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Preface

The European Conference on Machine Learning (ECML) and the European
Conference on Principles and Practice of Knowledge Discovery in Databases
(PKDD) were jointly organized this year for the fifth time in a row, after some
years of mutual independence before. After Freiburg (2001), Helsinki (2002),
Cavtat (2003) and Pisa (2004), Porto received the 16th edition of ECML and
the 9th PKDD in October 3–7.

Having the two conferences together seems to be working well: 585 different
paper submissions were received for both events, which maintains the high sub-
mission standard of last year. Of these, 335 were submitted to ECML only, 220
to PKDD only and 30 to both. Such a high volume of scientific work required
a tremendous effort from Area Chairs, Program Committee members and some
additional reviewers. On average, PC members had 10 papers to evaluate, and
Area Chairs had 25 papers to decide upon. We managed to have 3 highly quali-
fied independent reviews per paper (with very few exceptions) and one additional
overall input from one of the Area Chairs. After the authors’ responses and the
online discussions for many of the papers, we arrived at the final selection of
40 regular papers for ECML and 35 for PKDD. Besides these, 32 others were
accepted as short papers for ECML and 35 for PKDD. This represents a joint
acceptance rate of around 13% for regular papers and 25% overall. We thank all
involved for all the effort with reviewing and selection of papers.

Besides the core technical program, ECML and PKDD had 6 invited speakers,
10 workshops, 8 tutorials and a Knowledge Discovery Challenge. Our special
thanks to the organizers of the individual workshops and tutorials and to the
workshop and tutorial chairs Floriana Esposito and Dunja Mladenić and to the
challenge organizer Petr Berka. A very special word to Richard van de Stadt for
all his competence and professionalism in the management of CyberChairPRO.
Our thanks also to everyone from the Organization Committee mentioned further
on who helped us with the organization. Our acknowledgement also to Rodolfo
Matos and Assunção Costa Lima for providing logistic support.

Our acknowledgements to all the sponsors, Fundação para a Ciência e Tecnolo-
gia (FCT), LIACC-NIAAD, Faculdade deEngenharia do Porto,Faculdade de Eco-
nomia do Porto, KDubiq –Knowledge Discovery in Ubiquitous Environments —
Coordinated Action of FP6, Salford Systems, Pascal Network of Excellence, PSE/
SPSS, ECCAI and Comissão de Viticultura da Região dos Vinhos Verdes. We also
wish to express our gratitude to all other individuals and institutions not explicitly
mentioned in this text who somehow contributed to the success of these events.

Finally, our word of appreciation to all the authors who submitted papers
to the main conferences and their workshops, without whom none of this would
have been possible.

July 2005 João Gama, Rui Camacho, Pavel Brazdil,
Aĺıpio Jorge and Lúıs Torgo
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José Carlos Pŕıncipe, USA

Jan Rauch, Czech Republic
Solange Rezende, Brazil
José Riquelme, Spain
Josep Roure, Spain
Juho Rousu, UK
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Matjaž Bevk
Andraž Bežek
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Blaž Novak
Aline Marins Paes
Rui Pedro Paiva
Pavel Petrovic
Aloisio Carlos de Pina
Jan Poland
Ronaldo C. Prati
Jaqueline Pugliesi
Le Si Quang

Stefan Raeymaekers
Alessandra Raffaetá
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Ramūnas Girdziušas, Jorma Laaksonen . . . . . . . . . . . . . . . . . . . . . . . . . . 576

An Evolutionary Function Approximation Approach to Compute
Prediction in XCSF

Ali Hamzeh, Adel Rahmani . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 584

Using Rewards for Belief State Updates in Partially Observable Markov
Decision Processes

Masoumeh T. Izadi, Doina Precup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 593

Active Learning in Partially Observable Markov Decision Processes
Robin Jaulmes, Joelle Pineau, Doina Precup . . . . . . . . . . . . . . . . . . . . . 601

Machine Learning of Plan Robustness Knowledge About Instances
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Data from various areas of Life Sciences have increasingly caught the attention
of data mining and machine learning researchers. Not only is the amount of data
available mind-boggling but the diverse and heterogenous nature of the infor-
mation is far beyond any other data analysis problem so far. In sharp contrast
to classical data analysis scenarios, the life science area poses challenges of a
rather different nature for mainly two reasons. Firstly, the available data stems
from heterogenous information sources of varying degrees of reliability and qual-
ity and is, without the interactive, constant interpretation of a domain expert,
not useful. Furthermore, predictive models are of only marginal interest to those
users – instead they hope for new insights into a complex, biological system that
is only partially represented within that data anyway. In this scenario, the data
serves mainly to create new insights and generate new ideas that can be tested.
Secondly, the notion of feature space and the accompanying measures of similar-
ity cannot be taken for granted. Similarity measures become context dependent
and it is often the case that within one analysis task several different ways of
describing the objects of interest or measuring similarity between them matter.

Some more recently published work in the data analysis area has started to
address some of these issues. For example, data analysis in parallel universes [1],
that is, the detection of patterns of interest in various different descriptor spaces
at the same time, and mining of frequent, discriminative fragments in large,
molecular data bases [2]. In both cases, sheer numerical performance is not the
focus; it is rather the discovery of interpretable pieces of evidence that lights up
new ideas in the users mind. Future work in data analysis in the life sciences needs
to keep this in mind: the goal is to trigger new ideas and stimulate interesting
associations.
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Over the past 10-15 years, the influence of methods from machine learning has
transformed the way that research is done in the field of natural language pro-
cessing. This talk will begin by covering the history of this transformation. In
particular, learning methods have proved successful in producing stand-alone
text-processing components to handle a number of linguistic tasks. Moreover,
these components can be combined to produce systems that exhibit shallow
text-understanding capabilities: they can, for example, extract key facts from
unrestricted documents in limited domains or find answers to general-purpose
questions from open-domain document collections. I will briefly describe the
state of the art for these practical text-processing applications, focusing on the
important role that machine learning methods have played in their development.

The second part of the talk will explore the role that natural language pro-
cessing might play in machine learning research. Here, I will explain the kinds of
text-based features that are relatively easy to incorporate into machine learning
data sets. In addition, I’ll outline some problems from natural language process-
ing that require, or could at least benefit from, new machine learning algorithms.
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In the past few years there has been a lot of work lying at the intersection of
probability theory, logic programming and machine learning [14,18,13,9,6,1,11].
This work is known under the names of statistical relational learning [7,5],
probabilistic logic learning [4], or probabilistic inductive logic programming.
Whereas most of the existing works have started from a probabilistic learn-
ing perspective and extended probabilistic formalisms with relational aspects,
I shall take a different perspective, in which I shall start from inductive logic
programming and study how inductive logic programming formalisms, settings
and techniques can be extended to deal with probabilistic issues. This tradi-
tion has already contributed a rich variety of valuable formalisms and tech-
niques, including probabilistic Horn abduction by David Poole, PRISMs by
Sato, stochastic logic programs by Muggleton [13] and Cussens [2], Bayesian
logic programs [10,8] by Kersting and De Raedt, and Logical Hidden Markov
Models [11].

The main contribution of this talk is the introduction of three probabilistic
inductive logic programming settings which are derived from the learning from
entailment, from interpretations and from proofs settings of the field of induc-
tive logic programming [3]. Each of these settings contributes different notions of
probabilistic logic representations, examples and probability distributions. The
first setting, probabilistic learning from entailment, is incorporated in the well-
known PRISM system [19] and Cussens’s Failure Adjusted Maximisation ap-
proach to parameter estimation in stochastic logic programs [2]. A novel system
that was recently developed and that fits this paradigm is the nFOIL system [12].
It combines key principles of the well-known inductive logic programming system
FOIL [15] with the näıve Bayes’ appraoch. In probabilistic learning from entail-
ment, examples are ground facts that should be probabilistically entailed by the
target logic program. The second setting, probabilistic learning from interpreta-
tions, is incorporated in Bayesian logic programs [10,8], which integrate Bayesian
networks with logic programs. This setting is also adopted by [6]. Examples in
this setting are Herbrand interpretations that should be a probabilistic model
for the target theory. The third setting, learning from proofs [17], is novel. It is
motivated by the learning of stochastic context free grammars from tree banks.
In this setting, examples are proof trees that should be probabilistically provable
from the unknown stochastic logic programs. The sketched settings (and their
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instances presented) are by no means the only possible settings for probabilistic
inductive logic programming, but still – I hope – provide useful insights into the
state-of-the-art of this exciting field.

For a full survey of statistical relational learning or probabilistic inductive
logic programming, the author would like to refer to [4], and for more details
on the probabilistic inductive logic programming settings to [16], where a longer
and earlier version of this contribution can be found.
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Much of the world’s supply of data is in the form of time series. Furthermore,
as we shall see, many types of data can be meaningfully converted into ”time
series”, including text, DNA, video, images etc. The last decade has seen an
explosion of interest in mining time series data from the academic community.
There has been significant work on algorithms to classify, cluster, segment, index,
discover rules, visualize, and detect anomalies/novelties in time series.

In this talk I will summarize the latest advances in mining time series data,
including:

– New representations of time series data.
– New algorithms/definitions.
– The migration from static problems to online problems.
– New areas and applications of time series data mining.

I will end the talk with a discussion of “what’s left to do” in time series data
mining.

References

1. E. Keogh. Exact indexing of dynamic time warping. In Proceedings of the 8th
International Conference on Very Large Data Bases, pages 406–417, 2002.

2. E. Keogh and S. Kasetty. On the need for time series data mining benchmarks:
A survey and empirical demonstration. In Proceedings of the 8th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pages 102–111,
2002.

3. E. Keogh, J. Lin, and W. Truppel. Clustering of time series subsequences is mean-
ingless: Implications for past and future research. In Proceedings of the 3rd IEEE
International Conference on Data Mining, pages 115–122, 2003.

4. E. Keogh, S. Lonardi, and C. Ratanamahatana. Towards parameter-free data min-
ing. In Proceedings of the tenth ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, 2004.

5. C.A. Ratanamahatana and E. Keogh. Everything you know about dynamic time
warping is wrong. In Proceedings of the Third Workshop on Mining Temporal and
Sequential Data, in conjunction with the Tenth ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining (KDD-2004), 2004.

J. Gama et al. (Eds.): ECML 2005, LNAI 3720, p. 6, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Focus the Mining Beacon: Lessons and
Challenges from the World of E-Commerce

Ron Kohavi

Microsoft Corporation, USA
ronnyk@cs.stanford.edu
http://www.kohavi.com

Electronic Commerce is now entering its second decade, with Amazon.com and
eBay now in existence for ten years. With massive amounts of data, an ac-
tionable domain, and measurable ROI, multiple companies use data mining and
knowledge discovery to understand their customers and improve interactions. We
present important lessons and challenges using e-commerce examples across two
dimensions: (i) business-level to technical, and (ii) the mining lifecycle from data
collection, data warehouse construction, to discovery and deployment. Many of
the lessons and challenges are applicable to domains outside e-commerce.
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Abstract. With the proliferation of data intensive applications, it has become 
necessary to develop new techniques to handle massive data sets. Traditional 
algorithmic techniques and data structures are not always suitable to handle the 
amount of data that is required and the fact that the data often streams by and 
cannot be accessed again. A field of research established over the past decade is 
that of handling massive data sets using data synopses, and developing 
algorithmic techniques for data stream models. We will discuss some of the 
research work that has been done in the field, and provide a decades’ 
perspective to data synopses and data streams.  

1   Summary 

In recent years, we have witnessed an explosion in data used in various applications. 
In general, the growth rate in data is known to exceed the increase rate in the size of 
RAM, and of the available computation power (a.k.a. Moore’s Law). As a result, 
traditional algorithms and data structures are often no longer adequate to handle the 
massive data sets required by these applications.  

One approach to handle massive data sets is to use external memory algorithms, 
designed to make an effective utilization of I/O. In such algorithms the data structures 
are often implemented in external storage devices, and the objective is in general to 
minimize the number of I/Os. For a survey of works on external memory algorithms 
see [6].  Such algorithms assume that the entire input data is available for further 
processing. There are, however, many applications where the data is only seen once, 
as it “streams by”. This may be the case in, e.g., financial applications, network 
monitoring, security, telecommunications data management, web applications, 
manufacturing, and sensor networks. Even in data warehouse applications, where the 
data may in general be available for additional querying, there are many situations 
where data analysis needs to be done as the data is loaded into the data warehouse, 
since the cost of accessing the data in a fully loaded production system may be 
significantly larger than just the basic cost of I/O. Additionally, even in the largest 
data warehouses, consisting of hundreds of terabytes, data is only maintained for a 
limited  time, so access to historical data may often be infeasible. 

It had thus become necessary to address situations in which massive data sets are 
required to be handled as they “stream by”, and using only limited memory. 
Motivated by this need, the research field of data streams and data synopses has 
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emerged and established over the last few years. We will discuss some of the research 
work that has been done in the field, and provide a decades’ perspective to data 
streams and data synopses. A longer version of this abstract will be available at [4]. 

The data stream model is quite simple: it is assumed that the input data set is given 
as a sequence of data items. Each data item is seen only once, and any computation 
can be done utilizing the data structures maintained in main memory. These memory 
resident data structures are substantially smaller than the input data. As such, they 
cannot fully represent the data as is the case for traditional data structures, but can 
only provide a synopsis of the input data; hence they are denoted as synopsis data 
structures, or data synopses [3].  

The use of data synopses implies that data analysis that is dependent on the entire 
streaming data will often be approximated. Furthermore, ad hoc queries that are 
dependent on the entire input data could only be served by the data synopses, and as a 
result only approximate answers to queries will be available. A primary objective in 
the design of data synopses is to have the smallest data synopses that would guarantee 
small, and if possible bounded, error on the approximated computation.  

As we have shown in [1], some essential statistical data analysis, the so-called 
frequency moments, can be approximated using synopses that are as small as 
polynomial or even logarithmic in the input size. Over the last few years there has 
been a proliferation of additional works on data streams and data synopses. See, e.g., 
the surveys [2] and [5]. These works include theoretical results, as well as 
applications in databases, network traffic analysis, security, sensor networks, and 
program profiling; synopses include samples, random projections, histograms, 
wavelets, and XML synopses, among others. There remain a plethora of interesting 
open problems, both theoretical as well as applied.  
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Abstract. Although very widely used in unsupervised data mining, most 
clustering methods are affected by the instability of the resulting clusters w.r.t. 
the initialization of the algorithm (as e.g. in k-means). Here we show that this 
problem can be elegantly and efficiently tackled by meta-clustering the clusters 
produced in several different runs of the algorithm, especially if “soft” 
clustering algorithms (such as Nonnegative Matrix Factorization) are used both 
at the object- and the meta-level. The essential difference w.r.t. other meta-
clustering approaches consists in the fact that our algorithm detects frequently 
occurring sub-clusters (rather than complete clusters) in the various runs, which 
allows it to outperform existing algorithms. Additionally, we show how to 
perform two-way meta-clustering, i.e. take both object and sample dimensions 
of clusters simultaneously into account, a feature which is essential e.g. for 
biclustering gene expression data, but has not been considered before. 

1   Introduction and Motivation 

Clustering is one of the most widely used unsupervised learning methods and the 
number of different clustering approaches is overwhelming. However, despite 
their wide variety, most clustering methods are affected by a common problem: 
the instability of the resulting clusters w.r.t. the initialization of the algorithm (as 
in the case of k-means) and w.r.t. slight differences in the input dataset as a result 
of resampling the initial data (e.g. in the case of hierarchical clustering). This is 
not surprising if we adopt a unifying view of clustering as a constrained 
optimization problem, since the fitness landscape of such a complex problem may 
involve many different local minima into which the algorithm may get caught 
when started off from different initial states. 

Although such an instability seems hard to avoid, we may be interested in the 
clusters that keep reappearing in the majority of the runs of the algorithm. This is 
related to the problem of combining multiple clustering systems, which is the 
unsupervised analog of the classifier combination problem [8], a comparatively 
simpler problem that has attracted a lot of research in the past decade. Combining 
clustering results is more complicated than combining classifiers, as it involves 
solving an additional so-called cluster correspondence problem, which amounts 
to finding the best matches between clusters generated in different runs. 
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The cluster correspondence problem can also be cast as an unsupervised 
optimization problem, which can be solved by a (meta-) clustering algorithm. 
Choosing an appropriate meta-clustering algorithm for dealing with this problem 
crucially depends on the precise notion of cluster correspondence.  

A very strict notion of one-to-one correspondence between the clusters of each 
pair of clustering runs may be too tough to be realized in most practical cases. For 
example, due to the above-mentioned instability, different runs of k-means 
clustering with different initializations may easily produce different sets of 
clusters, e.g. run1 = {{1,2,3},{4,5}}, run2 = {{1,2}, {3,4,5}}, …. 

A more lenient notion of cluster correspondence would look for clusters that 
keep reappearing in all runs (while ignoring the rest), but only very few (if any) 
such clusters may exist for a large enough number of runs.  

An even less restrictive notion could be envisioned by looking for clusters that 
are most similar (although not necessarily identical) across all runs. This is 
closest to performing something like single-linkage hierarchical clustering on the 
sets of clusters produced in the various clustering runs, with the additional 
constraint of allowing in each meta-cluster no more than a single cluster from 
each individual run. Unfortunately, this constraint will render the meta-clustering 
algorithm highly unstable. Thus, while trying to address the instability of (object-
level) clustering using meta-level clustering, we end up with instability in the 
meta-clustering algorithm itself. Therefore, a “softer” notion of cluster 
correspondence is needed. 

The main motivation for this work comes from genomics, more precisely from 
clustering gene expression data [2]. (Therefore, in the following we will frequently refer 
to clusters of genes rather than clusters of more abstract objects.) Most currently used 
clustering algorithms produce non-overlapping clusters, which represents a serious 
limitation in this domain, since a gene is typically involved in several biological 
processes. Here we adopt a biologically plausible simplifying assumption that the 
overlap of influences (biological processes) is additive 

               =
csg cgsXX )|,(     (1) 

where Xsg is the expression level of gene g in data sample s, while X(s,g c) is the 
expression level of g in s due to biological process c. We also assume that  
X(s,g c) is multiplicatively decomposable into the expression level Asc of the 
biological process (cluster) c in sample s and the membership degree Scg of gene g 
in c:  

cgsc SAcgsX ⋅=)|,(            (2) 

2   Nonnegative Matrix Factorization as a Soft Clustering Method 

Combining (1) and (2) leads to the reformulation of our clustering problem as a 
Nonnegative Matrix Factorization (of the ns × ng matrix X as a product of an  
ns × nc matrix A and an nc × ng matrix S): 

                                              ⋅≈
c cgscsg SAX                                               (3) 



12 L. Badea 

with the additional nonnegativity constraints:   Asc ≥ 0,  Scg ≥ 0        (4) 
(Expression levels and membership degrees cannot be negative.) 

Such a problem can be cast as a constrained optimization problem: 

minimize ( )⋅−=⋅−=
gs

sgF SAXSAXSAC
,

22

2

1
||||

2

1
),(              (5) 

subject to the nonnegativity constraints (4), and could be solved using Lee and 
Seung’s Nonnegative Matrix Factorization (NMF) algorithm [4,5]. 

As explained above, such a factorization can be viewed as a “soft” clustering 
algorithm allowing for overlapping clusters, since we may have several 
significant Scg entries on a given column g of S (so a gene g may “belong” to 
several clusters c).  

Allowing for cluster overlap alleviates but does not completely eliminate the 
instability of clustering, since the optimization problem (5), (4) is non-convex. 

In particular, the NMF algorithm produces different factorizations (biclusters) 
(A(i),S(i)) for different initializations and meta-clustering the resulting “soft” 
clusters S(i) could be used to obtain a more stable set of clusters. 

However, using a “hard” meta-clustering algorithm would once again entail an 
unwanted instability. Therefore, we propose using Nonnegative Matrix 
Factorization as a “soft” meta-clustering approach.  

This not only alleviates the instability of a “hard” meta-clustering algorithm, 
but also produces a “base” set of “cluster prototypes”, out of which all clusters of 
all individual runs can be recomposed, despite the fact that they may not 
correspond to identically reoccurring clusters in all individual runs (see Figure 1). 

 

Fig. 1. Clusters obtained in different runs are typically combinations of a “base” set of “cluster 
prototypes” (rather than identical across all runs) 

3   Metaclustering with NMF 

We propose using NMF both for object-level clustering and meta-clustering. This 
unified approach solves in an elegant manner both the clustering and the cluster 
correspondence problem. More precisely, we first run NMF as object-level 
clustering r times: 

                                  riSAX ii ,...,1)()( =⋅≈          (6) 

where X is the data matrix to be factorized (samples × objects to be factorized), 
A(i) (samples × clusters) and S(i) (clusters × objects). 

cl1
(1) 

cl2
(1) 

cl1
(2) 

cl2
(2) 

cl1
(3) 

cl2
(3) 

run1 run2 run3 
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To allow the comparison of membership degrees Scg for different clusters c, we 
scale the rows of S(i) to unit norm by taking advantage of the scaling invariance of 
the above factorization (6). More precisely: 

Proposition. The NMF objective function (5) is invariant under the 
transformation A ← A ⋅ D, S ← D−1⋅ S, where D = diag(d1,…,dnc) is a positive 
diagonal matrix. 

Since a diagonal matrix D operates on the rows of S and on the columns of A, 
we can scale the rows of S to unit norm by using a diagonal scaling 

with =
g cgc Sd 2 . 

Next, we build a global S-matrix of size r⋅ nc × ng: 

                                               =
)(

)1(

r

G

S

S

S          (7) 

by collecting all clusters (i.e. rows of S(i)) from all runs and then use NMF once 
more to meta-cluster these clusters (i.e. the rows of SG): 

                                                        γα ⋅≈GS                          (8) 

where α and γ are of sizes r⋅ nc × nc and nc × ng respectively. Note that whereas 
object level NMF clusters columns of X (e.g. genes in our genomics application), 
meta-clustering clusters rows of SG.  

Note that α encodes the cluster – metacluster correspondence. On the other 
hand, the rows of γ make up a base set of cluster prototypes, out of which all 
clusters of all individual runs can be recomposed: 

                                                ⋅= −+m mmnic
i

c c
S γα ,)1(

)(          (9) 

where )( i
cS is the row c of S(i), while γm is the row m of γ. 

Using the notation )(i
cmα  for mnic c ,)1( −+α , we can rewrite (9) as 

                                                  ⋅=
m m

i
cm

i
cS γα )()(             (9') 

Ideally (in case of a perfect one-to-one correspondence of clusters across runs), 

we would expect the rows of α to contain a single significant entry )(
),(,

i
cimcα , so 

that each cluster )( i
cS corresponds to a single cluster prototype ),( cimγ  (where 

m(i,c) is a function of i and c ): ),(
)(

),(,
)(

cim
i

cimc
i

cS γα ⋅=             (10) 

Additionally, each meta-cluster m should contain no more than a single cluster 

from each individual run, i.e. there should be no significant entries )(
'
i
mcα and )(

"
i
mcα  

with c '≠ c". Although it could be easily solved by a hard meta-clustering 
algorithm, such an ideal cluster correspondence is only very seldom encountered 
in practice, mainly due to the instability of most clustering algorithms. 
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Thus, instead of such a perfect correspondence (10), we settle for a weaker one (9) 
in which the rows of α can contain several significant entries, so that all clusters 
(rows of SG) are recovered as combinations of cluster prototypes (rows of γ ). 

The nonnegativity constraints of NMF meta-clustering are essential both for 
allowing the interpretation of γ as cluster prototypes as well as for obtaining 
sparse factorizations (α,γ ). (Experimentally, the rows of α tend to contain 
typically one or only very few significant entries.)  

In order to make the prototype clusters (rows of γ ) directly comparable to the 
clusters (rows) from SG, we use the diagonal scaling 

γγαα ⋅←⋅← − DD ,1    with  =
j jmr

diagD α1 . 

The cluster prototypes matrix γ produced by meta-clustering (8) is subsequently 
used as seed for a final NMF run aiming at producing the final factorization. 
More precisely, the seed for the final NMF run is (A0,γ ), where A0 is the 
nonnegative least squares solution to γ⋅≈ 0AX . 

We thus obtain a final factorization (3), which can be interpreted as a stable 
clustering of X allowing for overlapping clusters. The algorithm is summarized 
below. 

Clustering with Metaclustering (X) → (A, S) 

for i = 1,…,r 
run NMF(X,A(0i),S(0i)) with random initial matrices A(0i),S(0i) to produce a 
factorization with nc clusters: )()( ii SAX ⋅≈  
scale the rows of S(i) to unit norm:  

)(1)()()( , iiii SDSDAA ⋅←⋅← − with ( )=
g cgSdiagD 2   

end 

Construct =
)(

)1(

r

G

S

S

S  and use NMF(SG,α(0),γ(0)) (with random α(0),γ(0)) to 

produce a factorization (“meta-clustering”) with internal dimensionality nc: 

γα ⋅≈GS  

scale the columns of α:  γγαα ⋅←⋅← − DD ,1    with  ( )rdiagD
j jm /= α  

Let A0 be the nonnegative least squares solution to γ⋅≈ 0AX  

Run NMF(X,A0,γ ) to produce the final factorization SAX ⋅≈  

NMF(X, A0, S0) → (A,S) 
A ← A0,  S ← S0 

loop 
cg

T

cg
T

cgcg SAA

XA
SS

)(

)(

⋅⋅
⋅

←  
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sc
T

sc
T

scsc SSA

SX
AA

)(

)(

⋅⋅
⋅←  

until convergence. 

4   Sparser Decompositions 

Although NMF tends to produce sparse factorizations that are quite immune to 
moderate levels of noise [4], even sparser decompositions may be desired to cope 
with higher noise levels. An ad-hoc approach to obtaining such sparser 
factorizations would fix to zero all the elements below a given threshold of an 
NMF factorization and then apply several re-optimization rounds until a fixpoint 
is attained. Hoyer's Nonnegative Sparse Coding (NNSC) algorithm [3] is a more 
elegant approach that factorizes X≈A⋅S by optimizing an objective function that 
combines the fit of the factorization to the original data with a size term 
penalizing the non-zero entries of S: 

minimize      +−=
gc

cgF
SASXSAC

,

2

2
1

),( λ                                   (11) 

subject to the nonnegativity constraints Asc ≥ 0,  Scg ≥ 0. 
(NMF is recovered by setting the size parameter λ to zero, while a non-zero λ 
would lead to sparser factorizations.) Unfortunately however, the scaling 

invariance of the fitness term 2

2

1
F

ASX −  makes the size term ineffective, since 

the latter can be forced as small as needed by using a diagonal scaling D with 
small enough entries. Additional constraints are therefore needed to render the 
size term operational. Since a diagonal matrix D operates on the rows of S and on 
the columns of A, we could impose unit norms either for the rows of S, or for the 
columns of A. 

Unfortunately, the objective function (11) used in [3] produces decompositions 
that depend on the scale of the original matrix X (i.e. the decompositions of X and 
ηX are essentially different), regardless of the normalization scheme employed. 
For example, if we constrain the rows of S to unit norm, then we cannot have 
decompositions of the form X ≈ A⋅S and ηX ≈ ηA⋅S, since at least one of these is 
in general non-optimal due to the dimensional inhomogeneity of the objective 

function w.r.t. A and X: .
2

1
),(

,

22 +−=
gc cgFX SASXSAC ληηη

 On the other 

hand, if we constrain the columns of A to unit norm, the decompositions X ≈ A⋅S 
and ηX ≈ A⋅ηS cannot be both optimal, again due to the dimensional 
inhomogeneity of C, now w.r.t. S and 

X: .
2
1

),(
,

22 +−=
gc cgFX SASXSAC ηληηη

 

Therefore, as long as the size term depends only on S, we are forced to 
constrain the columns of A to unit norm, while employing an objective function 
that is dimensionally homogeneous in S and X. One such dimensionally 
homogeneous objective function is: 
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                              22

2
1

),(
FF

SASXSAC λ+−=                             (12) 

which will be minimized subject to the nonnegativity constraints and the 
constraints on the norm of the columns of A:  1=cA   (i.e. 12 =

s scA ). 

It can be easily verified that this produces scale independent decompositions, 
i.e. if X ≈ A⋅S is an optimal decomposition of X, then ηX ≈ A⋅ηS is an optimal 
decomposition of ηX. 

The constrained optimization problem could be solved with a gradient-based 
method. However, in the case of NMF, faster so-called “multiplicative update 
rules” exist [5,3], which we have modified for the NNSC problem as follows. 

Modified NNSC algorithm 
Start with random initial matrices A and S  

loop 
cg

T

cg
T

cgcg SSAA

XA
SS

)(

)(

λ+⋅⋅
⋅

←   

 TSSAXAA ⋅⋅−+← )(μ  

 normalize the columns of A to unit norm: 1−⋅← DAA , ( )=
s scAdiagD 2  

until convergence. 

Note that we factorize X rather than XT since the sparsity constraint should 
affect the clusters of genes (i.e. S) rather than the clusters of samples A. (This is 
unlike NMF, for which the factorizations of X and XT are symmetrical.)  

4.1   Sparser Factorizations and Noise 

To demonstrate that sparser factorizations are better at coping with noise than 
simple NMF, we generated a synthetic dataset with highly overlapping clusters 
and very large additive noise (the standard deviation of the noise was 0.75 of the 
standard deviation of the original data). 

We ran our modified NNSC algorithm with increasingly larger λ (ranging from 
0 to 0.75) and observed that the gene clusters were recovered almost perfectly 
despite the very large noise, especially for small values of λ. 

Figure 2 shows the original data without and with noise respectively (upper 
row), as well as the reconstructed data (A⋅S) for λ=0.05 and λ=0.75 (lower row). 
Note that the reconstructed data is closer to the original noise-free data than to the 
noisy original. The following Table shows the relative error computed w.r.t. the 
noisy data Xnoisy (i.e.

FnoisyFnoisynoisy XASX −=ε ) as well as the relative error w.r.t. 

the original data Xorig (before adding noise, i.e.
ForigForigorig XASX −=ε ) for 

several values of λ ranging from 0 to 0.75.  

λ 0 0.02 0.05 0.1 0.2 0.4 0.5 0.75 
εnoisy 0.2001 0.2017 0.2053 0.2161 0.2295 0.2452 0.2983 0.3228 
εorig 0.1403 0.1375 0.1364 0.1419 0.1544 0.1719 0.2323 0.2604 
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Fig. 2. A synthetic dataset 

Note that εorig is always lower than εnoisy. Also, whereas εnoisy increases as 
expected with λ, εorig attains a minimum at λ=0.05 showing that small values of λ 
tend to improve not only the clusters, but also the error w.r.t. the original data. 

5   Two-Way Meta-clustering 

The meta-clustering approach based on (8) takes only the gene clusters (rows of 
S(i)) into account. Although this works very well in many cases, it will fail 
whenever two clusters correspond to very similar sets of genes, while differing 
along the sample dimension. For example, clusters 1 and 2 from Figure 2 are 
quite similar along the gene dimension, so a meta-clustering method looking just 
at genes would be incapable of discriminating between the two clusters, unless it 
also looks at the “sample clusters” A(i). In the following, we show that a slight 
generalization of NMF, namely Positive Tensor Factorization (PTF) [6] can be 
successfully used to perform two-way meta-clustering, which takes both the gene 
and the sample dimensions into account. (As far as we know, this elegant view of 
metaclustering as a PTF problem has not been considered before.) 

Naively, one would be tempted to try clustering the biclusters1 )()( i
c

i
c SA ⋅ instead 

of the gene clusters )(i
cS , but this is practically infeasible in most real-life datasets 

because it involves factorizing a matrix of size r⋅ nc × ns⋅ ng. On closer inspection, 

                                                           
1 )(i

cA is the column c of A(i), while )(i
cS is the row c of S(i). 

4

3 

1

2
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however, it turns out that it is not necessary to construct this full-blown matrix – 
actually we are searching for a Positive Tensor Factorization of this matrix 2 

                                       
=

⋅⋅≈⋅ cn

k kgsk
i

ck
i

cg
i

sc SA
1

)()()( γβα                    (14) 

The indices in (14) have the following domains: s – samples, g – genes, c – 
clusters, k – metaclusters. To simplify the notation, we could merge the indices i 
and c into a single index (ic), so that the factorization becomes: 

=
⋅⋅≈⋅ cn

k kgskkicgicics SA
1 )()()( γβα     (14’) 

Note that β and γ are the “unified” versions of A(i) and S(i) respectively, while α 
encodes the cluster-metacluster correspondence. 

The factorization (14’) can be computed using the following multiplicative 
update rules (the proofs are straightforward generalizations of those for NMF and 
can also be found e.g. in [6]): 

)]()[(

)()(
TT

TT SA

γγββα
γβαα
⋅∗⋅⋅

⋅∗⋅∗←  

)]()[(

)]([
TT

TSA

γγααβ
γαββ

⋅∗⋅⋅
⋅∗⋅∗←                   (15) 

γββαα
βαγγ

⋅⋅∗⋅
⋅⋅∗∗←

TTT

TT SA

)]()[(

)]([  

where ‘∗’ and ‘−−’ denote element-wise multiplication and division of matrices, 
while ‘⋅’ is ordinary matrix multiplication.  

The PTF factorization (14’) should be contrasted with our previous 
metaclustering approach (8) based on NMF: 

=
⋅≈ cn

k kg
i

ck
i

cgS
1

)()( γα            (8’) 

It can be easily seen that whereas (14) groups biclusters by taking both the gene 
and the sample dimension into account, (8’) may confuse two biclusters that have 
similar gene components (even if they have different sample supports). For 
example, (8’) confuses biclusters 1 and 2 from Figure 2, while (14) is able to 
perfectly discriminate between the two despite the noise and the difference in 
intensity between the two biclusters. 

After convergence of the PTF update rule, we normalize the rows of γ to unit 
norm (||γk|| = 1), as well as the columns of α such that =

ci

i
ck r

,

)(α  (r being the 

number of runs): 3 

                                                           
2  More precisely, we are dealing with the constrained optimization problem 

2

,,, 1

)()()(

2

1
),,(min −=

=gsci

n

k
kgsk

i
ck

i
cg

i
sc

c

SAC γβαγβα subject to α,β,γ ≥ 0. 

3  In order to be able to interpret β and γ as “unified” A(i) and S(i) respectively, we need to have 

≈
c

i
ck 1)(α , i.e. ≈

ci

i
ck r

,

)(α , since ( )
=

⋅⋅≈⋅≈ cn

k kgskc

i
ckc

i
cg

i
sc SAX

1

)()()( .γβα   
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kg

k
kg γγ

γ
⋅

||||

1  

kic

ci kci
kic

r
)(

',' )''(
)( α

α
α ⋅  

⋅⋅
ci skkic

k
sk r , )(

|||| βαγβ  

and then run NMF initialized with (β,γ ) to produce the final factorization X ≈ A⋅S. 

6   Experimental Evaluation 

We evaluated our algorithm on synthetic datasets4 generated by continuous latent 
variable graphical models as in Figure 3. (The clusters corresponding to the latent 
variables Lk overlap in the variables Xi influenced by several Lk.) To generate 
nonnegative biclusters as in Figure 2, we set Lk to nonzero values (drawn from the 
absolute of a normal distribution) only in certain subsets of samples. The 
observable variables Xi were affected by additive normal noise with a standard 
deviation )()( )0(

ii Xσνεσ ⋅=  equal to a fraction ν of the standard deviation of the 

noise-free “signal” Xi
(0). (It can be easily seen that this model is equivalent to X = 

A(0)⋅S(0) + ε, where X = (X1 … Xng) and S(0)
kj

 are the coefficients associated to the 
Lk → Xj edges.) 

 
Fig. 3. Latent variable model for overlapping clusters 

The Table below presents a comparison of various combinations of clustering 
and meta-clustering algorithms – columns of the Table correspond to clustering 
algorithms (k-means, fuzzy k-means [7] and NMF), while the rows are associated 
to meta-clustering algorithms (k-means, fuzzy k-means, NMF and PTF) with or 
without a final NMF step, as well as to the best individual clustering run 
(resampling). The figures in the Table represent average matches of the 
reconstructed clusters with the original ones, together with the associated relative 
errors (we display both averages and standard deviations for 10 runs of each 
metaclustering method with different input data X).  

                                                           
4  The small dataset from Figure 2 with 21 samples and 35 genes allows a human analysis of the 

results. 

X1 Xi Xj Xk Xng … … … 

L1 L2 Lm … 
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Defining the match between two sets of possibly overlapping clusters is 
nontrivial. For each cluster C1 from clustering 1, we determine the single cluster 
C2 from clustering 2 into which it is best included, i.e. the one with the largest 

|||| 121 CCC ∩ . We proceed analogously for the clusters C2 from clustering 2. 
Then, for each cluster C1 (from clustering 1), we determine its match 

|||| 2121 CCCC ∪∩  with the union C2 of clusters from clustering 2, for which C1 is 
the best including cluster (as determined in the previous step). Similarly, we 
determine matches for clusters C2 from clustering 2. The average match of the 
two clusterings is then the mean of all these matches (for all C1 and all C2).  

The Table clearly demonstrates the necessity of using nonnegative decompositions 
like NMF (either as individual runs or as the final step) for obtaining reasonable 
results. Indeed, the best match without any nonnegative decompositions is 55% and 
the lowest relative error 0.2, whereas with nonnegative decompositions, we obtain a 
nearly perfect match (98%) with a relative error of 10-3.  

match (std match) 
relative error (std error) 

     Kmeans      fcm      NMF 

kmeans(meta) 
0.53 (0.021) 
0.306 (0.032) 

0.55 (0.058)  
0.2 (0.018) 

0.81 (0.123)  
0.052 (0.033) 

kmeans(meta) + NMF(final) 
0.62 (0.056)  
0.153 (0.059) 

0.63 (0.181)  
0.094 (0.046) 

0.9 (0.148)  
0.002 (0.001) 

fcm(meta) 
0.51 (0.041)  
0.315 (0.054) 

0.53 (0.011)  
0.202 (0.019) 

0.92 (0.126)  
0.014 (0.004) 

fcm(meta) + NMF(final) 
0.65 (0.178)  
0.092 (0.044) 

0.56 (0.024)  
0.112 (0.008) 

0.92 (0.126)  
0.002 (0) 

NMF(meta) 
0.5 (0.032)  
0.313 (0.042) 

0.53 (0.009)  
0.194 (0.018) 

0.69 (0.008)  
0.027 (0.043) 

NMF(meta) + NMF(final) 
0.59 (0.049) 
0.132 (0.016) 

0.55 (0.008)  
0.119 (0.012) 

0.74 (0.111)  
0.012 (0.025) 

PTF(meta) 
0.49 (0.044)  
0.287 (0.023) 

0.53 (0.01)  
0.212 (0.019) 

0.98 (0.037)  
0.023 (0.006) 

PTF(meta) + NMF(final) 
0.58 (0.04)  
0.122 (0.015) 

0.55 (0.011)  
0.116 (0.014) 

0.98 (0.043)  
0.001 (0) 

Best clustering run  
(out of 10) 

0.49 (0.017)  
0.307 (0.011) 

0.53 (0.008)  
0.208 (0.018) 

0.76 (0.089)  
0.001 (0) 

Note that clustering runs based on NMF are far superior to other methods. On 
the other hand, all tested meta-clustering algorithms perform reasonably well 
(with PTF faring best), especially in terms of relative error. However, as already 
discussed in Section 5, meta-clustering with NMF does not recover the clusters 
very well (average matches are around 74% versus virtually perfect matches for 
PTF (98%), 92% for fuzzy k-means and about 90% for k-means+NMF). NMF and 
PTF on NMF runs are also quite stable (the std of the match is 0.8% and 4%  
respectively). 

Also note that although meta-clustering does not always outperform the best 
individual run in terms of relative error, it does outperform it in terms of the 
match with the original clusters (98% versus 76%). 

We also considered larger problems in which the overlapping clusters can be 
discriminated by looking at the gene dimension only. As expected, in such cases 
the best results are obtained by a combination which uses NMF for meta-
clustering: (NMF, NMF, NMF).  
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We also observed that k-means and fuzzy k-means are far inferior to NMF (as 
meta-clustering algorithms) in problems with a larger number of clusters. This is 
because, as the number of clusters increases, the fraction of perfectly reconstructed 
clusters in a limited number of runs decreases sharply. This makes meta-clustering 
algorithms like k-means or fuzzy k-means less effective, since these algorithms search 
for clusters that reoccur in a large fraction of runs. On the other hand, our approach 
using nonnegative decompositions looks for cluster prototypes out of which the 
clusters of all individual runs can be recomposed (recall Fig. 1) and therefore may 
behave well even with a limited number of runs (such as 10-20 in our experiments). 

7   Related Work and Conclusions 

Bradley and Fayyad [1] use k-means for meta-clustering a number of k-means 
runs on subsamples of the data for initializing a final k-means run. However, the 
use of a “hard” clustering approach like k-means in domains featuring  
overlapping biclusters produces dramatically less accurate results than our  
approach using NMF or PTF for meta-clustering NMF runs (53% match and 
30.6% error vs. 98% match and 0.1% error for our algorithm).5 

The main technical contribution of this paper consists in showing how NMF and 
PTF can be used to solve the cluster correspondence problem for “soft” biclustering 
algorithms such as NMF (which is significantly more involved than the cluster 
correspondence problem for “hard” algorithms and, as far as we know, has not been 
addressed before). The present approach is significantly different from other 
biclustering approaches – for example Cheng’s biclustering [9] is based on a simpler 
additive model that is not scale invariant (problematic in the case of gene expression 
data). Our algorithm not only significantly outperforms all existing approaches 
(especially in terms of recovering the original clusters), but – more importantly – 
provides a conceptually elegant solution to the cluster correspondence problem. 
Furthermore, an initial application of the method to a large lung cancer dataset [10] 
proved computationally tractable and was able to perfectly recover the known 
histological classification of the various lung cancer types in the dataset. (For lack of 
space, we refer to the supplementary information at http://www.ai.ici.ro/ecml05/ 
meyerson.pdf). The genomics applications will be the subject of future research. 

Acknowledgements. I am grateful to Doina Tilivea who helped in the experimental 
evaluation of the algorithms. 
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Abstract. Constraint programming is rapidly becoming the technology of choice
for modelling and solving complex combinatorial problems. However, users of
this technology need significant expertise in order to model their problems ap-
propriately. The lack of availability of such expertise is a significant bottleneck to
the broader uptake of constraint technology in the real world. We present a new
SAT-based version space algorithm for acquiring constraint satisfaction problems
from examples of solutions and non-solutions of a target problem. An important
advantage is the ease with which domain-specific knowledge can be exploited
using the new algorithm. Finally, we empirically demonstrate the algorithm and
the effect of exploiting domain-specific knowledge on improving the quality of
the acquired constraint network.

1 Introduction

Over the last thirty years, considerable progress has been made in the field of Con-
straint Programming (CP), providing a powerful paradigm for solving combinatorial
problems. Applications in many areas, such as resource allocation, scheduling, plan-
ning and design have been reported in the literature [16]. Informally, the basic idea
underlying constraint programming is to model a combinatorial problem as a constraint
network, i.e., using a set of variables, a set of domain values and a collection of con-
straints. Each constraint specifies a restriction on some set of variables. For example, a
constraint such as x1 ≤ x2 states that the value assigned to x1 must be less or equal
than the value assigned to x2. A solution of the constraint network is an assignment of
domain values to variables that satisfies every constraint in the network. The Constraint
Satisfaction Problem (CSP) is the problem of finding a solution for a given network.

However, the specification of constraint networks still remains limited to specialists
in the field. Actually, modelling a combinatorial problem in the constraints formalism
requires significant expertise in constraint programming. One of the reasons for this
bottleneck stems from the fact that, for any problem at hand, different models of this
problem are possible, and two distinct constraint networks that represent the same prob-
lem can critically differ on performance. An expert in constraint programming typically
knows how to decompose the problem into a set of constraints for which very efficient
propagation algorithms have been developed. Such a level of background knowledge
precludes novices from being able to use constraint networks on complex problems
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without the help of an expert. Consequently, this has a negative effect on the uptake of
constraint technology in the real world by non-experts.

To alleviate this issue, this paper envisions the possibility of acquiring a constraint
network from a set of examples and a library of constraints. The constraint acquisition
process is regarded as an interaction between a user and a learner. The user has a com-
binatorial problem in mind, but does not know how this problem can be modelled as
an efficient constraint network. Yet, the user has at her disposal a set of solutions (pos-
itive examples) and non-solutions (negative examples) for this problem. For its part,
the learner has at its disposal a library of constraints for which efficient propagation
algorithms are known. The goal for the learner is to induce a constraint network that
uses combinations of constraints defined from the library and that is consistent with the
solutions and non-solutions provided by the user.

The main contribution of this paper is a SAT-based algorithm, named CONACQ (for
CONstraint ACQuisition), that is capable of learning a constraint network from a set
of examples and a library of constraints. The algorithm is based on the paradigm of
version space learning [11]. In the context of constraint acquisition, a version space can
be regarded as the set of all constraint networks defined from the given library that are
consistent with the received examples. The key idea underlying the CONACQ algorithm
is to consider version-space learning as a satisfiability problem. Namely, any example
is encoded as a set of clauses using as atoms the constraint vocabulary defined from
the library, and any model of the resulting satisfiability problem captures an admissible
constraint network for the corresponding acquisition problem.

This approach has a number of distinct advantages. Firstly and most importantly,
the formulation is generic, so we can use any SAT solver as a basis for version space
learning. Secondly, we can exploit powerful SAT concepts such as unit propagation and
backbone detection [12] to improve learning rate. Thirdly, and finally, we can easily in-
corporate domain-specific knowledge in constraint programming to improve the quality
of the acquired network. Specifically, we develop two generic techniques for handling
redundant constraints in constraint acquisition. The first is based on the notion of redun-
dancy rules, which can deal with some, but not all, forms of redundancy. The second
technique, based on backbone detection, is far more powerful.

2 Preliminaries

A constraint network consists of a set of variables, a set of domain values and a set
of constraints. We assume that the set of variables and the set of domain values are
finite, pre-fixed and known to the learner. This vocabulary is, thus, part of the common
knowledge shared between the learner and the user. Furthermore, the learner has at
its disposal a constraint library from which it can build and compose constraints. The
problem is to find an appropriate combination of constraints that is consistent with the
examples provided by the user. Finally, for sake of clarity, we shall assume that every
constraint defined from the library is binary. This assumption greatly simplifies the
notation used in the paper. Yet, we claim that the results presented here can be easily
extended to constraints of higher arity.

More formally, the constraint vocabulary consists of a finite set of variables X and
a finite set of domain values D. We implicitly assume that every variable in X uses
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the same set D of domain values, but this condition can be relaxed in a straightforward
way. The cardinalities of X and D are denoted n and d, respectively.

A binary constraint is a tuple c = (var (c), rel(c)) where var (c) is a pair of vari-
ables in X and rel(c) is a binary relation defined on D. The sequence var (c) is called
the scope of c and the set rel(c) is called the relation of c. With a slight abuse of nota-
tion, we shall often use cij to refer to the constraint with relation c defined on the scope
(xi, xj). For example, ≤12 denotes the constraint specified on (x1, x2) with relation
“less than or equal to”. A binary constraint network is a set C of binary constraints.

A constraint library is a collection B of binary constraints. From a constraint pro-
gramming point of view, any library B is a set of constraints for which (efficient) prop-
agation algorithms are known. A constraint network C is said to be admissible for a
library B if for each constraint cij in C there exists a set of constraints {b1

ij , · · · , bk
ij} in

B such that cij = b1
ij ∩ · · · ∩ bk

ij . In other words, a constraint network is admissible for
some library if each constraint in the network is defined as the intersection of a set of
allowed constraints from the library.

An example is a map e that assigns to each variable x in X a domain value e(x) in
D. Equivalently, an example e can be regarded as a tuple in Dn. An example e satisfies
a binary constraint cij if the pair (e(xi), e(xj)) is an element of cij . An example e
satisfies a constraint network C if e satisfies every constraint in C. If e satisfies C then
e is called a solution of C; otherwise, e is called a non-solution of C. In the following,
sol(C) denotes the set of solutions of C.

Finally, a training set consists of a pair (E+, E−) of sets of examples. Elements
of E+ are called positive examples and elements of E− are called negative examples.
A constraint network C is said to be consistent with a training set (E+, E−) if every
example in E+ is a solution of C and every example in E− is a non-solution of C.

Definition 1 (Constraint Acquisition Problem). Given a constraint library B and a
training set (E+, E−), the Constraint Acquisition Problem is to find a constraint net-
work C admissible for the library B and consistent with the training set (E+, E−).

Example 1. Consider the vocabulary defined by the set X = {x1, x2, x3} and the set
D = {1, 2, 3, 4, 5}. In the following, the symbols � and ⊥ refer to the total relation
and the empty relation over D, respectively. Let B be the constraint library defined as
follows: B = {�12,≤12, �=12,≥12,�23,≤23, �=23,≥23}.

Note that the constraints =12, <12, >12, ⊥12 and =23, <23, >23, ⊥23 can be de-
rived from the intersection closure of B. Now, consider the two following networks
C1 = {≤12 ∩ ≥12,�23∩ ≤23 ∩ �=23} and C2 = {≤12 ∩ ≥12,≤23 ∩ ≥23}.
Each network is admissible for B. Finally, consider the training set E formed by the
three examples e+1 = ((x1, 2), (x2, 2), (x3, 5)), e−2 = ((x1, 1), (x2, 3), (x3, 3)), and
e−3 ((x1, 1), (x2, 1), (x3, 1)). The first example is positive and the last two are negative.
We can easily observe that C1 is consistent with E, while C2 is inconsistent with E.

The following lemma captures an important semantic property of constraint net-
works. It will be frequently used in the remaining sections.

Lemma 1. Let B be a constraint library, C be a constraint network admissible for B
and e be an example. Then e is a non-solution of C iff there exists a pair of constraints
bij and cij such that in bij ∈ B, cij ∈ C, cij ⊆ bij and e does not satisfy bij .
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Proof. (⇒) Let us consider that e is a non-solution of C. By definition, there exists a
constraint cij ∈ C such that e does not satisfy cij . It follows that the pair (e(xi), e(xj))
is not an element of cij . Furthermore, since C is admissible for B, there exists a set
{b1

ij , · · · , bk
ij} of constraints in B such that cij = b1

ij ∩ · · · ∩ bk
ij . Consequently, the

pair (e(xi), e(xj)) is not an element of b1
ij ∩ · · · ∩ bk

ij . It follows that (e(xi), e(xj)) is
not an element of bij , for some constraint bij in the set {b1

ij , · · · , bk
ij}. By construction,

cij ⊆ bij . Since e does not satisfy bij , the result follows.

(⇐) Now, let us assume that there exists a pair of constraints bij and cij such that in
bij ∈ B, cij ∈ C, cij ⊆ bij and e does not satisfy bij . Obviously, the pair (e(xi), e(xj))
is not an element of bij . Since cij ⊆ bij , it follows that (e(xi), e(xj)) is not an element
of cij . Therefore, e does not satisfy cij and hence, e is a non-solution of C. �

3 The CONACQ Algorithm

In this section we present a SAT-based algorithm for acquiring constraint satisfaction
problems based on version spaces. Informally, the version space of a constraint acquisi-
tion problem is the set of all constraint networks that are admissible for the given library
and that are consistent with the given training set. In the SAT-based framework this ver-
sion space is encoded in a clausal theory, and each model of the theory is a candidate
constraint network.

Let B be a constraint library. An interpretation over B is a map I that assigns to
each constraint atom bij in B a value I(bij) in {0, 1}. A transformation is a map φ
that assigns to each interpretation I over B the corresponding constraint network φ(I)
defined according to the following condition:

cij ∈ φ(I) iff cij =
⋂
{bi′j′ ∈ B : i = i′, j = j′ and I(bi′j′ ) = 1}.

The transformation is not necessarily injective. However, it is surjective: for every
network C admissible for B there exists a corresponding interpretation I such that
φ(I) = C. Indeed, for each constraint cij in C, consider the set of all constraints
{b1

ij , · · · , bk
ij} in B such that cij = b1

ij ∩· · ·∩bk
ij . Set I(b1

ij) = · · · = I(bk
ij) = 1. Then

φ(I) = C.
A literal is either an atom bij in B, or its negation ¬bij . Notice that ¬bij is not

necessarily a constraint: it merely captures the absence of bij in the learned network.
A clause is a disjunction of literals, and a clausal theory is a conjunction of clauses.
An interpretation I is a model of a clausal theory K if K is true in I according to the
standard propositional semantics. The set of all models of K is denoted Models(K).

The SAT-based formulation of constraint acquisition is presented as Algorithm 1.
The algorithm starts from the empty theory (line 1) and iteratively builds a set of clauses
for each received example (lines 2-6). The resulting theory encodes all candidate net-
works for the constraint acquisition problem.

This result is formalised in the next theorem. Let B be a constraint library and
(E+, E−) be a training set. Then the version space of (E+, E−) with respect to B,
denoted VB(E+, E−), is the set of all constraint networks that are admissible for B and
that are consistent with (E+, E−).
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Algorithm 1. The CONACQ Algorithm

input : a training set (E+, E−) and a constraint library B
output : a set of clauses K

1 K ← ∅

2 foreach training example e do
3 κe ← {bij ∈ B : e does not satisfy bij}
4 if e ∈ E− then K ← K ∧ (

∨
bij∈κe

bij)

5 if e ∈ E+ then K ← K ∧∧bij∈κe
¬bij

6 if UnitPropagation(K) detects ⊥ then Return(“collapsing”)

Theorem 1 (Correctness). Let (E+, E−) be a training set and B be a library. Let K
be the clausal theory returned by CONACQ with B and (E+, E−) as input. Then

VB(E+, E−) = {φ(I) : I ∈Models(K)}.

Proof. (⇒) Let C be a candidate network in VB(E+, E−). Since φ is surjective, there
exists an interpretation I such that φ(I) = C. Suppose that I is not a model of K. We
show that this leads to a contradiction. If I is not a model of K then there is at least
one example e in the training set such that I falsifies the set of clauses generated from
e. Since e is either positive or negative, two cases must be considered. First, suppose
that e ∈ E+. In this case, I(bij) = 1 for at least one atom bij in κe, the set of literals
encoding e. By construction of φ(I), there must exist a constraint cij in C such that cij

is contained in bij . By Lemma 1, e is a non-solution of C and hence, C cannot be a
member of VB(E+, E−). Now, suppose that e ∈ E−. By construction, I(bij) = 0 for
each bij ∈ κe. Therefore, there is no constraint cij ∈ C contained in some bij such that
bij rejects e. By contraposition of Lemma 1, e is a solution of C and hence, C cannot
be a member of VB(E+, E−).
(⇐) Let I be a model of K and C be φ(I). Assume that C is not in VB(E+, E−).
We show that this leads to a contradiction. Obviously, C must be inconsistent with at
least one example e in the training set. Again, two cases must be considered. Suppose
that e ∈ E+. Since e is a non-solution of C then, by Lemma 1, there exists a pair of
constraints bij ∈ B and cij ∈ C such that cij ⊆ bij and e does not satisfy bij . By
construction, I(bij) = 1. It follows that, I is not a model of

∧
bij∈κe

¬bij . Therefore,
I cannot be a model of K. Now, suppose that e ∈ E−. Since e is a solution of C then,
by contraposition of Lemma 1, there is no pair of constraints bij ∈ B and cij ∈ C such
that cij ⊆ bij and e does not satisfy bij . Therefore, I(bij) = 0 for each bij in B that
rejects e. It follows that I is not a model of

∨
bij∈κe

bij . Hence, I cannot be a model
of C. �

The CONACQ algorithm provides an implicit representation of the version space of
the constraint acquisition problem. This representation allows the learner to perform
several useful operations in polynomial time. We conclude this section by examining
the complexity of these operations. In the following, we consider a library B containing
b constraints and a training set (E+, E−) containing m examples.
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A version space has collapsed if it is empty. In other words, there is no constraint
network C admissible for B such that C is consistent with the training set (E+, E−).

Proposition 1 (Collapse). The collapsing test takes O(bm) time.

Proof. Based on Theorem 1, we know that VB(E+, E−) is empty iff K is unsatisfiable.
The size of κe is upper bounded by b. Then, the size of K is bounded by mb. By con-
struction, K is a dual Horn formula where each clause contains at most one negative
literal. In this setting, unit propagation, which requires O(K) time, is enough to deter-
mine whether K is satisfiable or not [3]. Therefore, the collapsing test can be done in
O(bm) time. �

The membership test involves checking whether or not a constraint network belongs
to the version space of the problem.

Proposition 2 (Membership). The membership test takes O(bm) time.

Proof. Let C be a constraint network and I an interpretation such that C = φ(I). Based
on Theorem 1, determining whether C belongs to VB(E+, E−) is equivalent to deter-
mining whether I is a model of K. Since the size of K is bounded by mb, the member-
ship test takes O(bm) time. �

The update operation involves computing a new version space once a new example
e has been added to the training set.

Proposition 3 (Update). The update operation takesO(b) time.

Proof. Checking whether a binary constraint is satisfied or violated by an example e is
O(1). The number of such checks is bounded by b (line 3 of Algorithm 1). �

Consider a pair of training sets (E+
1 , E

−
1 ) and (E+

2 , E
−
2 ), and their correspond-

ing version spaces VB(E+
1 , E

−
1 ) and VB(E+

2 , E
−
2 ). The intersection operation requires

computing the version space VB(E+
1 , E

−
1 )∩VB(E+

2 , E
−
2 ). In the following, we assume

that (E+
1 , E

−
1 ) and (E+

2 , E
−
2 ) contain m1 and m2 examples, respectively.

Proposition 4 (Intersection). The intersection operation takesO(b(m1 +m2)) time.

Proof. Let K1 and K2 be the representations of the version spaces VB(E+
1 , E

−
1 ) and

VB(E+
2 , E

−
2 ), respectively. In the SAT-based framework, the representation of the ver-

sion space VB(E+
1 , E

−
1 ) ∩ VB(E+

2 , E
−
2 ) is simply obtained by K1 ∧ K2. �

Finally, given a pair of training sets (E+
1 , E

−
1 ) and (E+

2 , E
−
2 ), and their correspond-

ing version spaces VB(E+
1 , E

−
1 ) and VB(E+

2 , E
−
2 ), we may wish to determine whether

VB(E+
1 , E

−
1 ) is a subset of (resp. equal to) VB(E+

2 , E
−
2 ).

Proposition 5 (Subset and Equality). The subset and equality tests take O(b2m1m2)
time.
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Proof. Let K1 and K2 be the representations of the version spaces VB(E+
1 , E

−
1 ) and

VB(E+
2 , E

−
2 ), respectively. Based on Theorem 1, we know that determining whether

VB(E+
1 , E

−
1 ) is a subset of VB(E+

2 , E
−
2 ) is equivalent to deciding whether Models(K1)

is a subset of Models(K2). This is equivalent to deciding whether K1 entails K2. By
application of Lemma 5.6.1 from [9], the entailment problem of two Horn or dual Horn
formulas K1 and K2 can be decided in O(|K1||K2|) time. It follows that the subset
operation takes O(b2m1m2) time. For the equality operation, we simply need to check
whether K1 entails K2 and K2 entails K1. �

4 Exploiting Domain-Specific Knowledge

In constraint programming, constraints can be interdependent. For example, two con-
straints such as ≥12 and ≥23 impose a restriction on the relation of any constraint de-
fined on the scope (x1, x3). This is a crucial difference with propositional logic where
atomic variables are pairwise independent. As a consequence of such interdependency,
some constraints in a network can be redundant. For example, the constraint ≥13 is
redundant with ≥12 and ≥23. An important difficulty for the learner is its ability to
“detect” redundant constraints. This problem is detailed in the following example.

Example 2. Consider a vocabulary formed by a set of variables {x1, x2, x3} and a set
of domain values D = {1, 2, 3, 4}. The learner has at its disposal the constraint library
B = {�12,≤12, �=12,≥12,�23,≤23, �=23,≥23,�13,≤13, �=13,≥13}. We suppose that
the target network is given by {≥12,≥13,≥23}. The training set is given in Table 1. In
the third column of the table, we present the growing clausal theory K obtained after
processing each example and after performing unit propagation.

After processing each example in the training set, the constraints≥12 and ≥23 have
been found. Yet, the redundant constraint≥13 has not. For the scope (x1, x3) the version
space contains four possible networks where c13 can alternatively be >13,≥13, �=13 or
�13. In fact, the version space cannot converge to the target concept since it is im-
possible to find a set of negative examples which would force the learner to reduce its
version space. Indeed, in order to converge we would need a negative example e where
e(x1) < e(x3), e(x1) ≥ e(x2) and e(x2) ≥ e(x3). Due to the semantics of inequality
constraints, no such example exists. Consequently, the inability for the learner to detect
redundancy may hinder the converge process and hence, can overestimate the number
of candidate models in the version space.

As illustrated in the previous example, redundancy is a crucial notion that must be
carefully handled if we need to allow version space convergence, or at least if we want to

Table 1. A set of examples and the corresponding set of clauses K (unit propagated), illustrating
the effect of redundancy

x1 x2 x3 K
e+
1 4 3 1 (¬ ≤12) ∧ (¬ ≤13) ∧ (¬ ≤23)

e−
2 2 3 1 (¬ ≤12) ∧ (¬ ≤13) ∧ (¬ ≤23) ∧ (≥12)

e−
3 3 1 2 (¬ ≤12) ∧ (¬ ≤13) ∧ (¬ ≤23) ∧ (≥12) ∧ (≥23)
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have a more accurate idea of which parts of the target network are not precisely learned.
The notion of redundancy is formalised as follows. Let C be a constraint network and
cij a constraint in C. We say that cij is redundant in C if sol(C \ {cij}) = sol(C). In
other words, cij is redundant if the constraint network obtained by deleting cij from C
is equivalent to C.

4.1 Redundancy Rules

Any binary constraint bij can be seen as a first-order atom b(xi, xj), where b is a
predicate symbol and xi, xj are variables that take values in the domainD. For example,
the constraint≤12 can be regarded as a first-order atom x1 ≤ x2. From this perspective,
a constraint network can be viewed as a conjunction of first-order binary atoms. In order
to tackle redundancy, we may introduce first-order rules that convey some knowledge
about dependencies between constraints. A redundancy rule is a Horn clause:

∀x1, x2, x3, b(x1, x2) ∧ b′(x2, x3) → b′′(x1, x3).

such that for any constraint network C for which a substitution θ maps b(x1, x2),
b′(x2, x3) and b′′(x1, x3) into in C, the constraint b′′θ(x1)θ(x3) is redundant in C.

As a form of background knowledge, the learner can use redundancy rules in its
acquisition process. Given a library of constraints B and a set R of redundancy rules,
the learner can start building each possible substitution on R. Namely, for each rule
b(x1, x2) ∧ b′(x2, x3) → b′′(x1, x3) and each substitution θ that maps b(x1, x2),
b′(x2, x3), and b′′(x1, x3) to constraints bij , b′jk and b′′ik in the library, a clause ¬bij ∨
¬b′jk ∨ b′′ik can be added to the clausal theory K.

Example 3. The Horn clause ∀x, y, z, (x ≥ y) ∧ (y ≥ z) → (x ≥ z) is a redundancy
rule since any constraint network in which we have two constraints ‘≥’ such that the
second argument of the first constraint is equal to the first argument of the second con-
straint implies the ‘≥’ constraint between the first argument of the first constraint and
the second argument of the second constraint.

We can apply the redundancy rule technique to Example 2. After performing unit
propagation on the clausal theory K obtained after processing the examples {e+1 , e−2 , e−3 },
we know that ≥12 and ≥23 have to be set to 1. When instantiated on this constraint
network, the redundancy rule from Example 3 becomes ≥12 ∧ ≥23→≥13. Since all
literals of the left part of the rule are forced by K to be true, we can fix literal ≥13 to 1.

The tractability of CONACQ depends on the fact that the clausal theory K is a dual
Horn formula. While we are no longer left with such a formula once K is combined
with the set of redundancy rules R, it is nonetheless the case that satisfiability testing
for K∧R remains tractable: K∧R is satisfiable iff K is. The only effect that redundancy
rules have is to give an equivalent, but potentially smaller version space for the target
network.

4.2 Backbone Detection

While redundancy rules can handle a particular type of redundancy, there are cases
where applying these rules on the version space is not sufficient to find all redundancies.
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Specifically, redundancy rules are only able to discover implications of “conjunctions”
of constraints. However, more complex forms of redundancies can arise due to combi-
nations of “conjunctions” and “disjunctions” of constraints. This higher-order form of
redundancy is illustrated in the following example.

Example 4. Consider the example in Table 2 where the target network comprises the
set of constraints {=12,=13,=23} and all negative examples differ from the single pos-
itive example by at least two constraints. The version space in this example contains
4 possible constraints for each scope, due to the disjunction of possible reasons that
would classify the negative examples correctly. Without any further information, par-
ticularly negative examples which differ from the positive example by one constraint,
redundancy rules cannot restrict the version space any further.

Table 2. A set of examples and the corresponding set of clauses K (unit propagated), illustrating
the effect of higher-order redundancy

x1 x2 x3 K
e+
1 2 2 2 (¬ �=12) ∧ (¬ �=13) ∧ (¬ �=23)

e−
2 3 3 4 (¬ �=12) ∧ (¬ �=13) ∧ (¬ �=23) ∧ (≥13 ∨ ≥23)

e−
3 1 3 3 (¬ �=12) ∧ (¬ �=13) ∧ (¬ �=23) ∧ (≥13 ∨ ≥23) ∧ (≥12 ∨ ≥13)

In Example 4, there is a constraint that is implied by the set of negative exam-
ples but redundancy rules are not able to detect it. However, all the information nec-
essary to deduce this constraint is contained in the set of redundancy rules and K.
The reason for their inability to detect it is that the redundancy rules are in the form
of Horn clauses that are applied only when all literals in the left-hand side are true
(i.e., unit propagation is performed on these clauses). However, the powerful concept
of backbone of a propositional formula can be used here. Informally, a literal belongs
to the backbone of a formula if it belongs to all models of the formula [12]. Once
the literals in the backbone are detected, they can be exploited to update the version
space.

If an atom bij appears positively in all models of K ∧ R, then it belongs to its
backbone and we can deduce that cij ⊆ bij . Indeed, by construction of K ∧ R, the
constraint cij cannot reject all negative examples in E− and, at the same time, be more
general than bij . Thus, given a new negative example e in E−, we simply need to
build the corresponding clause κe, add it to K, and test if the addition of κe causes some
literal to enter the backbone of K∧R. The process above guarantees that all the possible
redundancies will be detected.

Example 5. We now apply this method to Example 4. To test if the literal ≥13 belongs
to the backbone, we solve R ∪ K ∪ {¬ ≥13}. If the redundancy rule ≥12 ∧ ≥23→≥13
belongs to R, we detect inconsistency. Therefore, ≥13 belongs to the backbone. The
version space can now be refined, by setting the literal ≥13 to 1, effectively removing
from the version space the constraint networks containing≤13 or �13.
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5 Experiments

We have performed several experiments in order to validate the effectiveness of the
CONACQ algorithm and the various approaches to exploiting domain-specific knowl-
edge presented in Section 4. We implemented CONACQ using SAT4J.1 For each ex-
periment, the vocabulary contains 12 variables and 12 domain values per variable. The
target constraint networks are sets of binary constraints defined from the set of relations
{≤, �=,≥}. The learner is not informed about the scope of the constraints, so the avail-
able library involves all 66 possible binary constraint scopes. The level of dependency
between constraints is controlled by introducing constraint “patterns” of various lengths
and type. Patterns are paths of the same constraint selected either from the set {≤,≥}
(looser constraints) or {<,=, >} (tighter constraints). For example, a pattern of length
k based on {<,=, >} could be x1 > x2 > . . . > xk. Based on the parameter k and
the type of constraint, we examined 7 types of target networks. In the first, the vari-
ables were connected arbitrarily. In the others, we introduce a single pattern of length
n/3, n/2 or n, with constraints taken from either {≤,≥} or {<,=, >}. The remaining
constraints in the problem were selected randomly.

We ran 100 experiments of each type and report average results in Table 3. The first
column specifies the length and type of allowed patterns. The three next columns report
the results obtained by the basic algorithm (CONACQ), the algorithm with redundancy
rules (CONACQ + rules), and the algorithm with redundancy rules and backbone de-
tection (CONACQ +rules+ backbone). Each column is divided in two parts. The left
part is the number of models of the formula K. This number is obtained using the binary
decision diagram compilation tool CLab2 when |VB| is smaller than 104. An estimate,
exponential in the number of free literals in K, is presented otherwise. From Theorem 1,
this corresponds to the number of candidate networks encoded in the version space for
the acquired problem. The right part measures the average time needed to process an
example in seconds on a Pentium IV 1.8 GHz processor. Finally, the last column reports
the number of examples needed to obtain convergence of at least one of the algorithms.
The threshold on the number of possible examples is fixed to 1000. The training set
contains 10% of positive examples and 90% of negative examples. We chose such an
unbalanced proportion because positive examples are usually much less frequent than
negative ones in a constraint network. Negative examples were partial non-solutions to
the problem involving a subset of variables. The cardinality of this subset was selected
from a uniform distribution over the interval [2, 5].

Based on these results, we can make several important observations. Firstly, we
note that the rate of convergence improves if we exploit domain-specific knowledge.
In particular, the variant of CONACQ using redundancy rules and backbone detection
is able to eliminate all redundant networks in all experiments with patterns. In con-
trast, the performance of the first two algorithms decreases as the length of redundant
patterns increases. This is clearly noticeable, in the case of the basic algorithm, if one
compares the top-line of the table, where no redundant pattern was enforced, with the
last line in the table, where a pattern of length n was present, keeping the number of

1 Available from http://www.sat4j.org.
2 Available from http://www-2.cs.cmu.edu/˜runej/systems/clab10.html.
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Table 3. Comparison of the CONACQ variants (CSPs have 12 variables, 12 values, 18 constraints)

CONACQ CONACQ CONACQ

+rules +rules
Redundant Pattern +backbone

Length {constraints} |VB|(secs) |VB|(secs) |VB|(secs) #Exs

none 4.29 × 109 (0.11) 6.71 × 107 (0.32) 1.68 × 107 (2.67) 1000
n/3 {≤, ≥} 4.10 × 103 (0.11) 64 (0.31) 1 (2.61) 360
n/2 {≤, ≥} 1.72 × 1010 (0.11) 4.10 × 103 (0.32) 1 (2.57) 190
n {≤, ≥} 1.44 × 1017 (0.11) 2.62 × 105 (0.32) 1 (2.54) 90
n/3 {<, =, >} 2.68 × 108 (0.11) 1.02 × 103 (0.32) 1 (2.60) 280
n/2 {<, =, >} 7.38 × 1019 (0.11) 4.19 × 107 (0.32) 1 (2.58) 170
n {<, =, >} 2.08 × 1034 (0.11) 6.87 × 1010 (0.32) 1 (2.54) 70
n {<, =, >} 9.01 × 1015 (0.11) 2.04 × 104 (0.32) 1 (0.24) 1000

examples constant in both cases. When no redundant pattern was enforced, simply com-
bining redundancy rules with CONACQ is sufficient to detect much of the redundancy
that is completely discovered by backbone detection. Secondly, we observe that for
patterns involving tighter constraints (<, =, or >), significantly better improvements
are obtained as we employ increasingly powerful techniques for exploiting redundancy.
Thirdly, we observe that the learning time progressively increases with the sophisti-
cation of the method used. The basic CONACQ algorithm is about 3 times faster than
CONACQ+ rules and 25 times faster than CONACQ+rules+ backbone. Clearly, there
is a tradeoff to be considered between learning rate and learning time.

6 Related Work

Recently, researchers have become interested in techniques that can be used to acquire
constraint networks in situations where a precise statement of the constraints of the
problem is not available [4, 10, 14, 15]. The use of version space learning as a basis for
constraint acquisition has received most attention from the constraints community [1,
2, 13]. Version space learning [11] is a standard approach to concept learning. A variety
of representations for version spaces have been proposed in an effort to overcome the
worst-case exponential complexity of version space learning [5–8].

The approach we propose is quite novel with respect to the existing literature on
both constraint acquisition and version space learning. We formalise version space
learning as a satisfiability problem, which has the advantage of being able to exploit
advances in SAT solvers, backbone detection, and unit propagation, to dramatically en-
hance learning rate. However, it is incorporating domain-specific knowledge into the
acquisition process that gives the approach considerable power.

7 Conclusions

Users of constraint programming technology need significant expertise in order to model
their problems appropriately. In this paper we have proposed a SAT-based version space
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algorithm that is capable of learning a constraint network from a set of examples and
a library of constraints. This approach has a number of distinct advantages. Firstly,
the formulation is generic, so we can use any SAT solver as a basis for version space
learning. Secondly, we can exploit efficient SAT techniques such as unit propagation
and backbone detection to improve learning rate. Finally, we can easily incorporate
domain-specific knowledge into constraint programming to improve the quality of the
acquired network. Our empirical evaluation convincingly demonstrated the power of
exploiting domain-specific knowledge as part of the acquisition process.
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Abstract. We study estimation of mixture models for problems in
which multiple views of the instances are available. Examples of this
setting include clustering web pages or research papers that have intrin-
sic (text) and extrinsic (references) attributes. Our optimization criterion
quantifies the likelihood and the consensus among models in the individ-
ual views; maximizing this consensus minimizes a bound on the risk of
assigning an instance to an incorrect mixture component. We derive an
algorithm that maximizes this criterion. Empirically, we observe that the
resulting clustering method incurs a lower cluster entropy than regular
EM for web pages, research papers, and many text collections.

1 Introduction

In many application domains, instances can be represented in two or more dis-
tinct, redundant views. For instance, web pages can be represented by their text,
or by the anchor text of inbound hyperlinks (“miserable failure”), and research
papers can be represented by their references from and to other papers, in ad-
dition to their content. In this case, multi-view methods such as co-training [7]
can learn two initially independent hypotheses. These hypotheses bootstrap by
providing each other with conjectured class labels for unlabeled data. Multi-
view learning has often proven to utilize unlabeled data effectively, increase the
accuracy of classifiers (e.g., [20, 7]) and improve the quality of clusterings [4].

Nigam and Ghani [17] propose the co-EM procedure that resembles semi-
supervised learning with EM [15], using two views that alternate after each
iteration. The EM algorithm [12] is very well understood. In each iteration, it
maximizes the expected joint log-likelihood of visible and invisible parameters
given the parameter estimates of the previous iteration—the Q function. This
procedure is known to greedily maximize the likelihood of the data. By contrast,
the primary justification of the co-EM algorithm is that it often works very well;
it is not known which criterion the method maximizes.

We take a top down approach on the problem of mixture model estimation in
a multi-view setting. Dasgupta et al. [10] motivate our work by showing that a
high consensus of independent hypotheses implies a low error rate. We construct
a criterion that quantifies likelihood and consensus and derive a procedure that
maximizes it. We contribute to an understanding of mixture model estimation
for multiple views by showing that the co-EM algorithm is a special case of

J. Gama et al. (Eds.): ECML 2005, LNAI 3720, pp. 35–46, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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the resulting procedure. Our solution naturally generalizes co-EM because it
operates on more than two views. We show that a variant of the method in
which the consensus term is annealed over time is guaranteed to converge.

The rest of this paper is organized as follows. Section 2 discusses related
work. In Section 3, we define the problem setting. Section 4 motivates our ap-
proach, discusses the new Q function, the unsupervised co-EM algorithm, and
its instantiation for mixture of multinomials. We conduct experiments in Section
5 and conclude with Section 6.

2 Related Work

Most studies on multi-view learning address semi-supervised classification prob-
lems. de Sa [11] observes a relationship between consensus of multiple hypotheses
and their error rate and devised a semi-supervised learning method by cascading
multi-view vector quantization and linear classification. A multi-view approach
to word sense disambiguation combines a classifier that refers to the local con-
text of a word with a second classifier that utilizes the document in which words
co-occur [20]. Blum and Mitchell [7] introduce the co-training algorithm for semi-
supervised learning that greedily augments the training set of two classifiers. A
version of the AdaBoost algorithm boosts the agreement between two views on
unlabeled data [9]. Co-training for regression is proposed by Zhou and Li [22].

Dasgupta et al. [10] and Abney [1] give PAC bounds on the error of co-
training in terms of the disagreement rate of hypotheses on unlabeled data in two
independent views. This justifies the direct minimization of the disagreement.
The co-EM algorithm for semi-supervised learning probabilistically labels all
unlabeled examples and iteratively exchanges those labels between two views
[17, 13]. Muslea et al. [16] extend co-EM for active learning. Brefeld and Scheffer
[8] study a co-EM wrapper for the Support Vector Machine.

For unsupervised learning, several methods combine models that are learned
using distinct attribute subsets in a way that encourages agreement. Becker and
Hinton [3] maximize mutual information between the output of neural network
modules that perceive distinct views of the data. Models of images and their
textual annotations have been combined [2, 6]. Bickel and Scheffer [4] use the co-
EM algorithm for clustering of data with two views. Clustering by maximizing
the dependency between views is studied by Sinkkonen et al. [18]. Also, the
density-based DBSCAN clustering algorithm has a multi-view counterpart [14].

3 Problem Setting

The multi-view setting is characterized by available attributes X which are de-
composed into views X(1), . . . , X(s). An instance x = (x(1), . . . , x(s)) has repre-
sentations x(v) that are vectors over X(v). We focus on the problem of estimating
parameters of a generative mixture model in which data are generated as follows.

The data generation process selects a mixture component j with probability
αj . Mixture component j is the value of a random variable Z. Once j is fixed,



Estimation of Mixture Models Using Co-EM 37

the generation process draws the s independent vectors x(v) according to the
likelihoods P (x(v)|j). The likelihoods P (x(v)|j) are assumed to follow a para-
metric model P (x(v)|j, Θ) (distinct views may of course be governed by distinct
distributional models).

The learning task involved is to estimate the parameters Θ = (Θ(1), . . . , Θ(s))
from data. The sample consists of n observations that usually contain only the
visible attributes x(v)

i in all views v of the instances xi. The vector Θ contains
priors α(v)

j and parameters of the likelihood P (x(v)
i |j, Θ(v)), where 1 ≤ j ≤ m and

m is the number of mixture components assumed by the model (clusters). Given
Θ, we will be able to calculate a posterior P (j|x(1), . . . , x(s), Θ). This posterior
will allow us to assign a cluster membership to any instance x = (x(1), . . . , x(s)).
The evaluation metric is the impurity of the resulting clusters as measured by
the entropy; the elements of each identified cluster should originate from the
same true mixture component.

4 Derivation of the Algorithm

Dasgupta et al. [10] have studied the relation between the consensus among two
independent hypotheses and their error rate. Let us review a very simple result
that motivates our approach, it can easily be derived from their general treatment
of the topic. Let h(v)(x) = argmaxj P (j|x(v), Θ(v)) be two independent clustering
hypotheses in views v = 1, 2. For clarity of the presentation, let there be two
true mixture components. Let x be a randomly drawn instance that, without
loss of generality belongs to mixture component 1, and let both hypotheses h(1)

and h(2) have a probability of at least 50% of assigning x to the correct cluster
1. We observe that

P (h(1)(x) �= h(2)(x)) ≥ max
v

P (h(v)(x) �= 1).

That is, the probability of a disagreement h(1)(x) �= h(2)(x) is an upper bound
on the risk of an error P (h(v)(x) �= 1) of either hypothesis h(v).

We give a brief proof of this observation. In Equation 1 we distinguish between
the two possible cases of disagreement; we utilize the independence assumption
and order the summands such that the greater one comes first. In Equation 2,
we exploit that the error rate be at most 50%: both hypotheses are less likely to
be wrong than just one of them. This leads to Equation 3.

P (h(1)(x) �= h(2)(x))
= P (h(v)(x) = 1, h(v̄)(x) = 2) + P (h(v)(x) = 2, h(v̄)(x) = 1) (1)

where v = argmaxuP (h(u)(x) = 1, h(ū)(x) = 2)
≥ P (h(v)(x) = 2, h(v̄)(x) = 2) + P (h(v)(x) = 2, h(v̄)(x) = 1) (2)
= maxv P (h(v)(x) �= 1) (3)

In unsupervised learning, the risk of assigning instances to wrong mixture com-
ponents cannot be minimized directly, but this argument shows that we can
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minimize an upper bound on this risk by minimmizing the disagreement of
multiple hypotheses.

The Q function is the core of the EM algorithm. We will now review the
usual definition, include a consensus term, and find a maximization procedure.

4.1 Single-View Criterion

Even though the goal is to maximize P (X |Θ), EM iteratively maximizes an
auxiliary (single-view) criterion QSV (Θ,Θt). The criterion refers to the visible
variables X , the invisibles Z (the mixture component), the optimization param-
eter Θ and the parameter estimates Θt of the last iteration. Equation 4 defines
QSV (Θ,Θt) to be the expected log-likelihood of P (X,Z|Θ), given X and given
that the hidden mixture component Z be distributed according to P (j|x,Θt).

The criterion QSV (Θ,Θt) can be determined as in Equation 5 for mixture
models. It requires calculation of the posterior P (j|xi, Θt) as in Equation 6;
this is referred to as the E step of the EM algorithm. In the M step, it finds
the new parameters Θt+1 = argmaxΘ QSV (Θ,Θt) that maximize QSV over Θ.
The parameters Θ occur in Equation 5 only in the prior probabilities αj and
likelihood terms P (xi|j, Θ).

QSV (Θ,Θt) = E[logP (X,Z|Θ)|X,Θt] (4)

=
n∑

i=1

m∑
j=1

P (j|xi, Θt) log(αjP (xi|j, Θ)) (5)

P (j|xi, Θt) =
αjP (xi|j, Θt)∑
k αkP (xi|k,Θt)

(6)

The EM algorithm starts with some initial guess at the parameters Θ0 and
alternates E and M steps until convergence. Dempster et al. [12] prove that, in
each iteration, P (X |Θt+1)−P (X |Θt) ≥ 0. Wu [19] furthermore proves conditions
for the convergence of the sequence of parameters (Θ)t.

4.2 Multi-view Criterion

We want to maximize the likelihood in the individual views and the consensus of
the models because we know that the disagreement bounds the risk of assigning
an instance to an incorrect mixture component. Equations 7 and 8 define our
multi-view Q function as the sum over s single-view Q functions minus a penalty
term Δ(·) that quantifies the disagreement of the models Θ(v), regularized by η.

QMV (Θ(1), . . . , Θ(s), Θ
(1)
t , . . . , Θ

(s)
t )

=
s∑

v=1

QSV (Θ(v), Θ
(v)
t )− ηΔ(Θ(1), . . . , Θ(s), Θ

(1)
t , . . . , Θ

(s)
t ) (7)

=
s∑

v=1

E
[
logP (X(v), Z(v)|Θ(v))|X(v), Θ

(v)
t

]
(8)

−ηΔ(Θ(1), . . . , Θ(s), Θ
(1)
t , . . . , Θ

(s)
t )
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When the regularization parameter η is zero, then QMV =
∑

v Q
SV . In

each step, co-EM then maximizes the s terms QSV independently. It follows
immediately from Dempster et al. [12] that each P (X(v)|Θ(v)) increases in each
step and therefore

∑
v P (X(v)|Θ(v)) is maximized.

The disagreement term Δ should satisfy a number of desiderata. Firstly, since
we want to minimize Δ, it should be convex. Secondly, for the same reason,
it should be differentiable. Given Θt, we would like to find the maximum of
QMV (Θ,Θt) in one single step. We would, thirdly, appreciate if Δ was zero
when the views totally agree.

We construct Δ to fulfill these desiderata in Equation 9. It contains
the pairwise cross entropy H(P (j|x(v)

i , Θ
(v)
t ), P (j|x(u)

i , Θ(u))) of the poste-
riors of any pair of views u and v. The second cross entropy term
H(P (j|x(v)

i , Θ
(v)
t ), P (j|x(v)

i , Θ(v))) scales Δ down to zero when the views to-
tally agree. Equation 10 expands all cross-entropy terms. At an abstract level,
Δ can be thought of as all pairwise Kullback-Leibler divergences of the posteriors
between all views. Since the cross entropy is convex, Δ is convex, too.

Δ(Θ(1), . . . , Θ(s), Θ
(1)
t , . . . , Θ

(s)
t )

=
1

s−1

∑
v �=u

n∑
i=1

(
H(P (j|x(v)

i , Θ
(v)
t ), P (j|x(u)

i , Θ(u)))

−H(P (j|x(v)
i , Θ

(v)
t ), P (j|x(v)

i , Θ(v)))
)

(9)

=
1

s−1

∑
v �=u

n∑
i=1

m∑
j=1

P (j|x(v)
i , Θ

(v)
t ) log

P (j|x(v)
i , Θ(v))

P (j|x(u)
i , Θ(u))

(10)

In order to implement the M step, we have to maximize QMV (Θ,Θt) given
Θt. We have to set the derivative to zero. Parameter Θ occurs in the loga-
rithmized posteriors, so we have to differentiate a sum of likelihoods within a
logarithm. Theorem 1 solves this problem and rewrites QMV analogously to
Equation 5.

Equation 12 paves the way to an algorithm that maximizes QMV . The pa-
rameters Θ occur only in the log-likelihood terms logP (x(v)

i |j, Θ(v)) and logα(v)
j

terms, and QMV can be rewritten as a sum over local functions QMV
v for

the views v. It now becomes clear that the M step can be executed by find-
ing parameter estimates of P (x(v)

i |j, Θ(v)) and α
(v)
j independently in each view

v. The E step can be carried out by calculating and averaging the posteri-
ors P (v)(j|xi, Θt, η) according to Equation 13; this equation specifies how the
views interact.

Theorem 1. The multi-view criterion Q can be expressed as a sum of local
functions QMV

v (Equation 11) that can be maximized independently in each view
v. The criterion can be calculated as in Equation 12, where P (v)(j|xi, Θt, η) is
the averaged posterior as detailed in Equation 13 and P (j|x(v)

i , Θ
(v)
t ) is the local

posterior of view v, detailed in Equation 14.



40 S. Bickel and T. Scheffer

QMV (Θ(1), . . . , Θ(s), Θ
(1)
t , . . . , Θ

(s)
t )

=
s∑

v=1

QMV
v (Θ(v), Θ

(1)
t , . . . , Θ

(s)
t ) (11)

=
s∑

v=1

(
n∑

i=1

m∑
j=1

P (v)(j|xi, Θt, η) logα(v)
j (12)

+
n∑

i=1

m∑
j=1

P (v)(j|xi, Θt, η) logP (x(v)
i |j, Θ(v))

)
P (v)(j|xi, Θ

(1)
t , . . . , Θ

(s)
t , η) (13)

= (1−η)P (j|x(v)
i , Θ

(v)
t )+

η

s−1

∑
v̄ �=v

P (j|x(v̄)
i , Θ

(v̄)
t )

P (j|x(v)
i , Θ

(v)
t ) =

α
(v)
j P (x(v)

i |j, Θ(v)
t )∑

k α
(v)
k P (x(v)

i |k,Θ(v)
t )

(14)

The proof of Theorem 1 can be found in [5].

4.3 Generalized Co-EM Algorithm

Theorem 1 describes the unsupervised co-EM algorithm with arbitrarily many
views mathematically. The M steps can be executed independently in the views
but Theorem 1 leaves open how the E and M steps should be interleaved. Co-EM
can be implemented such that a global E step is followed by M steps in all views
or, alternatively, we can iterate over the views in an outer loop and execute an
E step and an M step in the current view in each iteration of this loop.

Our implementation of co-EM uses the latter strategy because consecutive
M steps in multiple views impose the following risk. Cases can arise in which
QMV

1 can be maximized by changing Θ
(1)
t+1 such that it agrees with Θ

(2)
t . A

consecutive M step in view 2 can then maximize QMV
2 by changing Θ

(2)
t+1 such

that it agrees with Θ(1)
t . As a result, the two models flip their dissenting opinions.

We observe empirically that this effect slows down the convergence; if the Q
function consisted of only the Δ term, then this could even lead to alternation.

The unsupervised co-EM algorithm with multiple views is shown in Table 1.
When the execution has reached time step t and view v, the parametersΘ(1)

t+1, . . . ,

Θ
(v−1)
t+1 and Θ

(v)
t , . . . , Θ

(s)
t have already been estimated. In the E step, we can

therefore determine the posterior P (v)(j|xi, Θ
(1)
t+1, . . . , Θ

(v−1)
t+1 , Θ

(v)
t , . . . , Θ

(s)
t , η)

using the most recent parameter estimates. In the succeeding M step, the local
QMV

v function is maximized over the parameters Θ(v). Note that the co-EM
algorithm of Nigam and Ghani [17] is a special case of Table 1 for two views,
η = 1, and semi-supervised instead of unsupervised learning.

In every step 2(a)ii, the local function QMV
v increases. Since all other QMV

v̄

are constant in Θ(v), this implies that alsoQMV increases. In each iteration of the
single-view EM algorithm, P (X |Θt+1)−P (X |Θt) ≥ 0. For co-EM, this is clearly
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Table 1. Unsupervised Co-EM Algorithm with Multiple Views

Input: Unlabeled data {(x(1)
i , . . . , x

(s)
i )1≤i≤n}. Regularization parameter η (default 1).

1. Initialize Θ
(1)
0 , . . . , Θ

(s)
0 at random; let t = 1.

2. Do until convergence of QMV :
(a) For v = 1 . . . s:

i. E step in view v: For all i, compute the posterior
P (v)(j|xi, Θ

(1)
t+1, . . . , Θ

(v−1)
t+1 , Θ

(v)
t , . . . , Θ

(s)
t , η) in v using Eq. 13.

ii. M step in view v: maximize QMV ;
Θ

(v)
t+1 = argmaxΘ(v) QMV

v (Θ(v), Θ
(1)
t+1, . . . , Θ

(v−1)
t+1 , Θ

(v)
t , . . . , Θ

(s)
t ).

(c) Increment t.
3. Return Θ = (Θ(1)

t , . . . , Θ
(s)
t ).

not the case since the Q function has been augmented by a dissent penalization
term. Wu [19] proves conditions for the convergence of the sequence (Θ)t for
regular EM. Sadly, the proof does not transfer to co-EM.

We study a variant of the algorithm for which convergence can be proven.
In an additional step 2(b), η is decremented towards zero according to some
annealing scheme. This method can be guaranteed to converge; the proof is
easily derived from the convergence guarantees of regular EM [12, 19]. We can
furthermore show that co-EM with annealing of η maximizes

∑
v P (X(v)|Θ).

In the beginning of the optimization process, Δ contributes strongly to the cri-
terion QMV ; the dissent Δ is convex and we know that it upper-bounds the
error. Therefore, Δ guides the search to a parameter region of low error. The
contribution of Δ vanishes later;

∑
v P (X(v)|Θ) usually has many local maxima

and having added Δ earlier now serves as a heuristic that may lead to a good
local maximum.

4.4 Global Prior Probabilities

According to our generative model we have one global prior for each mixture
component, but in step 2(a)ii the co-EM algorithm so far estimates priors in
each view v from the data. We will now focus on maximization of Q subject to
the constraint that the estimated priors of all views be equal.

We introduce two sets of Lagrange multipliers and get Lagrangian L(α, λ, γ)
in Equation 15. Multiplier λ(v) guarantees that

∑
j α

(v)
j = 1 in view v and γ(j,v)

enforces the constraint α(1)
j = α

(v)
j for component j.

L(α, λ, γ) =
s∑

v=1

n∑
i=1

m∑
j=1

P (v)(j|xi, Θt, η) log α
(v)
j

+
s∑

v=1

λ(v)

(
m∑

j=1

α
(v)
j − 1

)
+

s∑
v=2

m∑
j=1

γ(j,v)(α(1)
j − α

(v)
j ) (15)

Setting the partial derivatives of L(α, λ, γ) to zero and solving the result-
ing system of equations leads to Equation 16. Expanding P (v)(j|xi, Θt, η), the
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regularization parameter η cancels out and we reach the final M step for α(v)
j in

Equation 17. We can see that the estimated prior is an average over all views
and is therefore equal for all views.

α
(v)
j =

1
sn

s∑
v=1

n∑
i=1

P (v)(j|xi, Θt, η) (16)

=
1
sn

s∑
v=1

n∑
i=1

P (j|x(v)
i , Θ

(v)
t ) = αj (17)

4.5 Cluster Assignment

For cluster analysis, an assignment of instances to clusters has to be derived from
the model parameters. The risk of deciding for an incorrect cluster is minimized
by choosing the maximum a posteriori hypothesis as in Equation 18. Bayes’ rule
and the conditional independence assumption lead to Equation 19.

h(xi) = argmaxj P (j|xi, Θ) (18)

= argmax
j

αj

∏s
v=1 P (x(v)

i |j, Θ(v))∑m
k αk

∏s
v=1 P (x(v)

i |k,Θ(v))
(19)

4.6 Mixture of Multinomials

In step 2(a)ii the co-EM algorithm estimates parameters in view v from the
data. This step is instantiated for the specific distributional model used in a
given application. We will detail the maximization steps for multinomial models
which we use in our experimentation because they model both text and link data
appropriately.

A multinomial model j is parameterized by the probabilities θ(v)
lj of word wl

in view v and mixture component j. The likelihood of document x(v)
i is given

by Equation 20. Parameters n(v)
il count the occurrences of word wl in document

x
(v)
i . P (|x(v)

i |) is the prior on the document length; since they are constant in the
mixture component j, they cancel out in the posterior. The factorials account
for all possible sequences that result in the set of words x(v)

i , they also cancel
out in the posterior.

P (x(v)
i |j, Θ(v)) = P (|x(v)

i |)|x(v)
i |!

∏
l

(θ(v)
lj )n

(v)
il

n
(v)
il !

(20)

We will now focus on maximization ofQMV over the parameters θ(v)
lj . Lagrangian

L(θ, λ) in Equation 21 guarantees that the word probabilities sum to one.

L(θ, λ) =
s∑

v=1

n∑
i=1

m∑
j=1

P (v)(j|xi, Θt, η)

⎛⎝ log P (|x(v)
i |)|x(v)

i |! +
∑

l

n
(v)
il log

θ
(v)
lj

n
(v)
il !

⎞⎠ (21)

+
s∑

v=1

m∑
j=1

λ
(v)
j

(∑
l

θ
(v)
lj − 1

)
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Setting the partial derivatives to zero and solving the resulting system of equa-
tions yields Equation 22.

θ
(v)
lj =

∑
i P

(v)(j|xi, Θt, η)n
(v)
il∑

k

∑
i P

(v)(j|xi, Θt, η)n
(v)
ik

(22)

5 Empirical Studies

We want to find out (1) whether generalized co-EM with multiple views finds bet-
ter clusters in sets of linked documents with mixture of multinomials than regular
single-view EM; (2) whether co-EM is still beneficial when there is no natural fea-
ture split in the data; (3) whether there are problems for which the optimal num-
ber of views lies above 2; and (4) whether the consensus regularization parameter
η should be annealed or fixed to some value. To answer these questions, we exper-
iment on archives of linked documents and plain text collections.

All data sets that we use contain labeled instances; the labels are not visible
to the learning method but we use them to measure the impurity of the returned
clusters. Our quality measure is the average entropy over all clusters (Equation
23). This measure corresponds to the average number of bits needed to code
the real class labels given the clustering result. The frequency p̂i|j counts the
number of elements of class i in cluster j, and nj is the size of cluster j.

H =
m∑

j=1

nj

n

(
−
∑

i

p̂i|j log p̂i|j

)
(23)

The mixture of multinomials model for text assumes that a document is gen-
erated by first choosing a component j, and then drawing a number of words
with replacement according to a component-specific likelihood. The multinomial
link model analogously assumes that, for a document x, a number of references
from or to other documents are drawn according to a component-specific likeli-
hood. We first use three sets of linked documents for our experimentation. The
Citeseer data set contains 3,312 entries that belong to six classes. The text view
consists of title and abstract of a paper; the two link views are inbound and
outbound references. The Cora data set contains 9,947 computer science papers
categorized into eight classes. In addition to the three views of the Citeseer data
set we extract an anchor text view that contains three sentences centered at the
occurrence of the reference in the text. The WebKB data set is a collection of
4,502 academic web pages manually grouped into six classes. Two views contain
the text on the page and the anchor text of all inbound links, respectively. The
total number of views are 2 (WebKB), 3 (Citeseer), and 4 (Cora).

Note that web pages or publications do not necessarily have inbound or
outbound links. We require only the title/abstract and web page text views
to contain attributes. The other views are empty in many cases; the inbound
link view of 45% of the Cora instances is empty. In order to account for this
application-specific property, we include only non-empty views in the averaged
posterior P (v)(j|xi, Θt, η).
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Fig. 1. Average cluster impurity over varying numbers of clusters
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Fig. 2. Six single-view data sets with random feature splits into views (left); tuning the
regularization parameter η to a fixed value (center); annealing η during the optimization
process (right).

We use two single-view baselines. The first baseline applies single-view EM
to a concatenation of all views (caption “concat. views”). The second baseline
merges all text views (anchor text and intrinsic text are merged into one bag)
and separately merges all link views (corresponding to an undirected graphical
model). Single-view EM is then applied to the concatenation of these views
(“merged views”). All results are averaged over 20 runs and error bars indicate
standard error. Figure 1 details the clustering performance of the algorithm and
baselines for various numbers of clusters (mixture components assumed by the
model). Generalized co-EM outperforms the baselines for all problems and any
number of clusters.

In order to find out how multi-view co-EM performs when there is no natural
feature split in the data, we randomly draw six single-view document data sets
that come with the cluto clustering toolkit [21]. We randomly split the available
attributes into s subsets (as proposed in [17]) and average the performance over
20 distinct attribute splits. We set the number of clusters to the respective
number of true mixture components. Figure 2 (left) shows the results for several
numbers of views. We can see that in all but one case the best number of views
is greater than one. In four of six cases we can reject the null hypothesis that one
view incurs a lower entropy than two views at a significance level of α = 0.01.
Additionally, in 2 out of six cases, three views lead to significantly better clusters
than two views; in four out of six cases, the entropy has its empirical minimum
for more than two views.

In all experiments so far, we have fixed η = 1. Let us study whether tuning or
annealing η can improve the cluster quality. Figure 2 (center) shows the entropy
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for various fixed values of η; we see that 1 is always the best setting (η > 1 would
imply negative word probabilities θ(v)

lj ).
Let us finally study whether a fixed value of η or annealing η results in a

better cluster quality. In the following experiments, η is initialized at 1 and slowly
annealed towards 0. Figure 2 (right) shows the development of the cluster entropy
as η approaches towards 0. We see that fixing and annealing η empirically works
equally well; annealing η causes a slight improvement in two cases and a slight
deterioration of the quality in one case. The distinction between co-EM with
and without annealing of η lies in the fact that convergence can only be proven
when η is annealed; empirically, these variants are almost indistinguishable.

6 Conclusion

The QMV function defined in Equation 7 augments the single-view optimization
criterion QSV by penalizing disagreement among distinct views. This is moti-
vated by the result that the consensus among independent hypotheses upper-
bounds the error rate of either hypothesis. Theorem 1 rewrites the criterion
QMV (Θ,Θt) such that it can easily be maximized over Θ when Θt is fixed: an M
step is executed locally in each view. Maximizing QMV naturally leads to gen-
eralized co-EM algorithm for arbitrarily many views and unlabeled data. Our
derivation thus explains, motivates, and generalizes the co-EM algorithm.

While the original co-EM algorithm cannot be shown to converge, a variant
of the method that anneals η over time can be guaranteed to converge and to
(locally) maximize

∑
v P (X(v)|Θ). Initially amplifying the convex error bound

Δ in the criterion QMV serves as a heuristic that guides the search towards a
better local optimum.

Our experiments show that co-EM is a better clustering procedure than
single-view EM for actual multi-view problems such as clustering linked docu-
ments. Surprisingly, we also found that in most cases the impurity of text clusters
can be reduced by splitting the attributes at random and applying multi-view
clustering. This indicates that the consensus maximization principle may con-
tribute to methods for a broader range of machine learning problems.
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Nonrigid Embeddings for Dimensionality Reduction

Matthew Brand

Mitsubishi Electric Research Labs,
Cambridge, MA, USA

Abstract. Spectral methods for embedding graphs and immersing data man-
ifolds in low-dimensional spaces are notoriously unstable due to insufficient
and/or numerically ill-conditioned constraint sets. Why show why this is en-
demic to spectral methods, and develop low-complexity solutions for stiffen-
ing ill-conditioned problems and regularizing ill-posed problems, with proofs of
correctness. The regularization exploits sparse but complementary constraints on
affine rigidity and edge lengths to obtain isometric embeddings. An implemented
algorithm is fast, accurate, and industrial-strength: Experiments with problem
sizes spanning four orders of magnitude show O(N) scaling. We demonstrate
with speech data.

1 Introduction

Embedding a graph under metric constraints is a central operation in nonlinear dimen-
sionality reduction (NLDR), ad-hoc wireless network mapping, and visualization of re-
lational data. Despite a recent wave of advances in spectral embeddings, it has not yet
become a practical, reliable tool. At root is the difficulty of automatically generating
embedding constraints that make the problem well-posed, well-conditioned, and solv-
able on practical time-scales. Well-posed constraints guarantee a unique solution. Well-
conditioned constraints make the solution numerically separable from poor solutions.
Spectral embeddings from local constraints are frequently ill-posed and almost always
ill-conditioned. Both problems manifest as a tiny or zero eigengap in the spectrum of
the embedding constraints, indicating that the graph is effectively nonrigid and there is
an eigen-space of solutions whose optimality is numerically indistinguishable.

Section 2 shows why small eigengaps are endemic to spectral methods for com-
bining local constraints, making it numerically infeasible to separate a solution from
its modes of deformation. To remedy this, section 3 presents a linear-time method for
stiffening an ill-conditioned problem at all scales, and prove that it inflates the eigengap
between the space of optimal solutions and the space of suboptimal deformations.

If a problem is ill-posed, the graph is qualitatively nonrigid and the space of optimal
solutions spans all of its degrees of freedom. Section 4 shows how to choose the most
dispersed embedding from this space in a semidefinite programming problem (SDP)
with a small number of variables and constraints, and proves feasability. Although SDP

for graphs has O(N6) complexity, our methods give a problem reduction that yields
embeddings of very large graphs in a matter of seconds or minutes, making million-
point problems practical on a ordinary consumer PC.

J. Gama et al. (Eds.): ECML 2005, LNAI 3720, pp. 47–59, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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2 Setting

This paper considers the family of Laplacian-like local-to-global graph embeddings,
where the embedding of each graph vertex is constrained by the embeddings of its
immediate neighbors (in graph terminology, its 1-ring). For dimensionality reduction,
the vertices are datapoints that are viewed as samples from a manifold that is somehow
curled up in the ambient sample space, and the graph embedding constraints are de-
signed to reproduce local affine structure of that manifold while unfurling it in a lower
dimensional target space. Examples include Tutte’s method [Tut63], Laplacian eigen-
maps [BN02], locally linear embeddings (LLE) [RS00], Hessian LLE [DG03], charting
[Bra03], linear tangent-space alignment (LTSA) [ZZ03], and geodesic nullspace analy-
sis (GNA) [Bra04]. The last three methods construct local affine constraints of maximal
possible rank, leading to the stablest solutions. Due to their simplicity, our analysis will
be couched in terms of LTSA and GNA. All other methods employ an subset of their
affine constraints, so our results will be applicable to the entire family of embeddings.

LTSA and GNA take an N-vertex graph already embedded in an ambient space RD

with vertex positions X = [x1, · · · ,xN ] ∈ RD×N , and re-embed it in a lower-dimensional
space Rd with new vertex positions Y = [y1, · · · ,yN ] ∈ Rd×N , preserving local affine
structure. Typically the graph is constructed from point data by some heuristic such as
k-nearest neighbors. The embedding works as follows: Take one such neighborhood of k
points and construct a local d-dimensional coordinate system Xm

.= [xi,x j, · · ·] ∈ Rd×k,
perhaps by local principal components analysis. Now consider the nullspace matrix
Qm ∈Rk×(k−d−1), whose orthonormal columns are orthogonal to the rows of Xm and to
the constant vector 1. This nullspace is also orthogonal to any affine transform A(Xm) of
the local coordinate system, such that any translation, rotation, or stretch that preserves
parallel lines in the local coordinate system will satisfy A(Xm)Qm = 0. Any other trans-
form T (Xm) can then be separated into an affine component A(Xm) plus a nonlinear
distortion, N(Xm) = T (Xm)QmQ�

m . The algorithm LTSA (resp. GNA) assembles these
nullspace projectors QmQ�

m, m = 1,2, · · · into a sparse matrix K ∈ RN×N that sums
(resp. averages with weights) nonlinear distortions over all neighborhoods in the graph.
Now let V ∈ Rd×N have row vectors that are orthonormal and that span the the column
nullspace of [K,1]; i.e., VV� = I and V[K,1] = 0. It follows immediately that if V ex-
ists and we use it as a basis for embedding the graph in R

d , each neighborhood in that
embedding will have zero nonlinear distortion with respect to its original local coor-
dinate systems [ZZ03]. Furthermore, if the neighborhoods are sufficiently overlapped
to make the graph affinely rigid in Rd , the transform from the original data X to the
embedding basis V must stretch every neighborhood the same way [Bra04]. Then we
can estimate a linear transform T∈Rd×d that removes this stretch giving Y = TV, such
that the transform from X to Y involves only rigid transforms of local neighborhoods
[Bra04]. I.e., the embedding Y is isometric.

When there is any kind of noise or measurement error in this process, a least-squares
optimal approximate basis V can be obtained via thin SVD of K ∈RN×N or thin EVD of
KK�. Because K is very sparse with O(N) nonzero values, iterative subspace estima-
tors typically exhibit O(N) time scaling. When K is built with GNA, the corresponding
singular values σN−1,σN−2, · · ·measure the pointwise average distortion per dimension.

One of the central problems of this paper is that the eigenvalues of KK�—and in-
deed of any constraint matrix in local NLDR—grow quadratically near λ0 = 0, which
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is the end of the spectrum that furnishes the embedding basis V. (A proof is given in
the first two propositions in the appendix.) Quadratic growth means that the eigenvalue
curve is almost flat at the low end of the spectrum (λi+1−λi ≈ 0) such that the eigen-
gap that separates the embedding basis from other eigenvectors is negligible. A similar
phenomenon is observed in the spectra of simple graph Laplacians1 which are also
sigmoidal with quadratic growth near zero.

3 Stiffening Ill-Conditioned Problems with Multiscale Constraints

In graph embeddings the constraint matrix plays a role akin to the stiffness matrix in
finite-element methods, and in both cases the eigenvectors associated with the near-zero
eigenvalues specify an optimal parameterization and its modes of vibration. The prob-
lem facing the eigensolver (or any other estimator of the nullspace) is that convergence
rate is a linear function of the relative eigengap |λc−λc+1|

λmax−λmin
or eigenratio λc+1

λc
between

the desired and remaining principle eigenvalues [Kny01]. The numerical stability of the
eigenvectors similarly depends on the eigengap [SS90]. As just noted, in local-to-global
NLDR the eigengap and eigenratio are both very small, making it hard to separate the
solution from its distorting modes of vibration. Intuitively, low-frequency vibrations
make very smooth bends in the graph, which incur very small deformation penalties
at the local constraint level. Since the eigenvalues sum these penalties, the eigenvalues
associated with low-frequency modes of deformation have very small values, leading to
poor numerical conditioning and slow convergence of eigensolvers. The problem gets
much worse for large problems where fine neighborhood structure makes for closely
spaced eigenvalues, making it impossible for iterative eigensolvers to accurately com-
pute the smallest eigenvalues and vectors.

We propose to solve this problem by stiffening the mesh with longer-range con-
straints that damp out lower-frequency vibrations. This can be done without looking
at the point data. Indeed, it must, because long-range distances in the ambient space
are presumed to be untrustworthy. Instead we combine short-range constraints from
overlapping rings in the graph, as follows:

ALGORITHM: Neighborhood expansion
1. Select a subgraph consisting of a small set of overlapped neighborhoods and
compute an basis Vsubgraph for embedding its points in Rd .
2. Form a new neighborhood with at least d+1 points taken from the embedding
basis and add (LTSA) or average (GNA) its nullspace projector into K.

Because the K matrix penalizes distortions in proportion to the distances between
the points, these larger-scale constraints can significantly drive up the eigenvalues out-
side the nullspace, enlarging the eigengap. It can be shown that

Proposition 1. The nullspace of K is invariant to neighborhood expansions.

See the appendix for all proofs. Neighborhood expansion is physically analogous to
adding short ribs to a 2D plate to stiffen it against small-radius bends in 3D. However, in

1 E.g., see http://www.cs.berkeley.edu/˜demmel/ cs267/lecture20/lecture20.html
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Fig. 1. N = 500 points are randomly sampled from a square patch of a cylindrical surface in
RD=3, and connected in a k = 4 nearest neighbors graph which is then isometrically embedded in
Rd=2. Spectral embedding methods preserve affine structure of local star-shaped neighborhoods;
convex optimization methods preserve edge lengths. Neither is sufficient for sparse graphs, while
more densely connected graphs present exploding compute costs and/or may not embed without
distortion and folds. Sparse graphs also yield numerically ill-conditioned problems. This paper
shows how to obtain well-conditioned problems from very sparse neighborhood graphs and com-
bine them with distance constraints to obtain high quality solutions in linear time.

mode
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Stiffening the constraint matrix of a planar−embeddable graph

Fig. 2. Stiffening the embedding constraint matrix drives up the eigenvalues associated with low-
frequency bending modes. In this example, the constraint matrix is derived from N = 500 points
forming a 2D manifold embedded in R256. The original graph (green) is shown in green super-
imposed on a random multiscale stiffening (blue). The low-frequency tail of the eigenspectrum
is plotted at center, before (green) and after (blue) stiffening. (The eigenvalue associated with the
constant eigenvector v0 = N−1/2 · 1 is suppressed.) The eigengap between the true 2D nullspace
and the remaining approximate nullspace is improved by almost 2 orders of magnitude, whereas
the original spectrum appears to have a 3D nullspace. The price is a modest 15% increase in
constraint matrix density, shown at right as dark blue dots superimposed on the original sparsity
pattern. However, the subspace computation is better conditioned and converges four times faster.

order to usefully improve the eigengap, one must brace against large-radius bends. For-
tunately, stiffening lends itself very naturally to a multiscale scheme: We construct a set
of neighborhood expansions that approximately covers the graph but adds constraints
on just a small subset of all vertices. Note that this subset of vertices plus their param-
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eterizations in the new neighborhoods constitutes a new embedding problem. Thus we
may recursively stiffen this problem in the same manner, and so on until the original
problem is stiffened at all scales:

ALGORITHM: Multiscale stiffening
1. Choose a constant fraction of vertices to be anchors.
2. Cover or partially cover the data with neighborhood expansions, adding con-
straints on any anchors that fall in an expansion.
3. Recurse only on the anchors, using their parameterizations in the neighborhood
expansions.

Proposition 2. If the number of neighborhoods and points is halved at each recursion,
multiscale stiffening can be performed in O(N) time with no more than a doubling of
the number of nonzeros in the K matrix.

For modern iterative nullspace estimators (e.g., LOBPCG [Kny01]), compute time of each
iteration is typically linear in the number of nonzeros in K while convergence rate is
supra-linear in the eigengap. Consequently, stiffening is a winning proposition. Figure 2
shows a simple example where stiffening the graph in figure 1 makes the spectrum rank-
revealing and cuts the EVD time by 3/4. However, due to the difficulty of implementing
the appropriate data structures efficiently in Matlab, there was no reduction in overall
“wall time”.

4 Regularizing Ill-Posed Problems with Edge Length Constraints

Even if the eigenvector problem is numerically well-conditioned, it may be the case
that the graph is intrinsically nonrigid. This commonly happens when the graph is gen-
erated by a heuristic such as k-nearest neighbors. In such cases the embedding basis
V ∈ Rc×N has greater dimension c than desired (c > d). For example, the initial con-
straints might allow for a variety of folds in Rd , then V must span all possible folded
configurations. The embedding is thus ill-posed, and some regularization is needed to
choose from the space of possible embeddings. We will presume that in the most un-
folded configuration, some subset of vertices are maximally dispersed. For example,
we might maximize the distance between each vertex and all of its 4-hop neighbors.
In order to prevent the trivial solution of an infinitely large embedding, we must fix
the scale in each dimension by fixing some distances, i.e., edge lengths. Thus we seek
an embedding that satisfies the affine constraints encoded in the K matrix, maximizes
distances between a mutually repelling subset of vertices, and satisfies exact distance
constraints on some subset of edges. For this we adapt the semidefinite graph embed-
ding of [LLR95].

Formally, let mixing matrix U∈Rc×d have orthogonal columns of arbitrary nonzero
norm. Let error vector σ = [σ1, · · · ,σc]� contain the singular values of distortion matrix
K associated with its left singular vectors, the rows of V. The matrix U will select
a metrically correct embedding from the space of possible solutions spanned by the
rows of V. The target embedding, Y = [y1, · · · ,yN ] .= U�V ∈ Rd×N , will have overall
distortion ‖U�σ‖ and distance ‖yi− y j‖ = ‖U�(vi− v j)‖ between any two points (vi
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being the ith column of V). The optimization problem is to minimize the distortion
while maximizing the dispersion

U∗ = max
U
−‖U�σ‖2 +∑

pq
r2

pq‖yp−yq‖2 (1)

for some choice of weights rpq ≥ 0, preserving distances

∀i j∈EdgeSubset‖yi−y j‖ ≤ Di j (2)

on at least d edges forming a simplex of nonzero volume in Rd (otherwise the embed-
ding can collapse in some dimensions). We use inequality instead of equality because
the Di j, measured as straight-line distances, are chordal in the ambient space RD rather
than geodesic in the manifold, and thus may be inconsistent with a low dimensional
embedding (or infeasible). The inequality allows some edges to be slightly shortened in
favor of more dispersed and thus flatter, lower-dimensional embeddings. In general, we
will enforce distance constraints corresponding to all or a random sample of the edges
in the graph. Unlike [LLR95] (and [WSS04], discussed below), the distance constraints
do not have to form a connected graph.

Using the identity ‖Y‖2
F = ‖U�V‖2

F = trace(U�VV�U) = trace(VV�UU�), we
massage eqns. 1-2 into a small semidefinite program (SDP) on objective G .= UU� � 0:

max
G

trace((C−diag(σ)2)G) (3)

with C .= ∑
pq

r2
pq(vp−vq)(vp−vq)� (4)

subject to ∀i, j∈EdgeSubsettrace((vi−v j)(vi−v j)�G)≤ D2
i j . (5)

In particular, when all points repel equally (∀pqrpq = 1), then C = VV� = I, and
trace(CG) = ∑pq‖yp−yq‖2 = ‖Y‖2

F . Because V⊥1, the embedding is centered.
At the extreme of c = d, we recover pure LTSA/GNA, where U = T is the upgrade to

isometry (the SDP is unnecessary). At c = D−1 we have an alternate formulation of the
semidefinite graph embedding [LLR95], where range(V) = span(RN⊥1) replaces the
centering constraints (the LTSA/GNA is unnecessary). In between we have a blend that
we will call Nonrigid Alignment (NA). With iterative eigensolving, LTSA/GNA takes
O(N) time, but requires a globally rigid set of constraints. The semidefinite graph em-
bedding does not require rigid constraints, but has O(N6) time scaling. Nonrigid Align-
ment combines the best of these methods by using LTSA/GNA to construct a basis that
drastically reduces the semidefinite program. In addition, we have the option of com-
bining an incomplete set of neighborhoods with an incomplete set of edge length con-
straints, further reducing both problems. (A forthcoming paper will detail which subsets
of constraints guarantee affine rigidity.)

Although this method does require an estimate of the local dimension for the ini-
tial LTSA/GNA, it inherits from semidefinite graph embeddings the property that the
spectrum of X gives a sharp estimate of the global embedding dimension, because the
embedding is spanned by V. In fact, one can safely over-estimate the local dimension—
this reduces the local nullspace dimension and thus the global rigidity, but the additional
degrees of freedom are then fixed in the SDP problem.
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4.1 Reducing the SDP Constraints

The SDP equality constraints can be rewritten in matrix-vector form as A�svec(G) = b,
where svec(G) forms a column vector from the upper triangle of X with the off-diagonal
elements multiplied by

√
2. Here each column of A contains a vectorized edge length

constraint (e.g., svec((vi−v j)(vi−v j)�) for an equality constraint) for some edge i↔
j; the corresponding element of vector b contains the value D2

i j. A major cost of the SDP

solver lies in operations on the matrix A ∈ Rc2×e, which may have a large number of
linearly redundant columns. Note that c2 is relatively small due to the choice of basis,
but e, the number of edges whose distance constraints are used in the SDP, might be very
large. When the problem has an exact solution (equation 5 is feasible as an equality),
this cost can be reduced by projection: Let F ∈ R

e× f , f � e be a column-orthogonal
basis for the principal row-subspace of A, which can be estimated in O(e f 2c2) time
via thin SVD. From the Mirsky-Eckart theorem it trivially follows that the f equality
constraints,

F�A�vec(G) = F�b (6)

are either equivalent to or a least-squares optimal approximation of the original equality
constraints. In our experience, for large, exactly solvable problems, it is not unusual to
reduce the cardinality of constraint set by 97% without loss of information.

Proposition 3. The resulting SDP problem is feasible.

When the problem does not have an exact solution (equation 5 is only feasible as an
inequality), one can solve the SDP problem with a small subset of randomly chosen
edge length inequality constraints. In conjunction with the affine constraints imposed
by the subspace V, this suffices to satisfy most of the remaining unenforced length
constraints. Those that are violated can be added to the active set and the SDP re-solved,
possibly repeating until all are satisfied.

These reductions yield a practical algorithm for very large problems:

ALGORITHM: Nonrigid LTSA/GNA

1. Obtain basis: Compute extended approximate nullspace V and residuals σi of (stiff-
ened) K matrix.
2. SDP: Find G maximizing eq. 3 subject to eq. 6 or eq. 5 with a constraint subset.
2a. Repeat 2 with violated constraints, if any.
3. Upgrade to isometry: Factor G → Udiag(λ)2U� and set embedding Y =
diag(λ)U�V.

4.2 Related Work

Recently [WSS04] introduced an algorithm that applies the LLR embedding to densely
triangulated graphs, and [WPS05] introduced a related scheme called �SDE which uses
a landmark basis derived from LLE to reduce the semidefinite program. We can high-
light some substantial differences between our approach and �SDE: 1) Because LLE

is quasi-conformal and has no isometry properties, one would expect that a much
higher-dimensional LLE basis will be necessary to span the correct isometric embed-
ding (this we have verified numerically), either substantially increasing the SDP time
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pre−image

NA, 0.42 seconds

GNA, 0.78 seconds

SDP, 191. seconds

Fig. 3. A 2D NA embedding of a 4-neighbors graph on 300 points in R256 perfectly recovers
the pre-image. The LTSA/GNA solution has five affine degrees of freedom associated with the
distorted subgraphs on the bottom boundary. The SDP solution “foams” around large cycles where
the graph is nonrigid.

or decreasing solution quality if a lower-dimensional basis is used. 2) If the manifold
has nonzero genus or concave boundary, the number of randomly selected landmarks—
and thus basis dimensions—needed to span the isometric embedding can grow expo-
nentially; not so for the LTSA/GNA basis, which depends only on local properties of
the manifold. 3) graph triangulation increases the number of graph edges by a fac-
tor of k2and the complexity of the SDP problem by k6—a major issue because k it-
self should grow quadratically with the intrinsic dimension of the manifold. Thus we
can solve problems 2 orders of magnitude larger in considerably less time, and report
exact solutions.

4.3 Example

In this example, the source manifold is a square planar patch, which is embedding iso-
metrically in R4 through the toric map that takes each ordinate (x)→ (sin x,cosx). R4

is in turn embedded in R8 by the same map, and so on until the ambient space has
D = 256 dimensions. The patch is randomly sampled in RD and each point connected
to its four nearest neighbors. The graph is too sparsely connected to determine a rigid
embedding for either LTSA/GNA or the LLR SDP (see figure 3). Nonrigid GNA yields
near-perfect embeddings. For example, figure 3 depicts the pre-image and three em-
beddings of a small N = 300 point, K = 4 neighbors graph. Ordinary LTSA/GNA has a
7-dimensional nullspace, indicating that some subgraphs have unwanted affine degrees
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of freedom. This can be resolved by increasing K, but that risks bringing untrusted edge
lengths into the constraint set. SDE can fix most (but not necessarily all) of these DOFs
by fully triangulating each neighborhood, but that increases the number of edges by a
factor of K2 and the SDP time complexity by a factor of K6. Even for this small problem
NA is almost three orders of magnitude faster than untriangulated SDE; that gap widens
rapidly as problem size grows.

Empirically, NA exhibits the predicted linear scaling over a wide range of problem
sizes. Working in MatLab on a 3GHz P4 with 1Gbyte memory, 102 points took roughly
0.3 seconds;103 points took roughly 2 seconds; 104 points took 21 seconds; 105 points
took roughly 232 seconds; we see linear scaling in between. The dominant computation
is the EVD, not the SDP.

5 Application to Speech Data

The TIMIT speech database is a widely available collection of audio waveforms and
phonetic transcriptions for 2000+ sentences uttered by 600+ speakers. We sought to
model the space of acoustic variations in vowel sounds. Starting with a standard repre-
sentation, we computed a vector of D = 13 mel-cepstral features for each 10 millisecond
frame that was labelled as a vowel in the transcriptions. To reduce the impact of tran-
scription errors and co-articulatory phenomena, we narrowed the data to the middle
half of each vowel segment, yielding roughly N = 240,000 samples in R13. Multiple
applications of PCA to random data neighborhoods suggested that the data is locally
5-dimensional. An NA embedding of the 7 approximately-nearest neighbors graph with
5-dimensional neighborhoods and a 25-dimensional basis took slightly less than 11
minutes to compute. The spectrum is sharp, with ¿99% of the variance in 7 dimensions,
¿95% in 5 dimensions, and ¿75% in 2 dimensions. A PCA rotation of the raw data
matches these percentages at 13, 9, and 4 dimensions respectively. Noting the discrep-
ancy between the estimated local dimensionality and global embedding dimension, we
introduced slack variables with low penalties to explore the possibility that the graph
was not completely unfolding. Since this left the spectrum substantially unchanged, we
conjecture that there may be topological loops or unnoticed 7-dimensional clusters, and
indeed some projections of the embedding showed holes.

Figure 4 shows how the phonemes are organized in the two principal dimensions of
the NA and PCA representations. The NA axes are clearly correlated with the physical
degrees of freedom of the speech apparatus: Roughly speaking, as one moves to the
right the mouth narrows horizontally, from iy (beet) and ey (bait) to ao (bought) and
aw (bout); as one moves up the mouth narrows vertically with the lower lip moving
forward and upward, from ah (but) and eh (bet) to ow (boat) and uh (book). The third
dimension (not shown) appears to be correlated with the size of the resonant chamber at
the back of the mouth, i.e. tongue position. After considerable study, it is still not clear
how to interpret the raw PCA axes.

A low-dimensional representation is advantageous for speech recognition because
it makes it practical to model phoneme classes with full covariance Gaussians. A long-
standing rule-of-thumb in speech recognition is that a full-covariance Gaussian is com-
petitive with a mixture of 3 or 4 diagonal-covariance Gaussians [LRS83]. The im-
portant empirical question is whether the NA representation offers a better separa-
tion of the classes than the PCA. This can be quantified (independently of any down-
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Fig. 4. LEFT: A thin slice along the two principal axes of an NA embedding of 2.5×105 vowel fea-
ture vectors. TIMIT phoneme labels are scatter-plotted according to their embedding coordinates.
The distribution of phonemes is well correlated with mouth shape (see discussion in section 5).
MIDDLE: Normalized spectra of the NA and PCA representations, showing the fraction of total
variance captured in each dimension. RIGHT: An equivalent slice through the PCA representation
slice scatter-plot is far less interpretable. Some sounds (e.g., ix in debit) depend little on lip shape
and are thus distributed freely through both plots.

stream speech processing) by fitting a Gaussian to each phoneme class and calculating
the symmetrized KL-divergence between classes. Higher divergence means that one
will need fewer bits to describe classification errors made by a (Gaussian) quadratic
classifier. We found that the divergence between classes in the d = 5 NA representa-
tion was on average approximately 2.2 times the divergence between classes in the
d = 5 PCA representation, with no instances where the NA representation was infe-
rior. Similar advantages were observed for other values of d, even, surprisingly, d = 1
and d = D.

Even though both representations are unsupervised, we may conclude that preserv-
ing short-range metric structure (NA) is more conducive to class separation than pre-
serving long-range distances (PCA). We are now working on a larger embedding of
all phonemes which, when combined with the GNA out-of-sample extension, will be
incorporated into a speech recognition engine.

6 Discussion

We have demonstrated that rigidity is a key obstacle for viable nonlinear dimension-
ality reduction, but by stiffening the constraint set and recasting the upgrade to isom-
etry as a small SDP problem, problems that are severely ill-posed and ill-conditioned
can be solved—in linear time. At time of submission, we have successfully embed-
ded problems of up to 106 points, and it appears that the principal challenge in using
these methods will be the most advantageous choice of basis dimension. The is a matter
of finding the eigengap of ill-posed problems, and we hope to make connections with
an existing literature on large-scale physical eigenproblems. Another issue is the initial
problem of graph building—at 105 points, the approximate nearest-neighbor algorithms
that make graph-building tractable begin to make substantial errors. For NLDR to be
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practical above 107 points—the size of bioinformatic and econometric problems—the
problem of reliable graph-building will have to be solved.
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A Analysis of Local-to-Global Spectral Models and Misc. Proofs
We can view the constraint matrix K as a discrete approximation to a convolution of a
candidate embedding Z with a filter If we plot columns of K, this filter resembles an
inverted Laplacian. Analysis shows that this is indeed the case:

Proposition 4. Let Z .= [z1, · · · ,zN ] ∈Rd×N with zi = z(yi) be a data parameterization
given by some C2 multivalued map z : M →Rd on the intrinsic coordinates yi. Let

K .=
(

∑
m

SmQmQ�
mdiag(wm)S�m

)
diag(∑

m
Smwm)−1 (7)

where binary indexing matrix Sm ∈ {0,1}N×k select k points forming the mth neigh-
borhood and neighborhood weight vector wm ∈ Rk assigns points weights accord-
ing to their distance from the neighborhood center: ({wm}i ∝ exp(−‖{Xm}i −
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Xm‖2/2σ2)/σ). Then each column of K is a discrete difference of Gaussians opera-
tor with the parameterization error ‖ZK‖2

F approximating ‖z−G∗ z−�2G∗ z‖2, the
difference between z and a smoothed version of itself, minus its convolution with a
Laplacian-of-Gaussian operator.

Proof. (prop. 4) For simplicity, we will first consider the case of a 1D manifold sampled
at regular intervals. Recall that K is an average of neighborhood nullspace projectors,
each of the form Nm = QmQ�

m = I− 1
k 11�−PmP�m , where Pk ∈ Rk×d is an orthogonal

basis of centered local coordinates Xm−Xm1�. Because orthogonalization is a linear
operation, 1

k −{Nm}i�= j is proportional to ‖{Xm}i−Xm‖ · ‖{Xm} j−Xm‖, the product
of the distances of points i and j from the clique centroid. Viewing the elements of the
matrix PmP�m as surface heights, we have a quadratic saddle surface, maximally positive
in the upper left and lower right corners, and maximally negative in the upper right and
lower left corners. In our simplified case, Pm = k−1/2 · [− j,1− j, · · · , j− 1, j]� where
k = 2 j + 1 is the size of each neighborhood, and elements in each column of K are
Gaussian-weighted sums along the diagonals of Nm. Precisely, for the pth non-boundary
neighborhood, the nth nonzero subdiagonal element in a column of K is

Kp+n,p = −1
k

i=2 j

∑
i=n

(1 +(i− j)(i− j−n)
3

j( j + 1)
)e−(i− j)2

= −1
k

3
j( j + 1)

i=2 j

∑
i=n
{(1− (i− j)2)e−(i− j)2

−(1−n(i− j))e−(i− j)2
+

j( j + 1)
3

e−(i− j)2}.

Note that (1−(i− j)2)e−(i− j)2
is a Laplacian-of-Gaussian, and that if we hold i = n and

iterate over n (the elements of a column in K), we obtain a difference of Gaussians and
LoG’s, each with finite support; summing over i gives a superposition of these curves,
each with a different support. To generalize to non-regular sampling, simply increment
i by the difference between neighboring points. To generalize to multidimensional man-
ifolds, note that the above arguments apply to any subset of points forming a geodesic
line on M , and by the linearity of K and the Laplacian operator, to any linear combina-
tion of different subsets of points forming different geodesics.

Proposition 5. The near-zero eigenvalues of I−G−�2G grow quadratically.

Proof. (prop. 5) Consider the harmonic equation, which describes how the graph vi-
brates in the space normal to its embedding: −(I−G−�2G)Y (x,t) = d2Y (x, t)/d2t,
with Y (x,t) being the displacement at time t and position x (in manifold-intrinsic co-
ordinates). For periodic motion, set Y (x, t) = sin(ωt) ·Y (x), with Y (x) being a vibra-
tional mode. After substitution and cancellation, the harmonic equation simplifies to
(I−G−�2G)Y (x) = ω2 ·Y (x), confirming that the mode Y (x) is an eigenfunction of
the operator I−G−�2G. One can verify by substitution that Y (x) = sin(ax + b) for
a ∈ {1,2, · · · ,N} ,b ∈ R is an orthogonal basis for solutions (eigenvectors) with eigen-
values on the sigmoid curve ω2 = 1− (1 + a2/

√
2π)e−a2

. A series expansion around
a = 0 reveals that the leading term is quadratic.
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Proof. (prop. 1) Expansion generates a new neighborhood whose parameterization is
affine to those of its constituent neighborhoods, thus its nullspace is orthogonal to K.

Proof. (prop. 2) Because of halving, at any scale the number of vertices in each neigh-
borhood expansion is, on average, a constant v � N that is determined only by the
intrinsic dimensionality and the average size of the original local neighborhoods. Halv-
ing also guarantees that the total number of neighborhood expansions is ∑i( 1

2 )iN < N.
Together these establish O(N) time. In each of the fewer than N neighborhood expan-
sions, a point receives on average d constraints from new neighbors—the same or less
than it receives in each of the N original neighborhoods.

Proof. (prop. 3) Since F is a variance-preserving rotation of the constraints, one can
always rotate the f -dimensional row-space of F = [f1, · · · , f f ] so that ∀if�i b > 0 . Then
any infeasible solution G̃ can be scaled by z> 0 such that ∀if�i A�svec(zG̃)≤ f�i b, with
any differences made up by nonnegative slack variables.



Multi-view Discriminative Sequential Learning
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Abstract. Discriminative learning techniques for sequential data have
proven to be more effective than generative models for named entity
recognition, information extraction, and other tasks of discrimination.
However, semi-supervised learning mechanisms that utilize inexpensive
unlabeled sequences in addition to few labeled sequences – such as the
Baum-Welch algorithm – are available only for generative models. The
multi-view approach is based on the principle of maximizing the consen-
sus among multiple independent hypotheses; we develop this principle
into a semi-supervised hidden Markov perceptron, and a semi-supervised
hidden Markov support vector learning algorithm. Experiments reveal
that the resulting procedures utilize unlabeled data effectively and dis-
criminate more accurately than their purely supervised counterparts.

1 Introduction

The problem of labeling observation sequences has applications that range from
language processing tasks such as named entity recognition, part-of-speech tag-
ging, and information extraction to biological tasks in which the instances are
often DNA strings. Traditionally, sequence models such as the hidden Markov
model and variants thereof have been applied to the label sequence learning
problem. Learning procedures for generative models adjust the parameters such
that the joint likelihood of training observations and label sequences is maxi-
mized. By contrast, from the application point of view the true benefit of a label
sequence predictor corresponds to its ability to find the correct label sequence
given an observation sequence.

In the last years, conditional random fields [14, 15], hidden Markov support
vector machines [4] and their variants have become popular; their discriminative
learning procedures minimize criteria that are directly linked to their accuracy
of retrieving the correct label sequence. In addition, kernel conditional random
fields and hidden Markov support vector machines utilize kernel functions which
enables them to learn in very high dimensional feature spaces. These features
may also encode long-distance dependencies which cannot adequately be handled
by first-order Markov models. Experiments uniformly show that discriminative
models have advanced the accuracy that can be obtained for sequence labeling
tasks; for instance, some of the top scoring systems in the BioCreative named
entity recognition challenge used conditional random fields [18].

J. Gama et al. (Eds.): ECML 2005, LNAI 3720, pp. 60–71, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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In the training process of generative sequence models, additional inexpensive
and readily available unlabeled sequences can easily be utilized by employing
Baum-Welch, a variant of the EM algorithm. But since EM uses generative mod-
els, it cannot directly be applied to discriminative learning. Text sequences are
often described by high-dimensional attribute vectors that include, for instance,
word features, letter n-grams, orthographical and many other features. These
vectors can be split into two distinct, redundant views and thus the multi-view
approach can be followed. Multi-view algorithms such as co-training [5] learn two
initially independent hypotheses, and then minimize the disagreement of these
hypotheses regarding the correct labels of the unlabeled data [11]. Thereby, they
minimize an upper bound on the error rate [10].

The rest of our paper is structured as follows. Section 2 reports on related
work and Section 3 reviews input output spaces and provides some background
on multi-view learning. In Section 4 and 5 we present the dual multi-view hidden
Markov kernel perceptron, and then leverage this algorithm to the multi-view
hidden Markov support vector machine. We report on experimental results in
Section 6. Section 7 concludes.

2 Related Work

In a rapidly developing line of research, many variants of discriminative sequence
models are being explored. Recently studied variants include maximum entropy
Markov models [17], conditional random fields [14], perceptron re-ranking [7],
hidden Markov support vector machines [4], label sequence boosting [3], max-
margin Markov models [21], case-factor diagrams [16], sequential Gaussian pro-
cess models [2], kernel conditional random fields [15] and support vector machines
for structured output spaces [22].

De Sa [11] observes a relationship between consensus of multiple hypotheses
and their error rate and devises a semi-supervised learning method by cascading
multi-view vector quantization and linear classification. A multi-view approach
to word sense disambiguation combines a classifier that refers to the local context
of a word with a second classifier that utilizes the document in which words co-
occur [23]. Blum and Mitchell [5] introduce the co-training algorithm for semi-
supervised learning that greedily augments the training set of two classifiers. A
version of the AdaBoost algorithm boosts the agreement between two views on
unlabeled data [9].

Dasgupta et al. [10] and Abney [1] give PAC bounds on the error of co-
training in terms of the disagreement rate of hypotheses on unlabeled data in two
independent views. This justifies the direct minimization of the disagreement.
The co-EM algorithm for semi-supervised learning probabilistically labels all
unlabeled examples and iteratively exchanges those labels between two views
[20, 12]. Muslea et al. [19] extend co-EM for active learning and Brefeld and
Scheffer [6] study a co-EM wrapper for the support vector machine.
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3 Background

In this section we review “input output spaces” [2] and the consensus maximiza-
tion principle that underlies multi-view algorithms for the reader’s convenience.
In the remainder of our paper we adopt the clear notation proposed by [4].

3.1 Learning in Input Output Space

The setting of the label sequence learning problem is as follows. The labeled
sample consists of n pairs (x1,y1), . . . , (xn,yn), where xi ∈ X denotes the i-th
input or observation sequence of length Ti; i.e., xi = 〈xi,1, xi,2, . . . , xi,Ti 〉, and
yi ∈ Y the corresponding label sequence with yi = 〈yi,1, . . . , yi,Ti〉. We denote
the set of all labels by Σ; i.e., yi,t ∈ Σ.

In label sequence learning, joint features of the input and the label sequence
play a crucial role (e.g., “is the previous token labeled a named entity and both
the previous and current token start with a capital letter”?). Such joint features
of input and output cannot appropriately be modeled when the hypothesis is
assumed to be a function from input to output sequences. The intuition of the
input output space is that the decision function f : X × Y → R operates on a
joint feature representation Φ(xi,yi) of input sequence xi and output sequence
yi. Given an input, the classifier retrieves the output sequence

ŷ = argmax
ȳ

f(xi, ȳ). (1)

This step is referred to as decoding. Given the sample, the learning problem is
to find a discriminator f that correctly decodes the examples. We utilize the
w-parameterized linear model f(x,y) = 〈w, Φ(x,y)〉. The joint feature repre-
sentation Φ(x,y) allows capturing non-trivial interactions of label-label pairs

φσ,τ (yi|t) = [[yi,t−s = σ ∧ yi,t = τ ]], σ, τ ∈ Σ, (2)

([[cond]] returns 1 if cond is true and 0 otherwise) and label-observation pairs

φ̄σ,j(xi,yi|t) = [[yi,t = σ]]ψj(xi,t−s), (3)

where many features ψj(xi,t−s) extract characteristics of token xi,t−s; e.g.,
ψ234(xi,t−s) may be 1 if token xi,t−s starts with a capital letter and 0 other-
wise. We will refer to the vector ψ(x) = (. . . , ψj(x), . . .)T and denote the dot
product by means of k(x, x̄) = 〈ψ(x), ψ(x̄)〉.

The feature representation Φ(xi,yi) of the i-th sequence is defined as the
sum of all feature vectors Φ(xi,yi|t) = (. . . , φσ,τ (yi|t), . . . , φ̄σ,j(xi,yi|t), . . .)T
extracted at time t

Φ(xi,yi) =
Ti∑

t=1

Φ(xi,yi|t). (4)

Restricting the possible features to consecutive label-label (Equation 2 with
s = 1) and label-observation (Equation 3 with s = 0) dependencies is essentially
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a first-order Markov assumption and as a result, decoding (Equation 1) can
be performed by a Viterbi algorithm in time O(T |Σ|2), with transition matrix
A = {aσ,τ} and observation matrix Bx = {bs,σ(x)} given by

aσ,τ =
∑
i,ȳ

αi(ȳ)
∑

t

[[ȳt−1 = σ ∧ ȳt = τ ]] (5)

bs,σ(x) =
∑
i,t,ȳ

[[ȳt = σ]]αi(ȳ)k(xs, xi,t). (6)

We utilize a kernel function K((x,y), (x̄, ȳ)) = 〈Φ(x,y), Φ(x̄, ȳ)〉 to compute the
inner product of two observation and label sequences in input output space. The
inner product decomposes into

〈Φ(x,y), Φ(x̄, ȳ)〉 =
∑
s,t

[[ys−1 = ȳt−1 ∧ ys = ȳt]] +
∑
s,t

[[ys = ȳt]]k(xs, x̄t). (7)

3.2 The Consensus Maximization Principle

In the multi-view setting that we discuss here the available attributes X are
decomposed into disjoint sets X 1 and X 2. An example (xi,yi) is therefore viewed
as (x1

i ,x
2
i ,yi), where xv

i ∈ X v, with v = 1, 2.
A characteristic of multi-view methods is the natural inclusion of unlabeled

examples (x1
1,x

2
1), . . . , (x

1
m,x

2
m) which leads directly to semi-supervised tech-

niques. Dasgupta et al. [10] have studied the relation between the consensus of
two independent hypotheses and their error rate. One of their results that holds
under some mild assumptions is the inequality

P
(
f1 �= f2) ≥ max{P

(
err(f1)

)
, P

(
err(f2)

)
}. (8)

That is, the probability of a disagreement of two independent hypotheses upper
bounds the error rate of either hypothesis. Thus, the strategy of semi-supervised
multi-view learning is: Minimize the error for labeled examples and maximize
the agreement for unlabeled examples.

In the following the set Dl contains n labeled examples (x1
i ,x

2
i ,yi), i =

1, . . . , n, and Du consists of m unlabeled sequences (x1
i ,x

2
i ), i = n+1, . . . , n+m,

where in general n < m holds.

4 Multi-view Hidden Markov Perceptrons

In this section we present the dual multi-view hidden Markov perceptron
algorithm. For the reader’s convenience, we briefly review the single-view
hidden Markov perceptron [8, 4] and extend it to semi-supervised learning.

The Hidden Markov Perceptron
The goal is to learn a linear discriminant function f : X × Y → R given by

f(x,y) = 〈w, Φ(x,y)〉, (9)
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that correctly decodes any example sequence (xi,yi) ∈ D; i.e.,

yi = argmax
ȳ

f(xi, ȳ). (10)

Equation 9 can be transformed into its equivalent dual formulation given by

f(x,y) =
∑

i

∑
ȳ

αi(ȳ)〈Φ(xi, ȳ), Φ(x,y)〉, (11)

where the relation w =
∑

i

∑
ȳ αi(ȳ)Φ(xi, ȳ) is used. The dual depends only

on the inner product in input output space that can be computed efficiently by
means of a kernel (Equation 7) and dual variables αi(ȳ) ∈ Z. The latter weight
the importance of sequence ȳ for the prediction of observation xi.

The dual perceptron algorithm consecutively decodes each input in the train-
ing sample. When the decoding (Equation 11) yields an incorrectly labeled se-
quence ŷ for the i-th example, instead of the correct sequence yi, then the
corresponding αi are updated according to

αi(yi) = αi(yi) + 1; αi(ŷ) = αi(ŷ)− 1. (12)

Thus, after an error has occurred, the correct sequence receives more,
the incorrect prediction receives less influence. Since all initial αi = 0 it suf-
fices to store only those sequences in memory that have been used for an update.

The Multi-view Hidden Markov Perceptron
We now have labeled examples (x1

i ,x
2
i ,yi) ∈ Dl and unlabeled examples

(x1
i ,x

2
i ) ∈ Du, where ψ1(x1

i,t) and ψ2(x2
i,t), t = 1, . . . , Ti, live in distinct vec-

tor spaces. We have decision functions f(x1,x2,y) = f1(x1,y) + f2(x2,y) with

fv(xv,y) =
n+m∑
i=1

∑
ȳ

αv
i (ȳ)〈Φv(xv

i , ȳ), Φv(xv,y)〉, v = 1, 2. (13)

According to the consensus maximization principle, the perceptron algorithm
now has to minimize the number of errors for labeled examples and the disagree-
ment for unlabeled examples. Each view v = 1, 2 predicts the label sequence for
an example i, whether it is labeled or unlabeled, analogously to the single-view
hidden Markov perceptron according to

ŷv = argmax
ȳ

fv(xv
i , ȳ). (14)

The hidden Markov perceptron update rule for labeled examples remains un-
changed; if view v misclassifies the i-th labeled example (yi �= ŷv), then the
respective parameters are updated according to Equation 15.

αv
i (yi) = αv

i (yi) + 1; αv
i (ŷv) = αv

i (ŷ
v)− 1. (15)
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Table 1. Multi-view HM perceptron algorithm

Input: n labeled sequences Dl, m unlabeled sequences Du, number of iterations tmax.

1. Initialize all αv
i (yi) = 0, v = 1, 2.

2. For t = 1, . . . , tmax: For all sequences i = 1, . . . , n + m
3. Viterbi decoding: retrieve ŷ1

i and ŷ2
i (Equation 14).

4. If i-th sequence is a labeled example and yi �= ŷv
i

then update αv
i (·) according to Equation 15, v = 1, 2.

5. Elseif i-th sequence is an unlabeled example and ŷ1
i �= ŷ2

i

then update both views according to Equation 16.
6. End if.
7. End for i; End For t.

Output: Combined hypothesis f(x1,x2,y).

If the views disagree on an unlabeled example – that is, ŷ1 �= ŷ2 – updates have
to be performed that reduce the discord. Intuitively, each decision is swayed
towards that of the peer view in Equation 16.

αv
j (ŷv̄) = αv

j (ŷv̄) + Cu; αv
j (ŷ

v) = αv
j (ŷv)− Cu, v = 1, 2. (16)

The parameter 0 ≤ Cu ≤ 1 determines the influence of a single unlabeled ex-
ample. If Cu = 1 each example has the same influence whether it is labeled or
unlabeled. The output ŷ of the joint decision function

ŷ = argmax
ȳ

f(x1,x2, ȳ) = argmax
ȳ

[
f1(x1, ȳ) + f2(x2, ȳ)

]
(17)

can be efficiently computed by a Viterbi decoding. Viterbi needs a transition
cost matrix that details the score of a label transition and an observation cost
matrix that relates labels to observations. These quantities can be derived by
summing the scores of the corresponding single-view matrices. The transition
and observation matrices are given by A = A1 + A2 and B = B1 + B2, where
Av = {av

σ,τ} is defined in Equation 5 andBv
x = {bvs,σ(xv)} in Equation 6, v = 1, 2,

respectively. Table 1 shows the multi-view hidden Markov perceptron algorithm.

5 Multi-view Hidden Markov Support Vector Machines

In this Section we present the 1-norm and 2-norm multi-view hidden Markov
SVMs. We omit the superscript for view v = 1, 2 and use the superscript v̄ to
indicate variables of the peer view.

The aim in discriminative sequential learning is to learn f such that correct
label sequences obtain higher scores than any other label sequence (Equation
18). The corresponding extension to unlabeled sequences is given in Equation
19 where the prediction of the peer view is treated as true label sequence.
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f(xi,yi)−max
ȳ �=yi

f(xi, ȳ) > 0, i = 1, . . . , n (18)

f(xi,yv̄)− max
ȳ �=yv̄

f(xi, ȳ) > 0, i = n+ 1, . . . , n+m. (19)

The margin of the i-th sequence is defined as γv
i = max{0, fv(xv

i ,yi) −
maxȳ �=yi f

v(xv
i , ȳ)} in views v = 1, 2. Support vector machines enforce confi-

dent predictions by maximizing the margin 1
‖w‖ ; this leads us to a hard margin

optimization problem for each view.

min 1
2‖w‖2

s.t. ∀n
i=1, ∀ȳ �=yi 〈w, Φ(xi,yi)− Φ(xi, ȳ)〉 ≥ 1
∀n+m

i=n+1, ∀ȳ �=yv̄ 〈w, Φ(xj ,yv̄)− Φ(xi, ȳ)〉 ≥ 1.
(20)

The constraints can be integrated into the objective by means of Lagrange mul-
tipliers αi(ȳ) for each example i and each pseudo sequence ȳ �= yi (here, the
αi(ȳ) weight the influence of the difference vector Φ(xi,yi)− Φ(xi, ȳ)),

max
α

n+m∑
i=1

∑
ȳ �=yi

αi(ȳ)− 1
2

n+m∑
i,j=1

∑
ȳ �=yi
ȳ′ �=yj

αi(ȳ )αj(ȳ′)K ′
iȳ,jȳ′

s.t. ∀n+m
i=1 ∀ȳ �=yi αi(ȳ) ≥ 0,

(21)

where we use K ′
i,ȳ,j,ȳ′ shorthand for

K ′
iȳ,jȳ′ = 〈Φ(xi,yi)− Φ(xi, ȳ) , Φ(xj ,yj)− Φ(xj , ȳ′)〉 (22)

= K((xi,yi), (xj ,yj))−K((xi,yi), (xj , ȳ′)) (23)
−K((xi, ȳ), (xj ,yj)) +K((xi, ȳ), (xj , ȳ′)). (24)

Table 2. Working set optimization for labeled examples [4]

Input: i-th labeled sequence (x1
i ,x

2
i ,yi), C > 0, view v ∈ {1, 2}.

1. Loop
2. compute ŷv = argmaxy �=yi

fv(xv
i ,y)

3. If fv(xv
i ,yi) − f(xv

i , ŷv) ≥ 1 then return αv
i .

4. Else Sv = Sv ⋃{ŷv}.
5. Optimize αv

i (ȳ) over Φ(xv
i , yi) − Φ(xv

i , ȳ), ∀ȳ ∈ Sv

6. ∀y ∈ Sv with αv
i (y) = 0: Sv = Sv\{y}

7. End if.
8. End loop.

Output: Optimized αv
i .
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In general, we have to allow pointwise relaxations of the hard margin constraint by
slack variables leading us to a soft-margin optimization problem for each view,

min 1
2‖w‖2 + C

r

(
n∑

i=1
ξr
i + Cu

n+m∑
i=n+1

(min{γ v̄
i , 1})ξr

i

)
s.t. ∀n

i=1, ∀ȳ �=yi 〈w, Φ(xi,yi)− Φ(xi, ȳ)〉 ≥ 1− ξi
∀n+m

i=n+1, ∀ȳ �=yv̄ 〈w, Φ(xi,yv̄)− Φ(xi, ȳ)〉 ≥ 1− ξi
∀n+m

i=1 ξi ≥ 0,

(25)

where r = 1, 2 denotes a linear or quadratic penalization of the error, respec-
tively, C > 0 determines the trade-off between margin maximization and error
minimization, and Cu is a balancing factor that regularizes the influence of the
unlabeled data. Weights of min{γv̄

i , 1} to the slacks ξn+1, . . . , ξn+m relate errors
on unlabeled examples to the confidence of the peer view’s prediction.

