

�

���

��������������	�����

(f) Action noise 0.2.

Results for the maze in Figure 1(b).

���

���

���

���

���

���

����������	���
�����

(g) Action noise 0.0.

�

���

���

��	

���

�

��������������	�����

(h) Action noise 0.1.

��

���

���

���

���

��

���

��������������	�����

(i) Action noise 0.2.

Results for the maze in Figure 1(c).

(j) Legend for the above graphs

Fig. 3. Results for the mazes in Figure 1. In all the above graphs, the X axis contains the diminish-
ing sensor accuracy p, and the Y axis marks average reward per agent action. The above results
are averaged over 5 different executions for each observation accuracy and method. All variances
were below 0.01 and in most cases below 0.005.

Figure 5 presents our experimental results. The graphs compare the performance
of the original USM algorithm and our various enhancements: the belief state approx-
imations (MLS, Voting and QMDP) and the policy computed by the Online Perseus
algorithm (Algorithm2), denoted “Policy”. We also show the results of the policy for
manually defined model, denoted “Optimal Model” as an upper bound.

Observe that the performance of USM decreases sharply as observation noise in-
creases, but the performance of the POMDP based methods remains reasonably high.
The improvement is due to the fact that all the POMDP methods model the noise using

Model-Based Online Learning of POMDPs 363

the belief state, whereas pure USM ignores it. The differences between the POMDP so-
lution methods are not too significant for the first two mazes, and are more noticeable in
the last model. Incremental Perseus provides better solutions than the approximations
in all the experiments. The third model exhibits more uncertainty in the belief states,
and a more pronounced reward variability due to error (this maze is less forgiving w.r.t.
deviations from the optimal, especially in the states where the agent observes no walls,
where the same action causes a large reward in one state, and a large penalty in the
other), making the difference in performance significant. Here, the MDP based meth-
ods (MLS, Voting and QMDP) do not perform nearly as well as the computed policy
on that model.

The performance of the policy generated from the USM-based model is not as good
as the policy of the manually defined model. This is because the USM-based model
has many redundant states, as explained in Section 2.4. The lower performance is not
due to the use of the incremental Perseus instead of the offline version. In experiments
unreported here, we executed a simulation on a predefined POMDP model, using in-
cremental Perseus to compute a policy. The resulting policy was no worse than the one
computed by the offline Perseus on an identical model.

6 Conclusions and Future Work

Model-based algorithms for partially observable environments are widely disfavored
due to their slow convergence and the difficulty of computing an optimal policy even
when the model is known. This paper presents a model-based algorithm that learns a
POMDP model and its solution in conjunction, avoiding the slow computation of the
Baum-Welch algorithm. The learned POMDP policy presents superior performance to
McCallums’ USM in the presence of noisy actions and sensors. The main contribution
of this paper is in providing an incremental approach for constructing and solving a
POMDP model created online by the agent and demonstrating its effectiveness.

The online Perseus we have presented can also be useful for obtaining policies on
standard, predefined, POMDPs and we intend to continue experimenting with it on
such domains. Efficient exploration using the online Perseus remains an open question
as currently, the policy resulting from it performs very poorly before collecting enough
data — much worse than the MDP based approximations.

Improving the construction of the model is probably the main challenge to future
work. Currently, the main bottleneck is the size of the learned models. It is possible that
USM will create different leaves that correspond to the same state. This leads to large
models which require more work to solve and provide lower quality policies. In the
future, we plan to examine ways of more aggressively joining states that look similar.

We also believe that model-based methods offer significant advantages in using
the current model to guide exploration that is targeted at reaching unknown states and
generating instances that improve the model. Indeed, more advanced model-based al-
gorithm may consider issues such as the robustness of the learned model and may at-
tempt to directly model uncertainty about the model parameters, using these to direct
additional exploration. Finally, McCallums’ USM algorithm provides just one way of
constructing a POMDP model, and there may be other methods from which it is easier
to induce more accurate models.

364 G. Shani, R.I. Brafman, and S.E. Shimony

Acknowledgments

Partially supported by the Israeli Ministry of Science Infrastructure grant No. 3-942, by
the Lynn and William Frankel Center for Computer Sciences, and by the Paul Ivanier
Center for Robotics and Production Management at BGU. Guy Shani is partially sup-
ported by the Friedman Fund.

References

1. R. E. Bellman. Dynamic Programming. Princeton University Press, 1962.
2. J. Bilmes. A gentle tutorial on the em algorithm and its application to parameter estimation

for gaussian mixture and hidden markov models. Technical Report ICSI-TR-97-021, 1997.
3. A. R. Cassandra, L. P. Kaelbling, and M. L. Littman. Acting optimally in partially observable

stochastic domains. In AAAI’94, pages 1023–1028, 1994.
4. L. Chrisman. Reinforcement learning with perceptual aliasing: The perceptual distinctions

approach. In AAAI’02, pages 183–188, 1992.
5. R. A. Howard. Dynamic Programming and Markov Processes. MIT Press, 1960.
6. M. L. Littman, A. R. Cassandra, and L. P. Kaelbling. Learning policies for partially observ-

able environments: Scaling up. In ICML’95.
7. A. K. McCallum. Reinforcement Learning with Selective Perception and Hidden State. PhD

thesis, University of Rochester, 1996.
8. N. Meuleau, L. Peshkin, K. Kim, and L. P. Kaelbling. Learning finite-state controllers for

partially observable environments. In UAI’99, pages 427–436, 1999.
9. D. Nikovski. State-Aggregation Algorithms for Learning Probabilistic Models for Robot

Control. PhD thesis, Carnegie Mellon University, 2002.
10. G. Shani and R. I. Brafman. Resolving perceptual aliasing in the presence of noisy sensors.

In NIPS’17, 2004.
11. G. Shani, R. I. Brafman, and S. E. Shimony. Partial observability under noisy sensors —

from model-free to model-based. In ICML RRfRL Workshop, 2005.
12. M. T. J. Spaan and N. Vlassis. Perseus: Randomized point-based value iteration for

POMDPs. Technical Report IAS-UVA-04-02, University of Amsterdam, 2004.
13. D. Wierstra and M. Wiering. Utile distinction hidden markov models. In ICML, July 2004.

	Introduction
	Background
	MDPs and POMDPs
	Approximate Solutions to POMDPs
	Model Based Approaches
	Utile Suffix Memory

	Constructing a POMDP Model over Utile Suffix Memory
	Online POMDP Policy Computation
	Experimental Results
	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