In case of a linear loss – i.e., r = 1 – the inclusion of slack variables, costs,
and balancing factor resolves into n+m additional constraints of optimization
problem 21 that upper bound the sum of the αi.

∀n
i=1 :

∑
ȳ �=yi

αi(ȳ) ≤ C; ∀n+m
i=n+1 :

∑
ȳ �=yv̄

i

αi(ȳ) ≤ (min{γv̄
i , 1})Cu C. (26)

The necessary changes to optimization problem 21 in case of a quadratic penalty
(r = 2) can be incorporated into the kernel by K ′′

iȳ,jȳ′ = K ′
iȳ,jȳ′ +Δiȳ,jȳ′ where

Δiȳ,jȳ′ =

⎧⎨⎩
1
C i = j, ȳ = ȳ′, 1 ≤ i, j ≤ n

1
(min{γv̄

j ,1})Cu C i = j, ȳ = ȳ′, n+ 1 ≤ i, j ≤ n+m

0 otherwise.
(27)

Table 3. Working set optimization for unlabeled examples

Input: i-th unlabeled sequence (x1
i ,x

2
i ), C, Cu > 0, repetitions rmax.

1. S1 = S2 = ∅, α1
i = α2

i = 0.
2. Loop
3. compute ŷ1 = argmaxy f1(x1

i ,y) and ŷ2 = argmaxy f2(x2
i ,y)

4. If ŷ1 = ŷ2 then return α1
i and α2

i .
5. Else For v = 1, 2:
6. Substitute former target: ŷi = ŷv̄.
7. Add pseudo sequence: Sv = Sv

⋃{ŷv}
8. Optimize αv

i (ȳ) over Φ(xv
i , ŷi) − Φ(xv

i , ȳ), ∀ȳ ∈ Sv

9. ∀ȳ ∈ Sv with αv
i (ȳ) = 0: Sv = Sv\{ȳ}

10. End for v. End if.
11. Until consensus or rmax repetitions without consensus.

Output: Optimized α1
i and α2

i .
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Since the dual variables αi(ȳ) are tied to observation sequences xi, the optimiza-
tion problem (Equation 21) splits into n+m disjoint subspaces spanned by αi(·)
with fixed values for the αj �=i(·); the optimization iterates over these subspaces.

In an outer loop, the Hidden Markov SVM iterates over the examples and
consecutively optimizes the example’s parameters αi(·), using distinct working
set approaches for labeled (Table 2) and unlabeled (Table 3) data. Difference
vectors ȳ with αi(ȳ) = 0 are removed in order to speed up computation. When
the loop reaches an unlabeled sequence, all pseudo sequences αi(·) of that ex-
ample are removed since the disagreements that they used to correct in earlier
iterations of the main loop may have been resolved.

Since the cost factors upper-bound the growth of the αi for the 1-norm ma-
chine, consensus might not be established and we therefore integrate a user
defined constant rmax that bounds the number of iterations. Linear Viterbi de-
coding can be performed similarly to Equation 5 and Equation 6.

6 Empirical Results

We concentrate on named entity recognition (NER) problems. We use the data
set provided for task 1A of the BioCreative challenge and the Spanish news wire
article corpus of the shared task of CoNLL 2002.

The BioCreative data contains 7500 sentences from biomedical papers; gene
and protein names are to be recognized. View 1 consists of the token itself
together with letter 2, 3 and 4-grams; view 2 contains surface clues like capital-
ization, inclusion of Greek symbols, numbers, and others as documented in [13].
The CoNLL2002 data contains 9 label types which distinguish person, organi-
zation, location, and other names. We use 3100 sentences of between 10 and 40
tokens which we represent by a token view and a view of surface clues.

In each experiment we draw a specified number of (labeled and unlabeled)
training and holdout sentences without replacement at random in each iteration.
We assure that each label occurs at least once in the labeled training data; other-
wise, we discard and draw again. Each holdout set consists of 500 (BioCreative)
and 300 (Spanish news wire) sentences, respectively. We first optimize param-
eter Cu using resampling; we then fix Cu and present curves that show the
average token-based error over 100 randomly drawn training and holdout sets.
The baseline methods (single-view HM perceptron and HM SVM) are trained
on concatenated views; errorbars indicate standard error.

We use Alex Smola’s Loqo implementation as QP solver and initialize rmax =
10, C = 1. We employ a constant Cu for multi-view perceptron and use an
exponential scheme to increase Cu to its maximal value in the 30th iteration.
We want to answer the following questions.

Is the inclusion of unlabeled data beneficial for sequential learning?
Figure 1 shows learning curves for single-view and multi-view HM perceptron
and HM SVM for both problems. With the exception of one point, the
multi-view methods always outperform their single-view, purely supervised
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Fig. 1. Learning curves for BioCreative and Spanish news wire
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Fig. 2. Left: Error depending on the unlabeled sample size for BioCreative. Right:
Execution time.

counterparts significantly; the multi-view HM SVM is the most accurate
sequence learning method. We use a regular HMM as an additional baseline; its
error rates of 23.59%, 20.04%, and 15.31% for 5, 10, and 20 training sequences
for the news wire and 17.98%, 14.31%, and 12.31% (5, 10, 20 training sequences)
for the BioCreative data lie above the plotted range of Figure 1. In Figure 2
(left) we vary the number of unlabeled sequences for the BioCreative data set.
As the number of unlabeled data increases, the advantage of multi-view over
single-view sequence learning increases further.

How costly is the training process?
Figure 2 (right) plots execution time against training set size. The performance
benefits are at the cost of significantly longer training processes. The multi-view
HM perceptron scales linearly and the multi-view HM SVM quadratically in
the number of unlabeled sequences.

Are there better ways of splitting the features into views?
We compare the feature split into the token itself and letter n-grams versus
surface clues to the average of 100 random splits. Surprisingly, Figure 3 shows
that random splits work even (significantly) better. We also construct a feature
split in which view 1 contains all odd, and view 2 all even features. Hence, each
view contains half of the Boolean token features as well as half of the surface
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Fig. 3. Error for several splits of features into views for Spanish news wire

clues. Figure 3 shows that this split performs slightly but significantly better
than the random split. Hence, our experiments show that even though multi-
view learning using the split of token and n-grams versus surface clues leads to
a substantial improvement over single-view learning, a random or odd-even split
lead to an even better performance.

7 Conclusion

Starting from two discriminative sequence learning algorithms – the Hidden
Markov perceptron and SVM – we constructed semi-supervised learning meth-
ods by utilizing the principle of consensus maximization between hypotheses.
We derived the multi-view HM perceptron as well as multi-view 1-norm and 2-
norm HM SVMs. Our experiments show that, on average, these methods utilize
unlabeled data effectively and outperform their purely supervised counterparts
significantly; the multi-view HM SVM achieves the highest performance.

We observed that random feature splits perform better than splitting the
features into a token view and a view of surface clues. Nevertheless, the multi-
view algorithms outperform their supervised counterparts even for the initial
weak split. Our future work will address the construction of good feature splits.
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Abstract. Ensemble classifiers combine the classification results of several clas-
sifiers. Simple ensemble methods such as uniform averaging over a set of models
usually provide an improvement over selecting the single best model. Usually
probabilistic classifiers restrict the set of possible models that can be learnt in
order to lower computational complexity costs. In these restricted spaces, where
incorrect modeling assumptions are possibly made, uniform averaging sometimes
performs even better than bayesian model averaging. Linear mixtures over sets of
models provide an space that includes uniform averaging as a particular case.
We develop two algorithms for learning maximum a posteriori weights for linear
mixtures, based on expectation maximization and on constrained optimizition.
We provide a nontrivial example of the utility of these two algorithms by apply-
ing them for one dependence estimators. We develop the conjugate distribution
for one dependence estimators and empirically show that uniform averaging is
clearly superior to Bayesian model averaging for this family of models. After
that we empirically show that the maximum a posteriori linear mixture weights
improve accuracy significantly over uniform aggregation.

1 Introduction

An ensemble of classifiers is a set of classifiers whose individual decisions are com-
bined in some way (typically by weighted or unweighted voting) to classify new exam-
ples. Uniform averaging and other improper linear models have been demonstrated to
be better than selecting a single best model [5].

Bayesian model averaging (BMA) [19,20] provides a coherent, theoretically opti-
mal mechanism for accounting with model uncertainty. BMA, under the name Bayesian
voting, is commonly understood as a method for learning ensembles [6]. With some
exceptions [4,2], the application of BMA in machine learning has not proven as suc-
cessful as expected [7]. A reasonable explanation of this mismatch between expected
and real performance of BMA has been given in a short note by Minka [27], where it is
clearly pointed out that BMA is not a model combination technique, and that it should
be thought of as a method for ’soft model selection’. This understanding has led to the
proposal of techniques for the bayesian combination of classifiers [13]. In spite of that,
BMA is still being considered by many scientists as an ensemble learning technique
and as such it is compared with other ensemble learning techniques such as stacking,
bagging or boosting [3,9].

J. Gama et al. (Eds.): ECML 2005, LNAI 3720, pp. 72–83, 2005.
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Accepting BMA as ’soft model selection’, it can happen that uniform averaging im-
proves over BMA when modeling assumptions are incorrect. Many times this is the case
when classifiers are applied “out-of-the-box”. However, an ensemble classifier should
be able to recognize which models are right and which are incorrect. In order to do that,
we propose two algorithms for adjusting the weights for a linear mixture of classifiers
and are robust to incorrect modeling assumptions of the base classifiers.

The issue of generative versus discriminative classifiers has raised a lot of attention
in the community in the last years [28,1,30,16,15,31]. It is widely believed that, pro-
vided enough data, discriminative classifiers outperform their generative pairs. Since
both generative and discriminative classifiers are in use nowadays, two different ini-
tial settings are assumed in order to construct a linear ensemble of classifiers. In the
first one, we are given a set of base classifiers that after receiving an unclassified ob-
servation, output the conditional probability distribution for each class. On the second
setting, our base classifiers are assumed to output the joint probability for each class
and the observation (instead of contioned to the observation). We could name the first
setting linear averaging of discriminative classifiers and the second linear averaging
of generative classifiers. We propose the usage of an expectation maximization algo-
rithm for the first setting. The second setting is tougher and we propose the usage of
augmented lagrangian techniques [14,29] for constrained nonlinear optimization.

In the last years there have been several attempts to improve the naive Bayes clas-
sifier by relaxing its restrictive independence assumption [10,22,38,2]. Averaged One
Dependence Estimators (AODE) classifiers have been proposed [36] as an efficient and
effective alternative to naive Bayes. They are based on k-dependence estimators [32],
which are classifiers where the probability of each attribute value is conditioned by the
class and at most k other attributes. AODE classifiers estimate the class probabilities
by performing an equally weighted linear combination of the estimates of all possible
1-dependence estimators. Since AODE is a classifier based on uniform aggregation of
simple classifiers that make very hard assumptions that are likely not to be fulfilled, it
can act as a good test case for our algorithms. We describe AODE in section 4. In sec-
tion 5 we find a conjugate distribution for the problem and we prove that it is possible to
perform exact BMA over the set of 1-dependence estimators in polynomial time. After
that, in section 6 we adapt our weight adjustment algorithms for ODEs and finally in
section 7 we empirically compare the results of BMA with uniform averaging and our
two linear mixtures, obtaining results that clearly confirm the previously exposed ideas.

In [33,34] a Bayesian technique for finding maximum likelihood ensembles of
Bayesian networks is described. In [26,25] an EM algorithm for finding linear mixtures
of trees is proposed. Those works were stated in the setting of density estimation (mix-
tures were learned with a generative approach in mind) and our explicitly deals with the
problem of classification or conditional density estimation (discriminative approach).
Ghahramani et al. [13] presented Bayesian methods for averaging classifiers. They as-
sume the predicted class to be the only information available as output from the classi-
fiers to be averaged. We assume a bit more and ask classifiers to output a probability dis-
tribution. This setting was already proposed by them as a rellevant line of future work.

To summarize, the main contribution of the paper is the proposal of two maximum
a posteriori algorithms for averaging probability distributions in a supervised setting.
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As side results, we provide the conjugate distribution for ODEs and empirically con-
firm the limitations of BMA when understood as an ensemble learning technique in a
nontrivial case. A more detailed study of the two algorithms proposed and a comparison
with other general ensemble learning methods will be the subject of future work.

2 Formalization and Notation

A discrete attribute is a finite set, for example we can define attribute Pressure as
Pressure = {Low,Medium,High}. A discrete domain is a finite set of discrete
attributes. We denote ΩC = {A1, . . . , An, C} for a classified discrete domain where
Au are attributes other than the class and C is the class attribute. We will use i and j
as values of an attribute and u and v as indexes over attributes in a domain. We denote
X−C = {A1, . . . , An} the set that contains all the attributes in a classified discrete
domain except the class attribute.

Given an attribute X , we denote #X as the number of different values of X . An
observation x in ΩC is an ordered tuple x = (x1, . . . , xn, xC) ∈ A1 × . . .×An × C.
An unclassified observation x−C in ΩC is an ordered tuple x−C = (x1, . . . , xn) ∈
A1 × . . . × An. To be homogeneous we will abuse this notation a bit noting xC for
a possible value of the class for x−C . A dataset D in ΩC is a multiset of classified
observations in ΩC .

We will denoteN for the number of observations in the dataset. We will also denote
Nu(i) for the number of observations in D where the value for Au is i, Nu,v(i, j) the
number of observations in D where the value for Au is i and the value for Av is j and
similarly for Nu,v,w(i, j, k) and so on.

3 Learning Mixtures of Probability Distributions

In order to aggregate the predictions of a set of different models, we can use a linear
mixture assigning a weigth to each model. If modeling assumptions are correct, BMA
provides the best linear mixture. Otherwise, uniform averaging has been demonstrated
to improve over single model selection and many times also over BMA. We would
like to develop an algorithm for assigning weigths to models in a linear mixture that
improves over uniform averaging while being robust to incorrect modeling assumptions
of the base classifiers.

3.1 Formalization of the Problem

On a classified discrete domain ΩC , we define two different types of probability distri-
butionss. A generative probability distribution (GPD) is a probability distribution over
ΩC . A discriminative probability distribution (DPD) is a probability distribution overC
given X−C . Obviously, from every GPD, we can construct a DPD, but not vice versa.

A linear mixture of n DPDs (LMD in the following) is defined by the equation:

PLMD(xC |x−C) =
n∑

u=1

αuPDPDu(xC |x−C). (1)
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The model is more widely known as the linear opinion pool [12,11].
A linear mixture of n GPDs (LMG in the following) is defined by the equation:

PLMG(xC , x−C) =
n∑

u=1

αuPGPDu(xC , x−C), (2)

in both cases
n∑

u=1
αu = 1 and ∀u αu > 0.

Supervised Posteriors. From a frequentistic point of view, in order to learn condi-
tional probability distributions we need to maximize conditional likelihood. In [17] the
concept of supervised posterior is introduced as a Bayesian response to this frequen-
tistic idea. The proposal in [17] is that from a Bayesian point of view, in order to learn
conditional probability distributions, given a family of modelsM, we need to compute
the BMA over models using the supervised posterior P s(M |D):

P (xC |x−C ,D, ξ) =
∫

M∈M
P (xC |x−C ,M, ξ)P s(M |D, ξ), (3)

where
P s(M |D, ξ) = P s(D|M, ξ)P (M |ξ) (4)

and
P s(D|M, ξ) =

∏
x∈D

P (xC |x−C ,M, ξ). (5)

Supervised posterior for LMD. In order to perform Bayesian learning over LMD and
LMG we define a prior distribution over α. A natural choice in this case is to use a
Dirichlet distribution. For conciseness we fix the Dirichlet hyperparameters to 1, that
is P (α|ξ) ∝

∏n
u=1 αu, although the development can be easily generalized to any

Dirichlet prior. The supervised posterior after an i.i.d. dataset D for a LMD is:

PLMD(α|D, ξ) =
P (D|α, ξ)P (α|ξ)

P (D|ξ) =

∏
x∈D

P (xC |x−C , α, ξ)P (x−C |α, ξ)P (α|ξ)
P (D|ξ) =

=
∏
x∈D

P (xC |x−C , α, ξ)P (α|ξ)

∏
x∈D

P (x−C |α, ξ)

P (D|ξ) . (6)

Assuming that P (x−C |α, ξ) does not depend on α we can conclude that

PLMD(α|D, ξ) ∝
∏
x∈D

n∑
u=1

αuPDPDu(xC |x−C)
n∏

u=1

αu. (7)

The exact BMA prediction in this setting will be given by:

PLMD(xC |x−C ,D, ξ) =
∫

α

PLMD(α|D, ξ)
n∑

u=1

αuPDPDu(xC |x−C)dα. (8)
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Supervised Posterior for LMG. The supervised posterior after an i.i.d. dataset D for
LMG is

PLMG(α|D, ξ) =
∏
x∈D

n∑
u=1

αuPGPDu(xC , x−C)∑
c∈C

n∑
u=1

αuPGPDu(c, x−C)

n∏
u=1

αu, (9)

and the exact BMA prediction in this setting

PLMG(xC |x−C ,D, ξ) =
∫

α

PLMG(α|D, ξ)

n∑
u=1

αuPGPDu(xC , x−C)∑
c∈C

n∑
u=1

αuPGPDu(c, x−C)
dα. (10)

3.2 Proposed Solutions

MAPLMD. To the best of our knowledge there is no closed form solution for comput-
ing the result of equation 8. Hence, we will have to approximate its value. A first possi-
bility would be to directly approximate it using Markov Chain Monte Carlo (MCMC).
However, each iteration of the model will require the computation of the product in
equation 8 that ranges over all the observations in the dataset, resulting in a heavy use
of computational resources. A second possibility is approximating the expression using
only the maximum a posteriori (MAP) value for α (which we denote αMAP

LMD) as

P (xC |x−C ,D, ξ) ≈
n∑

u=1

αu
MAP
LMDPDPDu(xC |x−C). (11)

It is known [24,23] that, since we are dealing with a finite mixture model, we can de-
termine αMAP

LMD by means of the Expectation-Maximization (EM) algorithm by posing
the problem into an incomplete-data one introducing an additional unobservable vari-
able for each observation corresponding to the mixture component that generated the
data. This gives us a reasonably efficient procedure for determining αMAP

LMD . The ag-
gregation method resulting from finding αMAP

LMD and then applying it in equation 1 is
MAPLMD.

MAPLMG. The case of LMG is not so simple. As we did for LMD, we can ap-
proximate the exact BMA prediction using only the MAP value for α (that we denote
αMAP

LMG ). However, in this case, there is no straightforward way to use the EM algo-
rithm. From an optimization point of view, we have to find αMAP

LMG , under the inequal-
ity constraints that each component of the vector αMAP

LMG should be greater that 0 and
the equality constraint that the components of αMAP

LMG should add up to 1. This is a
constrained nonlinear optimization problem that can be solved by using the augmented
(or penalized) lagrangian method [14,29] for constrained nonlinear optimization. This
method transforms a constrained nonlinear optimization problem into a sequence of
unconstrained optimization problems, progresively adjusting the penalization provided
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by not fulfilling the constraints. For solving each of the resulting unconstrained opti-
mization problems several efficient methods are available. In our case we have used
the well known Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm. It is a quasi-
Newton method which builds up an approximation to the second derivatives of the
function using the difference between successive gradient vectors. By combining the
first and second derivatives the algorithm is able to take Newton-type steps towards the
function minimum, assuming quadratic behavior in that region. This technique requires
the computation of the partial derivative of the function to be optimized with respect to
each of the αi. Fortunately this can be done efficiently if we calculate it together with
the function. By simple algebraic manipulations it can be seen that the derivative of
equation 9 is:

∂P (α|D, ξ)
∂αu

= P (α|D, ξ)

⎛⎜⎜⎝∑
x∈D

pu,xC

n∑
u=1

αupu − pu

n∑
u=1

αupu,xC

n∑
u=1

αupu

n∑
u=1

αupu,xC

+
1
αu

⎞⎟⎟⎠ , (12)

where pu,c = PGPDu(c, x−C) and pu =
∑

c∈C PGPDu(c, x−C). In order to complete
the Lagrangian, we also need to compute the derivatives of the constraints,∑
u = 1nαu = 1 and ∀u αu > 0, with respect to each αu, that are very simple. The

aggregation method resulting from finding αMAP
LMG and then predicting using equation 2

is named MAPLMG.

4 AODE

In this section we review the AODE classifier as presented in [36]. Given a classified
domain, AODE learns a set of 1-dependence probability distribution estimators (ODE)
containing those where the class attribute and another single attribute are the parents of
all other attributes. Obviously there are n ODEs satisfying our condition, one for each
choice of root attribute. The probablity estimates for an ODE are:

Pu(x) = Pu(xC , x−C) = Pu(xC , xu)
n∏

v=1
v �=u

Pu(xv|xC , xu), (13)

where Pu(xC , xu) = NC,u(xC ,xu)+1
N+#C#Au

and Pu(xv|xC , xu) = NC,u,v(xC ,xu,xv)+1
NC,u(xC ,xu)+#Av

(these
equations are slightly different to the ones presented in [36] and correspond to the
AODE classifier implemented in Weka[37] version 3.4.3). After learning these mod-
els , AODE uniformly combines the probabilities for each of them:

PAODE(xC , x−C) =
n∑

u=1
Nu(xu)>t

Pu(xC , x−C). (14)

In equation 14, the condition Nu(xu) > t is used as a threshold in order to avoid
making predictions from attributes having few observations. If no attribute fulfills the
condition, AODE returns the results of predicting using naive Bayes.



78 J. Cerquides and R. López de Màntaras

5 Exact Bayesian Model Averaging of ODEs

In this section we provide a conjugate distribution for ODEs and show how it can be
used to efficiently perform BMA over ODEs.

5.1 Conjugate Distribution for One Dependence Estimators

In order to define a probability distribution over ODEs, we define how we compute the
probability that an ODE is the generating model. After that, we define the probability
distribution over the parameters of that ODE. Probability distribution over the parame-
ters of two different ODEs u and v (denoted uΘ and vΘ) are assumed independent.

Definition 1 (Decomposable distribution over ODEs). The probability of an ODE
with concrete structure and parameters under a decomposable distribution over ODEs

with hyperparameters α,N ′ =
n⋃

u=1

uN ′ is the product of the probability that its root

is the selected root (P (ρB|ξ)) times the probability that its parameters are the right
parameters (P (ρBΘ|ξ)):

P (B|ξ) = P (ρB|ξ)P (ρB Θ|ξ). (15)

The probability distribution for the root is a multinomial with hyperparameter α. The
probability for the parameter set ,uΘ, for each possible root u factorizes following the
ODE structure:

P (uΘ|ξ) = P (uθu,C |ξ)
m∏

v=1
v �=u

P (uθv|u,C |ξ) (16)

and the distribution over each conditional probability table follows a Dirichlet distri-
bution (where the needed hyperparameters are given by uN ′):

P (uθu,C |ξ) = D(uθu,C(., .); uN ′
u,C(., .)) (17)

P (vθv|u,C |ξ) = D(uθv|u,C(., i, c); uN ′
v,u,C(., i, c)) (18)

.

5.2 Learning Under Decomposable Distributions over ODEs

If a decomposable distribution over ODEs is accepted as prior, we can efficiently cal-
culate the posterior after a complete i.i.d. dataset:

Theorem 1. If P (B|ξ) follows a decomposable distribution over ODEs with hyperpa-
rameters α,N′, the posterior distribution given an i.i.d. dataset D is a decomposable
distribution over ODEs with hyperparameters α∗,N′∗ given by:

α∗
u = αuWu (19)

uN ′∗
u,C(i, c) = uN ′

u,C(i, c) +Nu,C(i, c) (20)
uN ′∗

v,u,C(j, i, c) = uN ′
v,u,C(j, i, c) +Nv,u,C(j, i, c) (21)
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where

Wu =
Γ (N ′)
Γ (N ′∗)

∏
c∈C

∏
i∈Au

⎡⎢⎢⎣ Γ (uN ′∗
u,C(i, c))

Γ (uN ′
u,C(i, c))

m∏
v=1
v �=u

⎛⎝ Γ (u,s(v)N ′
u,C(i, c))

Γ (u,s(v)N ′∗
u,C(i, c))

∏
j∈Av

Γ (uN ′∗
v,u,C(j, i, c))

Γ (uN ′
v,u,C(j, i, c))

⎞⎠
⎤⎥⎥⎦ ,

(22)

and
uN ′ =

∑
c∈C

∑
i∈Au

uN ′
u,C(i, c) (23)

u,s(v)N ′
u,C(i, c)) =

∑
j∈Av

uN ′
v,u,C(j, i, c), (24)

and the equivalent of equations 23 and 24 hold for N ′∗.

5.3 Classifying Under Decomposable Distributions over ODEs

Under a decomposable distribution over ODEs, we can efficiently calculate the proba-
bility of an observation by averaging over both structure and parameters:

Theorem 2. If P (B|ξ) follows a decomposable distribution over ODEs with hyperpa-
rameters α,N′, the probability of an observation given ξ is

P (X = x|ξ) =
m∑

u=1

αuP (X = x|ρB = u, ξ)

where P (X = x|ρB = u, ξ) =
uN ′

u,C(xu,xC)
uN ′

m∏
v=1
v �=u

uN ′
v,u,C(xv,xu,xC)

u,s(v)N ′
u,C(xu,xC) .

Theorems 1 and 2 demonstrate that exact learning can be performed in polynomial
time under the assumption of decomposable distributions over ODEs. Furthermore, the
overhead with respect to the standard AODE algorithm in terms of computational com-
plexity can be considered very small. Proofs are omitted due to space limitations. For
domains where we do not have prior information we will assign a value of 1 to each of
the hyperparameters in α and N′. We name the resulting classifier BMAAODE.

6 Learning Mixtures of ODEs

It is worth noting that the development in section 3 was done under the assumption
that the dataset D used for determining αMAP is assumed to be independent of the
dataset used to learn the individual classifiers. To allow the successful application of
this results to ODEs, instead of using Pu(c, x−C) as the probability distribution be-
ing averaged, we will use PLOO

u (c, x−C) (from Leave-One-Out), where the observa-
tion being classified (x) is excluded from the training set. After computing the counts
NC,u,v(c, i, j),NC,u(c, xu), and N , PLOO

u is simply:

PLOO
u (c, x−C) = PLOO

u (c, xu)
n∏

v=1
v �=u

PLOO
u (xv|c, xu) (25)
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PLOO
u (c, xu) =

NC,u(c, xu) + 1− δ(c = xC)
N + #C#Au − 1

(26)

PLOO
u (xv|c, xu) =

NC,u,v(c, xu, xv) + 1− δ(c = xC)
NC,u(c, xu) + #Av − δ(c = xC)

(27)

so almost no computational burden is introduced by this strategy. This can be under-
stood as performing the best possible stacking [35] strategy with the data at hand, with
an ODE for each attribute as the set of level-0 models and MAPLMD or MAPLMG as
the level-1 generalizer. This particularization of MAPLMD and MAPLMG for ODE
are named MAPLMDODE and MAPLMGODE respectively.

7 Empirical Results

In this section we compare AODE with BMAAODE, MAPLMGODE and MAPLM-
DODE on two different scenarios. On the first one we compare performance over Irvine
datasets and on the secondone over randomly generated Bayesian networks with differ-
ent sets of parameters. In the following sections, we explain the experimental setup and
then show the results and draw some conclusions.

7.1 Experimental Setup

We used three different measures to compare the performance of the algorithms: the
error rate, the conditional log-likelihood and the area under the ROC curve [8] which
we will refer to as AUC. For this last measure, when the class is multivalued, we use
the formula provided in [18].

Irvine Setup. We ran each algorithm on 38 datasets from the Irvine repository repeat-
ing 10 runs of 10 fold cross validation. Continuous attributes were discretized into 5
equal frequency intervals.

Random Bayesian Networks Setup. We compared the algorithms over random
Bayesian networks varying the number of attributes in {5, 10, 20, 40}, the number
of maximum values of an attribute in {2, 5, 10} and the maximum induced width in
{2, 3, 4}. For each configuration of parameters we generated randomly 100 Bayesian
networks using BNGenerator [21]. For each Bayesian network we obtained 5 learning
samples of sizes {25, 100, 400, 1600, 6400} and a testing sample of size of 500.

7.2 Results and Conclusions

A summary of the results can be seen in tables 1 and 2. The tables describe the num-
ber of Wins/Draws/Loses at a 95% statistical t-test confidence level for each measure.
AODE0 and AODE30 are two versions of AODE, with different thresholds t = 0 and
t = 30 respectively. The results show that the condition Nu(xu) > t proposed in [36]
although intuitively appealing, does not improve performance on none of both settings
and can safely be simplified.
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Table 1. Empirical results over Irvine datasets

Algorithms AUC ER LogP
AODE0-AODE30 7/24/7 10/22/6 13/18/7

AODE0-BMAAODE 26/11/1 25/8/5 29/4/5
MAPLMGODE-AODE0 12/20/6 18/18/2 29/5/4
MAPLMDODE-AODE0 14/9/15 17/11/10 26/6/6

Table 2. Empirical results over random Bayesian networks

Algorithms AUC ER LogP
AODE0-AODE30 38/124/18 45/128/7 85/92/3

AODE0-BMAAODE 101/77/2 90/83/7 143/26/11
MAPLMGODE-AODE0 155/24/1 138/41/1 151/17/12
MAPLMDODE-AODE0 176/4/0 145/27/8 177/2/1

It can be seen that BMAAODE performance is significantly worse than uniform
aggregation in both settings. In order to understand the reason why, we note that in
our Bayesian formalization of the problem an additional assumption has been intro-
duced ’unnoticed’: the assumption that one of the ODEs is the right model generat-
ing the data. This assumption has the effect that the posterior after a small number
of observations concentrates most of its weight in a single model. AODE also makes
a strong assumption: that the right model generating the data is a uniform aggrega-
tion of ODEs. This assumption turns out to be less restrictive that the one made by
BMAAODE. Obviously, neither AODE nor BMAAODE assumptions are fulfilled by
the datasets nor by the Bayesian networks used for the experimentation, but AODE
is able to provide a better approximation than BMAAODE to their probability distri-
butions most of the times. This result obviously does not change the fact that the as-
sumption of a single generating model, as a generic assumption underlying Bayesian
learning, is completely reasonable. However, it points out that we should be careful and
understand that BMA provides the optimal linear ensemble only when the assumption
is fulfilled.

Comparing AODE0 with MAPLMDODE and MAPLMGODE we can see that, with
the only exception of MAPLMDODE over Irvine datasets and the AUC measure, both
algorithms consistently improve AODE0 in a statistically significant way. Hence, we
have shown that the general scheme for determining weights of linear mixtures devel-
oped in section 3, when particularized for ODEs, improves uniform aggregation signif-
icantly, even when the models make incorrect modeling assumptions.

8 Conclusions

We have argued that under incorrect modeling assumptions BMA can be worse than uni-
form aggregation. We have provided two maximum a posteriori algorithms to improve
over uniform aggregation even in the case that the classifiers make incorrect modeling
assumptions. We have shown by means of a nontrivial example that the algorithms can
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be applied with significant accuracy gains. A more detailed study of these algorithms
and a comparison with other general ensemble learning methods will be the subject of
future work.
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Abstract. Inductive Logic Programming (ILP) is a popular approach
for learning rules for classification tasks. An important question is how
to combine the individual rules to obtain a useful classifier. In some in-
stances, converting each learned rule into a binary feature for a Bayes
net learner improves the accuracy compared to the standard decision
list approach [3,4,14]. This results in a two-step process, where rules are
generated in the first phase, and the classifier is learned in the second
phase. We propose an algorithm that interleaves the two steps, by incre-
mentally building a Bayes net during rule learning. Each candidate rule
is introduced into the network, and scored by whether it improves the
performance of the classifier. We call the algorithm SAYU for Score As
You Use. We evaluate two structure learning algorithms Näıve Bayes and
Tree Augmented Näıve Bayes. We test SAYU on four different datasets
and see a significant improvement in two out of the four applications.
Furthermore, the theories that SAYU learns tend to consist of far fewer
rules than the theories in the two-step approach.

1 Introduction

Inductive Logic Programming (ILP) is a popular approach for learning in a re-
lational environment. Given a set of positive and negative examples, an ILP
system finds a logical description of the underlying data model that differenti-
ates between the positive and negative examples. Usually this description is a
set of rules or clauses, forming a logic program. In this case, unseen examples
are applied to each clause in succession, forming a decision list. If the example
matches one of the rules, it receives a positive label. If the example does not
match any rule, it receives the negative classification. In an ideal world, where
the rules would perfectly discriminate between the two classes, the decision list
would represent an optimal combination scheme. In practice, it is difficult to find
rules that do not cover any negative examples. As the precision of the individ-
ual rules declines, so does the accuracy of the decision list, as it maximizes the
number of false positives.

The key question becomes how to combine a set of rules to obtain a useful
classifier. Previous work has shown that an effective approach is to treat each
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learned rule as an attribute in a propositional learner, and to use the classifier
to determine the final label of the example [3,4,14]. This methodology defines
a two-step process. In the first step, an ILP algorithm learns a set of rules.
In the second step, a classifier combines the learned rules. One weakness of
this approach is that the rules learned in the first step are being evaluated by
a different metric than how they are ultimately scored in the second step. ILP
traditionally scores clauses through a coverage score or compression metric. Thus
we have no guarantee that the rule learning process will select the rules that best
contribute to the final classifier.

We propose an alternative approach, based on the idea of constructing the
classifier as we learn the rules. In our approach, rules are scored by how much
they improve the classifier, providing a tight coupling between rule generation
and rule usage. We call this methodology Score As You Use or SAYU. Recently
Landwehr, Kersting and De Raedt[10] have also provided a tight coupling be-
tween rule generation and rule usage, by integrating FOIL and Näıve Bayes,
although their scoring function for rules is not exactly the improvement in per-
formance of the Näıve Bayes classifier that the rule provides. The relationship
to this important work is discussed in Section 5.

In order to implement SAYU, we first defined an interface that allows an
ILP algorithm to control a propositional learner. Second, we developed a greedy
algorithm that uses the interface to decide whether to retain a candidate clause.
We implemented this interface using Aleph to learn ILP rules, and Bayesian net-
works as the combining mechanism. Previous experience has shown good results
in using Bayes nets as a combining mechanism [3,4,14]. We used two differ-
ent Bayes net structure learning algorithms, Näıve Bayes and Tree Augmented
Näıve Bayes (TAN) [6] as propositional learners. Our results show that, given the
same amount of CPU time, SAYU clearly outperforms the original two-step ap-
proach. Furthermore, SAYU learns smaller theories. These results were obtained
even though SAYU considers far fewer rules than standard ILP.

2 Implementing SAYU

SAYU requires an interface to propose rules to the propositional learner. Ad-
ditionally, SAYU needs to know the score of each clause in order to help guide
rule search. The interface consists of the following three methods.

The Init() function initializes the propositional learner with a table contain-
ing only the class attribute. The NewAttribute(NewFeature) function intro-
duces NewFeature into the training set and learns a new classifier incorporat-
ing this attribute. It returns a score for the new network on a set of examples.
The Commit() function permanently incorporates the most recently evaluated
feature into the classifier.

We use the interface to design a greedy learning algorithm, where the ILP
system proposes a rule and converts it into a new attribute. The rule is then
incorporated into the learner. If the rule improves the score, it is retained by the
classifier. Otherwise, we discard the rule and revert back to the old classifier.
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Input: Stop Criteria, Scoring Function
Output: Propositional Classifier
CurrentScore = Init();
while Stop criteria not met do

Choose a positive example as a seed and saturate the example;
repeat

NewFeature = Generate new clause according to saturated example;
NewScore = NewAttribute(NewFeature);
if NewScore exceeds CurrentScore then

Commit();
end

until NewScore exceeds CurrentScore;
end

Algorithm 1: Implementing SAYU

Our implementation depends on the ILP system and on the propositional
learner. Following previous work, we used saturation based learning ILP sys-
tems, in the style of the MDIE algorithm used in Progol [12] and Aleph [19].
In MDIE, the ILP search proceeds by randomly choosing an unexplained seed,
and saturating that seed to obtain its most specific, or saturated clause. It then
searches the space of clauses that generalize the saturated clause until finding
the best clause.

The algorithm we used for this work follows the same principles, with one
major difference: we search for the first good clause for each seed, instead of
continuing search until finding the best clause. The main reason for picking the
first good clause is that the best clause may be hard to find, thus exhaustively
searching for the best clause may end up wasting our time on a single seed. Our
implementation is shown in Algorithm 1.

Next, we present our propositional learning algorithms. Bayesian learning
algorithms have several important advantages for our purposes. First, they al-
low us to give examples a probability. Second, Näıve Bayes is a well known
approach that often performs well, and is particularly suitable for incremental
learning. The drawback of Näıve Bayes is that it assumes that all of the rules
are independent, given the class value. We evaluate Näıve Bayes against Tree
Augmented Näıve Bayes (TAN) [6]. TAN networks can be learned efficiently,
and can represent a limited set of dependencies between the attributes.

Finally, we need to define a scoring function. The main goal is to use the
scoring function for both learning and evaluation. Furthermore, we wish to be
able to handle datasets that have a highly skewed class distribution. In the
presence of skew, precision and recall are often used to evaluate classifier quality.
In order to characterize how the algorithm performs over the whole precision
recall space, we follow Goadrich et.al. [7], and adopt the area under the precision-
recall curve as our score metric. When calculating the area under the precision-
recall curve, we integrate from recall levels of 0.2 or greater. Precision-recall
curves can be misleading at low levels of recall as they have high variation in
that region.
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3 Methodology

We evaluated our algorithm with four very different datasets, corresponding to
different applications of ILP. Two of the applications are relatively novel, the
Mammography and Yeast Proteins datasets. The other application, Carcinogen-
esis, is well-known in the Inductive Logic Programming Community. Finally,
we used the Univeristy of Washington Advised By dataset that is becoming a
popular benchmark in Statistical Relational Learning [9,17].

Mammography. The Mammography dataset was the original motivation of this
work. The National Mammography Database (NMD) standard established by
the American College of Radiology. The NMD was designed to standardize data
collection for mammography practices in the United States and is widely used
for quality assurance. The database consisted of 47,669 mammography exami-
nations on 18,270 patients. The dataset contains 435 malignant abnormalities
and 65,365 benign abnormalities. It is important to note that the data consists
of a radiologist’s interpretation of a mammogram and not the raw image data.
A mammogram can contain multiple abnormalities. The target predicate we are
trying to predict is whether a given abnormality is benign or malignant. We
randomly divided the abnormalities into ten roughly equal-sized sets, each with
approximately one-tenth of the malignant abnormalities and one-tenth of the
benign abnormalities. We ensured that all abnormalities belonging to a given
patient appeared in the same fold [2].

Yeast Protein. Our second task consists of learning whether a yeast gene codes
for a protein involved in the general function category of metabolism. We used for
this task the MIPS (Munich Information Center for Protein Sequence) Compre-
hensive Yeast Genome Database, as of February 2005 [11]. Positive and negative
examples were obtained from the MIPS function category catalog. The positives
are all proteins/genes that code for metabolism, according to the MIPS func-
tional categorization. The negatives are all genes that have known functions in
the MIPS function categorization and do not code for metabolism. Notice that
the same gene may code for several different functions, or may code for different
sub-functions. We used information on gene location, phenotype, protein class,
and enzymes. We also used gene-to-gene interaction and protein complex data.
The dataset contains 1,299 positive examples and 5,456 negative examples. We
randomly divided the data into ten folds. Each fold contained approximately the
same number of positive and negative examples.

Carcinogenesis. Our third dataset concerns the well-known problem of predict-
ing carcinogenicity test outcomes on rodents [18]. This dataset has a number of
attractive features: it is an important practical problem; the background knowl-
edge consists of a number of non-determinate predicate definitions; experience
suggests that a fairly large search space needs to be examined to obtain a good
clause. The dataset contains 182 positive carcinogenicity tests and 148 nega-
tive tests. We randomly divided the data into ten folds. Each fold contained
approximately the same number of positive and negative examples.
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Table 1. Mammography. All metrics given are averages over all ten folds.

Algorithm Clauses in Theory Number Predicates per Clause Clauses Scored
Aleph 99.6 2.8213 620000.0

SAYU-NB 39.1 1.4655 85342.9
SAYU-TAN 32.8 1.4207 20944.4

Advised By. Our last dataset concerns learning whether one entity is advised by
other entity, and it is based on real data obtained by Richardson and Domingos
from the University of Washington CS Department [17]. The example distribu-
tion are skewed, we have 113 positive examples versus 2,711 negative examples.
Following the original authors, we divide the data in 5 folds, each one corre-
sponding to a different group in the CS Department.

4 Experimental Setup and Results

On the first three datasets we perform stratified, ten-fold cross validation in
order to obtain significance results. On each round of cross validation, we use
five folds as a training set, four folds as a tuning set and one fold as a test
set. We only saturate examples from the training set. Since the Advised By
dataset only has five folds, we used two folds for a training set and two folds
as a tuning set. The communication between the Bayes net learner and the ILP
algorithm is computationally expensive. The Bayes net algorithm might have
to learn a new network topology and new parameters. Furthermore, inference
must be performed to compute the score after incorporating a new feature. The
SAYU algorithm is strictly more expensive than standard ILP as SAYU also
has to prove whether a rule covers each example in order to create the new
feature. To reflect the added cost, we use a time-based stop criteria for the new
algorithm. In effect, we test whether, given an equal amount of CPU time, the
two-step approach or SAYU performs better.

To obtain a performance baseline we first ran a set of experiments that use
the original two-step process. In all experiments we use Srinivasan’s Aleph ILP
System [19] as the rule learning algorithm. First, we used Aleph running under
induce cover to learn a set of rules for each fold. Induce cover implements a
a variant of Progol’s MDIE greedy covering algorithm, where we do not discard
previously covered examples when we score a new clause. Second, we selected
the rules using a greedy algorithm, where we pick the rule with the highest m-
estimate such that it covers an unexplained training example. Subsequently, we
converted each rule into a binary feature for a Näıve Bayes and TAN classifier. In
the baseline experiments, we used both the training and tuning data to construct
the classifier and learn its parameters. Furthermore, we recorded the CPU time
that it took for each fold to run to completion. This time was used as the stop
criteria for the corresponding fold when evaluating the integrated approach. To
offset potential differences in computer speeds, all of the experiments for a given
dataset were run on the same machine.
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Fig. 1. Mammography Precision-Recall Curves
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Table 2. Yeast Protein. All metrics given are averages over all ten folds.

Algorithm Clauses in Theory Number Predicates per Clause Clauses Scored
Aleph 169.5 2.9345 915654.3

SAYU-NB 13.9 1.1367 190320.4
SAYU-TAN 12.5 1.152 131719.8

Table 3. Carcinogenesis. All metrics given are averages over all ten folds.

Algorithm Clauses in Theory Number Predicates per Clause Clauses Scored
Aleph 185.6 3.5889 3533521.1

SAYU-NB 8.7 1.6897 874587.7
SAYU-TAN 12.1 1.9504 679274.6

For SAYU, we use only the training set to learn the rules. We use the training
set to learn the structure and parameters of the Bayes net, and we use the tuning
set to calculate the score of a network structure. Again, we use Aleph to perform
the clause saturation and propose candidate clauses to include in the Bayes Net.
In order to retain a clause in the network, the area under the precision-recall
curve of the Bayes net incorporating the rule must achieve at least a two percent
improvement over the area of the precision-recall curve of the best Bayes net.
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Figures 1 through 4 show precision-recall curves for all four datasets. In
all graphs, curves were generated by pooling results over all ten folds. SAYU-
NB refers to the integrated approach of incrementally learning a Näıve Bayes
net. SAYU-TAN refers to the integrated approach of incrementally learning
a TAN network. Aleph-NB refers to the two-step approach consisting of rule
learning with Aleph and rule combination with Näıve Bayes. We use Aleph-
TAN to represent learning rules with Aleph and then layering a TAN network
over them.

The Mammography dataset (Figure 1) shows a clear win for SAYU over the
original two-step methodology. We used the paired t-test to compare the areas
under the curve for every fold, and we found the difference to be statistically
significant at the 99% level of confidence. The difference between using SAYU-
TAN and SAYU-NB is not significant. The difference between using TAN and
Näıve Bayes to combine the Aleph learned rules is also not significant. Moreover,
the results using SAYU match our best results on this dataset [2], which had
required more computational effort.

The Yeast Protein dataset (Figure 2) also shows a win for SAYU over the
original two-step methodology. The difference is not as striking as in the Mam-
mography dataset, mostly because Aleph TAN learning did very well on one of
the folds. In this case Aleph TAN is significantly better than Aleph NB with
98% confidence. SAYU-TAN learning is significantly better than Aleph NB with
99% confidence, and Aleph TAN with 95% confidence. SAYU-NB is better than
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Aleph NB with 99% confidence. However, it is not significantly better than Aleph
TAN (only at 90% confidence), despite the fact that SAYU-NB beats two-step
TAN on nine out of ten folds.

The results for Carcinogenesis (Figure 3) are ambiguous: no method is sig-
nificantly better than the other. One possible explanation is that precision-recall
might not be an appropriate evaluation metric for this dataset. Unlike the other
datasets, this one only has a small skew in the class distribution and there are
more positive examples than negative examples. A more appropriate scoring
function for this dataset might be the area under the ROC curve. We ran SAYU
using this metric and again found no difference between the integrated approach
and the two-step method. We believe an essential piece of future work is to run
a simulation study to try better discern the conditions under which the SAYU
algorithm provides an advantage over the two-step approach.

As we had discussed before, implementing SAYU is costly, as we now need
to build a new propositional classifier when evaluating each rule. Moreover, the
differences in scoring methods may lead to learning very different sets of clauses.
Tables 1 through 3 display several statistics for the first three datasets. We have
omitted the statistics for the Advised By dataset in interest of space. First, we
look at the average number of clauses in a theory in the two-step approach, and
compare it with SAYU-NB and SAYU-TAN. Second, we compare average clause
length, measured by the number of literals per clause body. Finally, we show
the average number of clauses scored in each fold. Table 1 shows that SAYU’s
theories contain far fewer clauses than the two-step algorithm in Mammography.
Moreover, if finds shorter clauses, some even with a single attribute. The two
columns are very similar for SAYU-NB and SAYU-TAN. The last column shows
that the cost of using SAYU is very high on this dataset: we only generate a
tenth of the number of clauses when using Näıve Bayes. Results for SAYU-TAN
are even worse as it only generates 3% as many clauses as the original Aleph
run. Even so, the SAYU-based algorithms perform better.

The Yeast dataset (Table 2) tells a similar story. Again, the SAYU-based ap-
proaches require fewer clauses to obtain a better result. Again, SAYU generates
smaller clauses with the average clause length lower than for Mammography.
The cost of implementing SAYU was less in this case. We believe this is because
of the cost of transporting the bitmaps (representing the new feature) through
the Java-Prolog interface is smaller, since the dataset is not as large. Finally,
Carcinogenesis (Table 3) again shows SAYU-based approaches learning smaller
theories with shorter clauses, and paying a heavy price for interfacing with the
propositional learning. Carcinogenesis is the smallest benchmark, so its cost is
smaller than Mammography or Yeast Protein.

In all datasets, the theory found by SAYU consists of significantly fewer and
shorter clauses. Even with the simpler classifier, SAYU does at least as well
as the two-step approach. Furthermore, SAYU achieves these benefits despite
evaluating significantly fewer rules than Aleph.

Subsequent to these experiments, we have more recently run a further exper-
iment on the “Advised-By” task of Domingos, used to test learning in Markov
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Logic Networks (MLN) [9]. The task is to predict students’ advisors from web
pages. Using the same folds for 5-fold cross-validation used in [9], SAYU with
either TAN or Näıve Bayes achieves higher area under the PR curve than MLN;
specifically, SAYU-TAN achieves 0.414, SAYU-NB achieves 0.394, and MLN
achieves 0.295 (taken from [9]). We do not know whether the comparison with
MLN is significant, because we do not have the per-fold numbers of MLN. SAYU-
TAN, SAYU-NB, Aleph-TAN and Aleph-NB all achieve roughly the same areas,
and the differences among them are not significant.

All our results show no significant benefit from using SAYU-TAN over SAYU-
NB. We believe there are two reasons for that. First, the SAYU algorithm itself
might be searching for independent attributes for the classifier, especially when
we are using SAYU-NB. Second, Näıve Bayes is computationally more efficient,
as the network topology is fixed. In fact, only the conditional probability table
corresponding to the newly introduced rule must be built in order to evaluate
the new rule. Thus, SAYU-NB benefits from considering more rules.

5 Related Work

The present work builds upon previous work on using ILP for feature construc-
tion. Such work treats ILP-constructed rules as Boolean features, re-represents
each example as a feature vector, and then uses a feature-vector learner to pro-
duce a final classifier. To our knowledge, Pompe and Kononenko [14] were the
first to apply Näıve Bayes to combine clauses. Other work in this category was
by Srinivasan and King [18], who use rules as extra features for the task of pre-
dicting biological activities of molecules from their atom-and-bond structures.
More generally, research on propositionalization of First Order Logic [1] is simi-
lar in that it converts the training sets to propositions and then applies feature
vector techniques in the learning phase.

There also has been significant research on alternatives to the standard deci-
sion list approach. One can use formalisms such as relational trees [13] to change
the structure of rules themselves. A popular alternative to decision lists is vot-
ing. Voting has been used in ensemble-based approaches, such as bagging [5] and
boosting [8,16]. Boosting relies on the insight that one should focus on misclas-
sified examples. Search is directed by having a sequence of steps, such that at
each consecutive step misclassified examples become more and more valuable.
We do not change example weights at each step. Instead, we rely on the classi-
fier itself and trust the tuning data to give us approximate performance of the
global system. On the other hand, we do try to focus search on examples where
we perform worse, by skewing seed selection.

ROCCER is a more recent example of a two-step algorithm that starts from
a set of rules and tries to maximize classifier performance [15]. ROCCER takes
a set of rules, and returns a subset that corresponds to a convex hull in ROC
space. ROCCER relies on the Apriori algorithm to obtain the set of rules.

To our knowledge, the first work to replace a two-step approach with a tight
coupling between rule learning and rule usage is the work appearing earlier this
year (done in parallel with ours) by Landwehr, Kersting and De Raedt [10]. That
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work presented a new system called nFOIL. The significant differences in the two
pieces of work appear to be the following. First, nFOIL scores clauses by condi-
tional log likelihood rather than improvement in classifier accuracy or classifier
AUC (area under ROC or PR curve). Second, nFOIL can handle multiple-class
classification tasks, which SAYU cannot. Third, the present paper reports experi-
ments on data sets with significant class skew, to which probabilistic classifiers are
often sensitive. Finally, both papers cite work last year showing that TAN outper-
formed Näıve Bayes for rule combination [4]; the present paper shows that once
clauses are scored as they are actually used, the advantage of TAN seems to dis-
appear. More specifically, TAN no longer significantly outperforms Näıve Bayes.
Hence the present paper may be seen as providing some justification for the deci-
sion of Landwehr et al. to focus on Näıve Bayes.

6 Conclusions and Future Work

Prior work has shown that combining ILP-induced rules by a learned Bayesian
network can improve classification performance over an ordinary union of the
rules [3,4]. Nevertheless, in that earlier work, rules were scored using a standard
ILP scoring function (compression), and the Bayesian network was constructed
afterward. The present paper proposes an approach that integrates rule learning
and Bayesian network learning. Each candidate rule is temporarily added to the
current set of rules, and a Bayesian network is learned over these rules. The score
of the rule is the improvement in performance of the new Bayesian network over
the previous best network. Performance is measured as area under the precision-
recall curve, omitting recalls between 0 and 0.2. (Precision-recall curves have
high variation in that region.)

This paper shows that the new integrated approach results in significantly
improved performance over the prior, two-step approach on two of three datasets,
and no significant change on a third dataset. In addition, on all three datasets,
the integrated approach results in a simpler classifier—and hence potentially
improved comprehensibility—as measured by the average number and length of
learned clauses.
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Abstract. The page rank of a commercial web site has an enormous
economic impact because it directly influences the number of potential
customers that find the site as a highly ranked search engine result. Link
spamming – inflating the page rank of a target page by artificially cre-
ating many referring pages – has therefore become a common practice.
In order to maintain the quality of their search results, search engine
providers try to oppose efforts that decorrelate page rank and relevance
and maintain blacklists of spamming pages while spammers, at the same
time, try to camouflage their spam pages. We formulate the problem of
identifying link spam and discuss a methodology for generating training
data. Experiments reveal the effectiveness of classes of intrinsic and re-
lational attributes and shed light on the robustness of classifiers against
obfuscation of attributes by an adversarial spammer. We identify open
research problems related to web spam.

1 Introduction

Search engines combine the similarity between query and page content with
the page rank [18] of candidate pages to rank their results. Intuitively, every
web page “creates” a small quantity of page rank, collects additional rank via
inbound hyperlinks, and propagates its total rank via its outbound links. A web
page that is referred to by many highly ranked pages thus becomes more likely
to be returned in response to a search engine query.

The success of commercial web sites crucially depends on the number of
visitors that find the site while searching for a particular product. Because of the
enormous commercial impact of a high page rank, an entire new business sector
– search engine optimization – is rapidly developing. Search engine optimizers
offer a service that is referred to as link spamming: they create link farms, arrays
of densely linked web pages that refer to the target page, thus inflating its page
rank. In 2004, the search engine optimization industry tournamented in the
“DarkBlue SEO Challenge”. The goal of this competition was to be ranked first
on Google for the query “nigritude ultramarine”, a nonsense term that used to
produce zero hits prior to the challenge and produced over 500,000 hits by the
competition deadline. Industry insiders believe that as many as 75 million out
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of the 150 million web servers that are online today may be operated with the
sole purpose of increasing the page rank of their target sites.

As the page rank becomes subject to manipulation, it loses its correlation to
the true relevance of a web page. This deteriorates the quality of search engine
results. Search engine companies maintain blacklists of link spamming pages,
but they fight an uneven battle in which humans identify and penalize spam-
ming pages and software tools automatically create new spamming domains, and
camouflage them, for instance by filling in inconspicuous content.

We formulate and analyze the problem of link spam identification, present a
method for generation of labeled examples, and discuss intrinsic and relational
features. Experiments with recursive feature elimination shed light on the rel-
evance of several classes of attributes and their contribution to the classifier’s
robustness against adversarial obfuscation of discriminating properties.

The rest of the paper is organized as follows. We discuss related work in
Section 2 and introduce our problem setting in Section 3. Section 4 introduces
the features and employed methods. Section 5 details our experimental results.
We discuss open research problems in Section 6 and conclude in Section 7.

2 Related Work

Henzinger [15] refers to automatic identification of link spam as one of the most
important challenges for search engines. Davison [8] studies the problem of recog-
nizing “nepotistic” links. A decision tree experiment using features that refer to
URL, IP, content, and some linkage properties indicates a number of relevant
features. Classifying links imposes the effort of labeling individual links, not just
entire pages, on the user. Lempel et al. [17] use similar features to classify web
pages into business, university, and other general classes.

Fetterly et al. [11] analyze the distribution of many web page features over
429 million pages. They find that many outliers in several features are link spam.
Pages that change frequently and clusters of near-identical pages are also more
likely to be spam [12,10]. They conclude that experiments should be conducted
to reveal whether these features can be used by a machine learning method.

Similarly, Broder et al. [5] and Bharat et al. [3] analyze large amounts of web
pages and observe that the in-degree and out-degree of web pages that should
be governed by Zipf’s law, empirically deviates from this distribution. They find
that “artificially” generated link farms distort the distribution.

The TrustRank approach [14] propagates trust weights along the hyperlinks.
But while page rank is generated by every web page (including link farms), trust
rank is generated only by manually selected trusted web pages. The manual
selection of trusted pages, however, creates a perceptive bias as unknown and
remote websites become less visible. Wu and Davison [19] study a simple heutistic
that discovers some link farms: pages which have many inlinks and outlinks
whose domains match are collected as candidate pages. They use a paopagation
strategy, and remove edges between likely link farms to compute a page rank
that is less prone to manipulation.



98 I. Drost and T. Scheffer

3 Problem Description

The correlation between page rank and relevance of a web page is based on
the assumption that each hyperlink expresses a vote for the relevance of a site.
The PageRank algorithm [18] calculates the rank (Equation 1) of a page y that
consists of a small constant amount (d corresponds to the probability that a
surfer follows a link rather than restarting at a random site, N is the number of
web pages), plus the accumulated rank of all referring pages x.

R(y) =
1− d

N
+ d

∑
x→y

R(x)
outlinks(x)

(1)

Link spamming is referred to as any intentional manipulation of the page rank
of a web page. Pages created for this purpose are called link spam. Artificially
generated arrays of web pages violate the assumption that links are independent
votes of confidence, and therefore decorrelate page rank and relevance.

Several common techniques inflate the page rank of a target site. They are
often combined. We will describe these techniques briefly. A more detailed tax-
onomy of web spam techniques is presented by Gyöngyi [13].

Link farms are densely connected arrays of pages. A target page “harvests”
the constant amount of page rank that each page creates and propagates
through its links. Each page within the link farm has to be connected to
the central, strongly connected component of the web. The farming pages
have to propagate their page rank to the target. This can for instance be
achieved by a linear or funnel-shaped architecture in which the majority
of links points directly or indirectly towards the target page. In order to
camouflage link farms, tools fill in inconspicuous content, for instance, by
copying news bulletins.

Link exchange services create listings of (often unrelated) hyperlinks. In or-
der to be listed, businesses have to provide a back link that enhances the
page rank of the exchange service and, in most cases, pay a fee.

Guestbooks, discussion boards, and weblogs (“blogs”) allow readers to
create HTML comments via a web interface. Automatic tools post large
amounts of messages to many such boards, each message contains a hyperlink
to the target website.

In order to maintain a tight coupling between page rank and relevance, it is
necessary to eliminate the influence that link spam has on the page rank. Search
engines maintain a blacklist of spamming pages. It is believed that Google em-
ploys the BadRank algorithm. The “bad rank” (Equation 2) is initialized to a
high value E(x) for blacklisted pages. It propagates bad rank to all referring
pages (with a damping factor) thus penalizing pages that refer to spam.

BR(x) = E(x)(1 − d) + d
∑
x→y

BR(y)
inlinks(y)

(2)
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This method, however, is not suited to automatically detect newly created
link farms that do not include links to an older, already blacklisted site. Search
engines therefore rely on manual detection of new link spam. We focus on the
problem of automatically identifying link spam. We seek to construct a classifier
that receives a URL as input and decides whether the encoded page is created
for the sole purpose of manipulating the page rank of some page (“spam”), or
whether it is a regular web page created for a different purpose (“ham”).

The typical application scenario of a link spam identification method would
be as follows. Search engines interleave crawling and page rank updating. After
crawling a web page, the page’s impact on the page rank of referenced pages is
updated – the BadRank and blacklist status of the page are considered at this
point. In addition, the output of a spam classifier for the crawled page can now
be taken into account. Depending on the output, the page’s impact on the page
rank can be reduced, or the page can be disregarded entirely.

Since the class distribution of spam versus ham is not known, we use the
area under the ROC curve (AUC) as evaluation metric. The AUC equals the
probability that a randomly drawn spam page receives a higher decision function
value than a random ham page; the AUC is invariant of the class prior.

Link spam identification is an adversarial classification problem [7]. Spam-
mers will probe any filter that is in effect and manipulate the properties of their
generated pages in order to dodge the classifier. Therefore, a high classification
accuracy is not sufficient to imply its practical usefulness. The practical bene-
fit of a classifier is furthermore dependent of its robustness against purposeful
obfuscation of attributes by an adversary. We study how the performance of clas-
sifiers deteriorates as an increasing number of attributes becomes obfuscated as
the corresponding properties of spam pages are adapted to those of ham pages.

4 Representing and Obtaining Examples

In this section, we address the issues of representing instances and obtaining
training examples. We describe our publicly available link spam data set.

Table 1 provides an overview on the features that we use in our experiments
to represent an instance x0. Many of these features are reimplementations of, or
have been inspired by, features suggested by [8] and [11]. Notably, however, the
tfidf representation of the page, and also other features including the MD5 hash
features, have not been studied for web spam problems before.

Figure 1 illustrates the neighborhood of the pivotal page x0 represented by
intrinsic and relational properties. Most elementarily, the tfidf (term frequency,
inverse document frequency) representation of the page content provides an in-
trinsic representation. It creates one dimension in the feature vector for each
word in the corpus. It gives large weights to terms that are frequent in the
document but infrequent in the whole document corpus.

The next block of attributes is determined for the page x0 itself as well
as for its predecessors pred(x0) and successors succ(x0). The features are de-
termined for every element x ∈ pred(x0) (or x ∈ succ(x0), respectively) and
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Table 1. Attributes of web page x0

Textual content of the page x0; tfidf vector.

The following features for x0 are computed (1) for the pivotal page itself (X =
{x0}). Here, no aggregation is necessary. (2) For the predecessors X = pred(x0). The
attributes are aggregated over the elements of X using aggregation functions sum
and average. (3) For the successors (X = succ(x0)). Aggregation functions sum and
average. Boolean features are aggregated by treating “true” as 1, and “false” as 0.
Number of tokens in keyword meta-tag, aggregated over all pages x ∈ X.
Number of tokens in title, aggregated over all pages x ∈ X.
Number of tokens in description meta-tag, aggregated over all pages x ∈ X.
Is the page a redirection? Aggregated over all pages x ∈ X.
Number of inlinks of x, aggregated over all pages x ∈ X.
Number of outlinks of x, aggregated over all pages x ∈ X.
Number of characters in the URL of x, aggregated over all pages x ∈ X.
Number of characters in the domain name of x, aggregated over all pages x ∈ X.
Number of subdomains in the URL of x, aggregated over all pages x ∈ X.
Page length of x, aggregated over all pages x ∈ X.
Domain ending “.edu” or “.org”? Aggregated over all pages x ∈ X
Domain ending “.com” or “.biz”? Aggregated over all pages x ∈ X.
URL contains tilde? Aggregated over all pages x ∈ X.

The following block of context similarity features are calculated (1) for predecessors
(X = pred(x0)) and (2) for the successors (X = succ(x0)); sum and ratio are used to
aggregate the features over all elements of X.
Clustering coefficient of X; sum and ratio of elements of X with links between them.
Elements of X with the same IP address as some other element of X; sum and ratio.
Elements of X that have the same length as some other element of X; sum and
ratio.
Pages that are referred to in x0 and also in an elements of X, sum and ratio.
Pages referred to from an element of X that are also referred to from another element
of X; sum and ratio.
Pages in X that have the same MD5 hash code as some other element of X. This
value is high if X contains many identical pages; sum and ratio.
Elements of X that have the same IP as x0.
Elements of X that have the same length as x0.
Pages in X that have the same MD5 hash code as x0.

aggregated over all elements x. Both, summation and averaging are used as
aggregation functions. The third block quantifies collective features of x0 and
its predecessors, and x0 and its successors. Some of them require further
elaboration.

Following [9], we define the clustering coefficient of a setX of web pages as the
number of linked pairs divided by the number of all possible pairs, |X |(|X | − 1).
The clustering coefficient is 1 if all elements in X are mutually linked and 0 if
no links between elements of X exist. The MD5 hash is frequently used as a
mechanism for digital signatures. It maps a text to a code word of 128 bit such
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?

Fig. 1. Neighborhood of page x0 to classify. The tfidf vector is calculated for x0; in-
trinsic features (second block of Table 1) are calculated for x0, pred(x0), and succ(x0);
context similarity features (third block of Table 1) for pred(x0) and succ(x0).

that collisions are “unlikely”. That is, when two documents have the same MD5
hash code, then it is unlikely that they differ. The MD5 features quantify the
number and ratio of predecessors and successors of x0 that are textually equal.

In total, each page is represented by 89 features plus its tfidf vector. Web
pages explicitly contain outbound links but, of course, not their inbound links.
To be able to determine the feature vector of a given page x0, it is necessary to
crawl its direct successors with standard web crawling tools (we use nutch [6]
for our experiments). Crawling backwards (moving from a page to its references)
can be achieved by specific search engine query tokens (e.g., “link:” in Google).

4.1 Crawling Examples

Training a classifier requires labeled samples. Deciding whether an example web
page is link spam requires human judgment, but we can exploit efforts already
exercised by other persons. The Dmoz open directory project is a taxonomy
of web pages that covers virtually all topics on the web. All entries have been
reviewed by volunteers. While the Dmoz entries do contain pages whose rank
is being inflated by link farms (e.g., online casinos) the listed pages themselves
contain valid content and there are no instances of spam. We create examples of
“ham” (non-link-spam) by drawing 854 Dmoz entries at random.

Search engine operators maintain blacklists of spamming pages. They could,
if public, provide a rich supply of examples of spam. In order to investigate their
distinct characteristics, we differentiate between guestbook spam and a second
class of spam that includes link farms and link exchange sites, and generate
distinct samples for these sets. We obtain 251 examples of guestbook spam by
drawing URLs from a publicly available manually edited blacklist that aims at
helping guestbook and weblog operators to identify and remove spam entries.

Link farms are never returned as a highly ranked search result – this is not
their goal – but they promote the ranking of their target site. After posting 36
search queries (e.g. ‘gift links”, “shopping links”, “dvd links”, “wedding links”,
“seo links”, “pharmacy links”, “viagra”, and “casino links”), we draw some of
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the top-rated search results. We manually identify 180 link farm and link ex-
change pages. In order to correctly decide which pages are link spam, we review
each page’s content and context (referring and linked pages). This careful man-
ual labeling consumed the largest part of the effort of assembling the data set.
We do not distinguish between link exchange and link farm pages because this
distinction cannot easily be made for many of the examples.

5 Experimental Evaluation

In our experiments, we want to explore how well guestbook spam and link farms
can be discriminated against regular web pages, and which features contribute
the most to a discrimination. In addition we are interested in the robustness
of classifiers against obfuscation of attributes by an adversarial spammer who
purposefully adapts properties of spam pages to those of ham pages. We use
the Support Vector Machine SVMlight [16] with standard parameters. We would
also like to find out which kernel is appropriate.

5.1 Finding Discriminative Features

In the following experiments we discriminate ham versus spam, where spam is
the union of all categories discussed in Section 3. In order to investigate possible
differences between guestbook spam and link farms, we furthermore discriminate
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guestbook spam against ham, and link farm plus link exchange pages versus
ham. In order to obtain learning curves, we randomly draw a training subset
of specified size from the sample, use the remaining examples for testing, and
average the results over 10 randomly resampled iterations.

We first study the suitability of several kernels for three instance representa-
tions: we consider the tfidf representation, a representation based only on link
based features (Table 1), and the joint attribute vectors of concatenated tfidf and
link features. We tune the degree (for polynomial kernels), the kernel width for
RBF kernels (on a separate tuning set) and use default parameters otherwise. Fig-
ure 2 shows that, on average, linear kernels perform best for the tfidf vectors and
link features. Both, RBF and linear kernels work for the combined representation;
polynomial kernels perform poorly for the link and combined representation.

Next, we study learning curves for the tfidf representation, the attributes of
Table 1, and the joint features. Figure 3 shows that link and merged representa-
tions work equally well for guestbook spam, the merged representation performs
best for link farms. For the mixed spam dataset, tfidf is the most discrimina-
tive feature set, but the offset to the combined representation is small. Using the
combined represantation is always better than using only the link based features.
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Which features are discriminative? We use 10 resampled iterations of re-
cursive feature elimination and determine the average rank of all features. The
recursive feature elimination procedure initialy uses an active feature set con-
taining all features. It then trains a Support Vector Machine, eliminates the
feature with the least weight from the active set, and recurs. The best (highest
ranked) features are those that remain in the active set longest.

Table 2 presents the 20 highest ranked link features for the “spam vs. ham”
discrimination. We do not rank tfidf features for individual words. Treated as a
whole, the entire block of tfidf features has the highest rank. Among the most
discriminative link features are the number of inbound and outbound links of
pred(x0), the title length of succ(x0); also, clustering coefficient and the MD5
feature are relevant.

5.2 Robustness Against Adversarial Obfuscation

The previous experiments show that today the tfidf representation is the most
discriminative feature set. Once a spam filter is in effect, spammers can be ex-
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Table 2. RFE ranking for spam vs. ham

SignRankAttribute
- 1 Average number of inlinks of pages in pred(x0).
+ 2 Average number of tokens in title of pages in succ(x0).
+ 3 Number of elements of pred(x0) that have the same length as some other

element of pred(x0).
- 4 Average number of in- and outlinks of pages in pred(x0).
+ 5 Average number of outlinks of pages in pred(x0).
+ 6 Number of tokens in title of x0.
- 7 Summed number of outlinks of pages in succ(x0).
- 8 Summed number of inlinks of pages in pred(x0).
+ 9 Clustering coefficient of pages in pred(x0).
+ 10 Summed number of tokens in title of pages in succ(x0).
+ 11 Number of outlinks of pages in succ(x0).
+ 12 Average number of characters of URLs of pages in pred(x0).
- 13 Number of pages in pred(x0) and succ(x0) with same MD5 hash as x0.
- 14 Number of characters in domain name of (x0).
- 15 Number of pages in pred(x0) with same IP as x0.
+ 16 Average number of characters in domain name of pages in succ(x0).
- 17 Average Number of in- and outlinks of pages in succ(x0).
+ 18 Number of elements of succ(x0) that have the same length as some other

element of succ(x0).
+ 19 Average number of in- and outlinks of elements in succ(x0).
+ 20 Number of pages in succ(x0) with same IP as x0.

pected to probe the filter and to modify properties of their link farms in order to
deceive the filter. Any single feature of a set of web pages can, at some cost, be
adapted to the distribution which governs that attribute in ham pages. For in-
stance, the tfidf feature can be obfuscated by copying the content of a randomly
drawn ham page from the Dmoz directory, the number of inbound or outbound
links can be decreased by splitting pages or increased by merging pages.

We consider the following classifiers and study their robustness against such
obfuscations of discriminative attributes.

1. A purely text-based classifier which refers to only the tfidf features.
2. A simple contextual classifier uses the set of intrinsic features of the pivotal

page x0 with aggregation function identity.
3. The complex contextual classifier utilizes all features.

We use the following experimental protocol to assess the three classifiers’
robustness. We first train the classifiers using their respective attribute sets. Now
we simulate the adversary’s attempts to deceive the classifiers. The adversary
obfuscates an increasing number of attributes, starting with the entire block of
tfidf features (this can be achieved by pasting the textual content of a “ham”
page into the spam page), and subsequently obfuscating additional attributes in
the order of their discriminatory power (Table 2). The obfuscation of attributes
is simulated as follows. For each instance, the value of the obfuscated attributes
is replaced by the attribute value of a randomly drawn ham page. This simulates
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that the adversary has adapted the generation program to match some property
of the link farm pages to that of natural web pages. We evaluate the performance
of the four classifiers on the obfuscated test sets.
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Fig. 4. Influence of attribute obfuscation

Figure 4 shows that the purely text-based classifier is immediately rendered
useless when the content of the spam pages is replaced by the content of a ran-
domly drawn page from the Dmoz directory. The combined classifier that utilizes
multiple features deteriorates slightly slower. However, Figure 4 emphasizes the
need to re-train a classifier quickly when the underlying distribution changes.

6 Open Problems

The problem area of link spam contains a plentitude of open research questions.
We summarize some of them.

Collective Classification. Rather than classifying individual web pages,
search engine operators will have to classify all pages on the web. Hence,
the problem intrinsically is a collective classification problem. A benchmark
collective classification data set has to include a network of example instances
with a reasonable degree of context. Because of the small world property of
the web, such a dataset quickly becomes very large.

Game Theory. Link spam identification is an adversarial classification prob-
lem [7]. Rather than being stationary, the distribution of instances is changed
by an adversary over time. The adversary probes any link spam filter that
is being used by a search engine, and modifies properties of the generated
link spam such as to dodge the filtering algorithm. Possible modifications
include, for instance, changing the link topology, generating pages with dif-
fering content and experimenting with various sub-domain names. The topic
of learning the ranking function of a search engine from rankings and page
features is adressed by Bifet et al. [4]. Yet, identifying conditions under which
a filtering strategy can be shown to be an equilibrium of the “spam filtering
game” is a great challenge.

Identifying “Google Bombers”. Search engines associate the anchor text
that is used to refer to a page with that page. By referring to target pages
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with anchor terms that have a negative connotation, malicious sites cause
these targets to become search results for negative query terms. This form of
web spam is often referred to as “Google bombing”. For instance the query
“miserable failure” usually returns the CVs of George W. Bush or Michael
Moore as the first result, depending on whose supporters are currently head-
ing this particular Google bombing arms race. Adali et. al [1] study the layout
of an optimal link bomb. The influence of more general collusion topologies
on page rank is examined by Baeza-Yates et al. [2]. But the development of
methods that decide whether a reference is unbiased or malicious is still an
open research goal.

Other Forms of Web Spam. Click spamming is a particularly vicious form of
web spam. Companies allocate a fixed budged to the sponsored links program
of, for instance, Google. The sponsored link is returned along with results of
related search queries until the budget is used up. Rivaling companies now
employ “click bots” that post a search query, and then automatically click
on their competitor’s sponsored link until the budged is exceeded and the
link disappears. This practice undermines the benefit of the sponsored link
program, and search engine operators therefore have to identify whether a
reference to a sponsored link has been made by a human, or by a “rogue
bot”. This classification task is extremely challenging because the state-less
HTTP protocol provides hardly any information about the client.

7 Conclusion

We motivated and introduced the problem of link farm discovery. We discussed
intrinsic and contextual features of web pages, and presented a methodology
for collecting training examples. Our experiments show that today the tfidf rep-
resentation of the page provides the most discriminatory attribute set. Many
additional contextual attributes contribute to a more accurate discrimination.
We identify the most discriminatory relational attributes.

Our experiments also show that a purely text-based classifier is brittle and
can easily be deceived; the contextual classifiers have the potential to be more
robust because deceiving them requires to adapt a larger number of properties
to the distribution of values observed in ham pages. In order to be able to react
to purposeful obfuscation of characteristic properties of link farms, a repository
of discriminatory features is required.

Web spam is a major challenge for search engines. We sketched open research
challenges; research in this direction has the potential to substantially improve
search engine technology and make it more robust to manipulations.
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Abstract. Incorporation of prior knowledge into the learning process
can significantly improve low-sample classification accuracy. We show
how to introduce prior knowledge into linear support vector machines in
form of constraints on the rotation of the normal to the separating hy-
perplane. Such knowledge frequently arises naturally, e.g., as inhibitory
and excitatory influences of input variables. We demonstrate that the
generalization ability of rotationally-constrained classifiers is improved
by analyzing their VC and fat-shattering dimensions. Interestingly, the
analysis shows that large-margin classification framework justifies the
use of stronger prior knowledge than the traditional VC framework. Em-
pirical experiments with text categorization and political party affiliation
prediction confirm the usefulness of rotational prior knowledge.

1 Introduction

Support vector machines (SVMs) have outperformed competing classifiers on
many classification tasks [1,2,3]. However, the amount of labeled data needed for
SVM training can be prohibitively large for some domains. Intelligent user inter-
faces, for example, must adopt to the behavior of an individual user after a lim-
ited amount of interaction in order to be useful. Medical systems diagnosing rare
diseases have to generalize well after seeing very few examples. Natural language
processing systems learning to identify infrequent social events (e.g., revolutions,
wars, etc.) from news articles have access to very few training examples. More-
over, they rely on manually labeled data for training, and such data is often ex-
pensive to obtain. Various techniques have been proposed specifically to deal with
the problem of learning from very small datasets. These include active learning [4],
hybrid generative-discriminative classification [5], learning-to-learn by extracting
common information from related learning tasks [6], and using prior knowledge.

In this work, we focus on the problem of using prior knowledge to increase
the accuracy of a large margin classifier at low sample sizes. Several studies have
shown the efficacy of this method. Scholkopf et. al. [7] demonstrate how to inte-
grate prior knowledge about invariance under transformations and importance
of local structure into the kernel function. Fung et. al. [8] use domain knowl-
edge in form of labeled polyhedral sets to augment the training data. Wu and
Srihari [9] allow human users to specify their confidence in the example’s label,
varying the effect of each example on the separating hyperplane proportionately
to its confidence. Mangasarian et. al. [10] introduce prior knowledge into the
large-margin regression framework.

J. Gama et al. (Eds.): ECML 2005, LNAI 3720, pp. 108–119, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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While the ability of prior knowledge to improve any classifier’s generalization
performance is well-known, the properties of large margin classifiers with prior
knowledge are not well understood. In order to study this problem, we introduce
a new form of prior knowledge for SVMs (rotational constraints) and prove
that it is possible to obtain stronger guarantees for the generalization ability
of constrained classifiers in the large-margin framework than in the classical
VC framework. Specifically, we show that the VC dimension of our classifier
remains large even when its hypothesis space is severely constrained by prior
knowledge. The fat-shattering dimension, however, continues to decrease with
decreasing hypothesis space, justifying the use of stronger domain knowledge.
We conduct experiments to demonstrate improvements in performance due to
rotational prior knowledge and compare them with improvements achievable by
active learning.

2 Preliminaries

The SVM classifier with a linear kernel learns a function of the form

sign(f(x;ω, θ) = ωTx+ θ =
n∑

i = 1
ωixi + θ)1 (1)

that maps (x;ω, θ) ∈ RnxW,Θ to one of the two possible output labels {1,−1}.
Given a training sample of m points (x1, y1)...(xm, ym), SVM seeks to maximize
the margin between the separating hyperplane and the points closest to it [1].
For canonical hyperplanes (i.e., hyperplanes with unit margins), the maximum-
margin hyperplane minimizes the regularized risk functional

Rreg[f, l] =
1
m

m∑
i = 1

l(yi, f(xi;ω, θ)) +
C1

2
‖ω‖22 (2)

with hard margin 0-1 loss given by l(yi, f(xi;ω, θ)) = I{−yif(xi;ω,θ)>0}.
The soft margin formulation allows for deviation from the objective of max-

imizing the margin in order to better fit the data. This is done by substituting
the hinge loss function l(yi, f(xi;ω, θ)) = max(1 − yif(xi;ω, θ), 0) into (2).

Minimizing the regularized risk (2) in the soft margin case is equivalent to
solving the following (primal) optimization problem:

minimize
ω, θ, ξ

1
2 ‖ω‖

2
2 + 1

C1m

m∑
i = 1

ξi subj. to yi(ωTx+ θ) ≥ 1− ξi, i = 1...m (3)

1 sign(y) = 1 if y ≥ 0, −1 otherwise
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Calculating the Wolfe dual from (3) and solving the resulting maximization
problem:

maximize
α

m∑
i = 1

αi − 1
2

m∑
i, j = 1

αiαjyiyj(xT
i xj) (4)

subject to 1
Cm ≥ αi ≥ 0, i = 1...m and

m∑
i = 1

αiyi = 0

yields the solution ω =
m∑

i = 1
αiyixi (5)

Setting ξi = 0, i = 1...m, (3), (4), and (5) can be used to define and solve
the original hard margin optimization problem.

The generalization error of a classifier is governed by its VC dimension [1]:

Definition 1. A set of points S = {x1...xm} is shattered by a set of functions
F mapping from a domain X to {−1, 1} if, for each b ∈ {−1, 1}m, there is a
function fb in F with bfb(xi) = 1, i = 1..m. The VC-dimension of F is the
cardinality of the largest shattered set S.

Alternatively, the fat-shattering dimension can be used to bound the gener-
alization error of a large margin classifier[11]:

Definition 2. A set of points S = {x1...xm} is γ-shattered by a set of functions
F mapping from a domain X to R if there are real numbers r1, ..., rm such
that, for each b ∈ {−1, 1}m, there is a function fb in F with b(fb(xi) − ri) ≥
γ, i = 1..m. We say that r1, ..., rm witness the shattering. Then the fat-shattering
dimension of F is a function fatF (γ) that maps γ to the cardinality of the largest
γ-shattered set S.

3 Problem Formulation and Generalization Error

In this work, we introduce prior knowledge which has not been previously applied
in the SVM framework. This prior is specified in terms of explicit constraints
placed on the normal vector of the separating hyperplane. For example, consider
the task of determining whether a posting came from the newsgroup alt.atheism
or talk.politics.guns, based on the presence of the words “gun” and “atheism” in
the posting. Consider the unthresholded perceptron f(posting;ωatheism, ωgun, θ)
= ωatheism ∗ I{atheism present} + ωgun ∗ I{gun present} + θ (I{x present} is the in-
dicator function that is 1 when the word x is present in the posting and 0
otherwise). A positive value of ωatheism captures excitatory influence of the
word “atheism” on the outcome of classification by ensuring that the value of
f(posting;ωatheism, ωgun, θ) increases when the word “atheism” is encountered
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in the posting, all other things being equal. Similarly, constraining ωgun to be
negative captures an inhibitory influence. Note that such constraints restrict the
rotation of the hyperplane, but not its translation offset θ. Thus, prior knowledge
by itself does not determine the decision boundary. However, it does restrict the
hypothesis space.

We are interested in imposing constraints on the parameters of the family
F of functions sign(f(x;ω, θ)) defined by (1). Constraints of the form ωT c > 0
generalize excitatory and inhibitory sign constraints2 (e.g., ωi > 0 is given by
c = [c1 = 0, ..., ci = 1, ..., cn = 0]T ). In addition, sometimes it is possible to
determine the approximate orientation of the hyperplane a-priori. Normalizing
all the coefficients ωi in the range [−1, 1] enables the domain expert to specify
the strength of the contribution of ωgun and ωatheism in addition to to the signs
of their influence. When prior knowledge is specified in terms of an orientation
vector v, the conic constraint ωT v

‖ω‖‖v‖ > ρ (ρ ∈ [−1, 1)) prevents the normal ω
from deviating too far from v.

It is well-known that the VC-dimension of F in Rn is n + 1 (see, e.g., [12]).
Interestingly, the VC-dimension of constrained F is at least n with any num-
ber of constraints imposed on ω ∈ W as long as there is an open subset of
W that satisfies the constraints (this result follows from [13]). This means that
any value of ρ in the conic constraint cannot result in significant improvement
in the classifier’s generalization ability as measured by its VC-dimension. Sim-
ilarly, sign constraints placed on all the input variables cannot decrease the
classifier’s VC-dimension by more than 1. The following theorem shows that the
VC-dimension of a relatively weakly constrained classifier achieves this lower
bound of n:

Theorem 1. For the class FC = {x → sign(
n∑

i = 1
ωixi + θ) : ω1 > 0}, VC-

dimension of FC = n.

Proof. The proof uses techniques from [12]. Let FC = {x→ sign(ω1x1 + ωTx+
θ) : ω1 > 0}, where x = [x2, ..., xn]T is the projection of x into the hyperplane
{ω1 = 0} and ω = [ω2, ...ωn]T .

First, observe that {ω1 > 0} defines an open subset of W . Hence, the
VC-dimension of FC is at least n. Now, we show by contradiction that a set
of n + 1 points cannot be shattered by FC . Assume that some set of points
x1, ..., xn+1 ∈ Rn can be shattered. Let x1, ..., xn+1 ∈ Rn−1 be their projections
into the hyperplane {ω1 = 0}. There are two cases: Case 1: x1, ..., xn+1 are
distinct. Since these are n + 1 points in an (n − 1)-dimensional hyperplane, by
Radon’s Theorem [14] they can be divided into two sets S1 and S2 whose convex
hulls intersect. Thus, ∃λi, λj(0 ≤ λi, λj ≤ 1)

2 In the rest of the paper, we refer to excitatory and inhibitory constraints of the form
ωi > 0 (ωi < 0) as sign constraints because they constrain the sign of wi.
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such that
∑

i : xi ∈ S1

λixi =
∑

j : xj ∈ S2

λjxj (6)

and
∑

i : xi ∈ S1

λi =
∑

j : xj ∈ S2

λj = 1 (7)

Since x1, ..., xn+1 are shattered in Rn, ∃ω1, ω, θ such that ω1x
i
1 + ωTxi ≥ θ for

all xi ∈ S1. Multiplying by λi and summing over i, we get (after applying (7))

ωT
∑

i : xi ∈ S1

λixi ≥ θ − ω1
∑

i : xi ∈ S1

λix
i
1 (8)

Similarly, for all xj ∈ S2, ω1x
j
1 + ωTxj < θ ⇒

ωT
∑

j : xj ∈ S2

λjxj < θ − ω1
∑

j : xj ∈ S2

λjx
j
1 (9)

Combining (8), (9), and (6) yields ω1(
∑

j : xj ∈ S2

λjx
j
1 −

∑
i : xi ∈ S1

λix
i
1) < 0

(10)

Since ω1 > 0, (
∑

j : xj ∈ S2

λjx
j
1 −

∑
i : xi ∈ S1

λix
i
1) < 0 (11)

Now, shattering the same set of points, but reversing the labels of S1 and
S2 implies that ∃ω′

1, ω
′ , θ

′
such that ω

′
1x

i
1 + ω′Txi < θ

′
for all xi ∈ S1 and

ω
′
1x

j
1 +ω′Txj ≥ θ

′
for all xj ∈ S2. An argument identical to the one above shows

that

ω
′
1(

∑
j : xj ∈ S2

λjx
j
1 −

∑
i : xi ∈ S1

λix
i
1) > 0 (12)

Since ω
′
1 > 0, (

∑
j : xj ∈ S2

λjx
j
1 −

∑
i : xi ∈ S1

λix
i
1) > 0, which contradicts (11)

Case 2: Two distinct points x1 and x2 project to the same point x1 = x2

(13) on the hyperplane {ω1 = 0}. Assume, wlog, that x1
1 < x2

1 (14). Since
x1 and x2 are shattered, ∃ω1, ω, θ such that ω1x

1
1 + ωTx1 ≥ θ > ω1x

2
1 +

ωTx2, which, together with (13) and (14), implies that ω1 < 0, a
contradiction. �
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This result means that imposing a sign constraint on a single input variable
or using ρ = 0 in the conic constraint is sufficient to achieve the maximum theo-
retical improvement within the VC framework3. However, it is unsatisfactory in
a sense that it contradicts our intuition (and empirical results) which suggests
that stronger prior knowledge should help the classifier reduce its generaliza-
tion error faster. The following theorem shows that the fat-shattering dimension
decreases continuously with increasing ρ in the conic constraint, giving us the
desired guarantee. Technically, the fat-shattering dimension is a function of the
margin γ, so we use the following definition of function domination to specify
what we mean by decreasing fat-shattering dimension:

Definition 3. A function f1(x) is dominated by a function f2(x) if, for all
x, f1(x) ≤ f2(x) and, at least for one a, f1(a) < f2(a). When we say that
fρ(x) decreases with increasing ρ, we mean that ρ1 < ρ2 implies that fρ2(x) is
dominated by fρ1(x).

Theorem 2. For the class Fv,ρ = {x → ωTx + θ : ‖ω‖2 = 1, ‖v‖2 = 1, ‖x‖2 ≤
R,ωTv > ρ ≥ 0}, fatFv,ρ (γ) decreases with increasing ρ. 4

Proof. The fat-shattering dimension obviously cannot increase with increasing
ρ, so we only need to find a value of γ where it decreases. We show that this hap-
pens at γ′ = R

√
1− ρ2

2. First, we upper bound fatFv,ρ2
(γ′) by showing that, in

order to γ′-shatter two points, the separating hyperplane must be able to rotate
through a larger angle than that allowed by the constraint ω1T

v > ρ2. Assume
that two points x1, x2 can be γ′-shattered by Fv,ρ2 . Then ∃ω1, ω2, θ1, θ2, r1, r2

such that ω1T

x1 + θ1− r1 ≥ γ′ , ω1T

x2 + θ1− r2 ≤ −γ′, ω2T

x1 + θ2− r1 ≤ −γ′,
ω2T

x2 + θ2 − r2 ≥ γ′. Combining the terms and applying the Cauchy-Schwartz
inequality, we get

∥∥ω1 − ω2
∥∥ ≥ 2γ′

R . Squaring both sides, expanding
∥∥ω1 − ω2

∥∥2

as
∥∥ω1

∥∥2 +
∥∥ω2

∥∥2 − 2ω1T

ω2, and using the fact that
∥∥ω1

∥∥ =
∥∥ω2

∥∥ = 1 yields

ω1T

ω2 ≤ 1− 2γ′2

R2 = 2ρ2
2 − 1 (15)

Since the angle between ω1 and ω2 cannot exceed the sum of the angle between
ω1 and the prior v and the angle between v and ω2, both of which are bounded
above by arccos(ρ2), we get (after some algebra) ω1T

ω2 > 2ρ2
2 − 1 , which

contradicts (15).

Thus, fatFv,ρ2
(R
√

1− ρ2
2) < 2 (16)

3 The constraint {w1 > 0} is weak since it only cuts the volume of the hypothesis
space by 1

2 .
4 Note that the statement of this theorem deals with hyperplanes with unit normals,

not canonical hyperplanes. The margin of a unit-normal hyperplane is given by
mini=1..m|ωxi + θ|.
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Now, we lower bound fatFv,ρ1
(γ′) by exhibiting two points γ′-shattered by Fv,ρ1 .

Wlog, let v = [0, 1, 0, ..0]T . It is easy to verify that x1 = [R, 0, ..0]T and x2 =
[−R, 0, ..0]T can be R

√
1− ρ2

2-shattered by Fv,ρ1 , witnessed by r1 = r2 = 0.

Hence, fatFv,ρ1
(R
√

1− ρ2
2) ≥ 2 (17)

which, combined with (16), completes the argument. �
The result of Theorem 1 is important because it shows that even weak prior
knowledge improves the classifier’s generalization performance in the VC frame-
work which makes less assumptions about the data than the fat-shattering frame-
work. However, it is the result of Theorem 2 within the fat-shattering framework
which justifies the use of stronger prior knowledge.

4 Implementation

The quadratic optimization problem for finding the maximum margin separating
hyperplane (2) can be easily modified to take into account linear rotational con-
straints of the form ωT cj > 0, j = 1...l. The soft margin/soft constraint formula-
tion that allows for possibility of violating both the margin maximization objective
and the rotational constraints minimizes the following regularization functional:

Rreg[f, l, l′] =
1
m

m∑
i = 1

l(yi, f(xi;ω, θ)) +
C1

C2l

l∑
j = 1

l′(ω, cj) +
C1

2
‖ω‖22 (18)

with 0-1 losses for the data and the prior: l(yi, f(xi;ω, θ)) = I{−yif(xi;ω,θ)>0} and
l′(ω, cj) = I{−ωT cj>0} in the hard margin/hard rotational constraints case and
hinge losses: l(yi, f(xi;ω, θ))= max(1−yif(xi;ω, θ), 0),l′(ω, cj)=max(−ωT cj , 0)
in the soft margin/soft rotational constraints case. The regularization functional
above is the same as in (2) with an additional loss function which penalizes the
hyperplanes that violate the prior. Minimizing (18) with hinge loss functions is
equivalent to solving:

minimize
ω, θ, ξ, ν

1
2 ‖ω‖

2
2 + 1

C1m

m∑
i = 1

ξi + 1
C2l

l∑
j = 1

νj (19)

subject to yi(ωTx+ θ) ≥ 1− ξi, ξi ≥ 0, i = 1...m,
ωT cj ≥ 0− νj , νj ≥ 0, j = 1...l.

Constructing the Lagrangian from (19) and calculating the Wolfe dual results
in the following maximization problem:

maximize
α, β

m∑
i = 1

αi − 1
2

m∑
i, j = 1

αiαjyiyj(xT
i xj)−

m∑
i = 1

l∑
j = 1

αiβjyi(xT
i cj)−

1
2

l∑
i, j = 1

βiβj(xT
i cj) (20)
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Fig. 1. Approximating a conic constraint:

a) Start with the known constraints ω1 ≥ 0, ω2 ≥ 0, and ω3 ≥ 0 around v1 =
[ 1√

3
, 1√

3
, 1√

3
]T . The figure shows linear constraints around v1 (white vector) and the

cone ωT v1

‖ω‖ > 1√
3

approximated by these constraints.
b) Rotate the bounding hyperplanes {ω1 = 0}, {ω2 = 0}, {ω3 = 0} into v1, approxi-
mating a cone with the required angle ρ′ around v1

c) Rotate the whole boundary from v1 (white vector in (a),(b)) to the required orien-
tation v′ (white vector in (c)).

subj. to 1
C1m ≥ αi ≥ 0, i = 1...m, 1

C2l ≥ βj ≥ 0, i = 1...l, and
m∑

i = 1
αiyi = 0

The solution to (20) is given by ω =
m∑

i = 1
αiyixi+

l∑
j = 1

βjcj . (21)

As before, setting ξi = 0, νj = 0, i = 1...m, j = 1...l, (19), (20), and (21) can be
used to solve the hard margin/hard rotational constraints optimization problem.
Note that in the soft-margin formulation, constants C1 and C2 define a trade-off
between fitting the data, maximizing the margin, and respecting the rotational
constraints.

The above calculation can impose linear constraints on the orientation of
the large margin separating hyperplane when such constraints are given. This
is the case with sign-constrained prior knowledge. However, domain knowledge
in form of a cone centered around an arbitrary rotational vector v′ cannot be
represented as a linear constraint in the quadratic optimization problem given
by (19). The approach taken in this work is to approximate an n-dimensional
cone with n hyperplanes. For example, sign constraints ω1 ≥ 0, ω2 ≥ 0, and
ω3 ≥ 0 approximate a cone of angle ρ1 = 1√

3
around v1 = [ 1√

3
, 1√

3
, 1√

3
]T (see

Figure 1-(a)). To approximate a cone of arbitrary angle ρ′ around an arbitrary
orientation vector v′, 1) the normal ω′

i of each bounding hyperplane {ωi = 0} (as
defined by the sign constraints above) is rotated in the plane spanned by {ω′

i, v
1}

by an angle acos(ω′
i
T v1) − ρ′, and 2) a solid body rotation that transforms v1

into v′ is subsequently applied to all the bounding hyperplanes, as illustrated in
Figure 1. This construction generalizes in a straightforward way from R3 to Rn.
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5 Experiments

Experiments were performed on two distinct real-world domains:

Voting Records. This is a UCI database [15] of congressional voting records.
The vote of each representative is recorded on the 16 key issues. The task is to
predict the representative’s political party (Democrat or Republican) based on
his/her votes. The domain theory was specified in form of inhibitory/excitatory
sign constraints. An excitatory constraint means that the vote of “yea” corre-
lates with the Democratic position on the issue, an inhibitory constraint means
that Republicans favor the proposal. The complete domain theory is specified in
Figure 2-(a). Note that sign constraints are imposed on relatively few features
(7 out of 16). Since this type of domain knowledge is weak, a hard rotational
constraint SVM was used. Only representatives whose positions are known on
all the 16 issues were used in this experiment. The results shown in Figure 2-
(b) demonstrate that sign constraints decrease the generalization error of the
classifier. As expected, prior knowledge helps more when the data is scarce.

Text classification. The task is to determine the newsgroup that a posting was
taken from based on the posting’s content. We used the 20-newsgroups dataset
[16]. Each posting was treated as a bag-of-words, with each binary feature encod-
ing whether or not the word is present in the posting. Stemming was used in the
preprocessing stage to reduce the number of features. Feature selection based on
mutual information between each individual feature and the label was employed
(300 maximally informative features were chosen). Since SVMs are best suited
for binary classification tasks, all of our experiments involve pairwise newsgroup
classification. The problem of applying SVMs to multicategory classification has
been researched extensively([2,3]), and is orthogonal to our work.

a) b)
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Fig. 2. a) Prior Knowledge for voting b)Generalization error as a percentage versus
number of training points for voting classification. For each classification task, the data
set is split randomly into training and test sets in 1000 different ways. SVM classifier
is trained on the training set with and without prior knowledge, and its average error
on the test set is plotted, along with error bars showing 95% confidence intervals.
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Fig. 3. Generalization error as a percentage versus number of training points for 5
different classification experiments. For each random sample selection, the data set is
split randomly into training and test sets in 100 different ways. For active learning
experiments, the data set is split randomly into two equal-sized sets in 100 different
ways, with one set used as the unlabeled pool for query selection, and the other set -
for testing. All error bars are based on 95% confidence intervals.

Prior knowledge in this experiment is represented by a conic constraint
around a specific orientation vector v′. While it may be hard for human experts
to supply such a prior, there are readily available sources of domain knowledge
that were not developed specifically for the classification task at hand. In order
to be able to utilize them, it is essential to decode the information into a form
usable by the learning algorithm. This is the virtue of rotational constraints:
they are directly usable by SVMs and they can approximate more sophisticated
pre-existing forms of information. In our experiments, domain knwoledge from
Wordnet, a lexical system which encodes semantic relations between words [17],
is automatically converted into v′. The coefficient v′x of each word x is calculated
from the relative proximity of x to each category label in the hypernym (is-a)
hierarchy of Wordnet (measured in hops). A natural approximation of v′x is given
by hops(x,label+)

hops(x,label−)+hops(x,label+) , normalized by a linear mapping to the required
range [−1, 1], where label+ and label− are the names of the two newsgroups.
Performance of the following three classifiers on this task was evaluated:

1. A soft rotational constraint SVM (C1 = C2 = 10−5) with Wordnet prior (ρ =
0.99) (reasonable values of constants were picked based on the alt.atheism
vs. politics.guns classification task, with no attempt to optimize them for
other tasks).
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2. An SVM which actively selects the points to be labeled out of a pool of
unlabeled newsgroup postings. We implemented a strategy suggested in [4]
which always queries the point closest to the separating hyperplane.

3. Traditional SVM (C1 = 10−5) trained on a randomly selected sample.

Typical results of this experiment for a few different pairwise classification
tasks appear in Figure 3. For small data samples, the prior consistently decreases
generalization error by up to 25%, showing that even a very approximate prior
orientation vector v′ can result in significant performance improvement. Since
prior knowledge is imposed with soft constraints, the data overwhelms the prior
with increasing sample size. Figure 3 also compares the effect of introducing ro-
tational constraints with the effect of active learning. It has been shown theoret-
ically that active learning can improve the convergence rate of the classification
error under a favorable distribution of the input data [18], although no such
guarantees exist for general distributions. In our experiments, active learning
begins to improve performance only after enough data is collected. Active learn-
ing does not help when the sample size is very small, probably due to the fact
that the separating hyperplane of the classifier cannot be approximated well,
resulting in uninformative choices of query points. Rotational prior knowledge,
on the other hand, is more helpful for lowest sample sizes and ceases to be useful
in the region where active learning helps. Thus, the strengths of prior knowl-
edge and active learning are complementary. Combining them is a direction for
future research.

6 Conclusions

We presented a simple framework for incorporating rotational prior knowledge
into support vector machines. This framework has proven not only practically
useful, but also useful for gaining insight into generalization ability of a-priori
constrained large-margin classifiers.

Related work includes using Wordnet for feature creation for text catego-
rization ([19]) and introducing sign constraints into the perceptron learning al-
gorithm [20,21]. These studies do not provide generalization error guarantees
for classification.
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Abstract. The most common methodology in symbolic learning con-
sists in inducing, given a set of observations, a general concept definition.
It is widely known that the choice of the proper description language for
a learning problem can affect the efficacy and effectiveness of the learn-
ing task. Furthermore, most real-world domains are affected by various
kinds of imperfections in data, such as inappropriateness of the descrip-
tion language which does not contain/facilitate an exact representation
of the target concept. To deal with such kind of situations, Machine
Learning approaches moved from a framework exploiting a single in-
ference mechanism, such as induction, towards one integrating multiple
inference strategies such as abstraction. The literature so far assumed
that the information needed to the learning systems to apply additional
inference strategies is provided by a domain expert. The goal of this work
is the automatic inference of such information.

The effectiveness of the proposed method was tested by providing the
generated abstraction theories to the learning system INTHELEX as
a background knowledge to exploit its abstraction capabilities. Various
experiments were carried out on the real-world application domain of
scientific paper documents, showing the validity of the approach.

1 Introduction

Although the efficacy of induction algorithms has been demonstrated on a wide
variety of benchmark domains, current Machine Learning techniques are inade-
quate for more difficult real-world domains. The nature of the problem can be of
different types, such as noise in the descriptions and lack of data but also the low
level representation of the examples of the target concept. It is well known that
the inappropriateness of a description language that does not contain/facilitate
an exact representation of the target concept can affect the efficacy/effectiveness
of the learning task. Hence, the choice of the proper representation for a learn-
ing problem has a significant impact on the performance, of Machine Learning
systems in general, and of ILP systems [10] in particular. Generally, a low level
representation provides all the information necessary to the learning task, but its
individual parts are only remotely related to the target concept, making patterns

J. Gama et al. (Eds.): ECML 2005, LNAI 3720, pp. 120–132, 2005.
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hard to identify. Low level representations are common in real-world domains,
where examples are naturally described by many small measurements, in which
there is not enough knowledge to represent the data with few highly relevant
features.

Among various strategies proposed to overcome this limitation, there are dif-
ferent ways to exploit the abstraction framework proposed in [14]. For example,
[16] addresses the problem of potentially many mappings that can hold between
descriptions in a first-order representation language by selecting one particular
type of mapping at a time and using it as a basis to define a new hypothesis
space, thus performing a representation change. [15] used it to overcome the
knowledge acquisition bottleneck that limits the learning task in particular ap-
plication domains such as the automation of cartographic generalization. More
generally, abstraction is used to model a priori the hypothesis space before the
learning process starts introducing it as a multi-strategy capability that could
shift to a higher language bias when the current one does not allow to capture
the target predicate definition [3, 6, 8]. From an operational viewpoint, it should
deal with cases in which learning can be more effective if it takes place at mul-
tiple (different) levels of complexity, which can be compared to the language
bias shift considered in [2]; a useful perspective for the integration of this infer-
ence operator in an inductive learning framework was given in [14]. According to
such a framework, the abstraction operator was endowed in the learning system
INTHELEX [4] making it able to perform the shift.

In the current practice, it is in charge of the human expert to specify all
the information needed by such a strategy for being applicable. It goes without
saying that quality, correctness and completeness in the formalization of such
information is a critical issue, that can determine the very feasibility of the
learning process. Providing it is a very difficult task because it requires a deep
knowledge of the application domain, and is in any case an error-prone activity,
since omissions and errors may take place. For instance, the domain and/or the
language used to represent it might be unknown to the experimenter, because he
is just in charge of properly setting and running the learning system on a dataset
provided by third parties and/or generated by other people. In any case, it is
often not easy for non-experts to single out and formally express such knowledge
in the form needed by the automatic systems, just because they are not familiar
with the representation language and the related technical issues.

These considerations would make it highly desirable to develop procedures
that automatically generate such information. This work aims at proposing solu-
tions to automatically infer the information required by the abstraction frame-
work from the same observations that are input to the inductive process, as-
suming that they are sufficiently significant, and at assessing the validity and
performance of the corresponding procedures. In the following, after an intro-
duction to the general framework for abstraction, the method for the automatic
definition of appropriate rules to fire the operator will be presented along with
an experimental session on a real-world domain.
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2 Abstraction Inference Strategy: The General
Framework

Abstraction is defined as a mapping between representations that are related to
the same reference set but contain less detail (typically, only the information that
is relevant to the achievement of the goal is maintained). It is useful in inductive
learning when the current language bias proves not to be expressive enough for
representing concept descriptions that can explain the examples, as discussed in [2].

Definition 1. Given two clausal theories T (ground theory) and T ′ (abstract
theory) built upon different languages L and L′ (and derivation rules), an ab-
straction is a triple (T, T ′, f), where f is a computable total mapping between
clauses in L and those in L′.

An Abstraction Theory (an operational representation of f) is used to perform
such a shift of language bias [13, 2] to a higher level representation:

Definition 2. An abstraction theory from L to L′ is a consistent set of clauses
c : −d1, . . . , dm where c is a literal built on predicates in L′, and dj , j = 1, . . . ,m
are literals built on predicates of L. In other words, it is a collection of interme-
diate concepts represented as a disjunction of alternative definitions.

Inverse resolution operators [10], by tracking back resolution steps, can suggest
new salient properties and relations of the learning domain. Thus, they can be
a valuable mechanism to build abstraction theories, as introduced in [7]. To this
purpose, the absorption, inter-construction and intra-construction operators can
be exploited, also in the case of first-order clauses. In this work we are interested
in the case of a Datalog program [1, 9] as ground space of the abstraction, as in
[11], where clauses are flattened, hence function-free.

Definition 3 (Absorption & Inter-construction).

absorption: let C and D be Datalog clauses. If ∃θ unifier such that ∃S ⊂
body(C), S = body(D)θ, then applying the absorption operator yields the
new clause C′ such that:
– head(C′) = head(C)
– body(C′) = (body(C) \ S) ∪ {head(D)θ},

i.e., if all conditions in D are verified in the body of C, the corresponding
literals are eliminated and replaced by head(D).

Example 1. Let be C and D the following clauses:
C = bicycle(bb) ← has pedals(bb,p), has saddle(bb,s), has frame(bb,f),

part of(bb,w1), circular(w1), has rim(w1), has tire(w1),
part of(bb,w2), circular(w2), has rim(w2), has tire(w2).

D = wheel(X) ← circular(X), has rim(X), has tire(X).
For such two clauses there exists θ1 = X\w1 and θ2 = X\w2, thus, applying
absorption operator twice we obtain the following clause:
C’ = bicycle(bb) ← has pedals(bb,p), has saddle(bb,s), has frame(bb,f),

part of(bb,w1), wheel(w1), part of(bb,w2), wheel(w2).



On the LearnAbility of Abstraction Theories from Observations 123

inter-construction: let C = {Ci|i = 1, . . . , n} be a set of Datalog clauses. If
there exists a set of literals R and a unifier θi for each clause Ci, such that
∃Si ⊂ body(Ci), Si = Rθi, then we define:
– a new predicate L← R
– for all i = 1, . . . , n body(Ci) can be rewritten as (body(Ci) \ Si)∪ {Lθi}.

i.e., if all conditions in R are verified in the body of each Ci ∈ C, the cor-
responding literals are eliminated and replaced by L that is a new predicate,
with a definition in the theory, never present in the description language.

Example 2. Let C be the following set of clauses:
C1 = monocycle(m) ← has small pedals(m,sp), has small saddle(m,ss),

part of(m,w1), circular(w1), has rim(w1), has tire(w1).
C2 = bicycle(bi) ← has pedals(bi,p), has saddle(bi,s), has frame(bi,f),

part of(bi,wbi1),circular(wbi1),has rim(wbi1),has tire(wbi1),
part of(bi,wbi2), circular(wbi2), has rim(wbi2), has tire(wbi2).

C3 = car(c) ← has motor engine(c,me), has steering wheel(c,sw),
part of(c,wc1),circular(wc1),has rim(wc1),has tire(wc1),
part of(c,wc2),circular(wc2),has rim(wc2),has tire(wc2),
part of(c,wc3),circular(wc3),has rim(wc3),has tire(wc3),
part of(c,wc4),circular(wc4),has rim(wc4),has tire(wc4).

As we can note, the set R = part of(A, B), circular(B), has rim(B), has tire(B)
is present in all the clauses and there exists an unifier between R and each of the
clauses C1, C2, C3, then it is possible to define a new predicate, let be it l(A, B),
and the clause l(A, B) : −part of(A, B), circular(B), has rim(B), has tire(B).
By this definition the set C can be rewritten as:
C1 = monocycle(m) ← has small pedals(m,sp), has small saddle(m,ss), l(m,w1).
C2 = bicycle(bi) ← has pedals(bi,p), has saddle(bi,s), has frame(bi,f),

l(bi,wbi1), l(bi,wbi2).
C3 = car(c) ← has motor engine(c,me), has steering wheel(c,sw),

l(c,wc1), l(c,wc2), l(c,wc3), l(c,wc4).

In the framework for integrating abstraction and inductive learning given
in [14], concept representation deals with entities belonging to three different
levels, that together form a reasoning context. Underlying any source of experi-
ence is the world, where concrete objects (the ‘real things’) reside, that is not
directly known, since any observer’s access to it is mediated by his perception of
it P (W ) (consisting of the ‘physical’ stimuli produced on the observer). To be
available over time, these stimuli must be memorized in an organized structure
S, i.e. an extensional representation of the perceived world, in which stimuli
related to each other are stored together. Finally, to reason about the perceived
world and communicate with other agents, a language L is needed, that de-
scribes it intensionally. Generally these sets contain operators for performing
operations such as: grouping indistinguishable objects into equivalence classes;
grouping a set of ground objects to form a new compound object that replaces
them in the abstract world; ignoring terms, that disappear in the abstract world;
merging a subset of values that are considered indistinguishable; dropping pred-
icate arguments, thus reducing the arity of a relation (even to zero, thus moving
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to a propositional logic setting). Corresponding instances of these operators are
present at each level of the reasoning context, so that it is possible to reason at
any of the given levels.

3 Learning Abstraction Theories

The abstraction procedure reported in Section 2 aims at discarding or hiding
the information that is insignificant to the achievement of the goal. According
to Definitions 1 and 2, abstraction is based on a computable mapping f whose
operational representation is an Abstraction Theory that encodes the abstrac-
tion operators by means of a consistent set of clauses, i.e. domain rules. Thus, in
order to perform abstraction, an inductive concept learning system must be pro-
vided with an abstraction theory for the specific application domain at hand. As
already pointed out, a common assumption is that such a knowledge is provided
by an expert of the application domain. Here, we propose a general approach
to automatically learn such a knowledge (domain rules) by looking for corre-
spondences that often or seldom hold among a significant set of observations.
These correspondences are generated according to the inter-construction opera-
tor (Definition 3) and are then exploited to simplify the description language in
two different ways: by generating shifting rules that replace significant (charac-
teristic or discriminant) groups of literals by one single literal representing their
conjunction, or by generating neglecting rules that eliminate groups of literals
that are not significant. Both kinds of rules will be applied in order to perform
the shift of language bias according to the absorption operator presented in De-
finition 3 in this way reducing the description length and thus improving the
induction performance.

Algorithm 1 sketches the overall procedure conceived to discover common
paths in the application domain that potentially could make up the Abstraction
Theory. It firstly generates domain rules involving unary predicates only, that
represent the characteristics of an object in the description, and then the rules
made up of predicates whose arity is greater than 1, that represent the relation-
ships between two or more objects contained in the descriptions. The algorithm
is based on the choice of an observation (referred to in the following as the seed)
that will act as the representative of the concepts to be abstracted (currently it
is the first encountered positive observation).

For each constant ci in the seed description, the algorithm collects the unary
predicates it is argument of, and computes all their subsets (excluding those
having cardinality equal to 0, that do not give information about the object, or 1,
that represent only properties of the objects). Each subset identified in this way
is a candidate to compose the body of a rule, in the Abstraction Theory, made up
of unary predicates. The selection among these subsets is done considering the
ones that are the best representative for the class of the concept to be abstracted
according to the seed e. Thus, each subset is assigned a score based on the
number of times that it occurs in the positive and negative descriptions. This
value represents the coverage rate of the subset with respect to the observations
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Algorithm 1. Identification of domain rules for Abstraction Operators
Require: E+: set of positive observations; E−: set of negative observations; e: seed;

Provide: AT : set of domain rules that make up an abstraction theory;
if ∃ unary predicates in e then

S := ∅, UnaryPreds := set of unary predicates in e
C := {c1, c2, . . . , cn} set of constants in the description of e
for all ci ∈ C do

Si := {li ∈ UnaryPreds s.t. ci is argument of li}
if (| Si |�= 0 and | Si |�= 1) then S := S Si

for i=1..n do
for all Sj ∈ S do

find all the subsets sjm of Sj s.t.
(0 − α ≤ Score(sjm) ≤ 0 + α) OR (Max − α ≤ Score(sjm) ≤ Max + α)

create the rule: rulesjm (ci) ← sjm

replace in E+, in E− and in e, sjm with rulesjm (ci)
while F (:= set of all leaf predicates of e) �= ∅ do

for all li ∈ F do
if li has only one parent (let gi(ai, . . . , an) be the li’s parent) then

create the rule: ruleli(ai, ...an) ← gi, li; H := true
replace in E+, in E− and in e, gi, li with ruleli(ai, ...an))

for all rulei ← li1 , . . . , lin generated do
if {li1 , . . . , lin} occurs in some rule rulej then

replace li1 , . . . , lin in rulej by rulei

eliminate rulei form the set of rules generated
Evaluate the set of generated rules

and indicates the quality of the subset. This kind of selection allows to choose the
subsets that are neither too specific, because they are present in few observations,
nor too general, because they are encountered in almost all the observations.
Once the subsets Sj are selected, the rules to make the Abstraction Theory are
formulated in the following way:

abstract predicate(ci) ← Sj iff score(Sj) ≥ P (shifting rule)
← Sj iff score(Sj) ≤ P (neglecting rule)

where P is a threshold depending on the application domain at hand (in order
to make P independent on the specific domain, the score can be normalized as
a percentage of the maximum score actually computed in the given dataset). In
the case of shifting rules, the rule’s body Sj , that is a conjunction of literals,
is very characterizing of either the positive or the negative observations, thus
it is fundamental for the learning process and deserves to be identified by a
specific predicate. In the case of neglecting rules, Sj could indicate a detail in
the description that is not very significant for the learning process and thus it
can be dropped. In both cases, replacing the rule’s body with its head in the
observations reduces the length of observations, this way making the learning
process more efficient.

The algorithm continues with the identification of rules made up of predicates
whose arity is greater than 1. Thus, once the previously identified abstraction
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rules are replaced in all the observations, they don’t contain any unary predicates
belonging to the original representation language. At this point, an iteration that
groups together the n-ary predicates is performed until one of the following con-
ditions succeeds: 1) the description of the seed e does not contain leaf predicates
(predicates that share arguments with at least another predicate, excluding the
head’s predicate); 2) all the rules generated at step n have already been gen-
erated at step n− 1. The search for leaf predicates is particularly complex due
to the large number of relationships that could hold between the objects in the
descriptions. The identification of such predicates is done by representing the
observation with a tree (see Figure 1 for an example) in which each level is de-
termined by the propagation of the variables/constants (no relation has to be
imposed between two or more predicates at the same level even if they share
some variable/constant): the root is the head of the observation and its direct
descendants are all the predicates that share with it at least one argument. This
procedure is iterated until all the predicates in the description have been inserted
in the tree (a considered predicate does not participate anymore to the tree con-
struction). Note that this procedure allows to represent any observation as a tree
even when it does not naturally have a tree structure. After the tree is built, the
leaf nodes that have only one parent are selected. Let L = l1, l2, . . . , ln be the
set of such leaf predicates: for each element li ∈ L its parent (say g(a1, . . . , am))
is extracted from the tree, and the following rule is generated:

rule(a1, . . . , am) ← g(a1, . . . , am), li
Finally, for each generated rule Ri = rulei ← li1 , . . . , lin , if the body li1 , . . . , lin ,
appears in some rule Rj then li1 , . . . , lin is replaced in Rj by the predicate
rulei and Ri is eliminated by the set of rules that are being generated. At
the end of this step the evaluation phase of the potential rules to make up
the Abstraction Theory is performed again according to the procedure above
mentioned.

Associating a score to each subset requires a statistical model able to take
into account the significance of the subset for the descriptions, i.e. its frequency
in them. Specifically, a good subset should have a great discriminating power,
i.e. it should be able to discriminate better than any other subset a description
from the others. To this aim we exploit the distribution of the subset in the
whole set of observations: an high discriminating power means that the subset
is fundamental for the concept description since it helps to distinguish a concept
from another, while a low discriminating power is interpreted as a hint that the
subset is superfluous for the learning process and thus it could be eliminated
from the description of the observations. The statistical model that reflects such
considerations is the Term Frequency - Inverse Document Frequency (TF-IDF)
[12], adapted to our work context facing positive and negative observations as
follows. For each subset Si a vector Vi = (Vi1, Vi2, . . . , ViN ) is created, where N
is the number of available observations and Vij is the weight of the i-th subset
in the j-th observation, computed as:

Vij = FREQij ∗ (lg N
IFREQi

+ 1)
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The term (lg N
IF REQi

+ 1) represents the inverse of the frequency of Si in
the whole set of observations. The result of this computation will be positive
if the j-th observation is positive, negative otherwise, thus the resulting vector
will be of the form Vi = (+,−,+,+,−,+, . . .). This allows to distinguish the
significance of the subset according to its presence in the positive and negative
observations. Now, for each subset we have the vector of its weights in each
observation. To select the best subset the following value is computed for each
subset:

score(Si) =
∑

j=1,...,N Vij

It is worth noting that this score will be around zero if the subset equally
occurs in both positive and negative observations, in which case it is considered
insignificant and could be exploited as a neglecting rule in the abstraction phase.
Conversely, an high absolute value indicates a strong correlation of the subset
with the positive or the negative observations. Specifically, highly positive (resp.,
negative) scores indicate that the subset is very frequent in the positive (resp.,
negative) observations. In both cases, it is considered significant and hence it
could be exploited to build shifting rules for the abstraction phase.

Example 3. Let h(1) : −p(1, 2), p(1, 4), p(1, 5), c(2, 3), f(5, 6), d(4), s(6) the seed cho-
sen in the set of the observations.

• Step 1:
– Grouping unary predicates: S = ∅, no groups of unary predicates with cardi-

nality strictly greater than 1 can be recognized;
• Step 2:

– Recognize Leaf Nodes:
F = {c(2, 3), d(4), s(6)}, indeed c(2, 3) has only one parent p(1, 2); d(4) has
only one parent p(1, 4); s(6) has only one parent f(5, 6).

– Create the rules - ruleli(ai, ...an) ← gi, li:
c(2, 3) with parent p(1, 2) → rule1(X, Y ) : −p(X,Y ), c(Y, Z).
d(4) with parent p(1, 4) → rule2(X, Y ) : −p(X,Y ), d(Y ).
s(6) with parent f(5, 6) → rule3(X, Y ) : −f(X, Y ), s(Y ).

– Replace the rule in the set of the observations, for example:
h(1) : −p(1, 2), p(1, 4), p(1, 5), c(2, 3), f(5, 6), d(4), s(6). →
h(1) : −rule1(1, 2), rule2(1, 4), p(1, 5), rule3(5, 6).

• Step 3:
– Recognize Leaf Nodes:

F = {rule3(5, 6)}, indeed rule3(5, 6) has only one parent p(1, 5).
– Create the rules - ruleli(ai, ...an) ← gi, li:

rule3(5, 6) with parent p(1, 5) → rule4(X, Y ) : −p(X,Y ), rule3(Y, Z).
– Replace the rule in the set of the observations:

h(1) : −rule1(1, 2), rule2(1, 4), p(1, 5), rule3(5, 6). →
h(1) : −rule1(1, 2), rule2(1, 4), rule4(5, 6).

• Step 4: END - No more Leaf Nodes can be recognized

Figure 1 reports steps 2 and 3 of the tree and rule construction. The procedure continues
with the evaluation step of the generated rules, that are:
rule1(X, Y ) : −p(X,Y ), c(Y, Z). rule2(X, Y ) : −p(X, Y ), d(Y ).
rule3(X, Y ) : −f(X, Y ), s(Y ). rule4(X, Y ) : −p(X, Y ), rule3(Y, Z).
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Now, suppose that P , the percentage empirically computed on the domain at handle,
is equal to 95% and that the Score Percentage of each rule is: score(1) = 95%; score(2)
= 99%; score(3) = 75%; score(4) = 86%. Then, rule1 and rule2 will be shifting rules
while rule3 and rule4 neglecting rules:
rule1(X, Y ) : −p(X,Y ), c(Y, Z). rule2(X, Y ) : −p(X,Y ), d(Y ).
: −f(X, Y ), s(Y ). : −p(X,Y ), rule3(Y, Z).

Fig. 1. Tree construction of an observation

4 Experimental Results

The proposed method was implemented in SICStus Prolog and tested providing
the resulting abstraction theories to the incremental ILP system INTHELEX
[4] allowing it to exploit its abstraction capabilities. Various experiments were
carried out on a real world application domain of scientific paper documents [5].

The learning tasks to which the learning system was applied, involved the in-
duction of classification rules for 3 classes of scientific papers (96 documents of
which 28 formatted according to the International Conference on Machine Learn-
ing proceedings (ICML), 32 according to the Springer-Verlag Lecture Notes style
(SVLN) and 36 formatted according to the IEEET style), and of rules for identify-
ing the logical components Author [36+, 332-], Page Number [27+, 341-] and Ti-
tle [28+, 340-] in ICML papers (square brackets report the number of positive and
negative instances for each label). Figure 2 shows an example of document and its
simplified description in first order language. 33 repetitions of each learning task
were carried out, in each of which the dataset was randomly split into a training
set (including 70% of the observations), exploited also to induce the rules for the
abstraction operators, and a test set (made up of the remaining 30%).

To build neglecting rules, the threshold for considering low discriminating
power (i.e. the score near to zero) was empirically set to ±5% of the minimum
positive value and of the maximum of the negative ones in the vector associated
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Fig. 2. Sample ICML document and an extract of its whole description

to the rule. To build shifting rules that have an high discriminating power (i.e.
very frequent either in positive or in negative observations only) the threshold
was empirically set to the score less then 95% of the minimum positive value
and of the maximum of the negative ones in the vector associated to the rule
for the classification task and less then 75% of the minimum positive value and
of the maximum of the negative ones in the vector associated to the rule for the
understanding task.

The average results along with the number of refinements and of clauses
learned, the predictive accuracy of the learned theories and the runtime (sec),
including both the time for the abstraction step and the learning task, are re-
ported in Table 1. According to a paired t-test, there is no statistical difference
between the results with and without abstraction, except for runtime. Having
the same performance (predictive accuracy) and behavior (no. of clauses and
refinements) both with and without abstraction means that the proposed tech-
nique was actually able to eliminate superfluous details only, leaving all the
information that was necessary for the learning task, which was a fundamen-
tal requirement for abstraction. Conversely, runtime was dramatically reduced
when using abstraction thanks to the shorter descriptions obtained by elimi-
nating the details, which was exactly the objective of using abstraction. Note
that the abstraction theory for a domain is learned once at the beginning of the
learning process and is reused every time the learning system is applied on the
same domain.
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Table 1. System performance exploiting the discovered abstraction theories

ICML SVLN IEEET
With Abs No Abs With Abs No Abs With Abs No Abs

Lgg 5.81 5.54 7.36 8.12 8.03 8.30
Cl 1.21 1.27 2.75 2.69 2.03 2.27

Accuracy 96.93% 96.75% 86.54% 87.36% 90.69% 90.57%
Runtime 2.00 3.16 11.34 19.46 7.64 27.55

Author Page Number Title
ICML With Abs No Abs With Abs No Abs With Abs No Abs
Lgg 8.9 8.96 8.15 8.12 8.81 9.09
Cl 2.33 2.06 2.39 2.45 2.42 2.54

Accuracy 97.18% 97.12% 97.81% 97.54% 98.12% 97.87%
Runtime 14.44 29.07 34.06 76.22 27.70 51.67

An example of neglecting rule identified with the proposed strategy is:

:- type_graphic(A), pos_upper(A).

meaning that a graphics being placed in upper position is not discriminant be-
tween positive and negative examples. An example of shifting rule learned is:

pos_upper_type_text(A) :- type_text(A), pos_upper(A).

As expected, exploiting the abstraction operators the system learns shorter
clauses. For instance, the theory learned for author contains two clauses made
up of 18 and 15 literals (against the 19 and 37 without using abstraction):

logic_type_author(A) :- height_medium_small(A), pos_upper_type_text(A),
part_of(B, A), part_of(B, C), height_very_small_type_text(C),
pos_upper_type_text(C), part_of(B, D), width_very_large(D),
height_smallest(D), type_hor_line(D), pos_center_pos_upper(D),
alignment_left_col(D, E), on_top(F, E), part_of(B, E), part_of(B, F),
part_of(B, G), type_text_width_medium_large(G), pos_left_type_text(G).

logic_type_author(A) :- part_of(B, A), part_of(B, C),
pos_upper_type_text(A), pos_center_pos_upper(A),
pos_upper_type_text(C), pos_left_type_text(C),
height_very_very_small_type_text(C), on_top(C, D),
part_of(B, D), on_top(E, A), width_very_large(E), height_smallest(E),
pos_center_pos_upper(E), on_top(F, E), alignment_center_col(F, E).

where the presence of several abstract predicates confirms that the automatically
generated abstraction theory was able to identify discriminative intermediate
concepts.

5 Conclusion and Future Works

The integration of inference strategies supporting pure induction in a relational
learning setting, such as abstraction to reason at multiple levels, can be very
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advantageous both in effectiveness and efficiency for the learning process. In
inductive learning, the shift to a higher level representation can be performed
directly when the abstraction theory is given and usually an expert domain
has to built such a theory. This paper presented a technique for automati-
cally inferring the information needed to apply abstraction operators in an in-
ductive learning framework, exploiting the same observations that are input
to the inductive algorithm. Application of the proposed technique in a real
learning system proved its viability for significantly improving learning time
in complex real-world domains. Future work will concern the analysis of heuris-
tics to choose the seed, to improve the generation of abstraction theories and
the design of techniques that can provide information for further abstraction
operators.
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Abstract. Scientists regularly decide the statistical significance of their findings 
by determining whether they can, with sufficient confidence, rule out the 
possibility that their findings could be attributed to random variation—the ‘null 
hypothesis.’  For this, they rely on tables with critical values pre-computed for 
the normal distribution, the t-distribution, etc. This paper provides such tables 
(and methods for generating them) for the performance metrics of binary 
classification: accuracy, F-measure, area under the ROC curve (AUC), and true 
positives in the top ten. Given a test set of a certain size, the tables provide the 
critical value for accepting or rejecting the null hypothesis that the score of the 
best classifier would be consistent with taking the best of a set of random 
classifiers.  The tables are appropriate to consult when a researcher, practitioner 
or contest manager selects the best of many classifiers measured against a 
common test set. The risk of the null hypothesis is especially high when there is 
a shortage of positives or negatives in the testing set (irrespective of the training 
set size), as is the case for many medical and industrial classification tasks with 
highly skewed class distributions.  

1   Introduction 

Much practice and research work in the field of data mining amounts to trying a 
number of models or parameterizations, and selecting or recommending the best 
based on the performance scores on a test set.  Sometimes the difference in 
performance of the top two scoring methods is not statistically significant according 
to standard statistical tests, in which case one is usually satisfied that either is a good 
choice.  Unfortunately, even this conclusion may be suspect if the test set is too small, 
and it may not be obvious how small is ‘too small.’ Often it is difficult or expensive 
to obtain additional validated test data, as in many medical or industrial classification 
tasks. Furthermore, even a large test set can yield insignificant conclusions if the 
number of positives or negatives is unsuited for the particular performance metric.   

As the number of competing models grows, the performance level required for 
statistical significance may be surprisingly large. For example, the organizers of the 

2001 KDD Cup provided an interesting real-world biology classification challenge 
with a respectably large test set (150 positives and 484 negatives). However, the 
winning score of the 114 contestants was later found to be no greater than one should 
expect from 114 randomly generated trivial classifiers [4].  Consider also well-known 
datasets, such as the Wisconsin Breast cancer dataset (241 positive/malignant and 458 
negative/benign), to which many researchers have applied a variety of learning 
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models and published the best of these [7].  Other examples abound.  Examining the 
datasets contributed to the UCI machine learning repository [2], 45 out of the 69 
datasets contain less than 2000 samples for both training and testing. Of these 45 
datasets, many were collected in real world medical experiments, which further raises 
the importance of determining the statistical significance of the results.  Medical 
researchers regularly attempt to evaluate classifiers with fewer than 100 patients [1]. 

 

Practitioners and researchers need a convenient method or statistical reference 
table in order to determine whether the selection of the best classifier based on its 
winning score on their limited test set is statistically significant—that is, ruling out 
with sufficient probability that the best score found could have been obtained without 
substantial learning. (Note this differs from common pair-wise testing to determine 
whether the scores of one method are significantly better than the scores of another 
method—which is blind to the possibility that both are excellent or both terrible.)  
This paper lays out explicit significance tests for binary classification performance 
metrics based on the standard statistical method of rejecting the null hypothesis with 
high probability. We also provide reference charts showing the critical value for 
various test set sizes, to evaluate the significance of one’s ‘best’ classifier. 

The critical value depends on the number of positives and negatives in the test set, 
irrespective of the size of the training set, and applies to both cross-validation studies 
and held-out test sets.  We develop the method and tables for each of the following four 
performance metrics: accuracy, F-measure, area under the ROC curve (AUC), and 
number of positives identified in the top ten cases predicted to be positive (TP10). Table 
1 summarizes the range of conditions for which we offer pre-computed results. 

Furthermore, with a qualitative understanding of these results, one can more 
intelligently select the distribution of positives and negatives in future test sets and/or 
select the performance metrics appropriate to a given test set. 

Sections 2 and 3 lay out the statistical foundation and define the null hypothesis for 
four different performance metrics, one of which is computed analytically. Section 4 
presents the critical value charts, with additional detail provided in tables in the 
appendix, which is only available in the online version of this paper [5]. 

Table 1. Summary of conditions 

α  = 0.01 significance level: 1% chance of  
failing to reject the null hypothesis 

C = 10;100;1000 number of competing classifiers 
P = 2..1000 positives in test set 
N = 2..1000 negatives in test set 
Performance metrics: 

AUC  area under the ROC curve (true- vs. false-positives) 
TP10  true positives in top 10 
Accuracy percent correct  (= 1 – error rate) 
F-measure 2 × Precision × Recall ÷ (Precision + Recall) 

     (harmonic average of precision and recall) 
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2   Statistics Background 

Generally, to determine whether an apparent measured difference in performance is 
statistically significant, one must consider the probability that the same measured 
result would occur under the null hypothesis—the hypothesis that the difference is 
simply due to natural random variation and not due to true differences in the methods.  
To decide this, one must establish an acceptable level of risk that one will mistakenly 
fail to reject the null hypothesis.  This is characterized as the level of significance α, 
and is usually chosen to be 0.01.  That is, a result is reported to be statistically 
significant if its probability of occurring by chance under the null hypothesis is less 
than 1%.  Given α, one can determine the region of values of the test statistic where 
one can safely reject the null hypothesis. The statistical test in our case has the form 
‘reject the null hypothesis if m > m*,’ where m is the maximum test score of the 
classifiers. The value m* here is called the critical value and is defined as F(m*) = (1-
α), where F(x) is the cumulative distribution function (CDF) of the test statistic under 
the null hypothesis, i.e. F(x) equals the probability that a random sample drawn from 
the distribution under the null hypothesis is less than or equal to x. 

 

Given a competition among C=10 competitors where the winner achieves a 
maximum score m under some performance measure, one determines whether this 
result is statistically significant as follows:  Consider the null hypothesis that each 
competitor performs its task in a trivial and random fashion.  Determine the 
distribution of scores one competitor would expect to achieve under the null 
hypothesis.  This establishes a CDF F(x) for a single competitor.  We assume under 
the null hypothesis that the scores of the C competitors are drawn independently and 
identically distributed (iid) from this distribution. Given that the maximum score is m 
in the true competition, the probability under the null hypothesis that all of the C 
independent competitors would score ≤ m is F(m)C.  Given this joint CDF, we solve 
the equation given in the previous paragraph to determine the critical value m*: 

    F(m*)C = (1 – α)  
    F(m*) = (1–α)1/C = (1–0.01)1/10 = 0.990.1 = 99.8995th percentile 

If the maximum score m exceeds this critical value m*, then we can safely reject 
the null hypothesis. (Alternately, one may report the p-value for the maximum m.)  
All that remains is to determine the inverse CDF value F-1(0.998995) for the given 

Table 2. Significance test for competing classifiers

Input: C: number of competing classifiers 
 m: maximum score by the winner 
 P,N: positives and negatives in test set 
 α: significance level, conventionally 0.01 

For R = 1000 ÷ (1 –  (1 – α)1/C) repetitions: 
| Randomly shuffle P 1’s and N 0’s in an array 
| Score this ordering by the desired performance metric 
| Keep track of the top 1000 scores in a priority queue/heap 

m* = the 1000th best score retained, i.e. F-1( (1-α)1/C ). 
Decide statistically significant iff m > m* 
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performance measure for a single competitor under the null hypothesis. We instantiate 
this for four binary classification performance measures in the next section. 

3   Null Hypothesis for Classifiers 

A classifier under the null hypothesis learns nothing whatsoever from the training set. 
Its ranking of the test set amounts to random shuffling of the positives and  
negatives. 

Given the arbitrary ranking of the test cases by the classifier under the null 
hypothesis, the AUC score and the TP10 score are computed just as if a well-trained 
classifier generated the ranking. TP10 performance simply measures the number of 
true positives identified in the first ten positions of the ranking—a precision measure 
commonly used in information retrieval benchmarks.  The AUC score measures the 
area under the ROC curve (x-axis = false positive rate, y-axis = true positive rate). We 
walk the array incrementally, counting the number of true positives and false positives 
collected as we adjust a hypothetical threshold to encompass a growing prefix of the 
array.  See [3] for explicit AUC subroutines and useful guidelines on ROC curves. 

In order to determine accuracy, a specific threshold is required on the ROC curve, 
indicating that all cases above this threshold are predicted positive, and the rest 
negative.  One choice is to also select the threshold randomly, but this would rarely 
perform as well as majority voting. Instead, we take a conservative approach and 
select the threshold along the randomly generated ROC curve having the greatest 
accuracy. We call this measure the best accuracy under the null hypothesis.  This 
choice of definition is conservative in that if a given competition exceeds the critical 
value for best accuracy, it surely exceeds the critical value for a less optimally chosen 
threshold.  While some may suggest this might be too conservative for their liking, we 
would be uncomfortable promoting a classifier that does not exceed this null 
hypothesis.  (Naturally, the popular error rate metric is equal to (1-accuracy), thus 
our definition provides a natural equivalent for best error rate.) 

The same applies for F-measure: to measure the ‘best F-measure’ achieved by the 
random ranking, we walk along the ROC curve, counting true-positives and false-
positives to determine the precision and recall at each point, and record the maximum 
F-measure achieved over the entire curve.  F-measure is a popular metric in 
information retrieval settings, where the class of interest is in such a minority as to 
give majority voting a very high accuracy. For example, to select 30 relevant 
(positive) articles out of a database of 1030, majority voting achieves an accuracy of 
97% by predicting the negative class for all test cases.  This trivial strategy gives zero 
recall to the positive class, and so achieves zero F-measure. A high F-measure is 
achievable only by balancing high precision with high recall.   

Given the statistical machinery described in the previous section, the definition of 
the null hypothesis and the description of how to score each of the four performance 
metrics, we give in Table 2 an explicit procedure for determining the statistical 
significance that the winner of a competition of C binary classifiers achieves score m 
on a test set comprising P positives and N negatives.  The loop determines the 
required inverse CDF value empirically. We note that the empirical method presented 
in Table 2 is general for any performance metric and can be used without a need for 
analytical knowledge of the statistics behind a particular metric.  
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Figure 1 shows the entire CDF for three of the performance metrics over a test set 
with P=10 positives and N=1000 negatives. (TP10 is not shown because its x-axis 
spans 0 to 10.) The horizontal line near the top indicates the 99th percentile, above 
which each of the CDFs extend to the right substantially.  Despite the large size of the 
test set, the highest percentiles of the CDF can yield surprisingly good scores. 

 

Computational Efficiency: All of the computations are simple to implement, yet its 
cost is in CPU cycles to accurately estimate the tail of the distribution.  For C=100, it 
requires R=9,950,416 repetitions, which takes 5.5 hours for our implementation to 
compute for P=N=100 on a 1.8GHz HP Evo laptop.  For C=1000, nearly 100M 
repetitions are called for, though fewer may be performed at some loss of precision in 
the estimation of the critical value. By keeping only the top scores, the memory 
required is minor; but to record the entire CDF would consume R floating point 
numbers, e.g. 380MB for C=1000. 

Generating the critical value charts in the following section consumed more than a 
year of CPU time, run on over a hundred CPUs provided by the HP Labs Utility Data 
Center. Calling the procedure outlined in Table 2 for each performance metric and 
test condition would have required nearly 12 years of CPU time. To make this 
reference work feasible, a more efficient computation was performed, which 
computes the critical value for all performance measures and all values  of C  during a 
single run of R repetitions. This procedure is given in Table 3. We use R=10M, being 
sufficient for the level of accuracy displayable in the charts following. The number of 
top scores to keep track of is established at initialization by the smallest C value. 
Because such high scores are rare in the top tail of the distribution, a great deal of 
priority heap management can be avoided by not inserting values smaller than the 
smallest value in the heap once it reaches the maximum size required.  Otherwise, the 
value is inserted, and the smallest value is deleted if the heap is full.   
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Fig. 1. CDF of scores for AUC, accuracy and F-measure for P=10, N=1000. 
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Analytical Solution for TP10: We derive the solution for TP10 analytically rather 
than by simulation. The formula is valid for TP<n>, where n is any positive integer.   

For a random classifier, the TP10 score represents the number of positives drawn 
without replacement in ten trials from an ‘urn’ containing P positives and N 
negatives. Therefore, the TP10 score is represented by the hypergeometric 
distribution, with parameters P, N+P and ten trials. The CDF of the hyper-geometric 
distribution for any number of trials n is given by: 
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The result, p, is the probability of drawing up to x of the P positives in n drawings 
without replacement from a group of N+P positives and negatives.  

Given the desired α value, we can compute the inverse of the CDF above at the 
point (1-α) and get the smallest TP10 score (that is, x) for which the CDF is at least 
(1-α).  Using this analytical knowledge, we compute the entire set of significance 
tables for TP10 shown in the following section, varying N and P as discussed earlier. 
The computations were performed in MATLAB, and take under a minute for all the 
points presented in the tables. The results also allowed us to corroborate the 
correctness of the simulation software. 

4   Critical Value Charts 

In this section we provide the critical value charts for each of the four performance 
metrics: AUC, accuracy, F-measure and TP10. From these charts, researchers and 
practitioners can read an estimate of the critical value for their experiment for up to 
1000 positives and 1000 negatives in their test set. 

Table 3. Procedure for computing critical value charts

For P = 2..1000: 
    For N = 2..1000: 
        Declare an empty scores array for each performance metric 
        For R=10,000,000 repetitions: 
              Randomly order P positives and N negatives 
              Score the ordering by each performance metric 
              Keep only the top scores for each in the associated array 
        For each C = 10; 100; 1000: 
              Output the (R * (1 – 0.991/C ))-th best score 
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Figures 2—5 show 3D perspectives of the critical values for C=1000 competing 
classifiers as we vary N and P along the x-axis and y-axis, respectively. These charts 
demark the surface of critical values with colored isoclines overlaid and also 
projected onto the plane below the surface to aid in reading the absolute z-value. For 
example, given a test set of 100 positives and 300 negatives, the critical value for 
AUC with 1000 competitors is about 0.65. If the best classifier achieved an AUC 
greater than this value, the null hypothesis is rejected, deeming the result significant.  

The surfaces of the different measures reveal information on what mix of positives 
and negatives provides low critical values (easier to obtain significance), and what 
test sets are more demanding for obtaining significant results. Both the accuracy and 
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Fig. 2. Critical values for the AUC performance metric, significance level α=1% 
for C=1000 competing classifiers 
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             Fig. 3. Critical values for Accuracy, α=1%, C=1000 
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AUC surfaces are symmetric with respect to the number of positives and negatives.  
The critical value for AUC is nearly 1.0 with very few positives or very few 
negatives, but as the test set becomes large, the critical value approaches 0.5—the 
expected area under the ROC curve of a single random classifier.  AUC has a 
relatively large region with low values, indicating it is relatively insensitive to the mix 
of positives and negatives, as long as the neither is especially small. 

 

Accuracy, on the other hand, has a much smaller valley of low critical values, 
concentrated around the line N=P (having ~50% accuracy). This is due to the fact that 
the expected value under the null hypothesis depends on the ratio of P and N; with 
highly skewed class distributions, the critical value can approach 100% accuracy, just  

     0.9
     0.8
     0.7

     0.6
     0.5
     0.4

     0.3

3
10

30
100

300
1000

negatives3
10 30

100 300
1000

positives

0
0.2
0.4
0.6
0.8

1

Best
F-Measure

 

Fig. 4. Critical values for F-measure.  α=1%, C=1000 
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Fig. 5. Critical values for TP10.  α=1%, C=1000  
Note: The x and y axes are rotated differently than Fig. 4 



 Beware the Null Hypothesis: Critical Value Tables for Evaluating Classifiers 141 

 

2

5
10
20

50
100
200

500
1000

2 5 10 20 50 100 200 500 1000

p
o

si
ti

v
e
s

negatives

.95    .9    
.85    .8    

.75    
.7    

.65    

.6    

2

5
10
20

50
100
200

500
1000

2 5 10 20 50 100 200 500 1000

p
o

si
ti

v
e
s

negatives

.9    .8    .7    .6    .5    .4    .3    
.2    

 

(a) Accuracy   (b) F-Measure 

Fig. 6. Contours of critical values for α=1%, C=10 competitors 
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Fig. 7. Contours of critical values for α=1%, C=1000 competitors 
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as with majority voting.  Majority voting, however, maintains 50% accuracy for 
P=N=10, whereas with C=1000 competitors, the critical value for best accuracy 
climbs to 95%, as witnessed at the back of the valley.  (For comparison, at P=N=100, 
the critical value is 67% accuracy for C=1000 competitors, and 65% for C=100 
competitors.) 

F-measure and TP10 are not symmetric with respect to N and P, and depend more 
on varying P. With TP10, a small number of positives and large number of negatives 
yields lower critical values, and higher values as the number of positives increases. 
When P=N, TP10 is useless for discriminating good performance. For F-measure, a 
test set with large number of negatives and smaller number of positives, yields the 
lowest critical value. Note that F-measure has a larger valley than accuracy, making it 
preferable over a wider range of P and N values, albeit over a somewhat different 
region than accuracy. 

To make the charts easier to read, we show in Figures 6-7 only the projections of 
the isoclines onto the plane below the surfaces, for C=10 and 1000 for each 
performance measure. The isoclines are labeled with their critical value, making it 
easy to find the critical value for a given P and N in a test set.  For visual clarity, the 
density of the isoclines is low; to obtain precise critical values, refer to the tables in 
the appendix provided in the online version of this paper [5]. It also contains a 
complete set of color charts for C=10, C=100 and C=1000 competitors, for each of 
the four performance metrics. 

5   Discussion 

Consider the realistic scenario of a data-mining practitioner at a pharmaceutical 
company who is given a difficult biomedical classification task with a limited dataset 
that was expensive and slow to obtain. If the best of a dozen learning methods obtains 
only a mediocre AUC score, the method and critical value charts in this paper provide 
the practitioner with a simple way to determine whether the finding of the ‘best’ 
classifier is statistically significant. If not, the company can make an informed 
decision either to accept greater risk of failing to reject the null hypothesis, or to 
collect additional testing data. 

As researchers and practitioners, we want to perform effective experiments that are 
statistically significant.  Towards this end, we desire to select our test metrics and/or 
test set class distributions such that we operate in a region with generally low critical 
values. When selecting test metrics, accuracy may be appropriate when P≈N, but 
AUC may be preferred for its larger valley, or F-measure when P<N.  

In some situations the choice of metric is fixed by the application, e.g. TP10 is 
most appropriate for many information retrieval applications. Suppose we are given 
P=N=1000 test examples. For proper testing, it would be most effective to omit a 
large fraction of the positives, so that the critical value for TP10 is small. A similar 
scenario can be painted for F-measure when too great a ratio of positives to negatives 
is available for testing.  Of course, if the class distribution of the target population is 
known, it may be the most appropriate for comparison.  Commonly, however, the 
number of positives and negatives available is due to irrelevant historical reasons. 
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The independence assumption used in this work is between the competitors, and so 
it holds equally for cross-validation testing as for held-out validation testing.  
However, if the many competitors amount to a single learning algorithm with 
hundreds of different parameterizations, then the independence assumption is in 
question.  One might choose to reduce C below the number of parameterizations 
attempted, but there is no sanctioned method for doing this. 

Finally, we note that by averaging performance scores across many independent 
test sets, one increases the effective size of the test set, but this also changes the 
distribution under the null hypothesis.  Separate critical value calculations may be 
required in this case. 

6   Related Work  

The most common form of significance testing in machine learning papers or 
anywhere is in determining whether one method is statistically significantly better 
than another method on average.  For this, one computes the mean and standard 
deviation of the differences over a sample of n test problems, and refers to reference 
tables of the critical values for the standard Normal(0,1) distribution, or the Student  
t-distribution if the sample size is small (less than 30).  This significance test only 
compares a single pair of methods, so if there are 100 methods, there are ~100 x 100 
comparisons to make, and at α=0.01, there could easily be ~100 cases where we fail 
to reject the null hypothesis and mistakenly claim significance.  This is known as the 
problem of multiple comparisons [6].  The problem also occurs for the common 
practice of counting wins/ties/losses for each pair of competing classifiers.   

The Bonferroni correction is a well-known method for adjusting α when there are 
multiple comparisons.  For example, with 100 competitors and performing each of the 
(100 choose 2) pair-wise comparisons, there would be ~50 ‘statistically significant 
differences’ found by chance alone if we use the uncorrected α of 0.01.  With the 
Bonferroni correction, one would have to lower α for each test to 0.00000203 to bring 
the overall α risk back to 0.01.  This correction has several problems [8].  It requires 
evaluating the inverse CDF much further down the tail of the distribution, resulting in 
50× as much computation for C=100.  Moreover, by being so extremely conservative 
for the type II error of failing to reject the null hypothesis, it greatly increases the type 
I risk of failing to accept a significant difference when one is present. The root 
problem stems from the quadratic number of pair-wise comparisons, which are not 
actually the desired result for most purposes. 

Ultimately, what people want to know is which model is best, with confidence in 
the significance of the finding—our focus.  The randomization method [6] addresses 
this issue by training the chosen best learning model repeatedly on the training set, but 
randomly overwriting the labels of the training set, to produce a distribution of scores 
under this null hypothesis. For large training sets and/or computation-intense learning 
models such as neural networks, this approach can be computationally intractable.  
Also, this approach is infeasible in some situations, such as in a data mining 
competition or a proprietary model generated for evaluation by a business.  The 
randomized distribution analysis method [4] resolves these issues by generating many 
trivial classifier models that are quick to train and evaluate, such as Naïve Bayes 
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based on one or a few randomly chosen features.  Note that the training labels are not 
randomly overwritten, so this null hypothesis is a stronger condition—stating that the 
result could be achieved by trivial classifiers.  Assuming some of the features are 
predictive individually, this null hypothesis is likely to achieve higher scores, and thus 
reject the statistical significance of comparisons more often.  However, it is a good 
baseline to use when deciding, for example, whether some complicated, expensive 
method is worthwhile to deploy over simple methods.  This null hypothesis helps 
determine whether the winning learning model has a competitive advantage over 
simple methods available to all.  One disadvantage of the method as reported is that it 
is not founded on the principles of statistical significance, but on expected value:  If 
the maximum score achieved by the best classifier is a small amount greater than the 
expected value, it gives one no guidance on how rare this event is.  The method could 
be recast in terms of statistical significance if sufficiently many features are available 
to generate enough random samples. 

One advantage our method has over both of these randomized methods is that it 
does not depend on the training data or the features of the dataset whatsoever.  In this 
way, we can pre-compute critical value tables for quick reference by all researchers. 

7   Conclusion 

This paper applied statistical foundations to develop the critical value charts and 
procedure for determining when the best classifier performance found from among C 
independent competitors on a test set containing P positives and N negatives is a 
statistically significant finding.  When not, there is a α≥1% chance that the finding 
could have been generated by random processes under the null hypothesis.  We 
developed the method for four commonly used performance metrics for binary 
classification tasks. 

The charts presented in this paper, and in the online appendix [5], serve as a quick 
reference guide for practitioners seeking to reject the null hypothesis. The charts can 
easily be extended to cover other situations, using the procedures described. 

To conclude, in addition to providing the critical values for significance testing of 
binary classifiers, this paper tries to emphasize the importance of the null hypothesis 
test in machine learning and data mining research and to remind ourselves to beware 
of the null hypothesis, so we know that our results are really significant.  Nonetheless, 
passing these statistical tests cannot guarantee that a given classifier is genuinely 
useful, as always. 
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Abstract. Estimating a non-uniformly sampled function from a set of
learning points is a classical regression problem. Kernel methods have been
widely used in this context, but every problem leads to two major tasks:
optimizing the kernel and setting the fitness-regularization compromise.

This article presents a new method to estimate a function from noisy
learning points in the context of RKHS (Reproducing Kernel
Hilbert Space). We introduce the Kernel Basis Pursuit algorithm, which
enables us to build a �1-regularized-multiple-kernel estimator. The general
idea is to decompose the function to learn on a sparse-optimal set of span-
ning functions. Our implementation relies on the Least Absolute Shrinkage
and Selection Operator (LASSO) formulation and on the Least Angle Re-
gression (LARS) solver. The computation of the full regularization path,
through the LARS, will enable us to propose new adaptive criteria to find
an optimal fitness-regularization compromise. Finally, we aim at proposing
a fast parameter-free method to estimate non-uniform-sampled functions.

Keywords: Regression, Multiple Kernels, LASSO, Parameter Free.

1 Introduction

The context of our work is the following: we wish to estimate the functional de-
pendency between an input x and an output y of a system given a set of examples
{(xi, yi), xi ∈ Rd, yi ∈ R, i = 1 . . . n} which have been drawn i.i.d from an un-
known probability distribution P (X,Y ). Thus, our aim is to recover the function
f̂ belonging to a hypothesis spaceH which minimizes the following risk:

R[f ] = E{(f(X)− Y )2} (1)

but as P (X,Y ) is unknown, we have to look for the function f̂ which minimizes
the empirical risk:

Remp[f ] =
1
n

n∑
i=1

(f(xi)− yi)2 (2)
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Depending onH, this problem can be ill-posed and a classical way to turn it into a
well-posed one is to use regularization theory [1, 2]. In this framework, the solution
of the problem is the function f̂ ∈ H that minimizes the regularized empirical risk:

Rreg[f ] =
1
n

n∑
i=1

(yi − f(xi))2 + λΩ(f) (3)

where Ω is a functional which measures the smoothness of f̂ and λ a regulariza-
tion parameter [3]. Under general conditions on H (Reproducing Kernel Hilbert
Space) [4], the solution of this minimization problem is of the form:

f̂(x) =
n∑

i=1

βiK(xi, x) (4)

where K is the reproducing kernel of H.
The objective of the Kernel Basis Pursuit (KBP) is two-fold: to propose a

method to build a sparse multi-kernel-based solution for this regression problem
and to introduce new solutions for the bias-variance compromise problem. The
multiple kernel has two advantages: it allows us to build adapted solutions for
multiscale problems and it leads to an easier setting of the kernel hyperparame-
ters. The multiple kernel can be seen as a dictionary of spanning functions D and
the KBP solution will be a sparse decomposition of the function to be estimated
based on this family of functions. The question of sparsity is addressed by using
the Least Absolute Shrinkage and Selection Operator (LASSO) formulation [5],
namely using Ω = ‖β‖1 as a regularization term in equation (3). Using the Step-
wise Least Angle Regression (LARS)[6] as a solver of optimization problem (3)
enables us to compute the full set of regression solutions with varying λ in equa-
tion (3). This set of optimal solution is the so-called regularization path [7]. We
use this property to introduce some heuristics which set the bias-variance com-
promise dynamically. Combining a forward-iterative solver (LARS) with efficient
early-stopping heuristics make the KBP both sparse and fast.

The paper is organized as follows: in section 2, we will compare two common
strategies to face the problem of building a sparse regression function f̂ : the
Matching Pursuit and the Basis Pursuit. We will explain the building and the
use of the multiple kernels, combined with the LARS in section 3. Section 4 deals
with the setting of the bias-variance compromise and the kernel parameters. Our
results on synthetic and real data are presented in section 5. Section 6 gives our
conclusions and perspectives on this work.

2 Basis vs Matching Pursuit

The question of the sparsity of the solution f̂ can be addressed in two different
ways. The first approach is based on stepwise method consisting in adding func-
tions from a dictionary whereas the second one is to use a regularization term
in equation (3) that imposes sparsity of β.
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Mallat and Zhang introduced the Matching Pursuit algorithm [8]: they pro-
posed to construct a regression function f̂ as a linear combination of elementary
functions gi picked from a finite redundant dictionary D = {gk}. This algorithm
is iterative and one new function gi is introduced at each step, associated with a
weight βi. At step k, we get the following approximation of f : f̂ (k) =

∑k
i=1 βigi.

Given R(k), the residue generated by f̂ (k), the function gk+1 and its associated
weight β(k+1) are selected according to:

(gk+1, β
(k+1)) = argmingi∈D,β∈R‖R(k) −

k∑
i=1

βigi‖2 (5)

The improvements described by Pati et al. (Orthogonal Matching Pursuit al-
gorithm) [9] keep the same framework, but optimize all the weights βi at each
step. A third algorithm called pre-fitting [10] enables us to choose (gk+1, β

(k+1))
according to R(k+1). All those methods are iterative and greedy. The different
variations improve the weights or the choice of the function gk+1 but the main
characteristic remains unchanged. Matching Pursuit does not allow to get rid of
a previously selected function gk, which means that its solution is sub-optimal.

The Basis Pursuit approach proposed by Chen et al. [11] is different: they con-
sider the whole dictionary of functions and look for the best linear solution to esti-
mate f , namely, the solution which minimizes the regularized empirical risk. Using
Ω = ‖β‖1 leads to the LASSO formulation. Such a formulation requires costly and
complex linear programming [12] or modified EM implementation [13] to be solved.
Finally it enables themtofindanexact solution to the regularized learningproblem.

The Stepwise Least Angle Regression (LARS) offers new opportunities, by
combining an iterative and efficient approach with the exact solution of the
LASSO. The fact that the LARS begins with an empty set of variables, combined
with the sparsity of the solution explains the efficiency of such method. The
ability of deleting dynamically useless variables enables the method to converge
to the exact solution of the LASSO problem.

3 Learning with Multiple Kernels

3.1 LARS

We note the matrix of the learning points: X =

⎛⎝xT
1
. . .
xT

n

⎞⎠ ∈ Rn×d . Each column i

of the matrix X is a variable denoted by Xi and each of them can be considered
as a single source of information. The LARS [6] is a stepwise iterative algorithm
which provides an exact solution to the LASSO (equation (3) with Ω = ‖β‖1).
LASSO can also be written as:

minβ

∑n
i=1(yi − xT

i β)2∑d
i=1 |βi| ≤ t

(6)

where t is the regularization parameter.
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When the variablesXi are normalized, LARS turns this learning problem into
a variable selection problem. We note A the set of indexes of the active variables
and XA the learning set reduced to the variables that are in A. At each step
k, given the residue R(k) = y − f̂ (k), the LARS selects the variable which is
most correlated with R(k) and add its index to A. The ability of dynamically
suppressing a source of information which becomes useless enables the algorithm
to fit the LASSO solution. f̂ (k) belongs to the space spanned by XA, the β(k)

are computed to minimize R(k+1) under the constraints that each variable of
XA is equi-correlated with R(k+1). This leads to the property that each f̂ (k)

corresponds to an optimal solution of (6) for a given value of t: LARS computes
the whole regularization path.

Solving the LASSO is really fast with this method, due to the fact that it is
both forward and sparse. The first steps are not expensive, because of the small
size of A, then it becomes more and more time-consuming with iterations. But
the sparsity of �1 regularization limits the number of required iterations. LARS
begins with an empty active set whereas other backward methods [13, 12] begin
with all β being non-zero and require to solve high dimensional linear system to
set irrelevant coefficients to zero. Given the fact that only one point is added (or
removed) during an iteration, it is possible to update the solution at each step
instead of fully computing it. This leads to a simple-LARS algorithm, similar to
the simple-SVM formulation [14], which also increases the speed of the method.

3.2 Building a Multiple Kernel Regression Function

Vincent and Bengio [10] proposed to treat the kernel K exactly in the same way
as the matrix of the learning points X . Each column of K is then considered
as a source of information that can be added to the active set to build a linear
estimation of f : f̂(x) =

∑n
i=1 βiK(xi, x). This function f̂ is β-linear in the

Reproducing Kernel Hilbert Space (RKHS) H spanned by K, and non-linear in
the original data space.

We propose here a simple extension of this framework to the multiple kernel
setting: it consists in building a set of kernel {Ki}i=1,...,N , which respectively
spans the spaces Hi. Each source of information Ki(xj , ·) is characterized by a
point xj of the learning set and a kernel parameter i. Hence, the multiple kernel
K can be written as:

K =
[
K1 . . .Ki . . .KN

]
K ∈ R

n×s, with s = nN. (7)

Assuming that each column of K is normalized, the LARS will pick automat-
ically the most relevant Ki(xj , ·) among the whole set of sources of information.
The solution f̂ is a weighted sum of Ki(xj , ·):

f̂(x) =
N∑

i=1

n∑
j=1

βijKi(xj , x) , f̂ ∈ H1 + . . .+HN (8)
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The Kernel Basis Pursuit algorithm consists in solving the following problem:

minβ ‖y −Kβ‖2∑
i,j |βij | ≤ t

(9)

It is important to note that no assumption is made on the kernels Ki which
can be non-positive. K can associate kernels of the same type (e.g. Gaussian)
with different parameter values as well as different types of kernels (e.g. Gaussian
and polynomial). The resulting matrix K is neither positive definite nor square.

4 Setting of Regularization and Kernel Parameters

The optimization problem (9) requires the setting of several hyperparameters:
the bias-variance compromise t as well as the N kernel hyperparameters. Consid-
ering that each kernel has a single parameter, this would lead to N+1 parameters
to select. Thus, the model selection problem is difficult. It can be solved by cross-
validation but it is very expensive in time-computation. In the following section,
we propose some strategies to tackle this problem.

4.1 Optimization of Regularization Parameter

Finding a good setting for t in equation (9) is very important: when t becomes
too large, the LARS becomes equivalent to Ordinary Least Square (OLS) and it
requires the resolution of linear system of size s× s. Early stopping enable us to
decrease the time computation (which is linked to the sparsity of the solution)
as well as to improve the generalization of the learning (by regularizing).

One of the most interesting property of the LARS is the fact that it computes
the whole regularization path (section 3.1). The LARS enables us to compute
a set of optimal solutions corresponding to different values of t, with only one
learning stage. We are going to take advantage of this property to dynamically
select the optimal t.

Different compromise parameters. We look for different expressions of the
regularization parameter t. The aim is to find the most meaningful one, namely
the easiest way to set this parameter.

– The original formulation of the LARS relies on the compromise parameter t
which is a bound on the sum of the absolute values of the β coefficients. t is
difficult to set because it is somewhat meaningless.

– It is possible to apply Ljung criterion [15] on the autocorrelation of the
residue. The parameter is then a threshold which decides when the residue
can be considered as white noise.

– Another solution consists in the study of the evolution of a loss function
�(yi, f̂(xi)) with regards to the step j. The criterion is a bound on the vari-
ation of this cost.



Kernel Basis Pursuit 151

– ν-KBP. It is possible to define a criterion on the size of A, namely on the
number of support vectors or on the rate of support vectors among the
learning set. It is important to note that ν is then a threshold, whereas in
the ν-SVM method where ν can be seen as an upper bound on the rate of
support vectors [16].

However, all these methods require the a priori setting of a parameter which
is usually estimated by cross-validation.

Trap source. We propose a novel method for dynamically selecting the regu-
larization parameter based on a trap parameter. The idea is to introduce one or
many sources of information that we do not want to use. When the most corre-
lated source with the residue belongs to the trap set, the learning procedure is
stopped. We use two heuristics to build the trap sources:

– KBP-σs: we build a Gaussian kernel Kσs(xi, xj) = exp
(
− ‖xi−xj‖2

2σ2
s

)
and we

add it to the information sources. σs is a very small bandwidth.
– KBP-RV: we add iid Gaussian random variables among the sources of infor-

mation. This heuristic has already been used for variable selection [17].

The use of a trap scale is closely linked to the way that LARS selects the
sources of information (section 3.1). We illustrate the behavior of the trap scale
during the learning of a toy function: cos(exp(ωx)) (figure 1(c)). The correlation
with the residue is an energetic criterion, that is why the first selected vari-
ables explain the low frequency regions of the cos(exp(ωx)) function. The se-
lected sources of information belong to higher and higher scales with iterations
(figure 1(d)). If we further assume that y contains white noise, then there is no
correlation between noises occurring at two different instants: the noise is a lo-
cal phenomenon. As a consequence, the sources of information that explain the
noise will belong to narrow bandwidth Gaussian kernel Kσs and will be selected
at the end of the learning procedure. Moreover, the selection of a source from
Kσs means that there are no more correlated sources of information in other Ki,
namely the residue is only composed of components correlated with noise.

The use of Gaussian random variables as a trap scale is more intuitive: it
supposes that when a random variable is selected as the most correlated source
with the residue, it remains no more interesting information in the residue. Figure
1(b) illustrates the evolution of the residue with iterations, the 3rd picture shows
the residue when a random variable is selected.

4.2 Optimizing Kernel Parameters

In this section, we propose a new method to set the kernel parameters of the
KBP in the Gaussian case, without using cross-validation. We aim at finding a
key parameter σk representing the smallest bandwidth which can be useful for a
given problem. In this case: Kσk

≈ In and f̂ will interpolate y and overfit. Then,
we propose to build a series of larger and larger Gaussian parameters from this
key scale to improve the generalization of the learning.
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σk is obtained according to the following steps: a one nearest neighbor is
performed on the training data. Then, we focus on the shortest distances between
neighbors. The key distance Dk is the distance between xi and xj , the two
nearest points in the input space. The corresponding key Gaussian parameter
σk is defined so that:

Kσk
(xi, xj) = exp

(
−D2

k

2σ2
k

)
= 0.1 (10)

that is to say, the bandwidth σk is designed so that a learning point in high
density regions has little influence on its neighbors. For more robustness, it
is recommended to use an improved definition of Dk. Given S the set of the
one-nearest-neighbor distances. We define Dk as the mean distance of the 0.01
quantile of S.

Then, a series of bandwidth is build as follow (figure 1(a)):

σ = {σk, σkp, σkp
2, σkp

3, σkp
4, σkp

5, σkp
6} with: p > 1 (11)

A small value of p provides more accuracy for the design of the sources of in-
formation, when p becomes close to 1, the family becomes exhaustive. However,
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Fig. 2. Toy signals and learning data

a small value of p leads to a more redundant family of functions, which penal-
izes the sparsity of the solution. In fact, when two sources of information are
correlated, they are both almost equi-correlated to the residue and the LARS
often selects both sources of information in two successive iterations. The 2nd

line of table 1 shows that the number of support vectors first decreases with
p due to this phenomenon. On the contrary, when p is too large, the accuracy
of the sources of information decreases and the LARS requires many sources of
information to describe a single region of the signal. That is why in our example
the size of the optimal active set A increases with p when p > 2.

Table 1. Estimation of the function cos(exp(ωx)) (10 runs). Evolution of the best
solution in terms of sparsity (number of support vector) and Mean Square Error (MSE)
in function of parameter p.

p 1.2 1.5 2 2.5 3 4 5 6
MSE 0.02255 0.02225 0.02234 0.02198 0.02090 0.02050 0.02487 0.02543
|A| 45.33 44.66 39.0 40.25 44.5 48.33 48.66 48.33

Cross-validations over synthetic and real data lead to set p = 3. We choose
to set the cardinality of σ to 7, given the fact that experimental results are not
improved beyond this value.

KBP results presented in the next section rely on this parameter-free
Gaussian strategy (equation (11)), but it is also possible to build multiple kernels
with different degrees of polynomial kernels or to mix different kernels.

5 Experiments

We illustrate the efficiency of the methodology on synthetic and real data. Tables
2 and 3 present the results with two different algorithms: the SVM and the LARS.
We use four strategies to stop the learning stage of the KBP.



154 V. Guigue, A. Rakotomamonjy, and S. Canu

Table 2. Results of SVM and LARS for the cos(exp(x)) and Donoho’s classical func-
tions estimation. Mean and standard deviation of MSE on the test set (30 runs), number
of support vectors used for each solution, number of best performances. The total of
best performances sometimes exceeds 30 due to the fact the 2 different KBP can lead
to the same solution.

Nb kernel 1
Algorithm ε - SVM KBP-

∑
i |βi| ν-KBP KBP-RV KBP-σs

cos(exp(t))
0.032 ± 0.0086

105.4
0

0.028 ± 0.0051
87.3
0

0.028 ± 0.0052
85
0

0.026 ± 0.0047
95.3
0

0.029 ± 0.0062
95.3
0

Doppler
0.023 ± 0.0071

59.3
0

0.019 ± 0.0068
47.1
0

0.019 ± 0.0060
47
0

0.020 ± 0.0053
48.8
0

0.019 ± 0.0056
51.3
0

Blocks
0.039 ± 0.0020

75.3
0

0.025 ± 0.0013
65.1
0

0.026 ± 0.0015
65
0

0.024 ± 0.0012
69.4
0

0.024 ± 0.0012
65.2
0

Ramp
0.0072± 0.0034

54.2
16

0.0114 ± 0.0013
45.6
0

0.0112 ± 0.0022
48
0

0.0107 ± 0.0020
45.9
0

0.0108 ± 0.0015
49.7
0

HeaviSine
0.0028± 0.0002

51.4
11

0.0028± 0.0002
17.2
15

0.0030 ± 0.0002
20
5

0.0029 ± 0.0002
21.1
8

0.0028 ± 0.0002
19.5
11

Nb kernel 6 (Multiple Kernels)
Algorithm KBP-

∑
i |βi| ν-KBP KBP-RV KBP-σs

cos(exp(t))
0.020 ± 0.0039

47.4
14

0.023 ± 0.0059
46
5

0.020 ± 0.0039
48.4
15

0.021 ± 0.0035
47.8
10

Doppler
0.011 ± 0.0052

46.1
13

0.013 ± 0.0060
46
3

0.010 ± 0.0059
52.70
17

0.013 ± 0.0055
49.80

5

Blocks
0.020 ± 0.0011

64.6
13

0.020 ± 0.0012
65
10

0.020 ± 0.0012
67.5
9

0.019± 0.0011
66.3
17

Ramp
0.0072± 0.0033

20.1
12

0.0073 ± 0.0035
18
11

0.0080 ± 0.0030
22.5
5

0.0077 ± 0.0029
20.3
4

HeaviSine
0.0035 ± 0.0003

44.30
0

0.0036 ± 0.0003
45
0

0.0032 ± 0.0003
48.2
0

0.0032 ± 0.0003
49.0
0

– KBP-
∑

i |βi| is the classical method where a bound is defined on the sum of
the regression coefficient. This bound is estimated by cross-validation.

– ν-KBP is based on the fraction of support vectors. ν is also estimated by
cross-validation.

– KBP-RV relies on the introduction of Gaussian random variables as sources
of information.1

– KBP-σs relies on a Gaussian trap scale with very small bandwidth. We use
σs = σk of equation (10).1

To validate this approach, we compare the results with classical Gaussian ε-SVM
regression. Parameters ε, C and σ are optimized by cross validation. In order to

1 To make KBP-σs and KBP-RV methods more robust, we wait until 3 information
sources from the trap-scale are selected to stop the learning stage.
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Table 3. Results of SVM and KBP for the different regression database. Mean and
standard deviation of MSE on the test set (30 runs), number of support vectors used for
each solution, number of best performances. The total of best performances sometimes
exceeds 30 due to the fact the 2 different KBP can lead to the same solution.

Nb kernel 1
Algo SVM KBP

[19] ε-SVM
∑

i |βi| RV σs

pyrim
0.007 ± 0.007

−
−

0.008 ± 0.010
47.1
0

0.010 ± 0.011
29.7
0

0.011 ± 0.009
31.2
0

0.010 ± 0.011
33.6
0

triazines
0.021 ± 0.005

−
−

0.022 ± 0.006
60.8
0

0.021 ± 0.006
27.0
0

0.021 ± 0.005
32.4
0

0.021 ± 0.006
29.0
0

housing
9.19± 2.73

−
−

17.54 ± 4.18
405.4

0

12.83 ± 3.31
289.0

0

14.12 ± 3.17
295.2

0

12.33 ± 3.04
304.2

0

abalone
5.071± 0.678

−
−

12.871 ± 0.461
652.2

0

9.293 ± 0.518
491.9

0

9.181 ± 0.421
502.3

0

10.311 ± 0.513
546.2

0

Nb kernel 6 (Multiple Kernels)
Algo KBP∑

i |βi| RV σs

pyrim
0.006 ± 0.006

47.0
13

0.006 ± 0.006
48.1
17

0.005± 0.006
49.3
18

triazines
0.019 ± 0.006

23.0
22

0.020 ± 0.005
27.1
8

0.020 ± 0.008
27.8
9

housing
10.52 ± 3.56

305.4
12

11.03 ± 3.31
317.3

9

10.13 ± 3.23
315.2
17

abalone
7.189 ± 0.568

607.4
17

8.363 ± 0.616
512.8

7

8.127 ± 0.620
548.3
10

distinguish the benefit of the early stopping methods from the benefits of the
multiple kernel learning, we also give the results of KBP algorithm when using
a single kernel. In this case, the kernel is chosen by cross-validation. Even with
a single kernel, the KBP relies on a multiple kernel architecture to be add the
trap scales. KBP-RV and KBP-σs are fully parameter-free. We use the method
describe in the previous section 4.2 to build our multiple kernels, with p = 3.

5.1 Synthetic Data

We test our method for the learning of cos(exp(ωx)) regression function. We try
to learn:

f(x) = cos(exp(ωx)) + b(x) (12)

where b(x) is a Gaussian white noise of variance σ2
b = 0.15. We also tested

the method over classical synthetic data described by Donoho and John-
stone [18].
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For all signals, we use x ∈ [0, 1], drawn according to a uniform distribution.
We use 400 points for the learning set and 1000 points for the testing set. The
noise is added only on the learning set. Parameters (ν,

∑
i |βi|...) are computed

by cross validation on the learning set. Table 2 presents the results over 30 runs
for each dataset.

These results point out the sparsity and the efficiency of KBP solutions.
Figure 1(c) illustrates how multiple kernel learning enables the regression func-
tion to fit the local frequency of the model. The results with different Donoho’s
synthetic signals enable us to distinguish the benefits of the KBP method from
the benefits of the multiple kernels. The KBP improves the sparsity of the solu-
tion, whereas the multiple kernels improve the results on signals that require a
multi-scale approach.

ε-SVM achieves the best results for Ramp and HeaviSine signals. This can be
explained by the fact that the Ramp and HeaviSine signals are almost uniform
in term of frequency. The ε tube algorithm of the SVM regression is especially
efficient on this kind of problem.

The results from the different KBP are very close (and often similar), that is
why the total of best performances sometimes exceeds 30 (the number of run).
Then, KBP-RV and KBP-σs become very attractive, due to the fact that they
are parameter-free methods. KBP obtains the best results for 4 experiments,
and parameter-free-KBP for 3 experiments on a total of 5 experiments.

5.2 Real Data

Experiments are carried out over regression data bases available in the UCI
repository [20]. We compare our results with [19].

The experimental procedure for real data is the following one: Thirty train-
ing/testing set are randomly produced. Respectively 80% and 20% of the points
are used for training and testing. Hyperparameters (ν,

∑
i |βi|...) are computed

by cross-validation on the learning set. Table 3 presents mean and standard
deviation of MSE (mean square error) on the test set.

ε-SVM solution is not really competitive but it gives an interesting information
on the number of support vectors required for each solution. KBP-RV and KBP-σs

results are very interesting: they are parameter free using the heuristic describe in
section 4.2, moreover the KBP-RV achieves the best results for pyrim.

6 Conclusion

The Kernel Basis Pursuit algorithm enables us to meet two objectives: proposing
a sparse multi-kernel-based solution for the regression problem and introducing
new solutions for the bias-variance compromise problem and the kernel setting.

The sparsity is due to �1 regularization, and the interpretation of the Ki(xj , ·)
as simple source of information enables the KBP to deal with multiple kernels. The
heuristics proposed to set the different parameters or compromises of the KBP rely
both on the LARS properties and the multiple kernel: multiple kernels allow easy
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and efficient setting for the kernel parameters and the fact thatLARScomputes the
whole regularization path enables us to implement powerful early-stopping strate-
gies. The KBP gives good results on synthetic and real data. In the meantime, the
required time computation is reduced compared with SVM, due to the sparsity of
the obtained solutions. Moreover, the KBP becomes fully parameter-free in the
KBP-RV and KBP-σk cases and though they achieve very competitive results.

The perspectives of this work are the following ones: we now plan to use this
description of the data for signal classification purpose. Then, the idea would be
to optimize the representation of the data for the classification task.
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Abstract. In this paper we aim to show that instance-based classi-
fication can replace the classifier component of a rule learner and of
maximum-entropy modeling, thereby improving the generalization accu-
racy of both algorithms. We describe hybrid algorithms that combine rule
learning models and maximum-entropy modeling with instance-based
classification. Experimental results show that both hybrids are able to
outperform the parent algorithm. We analyze and compare the overlap
in errors and the statistical bias and variance of the hybrids, their par-
ent algorithms, and a plain instance-based learner. We observe that the
successful hybrid algorithms have a lower statistical bias component in
the error than their parent algorithms; the fewer errors they make are
also less systematic.

1 Introduction

A distinguishing characteristic of instance-based learning [1, 2] is that it is non-
abstracting local learning method. It does not abstract from the training in-
stances to form a model, but stores them as such in memory. All effort is di-
verted to the classification phase. To classify a new instance the instance-based
learning algorithm searches through memory to find the most similar instances
in the local neighborhood of the new instance, and assigns the majority class
label of the neighborhood.

Instance-based learning is also referred to as lazy learning as opposed to ea-
ger learning. Eager learning algorithms put significant effort in abstracting from
the training instances by creating condensed representations (decision trees, rule
sets, probability matrices, hyperplanes, etc.) during the learning phase. The clas-
sification phase of an eager learner reduces to a relatively effortless application
of the abstracted representation to new instances.

This contrast between instance-based learning (which puts effort in classifi-
cation) and eager learning (which invests its effort in the learning phase) forms
the motivation for constructing the hybrids described in this paper. Earlier work
has shown that combining lazy and eager learning techniques can be beneficial to
generalization performance [3, 5]. In this paper we describe hybrid algorithms in
which we combine effort-intensive eager learning in rule learning and maximum-
entropy models with effort-intensive instance-based classification. We take the

J. Gama et al. (Eds.): ECML 2005, LNAI 3720, pp. 158–169, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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system as constructed by the eager learner and replace its standard classifica-
tion component by instance-based classification through the k-nearest neighbor
(k-nn) classifier. From the eager learner perspective we hope that replacing
their simple classification method with the more sensitive local k-nn classifi-
cation method could improve generalization performance. Put alternatively, we
take the eager learner’s model and transplant it into the distance metric of the
instance-based learner. The hybrid algorithms use the model as produced by the
eager learner to modify the distance calculations central in k-nn.

We construct three hybrid algorithms. The first combines maximum-entropy
modeling with k-nn, the second and third hybrids both combine rule learning
with k-nn, in two different ways. We investigate the performance of the hybrid
algorithms and compare them to the performance of their parent algorithms.
We also analyze to which extent the hybrid deviates functionally from its two
parent algorithms. To get a deeper insight in the differences and commonalities
of the parent algorithms and the hybrids, we analyze their overlap in errors and
the statistical bias and variance.

In Section 2 we discuss the different learning algorithms and the construction
of the hybrid algorithms. Section 3 and 4 provide a description of the experi-
mental setup and the results, respectively. Section 5 describes the error analysis
and bias-variance analysis. We discuss our findings in Section 6.

2 Algorithms

We first describe the three machine learning algorithms involved in this study
briefly: instance-based learning, maximum-entropy modeling and rule learning.
With instance-based learning we focus on two aspects: the mvdm distance metric
and feature weighting, because these play a role in the hybrid algorithms. In
the next two subsections we describe the construction of each of the hybrid
algorithms and our motivations.

The k-nearest neighbor classification rule [1] is the classifier engine of the
instance-based learning algorithm. The rule classifies new instances by searching
for the k nearest neighbors to the new instance and extrapolating the majority
class label found among the k nearest neighbors to the new instance. The distance
between instances can be estimated with different distance metrics. A simple
metric for nominal features is the overlap metric (or Manhattan distance, or L1-
norm distance) which counts the number of mismatching feature values between
two instances. A more sophisticated metric that estimates real-valued distances
between pairs of nominal values is the Modified Value Difference Metric (mvdm)
introduced in [6].

Mvdm estimates, from training data, the distance between two symbolic
feature values v1 and v2 as a vector distance between their two class distributions:

δ(v1, v2) =
j∑

i=1

|P (Ci|v1)− P (Ci|v2)| (1)
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where the vector length is determined by j, the number of classes, and P (Ci|v1)
represents the conditional probability of class i co-occurring with value 1.

Other possible metrics include alternative distance metrics for vector dis-
tances, such as the Jeffrey divergence metric (a symmetrical version of Kullback-
Leibler distance), and the dot product metric or the cosine distance metric for
numerical features. In addition, the k-nn algorithm can have several other al-
gorithmic parameters such as the k parameter, feature weighting metrics, in-
dividual instance weighting metrics, and distance-weighted class voting among
nearest neighbors. Feature weighting is an important parameter as its purpose is
to assign higher weights to more important features [7]. A mismatch on a feature
with a high weight will enlarge the distance between two instances more than
a mismatch on a low weighted feature will. Some examples of feature weighting
methods are Information Gain, Gain Ratio and Chi-square. In our experiments
we employ the TiMBL software [8]1, which implements all of the mentioned
optional distance metrics and weighting metrics.

Maximum-entropy modeling [9] is a statistical learning approach that learns
a probability distribution from labeled training data. Maximum-entropy models
(maxent) only represent what is known from the labeled training instances and
assume as little as possible about what is unknown; maxent converges to a dis-
tribution with maximal entropy. Finding the distribution matrix between values
and classes with the maximal entropy is done in an iterative way with algorithms
such as L-BFGS [10]. In our experiments we use the maximum-entropy modeling
software package maxent by Zhang Le 2.

Rule learning produces a set of classification rules based on a labeled training
set. The condition part of the rules is, depending on the learner’s rule grammar,
a test on the presence of certain values in the input, combined with for example
boolean operators. Many variants of rule learning exist, varying in the way the
rules are induced or in the way the rules are applied. A prominent class of rule
learners is those using sequential covering. In an iterative process they learn one
rule at the time (prioritized by some maximized weighted function that con-
siders coverage, accuracy, and byte length), and remove all examples from the
data that are covered by this rule. We adopt Ripper (Repeated Incremental
Pruning to Produce Error Reduction) [11] as the rule learning algorithm in our
experiments3. Ripper can produce ordered and unordered rule sets. In classifi-
cation, the first matching rule in a ordered rule set determines the class. For an
unordered rule set, the matching rule with the lowest error on the training set
determines the class.

2.1 k-nn and Maximum-Entropy Modeling

In this section we describe the construction and motivation of the hybrid algo-
rithm that combines k-nn with maximum-entropy modeling.
1 We ran experiments with TiMBL version 5.1.
2 URL: http://homepages.inf.ed.ac.uk/s0450736/maxent toolkit.html. We ran

experiments with maxent version 20041229.
3 In our experiments we used Ripper version 2.5 (patch 1).
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The distribution matrix structure of maxent is identical to the class distri-
bution matrix structure between feature values and classes used by the mvdm
metric of k-nn. We exploit this structural equivalence to construct the hybrid
algorithm we will henceforth refer to as maxent-h. We employ the method pro-
posed by [12]. After training maxent, we replace the class distribution matrix of
the mvdm metric with the matrix produced by the maximum-entropy learning
algorithm. We refer to this new metric as the maxent–mvdm distance metric.

By constructing this hybrid we hypothetically repair a known weakness of the
mvdm metric of k-nn: its sensitivity to data sparseness. As the normal mvdm
metric uses raw conditional probabilities calculated from frequency counts, two
low-frequent feature values that accidently occur with the same class will be
regarded as identical by mvdm; when they occur with different classes their dis-
tance is estimated as maximal. A re-estimation of probabilities such as produced
by the maximum-entropy algorithm may smooth the mvdm metric.

Seen from the perspective of maxent, the major difference between maxent
and the hybrid maxent-h is that the latter does not use the maximum-entropy
matrix and the exponential maximum-entropy probability function to produce
class likelihood estimates, but instead uses the maxent–mvdm distance metric
to find the k nearest neighbors in the data, and extrapolates the neighbors’
majority output class.

Relevant related work is reported in [4]. They compare instance-based learn-
ing (with mvdm metric) with Naive Bayes, and construct a range of intermediate
hybrid variants, each more or less similar to Naive Bayes or the instance-based
learner with mvdm. One of these variants has a close resemblance to our hybrid
maxent-h, namely the variant that stores all training instances in memory, and
uses the Naive Bayes metric to calculate distances between instances. The results
of the reported experiments are quite diverse and inconclusive.

2.2 k-nn and Rule Learning

In this section we describe and motivate the construction of two different hybrid
algorithms that combine rule learning with k-nn.

We use the rule set as induced by Ripper to construct the hybrid algorithm,
analogous to [13]. Per instance, whether it is in the training data or in the test
data, we convert the rules into binary features that represent whether or not
the rule fires on the instance. We generate two versions of the hybrid algorithm.
In the first version the binary rule-features replace the original features in the
instances. In other words, this operation transforms the original feature space
into a new one [5]. We convert all training and test instances into this binary
format and feed them to the instance-based learner. The hybrid subsequently
uses the k-nn classification method to classify new examples. We refer to this
hybrid as rules-r-h, where the middle r denotes replace.

From the k-nn perspective, replacing the original features of the instances
by rule-features can be considered as a compression and filtering step in which
the rule learning algorithm has removed noise and irrelevant information, and
grouped interacting feature values together of which k-nn is incapable. From
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the perspective of the rule learning algorithm, we do not have the simple clas-
sification strategy of taking the class of the rule that fires first, but the local
classification method of k-nn.

In the hybrids, rules are presented as active-inactive binary features, and
more than one rule can be active for a particular instance. As k-nn can be used
with k > 1, the nearest neighbors can also contain different active rules that are
applied to the new instance. Several rules, instead of only one, may be involved
in the classification.

In the second version of the hybrid, rules-a-h, where a stands for adding,
the rule-features are added to the original instance features. Thus, this hybrid
is a k-nn classifier with extra added features that represent the per-instance
firing patterns of the induced rule set. In this case the rule features cannot be
considered as a compression and filtering step, but adding these rule-features
modifies the distance calculations in k-nn. As explained above feature weight-
ing in k-nn gives a higher weight to more important features. As many of
the created rule-features will have a strong predictive power, they are likely
to receive high feature weights, making them able to influence the distance
calculation.

[3] also proposes a hybrid algorithm that combines rule learning with k-nn
called ‘RISE’. RISE applies creates a rule set by carefully generalizing instances.
It searches for an optimal rule set by repeatedly finding the nearest instances,
and generalizing over them. The most important difference between RISE and
our approach is that RISE considers rules as generalized instances, while our
approach differentiates between rules and instances as we transform rules to
create features that are added to the instances or replace the original features
in the instances.

3 Experimental Setup

We apply the three parent algorithms and the three hybrid algorithms on 29
data sets from the UCI repository of machine learning databases [14]. We per-
form 10-fold cross validation (CV) experiments and measure the mean accuracy
and standard deviation on the ten folds. We conduct paired t-tests between out-
comes of pairs of algorithms to determine the significance of the difference in
performance.

k-nn and rules offer several algorithmic parameters that, individually and in
combination, can affect the functioning of the algorithms in unpredictable ways.
We use a wrapped-based method to set them automatically for all k-nn and
rules modules involved in our study, including the hybrids. For small datasets
it is feasible to run pseudo-exhaustively a large amount of wrapped validation
experiments [15], covering all possible combinations of nominal parameter values
and sequences of selected values of real-valued parameters. We do this for data
sets below 1,000 instances: we perform wrapped internal 10-fold CV experiments
nested within the main 10-fold CV experiments. We measure accuracy and select
the average-best combination of settings over the internal ten folds.
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For larger data sets a complete recombination of algorithmic parameter set-
tings tested on the entire training set becomes infeasible. Rather than running
the algorithms with their default settings, we adopt wrapped progressive sam-
pling, or wps [16], a heuristic automatic procedure that, on the basis of validation
experiments internal to the training material, searches among algorithmic pa-
rameter combinations for a combination likely to yield optimal generalization
performance on unseen data.

We test five algorithmic parameters of k-nn with a total of 925 parameter
combinations, default settings are marked in bold:

– number of nearest neighbors: 1, 3, 5, 7, 9, 11, 13, 15, 19, 25, 35;
– feature weighting: none, gain ratio, information gain, shared variance, chi-square;
– distance metric: overlap, mvdm, Jeffrey divergence;
– neighbor weighting: normal majority voting, inversed linear weighting, inversed

distance weighting (only when k > 1)
– frequency threshold for switching from mvdm distance metric to overlap metric:

1, 2;

For the rule learning algorithm RIPPER we test seven algorithmic parame-
ters which leads to a total of 972 parameter combinations to be tested:

– number of extra optimization rounds: 0, 1, 2;
– order of the classes: starts by making rules for the most frequent classes, start

with least frequent classes, unordered.
– rule simplification: 0.5, 1.0, 2.0;
– misclassification cost: 0.5, 1.0, 2.0;
– minimum number of instances covered by rule: 1, 2, 5, 10, 20, 50;
– negative tests for nominal valued features: yes, no;

We did not optimize the parameters of maxent as it was shown in [16]
that neither exhaustive wrapping nor wps increased the generalization accuracy
of this algorithm. We train maxent with L-BFGS parameter estimation, 100
iterations and a Gaussian prior with mean zero and σ2 of 1.0.

Different machine learning algorithms have different methods to deal with
continuous feature values. In order to rule out differences between algorithms
we discretize the continuous features in some of the UCI benchmark tasks in a
preprocessing step, using the entropy-based discretization method of [17].

4 Results

In this section we describe the results of all algorithms discussed in Section 2.
Table 1 lists the names and number of instances of the 29 data sets, along with
the mean accuracies and standard deviations of 10-fold CV experiments with all
algorithms. (Note: cl-h-disease stands for ‘cleveland-heart-disease’, and soybean-l
stands for ‘soybean large’.)

We first look at the performance of the three parent machine learning algo-
rithms. Table 2 shows the results of significance tests on the 29 UCI benchmarks
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Table 1. Mean accuracy and standard deviation of the 10-fold CV experiments on the
29 UCI tasks for all algorithms. Best performances per task are printed in boldface.

task # inst. k-nn maxent rules maxent-h rules-r-h rules-a-h

abalone 4177 24.6 ± 2.8 23.6 ± 1.7 18.1 ± 1.7 22.8 ± 2.2 18.0 ± 1.7 25.0 ± 2.5
audiology 226 80.5 ± 6.3 80.9 ± 5.0 76.5 ± 7.7 81.3 ± 5.8 61.0 ± 9.4 81.8 ± 5.2
bridges 104 54.7 ± 10.6 61.6 ± 9.1 53.8 ± 14.3 55.7 ± 13.1 52.9 ± 17.2 55.7 ± 13.1
car 1728 96.5 ± 1.3 90.9 ± 2.2 97.6 ± 1.1 96.5 ± 1.5 94.0 ± 4.0 98.4 ± 0.9
cl-h-disease 303 55.7 ± 5.4 55.1 ± 5.0 58.4 ± 5.9 54.8 ± 5.8 58.4 ± 5.9 58.4 ± 5.2
connect4 67557 77.7 ± 1.8 75.7 ± 0.5 76.3 ± 1.7 78.1 ± 1.9 75.2 ± 1.3 78.6 ± 2.5
ecoli 336 79.5 ± 4.9 76.5 ± 7.8 69.7 ± 10.9 78.6 ± 2.8 72.6 ± 12.1 78.0 ± 6.3
flag 194 66.9 ± 11.4 69.8 ± 13.4 61.8 ± 8.8 68.9 ± 14.9 61.8 ± 7.8 65.8 ± 10.9
glass 214 67.7 ± 8.4 70.1 ± 11.6 60.7 ± 6.5 61.5 ± 9.9 60.8 ± 8.0 66.9 ± 10.1
kr-vs-kp 3196 96.8 ± 1.2 96.8 ± 0.6 99.2 ± 0.5 99.1 ± 0.4 99.2 ± 0.5 99.2 ± 0.5
letter 20000 95.6 ± 0.5 85.0 ± 0.7 73.8 ± 1.5 95.9 ± 0.7 74.6 ± 1.4 95.6 ± 0.4
lung-cancer 32 33.3 ± 12.9 39.2 ± 24.7 31.7 ± 24.1 43.3 ± 13.3 25.0 ± 12.9 34.2 ± 16.0
monks1 432 100.0 ± 0.0 75.0 ± 4.0 99.3 ± 2.0 93.7 ± 10.5 100.0 ± 0.0 100.0 ± 0.0
monks2 432 94.0 ± 11.8 65.1 ± 5.5 72.0 ± 8.1 96.3 ± 8.3 75.5 ± 12.2 97.0 ± 4.2
monks3 432 97.2 ± 2.5 97.2 ± 2.5 97.2 ± 2.5 97.2 ± 2.5 96.5 ± 2.6 97.2 ± 2.5
mushroom 8124 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 98.7 ± 2.6 100.0 ± 0.0
nursery 12960 99.4 ± 0.5 92.4 ± 0.4 97.7 ± 0.8 97.9 ± 1.1 97.9 ± 0.7 99.2 ± 0.4
optdigits 5620 98.0 ± 0.7 95.8 ± 0.8 89.3 ± 1.0 97.3 ± 0.6 89.9 ± 1.0 97.9 ± 0.6
pendigits 10992 93.4 ± 0.9 86.0 ± 1.2 82.6 ± 1.7 92.0 ± 1.4 81.7 ± 3.5 92.5 ± 1.5
promoters 106 87.0 ± 7.1 92.5 ± 9.0 79.4 ± 7.9 93.5 ± 8.2 80.3 ± 8.7 83.5 ± 11.2
segment 2310 95.7 ± 0.9 92.1 ± 2.8 90.5 ± 3.6 95.9 ± 1.1 90.6 ± 3.6 95.8 ± 1.3
solar-flare 1389 94.2 ± 2.2 94.7 ± 1.8 94.6 ± 1.5 94.2 ± 1.8 94.6 ± 1.5 94.2 ± 1.9
soybean-l 683 92.8 ± 4.2 92.2 ± 2.8 91.1 ± 3.0 93.1 ± 3.2 91.8 ± 3.2 92.8 ± 3.5
splice 3190 95.3 ± 1.0 94.6 ± 0.8 94.1 ± 1.6 94.8 ± 1.5 94.2 ± 1.1 95.8 ± 0.7
tictactoe 958 95.8 ± 3.8 98.3 ± 0.7 99.7 ± 0.7 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0
vehicle 846 67.6 ± 4.5 63.5 ± 5.2 55.7 ± 5.0 66.3 ± 5.4 56.0 ± 5.2 64.2 ± 5.7
votes 435 95.2 ± 2.4 96.5 ± 2.1 94.2 ± 1.6 95.4 ± 2.3 94.2 ± 1.6 94.9 ± 1.3
wine 178 96.1 ± 2.6 94.9 ± 5.3 93.2 ± 6.5 96.6 ± 2.7 92.7 ± 7.0 95.5 ± 4.9
yeast 1484 53.3 ± 2.9 49.3 ± 3.9 42.2 ± 3.2 55.4 ± 3.0 40.2 ± 2.1 52.0 ± 4.7

Table 2. Comparison of the three parent algorithms through summary counts of
won/tied/lost outcomes of paired t-tests on the mean accuracy and standard deviation
of the 10-fold CV experiments on the 29 UCI tasks.

k-nn maxent rules

k-nn 10/17/2 14/12/3
maxent 2/17/10 10/13/6
rules 3/12/14 6/13/10

tasks of each of the algorithms compared to the other. Each cell shows the num-
ber of times the algorithm in the row won/tied/lost as compared to the algorithm
in the column. The counts in the table are based on paired t-tests at p < 0.05 on
the pairwise accuracies obtained in 10-fold CV experiments. Overall, the results
indicate that k-nn performs better than the other two parent algorithms. max-
ent tends to perform better than rules on 10 data sets, and rules outperforms
maxent on 6 data sets.

Comparisons (again in won/tied/lost counts) between the hybrid algorithms
and their three parent algorithms are displayed in Table 3. We observe that
maxent-h performs quite equally to k-nn, while outperforming maxent on 12



Hybrid Algorithms with Instance-Based Classification 165

Table 3. Comparison of the three hybrids with their parent algorithms, through sum-
mary counts of won/tied/lost outcomes of paired t-tests on the mean accuracy and
standard deviation of the 10-fold CV experiments on 29 UCI tasks.

k-nn maxent

maxent-h 4/21/4 12/17/0

k-nn rules

rules-r-h 2/14/13 3/23/3
rules-a-h 4/24/1 16/13/0

data sets. rules-r-h performs worse than k-nn: it wins only on two data sets
and has a significantly lower accuracy in 13 cases. rules-r-h performs very
similarly to rules. The second rule learning hybrid rules-a-h has a signifi-
cantly higher accuracy than k-nn on 4 data sets, and on 16 tasks compared
to rules.

5 Analysis

We are not solely interested in whether each hybrid has a better overall gen-
eralization performance than one or both of the parent algorithms. We also
investigate to which extent the hybrid deviates functionally from its two parent
algorithms. In this section we take a closer look at the degree of overlap in the
errors made by the hybrids compared to their parents. Additionally, we measure
the statistical bias and variance of the algorithms.

5.1 Complementary Error Rate Analysis

The complementary error rate between two algorithms A and B, Comp(A,B),
measures the percentage of mistakes that A makes which are not made by algo-
rithm B [18]:

Comp(A,B) =
(

1− # of common errors
# of errors of A only

)
∗ 100 (2)

The relative magnitude of the complementary error rate between two algo-
rithms can be seen as an indication of their functional similarity with respect to
classification behavior. The lower the complimentary error rate between a pair
of algorithms is, the more they are functionally similar.

We calculate the complementary rates between each hybrid compared to its
two parent algorithms where the hybrid is A in Comp(A,B). Table 4 (second
column) lists macro averages over the 29 data sets. Almost all pairs of algorithms
have complementary rates of more than 30%, meaning that at least one-third
of the misclassified instances by the hybrid is classified correctly by the parent
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Table 4. Complementary rates and overlapping errors between hybrids and their par-
ent algorithms, macro-averaged over the 29 data sets

Two algorithms Complementary rate Error overlap

maxent-h – k-nn 32.9 60.0
maxent-h – maxent 34.9 54.2

rules-a-h – k-nn 32.3 60.9
rules-a-h – rules 28.7 56.2

rules-r-h – k-nn 54.8 32.0
rules-r-h – rules 21.3 74.3

classifier. The exception to this observation is the pair rules-r-h – rules which
produces the low rate of 21.3%, indicating that their functional classification
behavior is relatively similar.

Besides calculating whether the classifiers misclassify the same instances, we
also count whether they make the same errors. We investigate the errors that
are made by the hybrid algorithms and we calculate the percentage of times that
the parent algorithms assign the same incorrect label. Table 4 (third column)
displays the macro average of overlap in error labels on the 29 data sets. We
see that the hybrids maxent-h and rules-a-h have approximately 5% more
overlap in error with k-nn than with the eager parent algorithm. The hybrid
rules-r-h makes the same errors as rules to a very high extent (74%), while
having little overlap (32%) with k-nn.

5.2 Bias–Variance Analysis

The expected average error of a classifier can be decomposed in three compo-
nents: statistical bias, variance and noise. The statistical bias of an algorithm
reflects the systematic error of the algorithms whereas the term variance ex-
presses the variability in error over a set of different training sets. Noise presents
the errors in the data.

In this section we analyze whether the hybrid algorithms have a different
statistical bias and variance than their two parent algorithms. We employ the
method of [19]: we perform sampling experiments, measure the average error
rate and calculate the decomposition into bias and variance components.4 We
select 16 data sets from our original set of 29 that have more than 500 instances.

[19] use the following formula to decompose the expected zero-one loss E(C)
of discrete classifiers into bias and variance, given a fixed target and averaged
over a sampling of training sets:

4 We did not optimize the algorithmic parameters, as small training samples do not
allow any reliable cross-validated wrapping.
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E(C) =
∑

x

p(x)(σ2
x + bias2x + variancex) (3)

bias2x ≡ 1/2
∑
yεY

[p(YT = y|x)− p(YH = y|x)]2 (4)

variancex ≡ 1/2(1−
∑
yεY

P (YH = y|x)2) (5)

where x represents test example x, and σ2
x represents the noise in the data set

([19] argue to estimate noise to be zero as it is hard to calculate in practice);
bias2 (4) is estimated as the squared difference between the true target class
and the predicted class, averaged over the training samples. (We refer to bias2

as ‘bias’.) Variance (5) is estimated as the variability over the different training
sets. p(YT = y|x) is the estimation that test example x is classified as y by the
learning algorithm, averaged over the training set samples. p(YF = y|x) is the
probability that test example x has the true target label y, averaged over the
training set samples. Both components are summed over all classes yεY .

The purpose of these analyses is to investigate whether the proportion be-
tween bias and variance differs for the hybrids and their parent algorithms. In
order to get a better view on the balance between bias and variance we scaled
all error rates to 100%. Table 5 shows the macro averaged bias over the 16 data
sets (the variance always being 100 − bias2%). maxent has the highest bias;
rules-r-h has the lowest. When we compare each hybrid algorithm to its two
parent algorithms, we see that all hybrids have a lower bias than k-nn, and also
lower than the other parent algorithm. The three hybrids make less systematic
errors than both of their parent algorithms.

Table 5. The scaled bias component in the error of all algorithms, macro averaged
over the 16 data sets

Algorithm Bias Algorithm Bias

k-nn 57.29 maxent-h 56.92
maxent 65.56 rules-r-h 51.63
rules 55.50 rules-a-h 54.99

6 Discussion

Our experiments have brought forward evidence in two cases that instance-
based classification can replace other classification procedures successfully. We
constructed hybrids in which the learning component consisted either of rule
learning or of maximum-entropy modeling, and in which the classification was
performed with the k-nn classification rule. When comparing the hybrid algo-
rithms to their parent algorithms, we observed that maxent-h and rules-a-h
both outperform the eager parent algorithm often, and are never significantly
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outperformed by them. At the same time these two hybrids perform almost
identically to k-nn. When investigating more deeply to which extent the func-
tional behavior of the hybrid algorithms differs from their parent algorithms
by error analysis, we see that the hybrids maxent-h and rules-a-h both mis-
classify different instances than both their parent algorithms in at least 30%
of the cases, while rules-r-h functions quite similarly to rules. The two suc-
cessful hybrids, maxent-h and rules-a-h, have a slight higher overlap with
k-nn of approximately 5% compared to the error overlap with either rules
or maxent.

An intriguing observation is that the bias of the three hybrids is lower than
that of their parent algorithms. Combining the observed performance differences
(Table 3) and the bias components of all algorithms (Table 5), we can assume
that the performance gains of maxent-h and rules-a-h over maxent and
rules, respectively, are due to a decrease in the number of systematic errors the
hybrids generate. Given that the relative bias components of the two hybrids are
also lower than that of k-nn, at virtually no loss of performance, we conclude
that these two hybrids, maxent-h and rules-a-h, represent a “best of both
worlds” situation, since their different-source components cause them to avoid
systematic errors their parent algorithms make.

The hybrid rules-r-h shows a different behavior than the other two hy-
brids. rules-r-h performs worse than k-nn and equals the performance of the
rule learning algorithm. Also, complementary rates and overlap in error show
that rules-r-h has a quite similar functional classification behavior to that of
the rule learning algorithm. Our expectation was that the hybrid would differ
from rules in classification behavior, as more than one binary rule-feature can
be active in the feature representation of the hybrid and larger k values allow
several nearest instances with different active bits to be involved. In our exper-
iments on the 29 data sets, the average number of active binary rule-features
in the training folds was 1.3 bits on average 67.5 rule-features per instance.
However, in 70% of the experiments with rules-r-h the automatic algorithmic
parameter selection has chosen the k value to be 1, meaning that the poten-
tial benefit of k-nn classification is not fully explored. The hybrid rules-a-h
uses k = 1 in only 23% of the experiments, thereby profiting from the k-nn
classification method.

In future work we plan to compare the hybrids to external classifier com-
bination schemes. As our hybrids, classifier combination schemes benefit from
combining partly complementary classifier biases; our method has the intrin-
sic advantage that the resulting classifier is one integrated model rather
than two.
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Abstract. Since resources for data acquisition are seldom infinite, both
learners and classifiers must act intelligently under hard budgets. In this
paper, we consider problems in which feature values are unknown to
both the learner and classifier, but can be acquired at a cost. Our goal
is a learner that spends its fixed learning budget bL acquiring training
data, to produce the most accurate “active classifier” that spends at
most bC per instance. To produce this fixed-budget classifier, the fixed-
budget learner must sequentially decide which feature values to collect to
learn the relevant information about the distribution. We explore several
approaches the learner can take, including the standard “round robin”
policy (purchasing every feature of every instance until the bL budget is
exhausted). We demonstrate empirically that round robin is problematic
(especially for small bL), and provide alternate learning strategies that
achieve superior performance on a variety of datasets.

1 Introduction

While a doctor may have the option of using a wide variety of medical tests
(including MRIs, blood work, etc.) to diagnose a patient, many medical plans
involve capitation payments that restrict the per-patient cost of medical diag-
nosis and treatment. These physicians can only consider diagnostic strategies
that spend at most a specified amount; they would clearly want to use the
most accurate such strategy. In general, these strategies can operate sequen-
tially: e.g. first performing test Blood7 (at cost C(Blood7)), then using this
information to decide on the next action; perhaps performing Liver3 if Blood7
was positive, but performing Urine2 if Blood7 was negative, and so forth. Once
the total cost of the tests performed reaches the capitation amount bC (i.e. if
C(Blood7) + C(Urine2) + · · · = bC), the strategy must stop collecting informa-
tion and render a decision — e.g. “Cancer = true”. We call such a strategy a
“bounded active classifier” [1].

Earlier results [1] have shown that one can PAC-learn the decision-theoretic
optimal “bounded active classifier” BAC∗ = argminb{error(b)|b ∈ cost-bC-
active classifiers}, assuming the learner has no a priori resource bound — i.e.
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it can purchase every feature of as many instances as necessary. Of course, if we
are charging the classifier (read “physician”) for each feature, it seems strange to
provide this information for free to the learner (think “experimental designer”).
This paper extends those earlier results by investigating the challenge of learning
this BAC∗ when the learner has a fixed budget to spend acquiring the relevant
training data — i.e., when the learner can spend only a total of bL to produce
the best classifier that can spend only bC per instance. Thus, we investigate the
problem of budgeted learning a bounded active classifier.

In Sect. 2, we introduce the formal framework for budgeted learning a bound-
ed active classifier, highlight the simplifying assumptions we make, and derive
complexity results that show our task is NP-hard in general. Section 3 demon-
strates how to improve the running time of the (intractable) optimal algorithm,
while Sect. 4 discusses a variety of tractable algorithms that attempt to find good
approximate solutions to the problem. Section 5 describes the loss functions that
are required by some of our approaches, and Sect. 6 gives empirical results that
compare the proposed algorithms. Finally, Sect. 7 reviews related literature and
Sect. 8 summarizes our contributions. The proofs, and other information about
these studies, all appear in the website [5].

2 Formal Description

The “budgeted bounded-active-classifier learner”, bBACl, is given the (non-
negative) cost C(Xi) ∈ IR+ of acquiring each individual feature Xi of any single
specified instance1 and the loss matrix L = [�i,j] whose (i, j) element specifies
the penalty for returning the class ci when the true class is cj; by convention
we assume �i,i = 0 and �i,j > 0 for i �= j. bBACl also knows the total amount
the learner can spend bL ∈ IR+, and how much the resulting active classifier can
spend per instance bC ∈ IR+.

At any time, the bBACl can see the currentm×(r+1) “tableau”, whose rows
each correspond to an instance i ∈ {1, . . . ,m} and whose first r columns each
correspond to a feature, and whose r+1st column is the class label. Initially, only
the class label is specified; the other m× r entries are all unknown. In general,
we will let x(j)

i refer to the initially unknown value of the ith feature of the
jth instance. At any point, bBACl can perform the (i, j) “probe” to determine
the value of x(j)

i , at cost C(Xi). This also reduces bBACl’s remaining budget
from bL to bL − C(Xi). Once this budget reaches zero, bBACl stops collecting
information and returns a bounded active classifier BAC, which corresponds to
a decision tree of bounded depth [2].

The score of any BAC B is its expected misclassification error:

Q(B) =
∑
x,y

P (x, y) L(B(x), y) . (1)

1 We assume that these costs are independent of each other, both within and across
instances. Moreover, if any test costs C(Xi) = 0, we can simply gather that infor-
mation for each instance and then consider the resulting reduced problem where
C(Xi) > 0 for all remaining Xis.
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Letting All(bC) be the set of all such active classifiers that spend at most bC per
instance, our goal is the BAC from this set that minimizes this error:

BAC∗ = argmin
B∈All(bC)

Q(B) . (2)

2.1 Simplifying Assumptions

For our work we will assume a constant misclassification cost �ij = 1 for i �= j and
�ii = 0. Our algorithms will need to estimate the probabilities over the values of
the features of an instance P (x(j)

i ) to decide which probe to perform. We will take
a Bayesian stance by assuming there is a prior distribution over labeled instances,
before seeing any data.2 As a simplification, we will make the Näıve Bayes as-
sumption, which means the distribution of x(j)

i is independent of x(j)
k (for k �= i)

as we know the value of the class yj.3 Hence, if instance j is labeled with class
+, we will model the distribution of its ith feature x(j)

i ∼ Dir(α(i)
1,+, . . . , α

(i)
w,+ )

as a Dirichlet distribution with parameters α(i)
j,+ > 0, assuming Xi has |Xi| = w

values [3]. These parameters are unrelated to the ones for negatively labeled
instances α

(i)
j,− and also unrelated to the parameter values for other features

Xh, for h �= i. Initially, we will assume that each such distribution is uniform
Dir( 1, . . . , 1 ). If we later see a sample S with 29 Y = + instances with Xi = +
and 14 Y = + instances with Xi = −, the posterior distribution for x(j)

i for a
new Y = + instance would be Dir( 1 + 29, 1 + 14 ). The mean probability for
Xi = + here would be P (Xi = +|S) = 30/(30 + 15) = 2/3.

In general, if a variable X ’s prior distribution is X ∼ Dir(α1, . . . , αw ), then

P (X = i) =
αi∑
k αk

(3)

If we then observe a sample S that includes ai instances of X = i, then X ’s
posterior distribution remains a Dirichlet, with new parameters

X |S ∼ Dir(α1 + a1, . . . , αw + aw ) . (4)

In the formal description above, a probe of the form x
(j)
i specifies the feature

to probe (Xi) and the specific instance in the tableau (instance j) on which
to perform the probe. However, because of our Näıve Bayes assumption, we
can treat all instances with the same class label identically. Thus, rather than
querying specific instances, we only consider probes of the form (i, y) that request
the ith feature of a randomly chosen instance in the tableau whose class label
is y. (By convention, this process selects the value of an (i, y) feature-value that
has not been seen before.)
2 The sparsity of the data means the obvious frequentist approach of using simple

frequencies is problematic.
3 Note that Näıve Bayes models often produce good classifiers even for datasets that

violate this assumption.
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2.2 Complexity Results

Madani et al. [4] proves the following much simpler task is NP-hard: Given a set
of coins with known prior distributions and a fixed total number of flips, decide
when to flip which coin to decide which coin has the highest head probability.
Our framework inherits that negative result. (Identify each coin fi with a binary
feature, whose head probability corresponds to the probability the class is true,
given fi is true, P (c = +|fi = +); we also let P (c = +|fi = −) = 0 for all
features.) In addition, [1] shows that computing the best active classifier is NP-
hard in general, even if we know the entire distribution. Our framework inherits
that negative result as well.

3 The Optimal Policy

As our problem is a finite Markov Decision Process, there exists a deterministic
optimal policy for spending the learning budget such that the expected1 total
(expected2) misclassification error4 of the final bounded active classifier is min-
imized. Mathematically, the optimal learning policy is the one that minimizes:∑

i∈Outcomes

P (i)
∑
x,y

P (x, y|i) L(BAC∗(x), y) (5)

where each “outcome” corresponds to a state in which our learning budget has
been fully exhausted and has resulted in posterior Dirichlet distributions over
the feature values.

Such a policy can be computed via a bottom-up dynamic program. Unfortu-
nately, the number of outcomes (and hence the computational complexity) has
a prohibitive lower bound:

Proposition 1. [5] Let |Xi| denote the domain size of feature Xi, |S| denote
the number of classes, t = |S|

∑
i |Xi| − 1, and each feature has unit cost. Then

the bottom-up dynamic program must compute the value of

Ω

((
bL+t
bL

)bL (
bL+t

t

)t 1√
t

)
outcomes.

We have considered improving upon this näıve dynamic program by reducing
the number of subproblems that must be solved. Below we show an interesting
way to achieve this reduction by exploiting the equivalence of two “permuted”
states under the conditional independence assumption.

Definition 1. A proper permutation for a feature Xi with w domain values is
a bijective function f : [1, w] → [1, w] that applies the same reordering of the w
parameters for every Dirichlet distribution on Xi.

4 The first expectation1 is over the set of possible Dirichlet distributions produced
by the learner’s purchases, and the second expectation2 is over the possible labelled
instances (x, y) that can occur given the resulting Dirichlets.
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Example 1. Let

(Xi|Y = 0) ∼ Dir(4, 2, 7), (Xi|Y = 1) ∼ Dir(3, 8, 5)

Then a proper permutation for feature Xi is:

(Xi|Y = 0) ∼ Dir(7, 2, 4), (Xi|Y = 1) ∼ Dir(5, 8, 3).

Proposition 2. [5] Assume the Näıve Bayes assumption holds, and identify
a “state” of our problem by the value of bL and the set of Dirichlets over the
feature-class pairs. Consider any two states A and B, that have equal values of
bL and are such that the Dirichlets of A can be made equal to the Dirichlets of
B by specifying a set of r proper permutations, one for each feature Xi. Under
these conditions, the expected value of state A is equal to the expected value of
state B when following an optimal policy, and the optimal action to take from
state A is the optimal action to take from state B.

This proposition allows us to improve the näıve dynamic program by reusing
the computed value of a state A for properly permuted versions of A. The real-
time improvement using Proposition 2 is shown in Table 1. In the last case, the
näıve dynamic program ran out of memory after more than two hours, while
our improved version finished properly in under an hour. Unfortunately such
improvements are not sufficient to remove the exponential complexity of the
dynamic program (recall that this task is NP-complete); therefore, we consider
the following more tractable, suboptimal approaches.

Table 1. Reduction in computation time using Proposition 2

bL bC Features Domain Size Näıve Improved

2 4 6 4 161 sec 65 sec
3 2 4 3 888 sec 432 sec
4 3 4 3 8280 sec 3360 sec

4 Algorithms

This section summarizes a number of “budgeted bounded-active-classifier learn-
ers”. We focus on only the data collection part of the algorithms; after collecting
$bL worth of feature-values, each of the algorithms then passes its learned (pos-
terior) Dirichlet distributions to a dynamic program that produces the BAC∗

in (2).

4.1 Round Robin (RR)

This obvious algorithm simply purchases complete instances until its budget
bL is exhausted. It draws examples randomly, and so expects to have collected
data about members of each class y in proportion to P (Y = y). If there are r
unit-cost features, we expect to know everything about roughly bL/r instances.
Notice RR implicitly assumes all features are equally valuable in learning the
target concept.
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4.2 Biased Robin (BR)

A more selective approach than Round Robin is to purchase a single feature and
test whether or not its observed value has increased some measure of quality.
The Biased Robin algorithm is more selective than RR, continually purchasing
feature Xi as long as it improves quality, and otherwise moving to feature Xi+1
(and of course looping back to X1 after Xr). There are several choices for how
to measure quality or loss; see Sect. 5. Of course, BR must also specify a class
y from which to purchase its desired feature, and it does this by drawing from
the class distribution P (Y = y) on each purchase. As further motivation for this
algorithm, [6] found it to be one of the best approaches for budgeted learning of a
passive Näıve Bayes classifier, albeit with a different loss function. This method
also corresponds to the “Play the Winner” approach discussed in [7].

4.3 Single Feature Lookahead (SFL)

One would always like to avoid wasting purchases on poor features, especially
when faced with a limited learning budget. This motivates a prediction-based
approach, which uses a loss function to estimate the expected loss incurred after
making a sequence of purchases of a single, specified feature.

SFL uses this prediction based approach, and controls the level of myopia or
“greediness” involved by providing an additional parameter, d = the lookahead
depth. With a lookahead depth of d, SFL calculates the expected loss of spending
its next $d sequentially purchasing feature i of instances of class j. That is, if S
denotes our current set of Dirichlets and S′ denotes the Dirichlets after spending
min($d, $bL) purchasing feature Xi of Y = j instances, then the expected loss
for (i, j) is:

SFL(i, j) =
∑
S′

P (S′|S) Loss(S′) . (6)

SFL determines the feature-class pair (i, j) with lowest expected loss, then
purchases the value of this best (i, j) feature for one instance, and updates the
Dirichlets based on the observed outcome of that purchase (and reduces the
available remaining budget). It then recurs, using (6) to compute the score for
all feature-class pairs in this new situation — with its updated Dirichlets and a
smaller budget. This process repeats until the learning budget is exhausted. The
lookahead depth d can be set based on the computational resources available. If
only the next one purchase is considered, then this reduces to the (1-step) greedy
algorithm. SFL was originally used in two previously investigated variants of the
budgeted learning problem [6,8].

4.4 Randomized SFL (RSFL)

Our experiments show that the SFL algorithm often spends the majority of
its probes purchasing a single discriminative feature-class pair and neglects to
explore other potentially good features. This property can be problematic, par-
ticularly when a dataset contains several discriminative features that can jointly
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yield a more accurate BAC than any single feature by itself. The Randomized
Single Feature Lookahead algorithm (RSFL) alleviates this problem by increas-
ing exploration among the best looking feature-class pairs. The RSFL algorithm
is very similar to SFL, as it too calculates the expected loss in (6) for each
feature-class pair. However, rather than deterministically purchasing the pair
with the best SFL score, RSFL considers the best K feature-class pairs and for
each feature-class pair (i, j) in this set, it chooses to purchase feature i of class
j with probability:

exp −SFL(i,j)
τ∑

i,j exp −SFL(i,j)
τ

(7)

Here, τ is a temperature controlling exploration versus exploitation. Although we
set τ to one throughout this paper, we include it in (7) to show the relationship to
the Gibbs distribution. After experimenting with various values for the number
of feature-class pairs, K, we found that K = (number of classes)× bc seemed to
perform well, particularly when the learning budget was not much greater than
the number of features.

5 Loss Functions

As mentioned earlier, several of our algorithms rely on a loss function

Loss : {Dirichlet distributions over features} → IR (8)

that attempts to measure the quality of a given probability distribution. After
experimenting with several different choices of loss functions, we found Condi-
tional Entropy Loss and Depth 1 BAC Loss to be effective.5

Conditional Entropy measures the uncertainty of the class label Y given the
value of a feature Xi:

−
x

P (Xi = x)
y

P (Y = y|Xi = x) log2 P (Y = y|Xi = x) . (9)

The Biased Robin algorithm uses (9) before and after the purchase of feature
Xi to determine whether the purchase improved the ability of Xi to predict the
class Y .

On the other hand, other algorithms (SFL, RSFL, and greedy) use

min
i

∑
x

P (Xi = x)min
y

(1− P (Y = y|Xi = x)) (10)

which calculates the expected misclassification error of the best Depth 1 BAC.
Since BR needs to detect small changes in a distribution, it tends to perform
better with the more sensitive conditional entropy calculation in (9).
5 The obvious loss function is just to use (2) to compute the expected error of the

optimal BAC. However, since loss functions can be called several times on a single
purchase, the computational expense of computing (2) is prohibitive.
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6 Experimental Results

To compare the algorithms, we tested their performance on several datasets
from the UCI Machine Learning Repository [9]. We used supervised entropy
discretization [10] to discretize datasets with continuous values. Each dataset was
then randomly partitioned into five folds. The algorithms were run five times,
and on each run a single fold was set aside for testing, while the remaining four
were available for purchasing. For each algorithm, we used the average value of
these five runs as the algorithm’s misclassification error on the whole dataset.
We repeated this process 50 times to reduce the variance and get a measure of
the average misclassification error. Thus, each point in the graphs that follow
represents 50 repetitions of five-fold cross validation.

In the first set of experiments, all features have unit cost and the datasets
contain some irrelevant features. We set the classifier’s budget to bc = 3, as this
is large enough to allow several features to be used, but small enough to keep
computations tractable. All Dirichlets parameters are uniformly initialized to 1.
For reference, each graph also includes a gold standard “All Data” algorithm,
which is allowed to see the entire dataset, and thus represents the best that one
can do using the Näıve Bayes assumption on the data.

Figure 1 shows the performance of the algorithms on the Glass Identifica-
tion dataset: a binary class problem with nine features whose domain sizes vary
between one and three. The four features that have a domain size of one rep-
resent irrelevant information that any learning algorithm (especially one under
a constraining budget) should avoid. Both RSFL and BR learn better than the
obvious RR algorithm for all learning budgets considered. In fact, we found the
optimal bC = 3 BAC produced by the “All Data” algorithm involves four dif-
ferent features, and these four features are precisely the ones that RSFL and
BR purchase heavily during learning. This is in contrast to the RR purchasing
behaviour that spends equally on all features, despite their unequal predictive
power. Finally, SFL and Greedy spend their entire budget on only one or two
features during learning, which accounts for their low accuracy BACs.

The Breast Cancer dataset contains ten features, only one of which is irrel-
evant to the concept. This dataset is particularly interesting because nearly all
its features are good predictors, but three features have markedly lower con-
ditional entropy than the rest. To produce the lowest error BAC, the learn-
ing algorithms must discover the superiority of these three features. We find
RSFL does exactly this, spending 20%, 21%, and 32% of its budget respectively
on the three strong features. In comparison, RR spends 10% of its budget on
every feature which makes it much more difficult for it to separate the top fea-
tures from the rest. BR also performs better than RR for all learning budgets
considered.

The next set of experiments, shown in Fig. 2, considers datasets without
any irrelevant features. The Iris dataset has only four features and is a three
class problem. Given that all four features are relevant, and that bC = 3 in this
experiment, the optimal BAC requests every feature at some point in its tree.
With only four features to consider, RSFL is able to test them all effectively and
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Fig. 1. Identical costs and some irrelevant features — RSFL and BR outperform RR
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Fig. 2. Identical costs, no irrelevant features — RR still suboptimal

produce better BACs than RR for all budgets considered. BR is also competitive
with RR, except at some of the very low budgets where BR’s exploration model
prevents it from ever investigating some of the features.

Figure 2 (right) shows another binary class problem, the Vote dataset, that
contains 16 features. Many of these features have similar (high) predictive power.
Once again we see that both RSFL and BR beat RR when the learning bud-
get is small. RSFL asymptotes after about 50 purchases — it spends its bud-
get finding a few strong features quickly and outputs a fairly low error BAC.
As expected, at larger budgets RR collects enough information on every feature
to find many more suitable candidates for its BAC than RSFL can. The graph
shows that one can improve the performance of RSFL by increasing the number
of top feature-class pairs that RSFL considers on this dataset. We also observe
that BR’s exploration model is particularly well suited to this task because it is
able to collect information on every feature at larger budgets, which is crucial
on a dataset such as Vote with a large number of predictive features.
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Fig. 3. Different feature costs — RSFL and BR dominate RR

Our final set of experiments involved datasets where the features differed in
cost. Both the Heart Disease dataset and the Pima Indians dataset have known
cost data [9], which we used in our tests. The scaled Heart Disease costs range
from $1 to $7, and our tests are run with bc = $7. This dataset represents
the worst case for RR, because the irrelevant features happen to be the most
expensive ones. In fact, RSFL achieves the same error rate after $100 that RR
takes $500 to reach. In the Pima dataset, feature costs are between $1 and $5,
and we set bc = $5. The two irrelevant features have cost $1, and the single best
feature is $4. Once again, BR and RSFL dominate RR for all budgets considered.

7 Related Work

There are a number of different senses of “costs” in the context of learning [11].
Our research considers two of these: the costs paid by the learner to acquire
the relevant information at training time to produce an effective classifier and
also the costs paid by the classifier, at performance time, to acquire relevant
information about the current instance. We impose hard constraints on the total
cost of tests that can be performed per instance, and on the expenses paid by
the learner.

Many existing (sub)fields, such as active learning [12] and experimental de-
sign [13] (as well as earlier results such as [6]) focus on only the first of these
costs – e.g., bounding how much the learner can spend to produce an accurate
passive classifier. In addition, many of these systems request the class label for
an otherwise completely specified instance. Thus they require only a single quan-
tity per instance. Our problem is the complement of this: class labels are known
but feature information must be purchased. Unlike most of the other models,
this means our work may need to consider the correlations amongst the many
unknown properties of an instance. Other results seeking to reduce the sam-
ple complexity for learning include decision theoretic subsampling [14], on-line
stopping rules [15], progressive sampling [16], and active feature value acquisi-
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tion [17]. We note that these techniques differ from our approach because we
place a firm prior budget on the learner’s ability to acquire information, while
these approaches typically allow the learner to purchase until some external
stopping criteria (for instance, accuracy) is satisfied.

Weiss and Provost [18] recently explored a problem related to one that we
encounter in our overall framework: how to represent the class distribution when
only a firm budget of n training examples can be used. As discussed in Sect. 4,
our algorithms select which class to probe in different ways (e.g. performing
lookahead (SFL, Greedy), drawing from the true class distribution (RR and
BR), or combining lookahead with a Gibbs distribution (RSFL)).

As for the costs paid by the classifier at performance time, both [19] and [1]
attempt to produce a decision tree that minimizes expected total cost. However,
neither work assumes an a priori resource bound on the learner, thereby allowing
for unconstrained amounts of training data with which to build these classifiers.
Again, our work makes the more realistic assumption that if data costs money
at performance time, it very likely costs money at learning time as well.

Finally, we can view our model as a (fixed horizon, partially observable)
Markov Decision Process (MDP) [20]. We note that although the MDP formula-
tion is theoretically clear, it has not yielded strong results in our experiments due
to the dimensionality and lack of suitable features for function approximation;
see [21]. A simpler version of our problem also exists in the MDP framework [8],
and the results of that work motivate several of the policies that we adapt for
budgeted learning of bounded active classifiers.

8 Conclusions

Many standard learning algorithms implicitly assume the features are always
available for free, to both the learner at “training time” and later the classifier,
at “performance time”. This paper extends those systems by explicitly consider-
ing these costs, at both training and performance time. It introduces the formal
framework for budgeted learning a bounded active classifier, and presents some
complexity results. We also propose a more efficient way to implement the opti-
mal algorithm, which we prove works effectively. Moreover, this paper motivates
and defines a variety of tractable learning strategies and shows they work effec-
tively on various types of data — both with identical and with different feature
costs. In particular, we demonstrated that our proposed strategies can often do
much better than the obvious algorithm – “Round Robin” – especially when
training data is limited.
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Abstract. In this paper we present a primal-dual decomposition algo-
rithm for support vector machine training. As with existing methods
that use very small working sets (such as Sequential Minimal Optimiza-
tion (SMO), Successive Over-Relaxation (SOR) or the Kernel Adatron
(KA)), our method scales well, is straightforward to implement, and
does not require an external QP solver. Unlike SMO, SOR and KA, the
method is applicable to a large number of SVM formulations regard-
less of the number of equality constraints involved. The effectiveness of
our algorithm is demonstrated on a more difficult SVM variant in this
respect, namely semi-parametric support vector regression.

1 Introduction

Support Vector Machines (SVM) rank among the most widely used techniques
in machine learning today. Besides their good generalization ability, a major
benefit is that the training phase in SVMs is a convex optimization problem and
hence, unlike that of many competing methods does not suffer from local minima.
However, the nature of this training problem is such that a näıve implementation
will require O(m2) memory, where m is the number of training points.

This dilemma has motivated the development of algorithms with more ef-
ficient memory usage. Most approaches that have been studied in this respect
exploit the fact that the SVM problem can be solved incrementally, i.e. it can
be decomposed into a series of smaller problems that can be solved indepen-
dently. In fact, such decomposition methods [10] not only solve larger problems
for a given amount of memory, but have turned out to to give significant speed
improvements. As a result, essentially all of the popular SVM solvers today are
based on this idea, e.g. SVMlight [8], LIBSVM [3], SVMTorch [5] or HeroSVM
[6]. These implementations differ in mainly two respects, namely in the size of
the subproblems and in how the corresponding training subsets (i.e. the working
sets) are chosen. A common choice for the working set size is two, in which case
the subproblems can be solved analytically. Also, choosing a good working set
is simpler when fewer points have to be selected. This was first proposed in [11]
as Sequential Minimal Optimization (SMO), which forms the basis for three of
the four packages listed above (the fourth one includes SMO as a special case).

J. Gama et al. (Eds.): ECML 2005, LNAI 3720, pp. 182–193, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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It seems natural to ask whether one point working sets can further im-
prove on the results of SMO. In fact, this has been studied in various forms,
e.g. under the name of Kernel Adatron (KA) [7] or Successive Over-Relaxation
(SOR) [9], and indeed, all these methods yielded performances that were com-
parable, if not superior to SMO. However, this comes at the price of solving
a modified problem, since equality constraints (there is one in C-SVMs and
two in ν-SVMs) cannot be treated using single point updates. To remedy this,
the authors changed the SVM formulation such that the equality constraints
vanished. A similar problem was faced by Chang and Lin [2] during the im-
plementation of a ν-SVM solver for LIBSVM : the second equality constraint
in ν-SVMs is cumbersome for an SMO based optimizer, since the latter can
only deal with one such constraint naturally. The bottom line is that the num-
ber of equality constraints, which varies among different SVM formulations,
determines if we can use the efficient two (or even one) point variant of the
decomposition method.

In this paper we propose an algorithm that naturally handles any (small and
constant) number of equality constraints, and at the same time allows for arbi-
trary working sets sizes, in particular, down to a single point. This is achieved
through a primal-dual scheme that does not require feasibility in terms of the
equality constraints, except at the solution. We demonstrate the benefits of our
method by means of a generalized SVM formulation known as semi-parametric
SVMs [13]. Here, the number of equality constraints corresponds to the number of

Table 1. Parameter settings for (1), for various support vector problems with no more
than k = 2 equality constraints. Top two rows: C and ν soft margin SV classification,
respectively. 3rd row: one-class SVM. Bottom two rows: ε and ν SV regression. Here, m

is the number of data points xi ∈ X. Note that in (1), the domain of α is R
n, and that

n = m in all cases except SVR, where we have n = 2m. y = (y1, . . . , ym)� contains
the target values (yi ∈ {−1, 1} for classification, yi = 1 for single class problems,
yi ∈ R for regression). Furthermore, 0 = (0, . . . , 0)� ∈ R

m, 1 = (1, . . . , 1)� ∈ R
m,

and e1 = 0 in all cases. Finally, K ∈ R
m×m, where Kij = K(xi,xj) for regression and

Kij = yiyjK(xi,xj) otherwise, and K(·, ·) : X × X → R denotes the kernel function.

H d f0 f1 e1 f2 e2

C-SVC K C
m

−1 y 0 - -

ν-SVC K 1
νm

0 y 0 1 1

1-SVM K 1
νm

0 1 1 - -

ε-SVR
[

K −K−K K

]
C
m

[−y
y
]

+ ε
[

1−1

]
0 - -

ν-SVR
[

K −K−K K

]
C
m

[−y
y
] [

1−1

]
0 1

Cν

[
1
1

]
1
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free parameters and is therefore arbitrary. As a result, nontrivial semi-parametric
SVMs cannot be trained with SMO, but are well suited for our algorithm.

2 Problem Formulation

In the following, we consider the class of optimization problems

min 1
2α
Hα + f
0 α

s.t. 0 ≤ αi ≤ d, i = 1 . . . n
f
i α = ei i = 1 . . . k

(1)

w.r.t. α = (α1, . . . , αn)
 ∈ Rn, i.e. SVM problems with k equality constraints.
The particular type of SVM that is implemented depends on the following param-
eters: the matrix H $ 0 ∈ Rn×n, symmetric and positive definite, k + 1 column
vectors f0, . . . , fk ∈ Rn and k + 1 scalars d ∈ R, d > 0 and ei ∈ R, i = 1 . . . k.
Table 1 shows the parameter settings for (1) for several standard SVM problems
[12]. Any of the SVMs in Table 1 can be made semi-parametric [13], which in-
troduces one additional equality constraint per parameter (this will be discussed
in more detail in Section 6). Please note that we will refer to (1) as the primal
problem, for reasons that will become clear below.

3 Optimality Conditions

If the kernel K(·, ·) is positive definite, then so is the matrix H (see Table 1).
This renders the primal objective convex. Since in addition, all constraints in (1)
are affine, strong duality holds and the Karush-Kuhn-Tucker (KKT) conditions

∀ i = 1 . . . k (i) f
i α = ei

∀ i = 1 . . . n

(ii) 0 ≤ αi ≤ d

(iii) αi = 0 ⇒ si ≥ 0
(iv) 0 < αi < d⇒ si = 0
(v) αi = d ⇒ si ≤ 0

(2)

where s = Hα + f0 + Fη, F = [f1, . . . , fk], and η ∈ Rk. are sufficient for opti-
mality, i.e. any tuple (η,α) that satisfies (2) is primal and dual optimal and has
zero duality gap. Note that the dual variable(s) η = (η1, . . . , ηk)
 correspond
to the k equality constraints in the primal problem (1). The n dual variables
associated with the box constraints have been eliminated via a fusion with the
complementary slackness conditions, resulting in the three implications (iii–v).

4 Decomposition Methods

The need for customized SVM solvers arises from the fact that briefly, learning
works better the more training data is used; but then, as mentioned earlier,
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storing H, which holds the information about the training data, requires a
quadratically increasing amount of memory. The use of generic QP solvers is
often not possible, especially when they require H to reside in memory through-
out the optimization process. To remedy this, various so-called decomposition
methods have been proposed (originally by Osuna et al. [10]). In a decomposi-
tion method, at each step, all αi except a working set of size q are fixed. Then,
after solving the respective subproblem (w.r.t. the q variable αi), a new working
set is selected, and the new subproblem is solved. This procedure is repeated
until the global optimality criterion (i.e. regarding all n αi) is met. Note that
this requires only q columns of H to reside in memory at a time, so we can solve
very large problems by using small working sets, i.e. small q. The following two
subsections give a short review of two extreme versions of the decomposition
method, namely the cases q = 2 and q = 1.

4.1 SMO (q=2)

The Sequential Minimal Optimization (SMO) method, introduced in [11], was
originally proposed for C-SVC. As opposed to decomposition methods that use
larger working sets q > 2, SMO has the striking property that its subproblems
can be solved analytically, which makes the algorithm very simple to implement.
A slightly modified, very efficient implementation of this algorithm is at the core
of the widely used LIBSVM package [3]. Further implementations can be found
in SVMTorch [5] and HeroSVM [6].

In SMO, subproblems are of size q = 2. For C-SVC, where we have only one
equality constraint y
α = 0 (see Table 1), the algorithm is as follows: first, we
initialize α = 0, which is a feasible point for (1), since we have 0 ≤ αi ≤ C

m
and y
α = 0. At each iteration, a working set {αi, αj} is selected and the
quadratic objective function is minimized along the line y
α = 0. Then, the
new values for αi and αj are clipped to the interval

[
0; C

m

]
in order to meet the

inequality constraints as well. Note that this ensures that α is always primal
feasible, i.e. ((2), (i–ii)) are always fulfilled. Since the KKT conditions (2) are
sufficient for optimality (see Section 3), α is optimal as soon as the remaining
conditions ((2), (iii–v)) are satisfied. In practice, one usually tests whether the
largest KKT violation falls below some predefined threshold. If so, the method
stops; otherwise, the next iteration starts.

In general, SMO cannot be applied to problems of type (1) when there are
multiple equality constraints. For instance, if we have k = 2, the two equality
constraints and the q = 2 working set form a 2 × 2 linear system. If it has full
rank (which we have to assume), it already restricts the feasible set to a single
point, which leaves us with zero degrees of freedom for updating αi and αj .

4.2 GS, KA and SOR (q=1)

The term ”minimal” in SMO stems from the fact that if α is required to be
primal feasible ((2), (i–ii)) at any time, and if we have one equality constraint
(as in C-SVC), the working set size must be at least q = 2. To see this, consider
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the C-SVC equality constraint y
α = 0: clearly, if α is feasible, then changing
the value of a single αi leads to y
α �= 0 and thus to infeasibility. To overcome
this problem, several modified SVM formulations have been proposed, based on
the following idea: In C-SVC for instance, the equality constraint y
α = 0 in
(1) originates from the bias term in the decision function (usually referred to
as b). Therefore, changing the role of the bias will also change the structure of
the optimization problem (1). This boils down to two possible modifications.
The bias term may be either penalized, as in Successive Over-Relaxation (SOR)
by [9] or simply left out, as in Kernel Adatron (KA) [7]. In both cases, the
primal problem (1) is left with the box constraints only and can be solved with
q = 1 methods. KA and SOR are equivalent in the sense that they essentially
implement Gauss-Seidel (GS) iterations (or the closely related SOR iterations)
to solve the linear system

Hα = −f0 (3)

subject to the box constraints 0 ≤ αi ≤ d. An actual implementation can be
very similar to SMO: first, we chose α = 0 as a feasible starting point. At each
iteration, a working set {αi} is selected and the objective is minimized — in
contrast to SMO, without any constraints: Δαi = −(Hα + f0)i/Hii, which is
a GS step. Then, the new value for αi is clipped to the interval

[
0; C

m

]
which

ensures primal feasibility. As with SMO, if ((2), (iii–v)) are met, the method
stops. It can be shown that such box-constrained GS methods converge from
any starting point α, given that H $ 0.

4.3 Platt vs. Gauss

To summarize,

– SVMs with one equality constraint (e.g. those listed in Table 1, except ν-
SVC and ν-SVR) can be solved in a straightforward manner using SMO.
In contrast, GS methods cannot deal with any equality constraint and are
thus not applicable to any SVM problem in Table 1, unless the problem is
modified accordingly.

– SVMs with two equality constraints (e.g. ν-SVC and ν-SVR) cannot be
solved in general with either SMO or GS.

– SVMs with three or more equality constraints (e.g. semi-parametric SVMs)
cannot be solved at all with either SMO or GS.

As an aside, the LIBSVM implementation [3] does solve ν-SVC and ν-SVR via
SMO. In the initial version [2], this was accomplished through a bias penalty
that eliminates one of the equality constraints (as in SOR). In its current ver-
sion, LIBSVM uses a special working set selection heuristic which makes this
modification obsolete [3, 4].

5 A Minimal Primal-Dual Method

This section develops the minimal primal-dual (MPD) algorithm for SVM train-
ing. It should be mentioned that other primal-dual methods have been proposed
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for this purpose [12]. However, to our knowledge, these approaches neither ex-
ploit the fact that the dual function is approximately quadratic, nor do they
scale well. In the spirit of [11], we call our method ”minimal”, since the working
sets have minimum possible size q = 1.

5.1 Motivation

Recall that SOR and KA (Section 4.2) exploit the fact that the equality con-
straint y
α = 0 in C-SVC is closely connected to the bias term b in the decision
function. In particular, if we remove the bias term from our problem (KA), or
if we penalize it via 1

2b
2 (SOR), the constraint y
α = 0 vanishes. In fact, the

equality constraint also vanishes if we fix the bias to any value. It is easy to
show (see e.g. [3]) that the dual variable η1 associated with the equality con-
straint y
α = 0 actually is the bias b. As a result, we may remove equality
constraints by fixing their associated dual variables ηi. In the following, we show
how this motivates the MPD method. To begin, consider the Lagrangian of (1),
for the moment without the box constraints, i.e.

L(α, η1) =
1
2
α
Hα + f
0 α + η
(F
α− e) (4)

which is quadratic in the primal variables α and linear in the dual variables η.
Since we required H $ 0, it is convex and bounded from below and therefore
the infimum exists for any η. Now we put the box constraints back in as a
(non-relaxed) domain restriction on α. This yields the dual function

g(η) = inf
0≤αi≤d

L(α,η), (5)

whose maximization w.r.t η constitutes the dual problem of (1). Notice that
unlike the equality constraints, which have been relaxed via the Lagrange mul-
tipliers η, the inequalities are still present. In practice, the latter are met by
clipping the unconstrained minimizer of (4) to the polytope described by the box-
constraints. This operation has combinatoric complexity, but is well tractable for
small working sets (see SMO etc.).

By construction, g(η) is concave in η, i.e. we are left with a k-dimensional,
unconstrained, concave maximization problem. Now assume that we know the
optimal dual variable η∗. As mentioned earlier, since all constraints are affine
and since the Lagrangian is convex in α, we have strong duality. Thus, finding
the saddlepoint in (α,η) is sufficient for the optimum. Since we know η∗, we
merely need to compute the corresponding α via the new primal problem

min L(α,η∗)
s.t. 0 ≤ αi ≤ d, i = 1 . . . n

(6)

w.r.t. α. As opposed to the initial primal (1), (6) has no equality constraints.
Thus, the feasibility of particular working set sizes is not affected, but we still
obtain the optimal solution of the unaltered problem.
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Needless to say, we cannot know η∗ in advance. The basic idea of our MPD
method is to fix some η, solve (6) via GS — pretending that η is optimal — use
the resulting α to compute a new estimate for η, and go back to solving (6). This
is repeated until convergence, i.e. until η = η∗. The η estimates are updated
via approximate Newton steps: since the dual function (5) is concave, we find its
global optimum by merely following the direction of steepest ascent. While the
derivatives of g(η) cannot be written in closed form, the following approximation
turns out to be sufficient in practice: neglecting the box constraints, we find that
the minimizer of (4) reads α∗(η) = −H−1(f0 − Fη). Plugging this into (4), we
get an approximation to the dual function (5), whose gradient w.r.t. η is given
by F
H−1(f0 − Fη), or simply

∂g

∂ηi
= f
i α− ei. (7)

if α = α∗(η). For the second derivatives, we assume further that the Hessian is
diagonal, which yields

∂2g

∂ηiηj
=

{
−fiH−1fi if i = j

0 otherwise
(8)

Note that the gradient depends on η, but is readily computed by virtue of
equation (7). In contrast, the Hessian is constant, but costly to compute (8).
In order to avoid a direct computation of H−1, we solve the k linear systems
Hγi = −fi for γi via GS. After this, the diagonal elements of the Hessian (8)
reduce to f
i γi. We will see that effectively, our method trades the k equality
constraints for k additional GS steps per iteration.

As an aside, a less crude approximation is to clamp active box constraints,
i.e. assume that for all η, the set of αi that are at bound, is constant. In (7) and
(8), this amounts to setting the components of fi for which the box constraint
is active, to zero. In our experiments, we could not detect a significant differ-
ence between this and the above approximation (besides a slight computational
disadvantage of the former), so we decided to not use the clamping heuristic.

5.2 The Algorithm

The following paragraphs describe the minimal primal-dual algorithm in detail.
An outline of the method is given as Algorithm 1, we will refer to particular line
numbers in the text.

Variables and Initialization. During the whole optimization process, we keep the
following variables: the current primal and dual variable α and η, the primal
and dual gradient of the Lagrangian gα = ∇αL(α,η) = Hα + f0 + Fη and
gη = ∇ηL(α,η) = F
α−e. Furthermore we keep estimates of the the k Hessian
diagonal elements hi = −fiH−1fi, as well as the residuals ri = Hγi + fi of the
corresponding linear systems. The initial value of the primal variable α can be
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Algorithm 1. Minimal Primal-Dual SVM Training
1: initialize primal/dual variables
2: initialize gradients
3: initialize variables for the Hessian estimation

4: loop
5: update dual Hessian estimate
6: update primal variables
7: if (primal optimal) then
8: if (dual gradient is small) then
9: converged

10: else
11: update dual variables
12: end if
13: end if
14: end loop

chosen arbitrarily up to the box constraints 0 ≤ αi ≤ d (see the discussion on
feasibility below). For the sake of simplicity we set α = 0 (Line 2). The dual
variables ηi are completely unconstrained and we set them to zero as well. This
implies to gα = f0 and gη = −e (Line 3). Finally, we initialize γi = 0 and thus
hi = 0, ri = fi, i = 1 . . . k (Line 4).

Hessian and Primal Updates At the beginning of each iteration, we update the
Hessian estimates hi (Line 7). To this end, we do the following for all i = 1 . . . k:
we pick the largest component of the residual ri, rij say, and perform a GS step
Δγij = −rij/Hjj in that direction. Note that we never actually compute the
γi, instead, we update hi and ri via Δhi = −Δγijfij and Δri = ΔγijHj . The
next step is the primal update (Line 8) via box-constrained GS. The working set
is chosen to be the αi corresponding to the largest KKT violation ((2), (iii-v)),
which is in fact a q = 1 version of the heuristic used by [8] and [3]. Note that this
is an O(n) operation since we keep ∇αL(α,η), which is in fact the quantity s
in (2). The GS update amounts to Δαi = −si/Hii and the subsequent clipping
of the new value to [0; d]. A change in αi also affects the gradients, so we update
them as well via Δgα = δHi and Δgη = δFi, where δ is the actual change in αi

after clipping.

Primal Stopping The primal updates ensured that the box constraints (and thus
((2), (ii)) are always met. Therefore, the condition in Line 9 evaluates to true
as soon as ((2), (iii-v)) hold. To this end, we check if the largest (in magnitude)
violation of ((2), (iii-v)) falls below a predefined primal threshold εp. Note that
this can be done efficiently since the variable s in (2) is simply the primal gradient
∇αL(α,η).

Dual Stopping In Line 10, we check the current solution α,η for optimality. At
this point we already have ((2), (ii-v)) satisfied, so what remains to be checked



190 W. Kienzle and B. Schölkopf

are the violations ((2), (i)), which coincide with the components of the dual
gradient ∇ηL(α,η). We therefore say that the algorithm has converged if the
largest (in magnitude) component of∇ηL(α,η) is smaller than the dual stopping
threshold εd.

Dual Updates. If the optimality check in Line 10 fails, we update the dual vari-
ables via Newton steps (Line 13) Δηi = −(f
i α − e)/hi. As with the primal
updates, a change in η results in a change in gα, so we update the latter via
Δgα = FΔη.

5.3 Implementation

The minimal primal-dual method is designed to solve various SVM problems
of the form (1) in a consistent manner. Thus, it seems natural to implement
it in a two-layered fashion: a core function that implements Algorithm 1, and
a wrapper function that implements the mappings in Table 1. The user may
then call the wrapper function with the data and the type of SVM as argu-
ments. The wrapper functions translates this into values for H, fi, etc. and
calls the core function. When the core function returns, the wrapper computes
the values of the so-called free variables (such as the bias term b). This is
extremely simple, since the free variables not only correspond to the equality
constraints, but actually coincide with the respective dual variables ηi. This is
sometimes referred to as the ”dual-dual trick” [12]. It can be seen as an ad-
vantage of our algorithm (or primal-dual methods in general) over the methods
described in Section 4, since the latter require a manual recovery of these val-
ues. The latter becomes difficult if the solution is degenerate, e.g. if the solution
of a C-SVC lacks unbounded support vectors (see [3]). Algorithm 1 (the core)
and Table 1 (the wrapper) are readily implemented in a few lines of Matlab,
which is the version we used in our experiments. It can be downloaded from
www.kyb.mpg.de/∼kienzle.
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Fig. 1. Typical values for the KKT violations and the
dual variable η1 during MPD training of a C-SVC,
plotted against the number of iterations. The data
were two 2D Gaussians with 20 points each, stan-
dard deviation σ = 1, and their means

√
2 apart. We

trained a C-SVC with C = 1000 and a Gaussian ker-
nel with σ = 1, the stopping thresholds were set to
εp = εd = .01. The method performed four dual up-
dates (at iteration 532, 595, 616 and 627) among a
total of 630 iterations. Notice the complementary na-
ture of the top two plots: the primal/dual updates
reduce the (iii-v)/(i) KKT violations, while sacrific-
ing the fulfillment of the ”competing” conditions (i)/
(iii-v), respectively.
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5.4 Complexity and Convergence

The MPD method can be seen as solving k+ 1 linear systems in parallel, where
every time the primal (box constrained) system has converged, its parameters are
updated using the current values from the k Hessian (unconstrained) systems.
All updates areO(n), so each loop has time complexity O(kn). The total number
of required operations is therefore O(tkn), where t is problem-dependent, as it
is common to iterative methods. The memory usage is O(n).

It has been shown that box-constrained GS iterations (i.e. those that solve
our primal problem) converge for any starting point, given that H $ 0 (see
e.g. [7] and references). The natural question arises whether the dual variables
converge to their optimum η∗. A sketch of the proof that we are currently work-
ing on is based on an idea from [1] (the actual proof will be included in a longer
version of this paper): training with MPD is equivalent to solving a slightly mod-
ified problem whose solution is equivalent to that of (1), using an Augmented
Lagrangian Method. In this setting, the method can be shown to converge if
the dual stepsize is bounded from above by some threshold. Interestingly, the
approximations (7) and (8) aim at satisfying this very condition. It should be
mentioned that due to the approximative nature of the derivatives or because of
numerical effects, the stepsizes may yet turn out too large, although we have not
experienced this in our experiments. Figure 1 illustrates the typical behavior of
MPD on a toy problem.

6 Experiments

In this experiment, we have tested our method on a multiple equality constraint
problem called semi-parametric SV regression. To introduce this concept, recall
that SVM decision (or regression) functions are linear in the reproducing kernel
Hilbert space (RKHS) induced by the kernel function K(·, ·). In [13], the class of
admissible (linear) functions is augmented by a parametric term. As an example,
for ε-SVR we have

f(x) = 〈w,K(x, ·)〉 +
k∑

i=1

βiϕi(x) (9)

instead of the usual f(x) = 〈w,K(x, ·)〉 + b. The ϕi(x) allow us to incorporate
domain knowledge about the target function (e.g. the presence of a sinusoidal
component in f). It has been shown that each parameter βi introduces one
equality constraint fi, ei to (1), where ei = 0 and fi contains the values of ϕi(x)
on the training points xi. Moreover, as with all free variables, at the solution we
have βi = ηi [13]. In particular, the bias term b in standard SVMs can be seen
as a special case of such a βi, namely for ϕi(x) = 1.

Let us now consider the problem studied by [13], namely a semi-parametric
ε-SVR on yi = f(xi) + ξi, with xi uniformly sampled from the interval [0; 10]
and f(x) = sin(x) + sinc(2π(x− 5))+ ξi. The noise ξi is zero-mean and uniform
with standard deviation 0.2 and the parameter of the ε-insensitive loss function
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Fig. 2. Training a large-scale semi-
parametric SVR with MPD vs. LOQO.
The plots show cpu times against train-
ing sizes (between m = 50 to m =
100000) on a loglog scale. For the left
plot, we explicitly computed the ma-
trix H for both methods. Here, we
increased m, until Matlab ran out of
memory (m ≈ 3300 for LOQO, m ≈
5700 for MPD). For the right plot,
we used a 2Gbyte least-recently-used
(LRU) kernel cache (as it is common
practice, e.g. in [3]) for MPD, the
LOQO plot is the same as on the left.

‖ · ‖ε is ε = 0.05. The latter is not to be confused with the stopping thresholds
εp, εd, which we set to 0.01. As in [13], our model for f(x) has two parameters β1,
β2 that are associated with the functions ϕ1(x) = sin(x), ϕ2(x) = sinc(2π(x −
5)). In the original experiment, the authors computed cross-validation errors
for the above problem of size m = 50 and various values of C, which yielded
an optimum at C = 1. Here, we test our method for three values around the
optimal C, i.e. 0.1, 1 and 10, and for various training sizes m = 50 . . .100000.

Figure 2 illustrates the scaling properties of MPD training compared to that
of the LOQO method [14] used in [13]; both methods are implemented in Matlab.
We tested two versions of MPD, with and without using a cache for H. The left
plot shows the former case for m < 3300, which is where Matlab runs out of
memory. Here, both methods yielded the same accuracy, and comparable time
complexity (note that slopes on the loglog scale correspond to exponents on a
linear scale). The right plot shows the performance of MPD with kernel caching
(see caption). This experiment supports that MPD can deal with large training
sets, e.g. up tom = 105 or more while it has a similar (in fact, slightly lower) time
complexity than the LOQO method. Note that in [13], LOQO was chosen due
to the lack of a more appropriate method. We suspect that it is the training size
limit which prevented semi-parametric SVMs from gaining more attention in the
past. MPD does not have this limitation and thus allows for further exploration
of not only this but other equally interesting paradigms.

7 Discussion and Future Work

We have presented a large scale primal-dual method for SVM training. The main
contributions are the following: First, the MPD method combines all standard
SVM formulations into a unifying framework. Second, as with SMO or GS meth-
ods, it is straightforward to implement, scales well, and does not require external
QP packages. Third, MPD is able to implement more general SVM paradigms,
e.g. semi-parametric SVMs, that cannot be solved with SMO based packages,
and for which generic solvers run out of memory.



Training SVM with Multiple Equality Constraints 193

What remains to be explored is whether the convergence of the Hessian es-
timates should be enforced before any dual updates are performed, since this
is required for the Newton step approximations to be reliable. In the current
version, we merely rely on the fact that the estimate will eventually have con-
verged. Finally, in order to compare MPD to existing methods, note that for
k = 0, MPD is equivalent to KA/SOR. A comparison of SOR and SMO can be
found in [9].
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Abstract. Automatic facial expression recognition is a research topic
with interesting applications in the field of human-computer interaction,
psychology and product marketing. The classification accuracy for an
automatic system which uses static images as input is however largely
limited by the image quality, lighting conditions and the orientation of
the depicted face. These problems can be partially overcome by using a
holistic model based approach called the Active Appearance Model. A
system will be described that can classify expressions from one of the
emotional categories joy, anger, sadness, surprise, fear and disgust with
remarkable accuracy. It is also able to detect smaller, local facial features
based on minimal muscular movements described by the Facial Action
Coding System (FACS). Finally, we show how the system can be used
for expression analysis and synthesis.

1 Introduction

Facial expressions can contain a great deal of information and the desire to au-
tomatically extract this information has been continuously increasing. Several
applications for automatic facial expression recognition can be found in the field
of human-computer interaction. In every day human-to-human interaction, in-
formation is exchanged in a highly multi-modal way in which speech only plays
a modest role. An effective automatic expression recognition system could take
human-computer interaction to the next level.

Automatic expression analysis can be of particular relevance for a number
of expression monitoring applications where it would be undesirable or even
infeasible to manually annotate the available data. E.g., the reaction of people
in test-panels could be automatically monitored and forensic investigation could
benefit from a method to automatically detect signs of extreme emotions, fear
or aggression as an early warning system.

Decades of research have already led to the development of systems that
achieve a reasonable expression classification performance. A detailed account

J. Gama et al. (Eds.): ECML 2005, LNAI 3720, pp. 194–205, 2005.
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of all the advances on the field of automatic expression analysis can be found in
[17] or [10]. Unfortunately, most of the developed systems have severe limitations
on the settings of their use, making them unsuitable for real-life applications.

The limitations in automatic expression classification performance are to
a large extend the result of the high variability that can be found in images
containing a face. If we do not want to be limited to a specific setting and if we
do not want to require active participation of the individuals depicted on the
images, we will see an extremely large variety in lighting conditions, resolution,
pose and orientation. In order to be able to analyze all these images correctly,
an approach seems to be desirable that can compactly detect and describe these
sources of variation and thus separate them from the actual information we are
looking for.

The Active Appearance Model (AAM) first described by Cootes and Taylor
[4] enables us to (fully) automatically create a model of a face depicted in an
image. The created models are realistic looking faces, closely resembling the
original. Previous research projects have indicated that the AAM provides a good
generalization to varying lighting / pose conditions as it is able to compactly
represent these sources of variations.

Many leading researchers in the field of expression classification have chosen
very different, local methods for classification. Local methods have the advan-
tage of potentiality achieving a very high resolution in a small area of the face.
However, as they lack global facial information, it will be very hard for a lo-
cal method to separate changes caused by differences in lighting or pose from
changes caused by expressions. Consequently, the local method will have rather
poor generalization properties. We do not want to limit ourself to situations
where we have high-resolution video material available either, but instead want
a single facial image to be sufficient. We have therefore chosen to use the holistic,
model based Active Appearance Model as our core technique. To make this sys-
tem fully automatic, a deformable template face framing method, very similar
to the one described in [20] is used preliminary to the AAM modeling phase.

The next section will describe the AAM implementation that was used for
this project (based on previous work by [16]). In section 3 we will show how
appearance models can be used to classify facial expressions based on two dif-
ferent categorization systems. Section 4 describes how we can further analyze or
synthesize facial expressions. Finally, we will come to a conclusion in section 5.

2 The Active Appearance Model

To train the AAM [4], we require the presence of a (manually) annotated set X
of facial images. The shape of a face is defined by a shape vector S containing
the coordinates of M landmark points in a face image I.

S = ((x1, y1), (x2, y2), ..., (xM , yM ))T

Landmark points are points in the 2D plane of a face image at easily distin-
guishable reference points, points which can be identified reliably in any face
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image we might want to analyze. Considering the invariability of shapes under
Euclidian transformations, we can remove the effect of misplacement, size and
rotation by aligning each shape vector in the set of all shape vectors Xs to the
mean shape vector s̄, which can be implemented as an iterative procedure.

We then apply Principle Component Analysis (PCA) [13], which transforms
the shapes to a new low dimensional shape subspace in RD where D < 2M .
An element S from the original set of shapes can now be approximated by some
bs of length D where:

S ≈ Φs · bs + s̄ (1)

Where Φs is the covariance matrix consisting of the D principal orthogonal
modes of variation in Xs:

Φs = (es
1|es

2|...|es
D)

The eigenvalues λs
j of the covariance matrix define the variance of the data

in the direction of the corresponding eigenvector es
j . Thus, when generating new

shapes, we can bound the elements in bs as shown below, to allow variation
within 99% of a normally distributed function:

−3
√
λs

j ≤ bsj ≤ 3
√
λs

j

A texture vector of a face image is defined as the vector of intensity values
of N pixels that lie within the outer bounds of the corresponding shape vector:

T = [g1, g2, ..., gN ]T

Delauny triangulation [19] is performed on the texture maps to transform
them to a reference shape (the mean shape can be used for this). This results
in so called shape-free patches of pixel intensities, which should then be photo-
metrically aligned to remove the effect of general lightning differences. This can
again be done using an iterative approach.

Fig. 1. The mean face shape and the mean face texture aligned to the mean shape

PCA is then applied on the texture vectors, after which a texture vector T
from the original data set can be represented by a vector bt.

T ≈ Φt · bt + t̄ (2)
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The elements in bt are again bounded by:

−3
√
λt

k ≤ btk ≤ 3
√
λt

k

Where λt
k represents the eigenvalue of the corresponding eigenvector across the

data set Xt.
The appearance model combines the two vectors bs and bt into a single pa-

rameter vector ba. First, the shape and texture vector are concatenated. Because
these two are of a different nature and thus of a different relevance, one of the
terms will be weighted:

bst =
(
wsbs

bt

)
Estimating the correct value for ws can be done by systematically displacing

the elements of the shape vector over the examples in the training set and calcu-
lating the corresponding difference in pixel intensity. As an alternative, we can
set ws as the ratio of the total pixel intensity variation to the total shape varia-
tion. PCA is then applied one last time to remove possible correlation between
shape and texture parameters and create an even more compact representation:

bst = Φaba (3)

We will refer to ba as the appearance vector from now on as it compactly
describes both the shape and the texture of an object.

The online task of the Active Appearance Model is to find a model instance
which optimally models the face in a previously unseen image (a model-fit).
Given a face image I, the AAM attempt to find the optimal model parameters
ba and the optimal pose parameters u = [tx, ty, s, Θ]T where tx and ty are trans-
lations in the x and y directions, s is the scaling factor and Θ is the rotation.

The difference vector δt = timage − tmodel defines the difference in pixel
intensity between input image and the model instance. By minimizing E = ||δt||2
we thus minimize the difference in pixel intensities. The method used by the
AAM for doing this assumes that the optimal parameter update can be estimated
from δt. Moreover, this relationship is assumed to be nearly linear.

A prediction matrix is used to update the model parameters ba and u in
an iterative way until no significant change occurs anymore. Usually, separate
prediction matrices are used for ba and u, so we have:

δba = Rba

δt and δu = Ruδt

The prediction matrices Rba

and Ru are learned from the training data by
linear regression using examples which are systematically displaced over one of
the model or pose parameters.

After obtaining the prediction matrices, parameters are updated in an itera-
tive way (ba ← ba+αδba and u← u+αδu) where α is a stepsize parameter, until
no significant change in error occurs anymore. Under this iterative approach, the
linearity assumption seems to hold well enough when the initial model placement
does not deviate too much from the actual position of the face in the image.
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3 Expressions and Classification

In order to create a system that can automatically derive meaningful expression
information from a face, it might prove important to have a clear and formalized
method of describing the expression on a face, for which several methods have
been proposed. We describe two commonly used classification systems for facial
expressions and then present our results.

3.1 Facial Action Coding System (FACS)

The Facial Action Coding System (FACS) presented by Ekman & Friesen in
1978 [7] is by far the most used system. It codes the various possible facial
movements based on an analysis of the facial anatomy. FACS contains a list of
approximately (depending on the specific revision) 46 minimal facial movements
called ‘Action Units’ and their underlying muscular basis. Over the years, this
system has become a standard for coding facial expressions. The original system
has undergone a major revision in 2002 [9] and extended to include gradations
of activation for the Action Units (AUs).

Using FACS, practically all facial cues can be accurately described in terms of
Action Units, which appear to be the smallest possible changing units in a face.
This makes it a very powerful system to accurately annotate facial expressions.

The only major downside to this approach is the fact that no or little meaning
can be attached to the activation of one of the Action Units. E.g., to know that
the Levator palpebrae superioris is contracted is information that might only be
relevant for a very select number of applications. Instead, a categorization based
on the meaning expressions convey may be more useful for most applications.

3.2 Emotional Expressions

Many expressions carry an emotional content with them. The exact relation-
ship between expressions and emotions has been studied extensively, which has
resulted in several theories. For a detailed discussion see [11, 8, 18, 6].

Already in 1970, P. Ekman reported the existence of 6 universal facial ex-
pressions related to the emotional states: anger, disgust, fear, joy, sadness and
surprise [5]. A constant debate on whether these expressions are really universal,
or vary by culture, has been going on ever since.

Obviously it is not the case that any expression can be classified into one
of Ekman’s 6 emotional expression categories [12]. Facial movements can be of
varying intensity and there are blends of emotional expressions and variations
within a category. Also, there are facial movements which are meant only for
conversational purposes or are considered idiosyncratic. However, if we do want
to make a categorization of expressions based on emotions, Ekman’s universal
emotional expressions might be an obvious choice, for the system is already
widely used and categories that are made represent clear concepts, making them
intuitively easy to deal with.
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3.3 Automatic Emotion Expression Classification

In the previous section, we described how the AAM can be used to derive a
realistic model of a depicted face. There are several ways to extract a compact
representation of the facial features using this model. After a model fit has been
created, the accurate position of a face is clear and so are the locations of all
the key points in the face (the landmark points). This introduces two promising
options. First, accurate image slices can be made of selected regions of the face to
be used directly by a classifier or after applying a ‘smart’ compression. However,
an easier option seems to exist. The face model which has been constructed
is represented entirely by a very compact vector (the appearance vector). This
appearance vector could be perfectly suitable for use as input for a classification
method, if it contains all relevant information needed to distinguish between the
different expression classes. Previous experiments [21, 14] have shown that this
latter option gives far better results.

Our goal is to come to a classification of all the 6 universal emotional expres-
sions, plus the neutral expression. In principle, we can achieve this by creating
and training 7 independent classifiers. We used neural networks trained with
backpropagation since these have been proven their abilities for pattern recog-
nition tasks [1]. The final expression judgement of a face image could then be
based on the network with the highest output. Experiments have shown, how-
ever, that the networks resulting from this procedure miss what you might call
‘mutual responsiveness’. When observing a series of images, where one emo-
tional expression is shown with increased intensity, one would expect the output
of one network to increase and the outputs of the other networks to automat-
ically decrease or level out to zero. However, this behavior does not appear in
all situations and not seldom are there several or no networks at all with a high
output, even though this situation does not appear in the training data.

We can create more favorable behavior by training one classification net-
work with 7 outputs for the different emotional categories. This also boosts
overall performance significantly. We used a 3-layer feed-forward neural net-
work, with 94 input neurons (=the length of the appearance vector), 15 hid-
den neurons and 7 output neurons (=the number of expression categories).
We used the backpropagation algorithm to train the network and leave-one-out
cross-validation to determine the true test performance. The optimal number of
training epochs (which was around 1500) was estimated by iteratively searching
around the optimum found using a small stop-set. The training material con-
sisted of 1512 appearance vectors that were automatically extracted and had an
accurate AAM fit.

Table 1 shows the results in the form of a confusion matrix when we force the
network to make a choice (by picking the highest output value) on the ‘Karolin-
ska Directed Emotional Faces’ set [15] containing 980 high quality facial images
showing one of the universal emotional expressions or a neutral expression. 89%
of all faces presented to the classifier is classified correctly, which is a very promis-
ing result as it is among the highest reported results on emotional expression
classification from static images.
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Table 1. Performance of the 7-fold classifier on the Karolinska data set using leave-
one-out cross-validation

3.4 FACS Classification

Although we have mainly focussed on the automatic classification of facial ex-
pressions in one of Ekman’s 6 universal emotional expression categories, we have
as a side-study, trained the system to give the FACS scoring of a face (using the
2002 revision including gradations). If this classifier performs well, this would
suggest that even local features can be modeled correctly by the AAM, without
requiring a training set specifically selected for this.

Action Units (AUs) described by the FACS do not necessarily have to be in-
dependent. In practice, there are many constraints on the co-occurrence of AUs.
This is reason to take a similar approach as we did for the emotional classifier
concerning the choice between building separate classifiers and building one large
classifier for all AUs at once. If there are constraints, these can be modeled in
the large network and outputs could be better adjusted to one another.

For some AUs, far too little training data was available to perform a mean-
ingful training. Only the 15 AUs present most frequently in the training set (AUs
1, 2, 4, 5, 6, 7, 9, 12, 15, 17, 20, 23, 24, 25 and 27) were therefore selected for
training. This limits the functionality of the system, but retraining the classifier
with more annotated faces will always remain an option for real applications.
Again, we used a 3-layer feedforward neural network, with 94 input neurons,
20 hidden neurons and 15 output neurons (=the number of selected AUs) and
use backpropagation with leave-one-out cross-validation. The training material
consisted of 858 appearance vectors of images from the Cohn-Kanade AU-Coded
Facial Expression Database [3] with an accurate AAM fit.

Table 2 shows the performance of the FACS classifier after training, where
a classification is considered correct if it does not deviate more than one point
on the five-point scale of intensity by which the training data is annotated. The
AUs are detected with an average accuracy of 86%, but it should be mentioned
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Table 2. FACS classifier performance on 15 Action Units

Action Unit: 01 02 04 05 06 07 09 12 15 17 20 23 24 25 27 Average

Accuracy: .86 .88 .81 .86 .81 .89 .93 .83 .89 .86 .84 .83 .83 .90 .89 .86

that this still means that most classified faces will have one or more AUs scored
incorrectly. If we are only interested in the activation of one or two AUs, these
results are promising, but if we are looking for an accurate automatic FACS
scoring device, significant improvements are still needed.

4 Expression Analysis and Synthesis

The previous experiments have shown that the appearance vector contains ex-
pression information that can be used to classify a face model. Alternatively, it is
also possible to extract and isolate the information that is related to expressions,
which enables us to visualize the distinguishing features for a certain expression
and also allows expression synthesis.

4.1 Visualization of Features Relevant for Emotional Expression
Classification

Blanz and Vetter (1999) have shown that the information concerning expressions
can be extracted from appearance vectors in a straightforward way. Consider two
images of the same individual with similar lighting and pose, one image showing
some expression and the other showing a neutral face. We can calculate the
difference between the two corresponding appearance vectors, which would give
us information about the expression shown for this person. By averaging over a
set of image-pairs, we can derive ‘prototypical vectors’ for a certain expression.

Besides some concerns about the reliability of this approach, since features
might be averaged out, another downside is the fact that although the de-
rived ‘prototypical vectors’ can give some cues to what expressions look like,
where they are formed and what influence they have on shape and texture of
a face, they can not be used directly to analyze those features which are im-
portant to distinguish one expression from another, even though this would be
very useful information to have for anyone working in the field of expression
classification.

There is an alternative possibility however. Consider a feedforward neural
network, which is calculated as [1]:

yk = g(
M2∑
j=0

wkjf(
M1∑
i=0

wjixi)) (4)

Where yk is the output of the k-th output neuron; g and f are the activation
functions of the output layer and hidden layer respectively, wkj is the weight
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between the k-th output neuron and the j-th hidden neuron, wji is the weight
between the j-th hidden neuron and the i-th input neuron and xi is the activation
of the i-th input neuron.

We train a network using face images showing a certain expression as positive
examples and using images of all other expressions as negative examples. This
network turns out to have an optimal (or nearly optimal) performance when it
has only one hidden neuron. In this case formula 4 can be greatly simplified to:

y1 = g(w1f(
M1∑
i=0

w1ixi)) (5)

Since all our input neurons are connected to all hidden neurons, we can also
write: y1 = g(w1f(wTx)) where x is the input vector and w is a vector containing
the weights between input neurons and hidden neuron.

By iteratively propagating an error over the network we can find an instance
of x which gives the output y1 = 1. This is not necessary however, as we can
already see in the formula above that w determines exactly the relative magni-
tude of the influence the input neurons will have on the output of the network,
since functions g and h are monotonously increasing and w1 only determines the
sign of this influence. w thus denotes the relevance of elements in the appearance
vector for the classifier output.

In order to visualize what w represents, we can create a new model instance
where we take w directly as the appearance vector (ba = w) with the bias value
left out of w. As explained in section 2, we can extract the uncompressed texture
and shape vectors from this new appearance vector using formulas 1 and 2, but
for visualization purposes we do not add the mean shape and texture. These
vectors are indicators of the relevance of either the positioning of landmark points
or the pixel intensity in a shape-free patch. The relevance of pixel intensities can
be visualized straightforwardly as shown in figure 2. All elements have been
converted to absolute values, and a global scaling and offset operator has been
used to create black pixels for the most significant indicators and white pixels
for what is considered not significant at all by the classifier.

Some of the features we can distinguish are according to what we might have
expected beforehand, just to name a few, we can see the changes in the mouth
corners when a person smiles, the drawn together eyebrows for an angry face,
eyes being slightly closed and opened wide for the sad and surprised expression
respectively, the ‘lip puckerer’ in the sad expression and the widened nose in
the disgusted expression. Another indicator that the method is working success-
fully is that the irises are considered irrelevant for all expressions since their
appearance remains fairly constant for all expressions. Other features that are
considered very significant by the classifier are less obvious to explain and might
be interesting material for experts to look at and further analyze.

The vector containing the relevance of shape information does not consist
of coordinates, but rather of directed velocity vectors starting at the landmark
points we have defined. This can be visualized by drawing the velocity vectors
using the mean shape as a reference frame [21].
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Fig. 2. Relevance of texture information for the 6 emotional expression classifier

Fig. 3. Artificially created expressions; original images from [15]

4.2 Expression Synthesis Through Network Analysis

In the previous experiment, we have modeled the information considered rele-
vant by an emotional expression classifier. If we on the other hand purely want
to synthesize an expression, the discriminating features between one emotional
expression and all the other different expression categories are of little use. There-
fore, we trained new neural networks using only neutral images and images of
one emotional expression category at a time. Thus, the discriminating features
the classifier is supposed to model are those features which discriminate between
a neutral face and a face showing some expression. Extracting the weight vector
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from these networks and adding a multiple of them to an appearance vector
might proof to be a successful way for expression synthesis. Since the elements
of the appearance vector are orthogonal, this is a valid operation.

Figure 3 gives some examples of neutral faces which have been changed into
faces displaying a certain expression using the method above. As a reference, a
real picture of the person displaying this expression has been added.

The artificially created expressions look natural and convincing and only little
identity information appears to be lost. As we only have one fixed difference
vector for each expression, one might expect that the synthesized expressions
contain no personal traits. However, the two series on the right in figure 3 show
that variations in expressions can occur for different initial model instances.

5 Conclusions

By using the Active Appearance Model and directly using the appearance vectors
as classifier input, we have managed to achieve very promising classification
performance. Since we are using a model based method, lighting and orientation
differences have little, if any, effect on the classifier’s performance. Background
variation is no significant problem for the system and the system requires only
static images of reasonable quality; laboratory conditions are not required.

An emotional expression classifier was trained which has an accuracy of 89%.
The emotional expressions that were investigated must thus have been repre-
sented quite accurately in the appearance vectors. Using a similar approach, a
classifier has been trained to detect very local facial movements which can be
coded using the Facial Action Coding System. This classifier has been trained
on 15 different facial movements (Action Units) and classifies each Action Unit
with an average performance of 86%.

Using trained classificationnetworks, it is possible to visualize exactly what the
classifiers consider relevant/discriminating information for a certain expression.
This provides us with accurate information concerning the areas of the face which
provide information that is important for a good classifier performance. Further
analysis of these results is needed in order to come to a more detailed conclusion.

Again using information obtained from trained classifiers, a difference vector
can be extracted which characterizes a certain emotional expression. By adding
this difference vector to the appearance vector of a face model, we have shown
how expressions can be generated. This method seems to work rather well, as
only little personal information appears to be lost, while the generated expres-
sions are clearly identifiable and convincing to a human observer.
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Abstract. We propose a new learning algorithm for the set covering machine
and a tight data-compression risk bound that the learner can use for choosing the
appropriate tradeoff between the sparsity of a classifier and the magnitude of its
separating margin.

1 Introduction

There exists a wide spectrum of different leaning strategies currently used by learning
algorithms to produce classifiers having good generalization. At one end of the spec-
trum, we have the set covering machine (SCM), proposed by Marchand and Shawe-
Taylor (2002), that tries to find the sparsest classifier having few training errors. At
the other end of the spectrum, we have the support vector machine (SVM), proposed
by Boser et. al. (1992), that tries to find the maximum soft-margin separating hyper-
plane on the training data. Since both of these learning machines can produce classi-
fiers having good generalization, it is worthwhile to investigate if classifiers with im-
proved generalization could be found by learning algorithms that try to optimize a non-
trivial function that depends on both the sparsity of a classifier and the magnitude of its
separating margin.

There seems to be a widespread belief that learning algorithms should somehow try to
find such a non-trivial margin-sparsity trade-off. For example, to find a sparser SVM (but
with a smaller margin), Bennett (1999) and Bi et. al. (2003) have proposed to minimize
an �1-norm functional (instead of the traditional �2-norm) and have found that, indeed,
the sparser SVM sometimes had better generalization. Therefore, from this SVM per-
spective, we should consider algorithms that minimizes an �β-norm functional for any
β ∈ [0, 2]. In the β = 2 limit, we obtain the SVM with the largest possible separating
margin (without considering its sparsity). In the β = 0 limit, we would obtain the spars-
est SVM (without considering the magnitude of its separating margin). This parameter
β would then control the margin-sparsity trade-off of the final classifier. Unfortunately,
this optimization problem is currently efficiently solvable only for β = 2 and 1.

This computational difficulty does not arise (so abruptly) if, instead, we consider
margin-sparsity trade-off learning algorithms from the SCM perspective. Indeed, the
learning algorithm for the SCM proposed by Marchand and Shawe-Taylor (2002) con-
sists of a set covering greedy heuristic that, at each greedy step, appends, to a conjunc-
tion, the Boolean-valued feature that covers the largest number of negative examples
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without making too many errors on the positive examples. If, in addition, we force
the algorithm to use only features having the property that all the (remaining) train-
ing examples are at least a distance γ from its decision surface, we are assured that a
conjunction of such features will give a classifier having no training examples within
a distance γ of its decision surface. In the γ = 0 limit, the goal of the learner is to
produce the sparsest SCM without considering the magnitude of its separating margin
(as in the original SCM algorithm). For finite γ, we will achieve a separating mar-
gin of at least γ at the expense of having more features in the SCM. Hence, γ is a
parameter that controls the margin-sparsity trade-off of the final classifier without in-
troducing any substantial computational difficulty. We therefore propose, in Section 3,
a margin-sparsity trade-off learning algorithm for the SCM which was inspired by this
simple idea.

The widespread belief that learning algorithms should try to find a non-trivial
margin-sparsity trade-off is, to our knowledge, not currently supported by a general-
ization error bound (also called risk bound) that explicitly depends on both the sparsity
of a classifier and the magnitude of its separating margin. However, both sparsity and
margin can be considered as different forms of data-compression. Indeed, sparsity is
a form of data compression known as sample-compression (Littlestone and Warmuth,
1986) since it means that a classifier can be reconstructed from a small subset of the
training data. Less obviously, the magnitude of the separating margin of a classifier
can also be considered as a form of data compression since it means that there exists a
small code that can specify a “good” location for the classifier’s decision surface. For
the SCM of Marchand and Shawe-Taylor (2002), each data-dependent ball feature is
identified by two training points: a center and a border (to define the radius of the ball).
In section 3, we propose instead to code the radius of each ball by a message string.
Hence, the existence of a large margin of “equally good radius values” for a ball will
imply the existence of a short code for its radius. With this new version of the SCM,
we therefore identify each classifier by two distinct information sources: a compression
set which consists of the center of each ball in the classifier and a message string which
encodes the radius value of each ball.

In section 2 of this paper, we therefore propose a tight data-compression risk bound
that depends explicitly on these two information sources. This bound therefore exhibits
a non trivial trade-off between sparsity (the inverse of the compression set size) and the
margin (the inverse of the message length) that classifiers should attempt to optimize
on the training data. In contrast with other sample-compression bounds, the proposed
bound is valid for any compression set-dependent distribution of messages and, as we
argue, permits the usage of smaller message strings which, in turn, can help reduce
significantly the size of the risk bound. We then show, in section 3, how we can apply
this risk bound to the SCM by providing an appropriate compression set-dependent
distribution of messages. Finally, we show, on natural data sets, that the new SCM
algorithm compares favorably to the SCM algorithm of Marchand and Shawe-Taylor
(2002) and we also show that the data-compression risk bound is an effective guide for
choosing the proper margin-sparsity trade-off of a classifier.
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2 A Data-Compression Risk Bound

We consider binary classification problems where the input space X consists of an

arbitrary subset of Rn and the output space Y = {−1,+1}. An example z def= (x, y) is
an input-output pair where x ∈ X and y ∈ Y . We are interested in learning algorithms
that have the following property. Given a training set S = {z1, . . . , zm} ofm examples,
the classifier A(S) returned by algorithmA is described entirely by two complementary
sources of information: a subset zi of S, called the compression set, and a message
string σ which represents the additional information needed to obtain a classifier from
the compression set zi.

Given a training set S, the compression set zi is defined by a vector i of indices

i def= (i1, i2, . . . , i|i|) with ij ∈ {1, . . . ,m} ∀j and i1 < i2 < . . . < i|i| and where
|i| denotes the number of indices present in i. Hence, zi denotes the ith example of S
whereas zi denotes the subset of examples of S that are pointed by the vector of indices
i defined above. We will use i to denote the set of indices not present in i. Hence, we
have S = zi ∪ zi for any vector i ∈ I where I denotes the set of the 2m possible
realizations of i.

The fact that any classifier returned by algorithm A is described by a compression
set and a message string implies that there exists a reconstruction functionR, associated
with A, that outputs a classifier R(σ, zi) when given an arbitrary compression set zi ⊆
S and message string σ chosen from the set M(zi) of all distinct messages that can
be supplied to R with the compression set zi. It is only when such a R exists that the
classifier returned by A(S) is always identified by a compression set zi and a message
string σ.

The perceptron learning rule and the SVM are examples of learning algorithms
where the final classifier can be reconstructed solely from a compression set (Graepel.
et. al.,2000, 2001). In contrast, the reconstruction function for SCMs needs both a com-
pression set and a message string. Later, we will see how the learner can trade-off the
compression set size with the length of the message string to obtain a classifier with a
smaller risk bound and, hopefully, a smaller true risk.

We seek a tight risk bound for arbitrary reconstruction functions that holds uni-
formly for all compression sets and message strings. For this, we adopt the PAC setting
where each example z is drawn according to a fixed, but unknown, probability distribu-
tion D on X × Y . The risk R(f) of any classifier f is defined as the probability that it
misclassifies an example drawn according to D:

R(f) def= Pr(x,y)∼D (f(x) �= y) = E(x,y)∼DI(f(x) �= y)

where I(a) = 1 if predicate a is true and 0 otherwise. Given a training set S =
{z1, . . . , zm} of m examples, the empirical risk RS(f) on S, of any classifier f , is
defined according to:

RS(f) def=
1
m

m∑
i=1

I(f(xi) �= yi)
def= E(x,y)∼SI(f(x) �= y)

Let Zm denote the collection of m random variables whose instantiation gives a train-
ing sample S = zm = {z1, . . . , zm}. Let us denote PrZm∼Dm(·) by PZm(·). To obtain
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the tightest possible risk bound, we fully exploit the fact that the distribution of classi-
fication errors is a binomial. The binomial tail distribution Bin( k

m , r) associated with a
classifier of (true) risk r is defined as the probability that this classifier makes at most k

errors on a test set of m examples: Bin
(

k
m , r

) def=
∑k

i=0

(
m
i

)
ri(1− r)m−i.

Following Langford (2005) and Blum and Langford (2003), we now define the bi-
nomial tail inversion Bin

(
k
m , δ

)
as the largest risk value that a classifier can have while

still having a probability of at least δ of observing at most k errors out of m examples:

Bin
(
k

m
, δ

)
def= sup

{
r : Bin

(
k

m
, r

)
≥ δ

}
From this definition, it follows that Bin (RS(f), δ) is the smallest upper bound, which
holds with probability at least 1−δ, on the true risk of any classifier f with an observed
empirical risk RS(f) on a test set of m examples:

PZm

{
R(f) ≤ Bin

(
RZm(f), δ

)}
≥ 1− δ ∀f (1)

Note that the quantifier ∀f appears outside the probability PZm{·} because the bound
Bin (RS(f), δ) does not hold simultaneously (and uniformly) for all classifiers f mem-
ber of some predefined class F . In contrast, the proposed risk bound of Theorem 1
holds uniformly for all compression sets and message strings.

The proposed risk bound is a generalization of the sample-compression risk bound
of Langford (2005) to the case where part of the data-compression information is given
by a message string. It also has the property to reduce to the Occam’s razor bound
when the compression set zi vanishes. The idea of using a message string as an ad-
ditional source of information was also used by Littlestone and Warmuth (1986) and
Ben-David and Litman (1998) to obtain a sample-compression bound looser than the
bound presented here. Moreover, in contrast with these bounds, Theorem 1 applies to
any compression set-dependent distribution of messages PM(zi) satisfying:∑

σ∈M(zi)

PM(zi)(σ) ≤ 1 ∀zi (2)

and any prior distribution PI of vectors of indices satisfying:∑
i∈I

PI(i) ≤ 1 (3)

Theorem 1. For any reconstruction functionR that maps arbitrary subsets of a train-
ing set and message strings to classifiers, for any prior distribution PI of vectors of
indices, for any compression set-dependent distribution of messages PM(zi), and for
any δ ∈ (0, 1], we have:

PZm

{
∀i ∈ I, ∀σ ∈ M(Zi) : R(R(σ,Zi)) ≤

Bin
(
RZi

(R(σ,Zi)), PI(i)PM(zi)(σ)δ
)}

≥ 1− δ
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where, for any training set zm, Rzi(f) denotes the empirical risk of classifier f on the
examples of zm that do not belong to the compression set zi.

Proof. Consider:

P ′ def= PZm

{
∃i ∈ I : ∃σ ∈M(Zi) : R(R(σ,Zi)) >

Bin
(
RZi

(R(σ,Zi)), PI(i)PM(zi)(σ)δ
)}

To prove the theorem, we show that P ′ ≤ δ. Since PZm(·) = EZiPZi|Zi(·), the union
bound and Equations 1, 2, and 3 imply that we have:

P ′ ≤
∑
i∈I

EZi

∑
σ∈M(Zi)

PZi|Zi

{
R(R(σ,Zi)) > Bin

(
RZi

(R(σ,Zi)), PI(i)PM(zi)(σ)δ
)}

≤
∑
i∈I

EZi

∑
σ∈M(Zi)

PI(i)PM(zi)(σ)δ ≤ δ

The risk bound of Theorem 1 appears to be as tight as it possibly can. Indeed, the
proof of Theorem 1 contains three inequalities. The last two inequalities come from
Equations 1, 2, and 3 and cannot be improved. The first inequality comes from the
application of the union bound for all the possible choices of a compression subset of
the training set and is unavoidable for statistically independent training examples.

It is important to note that, once PI and PM(zi) are specified, the risk bound
of Theorem 1 for classifier R(zi, σ) depends on its empirical risk and on the prod-

uct PI(i)PM(zi)(σ). However, ln
(

1
PI(i)PM(zi)

(σ)

)
is just the amount of information

needed to specify a classifier R(zi, σ) once we are given a training set and the pri-
ors PI and PM(zi). The ln(1/PI(i)) term is the information content of the vector of
indices i that specifies the compression set and the ln(1/PM(zi)(σ)) term is the infor-
mation content of the message string σ. Consequently the bound of Theorem 1 specifies
quantitatively how much training errors learning algorithms should trade-off with the
amount of information needed to specify a classifier by i and σ.

Any bound expressed in terms of the binomial tail inversion can be turned into
a more conventional and looser bound by inverting a standard approximation of the
binomial tail such as those obtained from the inequalities of Chernoff and Hoeffding.
In this paper, we make use of the following approximations (provided here without
proof) for the binomial tail inversion:

Lemma 1. For any integer m ≥ 1 and k ∈ {0, . . . ,m}, we have:

Bin
(
k

m
, δ

)
≤ 1− exp

(
−1

m− k

[
ln
(
m

k

)
+ ln

(
1
δ

)])
(4)

≤ 1
m− k

[
ln
(
m

k

)
+ ln

(
1
δ

)]
(5)



Margin-Sparsity Trade-Off for the Set Covering Machine 211

Therefore, these approximations enable us to rewrite the bound of Theorem 1 into
the following looser (but somewhat clearer and more conventional) form:

Corollary 1. For any reconstruction functionR that maps arbitrary subsets of a train-
ing set and message strings to classifiers, for any prior distribution PI of vectors of
indices, for any compression set-dependent distribution of messages PM(zi), and for
any δ ∈ (0, 1], we have:

PZm

{
∀i ∈ I, ∀σ ∈ M(Zi) : R(R(σ,Zi)) ≤

1− exp

(
−1

m− d− k

[
ln
(
m− d

k

)
+ ln

(
1

PI(i)PM(zi)(σ)δ

)])}
≥ 1− δ (6)

and, consequently:

PZm

{
∀i ∈ I, ∀σ ∈ M(Zi) : R(R(σ,Zi)) ≤

1
m− d− k

[
ln
(
m− d

k

)
+ ln

(
1

PI(i)PM(zi)(σ)δ

)]}
≥ 1− δ (7)

where d
def= |i| is the sample compression set size of classifier R(σ,Zi) and k

def=
|i|Rzi(R(σ,Zi)) is the number of training errors that this classifier makes on the ex-
amples that are not in the compression set.

It is now quite clear from Corollary 1 that the risk bound of classifierR(σ,Zi) is small
when its compression set size d and its number k of training errors are both much
smaller than the number m of training examples. These are uniform bounds over a set
of data-dependent classifiers defined by the reconstruction functionR. In contrast, VC
bounds (Vapnik 1998) and Rademacher bounds (Mendelson, 2002) are uniform bounds
over a set of functions defined without reference to the training data. Hence, these latter
bounds do not apply to our case.

The bound of Equation 6 is very similar to (and slightly tighter than) the recent
bound of Marchand and Sokolova (2005).

The looser bound of Equation 7 is similar to the bounds of Littlestone and Warmuth
(1986) and Floyd and Warmuth (1995) when the set M of all possible messages is
independent of the compression set zi and when we choose:

PM(zi)(σ) = 1/|M| ∀σ ∈M (8)

PI(i) =
(
m

|i|

)−1

(m+ 1)−1 ∀i ∈ I (9)

But other choices that give better bounds are clearly possible. For example, in the fol-
lowing sections we will use:

PI(i) =
(
m

|i|

)−1

ζ(|i|) with ζ(a) def=
6
π2 (a+ 1)−2 ∀a ∈ N (10)
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which satisfies the constraint of Equation 3 since
∑∞

i=1 i
−2 = π2/6. This choice for PI

has the advantage that the risk bounds do not deteriorate too rapidly when |i| increases.
In the next section, we show how we can apply the risk bounds of Theorem 1 and

Corollary 1 to the SCM. For this task, we will provide choices for the distribution of
messages PM(zi) which are more appropriate than the simplest choice given by Equa-
tion 8. Indeed, we feel that it is important to allow the set of messages to depend on the
sample compression zi since it is conceivable that for some zi, very little extra informa-
tion may be needed to identify the classifier whereas for some other zi, more informa-
tion may be needed. Without such a dependency on zi, the set of possible messagesM
would be unnecessarily large and would loosen the risk bound. But, more importantly,
the risk bound would not depend on the particular message σ used. However, we feel
that it is important for learning algorithms to be able to trade-off the complexity (or
information content) of i with the complexity of σ. Hence, a good risk bound should
somehow indicate what the proper trade-off should be.

3 Application to the Set Covering Machine

Recall that the task of the SCM (Marchand and Shawe-Taylor 2002) is to construct the
smallest possible conjunction of (Boolean-valued) features. We discuss here only the
conjunction case. The disjunction case is treated similarly just by exchanging the role
of the positive with the negative examples.

For the case of data-dependent balls, each feature is identified by a training exam-
ple, called a center (xc, yc), and a radius ρ. Given any metric d, the output h(x) on any
input example x of such a feature is given by:

h(x) =
{
yc if d(x,xc) ≤ ρ
−yc otherwise

3.1 Coding Each Radius with a Training Example

Marchand and Shawe-Taylor (2002) have proposed to use another training example
xb, called a border point, to code for the radius so that ρ = d(xc,xb). In this case,
given a compression set zi, we need to specify the examples in zi that are used for a
border point without being used as a center. As explained by Marchand and Shawe-
Taylor (2002), no additional amount of information is required to pair each center with
its border point whenever the reconstruction function R is constrained to produce a
classifier that always correctly classifies the compression set. Furthermore, as argued
by Marchand and Shawe-Taylor (2002), we can limit ourselves to the case where each
border point is a positive example. In that case, each message σ ∈M(zi) just needs to
specify the positive examples that are a border point without being a center. Let n(zi)
and p(zi) be, respectively, the number of negative and the number of positive examples
in compression set zi. Let b(σ) be the number of border point examples specified in
message σ and let ζ(a) be the same as defined in Equation 10. We can then use:

PM(Zi)(σ) = ζ(b(σ)) ·
(
p(zi)
b(σ)

)−1

(11)

since, in that case, we have for any compression set zi:
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∑
σ∈M(zi)

PM(zi)(σ) =
p(zi)∑
b=0

ζ(b)
∑

σ:b(σ)=b

(
p(zi)
b(σ)

)−1

≤ 1

With this distribution PM(zi), the risk bound of Theorem 1 is tighter than the one pro-
vided by Marchand and Shawe-Taylor (2002) because of the more efficient treatment
of the training errors made by using the binomial tail inversion.

3.2 Coding Each Radius with a Small Message String

Another alternative, not considered by Marchand and Shawe-Taylor (2002), is to code
each radius value by a message string having the fewest number of bits. In this case,
no border points are used and the compression set only consists of ball centers. Con-
sequently, the risk bounds of Theorem 1 and Corollary 1 will be smaller for classifiers
described by this method provided that we do not use to many bits to code each ra-
dius. We expect that this will be the case whenever there exists a large interval [r1, r2]
(i.e., a margin) of radius values such that no training examples are present between the
two concentric spheres, centered on xc, with radius r1 and r2. The best radius value in
that case will be the one that has the shortest code. A similar idea was applied by von
Luxburg et. al. (2004) for coding the maximum-margin hyperplane solution for support
vector machines.

Hence, consider the problem of coding a radius value r ∈ [r1, r2] ⊂ [0, R] where
R is some predefined value that cannot be exceeded and where [r1, r2] is an interval of
“equally good” radius values1. We propose the following diadic coding scheme for the
identification of a radius value that belongs to that interval. Let l be the number of bits
that we use for the code. We adopt the convention that a code of l = 0 bits specifies the
radius value R/2. A code of l = 1 bit either specifies the value R/4 (when the bit is 0)
or the value 3R/4 (when the bit is 1). A code of l = 2 specifies one of the following
values: R/8, 3R/8, 5R/8, 7R/8. Hence, a code of l bits specifies one value among the
set Λl of radius values:

Λl
def=

{
2j − 1
2l+1 R

}2l

j=1

Given an interval [r1, r2] ⊂ [0, R] of radius values, we take the smallest number l of
bits such that there exists a radius value in Λl that falls in the interval [r1, r2]. In this
way, we will need at most &log2(R/(r2− r1))' bits to obtain a radius value that falls in
[r1, r2].

Hence, to specify the radius for each center of a compression set, we need to spec-
ify the number l of bits and a l-bit string s that identifies one of the radius values in
Λl. Therefore, the message string σ sent to the reconstruction function R, for a com-
pression set zi, consists of the set of pairs (li, si) of numbers needed to identify the
radius of each center i ∈ i. The risk bound does not depend on how we actually code σ

1 By a “good” radius value, we mean a radius value for a ball that would cover many negative
examples and very few positive examples (see the learning algorithm).
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(for some receiver). It only depends on the a priori probabilities assigned to each possi-
ble realization of σ. We choose the following distribution:

PM(Zi)(σ) def= PM(Zi)(l1, s1, . . . , l|i|, s|i|) =
∏
i∈i

ζ(li) · 2−li (12)

where ζ(li) is the same as given in Equation 10.
Note that by giving equal a priori probability to each of the 2li strings si of length

li, we give no preference to any radius value in Λli once we have chosen a scale R that
we believe is appropriate. The distribution ζ that we have chosen for each string length
li has the advantage of decreasing slowly so that the risk bound does not deteriorate to
rapidly as li increases. Other choices are clearly possible.

By comparing the risk bounds of Corollary 1 for the two possible choices we have
for coding each radius (either with an example or with a message string), we notice that
it should be preferable to code explicitly a radius value with a string whenever we use a
number l of bits less than log2m (roughly). Hence, this will be the case whenever there
exists an interval [r1, r2] of “good” radius values such that (r2 − r1)/R � 1/m.

Finally, we emphasize that the risk bounds of Theorem 1 and Corollary 1, used in
conjunction with the distribution of messages given by Equation 12, provides a guide
for choosing the appropriate trade-off between sparsity (the inverse of the size of the
compression set) and margin (the inverse of the length of the message string). Indeed,
the risk bound for an SCM with a decision surface having a large margin of separation
(small lis) may be smaller than the risk bound of a sparser SCM having a smaller margin
(large lis).

4 The Learning Algorithm

Ideally, we would like to find a conjunction of balls that minimizes the risk bound of
Theorem 1 with the distribution given by Equation 12. Unfortunately, this cannot be
done efficiently in all cases since this problem is at least as hard as the (NP-complete)
minimum set cover problem (Marchand and Shawe-Taylor 2002). However, the sim-
ple set covering greedy heuristic will construct a conjunction of at most r ln(m) balls
whenever there exists a conjunction of r balls that makes no errors with a training set
of m examples (Marchand and Shawe-Taylor 2002).

We say that a ball covers an example iff it assigns -1 to that example. The set cov-
ering greedy heuristic simply consists of using a ball that covers the largest number of
negative examples (without making any errors on the positives), remove these negative
covered examples and repeat until all the negative examples are covered. Marchand and
Shawe-Taylor (2002) have modified this heuristic by incorporating the possibility of
making training errors if the final classifier is much smaller. It can be described as fol-
lows. Let N be the set of negative examples and P be the set of positive examples. We
start with N ′ = N and P ′ = P . Let Qi be the subset of N ′ covered by ball i and let Ri

be the subset of P ′ covered by ball i. We choose the ball i that maximizes the utility Ui

defined as:

Ui
def= |Qi| − p · |Ri| (13)
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where p is the penalty suffered by covering (and hence, misclassifying) a positive ex-
ample. Once we have found a ball maximizing Ui, we update N ′ = N ′ − Qi and
P ′ = P ′ − Ri and repeat to find the next ball until either N ′ = ∅ or the maximum
number v of balls has been reached (early stopping the greedy).

Here we first modify the heuristic of Marchand and Shawe-Taylor (2002) by allow-
ing a maximum number of bits l∗ that can be used for coding the radius of each ball.
Classifiers obtained with a small value of l∗ will, on average, have a large separating
margin. Moreover, for this new learning algorithm, the distribution of messages given
by Equation 12 is defined for a fixed value of R (the “predefined radius value that can-
not be exceeded”). Hence, in this case, R should be chosen from the definition of each
input attribute without observing the data. Consequently, this will generally force each
ball of the classifier to use a large number of bits for its radius value; otherwise the final
classifier is likely to make numerous training errors. We have therefore used the follow-
ing scheme to choose R from the training data. We first choose a value R∗ from the
definition of each input attribute (without observing the data). This could be R∗ =

√
n

for the case of n {0, 1}-valued attributes. Then, we consider t equally-spaced values
for R in the interval ]0, R∗]. The message string σ described in Section 3.2 is then just
preceded by the index to one of these t possible values. The value of R referred to by
this index will then be used for every ball of the classifier. For this extra part of the
message, we have assigned equal probability to each of the t possible values for R.
With this scheme, we only need to multiply PM(Zi)(σ) of Equation 12 by 1/t. Nev-
ertheless, this introduces one more adjustable parameter in the learning algorithm: the
value of R.2 Therefore, p, v, l∗, and R are the “learning parameters” that our heuristic
uses to generate a set of classifiers. At the end, we can use the bound of Theorem 1 to
select the best classifier. Another alternative is to determine the best parameter values
by cross-validation.

5 Empirical Results on Natural Data

We have compared the new learning algorithm (called here SCM2), that codes each ball
radius with a message string, with the old algorithm (called here SCM1), that codes each
radius with a training example. Both of these algorithms were also compared with the
support vector machine (SVM) equipped with a RBF kernel of variance 1/2γ and a soft
margin parameter C. Each SCM algorithm used the L2 metric since this is the metric
present in the argument of the RBF kernel.

Each algorithm was tested on the UCI data sets of Table 1. Each data set was ran-
domly split in two parts. About half of the examples was used for training and the
remaining set of examples was used for testing. The corresponding values for these
numbers of examples are given in the “train” and “test” columns of Table 1. The learn-
ing parameters of all algorithms were determined from the training set only. The pa-
rameters C and γ for the SVM were determined by the 5-fold cross validation (CV)
method performed on the training set. The parameters that gave the smallest 5-fold CV
error were then used to train the SVM on the whole training set and the resulting clas-
sifier was then run on the testing set. Exactly the same method (with the same 5-fold

2 We have used t � 30 different values of R in our experiments.
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Table 1. SVM and SCM results on UCI data sets

Data Set SVM results SCM1-cv SCM1-b SCM2-cv SCM2-b
Name train test C γ SVs errs b errs b errs b l∗ errs b l∗ errs
breastw 343 340 1 0.1 38 15 2 11 1 12 1 3 12 1 1 12
bupa 170 175 2 3.0 169 66 2 71 2 70 2 7 69 11 7 67
credit 353 300 100 0.25 282 51 12 65 1 57 11 6 49 8 5 46
haberman 144 150 2 0.5 81 39 2 41 1 39 8 2 36 2 2 37
pima 400 368 0.5 0.02 241 96 1 108 1 105 4 1 107 13 5 103
USvotes 235 200 1 0.02 53 13 8 26 3 19 7 3 19 4 2 15
Hart 150 147 1 3.0 64 26 1 28 1 23 1 2 24 1 2 23
Glass 107 107 10 3.0 51 29 4 20 4 19 7 6 19 3 5 18

split) was used to determine the learning parameters of both SCM1 and SCM2. These
results are referred to (in Table 1) as SCM1-cv and SCM2-cv. In addition to this, we
have compared this 5-fold CV model selection method with a model selection method
that uses the risk bound 6 of Corollary 1 to select the best SCM classifier obtained from
the same possible choices of the learning parameters that we have used for the 5-fold
CV method. The SCM that minimizes the risk bound (computed from the training set)
was then run on the testing set. These results are referred to (in Table 1) as SCM1-b
and SCM2-b. For SCM1, the risk bound was used in conjunction with the distribution
of messages given by Equation 11. For SCM2, the risk bound was used in conjunction
with the distribution of messages given by Equation 12.

The SVM results are reported in Table 1 where the “SVs” column refers to the
number of support vectors present in the final classifier and the “errs” column refers to
the number of classification errors obtained on the testing set. This last notation is used
also for all the SCM results reported in Table 1. In addition to this, the “b” and “l∗”
columns refer, respectively, to the number of balls and the maximum number of bits
used by the final classifier.

We observe that SCMs are always much sparser than SVMs with roughly the same
generalization error. Moreover, the risk bound is often better than 5-fold CV for choos-
ing the classifier with the smallest generalization error. (We have observed that the risk
bound was almost always within a factor of three of the test error.) We also observe
that SCM2 is generally as good as, and sometimes clearly better than, SCM1 for pro-
ducing classifiers with a small generalization error. Finally, it is interesting to note the
strong tendency of SCM2 to produce classifiers with more balls than those produced
by SCM1. This is especially true for SCM2-b versus SCM1-b. Hence SCM2 generally
sacrifices sparsity to obtain a larger margin.

6 Conclusion

We have proposed a new representation for the SCM that uses two distinct sources
of information to represent a conjunction of data-dependent balls: a compression set
to specify the center of each ball and a message string to encode the radius value
of each ball. Moreover, we have proposed a general data-compression risk bound that



Margin-Sparsity Trade-Off for the Set Covering Machine 217

depends explicitly on these two information sources. This bound therefore exhibits a
non trivial trade-off between sparsity (the inverse of the compression set size) and the
margin (the inverse of the message length) that classifiers should attempt to optimize on
the training data. We have also proposed a new learning algorithm for the SCM where
the learner can control the amount of trade-off between the sparsity of the classifier
and the magnitude of its separating margin. Compared to the algorithm of Marchand
and Shawe-Taylor (2002), our experiments on natural data sets indicate that this new
learning algorithm generally produces classifiers having a larger separating margin at
the expenses of having more balls. The generalization error of classifiers produced by
the new algorithm was generally slightly better. Finally, the proposed data-compression
risk bound seems to be an effective guide for choosing the proper margin-sparsity trade-
off of a classifier.
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Abstract. We study the problem of learning from positive and unlabeled 
examples. Although several techniques exist for dealing with this problem, they 
all assume that positive examples in the positive set P and the positive examples 
in the unlabeled set U are generated from the same distribution. This 
assumption may be violated in practice. For example, one wants to collect all 
printer pages from the Web. One can use the printer pages from one site as the 
set P of positive pages and use product pages from another site as U. One wants 
to classify the pages in U into printer pages and non-printer pages. Although 
printer pages from the two sites have many similarities, they can also be quite 
different because different sites often present similar products in different styles 
and have different focuses. In such cases, existing methods perform poorly. 
This paper proposes a novel technique A-EM to deal with the problem. 
Experiment results with product page classification demonstrate the 
effectiveness of the proposed technique. 

1   Introduction 

Learning from positive and unlabeled examples (or PU learning) can be regarded as a 
two-class (positive and negative) classification problem, where there are only labeled 
positive training data, but no labeled negative training data. Since traditional 
classification techniques require both labeled positive and negative examples to build 
a classifier, they are thus not suitable for this problem. Although it is possible to 
manually label some negative examples, it is labor-intensive and time consuming. In 
the past three years, several techniques [12][13][23][11][9] were proposed to solve 
the problem. These techniques mainly use a two-step strategy. The first step tries to 
identify a set of reliable negative documents from the unlabeled set. The second step 
builds a classifier by iteratively applying a classification algorithm, i.e. EM [5] or 
SVM [20]. 

All the existing techniques assume that positive examples in the positive set P and 
positive examples (which are not known) in the unlabeled set U are generated from 
the same distribution. In the context of the Web or text documents, this means that the 
word features of positive documents in both P and U are similar and with similar 
frequencies. This assumption may be violated in practice. For example, one wants to 
collect all printer pages from Web. One can use the printer pages from one site as the 
set P of positive pages and use product pages from each of the other Web sites as U. 
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One wants to classify all the pages in U into printer pages and non-printer pages. 
Although printer pages from the two sites have many similarities, they may also be 
quite different. The reason is that different Web sites present similar products in 
different styles and have different focuses. In such cases, directly applying the 
existing methods gives poor results. The reason is that the first step of these methods 
is unable to find reliable negative pages. Consequently, the second step builds poor 
classifiers.   

This paper proposes a novel technique to deal with the problem. The proposed 
method (called A-EM for Augmented EM) is in the framework of EM [5]. The 
proposed technique has two novelties:  

• We add a large set of irrelevant documents O (which contains almost no positive 
document) to U. This reduces the level of noise in U (here we regard positive 
documents in U as noise), which enables us to compute the parameters of the 
classifier more accurately.  

• The EM algorithm generates a sequence of classifiers. However, the performances 
of this sequence of classifiers may not be necessarily improving. This is a well-
known phenomenon due to the mismatch of mixture components and document 
classes [16][12][11]. We propose a classifier selection (or catch) criterion to select 
a good classifier from the set of classifiers produced by EM. Although there exist 
classifier selection methods given in [12] and [9], they perform poorly also due to 
the different data distributions identified above.  

Note that although a classifier can be built using positive documents P (positive 
class) and irrelevant documents O (negative class), our experiments show that 
classifiers built with P and O are very poor since irrelevant documents in O can be 
totally different from the negative documents in U. For example, irrelevant documents 
in O are about sports, finance, and politics, while the negative documents in U are 
about computers, TV and digital cameras. In PU learning, the unlabeled set U is 
usually also the test set. Since irrelevant documents in O are not representative of the 
negative documents in U, O thus cannot be used as the negative set to build an 
accurate classifier to classify U. 

We have performed a large number of experiments using Web product pages. 
Classifying such data is critical for many e-commerce applications, which also 
provides an ideal test case for our technique. Our results show that the new method 
outperforms existing methods dramatically. 

2   Related Work 

In [6], a theoretical study of PAC learning from positive and unlabeled examples is 
reported. [15] studies the problem in a Bayesian framework where the distribution of 
functions and examples are assumed known. [12] reports sample complexity results 
and shows from a theoretical point of view how the problem may be solved.  

A few practical algorithms were also proposed in [9][11][12][13][23]. They 
conform to the theory given in [12], and follow a two-step strategy: (1) automatically 
identifying a set of reliable negative examples from the unlabeled set; and (2) building 
a classifier using EM or SVM iteratively. The differences among these methods are in 
the details of the two steps.  
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In [12], Liu et al. proposed a method (called S-EM) to solve the problem. It is 
based on naïve Bayesian classification (NB) and the EM algorithm. The main idea of 
the method is to first use a spy technique to identify some reliable negative documents 
from the unlabeled set. It then runs EM to build the final classifier. In [23], a SVM 
based technique (called PEBL) is proposed to classify Web pages given positive and 
unlabeled pages. It reports a different method for identifying reliable negative 
examples and then uses SVM iteratively for classifier building. [24] estimates SVM 
boundary of positive class for small positive data. [11] reports a technique called Roc-
SVM. In this technique, reliable negative documents are extracted by using the 
information retrieval technique Rocchio [17]. Again, SVM is used in the second step. 
A classifier selection criterion is also proposed to catch a good classifier from 
iterations of SVM. In [13], a more principled approach based on a biased formulation 
of SVM is proposed. The method does not have the first step. Lee and Liu propose a 
logistic regression based method with a classifier selection method [9].  

In [19], one-class SVM is proposed. This technique uses only positive data to build 
a SVM classifier. However, [11] shows that the results are poor. Unlabeled data does 
help classification. One-class SVM is also studied in [8] and [4].  

Other related works include semi-supervised learning (from a small labeled set and 
a large unlabeled set), co-training and cross-training [1][2][3][7][16][18][25][21]. 
They are different from our work as we use no labeled negative data. 

In this paper, we only focus on texts in Web pages. It is known that structures and 
hyperlink information in Web pages also help classification. 

3   The Proposed Technique 

We now introduce algorithm A-EM to deal with the problem that positive examples in 
P and hidden positive examples in U may be generated from different distributions. 

3.1   NB Classification and EM Algorithm 

As mentioned in the introduction section, this work employs the EM framework as in 
[14][16][12]. Our EM algorithm here is based on naïve Bayesian classification (NB). 
Before presenting the proposed method, we give an overview of both NB and EM.  

The Naive Bayesian method is an effective technique for text classification 
[10][16]. Given a set of training documents D, each document is considered an 
ordered list of words. We use wdi,k to denote the word in position k of document di, 
where each word is from the vocabulary V = < w1, w2, … , w|v| >. The vocabulary is 
the set of all words we consider for classification. We also have a set of predefined 
classes, C = {c1, c2, … , c|C|} (in this paper we only consider two class classification, 
so, C={c1, c2}). In order to perform classification, we need to compute the posterior 
probability, Pr(cj|di), where cj is a class and di is a document. Based on the Bayesian 
probability and the multinomial model, we have 
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where N(wt,di) is the count of the number of times that the word wt occurs in 
document di and Pr(cj|di)∈{0,1} depending on the class label of the document. 

Finally, assuming that the probabilities of the words are independent given the 
class, we obtain the NB classifier:  
 

                                           (3) 
                                                                   

In the naive Bayesian classifier, the class with the highest Pr(cj|di) is assigned as 
the class of the document. 

The Expectation-Maximization (EM) algorithm [5] is a popular class of iterative 
algorithms for maximum likelihood estimation in problems with incomplete data. It is 
often used to fill the missing values in the data using existing values by computing the 
expected value. The EM algorithm consists of two steps, the Expectation step, and the 
Maximization step. The Expectation step basically fills in the missing data. The 
parameters are estimated in the Maximization step after the missing data are filled. 
This leads to the next iteration. For the naive Bayesian classifier, the steps used by 
EM are identical to that used to build the classifier (equations (3) for the Expectation 
step, and equations (1) and (2) for the Maximization step). In EM, the probability of 
the class given a document takes the value in [0, 1] instead of {0, 1}. 

3.2   The General Algorithm: A-EM 

We now present the general algorithm A-EM in this work. The proposed technique 
consists of three steps: (1) initialization by introducing irrelevant documents, (2) 
running EM, and (3) selecting the final classifier.  

Algorithm A-EM(P, U, O) 

1. Let N = U ∪ O; 
2. For each di ∈ N, let Pr(+|di) = 0, Pr(-|di) = 1; 
3. For each di ∈ P, let Pr(+|di) = 1, Pr(-|di) = 0; 
4. Build the initial naïve Bayesian classifier NB-C using equations (1) and (2); 
5. Loop while classifier parameters change 
6.      For each document di ∈ N 
7.            Compute Pr(+|di) and Pr(-|di) using NB-C; 
8. Update Pr(cj) and Pr(wt|cj) by replacing equations (1) and (2) with the new 

probabilities in step 7 (a new NB-C is being built in the process) 
9. Select a good classifier from the series of classifiers produced by EM.  

Fig. 1. The A-EM algorithm with the NB classifier 

Initially, each positive document di in P is assigned the class label “+” (positive). As 
we have no labeled negative documents, each document dj in unlabeled set U is 
assigned the class label “-” (negative). Our problem is turned into a one-side error 
problem, i.e., there is a large error in the negative set (which is U here). Using this 
initial labeling a NB classifier can be built, which is applied to classify documents in U 
to obtain the posterior probabilities (Pr(+|dj) and Pr(-|dj)) for each document in U. We 
then iteratively employ the revised posterior probabilities to build a new NB classifier. 
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The process goes on until the parameters converge. This is the EM algorithm with U as 
negative N. Figure 1 shows the A-EM algorithm. O (line 1) can be ignored for now. 
We assume N is U (Section 3.4 will explain why we need to use O). 

We now discuss in what situation this algorithm will work well. In our problem, 
the difficulty in building an accurate classifier lies in the fact that we do not have 
labeled negative data (but a noisy unlabeled set U). As a result, initially we use all 
documents in U as negative documents. After learning, the NB classifier NB-C (line 
4) will use the values of Pr(cj) and Pr(wt|cj) to classify the documents in the unlabeled 
set U. Equivalently, we can say that we use the classifier to compute the posterior 
probabilities for each document di in U, i.e., Pr(+|di) and Pr(-|di). If the NB-C 
classifier is good, it will assign most positive documents in U small probabilities of 
Pr(-|di) while high probabilities of Pr(+|di). When the EM algorithm is applied to 
estimate Pr(cj) and Pr(wt|cj) again in the next iteration, it will be more accurate than 
the first NB-C classifier because the EM algorithm does not regard U as negative. 
Instead, for each document in U, it uses the revised posterior probabilities. So the key 
issue of this problem is whether the original NB-C classifier is able to assign positive 
documents in U high probabilities. If this is possible, EM will be able to improve the 
first NB-C classifier. However, in practice this may not be the case.  

3.3   Problems and Solutions 

As discussed previously, in practice positive examples in P and hidden positive 
examples in U may be generated from different distributions. Thus, they may not be 
sufficiently similar. As a result, positive examples in U may not be assigned right 
probabilities by the algorithm in Figure 1. Then EM will produce poor classifiers. We 
experimented with the above algorithm using the Web page data. The results were 
quite poor. We also tried the classifier selection methods in [12] and [9], but they do 
not work either.  We believe that the reasons are:  

1)  Positive documents in P are not sufficiently representative of positive documents 
in U, although these documents are still similar to a large extend.  

2)  Due to the problem above, it is difficult to estimate the behavior of positive 
documents in U using positive documents in P. This makes the existing classifier 
selection methods ineffective because they all estimate the information about 
positive documents in U using P.    

To deal with these two problems, we propose the following strategies: For the first 
problem, we amplify or boost the similarity of positive documents in U and P (their 
similarities are small initially) while reducing the similarity of positive and negative 
documents in U. We do this by introducing a large number of irrelevant documents 
(they are definitely negative documents). This can be easily done because irrelevant 
documents are easy to find. For example, we are interested in product page 
classification. We can add a large number of news articles from newspapers.  

To deal with the second problem, we need to design a classifier selection method 
that does not depend on positive documents in P, but only on U. Thus, the distribution 
difference will not cause problem. 
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3.4   Introducing Irrelevant Documents: Initialization of A-EM 

Recall that the key piece of information needed for classification is Pr(wt|cj), where wt 
is a word and cj is a class. If there are a large number of positive examples in U or 
there are many keywords that are indicative of positive documents also occurring in U 
very often, then the NB classifier will not be able to separate positive and negative 
class well.  

To deal with this problem, we introduce additional irrelevant documents O 
(negative) into the original unlabeled set U (line 1 in Fig 1), which reduces the error 
in U. Basically, adding O will change the probability Pr(wt|-). Obviously, the 
proportion of positive documents in O+U is reduced and consequently Pr(wt|-) is 
reduced for a positive keyword wt. Note that Pr(wt|+) does not change because we do 
not add anything in the positive set P. In effect, we amplify the positive features in P. 
In classifying documents in U, those positive documents are likely to get much higher 
values of Pr(+|di), and lower values of Pr(-|di). This means that we have boosted the 
similarity of positive documents in P and U, which allows us to build more accurate 
classifiers.   

3.5   Selecting a Good Classifier 

EM works well when the local maximum that the classifier is approaching to separate 
positive and negative documents. In practice, the behavior of EM can be quite 
unpredictable due to mismatch of mixture components and document classes 
[16][9][11] (due to model misfit). Thus, each iteration of EM gives a classifier that 
may potentially be a better classifier than the classifier produced at convergence. If 
we run EM n iterations, we have n classifiers from which we need to select a good 
classifier (to choose the best is difficult).   

There are two existing techniques for selecting a classifier in EM. S-EM [12] 
estimates the change in the probability of error in order to decide which iteration of 
EM is the final classifier. More specifically, in the selection formula, it estimates the 
probability that positives in U are classified as negative through checking how many 
positives in P are classified as negative, i.e., using PrP(f(x)=−|Y=+) as an 
approximation of PrU(f(x)=−|Y=+). Lee and Liu proposes another performance 
criterion in [9], Pr(f(x)=+|Y=+)2 / Pr(f(x)=+), which also use positive documents from 
P in a validation set in computation. Note that f() is the classifier, x is a document 
vector and Y is the class attribute.  

As we discussed in Section 3.3, since the positive documents in P are not 
sufficiently similar to the positive documents in U, the two techniques do not work 
because they both depend on P. We now propose a new technique that depends 
primarily on the unlabeled set U. Since it does not use P in evaluation, it is thus 
independent of positive set P.  

Since our task here is to identify positive documents from the unlabeled set U, 
therefore it is appropriate to use information retrieval measures for our purpose. Here 
we use the F value to evaluate the performance of the classifier. F value is commonly 
used in text classification: F = 2pr/(p+r), where p is the precision and r is the recall. 
We try to select a classifier from EM iterations with the maximal F value.  

We now use the confusion matrix to introduce our method (Table 1). A confusion 
matrix contains information about actual and predicted results given by a classifier.  
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Table 1. Confusion Matrix of a classifier 

 Classified Positive Classified Negative 
Actual Positive TP FN 
Actual Negative FP TN 

Here TP is the number of correct predictions of positive documents (true positive); 
FN is the number of incorrect predictions of positive documents (false negative); FP 
is the number of incorrect predictions of negative documents (false positive); and TN 
is the number of correct predictions of negative documents (true negative). Based on 
the matrix, the precision and recall of positive class can be written as:  
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F value can be written as  
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Note that TP+FP is the number of documents that are classified as positive (we 
denote the document set as CP) and TP+FN is the actual number of positive 
documents in U (we denote it as PD, and it is a constant).  

So F value can then be expressed as: 
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We use an estimate of change in F value to decide which iteration of EM to select 
as the final classifier. The change in F value from iteration i-1 to i (F value in ith 
iteration divided the F value in (i-1)th iteration) is  
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In the EM algorithm, we select iteration i as our final classifier if Δi is the last 
iteration with value greater than 1. |CPi-1| and |CPi| are the number of documents 
classified as positive in iteration i and i+1 respectively. We estimate PD by using the 
number of documents classified as positive when EM converges. Next, we estimate 
TPi/TPi-1 since it is impossible to directly estimate either TPi or TPi-1. 

Our idea here is that first we get a set K of representative keywords for the positive 
class. This is done as follows: first we compute Pr(wt|+) for each word in the positive 
set P. We then rank the probabilities from large to small and fetch the top |K| 
keywords. We observe that although the distributions of positive documents in U and 
P are different, we can still find good keywords from the positive class. For example, 
in category printer of our data, we obtain representative keywords “printer”, “inkjet”, 
“Hewlett”, “Packard”, “ppm” etc.  

For a document, the more positive keywords it contains, the more likely it belongs 
to the positive class. So, we use 
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keywords in the document set CPi. Intuitively, for a set CPi (documents classified as 
positive) in an EM iteration, the larger the total number of positive keywords are in 
CPi, the more true positive documents it contains. For instance, if CPi contains more 
printer keywords, then it is likely that CPi contains more true printer pages. It is thus 
reasonable to use equation (8) to estimate TPi/TPi-1.  

4   Empirical Evaluation 

This section evaluates the proposed technique. We compare it with existing methods, 
i.e., Roc [17], Roc-SVM [11], and PEBL [23]. Roc-SVM is available on the Web as a 
part of the LPU system (http://www.cs.uic.edu/~liub/LPU/LPU-download.html). We 
implemented PEBL and Roc as they are not publicly available. We do not include the 
results of S-EM [12] as it does not perform well due to its spy technique which 
heavily depends on the similarity of positive pages in U and in P. 

4.1   Datasets 

Our empirical evaluation is done using Web pages from 5 commercial Web sites, 
Amazon, CNet, PCMag, J&R and ZDnet. These sites contain many description pages 
of different kinds of products. We use Web pages that focus on the following 
categories of products: Notebook, Digital Camera, Mobile Phone, Printer and TV. 
Table  2  lists  the  number  of documents  downloaded  from  each  Web  site,  and  
their corresponding classes.  

The construction of positive set P and unlabeled set U is done as follows: we use 
web pages of a particular type of product from a single site (Sitei) as positive pages P, 
e.g., camera pages from Amazon. The unlabeled set U is the set of all product pages 
from another site (Sitej) (i ≠ j), e.g., CNet. We also use U as the test set in our 
experiments because our objective is to extract or to recover those hidden positive 
pages in U, e.g., camera pages in CNet. In preprocessing, we removed stopwords but 
did not perform stemming.  

Note that traditional text classification corpora, e.g., 20-Newsgroups and Reuters, 
are not used as the primary datasets in our experiments because these datasets do not 
have the different distribution problem discussed in this paper.  

The irrelevant document set O is from the corpora: 20-Newsgroups and Reuters-
21578. In each experiment, we randomly select a% of documents from the Reuters or 
20-Newsgroups collection and add them to U. In our experiments, we use 6 a values 
to create different settings, i.e., 0%, 20%, 40%, 60%, 80%, and 100%. 
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Table 2. Number of Web pages and their classes 

Web sites Amazon CNet J&R PCMag ZDnet 
Notebook 434 480 51 144 143 
Camera 402 219 80 137 151 
Mobile 45 109 9 43 97 
Printer 767 500 104 107 80 

TV 719 449 199 0 0 

4.2   Results 

We performed a comprehensive set of experiments using all 86 P and U combinations. 
For each combination dataset, we randomly add irrelevant documents from Reuters 
and 20-Newsgroups respectively with different a values. In other words, we select 
every entry (one type of product from each Web site) in Table 2 as the positive set P 
and use each of the other 4 Web sites as the unlabeled set U. As we discussed in 
Section 3.5, we use F value to evaluate the performance of our classifiers. F value only 
measures retrieval results of the positive class. This is suitable for us as we want to see 
if we can identify positive pages from the unlabeled set.  

Table 3 shows the results when P is the set of camera pages from Amazon and U is 
the set of all product pages from CNet. We added Reuters data to U. Column 1 gives 
the percentage of Reuters documents added to U (a=0% means that no Reuters 
document is added). Column 2 to Column 10 show the results of NB, 1EM, …, 8EM 
(EM usually converges within 8 iterations). From Table 3, we observe that for this 
dataset when a = 0%, the results of NB and all EM iterations are zero. For other 
values of a, EM improves NB’s results tremendously if we are able to select a good 
EM classifier. Note that we can see that the converged EM may not give the best 
classifier.  

Table 3. A-EM results (F values in %) for P (camera pages from Amazon) and U (pages from 
Cnet) with different a settings 

Add% NB 1EM 2EM 3EM 4EM 5EM 6EM 7EM 8EM 
a=0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
a=20 2.70 4.50 12.0 30.9 83.8 100 100 100 100 
a=40 19.0 93.7 100 100 100 100 100 100 100 
a=60 44.7 100 98.9 98.0 96.5 95.6 95.0 93.6 89.2 
a=80 70.4 98.9 96.1 92.8 82.8 75.1 72.9 69.5 60.5 
a=100 80.2 96.3 87.8 74.9 70.1 59.2 41.8 40.9 37.0 

In our experiments, we use |K| = 10 (10 keywords) in equation (8). We found that 
different values of |K| give similar results as long as |K| is not too small.  

For this dataset, our technique in Section 3.5 is able to catch the best classifier for 
each a value. That is, for a=20%, a=40%, a=60%, a=80% and a=100%, the selected 
classifiers are from 5EM (F = 100%), 2EM (F = 100%), 1EM (F = 100%), 1EM (F = 
98.9%), 1EM (F = 96.3%) respectively. These results and those in Table 3 show that 
the amount of irrelevant data added to the unlabeled set also has an effect on the final 
classifier. Thus we also need to decide which classifier to use from the series of 
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classifiers produced using different a values. We select the final classifier with the 
following formula:  
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where CPa,i is the set of documents in U classified as positive using the selected 
classifier i for a particular a. This formula shows that we choose the classifier of the a 
value that has the highest average keyword count per page in CPa,i.  

Table 3 gives a good sample of the type of results that we get using EM with or 
without adding irrelevant documents to the unlabeled set. We observe that adding 
irrelevant data helps tremendously (see NB and 1EM).  

Since we have conducted a large number of experiments (all 86 combinations) and 
compared A-EM with existing methods, to avoid gory details we summarize all the 
results here. Table 4 shows the summarized results when Reuters data and 20-
Newsgroups data (as the irrelevant data set O) are added to U. Columns 2, 3 and 4 
give the average F values of Roc, Roc-SVM and PEBL respectively. Column 5 shows 
the corresponding results of A-EM. For techniques Roc-SVM and PEBL, we use the 
same classifier selection methods as for A-EM.  

Table 4. Results (F values in %) of adding Reuters and 20 Newsgroups data 

Dataset added Roc Roc-SVM PEBL A-EM 
Reuters 64.5 73.4 72.3 87.2 
20 Newsgroups 66.7 72.6 72.1 89.1 

Clearly, we can see that A-EM outperforms the other techniques dramatically. For 
adding Reuters data, the average F value for A-EM is 87.2%, much higher than other 
methods. The results of adding 20-Newsgroups are similar and A-EM’s average F 
value is 89.1%, which is also much higher than other methods. This shows that the 
type of irrelevant data is not important. Another important observation is that A-EM’s 
results are consistent, while the results of the other methods vary a great deal.  

Next, we show the effectiveness of adding irrelevant documents. Table 3 already 
gives a good indication. However, it only shows a single data set. Table 5 summaries 
the average all 86 experiments of adding 20-Newsgroups documents with different a 
values using A-EM. From the table we can see that after adding irrelevant documents 
to the unlabeled sets, the results of both NB and EM (1EM-4EM) improve as 
compared to adding nothing (a=0%). The situation is similar for adding Reuters data. 
From these results, we conclude that adding irrelevant data to unlabeled sets can 
improve the results dramatically with almost no negative effect. Comparing the 
results of A-EM in Tables 4 and results of EM in Table 5, it is also clear that fixing 
any particular iteration of EM (Table 5) as the final classifier is not a good solution. 
Classifier selection is an essential step in A-EM. 
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Table 6 further illustrates the effectiveness of our classifier selection method, 
which lists another set of summarized results. It compares the optimal results 
(manually selected best results after checking the test results from all EM iterations) 
and our selection results. We observe that the selection results are very close to the 
optimal results for both adding 20-Newsgroups data and Reuters data to the unlabeled 
sets, which means our classifier selection method is very effective. 

Table 5. Average results (F values) of adding 20 Newsgroup documents with different a values 

Add% NB 1EM 2EM 3EM 4EM 5EM 6EM 7EM 8EM 
a=0 20.0 28.4 36.3 40.9 43.4 45.9 47.0 47.6 48.5 

a=20 54.9 76.1 77.8 75.5 73.9 71.2 68.9 67.5 66.1 
a=40 65.2 78.2 71.9 64.4 59.7 56.8 54.3 53.3 52.4 
a=60 69.5 78.4 67.4 59.1 53.8 51.6 50.0 49.0 48.6 
a=80 71.9 76.2 62.6 53.9 49.5 46.9 45.0 44.2 44.2 

a=100 73.4 75.7 60.4 51.8 47.2 44.6 43.7 43.4 43.4 

Table 6. Best results and results of A-EM selected classifiers 

Dataset Added Best results Selection results 
20 Newsgroups 92.0 89.1 

Reuters 89.8 87.2 

Finally, we also tried to use O as the negative set (instead of U) to build a classifier 
(SVM or NB) with P, the results were very poor. On average, the NB classifier 
learned based on P and O only gets 12.1% F value because most negative pages in U 
are very different from those in O.  

5   Conclusion 

This paper studied the PU learning problem with different distributions of positive 
examples in P and positive examples in U. We showed that existing techniques 
performed poorly in this setting. This paper proposed an effective technique called A-
EM to deal with the problem. The algorithm first boosts the similarity of the positive 
documents in U and P by introducing a large number of irrelevant documents into U. 
It then runs EM to construct a series of classifiers. A novel method for selecting a 
good classifier from the set of classifiers was also presented. Experimental results 
with product page classification show that the proposed technique is more effective 
than existing techniques. 
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Abstract. While direct, model-free reinforcement learning often per-
forms better than model-based approaches in practice, only the latter
have yet supported theoretical guarantees for finite-sample convergence.
A major difficulty in analyzing the direct approach in an online setting
is the absence of a definitive exploration strategy. We extend the notion
of admissibility to direct reinforcement learning and show that standard
Q-learning with optimistic initial values and constant learning rate is
admissible. The notion justifies the use of a greedy strategy that we be-
lieve performs very well in practice and holds theoretical significance in
deriving finite-sample convergence for direct reinforcement learning. We
present empirical evidence that supports our idea.

1 Introduction

Indirect (or model-based) reinforcement learning (RL) derives a policy from an
estimation of state utilities and transition probabilities. It has been shown that
indirect RL can provide near-optimal performance in polynomial time, e.g. E3

(Kearns and Singh, 1998), R-max (Brahman and Tennenholtz, 2002). That is,
given a Markov decision problem (MDP), a good solution can be found efficiently.

Direct (or model-free) reinforcement learners, on the other hand, estimate
the utility of performing an action in a state. Thus, they learn a policy directly.
But there is no corresponding formal guarantee that direct RL can produce
near-optimal solutions to MDPs. However, direct methods, such as Q (Watkins,
1989) or SARSA (Rummery and Niranjan, 1994) often outperform their indirect
counterparts.

While the theoretical analyses provide an important formal assurance, they ap-
pear to contribute little in the way of insights as to how to improve actual reinforce-
ment learning algorithms. Furthermore, the particular algorithms that possess the
formal guarantees (E3 and R-max), can perform quite poorly in practice. Figure 1
shows the number of learning examples needed for convergence to a good policy as
a function of problem difficulty. Here we employ a simple family of Markovdecision
problems we call Task 1. It will be described in section 4.

Note that the ordinate axis is logarithmic, indicating that the performance
of E3 is many orders of magnitude worse than Q. Furthermore, this Q explores
purely randomly. Since Q is an off-policy learner, it acquires the optimal pol-
icy even though every action is chosen with equal probability during learning.

J. Gama et al. (Eds.): ECML 2005, LNAI 3720, pp. 230–241, 2005.
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Fig. 1. Task 1
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Fig. 2. Task 2 - Different initial Q-values

Clearly, Task 1 represents only a narrow family of MDPs but the results suggest
that a theoretical analysis of direct RL may shed light on this discrepancy and
may point toward even more efficient learning algorithms.

Experience suggests that there is an interesting structure differentiating di-
rect reinforcement learners. Figure 2 shows the behavior of three Q learners that
differ only in initialization. Following the principle of optimism under uncer-
tainty (Brahman and Tennenholtz, 2002, Sutton and Barto, 1998, Koenig and
Summons, 1996) one learner is initialized to optimistic random Q values, one
to pessimistic random Q values, and one to all zeros. Since all the rewards are
positive, this is also a pessimistic initialization. All 3 cases employ a constant
learning rate (α = 0.05) with ε-greedy exploration (ε = 0.1). For comparison
we also include as a fourth condition, the purely random Q learner of Fig. 1.
All are exercised on a simple but more challenging problem, Task 2, which is
also described in section 4. Figure 2 illustrates that optimistic initial Q-values
can result in an exponential improvement in learning rate, suggesting that any
attempt to derive a polynomial convergence bound without accounting for this
distinction will likely be futile.
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Another tension between practical and theoretical understanding concerns
the learning rate, α. Asymptotic convergence of reinforcement learning dictates
that

∑ 1
αi

must diverge but
∑

( 1
αi

)2 must converge uniformly (Bertsekas and
Tsitsiklis, 1996). But Sutton and Barto (1998) note that often a constant learning
rate performs much better than a decaying one. Figure 3 compares two versions
of the successful optimistic Q learner of Fig. 2. One employs the constant rate
of 0.05 while the other employs a decaying rate of 1

ip for the ith update of a
state-action pair. The results shown are based on p = 0.5001, which is nearly
the slowest possible decay that fulfills the stochastic approximation requirement
for asymptotic convergence. A larger p will result in slower convergence. The
results clearly favor the constant rate, at least on Task 2.

We believe there is a theoretical justification for the observed good behavior
of direct reinforcement learning under optimistic initial Q-values and a small
constant learning rate. The motivation of this paper is to share our theoretical
findings and empirically-guided intuitions concerning such a tight polynomial
convergence bound. Central is an adaptation to stochastic domains of Koenig
and Simmons (1996) notion of “admissible” Q-values and Q-updates. We discuss
the implications of this notion and explain the empirical observations above, as
well as the results from more challenging problems.

2 Previous Work

Koenig and Simmons (1996) have shown that online Q-learning acquires an
optimal policy in polynomial time if the initial Q-values are optimistic, but
only for deterministic environments. The notion of “admissible” Q-values and
Q-updates (similar to admissibility in A* search) plays a major role in their
results. As in A*, admissibility ensures that a greedy algorithm does not miss
the true optimal solution. The notion unfortunately does not directly extend to
the stochastic domains. Since Q-values are defined as expected values and are
estimated through sampling, any action may (temporarily) result in a Q-value
that is lower than its true average and therefore risks being permanently missed
by an algorithm that chooses actions greedily. This problem is called “sticking”
by Kaelbling (1990) due to the fact that the algorithm may not be able to
abandon a sub-optimal solution. The workaround for the problem is usually to
allow some randomness in selecting actions instead of being purely greedy. It is,
however, unclear how to correctly balance the tradeoff between exploration and
greedy exploitation. Clearly, a purely random action selection is not desirable; a
random walk may require an exponential number of steps, on average, to reach
a particular state.

Even when following the optimal policy in the stochastic case, the expected
number of steps to reach a particular state (e.g. the goal state) may be ex-
ponential in the size of the state space. This makes it impossible to solve a
problem in polynomial time (with respect to the number of states) unless some
form of relaxation is introduced. It has been shown for the model-based rein-
forcement learning algorithm, that a PAC learning setting allows polynomial
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time convergence to a near-optimal solution with high probability. In E3 for
example, this problem is addressed by defining the “ε-return mixing time” for a
policy (with respect to the average return), and limiting attention to the class
of policies with bounded mixing times. Alternatively, when discounted return
is used with bounded rewards, one only needs to consider the states that are
close (given the discount rate) to the initial state and reachable with significant
probability. Other states simply cannot sufficiently influence the expected util-
ity of decisions. These suggest that a similar setting should be applicable to the
direct algorithms.

A critical advantage in analyzing a model-based algorithm is that the ex-
ploration can be separated from the actual learning updates. Due to strong
statistical guarantees for independent samples, an accurate model can be built
with a reasonable amount of sampling, and an appropriate exploration strategy
that either exploits or explores (Kearns and Singh, 1998) can be derived from
any partial model. In the direct, online case, such as the standard Q-learning al-
gorithm, the coupling between noise from sampling and the policy improvement
itself, frustrate assessing the benefit of exploration based upon Q-values alone.
This also suggests that if certain properties of the estimated Q-values (such as
admissibility) can be preserved, one might have a more easily analyzed strategy
for exploration.

In (Kearns and Singh, 1999), a parallel sampling model is employed, and a di-
rect algorithm (phased Q-learning) based on this model can achieve polynomial-
time convergence, in terms of number of calls to the parallel sampling procedure.
This procedure can in turn be simulated by a stationary (possibly stochastic)
policy π that defines an ergodic Markov process in the MDP. The overall com-
plexity depends on the mixing time of π to reach its stationary distribution. In
practice, however, such policy might not exist, and even if it does, its mixing
time might be prohibitively large with exponential dependency on the number
of states and actions (the policy could simply be a random walk). We encounter
this in our Task 2.

Even-Dar and Mansour (2003) analyzed the convergence rate for Q-learning
with respect to different choice of the learning rate, α. They show that a linearly
decaying rate (α = 1/k for the kth update) has an exponential dependence on

1
1−γ . This eliminates the possibility of polynomial-time convergence for direct Q-
learning based on linearly decaying α. For a polynomial learning rate (α = 1/kw

where 0.5 < w < 1), the convergence rate depends largely on what was called
the “covering time”, which is a bound on the number of learning steps within
which every state will be visited. Again, the “covering time” depends on the
exploration strategy, and may not be polynomially bounded.

3 Admissibility of Q-Learning

We have seen that the major difficulty in analyzing direct, online
reinforcement learning comes mostly from the fact that different exploration
strategy may result in very different performance. Analysis that decouples the
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exploration strategy from the learning algorithm, while useful theoretically, hides
the problem that we face in practice. We have also seen that “optimism under un-
certainty”, which is a useful notion in AI, plays significant roles in the design and
verification of many algorithms. It can be realized, in the case of reinforcement
learning, by using optimistic initial values and exploring greedily, as long as the
probability of getting stuck is low. This motivates the definition of a slightly re-
laxed notion of admissibility and we show that Q-learning with optimistic initial
Q-values and a constant learning rate is admissible.

We consider standard Q-learning on an MDP with a finite set of states S
and a finite set of actions A. We define the optimal policy π∗ with respect to
a discounted return with discount factor 0 ≤ γ < 1 where the optimal action
for a state s is given by π∗(s). The Q-value of a state-action pair (s, a) at an
unspecified point during learning is denoted by Q(s, a). The Q-value of a state-
action pair (s, a) after k updates (of that particular pair) is denoted by Qk(s, a).
The optimal Q-value of a state-action pair (i.e. with respect to the optimal
policy) is denoted by Q∗(s, a), and the optimal value (utility) of a state s is
given by V ∗(s) = maxa Q∗(s, a). We assume discrete time step t ∈ {0, 1, 2, ...},
where at each time step, exactly one state-action pair will be executed and
updated with Q-update:

Qt+1(s, a) = (1− αt)Qt(s, a) + αt(rt + γV t(s′))

where Qt(s, a) denotes the Q-value of (s, a) at time t, αt denotes the learning
rate used at time t, rt denotes the reward received after executing the action
at time t, s′ denotes the next state visited, and V t(s′) = maxa′ Qt(s′, a′). We
assume that the magnitude of any reward is bounded by Rmax > 0, and therefore
the magnitude of any discounted return is bounded by Vmax = Rmax

1−γ .
We define the notion of admissibility for direct, online Q-learning as follows:

Definition 1. A Q-learning algorithm is admissible if after every Q-update, with
probability at least 1− δ,

Q(s, a) ≥ Q∗(s, a)− ε, ∀s ∈ S, ∀a ∈ A .

We would like to establish the fact that Q-learning with optimistic ini-
tial Q-values and a constant learning rate is admissible. The following lemma
will help.

Lemma 1. For any state-action pair (s, a), after k updates with constant learn-
ing rate α, with probability at least 1− δ,

Qk(s, a)−Q∗(s, a) ≥ −β + (1− α)kΔ0(s, a) + γα

k∑
i=1

(1 − α)k−iΔt(i)(s′i)

and

|Qk(s, a)−Q∗(s, a)| ≤ β + (1− α)k
∣∣Δ0(s, a)

∣∣+ γα

k∑
i=1

(1− α)k−i
∣∣Δt(i)(s′i)

∣∣
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where Δ0(s, a) = Q0(s, a) − Q∗(s, a), s′i is the next state visited after the ith

update, t(i) is the time step during the ith update, Δt(i)(s′i) = V t(i)(s′i)−V ∗(s′i),
and

β = Vmax

√
α

2(2− α)
ln

2
δ
.

Proof. For a particular state s and action a, the Q-value after the kth update is
given by

Qk(s, a) = (1− α)kQ0(s, a) + α

k∑
i=1

(1 − α)k−i
(
rt(i) + γV t(i)(s′i)

)
and therefore

Qk(s, a) = (1− α)k
(
Q∗(s, a) + Δ0(s, a)

)
+

α

k∑
i=1

(1− α)k−i
(
rt(i) + γV ∗(s′i) + γΔt(i)(s′i)

)
= (1− α)kQ∗(s, a) + α

k∑
i=1

(1− α)k−iQ̂i(s, a)

+(1− α)kΔ0(s, a) + γα

k∑
i=1

(1 − α)k−iΔt(i)(s′i)

where Q̂i(s, a) is an unbiased sample of Q∗(s, a). Since |Q̂i(s, a)| ≤ Vmax and
each sample is weighted by α(1− α)k−i, we define

Q̄k(s, a) = α
k∑

i=1

(1− α)k−iQ̂i(s, a)

as sum of k random variables with bounded values. Then

E(Q̄k(s, a)) = α
k∑

i=1

(1− α)k−iQ∗(s, a) =
(
1− (1− α)k

)
Q∗(s, a) .

By Hoeffding’s inquality,

Pr(|Q̄k(s, a)− E(Q̄k(s, a))| ≥ β) ≤ 2e−2β2/
∑k

i=1 α2(1−α)2(k−i)V 2
max ≤ 2e

− 2β2(2−α)
V 2

maxα .

Then, with probability at least 1− δ, |Q̄k(s, a)− E(Q̄k(s, a))| ≤ β. Since

Qk(s, a)−Q∗(s, a) = Q̄k(s, a)− E(Q̄k(s, a))

+(1− α)kΔ0(s, a) + γα

k∑
i=1

(1− α)k−iΔt(i)(s′i)

the Lemma follows. �
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Due to the constant learning rate, we cannot expect the error in any estimated
Q-value to become arbitrarily small since there is always a “window” of the most
recent updates with significant weight that potentially increase the error in the
Q-value. Given any rate α, there is always potential error with the magnitude of
β introduced with each update. In fact, if all Q-values are initialized to the true
optimal Q-values of the optimal policy and a greedy exploration is used, errors
will be introduced within each Q-value in the order of β due to the inherent
stochasticity of the problem. Lemma 1 suggests that we can bound this error by
choosing a small enough α. This leads to the following result.

Proposition 1. If the Q-value for every state-action pair is initialized such that

Δ0(s, a) = Q0(s, a)−Q∗(s, a) ≥ 0, ∀s ∈ S∀a ∈ A

and with a constant learning rate

α ≤ 2(
ε2(1− γ)2

V 2
max ln 2

δ

)

then the standard Q-learning algorithm is admissible.

Proof. We will show that for all t ≥ 0, s and a,

Qt(s, a) ≥ Q∗(s, a)− ε

by strong induction on t. The statement holds trivially when t = 0 (before any
updates) since all Q-values are initialized optimistically. Assume that it holds
for 0 ≤ t ≤ T . Let the update at time step T be at state s and for action a.
Assume that this is the kth update for (s, a). By Lemma 1, with probability at
least 1− δ,

Qk(s, a)−Q∗(s, a) ≥ −β + (1 − α)kΔ0(s, a) + γα

k∑
i=1

(1− α)k−iΔt(i)(s′i) .

By the definition of β (in Lemma 1), α ≤ 2( ε2(1−γ)2

V 2
max ln 2

δ

) implies that β
1−γ < ε. Let

bi =argmaxa′ Qt(i)(s′i, a
′). By the induction hypothesis,

Δt(i)(s′i) = Qt(i)(s′i, bi)− V ∗(s′i) ≥ Qt(i)(s′i, b)−Q∗(s′i, b) ≥ −ε

and therefore

Qk(s, a)−Q∗(s, a) ≥ −ε(1− γ)− γα

k∑
i=1

(1− α)k−iε ≥ −ε . �

Proposition 1 essentially provides a guideline to select a learning rate small
enough such that the (estimated) Q-values are never too far below the true
optimal Q-value:

α = 2(
ε2(1− γ)2

V 2
max ln 2

δ

)
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Note that the definition of admissibility only requires that the probability
of error after each update is bounded by δ. This means that the probability of
error increases with the number of updates. This is partially due to the fact
that we use a constant learning rate. However, note that the cost of having
higher confidence (logarithmic dependency) is much lower than having higher
accuracy (quadratic dependency). This means that as long as the total number
of updates needed is a polynomial (in terms of all other parameters), the effect
on α is relatively small.

4 Experiments

We have established the admissibility of Q-learning with optimistic initial values
and a constant learning rate. The natural consequence is that a greedy explo-
ration strategy would seem to be the most efficient, since it always focuses on
the most promising region of the state space. We support this by first analyzing
the experiment results for both Task 1 and Task 2.
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Figure 4 shows task 1, which is an MDP with N states (N ≥ 2) and M
actions. State 1 is a fixed, initial state, and state N is an absorbing, goal state.
Executing action 1 in any non-goal state s results in state s+1 with probability
p and in state 1 with probability 1−p. Executing actions 2 ≤ a ≤M in any non-
goal state results in state 1 with probability 1. All transitions give zero rewards
except the transition to the goal state, where a reward R = 10 will be received.

The learning results for direct Q-learning with various setups are shown in
Fig. 5. Note that the y-axis uses logarithmic scale. Each graph is the average of
10 independent learning instances. For each instance, we evaluate the resulting
policy after every episode (of 200 steps each) and stop when more than 95% of
the last 500 episodes end with the optimal policy. We omit error bars in all the
results for both Task 1 and Task 2 since the observed variances are barely visible
under the logarithmic scale.
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Task 1 is a problem where the average number of steps to reach the goal
is exponential in the number of states (in the order of ( 1

p )N−1), even with the
optimal policy. As mentioned in section 2, under the PAC model, we allow a
small amount of error, and the cost (in terms of learning time) to reduce the
error will be considered reasonable as long as it is a polynomial in 1

ε . This is
best illustrated by an example. Consider task 1, where the optimal Q-value for
the initial state is given by:

Q∗(1, 1) =
Rp(1− pγ)(pγ)N−2

1− γ + γ(1− p)(γp)N−1 .

The optimal policy for task 1 requires that action 1 be chosen in every non-goal
state. Any deviation from the optimal policy will result in a policy π with ex-
pected return Qπ(1, π(1)) = 0. This also implies that if Qπ(1, π(1))−Q∗(1, 1) <
ε, then every policy satisfies the requirement and therefore no learning is needed.
We therefore assume that Qπ(1, π(1))−Q∗(1, 1) < ε, which implies:

Rp(1− pγ)(pγ)N−2

1− γ + γ(1− p)(γp)N−1 ≥ ε ⇒ (
R

1− γ
)
1
ε
≥ (

1
p
)N−1 .

Regardless of the value of p, whenever ε is small enough such that finding the
optimal policy is necessary, the average number of steps to reach the goal state
is in the order of O{( R

1−γ )1
ε}. This renders the problem tractable in terms of the

amount of learning needed with respect to the acceptable error.
We see that in task 1, the pessimistic case with non-zero initial Q-values ac-

tually performs better than the optimistic case, but they both have roughly the
same rate of growth in learning time as the size of the problem grows. The differ-
ence in performance can be accounted by the fact that the optimistic case starts
with a much higher Q-value estimate for most of the states and needs more learn-
ing updates to approach the true Q-values. On the other hand, the pessimistic
case with zero-initialized values has a significantly higher rate of growth, and
actually performs no better than the purely random strategy (especially when N
is large). Since task 1 naturally requires an exponential number of learning steps
(with respect to N), one might ask whether the error that we discussed above
applies. It only applies whenever the optimal policy is executed. Since in the case
of zero-initialized Q-values, the initial phase of learning is essentially a random
walk (the Q-values remain unchanged) and in Task 1, it takes an exponential
number of trials (in M) to realize a sequence of actions that corresponds to the
optimal policy, this cost is in addition to the fact that the average number of
steps to reach the goal through the optimal policy is exponential in N.

Task 1 does not reveal the problem with using pessimistic (but non-zero) ini-
tial Q-values since there is only one goal state and one optimal policy.
Figure 6 shows Task 2, whose learning results are shown in Fig. 2 (Section 1).
In this MDP, there are two absorbing states (N and -N). The states that lead to
state N behaves exactly like those in Task 1, that is, progress is made only when
action 1 is executed. On the other hand, progress is made toward state -N when
any action except action 1 is executed. In our actual experiment, we use p = 0.8



Towards Finite-Sample Convergence of Direct Reinforcement Learning 239

1 21/p

1/1-p

2..M/1-q

1/p

1/1-p

2..M/1

... N

Arc label:
action/probability

1/1-p

2..M/1

1/p

1..M/1

0-1-2-N
2..M/q2..M/q

2..M/1-q

1/1

1/1

2..M/1-q

1..M/1

...
2..M/q

Fig. 6. Task 2

and q = 0.99. The reward for reaching state N is 10 while the reward for reaching
state −N is 1. This makes state N harder to reach, but more desirable in terms
of the actual return (for small N). We use ε-greedy exploration with ε = 0.1 for
both pessimistic cases. Both cases converge to the wrong goal very quickly, and
get “stuck” on this policy. It takes an extremely large number of trials to escape
from this situation, relying on the randomness (ε) in the exploration strategy.
Figure 2 shows that a purely random exploration actually performs better in this
case since sticking cannot happen. Task 2 shows a clear performance advantage
for the strategy with optimistic initial values.

4.1 More Challenging Problems

We further illustrate the advantage of greedy exploration with optimistic initial
Q-values with more realistic problems. We use the acrobot swing-up problem
as described in Sutton and Barto, (1998). We first run the acrobot using the
original configuration, then we add friction and noise to the system to increase
its difficulty. We run 10 independent instances of both optimistic and pessimistic
strategies on both experiments. The results are shown in Figs. 7 and 8. We
observe that when the difficulty of the problem increases (in the sense that
less random action sequences can reach the goal) the difference in performance
becomes more significant as well.
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We repeat the experiment on a 2-dimensional mountain-car problem, which
is similar to the mountain-car problem described in (Sutton, 1996), but extended
to 2 dimensions (for the navigation). We use a steepness factor to control the
difficulty of the problem. The results are shown in Figs. 9 and 10. We observe
the same performance pattern as in the acrobot problem when we increase the
steepness of the mountain. It is conceivable that good action sequences become
rarer as problems become harder. We believe that greedy exploration with op-
timistic initial Q-values results in a rather “uniform” but efficient search in the
policy space. This explains the relatively minor increase in learning time as the
problem becomes more difficult.
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Fig. 9. 2D Mountain Car (steepness 1.5)
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5 Conclusion

The admissibility of Q-learning justifies the use of a greedy policy with constant
learning rate. We have observed empirically that this strategy outperforms the
others in simple and challenging problems. We believe that the empirical evi-
dence of the effectiveness of this strategy makes it worthy of further attention in
search of a more theoretical understanding of direct reinforcement learning. We
believe that the same strategy also applies to more general learning algorithms
that require exploration. We speculate that the final piece of puzzle needed to
obtain a polynomial convergence bound for direct reinforcement learning is to
establish the fact that the errors introduced in the initial Q values vanish at
a reasonably high rate. We argue but cannot yet prove that this is achievable
(at least with a constant learning rate) due to the contraction property of value
iteration, which underlies the Q-learning algorithm.
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Abstract. Ensemble learning algorithms such as boosting can achieve
better performance by averaging over the predictions of base hypothe-
ses. However, existing algorithms are limited to combining only a finite
number of hypotheses, and the generated ensemble is usually sparse. It
is not clear whether we should construct an ensemble classifier with a
larger or even infinite number of hypotheses. In addition, constructing an
infinite ensemble itself is a challenging task. In this paper, we formulate
an infinite ensemble learning framework based on SVM. The framework
can output an infinite and nonsparse ensemble, and can be used to con-
struct new kernels for SVM as well as to interpret some existing ones.
We demonstrate the framework with a concrete application, the stump
kernel, which embodies infinitely many decision stumps. The stump ker-
nel is simple, yet powerful. Experimental results show that SVM with
the stump kernel is usually superior than boosting, even with noisy data.

1 Introduction

Ensemble learning algorithms, such as boosting [1], are successful in practice.
They construct a classifier that averages over some base hypotheses in a set H.
While the size of H can be infinite in theory, existing algorithms can utilize
only a small finite subset of H, and the classifier is effectively a finite ensemble
of hypotheses. On the one hand, the classifier is a regularized approximation
to the optimal one (see Subsection 2.2), and hence may be less vulnerable to
overfitting [2]. On the other hand, it is limited in capacity [3], and may not
be powerful enough. Thus, it is unclear whether an infinite ensemble would be
superior for learning. In addition, it is a challenging task to construct an infinite
ensemble of hypotheses [4].

The goal of this paper is to conquer the task of infinite ensemble learning
in order to see if an infinite ensemble could achieve better performance. We
formulate a framework for infinite ensemble learning based on the support vector
machine (SVM) [4]. The key is to embed an infinite number of hypotheses into
an SVM kernel. Such a framework can be applied both to construct new kernels
for SVM, and to interpret some existing ones [5]. Furthermore, the framework
allows a fair comparison between SVM and ensemble learning algorithms.

As a concrete application of the framework, we introduce the stump kernel,
which embodies an infinite number of decision stumps. The stump kernel is novel

J. Gama et al. (Eds.): ECML 2005, LNAI 3720, pp. 242–254, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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and is simpler than most existing kernels for SVM. Somehow it is powerful both
in theory and in practice. Experimental results show that with the stump ker-
nel, our framework usually achieves better performance than popular ensemble
learning algorithms. Our results also bring in some important insights for both
SVM and ensemble learning.

The paper is organized as follows. In Section 2, we show the connections
between SVM and the ensemble learning. Next in Section 3, we propose the
framework for embedding an infinite number of hypotheses into the kernel. We
then present the stump kernel in Section 4. Finally, we show the experimental
results in Section 5, and conclude in Section 6.

2 SVM and Ensemble Learning

2.1 Support Vector Machine

Given a training set {(xi, yi)}N
i=1, which contains input vectors xi ∈ X ⊆ RD and

their corresponding labels yi ∈ {−1,+1}, the soft-margin SVM [4] constructs a
classifier g(x) = sign(〈w, φx〉+ b) from the optimal solution to the following
problem:1

(P1) min
w∈F ,b∈R,ξ∈RN

1
2
〈w,w〉+ C

N∑
i=1

ξi

s.t. yi(〈w, φxi〉+ b) ≥ 1− ξi, ξi ≥ 0.

Here C > 0 is the regularization parameter, and φx = Φ(x) is obtained from
the feature mapping Φ : X → F . We assume the feature space F to be a Hilbert
space equipped with the inner product 〈·, ·〉 [6]. Because F can be of an infinite
number of dimensions, SVM solvers usually work on the dual problem:

(P2) min
λ∈RN

1
2

N∑
i=1

N∑
j=1

λiλjyiyjK(xi, xj)−
N∑

i=1

λi

s.t.
N∑

i=1

yiλi = 0, 0 ≤ λi ≤ C.

Here K is the kernel function defined as K(x, x′) = 〈φx, φx′〉. Then, the optimal
classifier becomes

g(x) = sign

(
N∑

i=1

yiλiK(xi, x) + b

)
, (1)

where b can be computed through the primal-dual relationship [4, 6].
The use of a kernel function K instead of computing the inner product di-

rectly in F is called the kernel trick, which works when K(·, ·) can be computed
1 sign(θ) is 1 when θ is nonnegative, −1 otherwise.
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efficiently. Alternatively, we can begin with an arbitrary K, and check whether
there exist a space F and a mapping Φ such that K(·, ·) is a valid inner product
in F . A key tool here is the Mercer’s condition, which states that a symmetric
K(·, ·) is a valid inner product if and only if its Gram matrix K, defined by
K{i, j} = K(xi, xj), is always positive semi-definite (PSD) [4, 6].

The soft-margin SVM originates from the hard-margin SVM, where the mar-
gin violations ξi are forced to be zero. This can be achieved by setting the reg-
ularization parameter C →∞ in (P1) and (P2).

2.2 Adaptive Boosting

Adaptive boosting (AdaBoost) [1] is perhaps the most popular and successful
algorithm for ensemble learning. For a given integer T and a hypothesis set H,
AdaBoost iteratively selects T hypotheses ht ∈ H and weights wt ≥ 0 to con-
struct an ensemble classifier

g(x) = sign

(
T∑

t=1

wtht(x)

)
.

Under some assumptions, it is shown that when T → ∞, AdaBoost asymptot-
ically approximates an infinite ensemble classifier sign(

∑∞
t=1 wtht(x)) [7], such

that (w, h) is an optimal solution to

(P3) min
wt∈R,ht∈H

‖w‖1

s.t. yi

( ∞∑
t=1

wtht(xi)

)
≥ 1, wt ≥ 0.

The problem (P3) has infinitely many variables. In order to approximate the
optimal solution well with a fixed T , AdaBoost has to resort to two related
properties of the optimal solutions for (P3). First, when two hypotheses have
the same prediction patterns on the training vectors, they can be used inter-
changeably in constructing an ensemble, and are thus called “ambiguous”. Since
there are at most 2N prediction patterns on N input vectors, we can partition H
into at most 2N groups, each containing mutually ambiguous hypotheses. Some
optimal solutions of (P3) only assign one or a few nonzero weights within each
group [8]. Thus, it is possible to work on a finite subset of H instead of H itself
without losing optimality.

Second, minimizing the �1-norm ‖w‖1 often leads to sparse solutions [2, 9].
That is, for hypotheses in the finite (but possibly still large) subset of H, only
a small number of weights needs to be nonzero. Many ensemble learning algo-
rithms, including AdaBoost, try to find or approximate such a finite and sparse
ensemble. However, it is not clear whether the performance could further be im-
proved if either or both the finiteness and the sparsity restrictions are removed.2

2 Qualitatively, sparsity is algorithm-dependent and more restricted than finiteness.
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2.3 Connecting SVM to Ensemble Learning

SVM and AdaBoost are related. Consider the feature transform

Φ(x) = (h1(x), h2(x), . . . ). (2)

We can clearly see that the problem (P1) with this feature transform is similar
to (P3). The elements of φx in SVM and the hypotheses ht(x) in AdaBoost
play similar roles. They both work on linear combinations of these elements,
though SVM has an additional intercept term b. SVM minimizes the �2-norm
of the weights while AdaBoost approximately minimizes the �1-norm. Note that
AdaBoost requires wt ≥ 0 for ensemble learning.

Another difference is that for regularization, SVM introduces slack vari-
ables ξi, while AdaBoost relies on the choice of a finite T [2]. Note that we
can also introduce proper slack variables to (P3) and solve it by the linear pro-
gramming boosting method [8]. In the scope of this paper, however, we shall
focus only on AdaBoost.

The connection between SVM and AdaBoost is well known in literature [10].
Several researchers have developed interesting results based on the connection
[2,7]. However, as limited as AdaBoost, previous results could utilize only a finite
subset of H when constructing the feature mapping (2). One reason is that the
infinite number of variables wt and constraints wt ≥ 0 are difficult to handle.
We will further illustrate these difficulties and our remedies in the next section.

3 SVM-Based Framework for Infinite Ensemble Learning

Vapnik [4] proposed a challenging task of designing an algorithm that actually
generates an infinite ensemble classifier. Traditional algorithms like AdaBoost
cannot be directly generalized to solve this problem, because they select the
hypotheses in an iterative manner, and only run for finite number of iterations.

The connection between SVM and ensemble learning shows another possible
approach. We can formulate a kernel that embodies all the hypotheses in H.
Then, the classifier (1) obtained from SVM with this kernel is a linear combina-
tion of those hypotheses (with an intercept term). However, there are still two
main obstacles. One is to actually derive the kernel, and the other is to handle
the constraints wt ≥ 0 to make (1) an ensemble classifier. In this section, we
integrate several ideas to deal with these obstacles, and propose a framework of
infinite ensemble learning based on SVM.

3.1 Embedding Hypotheses into the Kernel

We start by embedding the infinite number of hypotheses in H into an SVM
kernel. We have shown in (2) that we could construct a feature mapping from H.
In Definition 1, we extend this idea to a more general form, and define a kernel
based on the feature mapping.
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Definition 1. Assume that H = {hα : α ∈ C}, where C is a measure space. The
kernel that embodies H is defined as

KH,r(x, x′) =
∫
C
φx(α)φx′ (α) dα, (3)

where φx(α) = r(α)hα(x), and r : C → R+ is chosen such that the integral exists
for all x, x′ ∈ X .

Here, α is the parameter of the hypothesis hα. Although two hypotheses with
different α values may have the same input-output relation, we would treat them
as different objects in our framework. We shall denote KH,r by KH when r is
clear from the context.

If C is a closed interval [L,R], the right-hand-side of (3) is obviously an inner
product [6], and hence Definition 1 constructs a valid kernel. In the following
theorem, the validity is formalized for a general C.

Theorem 1. Consider the kernel KH = KH,r in Definition 1.

1. The kernel is an inner product for φx and φx′ in the Hilbert space F = L2(C),
which contains functions ϕ(·) : C → R that are square integrable.

2. For a set of input vectors {xi}N
i=1 ∈ XN , the Gram matrix of K is PSD.

Proof. The first part is in function analysis [11], and the second part follows
Mercer’s condition. �

The technique of constructing kernels from an integral inner product is known
in literature [6]. Our framework utilizes this technique for embedding the hy-
potheses, and thus could handle the situation even when H is uncountable.

When we use KH in (P2), the primal problem (P1) becomes

(P4) min
w∈L2(C),b∈R,ξ∈RN

1
2

∫
C
w2(α) dα + C

N∑
i=1

ξi

s.t. yi

(∫
C
w(α)r(α)hα(xi) dα+ b

)
≥ 1− ξi, ξi ≥ 0.

In particular, the classifier obtained after solving (P2) with KH is the same as
the classifier obtained after solving (P4):

g(x) = sign
(∫

C
w(α)r(α)hα(x) dα + b

)
. (4)

When C is uncountable, it is possible that each hypothesis hα only takes an
infinitesimal weight w(α)r(α) dα in the ensemble. This is very different from
the situation in traditional ensemble learning, and will be discussed further in
Subsection 4.3.
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3.2 Negation Completeness and Constant Hypotheses

Note that (4) is not an ensemble classifier yet, because we do not have the con-
straints w(α) ≥ 0, and we have an additional term b. Next, we would explain that
(4) is equivalent to an ensemble classifier under some reasonable assumptions.

We start from the constraints w(α) ≥ 0, which cannot be directly considered
in (P1). It has been shown that even if we add a countably infinite number
of constraints to (P1), we introduce infinitely many variables and constraints
in (P2), which makes the later problem difficult to solve [4].

One remedy is to assume that H is negation complete, that is, h ∈ H if
and only if (−h) ∈ H.3 Then, every linear combination over H has an equiva-
lent linear combination with only nonnegative weights. Negation completeness
is usually a mild assumption for a reasonable H. Following this assumption, the
classifier (4) can be interpreted as an ensemble classifier overH with an intercept
term b. Somehow b can be viewed as the weight on a constant hypothesis c.4

We shall further add a mild assumption that H contains both c and (−c), which
makes g(·) in (4) or (1) indeed equivalent to an ensemble classifier.

We summarize our framework in Fig. 1. The framework shall generally inherit
the profound performance of SVM. Most of the steps in the framework could be
done by existing SVM algorithms, and the hard part is mostly in obtaining the
kernel KH. We have derived several useful kernels with the framework [5]. In the
next section, we demonstrate one concrete instance of those kernels.

1. Consider a training set {(xi, yi)}N
i=1 and the hypothesis set H, which is assumed

to be negation complete and to contain a constant hypothesis.
2. Construct a kernel KH according to Definition 1 with a proper r.
3. Choose proper parameters, such as the soft-margin parameter C.
4. Solve (P2) with KH and obtain Lagrange multipliers λi and the intercept term b.
5. Output the classifier g(x) = sign

(∑N
i=1 yiλiKH(xi, x) + b

)
, which is equivalent to

some ensemble classifier over H.

Fig. 1. Steps of the SVM-based framework for infinite ensemble learning

4 Stump Kernel

In this section, we present the stump kernel, which embodies infinitely many
decision stumps, as a concrete application of our framework. The decision stump
sq,d,α(x) = q · sign

(
(x)d − α

)
works on the d-th element of x, and classifies x

according to q ∈ {−1,+1} and the threshold α [12]. It is widely used for ensemble
learning because of its simplicity [1].

3 We use (−h) to denote the function (−h)(·) = −(h(·)).
4 A constant hypothesis c(·) predicts c(x) = 1 for all x ∈ X .
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4.1 Formulation

To construct the stump kernel, we consider the following set of decision stumps

S = {sq,d,αd
: q ∈ {−1,+1} , d ∈ {1, . . . , D} , αd ∈ [Ld, Rd]} .

In addition, we assume that X ⊆ [L1, R1]× [L2, R2]× · · ·× [LD, RD]. Then, S is
negation complete, and contains s+1,1,L1(·) as a constant hypothesis. Thus, the
stump kernel KS defined below can be used in our framework (Fig. 1) to obtain
an infinite ensemble of decision stumps.

Definition 2. The stump kernel KS is defined as in Definition 1 for the set S
with r(q, d, αd) = 1

2 ,

KS(x, x′) = ΔS −
D∑

d=1

∣∣(x)d − (x′)d

∣∣ = ΔS − ‖x− x′‖1 ,

where ΔS = 1
2

∑D
d=1(Rd − Ld) is a constant.

To obtain the stump kernel in Definition 2, we separate the integral (3) into two
parts: stumps having the same outputs on x and x′, and stumps having different
outputs on x and x′. Both parts exist and are easy to compute when we simply
assign a constant r to all r(q, d, αd). Note that scaling r is equivalent to scaling
the parameter C in SVM. Thus, without loss of generality, we choose r = 1

2 to
obtain a cosmetically cleaner kernel function.

Following Theorem 1, the stump kernel produces a PSD Gram matrix for
xi ∈ X . Given the ranges [Ld, Rd], the stump kernel is very simple to compute. In
fact, the ranges are even not necessary in general, because dropping the constant
ΔS does not affect the classifier obtained from SVM:

Theorem 2. Solving (P2) with KS is the same as solving (P2) with the simplified
stump kernel K̃S(x, x′) = −‖x− x′‖1. That is, they obtain equivalent classifiers
in (1).

Proof. We extend from [13] to show that K̃S(x, x′) is conditionally PSD (CPSD).
In addition, a CPSD kernel K̃(x, x′) works exactly the same for (P2) as any PSD
kernel of the form K̃(x, x′) + Δ, where Δ is a constant, because of the linear
constraint

∑N
i=1 yiλi = 0 [6, 14]. The proof follows with Δ = ΔS . �

Although the simplified stump kernel is simple to compute, it provides com-
parable classification ability for SVM, as shown below.

4.2 Power of the Stump Kernel

The classification ability of the stump kernel comes from the following positive
definite (PD) property under some mild assumptions:
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Theorem 3. Consider input vectors {xi}N
i=1 ∈ XN . If there exists a dimen-

sion d such that (xi)d ∈ (Ld, Rd) and (xi)d �= (xj)d for all i �= j, the Gram
matrix of KS is PD.

Proof. See [5] for details. �
The PD-ness of the Gram matrix is directly connected to the classification power
of the SVM classifiers. Chang and Lin [15] show that when the Gram matrix of
the kernel is PD, a hard-margin SVM with such kernel can always dichotomize
the training vectors. Thus, Theorem 3 implies:

Theorem 4. The class of SVM classifiers with KS , or equivalently, the class of
infinite ensemble classifiers over S, has an infinite V-C dimension.

Theorem 4 indicates the power of the stump kernel. A famous kernel that also
provides infinite power to SVM is the Gaussian kernel [16]. The theorem shows
that the stump kernel has theoretically almost the same power as the Gaussian
kernel. Note that such power needs to be controlled with care because the power
of fitting any data can also be abused to fit noise. For the Gaussian kernel, it
has been observed that soft-margin SVM with suitable parameter selection can
regularize the power and achieve good generalization performance even in the
presence of noise [16, 17]. The stump kernel, which is similar to the Gaussian
kernel, also has such property when used in soft-margin SVM. We shall further
demonstrate this property experimentally in Section 5.

4.3 Averaging Ambiguous Stumps

We have shown in Subsection 2.2 that the set of hypotheses can be partitioned
into groups and traditional ensemble learning algorithms can only pick a few
representatives within each group. Our framework acts in a different way: the
�2-norm objective function of SVM leads to an optimal solution that combines
the average predictions of each group. In other words, the consensus output of
each group is the average prediction of all hypotheses in the group rather than
the predictions of a few selected ones. The averaging process constructs a smooth
representative for each group. In the following theorem, we shall demonstrate
this with our stump kernel, and show how the decision stumps group together
in the final ensemble classifier.

Theorem 5. Define (x̃)d,a as the a-th smallest value in {(xi)d}N
i=1, and Ad as

the number of different (x̃)d,a. Let (x̃)d,0 = Ld, (x̃)d,(Ad+1) = Rd, and

ŝq,d,a(x) = q ·

⎧⎪⎨⎪⎩
1, when (x)d ≥ (x̃)d,t+1;
−1, when (x)d ≤ (x̃)d,t;
2(x)d−(x̃)d,a−(x̃)d,a+1

(x̃)d,a+1−(x̃)d,a
, otherwise.

Then, for r(q, d, a) = 1
2

√
(x̃)d,a+1 − (x̃)d,a,

KS(x, x′) =
∑

q∈{−1,+1}

D∑
d=1

Ad∑
a=0

r2(q, d, a)ŝq,d,a(x)ŝq,d,a(x′).
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We can prove Theorem 5 by carefully writing down the equations. Note that
the function ŝq,d,t(·) is a smoother variant of the decision stump. Each ŝq,d,t(·)
represents the group of ambiguous decision stumps with αd ∈ ((x̃)d,t, (x̃)d,t+1).
When the group is larger, ŝq,d,t(·) is smoother because it is the average over more
decision stumps. Traditional ensemble learning algorithms like AdaBoost usually
consider the middle stump mq,d,t(·), which has threshold at the mean of (x̃)d,t

and (x̃)d,t+1, as the only representative of the group. Our framework, on the
other hand, enjoys a smoother decision by averaging over more decision stumps.
Even though each decision stump only has an infinitesimal hypothesis weight,
the averaged stump ŝq,d,t(·) could have a concrete weight in the ensemble, which
explains how the infinitesimal weights work.

5 Experiments

We test and compare several ensemble learning algorithms, including our frame-
work with the stump kernel, on various datasets.

The first algorithm we test is our framework with the simplified stump kernel,
denoted as SVM-Stump. It is compared with AdaBoost-Stump, AdaBoost with
decision stumps as base hypotheses. A common implementation of AdaBoost-
Stump only chooses the middle stumps (see Subsection 4.3). For further com-
parison, we take the set of middle stumps M, and construct a kernel KM with
r = 1

2 according to Definition 1. Because M is a finite set, the integral in (3)
becomes a summation when computed with the counting measure. We test our
framework with this kernel, and call it SVM-Mid. We also compare SVM-Stump
with SVM-Gauss, which is SVM with the Gaussian kernel. For AdaBoost-Stump,
we demonstrate the results using T = 100 and T = 1000. For SVM algorithms,
we use LIBSVM [18] with the general procedure of soft-margin SVM [17], which
selects a suitable parameter with cross validation before actual training.

The three artificial datasets from Breiman [19] (twonorm, threenorm, and
ringnorm) are used with training set size 300 and test set size 3000. We create
three more datasets (twonorm-n, threenorm-n, ringnorm-n), which contain mis-
labeling noise on 10% of the training examples, to test the performance of the
algorithms on noisy data. We also use eight real-world datasets from the UCI
repository [20]: australian, breast, german, heart, ionosphere, pima, sonar, and
votes84. Their feature elements are normalized to [−1, 1]. We randomly pick 60%
of the examples for training, and the rest for testing. All the results are averaged
over 100 runs, presented with standard error bar.

5.1 Comparison of Ensemble Learning Algorithms

Table 1 shows the test performance of our framework and traditional ensemble
learning algorithms. We can see that SVM-Stump is usually the best of the four
algorithms, and also has superior performance even in the presence of noise.
That is, SVM-Stump performs significantly better than AdaBoost-Stump. Not
surprisingly, SVM-Stump also performs better than SVM-Mid. These results
demonstrate that it is beneficial to go from a finite ensemble to an infinite one.
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Table 1. Test error (%) of several ensemble learning algorithms

dataset SVM-Stump SVM-Mid AdaBoost-Stump AdaBoost-Stump
T = 100 T = 1000

twonorm 2.86 ± 0.04 3.10 ± 0.04 5.06 ± 0.06 4.97 ± 0.06
twonorm-n 3.08 ± 0.06 3.29 ± 0.05 12.6 ± 0.14 15.5 ± 0.17
threenorm 17.7 ± 0.10 18.6 ± 0.12 21.8 ± 0.09 22.9 ± 0.12
threenorm-n 19.0 ± 0.14 19.6 ± 0.13 25.9 ± 0.13 28.2 ± 0.14
ringnorm 3.97 ± 0.07 5.30 ± 0.07 12.2 ± 0.13 9.95 ± 0.14
ringnorm-n 5.56 ± 0.11 7.03 ± 0.14 19.4 ± 0.20 20.3 ± 0.19
australian 14.5 ± 0.21 15.9 ± 0.18 14.7 ± 0.18 16.9 ± 0.18
breast 3.11 ± 0.08 2.77 ± 0.08 4.27 ± 0.11 4.51 ± 0.11
german 24.7 ± 0.18 24.9 ± 0.17 25.0 ± 0.18 26.9 ± 0.18
heart 16.4 ± 0.27 19.1 ± 0.35 19.9 ± 0.36 22.6 ± 0.39
ionosphere 8.13 ± 0.17 8.37 ± 0.20 11.0 ± 0.23 11.0 ± 0.25
pima 24.2 ± 0.23 24.4 ± 0.23 24.8 ± 0.22 27.0 ± 0.25
sonar 16.6 ± 0.42 18.0 ± 0.37 19.0 ± 0.37 19.0 ± 0.35
votes84 4.76 ± 0.14 4.76 ± 0.14 4.07 ± 0.14 5.29 ± 0.15

(results that are as significant as the best ones are marked in bold)

The three algorithms, AdaBoost-Stump, SVM-Mid, and SVM-Stump, gen-
erate three different kinds of ensembles. AdaBoost-Stump produces finite and
sparse ensembles, SVM-Mid produces finite but nonsparse ensembles, and SVM-
Stump produces infinite and nonsparse ensembles. Interestingly, SVM-Mid often
performs better than AdaBoost-Stump, too. This indicates that a nonsparse
ensemble, introduced by the �2-norm objective function, may be better than a
sparse one. We further illustrate this by a simplified experiment. In Fig. 2 we
show the decision boundaries generated by the three algorithms on 300 training
examples from the 2-D version of the twonorm dataset. AdaBoost-Stump per-
forms similarly with T = 100 or T = 1000. Hence only the former is shown. The
Bayes optimal decision boundary is the line (x)1 + (x)2 = 0. We can see that
SVM-Stump produces a decision boundary close to the optimal, SVM-Mid is
slightly worse, and AdaBoost-Stump fails to generate a decent boundary. SVM-
Stump obtains the smooth boundary by averaging over infinitely many decision
stumps. SVM-Mid, although using finite number of decision stumps, can still
have a smooth boundary in the center area by constructing a nonsparse ensem-
ble. However, AdaBoost-Stump, which produces a finite and sparse ensemble,
does not have the ability to approximate the Bayes optimal boundary well.

Although sparsity is often considered beneficial in learning paradigms like
Occam’s razor, a sparse classifier is not always good. In our case, because the
decision stumps are very simple, a general dataset would require many of them
to describe a suitable decision boundary. Thus, AdaBoost would suffer from the
finite choice of middle stumps, the sparsity introduced by the �1-norm, and the
approximation by T iterations. The comparison between AdaBoost-Stump and
SVM-Mid indicates that the second restriction could be crucial. On the other
hand, our framework (SVM-Stump), which does not have all those restrictions,
has an advantage by averaging over an infinite number of hypotheses.
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Fig. 2. Decision boundaries of SVM-Stump (left), SVM-Mid (middle), and AdaBoost-
Stump with T = 100 (right) on a 2-D twonorm dataset

Table 2. Test error (%) of SVM with different kernels

dataset SVM-Stump SVM-Gauss dataset SVM-Stump SVM-Gauss
twonorm 2.86 ± 0.04 2.64 ± 0.05 twonorm-n 3.08 ± 0.06 2.86 ± 0.07
threenorm 17.7 ± 0.10 14.6 ± 0.11 threenorm-n 19.0 ± 0.14 15.6 ± 0.15
ringnorm 3.97 ± 0.07 1.78 ± 0.04 ringnorm-n 5.56 ± 0.11 2.05 ± 0.07
australian 14.5 ± 0.21 14.7 ± 0.18 breast 3.11 ± 0.08 3.53 ± 0.09
german 24.7 ± 0.18 24.5 ± 0.21 heart 16.4 ± 0.27 17.5 ± 0.31
ionosphere 8.13 ± 0.17 6.54 ± 0.19 pima 24.2 ± 0.23 23.5 ± 0.19
sonar 16.6 ± 0.42 15.5 ± 0.50 votes84 4.76 ± 0.14 4.62 ± 0.14

(results that are as significant as the best one are marked in bold)

5.2 Comparison to Gaussian Kernel

To further test the performance of the stump kernel in practice, we compare
SVM-Stump with a popular and powerful setting, SVM-Gauss. Table 2 shows
the test errors of them. From the table, SVM-Stump could have comparable
yet slightly worse performance. However, the stump kernel has the advantage of
faster parameter selection because scaling the stump kernel is equivalent to scal-
ing the soft-margin parameter C. Thus, only a simple parameter search on C is
necessary. For example, in our experiments, SVM-Gauss involves solving 550 op-
timization problems using different parameters, but we only need to deal with 55
problems for SVM-Stump. None of the commonly-used nonlinear SVM kernel
can do fast parameter selection like the stump kernel. With the comparable per-
formance, when time is a big concern, SVM-Stump could be a first-hand choice.

6 Conclusion

We proposed a framework to construct ensemble classifiers that average over an
infinite number of base hypotheses. This is achieved with SVM by embedding
infinitely many hypotheses in an SVM kernel. In contrast to ensemble learning
algorithms like AdaBoost, our framework inherits the profound generalization
performance from the soft-margin SVM, and would generate infinite and non-
sparse ensembles, which are usually more robust than sparse ones.
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We demonstrated our framework with decision stumps and obtained the
stump kernel, which is novel and useful. Experimental comparisons with Ada-
Boost showed that SVM with the stump kernel usually performs much better
than AdaBoost with stumps. Therefore, existing applications that use AdaBoost
with stumps may be improved by switching to SVM with the stump kernel. In
addition, we can benefit from the property of fast parameter selection when us-
ing the stump kernel. The property makes the kernel favorable to the Gaussian
kernel in the case of large datasets.

Acknowledgment

We thank Yaser Abu-Mostafa, Amrit Pratap, Kai-Min Chung, and the anony-
mous reviewers for valuable suggestions. This work has been mainly supported
by the Caltech Center for Neuromorphic Systems Engineering under the US
NSF Cooperative Agreement EEC-9402726. Ling Li is currently sponsored by
the Caltech SISL graduate Fellowship.

References

1. Freund, Y., Schapire, R.E.: Experiments with a new boosting algorithm. In:
Machine Learning: Proceedings of the Thirteenth International Conference. (1996)
148–156

2. Rosset, S., Zhu, J., Hastie, T.: Boosting as a regularized path to a maximum
margin classifier. Journal of Machine Learning Research 5 (2004) 941–973

3. Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning
and an application to boosting. Journal of Computer and System Sciences 55
(1997) 119–139

4. Vapnik, V.N.: Statistical Learning Theory. John Wiley & Sons, New York (1998)
5. Lin, H.T.: Infinite ensemble learning with support vector machines. Master’s thesis,

California Institute of Technology (2005)
6. Schölkopf, B., Smola, A.: Learning with Kernels. MIT Press, Cambridge, MA

(2002)
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A Kernel Between Unordered Sets of Data:
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Abstract. In this paper, we present a new kernel for unordered sets of
data of the same type. It works by first fitting a set with a Gaussian
mixture, then evaluate an efficient kernel on the two fitted Gaussian
mixtures. Furthermore, we show that this kernel can be extended to sets
embedded in a feature space implicitly defined by another kernel, where
Gaussian mixtures are fitted with the kernelized EM algorithm [6], and
the kernel for Gaussian mixtures are modified to use the outputs from
the kernelized EM. All computation depends on data only through their
inner products as evaluations of the base kernel. The kernel is computable
in closed form, and being able to work in a feature space improves its
flexibility and applicability. Its performance is evaluated in experiments
on both synthesized and real data.

1 Introduction

Kernel methods received attention originally as a “trick” to introduce non-
linearity into the support vector machines (SVM) [20]. Evaluating a kernel func-
tion between two data is equivalent to computing the inner product of their
images in a non-linearly mapped Hilbert space (the feature space). It is realized
later that kernel methods are more general: similar to SVMs, many other linear
algorithms also depend on data through their inner products. By substituting the
inner products with kernel evaluations, these linear algorithms assume power to
discover non-linear patterns in data [18]. Recent years have seen significant devel-
opment in “kernelizing” existing algorithms, examples include kernel PCA [15],
kernel FLD [14] and kernel k-means [1]. The kernelized algorithms inherit the
innate stability of their linear ancestors, thus largely reduce the possibility of
over-fitting the training data.

One important advantage of the kernel methods [18] is that they enable
algorithms originally designed for vectors of finite dimensions (e.g., PCA, FLD
or SVM) to work with discrete, structured or infinite dimensional data types,
such as strings [21], statistical manifolds [7] and graphs [11]. With properly
designed kernels, these data types are implicitly embedded into a vector space
and lend themselves to kernel-based algorithms.

In this paper, we present a kernel for unordered sets of data of the same type,
which are useful data models in many applications. For instance, in document
categorization, documents are usually represented as “bag-of-words”, which are

J. Gama et al. (Eds.): ECML 2005, LNAI 3720, pp. 255–267, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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unordered set of key words. Images can also be treated as “bag-of-tuples”, where
the element is the tuple of the position and intensity of a pixel in an image[8].
Instead of directly defining a kernel between two sets, we take the methodology of
first modeling each set probabilistically, and then constructing a kernel between
the two probabilistic models. More specifically, each set is treated as a collection
of i.i.d. samples from an unknown probability distribution, whose probability
density function (pdf) is taken from a parametric family. The kernel between
two sets is thus computed as evaluating a kernel between the two pdfs. In this
paper, we employ Gaussian mixtures to model the generating pdf of a vector set.
On the two estimated Gaussian mixtures, the (normalized) expected likelihood
kernel is evaluated, which affords an efficient computation without integration.
Furthermore, the Gaussian mixture fitting and kernel evaluation are extended
to a feature space implicitly defined by another kernel. The proposed method is
evaluated on both synthesized and real data sets.

2 Kernel Function and Kernel-Induced Feature Space

Given an input space X , a kernel K is a function K(x, z) = 〈φ(x), φ(z)〉H for
any x, z ∈ X , where φ is a mapping from X to a Hilbert space H (the feature
space), and 〈·, ·〉H is the inner product operator in H [18]. Admissible kernel
can be specified without implicit reference to H or φ with the finite positive
definite property: any real-valued symmetric binary function on X is a kernel if
it satisfies the finite positive definite property:

m∑
i,j=1

cicjK(xi, xj) ≥ 0

for any m ∈ N, any subset {x1, · · · , xm} of X and any choice of real num-
bers c1, · · · , cm. Equivalently, the finite positive definite property can be ex-
pressed as that the matrix formed by restricting the kernel function on any
finite subset of X is positive semi-definite. There is an equivalence between
a kernel function K(·, ·) and a corresponding kernel-induced feature space H:
any admissible kernel function also ensures the existence of a feature space and
vice versa.

3 The Gaussian Mixture Model

We consider unordered sets of d-dimensional vectors, χ = {x1, · · · , xN}. One
can model the data in χ as i.i.d samples from a multivariate Gaussian distri-
bution G(x;μ,C) = 1

(2π)
d
2 |C| 12

exp(− 1
2 (x − μ)TC−1(x − μ)), parameterized by

the mean μ and the covariance matrix, C. Parameters μ and C are estimated
from data with the sample mean μ̄ = 1

N

∑N
i=1 xi and the empirical covariance

matrix C̄ = 1
N−1

∑N
i=1(xi−μ̄)(xi−μ̄)T , respectively. Major advantages of Gaus-

sian is simplicity. However, a Gaussian cannot model a multi-modal distribution,
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which usually is the case in practice. In this aspect, a Gaussian mixture has much
more modeling flexibility. A finite Gaussian mixture is defined as:

p(x) =
M∑

k=1

αkG(x;μk, Ck), (1)

where M ∈ N is the number of components, α1, · · · , αM are the mixing coeffi-
cients satisfying

∑M
k=1 αk = 1 and αi ≥ 0 for i = 1, · · ·M . Parameters μk and Ck

are the mean and covariance of each Gaussian in the mixture. It can be shown
that [16] with a sufficient number of components, any probability density can be
approximated to any degree by a Gaussian mixture.

The parameters in a Gaussian mixture, the mixing coefficients, α1, · · · , αM ,
the mean and covariance of each component, μ1, · · · , μM and C1, · · · , CM , can
be estimated from set χ with the expectation-maximization (EM) algorithm [2],
given that the number of components M is known. Starting from initial values
of these parameters, the EM algorithm proceeds by executing the following steps
until convergence,

pk(i) =
αkG(xi;μk, Ck)∑M
j=1 αjG(xi;μj , Cj)

for i = 1, · · · , N, k = 1, · · · ,M (2)

αk = 1
N

∑N
i=1 pk(i), for k = 1, · · · ,M (3)

μk =
∑N

i=1 xipk(i)∑N
i=1 pk(i)

, for k = 1, · · · ,M (4)

Ck =
∑N

i=1(xi − μk)(xi − μk)T pk(i)∑N
i=1 pk(i)

, for k = 1, · · · ,M. (5)

The EM algorithm guarantees to converge within finite steps to a local maximum
of the log-likelihood function of the parameters given data χ. More details of the
EM estimation for Gaussian mixtures can be found in [2].

4 Kernels Between Sets of Vectors

A kernel function for unordered sets of d-dimensional vectors, χ = {x1, · · · , xN},
can be built from the probabilistic modeling of the set. Specifically, each set
can be treated as a collection of i.i.d. samples from a probability distribution,
whose density function (pdf) is approximated with a parametric family P . A
kernel between the estimated two pdfs can be defined and used as the kernel
between the two sets. With the estimated pdfs, generally, any similarity mea-
sures between two pdfs, such as the Jensen-Shannon divergence, Kullback-Leibler
divergence or the χ2 distance, can be used to construct kernels between two
pdfs [5]. The problem is that such measures may not be efficiently computable,
especially in high-dimensional data spaces. In a related work [10], P was cho-
sen as the multivariate Gaussian distributions. Then the Bhattacharyya kernel,
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KB(p, q) =
∫
X
√
p(x)

√
q(x)dx, was computed between the two Gaussian dis-

tributions. This kernel is a special case of the more general class of probabil-
ity product kernels [9], which is defined as KPP (p, q) =

∫
X p(x)

ρq(x)ρdx, with
ρ = 1/2. For pdfs in the exponential family (multivariate Gaussian as a special
case), the probability product kernels can be computed efficiently without inte-
gration. However, when the two distributions are Gaussian mixtures, the general
probability product kernels do not give rise to efficient evaluation, as numerical
integration can not be avoided.

5 Expected Likelihood Kernel Between Gaussian
Mixtures

In this work, we employ the expected likelihood kernel between the two esti-
mated Gaussian mixtures, as the results of running the EM algorithm on the
two unordered sets of d-dimensional vectors. The expected likelihood kernel is
defined as:

KEL(p, q) =
∫
X
p(x)q(x)dx, (6)

which is seen to be a special case of the probability product kernel with ρ = 1. As
formally stated in the following theorem, the expected likelihood kernel affords
an efficient computation for Gaussian mixtures.

Theorem 1. For two Gaussian mixtures of d dimensional real random vectors,

p(x) =
∑M1

k=1α
(1)

k G(x;μ(1)

k , C(1)

k ) and q(x) =
∑M2

k=1α
(2)

k G(x;μ(2)

k , C(2)

k ),

the expected likelihood kernel, Eq.(6), is computed as

KEL(p, q) = (2π)−
d
2αTΓβ,

for α = (α(1)
1 , · · · , α(1)

M1
)T and β = (α(2)

1 , · · · , α(2)

M2
)T . The M1 ×M2 matrix Γ is

formed as (Γ )ij = g(μ(1)
i , C(1)

i , μ(2)
j , C(2)

j ), where function g is defined as:

g (μ1, C1, μ2, C2) =
|C| 12 exp(1

2μ
TCμ)∏2

i=1 |Ci|
1
2 exp(1

2μi
TCi

−1μi)
, (7)

with μ = C1
−1μ1 + C2

−1μ2 and C =
(
C1

−1 + C2
−1)−1

.

Proof. First, the integration of the product of two Gaussians, G(x;μ1, C1) and
G(x;μ2, C2), is computed as [17]:∫

Rd

G(x;μ1, C1)×G(x;μ2, C2)dx = (2π)−
d
2 g (μ1, C1, μ2, C2) . (8)
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Substituting Eq.(8) into Eq.(6) and interchange the order of addition and mul-
tiplication (using Fubini’s theorem) yields∫

Rd

p(x)q(x)dx =
∫

Rd

M1∑
i=1

α(1)
i G(x;μ(1)

i , C(1)
i )×

M2∑
j=1

α(2)
j G(x;μ(2)

j , C(2)
j )dx

=
M1∑
i=1

M2∑
j=1

α(1)
i α(2)

j

∫
Rd

G(x;μ(1)
i , C(1)

i )×G(x;μ(2)
j , C(2)

j )dx

=
M1∑
i=1

M2∑
j=1

α(1)
i α(2)

j (2π)−
d
2 g
(
μ(1)

i , C(1)
i , μ(2)

j , C(2)
j

)
= (2π)−

d
2αTΓβ.

Theorem 1 shows that one can evaluate the expected likelihood kernel on two
Gaussian mixtures in closed-form without integration. The kernel can further
be made independent of the dimensionality of data, if we use its normalization:
KNEL(p, q) = KEL(p,q)√

KEL(p,p)
√

KEL(q,q)
, which can be shown to be an admissible ker-

nel function. This property is essential when we extend to Gaussian mixtures
estimated in a kernel-induced feature space, where the dimensionality of the data
is usually not known.

6 Kernels Between Sets in Feature Space

The expected likelihood kernel evaluation for unordered sets can be extended
to data in a feature space implicitly defined by another base kernel κ. This is
the case when the sets contain non-vectorial data, the base kernel is used to
implicitly map them into a vector space. For vectors, such implicit nonlinear
mapping is also desirable when nonlinear data patterns are sought. Our basic
methodology stays the same: Gaussian mixtures are first fitted to data sets and
the (normalized) expected likelihood kernel is evaluated between the two fitted
Gaussian mixtures. What differs is that all steps are implicitly performed in a
feature space.

Working in a feature space poses two fundamental difficulties for the kernel
evaluation described in Section 5. First, we may not fully recover a Gaussian in
a feature space from a finite set. This is especially true when the dimension of
the feature space is larger than the number of data in the set - only the partial
covariance of each Gaussian restricted in the subspace spanned by the data (with
a rank up to the size of the set) can be recovered. Another difficulty is that we
usually do not have direct access to individual data except their inner products,
computed with the evaluation of the base kernel. This renders the EM algorithm
and the evaluation of the expected likelihood kernel not directly applicable: the
estimation of the mean and covariance of each Gaussian (Eq.(4) and (5)) depend
on individual data.

In face of these problems, the kernel evaluation is modified in the following as-
pects. First, in both the EM algorithm and the kernel evaluation, in lieu of the de-
terminants and inverses of the full covariance matrices, the pseudo-determinants
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and pseudo-inverse [3] of the partial rank-deficient covariance matrix are used
to avoid recovering the full covariance matrices. The pseudo-determinant of a
matrix is the product of all its non-zero singular values1 and its pseudo-inverse is
obtained by inverting all nonzero singular values in its singular value decompo-
sition. A property of the pseudo-determinant and pseudo-inverse important for
the computation hereafter is Lemma 1. Due to limit of space, its is not presented
here and can be found in the longer version of this paper [13].

Lemma 1. If C = XRRTXT , and R and XTX are invertible, then we have

d(C) = |R̃TXTXR̃| and C† = XR̃R̃TXT ,

where R̃ = (RTXTX)−1 and † is the pseudo-inverse operator.

Another change is that both the EM algorithm and the (normalized) expected
likelihood kernel are reformulated to depends only on base kernel evaluation.
Specifically, the Gaussian mixtures are fitted with a variant of the kernelized
EM [6] and the evaluation of the (normalized) expected likelihood kernel is
modified to use the outputs of the kernelized EM.

To avoid clumsiness in notation, hereafter in this section we still describe
the reformulated algorithms in a vector space, bearing in mind that the inner
products of these vectors will be replaced with evaluations of the base kernel
in the feather space. Specifically, each datum is represented as a column vector,
and a data set χ = {x1, · · · , xN} is a matrix X = [x1, · · · , xN ] ∈ Rd×N . For two
different data sets, X1 and X2, their inner product matrix XT

1 X2 contains inner
products between all pairs of data from the two sets.

6.1 Kernelized EM

To make the EM algorithm, Eq.(2)-(5), depend on inner products of data while
being independent of individual data, we view it from an alternative perspective.
Rewriting Eq.(4) and (5), the updating steps of the mean and covariance of each
Gaussian in the mixture become

μk =
∑N

i=1xiwk(i), (9)

Ck =
∑N

i=1(xi − μk)(xi − μk)Twk(i), (10)

for k = 1, · · · ,M , where wk(i) = pk(i)∑
N
i=1 pk(i)

is the weight associated with each

Gaussian component and each datum in the set. Denote wk=[wk(1),· · ·, wk(N)]T .
Eq.(9) and (10) can be rewritten more compactly as:

μk = Xwk, (11)
Ck = X(IN − wk1N

T ) diag(wk)(IN − 1Nw
T
k )XT . (12)

1 More formally, d(C) =
∏n

i=1(λi + 1 − sign(λi)2) where λi is the singular value of
matrix C and sign(x) = 1 for positive x, and 0 for x = 0 and −1 for negative x.
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where IN is the N × N identity matrix and 1N is the N -dimensional column
vector with all 1s. Operator diag(·) outputs a diagonal matrix whose diagonal
is set to the input vector. Modulo to the data matrix X , the estimated mean
and covariance of each Gaussian in the mixture are fully determined by weights
wk. EM can then be viewed as iteratively updating these weights in a boot-
strapping fashion.

To update weights wk, it is sufficient to compute pk(i) with Eq.(2). In a
feature space, as suggested previously, the updating step is modified to use
the pseudo-determinant and pseudo-inverse of the partial covariance mat-
rices as:

pk(i) =
αkd(Ck)−

1
2 exp

(
− 1

2 (xi − μk)TC†
k(xi − μk)

)
∑m

j=1 αjd(Cj)−
1
2 exp

(
− 1

2 (xi − μj)TC†
j (xi − μj)

) . (13)

The key step in updating pk(i) and hence wk is to compute d(Ck) and (xi −
μk)TC†

k(xi − μk) for each data in the set and each Gaussian component. Ac-
cording to Lemma 1, the pseudo-determinant and pseudo-inverse of the partial
covariance matrix Ck can be computed as:

d(Ck) = |RT
k X

TXRk| (14)

C†
k = XRkR

T
k X

T (15)

where the N ×N matrix Rk is

Rk =
[
(IN − wk1N

T )
√

diag(wk)XTX
]−1

, (16)

with the square root computed component-wisely. Accordingly, d(Ck) is com-
puted from Eq.(14) and (16). With Eq.(15), term (xi − μk)TC†

k(xi − μk) is
evaluated as

(xi − μk)TC†
k(xi − μk) = (xi −Xwk)TXRkR

T
k X

T (xi −Xwk)
= ‖RkX

TX(δi − wk)‖2, (17)

where δi is the N -dimensional column vector of all zeros except the i-th com-
ponent being 1. ‖ · ‖ is the 2-norm of a vector. Note that no direct dependence
on individual data or the data matrix appears in these computations. Matrix
XTX is formed by inner products between each pair of data in X and is com-
puted from evaluating the kernel matrix of κ on the input data set in the feature
space.

In summarizing words, with initial values, the kernelized EM algorithm2

proceeds by running the following steps until convergence

2 The algorithm described here is in the same spirit as the original kernelized EM
algorithm [6], differing in notations and the relaxed requirement of only recovering
partial covariances.
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– step 1: compute pk with Eq.(17), (14) and (13);
– step 2: update weights wk as wk(i) = pk(i)∑N

i=1 pk(i) ;
– step 3: update mixing coefficients αk with Eq.(3);
– step 4: compute Rk with Eq.(16);

At the completion of the kernelized EM algorithm, the mixing coefficients αk,
vector wk and matrix Rk

3 are output for each Gaussian in the mixture. It is
from these outputs that the (normalized) expected likelihood kernel is evaluated
in the feature space.

6.2 Kernel Evaluation

In the feature space, the expected likelihood kernel (and its normalization) is
computed as in Theorem 1 with slight changes. First, the constant factor in
the expected likelihood kernel is dropped, to yield K̃EL(p, q) = αT M̃β on two
Gaussian mixtures p and q. Denote X1 and X2 as the data matrices for the two
mixtures. Vector α and β contains the mixing coefficients for p and q respectively.
Matrix M̃ is formed as (M̃)ij = g̃(μ(1)

i , C(1)
i , μ(2)

j , C(2)
j ) for each pair of Gaussians

from the two mixtures. Function g̃ is defined as:

g̃ (μ1, C1, μ2, C2) =
d(C)

1
2 exp(1

2μ
TCμ)∏2

i=1 d(Ck)
1
2 exp(1

2μk
TCk

†μk)
, (18)

with μ = C1
†μ1+C2

†μ2 and C =
(
C1

† + C†
2

)†
, which is computed in four steps.

Compute d(Ck): From the outputs of the kernelized EM algorithm, d(Ck) is
computed with Rk and Eq.(14) as d(Ck) = |RT

k X
TXRk|, for k = 1, 2.

Compute μk
TCk

†μk: With Rk, Eq.(9) and (14), term μk
TCk

†μk is computed
as:

μk
TCk

†μk = wT
k X

T
k XkRkR

T
k X

T
k Xkwk = ‖RT

kX
T
k Xkwk‖2 (19)

for k = 1, 2.

Compute d(C): With C†
k = XkRkR

T
k X

T
k for k = 1, 2, we then have

C†
1 + C†

2 = X1R1R
T
1 X

T
1 +X2R2R

T
2 X

T
2 = [X1 X2]

[
R1 0
0 R2

] [
RT

1 0
0 RT

2

] [
XT

1
XT

2

]
.

Now denote

R =
([

RT
1 0
0 RT

2

] [
XT

1 X1 X
T
1 X2

XT
2 X1 X

T
2 X2

])−1

=
[
RT

1 X
T
1 X1 R

T
1 X

T
1 X2

RT
2 X

T
2 X1 R

T
2 X

T
2 X2

]−1

(20)

and with Lemma 1, it holds that
3 Note it is not necessary to output Rk as it can be computed from wk with Eq.(16).

However, it facilitates the evaluation of the kernel in next section.
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C =
(
C1

† + C†
2

)†
= [X1 X2]RRT

[
XT

1
XT

2

]
, (21)

from which d(C) is computed as

d(C) =
∣∣∣∣RT

[
XT

1 X1 X
T
1 X2

XT
2 X1 X

T
2 X2

]
R

∣∣∣∣ (22)

Compute μTCμ: Since we have μ = C†
1μ1 + C†

2μ2, expanding μTCμ yields

μTCμ = (C†
1μ1 + C†

2μ2)TC(C†
1μ1 + C†

2μ2) =
∑

i,j∈{1,2}
μT

i C
†
i

T
CC†

jμj . (23)

Each term in the sum can be further expanded with μk = Xkwk and C†
k =

XkRkR
T
k X

T
k for k = 1, 2, as:

μT
i C

†
i

T
CC†

jμj = wT
i X

T
i XiRiR

T
i X

T
i [X1 X2]RRT

[
XT

1
XT

2

]
XjRjR

T
j X

T
j Xjwj

= wT
i X

T
i XiRiR

T
i [XT

i X1 X
T
i X2]RRT

[
XT

1 Xj

XT
2 Xj

]
RjR

T
j X

T
j Xjwj . (24)

All the above steps depend on data only through their inner products. Thus
replacing these inner products with base kernel evaluations lead to computing
function g̃ in the feature space with base kernel evaluations. Subsequently, the
modified (normalized) expected likelihood kernel can also be computed based on
kernel κ. Combining with the kernelized EM algorithm, this yields a kernel for
unordered sets in the feature space.

7 Experiments

In this section, experimental results empirically evaluating the proposed kernel
with other works are presented. The experiments were conducted on both syn-
thesized and real data sets. In all experiments, the proposed kernel was coupled
with SVM classifiers. Our SVM classifiers were implemented based on package
LIBSVM [4] and were enhanced to work with kernels between sets. A simple
multi-class classification protocol, a one-versus-the-rest scheme in training and
a winner-takes-all strategy in testing was employed in classification.

7.1 Synthesized Data

Our synthesized data were 1, 000 sets of 5-D vectors of sizes ranging from 80 to
250 , each of which were random samples of one of the four different 5-D Gaussian
mixtures with five components. All data sets were categorized into four different
classes based on the Gaussian mixtures they were generated from. 700 out of the
1, 000 samples were used for training and the rest for testing. For a base of compar-
ison, an SVM classifier with an RBF kernel KRBF (x, z) = exp(− ‖x−z‖2

σ2 ) on 5-D
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vectors was trained. Each vector inherited class label of the set to which it belongs.
The classification of a set was the result of a majority vote with the projected class
labels of all its members. As no consideration is given to the correlation within a
set, this plain RBF kernel did not perform well, as evident from Figure 7(a).

Another SVM classifier with a kernel between unordered sets as described
in [10] was also compared, where a Gaussian was fitted to each set and the
Bhattacharyya kernel KB(p, q) =

∫
X
√
p(x)

√
q(x)dx was evaluated on the two

fitted Gaussians. For pdfs in the exponential family (Gaussian as a special case)
it has been shown that the Bhattacharyya kernel afford a close-form evalua-
tion [10]. However, for Gaussian mixtures with more than one components, the
Bhattacharyya kernel loses that advantage, as the integration is not able to be
removed. As shown in Figure 7(a), the Bhattacharyya kernel achieved a better
performance than the simple RBF kernel. The improvement is most probably
due to the better data modeling with a Gaussian fitting.

However, it is the normalized expected likelihood kernel with a proper num-
ber of components in the estimated Gaussian mixture (M = 5) that achieved the
best overall performance, due to the more precise data modeling with Gaussian
mixtures. For the other choices of component number M, with single component
Gaussian mixture fitting, the normalized expected likelihood kernel is similar to
the Bhattacharyya kernel (without the square root in the definition), which is
reflected in their similar performance. For Gaussian mixtures with fewer compo-
nents than the ground truth (as in the case of M = 3), the performance is not
uniformly better than the base line case with M = 1. On the other hand, using
more mixture components (e.g., M = 7) did not achieve significant improve-
ment in performance yet the computational effort was increased. This bears
the question of how to know the number of components in advance, as the
EM can not be used to find it. Empirically, The number of components can
be found by cross-validation. A more systematic approach is to use techniques
that can automatically determine the number of components need on a data
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Fig. 1. Performance of the normalized expected likelihood kernel on the testing set for
(a) synthesized data and (b) MNIST handwritten digit image dataset. Solid lines are for
the Gaussian mixture with normalized expected likelihood kernel. Dashed lines are for
the Bhattacharyya kernel.
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set (e.g., [19]) and is left for future study. Also, in this experiment, for sim-
plicity we fitted the same number of Gaussians to all sets. It is straightforward
to extend to fitting Gaussian mixtures with different number of components to
different sets.

7.2 Handwritten Digits Recognition

Our real data were a small subset of handwritten digit images. Specifically, we
randomly chose 100 images for each of the 10 handwritten digit from the MNIST
database [12], with 700 for training and the rest for testing. Similar to [10], each
image was transformed to a set by sampling pixels with intensity greater than
191 on a 0 to 255 scale. The coordinates of these sampled pixel along with
their intensities were presented to the algorithm. From each image, a set of size
ranging from 50 to 108 with an average of 72 was obtained. Using a small sub-
set of pixels is to avoid inverting a large inner product matrix, which is the
most time consuming step in the kernel evaluation. Anticipating nonlinearity
in data modeling, we chose an RBF kernel as the base kernel to nonlinearly
map the 3-D tuples in each set into a feature space. To simplify the training
process, we avoided extensive tuning of the parameter in the base kernel and
in all cases the RBF kernel was set to have a width of σ = 0.1. The results
were the average over 100 random splits of the training/testing splits of all the
images chosen.

We trained again different SVM classifiers and their performances are shown in
Figure 7(b). As in the case of the synthesized data, a simple RBF kernel led to the
most inferior performance. However, the Bhattacharyya kernel with a RBF base
kernel and the normalized expected likelihood kernel with a one-component Gaus-
sian mixture modeling did not introduce much improvement, as a single Gaussian
is not sufficient to model the generating probability distributions of these data sets.
We then tested the normalized expected likelihood kernel with different number of
mixture components (M = 3 and 5). Compared to other kernels, they achieved a
substantial improvement in performance. Contrary to the previous case, it seems
that the specific number of mixture components is somehow irrelevant in this case,
as using 3 and 5 components did not result in significant difference in performance.
We also observed that classification was relatively stable with regards to the regu-
larization factor in the SVM classification.

8 Discussion

In this paper, we present a kernel between two unordered sets of data of the
same type. Each set is first fitted with a Gaussian mixture. Then the expected
likelihood kernel is evaluated between the two estimated Gaussian mixtures.
Furthermore, this kernel function can be extended to cases when the data are in
an implicitly defined feature space. The performance of this kernel is evaluated on
both synthesized and real data sets. One drawback of the proposed algorithm,
however, is running efficiency. Evaluating the kernel is quadratic in running
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time, which can be prohibitive in case of large data sets. We are working on
approximation algorithms that achieve fast running time. Also, we are working
on incorporating techniques that can automatically determine the number of
components in a Gaussian mixture estimation.
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Abstract. Active selection of good training examples is an important approach
to reducing data-collection costs in machine learning; however, most existing
methods focus on maximizing classification accuracy. In many applications, such
as those with unequal misclassification costs, producing good class probability
estimates (CPEs) is more important than optimizing classification accuracy. We
introduce novel approaches to active learning based on the algorithms Bootstrap-
LV and ACTIVEDECORATE, by using Jensen-Shannon divergence (a similar-
ity measure for probability distributions) to improve sample selection for opti-
mizing CPEs. Comprehensive experimental results demonstrate the benefits of
our approaches.

1 Introduction

Many supervised learning applications require more than a simple classification of in-
stances. Often, also having accurate Class Probability Estimates (CPEs) is critical for
the task. Class probability estimation is a fundamental concept used in a variety of ap-
plications including marketing, fraud detection and credit ranking. For example, in di-
rect marketing the probability that each customer would purchase an item is employed
in order to optimize marketing budget expenditure. Similarly, in credit scoring, class
probabilities are used to estimate the utility of various courses of actions, such as the
profitability of denying or approving a credit application. While prediction accuracy of
CPE improves with the availability of more labeled examples, acquiring labeled data
is sometimes costly. For example, customers’ preferences may be induced from cus-
tomers’ responses to offerings; but solicitations made to acquire customer responses
(labels) may be costly, because unwanted solicitations can result in negative customer
attitudes. It is therefore critical to reduce the number of label acquisitions necessary to
obtain a desired prediction accuracy.

The active learning literature [1] offers several algorithms for cost-effective label
acquisitions. Active learners acquire training data incrementally, using the model in-
duced from the available labeled examples to identify helpful additional training exam-
ples for labeling. Different active learning approaches employ different utility scores to
estimate how informative each unlabeled example is, if it is labeled and added to the
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training data. When successful, active learning methods reduce the number of instances
that must be labeled to achieve a particular level of accuracy. Almost all work in active
learning has focused on acquisition policies for inducing accurate classification mod-
els and thus are aimed at improving classification accuracy. Although active learning
algorithms for classification can be applied for learning accurate CPEs, they may not
be optimal. Active learning algorithms for classification may (and indeed should) avoid
acquisitions that can improve CPEs but are not likely to impact classification. Accurate
classification only requires that the model accurately assigns the highest CPE to the
correct class, even if the CPEs across classes may be inaccurate. Therefore, to perform
well, active learning methods for classification ought to acquire labels of examples that
are likely to change the rank-order of the most likely class. To improve CPEs, however,
it is necessary to identify potential acquisitions that would improve the CPE accuracy,
regardless of the implications for classification accuracy. Bootstrap-LV [2] is an active
learning approach designed specifically to improve CPEs for binary class problems. The
method acquires labels for examples for which the current model exhibits high variance
for its CPEs. BOOTSTRAP-LV was shown to significantly reduce the number of label
acquisitions required to achieve a given CPE accuracy compared to random acquisitions
and existing active learning approaches for classification.

In this paper, we propose two new active learning approaches. In contrast to
BOOTSTRAP-LV, the methods we propose can be applied to acquire labels to im-
prove the CPEs of an arbitrary number of classes. The two methods differ by
the measures each employs to identify informative examples: the first approach,
BOOTSTRAP-JS, employs the Jensen-Shannon divergence measure (JSD) [3]. The
second approach, BOOTSTRAP-LV-EXT, uses a measure of variance inspired by the
local variance proposed in BOOTSTRAP-LV. We demonstrate that for binary class
problems,BOOTSTRAP-JS is at least comparable and often superior to BOOTSTRAP-
LV. In addition, we establish that for multi-class problems, BOOTSTRAP-JS and
BOOTSTRAP-LV-EXT identify particularly informative examples that significantly im-
prove the CPEs compared to a strategy in which a representative set of examples are ac-
quired uniformly at random. This paper also extends the work of Melville and Mooney
[4], which introduced a method, ACTIVEDECORATE, for active learning for classifica-
tion. They compared two measures for evaluating the utility of examples - label margins
and JSD. The results showed that both measures are effective for improving classi-
fication accuracy, though JSD is less effective than margins. It was conjectured that
JSD would be a particularly useful measure when the objective is improving CPEs. We
demonstrate here that, for the task of active learning for CPE, ACTIVEDECORATE using
JSD indeed performs significantly better than using margins.

2 Jensen-Shannon Divergence

Jensen-Shannon divergence (JSD) is a measure of the “distance” between two prob-
ability distributions [3] which can also be generalized to measure the distance (simi-
larity) between a finite number of distributions [5]. JSD is a natural extension of the
Kullback-Leibler divergence (KLD) to a set of distributions. KLD is defined between
two distributions, and the JSD of a set of distributions is the average KLD of each
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distribution to the mean of the set. Unlike KLD, JSD is a true metric and is bounded.
If a classifier can provide a distribution of class membership probabilities for a given
example, then we can use JSD to compute a measure of similarity between the distri-
butions produced by a set (ensemble) of such classifiers. If Pi(x) is the class proba-
bility distribution given by the i-th classifier for the example x (which we will abbre-
viate as Pi) we can then compute the JSD of a set of size n as JS(P1, P2, ..., Pn) =
H(
∑n

i=1 wiPi) −
∑n

i=1 wiH(Pi); where wi is the vote weight of the i-th classifier in
the set;1 and H(P ) is the Shannon entropy of the distribution P = {pj : j = 1, ...,K},
defined as H(P ) = −

∑K
j=1 pj log pj . Higher values for JSD indicate a greater spread

in the CPE distributions, and it is zero if and only if the distributions are identical. JSD
has been successfully used to measure the utility of examples in active learning for im-
proving classification accuracy [4]. A similar measure was also used for active learning
for text classification by McCallum and Nigam [6].

3 Bootstrap-LV and JSD

To the best of our knowledge, Bootstrap-LV [2] is the only active learning algorithm
designed for learning CPEs. It was shown to require significantly fewer training exam-
ples to achieve a given CPE accuracy compared to random sampling and uncertainty
sampling, which is an active learning method focused on classification accuracy [7].
Bootstrap-LV reduces CPE error by acquiring examples for which the current model
exhibits relatively high local variance (LV), i.e., the variance in CPE for a particular ex-
ample. A high LV for an unlabeled example indicates that the model’s estimation of its
class membership probabilities is likely to be erroneous, and the example is therefore
more desirable to be selected for learning.

Bootstrap-LV, as defined in [2] is only applicable to binary class problems. We
first provide the details of this method, and then describe how we extended it to solve
multi-class problems. Bootstrap-LV is an iterative algorithm that can be applied to any
base learner. At each iteration, we generate a set of n bootstrap samples [8] from
the training set, and apply the given learner L to each sample to generate n clas-
sifiers Ci : i = 1, ..., n. For each example in the unlabeled set U , we compute a
score which determines its probability of being selected, and which is proportional
to the variance of the CPEs. More specifically, the score for example xj is computed
as (

∑n
i=1 (pi(xj)− pj)2)/pj,min; where pi(xj) denotes the estimated probability the

classifier Ci assigns to the event that example xj belongs to class 0 (the choice of per-
forming the calculation for class 0 is arbitrary, since the variance for both classes is
identical), pj is the average estimate for class 0 across classifiers Ci, and pj,min is the
average probability estimate assigned to the minority class by the different classifiers.
Saar-Tsechansky and Provost [2] attempt to compensate for the under-representation of
the minority class by introducing the term pj,min in the utility score. The scores pro-
duced for the set of unlabeled examples are normalized to produce a distribution, and
then a subset of unlabeled examples are selected based on this distribution. The labels
for these examples are acquired and the process is repeated.

1 Our experiments use uniform vote weights, normalized to sum to one.
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The model’s CPE variance allows the identification of examples that can improve
CPE accuracy. However as noted above, the local variance estimated by Bootstrap-LV
captures the CPE variance of a single class and thus is not applicable to multi class
problems. Since we have a set of probability distributions for each example, we can
instead, use an information theoretic measure, such as JSD to measure the utility of
an example. The advantage to using JSD is that it is a theoretically well-motivated
distance measure for probability distributions [3] that can be therefore used to cap-
ture the uncertainty of the class distribution estimation; and furthermore, it naturally
extends to distributions over multiple classes. We propose a variation of BOOTSTRAP-
LV, where the utility score for each example is computed as the JSD of the CPEs
produced by the set of classifiers Ci. This approach, BOOTSTRAP-JS, is presented in
Algorithm 1.

Our second approach, BOOTSTRAP-LV-EXT, is inspired by the Local Variance con-
cept proposed in BOOTSTRAP-LV. For each example and for each class, the variance
in the prediction of the class probability across classifiers Ci, i = 1, ..., n is computed,
capturing the uncertainty of the CPE for this class. Subsequently, the utility score for
each potential acquisition is calculated as the mean variance across classes, reflect-
ing the average uncertainty in the estimations of all classes. Unlike BOOTSTRAP-LV,
BOOTSTRAP-LV-EXT does not incorporate the factor of pj,min in the score for multi-
class problems, as this is inappropriate in this scenario.

Algorithm 1. Bootstrap-JS
Given: set of training examples T , set of unlabeled training examples U , base learning algo-
rithm L, number of bootstrap samples n, size of each sample m

1. Repeat until stopping criterion is met
2. Generate n bootstrap samples Bi, i = 1, ..., n from T
3. Apply learner L to each sample Bi to produce classifier Ci

4. For each xj ∈ U
5. ∀Ci generate CPE distribution Pi(xj)
6. scorej = JS(P1, P2, ..., Pn)
7. ∀xj ∈ U, D(xj) = scorej/ j scorej

8. Sample a subset S of m examples from U based on the distribution D
9. Remove examples in S from U and add to T

10. Return C = L(T )

4 ActiveDecorate and JSD

ACTIVEDECORATE is an active learning method that selects examples to be labeled so
as to improve classification accuracy [4]. It is built on the Query by Committee (QBC)
framework for selective sampling [9]; and has been shown to outperform other QBC
approaches, Query by Bagging and Query by Boosting. ACTIVEDECORATE is based
on DECORATE [10,11], which is a recently introduced ensemble meta-learner that di-
rectly constructs diverse committees of classifiers by employing specially-constructed
artificial training examples.
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Given a pool of unlabeled examples, ACTIVEDECORATE iteratively selects exam-
ples to be labeled for training. In each iteration, it generates a committee of classifiers
by applying DECORATE to the currently labeled examples. Then it evaluates the poten-
tial utility of each example in the unlabeled set, and selects a subset of examples with
the highest expected utility. The labels for these examples are acquired and they are
transfered to the training set. The utility of an example is determined by some measure
of disagreement in the committee about its predicted label. Melville and Mooney [4]
compare two measures of utility for ACTIVEDECORATE— margins and JSD. Given
the CPEs predicted by the committee for an example,2 the margin is defined as the dif-
ference between the highest and second highest predicted probabilities. It was shown
that ACTIVEDECORATE using either measure of utility produces substantial error re-
ductions in classification compared to random sampling. However, in general, using
margins produces greater improvements. Using JSD tends to select examples that re-
duce the uncertainty in CPE, which indirectly helps to improve classification accuracy.
On the other hand, ACTIVEDECORATE using margins focuses more directly on de-
termining the decision boundary. This may account for its better classification perfor-
mance. It was conjectured that if the objective is improving CPEs, then JSD may be a
better measure.

In this paper, we validate this conjecture. In addition to using JSD, we made two
more changes to the original algorithm, each of which independently improved its per-
formance. First, each example in the unlabeled set is assigned a probability of being
sampled, which is proportional to the measure of utility for the example. Instead of se-
lecting the examples with the m highest utilities, we sample the unlabeled set based on
the assigned probabilities (as in BOOTSTRAP-LV). This sampling has been shown to
improve the selection mechanism as it reduces the probability of adding outliers to the
training data and avoids selecting many similar or identical examples [12].

The second change we made is in the DECORATE algorithm. DECORATE ensembles
are created iteratively; where in each iteration a new classifier is trained. If adding
this new classifier to the current ensemble increases the ensemble training error, then
this classifier is rejected, else it is added to the current ensemble. In previous work,
training error was evaluated using the 0/1 loss function; however, DECORATE can use
any loss (error) function. Since we are interested in improving CPE we experimented
with two alternate error functions — Mean Squared Error (MSE) and Area Under the
Lift Chart (AULC) (defined in the next section). Using MSE performed better on the
two metrics used, so we present these results in the rest of the paper. Our approach,
ACTIVEDECORATE-JS, is shown in Algorithm 2.

5 Experimental Evaluation

5.1 Methodology

To evaluate the performance of the different active CPE methods, we ran experiments
on 24 representative data sets from the UCI repository [13]. 12 of these datasets were

2 The CPEs for a committee are computed as the simple average of the CPEs produced by its
constituent classifiers.
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Algorithm 2. ActiveDecorate-JS
Given: set of training examples T , set of unlabeled training examples U , base learning algo-
rithm L, number of bootstrap samples n, size of each sample m

1. Repeat until stopping criterion is met
2. Generate an ensemble of classifiers, C∗ = Decorate(L, T, n)
3. For each xj ∈ U
4. ∀Ci ∈ C∗ generate CPE distribution Pi(xj)
5. scorej = JS(P1, P2, ..., Pn)
6. ∀xj ∈ U, D(xj) = scorej/ j scorej

7. Sample a subset S of m examples from U based on the distribution D
8. Remove examples in S from U and add to T
9. Return Decorate(L, T, n)

two-class problems, the rest being multi-class. For three datasets (kr-vs-kp, sick, and
optdigits), we used a random sample of 1000 instances to reduce experimentation time.

All the active learning methods we discuss in this paper are meta-learners, i.e., they
can be applied to any base learner. For our experiments, as a base classifier we use a
Probability Estimation Tree (PET) [14], which is an unpruned J483 decision tree for
which Laplace correction is applied at the leaves. Saar-Tsechansky and Provost [2]
showed that using Bagged-PETs for prediction produced better probability estimates
than single PETs for BOOTSTRAP-LV; so we used Bagged-PETs for both
BOOTSTRAP-LV and BOOTSTRAP-JS. The number of bootstrap samples and the size
of ensembles in ACTIVEDECORATE was set to 15.

The performance of each algorithm was averaged over 10 runs of 10-fold cross-
validation. In each fold of cross-validation, we generated learning curves as follows. The
set of available training examples was treated as an unlabeled pool of examples, and at
each iteration the active learner selected a sample of points to be labeled and added to the
training set. Each method was allowed to select a total of 33 batches of training examples,
measuring performance after each batch in order to generate a learning curve. To reduce
computation costs, and because of diminishing variance in performance for different se-
lected examples along the learning curve, we incrementally selected larger batches at
each acquisition phase. The resulting curves evaluate how well an active learner orders
the set of available examples in terms of utility for learning CPEs. As a baseline, we used
random sampling, where the examples in each iteration were selected randomly.

To the best of our knowledge, there are no publicly-available datasets that provide
true class probabilities for instances; hence there is no direct measure for the accuracy of
CPEs. Instead, we use two indirect metrics proposed in other studies for CPEs [16]. The
first metric is squared error, which is defined for an instance xj , as

∑
y(Ptrue(y|xj)−

P (y|xj))2; where P (y|xj) is the predicted probability that xj belongs to class y, and
Ptrue(y|xj) is the true probability that xj belongs to y. We compute the Mean Squared
Error (MSE) as the mean of this squared error for each example in the test set. Since
we only know the true class labels and not the probabilities, we define Ptrue(y|xj)
to be 1 when the class of xj is y and 0 otherwise. Given that we are comparing with

3 J48 is the Weka [15] implementation of C4.5
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this extreme distribution, squared error tends to favor classifiers that produce accurate
classification, but with extreme probability estimates. Hence, we do not recommend
using this metric by itself.

The second measure we employ is the area under the lift chart (AULC) [17], which
is computed as follows. First, for each class k, we take the α% of instances with the
highest probability estimates for class k. rα is defined to be the proportion of these
instances actually belonging to class k; and r100 is the proportion of all test instances
that are from class k. The lift l(α), is then computed as rα

r100
. The AULCk is calculated

by numeric integration of l(α) from 0 to 100 with a step-size of 5. The overall AULC is
computed as the weighted-average of AULCk for each k; where AULCk is weighted by
the prior class probability of k according to the training set. AULC is a measure of how
good the probability estimates are for ranking examples correctly, but not how accurate
the estimates are. However, in the absence of a direct measure, an examination of MSE
and AULC in tandem provides a good indication of CPE accuracy. We also measured
log-loss or cross-entropy, but these results were highly correlated with MSE, so we do
not report them here.

To effectively summarize the comparison of two algorithms, we compute the per-
centage reduction in MSE of one over the other, averaged along the points of the learn-
ing curve. We consider the reduction in error to be significant if the difference in the
errors of the two systems, averaged across the points on the learning curve, is deter-
mined to be statistically significant according to paired t-tests (p < 0.05). Similarly, we
report the percentage increase in AULC.4

5.2 Results

The results of all our comparisons are presented in Tables 1-3. In each table we present
two active learning methods compared to random sampling as well as to each other.
We present the statistics % MSE reduction and % AULC increase averaged across the
learning curves. All statistically significant results are presented in bold font. The bot-
tom of each table presents the win/draw/loss (w/d/l) record; where a win or loss is only
counted if the improved performance is determined to be significant as defined above.

5.3 Bootstrap-JS, Bootstrap-LV and Bootstrap-LV-EXT

We first examine the performance of BOOTSTRAP-JS for binary-class problems and
compared it with that of BOOTSTRAP-LV and of random sampling. As shown in
Table 1, BOOTSTRAP-JS often exhibits significant improvements over BOOTSTRAP-
LV, or is otherwise comparable to BOOTSTRAP-LV. For all data sets, BOOTSTRAP-JS
shows substantial improvements with respect to examples selected uniformly at random
on both MSE and AULC. The effectiveness of BOOTSTRAP-JS can be clearly seen in
Figure 1. (The plot shows the part of learning curve where the two active learners di-
verge in performance.)

In the absence of an active class probability estimation approach that can be applied
to multi-class problems, we compare BOOTSTRAP-JS and BOOTSTRAP-LV-EXT with

4 A larger AULC usually implies better probability estimates.
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Table 1. BOOTSTRAP-JS versus BOOTSTRAP-LV on binary datasets

%MSE Reduction %AULC Increase
Data set LV vs. JS vs. JS vs. LV vs. JS vs. JS vs.

Random Random LV Random Random LV

breast-w 14.92 14.81 -0.12 0.55 0.52 -0.02
colic -1.45 -0.04 1.39 -0.95 -0.56 0.41

credit-a 2.1 3.98 1.92 -0.49 -0.01 0.48
credit-g -0.16 0.77 0.93 -0.01 0.3 0.32
diabetes 1.01 1.75 0.75 0.18 0.58 0.4
heart-c 1.68 0.29 -1.43 0.57 -0.08 -0.64

hepatitis 0.19 2.64 2.43 0.19 1.03 0.84
ion 10.65 12.26 1.82 1.13 0.96 -0.16

kr-vs-kp 38.97 43 8.07 1.64 1.79 0.15
sick 19.97 20.84 1.03 0.62 0.41 -0.21

sonar 2.44 1.32 -1.17 0.58 0.74 0.16
vote 6.3 9.14 3.08 0.28 0.46 0.18
w/d/l 9/2/1 10/2/0 9/1/2 7/3/2 9/2/1 8/2/2
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Fig. 1. Comparing different algorithms on kr-vs-kp

acquisitions of a representative set of examples selected uniformly at random. Table 2
presents results on multi-class datasets for BOOTSTRAP-JS and BOOTSTRAP-LV-EXT.
Both active methods acquire particularly informative examples, such that for a given
number of acquisitions, both methods produce significant reductions in error over ran-
dom sampling. The two active methods perform comparably to each other for most data
sets, and JSD performs slightly better in some domains. Because JSD successfully mea-
sures the uncertainty of the distribution estimation over all classes, we would recommend
using BOOTSTRAP-JS for actively learning CPE models in multi-class domains.

5.4 ActiveDecorate: JSD Versus Margins

Table 3 shows the results of using JSD versus margins for ACTIVEDECORATE. In pre-
vious work, it was shown that ACTIVEDECORATE, with both these measures, performs
very well on the task of active learning for classification. Our results here confirm that
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Table 2. BOOTSTRAP-JS versus BOOTSTRAP-LV-EXT on multi-class datasets

% MSE Reduction % AULC Increase
Data set LV-Ext JS vs. JS vs. LV-Ext JS vs. JS vs.

vs. Rand. Rand. LV-Ext vs. Rand. Rand. LV-Ext

anneal 12.27 13.06 0.89 0.05 0.5 0.45
autos 0.96 0.38 -0.58 1.51 0.83 -0.66

balance-s 1.39 0.92 -0.48 0.72 0.58 -0.14
car 7.21 6.93 -0.31 1.53 1.41 -0.12

glass -0.55 -0.19 0.36 0.61 0.48 -0.11
hypo 46.62 46.41 -0.9 0.49 0.47 -0.02
iris 6.64 10.79 4.58 0.46 0.83 0.39

nursery 14.37 14.25 -0.20 0.44 0.42 -0.01
optdigits 0.35 0.71 0.35 0.9 1.13 0.23
segment 11.08 11.19 0.08 0.83 0.79 -0.04
soybean 1.5 0.78 -0.74 -0.46 0.4 0.87

wine 13.13 13.34 0.36 1.11 1.08 -0.02
w/d/l 10/1/1 11/1/0 4/5/3 10/1/1 12/0/0 4/6/2

both measures are also effective for active learning for CPE. ACTIVEDECORATE using
margins focuses on picking examples that reduce the uncertainty of the classification
boundary. Since having better probability estimates usually improves accuracy, it is not
surprising that a method focused on improving classification accuracy selects exam-
ples that may also improve CPE. However, using JSD directly focuses on reducing the
uncertainty in probability estimates and hence performs much better on this task than
margins. On the AULC metric both measures seem to perform comparably; however, on
MSE, JSD shows clear and significant advantages over using margins. As noted above,
one needs to analyze a combination of these metrics to effectively evaluate any active
CPE method. Figure 2 presents the comparison of ACTIVEDECORATE with JSD versus
margins on the AULC metric on glass. The two methods appear to be comparable, with
JSD performing better earlier in the curve and margins performing better later. How-
ever, when the two methods are compared on the same dataset, using the MSE metric
(Figure 3), we note that JSD outperforms margins throughout the learning curve. Based
on the combination of these results, we may conclude that using JSD is more likely to
produce accurate CPEs for this dataset. This example reinforces the need for examining
multiple metrics.

5.5 ActiveDecorate-JS vs Bootstrap-JS

In addition to demonstrating the effectiveness of JSD, we also compare the two active
CPE methods that use JSD. The comparison is made in two scenarios. In the full dataset
scenario, the setting is the same as in previous experiments. In the early stages scenario,
each algorithm is allowed to select 1 example at each iteration starting from 5 examples
and going up to 20 examples. This characterizes the performance at the beginning of
the learning curve. In the interest of space, we only present the win/draw/loss statistics
(Table 4). For the full dataset, on the AULC metric, the methods perform comparably,
but BOOTSTRAP-JS outperforms ACTIVEDECORATE-JS on MSE. However, for most
datasets, ACTIVEDECORATE-JS shows significant advantages over BOOTSTRAP-JS in
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Table 3. ACTIVEDECORATE-JS versus Margins

% MSE Reduction % AULC Increase
Data set Margin JS vs. JS vs. Margin JS vs. JS vs.

vs. Rand. Rand. Margin vs. Rand. Rand. Margin

breast-w 9.32 23.91 12.73 0.29 -0.50 -0.79
colic 8.65 17.99 10.17 4 2.44 -1.47

credit-a 15.83 21.97 7.08 2.85 2.98 0.07
credit-g 7.06 8.91 2.02 6.98 7.79 0.75
diabetes -3.11 0.07 2.9 4.98 0.84 -3.94
heart-c 4.66 6.3 1.72 1.54 0.53 -0.99

hepatitis 4.49 7.34 2.99 1.93 0.14 -1.95
ion 29.23 36.51 10.01 5.73 5.53 -0.2

kr-vs-kp 34 65.27 50.77 6.46 2.19 -3.99
sick 39.18 64.38 42.24 10.49 9.11 -1.24

sonar 9.3 9.31 0.15 5.84 5.37 -0.41
vote 12.15 45.79 38.12 0.81 -0.51 -1.31

anneal 45.51 63.8 32.1 7.62 11.14 3.27
autos 8.32 11.38 3.57 15.34 11.52 -3.34

balance-s 14.1 24.63 12.05 5.24 6.14 0.86
car 2.9 53.32 52.27 5.56 16.23 10.3

glass 7.62 12.31 5.02 8.62 10.51 1.82
hypo 31.37 89.87 86.34 4.03 4.7 0.65
iris -1.32 34.32 32.7 -1.56 1.52 3.16

nursery 2.62 69.99 69.52 0.56 6.43 5.9
optdigits 32.56 39.8 10.67 19.38 17.79 -1.4
segment 56.95 71.12 27.27 6.11 6.85 0.71
soybean 15.82 21.84 7.42 21.1 34.35 10.89

wine 17.09 28.85 13.81 1.66 1.17 -0.5
w/d/l 22/0/2 23/1/0 23/1/0 23/0/1 22/2/0 10/3/11
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Fig. 2. Comparing AULC of different algorithms on glass

the early stages. These results could be explained by the fact that DECORATE (used
byACTIVEDECORATE-JS) has a clear advantage over Bagging (used by BOOTSTRAP-
JS) when training sets are small, as explained in [11].
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Table 4. BOOTSTRAP-JS vs. ACTIVEDECORATE-JS: Win/Draw/Loss records

% MSE Reduction % AULC Increase
Full dataset 18/0/6 13/0/11
Early stages 8/2/14 2/5/17
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Fig. 3. Comparing MSE of different algorithms on glass

For DECORATE, we only specify the desired ensemble size; the ensembles formed
could be smaller depending on the maximum number of classifiers it is permitted to ex-
plore. In our experiments, the desired size was set to 15 and a maximum of 50 classifiers
were explored. On average DECORATE ensembles formed by ACTIVEDECORATE-JS
are much smaller than those formed by Bagging in BOOTSTRAP-JS. Having larger
ensembles generally increases classification accuracy [10] and may improve CPE. This
may account for the weaker overall performance of ACTIVEDECORATE-JS to
BOOTSTRAP-JS; and may be significantly improved by increasing the ensemble size.

6 Conclusions and Future Work

In this paper, we propose the use of Jensen-Shannon divergence as a measure of the util-
ity of acquiring labeled examples for learning accurate class probability estimates. Ex-
tensive experiments have demonstrated that JSD effectively captures the uncertainty of
class probability estimation and allows us to identify particularly informative examples
that significantly improve the model’s class distribution estimation. In particular, we
show that, for binary-class problems, BOOTSTRAP-JS which employs JSD to acquire
training examples is either comparable or significantly superior to BOOTSTRAP-LV, an
existing active CPE learner for binary class problems. BOOTSTRAP-JS maintains its
effectiveness for multi-class domains as well: it acquires informative examples which
result in significantly more accurate models as compared to models induced from exam-
ples selected uniformly at random. We have also demonstrated that when JSD is used
with ACTIVEDECORATE, an active learner for classification, it produces substantial im-
provements over using margins, which focuses on classification accuracy. Furthermore,
our results indicate that, in general, BOOTSTRAP-JS with Bagged-PETs is a preferable
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method for active CPE compared to ACTIVEDECORATE-JS. However, if one is con-
cerned primarily with the early stages of learning, then ACTIVEDECORATE-JS has a
significant advantage.

Our study uses standard metrics for evaluating CPE employed in existing research.
However, we have shown that JSD is a good measure for selecting examples for im-
proving CPE; and therefore it should also be a good measure for evaluating CPE. When
the true class probabilities are known, we propose to also evaluate CPEs by computing
the JSD between the estimated and the true class distributions.
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Abstract. This paper investigates a novel model-free reinforcement
learning architecture, the Natural Actor-Critic. The actor updates are
based on stochastic policy gradients employing Amari’s natural gradient
approach, while the critic obtains both the natural policy gradient and
additional parameters of a value function simultaneously by linear regres-
sion. We show that actor improvements with natural policy gradients are
particularly appealing as these are independent of coordinate frame of
the chosen policy representation, and can be estimated more efficiently
than regular policy gradients. The critic makes use of a special basis
function parameterization motivated by the policy-gradient compatible
function approximation. We show that several well-known reinforcement
learning methods such as the original Actor-Critic and Bradtke’s Linear
Quadratic Q-Learning are in fact Natural Actor-Critic algorithms. Em-
pirical evaluations illustrate the effectiveness of our techniques in com-
parison to previous methods, and also demonstrate their applicability for
learning control on an anthropomorphic robot arm.

1 Introduction

Reinforcement learning algorithms based on value function approximation have
been highly successful with discrete lookup table parameterization. However,
when applied with continuous function approximation, many of these algorithms
failed to generalize, and few convergence guarantees could be obtained [14]. The
reason for this problem can largely be traced back to the greedy or ε-greedy
policy updates of most techniques, as it does not ensure a policy improvement
when applied with an approximate value function [6]. During a greedy update,
small errors in the value function can cause large changes in the policy which
in return can cause large changes in the value function. This process, when
applied repeatedly, can result in oscillations or divergence of the algorithms.
Even in simple toy systems, such unfortunate behavior can be found in many
well-known greedy reinforcement learning algorithms [4,6].

As an alternative to greedy reinforcement learning, policy gradient methods
have been suggested. Policy gradients have rather strong convergence guarantees,
even when used in conjunction with approximate value functions, and recent
results created a theoretically solid framework for policy gradient estimation
from sampled data [15,11]. However, even when applied to simple examples with
rather few states, policy gradient methods often turn out to be quite inefficient

J. Gama et al. (Eds.): ECML 2005, LNAI 3720, pp. 280–291, 2005.
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Fig. 1. When plotting the expected return landscape for simple problem as 1d linear
quadratic regulation, the differences between ‘vanilla’ and natural policy gradients
becomes apparent [13]

[10], partially caused by the large plateaus in the expected return landscape
where the gradients are small and often do not point directly towards the optimal
solution. A simple example that demonstrates this behavior is given in Fig. 1.

Similar as in supervised learning, the steepest ascent with respect to the
Fisher information metric [1], called the ‘natural’ policy gradient, turns out to
be significantly more efficient than normal gradients. Such an approach was first
suggested for reinforcement learning as the ‘average natural policy gradient’
in [10], and subsequently shown in preliminary work to be the true natural
policy gradient [13,2]. In this paper, we take this line of reasoning one step
further in Section 2.2 by introducing the “Natural Actor-Critic” which inherits
the convergence guarantees from gradient methods. Furthermore, in Section 3,
we show that several successful previous reinforcement learning methods can
be seen as special cases of this more general architecture. The paper concludes
with empirical evaluations that demonstrate the effectiveness of the suggested
methods in Section 4.

2 Natural Actor-Critic

2.1 Markov Decision Process Notation and Assumptions

For this paper, we assume that the underlying control problem is a Markov
Decision Process (MDP) in discrete time with continuous state set X = Rn, and
a continuous action set U = Rm [6]. The system is at an initial state x0 ∈ X at
time t = 0 drawn from the start-state distribution p(x0). At any state xt ∈ X at
time t, the actor will choose an action ut ∈ U by drawing it from a stochastic,
parameterized policy π(ut|xt) = p(ut|xt,θ) with parameters θ ∈ R

N , and the
system transfers to a new state xt+1 drawn from the state transfer distribution
p(xt+1|xt,ut). The system yields a scalar reward rt = r(xt,ut) ∈ R after each
action. We assume that the policy πθ is continuously differentiable with respect
to its parameters θ, and for each considered policy πθ, a state-value function
V π(x), and the state-action value function Qπ (x,u) exist and are given by

V π(x)= Eτ

{∑∞
t=0γ

trt

∣∣x0 = x
}
, Qπ (x,u) = Eτ

{∑∞
t=0γ

trt

∣∣x0 = x,u0 = u
}
,
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where γ ∈ [0, 1[ denotes the discount factor, and τ a trajectory. It is assumed
that some basis functions φ(x) are given so that the state-value function can be
approximated with linear function approximation V π(x) = φ(x)T v. The general
goal is to optimize the normalized expected return

J(θ) = Eτ

{
(1− γ)

∑∞
t=0γ

trt

∣∣θ} =
∫

X
dπ(x)

∫
U
π(u|x)r(x,u)dxdu

where dπ(x) = (1− γ)
∑∞

t=0 γ
tp(xt = x) is the discounted state distribution.

2.2 Actor Improvements with Natural Policy Gradients

Actor-Critic and many other policy iteration architectures consist of two steps,
a policy evaluation step and a policy improvement step. The main requirements
for the policy evaluation step are that it makes efficient usage of experienced
data. The policy improvement step is required to improve the policy on every
step until convergence while being efficient.

The requirements on the policy improvement step rule out greedy methods
as, at the current state of knowledge, a policy improvement for approximated
value functions cannot be guaranteed, even on average. ‘Vanilla’ policy gradi-
ent improvements (see e.g., [15,11]) which follow the gradient ∇θJ(θ) of the
expected return function J(θ) often get stuck in plateaus as demonstrated in
[10]. Natural gradients ∇̃θJ(θ) avoid this pitfall as demonstrated for supervised
learning problems [1], and suggested for reinforcement learning in [10]. These
methods do not follow the steepest direction in parameter space but the steep-
est direction with respect to the Fisher metric given by

∇̃θJ(θ) = G−1(θ)∇θJ(θ), (1)

where G(θ) denotes the Fisher information matrix. It is guaranteed that the
angle between natural and ordinary gradient is never larger than ninety degrees,
i.e., convergence to the next local optimum can be assured. The ‘vanilla’ gradient
is given by the policy gradient theorem (see e.g., [15,11]),

∇θJ(θ) =
∫

X
dπ(x)

∫
U
∇θπ(u|x) (Qπ(x,u)− bπ(x)) dudx, (2)

where bπ(x) denotes a baseline. [15] and [11] demonstrated that in Eq. (2), the
term Qπ(x,u)− bπ(x) can be replaced by a compatible function approximation

fπ
w(x,u) = (∇θ log π(u|x))T w ≡ Qπ(x,u)− bπ(x), (3)

parameterized by the vector w, without affecting the unbiasedness of the gra-
dient estimate and irrespective of the choice of the baseline bπ(x). However, as
mentioned in [15], the baseline may still be useful in order to reduce the variance
of the gradient estimate when Eq.(2) is approximated from samples. Based on
Eqs.(2, 3), we derive an estimate of the policy gradient as

∇θJ(θ) =
∫

X
dπ(x)

∫
U
π(u|x)∇θ log π(u|x)∇θ log π(u|x)T dudx w = Fθw. (4)
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as ∇θπ(u|x) = π(u|x)∇θ log π(u|x). Since π(u|x) is chosen by the user, even in
sampled data, the integral F (θ,x) =

∫
U
π(u|x)∇θ log π(u|x)∇θ log π(u|x)T du

can be evaluated analytically or empirically without actually executing all ac-
tions. It is also noteworthy that the baseline does not appear in Eq. (4) as it
integrates out, thus eliminating the need to find an optimal selection of this
open parameter. Nevertheless, the estimation of Fθ =

∫
X
dπ(x)F (θ,x)dx is still

expensive since dπ(x) ist not known. However, Equation (4) has more surprising
implications for policy gradients, when examining the meaning of the matrix Fθ

in Eq.(4). Kakade [10] argued that F (θ,x) is the point Fisher information matrix
for state x, and that F (θ) =

∫
X
dπ(x) F (θ,x)dx, therefore, denotes a weighted

‘average Fisher information matrix’[10]. However, going one step further, we
demonstrate in Appendix A that Fθ is indeed the true Fisher information ma-
trix and does not have to be interpreted as the ‘average’ of the point Fisher
information matrices. Eqs.(4) and (1) combined imply that the natural gradient
can be computed as

∇̃θJ(θ) = G−1(θ)Fθw = w, (5)

since Fθ = G(θ) (c.f. Appendix A). Therefore we only need estimate w and
not G(θ). The resulting policy improvement step is thus θi+1 = θi + αw where
α denotes a learning rate. Several properties of the natural policy gradient are
worthwhile highlighting:

– Convergence to a local minimum guaranteed as for ‘vanilla gradients’. [1]
– By choosing a more direct path to the optimal solution in parameter space,

the natural gradient has, from empirical observations, faster convergence and
avoids premature convergence of ‘vanilla gradients’ (cf. Figure 1).

– The natural policy gradient can be shown to be covariant, i.e., independent
of the coordinate frame chosen for expressing the policy parameters (cf.
Section 3.1).

– As the natural gradient analytically averages out the influence of the stochas-
tic policy (including the baseline of the function approximator), it requires
fewer data point for a good gradient estimate than ‘vanilla gradients’.

2.3 Critic Estimation with Compatible Policy Evaluation

The critic evaluates the current policy π in order to provide the basis for an
actor improvement, i.e., the change Δθ of the policy parameters. As we are
interested in natural policy gradient updates Δθ = αw, we wish to employ
the compatible function approximation fπ

w(x,u) from Eq.(3) in this context.
At this point, a most important observation is that the compatible function
approximation fπ

w(x,u) is mean-zero w.r.t. the action distribution, i.e.,∫
U
π(u|x)fπ

w(x,u)du = wT
∫

U
∇θπ(u|x)du = 0, (6)

since from
∫

U
π(u|x)du = 1, differention w.r.t. to θ results in

∫
U
∇θπ(u|x)du =

0. Thus, fπ
w(x,u) represents an advantage function Aπ(x,u) = Qπ(x,u)−V π(x)

in general. The advantage function cannot be learned with TD-like bootstrapping
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without knowledge of the value function as the essence of TD is to compare the
value V π(x) of the two adjacent states – but this value has been subtracted out
in Aπ(x,u). Hence, a TD-like bootstrapping using exclusively the compatible
function approximator is impossible.

As an alternative, [15,11] suggested to approximate fπ
w(x,u) from unbiased

estimates Q̂π(x,u) of the action value function, e.g., obtained from roll-outs
and using least-squares minimization between fw and Q̂π. While possible in
theory, one needs to realize that this approach implies a function approximation
problem where the parameterization of the function approximator only spans
a much smaller subspace of the training data – e.g., imagine approximating a
quadratic function with a line. In practice, the results of such an approximation
depends crucially on the training data distribution and has thus unacceptably
high variance – e.g., fit a line to only data from the right branch of a parabula,
the left branch, or data from both branches.

To remedy this situation, we observe that we can write the Bellman equations
(e.g., see [3]) in terms of the advantage function and the state-value function

Qπ(x,u) = Aπ(x,u) + V π(x) = r (x,u) + γ
∫

X
p(x′|x,u)V π(x′)dx′. (7)

Inserting Aπ(x,u) = fπ
w(x,u) and an appropriate basis functions representation

of the value function as V π(x) = φ(x)T v, we can rewrite the Bellman Equation,
Eq., (7), as a set of linear equations

∇θ log π(ut|xt)T w + φ(xt)T v = r(xt,ut) + γφ(xt+1)T v + ε(xt,ut,xt+1) (8)

where ε(xt,ut,xt+1) denotes an error term which mean-zero as can be observed
from Eq.(7). These equations enable us to formulate some novel algorithms in
the next sections.

Critic Evaluation with LSTD-Q(λ). Using Eq.(8), a solution to Equation
(7) can be obtained by adapting the LSTD(λ) policy evaluation algorithm [7].

Table 1. Natural Actor-Critic Algorithm with LSTD-Q(λ)

Input: Parameterized policy π(u|x) = p(u|x, θ) with initial parameters θ = θ0, its
derivative ∇θ logπ(u|x) and basis functions φ(x) for the value function V π(x).
1: Draw initial state x0 ∼ p(x0), and select parameters At+1 = 0, bt+1 = zt+1 = 0.
2: For t = 0, 1, 2, . . . do
3: Execute: Draw action ut ∼ π(ut|xt), observe next state xt+1∼ p(xt+1|xt, ut),

and reward rt= r(xt, ut).
4: Critic Evaluation (LSTD-Q(λ)): Update
4.1: basis functions: φt = [φ(xt+1)T , 0T ]

T
, φt = [φ(xt)T , ∇θ log π(ut|xt)T ]

T
,

4.2: statistics: zt+1 = λzt+φt; At+1 = At + zt+1(φt − γφt)T ; bt+1 = bt + zt+1rt,

4.3: critic parameters: [wT
t+1, v

T
t+1]

T = A−1
t+1bt+1.

5: Actor: When the natural gradient is converged,�(wt+1, wt−τ ) ≤ ε, update
5.1: policy parameters: θt+1 = θt + αwt+1,
5.2: forget statistics: zt+1 ← βzt+1, At+1 ← βAt+1, bt+1 ← βbt+1.
6: end.
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For this purpose, we define

φ̂t = [φ(xt)T ,∇θ log π(ut|xt)T ]T , φ̃t = [φ(xt+1)T ,0T ]T , (9)

as new basis functions, where 0 is the zero vector. This definition of basis function
reduces bias and variance of the learning process in comparison to SARSA and
previous LSTD(λ) algorithms for state-action value functions [7] as the basis
functions φ̃t do not depend on stochastic future actions ut+1, i.e., the input
variables to the LSTD regression are not noisy due to ut+1 (e.g., as in [8]) –
such input noise would violate the standard regression model that only takes
noise in the regression targets into account. LSTD(λ) with the basis functions
in Eq.(9), called LSTD-Q(λ) from now on, is thus currently the theoretically
cleanest way of applying LSTD to state-value function estimation. It is exact for
deterministic or weekly noisy state transitions and arbitrary stochastic policies.
As all previous LSTD suggestions, it loses accuracy with increasing noise in the
state transitions since φ̃t becomes a random variable. The complete LSTD-Q(λ)
algorithm is given in the Critic Evaluation (lines 4.1-4.3) of Table 1.

Once LSTD-Q(λ) converges to an approximation of Aπ(xt,ut)+V π(xt), we
obtain two results: the value function parameters v, and the natural gradient
w. The natural gradient w serves in updating the policy parameters Δθt =
αwt. After this update, the critic has to forget at least parts of its accumulated
sufficient statistics using a forgetting factor β ∈ [0, 1] (cf. Table 1). For β = 0,
i.e., complete resetting, and appropriate basis functions φ(x), convergence to
the true natural gradient can be guaranteed. The complete Natural Actor Critic
(NAC) algorithm is shown in Table 1.

However, it becomes fairly obvious that the basis functions can have an in-
fluence on our gradient estimate. When using the counterexample in [5] with
a typical Gibbs policy, we will realize that the gradient is affected for λ < 1;
for λ = 0 the gradient is flipped and would always worsen the policy. However,
unlike in [5], we at least could guarantee that we are not affected for λ = 1.

Episodic Natural Actor-Critic. Given the problem that the additional basis
functions φ(x) determine the quality of the gradient, we need methods which
guarantee the unbiasedness of the natural gradient estimate. Such method can
be determined by summing up Equation (8) along a sample path, we obtain∑N−1

t=0 γtAπ(xt,ut) = V π(x0) +
∑N−1

t=0 γtr(xt,ut)− γNV π(xN ) (10)

It is fairly obvious that the last term disappears for N → ∞ or episodic tasks
(where r(xN−1,uN−1) is the final reward); therefore each roll-out would yield
one equation. If we furthermore assume a single start-state, an additional scalar
value function of φ(x) = 1 suffices. We therefore get a straightforward regression
problem: ∑N−1

t=0 γt∇ log π(ut,xt)T w + J =
∑N−1

t=0 γtr(xt,ut) (11)

with exactly dim θ + 1 unknowns. This means that for non-stochastic tasks we
can obtain a gradient after dim θ+ 1 rollouts. The complete algorithm is shown
in Table 2.
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Table 2. Episodic Natural Actor-Critic Algorithm (eNAC)

Input: Parameterized policy π(u|x) = p(u|x, θ) with initial parameters θ = θ0,
its derivative ∇θ logπ(u|x).
For u = 1, 2, 3, . . . do

For e = 1, 2, 3, . . . do
Execute Rollout: Draw initial state x0 ∼ p(x0).
For t = 1, 2, 3, . . . , N do
Draw action ut ∼ π(ut|xt), observe next state xt+1∼ p(xt+1|xt, ut),
and reward rt= r(xt, ut).

end.
end.
Critic Evaluation (Episodic): Determine value function
J = V π(x0), compatible function approximation fπ

w (xt, ut).

Update: Determine basis functions: φt = N
t=0 γt∇θ log π(ut|xt)T , 1

T

;

reward statistics: Rt = N
t=0 γtr;

Actor-Update: When the natural gradient is converged,
�(wt+1, wt−τ ) ≤ ε, update the policy parameters: θt+1 = θt + αwt+1.

6: end.

3 Properties of Natural Actor -Critic

In this section, we will emphasize certain properties of the natural actor-critic.
In particular, we want to give a simple proof of covariance of the natural pol-
icy gradient, and discuss [10] observation that in his experimental settings the
natural policy gradient was non-covariant. Furthermore, we will discuss another
surprising aspect about the Natural Actor-Critic (NAC) which is its relation to
previous algorithms. We briefly demonstrate that established algorithms like the
classic Actor-Critic [14], and Bradtke’s Q-Learning [8] can be seen as special
cases of NAC.

3.1 On the Covariance of Natural Policy Gradients

When [10] originally suggested natural policy gradients, he came to the disap-
pointing conclusion that they were not covariant. As counterexample, he sug-
gested that for two different linear Gaussian policies, (one in the normal form,
and the other in the information form) the probability distributions represented
by the natural policy gradient would be affected differently, i.e., the natural pol-
icy gradient would be non-covariant. We intend to give a proof at this point
showing that the natural policy gradient is in fact covariant under certain con-
ditions, and clarify why [10] experienced these difficulties.

Theorem 1. Natural policy gradients updates are covariant for two policies
πθ parameterized by θ and πh parameterized by h if (i) for all parameters
θi there exists a function θi = fi(h1, . . . , hk), (ii) the derivative ∇hθ and its
inverse ∇hθ−1.
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For the proof see Appendix B. Practical experiments show that the problems
occurred for Gaussian policies in [10] are in fact due to the selection the stepsize
α which determines the length of Δθ. As the linearization Δθ = ∇hθT Δh does
not hold for large Δθ, this can cause divergence between the algorithms even
for analytically determined natural policy gradients which can partially explain
the difficulties occurred by Kakade [10].

3.2 NAC’s Relation to Previous Algorithms

Original Actor-Critic. Surprisingly, the original Actor-Critic algorithm [14]
is a form of the Natural Actor-Critic. By choosing a Gibbs policy π(ut|xt) =
exp(θxu)/

∑
b exp(θxb), with all parameters θxu lumped in the vector θ, (de-

noted as θ = [θxu]) in a discrete setup with tabular representations of transition
probabilities and rewards. A linear function approximation V π(x) = φ(x)T v
with v = [vx] and unit basis functions φ(x) = ux was employed. Sutton et al.
online update rule is given by

θt+1
xu = θt

xu + α1 (r(x, u) + γvx′ − vx) , vt+1
x = vt

x + α2 (r(x, u) + γvx′ − vx) ,

where α1, α2 denote learning rates. The update of the critic parameters vt
x equals

the one of the Natural Actor-Critic in expectation as TD(0) critics converges to
the same values as LSTD(0) and LSTD-Q(0) for discrete problems [7]. Since for
the Gibbs policy we have ∂ log π(b|a)/∂θxu = 1 − π(b|a) if a = x and b = u,
∂ log π(b|a)/∂θxu = −π(b|a) if a = x and b �= u, and ∂ log π(b|a)/∂θxu = 0
otherwise, and as

∑
b π(b|x)A(x, b) = 0, we can evaluate the advantage function

and derive

A(x, u) = A(x, u)−
∑

b
π(b|x)A(x, b) =

∑
b

∂ log π(b|x)
∂θxu

A(x, b).

Since the compatible function approximation represents the advantage function,
i.e., fπ

w(x,u) = A(x, u), we realize that the advantages equal the natural gradi-
ent, i.e., w = [A(x, u)]. Furthermore, the TD(0) error of a state-action pair (x, u)
equals the advantage function in expectation, and therefore the natural gradient
updatewxu = A(x, u) = Ex′{r(x, u) + γV (x′) − V (x)|x, u}, corresponds to the
average online updates of Actor-Critic. As both update rules of the Actor-Critic
correspond to the ones of NAC, we can see both algorithms as equivalent.

Bradtke’s Q-Learning. Bradtke [8] proposed an algorithm with policyπ(ut|xt)
= N (ut|kT

i xt, σ
2
i ) and parameters θi = [kT

i , σi]T (where σi denotes the explo-
ration, and i the policy update time step) in a linear control task with linear state
transitions xt+1 = Axt +but, and quadratic rewards r(xt,ut) = xT

t Hxt +Ru2
t .

They evaluated Qπ(xt,ut) with LSTD(0) using a quadratic polynomial expan-
sion as basis functions, and applied greedy updates:

kBradtke
i+1 = argmaxki+1

Qπ(xt,ut = kT
i+1xt) = −(R+ γbT P ib)−1γbP iA, (12)

where P i denotes policy-specific value function parameters related to the gain ki;
no update the exploration σi was included. Similarly, we can obtain the natural
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Abstract. Although state-of-the-art parsers for natural language are lexicalized,
it was recently shown that an accurate unlexicalized parser for the Penn tree-bank
can be simply read off a manually refined tree-bank. While lexicalized parsers
often suffer from sparse data, manual mark-up is costly and largely based on
individual linguistic intuition. Thus, across domains, languages, and tree-bank
annotations, a fundamental question arises: Is it possible to automatically induce
an accurate parser from a tree-bank without resorting to full lexicalization? In
this paper, we show how to induce a probabilistic parser with latent head infor-
mation from simple linguistic principles. Our parser has a performance of 85.1%
(LP/LR F1), which is as good as that of early lexicalized ones. This is remarkable
since the induction of probabilistic grammars is in general a hard task.

1 Introduction

State-of-the-art statistical parsers for natural language are based on probabilistic gram-
mars acquired from tree-banks. The method of acquiring a probabilistic grammar from
the tree-bank is of major influence on the accuracy and coverage of the statistical parser.
It turns out that directly acquiring the probabilistic grammar from the tree-bank results
in a suboptimal statistical parser [1]. Thus, various linguistically motivated transforma-
tion techniques have been applied to the tree-bank trees, all of them gathering impor-
tant local information at the context-free production level. Two major transforms are
currently used in the literature: Parent encoding and lexicalization ([2], [3], [4], [5], [6],
etc.). Parent encoding appends the parent label to the tree nodes. Lexicalization labels
every node with the head word. These transforms have been specifically developed for
English based on the linguistic intuition that the original tree-bank annotations are not
refined enough to capture the various lexical and contextual influences that could im-
prove parser performance. It turns out, however, that these transforms do not carry over
across different tree-banks for other languages, annotations or domains ([7], [8]), and
even parsing English relies on some sophisticated further refinements [9]. Finally, all
lexicalized models we are aware of have to incorporate smoothing and pruning tech-
niques to solve a serious sparse-data problem (cp. Section 2).

Recently, [10] showed that a carefully performed linguistic mark-up leads to almost
the same performance results as lexicalization (both combined with parent encoding).
This result is attractive since unlexicalized grammars are easy to estimate, easy to parse
with, and time- and space-efficient. Furthermore, linguistic annotations orthogonal to

J. Gama et al. (Eds.): ECML 2005, LNAI 3720, pp. 292–304, 2005.
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lexicalization could presumably be used to benefit lexicalized parsers as well. A draw-
back of [10]’s method is, however, that their manual linguistic mark-up is not based on
abstract rules but rather on individual linguistic intuition, which makes it difficult to re-
peat their experiment and to generalize their findings for languages other than English.

In this context, it is thus important to answer the following question: Is it possible
to automatically induce a more refined probabilistic grammar from a given tree-bank
with improved performance? Our answer is yes, and the resulting parser is located in
the middle of two extremes: a fully-lexicalized parser on one side versus an accurate
unlexicalized parser based on a manually refined tree-bank on the other side. In greater
detail, our induction method uses the same linguistic principles of headedness as other
methods: We do believe that lexical information represents an important knowledge
source. Simply percolating lexical information including the words, however, leads to
data sparseness. Various advanced linguistic theories (e.g. Lexical-Functional Gram-
mar [11]) suggest that more abstract categories based on feature combinations could
represent the lexical effect. Our main assumption is based on these theories but com-
plemented by a learning paradigm: Lexical entries carry latent extra information, and
the combinations of POS tags and extra-information serve as partly hidden head ele-
ments of a probabilistic grammar to be induced from the tree-bank. It is important to
emphasize that our task is to automatically induce a more refined probabilistic grammar
based on a few linguistic principles. With automatic refinement it is harder to guaran-
tee improved performance than with manually tailored refinements [10] or with refine-
ments based on direct lexicalization [6]. However, if the induced refinement provides
improved performance then it has a clear advantage: it is automatically induced, which
gives the hope that it will be applicable across different domains, languages and tree-
bank annotations.

In this paper we study the utility of a well-known statistical learning algorithm,
the Expectation-Maximization (EM) algorithm [12] for the refinement of probabilistic
grammars. Because we work with Probabilistic Context-Free Grammars (PCFGs), we
specifically employ the Inside-Outside version of the EM. Applying our method to the
benchmark Penn tree-bank Wall-Street Journal (WSJ), we obtain a refined probabilis-
tic grammar that significantly improves over the original tree-bank grammar and that
shows performance that is on par with early work with lexicalized probabilistic gram-
mars that were obtained using a direct transform. This is a remarkable result given the
hard task of automatic induction of improved probabilistic grammars.

2 Head Lexicalization

As previously shown ([2], [3], [4], etc.), Context-Free Grammars (CFGs) can be trans-
formed to lexicalized CFGs provided that a head-marking scheme for rules is given.
The basic idea is that the head marking on the rules is used to project lexical items up a
chain of nodes. One of the simplest approaches to lexicalization is the one of [13]. It is
characterized by the following transformation of the original tree-bank CFG.

Definition. The set T of terminal symbols of the original CFG and of its transform are
identical. The non-terminal symbols of the transform have the formX [v] or<Y<X [v]>>.
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Here, X and Y are two arbitrary non-terminal symbols of the original CFG, and v is
an arbitrary head chosen from a finite set H of head symbols. The set of rules of the
transformed CFG consists of the following types:

Lexicalized starting rules: For all heads v ∈ H (where ROOT is a new start symbol
and S is the original one):

ROOT → S[v]

Lexicalized rules: For all heads v ∈ H and for all rules X → . . .Xi−1 Xi Xi+1 . . .
of the original CFG (with a head marker on the child Xi):

X [v]→ . . . <Xi−1<X [v]>>Xi[v] <Xi+1<X [v]>> . . .

Lexicalized grammatical relations: For all new non-terminal symbols<Y<X [v]>> and
for all heads w ∈ H:

<Y<X [v]>>→ Y [w]

Lexical rules: For all lexical rules X → w of the original CFG:

X [h(w)]→ w

Fig. 1. Original context-free tree (Note: One word was replaced earlier by the unknown-word
symbol ‘[unknown]’).

Fig. 2. Transformed tree: Lexicalization with leaf nodes of the original tree. The nodes
<cat1<cat2[head]>> are auxiliary nodes which have been introduced to model the lexicaliza-
tion of rules independently from the lexicalization of grammatical relations [13]. Additionally,
auxiliary nodes reduce the sparse-data problem.
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Fig. 3. Transformed tree: The same model but with lexicalization performed with POS tags

Here, h : V → H is a many-to-one function mapping a non-terminal w ∈ V to its
head symbol h(w) ∈ H (e.g. to the word itself or to the lemma of the word). Figure 2
displays the result of this transformation for one of the trees of the training section of
the Penn tree-bank. Compared to the original tree in Figure 1, it is note worthy that the
lexicalized tree has more nodes than the original tree: for each non-head daughter cat1
of a mother node cat2 in the original tree, a new node<cat1<cat2[head]>> is introduced
in the lexicalized tree. We call these extra nodes auxiliary nodes. The main reason for
introducing them is simply that one does not want to lexicalize rules with more than
one head (otherwise, it would be difficult to overcome the arising sparse-data problem).
Note also that standard-probabilistic conditioning of the lexicalized rules results simply
in conditioning the unlexicalized rules on a lexical head, such as in:

p( NP[article] → <DT<NP[article]>> NN[article] | NP[article] )
=
p( NP → DT NN | NP, article )

One problem of head-lexicalization techniques is that they lead to serious sparse data
problems. For the standard case h(w) = w, for example, the large number |T | of full
word forms makes it difficult to reliably estimate the probability weights of the O(|T |2)
lexicalized grammatical relations and O(|T |) lexicalized rules of the model of [13].
An obvious approach to the problem is to use lemmas instead of full word forms to
decrease the number of heads. From a computational perspective (but of course not
from the linguistic one) the sparse data problem can be solved if part-of-speech tags are
used as heads since the number of POS tags is tiny compared to |T |. Figure 3 displays
the result of this type of transformation. Although we will demonstrate that parsing
results benefit from this naive lexicalization routine, we expect that (computationally
and linguistically) optimal head-lexicalized models are arranged around a number |H|
of head symbols such that |POS| ≤ |H| << |T |, where POS is the set of POS tags
and T is the full-word-form lexicon.
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Fig. 4. Head-lexicalized tree with hidden information mark-up: In addition to the part-of-speech
information, the terminal nodes carry extra-information (like m7, m10, m4, etc.). This satis-
fies principle (iii). The possible combinations of part-of-speech tags and extra-information (e.g.,
[NNP][m7], [NNP][m10], [IN][m4], etc.) serve as the new head elements of a head-lexicalized
CFG, because the combined information is projected up a chain of categories. This satisfies prin-
ciples (i) and (ii). The extra-information of the lexical items is hidden since it is not annotated in
the Penn tree-bank. Therefore, the information mark-up is highly ambiguous, and there are many
more (differently marked-up) trees beside the displayed tree.

3 Modeling Hidden Head-Information

This section defines probability models over the trees licensed by a lexicalized CFG
with hidden head-information, thereby exploiting three simple linguistic principles:

(i) all rules have head markers,
(ii) information is projected up a chain of categories marked as heads,
(iii) lexical entries carry hidden extra-information which can be revealed.

Principles (i) and (ii) are satisfied by all head lexicalization routines which we know
of. We base our model on the relatively simple head-lexicalized model presented in
Section 2 because we do not want to explore how hidden extra-information flows in a
tree-bank. Rather we would like to induce which extra-information flows in single trees
and in tree-banks. Figure 4 displays a simple example of the type of extra-information
mark-up we are interested in. Compared to the tree in Figure 3, all nodes carry some
abstract extra-information type of the form m1,m2,m3, .... These information types
are introduced at the part-of-speech level, and the combination of POS tag and extra-
information flows bottom-up along a chain of categories marked as heads. In other
words, the combination of POS tags and extra-information forms new but more com-
plex heads of the head-lexicalized CFG. Moreover, we explicitly allow for ambiguous
heads in the lexical rules. Formally, the mark-up of extra-information and the flow of
the combination of original heads and extra-information can be done via the following
transformation of the head-lexicalized CFG introduced in Section 2.

Definition. The set T of terminal symbols and the set H of head symbols remain
unchanged. The non-terminal symbols of the transform have the form X [v][m] or
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<Y<X [v]>>[m] . Here, X [v] and <Y<X [v]>> are non-terminals of the original head-
lexicalized CFG, while m is an extra-information type chosen from a finite set I.
(Throughout this paper, we use I = {m1 . . .mn}.) The set of rules of the transform
consists of the following types:

Lexicalized starting rules with info mark-up: For all extra-information types m ∈ I
and for all heads v ∈ H (where TOP is a new start symbol):

TOP → S[v][m]

Lexicalized rules with info mark-up: For all extra-information types m ∈ I and for
all rules X [v] → . . .<Xi−1<X [v]>> Xi[v] <Xi+1<X [v]>> . . . of the head-lexicalized
CFG:

X [v][m] → . . . <Xi−1<X [v]>>[m] Xi[v][m] <Xi+1<X [v]>>[m] . . .

Lexicalized grammatical relations with info mark-up: For all pairs of extra-
information types i, j ∈ I and for all rules <Y<X [v]>>→ Y [w] of the head-lexicalized
CFG:

<Y<X [v]>>[i]→ Y [w][j]

Lexical rules with info mark-up: For all extra-information types m ∈ I and for all
lexical rules X [h(w)]→ w of the head-lexicalized CFG:

X [h(w)][m] → w

Thus, a head-lexicalized CFG with unambiguous extra-information mark-up con-
tains exactly the same information as the original head-lexicalized CFG. In the rest of
the paper, we show, however, that it is possible to learn hidden, richer, and more accu-
rate head information from tree-banks.

4 Estimating Hidden Head-Information

Given a head-lexicalized CFG, the inductive problem is to estimate a head-lexicalized
CFG with extra-information mark-up. The difficulty is that the rules of the marked-up
CFG can not be directly estimated from the Penn tree-bank (by counting rules) because
the extra-information mark-up is not annotated in the tree-bank. Therefore, we work
with the standard method for unsupervised estimation of PCFGs, the inside-outside al-
gorithm [14]. This algorithm induces probabilities for the grammar rules from a corpus
of sentences. To exploit all linguistic information provided by the given tree-bank, we
have to use trees as input sentences for the IO algorithm.

We thus create a context-free grammar which takes a whole head-lexicalized tree as
input (see Figure 3) and which outputs the same tree marked-up with extra-information
(see Figure 4). We call this grammar a tree-transformation grammar, as both its in-
put and its output are trees. The tree-transformation grammar is characterized by the
following transformation of the head-lexicalized CFG introduced in Section 2.

Definition. The set of terminal symbols of the transform comprises all symbols oc-
curring in the bracket notations of the input trees, i.e., it consists of both terminal
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and non-terminal symbols of the head-lexicalized CFG, as well as of two bracket-
symbols ’(’ and ’)’. The non-terminal symbols of the transform have the form X [v][m]
or <Y<X [v]>>[m]. Here, X [v] and <Y<X [v]>> are non-terminals of the original head-
lexicalized CFG, and m is an extra-information type chosen from a finite set I. The set
of rules of the transform consists of the following types:

Lexicalized starting rules with info mark-up: For all extra-information types m ∈ I
and for all heads v ∈ H (where TOP is a new start symbol):

TOP → ( ROOT S[v][m] )

Lexicalized rules with info mark-up: For all extra-information types m ∈ I and for
all rules X [v] → . . .<Xi−1<X [v]>> Xi[v] <Xi+1<X [v]>> . . . of the head-lexicalized
CFG:

X [v][m]→ ( X [v] . . . <Xi−1<X [v]>>[m] Xi[v][m] <Xi+1<X [v]>>[m] . . . )

Lexicalized grammatical relations with info mark-up: For all pairs of extra-
information types i, j ∈ I and for all rules <Y<X [v]>>→ Y [w] of the head-lexicalized
CFG:

<Y<X [v]>>[i]→ ( <Y<X [v]>> Y [w][j] )

Lexical rules with info mark-up: For all extra-information types m ∈ I and for all
lexical rules X [h(w)]→ w of the head-lexicalized CFG:

X [h(w)][m] → ( X [h(w)] w )

For example, the bracket notation of the tree in Figure 3 is as follows:

( ROOT ( S[.] ( <NP<S[.]>> ( NP[NNP] ( NP[NNP] ( <NNP<NP[NNP]>> ( NNP[NNP]
Bradley ) ) ( <NN<NP[NNP]>> ( NN[NN] A. ) ) ( NNP[NNP] [unknown] ) )

( <PP<NP[NNP]>> ( PP[IN] ( IN[IN] in ) ( <NP<PP[IN]>> ( NP[NNP] ( NNP[NNP]
Detroit ) ) ) ) ) ) ) ( <VP<S[.]>> ( VP[VBD] ( VBD[VBD] contributed ) (

<PP<VP[VBD]>> ( PP[TO] ( TO[TO] to ) ( <NP<PP[TO]>> ( NP[NN] ( <DT<NP[NN]>>
( DT[DT] this ) ) ( NN[NN] article ) ) ) ) ) ) ) ( .[.] . ) ) )

It is easy to check that the tree-transformation grammar is able to parse this term. More-
over, the output for this input tree is a parse forest containing (amongst others) the
marked-up tree displayed in Figure 4.

Estimation via de-transformation of the tree-transformation grammar: Comparing
the definition in this section with the one in the previous section, it is obvious that there
is a one-to-one mapping from the rules of the tree-transformation grammar to the rules
of the mark-up grammar. For instance, a rule of the tree-transformation grammar having
the form

marked up cat→ ( cat marked up child1 . . .marked up childn )

can be simply de-transformed to the following rule of the mark-up grammar

marked up cat→ marked up child1 . . .marked up childn
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Fig. 5. The plot displays the perplexity of the training corpus for different models at each re-
estimation step of the inside-outside algorithm. The displayed perplexity values are per-word-
perplexity values as defined in the implementation of [15]. Just as in the standard case, a lower
perplexity value corresponds to a higher corpus probability. The models differ in the number
of extra-information types for the lexical items. After about 10 iterations, a model with more
extra-information types always has a lower perplexity on the training corpus.

In fact, the significant difference between the tree-transformation grammar and the
mark-up grammar is that the tree-transformation grammar acts on input trees, whereas
the mark-up grammar operates on the yields of these trees. In more detail, the mark-
up grammar produces for an input sentence the trees of the POS-lexicalized gram-
mar marked-up with all the possible extra-information, whereas the tree-transformation
grammar produces the mark-up only for one single input tree.

To summarize, the transformation of the mark-up grammar to the tree-
transformation grammar enables estimation on the basis of a corpus of trees, whereas
the de-transformation of the tree-transformation grammar results in a trained mark-up
grammar. Inside-outside estimation of a probabilistic version of the tree-transformation
grammar on the tree-bank results thus in a probabilistic version of the mark-up grammar
introduced in Section 3. This solves our induction problem.

Implementation (for efficiency improvement): Instead of a single left-bracket sym-
bol ’(’, we use multiple left-bracket symbols ’(id’ to represent the tree-transformation
grammar and its training corpus. The numbers id are identifiers for the rules of the
underlying POS-lexicalized CFG. As a consequence, the information mark-up is not
estimated in cubic but rather in linear time (in the tree size).

5 Experiments

Using the grammar described in Section 3 and the estimation method described in Sec-
tion 4, we estimated our models for parts of the Penn tree-bank [16]. To facilitate com-
parison with previous work, we trained our models on sections 2-21 of the WSJ section
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Table 1. Features of the final models: The first column lists the number of extra-information
types for the different models. Note that the model with 1 extra-information type is equivalent
to lexicalization with POS tags as heads. This model is unambiguous and was not trained with
the IO algorithm. The second column lists the total number of rules of the tree-transformation
grammars (being used to train our models), thereby only counting the rules with a final non-zero
probability. The third column displays the rough number of inside-outside iterations for training,
whereas the fourth column lists the rough total training time (resulting from a training time of
2 1

2 − 4 hours per iteration step). Finally, the fifth column displays the perplexity of the training
corpus for the final models.

i-types rules iter training time perp
1 53 437 0 0 days 2.821
2 101 385 35 4 days 2.701
5 226 748 35 5 days 2.559

10 396 618 50 7 days 2.467
20 760 894 50 8 days 2.426

of the Penn tree-bank. All trees were modified such that: node labels consisted solely of
syntactic category information, empty nodes (i.e. nodes dominating the empty string)
were deleted, and finally, words in rules occurring less than 3 times in the tree-bank were
replaced by an unknown-word symbol ‘[unknown]’. No other changes were made.

We trained our models with the standard IO algorithm for unlexicalized context-free
grammars as implemented in [15], thereby activating the built-in (absolute discounting)
smoothing routine for grammar rules. We also performed some preliminary experiments
without smoothing but after observing that about 3000 trees of our training corpus were
allocated a zero-probability under IO estimation (resulting from the fact that too many
grammar rules got a zero-probability), we decided to smooth all rule probabilities.

Figure 5 displays the training behavior of our models, and Table 1 displays some
characteristic features of the final models. After observing that a uniform initialization
of the models had no training effect at all, we started the inside-outside algorithm with
randomly initialized models. So far, we have not tried to find optimal starting parame-
ters (by repeating the whole training process multiple times), because the current exper-
iment took already months. We also have not tried to find optimal iteration numbers (by
evaluating our models after each iteration step on a held-out corpus) because also our
evaluation routine is relatively time costly. We therefore simply trained the models un-
til the perplexity values converged. Although our training regime may be sub-optimal
(with respect to its fixed starting parameters and the chosen number of iterations), it
allows us to systematically investigate models with hundreds of thousands of rules.

6 Evaluation on a Parsing Task

In this section, we evaluate our automatically induced probabilistic grammars on a pars-
ing task. Although parsers developed on the Penn tree-bank are usually evaluated on
Section 23 of the WSJ section of the Penn tree-bank, we decided to use Section 22
as evaluation set (sentences with a length ≤ 40 only). The reasons for doing this are
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Table 2. PARSEVAL scores on our evaluation corpus (Section 22 of the WSJ section of the
Penn tree-bank). The columns labeled with LB, LR, F1, Exact, and CB display values for labeled
precision and recall, the harmonic mean, the exact-match rate and the average number of crossing
brackets respectively. The table at the top displays the parsing results of our baseline grammar,
the original grammar read off slightly modified trees in the training corpus (cp. Figure 1). The
larger table displays parsing results for the different models. The first column lists the number
of extra-information types for the different models. The model with 1 extra-information type is
equivalent to lexicalization with POS tags as heads. It can be regarded as a second baseline. To
facilitate comparisons of the PARSEVAL scores with other model features, the second column
displays the training-corpus perplexity for the different models. There is a strong correlation with
the parsing results: The lower the perplexity the better the parsing result.

Original
grammar

LP LR F1 Exact CB
75.7 70.1 72.8 10.5 2.14

i-types perp LP LR F1 Exact CB
1 2.821 79.3 77.2 78.2 17.1 1.81
2 2.701 81.6 79.9 80.7 20.1 1.64
5 2.559 84.0 83.2 83.6 25.4 1.44

10 2.467 85.2 85.0 85.1 27.9 1.27

two-fold. First, most performance figures of [10] refer to parsing results on Section 22
(serving as their development set). Using the same section will facilitate comparison.
Second, we envision many extensions and improvements of the present model, and
therefore would like to leave Section 23 for future evaluations.

For parsing the sentences of our evaluation corpus, we mapped all unknown words
to the unknown word symbol ‘[unknown]’, and applied the Viterbi algorithm as im-
plemented in [17], exploiting its ability to deal with highly-ambiguous grammars. That
is, we did not use any pruning or smoothing routines for parsing sentences. We then
de-transformed the resulting maximum-probability parses to the format described in
Section 5. That is, we deleted the extra-information types, the auxiliary nodes, and the
POS tags which served as heads. All grammars presented in this section were able to
exhaustively parse the evaluation corpus. Table 2 displays our results in terms of the
commonly used PARSEVAL scores [18]. The average parsing time in 2GB of memory
was 10 seconds per sentence, which is comparable to what is reported in [10].

7 Discussion

In this section, we briefly discuss the experimental results of our final models and com-
pare it to other models. First of all, the size of our models increases almost linear in
the number of extra-information types (see Table 1). For instance, the mark-up gram-
mar with 10 extra-information types contains about 400 000 rules, whereas the POS-
lexicalized grammar has only about 50 000 rules (i-types=1). The explanation is that
the combinations of POS tags and extra-information types serve as new abstract head
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elements in our models, and therefore, a grammar with x extra-information types con-
tains roughly x-times the number of rules of the POS-lexicalized grammar. However,
compared to fully lexicalized grammars, our biggest models are still smaller. Second,
the parsing results improve in the number of extra-information types (see Table 2). For
instance, modeling with 10 extra-information types results in a F1 gain of about 12%
compared to the original grammar, and of about 7% compared to the POS-lexicalized
grammar. The only plausible explanation for these significant improvements is that ab-
stract head classes have been learned by our method which are very useful for pars-
ing. Third, it is striking that the difference between the LP and LR scores is almost
6% for the original grammar, about 2% for the POS-lexicalized grammar, and almost
0% for the grammar with 10 extra-information types. In other words, the difference in
precision and recall vanishes in the number of extra-information types. We argue that
this effect is also related to the fact that useful classes of heads have been learned by
our models.

In the rest of this section, we compare our method to related methods. To start with
performance values, the following table displays previous results on parsing Section 23
of the WSJ section of the Penn tree-bank (sentences of length≤ 40):

Previous Work LP LR F1 Exact CB
Johnson’98 79.7*
Magerman’95 84.9 84.6 1.26
Collins’96 86.3 85.8 1.14
Klein&Manning’03 86.9 85.7 86.3 30.9 1.10
Charniak’97 87.4 87.5 1.00
Collins’99 88.7 88.6 0.90

Comparison indicates that our best model outperforms parent encoding [5] (*best score
of several variants investigated in [10]). It is already as good as the early lexicalized
model of [3], a bit worse than the unlexicalized parsing model of [10], and of course
also worse than state-of-the-art lexicalized parsers. (Experience shows that evaluation
results on sections 22 and 23 do not differ much.) Beyond performance values, we
believe our formalism and methodology have the following attractive features:

1. The models incorporate context and lexical information collected from the whole
tree-bank. Information is bundled into abstract heads of higher-order information. This
is in sharp contrast to the fixed-word statistics used in most lexicalized parsing mod-
els ([2], [3], [4], [6], etc.) 2. The models have a drastically reduced parameter space
compared to lexicalized parsing. Thus they do not suffer from sparse-data problems.
3. The method is based on the original tree-bank and it is not dependent on the success
of transformations applied beforehand (like parent-encoding in [6], [10], etc.) 4. The
method results in an automatic linguistic mark-up of tree-bank grammars. In contrast,
manual linguistic mark-up of the tree-bank like in [10] is based on individual linguistic
intuition and might be cost and time intensive. 5. The method, we introduced in this
paper, can be thought of a new lexicalization scheme of CFG based on the notion of
hidden head-information. 6. The method can also be thought of a successful attempt to
incorporate lexical classes into parsers, combined with a new word clustering method
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based on the context represented in tree structure. 7. It thus complements and extends
the approach of [19], which aims at discovering latent head markers in tree-banks to
improve manually written head-percolation rules. 8. The method is also an extension
of factorial HMMs [20] to PCFGs: The node labels on trees are enriched with a hidden
state and the hidden states are learned with the EM algorithm.

Some of the benefits come at a cost: Clear linguistic interpretation of the induced
extra information is currently lacking. It is also possible that extensive manual linguistic
mark-up is partly orthogonal to the one we induced. These compromises were made in
this paper to answer the important question whether it is possible to induce an accurate
parser from the Penn tree-bank which is not based on full lexicalization.

To conclude, we automatically induced a head-driven PCFG with latent-head statis-
tics from the Penn tree-bank. The resulting parser is as good as early lexicalized parsers.
This is a promising result and suggests that our method can be successfully applied
across domains, languages, and tree-bank annotations.
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Abstract. This paper introduces a novel method for learning a wrapper for ex-
traction of text nodes from web pages based upon (k, l)-contextual tree lan-
guages. It also introduces a method to learn good values of k and l based on
a few positive and negative examples. Finally, it describes how the algorithm can
be integrated in a tool for information extraction.

1 Introduction

The World Wide Web is an indispensable source of information. Extracting its content
for further processing however, is difficult because it is formatted in HTML, which
is primarily focussed on presentation. A wrapper is a general name for a procedure
that extracts data (often from machine generated HTML-pages) based on the structure
of the documents, commonly without the use of linguistic knowledge. Various tools
are designed to facilitate wrapper building, but the process remains tedious. Hence the
efforts [5, 12, 13, 14, 17, 21] to create algorithms that learn wrappers from examples.

Several approaches [6, 7, 17] process documents in a string representation. Flatten-
ing the tree structure of the document to a string representation though can project sib-
ling nodes arbitrarily far from one another, and increases the complexity of the wrapper
to express relations between these nodes. In [13], documents are represented as (ranked)
binary trees; this improves locality and gives better results. An unranked tree represen-
tation is for the first time used in [12]. Combined with a number of ad-hoc design
decisions, it leads to superior results.

Note that most string-based approaches can extract a substring of a text node, while
most tree-based approaches aim to extract tree nodes (either a whole text node or a
subtree of the document). If a task needs sub-node extraction though, it is very natural
to learn first a wrapper to retrieve the containing text node, and focus then on learning
a (string based) wrapper that extracts the required information from this text.

The contributions of this paper are:

– The introduction of the notion of a (k,l)-contextual tree language for unranked trees
and an algorithm to infer such a language from positive examples (trees) only. A
major virtue is that this algorithm needs very few examples to learn. This algorithm
is then applied on marked trees to induce wrappers. We obtain better results than
[12] while avoiding its ad-hoc design decisions. All this is described in Section 2.

J. Gama et al. (Eds.): ECML 2005, LNAI 3720, pp. 305–316, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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– Whereas [12] needed cross validation to learn the parameters (i.e., a fully annotated
data set), we introduce a method to learn the parameters with only a few negative
examples (Section 3).

– In Section 4, we integrate our results into an interactive system that guides the user
in building a wrapper by posing equivalence queries. For example, if a user wants
to extract book prices from www.amazon.com, he clicks on an example page (in
the browser of the GUI-front end) on one or more prices. The algorithm then learns
a wrapper from these (positive only) examples and highlights all elements that are
extracted by this wrapper. When the current hypothesis is erroneous, the user can
either click on a highlighted item to indicate it as a false positive or click on an
item that is not yet highlighted to indicate that it is a false negative. The application
then adjusts the wrapper. This interaction continues (possibly with other example
pages), until the user is satisfied.

In Section 5 we round up with a discussion and a summary.

2 Induction from Positive Examples Only

In the language learning approach to information extraction setting, it is important that
we can start learning from positive examples only, because that is typically all we have
to begin with. Only after the learner has inferred a hypothesis, false positives give us
sensible negative examples, which we can then exploit to refine the hypothesis. Unfor-
tunately, the whole class of regular languages cannot be learned from positive examples
only [10] . Intuitively the reason is that there is no boundary to end the generalization,
and therefore the resulting language will accept everything. A common solution for this
negative result is to define a learnable subclass of the regular languages. Examples of
learnable subclasses of string languages are k-reversible languages [2], k-contextual
languages [16] and k-testable languages [9]. The latter two are often referred to as
k-local languages as they are equivalent [1]. Similar developments occurred for tree
languages. Algorithms for induction of string automata have been upgraded for tree
automata. Several works exist for ranked trees, e.g., [8, 11] (k-testable tree languages)
and [20] (probabilistic extensions). In ranked trees, the number of children of a node is
fixed in advance (determined by its label). HTML or XML documents are clearly not
ranked; hence an awkward encoding is needed in order to apply k-testable tree language
learning to Web information extraction [13].

Therefore, in this section, we introduce (k, l)-contextual tree languages, which are
unranked, and therefore directly applicable. But first some background is introduced.

2.1 Preliminary Definitions

We define the alphabetΣ as a finite set of symbols. The set of all finite trees with nodes
labeled by elements of Σ can be recursively defined as T (Σ) = {f(s) | f ∈ Σ, s ∈
T (Σ)∗}. We usually denote f(ε), where ε is the empty sequence, by f . A tree language is
any subset of T (Σ). The set of (k,l)-roots of a tree t = f(t1, . . . , tn) is the singleton {f}
if l=1; otherwise, it is the set of trees obtained by extending the rootf with (k, l−1)-roots
of k successive children of t (all children if k > n). Formally, we can define inductively1:

1 f(S) denotes {f(s) | s ∈ S}.
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R(k,l)(f(t1 . . . tn)) =⎧⎨⎩
{f} if l=1
f(R(k,l−1)(t1) . . . R(k,l−1)(tn)) if l>1 and k>n⋃n−k+1

p=1 f(R(k,l−1)(tp) . . . R(k,l−1)(tp+k−1)) otherwise
.

Finally, a (k, l)-fork of a tree t is a (k, l)-root of any subtree of t. The set of (k, l)-forks
of t is denoted by F(k,l)(t).

Example 1. Below we show graphically the (2, 3)-forks of a tree t. The first 6 of these
forks, are the (2, 3)-roots of t.
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2.2 (k,l)-Contextual Tree Languages

Let G be a set of trees over Σ, such that every tree in G has height at most l, and every
node of each tree inG has at most k children. The (k, l)-contextual tree language based
on G is defined as Lk,l(G) = {t ∈ T (Σ) | F(k,l)(t) ⊆ G}; i.e., a tree is part of the
language defined by a set of forks, if each of its (k, l)-forks is an element of that set.
Obviously, Lk,l(G1) ⊆ Lk,l(G2) iff G1 ⊆ G2. Let G be the set of forks of a given
set of examples. The (k, l)-contextual languages that accept these examples are those
based on a superset of G. Lk,l(G) is the least (most specific) language accepting the
examples.

Our inference algorithm avoids overgeneralisation by learning for a given k and l,
the most specific (k, l)-contextual language that accepts all the examples. It does so by
collecting all the (k, l)-forks of the examples. Checking for membership of a tree t in
Lk,l(G) is done by checking whether all (k, l)-forks of t are among the forks of G.

As is the case for local languages such as k-contextual languages [16, 1], k-testable
languages [9], and k-testable tree languages [8, 11], (k,l)-contextual tree languages
learned from a given training set are anti-monotone in the parameters; i.e., increasing
either k or l decreases the set of trees accepted by the learned language.

Our definition generalizes to unranked trees the notion of k-testable string language
“in the strict sense”. If we had wanted to generalize the more expressive notion of
k-testable, studied by McNaughton [15], we would have taken a set of sets of forks
for G (one for each example), and would have then accepted a tree if its forks are
a subset of those from one example. Our experiments (Section 2.5) indicate that k-
testable languages in the strict sense are sufficiently expressive, hence we explore only
the strict notion.

The local unranked tree automata of [12] correspond to the special case l = 2 in
our approach. The lack of expressiveness in vertical direction was remedied with some
extra preprocessing (see Section 2.4).
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2.3 Wrapper Induction

We follow [12, 13] for defining wrappers. A wrapper is a language that accepts only
trees that are correctly marked. Marking a node s consists of replacing it by a marked
equivalent sx. To decide whether to extract a node, the candidate node is marked. When
the wrapper accepts the resulting tree, the original text of the marked node is extracted.
The wrapper is learned from examples, as described above, where each example is a
HTML page with one target node marked. However, simply collecting all forks from a
few examples typically results in a too specific wrapper.

A first problem is that text nodes are from an (almost) infinite alphabet and can-
not be learned from a small number of examples. To solve this, we follow [12, 13]:
More generalization is obtained by replacing all text nodes by a special symbol (@)2.
Sometimes this leads to overgeneralisation as a text node close to the target is needed
to disambiguate between a positive and a negative example. A preprocessor finds such
a distinguishing context and text nodes containing it are not replaced.

looseness 2 A second problem is that a small number of examples does not cover
all the variance of possible forks in areas far away from the targets. One can argue that
the forks containing the marker provide the local context needed to decide whether a
node should be extracted or not, while the other forks describe the general structure of
the document. The latter merely serve to decide whether the document is in the class
of documents that contains relevant information. Learning that class typically requires
substantially more examples than learning the local context. However, in our setting, we
assume all documents are from the right class; hence there is no need to learn the doc-
ument class and we can ignore all forks that do not contain the marker during learning
and extraction.

Combining the preprocessing of text nodes with the filtering of forks, one obtains a
lot more generalization and wrappers can be learned from a small set of examples.

2.4 Expressiveness

To compare the expressiveness of our languages with that of [12], we first explain the
latter briefly. As already mentioned above, after preprocessing, each text node is either
a marker (x), a distinguished context (c) or a generalized text node (@). The method
basically infers a (k, 2)-contextual language. However, the tree representing an example
is subject to two other preprocessing steps.

The first transformation replaces every node f into a node f.x, if its subtree contains
the x-node. If the subtree does not contain the x-node but a c-node then it is replaced
by f.c. Hence, limited information is passed infinitely upwards, making the method
not purely local. However, the subclass remains inferable and the expressiveness is
enhanced.

The second transformation in [12], although part of the inference algorithm, can
also be explained as a preprocessing step. The automaton accepts everything below a
node that is not of the form f.x, i.e., all subtrees below such nodes can be removed and
only the path from the root to the x-node is left, together with the siblings of the nodes

2 When the node is extracted, the original test is returned.
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on that path; parts farther away from the marked node are ignored. This enhances the
generalizing power of the resulting language (and reduces the expressiveness).

Example 2. The left tree below shows a tree after the first transformation, while the tree
on the right shows the result of applying the second transformation to that same tree.

@ c @ @ c x @ @ @

C D.c C C D.c C.x C D C

B.c B.x B

A.x

x

C D.c C.x

B.c B.x B

A.x

Thanks to the first transformation, the algorithm of [12] (K) can express some global
vertical relations. While added to retain information in the vertical direction, it can also
describe the relation between a node and an ancestor that is an arbitrary number of levels
higher. Our algorithm (KL) is purely local and does not have this expressiveness. Our
experiments showed that local information in the vertical direction (the l parameter)
was sufficient for all data sets.

The second transformation in K makes it less expressive than KL as all information
about the siblings of the target node is removed while KL retains the neighborhood.
We encountered several data sets where that information was needed to disambiguate
positive and negative examples3.

2.5 Experiments

We evaluate our approach on the WIEN4 data sets. We use the F1 score as a fitness
criterium. Given E, the number of text nodes extracted from the test set, C, the number
of correctly extracted text nodes, and T, the total number of text nodes to be extracted
from the test set. Precision(P) is defined as P=C/E, recall(R) as R=C/T. The F1 score is
defined as the harmonic mean: F1=2PR/(P+R).

Our algorithm as well as the K algorithm [12] are expressive enough to handle all
tasks of the WIEN data sets, i.e., given enough examples, they reach a 100% F1 score. In
those tasks where sub-node extraction is required, both algorithms return the text node
containing the substring to be extracted. In comparison, in [17] it is stated that neither
STALKER nor WIEN [14] are expressive enough to handle all tasks. Also STALKER
with Aggressive Co-testing still fails on some tasks according to [18]. Note that on the
tasks where the other algorithms did not reach the maximal score, this was not due
to the fact that the sub-node extraction posed extra difficulties. [12] compares the K
algorithm also with HMM [7] and BWI [6]. They report an experiment where the K
algorithm reaches a 100% F1 score whereas the other ones have a significantly lower
score on some (difficult) WIEN data sets (the number of examples was limited in this

3 E.g., a table with bargains. The aim is to extract those with a picture of the item. The picture,
when present, occupies the first cell of the row, ( a sibling of the cell containing the target ) .

4 These are available at the RISE repository: http://www.isi.edu/info-agents/RISE/index.html.
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Table 1. Results for data sets with 5 examples

Data set ctx K KL
s1-1 89.1 100.0
s1-3 90.4 98.7
s1-4 78.8 100.0
s3-2 97.6 100.0
s3-3 98.2 100.0
s4-1 91.6 100.0
s5-2 93.8 98.9
s8-2 100.0 100.0
s8-3 100.0 100.0
s10-2 100.0 100.0
s10-4 100.0 100.0
s11-1 ✔ 100.0 100.0

Data set ctx K KL
s11-2 ✔ 100.0 100.0
s12-2 98.4 98.5
s13-2 100.0 100.0
s13-4 100.0 100.0
s14-3 99.5 100.0
s15-2 97.1 100.0
s19-4 100.0 100.0
s20-3 ✔ 98.5 100.0
s20-4 ✔ 97.5 100.0
s20-5 ✔ 97.5 100.0
s20-6 ✔ 98.5 100.0
s22-2 93.3 100.0

Data set ctx K KL
s23-1 97.6 100.0
s23-3 94.4 100.0
s25-2 97.2 100.0
s29-1 96.6 96.6
s29-2 100.0 87.8
s30-2 96.0 100.0

bigbook-2 94.3 100.0
bigbook-3 88.0 100.0

okra-1 ✔ 100.0 100.0
okra-2 ✔ 99.3 100.0
okra-3 ✔ 99.1 100.0
okra-4 ✔ 99.1 100.0

experiment). This is a strong indication that our method is more expressive than previ-
ous methods. Only the K algorithm has a comparable expressivity, however it contains
a number of ad-hoc design decisions.

A second experiment compares these both algorithms in their ability to learn from a
small set of positive examples. Each experiment randomly selects 5 examples (each one
target in a document) in a data set and compares the F1 score of both algorithms (for
optimal parameter setting) with the whole data set as test set. This experiment is not
intended to measure the number of examples needed by each algorithm but to measure
which one learns best from a given sample of (incomplete) data. We use a well-defined
subset of 36 extraction tasks from the available WIEN data tasks, namely those that
extract a complete text node and for which the information on the nodes to be extracted
is available in the WIEN data. Tasks aiming at the extraction of a n-tuple are split in n
extraction tasks. We refer to them with the name of the original data set and the index of
the field in the tuple. Table 1 shows for each data set the mean over 5 experiments. The
variance over the different experiments was low. In most cases when a mean does not
reach 100%, all the experiments do not reach 100%. The column ctx indicates whether
both algorithms used a (same) distinguishing context. One can observe that our KL
algorithm gives a better F1 score for 24 tasks out of 36 and a worse one for only 1 data
set. This is evidence that it learns better from a small set of positive examples.

3 Learning the Parameters

As shown in Section 2.5, our (k, l)-contextual tree language improves upon the local
unranked tree automata of [12] by being able to learn from fewer examples. However,
a problem shared with [12] is that the method needs parameter tuning for each task.
Selecting the optimal parameters requires to run the program on a set of completely
annotated documents to obtain precision and recall. Hence parameter selection is in
fact based on a large set of positive and negative examples.

Here, we describe how to learn parameters based on a small set of negative exam-
ples. In addition, it is indicated when (k, l)-contextual tree languages are not expressive
enough to reach a 100% F1-score for the extraction task at hand.
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3.1 Algorithm

Order relations. We can distinguish two order relations on languages. Firstly, a partial
order ≥ defined as L1 ≥ L2 ⇔ L2 ⊆ L1 which is anti-monotonic in the parameters.
Secondly, let S be a finite set of trees and #acc(S,L) the number of trees from S that
is accepted by the languageL (the count). Then we define the total order≥#

S as L1 ≥#
S

L2 ⇔ #acc(S,L1) ≥ #acc(S,L2) 5. Note that ∀S | L1 ≥ L2 ⇒ L1 ≥#
S L2, hence

≥#
S is also anti-monotonic in the parameters, i.e., the count decreases with increasing

parameter values.

Solutions. A solution is a (k, l)-contextual language that is consistent with the ex-
amples. We define a solution L1 to be better than L2 when it extracts more solutions
from the documents used to learn the wrapper; more formally, when #acc(S,L1) ≥
#acc(S,L2) where S has a tree for each candidate node (with the candidate marked
cnfr. Section 2.3). Hence the best solution is the solution that is maximal in the or-
der ≥#

S .

Heuristic. In what follows, we denote with [k, l] the (k, l)-contextual language learned
from the given examples. Due to the anti-monotonicity, we have that #acc(S, [k, l]) ≤
#acc(S, [k−1, l]) and #acc(S, [k, l]) ≤ #acc(S, [k, l−1]), hence #acc(S, [k−1, l])
and #acc(S, [k− 1, l]) are upper bounds on the value of #acc(S, [k, l]). The algorithm
uses them to estimate the value of #acc(S, [k, l]) and, at each step, computes the count
of the language with the best estimate. The search stops when the best estimate cannot
improve upon the best current solution.

Initialisation. All (k, 1)-contextual languages extract all single node forks from the
examples, hence are overly general and of no interest. Therefore, the search starts from
the (1, 2)-contextual language as it has the largest count.

Algorithm. To reduce the space requirements, our algorithm maintains for a given l-
value the count of at most one (k, l)-contextual language. If the (k, l)-contextual lan-
guage is a solution, then the (k + 1, l)-contextual language is of no interest as it has a
lower count; if it is inconsistent, then its count is discarded as soon as the count of the
(k + 1, l)-contextual language is computed. These counts are maintained in a front (of
the search). For each l-value, the front maintains the k-value (F.k[l]), the count (F.c[l])
and whether it is a solution (F.sol[l]) (see the right of Figure1). In each step, the algo-
rithm selects the minimal value l such that the language [F.k[l], l]) is most promising
for exploration (the function BestRefinement): [F.k[l], l] is not a solution and the esti-
mation of its refinement has the highest bounds on its count. For k > 1, the refinement
is the language [F.k[l] + 1, l], however for k = 1, also [1, l+ 1] is a refinement.

Example 3. Given the data in Figure 1, the languages [1, 5], [4, 3] and [2, 5] are can-
didates for refinement. Although [4, 3] has the highest count, its refinement [5, 3] has
a count bounded by 33 while both refinements of [1, 5] have a count bounded by 48,
hence the latter is selected for refinement.

5 A total order over equivalence classes with the same count.
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1 2 3 4 5 k

2 33
3 52
4 27
5 48
l

k c sol

2 5 33 No
3 4 52 No
4 3 27 Yes
5 1 48 No
l

Fig. 1. Parameter Space and Data Representation

A final point to remark is that it is useless to consider a language [k, l] with k larger
than MaxK(P,N, l), the maximum branching factor for the forks of a given depth l
(it depends on l because only the forks containing the target are considered). Indeed, an
increase of k will not affect the number of extractions. The algorithm below achieves
this by setting the k-value at level l to∞ and the count to 0 when refining it. When this
happens for all l values, then it means that no wrapper based on (k, l)-contextual tree
languages is expressive enough to reach a 100% F1-score. Note that there is always a
solution when all examples come from a single document. The final set of forks then
becomes ultimately the set of marked versions of the whole document.

Algorithm 1. Learning the Parameters

Input: P and N , The sets of positive and negative examples.
Output: The parameters k and l of the wrapper.
1: calc(P ,N , 1, 2) // initialisation
2: bestL = 2
3: while not F.sol[bestL] do
4: if F.k[bestL]=1 then
5: calc(P ,N , 1, bestL+1)
6: end if
7: calc(P ,N , F.k[bestL]+1, bestL)
8: bestL = BestRefinement(F );
9: end while

10: return F.k[bestL] and bestL

Function: calc(P ,N , k, l)
1: if k > maxK(P ,N , l) then
2: F.k[l]=∞
3: F.c[l]=0
4: else
5: F.k[l]=k;
6: W = learnWrapper(P , k, l)
7: F.sol[l]=W rejects all N
8: F.c = cnt(extractions(W ,P ,N ))
9: end if

The algorithm is sketched in Algorithm 1. F is the array representing the front
as shown in Fig. 1. For a given l value, the values F.k[l], F.c[l], and F.sol[l] give
respectively the k-value, the count and whether [k, l] is a solution. It is initialized for
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l = 2 with k-value 1. The function BestRefinement(F ) returns the l-value of the
best candidate for refinement (as described above) if it exists, otherwise it either returns
the l-value of the solution or reports failure. The function calc(P,N, k, l) updates F [l]
with the appropriate values. Note that two refinements are computed when the selected
best candidate has a k-value of 1.

3.2 Learning with Context

We define a new preprocessing step to identify a distinguishing context, to replace the
ad hoc procedure in [12, 13] that returns zero or one context string. For each positive
example we collect the set of text nodes that occur in the marked (k, l)-forks for that
example. We define the context as the set of text nodes that is the common subset of
all these sets. This way text nodes are only generalized when there is a positive ex-
ample for which they do not occur in its parameterized neighborhood. This procedure
guarantees that (given sufficient examples) all the strings in the resulting set are context
for the target node. It is possible though that some discriminative context string is not
found (for example the target is a node with as context either c1 or c2). We haven’t yet
encountered the need for a more elaborate procedure. Note that the count of a wrapper
decreases with increasing context and that, given this procedure, the context increases
with an increase in k or l, hence the anti-monotonicity property is still valid and our
algorithm can easily be extended to learn a wrapper with context.

Not all data sets need a context. In principle, one could learn the wrapper with
context and the wrapper without context independently of each other. However, one
can easily integrate both in one algorithm that maintains two fronts and selects the most
promising point of both for refinement. Note that, for a given point (k, l), the count of
the wrapper with context is bounded by the count of the wrapper without context; i.e.,
the latter value can be used as an extra bound on the count of the former (hence selection
is such that the former will only be evaluated when that bound is already known).

4 Induction with Equivalence Queries

Arbitrary sets of positive and negative examples contain often redundant information. It
is more efficient to use queries. The system will ask itself the information that it needs
to improve its hypothesis. In this section we present a system based on the algorithms
from previous section, that uses equivalence queries[3]. The system allows the user to
inspect its hypothesis by checking the extraction results (possibly for different pages).
When detecting an error, the user signals it to the system as a counterexample (a false
positive or a false negative), so that it can update its hypothesis.

In Section 4.1 we indicate how to adapt the algorithm of previous section for an
efficient interactive use. In Section 4.2 we discuss some details of the implementation
of our system and finally in Section 4.3 we give an evaluation of its usability.

4.1 Interactive Algorithm

After each interaction the system updates its hypothesis. This is done by finding the
≥#

S -most general language that is consistent with the current set of examples. For
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this update step we can use the algorithm from Section 3. However, an incremen-
tal algorithm is feasible. This would certainly improve the timings in Table 2 (see
Section 4.3).

Adding a positive example (a false negative) to the set of examples increases the
set of forks, hence the counts of all wrappers. However, a (k, l)-wrapper that covers
negative examples still does so and cannot become a solution. It means that the search
of a solution can start from the current front. The initialization of the new search for
parameters consists of updating the count fields (F.c) in the front.

Adding a negative example (a false positive) does not affect the set of forks. How-
ever the solution is invalid as it covers the new negative example. After updating the
(true) solution fields (F.sol)6, the search can resume from the current front.

In short, the algorithm from Section 3 can be used. When a new example is received,
the values in the front are updated and the search resumes.

4.2 Implementation

Representing the wrappers as sets of forks is straightforward, and works fine most of
the time. For some tasks (requiring large k and l-values, and with pages with a large
branching factor), the time for learning and extraction becomes noticeable and becomes
an annoyance in an interactive application. We developed an implementation that repre-
sents the wrappers by unranked tree automata based on a technique described in [19].
This substantially reduces the memory consumption and the execution time without
affecting the language accepted by the wrapper.

We added a graphical user interface to our application, which is basically a HTML-
compliant browser, that allows the user to right-click on an element of the page to
add an extra example. The system colors the background of all elements that are ex-
tracted by its hypothesis. A click on a colored element is interpreted as a false pos-
itive, a click on a plain element is interpreted as a false negative. This way the user
is restricted to give only counterexamples to the equivalence query posed by the
system.

Table 2. Number of interactions needed to learn the wrappers

Data set P/N ms
s1-1 1/1 87
s1-3 4/1 915
s1-4 1/0 27
s3-2 1/1 56
s3-3 1/1 127
s4-1 1/0 10
s5-2 2/1 230
s8-2 1/1 38
s8-3 1/2 181

Data set P/N ms
s10-2 1/1 33
s10-4 1/1 555
s11-1 1/2 885
s11-2 1/2 766
s12-2 1/2 108
s13-2 1/2 45
s13-4 1/1 584
s14-3 1/0 26
s15-2 1/0 18

Data set P/N ms
s19-4 1/1 53
s20-3 1/0 35
s20-4 1/1 1364
s20-5 1/1 1568
s20-6 1/1 1472
s22-2 2/1 200
s23-1 1/2 242
s23-3 1/1 38
s25-2 1/1 25

Data set P/N ms
s29-1 3/2 2446
s29-2 4/2 5628
s30-2 2/1 46

bigbook-2 1/2 2013
bigbook-3 1/1 723

okra-1 1/2 123
okra-2 1/1 684
okra-3 1/2 235
okra-4 1/1 536

6 When the example is from a new document, also the counts are updated.
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4.3 Evaluation

To evaluate our system, we use the same tasks as in the second experiment of Sec-
tion 2.5. Each task is learned until a 100% F1-score is obtained. In Table 2 we show
the number of interactions that are needed to learn the wrapper. The first column con-
tains the data set, the second indicates the numbers of positive and negative examples7

needed, and the last column indicates the total time needed by all the learning steps
in Algorithm 1. The number of examples needed (P+N) is in the same range as those
reported in [18] forAggressive Co-Testing for tasks where the latter reaches 100% F1-
score. The system is highly responsive and suited for interactive use.

5 Conclusion

We have introduced a new subclass of the regular unranked tree languages, called (k, l)-
contextual tree languages, that is learnable from positive examples only. We applied this
class of languages to the problem of wrapper induction by representing a wrapper as
a language of marked trees. Experiments on generally used data sets show the expres-
siveness of this wrapper representation to be superior over other approaches. We made
an in-depth comparison with a wrapper inference algorithm based on Local Unranked
Tree automata [12], which corresponds to (k, 2)-contextual tree languages; they lack
expressivity and their authors tweak the representation of the documents by annotat-
ing the path from the root to the target node. An experiment learning wrappers from a
small set of positive examples shows that our pure local languages usually yield a better
wrapper than theirs.

Both our new algorithm as [12] need to tune parameters for each task. In [12] this
is solved by evaluating wrappers on a sufficiently large set of completely annotated
documents (representing positive and negative examples) to find the optimal param-
eter setting for a given extraction task. We developed a technique that learns a good
parameter setting from a small set of positive and negative examples.

Another limitation of [12] was the need for an ad-hoc preprocessing step to identify
a so called distinguishing context that in some applications is needed to disambiguate
positive from negative examples. We developed a technique that preserves text nodes
close to the target node when they occur in all examples.

We integrated the algorithm in an interactive system that allows a user to build a
wrapper by selecting an initial positive example, and possibly a small number of false
positives or false negatives, in sample documents. Experiments show that the resulting
system is indeed able to learn a wrapper from a few positive and negative examples
for a large number of extraction tasks. Interestingly, the system indicates failure when
the extraction task is not expressible as a (k, l)-contextual tree language. In this case,
one could switch to more expressive languages, e.g., the tRPNI algorithm [4] that needs
a set of completely annotated documents (so far we have not met an existing data set
requiring this).

7 P/N = 1/0 means that the initial (1,2)-wrapper given one positive example is a solution.
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Neural Fitted Q Iteration - First Experiences
with a Data Efficient Neural Reinforcement

Learning Method

Martin Riedmiller
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Abstract. This paper introduces NFQ, an algorithm for efficient and ef-
fective training of a Q-value function represented by a multi-layer percep-
tron. Based on the principle of storing and reusing transition experiences,
a model-free, neural network based Reinforcement Learning algorithm is
proposed. The method is evaluated on three benchmark problems. It is
shown empirically, that reasonably few interactions with the plant are
needed to generate control policies of high quality.

1 Introduction

When addressing interesting Reinforcement Learning (RL) problems in real
world applications, one sooner or later faces the problem of an appropriate
method to represent the value function. Neural networks, in particular multi-
layer perceptrons, offer an interesting perspective due to their ability to ap-
proximate nonlinear functions. Although a lot of successful applications exist
[Tes92, Lin92, Rie00], also a lot of problems have been reported [BM95]. Many
of these problems arise, since the representation mechanism in a multi-layer per-
ceptron is not local, but global: A weight change induced by an update in a
certain part of the state space might influence the values in arbitrary other re-
gions - and therefore destroy the effort done so far in other regions. This leads
to typically very long learning times or even to the final failure of learning at
all. On the other hand, a global representation scheme can in principle have a
very positive effect: by assigning similar values to related areas, it can exploit
generalisation effects and therefore accelerate learning considerably.

Therefore the question is: how can we exploit the positive properties of a
global approximation realized in a multi-layer perceptron while avoiding the
negative ones? One key access to this question is that we need to constrain
the malificious influence of a new update of the value function in a multi-layer
perceptron. The principle idea that underlies our approach is simple: we have to
make sure, that at the same time we make an update at a new datapoint, we also
offer previous knowledge explicitly. Here, we implement this idea by storing all
previous experiences in terms of state-action transitions in memory. This data
is then reused every time the neural Q-function is updated.

J. Gama et al. (Eds.): ECML 2005, LNAI 3720, pp. 317–328, 2005.
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The algorithm proposed belongs to the family of fitted value iteration algo-
rithms [Gor95]. They can be seen as a special form of the ’experience replay’
technique [Lin92], where value iteration is performed on all transition experiences
seen so far. Recently, several algorithms have been introduced in this spirit of
batch or off-line Reinforcement Learning, e.g. LSPI [LP03]. Our method is a
special realisation of the ’Fitted Q Iteration’, recently proposed by Ernst et.al
[EPG05]. Whereas Ernst et.al examined tree based regression methods, we pro-
pose the use of multilayer-perceptrons with an enhanced weight update method.
Our method is therfore called ’Neural Fitted Q Iteration’ (NFQ). In particular,
we want to stress the following important properties of NFQ:

– the method is model-free. The only information required from the plant are
transition triples of the form (state, action, successor state).

– learning of successful policies is possible with relatively few training examples
(data efficiency). This enables the learning algorithm to directly learn from
real world interactions.

– although requiring much less knowledge about the plant than analytical con-
trollers, the method is able to find control policies, that are able to compare
well to analytically designed controllers (see cart-pole regulator benchmark).

2 Main Idea

2.1 Markovian Decision Processes

The control problems considered in this paper can be described as Markovian De-
cision Processes (MDPs). An MDP is described by a set S of states, a set A of ac-
tions, a stochastic transition function p(s, a, s′) describing the (stochastic) system
behavior and an immediate reward or cost function c : S ×A→ R. The goal is to
find an optimal policy π∗ : S → A, that minimizes the expected cumulated costs
for each state. In particular, we allow S to be continuous, assume A to be finite
for our learning system, and p to be unknown to our learning system (model-free
approach). Decisions are taken in regular time steps with a constant cycle time.

2.2 Classical Q-Learning

In classical Q-learning, the update rule is given by

Qk+1(s, a) := (1 − α)Q(s, a) + α(c(s, a) + γmin
b
Qk(s′, b))

where s denotes the state where the transition starts, a is the action that is ap-
plied, and s′ is the resulting state. α is a learning rate that has to be decreased
in the course of learning in order to fulfill the conditions of stochastic approx-
imation and γ is a discounting factor (see e.g. [SB98]). It can be shown, that
under mild assumptions Q-learning converges for finite state and action spaces,
as long as every state action pair is updated infinitely often. Then, in the limit,
the optimal Q-function is reached.

Typically, the update is performed on-line in a sample-by-sample manner,
that is, every time a new transition is made, the value function is updated.
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2.3 Q-Learning for Neural Networks

In principle, the above Q-learning rule can be directly implemented in a neural
network. Since no direct assignment of Q-values like in a table based representa-
tion can be made, instead, an error function is introduced, that aims to measure
the difference between the current Q-value and the new value that should be
assigned. For example, a squared-error measure like the following can be used:
error = (Q(s, a)− (c(s, a) + γ minb Q(s′, b)))2. At this point, common gradient
descent techniques (like the ’backpropagation’ learning rule) can be applied to
adjust the weights of a neural network in order to minimize the error. Like above,
this update rule is typically applied after each new sample.

The problem with this on-line update rule is, that typically, several ten thou-
sands of episodes have to be done until an optimal or near optimal policy has
been found [Rie00]. One reason for this is, that if weights are adjusted for one
certain state action pair, then unpredictable changes also occur at other places
in the state-action space. Although in principle this could also have a positive
effect (generalisation) in many cases, in our experiences this seems to be the
main reason for unreliable and slow learning.

3 Neural Fitted Q Iteration (NFQ)

3.1 Basic Idea

The basic idea underlying NFQ is the following: Instead of updating the neural
value function on-line (which leads to the problems described in the previous
section), the update is performed off-line considering an entire set of transition
experiences. Experiences are collected in triples of the form (s, a, s′) by interact-
ing with the (real or simulated) system1. Here, s is the original state, a is the
chosen action and s′ is the resulting state. The set of experiences is called the
sample set D.

The consideration of the entire training information instead of on-line sam-
ples, has an important further consequence: It allows the application of advanced
supervised learning methods, that converge faster and more reliably than online
gradient descent methods. Here we use Rprop [RB93], a supervised learning
method for batch learning, which is known to be very fast and very insensitive
with respect to the choice of its learning parameters. The latter fact has the
advantage, that we do not have to care about tuning the parameters for the
supervised learning part of the overall (RL) learning problem.

1 Note that often experiences are collected in four-tuples with the additional entry
denoting the immediate costs or reward from the environment. Since we take an en-
gineering view of the learning problem, we think of the immediate costs as something
being specified by the designer of the learning system rather than something that
occurs naturally in the environment and can only be observed. Therefore, costs come
in at a later point and also potentially can be changed without collecting further
experiences. However, the basic working of the algorithm is not touched by this.
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3.2 The NFQ -Algorithm

NFQ is an instance of the Fitted Q Iteration family of algorithms [EPG05], where
the regression algorithm is realized by a multi-layer perceptron. The algorithm
is displayed in figure 1. It consists of two major steps: The generation of the
training set P and the training of these patterns within a multi-layer perceptron.
The input part of each training pattern consists of the state sl and action al of
training experience l. The target value is computed by the sum of the transition
costs c(sl, al, sl+1) and the expected minimal path costs for the successor state
s′l, computed on the basis of the current estimate of the Q−function, Qk.

NFQ main() {
input: a set of transition samples D; output: Q-value function QN

k=0
init MLP() → Q0;
Do {

generate pattern set P = {(inputl, targetl), l = 1, . . . , #D} where:
inputl = sl, ul,
targetl = c(sl, ul, s′l) + γ minbQk(s′l, b)

Rprop training(P ) → Qk+1

k:= k+1
} While (k < N)

Fig. 1. Main loop of NFQ

Since at this point, training the Q-function can be done as batch learning of
a fixed pattern set, we can use more advanced supervised learning techniques,
that converge more quickly and more reliably than ordinary gradient descent
techniques. In our implementation, we use the Rprop algorithm for fast super-
vised learning [RB93]. The training of the pattern set is repeated for several
epochs (=complete sweeps through the pattern set), until the pattern set is
learned succesfully.

3.3 Sample Setting of Costs

Here, we will give an example setting of the immediate cost structure, which
can be used in many typical reinforcement learning settings. We find it useful
to use a more or less standardized procedure to setup the learning problem, but
we want to stress that NFQ is by no means tailored this type of cost function,
but works with arbitrary cost structures.

In the following, we denote the set of goal states S+, the set of forbidden
states are denoted by S−. S+ therefore denotes the region, where the system
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should finally be controlled to (and in case of a regulator problem, should be kept
in), and S− denotes regions in state space, that must be avoided by a correct
control policy.

Within this setting, the generation of training patterns is modified as follows:

targetl =

⎧⎨⎩ c(sl, ul, s′l) , if s′l ∈ S+

C− , if s′l ∈ S−

c(sl, ul, s′l) + γ minbQk(s′l, b) , else (standard case)
(1)

Setting c(sl, ul, s′l) to a positive constant value ctrans means to aim for a
minimum-time controller. In technical process control, this is often desirable,
and therefore we choose this setting in the following. C− is set to 1.0, since
this is the maximum output value of the multi-layer perceptron that we use.
In regulator problems (see section 4), reaching a goal state does not terminate
the episode. Therefore, the first line in the above equation must not be applied.
Instead, only line 2 and 3 are executed and c(sl, ul, s′l) = 0, if s′l ∈ S+ and
c(sl, ul, s′l) = ctrans, otherwise.

Note that due to its purity, this setting is widely applicable and no prior
knowledge about the environment (like for example the distance to the goal) is
incorporated.

3.4 Variants

Several variants can be applied to the basic algorithm. In particular, for the
experiments in section 5.2 and 5.3 we used a version, where we incrementally
add transitions to the experience set. This is especially useful in situations, where
a reasonable set of experiences can not be collected by controlling the system
with purely random actions. Instead, training samples are collected by greedily
exploiting the current Qk function and added to the sample set D.

Another heuristic that we found helpful, is to add ’artificial’ training pat-
terns from the goal region, which have a known target value of 0. This technique
’clamps’ the neural value function to zero in the goal region, and we therefore
call it the hint-to-goal-heuristic. Note that no additional prior knowledge is re-
quired to generate the patterns, since the goal region is already known in the
task specification.

4 Benchmarking

The following gives a short overview of the intention of the benchmarks done in
the empirical section.

4.1 Types of Tasks

In control problems, three basic types of task specification might be distinguished
(there might be more, but for our purposes, this categorisation is sufficient):
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– avoidance control task - keep the system somewhere within the ’valid’ region
of state space. Pole balancing is typically defined as such a problem, where
the task is to avoid that the pole crashes or the cart hits the boundary of
the track.

– reaching a goal - the system has to reach a certain area in state space. As soon
as it gets there, the task is immediately finished. Mountaincar is typically
defined as getting the cart to a certain position up the hill.

– regulator problem - the system has to reach a certain region in state space
and has to be actively kept there by the controller. This corresponds to the
problems typically tackled with methods of classical control theory.

The problem types show different levels of difficulty, even when the under-
lying plant to be controlled is the same. In the following, we consider three
benchmark problems, where each belongs to one of the above categories.

4.2 Evaluating Learning Performance

Each learning experiment consists of a number of episodes. An episode is a
sequence of control cycles, that starts with an initial state and ends if the current
state fulfills some termination condition (e.g. the system reached its goal state
or a failure occured) or some maximum number of cycles has been reached.

Learning time in principle can be measured in many different ways: number
of episodes needed, number of cycles needed, number of updates performed,
absolute computation time, etc.

Since we are interested in methods that can directly learn on real systems, our
preferred measure of learning effort is the number of cycles needed to achieve a
certain performance. This number is directly related to the amount of interaction
with the plant to be controlled. By multiplying the number of cycles with the
length of the control interval, we get the absolute real time that we would have
to spend on a real system to achieve a certain performance.

We also give the number of episodes that is needed to learn a task. Although
this is not as expressive as the number of cycles (since this figure drastically
depends on the maximum allowed length of a training episode), it is a commonly
used measure and gives at least a rough intuition about the learning effort.

4.3 Evaluating Controller Performance

Controller performance is evaluated with respect to some cost-measure, that
evaluates the average performance over a certain amount of control episodes. In
principle this cost measure can be chosen arbitrary. Due to its practical relevance,
we use the average time to the goal as a performance measure for the controller.
In the regulator problem case, we measure the overall time outside the target
region. This takes the fact into account, that a controlled system might leave the
target region again. Note that the learning controller might have an internal goal
formulation that differs from the performance measure (i.e. by using discounting
or shaping rewards).
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Another important aspect when evaluating controller performance is to spec-
ify the ’working region’ of the controller, that means the set of starting states,
for which the controller should work. We distinguish between the following types
of working regions:

– always start from a single starting state
– start from one of a finite set of starting states
– start from an arbitrary random state within a starting region

In the following experiments, we use the third case, which is the most general
and (typically) the most challenging one.

5 Empirical Results

All experiments are done using CLS2 (Closed Loop System Simulator)2, a soft-
ware system designed to benchmark (not only) RL controllers on a wide variety
of plants.

5.1 The Pole Balancing Task

The task is to balance a pole at the upright position by applying appropriate
forces to the system. System equations and parameters are the same as in [LP03].
Three actions are available, left force (-50 N), right force (+50 N) and no force.
Uniform noise in [−10, 10] is added to the system. Cycle length is 0.1 s. The state
space is continuous and consists of the angle and the angular velocity. An episode
was counted as a failure, if the angle of the pole exceeded ±π/2 respectively.

Learning System Setup. For comparison, we choose the same cost structure
as in [LP03]: Immediate costs of 0 arise, if the angle remains within [−π/2, π/2]
(’S+’), if the angle gets outside this region, the episode is stopped and costs of +1
are given. A discount factor of γ = 0.95 is used. Transition samples were gener-
ated by starting the pole in an upright position and then applying random control
signals until failure. The average length of a training episode was about 6 cycles.

NFQ uses a multilayer-perceptron with 3 inputs (2 for the state, 1 for the
action), two hidden layers with 5 neurons each and 1 output. For all neurons,
sigmoidal activation functions with outputs between 0 and 1 were used.

Results. Lagoudakis and Parr reported very good results both for their LSPI
approach and Q-learning with experience replay using a linear function approx-
imator with reasonably selected basis functions [LP03]. The learned controllers
were tested on 1000 test episodes with a maximum length of 300 seconds each.
LSPI reached an average balancing time of 285 seconds after 1000 training
episodes. This means, that most but not all of the training trials generated
totally successful policies. For Q-learning with experience replay they report a
balancing time of ’about 300’ seconds after 750 episodes of training [LP03].

2 available at clss.sf.net
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Table 1. Results of NFQ on the pole balancing benchmark. Left column reports the
number of random episodes that were used for training. The length of each episode
was about 6 cycles. Altogether, 50 repetitions of the experiment were done. For each
experiment, a new set of random episodes was produced. Using 200 or more training
episodes (about 1200 cycles, corresponding to 2 minutes real time), all experiments
generated successful policies, i.e. the controller balanced the pole for all the test cases
for the maximum time 300 s.

# random episodes successful learning trials
50 23/50 (46%)
100 44/50 (88 %)
150 48/50 (96 %)
200 50/50 (100 %)
300 50/50 (100 %)
400 50/50 (100 %)

Results of the NFQ method are shown in table 1. The experiments were
repeated for 50 times. Each experiment had a different set of training samples
and a different initialisation of the neural network weights. With only 50 train-
ing episodes (corresponding to about 300 transition samples), NFQ was able to
find totally successful policies (policies that balanced the pole for the full 300
seconds for all the test episodes) in 23 out of 50 experiments. Using more train-
ing episodes, the result improves. Using only 200 training episodes, a successful
policy could be found reliably in all of the 50 experiments. This is a remarkable
result with respect to training data efficiency and gives some hint to the benefit
of generalisation ability of a multilayer-perceptron.

5.2 The Mountain Car Benchmark

The mountain car benchmark is about accelerating a car up to the top of the
hill, where for many situations the acceleration of the car is too weak to directly
go to the top, but instead the car has to move to the other direction to get
enough energy [SB98]. The control interval is +t = 0.05s. Actions are restricted
within the interval [−4, 4]. The road ends at -1m, i.e. the position must fulfill
the constraint position > −1m. The task is to reach the top, which means that
then, the position must be larger or equal to 0.7m. For testing performance,
1000 starting states are drawn randomly from the interval (−1, 0.7). The initial
velocity of the cart is set to 0. Performance is measured by the average number
of cycles to the goal.

Learning System Setup. Two actions are provided to the learning controller,
-4 and +4. For training, initial starting positions are drawn randomly from
(−1, 0.7), the initial velocity of the car was always set to zero. Training trajecto-
ries had a maximum length of 50 cycles. An episode was stopped, if the system
entered S− (failure by constraint violation) or entered S+ (success). Each train-
ing trajectory was generated by a controller, that greedily exploited the current
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Q-value function. The Q-value function was represented by a multi-layer percep-
tron with 3 input neurons (2 state variables and 1 action), 2 layers of 5 hidden
neurons each and 1 output neuron, all equiped with sigmoidal activation func-
tions. The weights of the network were randomly initialized within [−0.5, 0.5].
After each episode, one iteration of the inner NFQ loop was performed. The
hint-to-goal heuristic was used with a factor of 100. For each transition, costs of
ctrans = 0.01 were given.

Results. Results of the NFQ approach on the mountain car benchmark are
shown in table 2. The results are averaged over 20 experiments. Experiments
differ in the randomly drawn starting states for training and the randomly ini-
tialized neural Q-function. Each trial was stopped after 500 training episodes.
All 20 experiments produced a successful policy, i.e. a policy that was able to
reach the goal state for all of the 1000 randomly drawn starting positions.

To generate a successful policy, only about 71 episodes or 2777 cycles were
needed in average over all experiments. This corresponds to less than 2 and
a half minutes of training in real time. In the best case, a successful policy
could be found in only 356 cycles, but even in worst case, only 10054 cycles
were needed, which corresponds to about 8 and a half minutes in real time and
therefore still is a very realistic number for an assumed interaction with a real
system. Finding a fast policy to the goal can be done in about 296 episodes or
about 11000 cycles respectively, corresponding to about 9 minutes in real time.
Again, this is a very reasonable number for direct interaction with a real system.

Table 2. Results of NFQ on the mountain car benchmark. The upper part reports on
the training effort to reach a succesful policy. A policy is successful, if all test situations
are controlled to the goal state. The table shows the figures for the average (best/ worst)
number of episodes, the average (best/ worst) number of cycles and the corresponding
time for interacting with a real system. The lower part reports on the learning effort to
reach an optimized policy. In average over all training trials, the average best costs are
28.7. This value is slightly better than the performance achieved with a fine granulated
Q-table (29.0).

Mountain Car
First successful policy

episodes cycles interaction time costs
average 70.95 2777.0 2m19s 41.05

best 10 356
worst 243 10054

Best policy found (within 500 episodes)
episodes cycles interaction time costs

average 296.6 10922.8 9m06s 28.7
best 101 3660
worst 444 16081
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The best policies found needed only an average of 28.7 cycles to reach the goal.
This figure compares well to a table-based Q-learning approach, which yielded
an average of 29.0 cycles to reach the goal. This means that we can expect the
NFQ controllers to be pretty close to the optimum. As a side remark (not meant
as a true comparison): to get to this result, table based Q-learning required
300,000 episodes (with a maximum length of 300 cycles), and the Q-table had a
resolution of 250× 250× 2 entries.

5.3 The Cartpole Regulator Benchmark

System dynamics of the cartpole system are described in [SB98]. The control
interval is +t = 0.02s. Actions are restricted within the interval [−10, 10]. The
position is restricted by the constraint −2.4 ≤ pos ≤ 2.4. For testing perfor-
mance, 1000 starting states are drawn randomly. Results on the cartpole system
are typically reported with respect to maximum balancing time. Here, we re-
port results on a more difficult task that comprises balancing, namely cartpole
regulation. The task is to move the cart to a certain position and keep it there
while preventing the pole from falling. The target position of the cart is the
middle of the track, with a tolerance of ±0.05m. As a further complication, we
allow initial starting states deviating a lot from the ’all-zero’ position: for testing
performance, initial pole angles are randomly drawn from [−0.3, 0.3] (in rad),
positions are drawn from [−1., 1.] (in m), initial velocities are set to 0.

This more complicated formulation of the cartpole benchmark is closer to
realistic control tasks and the resulting controllers can be compared to control
policies derived by classical controller design methods.

Learning System Setup. Two actions are available to the learning controller,
-10N and +10N. For training, initial starting positions for the cart are drawn
randomly from [−2.3, 2.3], initial pole angles are drawn from [−0.3, 0.3] (in rad),
cart velocity and angular velocity are initially set to zero. Training episodes
had a maximum length of 100 cycles. Each training episode was generated by
a controller, that greedily exploited the current Q-value function. The Q-value
function was represented by a multi-layer perceptron with 5 inputs, 2 hidden
layers with 5 neurons each, and one output neuron, all equiped with sigmoidal
activation functions. The weights of the network were randomly initialized within
[−0.5, 0.5]. After each episode, one loop of the NFQ algorithm was performed.
The hint-to-goal heuristic was used with a factor of 100. For each transition,
costs of ctrans = 0.01 were given.

Results. Results for the cart-pole benchmark are shown in table 3. Performance
is tested on 1000 testing episodes starting from randomly drawn initial states and
having a maximum length of 3000 cycles. In the cartpole regulator benchmark,
a controller is successful, if at the end of the episode, the pole is still upright
and the cart is at its target position 0 within ±0.05m tolerance. Note that all
the controllers that solve the regulator problem also solve the balancing prob-
lem. Typically, the balancing problem is solved much earlier than the regulator
problem (figures not shown here).
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Table 3. Results of NFQ on the cart-pole regulator benchmark. Training time was
restricted to 500 episodes per trial. For an interpretation of the figures, see explanation
at table for the mountain car benchmark.

Cart Pole Regulator
First successful policy

episodes cycles interaction time costs
average 197.3 14439.8 4m49s 319.1

best 75 4016
worst 309 24132

Best policy found (within 500 episodes)
episodes cycles interaction time costs

average 354.0 28821.1 9m 36s 132.9
best 119 8044
worst 489 43234

Again, training is done very efficiently. Although the control problem is chal-
lenging, a moderate amount of sample transitions - an average of 14439.8 cycles
to find a successful policy and an average of 28821.1 cycles to find the best con-
troller - are sufficient. This corresponds to an average real time of 5 minutes (or
10 minutes respectively for the best controller) that would be needed to do the
collection of transition samples on a corresponding real system.

To have a better feeling for the control performance of the learned controller,
we analytically designed a linear controller for the cartpole regulator benchmark.
We used a pole assignment method where we placed the poles of the closed loop
system such that it was stable. Additionally, we tried to find parameters that pro-
duced control actions within the interval [−10,+10] according to the above spec-
ification. The control law used was u = −Rx, where R = (30.61, 7.77, 0.45, 1.72)
and x is the state vector. For the linear controller, the average number of cycles
outside the goal region was 402.1 over the 1000 test starting positions. The neu-
ral controllers that were learned had an average cost of 132.9, which means that
they are about 3 times as fast as the linear controller. This is an even more re-
markable result, if one considers, that no prior knowledge about plant behaviour
was available to develop the neural policy.

6 Conclusion

The paper proposes NFQ, a memory based method to train Q-value functions
based on multi-layer perceptrons. By storing and reusing all transition experi-
ences, the neural learning process can be made very data efficient and reliable.
Additionally, by allowing for batch supervised learning in the core of adaptation,
advanced supervised learning techniques can be applied that provide reliable and
quick convergence of the supervised learning part of the problem. NFQ allows
to exploit the positive effects of generalisation in multi-layer perceptrons while
avoiding their negative effects of disturbing previously learned experiences.
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The exploitation of generalisation leads to highly data efficient learning. This
is shown in the three benchmarks performed. The amount of training experience
required for learning successful policies is considerably low. The corresponding
time for acquisition of the training data on a hypothetic real plant lies in the
range of a few minutes for all three benchmarks performed.

For all three benchmarks, the same neural network structure was successfully
used. Of course, this does not mean, that we have found the one neural network
that solves all control problems, but it is a positive hint with respect to the
robustness of NFQ with respect to the choice of the underlying neural network.
Robustness against the parametrisation of a method is of special importance for
practical applications, since the search for sensitive parameters can be a resource
consuming issue.
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Abstract. We propose a Bayesian method for learning Bayesian network models
using Markov chain Monte Carlo (MCMC). In contrast to most existing MCMC
approaches that define components in term of single edges, our approach is to de-
compose a Bayesian network model in larger dependence components defined by
Markov blankets. The idea is based on the fact that MCMC performs significantly
better when choosing the right decomposition, and that edges in the Markov blan-
ket of the vertices form a natural dependence relationship. Using the ALARM and
Insurance networks, we show that this decomposition allows MCMC to mix more
rapidly, and is less prone to getting stuck in local maxima compared to the single
edge approach.

1 Introduction

Bayesian networks is a convenient framework for reasoning and manipulating beliefs
about the real world. It occupies a prominent position in decision support environments
where it is used for diagnostic and prediction purposes. Also, in the context of data
mining especially the graphical structure (model) of a Bayesian network is an appealing
formalism for visualising the relationships between domain variables. This paper is
concerned with the latter of the two.

We approach model learning from a Bayesian point of view, and apply a method that
is based on the marginal likelihood scoring criterion. The reason for being Bayesian is
first of all related to the relatively small amount of data that we often have at our disposal
in practice. When data is scarce, there may be several models that are structurally quite
different from each other, yet are almost equally likely given the data. In other words,
the data supports several models that differ widely, yet from a scoring perspective are
very close. Model selection methods on the other hand will return “the best” model, but
give no clue as to how and in what respect models differ that score almost equally well.

For large data sets—where “large” of course is related to the number of variables
of our domain—the best model is much more likely than any other model, and model
selection may be adequate.

The usual obstacle with the Bayesian statistical approach is the analytically in-
tractable integrals, normalising constants and large mixtures encountered when per-
forming the required computations. With MCMC, Bayesian computations are
performed using stochastic simulation.

J. Gama et al. (Eds.): ECML 2005, LNAI 3720, pp. 329–340, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



330 C. Riggelsen

When learning Bayesian network models the Bayesian way, MCMC is usually done
over the model space of DAGs [11] or (simulated) essential graphs [5]. Usually the
models are incrementally built by adding, removing or reversing arcs selected at ran-
dom, thereby “moving” around in the state space. Unfortunately, by exploring the search
space using moves defined solely in terms of single edges selected in a uniform fashion,
we may easily get stuck in local maxima.

In this paper we suggest to traverse the model space in a more intelligent fash-
ion by considering larger blocks. Rather than selecting edges uniformly, we select
a set of vertices that are related to each other and propose a change of how these
vertices are related by considering different edge assignments. We show that in do-
ing so, MCMC is less prone to get stuck in local maxima compared to uniform edge
proposals.

We proceed as follows: Section two introduces the basic theory for learning
Bayesian networks based on the marginal likelihood criterion. In section three we dis-
cuss a Gibbs and a Metropolis-Hastings sampler for obtaining models from the posterior
model distribution. Our new MCMC method is presented in section four, and in section
five the pseudocode is given and some implementation issues are discussed. In section
six we evaluate our method, and compare experimental results to those of a single edge
MCMC approach. We draw conclusions in section seven.

2 Learning Models

A Bayesian network (BN) for the discrete random variables X = (X1, . . . , Xp) rep-
resents a joint probability distribution. It consists of a directed acyclic graph (DAG)
M , called the model, where every vertex corresponds to a variable X i, and a vector of
conditional probabilities Θ, called the parameter, corresponding to that model. The joint
distribution factors recursively according to M as Pr(X|M, Θ) =∏p

i=1 Pr(X i|Πi, Θ) =
∏p

i=1 ΘXi|Πi
, where Π i is the parent set of X i in M . We

consider Θ a random (stochastic) vector with the following (prior) product Dirichlet
distribution:

Pr(Θ|M) =
p∏

i=1

∏
πi

Dir(ΘXi|πi
|α) =

p∏
i=1

∏
πi

C(i, πi, α)
∏
xi

Θ
α(xi,πi)−1
xi|πi

,

with C(i, πi, α) the normalising factor:

C(i, πi, α) =
Γ
(
α(πi)

)
∏

xi Γ
(
α(xi, πi)

) ,

where α is the vector of hyper parameters, α(·) the function returning the prior counts
for a particular configuration and Γ (·) the gamma function. The product Dirichlet cap-
tures the assumption of parameter independence [13], i.e. all parameters of the BN
are distributed independently, each according to a Dirichlet distribution. We are given
a multinomial data sample D = (d1, . . . , dc) with c i.i.d. cases, di = (x1

i , . . . , x
p
i ),
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for which the product Dirichlet is conjugate. This means that Bayesian updating is
easy because the posterior once D has been taken into consideration is again product
Dirichlet:

Pr(Θ|D, M) =
p∏

i=1

∏
πi

Dir(ΘXi|πi
|α + s) =

Pr(D|Θ, M) · Pr(Θ|M)
Pr(D|M)

=

p∏
i=1

∏
xi

∏
πi

Θ
s(xi,πi)
xi|πi

· Pr(Θ|M)

Pr(D|M)
,

where s is the vector of sufficient statistics from D and s(·) returns the counts for a
particular configuration. We can now easily isolate the marginal likelihood Pr(D|M):

p∏
i=1

∏
xi

∏
πi

Θ
s(xi,πi)
xi|πi

· Pr(Θ|M)

Pr(Θ|D, M)
=

p∏
i=1

∏
πi

C(i, πi, α)
∏
xi

Θ
α(xi,πi)+s(xi,πi)−1
xi|πi

p∏
i=1

∏
πi

C(i, πi, α + s)
∏
xi

Θ
α(xi,πi)+s(xi,πi)−1
xi|πi

,

where everything except the normalising factors cancels out. By filling in the normal-
ising factors we arrive at the marginal likelihood score, being a product of p terms,
one term per variable, each term a function of the parent set of the variable in ques-
tion:

Pr(D|M) =
p∏

i=1

∏
πi

Γ
(
α(πi)

)
Γ
(
α(πi) + s(πi)

) ∏
xi

Γ
(
α(xi, πi) + s(xi, πi)

)
Γ
(
α(xi, πi)

) .

In [8] the marginal likelihood is derived from a Bayesian prediction (prequential) point
of view using the chain rule Pr(D|M) = Pr(d1|M) · · ·Pr(dc|d1, . . . , dc−1, M).

The posterior model distribution is computed by applying Bayes’ law:

Pr(M |D) =
Pr(D|M) · Pr(M)∑

m

Pr(D|m) · Pr(m)
,

and then, if we are interested in some feature over models quantified by Δ, we can
average:

E[Δ(M)|D] =
∑
m

Δ(m) · Pr(m|D).

The problem is however that we can’t calculate the normalising factor Pr(D) due to the
large number of models. A way of dealing with that problem is to apply MCMC over
models; an alternative is described in [10].
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3 MCMC for Model Learning

In this section we discuss two methods for learning models via MCMC; other MCMC
approaches for learning BN models exist, see for instance [4]. An MCMC approach for
model learning which does not employ the marginal likelihood criterion is given in [7].

Define for all r = 1, . . . , p·(p−1)
2 edges of M the random variables Er with state

space ΩEr = {←,→, �↔}, i.e. every edge of the graph can take on a direction, or can
be absent. If the configuration of all edges forms a DAG, we can calculate the posterior
joint distribution Pr(E1, . . . , E p·(p−1)

2
|D).

3.1 Gibbs Sampling

The problem with the normalising factor mentioned in the previous section is solved by
applying Gibbs sampling. Draw edges at iteration t from the full conditional given the
data:

et
1 ∼ Pr(E1|et−1

2 , . . . , et−1
p·(p−1)

2

,D)

...

et
p·(p−1)

2
∼ Pr(E p·(p−1)

2
|et

1, . . . , e
t
p·(p−1)

2 −1
,D)

et+1
1 ∼ Pr(E1|et

2, . . . , e
t
p·(p−1)

2
,D)

...

where each draw is subject to the constraint that all edges together must form an acyclic
graph. In order to draw edge El from the full conditional given the data we calculate:

Pr(El|{er �=l},D) =
Pr(e1, . . . , El, . . . , e p·(p−1)

2
|D)∑

el

Pr(e1, . . . , el, . . . , e p·(p−1)
2
|D)

=
Pr(D|e1, . . . , El, . . . , e p·(p−1)

2
)∑

el

Pr(D|e1, . . . , el, . . . , e p·(p−1)
2

)
,

where a uniform model prior Pr(M) on the model space, and the denominator Pr(D)
both cancel out. It is easy to simplify the ratio even more because of the marginal
likelihood decomposition. When drawing an edge from the Gibbs sampler, say El, at
most two terms are affected, namely the terms pertaining to the vertices of edge El. All
remaining factors stay the same and cancel out in the ratio given above.

The Markov chain defined here is irreducible, because at every draw the state �↔
is a possibility and this state never induces a cycle. Hence there is a non-zero prob-
ability of removing arcs that obstruct the addition of other edges in any direction in
the graph (obstruct in the sense that the graph becomes cyclic). Also, since there is a
non-zero probability of remaining in the current state the chain is aperiodic, and we con-
clude that the Markov chain is ergodic. Thus for t → ∞ we have (e1, . . . , e p·(p−1)

2
) ∼
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Pr(E1, . . . , E p·(p−1)
2
|D), i.e. the chain converges to the joint distribution over collec-

tions of edges that form models.
To approximate the expected value of model features, we use the empirical average

(also called the Monte Carlo approximation):

E[Δ(M)|D] ≈ 1
N

N∑
t=1

Δ(mt),

where N denotes the total number of samples from the Markov chain. Often this kind
of averaging is done over features one can read directly off a model, e.g. Markov blan-
ket features of vertices, but theoretically any statement that the model entails can be
averaged.

3.2 Metropolis-Hastings Sampling

To our knowledge the model Gibbs sampler has not been proposed before in the form
discussed in the previous section. However, an alternative set-up of MCMC sampling
over models is to use MCMC Metropolis-Hastings sampling which is discussed in
[11,9]. Here a proposal distribution, q(·), guides the incremental changes of the mod-
els by proposing which components to change. This proposal is produced by drawing
mt+1 ∼ q(M |mt). With probability:

δ(mt+1, mt) = min
{
1,

q(mt|mt+1) Pr(mt+1|D)
q(mt+1|mt) Pr(mt|D)

}
,

the proposal is accepted, otherwise mt+1 = mt. For t → ∞ models from the invariant
distribution are obtained. Note that a uniform model prior, and Pr(D) cancel out in the
acceptance ratio.

In all existing implementations we are aware of [5,11], the proposals pertain to
components that correspond to single edges that are chosen in a uniform fashion. This is
more or less similar to the Gibbs sampler presented above with the slight difference that
the Gibbs sampler draws edges E1, . . . , E p·(p−1)

2
systematically. However, changing the

visitation scheme does not invalidate the Gibbs sampler. The invariant distribution is
reached no matter which visitation scheme is used, as long as all edges are sampled
“infinitely often”. With a random visitation scheme, both MCMC samplers behave very
much the same way.

4 Markov Blanket Approach

The fundamental issue with a single edge approach is that from a MCMC perspective it
is not the preferred way of decomposing the joint distribution. If we compare to a deter-
ministic procedure where each single edge component is maximised on an individual
basis, it would be quite obvious that this does not produce the best global solution per
se. Although the MCMC samplers mentioned in the previous section, don’t maximise
individual edge components, the analogy holds because there is nevertheless a pressure
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toward “good” or “maximum” solutions when drawing edges. A bad decomposition can
make the sampler almost reducible, and we might easily get trapped in a local maxi-
mum. For the Gibbs sampler this means that the individual conditionals are very narrow
(low variance), and although it is guaranteed that in the limit one will eventually escape
from the local maximum, for all practical purposes this isn’t useful.

In general for MCMC to perform well, the components should be as “self-contained”
as possible in the sense that a component should be considered a unit that can’t be split
(see for instance Robert, Casella [12]). So, although the overall score of a model is a
function of single edges, one should not necessarily reduce the sampling problem to
one in terms of single edges. Instead we should try to discern (not necessarily disjoint)
blocks or sets of edges that form a dependency relationship. These dependent edge
variables of a DAG require special treatment because they inherently belong together.

The dependency between edges is expressed through the current parent sets of the
vertices. By adding or removing a parent from a vertex through the addition, reversal or
removal of an edge, the score of the vertex changes, and this change in score depends
on the parent set: The probability of adding or removing an arc from, say X1 to X2,
depends directly on all edges from the parents of X2 to X2 because the score of X2 is
a function of all its parents. Similarly, the probability of adding or removing an arc in
the other direction depends directly on the edges from the parents of X1 to X1 because
the score of X1 is a function of its parents.

The dependency goes even further: the edge between X1 and X2 indirectly depends
on the current edges to the vertices in the parent set and the child set of X1 and X2, etc.
When the number of intermediate steps (arcs) is large between two edges connected
through a series of arcs, the two edges are less dependent than when the number of
intermediate steps is small; edges far apart are only indirectly relevant to each other.
In this way different levels of dependency can be discerned depending on the distance
between edges.

One way of defining component i is to group together currently dependent edges
in the neighbourhood of vertex X i. The strength of this edge dependency depends on
how far from vertex X i the edges are collected. We suggest to disregard edges that lie
beyond the vertices of the Markov blanket of X i. However, this set of edges only defines
the current dependency relationship but not necessarily the right one which is exactly
what is subject to learning. Therefore we suggest to also include in component i all edge
variables between the vertices of the Markov blanket of X i. Edges in the component
are now perturbed by drawing (new) edge values, and because the edges were “close”
to each other prior to the perturbation, the new value assignments may substantially
change the edge dependencies within the component. This way, after several iterations,
the component settles on a very likely assignment of all the edges.

Notice that the components overlap: many edge variables are part of several Markov
blankets. Edge variables that are shared by many Markov blankets are crucial for deter-
mining the probability of the states of several other edge variables, i.e. for several edges
they strongly influence the probability of adding, removing or reversing an arc.

Another form of edge dependency which is unrelated to the form of dependency
we investigated here, is the dependency between variables (X i) which stems from the
domain the variables belong to. The vertices in the Markov blanket form a relatively
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strong relationship, so proposing assignments ← or → to edge variables in the Markov
blanket is from a domain perspective a good heuristic; edges distant to each other are
less likely to be associated.

The idea is as follows: Either shrink or grow the Markov blanket of a vertex by
adding or removing vertices, or change the internal relationships between the vertices
of the Markov blanket. The probability of doing the latter should be higher than the
probability of doing the former; we want to try several Markov blanket configurations.

4.1 MCMC by Relevant Edges

We use a “Metropolis-within-Gibbs” MCMC, where Gibbs sampling and Metropolis-
Hastings sampling are combined in order to sample models from the invariant model
posterior. We define the set of relevant edges, E i, of vertex X i as Ei = E ′

i ∪ E ′′
i ,

where E ′
i is the set of all edge variables between vertices of the Markov blanket of X i

including X i itself, i.e.:

E ′
i = {E = (Xs, Xt)|Xs, Xt ∈MB(X i) ∪ {X i}},

and E ′′
i is the set of all edge variables between X i and any other vertex of X , i.e.:

E ′′
i = {E = (X i, Xt)|Xt ∈ X} \ E ′

i.

We refer to E ′
i as the set of currently relevant edges, because it consists of all edges

between all the relevant vertices given the Markov blanket as it is now. Observe that E ′
i

actually captures the notion of a sub-graph. E ′′
i is referred to as the set of potentially

relevant edges because it consists of edges between a vertex that is currently relevant
and vertices that may become relevant. In figure 1 the two relevance sets are illustrated.

Using block Gibbs sampling we now draw an instantiation of the edges in the set of
relevant edges per vertex:

εt
1 ∼ Pr(E1|ε̄1,D) · · · εt

p ∼ Pr(Ep|ε̄p,D) εt+1
1 ∼ Pr(E1|ε̄1,D) · · ·

where ε̄j is the current configuration of the edges in the complement of the set Ej .

Fig. 1. The set of relevant edges of the shaded vertex. The solid lines (arcs) connect the vertices
belonging to the Markov blanket. Dashed and solid lines indicate the set of currently relevant
edges, and dotted lines indicate the set of potentially relevant edges.
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The Gibbs sampler visits every vertex, thus every edge will eventually be part of a
potentially relevant edge set; we can’t guarantee that it will be part a currently relevant
edge set however, but as long as all edges are considered, we have that (e1, . . . , e p·(p−1)

2
)

∼ Pr(E1, . . . , E p·(p−1)
2
|D) for t → ∞.

Each draw from the above Gibbs sampler is performed by a Metropolis-Hastings
sampler. The proposal distribution is a mixture distribution, where one component, f(·),
deals with the edges in the currently relevant edge set, and the other component, g(·),
deals with the edges in the potentially relevant edge set, that is:

q(E t+1|Et) = w · f(Et+1|E ′t) + (1− w) · g(Et+1|E ′′t),

where 0 < w < 1 determines the mixture weights. When f(·) is applied, values for the
edges in the currently relevant set are drawn, i.e. MCMC is run in order to obtain the
posterior distribution of those edges. The cardinality of the set of relevant edges is kept
fixed once the Metropolis-Hasting sampler is applied—we merely assign (new) values
to the edge variables. Hence, the set of relevant edges is determined before entering
the Metropolis-Hastings sampler, and does not change until control is given back to the
overall Gibbs sampler. For g(·) the same holds, but here assignments are considered
to the variables in the potentially relevant set. The distribution f(·) produces uniform
proposals by selecting an edge Er ∈ E ′ with probability 1/|E ′|. Depending on the
current value of er, a state change is proposed to one of the (at most) two alternatives
with probability 0.5. E.g. if Et

r = �↔ then either Et+1
r = → or Et+1

r = ← is proposed.
For the distribution g(·) the same holds, but here we have Er ∈ E ′′ with probability
1/|E′′|. Notice that edges not in either of these two sets remain unchanged.

For Metropolis-Hastings, the acceptance probability depends on the proposal frac-
tion q(Et|E t+1)/q(Et+1|Et), which is required to ensure detailed balance and hence
invariance. For both the mixture in the numerator and in the denominator, the weights
are the same, the conditional distributions select edges with equal probability and there
is always the same number of alternative edge assignments, i.e. the distributions are
uniform, hence, the ratio cancels out.

The proposal distribution of the sampler will with a non-zero probability propose
a state change to any edge in the relevant edge set, which guarantees irreducibility.
With a non-zero probability it will remain in the current state for any edge implying
aperiodicity. We may thus conclude that the Metropolis-Hastings sampler will in the
limit return realisations from the invariant distribution Pr(E l|ε̄l,D), i.e. realisations for
the edges in E l given all other edges.

By introducing the currently relevant edge set, which is dealt with by f(·), we can
through the weight w vary how much “attention to pay” to the configuration of the
edge variables in the Markov blanket of the current vertex. Note that because edges in
the currently relevant edge set are proposed uniformly, edge variables that are part of
several Markov blankets are sampled relatively often. This entails that edges in dense
regions of the graph are sampled more often than edges in less dense regions. Edge
variables in dense regions are more dependent on each other, hence we sample more in
that region because it is easy to get “stuck” there since the edges constrain each other
strongly. Sampling more often in dense regions corresponds to putting more effort into
avoiding getting trapped in sub-optimal assignments to the edge variables.
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4.2 Covered Arcs

In recent years so-called inclusion-driven learning approaches [3] for model selection
have emerged, in which the essential graph space is traversed by respecting the inclusion
order. Unfortunately, it is inefficient to score essential graphs directly while traversing
the search space. As an alternative, one can simulate the essential graph space by re-
peatedly reversing arcs that have the same parent set—the covered edges. Although our
MCMC method is not really an inclusion driven approach, we may still profit from the
essential graph simulation idea. By doing covered arc reversal often enough all DAGs
representing the same set of independences are reached. All these DAGs have the same
marginal likelihood score, yet the individual score of the vertices (recall that the marginal
likelihood score decomposes) is different for equivalent DAGs. By reversing covered arcs
we may increase the probability of assigning alternative values to dependent edge vari-
ables that prior to reversal perhaps obstruct each other. We employ the Repeated Covered
Arc Reversal (RCAR) algorithm [3] to perform the covered arc reversals. RCAR takes an
argument, that determines the maximum number of times covered arcs will be reversed.
A value between 4 and 10 should suffice, and in particular 10 seems to work well.

5 Implementation Issues

In figure 2 the pseudocode of the Markov blanket MCMC (MB-MCMC) algorithm is
given. Line 2 determines the component to pay attention to, here a systematic sweep is
shown, but a random choice is also possible. Line 3 calls the algorithm for reversing
covered arcs. Lines 4–5 determines the edges to consider, and in lines 7–9 the edges are
drawn from the sets of relevant edges. The proposals are accepted or rejected in line 11–
12. In line 13 the configuration of all edges is recorded, i.e. here the actual models from
the posterior are saved. One may decide to sub-sample the Markov chain of models by
only recording the draws once in a while.

Algorithm MB-MCMC(k, w)

1 for r ← 0 to ∞
2 i ← (r mod p) + 1
3 RCAR(10)
4 E ′

i ← {E = (Xs, Xl)|Xs, Xl ∈ MB(Xi) ∪ {Xi}}
5 E ′′

i ← {E = (Xi, Xl)|Xl ∈ X} \ E ′
i

6 for t ← 0 to k

7 draw u ∼ U [0, 1]
8 if u < w and E ′

i �= ∅ then draw εt+1
i ∼ f(E i|ε′t

i )
9 else draw εt+1

i ∼ g(Ei|ε′′t
i )

10 δ ← Pr(D|εt+1
i )/Pr(D|εt

i)
11 draw u ∼ U [0, 1]
12 if u ≥ min{1, δ} then εt+1

i ← εt
i

13 RECORD(e1, . . . , e p·(p−1)
2

)

Fig. 2. Pseudocode of the Markov blanket MCMC
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The algorithm takes two arguments: k determines the number of times the
Metropolis-Hastings sampler is run, and w determines the probability of changing the
internal configuration of a component vs. adding or removing new vertices. Parameter
k need not be large for the overall invariant model distribution to be reached, i.e. the
Metropolis-Hastings sampler need not converge at every call. In fact we have found it
to be beneficial for the convergence rate to assign k a small value; too large a value may
lead to premature convergence. In our experiments we have set k = 5, and w = 0.95.

When every vertex is assigned a cache that keeps the sufficient statistics indexed by
the parent set, we may drastically improve the speed of MCMC by querying the cache
before querying the data. We have implemented the Markov blanket sampler in C++
using STL, and for the experiments in the next section we were able to reach what we
believe are the invariant distributions in less than 10 minutes on a 2 GHz machine.

6 Evaluation

We considered two BNs for the experiments: the ALARM BN with 37 vertices and 46
arcs [1], and the Insurance BN with 27 vertices and 52 arcs [2]. We used the BDeu
metric for the counts α with an equivalent sample size of 1. All experiments were run
for 1,000,000 iterations. As convergence diagnostic we monitored the number of edges
as suggested in for instance [6]. We compared the Markov blanket MCMC with eMC3,
a single edge MCMC sampler that also employs the RCAR algorithm.

In figure 3a the results of the ALARM network are illustrated. With 1000 samples,
we see that two independent runs of the MB-MCMC both converge towards models
with about 50–53 edges. There is no significant difference in the convergence behaviour.
For eMC3 two runs produce different behaviour and result in models with 68–77 edges.
For 5000 records similar observations hold, but overall the number of edges is lower:
45–51 for MB-MCMC and 57–70 for eMC3. We notice that eMC3 seems sensitive to
the starting point of the chain. To show this more clearly, we ran both samplers starting
from the empty graph, and from the actual ALARM graph for 7000 samples. For the
7000 records we would expect that the number of edges on average should converge
to 46, i.e. there is enough data to support the data generating model. For MB-MCMC,
both chains converge towards models with 44–50 edges. The most frequently sampled
model is similar to the ALARM network ±2 arcs. For eMC3 there is a big difference.
The chain started from the actual network stays at around 50–55 edges, but the chain
started from the empty graph gets stuck at 63–70. The most frequently sampled model
is in both situations less similar to the actual ALARM network than in the MB-MCMC
case (excess of ±10 and ±25 arcs).

Next we consider results of the Insurance network in figure 3b. We would like to
note that the association between several parent-child variables in the Insurance net-
work is rather weak and that even for large data sets these associations will be deemed
absent by the marginal likelihood score. For 500 records the MB-MCMC converges to
an invariant distribution where models are sampled with 36–40 edges. The two runs
meet at around 150,000 iterations. For eMC3 however, the two chains don’t quite agree
in the number of edges: somewhere between 37–46. We also ran both samplers be-
ginning from the empty and the actual Insurance graph. For MB-MCMC both starting
points produce models with 45–47 edges. Also here we see that eMC3 is sensitive to
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Fig. 3a. ALARM network. Top: Convergence behaviour given 1000 (left) and 5000 (right)
records for two independent runs. The lower lines are from the Markov blanket MCMC, and
the upper lines from eMC3. Bottom: Convergence behaviour of the Markov blanket MCMC (left)
and eMC3 (right) given 7000 records starting from the empty and the data generating model.
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Fig. 3b. Insurance network. Top: Convergence behaviour given 500 records for two independent
runs (common y-axis) of the Markov blanket MCMC (left) and eMC3 (right). Bottom: Conver-
gence behaviour of the Markov blanket MCMC (left) and eMC3 (right) given 10,000 records
starting from the empty and the data generating model.
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the initial model. Starting from the data generating model, the sampler converges to
an invariant distribution where models with 45–47 edges are sampled. Starting from
the empty graph, models with 54–56 edges are sampled. We see that even with 10,000
records, there is not enough information in the data sample to support the 52 arcs in
the data generating Insurance network. Also notice that the variability of the plots for
500 records is larger than for 10,000 records. This is to be expected because there is no
pronounced “best” model with merely 500 records.

7 Conclusion

We have proposed a new MCMC method for learning Bayesian network models. By
defining components of MCMC in terms of all edges in the Markov blankets of the
vertices, we group relatively strongly dependent edges together. This effectively means
that edges in dense regions of a model are sampled more often than in less dense regions.

Our experiments on the ALARM and the Insurance networks show that this Markov
blanket decomposition performs better than the naive MCMC approach, where all edges
are sampled equally often. The chain mixes faster, and it is less sensitive to the departure
model. This indicates that MB-MCMC is less prone to getting stuck in local maxima.
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Abstract. We study discriminative joint density models, that is, gen-
erative models for the joint density p(c,x) learned by maximizing a dis-
criminative cost function, the conditional likelihood. We use the frame-
work to derive generative models for generalized linear models, includ-
ing logistic regression, linear discriminant analysis, and discriminative
mixture of unigrams. The benefits of deriving the discriminative mod-
els from joint density models are that it is easy to extend the models
and interpret the results, and missing data can be treated using justified
standard methods.

1 Introduction

We study a classification task where a learning set, consisting of paired data
(x, c), is given. The c is the value of a categorical variable, associated with
observations x. The observations may be collected from several different kinds
of data sources; some may be real-valued measurements from sensors, whereas
some may be probabilistic predictions. What all the values x have in common is
that the c are assumed to depend on them. The task is to predict c for a test set
where only the values of x are known. The c are often referred to as the (values
of the) dependent variable, and the x the values of the independent variable
or covariate.

There are two traditional modeling approaches for predicting c, discrimi-
native and generative. Discriminative models optimize the conditional proba-
bility p(c|x) (or some other discriminative criterion) directly. The models are
good classifiers, since they do not waste resources on modeling those proper-
ties of the data that do not affect the value of c, that is, the distribution of
x. A classic example of a discriminative model is logistic regression, which is
a special case of Generalized Linear Models (GLMs) [1]. In GLMs, functions
of linear combinations βT x of the independent variables are sought in order to
predict p(c|x, β).

The other traditional approach is generative modeling of the joint distribu-
tion p(c,x). The benefit of generative models is that compared to purely dis-
criminative models, they add prior knowledge of the distribution of x into the

J. Gama et al. (Eds.): ECML 2005, LNAI 3720, pp. 341–352, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



342 J. Salojärvi, K. Puolamäki, and S. Kaski

task. This facilitates for example inferring missing values, since the model is
assumed to generate also the covariates x. The models are often additionally
simpler to construct, and their parameters offer simple explanations in terms of
expected sufficient statistics. A classic example of generative models is the linear
discriminant analysis (LDA).

Several publications have been devoted to comparing the discriminative and
generative approaches [2, 3, 4]. A common model pair in the comparisons has
been Linear Discriminant Analysis (or Naive Bayes) vs. logistic regression. With
infinite amount of data, generative modeling by maximizing the joint likelihood
produces optimal parameters for classification, assuming that the true data
distribution is contained in the model family. However, with real-world data
this is unlikely [5], and better predictions for c can be achieved by maximizing
the conditional likelihood.1 In practice, with large amounts of data, generative
models are inferior to discriminative models, since the assumed model is al-
ways incorrect, but with small sample sizes generative models may show better
performance [4].

The two modeling approaches are related. A discriminative classifier can be
obtained by simply changing the objective function from the joint likelihood
p(c,x|θ) to the conditional likelihood p(c|x, θ) by use of the Bayes formula, and
then optimizing the model parameters. The method has been put to extensive use
in speech processing applications, where good results have been obtained using
discriminative hidden Markov models [6]. What is often neglected is that even
after converting a joint density model to a discriminative model, the model still
constructs a density estimate for x. In this paper we show that this information
may be useful, even if the model is inaccurate, for example in predicting missing
values of x. We also show that the discriminative joint density models are very
close to so-called generalized linear models with random effects. The models
operate in the same parameter space, but the generative formulation restricts
the space.

Discriminative joint density models allow straightforward generalization to
combining different types of measured data: continuous, categorical, or proba-
bilities. In this paper we introduce, as an example, a discriminative joint den-
sity model for multinomial data, a discriminative version of the mixture of
unigrams model.

1 Joint density modeling minimizes the Kullback-Leibler divergence between the model
p(c,x|θ) and the “true” model p(c, x),

DKL =
∑

p(c,x) log
p(c,x)

p(c,x|θ) =
∑

p(c, x) log
p(c|x)

p(c|x, θ)
+
∑

p(x) log
p(x)

p(x|θ) ,

where the first term is the conditional likelihood. If the true model is included in
the model family, the latter term can be made to vanish, but otherwise, in the
case of an incorrect model, it is always nonzero for joint likelihood models. When
the true model is not within the model family, the joint likelihood model is thus
asymptotically always worse than the conditional likelihood model.
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2 Background

2.1 Exponential Family Distributions

An exponential family distribution can always be written in the canonical form

p(x|θ) = exp
(
T (x)T θ − logZ(θ)− logY (x)

)
, (1)

where the T (x) are the (observed) sufficient statistics, θ the natural parameters,
and logZ(θ) is the convex normalization term (partition function).

The key definition [7] needed here is the dual parameter μ, 2

μ = 〈T (x)〉p(x|θ) = ∂ log Z
∂θ . (2)

The natural parameters do not in general (with Gaussian being the exception) lie
within the same space as the sufficient statistics [8], which complicates their use
and interpretation. This is why exponential distributions are usually expressed
in terms of dual parameters μ which lie in the same space as the mean of the
sufficient statistics (and sometimes they are referred to as expected sufficient
statistics, for obvious reasons). The mapping Eq. (2) constrains the allowed
values of dual parameters to a plane tangential to the partition function logZ(θ).
This means that it is always possible to find a θ∗ corresponding to the sufficient
statistics T (x) (see [7, 8] for more details).

2.2 Generalized Linear Models

In GLMs [1] the dependent variable c is modelled with an exponential family
distribution of the form

p(c|x,B) = exp{T (c)T (BT x)− F (BT x)− logY (c)} . (3)

The GLM thus assumes a mapping θ = BT x to natural parameters. The function
μ = f(θ) = ∂

∂θF (θ) then provides a mapping to dual parameters. Here f(θ) is
the inverse of a link function. The most often used is the canonical link function
which is obtained if we select the partition function f(θ) = ∂

∂θ logZ(θ).

Generalized Linear Model with Random Effects. It is realistic to assume
that there is uncertainty associated with the measured values of x, that is, they
contain noise. In statistical modeling the most common assumption is additive
noise, θ = BT x + Zu, where Z is assumed to be known and u is an exponential
family noise term [9]. The approach thus makes a probabilistic mapping to nat-
ural parameters. Here BT x provides the sufficient statistics for θ. Notice that
the approach is still fully discriminative; the distribution of x is not modelled.

In GLMs with random effects the log-likelihood log p(c|x,B,u) + log p(u|A)
is then optimized with respect to β and u [9], with known values of the noise
variance A (it is determined by Z). See [1, 9] for more detailed descriptions.
2 For compactness of our formulas, we will denote 〈T (x)〉p(x|θ) = Ep(x|θ) {T (x)}.
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3 Discriminative Joint Density Modeling

In a discriminative joint density model the set of variables Y is divided into
two classes, Y = C ∪ X , where the C are the dependent variables over which
we want to discriminate and the X are the independent variables. The log-
likelihood of the discriminative model is log p(C|X, θ) = log p(Y |θ)− log p(X |θ).
Optimization of discriminative generative mixture models is usually done using
gradient ascent-based methods (as in this paper). Various EM-type algorithms
have also been proposed (see [10] and references therein).

We concentrate here on mixture models, where the identity of the mixture
component is a hidden variable. The theory is more general, however. Each
value of the hidden variable is associated with a deterministic mapping to a
value of the dependent variable c. We will next illustrate the differences between
discriminative and ordinary joint density modeling with Linear Discriminant
Analysis (LDA).

3.1 Linear Discriminant Analysis

As usually expressed in terms of dual parameters, the a posteriori decision rule
of LDA is [11]

p(C = j|xi) =
π(j)p(xi|m̄j ,S)∑
j′ π(j′)p(xi|m̄j′ ,S)

, (4)

where π(j) is the prior class probability, and m̄j denotes the mean of the dis-
tribution of x for the class j. Index i runs over data items, i ∈ [1 . . . N ]. LDA
assumes that data from each class is generated from a Gaussian distribution, all
of the classes having the same within-class covariance S.

The decision rule (4) is a direct formulation of a discriminative joint density
model cost function, with each class being modeled by one Gaussian. Usually,
the above equation is not optimized directly. Instead, an asymptotically optimal
classifier that models the joint likelihood is obtained by estimating μi by class
centroids, and S by the within-class covariance. The joint likelihood solution and
the discriminative solution obtained by optimizing Eq. (4) are asymptotically the
same if the “true” data distribution follows the assumptions of the LDA model.
Otherwise the solutions differ (see Fig.1 for a toy example).

3.2 Log-Linear Regression

As illustrated in the toy example of Figure 1, the best model for classification
optimizes p(c|x, β), which in the case of LDA is the a posteriori decision rule. A
classic example of a case where p(c|x, β) is optimized directly is the log-linear
regression.

In log-linear regression the probability of a class j for a data item xi is
computed by

p(C = j|xi,B) ≡ pji =
eβT

j xi∑
j′ e

βT
j′xi

, (5)
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Fig. 1. Difference of class distributions of discriminative and joint density models.
Discriminative modeling is optimal for predicting c (Left). In a joint likelihood model
the class difference is optimized only implicitly, resulting in softer class borders (Right).
In this toy example both models have the same covariance matrix, the within-class
covariance, and only the cluster centroids are optimized. The contour plot shows the
probability p(c|x) in 0.1 intervals. “X” and “O” denote samples from different classes.

where x is the vector of independent variables and βj the vector of coefficients
for a given class j. The βj is constructed to incorporate also a constant term
βj0 by having one component of x to be always 1. The βj form the columns of
matrix B. Each observation i can be considered as a draw from a multinomial,
and hence the log-likelihood will be

L =
N∑

i=1

C∑
j=1

δ(ci, j) log pji , (6)

where δ(ci, j) picks the class index j corresponding to the class of sample i.
We will next show the relationship between LDA and loglinear models. By

inserting Eq. (5) into the log-likelihood (6), we get

L =
N∑

i=1

C∑
j=1

δ(ci, j)βT
j xi − log

⎛⎝∑
j′
eβT

j′xi

⎞⎠ . (7)

We may take the constant term βj0 out from βj = [βj0 βj,1...d] ,

L =
N∑

i=1

C∑
j=1

δ(ci, j)
(
βj0 + βT

j,1...dxi

)
− log

⎛⎝∑
j′
eβj′0eβT

j′,1...d
xi

⎞⎠ . (8)

At this point we insert prior information into the model family: we require that
the βj0 and x come from exponential family distributions. We first require that
βj0 comes from a multinomial distribution by reparameterizing βj0 → log π(j)−
log

∑
j π(j) (here we in effect add a constraint that

∑
j π(j) = 1). The term

βT
j,1...dxi can be interpreted to be log p(xi|βj,1...d) without the normalization
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term. We can restrict x to an exponential family model by reparameterizing
βT

j,1...dxi → βT
j,1...dxi−logZ(βj,1...d)−logY (xi). The βj,1...d then form the natural

parameters and xi the sufficient statistics of the model.
Using Equation (1), we get

L =
N∑

i=1

C∑
j=1

δ(ci, j) (log π(j) + log p(xi|βj,1...d))− log

⎛⎝∑
j′
π(j′)p(xi|βj′,1...d)

⎞⎠
=

N∑
i=1

log

∏
j (π(j)p(xi|βj,1...d))

δ(ci,j)∑
j′ π(j′)p(xi|βj′,1...d)

.

This is the same as LDA in Eq. (4) if the p(xi|βj,1...d) are Gaussian.
Notice that the constraint that x can be modelled by an exponential family

distribution restricts the parameter space of βj,1...d through logZ(βj,1...d).3 As
an example, for multinomial distributions this effectively removes one degree of
freedom, since

∑
μ = 1. Note additionally that the discriminative joint density

model prefers values of β which are close to the θ∗ corresponding to the mean
of the observed sufficient statistics of x.

4 General Description of Discriminative Joint Density
Models

We will now formalize a general description of the discriminative joint density
model. We define a model that generates the observed (categorical) values c and
the associated measurements x. Each measurement xi consists of S different
kinds of data sources indexed by s, each modelled with an appropriate expo-
nential family distribution. Our goal is to optimize P (c|X, θ), where θ = {π, β}
denote all parameters of the model. We assume that X can be modelled using an
exponential family distribution, given a mixture component l. The information
x carries about c is therefore visible also in the sufficient statistics of X , and
thus the parameters of the generative distributions. The model can be optimized
for discriminating the classes by maximizing the conditional likelihood

p(ci|xi, θ) =

∏
k

(∑
l∈Ck

p(l,xi|βl, π(l))
)δ(ci,k)∑

l′ p(l′,xi|βl′ , π(l′))
, (9)

where l indexes the mixture component, and Ck is the set of components as-
sociated with class k. π(l) is the probability that the data was generated from
mixture component l, and βl are the parameters of the component l. See also
Figure 2.

The observed variables of our model are the classification C and the as-
sociated independent variables Xs. The parameters of the model are given by
3 Logistic regression, on the other hand, assumes that the β are independent with

values allowed to vary over the whole real-valued space.
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Fig. 2. A graphical model of the discriminative joint density model. Here l is the index
of the distribution that is used to predict class c. The grey circles indicate observed
values. S is the number of data sources, and N the number of data items.

θ = {π, β1...L
1...S }. Notice that the generative models are the same for the discrim-

inative and joint likelihood models. The difference is in the optimization.
A benefit of the discriminative joint density formulation, compared to alter-

native discriminative models, is that the model (and thus logistic regression) is
easy to extend into cases where x is better modelled by a mixture of exponen-
tial family models. The generative formulation also makes it simple to model
several independent variables and different forms of data, such as multinomial
or probability distributions [12]. Besides giving class predictions, the parameters
of the discriminative joint density models are directly interpretable in terms of
sufficient statistics for x.

4.1 Generative Model for Generalized Linear Models

The generative formulation can be easily extended to the GLM model class, of
which the log-linear model (see Section 3.2) is a special case. For simplicity, we
will assume that exactly one mixture component j corresponds to each class
label c. For convenience we will drop out the index i from xi, ci in the following.

We begin with the objective function of discriminative joint density models,
Eq. (9), which can also be written as

p(c|x, β) = exp{δ(c, j) log p(x, j|βj , π(j))− log
∑
j′
p(x, j′|βj′ , π(j′))} . (10)

By comparing this form with (1), we notice that the form corresponds to a
multinomial distribution with natural parameters θj = log p(x, j|βj , π(j)), suffi-
cient statistics T (c) = δ(c, j), and with logZ(θ) = log

∑
j′ p(x, j′|βj′ , π(j′))} =

logZ(p(x|β, π)). Since we pick one class for each x, the logY (c) is zero.
By writing θ in an exponential family notation, we get

θj = log p(x, j|βj , π(j)) = T (x)Tβj − logZ(βj)− log Y (x) + log π(j)− logZ(π) .
(11)

The log Y (x)-term can be left out, since it is the same for all components j. By
inserting Eq. (11) into Eq. (10), we get

p(c|x, β) = exp{T (c)T
(
BTT (x)− logZ(β) + log π − logZ(π)

)
− logZ(p(x|β))}.

(12)
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The π and logZ(π) can be incorporated into the matrix B, similarly to the
log-linear case. The vector logZ(β) consists of components logZ(βj).

Now, when the generative model and the GLM have been expressed in the
exponential family notation in Equations (12) and (3), respectively, we will point
out their difference. In case of multinomials considered in this paper, the Y (c) in
(3) is zero because of the form of the sufficient statistics. Of the remaining terms
within the exponent, the last one in both models is the normalization term.
The essential difference then is the term logZ(βj) in (12). In case of multino-
mial distribution it removes one degree of freedom in the model. This can be
shown by adding a displacement λ to each component of βj , which does not
change the predictions of the model (12). GLM, in contrast, does not have such
a restriction.

The generative model in effect introduces prior information into GLMs: as-
suming that the generative model for x is (nearly) correct, we can restrict the
(effective) parameter space of β. The restriction provides an additional benefit,
since by mapping the parameters to their dual parameters (through logZ(β)),
the values of β can be interpreted in terms of sufficient statistics of x.

The model is very similar to GLMs (with random effects), since both models
define a probabilistic mapping to θ. However, in discriminative joint density
models the uncertainty is defined for values of x, whereas in GLMs with random
effects the uncertainty is defined for θ. The discriminative joint density models,
however, have an additional benefit: By expressing the noise terms for individual
x, we form a generative distribution for x.

4.2 Connection to Maximum Entropy Discrimination

In maximum entropy discrimination (MED) [13], discriminative functions of the
form L(X |θ) = log p+

p− are optimized. The p+, p− denote probabilistic models
for the class + and −, respectively. In contrast, the discriminative joint density
modeling cost function can be expressed by

p+

p+ + p−
=

1
1 + exp{− log p+

p− }
=

1
1 + exp{−L(X |θ)} . (13)

The cost function thus is a monotonic (sigmoid) transformation of the MED
objective function.

The main advantage of the discriminative joint density modeling cost func-
tion over MED is that the output is the probability of the corresponding class,
thus expressing directly the level of uncertainty in class prediction. Generaliza-
tion to the case of several classes is also simpler and more straightforward to
implement.

4.3 Missing Data

It is of interest to know whether the estimate p(c|x, θ) can benefit from data
where the x is incomplete for some data items. Let us denote vectors with missing
values by x = [y z], where y is the missing data and z the known components.
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The conditional log-likelihood with missing data can then be written as

L =
∑

i∈Dfull

log p(ci|xi, θ) +
∑

i∈Dmiss

∫
p(y|ci, zi, θ) log p(ci|y, zi, θ)dy , (14)

where we denote by Dfull the data set with all entries known, and by Dmiss the
data with missing entries. In order to infer the value for missing data, we need
to make a distributional assumption for y. A feasible one is p(y|ci, θ) used in the
generative model. If the data really has been generated from the model family
this is the correct assumption, but in the real world the performance depends
on how close the model family is to the “true” generative distribution.

Practical Implementation. There are several possibilities to optimize
Eq. (14). We now present a simple approach that makes computations tractable
by constructing a lower bound for Lmiss, the cost function for the missing part
of the data. For discriminative joint density models it can be written as

Lmiss =
∑

i∈Dmiss

〈log p(ci,y, zi|θ)〉p(y|ci,zi,θ) − 〈log
∑

j

p(j,y, zi|θ)〉p(y|ci,zi,θ) .

(15)
The latter term can be upper bounded (and thus we obtain a lower bound for
Lmiss) by applying Jensen inequality

〈log
∑

j

p(j,y, zi|θ)〉p(y|ci,zi,θ)≤ log
∑

j

〈p(j,y, zi|θ)〉p(y|ci,zi,θ)≤ log
∑

j

p(j, zi|θ),

where the last expression follows from 〈p(y|j, zi, θ)〉p(y|ci,zi,θ) ≤ 1. A simple lower
bound of the cost function for missing data then follows

Lmiss ≥
∑

i

〈log p(ci,y, zi|θ)〉p(y|ci,zi,θ) −
∑

j

log p(j, zi|θ) , (16)

where the missing values y are replaced by their expectation under p(y|ci, zi, θ)
in the first term, and omitted in the second term.

4.4 Discriminative Document Modeling

The mixture of unigrams model [14] is a hidden variable model that generates
word counts for documents. The model assumes that each document is generated
from a mixture of M hidden “topics”,

∑M
j=1 πjp(xi|βj), where j is the index of

the topic, and βj the multinomial parameters that generate words from the topic.
The vector xi is the observed word counts for document i, and πj the probability
of generating the words from the topic j. In its simplest form with one topic per
class the model is a naive Bayes classifier.

In a discriminative mixture of unigrams the document vector is generated
from a mixture of topics (multinomials), where each class is assigned a subset
of topics. In this paper we will illustrate the functionality of the discriminative
mixture of unigrams in two cases: either with one or five topic vectors per class.
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5 Experiments

We used the Reuters data set [15]. A subset of 4000 documents from four cat-
egories was selected, 1000 from each category. The categories were: Corporate-
Industrial (CCAT), Economics and Economic Indicators (ECAT), Government
and Social (GCAT), and Securities and Commodities Trading and Markets
(MCAT). Each of the selected documents was classified to only one of the four
classes. The words that occurred less than 200 times in the whole subset were
left out, thus leaving 1952 words. The data set was then split into equal-sized
training and test sets.

The second data set was the MNIST data4. The data consists of gray level
images of handwritten digits. The data was thresholded to ones and zeros with a
threshold gray level value of 128 (with a maximum of 255) before evaluating the
models. The training and test data sets each consisted of 10000 samples, each
sample being a binary image of 784 pixels.

A discriminative mixture of unigrams model (d-MUM) with one and five
components was applied. Reference methods included the naive Bayes classifier,
loglinear regression, k-means algorithm (where each class was modelled by its
centroid), and k-nearest neighbor search (k-NN), where the size of the neigh-
borhood was chosen by dividing the full training set to training and validation
sets.5 The k-means and k-NN algorithms were computed using dot product and
Hellinger distances. The classification accuracies for the test data set are reported
in Table 1. With the Reuters data the performances of the loglinear model and

Table 1. Classification accuracies for the test sets. Comparisons (1),(2),(3): significant
(p < 0.01) difference (McNemar’s test).

Method Accuracy (%)
Reuters MNIST

k-means 79.9 64.1
k-means (Hellinger) 81.9 76.0
k-NN (5-nn) 74.6 (9-nn) 84.8
k-NN (Hellinger) (5-nn) 86.9 (1) (5-nn) 94.9
naive Bayes 59.0 68.9
loglinear 92.2 90.9 (2)(3)

d-MUM 1 component 92.5 (1) 90.5 (2)

d-MUM 5 components 92.3 93.2 (3)

d-MUM are roughly equal. With MNIST data, the loglinear model is better than
1-component d-MUM, but loses to 5-component d-MUM. Both models clearly
outperform the joint likelihood (naive Bayes) model.

4 Available at http://yann.lecun.com/exdb/mnist/
5 The computational complexity of k-NN is not comparable to the other methods, since

the method computes pairwise distances between every data point pair, whereas in
the other methods only C “prototypes” are used.
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Fig. 3. Performance with missing data. The performance of discriminative MUM (solid
line) compared to logistic regression with k-NN imputation (dashed line) and impu-
tation by the mean of the class (dotted line). Horizontal axis: Percentage of missing
data. Vertical axis: Classification accuracy (%). The difference between k-NN imputa-
tion and d-MUM is significant with 75 %, and mildly significant (p=0.033) with 50%
missing data.

In a second experiment the MNIST teaching data was corrupted by ran-
domly replacing pixels with missing values. The experiment was run for 10,
30, 50, and 75 % missing data. A baseline comparison method was logistic re-
gression where missing values were imputed by the mean of the known pixel
values for the given pixel and class. We also compared to the current state-of-
the-art, k-NN imputation which has been reported to outperform several other
methods [16].

The discriminative MUM compares favourably to the k-NN imputation with
missing values computed based on the 10 nearest neighbors. Besides being more
accurate, our method is considerably faster, since k-NN imputation is O(N2),
where N is the amount of samples6. This is an additional cost, since the optimiza-
tion durations for the loglinear model and discriminative MUM (with missing
value imputation) are roughly equal.

6 Discussion

The aim of this paper has been to set the stage for further contributions on dis-
criminative joint density models. Several theoretical connections were explored.
We have also shown that the paradigm can be easily applied to discriminative
document modeling with a simple case of mixture of unigrams model intro-
duced in this paper, and that the generative mechanism for x in discriminative
joint density models still contains useful information for example in predicting
missing values.

6 For computational reasons, we divided the data set to blocks of 1000 samples and
then imputed the missing values. This took more than 12 hours for each data set.
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Model-Based Online Learning of POMDPs
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Abstract. Learning to act in an unknown partially observable domain is a dif-
ficult variant of the reinforcement learning paradigm. Research in the area has
focused on model-free methods — methods that learn a policy without learning
a model of the world. When sensor noise increases, model-free methods provide
less accurate policies. The model-based approach — learning a POMDP model
of the world, and computing an optimal policy for the learned model — may gen-
erate superior results in the presence of sensor noise, but learning and solving a
model of the environment is a difficult problem. We have previously shown how
such a model can be obtained from the learned policy of model-free methods,
but this approach implies a distinction between a learning phase and an acting
phase that is undesirable. In this paper we present a novel method for learning
a POMDP model online, based on McCallums’ Utile Suffix Memory (USM), in
conjunction with an approximate policy obtained using an incremental POMDP
solver. We show that the incrementally improving policy provides superior results
to the original USM algorithm, especially in the presence of increasing sensor and
action noise.

1 Introduction

Consider an agent situated in a partially observable domain: It executes an action that
may change the state of the world; this change is reflected, in turn, by the agent’s sen-
sors; the action may have some associated cost, and the new state may have some asso-
ciated reward or penalty. Thus, the agent’s interaction with this environment is charac-
terized by a sequence of action-observation-reward steps, known as instances. In this
paper we focus our attention on agents with imperfect and noisy sensors that learn to act
in such environments without any prior information about the underlying set of world-
states and the world’s dynamics, except for information about their sensors’ capabilities
(namely, a predefined sensor model). This is a known variant of reinforcement learning
(RL) in partially observable domains (see, e.g. [3]).

Learning in partially observable domains can take one of two forms; the agent can
either learn a policy directly [8, 7], or it can use methods such as the Baum-Welch
algorithm for learning HMMs (see, e.g. [2]) to learn a model of the environment, usually
represented as a Partially Observable Markov Decision Process (POMDP)1 , and solve
it [4, 9]. This approach has not been favored by researchers, as learning a model appears
to be a difficult task, and computing an optimal solution is also difficult.

Moreover, model-free methods naturally support online learning and adapt to
changing environments, whereas this is not always the case with model-based methods.
In this paper, we return to the model-based approach motivated by a number of recent

1 See Section 2.1 for an overview of MDPs and POMDPs.

J. Gama et al. (Eds.): ECML 2005, LNAI 3720, pp. 353–364, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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developments: (1) Our recent work on learning POMDP models is able to leverage poli-
cies of model-free methods for constructing a POMDP and scales much better than the
Baum-Welch algorithm (2) Improvements in approximate POMDP solution methods
no longer make it a bottle-neck for this approach. The main contribution of this paper
is to show how we can adapt the above ideas to provide online model-based learning
of POMDPs, thereby providing a well-rounded approach for model-based learning in
partially observable domains. Our algorithm still suffers from the problem that plagues
model-free and model-based algorithms for this difficult problem: it works in relatively
small domains. However, given the relatively small number of algorithms in this area,
it offers a new entry that is both faster, much more robust to sensor noise, and adaptive.

Some research in RL has focused on the problem of perceptual aliasing [4], where
different actions should be executed in two states where sensors provide the same out-
put. For example, in Figure 1 the left and right corridors are perceptually aliased if sen-
sors can only sense adjacent walls. Model-free methods2 - such as using variant-length
history windows [7] - can be used to disambiguate the perceptually aliased states. When
the agent’s sensors provide deterministic output, learning to properly identify the under-
lying world states reduces the problem to a fully observable MDP, making it possible
for methods such as Q-learning to compute an optimal policy.

(a) (b) (c)

Fig. 1. Three maze domains. The agent receives a reward of 9 upon reaching the goal state
(marked with ‘G’). Immediately afterwards (in the same transition) the agent is transferred to
one of the states marked ‘X’. Arrival at a state marked ‘P’ results in a negative reward of 9.

When sensors provide output that is only slightly noisy, model-free methods pro-
duce near-optimal results. However, as noise in the sensors increases, their performance
rapidly decreases [10]. This is because disambiguating the perceptually aliased states
under noisy sensors does not result in an MDP, but rather in a POMDP. POMDP models
are harder to solve, but their solution handles noisy observations optimally.

We have previously shown [11] how well-known model-free methods such as inter-
nal memory and McCallum’s USM algorithm can be adapted to create after convergence
a POMDP model. A solution to such a model provides superior results to the original
policy computed by the model-free methods, especially in the presence of noise. This
approach, much like earlier methods that rely on the Baum-Welch algorithm, has its
disadvantages, as it separates the process into a learning stage and an acting stage. Such
separation is undesirable because it is unclear when we should switch from learning to
acting, and it also does not handle even slowly changing environments very well.

In this paper we present an algorithm for learning a POMDP model together with
its policy online. We adapt the USM algorithm, originally designed for learning a sim-
pler MDP model, for learning the more complicated POMDP model. USM has two

2 As the discussed problems are properly defined as a POMDP, we call methods that do not learn
all the POMDP parameters “model-free”, though they may learn state representations.
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parts — clustering histories to form a state representation and a planning algorithm
based on the learned states. We suggest augmenting the first part to learn a POMDP
model using a predefined sensor model, and replacing the original MDP planner with
an approximate POMDP planner. The algorithm hence updates the POMDP parame-
ters and continuously computes an approximate policy, using an online version of the
Perseus algorithm [12]. Executing policies in a POMDP requires the maintenance of a
belief state. The computational cost of our incremental learning algorithm is no greater
than the time it takes for the required computation of the belief state. Belief states
can also be used to improve the insertion of instances into the POMDP construction
algorithm.

Our algorithm makes one important assumption – the existence of a pre-defined
sensor model. For instance, in the maze domain, it knows the probability by which a
wall is observed given that a wall exists. In general we require a sensor model that
provides a distribution over observations given features of a state (rather than given the
actual state). While not universally applicable, we believe that such sensor models are
quite natural for many domains, robotics in particular.

This paper is structured as follows: we begin (Section 2) with an overview of MDPs,
POMDPs and the USM algorithm. We then explain how the USM algorithm can be
adapted to incrementally maintain a POMDP in Section 3 and how to compute an ap-
proximate policy online in Section 4. We provide an experimental evaluation of our
work in Section 5 and conclude in Section 6.

2 Background

2.1 MDPs and POMDPs

A Markov Decision Process (MDP) [5] is a model for sequential stochastic decision
problems. An MDP is a four-tuple: 〈S,A,R, tr〉, where S is the set of the states of
the world, A is a set of actions an agent can use, R is a reward function, and tr is the
stochastic state-transition function. A solution to an MDP is a policy π : S → A that
defines which action should be executed in each state.

Various exact and approximate algorithms exist for computing an optimal policy,
and the best known are policy-iteration [5] and value-iteration [1]. A value function as-
signs for each state a value V (s) — the expected utility from acting optimally begining
in s and on to infinity. Value iteration computes an optimal value function by iteratively
solving the equation:

Vn+1(s) = max
a

R(s, a) + γ
∑
s′

tr(s, a, s′)Vn(s′) (1)

A standard extension to the MDP model is the Partially Observable Markov Deci-
sion Process (POMDP) model [3]. A POMDP is a tuple 〈S,A,R, tr,Ω,O〉, where
S,A,R, tr define an MDP, Ω is a set of possible observations and O(a, s, o) is the
probability of executing action a, reaching state s and observing o. The agent is unable
to identify the current state and is therefore forced to estimate it given the current ob-
servations (e.g. output of the robot sensors) and the agents’ history. In many application
domains POMDPs are a more precise and natural formalization than an MDP, but using
POMDPs increases the difficulty of computing an optimal solution.
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History may be represented by a belief state b(s) = p(s|h) — the probability of
being in state s after executing and observing history h. The next belief state boa resulting
by executing action a and observing o in belief state a can be computed using:

bo
a(s) =

O(a, s, o)
∑

s′ b(s′)tr(s′, a, s)
pr(o|b, a)

(2)

2.2 Approximate Solutions to POMDPs

Solving a POMDP is an extremely difficult computational problem, and various at-
tempts have been made to compute approximate solutions that work reasonably well in
practice.

Early research [6] suggested the use of an optimal policy for the underlying MDP
in conjunction with the belief state to provide a number of approximations that define a
policy over belief states.We can select the action that:

– Most Likely State (MLS): corresponds to the maximal Q-value of the state that is
most likely given the current belief state.

πMLS(b) = argmaxa Q(argmaxs b(s), a) (3)

– Voting: recommended by most states, weighted by the state probability.

πV oting(b) = argmaxa

∑
s

b(s)δ(s, a) (4)

where δ(s, a) = 1 ⇔ a = argmaxa′ Q(s, a) and 0 otherwise.
– QMDP : has the highest Q-value weighted by the state probabilities.

πQMDP (b) = argmaxa

∑
s

b(s)Q(s, a) (5)

An exact solution to a POMDP can be computed using the belief state MDP —
an MDP over the belief space of the POMDP. A value function for a POMDP can be
described using a set of |S| dimensional vectors defining the expected utility, where
each vector αa ∈ V corresponds to an action a. We can compute the value function
over the belief state MDP iteratively:

Vn+1(b) = max
a

[b · ra + γ
∑

o

pr(o|a, b)Vn(bo
a)] (6)

where ra(s) = R(s, a) and α · β =
∑

i α(i)β(i). The computation of the next value
function Vn+1(b) out of the current one Vn (Equation 6) is known as a backup step.
Using such a value function V we can define a policy πV over the belief state:

πV (b) = argmaxa:αa∈V αa · b (7)

A point-based algorithm is an algorithm that computes a value function over a finite set
of belief points (belief states). Point based algorithms compute an approximate solution
as they do not iterate over the entire (infinite) belief space.

Spaan et al. explore randomly the world to gather a set B of belief points and then
execute the Perseus algorithm (Algorithm 1). Spaan et al. also explain how backups can
be computed efficiently. Perseus appears to provide good approximations with small
sized value functions rapidly.
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Algorithm 1. Perseus
Input: B — a set of belief points
1: repeat
2: B̃ ← B
3: V ′ ← φ
4: while B̃ not empty do
5: Sample b ∈ B̃
6: α ← backup(b)
7: if α · b > V (b) then
8: V ′ ← V ′ ∪ {α}
9: else

10: V ′ ← V ′ ∪ {maxβ∈V β · b}
11: B̃ ← {b ∈ B̃ : V ′(b) < V (b)}
12: V ← V ′

13: until V has converged

2.3 Model Based Approaches

The idea of learning a POMDP model of the environment was examined by early re-
searchers [4, 7] who used a variant of the Baum-Welch algorithm for learning hidden
Markov models, refining the state space when it was observed to be inadequate. These
methods were slow to converge and could not outperform the rapid convergence and
reasonable results generated by model-free methods.

Weirstra and Weiring [13] recently proposed an improvement to McCallums’ UDM
algorithm allowing it to look farther into the past and speeding its convergence. They
however compute an approximate policy using Q-values for the underlying MDP and
not by any modern policy computation mechanism. We note that their algorithm is not
truly online as it is split into as exploration stage and then a model update stage in order
to avoid the long update time of the Baum-Welch algorithm.

Nikovski [9] used McCallum’s earlier model-free method, Nearest Sequence Mem-
ory (NSM) [7], to identify the states of the world and learn the transition, reward, and
observation functions. He showed that the learned models produced superior results to
the models obtained by using the Baum-Welch algorithm. His models, however, were
tested on domains with little noise, and are much less adequate when sensors are noisy.
This is to be expected, as NSM handles noisy environments poorly, where USM can still
produce reasonable results, though in no way optimal. Nikovski also did not maintain
an incremental model, splitting the learning into a learning phase, followed by model
construction and then used the resulting model.

2.4 Utile Suffix Memory

Instance-based state identification [7] resolves perceptual aliasing with variable length
short term memory. An instance is a tuple Tt = 〈Tt−1, at−1, ot, rt〉 — the individ-
ual observed raw experience. Algorithms of this family keep all the observed raw
data (sequences of instances), and use it to identify matching subsequences. It is as-
sumed that two sequences with similar suffixes were likely generated in the same
world state.
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Utile Suffix Memory creates a tree structure, based on suffix trees for string oper-
ations. This tree maintains the raw experiences and identifies matching suffixes. The
root of the tree is an unlabeled node, holding all available instances. Each immedi-
ate child of the root is labeled with one of the observations encountered during the
test. A node holds all the instances Tt = 〈Tt−1, at−1, ot, rt〉 whose final observation
ot matches the node’s observation. At the next level, instances are split based on the
last action of the instance at. We split again based on (the next to last) observation
ot−1, etc. All nodes act as buckets, grouping together instances that have matching
history suffixes of a certain length. Leaves act as states, holding Q-values and up-
dating them. The deeper a leaf is in the tree, the more history the instances in this
leaf share.

The tree is built on-line during the test run. To add a new instance to the tree,
we examine its percept, and follow the path to the child node labeled by that per-
cept. We then look at the action before this percept and move to the node labeled by
that action, then branch on the percept prior to that action and so forth, until a leaf is
reached.

When sensors provide noisy outputs, it is possible that an instance corresponding
to a certain location in the world will be inserted into a leaf that represents a different
location, due to a noisy observation[10]. Such noisy observations can be reduced by
maintaining a belief state. Instead of refereing to a single (possibly noisy) observation,
we can consider all possible observations weighted by their probability p(o|b) where
b is the current belief state. In USM, p(o|b) is easy to compute as each state (leaf)
corresponds to a specific assignment to world features (for example, a specific wall
configuration), and therefore p(o|b) =

∑
s∈So

b(s) where So is the set of all states that
correspond to world configuration o.

We can hence insert a new instance Tt into all states, weighted by p(o|bt), or
replace the noisy observation ot with the observation with maximal probability
argmaxo p(o|bt). In the experiments reported below we take the second approach.

Leaves should be split if their descendants show a statistical difference in expected
future discounted reward associated with the same action. We split a node if knowing
where the agent came from helps predict future discounted rewards. Thus, the tree must
keep what McCallum calls fringes, i.e., subtrees below the “official” leaves. Figure 2.4
presents an example of a possible USM tree, without fringe nodes.
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Fig. 2. A possible USM suffix tree generated by the maze in Figure 1. Below is a sequence of
instances demonstrating how some instances are clustered into the tree leaves. The two bolded
leaves correspond to the same state — the right perceptually aliased corridor. During most exe-
cutions under deterministic sensor output the above tree structure was generated.
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After inserting new instances into the tree, we update Q-values in the leaves using:

R(s, a) =

∑
Ti∈T (s,a) ri

|T (s, a)| (8)

Pr(s′|s, a) =
|∀Ti ∈ T (s, a), L(Ti+1) = s′|

|T (s, a)| (9)

Q(s, a) = R(s, a) + γ
∑
s′

Pr(s′|s, a)U(s′) (10)

where L(Ti) is the leaf associated with instance Ti and U(s) = maxa(Q(s, a)). We
use s and s′ to denote the leaves of the tree, as in an optimal tree configuration for
a problem the leaves of the tree define the states of the underlying MDP. The above
equations correspond to a single step of the value iteration algorithm (see Section 2.1).

Now that the Q-values have been updated, the agent chooses the next action to
perform based on the Q-values in the leaf corresponding to the current instance Tt:

at+1 = argmaxaQ(L(Tt), a) (11)

McCallum uses the fringes of the tree for a smart exploration strategy. In our imple-
mentation we use a simple ε-greedy technique for exploration.

We note that if a perceptually aliased state can be reached from two different loca-
tions, it may have two different leaves that represent it. For example, consider the two
leaves in thick line-style in Figure 2.4, corresponding to arriving at the right corridor
from above or from below. This phenomenon gives rise to two problems: relevant in-
formation is split between leaves, thus requiring a longer learning process, and more
seriously, this can lead to a non-compact state space. This is a fundamental problem
with USM, and future research should focus on better structures that avoid this dupli-
cation, such as using a DAG instead of a tree structure. We note that given any such
improvement to USM our algorithms can be modified accordingly.

3 Constructing a POMDP Model over Utile Suffix Memory

Obtaining the POMDP parameters from the USM tree structure is straightforward. The
state space (S) is defined as the set of (constantly expanding) tree leaves computed by
USM. The actions (A) and observations (Ω) are known to the agent prior to learning
the model. The transition function (tr) is defined by Equation 9 and the reward function
(R) by Equation 8, as in the original USM. These functions are refined throughout the
learning process.

Learning the observation function is harder, as in USM a state always corresponds
to a single “true” observation, and all instances mapped to the state hence observe the
same sensor output. This “true” state observation is defined by the topmost node be-
low the root, on the path to the state leaf, corresponding to the latest observation in
every instance that was added to the leaf. It is therefore unclear how to learn pr(o|a, s)
— the probability of observing o after reaching state s with action a. We are able
to learn a different probability function — the probability of observing o after exe-
cuting action a from state s, but in most of the domains modelled by POMDPs the
observation depends on the target state, not on the source state, making the latter
definition improper.
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It is, however, possible to measure the accuracy of sensors offline, prior to the learn-
ing process. For example, we can place a robot in front of an obstacle and measure how
likely are its sensors to identify the obstacle. Similarly, it is possible to measure the
temperature of a patient multiple times to obtain an error model of the thermometer.

We therefore adopt the approach taken by Shani et al. [10, 11], where an observa-
tion model is assumed, and define the observation function based on the observation
model. We assume that the agent has some sensor model defining pr(o|w) — the prob-
ability that the agent will observe o in world state w. Note that the requirement of a
sensor model (which is sufficient for us) is often weaker than the requirement for an ob-
servation function. For instance, in maze domains, different rooms with identical wall
configurations correspond to different states. However, we only require the ability to
assess the likelihood of a certain wall configuration given the sensor’s signals, not of
the actual state. Thus, in general, it is possible to define a good observation function
based on the state’s features (which are uniquely determined by the state: the walls are
the features in our experiment), but without knowledge of the actual state space (i.e.,
which rooms actually exist and where).

4 Online POMDP Policy Computation

The Perseus algorithm (Algorithm 1) is executed using a POMDP and a set of be-
lief points. However, since convergence of the algorithm still takes considerable time,
we would like to incrementally improve a value function (and hence, a policy) as we
learn and act, without requiring the complete execution of Perseus after each step. Our
method is an online version of the Perseus algorithm — an algorithm that receives a
single belief point and adjusts the computed value function accordingly.

Algorithm 2 is an adaptation of the original algorithm, using two value functions -
the current function V and the next function V ′. V ′ is updated until no change has been
noted for a period of time, upon which V ′ becomes the active function V .

Algorithm 2. Iterative Perseus
Input: b — a single belief point
1: if V ′(b) < V (b) then
2: α ← backup(b)
3: if α · b > V (b) then
4: V ′ ← V ′ ∪ {α}
5: else
6: V ′ ← V ′ ∪ {maxβ∈V β · b}
7: if V ′ has not been updated in a long while then
8: V ← V ′

9: V ′ ← φ

In the original, offline version of Perseus, belief points for updating are selected
randomly. The iterative version we suggest selects the points we update not randomly,
but following some track through the environment. If this track is chosen wisely (i.e.
using a good exploration policy) we can hope that the points that are updated are ones
that improve the solution faster.
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Using Perseus in conjunction with a model learning algorithm can be problematic,
due to the greedy nature of the algorithm. As the value of the next value function over
all (tested) belief points always increases, wrong over-estimates, originating from some
unlearned world feature, can be persisted in the value function even though they can not
be achieved. Such maxima can be escaped using some randomization technique, such
as occasionally removing vectors, or by slowly decaying older vectors. We note this
problem, even though it does not manifest in our experiments.

5 Experimental Results

In our experiments we ran the USM-based POMDP on the toy mazes in Figure 1. While
these environments are uncomplicated compared to real world problems, they demon-
strate important problem features such as multiple perceptual aliasing (Figure 1(b)) and
the need for an information gain action (Figure 1(c)). While USM is limited in scaling
up to real-world problems, its successor, U-Tree, handles larger domains, and we note
that all our methods can be implemented on U-Tree much the same way as for USM.

During execution the model maintains a belief state and states were updated as ex-
plained in Section 2.4. The system also ran the iterative Perseus algorithm (Algorithm 2)
for each observed belief state. During the learning phase, the next action was selected
using the MLS (most likely state) technique (Section 2.1). Once the average reward
collected by the algorithms passed a certain threshold, exploration was stopped (as the
POMDP policy does not explore).

From this point onwards, learning was halted and runs were continued for 5000
iterations for each approximation technique to calculate the average reward gained —
MLS, Voting, QMDP and the policy computed by the iterative Perseus algorithm. In
order to provide a gold standard, we manually defined a POMDP model for each of the
mazes above, solved it using Perseus and ran the resulting policy for 5000 iterations.

Execution time in our tests was around 6 milliseconds for an iteration of USM,
compared to about 234 milliseconds for an iteration of the POMDP learning (including
parameter and policy updates), on the maze in Figure 1(b) with sensor accuracy 0.9, on
a Pentium 4 with 2.4 GHz CPU and 512 MB memory. The performance of the POMDP
learning algorithm is much slower (about n3) but still feasible for online robotic ap-
plication, where an action execution is usually measured in seconds. Moreover, much
of that time is required for simply updating the belief state, an operation required even
for only executing a POMDP policy. For example, the executed policy of the manually
defined model (without any learning), takes about 42 milliseconds per iteration.

The agent in our experiments has four sensors allowing it to sense an immediate
wall above, below, to the left, and to the right of its current location. Sensors have
a boolean output with probability p of being correct. The probability of all sensors
providing the correct output is therefore p4. We assume that the agent knows in advance
the probability of sensing a wall if a wall exists, and compute the observation function
from this information. In the maze there is a single location that grants the agent a
reward of 9. In the maze in Figure 1(c) there are two locations where the agent receives
a negative reward (punishment) of 9. Upon receiving a reward or punishment, the agent
is transformed to any of the states marked by X. If the agent bumps into a wall it pays a
cost (a negative reward) of 1. For every move the agent pays a cost of 0.1.
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(c) Action noise 0.2.

Results for the maze in Figure 1(a).
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(d) Action noise 0.0.
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(e) Action noise 0.1.
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(f) Action noise 0.2.

Results for the maze in Figure 1(b).
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(g) Action noise 0.0.
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(h) Action noise 0.1.
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(i) Action noise 0.2.

Results for the maze in Figure 1(c).

(j) Legend for the above graphs

Fig. 3. Results for the mazes in Figure 1. In all the above graphs, the X axis contains the diminish-
ing sensor accuracy p, and the Y axis marks average reward per agent action. The above results
are averaged over 5 different executions for each observation accuracy and method. All variances
were below 0.01 and in most cases below 0.005.

Figure 5 presents our experimental results. The graphs compare the performance
of the original USM algorithm and our various enhancements: the belief state approx-
imations (MLS, Voting and QMDP ) and the policy computed by the Online Perseus
algorithm (Algorithm2), denoted “Policy”. We also show the results of the policy for
manually defined model, denoted “Optimal Model” as an upper bound.

Observe that the performance of USM decreases sharply as observation noise in-
creases, but the performance of the POMDP based methods remains reasonably high.
The improvement is due to the fact that all the POMDP methods model the noise using
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the belief state, whereas pure USM ignores it. The differences between the POMDP so-
lution methods are not too significant for the first two mazes, and are more noticeable in
the last model. Incremental Perseus provides better solutions than the approximations
in all the experiments. The third model exhibits more uncertainty in the belief states,
and a more pronounced reward variability due to error (this maze is less forgiving w.r.t.
deviations from the optimal, especially in the states where the agent observes no walls,
where the same action causes a large reward in one state, and a large penalty in the
other), making the difference in performance significant. Here, the MDP based meth-
ods (MLS, Voting and QMDP ) do not perform nearly as well as the computed policy
on that model.

The performance of the policy generated from the USM-based model is not as good
as the policy of the manually defined model. This is because the USM-based model
has many redundant states, as explained in Section 2.4. The lower performance is not
due to the use of the incremental Perseus instead of the offline version. In experiments
unreported here, we executed a simulation on a predefined POMDP model, using in-
cremental Perseus to compute a policy. The resulting policy was no worse than the one
computed by the offline Perseus on an identical model.

6 Conclusions and Future Work

Model-based algorithms for partially observable environments are widely disfavored
due to their slow convergence and the difficulty of computing an optimal policy even
when the model is known. This paper presents a model-based algorithm that learns a
POMDP model and its solution in conjunction, avoiding the slow computation of the
Baum-Welch algorithm. The learned POMDP policy presents superior performance to
McCallums’ USM in the presence of noisy actions and sensors. The main contribution
of this paper is in providing an incremental approach for constructing and solving a
POMDP model created online by the agent and demonstrating its effectiveness.

The online Perseus we have presented can also be useful for obtaining policies on
standard, predefined, POMDPs and we intend to continue experimenting with it on
such domains. Efficient exploration using the online Perseus remains an open question
as currently, the policy resulting from it performs very poorly before collecting enough
data — much worse than the MDP based approximations.

Improving the construction of the model is probably the main challenge to future
work. Currently, the main bottleneck is the size of the learned models. It is possible that
USM will create different leaves that correspond to the same state. This leads to large
models which require more work to solve and provide lower quality policies. In the
future, we plan to examine ways of more aggressively joining states that look similar.

We also believe that model-based methods offer significant advantages in using
the current model to guide exploration that is targeted at reaching unknown states and
generating instances that improve the model. Indeed, more advanced model-based al-
gorithm may consider issues such as the robustness of the learned model and may at-
tempt to directly model uncertainty about the model parameters, using these to direct
additional exploration. Finally, McCallums’ USM algorithm provides just one way of
constructing a POMDP model, and there may be other methods from which it is easier
to induce more accurate models.



364 G. Shani, R.I. Brafman, and S.E. Shimony

Acknowledgments

Partially supported by the Israeli Ministry of Science Infrastructure grant No. 3-942, by
the Lynn and William Frankel Center for Computer Sciences, and by the Paul Ivanier
Center for Robotics and Production Management at BGU. Guy Shani is partially sup-
ported by the Friedman Fund.

References

1. R. E. Bellman. Dynamic Programming. Princeton University Press, 1962.
2. J. Bilmes. A gentle tutorial on the em algorithm and its application to parameter estimation

for gaussian mixture and hidden markov models. Technical Report ICSI-TR-97-021, 1997.
3. A. R. Cassandra, L. P. Kaelbling, and M. L. Littman. Acting optimally in partially observable

stochastic domains. In AAAI’94, pages 1023–1028, 1994.
4. L. Chrisman. Reinforcement learning with perceptual aliasing: The perceptual distinctions

approach. In AAAI’02, pages 183–188, 1992.
5. R. A. Howard. Dynamic Programming and Markov Processes. MIT Press, 1960.
6. M. L. Littman, A. R. Cassandra, and L. P. Kaelbling. Learning policies for partially observ-

able environments: Scaling up. In ICML’95.
7. A. K. McCallum. Reinforcement Learning with Selective Perception and Hidden State. PhD

thesis, University of Rochester, 1996.
8. N. Meuleau, L. Peshkin, K. Kim, and L. P. Kaelbling. Learning finite-state controllers for

partially observable environments. In UAI’99, pages 427–436, 1999.
9. D. Nikovski. State-Aggregation Algorithms for Learning Probabilistic Models for Robot

Control. PhD thesis, Carnegie Mellon University, 2002.
10. G. Shani and R. I. Brafman. Resolving perceptual aliasing in the presence of noisy sensors.

In NIPS’17, 2004.
11. G. Shani, R. I. Brafman, and S. E. Shimony. Partial observability under noisy sensors —

from model-free to model-based. In ICML RRfRL Workshop, 2005.
12. M. T. J. Spaan and N. Vlassis. Perseus: Randomized point-based value iteration for

POMDPs. Technical Report IAS-UVA-04-02, University of Amsterdam, 2004.
13. D. Wierstra and M. Wiering. Utile distinction hidden markov models. In ICML, July 2004.



J. Gama et al. (Eds.): ECML 2005, LNAI 3720, pp. 365 – 376, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

Simple Test Strategies for Cost-Sensitive Decision Trees 

Shengli Sheng1, Charles X. Ling1, and Qiang Yang2 

1 Department of Computer Science, The University of Western Ontario 
London, Ontario N6A 5B7, Canada 

{cling, ssheng}@csd.uwo.ca 
2 Department of Computer Science, Hong Kong UST, Hong Kong 

qyang@cs.ust.hk 

Abstract. We study cost-sensitive learning of decision trees that incorporate 
both test costs and misclassification costs. In particular, we first propose a lazy 
decision tree learning that minimizes the total cost of tests and 
misclassifications. Then assuming test examples may contain unknown 
attributes whose values can be obtained at a cost (the test cost), we design 
several novel test strategies which attempt to minimize the total cost of tests and 
misclassifications for each test example. We empirically evaluate our tree-
building and various test strategies, and show that they are very effective. Our 
results can be readily applied to real-world diagnosis tasks, such as medical 
diagnosis where doctors must try to determine what tests (e.g., blood tests) 
should be ordered for a patient to minimize the total cost of tests and 
misclassifications (misdiagnosis). A case study on heart disease is given 
throughout the paper.  

1   Introduction 

In many real-world machine learning applications, minimizing misclassification error 
is often not the ultimate goal, as “errors” can cost differently. This type of learning is 
called cost-sensitive learning. Turney [13] surveys a wide range of costs in cost-
sensitive learning, among which two types of costs are singled out as most important: 
misclassification costs and test costs. For example, in a binary classification task, the 
costs of false positive (FP) and false negative (FN) are often very different. In 
addition, attributes may have costs (test costs) when acquiring values. The goal of 
learning is to minimize the total cost of misclassifications and tests.   

 Tasks involving both misclassification and test costs are abundant in real-world 
applications. For example, when building a model for medical diagnosis from the 
training data, we must consider the cost of tests (such as blood tests, X-ray, etc.) and 
the cost of misclassifications (errors in the diagnosis). Further, when a doctor sees a 
new patient (a test example), tests are normally ordered, at a cost to the patient or the 
insurance company, to better diagnose or predict the disease of the patient (i.e., 
reducing the misclassification cost). Doctors must balance the trade-off between 
potential misclassification costs and test costs to determinate which tests should be 
ordered, and at what order, to reduce the expected total cost. A case study on heart 
disease is given in the paper.  
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In this paper, we propose a lazy-tree learning that improves on a previous decision 
tree algorithm that minimizes the total cost of misclassifications and tests. We then 
describe several novel “test strategies” to determine what tests should be performed, 
and at what order, for attributes with unknown values in test examples such that the 
total expected cost is minimum. Extensive experiments have been conducted to show 
the effectiveness of our tree building and test strategies compared to previous 
methods.  

2   Review of Previous Work 

Cost-sensitive learning has received an extensive attention in recent years. Much 
work has been done in considering non-uniform misclassification costs (alone), such 
as [4, 5, 7]. Those works can often used to solve the problem of learning with very 
imbalanced datasets [3]. Some previous work, such as [11], considers the test cost 
alone without incorporating misclassification cost. As pointed out by [13] it is 
obviously an oversight. A few previous works consider both misclassification and 
test costs, and they are reviewed below.  

In [14], the cost-sensitive learning problem is cast as a Markov Decision Process 
(MDP). They adopt an optimal search strategy, which may incur a high 
computational cost.  In contrast, we adopt the local search similar to C4.5 [10], which 
is very efficient. Lizotte et al. [9] study the theoretical aspects of active learning with 
test costs using naïve Bayes classifiers. Turney [12] presents a system called ICET, 
which uses a genetic algorithm to build a decision tree to minimize the cost of tests 
and misclassifications. Our algorithm again is expected to be more efficient than 
Turney’s genetic algorithm. 

Ling et al. [8] propose a new decision tree learning algorithm that uses minimum 
total cost of tests and misclassifications as the attribute split criterion. However, a 
single tree is built for all test examples. The information of some known attributes in 
a test example is ignored if they do not appear in the path through which the test 
example goes down the tree to a leaf, and their test strategies are very simple. In this 
paper, we propose a lazy-tree learning to minimize the total cost of misclassifications 
and tests. But it can make use of the known attributes in each test example to reduce 
the total cost. We also propose an improved attribute selection criterion to split the 
training data. In addition, we propose several novel and sophisticated test strategies 
for obtaining missing attribute values when classifying new test examples that, as far 
as we know, have not been published previously.  

Chai et al. [1] propose a naïve Bayes based algorithm, called CSNB, which 
searches for minimal total cost of tests and misclassifications. Our test strategies 
utilize the tree structure while naïve Bayes does not. Experiments show that our tree-
based test strategies outperform CSNB in most situations (see experimental 
comparisons later in the paper). 

3   Lazy Decision Trees for Minimum Total Cost 

We assume that we are given a set of training data (with possible missing attribute 
values), the misclassification costs (FP and FN), and test costs for  each  attribute. 
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Instead of building a single decision tree for all test examples [8], we propose a lazy-
tree approach to utilize as much information in the known attributes as possible. More 
specifically, given a test example with known and unknown attributes, we first 
reassign the test cost of the known attributes to be 0 while the cost of the unknown 
attributes remains unchanged. For example, suppose that there are 3 attributes and 
their costs are $30, $40, and $60 respectively. If in a test example, the second attribute 
value is unknown (obtain by testing), then the new test costs would be reset to $0, $40, 
and $0 respectively. Then a tree is built using the split criterion that minimizes the 
total cost of tests and misclassifications. Clearly our method builds different trees for 
test examples with different sets of unknown attributes. As our lazy-tree learning 
approach utilizes as much information in the known attributes as possible, we expect it 
will reduce the total cost in testing significantly. The rationale is that attributes with 
the zero test cost are more likely to be chosen early during the tree building process. 
When a test example is classified by this specific tree, it is less likely to be stopped by 
unknown attributes near the top of the decision tree. This tends to reduce the total test 
cost, and thus the total cost, as shown later in the experiments.  

Another improvement we made over [8] is that we use the expected total 
misclassification cost when selecting an attribute for splitting. This gives a more 
accurate choice for attribute selection. That is, an attribute may be selected as a root 
node of a decision tree if the sum of the test cost and the expected misclassification 
costs of all branches is minimum among other attributes, and is less than that of the 
root. For a subset of examples with tp positive examples and tn negative examples, if 
CP = tp×TP + tn×FP is the total misclassification cost of being a positive leaf, and CN  
=  tn× TN + tp×FN is the total misclassification cost of being a negative leaf, then the 
probability of being positive is estimated by the relative cost of CP and CN; the smaller 
the cost, the larger the probability (as minimum cost is sought). Thus, the probability 
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splitting on A, where TC is the total test cost for all examples on A. it is easy to find 
out which attribute has the smallest expected total cost (the sum of the test cost and 
the expected misclassification cost), and if it is smaller than the one without split (if 
so, it is worth to split). With the expected total misclassification cost described above 
as the splitting criterion, the lazy-tree learning algorithm is shown as follows. 

 

One weakness of our method is higher computational cost associated with lazy 
learning. However, our tree-building process has the same time complexity as C4.5, 
so it is quite efficient. In addition, lazy trees for the same set of unknown attributes 
are the same. Trees frequently used can be stored in memory for the speed trade-off.    

4   A Case Study on Heart Disease 

We apply our lazy decision tree learning on a real dataset, the Heart Disease, with 
known test costs. The dataset was used in the cost-sensitive genetic algorithm by 
[12]. The learning problem is to predict the coronary artery disease from the 13 non-
invasive tests on patients. The class label 0 or negative class indicates a less than 50% 
of artery narrowing, and 1 indicates more than 50%. The costs of the 13 non-invasive 
tests are in Canadian dollars, and were obtained from the Ontario Health Insurance 
Program's fee schedule [12]. These individual tests and their costs are: age ($1), sex 
($1), cp (chest pain type, $1), trestbps (resting blood pressure, $1), chol (serum 

LazyTree(Examples, Attributes, TestCosts, testExample) 
1. For each attribute 

a. If its value is known in testExample, its test cost is assigned as 0 
2. call CSDT(Examples, Attributes, TestCostsUpdated) to build a cost-sensitive 

decision tree 
 

CSDT(Examples, Attributes, TestCosts) 
1. Create a root node for the tree 
2. If all examples are positive, return the single-node tree, with label = + 
3. If all examples are negative, return the single-node tree, with label = - 
4. If attributes is empty, return the single-node tree, with label assigned according to

min (EP, EN) 
5. Otherwise Begin 

a. If maximum cost reduction < 0 return the single-node tree, with label 
assigned according to min (EP, EN) 

b. A is an attribute which produces maximum cost reduction among all the
remaining attributes 

c. Assign the attribute A as the tree root 
d. For each possible value vi of the attribute A 

i. Add a new branch below root, corresponding to the test A=vi 
ii. Segment the training examples into each branch Example_vi 

iii. If no examples in a branch, add a leaf node in this branch, with label
assigned according to min (EP, EN) 

iv. Else add a subtree below this branch, CSDT(examples_vi, Attributes-A, 
TestCosts) 

6. End  
7. Return root 
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cholesterol in mg/dl, $7.27), fbs (fasting blood sugar, $5.20), restecg (resting 
electrocardiography results, $15.50), thalach (maximum heart rate achieved, 
$102.90), exang (exercise induced angina, $87.30), oldpeak (ST depression induced 
by exercise, $87.30), slope (slope of the peak exercise ST segment, $87.30), ca 
(number of major vessels colored by fluoroscopy, $100.90), and thal ($102.90). Tests 
such as thalach, exang, oldpeak, and slope are electrocardiography results when the 
patient runs on a treadmill, and are usually performed as a group. Tests done in a 
group may be discounted in costs, but this is not considered in this paper (see future 
work). However, no information about misclassification costs was given. After 
consulting a researcher in the Heart-Failure Research Group in the local medical 
school, a positive prediction normally entails a more expensive and invasive test, the 
angiographic test, to be performed, which accurately measures the percentage of 
artery narrowing. A negative prediction may prompt doctors to prescribe medicines, 
but the angiographic test may still be ordered if other diseases (such as diabetes) 
exist. An angiographic test costs about $600. Thus, it seems reasonable to assign false 
positive and false negative to be $600 and $1000 respectively. 

Fig. 1. Lazy tree for the test case with missing values for all attributes 

Assuming in a new test example all attribute values are missing (as seeing a 
completely new patient), the original test costs given above are used directly for the 
tree building. The numerical attributes in datasets are discretized into integers (1, 
2, …) using the minimal entropy method of [6]. We apply our lazy decision tree 
learning for this test case, and obtain a decision tree shown in Figure 1.  

We can see that often less expensive tests are used in the top part of the tree. For 
example, cp is selected as the root of the tree, sex and fbs are in the second level of 
the tree. But slope and thal, expensive tests, are also selected in the second level, 
since they have higher merit to reduce the total cost. That is, the splitting criterion 
selects tests according to their relative merit of reducing the total cost.  When this tree 
is presented to the Heart-Failure researcher, he thinks that the tree is reasonable in 
predicting artery narrowing. Note that it is not feasible for us to compare our results 
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on this dataset with [12] and other previous work using the same dataset, as they have 
very different settings. Here we present this case to show intuitively how our lazy-
tree building algorithm and test strategies (to be discussed next) work.   

5   Two Categories of Test Strategies 

We define two categories of test strategies: Sequential Test and Single Batch Test. 
For a given test example with unknown attributes, the Sequential Test can request 
only one test at a time, and wait for the test result to decide which attribute to be 
tested next, or if a final prediction is made.  The Single Batch Test, on the other hand, 
can request one set (batch) of one or many tests to be done simultaneously before a 
final prediction is made.  

The related test strategies have many corresponding applications in the real world. 
In medical diagnoses, for example, doctors normally order one set of tests (at a cost) 
to be done at once. This is the case of the Single Batch Test. If doctors only order one 
test at a time (this can happen if tests are very expensive and/or risky), this is the case 
of the Sequential Test. In the next two subsections the two types of test strategies will 
be discussed in great details. 

5.1   Lazy-Trees Optimal Sequential Test (LazyOST)  

Recall that Sequential Test allows one test to be performed (at a cost) each time 
before the next test is determined, until a final prediction is made. Ling et al. [8] 
described a simple strategy called Optimal Sequential Test (or OST in short) that 
directly utilizes the decision tree built to guide the sequence of tests to be performed 
in the following way: when the test example is classified by the tree, and is stopped 
by an attribute whose value is unknown, a test of that attribute is made at a cost. This 
process continues until the test case reaches a leaf of the tree. According to the leaf 
reached, a prediction is made, which may incur a misclassification cost if the 
prediction is wrong. Clearly the time complexity of OST is only linear to the depth of 
the tree. 

One weakness with this approach is that it uses the same tree for all testing 
examples. In this work, we have proposed a lazy decision-tree learning algorithm 
(Section 3) that builds a different tree for each test example. We apply the same test 
process above in the lazy tree, and call it Lazy-tree Optimal Sequential Test 
(LazyOST). Note that this approach is “optimal” by the nature of the decision tree 
built to minimize the total cost; that is, subtrees are built because there is a cost 
reduction in the training data. Therefore, the tree’s suggestions for tests will also 
result in minimum total cost. (Note the terms such as “optimal” and “minimum” 
used in this paper do not mean in the absolute and global sense. As in C4.5, the tree 
building algorithm and test strategies use heuristics which are only locally optimal).  

Note that it is not obvious that this lazy-tree Optimal Sequential (LazyOST) Test 
should always produce a small total cost compared to the single-tree OST. This is 
because in both approaches, the test costs of the known attributes do not count 
during the classifying of a test example. However, when we build decision tree 



 Simple Test Strategies for Cost-Sensitive Decision Trees 371 

specifically for a test example, the tree minimizes the total cost without counting 
the known attributes in the training data. This would produce a smaller total cost 
for that test example. In contrast, in the single tree approach, only one tree is built 
for all test examples, and specific information about known and unknown attributes 
in each test example is not utilized. In Section 4.1.2 we will compare LazyOST and 
OST on ten real-world datasets to see which one is better in terms of having a 
smaller total cost.  

Case Study on Heart Disease Continued. Continuing on the heart-disease example, 
we next choose a test example with most attribute values known from the dataset, as 
the known values serve as the test results. The discretized attribute values for this test 
case are: age=1, sex=2, cp=3, trestbps=1, chol=1, fbs=1, restecg=1, thalach=1, 
exang=2,  oldpeak=2, slope=1, ca=?, thal=2, and class=0 (a negative case). We apply 
LazyOST on the tree in Figure 1. Again assuming all values are unknown, LazyOST 
requests the sequence of tests as: cp (=3), fbs (=1), thal (=2), and restecg (=1), with a 
total test cost of $124.60. The prediction of the tree is 0 (correct), thus the 
misclassification cost is 0. Therefore, the total cost for this test case is $124.60.  

Comparing Sequential Test Strategies. To compare various sequential test 
strategies, we choose 10 real-world datasets, listed in Table 1, from the UCI Machine 
Learning Repository [1]. These datasets are chosen because they are binary class, 
have at least some discrete attributes, and have a good number of examples. Each 
dataset is split into two parts: the training set (60%) and the test set (40%). Unlike the 
case study of heart disease, the detailed test costs of these datasets are unknown. To 
make the comparison possible, we simply choose randomly the test costs of all 
attributes to be some values between 0 and 100. This is reasonable because we 
compare the relative performance of all test strategies under the same chosen costs. 
The misclassification cost is set to 200/600 (200 for false positive and 600 for false 
negative). For test examples, a certain ratio of attributes (0.2, 0.4, 0.6, 0.8, and 1) are 
randomly selected and marked as unknown to simulate test cases with various 
degrees of missing values. Three Sequential Test strategies, OST [8], LazyOST (our 
work), and CSNB [2] are compared. We repeat this process 25 times, and the average 
total costs for the 10 datasets are plotted in Figure 2.  

Table 1. Datasets used in the experiments 

 No. of 
Attributes

No. of 
Examples

Class dist. 
(N/P)

Ecoli 6 332 230/102
Breast 9 683 444/239
Heart 8 161 98/163
Thyroid 24 2000 1762/238
Australia 15 653 296/357
Tic-tac-toe 9 958 332/626
Mushroom 21 8124 4208/3916
Kr-vs-kp 36 3196 1527/1669
Voting 16 232 108/124
Cars 6 446 328/118
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Fig. 2. Comparing our new Sequential Test strategy LazyOST with CSNB and OST 

We can make several interesting conclusions. First, we can see clearly that 
LazyOST outperforms OST on all 10 datasets under every unknown attribute ratio, 
except 1. When all attributes are unknown, the eager and lazy tree learners produce 
the same tree. Second, the difference between OST and LazyOST is larger at a lower 
ratio of unknown attributes compared to a higher ratio. This is because when the ratio 
is low, most attributes are known, and LazyOST takes advantages of these known 
attributes for individual test examples while OST does not. This confirms our early 
expectation that our new lazy trees learning algorithm produces a tree with smaller 
total costs compared to the previous single tree approach. Last, we also see that the 
CSNB [2] performs better than OST when the ratio of unknown attributes is less than 
0.7 (confirming results in [2]), since CSNB has a lower misclassification cost than 
OST with lower ratios of unknown attributes. However, LazyOST performs best 
among the three strategies when the ratio of unknown attributes is greater than 0.3.  

5.2   Single Batch Tests 

The Sequential Test Strategies discussed in the previous section have to wait for the 
result of each test to determine which test will be the next one. Waiting not only 
agonizes the patient in medical diagnosis, it may also be life threatening if the disease 
is not diagnosed and treated promptly. Thus doctors normally order one set (batch) of 
tests to be done at once. This is the case of the Single Batch Test. Note that results of 
the tests in the batch can only be obtained simultaneously after the batch is 
determined.   

In [8] a very simple heuristic is described. The basic idea is that when a test 
example is classified by a minimum-cost tree and is stopped by the first attribute 
whose value is unknown in the test case, all unknown attributes under and including 
this first attribute would be tested, as a single batch. Clearly, this strategy would have 
exactly the same misclassification cost as the Optimal Sequential Test, but the total 
test cost is higher as extra tests are performed. We call this strategy Naïve Single 
Batch (NSB).  

We propose two new and more sophisticated Single Batch Test strategies, and 
discuss their strengths and weaknesses. We will show experimentally that they are 
better than the Naïve Single Batch and the single batch based on naïve Bayes [2].  

Greedy Single Batch (GSB). The rationale behind GSB is to find the most likely leaf 
(the most typical case) that the test example may fall into, and collect the tests on the 
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path to this leaf for the batch test (to “confirm” the case). More specifically, it first 
locates all “reachable” leaves under the first unknown attribute (let us call it u) when 
the test example is classified by the tree. Reachable leaves are the leaves that can be 
possibly reached from u given the values of known attributes and all possible values 
of the unknown attributes under u. Then a reachable leaf with the maximum number 
of training examples is located, and the unknown attributes on the path from u to this 
leaf are collected as the batch of tests to be performed. 

Intuitively this strategy reduces the total test cost than the Naïve Single Batch as 
only a subset of the tests is performed. However, it may increase the misclassification 
costs compared to the Optimal Sequential Test, as the greedy “guesses” may not be 
correct, in which case the test example will not reach a leaf, and must be classified by 
an internal node in the decision tree, which is usually less accurate than a leaf node. 
This will incur a higher misclassification cost.  

Optimal Single Batch (OSB). The Optimal Single Batch (OSB) seeks a set of tests 
to be performed such that the sum of the test costs and expected misclassification cost 
after those tests are done is optimal (minimal). Intuitively, it finds the expected cost 
reduction for each unknown attribute (test), and adds a test to the batch if the cost 
reduction is positive and maximum (among other tests). More specifically, when a 
test example is classified by the tree, and is stopped by the first unknown attribute u 
in the tree, the total expected cost misc(u) can be calculated. At this point, misc(u) is 
simply the expected misclassification cost of u, and there is no test cost. If u is tested 
at a cost C, then the test example is split according to the percentage of training 
examples that belong to different attribute values, and is duplicated and distributed 
into different branches of the tree (as we do not know u’s value since this is a batch 
test), until it reaches some leaves, or is stopped by other unknown attributes. For each 
such reachable leaf or unknown attribute, the expected cost can be calculated again, 
and the weighted misclassification cost can be obtained (let us call it S). The sum of 
C and S is then the expected cost if u is tested, and the difference between misc(u) 
and C+S is the cost reduction E(u) if u is tested. If such a cost reduction is positive, 
then u is put into the batch of tests. Then from the current set of reachable unknown 
attributes, a node with the maximum positive cost reduction is chosen, and it is added 
into the current batch of tests. This process is continued until the maximum cost 
reduction is no longer greater than 0, or there is no reachable unknown attributes (all 
unknown attributes under u are in the batch, reducing to Naïve Single Batch). The 
batch of tests is then discovered. The pseudo-code of OSB is shown here. 

In the pseudo-code, misc(.) is the expected misclassification cost of a node, c(.) is 
the test cost of an attribute, R(.) is all reachable unknown nodes and leaves under a 
node, and p(.) is the probability (estimated by ratios in the training data) that a node is 
reached.  Therefore, the formula E(i) in the pseudo-code calculates the cost difference 
between no test at i (so only misclassification cost at i) and after testing i (the test cost 
plus the weighted sum of misclassification costs of reachable nodes under i). That is, 
E(i) is the expected cost reduction if i is tested. Then the node t with the maximum 
cost reduction is found, and if such reduction is positive, t should be tested in the 
batch. Thus, t is removed from L and added into the batch list B, and all reachable 
unknown nodes or leaves of t, represented by the function r(t), is added into L for 
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further consideration. This process continues until there is no positive cost reduction 
or there is no unknown nodes to be considered (i.e., L is empty). The time complexity 
is linear to the size of the tree, as each node is considered only once. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Comparing the two new single batch strategies, Greedy Single Batch (GSB) is 
simple and intuitive; it finds the most likely situation (leaf) and requests tests to 
“confirm” it. The time complexity is linear to the depth of the tree. It works well if 
there is a reachable leaf with a large number of training examples. The time 
complexity of the Optimal Single Batch (OSB) is linear to the size of the tree, but it is 
expected to have a smaller total cost than GSB. Both GSB and OSB may suggest 
tests that may be wasted, and test examples may not fall into a leaf.  

Case Study on Heart Disease Continued. We apply GSB and OSB on the same test 
case as in Section 4.1.1 with the decision tree in Figure 1. The GSB suggests the 
(single) batch of (cp, and thal), while the OSB suggests the single batch of (cp, sex, 
slope, fbs, thal, age, chol, and restecg) to be tested. With both GSB and OSB, the test 
case does not go into a leaf, and some tests are wasted. The test cost is $103.9 for 
GSB and $221.17 for OSB, while the misclassification costs are 0 for both GSB and 
OSB. Thus, the total cost for the test case is $103.9 and $221.17 for GSB and OSB 
respectively. Note that we cannot conclude here GSB is better than OSB as this is 
only for a test case.  

Comparing Single Batch Test Strategies. We use the same experiment procedure 
on the same 10 datasets to compare various Single Batch Test strategies including 
CSNB-SB [2]. The misclassification costs are set to 2000/6000. These costs are set to 
larger values so the trees will be larger to show more clearly the effect of batch tests. 
The total costs for the 10 datasets are compared and the average total costs for the 10 
datasets are plotted in Figure 3.  

From Figure 3 we can clearly see that Optimal Single Batch (OSB) performs the 
best among other single batch test strategies. When the ratio of missing attributes is 
relatively small (0.2), the three tree-based single batch test strategies are similar, as 
very few attributes would need to be tested. When the ratio of missing attributes 
increases, the differences become more evident, especially between Naïve Single 
Batch and Greedy Single Batch. All the tree-based single batch strategies perform 

L = empty   /* list of reachable and unknown attributes */ 
B = empty   /* the batch of tests */ 
u = the first unknown attribute when classifying a test case 
Add u into L  
Loop 
For each i ∈  L, calculate E(i):  

  E(i)= misc(i) – [c(i) + × ))(())(( iRmisciRp ] 

 E(t) = max E(i)  /* t has the maximum cost reduction */
If E(t) > 0 then add t into B, delete t from L, add r(t) into L 
     else exit Loop    /* No positive cost reduction */ 
Until L is empty 
Output B as the batch of tests   
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better than the single batch with naïve Bayes. The reason is that the structure of the 
decision tree is utilized when deciding the single batch, while naïve Bayes has no 
such structure to rely on. 
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Fig. 3. Comparing our new Single Batch Test strategies GSB and OSB CSNB-SB and NSB  

6   Conclusions and Future Work 

In this paper, we present a lazy decision tree learning algorithm to minimize the total 
cost of misclassifications and tests. We then design two categories of test strategies: 
Sequential Test and Single Batch Test, to determine which unknown attributes should 
be tested, and in what order, to minimize the total cost of tests and misclassifications. 
We evaluate the performance (in terms of the total cost) empirically, compared to 
previous methods using a single decision tree and naïve Bayes. The results show that 
the new test strategies, Lazy-tree Optimal Sequential Test, and Optimal Single Batch, 
work best in the corresponding categories. The time complexity of these new test 
strategies is linear to the tree depth or the tree size, making them efficient for testing a 
large number of test cases. These strategies can be readily applied to large datasets in 
the real world. A detailed case study on heart disease is given in the paper.  

In our future work we plan to continue to work with medical doctors to apply our 
algorithms to medical data with real costs. We also plan to consider discounts when 
groups of tests are ordered at the same time, and to incorporate other types of costs in 
our decision tree learning and test strategies. 
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Abstract. In this paper we consider latent variable models and intro-
duce a new U-likelihood concept for estimating the distribution over hid-
den variables. One can derive an estimate of parameters from this distri-
bution. Our approach differs from the Bayesian and Maximum Likelihood
(ML) approaches. It gives an alternative to Bayesian inference when we
don’t want to define a prior over parameters and gives an alternative
to the ML method when we want a better estimate of the distribution
over hidden variables. As a practical implementation, we present a U-
updating algorithm based on the mean field theory to approximate the
distribution over hidden variables from the U-likelihood. This algorithm
captures some of the correlations among hidden variables by estimating
reaction terms. Those reaction terms are found to penalize the likelihood.
We show that the U-updating algorithm becomes the EM algorithm as a
special case in the large sample limit. The useful behavior of our method
is confirmed for the case of mixture of Gaussians by comparing to the
EM algorithm.

1 Introduction

Latent variable models are important tools for probabilistic methods and have
wide applications in machine learning, computer vision, pattern recognition, and
speech processing, to name a few. The Bayesian and the Maximum Likelihood
(ML) approaches have been extensively studied for learning such models in the
past decades.

In Bayesian Inference [1], we define a prior over parameters P (θ) and from
this all inference is automatically performed. In particular, using this prior we
can compute the marginal probability of data set Y = {y1, . . . ,yn} and hidden
variable set X = {x1, . . . ,xn}:

P (Y,X) =
∫
P (Y,X |θ)P (θ)dθ. (1)

J. Gama et al. (Eds.): ECML 2005, LNAI 3720, pp. 377–388, 2005.
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We can further marginalize out hidden variables to get the marginal probability
of just data set Y :

P (Y ) =
∑
X

P (Y,X), (2)

assuming all hidden variables are discrete. The Bayesian approach basically pro-
vides a way of solving the overfitting problem by eliminating model parameters
by integrating over them.

In certain settings it may be undesirable to define a prior over parameters. For
example, many statisticians don’t like the subjective nature of Bayesian inference
even though all modelling contains an element of subjectivity. Moreover, in some
cases it is very difficult to define one’s prior belief about the model parameters.
This motivates the use of ML method for parameter estimation.

Starting from the likelihood of the parameters, which is the probability of
data set Y given the parameters, in the ML approach one can find the parameters
which maximize the likelihood function given by

L(θ) =
∑
X

P (Y,X |θ). (3)

We wish to find the parameters that maximize the likelihood: θ∗=arg maxθ L(θ).
From this estimate of parameters, we can find the distribution over hidden vari-
ables P (X |Y,θ∗), regarding θ∗ as true parameters. The fundamental problem of
the ML approach is overfitting since it considers only a single estimate of ML
parameters, whereas the Bayesian approach solves this problem by integrating
over parameters.

If we don’t want a Bayesian approach, we can still eliminate the parameters,
not by marginalizing over them as in (1), but by maximizing over them. This is
the key of our work. By doing so, we obtain a method somewhat analogous to
the Bayesian approach without specifying the parameter prior.

In this paper, we introduce a new concept, U -likelihood, to infer the dis-
tribution over hidden variables, which differs from the Bayesian and the ML
approaches. We obtain the U -likelihood, which is an analogous quantity to the
marginal probability of data set in (2), by marginalizing the maximum of the
complete-data likelihood over hidden variables. We show that the U -likelihood
can be bounded using variational method [2] and this gives the joint distribution
over hidden variables Q(X) (Sec. 3). Like the Bayesian and the ML approaches,
the exact Q(X) is intractable to compute for large data sets. As a practical
implementation, we introduce a U-updating algorithm, which iteratively solves
mean field equations for hidden variables under Q(X). We show that the U-
updating algorithm estimates the reaction of all the other hidden variables and
it penalizes the likelihood term to alleviate the overfitting problem. The EM
algorithm appears as a special case of U-updating algorithm in the large sample
limit. (Sec. 4). We demonstrate the useful behavior of our U-updating algorithm,
compared to the EM algorithm, through the example of mixtures of Gaussians
on synthetic and real data sets (Sec. 5).
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2 General Framework

Throughout this paper, we assume that data set Y = {y1, . . . ,yn} of n data
points is always given. Let X = (x1, . . . ,xn) denote hidden variable set. Allowing
yi and xi, to be multidimensional, we assume that a complete data point (yi,xi)
is IID from a sampling distribution which is parameterized by parameter vector
θ such as P (yi,xi|θ). For simplicity, we here focus on the discrete type hidden
variable xi, but the understanding of the case of continuous hidden variables is
straightforward by exchanging sums into integrals.

For Bayesian inference, we can form a lower bound of log P (Y ) in (2) for any
Q(X) using Jensen’s inequality:

logP (Y ) ≥
∑
X

Q(X) log
P (Y,X)
Q(X)

≡ FB(Q(X)), (4)

and then we can find Q(X) by maximizing FB. The maximization of FB is equiv-
alent to the minimization of the Kullback-Leibler divergence between Q(X) and
P (X |Y ) = P (Y,X)/P (Y ). Therefore, at maxima of FB, Q(X) gives the exact
P (X |Y ). However, for most models of interest this is intractable to compute.
For example, for a mixture model with m components, the sum

∑
X of P (Y )

in (2) contains mn terms. As practical implementations, MCMC [3] methods, the
Expectation-Propagation (EP) [4] and the variational Bayes (VB) [5] methods
were introduced but we will not tackle them in this paper.

For the ML approach, we can form the lower bound of log likelihood in a
similar way to (4):

logL(θ) ≥
∑
X

Q(X) log
P (Y,X |θ)
Q(X)

≡ FL(Q(X),θ). (5)

The maximization of FL is equivalent to the maximization of L since if (Q∗,θ∗)
occurs at maxima of FL, then θ∗ occurs at maxima of L(θ) and Q∗(X) becomes
P (X |Y,θ∗). Since the global maximization of FL is intractable in most cases
like in the Bayesian approach, the well-known EM algorithm [6] independently
maximizes FL w.r.t. Q or θ by fixing the other as a practical implementation.
Refer [6, 7] for more details on the EM algorithm.

3 U-Likelihood

If we don’t want a Bayesian approach, we can still eliminate the parameters, not
by marginalizing over them as in (1), but by maximizing over them. We start by
defining the U-function which is the maximum of the complete-data likelihood:

U(Y,X) ≡ max
θ

P (Y,X |θ) = P (Y,X |θ̂(Y,X)) > 0, (6)

where θ̂ (Y,X) denotes the ML parameter estimator, a function of the complete-
data set, defined by

θ̂ (Y,X) ≡ arg max
θ

P (Y,X |θ). (7)
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The U-function is analogous to the marginal probability in (1) except that it
maximizes over parameters rather than integrating over parameters. Another
way to think about it is that instead of a parameter prior, we substitute in (1)
a delta function of the ML parameter estimate on the complete-data set, e.g.
P (θ) = δ(θ− θ̂ (Y,X)). This is certainly not coherent from the point of view of
Bayesian inference since the prior cannot depend on the data, but we will see
some of the interesting properties of this approach.

We can take the U-function and marginalize out the hidden variable set X :

U(Y ) ≡
∑
X

U(Y,X). (8)

We call this quantity U-likelihood and it is analogous to P (Y ) in (2). Another
view of it is that it forms an upper bound of the likelihood function: U ≥ L∗ ≥
L(θ), where L∗ = maxθ L(θ) denotes the maximum likelihood value. Analogous
to (4), we can lower bound it for any distribution Q(X) over hidden variables:

logU(Y ) ≥
∑
X

Q(X) log
U(Y,X)
Q(X)

≡ FU (Q(X)). (9)

We can use the optimal Q(X) maximizing FU as a joint conditional distribution
over hidden variables given data set: P (X |Y ). The next theorem shows the form
of Q(X) at the maxima of FU .

Theorem 1. The optimal joint distribution Q(X) maximizing the lower bound
FU(Q(X)) is of the form

Q(X) =
U(Y,X)
U(Y )

. (10)

Proof: Let Q′(X) = U(Y,X)
U(Y ) . Then, the Kullback-Leibler divergence between

Q(X) and Q′(X) is given by KL [Q‖Q′] = logU(Y ) − FU (Q). It follows from
Gibbs inequality thatKL [Q‖Q′] = 0 whenQ(X) = Q′(X), implying that FU (Q)
is maximized at Q(X) = Q′(X). �

We illustrate the joint distribution Q(X) in (10) when data set Y consists
of 12 data points generated from the mixture of two Gaussians. The true X∗ is
a binary vector with 12 components. Figure 1 plots logQ(X) as a function of
Manhattan distance from the true X∗. This demonstrates that Q(X) tends to
give higher probability to hidden states that are similar to the true states.

We have seen the relationship of U-likelihood to Bayesian inference. We can
also see a simple relationship to maximum likelihood methods:

Maximum likelihood : L∗ = max
θ

∑
X

P (Y,X |θ) , (11)

U-likelihood : U =
∑
X

max
θ

P (Y,X |θ) , (12)

where we here dropped the data dependency. The former gives a single value of
the model parameters θ∗, from which a distribution over hidden variables can
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Fig. 1. Demonstration of Q(X) in Theorem 1 given data set Y of 12 data points
generated from the mixture of two Gaussians, i.e. N ([−3, 0], I) and N ([3, 0], I). (a)
data set Y . (b) log Q(X) as a function of Manhattan distance from the true state,∑12

i=1 |xi − x∗
i |. Each dot indicates a state of 212 possible configurations of X. The

symmetrical phenomenon stems from the identifiability of the mixture of Gaussians.

be derived: P (X |Y,θ∗). The latter no longer gives a single value of parameters.
However, it may give a better estimate of the distribution over hidden variables,
Q(X), which captures some of correlations among hidden variables. From this
distribution Q(X) one can derive an estimate of parameters.

We outline some of the possible advantages of U-likelihood approach over the
Bayesian and the ML approaches:

1. High dimensional integrals like (1) required for Bayesian inference can be
intractable. For many models, the optimum of θ given the complete-data
set (Y,X) is a simple function of the sufficient statistics. So no explicit
optimization is necessary to compute (6).

2. Many researchers may not wish to define a prior over parameters. The U-
likelihood method provides an alternative.

3. Optimizing over parameters in the ML method is often fraught with local
optima. By optimizing out parameters, the U-likelihood method is sometimes
found to have better convergence properties than the ML method. That is,
it can find good solutions without falling into local optima as often. We show
this empirically.

The distribution Q(X) in (10) may be intractable to compute, excepting
for small n, since it requires all possible configurations of X . As a practi-
cal implementation, we will use a mean field approximation and present the
U-updating algorithm as an alternative to the EM algorithm in the next
section.
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4 U-Updating Algorithm

We start by considering a case where the sampling distribution of the complete-
data (yi,xi) is in the exponential family with the following form

P (yi,xi|θ) = f(si(yi,xi))g(θ) exp
{
φ(θ)Tsi(yi,xi)

}
, (13)

where φ(θ) is a vector of natural parameters and si(yi,xi) is a vector of sufficient
statistics. The normalizing constant is denoted by g(θ). Probability distributions
of the exponential family have been widely used in latent variable models such
as mixture of Gaussians, factor analysis, hidden Markov models, state-space
models, and so on. For the case of the exponential family, the complete-data
likelihood depends on the complete-data set only through sufficient statistics:

P (Y,X |θ) =
[ n∏

i=1

f(si(yi,xi))
]
g(θ)n exp

{
φ(θ)Ts(Y,X)

}
, (14)

where s(Y,X) =
∑n

i=1 si(yi,xi). Moreover, a closed-form solution of θ̂ and U-
function always exists as a function of sufficient statistics: θ̂(Y,X) = θ̂(s(Y, X))
and U(Y,X) = U(s(Y,X)).

The mean field theory [8], originally from statistical physics, has been widely
used in the machine learning community to approximate joint distributions in
graphical models when exact inference is intractable because of highly-coupled
interactions among variables. Consider the marginal distribution over xi:

Q(xi) =
∑
X\i

Q(X) =
1

U(Y )

∑
X\i

U(s(Y,X)), (15)

where X\i denotes a subset of hidden variables where xi is excluded: X\i =
X \ xi. In general, the exact calculation of Q(xi) is intractable since it requires
all possible realizations of X\i. Assuming weak dependencies among hidden vari-
ables, the mean field theory suggests that the influence of the other hidden vari-
ables sj(yj ,xj) in the marginal distribution Q(xi) can be approximated by the
expected values 〈sj(yj ,xj)〉. This leads to the mean field distributions Qi(xi):

Qi(xi) ≡
1
Ui
U(s̄i(xi)) ≈ Q(xi), (16)

where s̄i(xi) = si(yi,xi) +
∑n

j=1,j �=i〈sj(yj ,xj)〉 and Ui =
∑

xi
U(s̄i(xi)) is

the normalizing constant. The joint distribution Q(X) is approximated by the
factored form with all mean field distributions Qi(xi): Q(X) ≈

∏n
i=1Qi(xi).

Moreover, the expected sufficient statistics 〈s(Y,X)〉 can be obtained by solv-
ing self-consistent equations called mean field equations, which are stationary
conditions:

〈si(yi,xi)〉 =
∑
xi

si(yi,xi)Qi(xi) . (17)
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Table 1. U-updating algorithm and EM algorithm

U-updating algorithm EM algorithm

Initialize 〈s〉(0) =
∑n

i=1〈si(yi, xi)〉(0) .
Set 〈s〉(1) = 〈s〉(0) .
Repeat t = 1, 2, . . . until convergence .
Repeat i = 1, . . . , n .
Update Q

(t)
i (xi) ∝ U(s̄(t)

i (xi)) ,
s̄
(t)
i (xi) =

〈s〉(t) + si(yi, xi) − 〈si(yi, xi)〉(t−1) .
Refine
〈s〉(t) ←
〈s〉(t) + 〈si(yi, xi)〉(t) − 〈si(yi, xi)〉(t−1)

with 〈si(yi, xi)〉(t) under new Q
(t)
i (xi) .

End (Repeat)
Set 〈s〉(t+1) = 〈s〉(t) .

End (Repeat)

Initialize θ(0) .
Repeat t = 1, 2, . . . until convergence.
E-Step :

Update Q
(t)
i (xi) = P (xi|yi, θ

(t))
for all i = 1, . . . , n.

M-Step :
Estimate θ(t+1) = θ̂(〈s〉(t))
with 〈s〉(t) =

∑n
i=1〈si(yi, xi)〉(t)

under new {Q
(t)
i (xi)} .

End (Repeat)

Therefore, the distribution Qi(xi) in (16) can be computed by iterative proce-
dure solving the mean field equations in (17). This iterative procedure is referred
to as the U-updating algorithm and gives an alternative to the EM algorithm.

The Table 1 summarizes the U-updating algorithm in comparison with the
EM algorithm. In order to estimate ML parameter θ(t+1) in M-Step, the EM
algorithm requires distributions P (xi|yi,θ

(t)) in E-Step built on the ML pa-
rameter θ(t) which may be overfitted to the data set at the previous itera-
tion.Therefore, the overfitting effects may accumulate throughout iterations in
the EM algorithm. However, the U-updating algorithm alleviates this overfitting-
accumulation problem by estimating the reaction of all the other hidden
variables, which penalizes the likelihood. Therefore, it can give better distri-
bution Qi(xi) than the EM algorithm. We can simply use all Qi(xi) resulted
from the U-updating algorithm to estimate parameters like the M-Step of the
EM algorithm.

In order to see how the U-updating algorithm penalizes the likelihood, de-
compose the U-function:

U(s̄i(xi)) = αi(xi)βi(xi), (18)

where αi(xi) = P (si(yi,xi) | θ̂(s̄i(xi))) and βi(xi) =
∏n

j=1, �=i ρ(〈sj(yj ,xj)〉 |
θ̂(s̄i(xi))), given by

ρ(〈sj(yj ,xj)〉 | θ̂(s̄i(xi))) = f(〈sj〉)g(θ̂(s̄i(xi))) exp
{
φ(θ̂(s̄i(xi)))T〈sj〉

}
.

The term αi(xi) is the likelihood on the complete data point i. The term βi(xi)
can be interpreted as a reaction of all the other hidden variables via the expected
values 〈sj(yj ,xj)〉. When computingQi(xi), the U-updating algorithm therefore
penalizes the likelihood αi(xi) by estimating the reaction βi(xi) of the other
hidden variables, which captures some correlations among hidden variables.
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The U-updating algorithm generalizes the EM algorithm since if we ignore the
reaction term βi(xi) in (18), it will be same to the EM algorithm. The following
theorem states the behavior of U-updating algorithm in the large sample limit.

Theorem 2. For the case of the exponential family, the U-updating algorithm
is equivalent to the EM algorithm in the limit of large samples.

Proof: In the large sample limit, the sufficient statistic s(Y,X) will be insensitive
to one hidden variable: si(yi,xi) +

∑n
j=1, �=i〈sj(yj ,xj)〉 ≈ 〈s(Y,X)〉 as n→∞.

Therefore, in the large sample limit, the reaction term βi(xi) becomes a constant
and Qi(xi) of the U-updating algorithm becomes the distribution resulted from
the E-step of the EM algorithm:

Qi(xi) =
P (yi,xi | θ̂(〈s〉))∑
x′

i
P (yi,x

′
i | θ̂(〈s〉))

= P (xi |yi, θ̂(〈s〉)) . (19)

From the fact that θ̂(〈s〉) gives the ML parameter in the M-step of the EM
algorithm, the U-updating algorithm is equivalent to the EM algorithm in the
large sample limit. �

5 Numerical Experiments

5.1 Mixture of Gaussians

For the p-dimensional observational vector yi ∈ Rp, the mixture model [9, 10] of
m components with parameter θ is generally defined as P (yi|θ) =

∑m
k=1 P (yi|xi =

k, θ)P (xi = k|θ), where xi ∈ {k = 1, . . . ,m} denotes the hidden variable indi-
cating which mixture component is in charge of generating yi. The components
are labelled by k. Although our method can be applied to an arbitrary mix-
ture model, for simplicity, we consider the case of Gaussian components. In this
case, the mixture model parameterized by θ = ({μk}, {Σk}, {wk}) is given by
P (yi|θ) =

∑m
k=1 N (yi; μk, Σk) wk, where wk = P (xi = k|θ) is the mixing propor-

tion satisfying
∑m

k=1 wk = 1 and N (yi; μk,Σk) = P (yi|xi = k,θ) denotes the
kth Gaussian component distribution with the mean vector μk and covariance
matrix Σk. The sampling distribution of the mixture of Gaussians is given by

P (yi, xi|θ) =
m∏

k=1

[
N (yi; μk,Σk)wk

]δk(xi)
, (20)

where δk(xi) denotes the Kronecker delta function given by δk(xi) = 1 for xi = k
and δk(xi) = 0 for xi �= k.

Let (Y,X) denote the complete data set of n IID observations, where Y =
{y1, . . . ,yn} and X = {x1, . . . , xn}. Since the sampling distribution P (yi, xi|θ)
is in the exponential family, the complete data likelihood P (Y,X |θ) and the
ML parameter estimator θ̂(Y, X) become the function of the sufficient statistics.
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Table 2. U-updating Algorithm : Mixture of Gaussians

Initialize 〈γk〉(0) =
∑n

i=1〈δk(xi)〉(0),
〈ξk〉(0) =

∑n
i=1〈δk(xi)〉(0) yi,

〈λk〉(0) =
∑n

i=1〈δk(xi)〉(0) yiy
T
i ,

where 〈δk(xi)〉(0) = Q
(0)
i (xi = k).

Set 〈γk〉(1) = 〈γk〉(0), 〈ξk〉(1) = 〈ξk〉(0) and 〈λk〉(1) = 〈λk〉(0).
Repeat t = 1, 2, 3, . . . until convergence.

Repeat i = 1, . . . , n.
1) Update Q t

i (xi) ∝ ∏m
k=1

(
γ̄

(t)
k (xi)1+

p
2 |C̄(t)

k (xi)|− 1
2

)γ̄
(t)
k

(xi)
,

where γ̄
(t)
k (xi) = 〈γk〉(t) + [δk(xi) − 〈δk(xi)〉(t−1) ] ,

ξ̄
(t)
k (xi) = 〈ξk〉(t) + [δk(xi) − 〈δk(xi)〉(t−1) ] yi ,

λ̄
(t)
k (xi) = 〈λk〉(t) + [δk(xi) − 〈δk(xi)〉(t−1) ] yiy

T
i ,

C̄
(t)
k (xi) = λ̄

(t)
k (xi) − γ̄

(t)
k (xi)

−1
ξ̄
(t)
k (xi)ξ̄

(t)
k (xi)T.

2) Refine sufficient statistics
〈γk〉(t) ← 〈γk〉(t) + [〈δk(xi)〉(t) − 〈δk(xi)〉(t−1) ] ,
〈ξk〉(t) ← 〈ξk〉(t) + [〈δk(xi)〉(t) − 〈δk(xi)〉(t−1) ] yi ,
〈λk〉(t) ← 〈λk〉(t) + [〈δk(xi)〉(t) − 〈δk(xi)〉(t−1) ] yiy

T
i

with 〈δk(xi)〉(t) = Q
(t)
i (xi).

End (Repeat)
Set 〈γk〉(t+1) = 〈γk〉(t), 〈ξk〉(t+1) = 〈ξk〉(t) and 〈λk〉(t+1) = 〈λk〉(t).

End (Repeat)

Therefore, the U-function is also a function of the sufficient statistics s(Y,X) =
({γk, ξk,λk}):

U
(
{γk, ξk,λk}

)
= c

m∏
k=1

(
γk

1+ p
2 |Ck|−

1
2

)γk

, (21)

where Ck = λk − γ−1
k ξkξT

k and

γk =
n∑

i=1

δk(xi), ξk =
n∑

i=1

δk(xi)yi, λk =
n∑

i=1

δk(xi)yiy
T
i , (22)

and c is a constant. Using 〈δk(xi)〉 = Qi(xi = k), we present the U-updating
algorithm for the mixture of Gaussians in Table 2. We can simply obtain the es-
timate of the parameters by θ∗ = θ̂

(
{〈γk〉, 〈ξk〉, 〈λk〉}

)
under all Qi(xi) resulted

from the U-updating algorithm like as the M-Step of the EM algorithm, where
the ML parameter estimator is given by

θ̂
(
{γk, ξk,λk}

)
=
({

ŵk =
γk

n
, μ̂k =

ξk

γk
, Σ̂k =

Ck

γk

})
. (23)

5.2 Numerical Results

In order to demonstrate U-updating algorithm in comparison with the EM algo-
rithm, we first used the data set of 800 data points generated from the mixture
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components m = 6 m = 9 m = 12 m = 16

(a) true (c) U-updating algorithm
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Fig. 2. Results on a mixture of 6 well-clustered Gaussian components: (a) true
Gaussian-mixture distribution, where the more bright, the higher probability is there.
(b) 800 data points generated from the true distribution. (c) and (d) learned distri-
butions by U-updating and EM algorithms when the models have the components
m = 6, 9, 12, 16.
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Fig. 3. Intermediate log likelihood values, subtracted from the maximum value, of the
U-updating and the EM algorithms in the case of m = 16 on data set shown in Figure 2

of 6 well-clustered Gaussian components having equal mixing proportion wk but
having different volume. Both algorithms started by the same initial guess from
k-means algorithm. Figure 2 shows that the U-updating algorithm alleviates the
overfitting in comparison with the EM algorithm. Although models were more
complicated than the true model (m = 6), the U-updating algorithm demon-
strated that all of the learned distributions (m = 6, 9, 12, 16) were very similar
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Acidity Data Set (155 data points)
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Fig. 4. Learned distributions by U-updating and EM algorithms when the models
have the components m = 2, 4, 6

to the true distribution. However, for the EM algorithm, the more complicated
the model we considered, the more overfitted the distribution that resulted.

As a practical issue, overfitting leads to slow convergence. Figure 3 shows the
convergence curves in term of log likelihood subtracted from the maximum value
in the case of m = 16. By penalizing the likelihood term αi by the reaction term
βi, the U-updating algorithm achieved much faster convergence, approximately
more than three times, than the EM algorithm. The U-updating algorithm met
the convergence threshold, that was

√∑m
k=1 |w(t)

k
−w

(t−1)
k

|2 < 10−4, after 153 iter-
ations, whereas the EM algorithm met the same threshold after 563 iterations.

Next, we used real data sets, acidity and galaxy data sets shown in [10].
Figure 4 shows the learned distributions when the models have 2, 4, and 6
components and the Table 3 shows that the optimized mixing proportions ŵk

when the model has 6 components.

6 Conclusions

In this paper, we introduced the U-likelihood approach for learning latent vari-
able models, which differs from the Bayesian and the ML approaches. We pre-
sented some advantages of our approach over them in section 3. Our U-likelihood
method gives an alternative to Bayesian inference and the ML method when we
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Table 3. Optimized mixing proportions (ŵk) of learned model having 6 components

Component 1 2 3 4 5 6

Acidity Data Set
U-updating algorithm 0.295 0.259 0.187 0.086 0.086 0.086

EM algorithm 0.386 0.188 0.171 0.169 0.073 0.013

Galaxy Data Set
U-updating algorithm 0.267 0.267 0.267 0.083 0.058 0.058

EM algorithm 0.403 0.277 0.171 0.085 0.037 0.026

don’t want to use these. As a practical implementation, we presented the U-
updating algorithm to compute the distribution over hidden variables, which
was found to penalize the likelihood by estimating the reaction of the other hid-
den variables and to alleviate the overfitting-accmulation problem of the EM
algorithm.

We leave some of issues for the future work: 1) How can we more accurately
approximate Q(X) in (10) than the U-updating algorithm. 2) How can we per-
form the model selection in the framework of the U-likelihood. 3) Comparison
with the Bayesian approach, e.g. EP and VB.
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Abstract. In the domain of decentralized Markov decision processes,
we develop the first complete and optimal algorithm that is able to ex-
tract deterministic policy vectors based on finite state controllers for a
cooperative team of agents. Our algorithm applies to the discounted in-
finite horizon case and extends best-first search methods to the domain
of decentralized control theory. We prove the optimality of our approach
and give some first experimental results for two small test problems. We
believe this to be an important step forward in learning and planning in
stochastic multi-agent systems.

1 Introduction

Efficient learning and planning algorithms for problems within distributed and
only partially observable stochastic environments can be particularly useful in
a large number of todays research areas, such as network traffic routing [1],
decentralized supply chains [7], or the control of a robot team for space explo-
ration [12] or humanitarian missions [11]. Formalizing the problem of optimal
control in a rigorous way is an important part of the solution, and the theory of
Markov Decision Processes (MDPs) has been shown to be particularly powerful
in that context [16]. It is only recently however, that the Markov framework has
been extended to problems of decentralized control [5], [3]. The major additional
complexity in multi-agent decision making lies in the fact that agents may have
different partial information about both the underlying system state and the
local information held by the remaining agents. Reasoning about the potential
private information of a teammate may in fact lead into an infinite loop of ”I
believe that you believe”-like assumptions. This is the reason why solving de-
centralized partially observable MDPs optimally is significantly harder, namely
NEXP-complete [3], than solving their centralized counterparts.

While some important progress has been made in solving single-agent MDPs,
we still lack in efficient algorithms for the multi-agent case. Depending on the
problem constraints, different solution concepts are required, and for some of
them, optimal non-trivial algorithms have not yet been established. Character-
izing the optimal solution of a general decentralized MDP however constitutes

J. Gama et al. (Eds.): ECML 2005, LNAI 3720, pp. 389–399, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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a crucial step toward both efficient approximation techniques and learning al-
gorithms. We will focus in this paper on infinite horizon problems that can be
solved using deterministic finite memory controllers, and we are able to present
the first complete algorithm to solve this class of problems optimally. Our ap-
proach is an extension of best-first search techniques to decentralized control
theory and shows to be very effective compared to existing solutions.

In the remainder of the paper, we will introduce the DEC-POMDP framework
for decentralized decision making under uncertainty and expose some existing
approaches within this problem family, before describing our search method and
related experimental results.

2 Decentralized Markov Decision Processes

The family of Markov decision processes describes discrete stochastic systems
that evolve under the influence of one or multiple controllers. With each transi-
tion of the system is associated a reward value, and the objective of the controller
is to select precisely that sequence of actions that maximizes the collection of
rewards in the long run. For the case of several distributed but cooperative con-
trollers, their objective is to act selfishly as to maximize the reward collected by
the team.

2.1 The DEC-POMDP Model

We base our work on the DEC-POMDP formalism introduced by [3], although
alternative definitions are equally allowed.

Definition 1 (DEC-POMDP). An n-agent DEC-POMDP is given as a tuple
〈S, {Ai}, P,R, {Ωi}, O, p0〉, where

– S is a finite set of states
– Ai is a finite set of actions, available to agent i
– P (s, a1, . . . an, s

′) is a function of transition probabilities
– R(s, a1, . . . an, s

′) is a reward function
– Ωi is a finite set of observations for agent i
– O(s, a1, . . . an, o1, . . . on, s

′) is a function of observation probabilities
– p0 is the initial state distribution of the system

Solving a DEC-POMDP can be seen as finding a set of n policies, one for each
controller, that yield maximum reward when being executed synchronously. The
optimization problem can therefore be stated as maximizing the following ex-
pectation value

E

[ ∞∑
t=0

γtR (st, (a1, . . . an)t, st+1)
∣∣∣ p0

]
with 0 ≤ γ < 1 (1)

where γ is a discount factor to avoid infinite sums. We will denote qi the
policy associated with agent i. In order to be optimal, the Markov assump-
tion requires a policy to depend on the whole information available to the
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agent at time t, namely its complete history of past observations and actions:
(qi)t = qi((ai)0, . . . (ai)t−1, (oi)0, . . . (oi)t | p0). For infinite horizon problems
however, this would require a controller to have infinite memory, which is not
always possible. We will therefore specify the nature of the controller in more
detail.

2.2 Policies for DEC-POMDPs

A widely accepted class of policies for single-agent POMDPs can be represented
as policy graphs. A policy graph can be described by a set of nodes, which
contain the actions to be executed, and a set of arcs, which are parametrized by
the observations the agent gets. A step in policy execution consists of executing
the action given by the current node, and transitioning to the next node, based
on the observation signal that occurred. For finite horizon problems, an optimal
policy graph can always be represented as a tree [10], whereas for the infinite
horizon case, loops have to be allowed. A policy graph with loops is called a
finite state controller :

Definition 2 (FSC). A finite state controller (FSC) is a policy graph, defined
as q = 〈N,α, η, n0〉, where

– N denotes a set of nodes
– α = α(n) is the action selected in node n
– η = η(n, o) is the successor node when observation o is perceived in node n
– n0 is the starting node

An example of a 3-node FSC is given in Figure 1. For the case of decentralized
problems with multiple controllers, the goal is it to find a set of FSCs, one
for each agent, such that their concurrent execution maximizes the expectation
value given in (1). We will call such a set a policy vector :

o
1

o
2

o
1

a

o
2

a

b

o
1

o
2

Fig. 1. A deterministic finite state controller with 3 nodes for a problem with 2 actions
(a and b) and 2 observations (o1 and o2)
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Definition 3 (Policy Vector). A policy vector δ is defined as δ = (q1, . . . qn),
such that qi constitutes a policy, in our case a FSC, assigned to agent i.

As stated earlier, finite memory controllers are naturally limited in treating
infinite horizon problems, and increasing the controller size will in general lead
to higher rewards. We therefore state our optimization criterion as finding the
best policy vector for a given controller size.

2.3 Related Work

Solving cooperative but decentralized Markov decision processes has only been
recently addressed by the research community. After the establishement of the
formal DEC-POMDP model by [3], and the alternative MTDP model by [17], the
first optimal algorithm for finite horizon problems, based on dynamic program-
ming, has been suggested in [9]. We recently proposed an alternative approach,
based on heuristic search [19]. Furthermore, there exist several suboptimal so-
lutions that adopt concepts from game theory, such as described in [6], [14],
or that use local optimization techniques as described in [15]. Although these
algorithms are often much easier to apply, the quality of their solution can be
more or less unsatisfactory depending on the problem. A first attempt to solve
general DEC-POMDPs with infinite horizon has been made by Bernstein et al.
in [4]. Their algorithm is based on policy iteration for stochastic finite state con-
trollers, and is therefore related to our approach, although it is not guaranteed
to produce optimal controllers. We will indeed be able to show that, while we re-
strict ourselves to deterministic automata only, our algorithm outperforms their
approach on the test problems we studied. There exist several algorithms that
treat special subclasses of decentralized MDPs, such as transition independent
DEC-MDPs, where agents do not interfere directly while execution [2].

3 Best-First Search for Infinite Horizon DEC-POMDPs

Solving Markov decision problems usually involves maximizing an evaluation
function in either state space or policy space, with our approach being an exam-
ple for the latter.

3.1 Searching in the Space of Policy Vectors

Forward search in the space of policy vectors can be considered as an incre-
mental construction of an optimal policy based on evaluations of only partially
completed policy stubs. In each step, the most promising stub is selected and
further developed, hence the best-first approach. A section of such a search tree
is shown in Figure 2. We recall that δ = (q1, . . . qn) denotes a policy vector of
FSCs. For a completely defined policy vector, we set Vδ(p0) as the value of ex-
ecuting δ in p0, which is nothing more than the expectation introduced in (1).
We then state our maximization problem as follows:

δ∗ = argmax
δ

Vδ(p0) (2)
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Fig. 2. A section of the multi-agent best-first search tree, showing a partially defined
policy vector for 2 agents, and one of its stronger constrained child vectors

Evaluating policy vectors can be done using the model parameters P , R, and
O of the DEC-POMDP. We will describe this in more detail in the following
subsections.

3.2 Evaluating Partially Defined Policy Vectors

Because of the incremental nature of the search process, we will have to empha-
size on what we understand by a policy stub. We recall that each FSC is defined
by its number of nodes N , and its two functions α : N → A and η : N ×O→ N .
A policy stub is a FSC where either α or η or both are only partially defined.
Obviously, any partially defined FSC can be completed easily at random by
assigning actions and successor nodes at those points where α and η are not
constrained. The crucial step however consists in estimating efficiently all possi-
ble completions of a policy stub, in order to determine whether or not to expand
the corresponding leaf node of the search tree. Heuristic search methods such
as A* have been shown to be very efficient in those cases where an upper bound
estimate for the set of possible completions can be established. In order to show
that a similar upper bound can indeed be defined in our case, we will introduce
two mappings that specify the current constrainment of the FSCs:

Λi(n) =
{
{αi(n)}, if αi is defined in n
A, otherwise

Πi(n, o) =
{
{ηi(n, o)}, if ηi is defined for n and o
N, otherwise
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Similarly, we define the multi-controller extensions Λ(n) = (Λ1(n), . . . Λn(n))
and Π(n,o) = (Π1(n, o), . . . Πn(n, o)).

It has been pointed out by Sondik and later by Hansen [8] that evaluating a
policy represented as a FSC consists in solving a system of linear equations. In
fact, the cross-product between a FSC and a POMDP constitutes itself a finite
MDP [13]. We extend this result to the multi-agent case:

Definition 4 (Multi-agent cross-product MDP). Given a DEC-POMDP
〈S, {Ai}, P,R, {Ωi}, O, p0〉 and a policy vector δ = 〈{Ni}, {αi}, {ηi}〉, we define
a cross-product MDP 〈S,A, P ,R〉, with

– S = (×
i
Ni)× S

– A = ×
i
(Ai ×NΩi

i )

– P ((n, s), (a, ηn), (n′, s′)) = P (s,a, s′)
∑

o∈×Ω

O(s,a,o, s′)

s.t. ηn(o)=n′

– R((n, s), (a, ηn), (n′, s′)) = R(s,a, s′)

and where ηn is a mapping that - given a vector of nodes n - determines a vector
of successor nodes n′ for each vector of observations o, ηn : Ω→ N.

Solving the cross-product MDP can be done through common dynamic program-
ming techniques, leading to a value function over the augmented state space S
and the following fixed point:

V δ(n, s) = max
a∈Λ(n)

{∑
s′,o

P (s′,o|s,a)
[
R(s,a, s′) + γ max

n′∈Π(n,o)
V δ(n′, s′)

]}
(3)

This value function is the multi-agent extension of the one given in [13].

Lemma 1. For any policy vector δ′ that can be obtained from δ by adding further
constraints on Λ or Π, V δ ≥ V δ′ .

Proof. The lemma states that V δ is indeed an upper bound for all policy vectors
that might result from δ by further constraining it. This is true since constraining
Λ or Π will simply result in reducing the set of options under the max-operators
max

a∈Λ(n)
and max

n′∈Π(n,o)
in (3), and the value function can therefore never increase.

If the vector of FSCs is completely defined, the cross-product MDP degenerates
to a simple Markov chain, and the upper bound coincides with the true value of
the policy vector. We can evaluate an upper bound for the value of any partially
defined policy vector and start state distribution p0:

V δ(p0) = max
n

∑
si

p0(si)V δ(n, si) (4)
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3.3 An Optimal Heuristic Search Algorithm for Decentralized
POMDPs

Theorem 1. The heuristic best-first search algorithm in [Algorithm 1] is com-
plete and returns the optimal solution for the given controller size.

Proof. The search process will eventually terminate in the worst case after enu-
merating all possible policy vectors, which means after constructing the complete
search tree. The leaf node with the highest value then contains an optimal solu-
tion to the problem. If the search terminates earlier and returns a policy vector
δ, we can guarantee by the ”best-first” property that no other active leaf node
presents a higher evaluation. Since the evaluation function itself constitutes an
upper bound for the value of any further constrained policy vector, we know
that all unvisited child nodes will present values that fall below this bounded.
This excludes the existence of any policy vector with a higher value, and thus
guarantees the optimality of the solution.

Algorithm 1. Best-first search for infinite horizon DEC-POMDPs
Require: D0 initialized with the skeleton of an unconstrained policy vector
1: repeat
2: Select δ∗ ∈ Di such that ∀δ ∈ Di: V δ(p0) ≤ V δ∗(p0)
3: Construct δ∗′

, the next child of δ∗

4: if δ∗′
is an improved suboptimal solution then

5: Report δ∗′

6: for all δ ∈ Di do
7: if V δ(p0) ≤ V δ∗′ (p0) then
8: Di ← Di \ δ
9: end if

10: end for
11: end if
12: Di ← Di ∪ δ∗′

13: if δ∗ is fully expanded then
14: Di ← Di \ δ∗

15: end if
16: until ∃δ∗ ∈ Di s.t. δ∗ is complete and ∀δ ∈ Di: V δ(p0) ≤ V δ∗(p0) = Vδ∗(p0)

4 Experimental Results

We tested the heuristic search approach on two problems that have already
been studied before in [4], namely a broadcast channel problem, and a 2-robot
navigation task. The discount rate for all problems is γ = 0.9.

4.1 A Broadcast Channel Problem

The first setting simulates a simplified multi-access broadcast channel, where
agents are situated at the nodes of the system. Each agent has to decide whether
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or not to send one of the messages from its message buffer. Sending is exclusive,
which means that only one message can go through a channel at each time. If
both agents try to send a message at the same time over the same channel, a
collision occurs, and messages will remain in the buffer. The problem is partially
observable and hence decentralized, since agents can only observe the state of
their own message buffers but do not know whether or not any other agent
has something to send as well. The common goal of all participating agents is
to maximize the throughput of the system, with a reward of 1.0 given for any
message that has been transmitted. In the experiments we conducted, there are 2
agents and 2 possible actions for each one of them (send, not send). The buffer
size is 1, and the number of global states thus is 4, namely the cross-product
of the local buffer states. There are 6 possible observations, characterized by
the local buffer state (empty, full) and a status flag of the channel from the
previous time step (idle, active, collision). New messages arrive with a rate
of p1 = 0.9 for agent 1, and p2 = 0.1 for agent 2.

The highest possible discounted sum of rewards that can be attained for
this problem assuming full global observability is

∑
t γ

t(1.0) = 9.0, which would
mean that a message could be transmitted at each time step. Surprisingly, we
can see in Figure 5 that this value is almost attained in our case with just a
deterministic single-node FSC, althought the problem is now decentralized and
only partially observable. The bounded policy iteration approach for stochastic
controllers produces less competitive policies.

4.2 A Robot Navigation Task

In the second problem, two agents navigate on a two by two grid-world, with-
out interfering with each other. Their goal is to stay both on the same grid
cell - which produces a reward of 1.0 - but their observation capabilities are
limited so they don’t see each other, and they also have limited sensing capa-
bilities concerning the environment: There are only 4 observations, indicating
whether there is a wall to their left and/or to their right. Each agent has 5
actions to move in any direction or stay on its current cell, but transitions
are stochastic as given by Figure 4: The agent only moves with probability
0.6 to its intended direction. The problem has 16 states. Figure 5 shows that

Buffert Action Buffert+1 Prob
empty (any) empty 1.0 − pi

full pi

full send empty 1.0 − pi

full pi

not send empty 0.0
full 1.0

Fig. 3. Channel problem: Transition
probabilities for each one of the buffers

0.1

0.1 0.1

0.6

0.1

Fig. 4. Navigation task: Transition prob-
abilities for action North
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Fig. 5. Value of optimal deterministic policy vector for the heuristic approach, and
average value per trial run for two versions of bounded policy iteration on stochastic
controllers. Left: Channel problem - Right: Robot problem.

the search algorithm is again more competitive than the policy iteration ap-
proach. However, it takes more time to converge and may in the end run out of
memory.

The experimental results show that the advantage of using stochastic con-
trollers, which have the theoretical ability to produce higher average rewards
than deterministic ones [18], might be more than consumed by the local op-
timality of the algorithms that compute them. In addition, the deterministic
controllers with more than one node are degenerated versions of the one con-
troller case: In the given example problems, having a larger memory does not
necessary help, which is why the value of the deterministic controllers do not
increase with increasing size.

5 Discussion

We have presented a new optimal algorithm to solve a particular class of decen-
tralized POMDPs with infinite horizon. It is able to compute better controllers
than a very recent policy iteration algorithm on two test problems, although
it still suffers from the proved complexity of this class of problems. It should
be a valuable step forward in establishing more efficient algorithms and ap-
proximation techniques. There are other possible ways of tackling problems of
decentralized control: Instead of constraining the controller size, one could for
example impose a bound on the solution quality. It remains an open problem,
whether decentralized policy vectors can also be learned in an efficient way when
the environment is only partially observable.
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Abstract. Kernel-based methods have outstanding performance on
many machine learning and pattern recognition tasks. However, they
are sensitive to kernel selection, they may have low tolerance to noise,
and they can not deal with mixed-type or missing data. We propose
to derive a novel kernel from an ensemble of decision trees. This leads
to kernel methods that naturally handle noisy and heterogeneous data
with potentially non-randomly missing values. We demonstrate excellent
performance of regularized least square learners based on such kernels.

1 Introduction

Kernel-based learners, such as Support Vector Machines (SVM) or Regularized
Least Squares (RLS) learners have shown excellent performance compared to any
other methods in numerous current classification and regression applications [23].
A key issue in the successful application of a kernel-based learner is the proper
choice of the kernel and its parameters since this determines the capability of
the kernel to capture and to represent the structure of the input space. Typical
kernel choices for continuous data are Gaussian and polynomial, for example.

However, if the data has variables of mixed type, both continuous and dis-
crete, kernel construction becomes a difficult problem. Furthermore, if the data
contains many irrelevant variables, especially if the number of available obser-
vations is small, standard kernel methods require variable selection to perform
well [13]. This paper suggests a solution to both problems by deriving a kernel
from an ensemble of trees.

Tree-based ensemble methods partition the input space using decision trees
and then combine the partitioning, or response in case of regression, over a
stochastic ensemble of trees. Random Forest (RF) is an example of such an
ensemble [4]. Trees provide the capability to handle mixed-type variables and
missing data. Stochastic selection of input variables for each tree of the forest
provides tolerance to irrelevant variables. These properties of trees can be ex-
tended to kernel-based methods by taking advantage of the supervised engine of
the Random Forest. We show how the kernel can be derived from the structure
of the forest.

The structure of this paper is as follows. We describe first generic kernel-
based learners concentrating on Regularized Least Squares learners. We then
show how a “supervised kernel” can be derived from a tree-based ensemble that

J. Gama et al. (Eds.): ECML 2005, LNAI 3720, pp. 400–411, 2005.
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has been trained either for a classification or a regression task. Ensembles of
kernel-based learners are described next, followed by illustrations and experi-
mentation with the supervised kernel. We use both synthetic and real data sets
to demonstrate both the insights from supervised kernels as well as their rele-
vance to real problems. A summary concludes the paper.

2 Regularized Least Squares Learners

In supervised learning the training data (xi, yi)m
i=1 is used to construct a function

f : X → Y that predicts or generalizes well.
To measure goodness of the learned function f(x) a loss function L(f(x), ytrue)

is needed, for example the square loss, L2: L(f(x), y) = (f(x)− y)2.
Given a loss function, the goal of learning is to find an approximation function

f(x) that minimizes the expected risk, or the generalization error

EP (x,y)L(f(x), y) (1)

where P(x,y) is the unknown joint distribution of future observations (x,y).
Given a finite sample from the (X,Y) domain this problem is ill-posed.
The regularization approach rooted in Tikhonov regularization theory [24]

restores well-posedness (existence, uniqueness, and stability) by restricting the
hypothesis space, the functional space of possible solutions:

f̂ = argmin
f∈H

1
m

m∑
i=1

L(f(xi), yi) + γ ‖f‖K 2 (2)

The hypothesis space H here is a Reproducing Kernel Hilbert Space (RKHS)
defined by kernel K, and γ is a positive regularization parameter.

The mathematical foundations for this framework as well as a key algorithm
to solve (2) are derived elegantly in [21] for the quadratic loss function. The
algorithm can be summarized as follows:

1. Start with the data (xi, yi)m
i=1.

2. Choose a symmetric , positive definite kernel, such as

K(x, x′) = e−
||x−x′||2

2σ2 . (3)

3. Set
f(x) =

m∑
i=1

ciK(xi, x), (4)

where c is a solution to
(mγI + K)c = y, (5)

which represents well-posed linear system.

The generalization ability of this solution, as well choosing the regularization
parameter γ were studied by [7, 8].
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It is important to note that the same result can be obtained from the classical
linear ridge regression proposed by [16, 15] to deal with potential singularity of
X′X in linear regression.

f(x) = X(X′X + γI)−1X′y (6)

It is easy to see that we could use the kernel trick if we rewrite equation (6) in
terms of matrix of inner products

f(x) = (K + γI)−1Ky (7)

where K = XX′.
Thus, the regularized least-squares (RLS) algorithm defined above solves a

simple well defined linear problem. The solution is a linear kernel expansion
of the same form as the one given by support vector machines (SVM). Note
also that SVM formulation naturally fits in the regularization framework (2).
Inserting the SVM hinge loss function L(f(x), y) = (1− yf(x))+ in (2) leads to
solving a quadratic optimization problem instead of a linear solution.

The regularized least-squares classifier (RLSC) with quadratic loss function,
that is more common for regression, has also proven to be very effective in binary
classification problems [22]. In a recent feature selection and classification com-
petition organized at NIPS2003, stochastic ensembles of RLSCs with Gaussian
kernels were the second best entry [13].

The success of kernel-based methods stems partly from the capability of the
kernel to capture the structure of the (expanded) input space. However,while some
of that structure is relevant to the task at hand, much of it may not be. Selection
of an appropriate kernel is the key issue. Furthermore, crafting kernels for mixed
type noisy data with potential missing values is a form of art at its best.

Recently, a series of papers were dedicated to a problem how to learn the kernel
itself. Cristianini et al. introduced notion of kernel target alignment [6]. The goal
is to construct a kernel K(x, x′) that is similar to (aligned with) the target kernel
defined as outer product of y, K∗ = yyT . While this framework could construct
powerful kernels, there is still an overfitting issue since there is no guarantee that
the learned kernel is aligned on the data other than the given training data set. It is
not clear also how to use this framework in regression or multiclass classification.
Lanckriet et al. proposed semidefinite programming approach to optimize target
alignment (or bound, margin) over the set of kernel matrices on the data [17]. Over-
fitting is still an issue here as well as a computational complexity (O(n6)). None of
these methods deal with mixed type data.

The following section discusses how ensembles of trees can be used for deriv-
ing the kernel in a supervised fashion.

3 Extracting Kernels from Tree-Based Ensembles

A decision tree such as CART explicitly partitions the input space into a set of
disjoint regions, and assigns a response value to each corresponding region [5].
This is the key property that we will use in the derivation of a similarity matrix
(that is, a kernel) from a tree.
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As a new observation x is run through the tree, the search ends at a terminal
node t(x). Let us denote the depth of a node in the tree by d(n), and the deepest
common parent of two nodes by p(n1, n2).

Breiman defined a similarity measure between two observations x1 and x2 as
follows [4]:

sB(x1, x2) =
{

1 if t(x1) = t(x2)
0 otherwise (8)

This a very coarse measure by which two observations are similar only if they
end up in the same terminal node. In order to express with finer granularity how
far in the tree two observations lie, we define a new similarity measure as the
depth of the lowest common parent node normalized by the level of the deeper
observation in the tree:

s(x1, x2) =
d(p(t(x1), t(x2)))

max[ d(t(x1)), d(t(x2)) ]
(9)

It is easy to show that the similarity matrix defined this way is symmetric and
positive-definite. Two observations with large s(x1, x2) would indicate both geo-
metric closeness and similarity in terms of the target. This kind of partitioning (and
thus similarity) can be constructed for practically any kind of data since CART is
fast, workswith mixed-type data, handles missing values elegantly, and is invariant
to monotone transformations of the input variables, and therefore is resistant to
outliers in input space. However, such a supervised partitioning of the input space
induced by a single tree is unstable (in the sense of [2]), and it would be sensible to
measure the derived similarity over an ensemble of trees by averaging.

We discuss two of the most recent advances in tree ensembles, MART (gra-
dient tree boosting) [11, 12] and Random Forest [4]. MART is a serial ensemble
where every new expert that is constructed relies on previously built experts. At
every iteration of MART a new tree is fitted to the generalized residuals from
the previous iteration.

Random Forest (RF) is an improved bagging method that extends the “ran-
dom subspace” method [14]. It is a parallel ensemble that grows a forest of
independent random trees on bagged samples. RF does not overfit, and can be
summarized as follows:
1. A number m is specified much smaller than the total number of variables M

(typically m ∼
√
M).

2. Each tree of maximum depth is grown on a bootstrap sample of the training
set.

3. At each node, m out of the M variables are selected at random.
4. The split used is the best split on these m variables.

We will be using RF throughout our experimentation because of it simplicity
and excellent performance. In general, RF is resistant to irrelevant variables,
it can handle mixed-type data and missing data, and it can handle massive
numbers of variables and observations. These properties now carry over to the
kernel constructed from a RF. Similarity matrices according to Eq. (9) will now
be averaged over all the trees in the forest.

We illustrate now some properties of this kernel using two simple data sets.
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Fig. 1. Illustration of the similarity measure between samples of two different classes.
Class one is the inside of the three circles and class two is the outside of the circles.
Each panel displays one randomly chosen data point within a square as a grey asterisk,
and the similarity between the point and every other point is illustrated by shades of
grey. Light shade denotes similarity between the data points. See text for discussion.
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Fig. 2. Similarity matrices (kernels) derived from the Iris data set with three classes.
Dark color represents high similarity, light represents low. The left panels depict Eu-
clidean similarity metric (a linear kernel), and the right panels show the similarity
derived from a Random Forest. The top panels represent the original four variables,
and the bottom panels show the same data but with 40 additional noise variables.
This is a demonstration of the tolerance of the supervised kernel to irrelevant input
variables.

Figure 1 depicts the similarity measure in the case of two-dimensional data
with two classes. The region consisting of the union of the three circles is con-
sidered class one and the region outside the circles represents class two. Sim-
ilarity between a randomly chosen point and every other point in the square
is encoded by shade of grey, the lighter the more similar. We can see how
the kernel captures the local structure and at the same time enhances sepa-
ration of the classes. We can also see the limitations of trees as the rectangular
partitioning.
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Figure 2 uses the well-known Iris data set (3 classes) to demonstrate how class
discrimination is enhanced (top panels) as compared to a linear kernel, and how
the derived kernel matrix is tolerant to irrelevant input variables (bottom panels).

4 Stochastic Ensembles of RLS Learners

The derived kernel matrix can now be used with any kernel-based learner, such as
a Support Vector Machine. This section describes how we use it with stochastic
ensembles of RLS learners. We begin by briefly recalling the motivation for using
ensemble methods in the first place.

Generalization ability of a learned function is closely related to its stability.
Stability of the solution could be loosely defined as continuous dependence on the
data. A stable solution changes very little for small changes in data. Recently, a
series of theoretical developments also confirmed the fundamental role of stability
for generalization of any learning engine [2, 20, 18, 19].

Supervised ensemble methods construct a set of base learners, or experts,
and use their weighted outcome to predict new data. Numerous empirical studies
confirm that ensemble methods often outperform any single base learner [10, 1, 9].
Due to increased stability, the improvement is intuitively clear when a base
algorithm is unstable (such as for decision tree, neural network, etc). However,
it has even been shown that ensembles of low-bias support vector machines
(SVM) often outperform a single, best-tuned, canonical SVM [25].

It is well known that bagging (bootstrap aggregation) can dramatically re-
duce variance of unstable learners providing some regularization effect [3].
Bagged ensembles do not overfit. Low bias of the base learner and low corre-
lation between base learners are crucial to good ensemble performance.

It is thus advantageous to implement diverse low biased experts. For RLSC,
bias can be lowered by decreasing the regularization parameter, and narrowing
the σ in case of Gaussian kernel. Instead of bootstrap sampling from training
data which imposes fixed sampling strategy, we found that often much smaller
sample sizes improve performance.

Typically, in the following experiments, once a kernel is derived, we construct
100-250 experts, each using a random sample of 50-90% of the training data. This
is fast since we are actually just sampling a pre-computed kernel matrix, and
solving a linear equation for each expert. The regularization parameter was fixed
to a very small value only to ensure that a solution exists.

Combining the outputs of the experts in an ensemble can be done in several
ways. In classification tasks, we performed majority voting over the outputs of
the experts. In binary classification this is equivalent to averaging the discretized
(+1,-1) predictions of the experts. In regression tasks simple averaging was used.

5 Experiments with Synthetic Data

We describe now experiments for the purpose of highlighting the differences
between RF and a stochastic ensemble of RLSCs using the new RF kernel. This
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Fig. 3. RMS error and classification error rate comparison of Random Forest to an
ensemble of RLSCs using a random forest kernel. See text for discussion.

is an important comparison because if the kernel does not improve over the plain
RF, it obviously is not worth using at all.

A very useful data generator for this purpose is described by [11]. This gen-
erator produces data sets with multiple non-linear interactions between input
variables.

We present results using 100 generated data sets, 500 observations each. For
each data set, twenty N(0, 1) distributed input variables were generated. The
target is a multivariate function of ten of those, thus ten are pure noise. The
target function is generated as a weighted sum of L multidimensional Gaussians,
each Gaussian at a time involving about four input variables randomly drawn
from the “important” ten variables. Thus all of the “important” ten input vari-
ables are involved in the target, to a varying degree. The Gaussian functions also



408 K. Torkkola and E. Tuv

have a random mean vector and a random covariance matrix as described in [11].
In this experiment, we used L = 20. Weights for the Gaussians are randomly
drawn from U [−1, 1].

The data generator produces continuous valued variables. Thus the data sets
can be used as such for regression problems. In order to generate a classification
problems, the target variable was discretized to two levels. Furthermore, to create
data sets with mixed type variables, randomly selected 50% of the input variables
were discretized. The number of discretization levels was itself a random variable
drawn from a uniform distribution between 2 and 10.

Figure 3 depicts the performance of the RF kernel (horizontal axis) against
RF (vertical axis) in four different tasks:

1. Classification, continuous inputs, top left,
2. Regression, continuous inputs, bottom left,
3. Classification, mixed type inputs, top right,
4. Regression, mixed type inputs, bottom right.

Each point in the figures depicts one generated data set, 500 observations for
training, and 500 observations for testing. The y-coordinate of a point represents
either the error rate (classification problem) or the RMS error (regression) eval-
uated by a random forest. The x-coordinate of a point represents the same for a
stochastic ensemble of RLSCs using supervised kernel derived from the random
forest. Thus every point above the diagonal line is a data set with which the
supervised kernel was better than the RF. The difference is clear for continuous
data, both for classification and regression (left panels), and dramatic for mixed
type data (right panels).

This difference could be explained by the difference between the base learners
of the ensembles. Both are parallel ensembles, but the base learner in RF is less
capable than the base learner in an ensemble of RLSCs.

6 High-Dimensional Noisy Problems

In order to assess the performance of the proposed supervised kernel method in
real high dimensional noisy problems, we ran tests using the data sets from the
NIPS 2003 feature selection competition. The purpose of the challenge in feature
selection was to find feature selection algorithms that significantly outperform
methods using all features, on all five benchmark data sets [13]. These are signif-
icantly harder problems than, for example, typical problems in the UCI machine
learning database. The diverse characteristics of these five data sets are listed in
Table 1.

As seen in Table 1, these problems are high-dimensional, have a small amount
of training data relative to the dimension, and a large proportion of variables
are noise. Of these data sets, only Dorothea was highly unbalanced with ap-
proximately 12% of samples in one class, and 88% in the other. The rest of the
sets had an approximately balanced class distribution. All tasks are two-class
classification problems.
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Table 1. NIPS2003 Feature Selection Challenge Data. Probes refer to artificially in-
serted random noise variables.

Data # of Training Validation % of
Set Domain Size Type variables Examples Examples Probes
Arcene Mass Spectrometry 8.7 MB Dense 10000 100 100 30
Gisette Digit Recogn. 22.5 MB Dense 5000 6000 1000 30
Dexter Text Classific. 0.9 MB Sparse 20000 300 300 50
Dorothea Drug Discovery 4.7 MB Sparse bin. 100000 800 350 50
Madelon Artificial 2.9 MB Dense 500 2000 600 96

Table 2. Classification error rates on NIPS 2003 feature selection competition data
sets. Error rates with validation data sets are reported. The Gaussian kernel was used
without feature selection with the Arcene data set.

Data Set
Random
Forest

Gaussian Kernel
RLSC Ensemble

Gaussian Kernel RLSC
Ensemble with Feature
Selection

Supervised Kernel
RLSC Ensemble

Arcene 23.0 13.31 13.31 19.0
Dexter 9.0 32.4 6.67 6.0
Dorothea 11.94 - 11.83 11.78
Gisette 3.4 - 2.2 1.9
Madelon 9.5 25.4 7.0 11.83

Table 2 compares the classification error rates of a RF to a stochastic RLSC
ensemble that uses a Gaussian kernel and to a stochastic RLSC ensemble that
uses the proposed supervised kernel. The latter pair is a relevant comparison
because we use the supervised RF kernel here exactly in the same fashion as the
Gaussian kernel is used in training an ensemble of RLSCs. Note that none of
these are mixed-type problems. Thus the Gaussian kernel is near-ideal for these
data sets once irrelevant variables are removed. Our baseline is thus the column
“Gaussian Kernel RLSC Ensemble with Feature Selection”.

Comparison to RF is also very relevant because the supervised kernel is
derived from a random forest. This naturally begs the question “Why not use
just a RF?”. Error rates for the RF and the ”Gaussian kernel RLSC Ensemble
with Feature Selection” entries were taken from the original December 1st entries
in the challenge website1.

These results show that a stochastic ensemble of RLSCs using a supervised
kernel derived from a RF significantly outperforms plain RF on four of the five
data sets. Comparing to using a Gaussian kernel with feature selection, the
supervised kernel has a comparable performance except for the two cases that
were near ideal for the Gaussian kernel once feature selection was used [13] (The
data in the Madelon and Arcene sets consisted of Gaussian-like clusters).

Although the purpose of the NIPS 2003 competition was feature selection,
we do not perform here feature selection for the supervised kernel prior to clas-
sification in order to demonstrate that supervised kernels are tolerant to noise
variables due to the properties of tree-based ensembles. Thus the “Supervised
Kernel” column does not include feature selection. For comparison, we also eval-
1 http://www.nipsfsc.ecs.soton.ac.uk
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uated the Gaussian kernel without feature selection on some of the data sets.
These results clearly indicate that removing irrelevant variables is a crucial step
in using the Gaussian kernel, whereas the supervised RF kernel does not require
this at all.

The results here are thus the best we could hope for: Even when the problem
does not fit our specific motivation for the kernel choice, the supervised kernel
has about equal performance with the (near) optimal method for those problems.

7 Conclusion

This paper shows how the power of kernel-based methods can be extended to
heterogeneous and more complex data domains.

We demonstrated how to derive kernels from Random Forests. This brings
the nice properties of tree-based learners, such as natural handling of mixed-type
data, tolerance to missing data, tolerance to noise, and to irrelevant inputs to
all kernel-based learners.

Using the derived kernels, we train ensembles of simple regularized least
squares learners and show that such ensembles outperform Random Forest itself
on practically any task. The improvement with mixed-type inputs was especially
dramatic. Furthermore, the performance on continuous-valued data is compara-
ble to the best methods for such domains.
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Abstract. We present a method for transferring knowledge learned in
one task to a related task. Our problem solvers employ reinforcement
learning to acquire a model for one task. We then transform that learned
model into advice for a new task. A human teacher provides a mapping
from the old task to the new task to guide this knowledge transfer. Ad-
vice is incorporated into our problem solver using a knowledge-based
support vector regression method that we previously developed. This
advice-taking approach allows the problem solver to refine or even dis-
card the transferred knowledge based on its subsequent experiences. We
empirically demonstrate the effectiveness of our approach with two games
from the RoboCup soccer simulator: KeepAway and BreakAway. Our
results demonstrate that a problem solver learning to play BreakAway
using advice extracted from KeepAway outperforms a problem solver
learning without the benefit of such advice.

1 Introduction

We propose a novel method to transfer the knowledge gained in one reinforce-
ment learning (RL) task to a related task. Complex RL domains, such as Robo-
Cup soccer [11], can often be divided into several related learnable tasks. Trans-
fer is the process of using the knowledge acquired in one task to improve the
learning of a related task. For example, the skill of keeping a soccer ball away
from opponents can be used to evade players who are defending a goal, making
it easier to learn the task of goal scoring.

In this work, we present a method for performing transfer using advice. Ad-
vice taking is a way to incorporate user guidance into RL and can significantly
improve performance in complex domains [6, 7, 9]. In our previous work with
advice [9], the user observes the learner performing a task and then provides ad-
vice about which actions to prefer in certain situations. In contrast, our method
for transfer obtains action preferences automatically from a model learned on a
previous task. The user provides a mapping that connects the two tasks, allowing
this transfer advice to be applied in the new task.

We have several reasons for using advice to accomplish this knowledge trans-
fer. It supplies the learner with some prior knowledge of the relative merits of
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actions in new situations where old skills might apply. It allows a user who is not
familiar with the learning algorithm to guide the knowledge transfer simply by
specifying the similarities between two tasks. Also, since advice can be refined
or discarded by the learner if it is contradicted by experience, transfer advice
should not be harmful in the long run even if the user’s guidance is imperfect.

In the RoboCup simulated soccer domain [11], we extract transfer advice
from a task called KeepAway and apply it to another task called BreakAway.
The KeepAway game was originally introduced by Stone and Sutton [16]. The
game we call BreakAway [9] is the subtask of shooting goals. Both of these games
are set on a field with two teams of players, and contain actions for controlling the
soccer ball. However, the two games use different field layouts and have different
objectives. We provide mapping advice that points out the similarities that do
exist, and our algorithm produces transfer advice that captures a reinforcement
learner’s knowledge about KeepAway. We then give this advice to a new problem
solver to allow it to use KeepAway skills wherever they also apply in BreakAway.

The next section describes the RoboCup domain from the RL perspective.
The following section gives more detail on our RL implementation and the way
that it incorporates advice. After that, we introduce our transfer advice algo-
rithm and demonstrate its potential with some initial results.

2 Reinforcement Learning in RoboCup

Reinforcement learning [17] is a continual learning process in which an agent
navigates through an environment trying to earn rewards. The environment’s
state is usually represented by a set of features, and the agent executes actions
that cause the state to change. Typically an agent learns a Q-function, which
estimates the best long-term sum of rewards it could receive starting with a spe-
cific action from the current state. The agent’s policy, or procedure for choosing
actions, is usually to take the action with the highest Q-value in the current
state. After taking the action and receiving some reward, the agent updates its
estimate of that Q-value to improve its Q-function.

In the learning task ofM -on-N KeepAway (see Figure 1), the objective of the
M reinforcement learners called keepers is to keep the ball away from N (usually
M−1) hand-coded players called takers. The game ends when an opponent takes
the ball or when the ball goes out of bounds. A keeper needs to make an action
choice only when it has possession of the ball; it may choose to hold the ball,
pass to its closest teammate, or pass to its furthest teammate. It does not have
movement options.

Our KeepAway state representation is the one designed by Stone and Sutton
[16], which consists of features that capture simple geometric properties of the
learner’s field perspective, such as distances to other players and angles formed
by trios of players. They describe relative distances from the learner rather than
absolute locations. In our implementation, the three learners share a single Q-
function learned from the combination of their experiences, and they all receive
a +1 reward for each time step their team keeps the ball.



414 L. Torrey et al.

KeepAway BreakAway

Fig. 1. Samples of 3-on-2 KeepAway and BreakAway games. The ball is the white
circle, and is held by a keeper on the left (a light circle with a dark border) and an
attacker on the right. The two opponents (dark circles with light borders) are both
takers on the left, but on the right, one is a defender and the other a goalie.

In M -on-N BreakAway (see Figure 1), the objective of the M reinforcement
learners called attackers is to score a goal againstN−1 hand-coded defenders and
a hand-coded goalie. The game ends when they succeed, when an opponent takes
the ball, when the ball goes out of bounds, or after a time limit of 10 seconds.
When an attacker has possession of the ball, it has a learnable action choice: to
move with the ball, to pass the ball to its closest or furthest teammate, or to
shoot the ball at the goal. We limit movement to four choices: forward towards
the center of the goal, away from the goal, and clockwise or counterclockwise
along a circle centered at the goal. The shoot action directs the ball at the
center, right side, or left side of the goal, whichever is least blocked by the
goalie.

Our BreakAway state representation also consists of features measuring im-
portant distances and angles, many of which are similar to KeepAway features.
The new features include distances and angles involving the goal, and the time
left in the game. The learners share a single model, and they all receive a +2
reward for a goal, 0 for a failed shot, and -1 for the other game endings.

In our RL method, the learners approximate the Q-function by solving a
linear optimization problem. Following Stone and Sutton’s approach [16], we use
tile coding to include some non-linear features in this problem, which allows the
model to express more complex functions. Tile coding discretizes each numeric
feature into several overlapping tilings, each containing a set of discrete tiles.
Each tile is represented by a Boolean feature that is true when the numeric
value falls into the tile interval and false otherwise. Through this process, we
add 64 Boolean features to the state space for every numeric feature. We have
found, as did Stone and Sutton, that this addition to the state space significantly
improves learning for RoboCup.

Neither of these games is trivial, especially since the soccer simulator incor-
porates noise into players’ sensors and actions. BreakAway is the more difficult
of the two, because it contains only one positive reward that is rarely received
by chance (the goalie can easily block random shots). Learners in BreakAway
also have more actions to choose from and a larger state space to navigate.
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3 Background: Support Vector Regression

Our learners employ a type of RL called SARSA with a one-step look-ahead
to estimate Q-values [17]. Our implementation uses support vector regression
(SVR). We use a linear optimization method proposed by Mangasarian et al.
[10] and extended in Maclin et al. [8, 9] to compute a model that approximates
the Q-function. We train the learner in batches: it uses the most recent model to
play 100 games, and then updates the model using these new training examples
to get a better Q-function approximation.

The main structure in a learned model is a weight vector w, which has one
weight for each feature in the feature vector x. Each action has its own weight
vector and offset term b, and the expected Q-value of taking that action from
the state described by x is wx + b. Our learners take the action that scores the
highest with probability (1− ε), and take a sub-optimal exploratory action with
probability ε, where ε typically is a small number between 0.01 and 0.05.

To compute the weight vector for an action, we find the subset of training
examples in which that action was taken and place those feature vectors into rows
of a data matrix A. Using the previous model and the actual rewards received
during those training steps, we compute new Q-value estimates and place them
into an output vector y. The optimal weight vector is then described by

Aw + be = y (1)

where e denotes a vector of ones (we omit this for simplicity from now on).
In practice, we prefer to have non-zero weights for only a few important

features in order to keep the model simple and avoid overfitting the training
examples. We therefore introduce slack variables s that allow inaccuracies on
each example, and a penalty parameter C for trading off these inaccuracies with
the complexity of the solution. The resulting minimization problem is

min
(w,b,s)

||w||1 + ν|b|+ C||s||1
s.t. −s ≤ Aw + b− y ≤ s.

(2)

where |·| denotes an absolute value, ||·||1 denotes a sum of absolute values, and ν
is a penalty on the offset term. By solving this problem, we can produce a weight
vector w for each action that compromises between accuracy and simplicity.

In Mangasarian et al.’s [10] Knowledge Based Kernel Regression (KBKR)
method, advice can be given in the form of a rule about a single action. This rule
creates new constraints on the problem solution, in addition to the constraints
from the training data. Recently, we introduced an extension to KBKR called
Preference-KBKR [9], which allows advice about pairs of actions in the form

Bx ≤ d =⇒ Qp(x) −Qn(x) ≥ β, (3)

which can be read as:

If the current state satisfies (Bx ≤ d), the Q-value of the preferred action
p should exceed that of the non-preferred action n by at least β.
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For example, consider giving the advice that shooting is better than moving
ahead when the distance to the goal is at most 10. The vector B would have
one row with a 1 in the column for the “distance to goal” feature and zeros
elsewhere. The vector d would contain only the value 10, and β could be set to
any small positive number.

Just as we allowed some inaccuracy on the training examples, we allow advice
to be followed only partially. To do so, we introduce slack variables z and ζ and
penalty parameters μ1 and μ2 for trading off the impact of the advice on the
solution with the impact of the training examples.

The new minimization problem addresses all the actions together so that it
can apply constraints to their relative values. Multiple pieces of preference advice
can be incorporated, each with its own B, d, p, n, and β. We use the CPLEX
commercial software program to solve the resulting linear program:

min
(wa,ba,sa,zi,ζi≥0,ui≥0)

m∑
a=1

(||wa||1 + ν|ba|+ C||sa||1) +
k∑

i=1

(μ1||zi||1 + μ2ζi)
(4)

s.t. for each action a ∈ {1, . . . ,m} :
− sa ≤ Aawa + ba − ya ≤ sa

for each piece of advice i ∈ {1, . . . , k} :

− zi ≤ wp − wn +BT
i ui ≤ zi

− dTui + ζi ≥ βi − bp + bn.

4 Transfer Advice

In order to transfer knowledge gained on one task to a related task, we auto-
matically extract advice that tells the learner to prefer some actions over others
in new situations based on its experience in the old task. This transfer advice
is incorporated into the learning procedure for the new task as explained in the
previous section. Figure 2 summarizes the overall process.

Learned
Q Functions
for Task A

Transferred
Q Functions
for Task B

User-provided advice
relating the features and

actions of Task A to
those of Task B

Advice about
Task B: when
Action X is
preferred to

Action Y

Learned
Q Functions
for Task B

Interactions
with Task B

Advice about solving
Task B (optional)

Fig. 2. Transferring knowledge using advice. Advice may also have been given when
learning Task A.
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As an example, suppose we learned in KeepAway that when a taker was
near, passing to the nearest teammate was better than any other action. Our
algorithm might transfer this knowledge to BreakAway by generating advice
that when a defender is near, passing to the nearest teammate is better than
any other action.

This kind of advice is not the only way, or the most obvious way, to transfer
knowledge. One alternative would be to translate the actions and features of the
old task into actions and features of the new task, and then apply the old Q-
function directly to the new task, hoping that it would provide a good starting
point for learning. However, if the new task has a different reward structure,
these estimates might be uninformative. Simply transferring the Q-function from
KeepAway would give a BreakAway learner inaccurate initial estimates.

Instead of transferring Q-values, our method transfers a partial policy that
covers some regions of the feature space. By telling the learner to prefer some
actions over others in those regions, we give relative constraints on Q-values
instead of specifying them absolutely. This approach is more robust to differences
in the tasks’ reward structures.

The only input our method requires from a human teacher is a mapping that
translates features and actions in the old task to features and actions in the
new task. For example, we might map KeepAway features involving the nearest
taker to BreakAway features involving the nearest defender, and the KeepAway
action HoldBall to the BreakAway action MoveAhead.

Using this mapping, our algorithm evaluates a state from the perspective of
the old task. If one old action would have been better than all the others in this
situation, it gives transfer advice that recommends taking the corresponding
action in the new task. Table 1 gives the general form of the transfer advice
algorithm, and Table 2 gives a simple but concrete example. Note that this
direct translation of a learned model into advice is possible because we represent
both models and advice as linear expressions of features.

There are a few complications to this basic procedure. For example, some-
times an old feature has no logical analogue in the new task. In these cases, the
user may map the old feature f to a constant value instead of a new feature f ′.
For example, the takers in 3-on-2 KeepAway do not have corresponding defend-
ers in 2-on-1 BreakAway, since the goalie behaves differently from a defender.
The user could set the features describing distances to takers to their maximum

Table 1. The basic algorithm to create transfer advice. We set the constant Δ to 1 in
our experiments. See Table 2 for more details.

given
A learned model of Task A and
A mapping from Task A to Task B

do
for each a ∈ Actions(TaskA) generate advice:
if for each b ∈ Actions(TaskA), b �= a : Q′

a − Q′
b ≥ Δ

then prefer a′ to all b′ in Task B
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Table 2. A simple demonstration of extracting transfer advice. The actions in the old
task are a, b, and c, and the corresponding actions in the new task are a′, b′, and c′.
The learned model for the old task is a set of linear Q-value expressions with weights
w and features f , and these are translated into advice that uses the corresponding new
task features f ′.

old task model: advice format:
Qa = wa1 ∗ f1 + wa2 ∗ f2 + wa0 if Q′

a − Q′
b ≥ Δ

Qb = wb1 ∗ f1 + wb0 and Q′
a − Q′

c ≥ Δ
Qc = wc2 ∗ f2 + wc0 then prefer a′ to b′ and c′

user-provided mapping: full advice expression:
(a, b, c) −→ (a′, b′, c′) if (wa1 − wb1) ∗ f ′

1 + wa2 ∗ f ′
2 + wa0 − wb0 ≥ Δ

(f1, f2) −→ (f ′
1, f

′
2) and wa1 ∗ f ′

1 + (wa2 − wc2) ∗ f ′
2 + wa0 − wc0 ≥ Δ

translated expressions: then prefer a′ to b′ and c′

Q′
a = wa1 ∗ f ′

1 + wa2 ∗ f ′
2 + wa0

Q′
b = wb1 ∗ f ′

1 + wb0

Q′
c = wc2 ∗ f ′

2 + wc0

value, implying that the nonexistent defenders are too far away to affect the
learner’s actions. Another example is the feature describing a player’s distance
to the center of the KeepAway field. The user could set that feature to the av-
erage value of its range. We use these constant mappings in the experiments
reported later. To handle a feature in the new task that has no logical analogue
in the old task, we simply leave the new feature out of the mapping.

We create one advice rule for each old action that has an analogue, indicating
when the analogue looks like the best choice based on experience in the old task.
The other new actions (such as MoveLeft in BreakAway) must be learned
independently by the agent. To handle old actions that have no analogues, we
also simply leave the old action out of the mapping.

Since we added tile features from the tile encoding of numeric features, we
also need to map the tiles of each KeepAway feature to tiles of a BreakAway
feature. We automatically map tiles to maximize the amount of the BreakAway
feature range that they share. This method does not require mapped features to
have identical ranges, since that would severely restrict the mapping.

Remapping is a further capability that allows the learner to apply old knowl-
edge in multiple ways. For example, an attacker can clearly use KeepAway skills
to evade defenders on the BreakAway field; with a little cleverness, it might be
able to use those same skills to shoot. Suppose the learner imagines a teammate
is standing inside the goal. Then, a decision on whether to pass to that teammate
corresponds to a decision on whether to shoot. We could do this by mapping
all the features involving the teammate to features involving the goal. However,
if this were the only mapping, it would prevent the learner from considering
actually passing to the real teammate. To let the learner consider both actions,
we create two sets of advice, using first one mapping and then the other. We
included such a remapping in our experiments.
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Situation-dependent mappings allow old knowledge to be used differently in
different areas of the new feature space. For example, we might only want to
map a KeepAway action to the BreakAway action shoot when the learner is
close to the goal, because we know that soccer players should only shoot over
short distances. We could do this by providing one mapping that applies when
the learner is near the goal and a different one that applies when the learner is
far from the goal. We did not use this situation-dependent mapping in our ex-
periments; we expected that the KeepAway passing skills would already prevent
attackers from shooting from too far away.

5 RoboCup Transfer Advice

The two RoboCup tasks we explore have significant differences that make trans-
fer a non-trivial problem. In KeepAway, learners should make the game last as
long as possible, but in BreakAway, they should end the game quickly by scoring
a goal. Learners in KeepAway cannot choose to move, but learners in BreakAway
can. KeepAway takers will always move towards the ball, but the BreakAway
goalie will not. There are also different numbers of players.

However, there are also some useful similarities between the tasks. Many of
the features map directly, and some of the actions are identical. On a conceptual
level, the BreakAway attackers must play KeepAway while trying to score.

We designed the default mappings shown in Table 3 to take advantage of
these similarities for transfer from 3-on-2 KeepAway to 2-on-1 BreakAway. The
BreakAway features and actions that have no KeepAway analogues do not ap-
pear in these tables. The KeepAway features that have no BreakAway analogues
are mapped to constants within their ranges.

We then used the remapping capability to apply KeepAway skills to shooting.
The two remappings in Table 4 advise the learner to imagine that its nearest
teammate is standing first in the left side of the goal, and then in the right side.
If a pass to that teammate would have been the best action, the advice will
recommend shooting. There was no BreakAway feature to describe the distance
from the goalie to a goal section, so we used a constant value in its place.

Using a high-performing 3-on-2 KeepAway model that was trained without
any advice [8], we applied these mappings and our transfer advice algorithm to
create advice for 2-on-1 BreakAway. The process produced five advice items,
each capturing one of the five KeepAway “skills”: the three original actions and
the two remapped pass actions. For example, this is the form of the advice that
shows how to apply the KeepAway “hold ball” skill to BreakAway:

if Q′
HoldBall −Q′

PassFar ≥ Δ and
Q′

HoldBall −Q′
PassNear remap1 ≥ Δ and

Q′
HoldBall −Q′

PassNear ≥ Δ and
Q′

HoldBall −Q′
PassNear remap2 ≥ Δ

then prefer MoveAhead to PassNear and Shoot
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Table 3. Default action and feature mappings from KeepAway to BreakAway. Near
and Far refer to teammates’ distances from the learner. The learner is L, the keepers
are K’s, the takers are T’s, and the attackers are A’s.

KeepAway BreakAway

PassNear PassNear
HoldBall MoveAhead

dist(L, near K) distance(L, near A)
other player distances max range
min angle(near K, L, any T) mid range
min angle(near K, L, any T) mid range
distances to field center mid range

Table 4. Action and feature remappings that apply KeepAway skills to shooting

Remapping 1: PassNear to Shoot

KeepAway BreakAway

dist(L, near K) dist(L, goal left)
min dist(near K, any T) mid range
min angle(near K, L, any T) angle(goal left, L, goalie)

Remapping 2: PassNear to Shoot

KeepAway BreakAway

dist(L, near K) dist(L, goal right)
min dist(near K, any T) mid range
min angle(near K, L, any T) angle(goal right, L, goalie)

Essentially, this advice says that if holding the ball would be safer than
passing towards a teammate or towards the goal, then moving forward with the
ball is probably safer than passing or shooting.

6 Empirical Results

The linear program presented in Equation 4 contains parameters ν, C, μ1, and
μ2. The first two we set by tuning on KeepAway games without using any advice.
This led to C being set to 2500∗(0.1+0.9(1−e#GamesPlayed/10,000))/#features
and ν to 100. We exponentially increase C because as RL progresses the esti-
mates of Q (which are infinite sums) become more accurate. We next chose μ1
and μ2 by running some tuning games using transfer advice, selecting μ1 = 0.01
and μ2 = 1.0. We decay these initial μ values by e(−#GamesPlayed/2,500), since
we expect that transfer advice will be less valuable as the amount of expe-
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rience in the new domain increases. We only tried a small number of possi-
ble settings for each parameter, and after choosing our parameter values, we
trained on a fresh set of games – we report the results on this final set of
games.

Figure 3 shows the results of our transfer experiments. Training runs with
and without transfer advice are compared. The curves were generated by batch
training after every 100 games and averaging over 10 different runs; each data
point shown is smoothed over the previous 1000 games (the results from the first
100 games are not included in these averages except at the first point on the x
axis, where Games Played = 100, since no learning took place until after the
first 100 games).

The curve on the left shows the average reinforcement per game that learners
earn as they train, since that is the quantity that the learners attempt to max-
imize. The curve on the right shows a more intuitive measure of performance:
the probability that the learners will score a goal as a function of the number of
games played.
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Fig. 3. Performance as a function of BreakAway games played by two different metrics,
with a learner using transfer advice compared against a learner using no advice

These results show that the transfer advice gives a reinforcement learner
a modest advantage in learning to score goals. Advice was slightly detrimen-
tal at first as the learners refined it, but after about 2,500 games it began to
improve performance, and in the end it led to a higher asymptotic result. We
have obtained qualitively similar results when transferring to 3-on-2 BreakAway,
although in this task the probability of scoring a goal is above 0.5.
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7 Related Work

A number of researchers have explored methods for providing advice to learn-
ing algorithms. Clouse and Utgoff [2] allow a human observer to step in and
advise the learner to take a specific action. Lin [6] “replays” teacher sequences
to bias a learner towards a teacher’s performance. Gordon and Subramanian
[3] accept advice in the form if condition then achieve goals and then use ge-
netic algorithms to adjust it with respect to the data. Maclin and Shavlik [7]
also developed an if-then advice language, but incorporated the rules into a
neural network for later adjustment. Price and Boutilier [12] designed a method
for reinforcement learners to imitate expert agents in the same domain. Andre
and Russell [1] describe a language for creating learning agents whose policies
are constrained by user commands. Laud and DeJong [5] use reinforcements to
shape the learner. Kuhlmann et al. [4] developed a rule-based advice system
that increases Q-values by a fixed amount. In recent work [9], we developed the
Preference-KBKR method, which allows advice to be specified in the form of
action preferences. Our current work differs from these previous advice-taking
methods because it extracts advice from a model learned in another task, instead
of employing user-designed advice.

Other related work deals with knowledge transfer in machine learning. Some
early research focuses on learning a simpler version of a task and applying that
knowledge to a more difficult version of the same task. Selfridge et al. [13] call
this “directed training” and use it in robotics. Singh [15] addresses transfer of
knowledge between sequential decision tasks, where an agent keeps track of useful
action subsequences for use in later tasks. Thrun and Mitchell [19] study transfer
between problems in a “lifelong learning” framework of many related Boolean
classification tasks. Taylor and Stone [18] have investigated copying Q-functions
to transfer between KeepAway games of different team sizes. Sherstov and Stone
[14] have investigated “action transfer” in RL, which uses transfer to improve
learning on tasks with large action spaces.

8 Conclusions and Future Work

We have presented a novel technique of extracting knowledge gained on one
task and automatically transferring it to a related task to improve learning.
Our experiments demonstrate that the difficult BreakAway task in RoboCup
soccer can be learned more effectively using advice transferred from the related
KeepAway task.

Our key idea is that we can view the models learned in an old task as a
source of advice for a new task. Since we represent both our learned models and
advice as linear expressions of features, all the user needs to do is match the
features and actions of the old task to the new one. Since advice-taking systems
are robust to imperfections in the advice they receive, the user’s guidance need
only be approximate.

In future work, we plan to evaluate the sensitivity of our algorithm to errors
and omissions in the user’s mapping advice. We may also investigate ways to
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further automate the process by helping the user design a mapping. We have
already begun to adapt the transfer advice process to work with non-linear
models.

When a new learning task arises in a domain, it is likely that human experts
will be able to provide information about how the new task relates to known
tasks. Learning algorithms should be able to exploit this information to extract
knowledge from these known tasks. Transfer advice shows potential as an ef-
fective and intuitive way to do this. It can increase human ability to interact
productively with reinforcement learners, and we believe that such interaction
will be important for scaling RL to large problems.
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Abstract. Rule induction has attracted a great deal of attention in Ma-
chine Learning and Data Mining. However, generating rules is not an end
in itself because their applicability is not so straightforward. Indeed, the
user is often overwhelmed when faced with a large number of rules.
In this paper, we propose an approach to lighten this burden when the
user wishes to exploit such rules to decide which actions to do given
an unsatisfactory situation . The method consists in comparing a sit-
uation to a set of classification rules. This is achieved using a suitable
distance thus allowing to suggest action recommendations with minimal
changes to improve that situation. We propose the algorithm Dakar for
learning action recommendations and we present an application to an
environmental protection issue. Our experiment shows the usefulness of
our contribution in decision-making but also raises concerns about the
impact of the redundancy of a set of rules in learning action recommen-
dations of quality.

Keywords: Decision support, actionability, rule-based classifier, gener-
alized Minkowski metrics, maximally discriminant descriptions.

1 Introduction

Rule induction has attracted a lot of attention in Machine Learning and Data
Mining communities. However, the exploitation of a set of rules induced is usually
and merely let to the end-user. Overwhelmed by the number of rules, the user is
also often frustrated because the applicability of these rules is not so immediate.
This makes the post-analysis of induced rules as a great challenge and a necessary
step to assist the user in his work as in decision making. Indeed, rather than
simply presenting the rules listing to decision-makers, the ideal is to translate
these rules into feasible and concrete actions.

In this paper, we are interested in rule-based classifiers. Although useful in
real applications, classifying new instances is not enough; user needs more help
when he tries to use the classification model beyond the prediction purpose. It
is the case when the user wishes to decide which action to accomplish in order

J. Gama et al. (Eds.): ECML 2005, LNAI 3720, pp. 425–436, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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to improve an unsatisfactory situation. For instance, how to cure an ill patient
given a set of rules describing ill and not ill patients. This brings us to the
notion of actionability, described in [21] as follows : “a pattern is interesting to
the user if the user can do something about it; that is the user can react to it to
his or her advantage”. Although some recent works have addressed the problem
of learning actionable knowledge [4,5,8,9,13,17,18,23], in our point of view, this
topic remains under investigation and deserves more attention.

The purpose of this paper is to develop a new method for recommending
actions. We propose the algorithm Dakar (Discovery of Actionable Knowledge
And Recommendations) which works as follows : starting from an unsatisfactory
situation and relying on a set of classification rules, Dakar discovers a set of
action recommendations that propose minimal changes to the domain-expert in
order to improve that situation.

More precisely, we focus on propositional frameworks, where a situation is
expressed by a conjunction of attribute-value pairs. In our case, an action is a
modification of values of some attributes of the situation. We compute actions
involving “little” changes in the initial situation. This is achieved in Dakar
thanks to the generalized Minkowski metric proposed in [7] which allows us
to compute the distance between two descriptions. In our approach, a weight is
assigned to each feature in order to take into account how flexible it is. The search
space of actions is defined as the set of maximally discriminant descriptions
that differentiates an unsatisfactory situation from a set of classification rules
characterizing what is satisfactory, according to a distance threshold δ. This
space is explored considering two properties we have defined, which are the
coherence and the validity of actions. Dakar uses a beam-search strategy to
find the best actions, according to a quality criterion, to suggest to the user.

This paper is organized as follows: in section 2, we present the state of the art
of the actionability issue. Section 3 is devoted to our approach and to Dakar
algorithm. Experimental tests are described in section 4 and we conclude in
section 5 with a summary of our contribution and future directions.

2 Related Work

This section is a survey of the approaches developed in both Machine Learning
and Data Mining literature to address the actionability issue. In [21], Silberschatz
and Tuzhilin evoked for the first time the term actionability in the context of
interestingness measures for patterns evaluation. They classify such measures
into objective (data-driven) and subjective (user-driven) measures. According
to them, from the subjective point of view, a pattern is interesting if it is :

- actionable : the end-user can act on it to his advantage.
- unexpected : the end-user is surprised by such finding.

As pointed out by the authors, actionability is difficult to capture; they propose
rather to capture it through unexpectedness, arguing that unexpected patterns
are those that lead the expert to make some actions.
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While many works have addressed the unexpectedness issue (see for instance
[3] for a survey), the actionability remains to be further investigated even if we
noticed recently a great interest from researchers in developing new methods for
the discovery of actionable knowledge.

We will focus in the following on the methods developed to address action-
ability issue by using classifiers. Readers interested in actionability in other tasks,
such as clustering, can consult the state of the art proposed by He et al. [5].

In [10], the authors propose a method that prune all non actionable rules
from a large set of association rules. The idea is to discard the more general
rules using their specialized rules (having more conditions in the left-hand side)
with higher quality. Although their approach facilitate the hard task of analyzing
large sets of rules, strictly speaking, it does not identify truly action rules.

Lavrač et al. [8] used subgroup discovery to generate actionable knowledge.
It is interesting to notice how the authors distinguished actionable rules from op-
erational ones. Operational rules are somewhat actionable “ready to use” rules,
which, if applied, will affect a target population immediately.

Shapiro and Matheus [13] developed a health-care system named Kefir deal-
ing with deviations. The system embodies a recommendation generator that sug-
gests corrective actions in response to some relevant deviations discovered in the
data. Here, corrective actions are defined a priori by health-care experts.

A decision-theoretic framework evaluating classification systems from an eco-
nomic point of view is proposed in [4]. Here, the relationship between the quality
of a classification system and the expected payoff to the company is formalized.
Classification systems are compared, using their confusion matrices, in terms
of their effectiveness in decision making. Actions suggested are predefined by
the user.

Ling et al. [9] consider mining optimal actions in CRM (Customer Relation-
ship Management) relying on decision trees models. They aim at finding those
actions that change customers from undesired status to a desired one. An action
is merely a change in the value of an attribute. These actions are chosen so as
to maximize the expected net profit by taking into consideration their costs.

In [17], the authors show how to discover action rules that allow to move
from a given class to another one. This is achieved by comparing pairs of rules
having different classes in the right-hand side. Features are divided into : stable
(features that cannot be changed) and flexible. An action rule involves only
flexible features and shows what are the changes to deploy in order to realize
the class change. In business applications, action rules are useful to identify
customers for whom some changes in their flexible features will bring them from
a profit ranking group to a better one.

The two first approaches [10,8] work directly on rules to address the ac-
tionability issue while the others address it via action recommendations. The
studies proposed in [13,4] aim at recommending predefined actions to the user
and the systems proposed in [9,17] discover actions to be recommended. Com-
parisons between our approach and the closest works [9,17] are given throughout
this paper.
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3 Framework Description

3.1 The Learning Task

We propose an approach for mining actionable knowledge. The task we address
aims at improving a given situation with regard to a rule-based classifier. It can
be defined informally as follows :

“Given a situation for which an unsatisfactory class , corresponds , what
are the minimal changes (actions) to do in this situation in order to improve
that situation to a satisfactory class ⊕ ?”
For instance, given a situation describing a high level pollution in an area, what
are the advices to be suggested to reduce that pollution.
In this paper, we propose to discover actions through a set of classification rules.
Before giving the algorithm Dakar, let us first introduce some basic definitions.
Let X1, .., Xn be features taking their values in the domains Dom1, .., Domn

respectively.

Definition 1. (Instance) An instance is an object described by a conjunction
of instantiated features denoted by :

∧
i=1,..,n

(Xi = vi).

Definition 2. (Description) A description is a conjunction defined on a sub-
set of features as follows : D=

∧
i=1,..,m

(Xki ∈ dki)

where dki ⊆ Domki , {k1, ..., km} ⊆ {1, .., n} and ki �= kj∀i, j.

Definition 3. (Extended description) A description can be extended to all
the features as follows : D̂=

∧
i=1,..,m

(Xki ∈ dki)
∧

j /∈{k1,..,km}
(Xj ∈ Domj).

where dki ⊆ Domki , {k1, ..., km} ⊆ {1, .., n}.

For the rest of the paper, a description is considered in its extended form and
actions and situations are extended descriptions.

Definition 4. (Classification rule) A classification rule is an implication of
the form Descr =⇒ Class where Descr is a description and Class is the corre-
sponding class label (, or ⊕).

Definition 5. (Coverage) We say that a description D =
∧

i=1,..,n

(Xi ∈ di)

covers an instance I =
∧

i=1,..,n

(Xi = vi) iff ∀i, vi ∈ di. The set of instances

(among all possible instances) covered by D will be denoted by cov(D).

Notice that cov(D) = cov(D̂). For a classification rule R : Descr =⇒ Class, we
define cov(R) = cov(Descr).

A set of classification rules R is seen as the union of two sets : R⊕ and R�

corresponding respectively to the set of rules characterizing class ⊕ and class ,.
This can be extended easily to multi-class problems.
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Definition 6. (Outcome situation) An action applied to a situation leads to
another description called an outcome situation.
Given a situation S =

∧
i=1,..,n(Xi ∈ si) and an action A =

∧
i=1,..,n(Xi ∈ ai),

the outcome situation outcome(S,A) is computed as follows :

outcome(S,A) =
∧

i=1,..,n

(Xi ∈ oi) where oi =
{
si if ai = Domi

ai otherwise

When proposing actions to the user, we have to take into consideration their
practical applicability. This can be achieved by considering the flexibility of the
features involved in the action. This notion is further explained in the following.

3.2 On the Need of a Suitable Distance Metric

In [17], the notion of feature flexibility is used to find action rules. Features are
divided into two groups : stable (features that cannot be changed) and flexible.
In their approach, action rules are designed with flexible features.

This division into two groups is interesting but is rather strict and not al-
ways sufficient. For example, a physician would prefer, if possible, prescribing
medicines to advising a surgical intervention to an ill patient. However, in their
work, such two flexible features are identically considered. In our approach, to
take into account this differentiation, each feature is assigned with a given flex-
ibility weight. Moreover, the notion of feature flexibility is not sufficient. For
example, making a diet is in many cases an advice given by physicians but its
feasibility depends on the goal we want to achieve. If the weight to loose is about
80 kilograms, this advice is impractical. In the other hand, the advice of loosing
2 kilograms is quite practical. The outcome situation (when action is applied)
must be relatively “close” to the initial situation. For these reasons, a metric
distance capturing the difficulty of improving a situation thanks to an action
seems to be adapted to our problem.

The literature abounds with definitions of metric distances between two de-
scriptions. Relying on an empirical comparative study [11], we have chosen the
generalized Minkowski metric proposed by Ichino and Yaguchi [7] which handles
both qualitative and quantitative features. It also integrates weights and deals
with dissimilarities between two feature values. We rewrite it according to our
notations. Let us consider two extended descriptions :

D =
∧

1..n(Xi ∈ di) di ⊆ Domi

D′ =
∧

1..n(Xi ∈ d′i) d′i ⊆ Domi

The normalized and weighted dissimilarity measure called the generalized Min-
kowski distance of order p defined in [7] is given by :

dp(D,D′) =

[
n∑

i=1

{wi ψ(di, d
′
i)}p

]1/p

where the flexibility weights wi > 0, i ∈ {1, .., n} are chosen so that
∑n

i=1wi = 1
and ψ(di, d

′
i) is a normalized distance between the sub-domains di and d′i of
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Domi (see [7] for more details). The generalized Minkowski distance satisfies
0 ≤ dp(D,D′) ≤ 1 and it is proved that this distance satisfies all the axioms for
a metric.

3.3 The Search Space of Actions

In this subsection, we define the search space of the actions. We are given an
initial situation S =

∧
i=1,..,n(Ai ∈ si) classified in , and a set of rules R =

R⊕ ∪ R�. An obvious approach is to define the search space of actions as the
whole space of descriptions. This space is first restricted thanks to the property
of validity defined as follows.

Definition 7. (The validity of an action relatively to a situation) An
action A is said to be valid relatively to a situation S if

cov(S) ∩ cov(A) = {}

Thus, an instance covered by the initial situation is not covered by the outcome
situation when a valid action is applied. To consider only valid actions, we use
the maximally discriminant set denoted by discr which is defined for S and a
description D = ∧i=1,..,n(Ai ∈ di) by:

discr(S,D) =
⋃

i=1,..,n{Ai ∈ (di − si)}
For a rule R : Descr =⇒ Class, we define discr(S,R) = discr(S,Descr). Notice
that an element in discr(S,D) is a valid action relatively to S. The notion of
maximally discriminant has already been used in [19] in designing a learner
inspired by the version spaces framework [12].

In order to consider descriptions that are likely to be “good” actions, we
construct the maximally discriminant set between S and the description part of
one rule in R⊕. Intuitively, this set is composed of the attribute-value pairs that
make the difference between the rules of class ⊕ and the situation of class ,.

Example 1. Let {weight,medicines} be a set of features taking respectively their
values in Dom1 = [40, 120] and Dom2 = {no, tablets, syrup}. The quantitative
feature weight represents the weight of a patient while the qualitative feature
medicines represents the treatment prescribed to the patient. Let R⊕

1 , R⊕
2 and

R�
3 be three rules :

R⊕
1 : weight ∈ [50, 80]→ not ill

R⊕
2 : weight ∈ [90, 110]∧medicines ∈ {syrup} → not ill

R�
3 : weight ∈ [65, 120]∧medicines ∈ {no} → ill

We consider an ill patient in the following situation S :
weight ∈ [70] ∧medicines ∈ {no}.

We compute maximally discriminant sets :
discr(S,R⊕

1 ) = {weight ∈ [50, 70[, weight ∈]70, 80],
medicines ∈ {tablets,syrup}}

discr(S,R⊕
2 ) = {weight ∈ [90, 110],medicines ∈ {syrup}}

In [18], an action rule relies on only one rule. For each rule inR⊕ corresponds an
action which guarantees to get an outcome situation with a better class (at least
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one rule of R⊕ covers the outcome situation). In our point of view, an action
should rely on the entire set of rules. Thus, by combining attribute-value pairs
of these rules, new actions can be suggested.

The set of elementary actions A is given by
⋃

R∈R⊕ discr(S,R) and an action
is a conjunction of such elements. Our search space of actions is the set :

{
∧

elem∈E elem|E ⊆ A}
Actions considered by our method embodies those that would be suggested by
the system in [18]. Let us also notice that the search space as defined above
embodies some actions that are not to be considered because they do not fulfill
the coherency property defined as follows :

Definition 8. (The coherency of an action) An action A is said to be co-
herent if cov(A) �= {}.
Example 2. In the Example 1, the set of elementary actions A is {weight ∈
[50, 70[, weight ∈]70, 80],medicines ∈ {tablets,syrup}, weight ∈ [90, 110],
medicines ∈ {syrup}}. An action is a conjunction composed by elements of a
subset of A. We have to discard the action weight ∈ [50, 70[∧weight ∈ [90, 110]
equivalent to weight ∈ [ ] which is not coherent.

In practice, an action is not coherent if it involves an empty value for at least
one attribute. Let us emphasize that applying an action to a situation does
not guarantee to get an outcome situation with a better class than the initial
situation. That is why, we need a criterion for assessing the quality of actions. We
classify the outcome situation using the set of rules. We rely on the confidence of
the rules covering the outcome situation O to evaluate the quality of an action
A. We defined the quality measure by :

quality(A) =
∑

R∈R⊕,cov(O)⊆cov(R)

conf(R) −
∑

R∈R�,cov(O)⊆cov(R)

conf(R)

where O = outcome(S,A) and where conf(R) is the usual confidence1 of the rule
R. Notice that quality(A) > 0 means that O is covered by at least one rule in
R⊕.

Moreover, as pointed out in subsection 3.2, we favor actions that involve
a little change in the initial situation. This is achieved by verifying that the
distance between the outcome situation (obtained when an action is applied to
the initial situation) and the initial situation itself does not exceed a parameter
δ given by the user. We term such privileged actions δ-cost actions.

All the requirements for explaining Dakar algorithm are now available.

3.4 Dakar Algorithm

The aim of Dakar (Discovery of Actionable Knowledge and Recommendations)
algorithm is to find the set of the best actions. The algorithm explores the search
1 The confidence of a rule R : Descr =⇒ C in a database is the number of examples

of class C covered by Descr divided by the total number of examples covered by
Descr.
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Algorithm 1: Dakar algorithm
Input: - a set of rules R = R⊕ ∪ R�

- a situation S
- a distance threshold δ
- a maximal beam size N

Output: - a set of actions
A =

⋃
R∈R⊕ discr(S ,R)

Beam = {}
NewBeam = {true}
while Beam �= NewBeam do

Beam ← NewBeam
foreach action ∈ Beam do

foreach elem ∈ A do
newaction ← (action ∧ elem)
if newaction coherent and δ-cost then

NewBeam ← NewBeam ∪ {newaction}
while card(Beam) > N do

worstaction ← ArgminA∈NewBeamquality(A)
NewBeam ← NewBeam − {worstaction}

return sorted Beam

space of actions using a beam search strategy : it maintains a set (called Beam) of
the best actions the algorithm has constructed up till now. Initially the beam is
set to {true}, which means that no action is constructed. During the exploration
of the search space, Dakar specializes actions of the beam and keeps only the
best ones w.r.t. the criterion we defined earlier. Dakar is given in algorithm 1.

4 Experiments

We implemented Dakar in Sicstus Prolog and we conducted an experimental
evaluation of our algorithm on an environmental application related to stream-
water pollution by pesticides. This application is developed in the context of
the project Sacadeau [2]. In our experiments, we used a dataset generated by a
model which outputs a class of pollution given information about farming works,
climate, soil, etc. The set of attributes and their descriptions is given in Table 1.
It is a multi-class application where pollution classes are ordered by experts by
taking into account legals thresholds (class 4 is the least satisfactory class). The
model is an oracle since it provides the function simulation : situation→ class
and we define the benefit of an action A applied to a situation S, by benefit(A) =
simulation(S)− simulation(outcome(S,A)). An action A is said positive when
its benefit is positive.

Our system was tested on 150 unsatisfactory situations (of class 1, 2, 3 or 4).
In presented experiments, the size of the beam was 5 ; thus, Dakar proposed
5 actions for each situation. The distance threshold δ varied from 0 to 0.5.
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Table 1. Some attributes of the SACADEAU application and their descriptions

Name Domain Flexibility Description

strat {pre,post} 0.001 pesticide application strategy of the farmer
molec {atrazine,new} 0.003 pesticide used by the farmer
hedge {0%,90%} 0.006 percentage of river border with a hedge
basin {concave,convex} 0.33 typology of the catchment area
orga matter {2%,5%} 0.33 soil composition in organic matter
climate [1;5] 0.33 wetness of the climate (1:not wet)

class {0,1,2,3,4} - severity of the pollution (0:no pollution)

A set of rules ,with minimal support 20, was generated by ICL [15] (rules are
not ordered).

A first evaluation is to show qualitatively the utility of using a distance
for recommending actions. Let us give an example of Dakar execution on a
situation of class 4 :

strategy=post, molecules=atrazine, hedge=0%,
basin=convex, orga_matter=5%, climate=4

The two best actions recommended by Dakar, with benefit 2 and 1 respec-
tively, are given below :

1 - hedge=90%, molec=new, strat=pre 2 - molec=new, strat=pre
(quality = 1.50 ; distance=0.005) (quality = 1.35 ; distance=0.002)

Both actions suggest to apply pesticides before plants grow up (pre-
emergence strategy) and to use new molecules rather than atrazine. The quality
of these two actions are almost the same whereas the distance involved by the
first action is more than two times the distance involved by the second. Con-
cretely, experts could decide that in a short term, installing a hedge on 90% of
the river border is not a necessary action for improving the situation.

Our algorithm uses the distance to take into account a threshold δ, but we
can imagine an algorithm using both quality and distance in the criterion as
done in [9] where a function of profit is maximized.

A second qualitative evaluation concerns interest of the quality criterion.
There is an example of situation of class 3 :

strategy=pre, molecules=new, hedge=0%,
basin=convex, orga_matter=2%, climate=3

The two best actions recommended by our system (having a benefit of 1 and
-1 respectively) are :

1 - hedge=90% 2 - hedge=90%, strat=post
(quality = 0.64, distance = 0.005) (quality = -0.56,distance = 0.005)

The first action is the only one, among the five recommended actions, to get
a positive quality. Installing a hedge on 90% of the river border seems to be the
necessary action for improving the situation.
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From this point, only the action maximizing the quality criterion in the beam
are considered. We plotted, in Figure 1, recommended actions according to their
quality and their effective benefit. Note that the quality of an action A is a
good prediction of the efficiency of A if (quality(A) < 0 and benefit(A) ≤ 0) or
(quality(A) > 0 and benefit(A) > 0).

In Figure 2, the experiment raises another concern about the relationship
between the redundancy in a set of classification rules and the efficiency of
recommended actions. In [22], the author studied the effect of the redundancy
of a classification rule set on the task of predicting a class. In his experiments,
a redundant classification rule set has better accuracy on classification.
Using ICL, three classification rule sets were learned with support parameter

equal to 1, 10 and 20, leading to set of 19, 35 and 63 rules respectively. We
evaluated the three sets of rules, by comparing the efficiency of the actions
they suggested when used in Dakar. We plotted in Figure 2 the efficiency of
recommended actions in function of the parameter δ for the three sets of rules.

As expected, the efficiency of actions proposed by Dakar is globally increasing
in the parameter δ. Moreover, we notice that the more the classification rule set
is redundant, the more the actions are effective. The impact of the redundancy in
rules on Sebag’s distance between two instances expressedby Horn clauses was also
pointed out in [20]. Her distance is based on the coverage of instances by a theory
and the more the theory is redundant, the more this distance is of interest.

We repeated the same experiment for three rule sets generated by three
systems : C4.5 [14], ICL [15] and Apriori2 [1]. Supposing that Apriori is more
redundant than ICL which is more redundant than C4.5, we compared the effi-
ciency of the actions suggested by the three sets of rules. Once again, the more
the set of rules is redundant, the more the actions are effective.

2 Note that we constrained the association rules generated by Apriori to contain only
the class in their right hand side.
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5 Conclusion

In this paper we have investigated the task of learning actionable knowledge and
recommendations to the user. We attempted to answer the following question :
how to go beyond the simple use of classification rules in prediction by making
them actionable?

Our contribution is as follows : given a situation, the algorithm we propose
allows the user to further exploit a set of classification rules in order to decide
what are the actions to accomplish in order to improve that situation. The algo-
rithm looks for the best actions involving a little change in the initial situation.
This is achieved thanks to an actionability approach relying on a distance.

Our framework has been applied to an environmental dataset related to pol-
lution. We have learned some actionable knowledge concerning the possible rec-
ommendations one can adopt in order to reduce the pollution. Such recommen-
dations take into account the degree of flexibility of each feature. Experiments
have shown the feasibility of this task. They also raise some concerns about
the impact of the redundancy of rules on the quality of actions recommended
by our system. The approach we propose can be improved in the following di-
rections. First, extend the framework to first order learners. In this case, we
need other kinds of distance metrics handling literals, such as those proposed in
[6,16]. Second, study the impact of the chosen distance metric on the quality of
the recommended actions.

In our point of view, action recommendation is a promising issue with many
practical applications such as healthcare, environmental protection and customer
analysis. There is clearly much research to be done in the formalization of the
task of learning useful and actionable knowledge from both methods and inter-
estingness measures points of view.

Acknowledgments. We thank INRA for the simulator and Christel Vrain for
useful comments on an early draft of this paper.
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Abstract. The multi-armed bandit problem for a gambler is to decide
which arm of a K-slot machine to pull to maximize his total reward in
a series of trials. Many real-world learning and optimization problems
can be modeled in this way. Several strategies or algorithms have been
proposed as a solution to this problem in the last two decades, but, to our
knowledge, there has been no common evaluation of these algorithms.

This paper provides a preliminary empirical evaluation of several
multi-armed bandit algorithms. It also describes and analyzes a new
algorithm, Poker (Price Of Knowledge and Estimated Reward) whose
performance compares favorably to that of other existing algorithms in
several experiments. One remarkable outcome of our experiments is that
the most naive approach, the ε-greedy strategy, proves to be often hard
to beat.

1 Introduction

In many real-world situations, decisions are made in order to maximize some
expected numerical reward. But decisions, or the actions they generate, do not
just bring in more reward, they can also help discover new knowledge that could
be used to improve future decisions. Such situations include clinical trials [11]
where different treatments need to be experimented with while minimizing pa-
tient losses, or adaptive routing efforts for minimizing delays in a network [4].
The questions that arise in all these cases are related to the problem of balancing
reward maximization based on the knowledge already acquired and attempting
new actions to further increase knowledge, which is known as the exploitation
vs. exploration tradeoff in reinforcement learning.

The multi-armed bandit problem, originally described by Robins [19], is an
instance of this general problem. A multi-armed bandit, also called K-armed
bandit, is similar to a traditional slot machine (one-armed bandit) but in general
has more than one lever. When pulled, each lever provides a reward drawn from
a distribution associated to that specific lever. Initially, the gambler has no
knowledge about the levers, but through repeated trials, he can focus on the
most rewarding levers.

This paper considers the opaque bandit problem where a unique reward is
observed at each round, in contrast with the transparent one where all rewards
are observed [14]. To our knowledge, there is no empirical comparison for the
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transparent bandit problem either. More formally, the opaque stochastic K-
armed bandit (bandit for short) can be seen as a set of real distributions B =
{R1, . . . , RK}, each distribution being associated to the rewards brought in by
a specific lever.1 Let μ1, . . . , μK be the mean values associated to these reward
distributions. The gambler plays iteratively one lever at each round and observes
the associated reward. His objective is to maximize the sum of the collected
rewards. The horizon H is the number of rounds that remains to be played. The
bandit problem is formally equivalent to a one-state Markov Decision Process
(MDP), but the general study of MDPs goes beyond the scope of this paper.

A different version of the bandit problem has been studied by [10, 23, 9, 8]
where the reward distributions are assumed to be known to the player. This
problem is not about balancing exploration and exploitation, it admits an opti-
mal solution based on the so-called Gittins indices. This paper deals with bandit
problems found in practice where the assumption about the prior knowledge of
the payoffs typically does not hold (see for example section 4).

The regret ρ after T rounds is defined as the difference between the reward
sum associated to an optimal strategy and the sum of the collected rewards
ρ = Tμ∗ −

∑T
t=1 r̂t where μ∗ is the maximal reward mean, μ∗ = maxk{μk},

and r̂t the reward at time t. A strategy whose average regret per round tends
to zero with probability 1 for any bandit problem when the horizon tends to
infinity is a zero-regret strategy. Intuitively, zero-regret strategies are guaranteed
to converge to an optimal strategy, not necessarily unique, if enough rounds are
played.

The problem of determining the best strategy for the gambler is called the
multi-armed bandit problem. Many strategies or algorithms have been proposed
as a solution to this problem in the last two decades, but, to our knowledge, there
has been no common evaluation of these algorithms. This paper provides the
first preliminary empirical evaluation of several multi-armed bandit algorithms.
It also describes and analyzes a new algorithm, Poker (Price Of Knowledge
and Estimated Reward) whose performance compares favorably to that of other
existing algorithms in several experiments.

The paper is organized as follows. We first present an overview of several ban-
dit strategies or algorithms (Section 2), then introduce a new algorithm, Poker
(Section 3), and describe our experiments with both an artificially generated
dataset and a real networking dataset. The results of an empirical evaluation of
several bandit algorithms, including Poker are reported in Section 4.

2 Bandit Algorithms Overview

The exploration vs. exploitation tradeoff is often studied under more general
models such as MDPs. We have restricted this overview to methods that apply to
the stateless case, specific to the bandit problem. There is, however, a significant
amount of literature dealing with MDPs, see [17, 6] for a review. Slowly changing
worlds have also been considered in [22, 3].

1 Several algorithms have also been designed for the non-stochastic bandit problem [3]
where much weaker assumptions are made about the levers’ rewards, but this paper
will focus on the stochastic bandit problem which has been studied the most so far.
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2.1 The ε-Greedy Strategy and Semi-uniform Variants

ε-greedy is probably the simplest and the most widely used strategy to solve the
bandit problem and was first described by Watkins [24]. The ε-greedy strategy
consists of choosing a random lever with ε-frequency, and otherwise choosing the
lever with the highest estimated mean, the estimation being based on the rewards
observed thus far. ε must be in the open interval (0, 1) and its choice is left to the
user. Methods that imply a binary distinction between exploitation (the greedy
choice) and exploration (uniform probability over a set of levers) are known as
semi-uniform methods.

The simplest variant of the ε-greedy strategy is what we will refer to as the
ε-first strategy. The ε-first strategy consists of doing the exploration all at once
at the beginning. For a given number T ∈ N of rounds, the levers are randomly
pulled during the εT first rounds (pure exploration phase). During the remaining
(1− ε)T rounds, the lever of highest estimated mean is pulled (pure exploitation
phase). Here too, ε must be in the open interval (0, 1) and its choice is left to the
user. The ε-first strategy has been analyzed within the PAC framework by [7]
and [16]. Even-Dar et al. show in [7] that a total of O

(
K
α2 log

(
K
δ

))
random pulls

suffices to find an α-optimal arm with probability at least 1−δ. This result could
be interpreted as an analysis of the asymptotic behavior of the ε-first strategy.

In its simplest form the ε-greedy strategy is sub-optimal because asymptoti-
cally, the constant factor ε prevents the strategy from getting arbitrarily close to
the optimal lever. A natural variant of the ε-greedy strategy is what we will call
here the ε-decreasing strategy. The ε-decreasing strategy consists of using a
decreasing ε for getting arbitrarily close to the optimal strategy asymptotically
(the ε-decreasing strategy, with an ε function carefully chosen, achieves zero re-
gret). The lever with the highest estimated mean is always pulled except when
a random lever is pulled instead with an εt frequency where t is the index of
the current round. The value of the decreasing εt is given by εt = min

{
1, ε0

t

}
where ε0 > 0. The choice of ε0 is left to the user. The first analysis of the ε-
decreasing strategy seems to be by Cesa-Bianchi and Fisher [5] for an algorithm
called GreedyMix. GreedyMix slightly differs from the ε-decreasing strategy
as just presented because it uses a decreasing factor of log(t)/t instead of 1/t.
Cesa-Bianchi and Fisher prove, for specific families of reward distributions, a
O(log(T )2) regret for GreedyMix where T is the number of rounds. This result
is improved by Auer et al. [1] who achieve a O(log(T )) regret for the ε-decreasing
strategy as presented above with some constraint over the choice of the value
ε0. Four other strategies are presented in [1] beside ε-decreasing. Those strate-
gies are not described here because of the level of detail this would require. We
chose the ε-decreasing strategy because the experiments by [1] seem to show
that, with carefully chosen parameters, ε-decreasing is always as good as other
strategies.

A variant of the ε-decreasing algorithm is introduced in [20]. The lever of
highest estimated mean is always pulled except when the least-taken lever is
pulled with a probability of 4/(4+m2) where m is the number of times the least-
taken lever has already been pulled. In the following, we refer to this method as
the LeastTaken strategy. Used as such, the LeastTaken method is likely to
provide very poor results in situations where the number of leversK is significant
compared to the horizon H . Therefore, as for the other methods, we introduce
an exploration parameter ε0 > 0 such that the probability of selecting the least-
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taken lever is 4ε0/(4+m2). The choice of ε0 is left to the user. The LeastTaken
method is only introduced as a heuristic (see [21]), but it is clear that this
method, modified or not, is a zero-regret strategy.

2.2 The SoftMax Strategy and Probability Matching Variants

The SoftMax strategy consists of a random choice according to a Gibbs dis-
tribution. The lever k is chosen with probability pk = eμ̂k/τ/

∑n
i=1 e

μ̂i/τ where
μ̂i is the estimated mean of the rewards brought by the lever i and τ ∈ R+ is
a parameter called the temperature. The choice of τ ’s value is left to the user.
SoftMax appears to have been proposed first in [15]. More generally, all meth-
ods that choose levers according to a probability distribution reflecting how likely
the levers are to be optimal, are called probability matching methods.

The SoftMax strategy (also called Boltzmann Exploration) could be mod-
ified in the same way as the ε-greedy strategy into decreasing SoftMax where
the temperature decreases with the number of rounds played. The decreasing
SoftMax is identical to the SoftMax but with a temperature τt = τ0/t that
depends on the index t of the current round. The choice of the value of τ0 is left
to the user. The decreasing SoftMax is analyzed by Cesa-Bianchi and Fisher
(1998) in [5] with the SoftMix algorithm. The SoftMix slightly differs from
the decreasing SoftMax as just presented since it uses a temperature decreas-
ing with a log(t)/t factor instead of a 1/t factor. The SoftMix strategy has
the same guarantees than the GreedyMix strategy (see here above). To our
knowledge, no result is known for the 1/t decreasing factor, but results simi-
lar to the ε-decreasing strategy are expected. The experiments in [5] show that
GreedyMix outperforms SoftMix, though not significantly. Therefore, for the
sake of simplicity, only the GreedyMix equivalent is used in our experiments
(Section 4).

A more complicated variant of the SoftMax algorithm, the Exp3 “expo-
nential weight algorithm for exploration and exploitation” is introduced in [2].
The probability of choosing the lever k at the round of index t is defined by

pk(t) = (1− γ)
wk(t)∑K
j=1 wj(t)

+
γ

K
, (1)

where wj(t + 1) = wj(t) exp
(
γ

rj(t)
pj(t)K

)
if the lever j has been pulled at time t

with rj(t) being the observed reward, wj(t+1) = wj(t) otherwise. The choice of
the value of the parameter γ ∈ (0, 1] is left to the user. The main idea is to divide
the actual gain rj(t) by the probability pj(t) that the action was chosen. For a
modified version of Exp3, with γ decreasing over time, it is shown by [3], that
a regret of O(

√
KT log(K)) is achieved. The Exp3 strategy was originally pro-

posed by Auer et al. (2002) in [3] along with five variants for the non-stochastic
bandit problem. The other variants are not described here due to the level of
detail required. Note also that the non-stochastic bandit is a generalization of
the stochastic one with weaker assumptions, thus the theoretical guarantees of
Exp3 still apply here.

More specific methods exist in the literature if additional assumptions are
made about the reward distributions. We will not cover the case of boolean
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reward distributions (too specific for this paper, see [25] for such methods).
Nevertheless, let us consider the case where Gaussian reward distributions are
assumed; [25] describes a method that explicitly estimates pi = P[μi = μ∗] under
that assumption. This method was also previously introduced in [18] but limited
to the two-armed bandit. The explicit formula would require a level of details
that goes beyond the scope of this paper and will not be given here. This method
will be referred to in the following as the GaussMatch method.

2.3 The Interval Estimation Strategy

A totally different approach to the exploration problem is to attribute to each
lever an “optimistic reward estimate” within a certain confidence interval and
to greedily choose the lever with the highest optimistic mean. Unobserved or
infrequently observed levers will have an over-valued reward mean that will lead
to further exploration of those levers. The more a lever is pulled and the closer its
optimistic reward estimate will be to the true reward mean. This approach called
Interval Estimation (referred as IntEstim in the following) is due to Kaelbling
(1993) in [12]. To each lever is associated the 100 · (1−α)% reward mean upper
bound where α is a parameter in (0, 1) whose exact value is left to the user. At
each round, the lever of highest reward mean upper bound is chosen. Note that
smaller α values lead to more exploration.

In [12], the IntEstim algorithm is applied to boolean rewards. Since we
are dealing here with real distributions, we will assume that the rewards are
normally distributed and compute the upper bound estimate according based
on that assumption. Formally, for a lever observed n times with μ̂ as empirical
mean and σ̂ as empirical standard deviation, the α upper bound is defined by
uα = μ̂+ σ̂√

n
c−1(1− α) where c is the cumulative normal distribution function

defined by c(t) = 1√
2π

∫ t

−∞ exp(−x2/2)dx. Choosing normal distributions is ar-
bitrary but seems reasonable if nothing more is known about the lever reward
distributions. In this paper, this choice is also motivated by the fact that part
of the experiments have been performed with normally distributed levers (see
Section 4).

Many variants of IntEstim have been proposed in the generalized model of
MDPs. 32 different algorithms are discussed in [17] (IEQL+ may be the most
well known of the introduced variant). But in the simpler stateless situation, all
these variants are equivalent to IntEstim.

To our knowledge, no theoretical results are known about the IntEstim
algorithm for the real-valued bandit problem (as opposed to the simpler boolean-
valued bandit where the rewards could take only the values 0 and 1). In its
simplest form, as just presented, IntEstim is clearly not a zero-regret strategy
(it suffices to consider the case where the optimal lever has been initially very
poorly estimated), but a proper control of the parameter α could make this
strategy achieve zero regret.

3 The Poker Strategy

The “Price of Knowledge and Estimated Reward” (Poker) strategy relies on
three main ideas: pricing uncertainty, exploiting the lever distribution, and tak-
ing into account the horizon.
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The first idea is that a natural way of balancing exploration and exploitation
is to assign a price to the knowledge gained while pulling a particular lever. This
idea has been already used in the bandit literature. In particular, the notion
of “value of information” has been intensively studied in several domains and
goes far beyond the scope of this paper. In the bandit literature, it is sometimes
referred to as “exploration bonuses” [17, 6]. The objective is to quantify the
uncertainty in the same units as the rewards.

The second idea is that the properties of unobserved levers could potentially
be estimated, to a certain extent, from the levers already observed. This is par-
ticularly useful when there are many more levers than rounds. Most of the work
on the bandit problem is centered on an asymptotic viewpoint over the number
of rounds, but we believe that in many practical situations, the number of rounds
may be significantly smaller than the number of levers (see next section).

The third observation is that the strategy must explicitly take into account
the horizon H , i.e., the number of rounds that remains to be played. Indeed, the
amount of exploration clearly depends onH , e.g., forH = 1, the optimal strategy
is reduced to pure exploitation, that is to choosing the lever with the highest
estimated reward. In particular, the horizon value can be used to estimate the
price of the knowledge acquired.

3.1 Algorithm

Let μ∗ = maxi{μi} be the highest reward mean and let j0 be the index of the
best reward mean estimate: j0 = argmax

i
{μ̂i}. We denote by μ̂∗ the reward mean

of j0. By definition of μ∗, μ∗ ≥ μj0 = μ̂∗. μ∗ − μ̂∗ measures the reward mean
improvement. We denote the expected reward improvement by δμ = E[μ∗− μ̂∗].

At each round, the expected gain when pulling lever i is given by the prod-
uct of the expected reward mean improvement, δμ, and the probability of an
improvement P[μi − μ̂∗ ≥ δμ]. Over a horizon H , the knowledge gained can be
exploited H times. Thus, we can view P[μi ≥ μ̂∗ + δμ]δμH as an estimate of the
knowledge acquired if lever i is pulled. This leads us to define the lever pricing
formula for the Poker strategy as:

pi = μ̂i + P[μi ≥ μ̂∗ + δμ]δμH, (2)

where pi is the price associated to the lever i by the casino (or the value of
lever i for the gambler). The first term, μ̂i, is simply the estimated reward mean
associated to the lever i, the second term an estimate of the knowledge acquired
when lever i is pulled.

Let us also examine how the second term is effectively computed. Let μ̂i1 ≥
· · · ≥ μ̂iq be the ordered estimated means of the levers already observed. We
chose to define the estimated reward improvement by δμ = (μ̂i1− μ̂i√

q
)/
√
q. The

index choice f(q) =
√
q is motivated by its simplicity and the fact that it ensures

both f(q) → ∞ (variance minimization) and f(q)/q → 0 (bias minimization)
when q → ∞. Empirically, it has also been shown to lead to good results (see
next section).

Let N (x, μ, σ) = 1√
2πσ

exp
(

(x−μ)2

2σ2

)
be the normal distribution. Let μ̂i be

the mean estimate, σ̂i be the standard deviation estimate and ni the number of
pulls for the lever i, the probability P[μi ≥ μ̂∗ + δμ] can be approximated by
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Φ
μ̂i,

σ̂i√
ni

(μ̂∗ + δμ) =
∫ ∞

μ̂∗+δμ

N
(
x, μ̂i,

σ̂i√
ni

)
dx. (3)

This would be the exact probability if μ̂i followed a normal distribution. Note
that the central limit theorem guarantees that, in the limit, the mean estimate
μ̂i of the reward distribution is normally distributed.

Algorithm 1 shows the pseudocode of the procedure Poker which takes three
arguments: the reward function r : [1,K]→ R, the number of levers K ∈ N∗ and
the number of rounds to be played T ∈ N∗. In the pseudocode, n[i] represents
the number of times lever i has been pulled. μ[i] (resp. σ[i]), the reward mean
(resp. the estimate of the reward standard deviation) of the lever i, is used as

a shortcut for r[i]
n[i] (resp

√
r2[i]
n[i] −

r[i]2
n[i]2 ). Êk,n[k]>0 denotes the empirical mean

taken over the set of levers previously pulled.
A round is played at each iteration through the loop of lines 2 − 14. The

computation of the price for each lever is done at lines 7 − 12. The estimates
of the mean and standard deviation of each lever are computed in lines 8 − 9.
Note that if the lever has not been observed yet, then the set of levers already
observed is used to provide a priori estimates. The price is computed at line 10.
The initialization of the algorithm has been omitted to improve readability. The
initialization simply consists of pulling twice two random levers so that i0 and
i1 are well-defined at line 4.

Algorithm 1. Poker(r,K, T )
1: for i = 0 to K do n[i] ← r[i] ← r2[i] ← 0 end for
2: for t = 1 to T do
3: q ← |{i, r[i] > 0}|
4: i0 ← argmax

i
{μ[i]} ; i1 ← j such that |{i, μ[i] > μ[j]}| =

√
q

5: δμ ← (μ[i0] − μ[i1]) /
√

q ; μ∗ ← argmax
i

{μ[i]}
6: pmax ← −∞ ; imax ← Undefined
7: for i = 1 to K do
8: if n[i] > 0 then μ ← μ[i] else μ ← Êk,n[k]>0[μ[k]] endif
9: if n[i] > 1 then σ ← σ[i] else σ ← Êk,n[k]>1[σ[k]] endif

10: p ← μ + δμ(T − t)
∫∞

μ∗+δμ
N
(

x, μ[i], σ[i]√
n[i]

)
dx

11: if p > pmax then pmax ← p, imax ← i endif
12: end for
13: r ← r(imax) ; n[imax]+= 1 ; r[imax]+= r ; r2[imax]+= r2

14: end for

Algorithm 1 gives an offline presentation of Poker, but Poker is in fact
intrinsically an online algorithm. The horizon value T−t (line 10 in Algorithm 1)
could simply be set to a constant value. Notice that the amount of exploration has
to be controlled in some way. Most of the algorithms presented in section 2 have
an exploration tuning parameter. We believe that the horizon is an intuitive and
practical exploration control parameter, especially compared to the τ parameter
for the SoftMax or the α parameter of IntEstim.
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It is easy to see that Poker is a zero-regret strategy. The proof is very
technical however and requires more space than we can afford here. The following
gives a sketch of the proof.

3.2 Poker is a Zero-Regret Strategy - Sketch of the Proof

Let us consider a game played by Poker where rounds are indexed by t such
as t = 1 refers to the first round and t = H refers to the last round. The proof
has two parts: first, an argument showing that all levers are pulled a significant
number of times; then, using the first part, establishing the fact that a “bad”
lever cannot be pulled too frequently.

Let mi(t) be the number of times the lever i has been pulled till round t and
assume that all rewards are bounded by R > 0. Then, by Hoeffding’s inequality,

P [μi ≥ μ̂i + δμ] ≤ exp(−2mi(t)
δ2

μ

R2 ) for i = 1, . . . ,K. Since μ̂∗ > μ̂i, this implies

that: P [μi ≥ μ̂∗ + δμ] ≤ exp(−2mi(t)
δ2

μ

R2 ) for i = 1, . . . ,K.
Now, it is clear that mi(H) tends to infinity on average when H tends to

infinity. Just consider that pi(t) at fixed t tends to infinity when H tends to
infinity. The same argument shows also that for any ε > 0, mi(εH) tends to
infinity when H tends to infinity.

Let mH be such that exp(−2mH
δ2

μ

R2 )δμH < r/2. Given the asymptotic be-
havior of mi just discussed, there exists t1 such that for all i, mi(t1) > mH with
probability q. Let r > 0 be a given regret. Assume that for a given lever distri-
bution, playing Poker implies that there exists a lever i and a constant α > 0
such that mi(H) > αH (frequent lever assumption) and μi < μ∗− r (poor lever
assumption) for any H . Let i be such a lever. The existence of i is the negation
of the zero-regret property. Choose H large enough such that t1

H < α.
The probability that the lever i is played at least once in the interval is [t1, H ]

is expressed by the probability that the price pi be the highest price, formally
P[∃t ≥ t1 : pi(t) ≥ p∗(t)]. The inequality exp(−2mH

δ2
μ

R2 )δμH < r/2 implies that
(the quantifier and argument t are omitted for simplicity):

P[pi ≥ p∗] ≤ P
[
μ̂i +

r

2
− μ̂∗ > 0

]
. (4)

Since all levers have already been pulled at least mH times by definition of t1,
by Hoeffding’s inequality (using the fact that μi + r

2 −μ∗ < − r
2 ) the probability

of that event is bounded as follows:

P
[
μ̂i +

r

2
− μ̂∗ > 0

]
≤ P

[
μ̂i − μ̂∗ > μi − μ∗ +

r

2

]
≤ exp[−mH

r2

2R2 ]. (5)

Thus, the lever i has a probability greater than q of not verifying mi(H) > αH
for H large enough. Additionally, by choosing H large enough, the probability
q can be made arbitrarily close to 1. This conclusion contradicts the uniform
existence (for any H) of the lever i. Poker is a zero-regret strategy.

4 Experiments

This section describes our experiments for evaluating several strategies for the
bandit problem using two datasets: an artificially generated dataset with known
and controlled distributions and a real networking dataset.
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Many bandit methods requires all levers to be pulled once (resp. twice) before
the method actually begins in order to obtain an initial mean (resp. a variance)
estimate. In particular, IntEstim requires two pulls per lever, see [17]. However
this pull-all-first initialization is inefficient when a large number of levers is
available because it does not exploit the information provided by the known lever
distribution (as discussed in the second idea of Poker here above). Therefore, in
our experiments, the mean and variance of unknown levers, whenever required,
are estimated thanks to the known lever distribution. In order to obtain a fair
comparison, the formula in use is always identical to the formula used in Poker.

4.1 Randomly Generated Levers

The first dataset is mainly motivated by its simplicity. Since normal distribu-
tions are perhaps the most simple non-trivial real distributions, we have chosen
to generate normally distributed rewards. This choice also fits the underlying
assumptions for the algorithms IntEstim and GaussMatch.

The dataset has been generated as follows: all levers are normally distributed,
the means and the standard deviations are drawn uniformly from the open inter-
val (0, 1). The objective of the agent is to maximize the sum of the rewards. The
dataset was generated with 1000 levers and 10 000 rounds. The bandit strategies
have been tested in three configurations: 100 rounds, 1000 rounds, 10 000 rounds
which correspond to the cases of less rounds than levers, as many rounds as levers,
ormore rounds than levers.Although we realize thatmost of the algorithmswe pre-
sented were designed for the case where the number of rounds is large compared to
the number of lever, we believe (see here below or [4]) that the configuration with
more levers than rounds is in fact an important case in practice. Table 1 (columns
R-100, R-1k and R-10k) shows the results of our experiments obtained with 10 000
simulations. Note that the numbers following the name of the strategies correspond
to the tuning parameter values as discussed in section 2.

4.2 URLs Retrieval Latency

The second dataset corresponds to a real-world data retrieval problem where
redundant sources are available. This problem is also commonly known as the
Content Distribution Network problem (CDN) (see [13] for a more extensive
introduction). An agent must retrieve data through a network with several re-
dundant sources available. For each retrieval, the agent selects one source and
waits until the data is retrieved2. The objective of the agent is to minimize the
sum of the delays for the successive retrievals.

In order to simulate the retrieval latency problem under reproducible con-
ditions, we have used the home pages of more than 700 universities as sources.
The home pages have been retrieved roughly every 10 min for about 10 days
(∼1300 rounds), the retrieval latency being recorded each time in milliseconds3.
Intuitively each page is associated to a lever, and each latency is associated to a
2 We assume that the agent could try only one source at a time, in practice he will

only be able to probe simultaneously a very limited number of sources.
3 The dataset has been published under a public domain license, making it ac-

cessible for further experiments in the same conditions. It can be accessed from
sourceforge.net/projects/bandit.
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Table 1. Experimental results for several bandit algorithms. The strategies are com-
pared in the case of several datasets. The R-x datasets corresponds to a maximization
task with random Gaussian levers (the higher the score, the better). The N-x datasets
corresponds to a minimization task with levers representing retrieval latencies (the
lower the score, the better). The numbers following the strategy names are the tuning
parameters used in the experiments.

Strategies R-100 R-1k R-10k N-130 N-1.3k
Poker 0.787 0.885 0.942 203 132
ε-greedy, 0.05 0.712 0.855 0.936 733 431
ε-greedy, 0.10 0.740 0.858 0.916 731 453
ε-greedy, 0.15 0.746 0.842 0.891 715 474
ε-first, 0.05 0.732 0.906 0.951 735 414
ε-first, 0.10 0.802 0.893 0.926 733 421
ε-first, 0.15 0.809 0.869 0.901 725 411
ε-decreasing, 1.0 0.755 0.805 0.851 738 411
ε-decreasing, 5.0 0.785 0.895 0.934 715 413
ε-decreasing, 10.0 0.736 0.901 0.949 733 417
LeastTaken, 0.05 0.750 0.782 0.932 747 420
LeastTaken, 0.1 0.750 0.791 0.912 738 432
LeastTaken, 0.15 0.757 0.784 0.892 734 441
SoftMax, 0.05 0.747 0.801 0.855 728 410
SoftMax, 0.10 0.791 0.853 0.887 729 409
SoftMax, 0.15 0.691 0.761 0.821 727 410
Exp3, 0.2 0.506 0.501 0.566 726 541
Exp3, 0.3 0.506 0.504 0.585 725 570
Exp3, 0.4 0.506 0.506 0.594 728 599
GaussMatch 0.559 0.618 0.750 327 194
IntEstim, 0.01 0.725 0.806 0.844 305 200
IntEstim, 0.05 0.736 0.814 0.851 287 189
IntEstim, 0.10 0.734 0.791 0.814 276 190

(negative) reward. The bandit strategies have been tested in two configurations:
130 rounds and 1300 rounds (corresponding respectively to 1/10th of the dataset
and to the full dataset). Table 1 (columns N-130 and N-1.3k) shows the results
which correspond to the average retrieval latencies per round in milliseconds.
The results have been obtained through 10 000 simulations (ensuring that the
presented numbers are significant). The order of the latencies was randomized
through a random permutation for each simulation.

4.3 Analysis of the Experimental Results

Let us first examine the ε-greedy strategy and its variants. Note that all ε-
greedy variants have similar results for carefully chosen parameters. In particular,
making the ε decrease does not significantly improve the performance. The ε0
(the real parameter of the ε-decreasing strategy) also seems to be less intuitive
than the ε parameter of the ε-greedy strategy. Although very different from the
ε-greedy, the SoftMax strategy leads to very similar results. But its Exp3
variant seems to have a rather poor performance, its results are worse than any
other strategy independently of the parameters chosen. The reason probably lies
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in the fact that the Exp3 has been designed to optimize its asymptotic behavior
which does not match the experiments presented here.

The two “pricing” strategies Poker and IntEstim significantly outperform
all of the other strategies on the networking dataset, by a factor of 2 for In-
tEstim and a factor of 3 for Poker. Against the random generated dataset,
IntEstim performs significantly worse than the other strategies, a rather unex-
pected result since the generated dataset perfectly fits the IntEstim assump-
tions, while Poker is always as good as the best strategy for any parameter.
We do not have yet proofs to justify the “good” behavior of the two pricing
methods on the networking dataset, but this seems related to the “shape” of the
networking data. The networking data proves to be very peaky with latencies
that cover a wide range of values from 10 ms to 1000 ms with peaks to 10000 ms.
With that data, exploration needs to be carefully handled because trying a new
lever could prove to be both a major improvement or a major cost. It seems that
strategies with a dynamic approach for the level of exploration achieve better
results than those where the amount of exploration is fixed a priori.

5 Conclusion

In the case where the lever reward distributions are normally distributed, sim-
ple strategies with no particular theoretical guarantees such as ε-greedy tend to
be hard to beat and significantly outperform more complicated strategies such
as Exp3 or Interval Estimation. But, the ranking of the strategies changes sig-
nificantly when switching to real-world data. Pricing methods such as Interval
Estimation or Poker significantly outperform naive strategies in the case of
the networking data we examined. This empirical behavior was rather unex-
pected since the strategies with the best asymptotic guarantees do not provide
the better results, and could not have been inferred from a simple comparison
of the theoretical results known so far. Since this is, to our knowledge, the first
attempt to provide a common evaluation of the most studied bandit strategies,
the comparison should still be viewed as preliminary. Further experiments with
data from different tasks might lead to other interesting observations. We have
made the experimental data we used publicly available and hope to collect, with
the help of other researchers, other datasets useful for benchmarking the bandit
problem that could be made available from the same web site.
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Abstract. Motivated by the analogies to statistical physics, the deter-
ministic annealing (DA) method has successfully been demonstrated in
a variety of applications. In this paper, we explore a new methodology
to devise the classifier under the DA method. The differential cost func-
tion is derived subject to a constraint on the randomness of the solution,
which is governed by the temperature T . While gradually lowering the
temperature, we can always find a good solution which can both solve the
overfitting problem and avoid poor local optima. Our approach is called
annealed discriminant analysis (ADA). It is a general approach, where
we elaborate two classifiers, i.e., distance-based and inner product-based,
in this paper. The distance-based classifier is an annealed version of lin-
ear discriminant analysis (LDA) while the inner product-based classifier
is a generalization of penalized logistic regression (PLR). As such, ADA
provides new insights into the workings of these two classification al-
gorithms. The experimental results show substantial performance gains
over standard learning methods.

1 Introduction

The deterministic annealing (DA) technique has demonstrated substantial per-
formance improvement over clustering, classification and constrained optimiza-
tion problems [1, 2, 3, 4, 5]. Since DA is strongly motivated by the analogies to
statistical physics [6], it regards the optimization problem in question as a ther-
mal system. The Lagrange multiplier in the problem represents the temperature
of the system, which is used to control the level of randomness, and the cost
function corresponds to the free energy of the system. The minimum of the free
energy determines the state of the system at thermal equilibrium. To achieve
the equilibrium state, one tracks the minimum of the free energy while gradu-
ally lowering the temperature. At the limit of low temperature, minimum energy
is reached. In other words, the DA technique performs annealing as it maintains
the cost function at its minimum while gradually lowering the temperature.
With careful annealing, this process can avoid many shallow local minima of the
specified cost and finally produce a non-random solution. The DA technique is
attractive since it possesses two important advantages: (1) the ability to min-
imize the cost function even when its gradients vanish almost everywhere; (2)
the ability to avoid many poor local optima.

J. Gama et al. (Eds.): ECML 2005, LNAI 3720, pp. 449–460, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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Since direct classification error minimization mostly leads to an NP-hard
problem [7], the goal of the learning methods is to avoid the computational
difficulties of this hard problem. Usually, we transform the learning problem
into an optimization problem, where an objective function is proposed. With
different criteria, such as maximum likelihood, maximum posterior estimation,
least L-norm error, or maximum margin, we can construct different classifiers.
Wabha [8] treated these classifiers as performing “soft” or “hard” classifications.
Soft classification, such as logistic regression models, assigns an object based on
a conditional probability of this object in some class, while hard classification,
such as SVMs, does not use the probability. We bridge the gap between these two
kinds of classification problems through the DA approach. Instead of treating
the “soft” and “hard” separately, we formulate the objective by a “hard” notion,
and solve it by a “soft” way.

In this paper, we formulate the classification problem based on the discrimi-
nant functions. The optimal hypotheses is hard to find directly, since the prob-
lem is both a “hard” classification problem and NP-hard. However, with the
introduction of a conditional probability in DA, the classification becomes soft.
Hence, the original non-differentiable cost function that results in an NP-hard
problem becomes differentiable. Interestingly, this “soft” problem also tends
to the original “hard” problem as the temperature approaches zero. In addi-
tion, Rose [4] argued that the entropy can play a role in the regularization.
Therefore, motivated by these observations, we investigate the application of
the DA technique to the classification problem and devise a new kind of method
called annealed discriminant analysis (ADA). Since ADA is a general formu-
lation, we present two possible implementations, i.e., distanced-based classifier
and inner product-based classifier. The distanced-based classifier is closely re-
lated to linear discriminant analysis (LDA), since the parameters of LDA are real
means of the categories while the parameters of the distanced-based classifier are
the “soft” means, which are estimated from the iterative updating procedure.
Thus, the distanced-based classifier can be seen as an annealed version of LDA.
The inner product-based classifier is a generalization of penalized logistic re-
gression (PLR) since they become the same when setting the temperature to
one. Therefore, ADA provides new insights into the workings of these existing
classification algorithms.

The rest of this paper is organized as follows. Section 2 derives the ADA al-
gorithm based on the discriminant functions and the DA approach. Two imple-
mentations of ADA are elaborated in section 3. Section 4 reports our experiment
setup and results. The last section presents the concluding remarks.

2 Problem Formulation

Let T = {(xi, ci)} be a training set of N labelled vectors, where xi ∈ Rd is a
feature vector and ci ∈ I is its class label from an index set I = {1, 2, . . . , C}.
A classifier is a mapping F : Rd → I, which assigns a class label in I to each
vector in Rd. A training pair (x, c) ∈ T is correctly classified if F (x) = c.



Annealed Discriminant Analysis 451

We code ci as a binary C-vector yi = (yi1, yi2, . . . , yiC)′ with values all zero
except a 1 in position c if the class is c. We shall interchangeably use ci and yi

to indicate the class label of xi in this paper.

2.1 Problem Definition

We formulate a classifier in terms of a set of discriminant functions {g(x; θj) |
j = 1, 2, . . . , C} such that an input vector x is assigned to the class c if and
only if

g(x; θc) ≥ g(x; θj) for all j �= c, (1)

where the parameter θ = {θj}C
j=i is a set of vectors for indexing the discriminant

functions. Here the discriminant functions are general, which can be directly de-
fined as many function forms such as Gaussian, linear, etc. The above classifica-
tion rule defines a “hard” classification [8]. Denoting the conditional probability
of the class c given xi by pic = p(c|xi), this “hard” classification implies that

pic =
{

1 c = argmaxjg(xi; θj)
0 otherwise. (2)

Let gi = (g(xi; θ1), g(xi; θ2), . . . , g(xi; θC))′ and ‖gi‖∞ = max{g(xi; θj)}C
j=1.

For a hypotheses indexed by the parameter θ̂, if a case xi has correctly been
classified according to (1), we have ‖gi‖∞ = y′

igi. Otherwise we have ‖gi‖∞ >
y′

igi. This leads us to define a classification error

L(θ) =
1
N

∑
i

∣∣∣‖gi‖∞ − y′
igi

∣∣∣ =
1
N

∑
i

(
‖gi‖∞ − y′

igi

)
. (3)

If all training samples have been correctly classified by this classifier, (3) will
arrive at its minimum zero. Hence our task is to find a set of parameters {θj}
minimizing the classification error. Alternatively, with the above definition for
pic, we can rewrite (3) as

L(θ) =
1
N

∑
i

(∑
j

pijg(xi; θj)− y′
igi

)
(4)

due to
∑

j pijg(xi; θj) = ‖gi‖∞. Minimizing the classification error (3) or (4)
w.r.t. θ requires searching all possible “hard” conditional probabilities, and
therefore results in an NP-hard problem. To find an approximate searching strat-
egy to obtain the best parameter θ to minimize the classification error (4) is also
not straightforward because this error function is non-differentiable. Even if we
get a solution, it often suffers from the overfitting problem. Thus, our current
problem is how to search in the parameter space to get a good solution. The
essence of the DA technique [4] is to cast the optimization problem into a proba-
bilistic framework, considering a “randomness” characterized by a probabilistic
assignment of data to classes. The DA approach is a good choice to deal with
these problems.
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2.2 Deterministic Annealing Approach

Recall that the minimization of L(θ) w.r.t. θ is intractable since L(θ) is non-
differentiable. Our departure is replacing the discrete {pij} with a continuous
density function {pij}1 and finding a differential function to approximate L(θ).
Since {pij} are now unknown continuous density distribution functions, our prob-
lem is how to select {pij}. Let

E =
∑

i

∑
j

pijg(xi; θj) (5)

E is a variational function where its parameters {pij} are determined by the
discriminant functions. From the definition of the conditional probability in (2),
{pij} need to maximize E given a hypotheses. Therefore we are seeking {pij}
maximizing E subject to a specified level of randomness measured by the Shan-
non entropy while assuming the parameters of the discriminant functions are
fixed. The entropy is defined as

H = −
∑

i

∑
j

pij log pij .

Maximum entropy is inspired by the well known principle of Occam’s razor,
which states that the simplest model that accurately represents the data is the
most desirable. This criteria tends to induce the parsimony model to fit the
data. Conveniently, this optimization is reformulated as maximization of the
Lagrangian

F = E + TH (6)

where T is the Lagrange multiplier. For large value of T , the probabilities mainly
attempt to maximize the entropy, and as T approaches zero, it maximizes E.

Maximizing F w.r.t. pij is straightforward, giving rise to the Gibbs distribu-
tion [9]

pij =
exp( g(xi;θj)

T )∑
k exp( g(xi;θk)

T )
. (7)

The corresponding maximum of F is obtained by plugging (7) back into (6)

F ∗ = max
{pij}

F = T
∑

i

log
∑

j

exp(
g(xi; θj)

T
). (8)

It is easy to see

T log
∑

j

exp(
g(xi; θj)

T
) ≥ T log exp(

y′
igi

T
) = y′

igi.

1 The “hard” conditional probability pij takes binary values. For notation simplicity,
we still denote the soft conditional probability as pij .
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Hence replacing ‖gi‖∞ with T log
∑

j exp( g(xi;θj)
T ) in L(θ), we obtain a differ-

ential cost function:

Q(θ) =
1
N

∑
i

[
T log

∑
j

exp(
g(xi; θj)

T
)− y′

igi

]
(9)

to approximate L(θ). We address the optimization problem on minimization of
Q(θ) w.r.t. θ alternatively.

Theorem 1. Let pij and Q(θ) be defined by (7) and (9), respectively. For a
fixed parameter θ,

1. limT→∞ pij = 1
C for j = 1, . . . , C.

2. limT→0 pic =
{

1 c = argmaxjg(x; θj)
0 otherwise; ,

limT→0 Q(θ) = L(θ);

3. Q(θ) is monotone decreasing with respect to decreasing T .

We omit the proof due to the space limitations. This theorem states that
at infinite temperature T , the conditional probabilities {pij} are soft as they
are uniformly distributed for all categories. At the limit of zero temperature,
the classification is hard where each case is assigned to the category whose
discriminant function value is largest. When the conditional probabilities {pij}
become hard, F in (6) tends to E in (5), and consequently the cost function Q(θ)
in (9) degenerates to L(θ) in (3). Thus, the original problem is in fact a “zero
temperature problem”. This motivates a criterion for updating T : start with a
high value of temperature T and track the minimum while lowering T . SinceQ(θ)
is monotone decreasing with respect to the temperature T , the above algorithm
will try to converge to a global minimum. The entire algorithm is presented in
Table 1.

Table 1. A brief sketch of the ADA algorithm

0. Initialize T with a comparatively large value T (0)

1. Initialize θ(0)

2. Repeat
3. Lower temperature: T (t) = q(T (t−1))
4. θ(t) = arg minθ Q(θ(t−1))
5. Validate the performance for (θ(t), T (t))
6. Until the parameters converge
7. Select (θ(t), T (t))
8. Classify cases based on (7)

The algorithm consists of two-level iterations. In the inner iteration,for a
fixed T , we optimize the Q(θ). We can not get the closed form to update the
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parameters, hence we resort to a numerical optimizer, such as the conjugate
gradient algorithm, to find the parameter values.

For the outer iteration, in our experiments, we use an exponential schedule
for reducing T , i.e., q(T ) = αT , where α < 1 in our experiments. From the
perspective of the learning problem, we start with a very simple model with
zero variance. We then gradually increase the complexity of the model. Since
the bias would reduce faster than the variance increases, thus the prediction
error would decrease also. However, when the variance increases faster than the
bias at a certain temperature, overfitting occurs. Therefore, the final converging
parameters from “hard“ partitions may not reach the best performance due to
the overfitting problem. Consequently, we need to select parameters according to
their performance on the validation set. Empirically, the optimal parameter can
be obtained at the temperature that causes the conditional probabilities to be
almost “hard” while still a little “soft”. Since the temperature T controls the level
of the randomness of the solution, we try the model to fit the data with different
complexity from simple to complex as the temperature decreases. Therefore, we
are certain to find an optimal classifier based on the ADA algorithm.

[2, 4] also discuss the supervised learning problem using DA methods, but
they are different from our ADA method. In their work, they construct the
space partitioning functions as two components: a parametric space partition
(structured partition) and a parametric local model per partition cell, while
in our approach we integrate them by using only the discriminant function.
Furthermore, they employ the notion of the regression problem by defining the
distortion to derive the learning algorithm, while ADA directly formulates the
classification problem by a discriminant function.

3 Annealed Discriminant Analysis

In this section, we will discuss two implementations in ADA, i.e., distance-based
classifier and inner product-based classifier. The first one is related to linear
discriminant analysis(LDA) and the second is related to penalized logistic re-
gression(PLR).

3.1 Distance-Based Classifier (dADA)

The discriminant functions are defined as

g(x; μj) = −(x− μj)
′Σ−1(x − μj) j = 1, . . . , C (10)

where Σ is the covariance matrix which is evaluated in advance from the training
data, and the parameter μj ∈ Rd indicates the mean of the j-th category. A
case x will be classified to the category cj when the distance between its mean
μj and x is the least, and correspondingly the j-th discriminant function gj is
the largest. The decision boundary, corresponding to g(x; μk) = g(x; μj), forms
a hyperplane, i.e.,

f(x) = xΣ−1(μj − μk) + μ′
kΣ−1μk − μ′

jΣ
−1μj = 0 (11)
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If f(x) > 0, the case x will be classified to the j-th category. Otherwise, x will
be classified to the k-th category.

To find the optimal parameter μ(t) such that μ(t) = arg minμ Q(μ) at a
certain temperature, the gradient of the cost function Q is

∂Q

∂μj

=
2
N

∑
i

[(pij − yij)Σ−1(xi − μj)] (12)

where pij , with the form in (7), contains the parameter μ via the discriminant
functions. Since we cannot find the closed form for updating the parameters, we
use the scaled conjugate gradient (SCG) optimizer [10], which is an extremely
efficient algorithm, to get the parameters.

In LDA [11], cases in each category are assumed from a multivariate Gaus-
sian, and all Gaussian distributions have a common covariance matrix Σ. So
the discriminant functions of LDA are defined the same as in (10) where μj is
estimated as the mean of the j-th category and the covariance Σ is evaluated
from the training data. We note that the only difference between dADA and
LDA is in how to estimate the parameters. The parameters in LDA are the real
means of categories, while the means of dADA are the “soft” means, which are
estimated from the iterative updating procedure. Therefore, the distance-based
classifier can be seen as an annealed version of LDA. The experiment result in
the next section shows that dADA performs much better than LDA.

3.2 Inner Product-Based Classifier (pADA)

The discriminant functions are defined as

g(x; λj) = λ′
jx j = 1, . . . , C (13)

where λj ∈ Rd is the parameter of the inner product-based classifier. In this
case, the decision boundary is also a hyperplane. Plugging (13) back into the
cost function Q (9) we get

Q(θ) =
T

N

∑
i

[log
∑

j

exp(
λ′

jxi

T
)−

∑
j

yij

λ′
jxi

T
] (14)

The gradient of the cost function Q is

∂Q

∂λj
=

1
N

∑
i

[(pij − yij)xi] (15)

The parameter estimation in this problem is different from the distance-based
classifier. From the gradient in (15), we notice that the conditional probabilities
pij are constrained to be equivalent to the supervised label yij when minimiz-
ing the cost function Q. Since the discriminant functions {g(x; λj)} can take
any value ranging from negative infinity to positive infinity, the temperature in
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this definition can not control the randomness of the conditional probabilities.
When the temperature is extremely high, the parameter λ will also take a large
value to make pij = yij . Therefore, annealing has no effect no matter what
is the temperature. The inner product discriminant functions seem to absorb
the temperature T into the parameters λ, so the cost function in (14) can be
simplified as

Q(θ) =
1
N

∑
i

[log
∑

j

exp(λ′
jxi)−

∑
j

yij(λ′
jxi)] (16)

This cost function is exactly the same as the cost function of logistic regression
[12], which has been widely studied in statistics. However, since the optimal
parameters of this cost function (16) try to satisfy pij = yij directly, this formu-
lation suffers from the overfitting problem.

To overcome this problem, we need to limit the range of the discriminant
functions. We add a penalty term to the cost function such that

Qnew(θ) =
1
N

∑
i

[T log
∑

j

exp(
λ′

jxi

T
)−

∑
j

yij(λ′
jxi)] +

ε

2

∑
j

λ′
jλj (17)

where the regularization parameter ε controls the range of the values of the
parameters λ. Consequently, the temperature T again governs the level of the
randomness of the solution. The gradient of the cost function Qnew (17) becomes

∂Qnew

∂λj
=

1
N

∑
i

[(pij − yij)xi] + ε
∑

j

λj (18)

We also use the SCG optimizer to search for the optimal parameters in this
classifier.

Penalized logistic regression (PLR) [13] began to gain attention recently be-
cause it not only performs as well as the SVM in two class classification, but can
also naturally be generalized to the multi-class case. Furthermore, PLR provides
an estimate of the conditional probability. As we can see, the cost function in
(17) is the same as the negative log-likelihood of PLR when setting the temper-
ature T = 1. Therefore, PLR is a special case of the pADA. Our approach gives
a clear physical interpretation for PLR, where the temperature T controls the
randomness of the solution, and the regularization parameter ε limits the range
of the parameters. It is always laborious to select a good regularization param-
eter in PLR. We will see in the experiment that our algorithm can always find
the optimal solution regardless of the value of the the regularization parameter,
thereby, avoiding many attempts to examine it.

4 Experimental Results

4.1 WebKB: Web Pages Collection

The WebKB data set is a medium size collection, containing web pages gathered
from several universities’ computer science departments. The pages are divided
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into seven categories: student, faculty, staff, course, project, department and other.
In this paper, we use the four most populous entity-representing categories:
student, faculty, course, and project, which all together contain 4199 pages. A
held-out set with 20% of the data was selected randomly. The other 80% was
used as training data. Reserving those terms occurring at least six times in a
corpus, we have 3359 training documents with a vocabulary size of 7161. We then
use information gain to select 500 of the most predictive features and delete the
cases without features.
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Fig. 1. The experiments on the WebKB dataset. The x-axis is a logarithm scale.

In the distance-based classifier, we use three ways to initialize the parameter
values: (1) mean of each category; (2) a random number from all possible feature
values; (3) zero. From Figure 1(a), we can see although these three lines have
with different start points and different convergence traces, they merge in the
end. The final accuracy of the ADA approach in fact is independent of the initial
values. However, this is true only when we use a slow temperature cooling rate.
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In this experiment, we lower the temperature with a comparatively slow rate,
such as Ti = 0.9Ti−1. When the parameters are initialized to the means of the
categories, the classifier becomes LDA, and its classification accuracy is 74.3%,
much lower than the accuracy (90.3%) obtained by dADA. The LDA line is
concave shaped. It goes down in the beginning since high temperature biases
the conditional probability to be uniform. When the temperature is about 0.6,
the line begins to go up, and finally finds the optimum.

Temperature cooling rate is also an important factor that impacts the per-
formance in ADA. Different cooling rates are compared in Figure 1(b), where
the initial values are set to the means of the corresponding categories. Although
all rates can provide comparatively good accuracies, a slower cooling rate will
give a better result. When the cooling rate is too quick, such as Ti = 0.1Ti−1,
only three steps of optimization are performed before T = 0.001. Therefore, the
search for the optimal solution is insufficient before the conditional probabilities
become hard, and such an optimization is easily trapped by local optima. In the
annealing process, we also measure the time complexity when minimizing the
cost at each temperature, as shown in Figure 1(c). We can see the algorithm
is more time consuming at a high temperature, and speeds up as temperature
decreases. At a given temperature, the SCG optimizer spends similar time when
the temperature is low for different cooling rates. Hence, there is a tradeoff be-
tween the accuracy and time complexity. We should choose a faster cooling rate if
we prefer an efficient algorithm; otherwise, we should select a slower cooling rate
to get better solutions. No overfitting occurs in dADA in the WebKB collection.

In the inner product-based classifier, the regularization parameter ε controls
the range of the parameter values, and the temperature T governs the level of
randomness. The results for different regularization parameters are shown in
Figure 1(d), where the starting point of each line is the accuracy of the initial
parameter value. The initial parameters {λj} are set to zero, which gives uniform
conditional probabilities, an effect equivalent to that of infinite temperature. All
the four lines have a similar shape. While gradually lowering the temperature,
the accuracy increases until we get the best accuracy at the peak. Then the clas-
sifier begins to overfit, and accuracy drops. There is a relationship between the
temperature T and the regularization parameter ε. When ε is large, the optimal
solution is obtained at a higher temperature, and vice verse. The regularization
parameter seems to only determine the temperature at which the maximum ac-
curacy is reached. Therefore, no matter what the value of ε is, we can always
find a good solution through annealing, which outperforms the logistic regression
algorithm, whose accuracy is shown as the dashed line in the figure. Our model
is equivalent to PLR when setting T = 1. Therefore, PLR is a special case of
pADA. It is clear that the best regularization parameter of PLR is obtained by
positioning the peak of the line at T = 1., which is always a laborious task.

4.2 Newsgroups: Discussion Articles Collection

The Newsgroups data set is a comparatively large collection containing about
20000 articles evenly divided among 20 UseNet discussion groups. Many of the
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categories fall into confusable clusters; for example, five of them are comp.* dis-
cussion groups and three of them are religion. When tokenizing this collection,
we skip the UseNet headers and subject line, and select 1000 features.
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Fig. 2. The experiments on the Newsgroup dataset. The x-axis is a logarithm scale.

For the distance-based classifier, its results are shown in Figure 2(a)-(c). They
are similar to the results for WebKB. In Figure 2(a), since there are a total of 20
categories, the accuracy is about 5% for the random and zero initial values. LDA’s
accuracy is 55%. The distance-based classifier of ADA finally gets a much better
result, i.e., 71% regardless of the initial values of the parameters. The conclusion
that the optimal solution results from a slower cooling rate is more obvious in this
experiment (Figure 2(b)). The accuracy from Ti = 0.7Ti−1 is nearly 10% higher
than from Ti = 0.1Ti−1. Newsgroups is a dataset much larger than WebKB. Hence
optimizer spends more time minimizing the cost function at a given temperature,
as shown in Figure 2(c). As temperate lowers, it will spend less time. The time spent
at a low temperature is only about one eighth of the time of a high temperature. For
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the inner product-based classifier, the result is shown in Figure 2(d), which is also
very similar to the result for WebKB. The optimal classifier can obtain accuracy
75.5%, while that of logistic regression is 68.8%.

5 Conclusions

In this paper, we propose a novel classification method called annealed discrimi-
nant analysis (ADA). A probabilistic framework was constructed by randomiza-
tion of the conditional probability, which is based on the principle of maximum
entropy. The annealing process was introduced by controlling the Lagrange mul-
tiplier T based on the deterministic annealing approach, which is interpreted as
gradually trading entropy of the associations for reduction of the cost function.
While gradually lowering the temperature, the global optimum can be obtained
independent of the choice of initial configuration. The distance-based classifier,
an annealed version of linear discriminant analysis, outperforms the standard
linear discriminant analysis. The inner-product based classifier, which can be
seen as a generalized penalized logistic regression, provides the optimal solution,
which is insensitive to the regularization parameter. The experiments demon-
strate ADA’s ability to provide substantial gains over existing methods.

References

1. Hofmann, T., Buhmann, J.: Pairwise data clustering by deterministic annealing.
IEEE Transactions on Pattern Analysis and Machine Intelligence 19 (1997) 1–14

2. Miller, D., Rao, A.V., Rose, K., Gersho, A.: A global optimization technique
for statistical classifier design. IEEE Transaction on Signal Processing 44 (1996)
3108–3122

3. Rao, A., Miller, D., Rose, K., Gersho, A.: A deterministic annealing approach for
parsimonious design of piecewise regression models. IEEE Transactions on Pattern
Analysis and Machine Intelligence 21 (1999) 159–173

4. Rose, K.: Deterministic annealing for clustering, compression, classification, re-
gression, and related optimization problem. Proceedings of the IEEE 86 (1998)
2210–2239

5. Yuille, A.L., Stolortz, P., Utans, J.: Statistical physics, mixtures of distributions,
and the em algorithm. Neural Computation 6 (1994) 334–340

6. Rose, K., Gurewitz, E., Fox, G.C.: Statistical mechanics and phase transitions in
clustering. Physics Review Letter 65 (1990) 945–948

7. Zhang, T.: Statistical analysis of some multi-category large margin classification
methods. Journal of Machine Learning Research 5 (2004) 1225–1251

8. Wahba, G.: Soft and hard classification by reproducing kernel Hilbert space meth-
ods. Proceedings of the National Academy of Sciences 99 (2002) 16524–16530

9. Geman, S., Geman, D.: Stochastic relaxation, Gibbs distributions, and the
Bayesian restoration of images. IEEE Transactions Pattern Analysis and Machine
Intelligence 6 (1984) 721–741

10. Nabney, I.: Netlab: algorithms for pattern recognition. Springer-Verlag (2001)
11. Hastie, T., Tishiran, R., Friedman, J.: The Elements of Statistical Learning: Data

Mining, Inference, and Prediction. Springer-Verlag (2001)
12. McLachlan, G.J.: Discriminant analysis and statistical pattern recognition. John

Wiley & Sons (1992)
13. Zhu, J., Hastie, T.: Classification of gene microarrays by penalized logistic regres-

sion. Biostatistics 5 (2004) 427–443



Network Game and Boosting

Shijun Wang and Changshui Zhang

State Key Laboratory of Intelligent Technology and Systems,
Department of Automation, Tsinghua University, Beijing 100084, China

wsj02@mails.tsinghua.edu.cn, zcs@mail.tsinghua.edu.cn

Abstract. We propose an ensemble learning method called Network
Boosting which combines weak learners together based on a random
graph (network). A theoretic analysis based on the game theory shows
that the algorithm can learn the target hypothesis asymptotically. The
comparison results using several datasets of the UCI machine learning
repository and synthetic data are promising and show that Network
Boosting has much resistance to the noisy data than AdaBoost through
the cooperation of classifiers in the classifier network.

1 Introduction

With the rapid development of various business and scientific research based
on information technology, the number and the size of distributed databases
increase continuously. For the massiness of the distributed datasets, the condi-
tional data mining techniques based on central process on a single computer are
not appropriate for today’s need. New technologies are required for distributed
applications.

In recent 10 years, the ensemble learning methods become a hot topic in
the machine learning community. Two of the most popular techniques for con-
structing ensembles are bootstrap aggregation (“bagging” [1]) and the Adaboost
family of algorithms (“boosting” [2-4]). Both of these methods operate by tak-
ing a base learning algorithm and invoking it many times with different training
sets.

The Bagging algorithm (Bootstrap aggregating) [1] uses bootstrap samples to
build the base classifiers. Each bootstrap sample is formed by uniformly sampling
from the training set with replacement. The accuracy can be improved through
building multiple versions of base classifier when unstable learning algorithms
(e.g. neural networks, decision trees) are used.

The AdaBoost algorithm [3], calls a given base learning algorithm repeatedly
and maintains a distribution of weights over the training set in a series of rounds
t = 1, ..., T . During the training progress, the weights of incorrectly classified
examples are increased so that the weak learner is forced to focus on the hard
examples in the training set.

While the overall success of AdaBoost, there is increasing evidence that
boosting algorithms are not quite as immune from overfitting [5]. Krieger et
al. [6] introduced a new ensemble learning strategy called BB algorithm based

J. Gama et al. (Eds.): ECML 2005, LNAI 3720, pp. 461–472, 2005.
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on the careful application of both bagging and boosting. They demonstrated
experimentally that the performance of this algorithm is superior to boosting
when the training set is noisy. Other noisy tolerant boosting algorithms include
AdaBoostReg [7], AveBoost2 [8], et al.

To satisfy the requirement of rapid developing distributed applications, Fan
[9] and Lazarevic [10][11] proposed the distributed versions of boosting for par-
allel and distributed data mining. The distributed boosting algorithms put more
efforts on the disjoint partitions of the data set (d-sampling) and the mechanism
is designed for such purpose.

In this paper, we propose a new ensemble learning method called Network
Boosting (NB) which combines classifiers on the basis of a network. Through the
communication between classifiers, the misclassified samples’ weights increase
during the training progress. The final classification decision is made through
the majority voting of all the hypotheses learned in the training progress. Under
the game theory framework, we prove that the Network Boosting algorithm
can learn target hypothesis asymptotically. The difference between distributed
boosting algorithm and Network Boosting lies in the cooperation mechanism
between distributed sites (classifiers).

In chapter 2 we propose the classifier network and the mechanism of Network
Boosting (NB). Chapter 3 gives the proof of the convergence of the NB algorithm.
Results of comparisons on UCI data sets and the comparisons on noisy data are
shown in chapter 4. Chapter 5 concludes with a short summary.

2 Classifier Network and Network Boosting

The idea of Network Boosting comes from our recent research [13, 14] on com-
plex network [15]. In a complex system, the complexity comes from the self-
organization or emergence of structure and function from the interaction be-
tween the constituent parts of the system. So we introduce the cooperation of
classifiers based on a network and expect high accuracy and noise resistance as
emergent functions of the classifier network and network boosting scheme.

From biology over computer science to sociology the world is abundant in
networks [15]. In the present work, we use random graph as the topology of our
classifier network for it has much resistance to the targeted attack [16] and is
more suitable for the distributed applications. A random graph is a collection
of points, or vertices, with lines, or edges, connecting pairs of them at random.
Starting with the influential work of Erdos and Renyi in the 1950s and 1960s
[17], the study of random graphs has a long history.

Based on the communication structure, we construct a classifier network in
which the nodes are classifiers and links between nodes represent the relationship
between classifier pairs. If there is a link between node i and node j, then classifier
i will exchange information with classifier j during the training progress.

The dynamic integration approach contains two phases. Assume there are K
nodes (classifiers) in the network and the training round is T . In the learning
phase, given training set Z = 〈(x1, y1) , (x2, y2) , ..., (xl, yl)〉 , each classifier on
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the classifier network is provided with the same training instances and maintains
a weight record wk,t (i) for k = 1, ...,K , t = 1, ..., T , i = 1, ..., l of the instances
respectively. Then the classifier in the classifier network is built by the training
set sampled from the training data according to the weights record of the training
data it holds. After that, the weights of the instances of every node are updated
according to the classification results of the node and its neighbors. The classifier
network is trained T rounds in such way.

In the application phase, the final classification of the committee is formed
by all the hypotheses the classifier network learned during the training progress
so that for a new instance its label is decided by the voting. The algorithm is
listed in Fig. 1.

Algorithm Network Boosting

Input: Examples Z = 〈(x1, y1) , (x2, y2) , ..., (xl, yl)〉
Network N
Training rounds T
Sampling parameter ρ
Weight update parameter β

Initialize: wk,1 (xi) = 1 for all sample i = 1, ..., l and node k = 1, ..., K

Do for: 1. Generate a replicate training set Tk,t of size lρ, by weighted
sub-sampling with replacement from training set Z for k = 1, 2, ..., K.
2. Train the classifier (node) Ck in the classifier network with respect
to the weighted training set Tk,t and obtain hypothesis
hk,t : x �→ {−1, +1} for k = 1, ..., K .
3. Update the weight of instance i of node k :

wk,t+1 (i) = wk,t (i) β
I(hk,t(xi)=yi)+

∑
n

I(hn,t(xi)=yi)
/Zk,t, (1)

where node n is neighbor of node i. I is indication function and Zk,t

is a normalization constant, such that
∑l

i=1 wk,t+1 (xi) = 1.

Output: Final hypothesis by majority voting using the learned hypotheses
hk,t : x �→ {−1, +1} for k = 1, ..., K and t = 1, ..., T .

Fig. 1. Algorithm Network Boosting

For convenience, we use NB (K,T, ρ, β) denoting the parameters used by the
Network Boosting when the network is given.

3 Network Game and Boosting

Freund and Schapire [18] showed that boosting can be cast in a game-theoretic
framework [19][20][21]. They treated the problem of learning as a repeated game
and refer to the row player as the learner and the column player as the environ-
ment. Let M be the mistake matrix in which entry M (i, j) is the loss suffered by
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the row player (learner). The game is played from the row player’s perspective
and leave the column player’s (environment) loss or utility unspecified. Mixed
strategies are used by the row and column players in each round. That is, the
row player chooses a distribution P over the rows of M and the column player
chooses a distribution Q over columns. The row player’s expected loss in the
round t is computed as

M (Pt, Qt) =
∑
i,j

Pt (i)M (i, j)Qt (j) = PT
t MQt.

If the column player uses a mixed strategy but the row player chooses a single
row i (pure strategy), then the (expected loss) is

∑
j

M (i, j)Qj which we denote

by M (i, Q) . The notation M (P, j) is defined similarly.
Given a weak learning algorithm, the goal of boosting is to run the weak

learning algorithm many times in the repeated play with the environment (in-
stances), and to combine the learned hypotheses into a final hypothesis with
error rate as small as possible. Von Neumann’s well-known minmax theorem
states that

max
Q

min
P

M (P,Q) = v = min
P

max
Q

M (P,Q) , (2)

for every matrix M . The common value v of the two sides of the equality is
called the value of the game M . Freund and Schapire [18] proved that by using
the LW algorithm, the average loss in the repeated game is not much lager than
the game value v . Here we extend the proof of Freund and Schapire for boosting
algorithm to the Network Boosting algorithm.

Let X be a finite set of instances and H be finite set of hypotheses h : X →
{−1, 1} . Let c : X → {−1, 1} be an unknown target concept, not necessarily in
H .

The mistake matrix M has rows and columns indexed by instances and hy-
potheses, respectively.

M (x, h) =
{

1, if h (x) = c (x)
0, otherwise

. (3)

Assuming (H, c) is γ learnable (so that there exists a γ-weak learning algo-
rithm). On each round t , the learner k in the classifier network computes mixed
strategy Pk,t by normalizing the weights:

Pk,t (i) =
wk,t (i)
l∑

i=1
wk,t (i)

.

Given M (i, Qk,t) for each node k at round t , the environment updates the
weights by the simple multiplicative rule:

wk,t+1 (i) = wk,t (i)β
M(i,Qk,t)+

∑
n

M(i,Qn,t)
(4)

where node n is neighbor of node k and β ∈ [0, 1).
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Theorem 1. For any node k in the classifier network, the accumulative loss
suffered by the instances with parameter β ∈ [0, 1) satisfies:

T∑
t=1

M (Pk,t, Qk,t) ≤ cβ ln l + αβ min
P

T∑
t=1

{M (P,Qk,t)}+

αβ

(
min

j

T∑
t=1

∑
n

M (j,Qn,t)−
T∑

t=1

min
i

∑
n

M (i, Qn,t)

)
(5)

where αβ = ln(1/β)
1−β and cβ = 1

1−β .

The proof of Theorem 1 is given in the appendix.
From Theorem 1 it is clear that when β approaches 1, αβ also approaches 1

and the accumulative loss of row player in the T rounds repeated play will not
be much greater than the loss of the best strategy for node k.

Corollary 2. Under the conditions of Theorem 1 and with β set to

1

1 +
√

2 ln l
T

the average per-trial loss suffered by the instances in node k when T is large
enough is

1
T

T∑
t=1

M (Pk,t, Qk,t) ≤ min
P

1
T

T∑
t=1

{M (P,Qk,t)}+ΔT (6)

where

ΔT =

√
2 ln l
T

+
ln l
T
.

.

Proof: See Section 2.2 in Freund and Shapire [2] and note that

1
T

(
min

j

T∑
t=1

∑
n

M (j,Qn,t)−
T∑

t=1

min
i

∑
n

M (i, Qn,t)

)
approaches 0 when T is large enough.

Corollary 3. Under the conditions of corollary 2, the average expected loss of
the instances over K nodes in the T trainings when T is large enough is

1
KT

K∑
k=1

T∑
t=1

M (Pk,t, Qk,t) ≤ v +ΔT (7)

where v is the value of game M .
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Proof: Let P ∗ be a minmax strategy for M so that for all column strategiesQk,t,
for all k = 1, ...,K and t = 1, ..., T , M (P ∗, Qk,t) ≤ v. According to Corollary 2,

1
KT

K∑
k=1

T∑
t=1

M (Pk,t, Qk,t) ≤ 1
KT

K∑
k=1

T∑
t=1

M (P ∗, Qk,t) +ΔT

≤ v +ΔT

Proof end.
On each round t at the node k , Qk,t may be a pure strategy hk,t and should

be chosen to maximize

M (Pk,t, hk,t) =
l∑

i=1
Pk,tM (i, hk,t) = Pr

x∼Pk,t

[hk,t (x) = c (x)]

In other words, hk,t should have maximum accuracy with respect to distribu-
tion Pk,t . It’s just the goal of weak learner. According to the minmax theorem:

min
x

max
Q

M(x,Q) = min
P

max
Q

M(P,Q)

= v
= max

Q
min

P
M(P,Q) = max

h
min

P
M(P, h)

,

each classifier on the network will learn the target hypothesis asymptotically. So
the combined hypotheses learned by the classifier network will compute a final
hypothesis hfin identical to target c for sufficiently large T .

4 Experiment Results

4.1 Experiments on UCI Repository

In this section we present experiments of C4.5, Bagging, AdaBoost.M1, BB and
Network Boosting on the UCI data sets. We use the implementations of C4.5,
Bagging, AdaBoost.M1 and BB provided by Weka in our experiments [22]. The
experimental setting is described before the results of the experiments. We em-
ployed 16 domains drawn from the UCI Repository [12]. Previously comparisons
of AdaBoost, Bagging and other dynamic classifier integration methods were
made in [23] [5] [24] [7]. The main characteristics of the 16 data sets are pre-
sented in Table 1.

We performed statistical tests to compare the five algorithms. For all the
domains we generate 100 random partitions into training and test set with pro-
portion 60 : 40. Then we train a classifier and compute its test set error on each
partition. C4.5 is employed as base classifier in all the ensemble methods without
the pruning.

In our experiments, we found that sampling parameter 33% achieves better
performance. The same conclusion is drawn in BB algorithm [6]. About the
size and the connection probability of the classifier network, we found that the
accuracy can be improved if the size of the network becomes large (with the
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expense of more calculation demand); the smaller connection probability often
leads to better results for higher connection probability makes the environment
more chaostic.

In order to play fairly, 300 C4.5 base classifiers were used in these four en-
semble methods. For AdaBoost, we constructed ensembles of at most 300 classi-
fiers. However, if the AdaBoost algorithm terminated early (because a classifier
had weighted error greater than 0.5 or unweighted error equal to zero), then a
smaller ensemble was necessarily used. For BB algorithm, BB (30, 10, 1/3) was
used. That is, the aggregate BB classifier is a combination of 300 base classifiers,
resulting from the combination of 30 subsamples of 10 boosting iterations. For
Network Boosting, a classifier network contains 30 classifiers and based on a
random graph with connection probability 0.07 for each pair of nodes and 10
training steps was built. The sampling parameter ρ = 1/3 and β = 0.5 were used
for all the data sets.

Table 1. Description of UCI datasets

Dataset Instances Classes Features
Discrete Continuous

audiology 226 24 69 -
breast-w 699 2 - 9

colic 368 2 15 7
credit-a 690 2 9 6
diabetes 768 2 - 8

glass 214 6 - 9
heart-c 303 2 7 6
heart-h 294 2 7 6
hepatitis 155 2 13 6

iris 150 3 - 4
labor 57 2 8 8
lymph 148 4 15 3

soybean 683 19 35 -
vehicle 846 4 - 18
vote 435 2 16 -

waveform 300 3 - 40

Table 2 shows the average error rate (err) and standard deviation (std) of
each data set tested by every algorithm and results of significance tests of Bag-
ging, AdaBoost, BB with NB. “+” and “-” mean that there is significant dif-
ference between the results of the two algorithms. From the table we can find
that NB can improve the accuracy significantly compared to Bagging, AdaBoost
and BB.

Learning curve analysis provides a powerful tool to inspect the dynamics of
an ensemble learning method [25]. In Figure 2 we show the performance of NB
algorithm on different training steps. Due to lack of space, we do not include the
results for all 16 datasets, but present 5 representative datasets. Every point in
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Table 2. Comparisons of C4.5 and four ensemble methods on UCI datasets. The
columns S1, S2 and S3 show the results of significance tests (at 0.05 the significance
level) of Bagging, AdaBoost.M1 and BB with Network Boosting respectively.

Name C4.5 Bagging AdaBoost BB NB
err ± std err ± std err ± std err ± std S1 S2 S3 err ± std

audiology .2818 ± .0463 .2332 ± .0489 .2126 ± .0420 .2671 ± .0500 - + .2264 ± .0461
breast-w .0610 ± .0125 .0412 ± .0101 .0319 ± .0074 .0339 ± .0101 + - .0356 ± .0082

colic .1792 ± .0263 .1559 ± .0244 .1955 ± .0348 .1561 ± .0229 + .1598 ± .0242
credit-a .1695 ± .0176 .1400 ± .0169 .1391 ± .0158 .1337 ± .0173 .1368 ± .0166
diabetes .2753 ± .0242 .2427 ± .0186 .2647 ± .0201 .2374 ± .0188 + - .2439 ± .0221

glass .3353 ± .0459 .2852 ± .0443 .2572 ± .0493 .3003 ± .0444 + + .2662 ± .0410
heart-c .2413 ± .0355 .2089 ± .0357 .1984 ± .0285 .1780 ± .0281 + + .1793 ± .0309
heart-h .2155 ± .0338 .2008 ± .0282 .2028 ± .0307 .1906 ± .0315 + + .1897 ± .0303
hepatitis .2200 ± .0479 .1829 ± .0387 .1697 ± .0402 .1700 ± .0383 + + + .1563 ± .0359

iris .0618 ± .0305 .0582 ± .0271 .0647 ± .0257 .0602 ± .0313 .0583 ± .0229
labor .2139 ± .0899 .1687 ± .0790 .1430 ± .0733 .1652 ± .0865 + + + .1096 ± .0548
lymph .2500 ± .0484 .2150 ± .0459 .1790 ± .0372 .1840 ± .0485 + + + .1618 ± .0460

soybean .1259 ± .0223 .0936 ± .0205 .0843 ± .0171 .0927 ± .0200 + + + .0742 ± .0144
vehicle .2968 ± .0231 .2622 ± .0205 .2322 ± .0203 .2553 ± .0226 + + .2373 ± .0195
vote .0518 ± .0164 .0403 ± .0136 .0541 ± .0158 .0415 ± .0129 + .0435 ± .0132

waveform .3142 ± .0395 .2108 ± .0417 .1758 ± .0337 .1727 ± .0303 + + + .1621 ± .0286
average .2058 .1712 .1628 .1649 .1526
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Fig. 2. Learning curves of NB on several UCI data sets



Network Game and Boosting 469

the graph is the average error rate of 50 tests at the given training round on that
dataset. From the figure we can find that NB can learn the target hypothesis
quickly after only about 10 training rounds.

4.2 Experiments on Synthetical Data Set

First we begin by specifying a simple model used by Krieger [6]. We suppose
that there are five dependent feature variables, X1, ..., X5 . We generate each
feature i.i.d. from a uniform distribution on the unit interval. The class label Y
is binary and determined only by X1 and X2 according to the following rule:

Y =
{

1, X1 ≤ X2
0, otherwise. (8)

Furthermore, we assume that addition of noise which randomly and indepen-
dently flips the observed class label with some fixed probability 1−p . Under this
distortion we have that P (Y = 1|X1 > X2) = 1 − p and P (Y = 0|X1 ≤ X2) =
1 − p. The special case where p = 1 corresponds to noiseless data. We generate
a training set consisting of 1000 pairs (Y,X) from the Unit Square model. To
test our classifier we provide a noiseless test data set of 10000 points. For bag-
ging and AdaBoost, 300 base classifiers are used; for BB, BB(30,10,1/3) is used;
for Network Boosting, we use NB(30,10,1/3,β) with different β. The connection
probability of network is set 0.07.

Table 3. Comparisons on UnitSquare model

p=1 p=0.9 p=0.8 p=0.7
C4.5 0.0333±0.0037 0.0615±0.0098 0.0881±0.0169 0.1282±0.0291

Bagging 0.0243±0.0035 0.0388±0.0069 0.0576±0.0108 0.0909±0.0232
AdaBoost 0.0236±0.0030 0.0757±0.0171 0.0878±0.0144 0.1278±0.0244

BB(30,10,1/3) 0.0227±0.0039 0.0405±0.0057 0.0596±0.0107 0.0935±0.0231
NB(30,10,1/3,0.5) 0.0204±0.0025 0.0434±0.0070 0.0693±0.0134 0.1286±0.0316
NB(30,10,1/3,0.7) 0.0204±0.0034 0.0379±0.0059 0.0616±0.0113 0.1110±0.0367
NB(30,10,1/3,0.9) 0.0194±0.0038 0.0361±0.0067 0.0512±0.0115 0.0872±0.0216

In Table 3 the comparison results of average error rate and standard devi-
ation are shown on 100 tests. Network Boosting shows high resistance to noise
than others. The significance test (t-test with significance level 0.05) shows that
the results of NB(30,10,1/3,0.9) are significantly better than the results of Ad-
aBoost when data are noisy (p=0.9, p=0.8, p=0.7). With the increasing β, NB
algorithm shows higher ability on defeating noise for the weights of noisy data
will increase slowly with bigger β. As every thing has two sides, with bigger β,
the Network Boosting algorithm needs more training rounds to converge to the
target hypothesis.
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5 Conclusion

In this paper a technique for dynamic integration of classifiers was experimented.
The algorithm is easily run in a distributed system. Under the game theory
framework, we prove that the average expected loss suffered by row player (en-
vironment) is not much larger than that of the game value which means that as
a dual problem the combined hypotheses is an approximate maxmin strategy.
Through the cooperation between classifiers, the classifier network shows re-
markable resistance to overfitting. For the additional computation requirement
introduced by the communication between classifiers (nodes) is small and can be
ignored, the efficiency of NB is equal to Bagging, AdaBoost and BB when the
same number of base classifiers and sample parameter (when generating training
data for each base classifier) are used.

The proposed dynamic integration technique Network Boosting was evalu-
ated with C4.5, AdaBoost, bagging and BB on 16 data sets from the UCI ma-
chine learning repository. The results achieved are promising. In order to show
the Network Boosting’s ability on overfitting, we compared it with others on
UnitSquare model.

In addition, under some conditions, Network Boosting can be reduced to
AdaBoost and Bagging. If there is just one node in the network and weighted
voting is used, then Network Boosting reduces to AdaBoost; if the training steps
of Network Boosting is one, it just equates the bagging algorithm.

Through the experiments, random graph performs well and is a good choice
for NB. How about the performance of Network Boosting if other topologies
introduced? Such topologies include small-world network, scale-free network and
grid network. Further researches are need in the future on explore the dynamic
mechanism of Network Boosting on different network topologies.
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Appendix. Proof of Theorem 1

Proof: For t = 1, ..., T , we have that

l∑
i=1

wk,t+1 (i) =
l∑

i=1
wk,t (i)β

M(i,Qk,t)+
∑
n

M(i,Qn,t)

≤
l∑

i=1
wk,t (i) (1− (1− β)M (i, Qk,t))β

∑
n

M(i,Qn,t)

≤
l∑

i=1
wk,t (i) (1− (1− β)M (i, Qk,t))β

min
i

∑
n

M(i,Qn,t)

=
(

l∑
i=1

wk,t (i)
)

(1− (1− β)M (Pk,t, Qk,t))β
min

i

∑
n

M(i,Qn,t)

(9)
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The first line uses the definition of wk,t+1 (i). The second line comes from
the fact that βx ≤ 1 − (1− β)x for β > 0 and x ∈ [0, 1]. The last line uses the
definition of Pk,t. So we can get the following inequation if we unwrap the Eq.(9)

l∑
i=1

wk,t+1 (i) ≤ l

T∏
t=1

(1− (1− β)M (Pk,t, Qk,t))×
T∏

t=1

β
min

i

∑
n

M(i,Qk,t)

= l

T∏
t=1

(1− (1− β)M (Pk,t, Qk,t))× β

T∑
t=1

min
i

∑
n

M(i,Qk,t)
(10)

Next, note that, for any j ,

l∑
i=1

wk,T+1 (i) ≥ wk,T+1 (j) = β

T∑
t=1

M(j,Qk,t)+
∑
n

M(j,Qn,t)

Combining with Eq.(10) and taking logs gives

(lnβ)
T∑

t=1

{
M (j,Qk,t) +

∑
n
M (j,Qn,t)

}
≤ ln l+

T∑
t=1

ln (1− (1− β)M (Pk,t, Qk,t)) + lnβ
T∑

t=1
min

i

∑
n
M (i, Qn,t)

≤ ln l− (1− β)
T∑

t=1
M (Pk,t, Qk,t) + lnβ

T∑
t=1

min
i

∑
n
M (i, Qn,t)

(11)

Since ln (1− x) ≤ −x for x < 1 . Rearranging terms, and noting that this
expression holds for any given j

T∑
t=1

M (Pk,t, Qk,t)

≤ ln l
1−β + ln(1/β)

1−β min
j

T∑
t=1

{
M (j,Qk,t) +

∑
n
M (j,Qn,t)

}
+ lnβ

1−β

T∑
t=1

min
i

∑
n
M (i, Qn,t)

= ln l
1−β + ln(1/β)

1−β min
P

T∑
t=1
{M (P,Qk,t)}+ ln(1/β)

1−β ×(
min

j

T∑
t=1

{∑
n
M (j,Qn,t)

}
−

T∑
t=1

min
i

∑
n
M (i, Qn,t)

)
.
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Abstract. We propose an omnivariate decision tree architecture which
contains univariate, multivariate linear or nonlinear nodes, matching the
complexity of the node to the complexity of the data reaching that node.
We compare the use of different model selection techniques including
AIC, BIC, and CV to choose between the three types of nodes on stan-
dard datasets from the UCI repository and see that such omnivariate
trees with a small percentage of multivariate nodes close to the root gen-
eralize better than pure trees with the same type of node everywhere.
CV produces simpler trees than AIC and BIC without sacrificing from
expected error. The only disadvantage of CV is its longer training time.

1 Introduction

A decision tree is made up of internal decision nodes and terminal leaves. The
input vector is composed of p attributes, x = [x1, . . . , xp]T , and the aim in
classification is to assign x to one ofK mutually exclusive and exhaustive classes.
Each internal node m implements a decision function, fm(x), where each branch
of the node corresponds to one outcome of the decision. Each leaf of the tree
carries a class label. Geometrically, each fm(x) defines a discriminant in the p-
dimensional input space dividing it into as many subspaces as there are branches.
As one takes a path from the root to a leaf, these subspaces are further subdivided
until we end up with a part of the input space which contains the instances of
one class only.

In a univariate decision tree, the decision at internal node m uses only one
attribute, i.e., one dimension of x, xj . If that attribute is numeric, the decision
is of the form

fm(x) : xj + wm0 > 0 (1)

where wm0 is some constant number. This defines a discriminant which is or-
thogonal to axis xj , intersects it at xj = −wm0 and divides the input space into
two.

A linear multivariate decision tree, each internal node uses a linear combina-
tion of all attributes:

fm(x) : wT
mx + wm0 =

p∑
j=1

wmjxj + wm0 > 0 (2)
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To be able to apply the weighted sum, all the attributes should be numeric
and discrete values need be represented numerically (usually by 1-of-L encod-
ing) beforehand. Note that the univariate numeric node is a special case of the
multivariate linear node, where all but one of wmj is 0 and the other, 1. In this
linear case, each decision node divides the input space into two with a hyper-
plane of arbitrary orientation and position where successive decision nodes on
a path from the root to a leaf further divide these into two and the leaf nodes
define polyhedra in the input space.

In a nonlinear multivariate decision tree, the decision takes the form

fm(x) :
k∑

j=1

wjφj(x) > 0 (3)

where φj(x) are the nonlinear basis functions. In this work, we use a poly-
nomial basis function of degree 2 where for example for x ∈ .2, φ(x) =
[ 1, x1, x2, x

2
1, x

2
2, x1x2] which gives us a quadratic tree.

Surveys of work on constructing and simplifying decision trees can be found
in [1], [2] and [3]. A recent survey comparing different decision tree methods with
other classification algorithms is given in [4].

In this paper, we compare model selection techniques AIC, BIC and CV in
the context of decision tree induction. In Section 2, we show how to apply model
selection techniques in tree induction and we briefly explain the model selection
techniques. In Section 3 we give the related work in the literature. We give our
experiments and results in Section 4 and conclude in Section 5.

2 Tuning Model Complexity

The model selection problem in decision trees can be defined as choosing the
best model at each node of the tree. In our experiments, we use three candi-
date models, namely, univariate, linear multivariate, and nonlinear multivariate
(quadratic). At each node of the tree, we train these three models to separate
two class groups from each other and choose the best. While going from the
univariate to more complex nodes, the idea is to check if we can have a large
decrease in bias with a small increase in variance.

We have previously proposed Omnivariate Decision Tree [5], where we have
used CV to decide the best model from three different models including uni-
variate model, linear perceptron and as nonlinear model multilayer perceptron.
In this work, we have also included AIC and BIC in model selection and used
quadratic model as the nonlinear model because it learns faster than the multi-
layer perceptron model. The use of PCA to decrease model complexity is another
contribution of this work.

For finding the best split at a decision node we use Linear Discriminant
Analysis (LDA) [6]. Since we have binary nodes, if we have K > 2 classes, these
classes must be divided into two class groups and LDA is used to find the best
split to separate these two class groups. We use the heuristic of splitting K > 2
classes into two groups originally proposed by Guo and Gelfand [7].
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For the univariate model, we use univariate LDA and the model complexity
is two, one for the index of the used attribute and one for the threshold. For
the multivariate linear model, we use multivariate LDA and to avoid a singular
covariance matrix, we use PCA with ε = 0.99 to get k new dimensions and the
model complexity is k + 1. For the multivariate quadratic model, we choose a
polynomial kernel of degree 2 ((x1 +x2+. . . +xd+1)2) and use multivariate LDA
to find the weights. Again to avoid a singular covariance matrix, we use PCA
with ε = 0.99 to get m new dimensions and the model complexity is m + 1.
Then, we calculate the generalization error of each candidate model using the
corresponding loglikelihood and model complexity. In the last step, we choose
the optimal model having the least generalization error.

To calculate the error at a decision node, we must first assign classes to the
left and right child nodes. Assume that CL and CR are classes assigned to the
left and right nodes respectively. NL

i and NR
i are the number of instances of

class i choosing left and right branches and NCL and NCR denote the number
of instances of the classes CL and CR respectively.

NCL = arg max
i

NL
i , NCR = arg max

i
NR

i (4)

The error at the decision node will be calculated by subtracting the number of
instances of these two classes (which are correctly classified as they will label
the leaves) from the total number of instances

e =
N −NCL −NCR

N
(5)

When N is the total number of instances, Ni is the number of instances of
class i, and NL and NR are the total number of instances choosing left and right
branches respectively, the loglikelihood is given as

L =
K∑

i=1

NL
i log

NL
i

NL
+

K∑
i=1

NR
i log

NR
i

NR
(6)

Akaike Information Criterion AIC [8] is calculated as

AIC = 2(−L+ d) (7)

where L represents the loglikelihood of the data and d represents the number of
free parameters of the model. We choose the model with the smallest AIC over
the three models we have.

Bayesian Information Criterion BIC [9] is calculated as

BIC = −L+
d

2
logN (8)

where N is the number of data points. Like in AIC, we choose the model with
the smallest BIC value.
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Cross-validation We use 5×2 cross-validation and train all three models and test
them on the validation set ten times and then apply the one-sided version of the
5×2 cv t test [10].

When we have two candidate models we choose the simple model, if it has
smaller or equal error rate compared to the complex model. Only if the complex
model has significantly smaller error rate then it is chosen. When we have three
candidate models, univariate U , linear multivariate L, multivariate quadratic Q
in increasing order of complexity with population error rates denoted by eU , eL,
eQ, we choose one considering both expected error and model complexity. Q is
chosen if H0 : eL ≤ eQ and H0 : eU ≤ eQ are rejected. Otherwise, L is chosen if
H0 : eU ≤ eL is rejected. Otherwise U is chosen.

Note that AIC and BIC do not require a validation set and training is done
once, whereas with CV, in each fold, half of the data is left out for validation
and training is done ten times.

3 Related Work

LDA was first used in Friedman[11] for constructing decision trees. The algorithm
has binary splits at each node, where a split is like in C4.5, i.e. xi < w0 but xi can
be an original variable, transgenerated, or adaptive. Linear discriminant analysis
is applied to construct an adaptive variable. Kolmogorof-Smirnoff distance is
used as the error measure. When there are more than K > 2 classes, it converts
the problem into K different subproblems, where each subproblem separates
one class from others. LTREE [12] is a multivariate decision tree algorithm with
binary splits. LTREE uses LDA to construct new features, which are linear
combinations of the original features. For all constructed features, the best split
is found using C4.5’s exhaustive search technique. Best of these is selected to
create the two children of the current node. These new constructed features can
also be used down the tree in the children of that node. Functional Trees [13]
make simultenaous use of functional nodes and functional leaves in prediction
problems. Bias-variance decomposition of the error showed that, the variance can
be reduced using functional leaves, while bias can be reduced using functional
inner nodes.

In CART [14], parameter adaptation is through backfitting: At each step, all
the coefficients wmj except one is fixed and that coefficient is tuned for possible
improvement in terms of impurity. One cycles through all j until there is no
further improvement. In OC1 [15], an extension to CART is made to get out of
the local optima. A small random vector is added to wm once there is conver-
gence through backfitting. Adding a vector perturbs all coefficients together and
makes a conjugate jump in the coefficient space. Another extension proposed is
to run the method several (20-50) times and choose the best solution in terms
of impurity.

In FACT [16], with K classes a node can have K branches. Each branch
has its modified linear discriminant function calculated using LDA and an in-
stance is channeled to the ith branch to minimize an estimated expected risk.
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QUEST [17] is a revised version of FACT and uses binary splits at each deci-
sion node. It solves the problem of dividing K classes into two classes by using
unsupervised 2-means clustering on the class means of the data. QUEST also
differs from FACT in the way that it does not assume equal variances and uses
Quadratic Discriminant Analysis (QDA) to find the two roots for the split point
and uses the appropriate one. CRUISE[18] is a multivariate algorithm with K-
way nodes. Like FACT, CRUISE finds K − 1 splits using LDA. The departure
from FACT occurs when the split assigns the same class to all its K children.
Because such a split is not useful, the best next class is chosen. Another depar-
ture occurs while assigning a class to a leaf: When there are two or more classes
which have the same number of instances in that leaf, FACT selects randomly
one of them but CRUISE selects the class which has not been assigned to any
leaf node.

In LMDT [19], with K classes, as in FACT, a node is allowed to have K
branches. For each class, i.e., branch, there is a vector of parameters, and the
node implements a K-way split. There is an iterative algorithm that adjusts the
parameters of classes to minimize the number of misclassifications, rather than
an impurity measure as entropy or Gini.

In Logistic model trees [20], logistic classification is used to find the best split
at each decision node. They use a stagewise fitting process to construct logistic
classification models that can select relevant attributes in the data.

4 Experiments

The proposed omnivariate trees are compared on twenty-two datasets from the
UCI machine learning repository [21]. We compare pure univariate, linear and
quadratic trees with omnivariate trees based on AIC, BIC, and CV. Our com-
parison criteria are generalization error (on the validation folds of 5×2 cross-
validation), complexity (as measured by the total number of free parameters in
the tree) and learning time (seconds on a Pentium Xeon 2.7). The error, model
complexity and learning time figures contain boxplots, where the box has lines
at the lower quartile, median, and upper quartile values. The whiskers are lines
extending from each end of the box to show the extent of the rest of the data.
Outliers, shown with ‘+’, are data with values beyond the ends of the whiskers.

In Section 4.1, we give our results in two datasets, pendigits and segment in
detail and in Section 4.2, we give our results on all twenty-two datasets.

4.1 Results on Pendigits and Segment

Figures 1 and 2 show the expected error, model complexity and learning time
plots for pendigits (pen) and segment (seg) respectively. On pendigits, the pure
quadratic tree is more accurate than the pure linear tree which in turn is more
accurate than the pure univariate tree. On segment, the pure univariate tree is
more accurate than the pure linear tree which in turn is more accurate than the
pure quadratic tree. On pendigits, omnivariate trees have expected error close
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Fig. 1. The expected error, model complexity and learning time plots for pendigits
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Fig. 2. The expected error, model complexity and learning time plots for segment

to the pure quadratic tree and on segment, they have expected error close to
that of the pure univariate tree showing that they can automatically adapt to
the problem. Omnivariate tree with CV produces smaller trees (in terms of the
total number of parameters in the tree) than AIC and BIC. AIC and BIC have
similar performances with respect to tree complexity even though BIC penalizes
the complex models more. Due to this reason, on pendigits, AIC selects quadratic
nodes more, which makes it better in terms of expected error compared to BIC
and CV. Since CV uses 5×2 cross-validation, its learning time is higher than
that of AIC and BIC. AIC and BIC trees also have their postpruning stages
where the AIC (or BIC) of a subtree is compared to that of a leaf to possibly be
replaced by it.

Figures 3 and 4 show the number of times of univariate, multivariate lin-
ear and multivariate quadratic nodes are selected at different levels of tree for
pendigits and segment respectively. We see that more complex nodes are selected
early in the tree, closer to the root where the problem is more complex and where
there is more data. As we go down the tree, we have less data and complex nodes
overfit and get rejected. Since pure quadratic tree is the best on pendigits and
pure univariate tree is the best on segment, and since the omnivariate tree fol-
lows the best model, it selects the quadratic node on pendigits and the univariate
node on segment more in the upper levels of the tree. AIC selects more complex
nodes than BIC, which selects more complex nodes than CV, though in terms
of the overall number of nodes, CV has the least because CV-based postpruning
prunes more than AIC-based or BIC-based postpruning.
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Fig. 3. The number of times univariate, multivariate linear and multivariate quadratic
nodes selected at different levels of tree for pendigits
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Fig. 4. The number of times univariate, multivariate linear and multivariate quadratic
nodes selected at different levels of tree for segment

4.2 Results on all Datasets

The average and standard deviations of expected error and model complexity
of decision trees produced by different model selection techniques and univari-
ate, multivariate linear and multivariate quadratic decision trees for twenty-two
datasets are given in Tables 1, 2, and 3 respectively. Since there are more than
two decision tree algorithms to compare, we give two tables where in the first
table the raw results are shown. The third table contains pairwise comparisons;
the entry (i, j) in this second table gives the number of datasets (out of 22) on
which method i is statistically significantly better than method j with at least
95% confidence. In the third table, row and column sums are also given. The
row sum gives the number of datasets out of 22 where the algorithm on the
row outperforms at least one of the other algorithms. The column sum gives the
number of datasets where the algorithm on the column is outperformed by at
least one of the other algorithms.

In general, omnivariate trees are more accurate than pure trees in terms of
expected error. The number of wins of omnivariate trees against pure trees is
more than the number of wins of pure trees against omnivariate ones. We also
see that if there is a significant difference between the pure trees, the omnivariate
tree follows the better tree. For example, on balance, the pure linear tree is the
most accurate and omnivariate trees have similar accuracy to the linear tree by
including many linear nodes. On car, pure univariate and linear trees are the best
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Table 1. The average and standard deviations of expected errors of omnivariate deci-
sion trees and pure trees

Pure Decision Trees Omnivariate Decision Trees
Set UNI LIN QUA AIC BIC CV
bal 25.89± 4.92 12.00± 1.92 24.10± 2.96 13.22± 1.56 12.70± 2.03 10.62± 1.13
bre 5.69± 1.65 4.41± 0.54 3.72± 0.87 5.06± 1.12 4.92± 0.90 4.63± 1.33
bup 40.17± 6.31 33.86± 4.17 41.22± 1.44 37.80± 4.06 37.44± 4.00 35.94± 4.80
car 7.38± 1.67 8.52± 1.64 21.32± 1.93 5.83± 1.07 6.08± 0.85 7.29± 1.77
der 6.99± 1.88 3.33± 1.01 8.75± 1.99 5.74± 1.69 5.69± 1.48 7.70± 1.75
eco 22.42± 3.78 18.17± 2.37 19.45± 2.62 21.41± 3.13 19.23± 2.30 19.74± 3.21
fla 11.15± 0.54 11.39± 0.75 11.15± 0.54 14.79± 3.28 12.14± 2.49 11.21± 0.63
gla 40.48± 9.06 42.71± 3.02 43.59± 6.21 36.80± 3.72 34.30± 3.12 38.40± 6.20
hab 26.54± 0.21 26.47± 0.16 26.41± 0.97 33.58± 4.08 26.47± 0.16 26.60± 0.39
hep 21.67± 1.95 20.39± 0.87 18.33± 2.88 22.57± 3.85 21.93± 4.26 21.93± 3.22
iri 5.47± 4.10 3.07± 1.41 4.80± 3.51 4.14± 1.93 4.27± 2.07 5.73± 1.99
iro 14.14± 2.80 11.56± 2.25 9.51± 2.62 11.51± 2.24 13.79± 1.65 12.71± 2.10
mon 20.79± 7.39 27.50±10.65 16.90± 2.21 10.42± 3.58 9.21± 3.30 20.65± 6.61
pen 7.50± 0.93 3.70± 0.38 1.52± 0.37 1.86± 0.20 2.57± 0.44 3.83± 0.79
pim 29.77± 3.90 23.10± 1.18 26.69± 3.04 30.70± 1.89 29.61± 2.90 30.78± 5.52
seg 6.19± 0.75 9.05± 1.66 10.92± 1.47 4.96± 0.53 4.72± 0.77 6.27± 1.07
tic 13.69± 4.47 29.42± 2.12 27.94± 4.83 18.89± 3.63 8.39± 1.67 16.41± 4.20
vot 4.83± 1.32 5.34± 2.04 8.69± 1.99 5.98± 1.73 5.98± 1.75 4.32± 0.54
wav 25.86± 1.09 14.77± 0.57 15.52± 0.46 20.47± 0.39 20.64± 1.04 16.25± 1.49
win 15.95± 4.16 3.15± 1.91 7.42± 4.00 5.40± 1.68 7.16± 4.59 6.15± 3.76
yea 48.99± 4.04 45.09± 2.50 47.72± 3.64 51.07± 2.03 50.89± 1.63 49.96± 4.95
zoo 10.70± 4.29 22.61± 5.07 21.50± 5.85 5.32± 2.73 5.32± 2.73 11.22± 4.69

and the omnivariate trees select univariate and linear nodes more. On wave and
wine, pure linear and quadratic trees are more accurate than the pure univariate
tree and the omnivariate trees have expected error close to the expected error of
those trees. The model complexity table shows that CV constructs simpler trees
than AIC and BIC. It has more wins (22 against 10 and 15) and less losses (6
against 20 and 22). We see that, CV chooses smaller trees but with more complex
nodes and the trees constructed by CV are as accurate as trees constructed by
AIC and BIC. Since omnivariate trees try all possible models, they have learning
time more than those of trees and because CV tries all possible models ten times
(because of 5×2 cross-validation), it has the longest learning time.

The number of times the univariate, multivariate linear and multivariate
quadratic nodes are selected in omnivariate decision trees produced by AIC,
BIC and CV are given in Table 4. We see that, as expected, quadratic nodes are
selected the least and the univariate nodes are selected the most. Although CV
has the smallest tree complexity, it has the highest percentage of multivariate
nodes (linear 22 percent, nonlinear 1.74 percent). AIC and BIC trees do not
prune as much as the CV tree and therefore their node counts are higher than
the CV tree.
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Table 2. The average and standard deviations of model complexities of omnivariate
decision trees and pure trees

Pure Decision Trees Omnivariate Decision Trees
Set UNI LIN QUA AIC BIC CV
bal 11.7± 4.7 17.9± 1.3 106.9± 0.9 45.5± 5.9 43.2± 10.0 17.0± 0.0
bre 6.0± 3.2 10.2± 0.4 37.1± 1.0 28.0± 10.0 22.4± 5.0 17.1± 12.0
bup 5.3± 4.9 7.3± 2.8 6.1± 9.8 52.3± 5.3 45.1± 16.8 7.9± 4.6
car 28.6± 4.7 19.9± 2.5 110.1± 1.4 67.9± 9.8 63.0± 10.3 27.3± 6.5
der 7.2± 1.2 33.7± 0.5 112.2± 1.5 25.7± 14.7 13.3± 2.1 6.4± 0.7
eco 5.5± 2.9 10.7± 1.3 21.0± 1.4 30.5± 7.8 26.8± 2.8 4.8± 1.2
fla 0.3± 0.9 3.9± 8.2 0.0± 0.0 17.8± 3.4 2.4± 5.1 0.4± 1.3
gla 6.9± 3.7 11.3± 2.4 21.9± 2.6 29.7± 3.7 30.2± 3.9 7.6± 2.3
hab 1.0± 3.2 0.0± 0.0 3.3± 5.3 36.1± 3.7 0.0± 0.0 0.7± 2.2
hep 2.1± 3.2 5.8± 9.3 28.8± 24.9 12.8± 3.2 13.3± 2.2 2.6± 5.9
iri 3.6± 1.0 5.7± 0.5 10.5± 0.5 4.5± 1.4 4.1± 1.7 3.0± 0.0
iro 4.2± 1.9 29.6± 0.7 57.4± 2.9 36.8± 7.9 18.2± 2.5 17.2± 14.5
mon 9.1± 3.6 8.4± 3.6 26.2± 0.4 37.5± 5.4 29.8± 2.2 17.1± 11.8
pen 72.0± 8.2 41.4± 2.0 97.4± 2.2 146.0± 7.7 171.5± 11.5 38.5± 10.0
pim 7.4± 7.6 9.5± 0.8 36.0± 12.7 101.1± 15.6 92.2± 10.5 4.0± 5.3
seg 22.8± 4.1 26.3± 6.7 41.7± 4.9 58.0± 9.8 57.9± 8.0 21.0± 5.4
tic 21.4± 3.5 21.5± 3.0 96.6± 66.7 185.0± 58.1 52.8± 9.6 20.3± 9.2
vot 2.9± 1.5 16.9± 0.7 82.8± 2.4 13.6± 3.0 10.0± 3.9 2.4± 1.3
wav 35.9± 14.3 26.6± 1.7 221.0± 1.2 406.2± 96.4 331.2± 10.4 23.8± 0.9
win 4.0± 0.7 14.0± 0.0 48.0± 1.2 14.3± 0.7 11.4± 4.2 13.1± 3.6
yea 20.0± 10.3 20.2± 4.7 37.6± 3.9 287.9± 13.8 281.3± 13.4 6.9± 3.6
zoo 6.7± 0.8 15.8± 0.9 25.7± 1.6 8.1± 0.9 8.1± 0.9 6.2± 1.1

Table 3. Pairwise comparisons of expected error and model complexities of omnivariate
decision trees and pure trees

Expected Error Model Complexity
AIC BIC CV UNI LIN QUA

∑
AIC BIC CV UNI LIN QUA

∑
AIC 0 2 5 7 7 10 14 AIC 0 1 0 0 3 9 10
BIC 4 0 5 9 7 10 15 BIC 10 0 0 0 5 11 15
CV 5 3 0 5 4 8 15 CV 21 18 0 3 11 20 22
UNI 4 1 1 0 3 6 8 UNI 21 19 6 0 12 19 21
LIN 9 6 5 10 0 9 17 LIN 17 14 2 3 0 19 21
QUA 7 6 3 6 3 0 11 QUA 12 9 0 0 0 0 12∑

14 10 12 17 8 13
∑

22 20 7 4 15 20

The number of times univariate, multivariate linear and multivariate
quadratic nodes selected at different levels of tree for AIC, BIC and CV is given
in Figure 5. We see that AIC selects quadratic nodes more than BIC. This is in
accordance with the literature stating that BIC has a tendency to choose simple
models [22]. BIC selects more quadratic nodes than CV in the early levels of the
tree. For linear nodes, their percentages are close to each other.
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Table 4. The number of times univariate, multivariate linear and multivariate
quadratic nodes selected in decision trees produced by AIC, BIC, and CV

Set AIC BIC CV
UNI LIN QUA UNI LIN QUA UNI LIN QUA

bal 261 34 0 251 21 0 0 10 0
bre 143 18 1 119 14 1 18 8 2
bup 416 44 8 400 26 1 21 9 0
car 452 77 0 433 47 0 101 22 0
der 64 14 0 123 0 0 51 3 0
eco 232 30 4 230 18 0 32 6 0
fla 164 3 1 22 0 0 3 0 0
gla 273 9 5 283 7 2 65 1 0
hab 309 21 13 0 0 0 6 0 0
hep 116 2 0 123 0 0 4 1 0
iri 26 8 1 22 9 0 20 0 0
iro 93 11 6 172 0 0 20 11 0
mon 107 5 13 35 3 10 28 1 7
pen 465 65 66 742 92 18 176 137 2
pim 799 40 9 853 23 1 4 4 0
seg 454 48 13 487 24 3 174 22 4
tic 596 8 11 516 2 0 160 10 7
vot 122 4 0 89 1 0 14 0 0
wav 2792 59 5 3072 30 0 1 27 0
win 8 14 0 31 7 0 10 12 0
yea 2401 157 60 2662 102 18 50 8 1
zoo 71 0 0 71 0 0 52 0 0∑

10364 671 216 10736 426 54 1010 292 23
% 92.12 5.96 1.92 95.72 3.80 0.48 76.22 22.04 1.74
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Fig. 5. Number of times univariate, multivariate linear and multivariate quadratic
nodes selected at different levels of tree for AIC, BIC and CV

5 Conclusion

We propose a novel decision tree architecture, the omnivariate decision tree,
which contains both univariate, multivariate linear, and multivariate quadratic
nodes. The ideal node type is determined via model selection using AIC, BIC or
CV. Such a tree, instead of assuming the same bias at each node, matches the
complexity of a node with the data reaching that node.
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Our simulation results indicate that such an omnivariate architecture general-
izes better than pure trees with the same type of node everywhere. As expected,
the quadratic node, is selected the least, followed by the linear node and the
univariate node. More complex nodes are selected early in the tree closer to the
root. Since there are more nodes in the lower levels, the percentage of univariate
nodes is much higher (> 90% for AIC and BIC, > 75% for CV). This shows that
having a small percentage of multivariate (linear or quadratic) nodes is effective.

CV finds simpler trees than BIC which in turn finds simpler trees than AIC.
Although omnivariate CV trees are simple, they contain complex nodes (multi-
variate linear and nonlinear) more than AIC and BIC. All three methods have
nearly the same error rate. CV produces simpler models without sacrificing from
the expected error. But it has the disadvantage that its training time is longer
due to multiple cross-validation runs.

In the literature, in choosing between nodes or choosing node parameters,
accuracy (information gain or some other measure calculated from fit to data)
is used in growing the tree and some other measure (cross-validation error on
a pruning set or MDL) has been used to prune the tree; the same is also true
for rule learners such as Ripper [23]. Our work proposes to use one criterion
(AIC, BIC, CV) in both growing the tree and pruning it. We believe this makes
more sense than many approaches where separate criteria are used to grow the
tree and then to prune it to alleviate overfitting. Because our approach allows
choosing among multiple models, it is also possible to have different algorithms
for the same node type and choose between them. That is, one can have a palette
of univariate nodes (one by LDA, one by information gain, etc) and the best one
will then be chosen. The same also holds for linear or nonlinear (quadratic, other
kernels, etc) nodes. Our emphasis is on the idea of an omnivariate decision tree
and the sound use of model selection in inducing it, rather than the particular
type of nodes we use in our example decision tree. The nice thing about LDA is
that the same criterion can be used in training univariate, linear and quadratic
nodes and we know that any difference is due to node complexity.

The same model selection idea can also be applied in regression trees by
creating an omnivariate regression tree where at each node there are three can-
didate models, namely, univariate model, linear multivariate model and linear
quadratic model. Then the candidate models at each node try to minimize the
sum of mean square errors of child nodes. For CV based model selection, the
same 5×2 paired t test can be used for comparing the mean square errors of
the candidate models. One can also include different type of models in the leaf
nodes such as linear models and can make model selection for the leaf nodes for
both classification and regression trees.
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Abstract. Context-specific independence representations, such as tree-
structured conditional probability tables (TCPTs), reduce the number
of parameters in Bayesian networks by capturing local independence re-
lationships and improve the quality of learned Bayesian networks. We
previously presented Abstraction-Based Search (ABS), a technique for
using attribute value hierarchies during Bayesian network learning to
remove unimportant distinctions within the CPTs. In this paper, we
introduce TCPT ABS (TABS), which integrates ABS with TCPT learn-
ing. Since expert-provided hierarchies may not be available, we provide a
clustering technique for deriving hierarchies from data. We present em-
pirical results for three real-world domains, finding that (1) combining
TCPTs and ABS provides a significant increase in the quality of learned
Bayesian networks (2) combining TCPTs and ABS provides a dramatic
reduction in the number of parameters in the learned networks, and (3)
data-derived hierarchies perform as well or better than expert-provided
hierarchies.

1 Introduction

Bayesian networks (BNs) are a widely used representation for capturing proba-
bilistic relationships among variables in a domain of interest [12]. They can be
used to provide a compact representation of a joint probability distribution by
capturing the dependency structure among the variables, and can be inductively
learned from data [5, 8].

The conditional probability distributions associated with discrete variables in
a BN are most commonly represented as explicit conditional probability tables
(CPTs), which specify a multinomial distribution over the values of a variable for
each combination of values of its parents. However, researchers have found that
explicitly representing context-specific independence (CSI) relationships in the BN
can reduce the number of parameters required to describe the BN [2]. In particu-
lar, learning methods have been developed that use tree-structured CPTs [7] and
graph-structured CPTs [4] to represent the CSI relationships among the variables.

In previous work, we presented Abstraction-Based Search (ABS) [6], which
used background knowledge in the form of expert-provided attribute value hier-
archies (AVHs) during BN learning. ABS searches the space of possible abstrac-
tions at each variable in the BN. The abstraction process effectively collapses
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the corresponding rows of the CPT, thus reducing the number of parameters
needed to represent the BN and improving the quality of the learned BN.

The abstractions provided by AVHs in ABS are complementary to those
provided by TCPTs. Therefore, in this paper, we provide a new version of
abstraction-based search, TCPT ABS (TABS), which integrates ABS with
TCPTs. Our empirical results show that TABS significantly 1) improves the
quality of the learned BN and 2) reduces the number of parameters required
to represent a learned BN, compared to standard BN learning, ABS, or TCPT
learning alone.

A second contribution of this paper is an agglomerative clustering-based
method for deriving AVHs from the training data used for learning the BN.
Our original motivation for developing this technique was to enable the use of
AVHs in domains where expert-provided AVHs are not available. However, in
our experiments, we found that in general, the learned AVHs yielded equally ac-
curate BNs (using a log likelihood measure) as expert AVHs — and the learned
AVHs resulted in substantially fewer parameters in the BNs than expert AVHs.

The remainder of the paper is organized as follows. We first give background
on BNs, TCPTs, and learning methods for BNs with TCPTs. Next, we introduce
the ABS and TABS methods for incorporating AVHs into the learning process,
and the clustering algorithm for deriving AVHs from training data. We then
provide experimental results in three real-world domains, and finally present
related work, conclusions, and future work.

2 Bayesian Networks

We assume that the reader has some familiarity with basic concepts of BNs [12]
and local search-based methods for learning BNs [8]. In this section, we briefly
introduce the notation, learning methods, and scoring functions that are used in
the remainder of the paper.

A BN is a directed acyclic graph that represents the joint probability distri-
bution of a set of random variables, X = {x1, x2, . . . , xn}. We assume that these
variables are all discrete and finite. The domain of variable xi is given by the set
{vi1, vi2, . . . , viri}, where ri is the number of values that xi may take. A BN over
the set of variables X is represented as a pair, B = (G,Θ). G, the BN struc-
ture, is a directed acyclic graph over X, where the edges represent dependencies
between variables. The BN parameters, Θ, specify the set of conditional proba-
bilities associated with B. A variable xi is independent of its non-descendents in
the network, given its parents πi. Using this conditional independence assump-
tion, the joint probability distribution can be factored as:

P (X) =
∏

i

P (xi|πi). (1)

Given a set of m instances, D = {d1, d2, . . . , dm}, where each dj is an attribute
vector 〈d1j , d2j , . . . , dnj〉, we would like to learn a BN that best matches the
data. Since this problem is NP-hard [3], typically a simple greedy hill-climbing
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Fig. 1. (a) A partial view of the Bayesian network; (b) TCPT at variable x4

search is used. The local search operators are Add(xi, xj), which adds xi as a
parent of xj ; Delete(xi, xj), which removes xi from the parent set of xj ; and
Reverse(xi, xj), which reverses the edge between xi and xj . At each step, the
new graph is evaluated using a scoring function; if the modification leads to a
better network, then it is retained. When there are no missing values in the
data, the scoring function can be decomposed locally, so that when an edge is
added, modified or deleted, only the score of the variable xi whose parent set πi

changed needs to be re-scored.
In our work, we use the Minimum Description Length (MDL) scoring criteria

which attempts to select the hypothesis (i.e., the BN B) that minimizes the de-
scription length of the data D encoded using the BN. There are two components
of the encoded data: the BN itself and the data encoding using the BN. The
description length (DL) of the BN can be further decomposed into the DL of
the structure, plus the DL of the (maximum likelihood) parameters. The DL of
the data is given by its conditional entropy. The mathematical derivation of the
MDL score is given by Bouckaert and others [1, 11].

3 Tree-Structured CPTs

In the TCPT representation, each variable in the BN has an associated tree-
structured CPT. These trees specify the conditional probability of the values
of a variable xi, given its parents πi. The leaves represent different conditional
distributions over the values of xi; the path from the root to a leaf defines the
parent context for that distribution. In many cases, given a particular context
of a subset of πi, the value of xi is independent of the rest of the parents in πi.
TCPTs can capture this local dependency structure.

We use the notation Txi to refer to the TCPT associated with the BN variable
xi. Each variable xj that is a parent of xi in the BN will have one or more
corresponding nodes in Txi . We will refer to these tree nodes as X̄j (to distinguish
them from the variable xj in the BN). Let #(X̄j) be the number of times that X̄j

appears in the tree; we will refer to these tree nodes as X̄j,p (p = 1, 2, . . . ,#(X̄j)).
Each such tree node appears in a different context in the tree. The context of a
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Procedure RefineTree(λ, X̄new)
1. remove λ from RefCand
2. replace λ with X̄new , and create |V al(X̄new)| new leaf nodes below X̄new

3. for each child λ′ of X̄new ,
a. set Candidates(λ′) = Candidates(λ) - {X̄new}
b. add λ′ to RefCand

Procedure ExtendTree(xi)
1. select a leaf node λ for refinement from RefCand with probability

prob ∝ |Candidates(λ)|
2. X̄new = argmint{Score(Txi ∪ X̄t)}

where X̄t is an instance of the tth candidate in Candidates(λ)
3. RefineTree(λ, X̄new)

Fig. 2. TCPT learning algorithm: The RefineTree and ExtendTree procedures

node X̄j,p is defined by the branches (variable/value pairs) along the path from
X̄j,p to the root of the TCPT. We use Υ (X̄j,p) to denote the context of X̄j,p.

For example, Figure 1(b) shows the TCPT at node x4 of the BN shown
in Figure 1(a). Tx4 includes three instances of X̄3: (1) X̄3,1, whose context is
Υ (X̄3,1) = [(X̄2,1 = v21)], (2) X̄3,2, whose context is Υ (X̄3,2) = [(X̄2,1 = v23)],
and (3) X̄3,3, with context, Υ (X̄3,3) = [(X̄2,1 = v22), (X̄1,1 = v12)].

We use Val(X̄j,p) = {v̄j,p1, v̄j,p2, . . .} to denote the set of values X̄j can take in
the tree. In the standard TCPT representation, |Val(X̄j,p)| = rj , the domain size
of xj , and every non-leaf instance of X̄j will have rj outgoing edges. (When using
AVHs, the branches can be associated with abstract values, so the branching
factor will depend on the context of the node (Section 4.3).) The set of all
(Υ (λ), λ) pairs associated with leaf nodes in Txi defines the CPT of xi.

Learning TCPTs. Boutilier et al. [2] present a method for learning TCPTs by
applying a recursive tree building algorithm each time a parent is added to a
variable xi in the BN. The TCPTs are generated using an MDL-based scoring
function that trades off the complexity of the tree structure with the information
gain that it provides. The tree building process is followed by a post-pruning step
to remove unnecessary distinctions in the tree. Tree learning is a sub-step of the
BN structure learning algorithm: each time a variable xj is added to the parent
set of another variable xi, the TCPT for xi is re-learned.

We propose an alternative TCPT learning approach, in which the BN struc-
ture learning process is redefined as the process of learning the TCPTs associated
with individual variables. Instead of adding or removing edges from the network
structure, we use adding and removing nodes in the individual TCPTs as the
basic operations in the hill-climbing search. If the TCPT of xi does not already
contain an instance of xj , then adding such an instance has the effect of adding
an edge from xj to xi in the network. Similarly, removing the last occurrence of
xj from the TCPT of xi is equivalent to removing the edge from xj to xi.

In our representation, each leaf node λ has an associated set of Candidates,
which specifies the candidate variables that are available for further splitting
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the tree at that node. When refining the TCPT, the algorithm tries all possi-
ble variables in this set and then selects the refinement that offers the largest
improvement in the MDL score.

Initially, the root starts with all X̄js except itself in its Candidates set.
As the TCPT is refined, the procedure RefineTree (Figure 2) propagates these
candidates to the new leaf nodes after removing the candidate associated with
the selected refinement. In Figure 1, the root X̄2,1, initially has two candidates
for each of its outgoing edge: Candidates = {X̄1, X̄3}. When the candidate X̄3
is selected for refinement at edge v21, the leaf is replaced with X̄3,1, and the
candidate set of each of X̄3,1’s child leaf node is set to {X̄1}. On the other hand,
when X̄1 is selected for refinement at edge v22, the leaf node at that edge is
replaced with X̄1,1, and each of its child leaf node’s candidate set is set to {X̄3}.

The BN structure is learned by recursively splitting leaf nodes in the TCPTs.
Each TCPT maintains a list RefCand, which lists the candidate nodes in the
tree that can be further refined—i.e., leaf nodes whose Candidates sets are non-
empty. Initially, this set contains only the root of the tree; it is updated as
branches are added to the tree during the splitting process.

The optimal single-step refinement can be found by evaluating all possi-
ble refinements (RefCands) for all variables in the BN, and choosing the one
that most improves the MDL score. However, this is computationally inten-
sive; therefore, we instead randomly choose the next BN variable to refine,
and use the procedure ExtendTree (Figure 2) to select a leaf node to refine.
The probability of a leaf node being selected for refinement is proportional
to the size of the Candidates set at that node. The selected node is then re-
fined using the candidate split that leads to the largest improvement in the
MDL score of the tree. This process of selecting a variable and then refining
its TCPT is performed until a local minimum is reached in the MDL score for
the BN.

4 Learning BNs Using Abstraction Value Hierarchies

We next discuss AVHs in more detail, and then describe the ABS and TABS
learning algorithms.

4.1 Attribute Value Hierarchies

An attribute value hierarchy (AVH) defines an IS-A hierarchy for a categorical
feature value. The leaves of the AVH describe base-level values; these are the
values that occur in the training set. The interior nodes describe abstractions
of the base-level values. The intent is that the AVH is designed to define useful
and meaningful abstractions in a particular domain.

Figure 3 shows an AVH for the Workclass attribute in a U.S. Census do-
main, which describes an individual’s employer type. At the root, all workclass
types are grouped together. Below this are three abstract workclass values—Self-
employed, Government, and Unpaid—and one base-level value—Private. Each
of the abstract values is further subdivided into the lower-level. As shown by
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Self_emp

Workclass

Federal

Gov

Not_incorp Incorp Local State

Private

Without_pay Never_worked

Unpaid

Fig. 3. AVH for the Workclass attribute, with legal (solid) and illegal (dotted) abstrac-
tion levels

this example, an AVH need not be balanced (i.e., path length from leaf values
to the root can vary), and the branching factor (number of children) can vary
within the hierarchy.

A cut through the tree defines an abstraction level, which is equivalent to a
mutually exclusive and complete set of abstract attribute values. Figure 3 shows
three different abstraction levels for the workclass attribute. Each abstraction
level contains the set of values immediately above the cut line. The solid lines
correspond to legal abstraction levels. The upper abstraction level includes the
values Self emp, Gov, Private, and Unpaid. The lower abstraction level includes
the values Not incorp, Incorp, Federal, Local, State, Private, and Unpaid. In
this case, the lower abstraction level makes more distinctions than the upper
abstraction level. The dotted line corresponds to an illegal abstraction level: for
example, it includes both Gov and Local, which are not mutually exclusive.

The AVH helps to bias our search over appropriate abstractions for a cate-
gorical attribute. Without the hierarchy to guide us, we would need to consider
arbitrary subsets of the base-level values for abstractions. Here, the AVH tells
us which combinations of the values are meaningful (and, hopefully, useful in
density estimation).

4.2 Abstraction-Based Search

There are two key tasks to be performed when learning a probabilistic model:
scoring a candidate model and searching the space of possible models. We de-
scribe how these are done when CPTs associated with nodes can be represented
at different abstraction levels.

The original ABS algorithm [6] extended the standard search over network
structures as follows. When an edge is added to the network, the parent is
added at its most abstract level (i.e., using the top-level values in the AVH).
For example, if Workclass is chosen as a parent of another node, the initial
abstraction level would be {Self emp, Gov, Private, Unpaid}.

ABS extends the standard set of BN search operators—arc addition, arc
deletion, and arc reversal—with two new operators: Refine(xi, xj, l) and Abstract
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(xi, xj, l). The search process is a greedy search algorithm that repeatedly applies
these five operators to the current network, evaluates the resulting network using
the Bayesian score based on the MDL approach, and replaces the current network
with the new one if the latter outscores the former.

If xi is the parent of xj , and its current abstraction level is {v′i1, . . . , v′ik′},
Refine(xi, xj, l) refines the lth value of the abstraction, v′l by replacing v′l with the
set of values of its children in the AVH. During the search process, ABS attempts
to apply Refine to each value of each abstraction in the current network. Refine
only succeeds if the value it is applied to is an abstract value (i.e., if the value
has children in the AVH).

Similarly, if xi is the parent of xj , and its current abstraction level is
{v′i1, . . . , v′ik′}, Abstract(xi, xj, l) abstracts the lth value of the abstraction, v′l by
replacing v′l and its siblings with the value of their parent in the AVH. Again,
during search, ABS attempts to apply Abstract to each value of each abstraction
level. Abstract only succeeds if the parent value is below the root node of the
AVH and all of the value’s siblings appear in the abstraction level. For example,
in the lower abstraction level shown in Figure 3, neither condition is satisfied for
the value Unpaid: its parent value is the root node of the hierarchy, and Unpaid’s
siblings Self emp and Gov do not appear in the abstraction level.

4.3 The TCPT ABS Learning Algorithm

TCPTs take advantage of the fact that the value of a node can be independent of
the values of a subset of its parents, given a local context. By incorporating AVHs
into TCPT, we can also take advantage of the fact that certain parent values
may have similar influences on the conditional probabilities of the child node.
This reduces the branching factor of nodes with AVHs, and allows the decision
about whether to make a distinction between certain values to be postponed
until it is required. As a result, we are able to reduce the number of parameters
that are required to be learned for the BN.

Our TCPT ABS (TABS) learning algorithm (Figure 4) extends the TCPT
refining algorithm RefineTree described in Section 3, with some provisions for
adding nodes from AVHs into the TCPT.

Procedure RefineTreeAbs(λ, X̄new)
1. remove λ from RefCand
2. replace λ with X̄new , and create |V al(X̄new)| new leaf nodes below X̄new

3. for each child λ′ of X̄new ,
a. set Candidates(λ′) = Candidates(λ) - {X̄new}
b. for each child value vij of λ′ in the AVH of X̄new ,

(i). if vij is an abstract value,
add a new candidate V ′

ij to Candidates(λ′)
c. add λ′ to RefCand

Fig. 4. TABS learning algorithm: The RefineTreeAbs procedure
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Fig. 5. (a) AVH of x2; (b) AVH of x3; (c) TCPT at variable x4 learned with TABS-E

Suppose we have an AVH for xi; the leaves of the AVH are the ri base values
of xi, {vi1, vi2, . . . , viri}. The internal, or abstract, values in the AVH are given by
{v′i1, v′i2, . . .}. Each abstract value corresponds to a set of base values. In TABS,
when a new tree node is added to a TCPT, it is added at its most abstract level
in the AVH. In other words, when a node X̄j,p is added to a TCPT, its V al(X̄j,p)
includes the set of values in the AVH of xj that are the immediate children of
the root node.

For example, suppose that the BN variables x2 and x3 in the BN of Fig-
ure 1(a) have associated AVHs, as shown in Figures 5(a) and (b). When these
variables are used to split a TCPT node, the set of new branches will be
V al(X̄2,1) = {v′21, v23} and V al(X̄3,1) = {v′31, v′32}, as shown in Figure 5(c).
Since the nodes associated with the abstract values can be further refined, we
create candidate splits for the abstract values, V ′

jk, and add these to Candidates
set of the leaf node associated with the abstract value v′jk. This candidate refine-
ment can be instantiated later through a refine step to split the tree. V al(V ′

jk) is
set to the set of values that are immediate descendants of v′jk in the AVH of xj .

In essence, this enables us to avoid making unnecessary distinctions among
similar values until it is deemed necessary. For example, in Figure 5(c), when we
add node X̄3,1, making a distinction between values v31 and v32 does not offer
any gain in terms of the MDL score. However, once the tree is further split and
node X̄1,2 is added, the distinction between v31 and v32 become more prominent
and so we add the split V ′

31 in the next step.

5 Generating AVHs Using Agglomerative Clustering

It is not always possible to have access to sufficient domain knowledge or the
services of a domain expert to create hierarchies of attribute values. Therefore,
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Procedure BuildAVH(xi,C)
for c from 1 to ri − 1 do

1. find the clusters Cp, Cq in C such that Dist(Cp, Cq) is minimized
2. create a new cluster Cr = Cp

⋃
Cq , and make this new cluster the parent

of Cp and Cq in the hierarchy
3. remove Cp and Cq from C for the next iteration

Fig. 6. Agglomerative clustering algorithm for deriving AVHs from training data

we have developed an agglomerative clustering-based method for deriving AVHs
from the training data used to build the BN.

Given a set of instances D, our goal is to find a hierarchical clustering of the
values for each variable xi. First, we put all of the instances dj that have a par-
ticular value for xi into a cluster, resulting in ri clusters: C = {C1, C2, . . . , Cri},
where Ck = {dj |xij = vik}. These are the initial “leaf clusters.”

The BuildAVH procedure shown in Figure 6 uses average-link agglomerative
clustering to iteratively merge pairs of clusters. The distance Dist(Cp, Cq) is
defined to be the distance between the centroids of the clusters. (Note that
variable xi is ignored in computing the centroids and distances when deriving
the AVH for xi.) For nominal attributes, we use the most frequently occurring
value (mode) of the attribute as the centroid. We use the Hamming distance for
measuring the distance between two centroids. The above technique is repeated
for each attribute xi, yielding a binary AVH.

6 Experimental Results

In this section, we describe results of experiments on three real-world data sets
from the UC Irving Machine Learning Repository [9]: Mushroom, Nursery, and
U.S. Census (ADULT).

Data Sets. The nursery data set (12960 instances) has nine nominal variables, six
of which have associated expert-provided AVHs. This data set is the shallowest
data set that we tested. Most of the AVHs have depth one with a maximum
branching factor of three, except for the class variable, which has five values. The
Mushroom data set (5644 instances) has 23 variables, 17 of which have associated
expert-provided AVHs. This data set also has variables with hierarchies that are
very shallow, but some variables have a higher branching factor (up to five). The
ADULT data set (45222 instances), which is derived from U.S. Census data, has
14 variables (five continuous and nine nominal). We discretized the continuous
variables manually, and created AVHs by hand for nine of the variables.

We also generated data-derived AVHs using the clustering technique de-
scribed in Section 5. Since these AVHs are binary trees, they are much deeper
than the expert-provided AVHs.

Experiments. We compared six different learning algorithms: (1) FLAT: Hill-
climbing with “flat” CPTs—i.e., without abstraction or TCPTs; (2) ABS-E:
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Table 1. Average log likelihood on the three data sets

Log Likelihood Score
Nursery Mushroom Adult

FLAT -21769 ±1.57 -8680.2 ±5.58 -86740 ±105.48
ABS-E -21770 ±3.72 -8683.4 ±8.18 -86741 ±138.92
ABS-D -21762 ±29.02 -8668.8 ±7.95 -84058 ±152.18
TCPT -21736 ± 1.55 -8594.5 ±22.55 -86180 ±21.91

TABS-E -21735 ±2.92 -8557.0 ±15.58 -86165 ±24.40
TABS-D -21634 ±24.11 -8610.4 ±11.72 -83670 ±105.24

ABS using expert-provided AVHs; (3) ABS-D: ABS using data-derived AVHs;
(4) TCPT: TCPT learning; (5) TABS-E: TABS with expert-provided AVHs;
and (6) TABS-D: TABS with data-derived AVHs. Five-fold cross-validation was
used to estimate performance. Each algorithm was run five times on each split
and the network with the best MDL score from these five was retained. The
results reported below are the average results over test sets for the different
cross-validation splits.
Discussion. Table 1 shows the average log likelihood and standard deviations for
the 18 experiments that we ran. TCPTs consistently improve the log likelihood of
learned BNs, relative to FLAT. (Note that log likelihoods of smaller magnitude
correspond to a better fit to the data.) The use of AVHs alone improves the
score although this is not true in all cases. However, note that the combination
of the two, the TABS algorithms, are always the best performers. In two cases,
on Nursery and Adult, the TABS-D algorithm gives significant improvement,
while for Mushroom, the TABS-E algorithm gives the best improvement. The
results on the most complex data set, ADULT, are the most striking.

Table 2 shows the average number of parameters and average number of
edges in the learned BNs. The BNs learned by TCPT have more edges on av-
erage than those learned by FLAT. Similarly, ABS/TABS result in more edges
than FLAT/TCPT (although in some cases, the increase is small). One would
expect these more structurally complex BNs to require a larger number of pa-
rameters. However, in most cases, the resulting networks have more edges and
fewer parameters. In particular, TABS-D consistently yields an equal or greater
number of edges as TCPT, while significantly decreasing the number of param-
eters in all three domains. (On average, TABS-D uses 55.6% fewer parameters
than TCPT.)

Table 2. Average number of parameters and edges for learned BNs

Nursery Mushroom Adult
Params Edges Params Edges Params Edges

FLAT 272.0 11.91 2280.2 43.33 2991.4 22.26
ABS-E 263.6 12.16 2114.8 45.06 2729.6 23.88
ABS-D 234.6 12.63 2446.2 44.93 2496.6 22.13
TCPT 369.4 29.25 1838.2 75.33 2591.2 44.6

TABS-E 286.6 32 1304.2 89.17 3236.6 52.84
TABS-D 182.2 29.4 915.4 106.4 1763.4 49.9
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7 Related Work

Zhang and Honavar have presented methods for using AVHs to learn decision
trees [13] and Näıve Bayes models [14]. Their decision tree learning method has
some similarities to our TCPT construction process, in that it maintains local
contexts at each tree node, and always uses the “most abstract” split available at
a given point in the tree. However, their scoring method is based on information
gain rather than an MDL score, and is applied to classification problems rather
than density estimation. Zhang and Honavar allow the data to be represented
with partially specified attribute values—that is, an attribute can take on any
value in the AVH, not just leaf values. They impute leaf values probabilisti-
cally, based on global frequency counts. Our work could potentially be extended
to permit partially specified values using a similar method. Alternatively, one
might wish to use local frequency counts instead (i.e., impute values based on
context-dependent counts), or to explicitly use “fractional instances” rather than
imputing a single value to each partially specified attribute.

Kang et al. [10] give a method for generating AVTs using a hierarchical ag-
glomerative clustering approach. However, since they are focused on pure clas-
sification tasks, the similarity measure for merging clusters is based only on the
class distributions of the instances associated with a given group of values. (They
use Jensen-Shannon divergence on these distributions to measure distance, al-
though they point out that many other divergence measures are possible.) In
contrast, we use a measure of distance in attribute space, making our similarity
measure appropriate for non-classification (density estimation) tasks.

Previous methods for learning TCPTs typically allow each split in the tree
to be either a full split (which includes a branch for each of the associated vari-
able’s values) or a binary split (which includes one branch for a selected value,
and groups the remaining values into a second branch). The binary split is a type
of näıve abstraction—but this abstraction is purely local (i.e., it does not take
into account expert-provided knowledge or global knowledge about the similarity
of attribute values), and is costly in terms of the number of possible abstrac-
tions that must be tested. Although we have focused on TCPTs in this paper,
other variations of CSI representations, such as decision graphs [4] and deci-
sion tables [7] could also benefit from AVHs. In effect, AVHs provide additional
knowledge—either from an expert in the case of expert-provided AVHs, or from
the entire data set in the case of data-derived data—that can be used to identify
groups of values that are likely to behave similarly.

8 Conclusions and Future Work

We have presented TABS, an extension to Abstraction-Based Search that inte-
grates attribute value hierarchies (AVHs) with tree-structured conditional prob-
ability tables (TCPTs). We also described a clustering-based algorithm for con-
structing AVHs from the training data used for learning a BN. We showed that
the use of AVHs significantly improves the accuracy of the learned BN and
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reduces the number of parameters required to represent the learned BN. In par-
ticular, TABS with the data-derived AVHs consistently yields BNs with the
smallest number of parameters.

In future work, we plan to investigate variations to the tree-learning algo-
rithm and to the clustering techniques for deriving AVHs, including non-binary
agglomerative clustering. We also plan to extend our learning methods to permit
partially specified (abstract) values in the data, and to support a decision graph
representation of local structure.
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Abstract. We consider the problem of predicting how a user will con-
tinue a given initial text fragment. Intuitively, our goal is to develop a
“tab-complete” function for natural language, based on a model that
is learned from text data. We consider two learning mechanisms that
generate predictive models from collections of application-specific docu-
ment collections: we develop an N-gram based completion method and
discuss the application of instance-based learning. After developing eval-
uation metrics for this task, we empirically compare the model-based
to the instance-based method and assess the predictability of call-center
emails, personal emails, and weather reports.

1 Introduction

This paper addresses the problem of predicting the succeeding words of an initial
fragment of natural language text. This problem setting is motivated by applica-
tions that include repetitive tasks such as writing emails in call centers or letters
in an administrative environment; many resulting documents are to some degree
governed by specific underlying patterns that can be learned. The benefit of an
assistance system to the user depends on both the number of helpful suggestions
and the number of unnecessary distractions that they experience. Performance
metrics for other text learning problems do not match the idiosyncrasies of this
problem; we therefore have to discuss an appropriate evaluation scheme.

Generative N -gram language models provide a natural approach to the con-
struction of sentence completion systems; in addition, instance-based learning
can easily be applied to this problem. In order to gain insights on the benefit
of sentence completion methods in various application areas, we conduct ex-
periments using diverse document collections: a collection of call-center emails
with many similar emails, weather reports, cooking recipes, and, on the other
extreme, the disclosed Enron corpus of personal email communication of Enron’s
management staff.

The rest of this paper is organized as follows. We review related work in
Section 2. In Section 3, we discuss the problem setting and appropriate perfor-
mance metrics. We develop the N -gram-based completion method in Section 4.
In Section 5, we discuss empirical results. Section 6 concludes.
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2 Related Work

Shannon [13] analyzed the predictability of sequences of letters. He found that
written English has a high degree of redundancy. Based on this finding, it is
natural to ask whether it is possible to support users in the process of writing
text by learning and predicting the intended next keystrokes, words, sentences, or
even paragraphs. Darragh and Witten [1] have developed an interactive keyboard
that uses the sequence of past keystrokes to predict the most likely succeeding
keystrokes. Clearly, in an unconstrained application context, keystrokes can only
be predicted with limited accuracy. In the specific context of entering URLs,
completion predictions are commonly provided by web browsers [3].

Motoda and Yoshida [12] and Davison and Hirsh [2] developed a Unix shell
which predicts the command stubs that a user is most likely to enter, given the
current history of entered commands. Korvemaker and Greiner [9] have devel-
oped this idea into a system which predicts entire command lines. The Unix
command prediction problem has also been addressed by Jacobs and Blockeel
who predict the next command using variable memory Markov models [7].

In the context of natural language, several typing assistance tools for apraxic
[5, 14] and dyslexic [11] persons have been developed. These tools provide the user
with a list of possible word completions to select from. For these particular users,
scanning and selecting from lists of proposed words is usually more efficient than
typing. By contrast, scanning and selecting from many displayed options can slow
down skilled writers [10, 11]. Assistance tools have furthermore been developed
for translators. Computer aided translation systems combine a translation model
and a language model in order to provide a (human) translator with a list of
suggestions [4]. Grabski and Scheffer [6] have previously developed an indexing
method that efficiently retrieves the sentence from a collection that is most
similar to a given initial fragment.

3 Problem Setting

Given an initial text fragment, a predictor that solves the sentence completion
problem has to conjecture as much of the sentence that the user currently intends
to write, as is possible with high confidence—preferably, but not necessarily, the
entire remainder. The corresponding learning problem is to find such a predictor,
given a corpus that is governed by the same distribution of sentences.

What is an appropriate performance measure for this problem? The per-
ceived benefit of an assistance system is highly subjective, but it is influenced by
quantitative factors that we can measure. We define a system of two conflicting
performance indicators: precision (the inverse risk of unnecessary distractions)
and recall (the keystroke savings). Keystroke savings obtained by accepting sug-
gestions and distraction caused by (rejected) suggestions contribute to the overall
benefit of a system. However, the exact trade-off between the increased typing
speed due to saved keystrokes and the time lost because of distractions is highly
user-specific; any measurement of the actual time savings is a projection of these
conflicting goals for a particular group of users.
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For a given sentence fragment, a completion method may, but need not, cast
a completion conjecture. Whether – and how many – words are suggested will
typically be controlled by a confidence threshold. Given an individual sentence
fragment, we consider the entire conjecture to be falsely positive if at least one
word is wrong. This harsh view reflects previous results which indicate that
selecting, and then editing, a suggested sentence can take longer than writing
that sentence from scratch [10]. In a conjecture that is entirely accepted by the
user, the entire string is a true positive. Note that a conjecture may contain only
a part of the remaining sentence and therefore the recall, which refers to the
length of the missing part of the current sentence, may be smaller than 1.

For a given test collection, precision and recall are defined in Equations 1 and
2. Recall is the fraction of saved keystrokes (disregarding the interface-dependent
single keystroke that is most likely required to accept a suggestion); precision is
the ratio of characters that the users have to scan for each character they accept.
Varying the confidence threshold of a sentence completion method results in a
precision recall curve that characterizes the system-specific trade-off between
keystroke savings and unnecessary distractions.

Precision =

∑
accepted completions string length∑
suggested completions string length

(1)

Recall =

∑
accepted completions string length∑
all queries length of missing part

(2)

4 Algorithms for Sentence Completion

We derive our solution to the sentence completion problem based on a linear
interpolation of N -gram models, and briefly discuss an instance-based method
that provides an alternative approach and baseline for our experiments.

In order to solve the sentence completion problem with an N -gram model,
we need to find the most likely word sequence wt+1, . . . , wt+T given a word
N -gram model and an initial sequence w1, . . . , wt; that is, we need to decode
argmaxwt+1,...,wt+T

P (wt+1, . . . , wt+T |w1, . . . , wt). The N -th order Markov as-
sumption constrains each wt to be dependent on at most wt−N+1 through wt−1.
The individual P (wt|wt−N+1, . . . , wt−1) are the parameters of the model.

Learning Linearly Interpolated N-Gram Models.
Given a fixed Markov order N and a document collection, an N -gram model is
learned by estimating the probability of all combinations of N words.

One solution to overcome sparsity problems of higher order N -grams is to
use a weighted linear mixture of N -gram models, 1 ≤ n ≤ N , Equation 3.

P (wN |w1, . . . , wN−1)=λ1P (wN ) +
N∑

n=2

λnP (wN |wN−n+1, . . . , wN−1) (3)

We learn Models for all n, 1 ≤ n ≤ N on a training fraction, adjust the
parameters λn such that the likelihood of a hold-out fraction is maximized, and
retrain the N -gram models with these fixed λn on the entire data collection.
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Efficient Decoding.
We have to find the most likely completion, argmaxwt+1,...,wt+T

P (wt+1, . . . , wt+T |w1, . . . , wt) efficiently, even though the size of the search space
is |vocabulary size|T . The auxiliary variable δt,s(w′

1, . . . , w
′
N |wt−N+2, . . . , wt)

in Equation 4 quantifies the greatest possible probability over all ar-
bitrary word sequences wt+1, . . . , wt+s, followed by the word sequence
wt+s+1 = w′

1, . . . , wt+s+N = w′
N , conditioned on the initial word sequence

wt−N+2, . . . , wt. Equation 5 utilizes the N -th order Markov assumption, in
Equation 6, we introduce a new random variable w′

0 for wt+s. We can now refer
to the definition of δ and see the recursion in Equation 7.

δt,s(w′
1, . . . , w

′
N |wt−N+2, . . . , wt) (4)

= max
wt+1,...,wt+s

P (wt+1, . . . , wt+s, wt+s+1 = w′
1, . . . , wt+s+N = w′

N |wt−N+2, . . . , wt)

= max
wt+1,...,wt+s

P (w′
N |w′

1, . . . , w
′
N−1) (5)

P (wt+1, . . . , wt+s, wt+s+1 = w′
1, . . . , wt+s+N−1 = w′

N−1|wt−N+2, . . . , wt)

= max
w′

0

max
wt+1,...,wt+s−1

P (w′
N |w′

1, . . . , w
′
N−1) (6)

P (wt+1, . . . , wt+s−1, wt+s = w′
0, . . . , wt+s+N−1 = w′

N−1|wt−N+2, . . . , wt)

= maxw′
0

P (w′
N |w′

1, . . . , w
′
N−1)δt,s−1(w′

0, . . . , w
′
N−1|wt+N−2, . . . , wt) (7)

Exploiting theN -th order Markov assumption, we can now express our target
probability in terms of δ in Equation 8.

max wt+1,...,wt+T P (wt+1, . . . , wt+T |wt−N+2, . . . , wt) (8)

= max w′
1,...,w′

N
δt,T−N (w′

1, . . . , w
′
N |wt−N+2, . . . , wt)

The last N words in the most likely sequence are
argmaxw′

1,...,w′
N
δt,T−N (w′

1, . . . , w
′
N |wt−N+2, . . . , wt). Variable Ψ , defined in

Equation 9 collects the preceding most likely words; it can be determined in
Equation 10. We have now found a Viterbi algorithm that is linear in T .

Ψt,s(w′
1, . . . , w

′
N |wt−N+2, . . . , wt) (9)

= argmax
wt+s

max
wt+1,...,wt+s−1

P (wt+1, . . . , wt+s, wt+s+1 = w′
1, . . . , wt+s+N = w′

N |wt−N+2, . . . , wt)

= argmax w′
0

δt,s−1(w′
0, . . . , w

′
N−1|wt−N+2, . . . , wt) P (w′

N |w′
1, . . . , w

′
N−1) (10)

The Viterbi algorithm starts with the most recently entered word wt and moves
iteratively into the future. The process terminates when the N -th token in the
highest scored δ is a period, or when the highest δ score is below a threshold
θ. In each step, Viterbi has to store and update |vocabulary size|N many δ
values – unfeasibly many except for very small N . Therefore, in Table 1 we
develop a Viterbi beam search algorithm which is linear in T and in the beam
width. When the globally most likely sequence w∗

t+1, . . . , w
∗
t+T has an initial

subsequence w∗
t+1, . . . , w

∗
t+s which is not among the k most likely sequences of

length s, then that optimal sequence is not found.
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Table 1. Sentence completion with Viterbi beam search algorithm

Input: N-gram language model, initial sentence fragment w1, . . . , wt, beam width k,
confidence threshold θ.

1. Viterbi initialization:
Let δt,−N(wt−N+1, . . . , wt|wt−N+1, . . . , wt) = 1;
Let s = −N + 1;
beam(s − 1) = {δt,−N (wt−N+1, . . . , wt|wt−N+1, . . . , wt)}.

2. Do Viterbi recursion until break:
(a) For all δt,s−1(w′

0, . . . , w
′
N−1| . . .) in beam(s − 1), for all wN in vocab-

ulary, store δt,s(w′
1, . . . , w

′
N | . . .) (Equation 7) in beam(s) and calculate

Ψt,s(w′
1, . . . , w

′
N | . . .) (Equation 10).

(b) If argmaxwN
maxw′

1,...,w′
N−1

δt,s(w′
1, . . . , w

′
N | . . .) = period then break.

(c) If max δt,s(w′
1, . . . , w

′
N |wt−N+1, . . . , wt) < θ then decrement s; break.

(d) Prune all but the best k elements in beam(s).
(e) Increment s.

3. Let T = s + N . Collect words by path backtracking:
(w∗

t+T−N+1, . . . , w
∗
t+T ) = argmax δt,T−N (w′

1, . . . , w
′
N |...).

For s = T − N . . . 1: w∗
t+s = Ψt,s(w∗

t+s+1, . . . , w
∗
t+s+N |wt−N+1, . . . , wt).

Return w∗
t+1, . . . , w

∗
t+T .

Instance-based Sentence Completion
An alternative to N -gram models is to retrieve, from the training collection, the
sentence that starts most similarly, and use its remainder as a completion hy-
pothesis. The cosine similarity of the tfidf representation of the initial fragment
to be completed, and an equally long fragment of each sentence in the training
collection gives both a selection criterion for the nearest neighbor and a con-
fidence measure that can be compared against a threshold in order to achieve
a desired precision recall balance. Grabski and Scheffer [6] have developed an
indexing structure that retrieves the most similar (in terms of cosine similarity)
sentence fragment in sub-linear time.

5 Empirical Studies

We investigate (a) how N -gram models compare to the instance-based method
in terms of precision/recall; (b) how well N -gram models complete sentences
from collections with diverse properties. We use four document collections. The
first contains emails sent by the customer center of a large online store [6] (7094
sentences). The second contains 3189 personal emails sent by Enron executive
Jeff Dasovich, extracted from the Enron email corpus [8]. The third collection
contains textual daily weather reports of five years. The last collection contains
about 4000 cooking recipes.

We reserve 1000 sentences of each data set for testing and split the remaining
sentences in training (75%) and tuning (25%) set for λn. We mix N -gram models
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up to an order of five. The beam width k is set to 20. We randomly draw 1000
sentences and a position at which we split it into initial fragment and remainder
to be predicted. We loop over the number of words to predict, decode the most
likely completion of that length, and provide a human evaluator with both,
the true sentence as well as the initial fragment plus the current completion
conjecture. The judges decide whether they would accept this prediction without
any changes, given that they intend to write the actual sentence. For each judged
prediction length, we record the threshold that would lead to that prediction;
thus, we determine precision and recall for all thresholds.

Figure 1 compares the precision recall curves of the N -gram and instance-
based methods. Note that the maximum possible recall is typically much smaller
than 1. Recall measures the rate of keystroke savings; a value of 1 indicates that
the user saves all keystrokes. Some of the precision recall curves have a concave
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Fig. 1. Precision recall curves for N-gram and instance-based methods

shape. Decreasing the threshold value increases the number of predicted words,
but it also increases the risk of at least one word being wrong. In this case, the
entire sentence counts as an incorrect prediction, causing a decrease in both,
precision and recall. Therefore – unlike in the standard information retrieval
setting – recall does not increase monotonically when the threshold is reduced.

For three data collections, the instance-based learning method achieves the
highest maximum recall (each conjecture predicts the entire remainder of the
sentence—at a low precision), but for nearly all recall levels the N -gram model
achieves a much higher precision. For practical applications, a high precision
avoids distracting, wrong predictions. The N -gram model can be tuned to a
wide range of different precision recall trade-offs (precision can often reach 1),
whereas the threshold has little influence on precision and recall of the instance-
based method. The standard error of the measurements is below 0.016.
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How do precision and recall depend on the string length of the initial frag-
ment? Figure 2 details this relationship. The performance of the instance-based
method depends crucially on a long initial fragment. The N -gram model works
best when the initial fragment is at least four (N − 1), but the model does not
benefit from additional tokens.
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Fig. 2. Precision and recall dependent on string length of initial fragment (words)

The four text collections have diverse properties. The N -gram model per-
forms remarkably on the service center emails. Users can save 60% of their
keystrokes with 85% of all suggestions being entirely accepted by the users, or
save 40% keystrokes at a precision of over 95%. For cooking recipes, users can
save 8% keystrokes at 60% precision or 5% at 80% precision. For weather re-
ports, possible keystroke savings are 2% at 70% correct suggestions or 0.8% at
80%. Finally, Jeff Dasovich of Enron can enjoy only a marginal benefit: below
1% of keystrokes are saved at 60% precision, or 0.2% at 80% precision.

We observe that these performance results correlate with the entropy of the
data sets, and with the N -gram mixture weights. The service center data has
an entropy of only 1.41 (i.e., 1.41 bits are needed, on average, to encode the
next token, given the four preceding tokens); they are excellently predictable. A
mixing weight of 40% is assigned to the 3-gram, 30% to the 4-gram and 10% to
the 5-gram model. The entropy of the cooking recipes and the weather reports
are 4.14 and 4.67, respectively. About 25% probability mass are assigned to the
each of the unigram, bigram, and trigram model.

For the Enron data, λ1 = 50% is assigned to the unigram and λ2 = 30% to
the bigram; hence, the model can often just guess stop words that have a high
prior probability. Jeff Dasovich’s personal emails have an entropy of 7.17 and
are therefore almost as unpredictable as Enron’s share price. This argues that
the entropy of a text collection is an excellent measure that indicates whether,
for a given discourse area, a user will benefit from sentence completion.

6 Conclusion

We find precision (the number of suggested characters that the user has to read
for every character that is accepted) and recall (the rate of keystroke savings)
to be appropriate performance metrics for the problem of predicting subsequent
words in a given initial fragment. We developed an efficient sentence completion
method based on N -gram language models.
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Our experiments lead to two main conclusions. (a) The N -gram based com-
pletion method has a better precision recall profile than the nearest neighbor
method. It can be tuned to a wide range of trade-offs, a high precision can be
obtained. (b) Whether sentence completion is helpful strongly depends on the
diversity of the document collection. For service center emails, a keystroke sav-
ing of 60% can be achieved at 85% acceptable suggestions; by contrast, only a
marginal keystroke saving of 0.2% can be achieved for Jeff Dasovich’s personal
emails at 80% acceptable suggestions. The entropy of the text is a strong indica-
tor of the potential benefit of sentence completion that can easily be measured.
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Abstract. We propose a novel online kernel classifier algorithm that
converges to the Hard Margin SVM solution. The same update rule is
used to both add and remove support vectors from the current classifier.
Experiments suggest that this algorithm matches the SVM accuracies
after a single pass over the training examples. This algorithm is attractive
when one seeks a competitive classifier with large datasets and limited
computing resources.

1 Introduction

Support Vector Machines (SVMs) [1] are the successful application of the kernel
idea [2] to large margin classifiers [3]. Early kernel classifiers [2] were derived
from the perceptron [4], a simple and efficient online learning algorithm. Many
authors have sought to replicate the SVM success by applying the large margin
idea to such simple online algorithms [5, 6, 7, 8, 9, 10].

This paper proposes a simple and efficient online kernel algorithm which
combines several desirable properties:
– Continued iterations of the algorithm eventually converge to the exact Hard

Margin SVM classifier.
– Like most SVM algorithms, and unlike most online kernel algorithms, it

produces classifiers with a bias term. Removing the bias term is a known
way to simplify the numerical aspects of SVMs. Unfortunately, this can also
damage the classification accuracy [11].

– Experiments on a relatively clean dataset indicate that a single pass over the
training set is sufficient to produce classifiers with competitive error rates,
using a fraction of the time and memory required by state-of-the-art SVM
solvers.
Section 2 reviews the geometric interpretation of SVMs. Section 3 presents

a simple update rule for online algorithms that converge to the SVM solution.
Section 4 presents a critical refinement and describes its relation with previous
online kernel algorithms. Section 5 reports experimental results. Finally section
6 discusses the algorithm capabilities and limitations.

2 Geometrical Formulation of SVMs

Figure 1 illustrates the geometrical formulation of SVMs [12, 13]. Consider a
training set composed of patterns xi and corresponding classes yi = ±1. When
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X XNP XN
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λ=
1−α
−α

XP’
kx

Fig. 1. Geometrical interpretation of
Support Vector Machines

Fig. 2. Basic update of the HULLER

the training data is separable, the convex hulls formed by the positive and neg-
ative examples are disjoint. Consider two points XP and XN belonging to each
convex hull. Make them as close as possible without allowing them to leave
their respective convex hulls. The median hyperplane of these two points is the
maximum margin separating hyperplane.

The points XP and XN can be parametrized as

XP =
∑

i∈P αixi

∑
i∈P αi = 1 αi ≥ 0

XN =
∑

j∈N αjxj

∑
j∈N αj = 1 αj ≥ 0 (1)

where sets P and N respectively contain the indices of the positive and negative
examples. The optimal hyperplane is then obtained by solving

min
α
‖XP −XN‖2 (2)

under the constraints of the parametrization (1). The separating hyperplane is
then represented by the following linear discriminant function:

ŷ(x) = (XP −XN ) x + (XNXN −XP XP )/2 (3)

Since XP and XN are represented as linear combination of the training pat-
terns, both the optimization criterion (2) and the discriminant function (3) can
be expressed using dot products between patterns. Arbitrary non linear classi-
fiers can be derived by replacing these dot products by suitable kernel functions.
For simplicity, we discuss the simple linear setup and leave the general kernel
framework to the reader.

3 Single Example Update
We now describe a first iterative algorithm that can be viewed as a simplification
of the nearest point algorithms discussed in [14, 11]. The algorithm stores the
position of points XP and XN using the parametrization (1). Each iteration
considers a training pattern xk and updates the position of XP (when yk = +1)
or XN (when yk = −1.)

Figure 2 illustrates the case where xk is a positive example (negative exam-
ples are treated similarly). The new point X′

P is a priori the point of segment
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[XP ,xk] that minimizes the distance ‖X′
P −XN‖2. The new point X′

P can be
expressed as X′

P = (1− λ)XP + λxk with 0 ≤ λ ≤ 1.
This first algorithm is flawed: suppose that the current XP contains a non

zero coefficient αk that in fact should be zero. The algorithm cannot reduce
this coefficient by selecting example xk. It must instead select other positive
examples and slowly erode the coefficient αk by multiplying it by (1 − λ). A
simple fix was proposed by Haffner [15]. If the coefficient αk is strictly positive,
we can safely let λ become slightly negative without leaving the convex hull. The
revised constraints on λ are then −αk/(1− αk) ≤ λ ≤ 1.

The optimal value of λ can be computed analytically by first computing
the unconstrained optimum λu. When xk is a positive example, solving the
orthogonality equation (XP −X′

P )(XN −X′
P ) = 0 for λ yields:

λu =
(XP − XN )(XP − xk)

(XP − xk)2
=

XP
2 − XN XP − XP xk + XN xk

XP
2 + x2

k − 2XP xk

(4)

Similarly, when xk is a negative example, we obtain:

λu =
(XN − XP )(XN − xk)

(XN − xk)2
=

XN
2 − XN XP − XN xk + XP xk

XN
2 + x2

k − 2XN xk

(5)

A case by case analysis of the constraints shows that the optimal λ is:

λ = min
(

1,max
(

−αk

1− αk
, λu

))
(6)

Both expressions (4) and (5) depend on the quantities XP XP , XNXP , and
XNXN whose computation could be expensive. Fortunately there is a simple
way to avoid this calculation: in addition to points XP and XN , our algorithm
also maintains three scalar variable containing the values of XP XP , XNXP ,
and XP XP . Their values are recursively updated after each iteration: when xk

is a positive example,

X ′
P X ′

P =(1 − λ)2XP XP + 2λ(1 − λ)XP xk + λ2xkxk

XN X ′
P =(1 − λ)XN XP + λXN xk

XN XN =XN XN

(7)

and similarly, when xk is a negative example,

XP XP =XP XP

X ′
N XP =(1 − λ)XN XP + λxkXP

X ′
N X ′

N =(1 − λ)2XN XN + 2λ(1 − λ)XN xk + λ2xkxk

(8)

Figure 3 shows the resulting update algorithm. The cost of one update is dom-
inated by the calculation of XP xk and XNxk. This calculation requires the
dot products between xk and all the current support vectors, i.e. the training
examples xi with non zero coefficient αi in the parametrization (1).
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UPDATE(k):

- Compute XP xk, XN xk, and xkxk.
- Compute λu using equations (4) or (5).
- Compute λ using equation (6)
- αi ← (1 − λ)αi for all i such that yi = yk.
- αk ← αk + λ.
- Update XP XP , XN XP and XN XN using equation (7) or (8).

Fig. 3. Algorithm for the basic update

HULLER:

- Initialize XP and XN by averaging a few points.
Compute initial XP XP , XN XP , and XN XN .

- Iterate:
- Pick a random p such that αp = 0
- UPDATE(p)
- Pick a random r such that αr �= 0
- UPDATE(r)

Fig. 4. The HULLER algorithm

4 Insertion and Removal
Simply repeating this update for random examples xk works poorly. Most of the
updates do nothing because they involve examples that are not support vectors
and have no vocation to become support vectors. A closer analysis reveals that
the update operation has two functions:

– Performing an update for an example xk such that αk = 0 represents an
attempt to insert this example into the current set of support vectors. This
occurs when the optimal λ is greater than zero, that is, when the point xk

violates the SVM margin conditions.
– Performing an update for an example xk such that αk �= 0 will optimize the

current solution and possibly remove this example from the current set of
support vectors. The removal occurs when the optimal λ reaches its (nega-
tive) lower bound.

Recent work on kernel perceptrons [10] also rely on two separate processes to
insert and remove support vectors from the expression of the current separating
hyperplane. This paper discusses a situation where both functions are imple-
mented by the same update rule (figure 2). Picking the examples xk randomly
gives a disproportionate weight to the insertion function.

The HULLER algorithm, figure 4, corrects this imbalance by allocating an
equivalent computing time to both functions. First, it picks a random example
that is not a current support vector and attempts to insert it into the current set
of support vectors. Second, it picks a random example that is a current support
vector and attempts to remove it from the current set of support vectors. This
simple modification has a dramatic effect on the convergence speed.
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5 Experiments
The HULLER algorithm was implemented in C and benchmarked against the
state-of-the-art SVM solver LIBSVM1 on the well known MNIST2 handwritten
digit dataset. All experiments were run with a RBF kernel width parameter
γ = 0.005. Both LIBSVM and the HULLER implementation use the same code
to compute the kernel values and similar strategies to cache the frequently used
kernel values. The cache size was initially set to 256MB.

Figure 5 reports the experimental results on the ten problems consisting
of classifying each of the ten digit category against all other categories. The
HULLER algorithm was run in epochs. Each epoch sequentially scans the ran-
domly permuted MNIST training set and attempts to insert each example into
the current set of support vectors (first update operation in figure 4). After each
insertion attempt, the algorithm attempts to remove a random support vector
(second update operation in figure 4.)

The HULLER×1 results were obtained after a single epoch, that is after
processing each example once. The HULLER×2 results were obtained after two
epochs. All results are averages over five runs.

The HULLER×2 test errors (top left graph in figure 5) closely match the
LIBSVM solution. This is confirmed by counting the number of support vec-
tors (bottom left graph), The HULLER×2 computing times usually are slightly
shorter than the already fast LIBSVM computing times (top right graph).

The HULLER×1 test errors (top left graph in figure 5) are very close to
both the HULLER×2 and LIBSVM test errors. Standard paired significance tests
indicate that these small differences are not significant. This accuracy is achieved
after less than half the LIBSVM running time, and, more importantly, after a
single sequential pass over the training examples. The HULLER×1 always yields
a slightly smaller number of support vectors (bottom left graph). We believe that
a single HULLER epoch fails to insert a few examples that appear as support
vectors in the SVM solution. A second epoch recaptures most missing examples.

Neither the HULLER×1 or HULLER×2 experiments yield the exact SVM
solution. On this dataset, the HULLER typically reaches the SVM solution after
five epochs. The corresponding computing times are not competitive with those
achieved by LIBSVM.

These results should also be compared with results obtained with a theoreti-
cally justified kernel perceptron algorithm. Figure 5 contains results obtained with
the AVERAGED PERCEPTRON [5] using the same kernel and cache size. The first
epoch runs very quickly but does not produce competitive error rates. The AVER-
AGED PERCEPTRON approaches3 the LIBSVM or HULLER×1 accuracies after
ten epochs4. The corresponding training times stress the importance of the kernel
cache size. When the cache can accomodate the dot products of all examples with
all support vectors, additional epochs require very little computation. When this
is not the case, the AVERAGED PERCEPTRON times are not competitive.
1 http://www.csie.ntu.edu.tw/∼cjlin/libsvm
2 http://yann.lecun.com/exdb/mnist
3 This is consistent with the empirical results reported in [5] (table 3).
4 The Averaged Perceptron theoretical guarantees only hold for a single epoch.
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Fig. 5. MNIST results for the HULLER (one and two epochs), for LIBSVM, and for
the AVERAGED PERCEPTRON (one and ten epochs). Top left: test error accuracies.
Top right: training time. Bottom left: number of support vectors. Bottom right: training
time as a function of the number of support vectors.

Fig. 6. Computing times with various cache sizes. Each color indicates the additional
time required when reducing the cache size. The HULLER times remain virtually
unchanged.
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Figure 6 shows how reducing the cache size affects the computing time.
Whereas LIBSVM experiences significantly increased training times, the HULLER
training times are essentially unchanged. The most dramatic case is the sepa-
ration of digit “1” versus all other categories. The initial 256MB cache size is
sufficient for holding all the kernel values required by LIBSVM. Under these con-
dition, LIBSVM runs almost as quickly as the HULLER×1. Reducing the kernel
cache size to 128MB doubles the LIBSVM training time and does not change the
HULLER training times.

A detailled analysis of the algorithms indicate that LIBSVM runs best when
the cache contains all the dot products involving a potential support vector
and an arbitrary example: memory requirements grow with both the number of
support vectors and the number of training examples. The HULLER runs best
when the cache contains all the dot products involving two potential support
vectors: the memory requirements grow with the number of support vectors
only. This indicates that the HULLER is best suited for problems involving a
large separable training set.

6 Discussion

Fast start versus deep optimization. The HULLER processes many more ex-
amples during the very first training stages. After processing the first pair of
examples, the SMO core of LIBSVM must compute 120000 dot products to up-
date the example gradients and choose the next pair. During the same time, the
HULLER processes at least 500 examples. By the time LIBSVM has reached the
fifth pair of examples, the HULLER has processed a minimum of 1500 fresh ex-
amples. Online kernel classifiers without removal step tend to slow down sharply
because the number of support vectors increases quickly. The removal step en-
sures that the number of current support vectors does not significantly exceed
the final number of support vectors.

To attain the exact SVM solution with confidence, the HULLER also must
compute all the dot products it did not compute in the early stages. On the other
hand, when the kernel cache size is large enough, LIBSVM already knows these
values and can use this rich local information to move more judiciously. This
is why LIBSVM outperforms the huller in the final stages of the optimization.
Nevertheless, the HULLER produces competitive classifiers well before reaching
the point where it gets outpaced by state-of-the-art SVM optimization packages
such as LIBSVM.

Noisy datasets. The HULLER addresses the hard margin SVM problem and
therefore performs poorly on noisy datasets [16]. Most online kernel classi-
fiers share this limitation. However, soft margin support vector machines with
quadratic slacks [16] can be implemented as hard margin support vector ma-
chines with a modified kernel KC(xi,xj) = K(xi,xj) + 1

C δij . However, the
resulting classifier is not directly comparable to the standard soft-margin SVM
with linear slacks.
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7 Conclusion

The HULLER is a novel online kernel classifier algorithm that converges to the
Hard Margin SVM solution. Experiments suggest that it matches the SVM ac-
curacies after a single pass over the training examples. Time and memory re-
quirements are then modest in comparison to state-of-the-art SVM solvers.
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References
1. Vapnik, V.N.: The Nature of Statistical Learning Theory. Springer Verlag, New

York (1995)
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Abstract. We propose in this paper a novel approach to the induction
of the structure of Hidden Markov Models. The induced model is seen as
a lumped process of a Markov chain. It is constructed to fit the dynamics
of the target machine, that is to best approximate the stationary distri-
bution and the mean first passage times observed in the sample. The
induction relies on non-linear optimization and iterative state splitting
from an initial order one Markov chain.

Keywords: HMM topology induction, Partially observable Markov
models, Mean first passage times, Lumped Markov process, State split-
ting algorithm.

1 Introduction

Hidden Markov Models (HMMs) are widely used in many pattern recognition
areas, including applications to speech recognition [10], biological sequence mod-
eling [4], information extraction [5,6] and optical character recognition [8], to
name a few. In most cases, the model structure, also referred to as topology, is
defined according to some prior knowledge of the application domain. Automatic
techniques for inducing the HMM topology are interesting as the structures are
sometimes hard to define a priori or need to be tuned after some task adaptation.
The work described here presents a new approach towards this objective.

Previous works with HMMs mainly concentrated either on hand-built models
(e.g. [5]) or heuristics to refine predefined structures combined with EM estima-
tion [6]. More principled approaches are the Bayesian merging technique due
to Stolcke [12] and the maximum likelihood state-splitting method of Ostendorf
and Singer [9]. The former approach however has not been shown to clearly
outperform alternative approaches while the latter is specific to the subclass of
left-to-right HMMs modeling speech signals.

The present contribution describes a novel approach to the structural induc-
tion of HMMs. The general objective is to induce the structure and to estimate
the parameters of a HMM from a sample assumed to have been drawn from an
unknown target HMM. The goal however is not the identification of the target

J. Gama et al. (Eds.): ECML 2005, LNAI 3720, pp. 513–521, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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model but the induction of a model sharing with the target the main features of
the distribution it generates. We restrict here our attention to features that can
be deduced from the sample. These features are closely related to fundamental
quantities of a Markov process, namely the stationary distribution and mean
first passage times (MFPT). In other words, the induced model is built to fit
the dynamics of the target machine observed in the sample, not necessarily to
match its structure.

Section 2 reviews some useful definitions coming from the theory of discrete
Hidden Markov Models and Markov Chains. We use here a specific representation
class for distributions generated by HMMs, called Partially Observable Markov
Models (POMMs). This class is general enough since any discrete HMM can
equivalently be represented by a POMM [2].

HMMs are able to model a class of distributions broader than finite order
Markov chains. In particular, section 3 describes why HMMs, with an appro-
priate topology, are well suited to represent long term probabilistic dependen-
cies in a compact way. We also argue why accurate modeling of these depen-
dencies cannot be achieved through the classical approach of Baum-Welch es-
timation of a fully connected model. These observations motivate the use of
MFPT to guide the search of an appropriate model. The resulting induction
algorithm is presented in section 4. Comparative results given in [3] illustrate
the superiority of POMM induction over variable order Markov chains (equiv-
alent to back-off smoothed Ngrams) and EM estimation of a fully connected
HMM.

2 Partially Observable Markov Models, Markov Chains
and Lumped Processes

We introduce here Partially Observable Markov Models and we review some
fundamental notions of the Markov chains theory.

Definition 1 (POMM). A Partially Observable Markov Model (POMM) is
a HMM M = 〈Σ, Q, A, B, ι〉 where Σ is an alphabet, Q is a set of states,
A : Q × Q → [0, 1] is a mapping defining the probability of each transition,
B : Q × Σ → [0, 1] is a mapping defining the emission probability of each let-
ter on each state, and ι : Q → [0, 1] is a mapping defining the initial proba-
bility of each state. Moreover, the emission probabilities satisfy: ∀q ∈ Q, ∃a ∈
Σ such that B(q, a) = 1.

In other words, each state of a POMM only emits a single letter. This model
is called partially observable since, in general, several distinct states can emit
the same letter. As for a HMM, the observation of a string emitted during a
random walk does not allow one to identify the states from which each letter
was emitted. However, the observations define state subsets from which each
letter may have been emitted. Any distribution generated by a HMM with |Q|
states over an alphabet Σ can be represented by a POMM with O(|Q|.|Σ|)
states [2].
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The notion of POMM is closely related to a standard Markov Chain (MC).
Indeed, in the particular case where all states emit a different letter, the process
of a POMM is fully observable. Moreover the Markov property is satisfied as, by
definition, the probability of any transition only depends on the current state.
Some fundamental properties of a Markov chain are recalled hereafter and the
links between a POMM and a MC are further detailed. A MC can be represented
by a 3-tuple T = 〈Q, A, ι〉 where Q is a finite set of states, A is a |Q| × |Q|
transition probability matrix and ι is a |Q|−dimensional vector representing
the initial probability distribution. The stationary distribution and mean first
passage times are two fundamental quantities characterizing the dynamics of
a Markov chain1. The stationary distribution is a |Q|−dimensional stochastic
vector π such that πT A = πT . The q-th entry of π can be interpreted as the
expected proportion of the time the Markov process in steady-state reaches state
q. Given two states q and q′, the Mean First Passage Time (MFPT) Mqq′ is the
expected number of steps before reaching state q′ for the first time while leaving
initially from state q.

Given a MC, a partition can be defined on its state set and the resulting
process is said to be lumped.

Definition 2 (Lumped process). Given a regular MC, T = 〈Q, A, ι〉, let
q(t) be the state reached at time t during a random walk in T . The set κ =
{κ1, κ2, . . . , κr} denotes a partition of the set of states Q. The function Kκ =
Q → κ maps the state q to the block of κ that contains q. The lumped process
T//κ outcomes Kκ(q(t)) at time t.

While the states are fully observable during a random walk in a MC, a lumped
process is associated with random walks where only state subsets are observed.
In this sense, the lumped process makes the MC only partially observable as in
the case of a POMM. Conversely, a random walk in a POMM can be consid-
ered as a lumped process of its underlying MC with respect to an observable
partition of its state set. Each block of the observable partition corresponds to
the state(s) emitting a specific letter. In this case, both models define the same
string distribution. The induction algorithm presented in section 4 is based on
the MFPT extended to lumped processes.

Definition 3 (MFPT for a lumped process). Given a regular MC T =
〈Q, A, ι〉, κ a partition of Q and κi, κj two blocks of κ, an absorbing MC
T κj is created from T by transforming every state of κj to be absorbing. Fur-
thermore, let wκj be the MTA vector of T κj . The mean first passage time
Mij//κ from κi to κj in the lumped process T//κ is defined as follows: Mij//κ =∑

q∈κi

πq

πκi
w

κj
q if κi �= κj and Mii//κ = 1

πκi
, where πq is the stationary distribution

of state q in T , πκi =
∑

q∈κi
πq is the stationary distribution of the block κi in

the lumped process T//κ and wκj is the mean time to absorption vector related
to κj [3,7].

1 We focus here on regular MCs, which are MCs with strongly connected transition
graphs and no periodic states [7].
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Fig. 1. A parametric POMM Tθ (left) modeled by an order 1 MC (center) or an order
2 MC (right)

3 Modeling Long-Term Probabilistic Dependencies

A stochastic process {Xt | t ∈ N} contains long-term dependencies if an outcome
at time t significantly depends on an outcome that occurred at a much earlier
time t′: P (Xt | Xt−1, . . . , Xt′) �= P (Xt | H) when H = {Xt−1, . . . , Xt−p} and
p < t − t′. Hence, the relevant history size for such a process is defined as the
minimal size of H such that P (Xt |Xt−1, . . . , Xt′) = P (Xt |H), ∀t, t′ ∈ N, t′ < t.
When the size of the relevant history is bounded, Markov chains of a sufficient
order can model the long-term dependencies. On the other hand, if a conditioning
event Xt′ can be arbitrarily far in the past, more powerful models such as HMMs
or POMMs are required.

3.1 Modeling Long-Term Dependencies with Finite Order MC

Let us consider the parametric POMM Tθ displayed on the left of Figure 1.
Emission of e or f in this model depends on whether b or c was emitted right
before the last consecutive d’s. Depending on the number of consecutive d’s, the
b or c outcomes can be arbitrarily far in the past. In other words, the size of the
relevant history (i.e. the number of consecutive d’s + 1) is unbounded. The ex-
pected number of consecutive d’s is however finite and given by

∑∞
i=0 θi = 1

1−θ .
Consequently, the expected size of the relevant history is 1

1−θ + 1. It should be
noted that when θ = 0, Tθ can be modeled accurately by an order 2 MC2 since
the relevant history size equals 2.

A model would badly fit the distribution defined by Tθ if it would first emit
f rather than e after having emitted b. The probability of such an event is
Perror = P (tf < te |Xt = b) where tf and te denote the respective times of the
first f or e after the outcome b. In the target model Tθ, Perror = 0. If the same
process is modeled by an order 1 MC (center of Figure 1), Perror = 0.5. Indeed,
when the process reaches state d, there is an equal probability to reach states e or
f. In particular, these probabilities do not depend on previous emissions of b or c.

2 A state label b|a in an order 2 MC means that the process emits b after having
emitted a. The probability of the transition from state b|a to state d|b encodes the
second order dependence P (Xt = d|Xt−1 = b, Xt−2 = a).
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An order 2 MC, as depicted on the right of Figure 1, would have Perror = 0.475
when θ = 0.95. In general, the error of an order p MC is given by Perror = θp−1

2 .
For instance, when θ = 0.95, the expected size of the relevant history is 21 and
Perror for such a model is still 0.17. Bounding the error probability to 0.1 would
require to estimate a MC of order p = /log0.95(0.2) + 10 = 33. An accurate
estimate of such a model requires a huge amount of training data, very unlikely
to be available in practice. Hence, POMMs and HMMs can better model long-
term dependencies when the relevant history size is unbounded.

3.2 Topology Matters to Fit Long-Term Dependencies with HMMs

Bengio has shown that the use of a good HMM topology is crucial in order to
model long term dependencies [1]. Indeed, the classical Baum-Welch algorithm
applied to a fully connected graph is hindered by a phenomenon of diffusion
of credit: the probability of being in a state at time t becomes gradually inde-
pendent of the states reached at a previous time t′ � t. In other words, the
dependencies on the past outcomes of the process ends up vanishing. This phe-
nomenon is related to the powers of the transition matrix A used in the forward
and backward recursions of the Baum-Welch algorithm. Let ιt be a row vector
representing the distribution of being in each state at time t. This distribution
d steps further is given by ιt+d = ιtA

d. If the successive powers of A converge
quickly to a rank 1 matrix3 then ιt+d becomes independent of ιt. In such a case,
the estimation algorithm is likely to be stuck in an inappropriate local minimum
of the likelihood function.

For a primitive matrix4 A, the rate of convergence to rank 1 can be char-
acterized using the Perron-Frobenius theorem [11]. It implies that a primitive
stochastic matrix has a unique eigenvalue equal to 1 and that all other eigenval-
ues are strictly smaller than 1 (in absolute value). If the rank of A is r, then the
spectral decomposition of A is given by A = λ1U1V

T
1 + . . .+ λrU rV

T
r , where

λi is the i-th largest eigenvalue in absolute value and U i, V i are respectively
the right-hand and left-hand eigenvectors associated with λi. Furthermore, the
spectral decomposition of Ad is given by Ad = λd

1U1V
T
1 + . . .+λd

rUrV
T
r that is,

taking A to the power d amounts to take its eigenvalues to the power d. Conse-
quently, while taking the successive powers of A, λ1 = 1 remains unchanged and
all other eigenvalues are decreasing until cancellation. The rate of convergence
to rank 1 follows a geometric progression with a ratio that can be approximated
by the second5 largest eigenvalue λ2.

Classically, the Baum-Welch algorithm is initialized with a uniform random
matrix6. Such a matrix typically has a very low λ2. The Baum-Welch algorithm
is thus badly conditioned to learn long-term dependencies when initialized in
this way. On the other hand, initializing this algorithm with a matrix having λ2
close to 1 requires prior knowledge of the model topology.
3 All rows of a rank 1 stochastic matrix are equal.
4 The transition matrix of a regular MC is primitive.
5 In the case of the POMM Tθ of Figure 1, λ2 = θ.
6 Each entry is uniformly drawn in [0, 1] and rows are normalized to sum up to 1.
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Table 1. MFPT in T0.95 (left), modeled by an order 1 MC (center) or an order 2 MC
(right)

T//κ e f

b 21.0 67.0
c 67.0 21.0

MC1 e f

b 44.0 44.0
c 44.0 44.0

MC2 e f

b 42.85 45.15
c 45.15 42.85

3.3 Long-Term Dependencies and MFPT

The MFPT in a lumped process T//κ contains information about the long-term
dynamics of the process. Indeed, the MFPT from the block κb to the block κe

is an expectation of the length of random walks starting with b before emitting
e for the first time. Let us assume that the emission of e is conditioned by the
fact that the process has first emitted b. The MFPT from b to e is equal to
the expected length of the relevant history to predict e from b. Table 1 shows
some interesting MFPT in the example Tθ of Figure 1 with θ = 0.95. In the
target Tθ, Mbe = Mcf is equal to the expected size of the relevant history (21,
see section 3.1). Furthermore, there is a rather long expected time between the
outcomes b and f (equivalently between c and e). When Tθ is approximated by
an order 1 MC, Mbe = Mbf = Mce = Mcf = 44. This means that independently
of whether (b or c) were emitted, the outcomes e and f are expected to occur 44
steps later. An order 2 MC only slightly improves the fit to the correct MFPT
with respect to an order 1 model.

4 POMM Induction to Model Long-Term Dependencies

A random walk in a POMM can be seen as its underlying MC lumped with
respect to the observable partition, as detailed in section 2. We present here an
induction algorithm making use of this relation. Given a data sample, assumed
to have been drawn from a target POMM TP , our induction algorithm estimates
a model EP fitting the dynamics of the MC related to TP . The estimation relies
on the stationary distribution and the mean first passage times which can be
derived from the sample.

In the present work, we focus on distributions that can be represented by
POMMs without final (or termination) probabilities and with regular underlying
MC. Since the target process TP never stops, the sample is assumed to have
been observed in steady-state. Furthermore, as the transition graph of TP is
strongly connected, it is not restrictive to assume that the data is a unique finite
string s resulting from a random walk through TP observed during a finite time7.
Under these assumptions, all transitions of the target POMM and all letters of
its alphabet will tend to be observed in the sample. Such a sample can be called
structurally complete.

7 The sample statistics could equivalently be computed from repeated finite samples
observed in steady-state.
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Algorithm POMMStateSplit
Input: A string s from a target POMM

A precision parameter ε

Output: A POMM EPcur

EP ← initialize(s);
M̂ ← sampleMFPT(s);
Lik ← logLikelihood(EP, s);
repeat

Likcur ← Lik;
EPcur ← EP ;
foreach state q in EPcur do

EPnew ← optimizeMFPT(EPcur, q, M̂);
Liknew ← logLikelihood(EPnew, s);
if Liknew > Lik then

EP ← EPnew;
Lik ← Liknew;

until Lik−Likcur
Likcur

< ε;

return EPcur

:Algorithm 1: POMM Induction by state splitting Fig. 2. Splitting of state q

As the target process TP can be considered as a lumped process, each letter of
the sample s is associated with a unique state subset of the observable partition
κ. All estimates introduced here are related to the state subsets of the target
lumped process. The starting point of the induction algorithm is an order 1 MC
estimated from the sample. For any pair of letters a, b the transition probability
Âab is estimated by maximum likelihood by counting how many times a letter a
is immediately followed by b in the sample. The stationary distribution of this
order 1 MC fits the letter distribution observed in the sample. However, this
is not sufficient to reproduce the target dynamics. Hence, the induced model is
further required to comply with the MFPT between the blocks of TP//κ, that
is between the letters observed in the sample. Given a string s defined on an
alphabet Σ, let M̂ denote a |Σ| × |Σ| matrix where M̂ab is the average number
of symbols after an occurrence of a in s to observe the first occurrence of b.

Algorithm 1 describes the induction algorithm. Iterative state splitting in the
current model allows one to increase the fit to the MFPT as well as the likeli-
hood of the model with respect to s, while preserving the stationary distribution.
After the construction of the initial order 1 MC, M̂ is estimated from s and the
log-likelihood of the initial model is computed. At each iteration step, every state
q of the current model is considered as a candidate for splitting. During the call
to optimizeMFPT, the considered state q is split into two new states q1 and q2
as depicted in Fig. 2. The input states i1, . . . , ik and output states o1, . . . , ol are
those directly connected to q in the current model8, in which all transition prob-
abilities A are known. The topology after splitting provides additional degrees
of freedom in the transition probabilities. The new transition probabilities x, y, z
form the variables of an optimization problem, which can be represented by the
matrices X (k × 2), Y (2× l) and Z (2× 2).

8 Input and output states are not necessarily distinct.
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The objective function to be minimized measures a least squares error with
respect to the target MFPT: W (X, Y, Z) =

∑|Σ|
i,j=1, i�=j(M̂ij −Mij//κ)2, where

Mij//κ is computed according to definition 3. The best model according to the
log-likelihood value is selected and the process is iterated till convergence of the
log-likelihood function. The optimization problem is non-linear both in the objec-
tive function and the constraints. It can be solved using a Sequential Quadratic
Programming (SQP) method [3].

5 Conclusion

We propose in this paper a novel approach to the induction of the structure of
Hidden Markov Models. The induced model is constructed to fit the dynamics of
the target machine, that is to best approximate the stationary distribution and
the mean first passage times (MFPT) observed in the sample. HMMs are able
to model a class of distributions broader than finite order Markov chains. They
are well suited to represent in a compact way long term probabilistic depen-
dencies. Accurate modeling of these dependencies cannot be achieved however
through the classical approach of Baum-Welch estimation of a fully connected
model. These observations motivate the use of MFPT to guide the search of an
appropriate model topology. The proposed induction algorithm relies on non-
linear optimization and iterative state splitting from an initial order one Markov
chain. Experimental results illustrate the advantages of the proposed approach
as compared to Baum-Welch HMM estimation or back-off smoothed Ngrams.

Our future work will include extension of the proposed approach to other
classes of models, such as lumped processes of periodic or absorbing Markov
chains. The current implementation of our induction algorithm considers all
states of the current model as candidates for splitting. More efficient ways of
selecting the best state to split at any given step are under study. Applications
of the proposed approach to larger datasets will also be considered, typically in
the context of language or biological sequence modeling.
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Abstract. We propose here to learn automata for the characterization
of proteins families to overcome the limitations of the position-specific
characterizations classically used in Pattern Discovery. We introduce a
new heuristic approach learning non-deterministic automata based on
selection and ordering of significantly similar fragments to be merged
and on physico-chemical properties identification. Quality of the char-
acterization of the major intrinsic protein (MIP) family is assessed by
leave-one-out cross-validation for a large range of models specificity.

1 Introduction

Proteins are essential to the structure and function of all living cells and viruses.
They are amino acid chains that fold into three-dimensional structures. Most of
the times, only the amino acid chain – a sequence over 20 letters each represent-
ing one amino acid – is known. Determination of the structure or the function of
proteins from their sequences is one of the major challenges in molecular biology.
One of the most successful approaches is to define signatures of known families
of biologically related proteins (typically at the functional or structural level). A
representative example of this approach is the well-known Prosite database [1]
gathering patterns defined essentially by experts for a large number of protein
families. Automatic Pattern Discovery is a dynamic research field [2, 3]. Among
the state-of-the-art algorithms, Pratt [4] (chosen to be the default pattern discov-
ery tool proposed on the Prosite web site), Teiresias[5] or Splash[6] have been
successfully designed to generate Prosite patterns, i.e. sub-regular expression,
while, concerning stochastic models, the corresponding state of the art would
be training profile hidden Markov models (which are left-right hidden Markov
models focusing on so-called “match” positions and handling deletions or inser-
tions of symbols) as in the commonly used tools HMMER [7] and SAM [8]. An
important feature of these approaches is that they are limited to position-specific
characterizations: neither relations between positions – for instance, if we con-
sider the disulfide bond between cysteines, the fact that when a cysteine amino
acid is present at position i there should be necessarily another cysteine at posi-
tion j – nor alternative paths (disjunction over more than one position) can be
� Goulven Kerbellec is supported by a PhD research grant from Région Bretagne.

J. Gama et al. (Eds.): ECML 2005, LNAI 3720, pp. 522–529, 2005.
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represented, whereas it could be done in true regular expressions or automata.
We address in this paper the task of learning automata for the characteriza-
tion of proteins families to overcome the current position-specific limitation of
Pattern Discovery. Learning automata has been widely studied in Grammatical
Inference, notably by state merging techniques whose more representative al-
gorithm is certainly RPNI [9, 10]. RPNI has been shown to have identification
properties and good performances on artificial data. The number of needed data
may be reduced with the help of the EDSM heuristic which has won the Ab-
badingo competition, still on artificial data. In contrast, while the application to
genomic sequences seems to be a promising field for Grammatical Inference, not
much work has been published on this matter (if we restrict ourselves to meth-
ods actually discovering a grammar and not just training its weight parameters,
which would for instance exclude the work of Sakakibara on stochastic context
free grammars for the prediction of RNA structure [11] but would include the
application of Sequitur [12] to infer a hierarchical structure on DNA sequences
without generalization capabilities). Concerning the application of such methods
for the characterization of proteins, we are only aware of the early work of Yoko-
mori [13] on learning locally testable languages, a subclass of automata which
may be linked to n-grams and to persistent splicing systems, for the identification
of protein α-chain regions.

Our main contribution in this article is the proposition of a new heuris-
tic approach in the state-merging framework allowing a successful inference of
automata for the characterization of proteins. The approach, sketched in Algo-
rithm 1, consists of two main stages: first a characterization stage, introduced
in section 2, detects and orders similar protein fragment pairs, then a gener-
alization stage, described in section 3, merges the candidate fragment pairs to
identify globally conserved areas and physico-chemical properties. We present
a first validation of our approach on a real task of protein characterization in
section 4. Technical details are omitted here due to space limitation. We refer
interested readers to the associated technical report [14] for more details.

Algorithm 1. Significantly Similar Fragment Merging Approach
procedure sfp merging(S: set of sequences, q: quorum, G: set of amino acid groups,
λG,λΣ : likelihood tests thresholds)

� Characterization stage (section 2)
L ← list of sfp(S)
L.sort by representativity score(S)

� Generalization stage (section 3)
A ← Maximum Canonical Automata(S)
for each sfp ∈ L do � Merging Fragment Pairs

A.merge if admissible(sfp)
A.gap generalization(q) � Representative Fragments
A.informative positions(G, λG, λΣ) � Physico-chemical Properties
return A
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2 Characterization

Significantly similar fragment pairs. Our method relies on a set of significantly
similar fragment pairs (SFP) for the characterization stage. When considering
protein sequences, such a set can be extracted from the sequences by DIALIGN2
[15]. DIALIGN2 is a multiple alignment tool whose first step consists in finding
all fragment pairs such that their similarity is significantly larger than expected
on random sequences. In DIALIGN2, these SFP are then combined to make
a multiple alignment optimizing the global sum of weights under consistency
constraints. In our approach, this set of SFP is considered as a first selection of
interesting fragments such that merging them is potentially interesting.

Ordering Similar Fragment Pairs. The selection of these fragments is based
only on sequence-to-sequence comparison. We introduce two scores, detailed in
[14], to rank these fragment pairs according to their representativeness of the
whole protein family. The first score estimates the support in other sequences
of the family, i.e. it counts for each SFP the number of sequences containing a
fragment sufficiently similar to it. The second score relies on a set of proteins not
belonging to the family to give priority to discriminative characteristic SFP [16].
It evaluates how the support of the SFP in the family implies its proportion
to be supported in the family and in the other set of sequences. Each score
defines an heuristic ordering of the SFP. We will refer to these ordering as being
respectively the support heuristic and the implication heuristic.

3 Generalization

Merging Fragment Pairs. The first generalization step applies the classical state-
merging scheme popularized by RPNI [9] and EDSM [17] to SFP. We consider
the more general case allowing to learn non-deterministic automata. Following
the definitions of [18], to which we refer the reader for details, the general sketch
of this kind of algorithm is to first construct an automaton, named maximal
canonical automaton (MCA), representing exactly the training set of sequences
and, then, to generalize the recognized language by merging (unifying) some of
its states. State merging algorithms can be distinguished by their choice of states
to merge. We propose here to merge iteratively the states corresponding to the
SFP identified in the characterization stage, beginning by SFP with higher repre-
sentativeness. This ordering is taken into account by introducing a preservation
constraint over the previously merged fragments. Namely, after each SFP merg-
ing, a constraint stating that the resulting states can not be merged together is
set. Further SFP mergings that would violate such constraint are discarded.

Representative Fragments. Merging the SFP allows to identify hot spots: sets of
contiguous positions where lots of fragments have been merged. Besides, some
positions may be involved in none of SFP merges. These latter localizations are
clearly not representative of the family. We propose to treat them as “gaps”. We
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introduce classically a quorum parameter. If a state is used by less sequences
than specified by the quorum, it is merged with its neighbors. This step allows
to keep only the characteristic regions and is an important generalization step
for long proteins. Several variations around this scheme could be implemented.
Statistical information like the length or the amino acid composition of the gap
could also be considered and added to the model. The version presented here is
the simple one used in the experiments.

Identification of Physico-chemical Properties. We propose here to recover the
important physico-chemical properties of the amino acids at each position of
the representative fragments with respect to the function or the structure of the
family. The approach takes as input a set G of eventually overlapping substi-
tution groups representing important physico-chemical properties (typically the
groups proposed by Taylor [19]). For each position, likelihood tests are used to
decide whether the set of amino-acids should be expanded to the smallest group
including the set or else whether it should be expanded to the whole alphabet
Σ if the distribution of the amino-acids appears to be random (see [14]). These
tests introduce two threshold parameters λG and λΣ allowing to tune the risk
when expanding to a group or else to Σ.

4 Experiments

We evaluated our approach on the major intrinsic protein (MIP) family [20]. The
MIP family has functional and structural properties such as transmembrane
channels, well-known to be important for water, alcohol and small molecules
transport across cell membranes thanks to P. Agre (Nobel Prize in Chemistry
“for the discovery of water channels”, 2003). UNIPROT, a biological protein
sequence database, contains 911 proteins annotated as being members of the
MIP family. Of these 911, 159 protein sequences (denoted hereafter by the set
T) are present in SWISSPROT which is the reliable annotated public reference
database used by Prosite. Of this set, a biologist expert has identified only 79
sequences with a real biological experiment-based annotation (a lot of proteins
being annotated “by similarity”). By filtering out the sequences with more than
90% of identity, this set was then reduced to 44 sequences (set M). Of this set,
the expert has identified 24 water-specific sequences (set W+) and 16 glycerol or
small molecule facilitator sequences (set W-). Let us notice the difficulty of the
discrimination task between these MIP, some sequences of W+ being closer to
some sequences of W- than to the other sequences of W+. We have established
also a control set composed of sequences close to MIP sequences and identified
by the expert as being outside the family (set C).

All the experiments were performed with an implementation of our approach
named Protomata-L using DIALIGN2 with the following options : -nta -thr
5 -afc. The group expansion of Protomata-L has been done with the sets of
physico-chemical properties proposed in Fig. 5 of [19] except the “unions” group,
and λG = 10−7, λΣ = 10−19. Even with our unoptimized code, the execution
never exceeded 10 minutes on a 3GHz desktop station.
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Table 1. Comparison of 4 MIP signature patterns

Method Precision Recall F-mes. Pattern
Prosite (reference) 95% 91% 0.93 [HNQA]DNP[STA][LIVMF][ST][LIVMF][GSTAFY]

Pratt 90% 78% 0.83 GX(2)[FILMV]NP[AS]X[DST][FIL][AGP]

Teiresias 23% 89% 0.37 [ILMV]X(10)[ST]X(3)[ILMV]NX[AG]X(3)[AG]

Protomata-L 100% 87% 0.93 [ACGSTV]X[ACFGILMV]N[ACGPV][AGS][ACFG

ILMV][DNST][ACFGILMV][ACGSTV]X[ACFGHI

KLMTVWY]X(12)[FMY]X[ACFGHIKLMTVWY]

XQ[ACFGHIKLMTVWY][ACFGILMV][AGS][AGS]

First Common Fragment. For this first set of experiments, in order to com-
pare our fragment merging approach with Pratt[4] and Teiresias[5] methods and
Prosite hand-made pattern1, we restricted Protomata-L to return only the first
common fragment shared by all sequences, using support heuristic. Pratt and
Teiresias were used with their default parameters, except the parameter W (max-
imum length) of Teiresias that was set to 50 to allow longer pattern to be dis-
covered. The patterns were learned from the set M and tested on the set T.
Even if the set T was used in Prosite for the design of the pattern, a scan of
the Prosite’s pattern on SWISSPROT database returns false positive as well as
false negative sequences with respect to T. Table 1 summarizes the results of
such scans for the three patterns. The recall of our approach is close to Prosite’s
pattern recall while our precision remains at 100%. Let us remark that in our
false positives, one was not a full sequence and 16 were annoted as MIP by sim-
ilarity. When comparing our approach with Pratt and Teiresias, the comparison
is clearly in favor of Protomata-L with respect to both the precision and the
recall.

Water-Specific MIP subfamily. In this second set of experimentations, we focused
on the characterization of the water-specific MIP subfamily set W+, using the
set W- as counter-example. This discrimination task is motivated by a better
understanding of the transport of these molecules. We used it to study the
quality of the characterization on closely related sets of sequences at increasing
specificity levels. Due to the small number of available sequences, a leave-one-out
cross-validation scheme was used to evaluate our approach. For each couple of
positive and negative sequences (w+, w−), the training was achieved using the
remaining sequences of W+ and W-. For each leave-one-out datasets, several
automata – ranging from short automata (like in the previous paragraph) to
larger automata characterizing almost all the length of the MIP topology –
were obtained by using an increasing number of SFP. Each automaton was then
evaluated according to the distance for acceptation of the positive sequence left
out w+, the negative sequence left out w−, and also of the closest sequence c
in the control set C. The distance for acceptation refers here to the minimal
cost of amino acid substitutions needed in the sequence for its acceptation by
1 Preliminary tests, not reported here, showed that RPNI and EDSM were not able

to propose pertinent automata from this kind of data.
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Fig. 1. Characterization of the Water Specific MIP family

the automaton (the cost of each amino acid substitution being given by the
classical substitution matrix Blosum62 [21]). Fig. 1 presents the results of all
these experiments when using the implication heuristic and a quorum of 100%.
On the size axis, we highlighted 4 attraction points which are related to the
progressive emergence of common sub-patterns, the first one corresponding to
the first common fragment. The separation of the different sets of sequences is
manifest and grows along the automata size axis until an inflexion point near 100
states. Behind this inflexion point, the merged SFP do not contribute anymore
to the discrimination but only to a more precise characterization of the family
without showing over-generalization evidence. Table 2 sums up the results of the
automata at the attraction points for the classification task between W+ and
W-, with strict acceptation and with a distance threshold acceptation. In the
latter case, the closest counter-example distance from the automata was taken
as the threshold distance for acceptation. The approach was then able to raise
100% of precision and 100% of recall for automata sizes of 40 or even 100 states.

Table 2. Performance on classification task (W+ vs W-)

Strict Threshold
Automata Size Precision Recall F-mes. Precision Recall F-mes.

10 100% 92% 0.96 100% 96% 0.98
40 100% 71% 0.83 100% 100% 1.00
100 100% 54% 0.70 100% 100% 1.00
130 100% 42% 0.59 100% 96% 0.98
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5 Conclusion

This study shows – even if it has to be confirmed on other sets of sequences
– that good automata can be learned successfully on proteins. The proposed
heuristic approach can be applied to the characterization of a family of proteins
from positive examples only. It is also able to benefit from available counter-
examples to produce more subtle models performing well in the discrimination
of a closely related family of sequences. Depending on the application, the level
of precision of the learned models can be chosen, ranging from short characteris-
tic models (for classification tasks) to more detailed and explanatory models (for
modeling the family of sequences). As proved by performance in leave-one-out
cross-validation, the more specific models have still good prediction accuracy
when allowing a small distance for acceptation to compensate the limited num-
ber of available examples. An alternative way to handle unpredictable family
variation would be to use the learned automata as the underlying structure of
probabilistic automata, or hidden Markov models, and estimate their stochastic
parameters by the classical well-studied training methods. The advantage of our
approach is that these variations are treated outside the model by measuring the
distance to it, allowing the models to focus only on an explicit characterization
of the important properties of the training sequences. We think that we could
even improve the prediction accuracy by using distances taking into account
the weights of the amino acids at each position with respect to the training
sequences, but this has still to be implemented and tested.

Compared to classical protein Pattern Discovery algorithms, our approach in-
troduces several new ideas. Globally, we think that, besides the ability to learn a
more expressive class of model, the fundamental difference of Protomata-L with
these Pattern Discovery approaches consists in the introduction of the similar-
ity of fragments (which reflects the conservation of the site and probably the
conservation of some structural aspects of it) as an important criterion for the
characterization. This allows to consider the characterization of positions ac-
cording to their context. Protomata-L introduces also the possibility to produce
discriminative characterization of a set of sequences with respect to another one.
With regard to Grammatical Inference, the confrontation of the classical state-
merging techniques with a real application has lead to a new approach based on
merging similar fragments. The sole application specific parts are the first and
the last step of our approach (the selection of the SFPs step and the physico-
chemical properties identification step) and could be replaced by similar modules
for other applications. All the remaining of the approach is generic and we expect
it to be an inspiration source for new theoretical or algorithmic developments.
Among the originalities with respect to the classical approaches, we would like to
point out the consideration of the similarity between the symbols of the alpha-
bet, the choice of the non-deterministic representation of automata, the use of
fragment-based heuristic to infer this kind of models, the identification of infor-
mative positions and the discriminative setting with respect to counter-examples
(or unlabeled set of sequences) which replaces the classical compatibility setting
and allows to handle some noisy counter-examples.
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Abstract. We show that K-means and spectral clustering objective
functions can be written as a trace of quadratic forms. Instead of re-
laxation by eigenvectors, we propose a novel relaxation maintaining the
nonnegativity of the cluster indicators and thus give the cluster posterior
probabilities, therefore resolving cluster assignment difficulty in spectral
relaxation. We derive a multiplicative updating algorithm to solve the
nonnegative relaxation problem. The method is briefly extended to semi-
supervised classification and semi-supervised clustering.

1 Introduction

Data clustering is one of the essential tasks in unsupervised learning. One of
the most popular and efficient clustering methods is the K-means method which
uses prototypes (centroids) to represent clusters by optimizing the squared er-
ror function. Starting from an initial guess of centroids, K-means iteratively
improves the clustering in EM style algorithm to local minima.

In recent years spectral clustering emerges as a solid approach for data clus-
tering. Spectral clustering evolves from spectral graph partitioning and have
well-motivated clustering objective functions. In the spectral relaxation, the
continuous approximations of the discrete cluster indicators can be obtained
as eigenvectors of the Laplacian matrix of the similarity graph (edge weights
as the pairwise similarity). Because eigenvector entries have both plus and mi-
nus signs, spectral clustering is most conveniently applied to 2-way clustering
problems using a single eigenvector. When applying to multi-way (K-way) clus-
tering, assigning cluster memberships becomes indirect: (1) the 2-way spectral
clustering is recursively applied or (2) an embedding to a space spanned by
eigenvectors is first done and some other methods, such as K-means [1] are then
used.

In this paper, we propose a novel approach to solve the multi-way spec-
tral clustering problem. Instead of spectral relaxation of clustering indicators
we propose nonnegative relaxation of clustering indicators, i.e., maintaining the
nonnegativity of them. In this way, the original clustering indicators become
class (cluster) posterior probabilities. Besides resolving the cluster assignment
problem, this added interpretability is theoretically appealing.
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Our approach starts with a reformulation of K-means and kernel K-means
clusterings which allows the use of eigenvectors as cluster indicator vectors.
Spectral clustering objective function can be also reformulated as the maxi-
mization of quadratic forms. From there, instead of eigenvector relaxation, we
perform nonnegative relaxation.

Our nonnegative relaxation approach is inspired by the nonnegative matrix
factorization(NMF)[3,4,2]. We provide a systematic exposition of this approach
with illustrative examples and applications to internet newgroups data.

2 Kernel K-Means and Spectral Clustering

In this section, we show that K-means and Spectral clustering can be written as
minimization of a quadratic form.

K-means clustering is one of the most widely used clustering methods, with
many current extensions. It uses the centroids of clusters, to characterize the
data. The objective function is to minimize the sum of squared errors,

Jk =
K∑

k=1

∑
i∈Ck

||xi −mk||2, (1)

where X = (x1, · · · ,xn) is the data matrix and mk =
∑

i∈Ck
xi/nk is the cen-

troid of cluster Ck of nk points. Extension to kernelK-means is similarly defined.
There are 3 variants of spectral clustering objective functions. Here we focus

on the normalized cut[5]. The multi-way clustering objective function is

J =
∑

1≤p<q≤K

s(Cp, Cq)
ρ(Cp)

+
s(Cp, Cq)
ρ(Cq)

(2)

where s(Ck, C�) =
∑

i∈Ck

∑
j∈C�

wij , and ρ(Ck) =
∑

i∈Ck
di, di =

∑
j Wij .

Here we reformulate the K-means and normalized cut. The solution of clus-
tering is represented by K non-negative cluster membership indicator vectors:
H = (h1, · · · ,hK), where

hk = (0, · · · , 0,
nk︷ ︸︸ ︷

1, · · · , 1, 0, · · · , 0)T /n
1/2
k (3)

For example, the nonzero entries of h1 give data points belonging to the first
cluster. We have
Theorem 1. For K-means and Kernel K-means the clustering objective function
can be written as

max
HTH=I, H≥0

Jk = Tr(HTWH), (4)

where W = (wij);wij = xT
i xj for K-means and wij = φ(xi)Tφ(xj) for Kernel

K-means . For spectral clustering, the clustering objective function becomes
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max
HTDH=I, H≥0

Js = Tr(HTWH) (5)

where D = diag(d1, · · · , dn). Proofs are outlined in [2].
Theorem 1 shows that spectral clustering is almost identical to Kernel K-

means clustering: they maximize the same clustering objective function, the only
difference is at the orthogonality constraints of the cluster indicators H : H is
orthogonal for K-means , while H is D-orthogonal, i.e., HTDH = I, for spectral
clustering.

3 Spectral Relaxation

It is instructive to review the spectral relaxation (eigenvector solution) to K-
means and normalized cut, before we turn to the nonnegative relaxation. By
“relaxation” we mean that the discrete cluster indicators H are approximated
by continuous quantities. Spectral relaxation are obtained by relaxing (ignoring)
the nonnegative constraint H ≥ 0.

For K-means , the solution are given by eigenvectors of W : Whk =αkhk, k =
1 · · ·K. For Normalized Cut, the solution are given by Whk = αkDhk, which can
be rewritten as (D−W )hk = λkDhk, λk = 1−αk, giving the familiar eigenvector
equation for normalized cut. L = D −W is the Laplacian matrix of graph with
weight matrix W .

A difficulty in eigenvector relaxation is that the original H are nonnegative
while the eigenvectors solutions for H have many negative entries. This makes
it difficult to identify cluster members. This cluster assignment problem would
be much easier if entries of H are nonnegative. In that case, we may interprete
the i-th row of H as the posterior probability for the i-th object belonging to
each of the K clusters. This motivate us to consider the nonnegative relaxation
of the next section.

4 Nonnegative Lagrangian Relaxation (NLR)

We propose nonnegative Lagrangian relaxation of the quadratic form which en-
force the nonnegative constraint on H . With this, H can be interpreted as the
posterior probability. The cluster assignment problem is resolved trivially: at
convergence, we simply assign the i-th object to the cluster with the largest
posterior probability, i.e., the large entry of the i-th row of H . This is a major
advantage over eigenvector relaxation.

4.1 NLR for Kernel K-Means

We wish to optimize the quadratic form of Eq.(4) with both orthogonality and
nonnegative constraints. We follow the standard optimization theory and derive
the KKT conditions. To find the maxima, we introduce the Lagrangian function
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L = TrHTWH −
∑
ij

αij(HTH − I)ij −
∑
ij

βijHij (6)

where the Lagrangian multipliers αij = αji are to enforce HTH = I, and the
Lagrangian multipliers βij enforce nonnegative constraints, Hij ≥ 0. The first
order KKT condition for local maxima is 0 = ∂L

∂Hik
= 2WH − 2Hα− β, and the

complementary slackness condition βikHik = 0, which leads to

(WH −Hα)ijHij = 0. (7)

This is a fixed point equation that the solution must satisfy at convergence.
From this, we obtain αii = (HTWH)ii; this gives the diagonal elements of α.
To obtain the off-diagonal elements of α, we ignore nonnegativity of H and
obtain α = HTWH . Thus the diagonal elements of the constraint HTWH = I
are vigorously enforced, while the off-diagonal elements of HTWH = I are
enforced at the level of ignoring nonnegativity of H . This slight relaxation of the
orthogonality of H have the benefits of soft clustering interpretation (see §4.3).

We derive an algorithm to compute the nonnegative relaxation and prove its
convergence. The algorithm has the style of NMF. Given an existing solution
or an inital guess, we iteratively improve the solution by updating the variables
with the following rule,

Hik ← Hik

√
(WH)ik

(Hα)ik
, α = HTWH. (8)

Clearly this updating rule satisfies the fixed point equation Eq.(7). The following
theorem assures its convergence to local maxima.

Theorem 2. Under the updating rule, the Lagrangian function L(H) =
TrHTWH − Trα(HTH − I) is monotonically increasing (non-decreasing),
L(H(0)) ≤ L(H(1)) ≤ · · · ≤ L(H(t)) ≤ · · · . Since L is bounded from above,
the convergence of this algorithm is thus established.
Proof. Outline of the proof is given in Appendix A.

4.2 NLR for Normalized Cut

Normalized Cut differs from K-means in the different orthogonality condition:
HTDH = I. The Lagrangian function becomes L = TrHTWH−Trα(HTDH−
I)−TrβTH. The fixed point equation is (WH−DHα)ikHik = 0. The Lagrangian
multipliers are given by α = HTWH. The multiplicative update rule is

Hik ← Hik

√
(WH)ik

(DHα)ik
, α = HTWH, (9)

under which the Lagrangian function is monotonically increasing (non-
decreasing).
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Fig. 1. Left: A 2D dataset of 38 data points. Right: Their H = (h1,h2) values are
shown as blue and red curves. H values for points in regions {C, E, D} indicate they
are fractionally assigned to clusters.

An illustrative example. We demonstrate NLR by a simple example. Fig.1
(left panel) shows a 2D example of 38 points. The similarity between xi,xj is
computed using Gaussian kernel Wij = exp(−||xi − xj ||2/2). The data has two
dominant clusters. We set k = 2 The resulting cluster indicators h1,h2 are shown
in Fig.1 (right panel).

If we do a hard clustering by assigning each data point xi to the cluster
c = arg maxk Hik, we get those points in regions (A, C, E) as one cluster,
and the points in regions (B, D) as another cluster. This can be see from
the figure ( points in C are x31, x32; points in E are x33, x34, x35; points in
D are x36, x37, x38; ) These results are identical to a K-means clustering re-
sults.

However, we see that the magnitudes of h1,h2 on points in C are very close
to each other. This indicates that a partial (soft) cluster assignment would be
more appropriate. Furthermore, the magnitude of h1,h2 on points in E,D are
even smaller, indicating they do not belong to either of the dominant clusters.
In fact, all points in C,E,D can be considered as outliers. In general, if

∑
k Hik

is far below the average value, we may consider xi as an outlier. This can be
rigorously quantified.

5 Nonnegative Relaxation of Bipartite Graph Clustering

The approach of §2 can be easily extended to bipartite graphs. A bipartite graph
is specified by a nonnegative rectangular matrix, its adjacency matrix B = (bij),
which can be equivalently viewed as a contingency table in statistics. We call
the two types nodes of the bipartite graph as row nodes and column nodes.
Bipartite graph clustering is equivalent to simultaneous clustering of rows and
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columns. Let F = (f1, · · · , fk) be the indicator matrix for row clustering, e.g.,
fk is the cluster indicator for the k-th row-cluster. fk has the same form of hk

as in Eq.(3). Analogously, we define the indicator matrix G = (g1, · · · ,gk) for
column clustering. We combine the row and column nodes together as W =(

0 B
BT 0

)
, hk = 1√

2

(
fk
gk

)
, H = 1√

2

(
F
G

)
where the factor 1/

√
2 allows the

simultaneous normalizations hT
khk = 1, fT

k fk = 1, and gT
kgk = 1. The Kernel

K-means clustering objective function becomes

max
F T F = I;
GT G = I;
F, G ≥ 0

Jkb =
1
2
Tr
(
F
G

)T ( 0 B
BT 0

)(
F
G

)
= Tr(FTBG). (10)

To gain intuition about this objective function, we write Jkb =
∑

k
s(Rk,Ck)√
|Rk| |Ck|

where s(Rk, Ck) =
∑

i∈Rk

∑
j∈Ck

bij . The bipartite graph clustering objective
maximizes the within-cluster similarities s(R1, C1), · · · , s(RK, CK).

It can be shown that the Normalized Cut clustering objective function for
the bipartite graph[7] can be written as

max
F T DF = I;
GT DG = I;

F, G ≥ 0

Jsb = Tr (FTBG). (11)

5.1 Spectral Relaxation

If we ignore the nonnegativity constraints, the above problem of simultaneous
clustering of rows and columns can be solved by spectral relaxation. With the
same analysis as in §3, the solution of Jkb in Eq.(10) are given by the eigenvalue

equation Eq.(3), or explicitly as
(

0 B
BT 0

)(
fk
gk

)
= λk

(
fk
gk

)
The solutions

are given by singular value decomposition of B: fk are given by the principal
directions (eigenvectors of BBT ) and gk are given by the principal components
(eigenvectors of BTB).

For Normalized Cut, the solution of Jsb in Eq.(11) are given by
(

0 B
BT 0

)(
fk
gk

)
= λk

(
Dr

Dc

)(
fk
gk

)
, where the diagonal matrix Dr contains row sums of

B and Dc contains column sums of B. The solutions are fk = D
−1/2
r uk and

gk = D
−1/2
c vk, where uk and vk are given by SVD of D−1/2

r BD
−1/2
c .

5.2 Nonnegative Relaxation

The nonnegative relaxation for bipartite graph clustering can be easily derived.
For example, for kernel K-means type clustering, the update rules are

Fik ← Fik

√
(BG)ik

(Fα)ik
, Gik ← Gik

√
(BTF )ik

(Gα)ik
, α =

FTBG+GBTF

2
. (12)
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5.3 Equivalence to Nonnegative Matrix Factorization

We demonstrate a close relationship between bipartite graph K-means cluster-
ing and nonnegative matrix factorization (NMF). We have the following:
Theorem 3. The simultaneous clustering of rows and columns using the K-
means clustering objective function is equivalent to the following NMF opti-
mization problem,

min
F T F = I;
GT G = I;
F, G ≥ 0

J2 = ||B − FGT ||2. (13)

Therefore, NMF provides yet another way to solve the bipartite graph kernel
K-means clustering problem. The update rules of NMF are

Fik ← Fik
(BG)ik

(FGTG)ik
, Gik ← Gik

(BTF )ik

(GFTF )ik
. (14)

They are quite similar to NLR update rule of Eq.(12).

6 Experiments on Internet Newsgroups

We perform experiments on the well-known 20-newsgroup Internet newsgroups
dataset. We use two sets of 5-newsgroup combinations:

A B
NG2: comp.graphics NG2: comp.graphics
NG9: rec.motorcycles NG3: comp.os.ms-windows
NG10: rec.sport.baseball NG8: rec.autos
NG15: sci.space NG13: sci.electronics
NG18: talk.politics.mideast NG19: talk.politics.misc

In Dataset A, clusters moderately overlap. In dataset B, clusters strongly over-
lap. To accumulate sufficient statistics, we generate 5 random datasets for each
5-newsgroup combinations: 100 documents were randomly sampled from each
newsgroup. K-means , NLR and NMF are applied to these 5 random sampled
datasets. The results for clustering accuracy using the known class labels are
listed in Table 1 for dataset A and B. Both NMF and NLR improve over K-
means substantially; NLR always gives better results than NMF.

dataset A dataset B
K-means NMF NLR K-means NMF NLR

0.748 0.864 0.876 0.531 0.612 0.620
0.790 0.904 0.916 0.491 0.590 0.606
0.815 0.886 0.912 0.576 0.608 0.642
0.862 0.886 0.902 0.632 0.652 0.654
0.873 0.883 0.884 0.697 0.711 0.734
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We have discussed the importance of the orthogonality of H with regard to clus-
tering. The normalized orthogonality, (HTH)nm = D−1/2(HTH)D−1/2, where
D = diag(HTH), are given below:

NLR:

⎡⎢⎢⎢⎣
1 0.044 0.111 0.062 0.041

1 0.069 0.065 0.044
1 0.075 0.071

1 0.058
1

⎤⎥⎥⎥⎦ NMF:

⎡⎢⎢⎢⎣
1 0.107 0.189 0.130 0.126

1 0.063 0.088 0.114
1 0.078 0.097

1 0.095
1

⎤⎥⎥⎥⎦
One can see that off-diagonal elements are generally small. NLR has better

orthogonality than NMF.

7 Extensions to Semi-supervised Learning

The quadratic clustering of Theorem 1 can be extended to semi-supervised learn-
ing. (1) Let C contains information on partially labeled data and input paramter
ρ > 0, max Tr[HTWH+2ρCTH ] is identical to the semi-supervised classification
of Zhou et al. [8]. (2) In semi-supervised clustering, one performs clustering with
constraints[6]: must-link constraints (contained in A) and cannot-link constraints
(contained in B). A, B are symmetric matrices containing {0, 1}. Replacing W
by W + ρA− ρB in Eq.(4) is equivalent to constrained K-means clustering. The
advantage of this framework is the consistency of various learning taskes.
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Appendix A

Outline of proof of Theorem 2. We use the auxilliary function. A function
G(H, H̃) is called an auxiliary function of L if it is satisfies G(H,H) = L(H),
G(H, H̃) ≤ L(H)∀H, H̃. Define H(t+1) = arg maxH G(H,H(t)). By construc-
tion, we have L(H(t)) = G(H(t), H(t)) ≤ G(H(t+1), H(t)) ≤ L(H(t+1)). Thus
L(H(t)) is monotonic increasing. We can show that

G(H, H̃) =
∑
kij

WijH̃ikH̃jk(1 + log
HikHjk

H̃ikH̃jk

)−
∑
ik

(H̃α)ikH
2
ik

H̃ik

is an auxiliary function of L. Setting ∂G(H, H̃)/∂Hik = 0 leads to H2
ik =

H̃2
ik(WH̃)ik/(H̃α)ik. Setting H(t+1) = H , H(t) = H̃ , we obtain Eq.(8). �–
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Abstract. This paper argues that severe class imbalance is not just an
interesting technical challenge that improved learning algorithms will ad-
dress, it is much more serious. To be useful, a classifier must appreciably
outperform a trivial solution, such as choosing the majority class. Any
application that is inherently noisy limits the error rate, and cost, that
is achievable. When data are normally distributed, even a Bayes optimal
classifier has a vanishingly small reduction in the majority classifier’s
error rate, and cost, as imbalance increases. For fat tailed distributions,
and when practical classifiers are used, often no reduction is achieved.

1 Introduction

Class imbalance, and the difficulties that result, has been a topic of much interest
in recent years in machine learning [1]. When classes are imbalanced, existing
learning algorithms often produce classifiers that do little more than predict the
most common class. It seems intuitive that a practical classifier must do much
better on the minority class, often the one of greatest interest, even if this means
sacrificing performance on the majority class. If the overall error rate becomes
worse, so the reasoning goes, then it fails to capture what practically matters
and alternative measures are needed. Researchers have looked at separate error
rates for positive and negative classes [2], the functional relationship between
them [3] and the area under the function [4].

Although we use expected cost, we feel it is less a matter that the measure
is wrong, it is more that the majority classifier is very hard to beat when classes
are severely imbalanced. Differential costs may reduce the problem bur they are
by no means guaranteed to eliminate it. We are not simply reiterating a com-
mon observation that sometimes the majority classifier’s error rate is so small
that it seems little can be done to improve on it. We are making the stronger
claim that a “relative reduction” in error rate is often unachievable. We use the
fraction of the majority classifier’s error rate removed because it is important to
consider what success means when a trivial classifier gets only say 1% wrong.
In this case, a classifier with a 0.4% error rate has an error rate reduction of
0.6, a respectable value. This is equivalent to a 20% error rate when the classes

J. Gama et al. (Eds.): ECML 2005, LNAI 3720, pp. 539–546, 2005.
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are balanced and the majority classifier gets 50% wrong. This idea is especially
intuitive when considering misclassification costs [5, 6]. The success of a classifier
is how much it reduces the cost when using a trivial classifier. Even a Bayes op-
timal classifier, at least as good as the majority classifier, often only has a small
relative cost reduction. As imbalance increases, this becomes even smaller. For
practical algorithms just performing as well as the majority classifier becomes
progressively harder. Improved learning algorithms will not eliminate the prob-
lem. If the application is inherently noisy, no amount of boosting, bagging or
kernelizing can produce performance beyond Bayes optimal.

Our results address applications where all instances of one class have the
same misclassification costs. If costs are highly non-linear, say it is enough to
classify a small number instances correctly ignoring the rest, our arguments are
not relevant. This may be true in some information retrieval tasks, where only
a very small fraction of the positive instances are required to satisfy a query.
Occasionally, a small performance gain over the majority classifier is the differ-
ence between success and failure. We claim that many, if not most, classification
applications are not of either type. At the very least, our own experience tells us,
the type of application addressed here is common enough that the conclusions
we draw should be relevant to many researchers and practitioners.

2 Visualizing the Problem

This section gives a brief introduction to cost curves [7], a way to visualize clas-
sifier performance over different misclassification costs and class distributions.

The error rate of a binary classifier is a convex combination of the likelihood
functions P (−|+), P (+|−), where P (L|C) is the probability that an instance of
class C is labeled L and the coefficients P (+), P (−) are the class priors:

E[Error] = P (−|+)︸ ︷︷ ︸
FN

P (+) + P (+|−)︸ ︷︷ ︸
FP

P (−)

Estimates of the likelihoods are the false positive (FP) and false negative (FN)
rates. A straight line, such as the one in bold in Figure 1, gives the error rate
on the y-axis (ignore the axis labels in parentheses for the moment), for each
possible prior probability of an instance belonging to the positive class on the x-
axis. If this line is completely below another line, representing a second classifier,
it has a lower error rate for every probability. If they cross, each classifier is
better for some range of priors. Of particular note are the two trivial classifiers,
the dashed lines in the figure. One always predicts that instances are negative,
the other that instances are positive. Together they form the majority classifier,
the shaded triangle in Figure 1, which predicts the most common class. The
figure shows that any single classifier with a non-zero error rate will always
be outperformed by the majority classifier if the priors are sufficiently skewed,
therefore of little use. Even a good classifier produces too many false positives
when negative examples are very common [8].
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Fig. 2. The Cost Curve

If misclassification costs are taken into account, expected error rate is re-
placed by expected cost, as defined by Equation 1. The expected cost is also a
convex combination of the prior probabilities, but plotting it against the priors
would produce a y-axis that no longer ranges from zero to one. The expected
cost is normalized by dividing by the maximum value, given by Equation 2. The
costs and priors are combined into the Probability Cost(+) on the x-axis, as in
Equation 3. Applying the same normalization factor results in an x-axis that
ranges from zero to one, as in Equation 4. The positive and negative Probabil-
ity Cost( )’s now sum to one, as was the case with the probabilities.

E[Cost] = FN ∗ C(−|+)P (+) + FP ∗ C(+|−)P (−) (1)
max(E[Cost]) = C(−|+)P (+) + C(+|−)P (−) (2)

PC(+) = C(−|+)P (+) (3)
Norm(E[Cost]) = FN ∗ PC(+) + FP ∗ PC(−) (4)

With this representation, the axes in Figure 1 are simply relabeled, using the text
in parentheses, to account for costs. Misclassification costs and class frequencies
are more imbalanced the further away from 0.5, the center of the diagram. The
lines are still straight. There is still a triangular shaded region, but now repre-
senting the classifier predicting the class that has the smaller expected cost. For
simplicity we shall continue to refer to it as the majority classifier.

In Figure 2 the straight continuous lines are Bayes optimal classifiers for
two different class frequencies or costs, indicated by the vertical dashed lines.
The classifier represented by the horizontal line is optimal when the classes and
costs are balanced. The second classifier is optimal when there are more nega-
tive examples, or they are more costly to misclassify. If the optimal classifier is
identified for every probability-cost value and a point put on each line at that
value, as indicated by the black dots in Figure 2, the set of such points defines
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the continuous bold curve. So generally as the balance changes, there is a smooth
trade-off between positives that are incorrectly classified and negatives that are
incorrectly classified. Most practical learning algorithms also generate different
classifiers for different priors and make a principled trade off between the num-
ber of errors on the positive and negative classes. They produce similar curves,
although their curves will generally be above the curve in Figure 2 because their
performance will fall somewhat short of Bayes optimal.

3 Imbalance and Performance

In this section, we show that a Bayes optimal classifier performs only marginally
better than a trivial classifier when there is severe imbalance. This difference is
even smaller if the likelihood functions have fat tails or the classifier suboptimal.

3.1 Increasing Imbalance

Figure 3 shows cost curves for the Bayes optimal classifier for two, unit vari-
ance, normal distributions, representing the likelihood functions for two classes.
The continuous curves are for 3 different distances between their means. The
distances were chosen to make the relative cost reduction when the classes are
balanced 0.2, 0.5 and 0.8. The series of progressively smaller triangles, the dotted
lines, we call cost reduction contours. They are triangles because the majority
classifier is a triangle. Each contour indicates the reduction in cost achieved by
the new classifier as a fraction of the cost of using the majority classifier. For
instance, the central contour, marked 0.5, indicates a reduction of one half of
the cost. The continuous curves cross multiple contours indicating a decreasing
relative cost reduction as imbalance increases.

Zooming in on the lower left hand corner of Figure 3 gives Figure 4. Here
negative instances are much more common than the positives, or more costly to
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misclassify. The upper two curves have become nearly indistinguishable from the
majority classifier for ratios about 20:1. The lowest cost curve has crossed the
0.5 cost reduction contour at an imbalance of about 10:1 and crossed the 0.25
cost reduction contour at about 50:1. So even starting with a very good classifier
with a 0.8 relative cost reduction when there is no imbalance (i.e. a 10% error
rate), the benefit decays rapidly as imbalance increases.

3.2 Different Distributions

In this section we investigate what happens if the data are not drawn from normal
distributions. We use the “power exponential” distribution, shown in Figure 5,
which has a factor controlling the fatness of the tails. The bold curve is the
normal distribution, this acts as the standard for tail fatness. At one extreme
is the double exponential, or Laplace, distribution. At the other extreme is the
uniform distribution. The double exponential distribution is relatively low in the
middle and spreads out widely, giving it the fat-tails. As the factor is increased
the center rises and thickens as the tails diminish. Ultimately, as we approach
the uniform distribution, the tails thin out and disappear.

Figure 6 shows cost curves when the distributions in Figure 5 are used to
define the likelihood functions for both classes. The distances between their
means were chosen so that all curves have the same normalized expected cost of
0.2 when balanced. The curve for the normal distribution is the bold continuous
line. Curves with fatter tails are even more sensitive to imbalance. The topmost
curve is for the double exponential. It has exactly the same cost as the majority
classifier when imbalance is about 8:1 or 1:8. The distributions with fatter tails
than the normal distribution all have a relative cost reduction of only 0.1 if
the imbalance is greater than 10:1. It is true, however, that distributions with
thinner tails than the normal distribution reduce the cost proportionally more.
In fact, two overlapping uniform distributions (the thinnest possible tails and
the lowest continuous curve in Figure 6) have the same relative cost reduction
for severe imbalance as for perfect balance.

If uniform distributions give consistent performance perhaps nominal at-
tributes do as well. Uniform distributions are like a single nominal attribute
with three values, the middle one is where they overlap. Suppose there are 100
positives with value A, 100 with value B and 100 negatives with value B, 100
with value C, see the top left of the Figure 7. Varying the imbalance produces
a triangular cost curve, the same as with uniform distributions. But suppose
some of the negative and positive classes are redistributed such that values A
and C no longer contain just one class, shown at the top right of Figure 7. This
produces the upper bold curve where the classifier has the same performance as
the majority classifier for ratios as low as 6:1.

3.3 Practical Algorithms

This section explores what happens when a practical, not a Bayes optimal, clas-
sifier is used. We look at the popular one nearest neighbor algorithm. Its error
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rate is known to be no worse than twice Bayes optimal. In the limit of training set
size, the algorithm will classify an instance as positive (negative) in proportion
to the probability of its being positive (negative). To generate the cost curves
in Figure 8, we again vary the distance between two normal distributions. The
topmost curve has the smallest distance and only a small relative cost reduction
even when priors and costs are balanced. Even relatively mild imbalances re-
move this benefit. All classifiers will perform worse than the majority classifier,
differing only in the degree of imbalance at which it occurs. The top two curves
show a performance worse than the majority classifier for class ratios as low as
10:1. The best classifier performs worse when the ratio is greater than 100:1. But
even at 10:1 the cost reduction has fallen from 0.8 to 0.5 and at 50:1 to 0.1.

In summary, for a constant relative cost reduction there must be pure regions
containing a large fraction of each class. Otherwise, it becomes vanishingly small
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as imbalance increases. We experimented informally with C4.5 [9] on 10 UCI
data sets [10], with ten or more instances at each leaf. On six data sets (sonar,
diabetes, hepatitis, vote, labor and breast cancer) there were very few pure leaves,
accounting for a small fraction of the instances. LetterK produced a pure leaf for
the majority class representing about a third of the data, but no pure leaf for a
significant fraction of the minority class. Hypothyroid and sick produced large
leaves that were almost pure but only for the majority class. One dataset, chess
(KRvKP7), produced pure leaves across almost the entire instance space. Here
C4.5 has a very low error rate that persists even if imbalance is very extreme.

This paper used expected cost to evaluate classifiers. Costs are a very general
way of measuring performance, but there are other measures. Probably the most
popular is the “area under the curve” of an ROC plot. Although it has advantages
over error rate [4], we feel it obscures the severe imbalance problem. All ROC
curves have the two trivial classifiers, forming the majority classifier, as their
endpoints. If we use the slope of the curve to chose the appropriate classifier
[11], these endpoints will be chosen for severe imbalance, unless the slope is zero
or inifinity. Although increased “area under the curve” is indicative of better
performance it does not guarantee that a classifier is immune to severe imbalance.

4 Reducing the Problem

Our representation emphasizes the close relationship between misclassification
costs and class frequencies. Cost imbalance is potentially just as problematic as
class imbalance. We might hope that the minority class is the more costly to
misclassify, counteracting class imbalance and moving towards the center of our
diagram. But if class imbalance is severe, say 100:1, a severe cost imbalance of
similar magnitude is needed to solve the problem. This may occur in situations
where missing a true alarm has major consequences. Some work by one author
involves detecting wheel failures on trains. Failures leading to major accidents,
however rare, would incur considerable costs. High costs inevitably produce a
high rate of false alarms. Although users may initially find this unacceptable,
demonstrating an overall cost reduction should overcome any misgivings.

Another way to reduce the problem is to generalize what it means to be-
long to the minority class. For trains, we might instead of predicting a wheel
failure predict an “axle” failure for either wheel sharing an axle. There are two
axles on a truck (4 wheels), two trucks on a car (8 wheels) and many cars on
a train (100’s wheels). The choice of granularity depends on the costs inherent
in the application. Predicting failures at the car level, or even the train level,
should reduce costs considerably. Predicting at the wheel level may have only a
small additional benefit. Raising the granularity of the prediction task will often
keep most, if not all, of the benefits while considerably reducing the imbalance.
This may be part of the reason for success of some earlier work with imbalanced
classes. Fawcett and Provost [6], rather than classifying individual cellular phone
calls as fraudulent, classified days of phone use as indicative of fraudulent be-
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havior. This was primarily intended to reduce noise in the application but had
an additional benefit of reducing class imbalance.

So if imbalance is severe, before exploring alternatives algorithms we ar-
gue that one should explore alternative class definitions. One should establish a
“lower bound” – the most balanced application in terms of costs and class fre-
quencies that might be solved and still be useful. If this is impossible, the task
is likely inherently difficult to solve and time may be better spent elsewhere.

5 Conclusions

This paper has shown that there is a fundamental limit on classifier performance
(given by the Bayes optimal classifier) that is often little better than that of the
majority classifier. Non-normal distributions and practical algorithms often ex-
acerbate the problem. We have argued that there is not an algorithmic solution.
Only by redefining the classification task can the problem be addressed. 1
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Abstract. Many learning situations involve separation of labeled train-
ing instances by hyperplanes. Consistent separation is of theoretical in-
terest, but the real goal is rather to minimize the number of errors using
a bounded number of hyperplanes. Exact minimization of empirical error
in a high-dimensional grid induced into the feature space by axis-parallel
hyperplanes is NP-hard. We develop two approximation schemes with
performance guarantees, a greedy set covering scheme for producing a
consistently labeled grid, and integer programming rounding scheme for
finding the minimum error grid with bounded number of hyperplanes.

1 Introduction

In supervised learning a training sample S = { (x1, y1), (x2, y2), . . . , (xn, yn) } of
n labeled instances is given. The instance vectors xi are composed of the values
of d attributes and the class labels yi usually come from a relatively small set
C. The objective of a learning algorithm is to categorize the examples given
to reflect the true classification of all instances. However, since it can only be
observed through the training sample, a common subtask in learning algorithms
is to fit a hypothesis closely to the training examples.

In real-world domains fully consistent separation of instances is mostly impos-
sible due to noise and other inherent complications. Instead, one needs to solve
an optimization problem of empirical (or training) error minimization, finding
the hypothesis that errs in the classification of minimum number of training
examples. Indeed, Vapnik’s [1] empirical risk minimization principle suggests
to choose the hypothesis with minimal training error. Fitting the hypothesis
too closely to the training sample is, though, seen to lead to overfitting and,
therefore, some form of regularization is required to guide error minimization.

By generalization error bounding techniques the error minimizing hypoth-
esis does not have true error far from optimal. Unfortunately, in many classes
finding the minimum error hypothesis is computationally intractable. It is, e.g.,
NP-hard to solve for the class of monomials, i.e. hyperplanes, in arbitrary di-
mension [2]. We will develop approximation algorithms for one such intractable
problem, separating points by a restricted number of axis-parallel hyperplanes.

J. Gama et al. (Eds.): ECML 2005, LNAI 3720, pp. 547–555, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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This problem is related to practice, e.g., through the problem of näıve Bayesian
classification in which the small number of decision boundaries per attribute
taken together divides the input space into hyper-rectangular cells each of which
gets an assigned class according to the relevant marginal distributions.

The axis-parallel separation problem that we study is, though, not quite
the same problem because it does not take marginal distributions into account.
However, this is a necessary step on the road to developing an optimal discretiza-
tion algorithm for Näıve Bayes and general Bayesian networks. Discretization of
numerical attributes is a central problem in learning network structure [3].

We consider the d-dimensional Euclidean instance space Rd. For the ease of
illustration, we will be mainly dealing with the two-dimensional case, d = 2.
Sometimes we also set |C| = 2 for the sake of clarity.

2 Problem Definition and Prior Work

Axis-parallel hyperplanes arise in classifiers that compose their hypothesis from
value tests for single attributes. Denote the value of an attribute A for the
instance vector x by valA(x). For a numerical attribute A the value test is of
the form valA(x) ≤ t, where t is a threshold value. Now, valA(x) = t defines an
axis-parallel hyperplane that divides the input space in two half-spaces.

We are interested in the situation where the number of hyperplanes is re-
stricted. If we are at liberty to choose the number of hyperplanes at will, we can
always guarantee zero error for consistent data by separating each point to its
own subset. Minimizing the number of hyperplanes needed to obtain a consistent
partitioning is NP-complete, but can be approximated with ratio d in Rd [4].

At least two natural ways exist to partition a plane using axis-aligned straight
lines (Fig. 1): They can define a hierarchy of nested half-spaces or a grid on the
whole input space. An archetype example of the former method is top-down
induction of decision trees. The root attribute first halves the whole instance
space, its children the resulting subspaces, and so forth. The final subspaces (the
leaves of a decision tree) are eventually assigned with a class label prediction, e.g.,
by choosing the majority label of the examples in the subspace. In our example
five lines lead to six nested half-spaces. In the alternative division of the input

Fig. 1. Two ways of separating the plane by the same set of hyperplanes: nested half-
spaces and the grid defined by hyperplanes penetrating each other
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space the lines always span through the whole input space and penetrate each
other. Using the corresponding five lines leads to a grid of twelve cells.

2.1 Connection to Näıve Bayesian Discretization

The grid defined by hyperplanes penetrating each other is a result of executing
several attribute value tests simultaneously. Our interest in this problem comes
through Näıve Bayes, which predicts for each instance x the most probable class
argmaxc∈C P(c | x) as determined by the training data. Probability estimation
is based on the Bayes rule P(c | x) = P(x | c) P(c) /P(x).

In determining the most probable class the values of all attributes of the
instance are all looked at simultaneously because of the (näıve) assumption that
the attributes A1, . . . , Ad are independent of each other given the class, which
indicates that P(x | c) =

∏d
i=1 P(valAi(x) | c). The probabilities are estimated

from the marginal distributions of the training sample S. A common way of
handling a numerical attribute A is to discretize its value range into successive
half-open intervals tj−1 < valA(xi) ≤ tj using threshold values t1, t2, . . . after
which the numerical attribute can be handled similarly as a nominal one.

In decision tree learning the value ranges of numerical attributes can often be
discretized to a small number of intervals without a loss in training accuracy [5].
The same is true for optimal discretization of Näıve Bayes: its decision boundaries
for each dimension can be recovered without loss of accuracy after discretization
[6]. Together all decision boundaries of the d dimensions divide the input space
into a hyper-grid in which each cell gets labeled by the class that is most probable
according to the evidence contained in the training set.

Let R be one of the hyper-rectangles induced by the chosen axis-parallel
hyperplanes minimizing training error. In other words, R is a convex region
defined by the value of each attribute Ai restricted to some interval Ri contained
in R. As empirical error is minimized in R, it must be that P(R, c) is maximized
within R for (one of) the majority class(es) c. When the instances come from a
product distribution, we can apply the näıve Bayesian assumption to get

P(R, c) = P(R | c) P(c) = P(c)
∏d

i=1 P(Ri | c) .

This product is the numerator in the equation determining the prediction of
Näıve Bayes and actually chooses the same class as Näıve Bayes. Since c has
maximum probability within R, it must also be the choice of Näıve Bayes within
this bin in a discretization. Hence, the Näıve Bayes optimal discretization is
attained on the axis-parallel hyperplanes that minimize empirical error. However,
this does not hold for all possible data distributions.

2.2 Related Work

The simplest linear separator class, single unrestricted hyperplanes, is usually
considered to be a too restricted class of hypotheses for practical purposes be-
cause of the restrictions of the perceptron algorithm. There have, though, been
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many successful applications of even such simple hypotheses and kernel methods
can take advantage of linear machines combined with other techniques [7].

Minimizing empirical error has been studied extensively in connection of deci-
sion trees. Optimal decision tree construction is NP-complete in general settings
[8] and in arbitrary dimensions [9, 10]. Furthermore, optimal decision tree learn-
ing is highly inapproximable [11]. In fixed dimensions Das and Goodrich [12]
have shown that it is NP-complete to decide whether points of R3 that come
from two classes have a consistent linear decision tree of at most k nodes.

The problem of separating two point sets with k unconstrained hyperplanes
is NP complete in general dimension and solvable in polynomial time in fixed
dimension [2, 9]. Grigni et al. [11] have shown that, unless NP=ZPP, the number
of nodes containing linear decision functions (hyperplanes) in a decision tree
cannot be approximated within any fixed polynomial. Moreover, the depth of
such a classifier cannot be approximated within any fixed constant.

Auer et al. [13] devised an algorithm that minimizes empirical error in the
class of two-level decision trees. Dobkin and Gunopulos [14] further consider
learning restricted decision trees and studied the learnability of piecewise linear
and convex concepts in low dimensions defined as the intersection of a constant
number of half-spaces [15]. Dobkin et al. [16] also show that minimizing em-
pirical error (in binary classification) is equivalent to computing the maximum
bi-chromatic discrepancy. They are thus able to devise algorithms for minimizing
error for axis-aligned boxes and hyperplanes.

Chlebus and Nguyen [17] showed the NP-completeness of consistent parti-
tioning of the real plane using minimum number of axis-parallel lines that pene-
trate each other by reducing the minimum set cover problem in polynomial time
to it. Hence, we cannot expect to find an efficient algorithm to solve the problem
of our interest exactly (unless P=NP). Based on this result one can also prove
Näıve Bayes optimal discretization to be NP-hard [6].

Călinescu et al. [4] dealt also with the problem that we consider here. How-
ever, they were interested in the case of consistent partitioning and used as many
hyperplanes as needed to obtain complete separation of different colored points.
We, on the other hand, are interested in the more realistic problem of restricted
number of hyperplanes and inconsistent data. Nevertheless, we are able to take
advantage of the proof techniques of Călinescu et al. [4].

3 Minimum Set Cover Approximation

As a reduction from minimum set cover to the consistent partitioning of the real
plane has been used [17], it seems natural also to try to approximate empirical
error minimization through that problem. Given a set U of n items, a collection
S of m subsets of U , and a natural number k, the set covering problem is [18]:

Set Cover(U,S, k): Does there exist a collection of at most k subsets
{Sr1 , . . . , Srk

} ⊂ S such that every item of U is contained in at least
one of the sets in the collection?
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Set Cover is approximable within lnn+ 1, but not within (1− ε) logn for
any ε > 0. The algorithm attaining the logarithmic approximation ratio is the
straightforward greedy covering method, which chooses to the evolving cover the
subset that contains the largest number of yet uncovered elements [18].

The problem of consistent partitioning of Rd with axis-parallel hyperplanes
is:

ConsAxis(S, n): Given a set S of n points {x1, . . . , xn } ⊂ Rd each
labeled either positive or negative, find a consistent partitioning of S
with axis-parallel hyperplanes using as few hyperplanes as possible.

We reduce ConsAxis to Set Cover, which allows us to use the greedy
set covering algorithm to solve the ConsAxis problem. Given an instance S of
the ConsAxis problem, we generate a new element ux,x′ corresponding to each
conflicting pair of labeled points (x, y) and (x′, y′), where y �= y′, in S. Let U be
the set of all such generated elements. In the worst case |U | = Ω(n2).

It is sufficient to restrict the axis-parallel hyperplanes to a set H of at most
n− 1 canonical hyperplanes per dimension. There is a canonical hyperplane per
consecutive points with respect to a dimension (say, at the average coordinate
between the two). In terms of cut point analysis [5], they correspond to the bin
borders of the axes. In empirical error minimization one can further reduce the
number of intervals [5]. For each h ∈ H we create a set that has a representative
for each pair of conflicting examples that can be separated by h (≡ valAi(x) = t):

H(X, t) = {ux,x′ ∈ U | valAi(x) ≤ t ≤ valAi(x
′) ∨ valAi(x

′) ≤ t ≤ valAi(x) }
Let H denote the collection of all such sets. Now, H is an instance of the Set
Cover problem such that its solution defines a set of hyperplanes which, by
construction, separate all conflicting example pairs from each other.

Applying the greedy set covering algorithm to the collection of sets H con-
structed above, gives an approximation algorithm for ConsAxis with approxi-
mation quality O(k∗(1 + lnn2)) = O(k∗(1 + 2 lnn)), where k∗ is the minimum
number of axis-parallel hyperplanes needed to consistently partition the set S.

Inconsistent data is also easy to handle. Determine the majority class within
a set of all examples with the same instance vector and delete all members of
the minority classes before converting the problem.

In practice one is often allowed or wants to use only k hyperplanes for the
partition. The bounded number of hyperplanes now at our disposal does not
necessarily suffice to reach the lowest error, and the goal becomes to attain as
low error as possible using them.

When the number of hyperplanes is not restricted, no polynomial-time al-
gorithm has approximation guarantee 1 + c, where c > 0 is a constant [4]. I.e.,
by using a constant factor c more hyperplanes than in the optimal solution, one
cannot guarantee to attain zero error. This result also implies a limitation to
the situation where the number of hyperplanes is restricted: Assume that there
were a polynomial-time algorithm with a constant approximation guarantee (to
the number of erroneously labeled instances). More specifically, assume that

app(1+c)k ≤ δ optk,
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where appk denotes the error of the approximate solution using k hyperplanes
and optk stands for the minimum error using k hyperplanes. Now, setting
optk = 0 yields an exact polynomial-time algorithm for the unrestricted case,
which contradicts the fact that no such algorithm exists. Thus, no polynomial-
time algorithm can guarantee an error at most a constant δ times that of the
optimal algorithm using only a constant factor c more hyperplanes.

Set covering of conflicting pairs does not give an approximation algorithm
in this case, because even though the evolving set cover (partition) reduces the
number of conflicts of the sample, it does not guarantee diminishing error. Con-
sider, e.g., four examples divided by one hyperplane into two subsets both con-
taining one positive and one negative example; two classification conflicts have
been removed by the hyperplane, but the error of this partition has not re-
duced.

4 Linear Programming Approximation

We will first formulate the axis-parallel separation problem as a zero-one in-
teger program, and then give its linear program (LP) relaxation. The general
problem of zero-one integer programming is NP-hard. However, for the LP re-
laxation, in which the integral constraints are replaced by ones that allow the
variables to assume real values in [0, 1], many efficient methods for solving are
known.

We use two sets of binary variables. A variable wi, 1 ≤ i ≤ n, has value
1 if point pi is not separated by the chosen hyperplanes from all points of dif-
ferent class, otherwise wi = 0. The second set of variables zj represents the
axis-parallel hyperplanes. There are at most d(n − 1) of them. If a hyperplane
hj ∈ H is included in the set of solution lines, then zj = 1 and otherwise
zj = 0.

Because each point that is not separated by the chosen lines from all points
of different class will unavoidably lead to a misclassification, our objective is to
minimize the number of such points. I.e., we want to optimize:

min
∑n

i=1 wi

with constraints ∑d(n−1)
j=1 zj ≤ k and wu + wv +

∑
zj ≥ 1.

The first constraint ensures that at most k hyperplanes are chosen. The second
one is called the separation condition, and there is one for each pair of points
pu and pv that have different class. The sum is taken over all those lines that
separate the two points. The separation condition is sufficient because in each
such pair at least one of the following holds:

– Either pu or pv, or both, is destined to be an error (in conflict with the label
of the cell). In this case the separation condition is fulfilled by wu +wv ≥ 1.

– A hyperplane hj has been chosen that separates pu and pv. In this case the
separation condition is fulfilled by zj = 1.
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Note that any value assignment for the wi and zj variables that satisfies the
separation condition corresponds to a grid, where a point pu that is labeled
correct (wu = 0) will only share its cell with points with the same label and
points destined to be errors (wv = 1).

Let us now turn to the LP relaxation, where the variables ŵi and ẑj take
real values in [0, 1]. Obviously, the value of the solution to the relaxed problem
using k lines, LPk, is at most that of the integer program, optk; LPk ≤ optk.
Let us consider all pairs of points pu and pv for which it holds ŵu + ŵv ≥ C for
some constant C, 0 < C ≤ 1. We now round the values ŵ so that in each such
pair at least one variable gets value 1. A straightforward way is to round up
all those variables that have ŵi ≥ C/2. The remaining ŵ variables are rounded
down to 0. In the worst case we have to round up n−1 variables. The number of
these variables determines an approximation to the solution of the optimization
problem. Hence, this approach can guarantee an approximation ratio of

(2/C)
∑n

i=1 ŵi = (2/C)LPk ≤ 2optk/C.

It remains to round the values ẑj . Here we adapt the counting based rounding
procedure of Călinescu et al. [4]. Any two points pu and pv that need to be
separated by a hyperplane after rounding of ŵ values have ŵu + ŵv < C. By the
separation condition, in the solution of the LP relaxation the sum of variables
corresponding to hyperplanes in between the points is

∑
ẑj > 1−C. In order to

include one of those to our rounded solution, we systematically go through the
hyperplanes by dimensions and cumulate the sum of their ẑ values. In the plane
as long as the sum is below (1− C)/2 we round the ẑj variables down to 0. We
choose all those lines that make the total sum reach or exceed (1 − C)/2. The
sum is then reset to 0 and we continue to go through the lines.

Consider a conflicting pair of points which need to be separated by a line. If
no vertical line was chosen to separate them, their cumulative sum must have
been strictly below (1−C)/2, and one of the horizontal lines in between the two
is guaranteed to make the sum reach and exceed the threshold. As the sum of
the fractional variables still obeys the upper bound of k by the first constraint,
this way we may end up picking at most 2k/(1−C) lines to our approximation.

Let appk denote the value of the above described rounding procedure and
line selection using k lines. By the above computation, we have that

app2k/(1−C) ≤ 2optk/C.

Thus, we have demonstrated an approximation algorithm for the separation
problem. As necessitated, the algorithm uses more lines and makes more false
classifications than the optimal solution. For example, when C = 1/2, we have
app4k ≤ 4optk. The general form of the above performance guarantee in d
dimensions is appdk/(1−C) ≤ d · optk/C.

5 Conclusion and Future Work

In this paper we studied two approaches for developing an approximation al-
gorithm for separating classified points by axis-parallel hyperplanes. The first
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approach using the minimum set covering only works when the number of hy-
perplanes is not restricted, but a LP relaxation of an integer programming for-
mulation of the problem yields an approximation algorithm also using only a
bounded number of hyperplanes.

The LP approach can easily be extended to situations where the hyperplanes
are not perpendicular to each other or are higher dimensional polynomials. The
practicality of the approximation schemes remains to be studied. Even though,
LP solvers are in principle efficient and sparse matrix techniques can in our case
be used to further speed them up, the space complexity of the proposed approach
defies the most straightforward implementation.
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Abstract. Probability trees (or Probability Estimation Trees, PET’s)
are decision trees with probability distributions in the leaves. Several
alternative approaches for learning probability trees have been proposed
but no thorough comparison of these approaches exists.

In this paper we experimentally compare the main approaches using
the relational decision tree learner Tilde (both on non-relational and
on relational datasets). Next to the main existing approaches, we also
consider a novel variant of an existing approach based on the Bayesian
Information Criterion (BIC). Our main conclusion is that overall trees
built using the C4.5-approach or the C4.4-approach (C4.5 without post-
pruning) have the best predictive performance. If the number of classes
is low, however, BIC performs equally well. An additional advantage of
BIC is that its trees are considerably smaller than trees for the C4.5- or
C4.4-approach.

Keywords: (Relational) Decision trees, probability estimation.

1 Introduction

Probability trees (or Probability Estimation Trees, PET’s) are decision trees with
in the leaves probability distributions on a set of classes [11]. They are useful
in a number of ways, e.g. for ranking instances according to the probability of
belonging to a certain class [11] or as a compact way of specifying conditional
probability distributions (for instance in Bayesian networks) [5].

Several alternative approaches for learning probability trees have been pro-
posed in the literature but currently no thorough comparison of these approaches
exists. Hence, it is unclear which approaches are preferable under which circum-
stances. The goal of this paper is to compare the main existing approaches and
a novel variant. We incorporated them in the relational decision tree learner
Tilde [2] and evaluate them by performing experiments on benchmark datasets
and on manipulated datasets. We use both non-relational and relational datasets.

In Section 2 we give a high-level algorithm for learning probability trees, of
which the main existing approaches are instantiations. In Section 3 we experi-
mentally compare these approaches. In Section 4 we conclude.

J. Gama et al. (Eds.): ECML 2005, LNAI 3720, pp. 556–563, 2005.
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2 Learning Probability Trees

Probability trees are learned from a dataset D of instances labelled with their
true class. Tilde [2], the relational decision tree learner we use, represents in-
stances as first-order logic interpretations and tests in internal nodes as Prolog
queries (since such tests either succeed or fail, trees are binary). We use Tilde
because it can handle relational datasets in addition to non-relational ones.

Probability trees are typically learned in two steps. In the first step we top-
down induce a tree T as follows. We start from the empty tree and for each
candidate-test T compute the heuristic value h(T ). Call Tbest the best of all
candidate-tests, i.e. Tbest = argmaxT (h(T )). If h(Tbest)<Thr with Thr a certain
threshold we return a leaf (so Thr determines a kind of stopping-criterion).
Otherwise we make Tbest the root of the tree and apply the same procedure
recursively to learn the left- and right-subtrees. In the second step we can apply
bottom-up post-pruning (to avoid overfitting): we first prune the left- and right-
subtrees giving Tpruned and then check whether Tpruned is ‘better’ than a single
leaf according to some pruning-criterion.

The main approaches all fit into this generic two-step approach and corre-
spond to different choices of the heuristic function h(.), Thr and the pruning-
criterion (if post-pruning is used). We now briefly discuss these approaches. Some
more details are given in [4].

C4.5 (error-based post-pruning) Provost and Domingos [11] discuss
learning probability trees using C4.5. This means that h(T ) is information-gain
of T (gain(T )), Thr is 0 (any information-gain is acceptable) and error-based
post-pruning is applied1. We refer to Tilde applied with these parameters as
C4.5.

C4.4 (no pruning) Provost and Domingos [11] argue that pruning is harm-
ful for probability trees. The idea is that probability estimation is conceptually
different from majority-classification (the focus of C4.5). Hence they propose to
use C4.4, i.e. C4.5 without any post-pruning. We refer to Tilde applied with
these parameters as C4.4. Obviously, C4.4 builds extremely large trees.

Minimum Description Length (MDL) Friedman and Goldszmidt [5] de-
fine an MDL-score for probability trees and use it to derive a stopping-criterion
for the tree-building. Concretely this means that h(T ) is Nnode.gain(T ) and Thr
is 0.5 (NbClasses− 1) log2N + log2NbTests+ 2, where N is the total number
of examples, Nnode is the number of examples in the current node and NbTests
is the number of candidate-tests considered. In terms of MDL, h(T ) is the de-
crease in description length of the data and Thr is the increase in description
length of the tree due to adding T to the tree [5]. We refer to this approach
as MDLs.

Using MDL as a stopping-criterion (using the above Thr) we easily get stuck
in local optima of the MDL-score. As an alternative we can use Thr = 0 and

1 Like Provost and Domingos, we do not apply ‘collapsing’ [11] since it harms proba-
bility estimates too much.
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apply post-pruning based on MDL-reasoning [5]. We refer to this approach as
MDLp. MDLp builds trees at least as large as those for MDLs.

Bayesian Information Criterion (BIC) Inspired on the above MDL-
score, we can define a BIC-score for probability trees (as far as we know, we
are the first to apply BIC to probability trees). BIC [12] is a general approach
equivalent to a form of MDL where the the description length of the model
only depends on its number of independent parameters. In the context of pro-
bability trees this means that h(T ) is the same as for MDLs but Thr now is
0.5 (NbClasses − 1) log2N . We refer to this approach as BICs. BICs builds
trees at least as large as those for MDLs (since Thr is strictly lower for BICs).

As an alternative we can again use Thr = 0 and apply post-pruning based
on BIC-reasoning. We refer to this approach as BICp. BICp builds trees at
least as large as those for BICs.

Chi-square score Neville et al. [10] discuss learning probability trees using
the chi-square (χ2) statistic. Concretely, h(T ) is the χ2-score of T and Thr is
determined by the sampling distribution of χ2 for significance level p = 0.1

NbTests
and degrees of freedom df = NbClasses− 1. No post-pruning is used. We refer
to this approach as Chi.

The above list is not complete. Some other existing approaches and the rea-
sons for not considering them in our work are given in [4].

3 Experimental Comparison

To the best of our knowledge, C4.5 and C4.4 are the only of the above ap-
proaches that have already been compared (Provost and Domingos [11] conclude
that neither of the two is significantly better than the other). In this section we
make a thorough comparison of all approaches mentioned above.

3.1 Experiments on Benchmark Datasets: Setup and Results

Table 1 gives an overview of the datasets used. All non-relational datasets are
from the UCI-repository [8], except asm [6]. All relational datasets are standard
ILP-benchmarks [1, 7, 13] (trains was artificially generated [9]; for hiv the classes
‘inactive’ and ‘moderately active’ were taken together).

To evaluate predictive performance of probability trees we use the Area Under
the ROC-curve (AUC), or Expected AUC for multi-class problems [11]. As noted
in [11], AUC can be used as a quality measure for probability estimates since a
high AUC indicates that, with proper re-calibration of probabilities, probability
estimates will be good. To evaluate the size of the trees we use the number of leaf
nodes (this is the number of internal nodes plus one since trees are binary). We
perform 10-fold cross-validation (except for datasets smaller than 500 examples
where we perform five times 3-fold cross-validation to keep test-sets large enough)
and report averages and standard deviations of results over the test-sets.

Table 2 shows the experimental results (the upper half of each table shows
two-class problems, the lower half shows multi-class problems). We compared
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Table 1. Characteristics of the non-relational (left) and relational (right) datasets:
number of examples, number of classes and number of candidate-tests for the root

N NbClasses NbTests
asm 999 2 170
audiology 226 24 125
pen digits 7494 10 160
primary tumor 339 22 29
voting 435 2 16
yeast 1484 10 45

N NbClasses NbTests
biodegradability 328 2 47
carcinogenesis 330 2 305
diterpenes 1504 23 210
hiv 41768 2 49
mutagenesis 230 2 139
trains 25000 2 73

Table 2. Experimental results: AUC (upper table, in %) and tree size (lower table)

C4.4 C4.5 MDLs MDLp BICs BICp Chi
asm 58.7±4.7 62.8±3.7 69.6±4.4 69.6±4.4 67.4±3.8 66.0±3.5 69.5±4.3
biodegr. 74.9±6.7 75.4±4.8 63.9±4.0 64.1±2.9 73.0±4.7 71.6±5.3 64.5±4.0
carcinog. 59.1±5.8 59.3±6.7 50.0±0.0 50.0±0.0 54.0±2.7 57.2±3.2 50.0±0.0
hiv 74.8±3.3 53.9±1.1 64.1±2.1 70.5±3.1 66.8±3.3 72.4±3.3 67.0±3.2
mutagenesis 77.0±5.0 71.7±4.9 71.6±7.0 74.5±4.4 72.8±8.2 75.8±6.6 71.9±6.0
trains 86.3±0.5 89.2±0.6 89.0±0.6 89.2±0.5 89.2±0.6 89.4±0.5 89.3±0.5
voting 98.6±0.7 96.5±2.1 97.4±1.1 97.7±1.4 98.3±1.5 98.4±0.9 98.5±1.2
audiology 98.8±0.8 98.7±0.7 75.3±2.7 75.6±2.4 80.9±5.5 81.2±5.0 97.4±1.1
diterpenes 85.4±2.5 85.8±1.8 70.4±3.7 71.2±2.6 71.5±3.8 72.0±2.9 82.0±2.5
pen digits 99.5±0.1 99.4±0.1 98.7±0.2 98.7±0.2 98.9±0.3 98.9±0.3 99.4±0.1
pr. tumor 71.5±3.1 73.3±4.3 65.8±5.3 67.7±1.8 67.9±1.9 67.5±1.9 72.7±4.0
yeast 75.8±3.2 79.6±3.5 78.3±2.5 78.3±2.5 78.3±2.5 78.3±2.5 79.1±4.0

C4.4 C4.5 MDLs MDLp BICs BICp Chi
asm 352±14 64±11 3±0 3±0 6±2 7±3 3±0
biodegradability 72±5 30±5 2±1 2±1 10±2 12±4 4±2
carcinogenesis 95±8 35±7 1±0 1±0 5±2 8±3 1±0
hiv 1391±76 15±2 8±3 32±4 26±3 55±4 33±3
mutagenesis 42±4 9±5 2±0 2±0 5±2 5±2 2±0
trains 4664±55 484±29 38±2 49±4 68±6 92±6 64±3
voting 21±3 6±3 3±1 3±1 6±1 6±1 6±1
audiology 24±1 24±2 2±0 2±0 3±1 3±1 18±3
diterpenes 127±11 64±5 3±1 4±1 4±1 4±1 14±2
pen digits 254±8 214±7 36±2 36±2 42±3 42±3 126±4
primary tumor 129±5 79±7 2±0 2±0 2±0 2±0 5±1
yeast 447±34 123±13 6±0 6±0 6±0 6±0 23±3

AUC’s for each of the approaches to AUC’s for C4.4 (which performs best) by
means of two-tailed paired t-tests (p=0.05). An AUC in boldface (resp. under-
lined) indicates that this AUC is significantly higher (resp. lower) than that for
C4.4. A more detailed statistical analysis is given in [4].

As for running times, the approaches using an explicit stopping criterion
(MDLs, BICs and Chi) are a factor 8 to 52 faster than the others [4].
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3.2 Discussion and Further Experiments

As mentioned we used C4.4 as the reference method for performing significance
tests on the AUC’s in Table 2. Hence, when reporting wins/ties/losses for a
certain method we always mean wins/ties/losses of that method versus C4.4.

Overall Observations. From Table 2 we see that overall C4.4 performs best
although there are some datasets where it is outperformed (most notably asm).
C4.5 performs almost as well (the number of wins/ties/losses for C4.5 is 3/5/4).
This confirms the conclusions of Provost and Domingos [11]. Trees for C4.5,
however, are always significantly smaller than trees for C4.4, except on audiology
(see [4] for a statistical analysis). Note that the dramatic performance of C4.5
on hiv is probably due to the strongly skewed class-distribution (only 3.6% of
positive examples). In [3] we discuss a controlled experiment showing that C4.5
indeed performs badly on strongly skewed datasets.

MDL and Chi overall perform clearly worse than C4.4 (wins/ties/losses for
MDLs are 3/0/9, for MDLp 3/2/7, for Chi 3/3/6). Trees for MDL and Chi
are always significantly smaller than trees for C4.4 or C4.5, except on voting
and hiv [4]. Results for BIC are discussed in the next section.

Influence of the Number of Classes. An interesting observation from Ta-
ble 2 is that BIC performs well for two-class problems but not for the multi-class
problems we considered (that all have NbClasses ≥ 10). On the two-class prob-
lems, wins/ties/losses for BICs are 2/3/2, for BICp 2/4/1. This means that
on two-class problems, BIC performs at least as well as C4.4 (or any other
approach), while BIC has the additional advantage of building much smaller
trees.

On the multi-class problems, the picture looks rather different, however.
Wins/ties/losses for BICs and BICp are both 1/0/4: C4.4 clearly outper-
forms BIC here. One explanation for this is the fact that Thr for BICs is
0.5 (NbClasses − 1) log2N . So if NbClasses is high, then Thr is high as well
and only tests T with a very high heuristic value h(T ) (larger than Thr) are
accepted and hence very small trees are built. This suggests that BICs could be
improved by making the dependency of Thr on NbClasses less strong (i.e. less
than linear) since then trees built for a high NbClasses will be larger (although
such a modification would deviate from the original theoretical foundations of
BIC [12]). Similar remarks apply to BICp. Note that these observations (and
their explanation) also hold for MDL but to a smaller extent, e.g. for MDLp
wins/ties/losses on two-class problems are 2/2/3, on multi-class problems 1/0/4.

We performed an additional controlled experiment to investigate the influence
of the number of classes. We started from diterpenes, a dataset having 23 classes
on which BICs and BICp performed badly. In each step we merged the two
least frequent classes, until only three classes were left. Figure 1 shows the results
obtained from 10-fold cross-validation. In the top panels we show AUC, in the
bottom panels tree size (on a logarithmic axis). We show MDLs, MDLp, BICs
and BICp in the left panels and BICp (the best of the previous four), C4.5,
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C4.4 and Chi in the right panels. We see that results for MDLs, MDLp, BICs
and BICp are always very close to each other. For these approaches both tree
size and AUC quickly decrease as the number of classes increases. Interestingly,
there is almost no such decrease for C4.5, C4.4 and Chi. Figure 1 shows that
as a consequence MDLs, MDLp, BICs and BICp can compete with the other
approaches when NbClasses is 3 or 5, but are outperformed when NbClasses
goes higher. This confirms the above observation that MDL and BIC do not
work well for multi-class problems, and its explanation.
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Fig. 1. Influence of the number of classes for diterpenes

Influence of the Number of Examples We also investigated the influence
of the number of examples in the dataset. We learned trees from subsets of hiv
containing a variable number of examples (we evaluate them on a separate test-
set of 6768 examples). Figure 2 shows the results. We see that results (both
AUC and tree size) for MDLs, MDLp, BICs and Chi are very close to each
other for all sizes of the dataset. For small datasets (N<15000) also BICp is
very close to the previous four. Interestingly however, for larger datasets BICp
learns larger trees than the others, resulting in higher AUC’s. This suggests that
for larger datasets BIC for post-pruning (BICp) is more useful as compared to
BIC as a stopping-criterion (BICs).

We performed the same experiment for trains (using a test-set of 5000 exam-
ples), see Figure 3. Again results for MDLs, MDLp, BICs and Chi are close
to each other for all sizes of the dataset (except the very low ones, N ≤ 3000).
Unlike for hiv, however, BICp is very close to the previous four for all sizes of
the dataset and does not become better than these four for larger datasets. Also
we see that C4.4 seems to overfit for all sizes of the dataset (it builds the largest
trees but has the lowest AUC). The degree of overfitting is not heavily influenced
by the size of the datasets. This is probably due to two competing effects [11].
On the one hand: if the dataset grows, trees grow as well (Figure 3), increas-
ing the probability of overfitting. On the other hand, if the dataset grows, the
number of examples in the leaves would increase, making probability estimates
more reliable, thus decreasing the probability of overfitting. Why C4.4 overfits
on some datasets but not on others is currently an open question.
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Fig. 2. Influence of the number of examples N for hiv
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Fig. 3. Influence of the number of examples N for trains

Influence of the Number of Tests. We also investigated the influence of the
number of candidate-tests. This seemed interesting since this parameter occurs in
the definition of Thr for MDL and Chi but no interesting trends were found [4].

4 Conclusions

We reviewed and experimentally compared the main approaches for learning
probability trees including a novel variant based on the Bayesian Information
Criterion (BIC). We conclude that overall the C4.4-approach performs best, and
the C4.5-approach second best. However, trees are much smaller for the latter
than for the former. Interestingly, if the number of classes is low, BIC performs
equally well. An additional advantage of BIC is that its trees are considerably
smaller than trees for the C4.5- or C4.4-approaches. If the number of classes is
too high (≥ 8 in our experiments), BIC fails because trees are too small.

An interesting idea for future research is to try to improve performance of
BIC on multi-class problems by decreasing the influence of the number of classes
on the stopping- or post-pruning-criterion.
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Abstract. Most supervised machine learning research assumes the training set 
is a random sample from the target population, thus the class distribution is 
invariant.  In real world situations, however, the class distribution changes, and 
is known to erode the effectiveness of classifiers and calibrated probability 
estimators. This paper focuses on the problem of accurately estimating the 
number of positives in the test set—quantification—as opposed to classifying 
individual cases accuratel y.  It compares three methods: classify & count, an 
adjusted variant, and a mixture model. An empirical evaluation on a text 
classification benchmark reveals that the simple method is consistently biased, 
and that the mixture model is surprisingly effective even when positives are 
very scarce in the training set—a common case in information retrieval.   

1   Motivation and Scope 

We address the problem of estimating the number of positives in a target population, 
given a training set from which to learn to distinguish positives from negatives.  This 
could be used, for example, to estimate the number of news articles about terrorism 
each month, or the volume of advertising by a competitor over time.  Unlike previous 
literature in machine learning, our end goal is not to determine a classification for 
each item, but only to estimate the number of positives—quantification as opposed to 
classification.  This is an important problem in real-world situations where the class 
distribution may shift over time in the target population.  It is then needed to track, 
detect and report noteworthy shifts in the class distribution, to calibrate probability-
estimation classifiers, and to select a binary classification threshold to optimize F-
measure or misclassification costs on an ROC curve [2,5].  It is also needed to 
calibrate classifiers that are used on different target populations, such as in medical 
settings where the training set does not represent a random sample of each  
target population. 

The obvious solution is to train a binary classifier from the training data, and count 
its positive predictions on the test set. For example, Fig. 1 shows the result of this 
method as we vary the proportion of positives in a particular test set.  The classifier 
consistently overestimates/underestimates the positives when the test set deviates 
from the balanced class distribution used in training, even though this classifier 
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achieves nearly 90% F-measure in cross-validation testing.  Unfortunately, as we 
demonstrate later, this method consistently leads to poor results—unless the classifier 
is extremely accurate, which can require substantial cost to get enough training data 
and may never be feasible for some tasks. 

 

 
Although accurate classification is sufficient for estimating the count accurately, it is 
not necessary.  Even with a mediocre classifier, the count can be accurate if the false 
positives are canceled out by a balanced number of false negatives.  This raises the 
question of whether estimating the count alone can be accomplished more accurately 
and/or with less training data. 

We describe and evaluate two such superior methods: one based on adjusting the 
binary classifier’s count, the other based on a mixture model of the distribution of 
classifier scores, as described in section 3.  We empirically compare their ability to 
accurately track varying test class distributions under a variety of training set 
compositions.  In such a study it is important to vary the training and testing class 
distributions as independent parameters, in contrast with most classification research 
practice, which assures the class distribution is the same in training and testing via 
random sampling or cross-validation.  We are especially interested in the situation 
where there are a small number of positives to train from—a common case in 
information retrieval and bioinformatics where positives are rare and obtaining labels 

Table 1.  Summary of parameters considered in the empirical comparison 

P = 10...200 Positives in training set 
N = 100...1000 Negatives in training set 
p  = 5...95% Percent positives in test set 
Benchmark: 21 binary text classification tasks 
 
Learning Algorithms: 
SVM  Support Vector Machine 
NB  Naive Bayes 
NBM  Multinomial Naive Bayes 

Counting Methods: 
CC Classify & Count 
AC Adjusted CC 
MM Mixture Model  
 
Performance Metrics: 
Err estimated p  –  actual p 
AbsErr |Err| 
CE Normalized Cross-Entropy 
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Fig. 1. Counting positives via a classifier trained with 100 positives and 100 
negatives yields a poor estimate of the count as we vary the test class distribution, 
even though the classifier achieves nearly 90% F-measure in cross-validation. 
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costs human effort.  Table 1 provides an overview of the range of parameters we 
studied.  The experiment protocol and its results are described in sections 4 and 5, 
respectively.  Next, we complement this introduction with a discussion of related 
work to help scope this work. 

2   Related Work 

The great majority of the machine learning literature assumes the class distribution is 
invariant between training and testing.  Some work focuses on improving 
classification accuracy when the target class distribution is imbalanced, usually by 
over-sampling the minority class or under-sampling the majority class to balance the 
training set, where induction algorithms are more effective.  The work of Weiss & 
Provost [5], for example, carefully studies the effect of varying the training 
distribution to optimize classification accuracy for a given test set. 

Many works mention the need to adjust the class priors to match the test 
distribution.  This is usually assumed to be done via foreknowledge or a manual 
inspection of a random sample.  Even in such papers, their performance goal is only 
to improve binary classification accuracy or probability estimation [1], and not to 
accurately count positives in test sets as here.  Some works specifically seek to factor 
out the effect of class distribution by, for example, evaluating classification 
performance via balanced accuracy or the area under the ROC curve (AUC). 

Finally, some work attempts to detect class drift—when the character of a class 
with respect to its feature space changes over time, suddenly or gradually.  Class drift 
falls outside the scope of this paper. We only consider shifts in the relative 
populations of positives and negatives. 

3   Theoretical Framework of Counting Methods 

In this section, we describe the theoretical framework of three methods for estimating 
the count of positives.  We also list two intuitive methods that do not work. 

3.1   CC:  Classify & Count 

This is the obvious method.  First, we learn a binary classifier from the training data, 
such as a Support Vector Machine (SVM) or Naïve Bayes model.  We then apply it to 
each item of the test set, and count the number of times it predicts positive.  If the 
predictions are nearly perfect, then the count will be nearly accurate, no matter what 
the test class distribution.  This should be successful where the two classes are very 
well separated, e.g. distinguishing news articles written in German vs. English.   

If the classes are not well separated, then there will be some number of false 
positives and false negatives, and it is unlikely that these would be closely balanced.  
Moreover, any induction algorithm that is designed to maximize its accuracy on the 
training set will prefer the negative class if positives are the minority, a common case.  
It leads to systematically underestimating the count.  (This suggests artificially 
balancing the training set to achieve a balance between false positives and false 
negatives.  This is ineffective and even ill-conceived, as discussed in section 3.4.) 
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3.2   AC: Adjusted Count 

This method is an extension to the straightforward classify & count method.  
Although the class labels are not available on the test set, consider the counts that 
would appear in the 2x2 confusion matrix below: 

 Prediction: 
Actual Class: Positive Negative 

Positive TP FN 
 Negative FP TN 

The observed count is the sum of true positives TP and false positives FP.  We can 
model each of these counts separately as: 

observed_count  =  TP + FP 
TP  =  TPR * actual_positives 
FP  =  FPR * actual_negatives  =  FPR * (total – actual_positives) 

(1) 

where TPR is the true positive rate of the classifier, P(predict +|actual +), and FPR is 
its false positive rate, P(predict -|actual -).  These are estimated from the training set, 
as discussed below.  Solving this system of equations, we obtain: 

actual_positives  =  (observed_count – FPR * total) / (TPR – FPR) (2) 

This adjustment to the count is the essence of this method, but there are a few 
additional points.  First, observe that the denominator could go to zero.  This would 
only happen with a worthless classifier that is equally likely to predict positive for 
either class.  Normally TPR >> FPR, so the denominator is positive and somewhat 
less than 1.0.  But if TPR < FPR, then the classifier is more likely to predict positive 
for negative items than for positive items. In this situation, one could reverse the 
outputs of the classifier. Re-deriving for this case ends up with the exact same 
equation, so it may be used without special casing for a negative denominator.  In 
these situations, FPR*total is likely to exceed the observed count of positives, so the 
numerator will also be negative. Finally, the adjusted count may under some 
situations predict a negative number of positives or more positives than the total test 
cases.  Thus, we limit its output to the range [0, total]. 

To estimate TPR and FPR for a given classifier, standard techniques may be used, 
such as stratified 10-fold cross-validation on the training set (divide the training set 
into 10 subsets, testing each one with a classifier trained on the other 9; stratification 
ensures that the minority class is evenly distributed among the folds). It yields a 2x2 
confusion matrix, and we compute TPR = TP/(TP+FN), and FPR = FP/(FP+TN). 

3.3 MM:  Mixture Model 

Many binary classifier models consist of a scoring mechanism and a threshold on the 
score to choose between predicting positive or negative.  The induction algorithm has 
to learn both how to score positives higher than negatives and how to pick the 
threshold well.  In the MM method, we eliminate this second step, and only use the 
scoring portion. We then consider the distribution of scores generated by the 
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classifier. After training the classifier, we determine the empirical probability 
distribution D+ of scores that it generates on the positive training examples, and 
separately D- for the negative training examples.  Then, during testing, we model the 
observed distribution DU of scores on the unlabeled data as the mixture (see Fig. 2): 

total * DU  =  actual_positives * D+  +  actual_negatives * D- (3) 

Finally, to estimate the positive count, we determine which mixture of positives 
and negatives would yield the closest fit to DU.  This is the essence of the method, but 
there remain several design choices:   

1. How to obtain the distributions D+ and D- from the training set:  If we train on all 
the training data, and then observe the classifier scores on the training data, the 
separation between positive and negative scores will be overly optimistic compared 
with the actual test distribution.  Instead we use stratified f-fold cross-validation, 
and gather the scores from each fold into one distribution. Strictly speaking, these 
scores were generated from f different classifiers, but if f is large, then these 
classifiers share most of their training data in common. 

2. Whether the empirical distributions found during training should be reduced to a 
parametric model of a distribution:  Based on the range of variation, we decided 
not to try to fit the distributions to parametric models, which also avoids adding 
parameters to the algorithm that may need to be optimized. 

3. Whether to characterize the distributions by their empirical probability density 
function (PDF) or their cumulative distribution function (CDF):   Using the PDF 
requires discretizing the counts into artificial bins.  If the bin size is too small, then 
the estimates in each bin become noisy.  This would create additional parameters 
for tuning.  We selected CDF. 

4. Whether to give special treatment to test scores that fall outside the range of scores 
observed during training:  Optionally, test items that score higher than any score 
observed during training could be treated separately, i.e. surely included in the 
final positive count, and excluded from the mixture model fitting.  Likewise scores 
smaller than any observed score in training could be treated separately as a 
negative.  We include this refinement. 

5. How to measure the goodness of fit between DU and the mixture model:  Given two 
CDFs, the standard way to measure their difference is the Kolmogorov-Smirnov 
statistic, which measures the maximum difference between the two for all scores.  
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Fig. 3. P-P plot comparing two CDFs 
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While common, this coarse metric does not consider finer differences in the shape 
of the fit. For this reason, we developed another difference metric we call PP-Area, 
described below. Another choice would be the standard Anderson-Darling statistic, 
but it is known to emphasize the tails of the distribution, which is not what we need 
for this application.  (The well-known Chi-Squared statistic is appropriate only for 
discrete PDFs.) 

6. How to determine the mixture that optimizes the fit:  For research purposes, we 
compute the goodness of fit for each value from 0% to 100% positives stepping by 
0.5% returning the best, but in practice one could use hill-climbing methods. 

We name this particular collection of design choices the “Countess” method. 

PP-Area: a difference metric for two CDFs.  
Given two CDFs, a well-known method for visually comparing them is to plot one vs. 
the other while varying their input threshold, yielding a Probability-Probability plot, 
or P-P plot (see Fig. 3.). If the two CDFs yield the same probability at each input, then 
they generate a perfect 45° line.  By sighting down this line, one can get an intuitive 
feel for the level of agreement between two CDFs, commonly to decide whether an 
empirical distribution matches a parametric distribution.  To reduce this linearity test 
to computation, it would be natural to measure the mean-squared-error (MSE) of the 
points on the PP curve to the 45° line.  But MSE is highly sensitive to the maximal 
difference, as is Kolmogorov-Smirnov.  

Our solution is to measure the difference between two CDFs as the area where the 
PP curve deviates from the 45° line.  This has well defined behavior partly because 
the curve always begins at (0,0), ends at (1.0,1.0), and is monotonic in both x and y.   
It also has the intuitive property of being commutative, unlike MSE or mean-error. 

3.4   Non-solutions 

If the classes are not well separated by a classifier, then a tradeoff must be made 
between precision vs. recall (false negatives vs. false positives). This tradeoff is 
manifested in the threshold used by a binary classifier.  During training it is optimized 
for accuracy in risk minimization methods, such as SVM. One ill-conceived idea is to 
try to adjust this threshold at training time so as to balance false positives and false 
negatives.  This is not possible because balancing these two depends explicitly on the 
class distribution, which may vary in testing. 

Another ill-conceived idea is the following:  Rather than have the classifier output 
a hard binary decision despite its uncertainty, use a classifier that outputs a probability 
estimate for each item.  Then, estimate the positive count as the sum of probabilities 
over the test set.  Again, this cannot work because the probability estimates depend 
explicitly on the class distribution; the calibrated probabilities would become 
uncalibrated whenever the test class distribution varies.  

4   Experiment Protocol 

To compare these methods, we conducted an empirical evaluation.  The standard 
methodology of cross-validation to obtain training and testing sets is not appropriate.  
Instead, we must independently vary the class distribution in the training set and the 
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test set to determine how well various methods can track the test distribution, despite 
variations in the training set they are given. To this end, we randomly drew 200 
positives and 1000 negatives from each benchmark classification task as the 
maximum training set.  We then trained with various subsets of this data, reducing the 
number of positives and negatives independently.  Likewise, from the remaining data, 
we randomly removed positives or negatives to achieve various desired testing class 
distributions.  We varied the test distribution from 5% positive to 95%, stepping by 
5% increments.   

Datasets: We used publicly available text classification datasets and used 21 “one 
vs. all other classes” classification tasks that had sufficient positives and negatives to 
cover the variety of experimental conditions (see Table 2) [3].  These datasets contain 
from 2000 to 31,000 binary word features. 

Learning algorithms: The bulk of our experiments were conducted with linear 
Support Vector Machines (SVM), which is considered state of the art for text 
classification.  We later replicated the experiments for Naïve Bayes and Multinomial 
Naïve Bayes [4].  Given that feature selection has shown to improve SVM results, we 
also replicated the experiments with feature selection via Bi-Normal Separation [3]. 

Error metrics:  In order to be able to average across tasks with different numbers 
of positives, a natural error metric is the estimated percent positive minus the actual 
percent positive. By averaging across conditions, we can determine whether a method 
has a positive or negative bias.  But suppose a method guesses 0% or 100% randomly; 
it would also have a zero bias on average. Thus, it is also important to consider an 
unsigned measure of error.  Absolute error is one candidate, but estimating 41% when 
the ground truth is 45% is not nearly as ‘bad’ as estimating 1% when the ground truth 
is 5%.  For this reason, cross-entropy is often used as an error measure.  To be able to 
average across different test class distributions, however, it needs to be normalized so 
that a perfect estimate always yields zero error.  Hence, the normalized cross-entropy 
is defined as follows: 

normCE(p,x)  =  CE(p,x) – CE(p,p) 
CE(p,x)  =  -p log2(x)  –  (1-p) log2(1-x) 

(4) 

where x is the estimate of the actual percent positives p in testing.  Since cross-
entropy goes to infinity as x goes to 0% or 100%, if a method estimates zero 
positives, we adjust its estimate to half a count out of the entire test set for purposes of 
evaluating its normalize cross-entropy error.  Likewise, if a method estimates that all 
the test items are positive, we back it off by half a count.  (Note that this error metric 
will increasingly penalize a method for estimating zero positives as the test set size 
grows.  Intuitively it is worse to estimate zero positives among thousands of test cases 
than among ten.) 

Table 2. Benchmark data sets, the specific classes used as positive, and their sizes 

Dataset Source  Cases Classes # Positives in Each Class 
fbis TREC  2463  3,7,10 387,506,358 
la1 LA Times 3204 0,1,3,5 354, 555, 943, 738 
la2 LA Times 3075 0,1,3,5 375, 487, 905, 759 
ohscal OHSUMED  11162 0…9 1159,709,764,1001,864, 

1621,1037,1297,1450,1260
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Cross-validation folds for calibration: The adjustment method and the mixture 
model both require cross-validation to generate calibrated values during training.  We 
chose f=50 folds for this study.  (Note that if there are fewer than f positives in the 
training set, some of the test folds will contain no positives. We experimented with 
using only min(f,P,N) folds, but generally found no improvement.) 

Experiment Procedure: The overall experiment procedure is shown in Fig. 4. In 
total there were over 20,000 experiment jobs consuming over a hundred CPU days.  
These ran in parallel on the HP Utility Data Center in a few days.  We used the 
WEKA software in Java to provide the base classifiers [6]. 

5  Experiment Results 

We begin by evaluating how the estimates of each method are biased by the 
composition of the training set, holding the test set fixed.  Fig. 5 shows each method’s 
estimate, averaged over all benchmark tasks, as we vary the training set. The test set 
for each task is fixed with p=20% positives. (Except where stated otherwise, hereafter 
the classifier is a linear SVM with all features, calibrated via 50-fold cross-validation 
on the training set.)  Though MM tends to overestimate by a small amount, it is 
striking that it is so close to the target p=20% when there are only P=10 training 
positives.  CC and AC are not competitive with P=10, and they underestimate more 
 

for each of 21 benchmark tasks—distinguishing positive class c in dataset d: 
| set aside 200 positives and 1000 negatives for training, the rest for testing 
| for P = 10,20,50,100,200 training positives: 
|  for N = 100,200,500,1000 training negatives: 
|  | for each classifier C: SVM, NB, NBM; with and without feature selection 
|  |  train C on training set (size P+N) 
|  |  perform 50-fold cross-validation to estimate TPR, FPR, D+ and D- 
|  |  for p = 5% to 95% by 5%: 
|  |  | select maximal test set such that p% are positive 
|  |  | apply C to test set 
|  |  | for each of the methods: 
|_  |_  |_  estimate x% positives, and record result & error.  

Fig. 4. Overall experiment procedure in pseudo-code 
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strongly as the imbalance of training negatives N increases.  In contrast, additional 
training negatives help MM converge for each value of P. 

With more positives, we see AC also converge to 20%.  But more training data do 
not make CC converge—it is always tuned for a specific percentage of positives.  
Popular wisdom suggests the best classification performance for this test set should be 
when the training distribution matches 20%; however, CC performed best with ~30% 
training positives (P:N = 50:100, 200:500, and, not shown, 100:200).  Hence, were it 
magically possible to always match the training class distribution to that of testing, it 
would still not make CC an effective method of counting positives. 

The results presented so far were for a single fixed percentage of test positives.  
Next we average over all tasks and all testing situations: p=5%–95% positives.  
Instead of averaging the error, which reveals positive or negative bias, we average 
the absolute error to determine how far the estimate lies from the true answer on 
average.  Fig. 6. shows this as we vary the training set as before.  Again, MM 
performs surprisingly well given only P=10 training positives, achieving ~6% 
absolute error on average, regardless of the number of training negatives N.  With 
P=50 or 200 training positives, MM achieves ~2% absolute error on average.  With 
P=200 training positives, AC is competitive.  Recall the ideal method should be as 
insensitive as possible to the training set size and class distribution:  strongly 
recommending MM.  

Next we hold the training set fixed and measure the ability of each method to track 
various percentages of positives in the test set.  Fig. 7 shows for each method the 
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estimate, averaged across all benchmark tasks, as we vary the percentage of positives 
in the test set p=5% to 95%.  We use N=100, which was least favorable to MM in 
Fig. 5.  For P=10 we see that MM is alone effective and AC becomes competitive 
with enough positives. MM shows a slight positive bias.   

 

While the view in Fig. 7 gives a good overview of the biases, next we zoom in to 
examine the differences in absolute error between MM and AC.  We show this only 
for P=50, as the results are uninteresting at P=10 and undifferentiated at P=200.  
We see a consistent picture in Fig. 8.  When the testing set contains a high 
percentage of positives, MM estimates better than AC, especially as the number of 
negative training examples grows for a fixed number of training positives.  
However, when testing with a small percentage of positives, the MM estimates 
worse than AC, especially with few training negatives.  Recall that MM exhibits a 
small but consistent positive bias; this systematically hurts its estimate when there 
is a small percentage of testing positives.  
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Lesion Study: The MM method includes a number of design choices. We performed 
a lesion study to evaluate other choices.  Fig. 9 summarizes the effect of each of these 
independent changes by showing the normalized cross-entropy averaged over all 
benchmark tasks, all training set compositions, and all test situations.  In every case, 
the changes resulted in worse estimation (our choices were made prior to the study, 
with the exception of range clipping, which was suggested by preliminary results).  
We describe these lesions in ranked order:  10fold MM uses 10-fold cross-validation, 
rather than 50-fold—a small loss in performance for one fifth the training time, if that 
one-time computational cost is significant in one’s application.  -clip MM does not 
use range clipping—clipping benefits substantially when there are few training 
positives.  NBM+fxsel MM uses the Multinomial Naïve Bayes model with feature 
selection, in place of SVM; without feature selection NBM failed sometimes. KS MM 
uses the standard Kolmogorov-Smirnov statistic in place of our PP-Area metric; -clip 
KS MM is similar, but without clipping as well.  NB+fxsel MM uses Naïve Bayes 
with feature selection, instead of SVM; NB MM uses Naïve Bayes with all features.  
fxsel MM adds feature selection to SVM.  (Whenever feature selection was applied, 
the 200 best features were selected via Bi-Normal Separation.) 

For comparison, we also include the other major methods AC and CC.  These are 
also shown with alternate learning methods that generated a somewhat better balance 
between false positives and false negatives.  Although they improve the estimates, 
they are not competitive with MM or any of its variants. 

6   Discussion 

In most machine learning research, where the objective is accurate classifications, 
each item in the test set provides an additional test result, which may contribute to an 
average.  In contrast, a single test item by itself is not sufficient for evaluating a 
method for quantification.  This must be done on an entire batch of test items at a 
time, and yields only a single scalar estimate.  For this reason, evaluation requires 
concocting many different test situations over many benchmark tasks.  In this way, 
research on counting requires more experimental design.  We hope that the test 
conditions we designed provide useful guidance for others.   In our framework, we 
varied the percentage of test positives from p=5%–95% as a reasonable experimental 
gamut.  However, we recognize that in many situations the estimator will not be 
called on to span this entire gamut well.  For the common situation of rare positives, it 
may be that other methods will excel.  But obtaining statistical significance in this 
realm may prove difficult, as it requires a much larger benchmark to evaluate the  
tails properly. 

Stepping outside the box of machine learning, another way to estimate the 
positives in a population is to have a person—an expensive, slow, but presumably 
perfect classifier—manually count in a random sample.  Let us sketch the labor 
required for comparison.  Supposing you wish to have the width of the 95% 
confidence interval be half of the estimate.  For example, if the estimate were 40%, 
then the person would need to classify 100 items to get the confidence interval down 
to 40%±10%.  Alternately, for a confidence interval of 4%±1% one would need to 
examine 1500 items—the labor increases greatly and non-linearly for rarer classes of 
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positives.   For obtaining a single count, certainly the labor may be dwarfed by the 
effort to set up a machine learning solution.  But if a count or many such counts must 
be performed every day, the complexity of a computerized solution may be quickly 
amortized.  Likewise, if hundreds or thousands of different classes need to be counted 
just once, again the machine learning solution can greatly reduce the effort spent by 
the person to classify items.  Indeed, the manual classification can serve both as a 
rough estimate, and as a training set for a machine learning quantifier that can 
examine the complete dataset or can be applied to next month’s dataset. 

7  Conclusion 

This paper highlights the problem of assessing the number of positives in a population 
via machine learning—quantification. It is a valuable real-world task, but is 
commonly overlooked for the natural goal of improving classification accuracy.  The 
issue is made invisible by common machine learning research methodology, which 
selects the training set and testing set so the class distribution is the same.  We laid 
out an evaluation framework, which varies the training and testing distributions 
independently to determine which method minimizes error measured as normalized 
cross-entropy.  We described and evaluated three methods. The straightforward and 
probably most common method of classifying and counting positives should only be 
used when an extremely accurate classifier can be learned with available training data. 

Opportunities for future work include: evaluating non-text benchmark domains, 
extending to multi-class classification tasks, and inventing superior methods.  We 
identified two avenues for future work which are ill-conceived and cannot succeed: 
calibrating the threshold at training time and calibrated probability estimation.  
Finally, the most successful methods can be folded back in to calibrate classifiers at 
testing time to improve their accuracy or probability estimation. 

References 

1. Bennett, P.:  Using Asymmetric Distributions to Improve Text Classifier Probability 
Estimates. Proc. ACM SIGIR Conference on Research and Development in Information 
Retrieval, July-August (2003) 

2. Fawcett, T.:  ROC graphs: Notes and practical considerations for data mining researchers. 
Tech report HPL-2003-4.  Hewlett-Packard Laboratories, Palo Alto, CA, USA (2003) 

3. Forman, G.: An Extensive Empirical Study of Feature Selection Metrics for Text 
Classification.  Journal of Machine Learning Research 3 (2003) 1289-1305 

4. McCallum, A., Nigam, K.:  A Comparison of Event Models for Naive Bayes Text 
Classification.  AAAI/ICML Workshop on Learning for Text Categorization (1998) 41-48 

5. Weiss, G., Provost, F.: Learning when Training Data are Costly: The Effect of Class 
Distribution on Tree Induction.  J. of Artificial Intelligence Research 19 (2003) 315-354 

6. Witten, I.H., Eibe Frank, E.: Data Mining: Practical machine learning tools with Java 
implementations.  Morgan Kaufmann, San Francisco (2000) 

 



Optimal Stopping and Constraints for Diffusion
Models of Signals with Discontinuities
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Abstract. Gaussian process regression models can be utilized in recov-
ery of discontinuous signals. Their computational complexity is linear
in the number of observations if applied with the covariance functions
of nonlinear diffusion. However, such processes often result in hard-to-
control jumps of the signal value. Synthetic examples presented in this
work indicate that Bayesian evidence-maximizing stopping and knowl-
edge whether signal values are discrete help to outperform the steady
state solutions of nonlinear diffusion filtering.

1 Introduction

Discontinuous signals can be efficiently recovered from noisy observations by
employing Gaussian processes (GPs) whose mean function conditioned on the
data solves nonlinear diffusion equations. Computations scale linearly with the
number of data points and the increasing input dimensionality if one utilizes the
additive operator splitting [12] or probabilistic simulation [3].

Nonlinear diffusion models operate upon iterative application of the principle
‘smooth less where the spatial gradient of the signal is larger’. Paradoxically,
such a filtering results in discontinuous jumps of signal values yielding better
preserved edges and the possibility to restore signals hidden in a large-variance
noise.

This work investigates nonlinear diffusion priors for Gaussian process regres-
sion. We show that diffusion can be optimally stopped long before it approaches
the steady state by employing the Bayesian evidence criterion. In addition, the
signal can be constrained to take either binary or any set of values in O(n)
number of multiplications per iteration. This is obtained by reformulating the
matrix inversion of the Thomas algorithm as a dynamic programming problem.

Section 2 states Bayesian evidence-maximizing Gaussian process regression
as means to solve the smoothing problem. Section 3 discusses efficient linear dif-
fusion prior and its smoothing characteristics from the stochastic process view-
point. Its variational interpretation and nonlinear extension is introduced in
Section 4. An example of optimal stopping is given in Section 5 whereas a gen-
eral approach to impose the discrete constraints on the values of the diffusion
outcome is presented in Section 6. Concluding remarks are stated in Section 7.
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2 Gaussian Process Regression

Let us consider a grid of n spatial locations and gather the observations into
vector y ∈ n. Let us denote the model output as u ∈ n. If we assume
that the joint predictive density of the model outcome and the hyperparameter
vector θ is unimodal, then in the absence of any specific knowledge about optimal
hyperparameters θ∗, the location of the posterior mode can be determined by
employing the Bayesian Evidence framework [7]. At the optimal point (u∗,θ∗)
the following equations should hold:

u∗ = arg max
u

p(y|u,θ∗)p(u|θ∗), (1)

θ∗ = arg max
θ

p(y|u∗,θ)
p(u∗|θ)
p(u∗|y,θ)

. (2)

Eqs. (1) and (2) indicate that the parameters and hyperparameters are solved
by balancing their likelihood and prior solutions. In spite of the absence of any
a priori information about the possible hyperparameter values, the Bayesian
Evidence framework determines the model hyperparameters θ∗ that maximize
the data likelihood and the ratio between the prior and posterior modes.

Let us further assume that the joint vector of the observations y and the
model outcome u comes from the probability density(

u
y |θ

)
∼ N

((0
0

)
,

(
Kθ Kθ

Kθ Kθ + θ0I

))
. (3)

Eq. (3) assumes that each value of the measurement vector y is contaminated
by additive Gaussian noise, whose variance is denoted by θ0. The marginal dis-
tribution p(u) represents a sample of a zero-mean Gaussian process U with the
covariance matrix Kθ ∈ n×n which depends on a small number of hyperpa-
rameters θ [10]. Under Eq. (3), Eqs. (1) and (2) reduce to

u∗ = argmin
u

( 1
θ∗0
||y − u||2 + uT K−1

θ∗ u
)

= (I + θ∗0K
−1
θ∗ )−1y, (4)

θ∗ = argmin
θ

( 1
θ0

[||y − u∗||2 + (u∗)T (y − u∗)]

+ ln[(2πθ0)n det(Kθ + θ0I)]
)
. (5)

Therefore, the GP regression minimizes the Euclidean || · ||2 norm between the
data and the model output while maintaining certain regularity properties of the
model outputs via their quadratic form determined by the inverse kernel matrix
K−1

θ . Probabilistic Eqs. (1)–(3) complete the regression problem by providing
the model selection criterion. The upper part of Eq. (5) is the best-fit likelihood
p(y|u∗,θ) whereas the second term represents the ratio in Eq. (2) known as the
Occam’s factor [7].

Whenever the true signal is discontinuous and n > 103, well-known covari-
ance functions such as Gaussian kernel can not be applied to construct the
matrix Kθ because Eq. (4) would blur the edges whereas Eq. (5) would be hard
to interpret, evaluate and minimize.



578 R. Girdziušas and J. Laaksonen

3 Linear Diffusion Prior

Consider univariate smoothing of the observations on the discrete grid x0 =
0, x1 = h, x2 = 2h, . . . , xn+1 = 1 by employing the GP model Eq. (4) with the
covariance matrix whose elements [Kθ]ij are given by the function

k(xi, xj) = min[f(xi), f(xj)], x 1→ f(x) =
∫ x

0
g−1(x)dx, (6)

where g−1(x) is any density function on the interval x ∈ [0, 1]. In the case
of g−1(x) ≡ 1, this GP model corresponds to a priori assumption that the
process U ≡ W is Wiener-Levý, also known as Brownian motion (BM). It can
be considered as the simplest smoothing assumption embodied in the notion of
‘integrated white noise’ whose paths can be simulated according to:

wi = wi−1 +
√
hz, z ∼ N (0, 1), w0 = 0. (7)

Regression with the covariance function of Brownian motion is an important
smoothing device. A great variety of GP models, including neural networks with
infinite number of hidden sigmoidal or radial basis units, are unlikely to outper-
form this simple model. Moreover, the BM covariance matrix yields a tridiagonal
inverse, which requires only O(n) number of multiplications to solve Eq. (4).

Surprisingly, an extension g−1(x) �= const also yields a tridiagonal inverse co-
variance matrix, which makes Eq. (6) applicable to spatially selective smoothing.
One can derive the corresponding Ito stochastic differential equation [9]:

dUx =
1
2
g(Ux)g′(Ux)dx+ g(Ux)dWx, U0 = 0. (8)

Such an equation indicates that by postulating the model Eq. (6), we assume
that the univariate data represents noisy observations of a deterministic drift
perturbed with a diffusion term g(Ux)dWx. GP regression with covariance as in
Eq. (6) already represents a hidden diffusion. This comes in contrast to Bayesian
evidence maximizing determination of the drift and diffusion terms in the case
when θ0 = 0 [11].

The BM covariance function Eq. (6) can be modified for the BM process
which is constrained on the other end, e.g. u1 = 0:

k(xi, xj) = min[f(xi), f(xj)]− f(xi)f(xj). (9)

Such a function also yields a tridiagonal inverse covariance matrix. A very general
consideration of such matrices in light of Markov processes can be found in [5].

Smoothing properties of Eqs. (6) and (9) can also be explained by a deter-
ministic argument based on variational calculus. This view, which is discussed
in the next section, is especially helpful in choosing the function g, clarifying
the effect of the boundary conditions on the regression outcome and further
extending Eqs. (6) and (9).
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4 Nonlinear Diffusion Prior

The presence of discontinuities demands a careful choice of the function g(x),
whose effect can be seen by considering the variational nature of the conditional
expectation operator in the GP regression. A continuous counterpart of Eq. (4)
in the case of the deformed BM covariance function, given by Eq. (6), is

u∗ = arg inf
u

∫ 1

0

(
θ0g(x)(∂xu)2 + (u− y)2

)
dx, s.t. u(0) = 0, ∂xu(1) = 0, (10)

where y ≡ y(x) and u ≡ u(x). In the case of the GP model Eq. (9) the last
condition changes to u(1) = 0. Boundary conditions ensure that iterative regu-
larization produces a unique solution.

Variational calculus such as Eq. (10) is useful in deriving explicit expressions
for the inverse of the covariance matrix. Summary of the results in the case of
general boundary conditions can be found in Section A.

Clearly, the function g(x) acts as a spatially-dependent penalty term for
the squared derivative of the model output. It can be chosen in such a way
that the smoothing depends on a rough estimate of the spatial derivative of the
observations [12, 4]:

g(x) 1→ g[y(x)] ≡ 1− e−c( ∂xyσ
λ )−s

. (11)

Here the time-dependent observations y are passed through a Gaussian filter
of variance σ2 resulting in the signal yσ, whose spatial derivative’s value is de-
noted by ∂xuσ. The constant c can always be chosen beforehand so that the
diffusion of the original noisy signal y takes place only in the low derivative
regions where |∂xuσ| < λ [4]. The even number s ≥ 2 denotes the sharpness
of the nonlinearity. Eq. (10) used with Eq. (11) comprises the basic step in the
iterative edge-preserving filtering [12, 6]. Similar models can be found in physics,
e.g. two-dimensional shear band formation in granular medium [13].

In order to reveal discontinuities, it is not sufficient to introduce Eq. (11).
However, an iterative re-application of Eq. (4) with the covariance matrix defined
by Eqs. (6) and (11) helps. While all the functions involved are continuous,
paradoxically, the iteration eventually develops discontinuities.

If we now consider the discrete grid x1 = h, x2 = 2h, . . . , xn = 1 − h and
organize the observations into a single vector u0 = y ∈ n, then the iterative
application of Eq. (4) corresponds to a GP regression with the matrix Kθ:

I + θ0K−1
θ = (I + τK−1

1 )(I + τK−1
2 ) · · · (I + τK−1

m ), (12)

where the matrices K−1
t are given by Eq. (17). The variance θ0 of a single regu-

larization step in Eq. (10) becomes the time step size if the iterated Eq. (10) is
viewed as an implicit Euler stepping of classical diffusion equations with nonlin-
ear diffusion coefficient g(u). Eq. (12) presents a way to smooth the observations
in O(nm) multiplications. Needless to state, the iterated composition of the in-
verse tridiagonal matrices comprises an efficient GP model with a non-sparse
covariance matrix and its inverse.
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5 Evidence-Maximizing Stopping

Eq. (12), when used together with Eq. (5), gives a formal approach towards
determination of numerous diffusion parameters, including a finite optimal stop-
ping time m which usually outperforms solutions that approach the steady state
m→∞. In the case of a small variance θ0 of the additive noise, Eq. (5) reduces
to ‘decorrelation’ between the estimated noise and the model output’ [8].

Fig. 1 indicates the results obtained by filtering a synthetic signal with linear
and nonlinear diffusion algorithms. The simulation was performed with n = 1000
observations and the noise level was set to θ0 = 0.44.

Comparison of Fig. 1(a) vs. (b) and (c) vs. (d) reveals that the optimally
stopped diffusion would clearly outperform the steady state in both cases. Lo-
gevidence criterion exhibits features that are similar to the mean squared error
criterion between the filtering outcome and the true signal. Linear diffusion fil-
tering blurs the edges of the signal whereas the nonlinear case preserves them.
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Fig. 1. Linear and nonlinear diffusion filtering from the GP regression viewpoint: (a)
the outcome of nonlinear diffusion filtering at the optimal stopping time k∗ = 13,
(b) the result approaching the steady state at k = 100, (c) optimally stopped linear
diffusion filtering at k = 20, (d) linear diffusion at k = 100, (e) negative logevidence
as a function of the iteration counter k, (f) time evolution of the mean squared errors
between the true and estimated signal. The stopping is performed according to negative
logevidence values, which closely matches the mean squared error criterion which could
be considered as a true (unknown) stopping criterion. The steady state of the linear
diffusion with reflecting boundary conditions is a constant signal, i.e. the average of
the observations.
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6 Extension to Non-Gaussian Diffusion

A computational bottleneck of the diffusion filtering lies in the evaluation of the
matrix-vector product ut = (I + τK−1

t )−1ut−1, clf. Eq. (12). It is a common
practice to implement such a procedure by applying the Thomas algorithm [12].
It splits the matrix (I + τK−1

t ) into a product of lower and upper-bidiagonal
matrices, followed by an inversion-free forward substitution Lũk = uk−1 and
a backward pass Uuk = ũk. The procedure requires about O(n) number of
multiplications.

This computation can be viewed as a particular case of the dynamic pro-
gramming approach applied to solve the variational problem in Eq. (10). Such
an observation allows to introduce any discrete constraints u ∈ U into a single
diffusion step with only the cost of O(card(U) ·n) multiplications. In order to see
this, one can define the state variable λ ≡ us−1 and introduce the value function

vs(λ) = min
us,...,un∈U

n∑
j=s

[τgj(uj − λ)2 + (uj − yj)2]. (13)

Solution to Eq. (10) when u ∈ U can then be solved recursively in two stages.
During the backward pass, one solves n one-dimensional minimization problems

vs(λ) = min
us∈U

[vs+1(us) + τgs(us − λ)2 + (us − ys)2], vn+1 = 0 (14)

for s = n, n− 1, . . . , 1 and tracks the optimal solutions ϕs(λ) = argminus∈U [·].
A solution to the constrained Eq. (10) can then be found by using the initial
condition u∗1 = 0 and tracing forward u∗s = ϕs(u∗s−1), s = 2, . . . , n. Whenever
U ≡ , an analytic solution of Eq. (14) would further reduce the computational
complexity, but this formulae turns out to be just a variant of the Thomas
algorithm.

The procedure based on Eqs. (13) and (14) can be derived by writing the
Hamilton-Bellman-Jacobi equation for the variational problem Eq. (10) and ap-
plying the Euler algorithm to obtain its discrete counterpart [2]. Alternatively,
this recursive formulae can be viewed as the Viterbi algorithm used to determined
the optimal state sequence of the backward hidden Markov model (HMM). Such
an HMM at the location xs=n = nh emits the observation yn with the Gaussian
density of mean un and variance τ and jumps to the next state s−1 with a proba-
bility whose logarithm up to an additive constant is ln an,s−1 = gn(un− us−1)2.
The case of the boundary conditions in Eq. (10) corresponds to a priori un-
specified initial probability of the state us=n. In this manner, the process then
generates all n observations finally ending in the state us=1 = 0.

This generalization of the Thomas algorithm is examined in Fig. 2. A stan-
dard single step of the nonlinear diffusion performs rather poorly as in Fig. 2a,
especially when the noise is non-Gaussian, clf. Fig. 2b,c. In these last two cases
the nonlinear diffusion would not converge to the true signal if more iterations
followed. However, if we specify the knowledge that the signal values can only
become binary, the whole problem can be solved in just one iteration.
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Fig. 2. Filtering a level change in additive noise. The first row illustrates the outcome
of nonlinear diffusion filtering, whereas the second row shows the solutions obtained
with just one iteration of diffusion whose outcome is constrained to take binary values
of either 0 or 1. The first column displays the experiment with Gaussian noise whose
variance is θ0 = 0.04. The second and third columns correspond to the experiments
with non-Gaussian noise, obtained by setting either positive or negative values of the
noise to zero.

7 Conclusions

The principle of nonlinear diffusion filtering needs systematic control mechanisms
to cope with discontinuities. By performing computer simulations with synthetic
data, we have examined two particular solutions to such a problem: (i) optimal
diffusion stopping and (ii) constraining of the diffusion outcome to take only
discrete values. The first principle was implemented by viewing the diffusion
filtering as Gaussian process regression. The second approach was examined
by viewing the Thomas algorithm as a dynamic programming procedure. Both
methods provide efficient implementations.
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A Inverse BM Covariance Matrix

This summary derives the covariance matrix of GP regression with deformed BM co-
variance functions in the case of general boundary conditions. We use discrete approx-
imation [1] and extend several existing results which can be found in [14].

Consider a discrete grid x0 = 0, x1 = h, x2 = 2h, . . . , xn+1 = 1. Then a single
iteration of Eq. (10) with boundary conditions

α1u(0) + β1∂xu(0) = γ1, (15)

α2u(1) + β2∂xu(1) = γ2 (16)

reduces to solving a linear system of equations, which corresponds to an optimal so-
lution of Eq. (4) with y = (y1 − δ1, y2, · · · , yn−1, yn − δ2)T ∈ n and the tridiagonal
inverse covariance matrix

K−1
t =

τ

h2

⎛⎜⎜⎜⎜⎜⎝
g1 + g2 −g2

−g2 g2 + g3 −g3

. . .
. . .

. . .
−gn−1 gn−1 + gn −gn

−gn gn + gn+1

⎞⎟⎟⎟⎟⎟⎠ . (17)

Here δ1 = g1γ1/(α1 + hβ1), δ2 = gn+1γ2/(α2 + hβ2) and the elements are

g1 = [g(uk−1(x1)) + g(uk−1(x0))]hβ1/(α1 + hβ1), (18)

gi = g(uk−1(xi)) + g(uk−1(xi−1)), i = 2, . . . , n, (19)

gn+1 = g(uk−1(xn+1)) + g(uk−1(xn))hβ2/(α2 + hβ2). (20)

The boundary conditions are preserved with o(h2) accuracy whereas o(h4) holds else-
where. However, this is valid only if y(x) is sufficiently continuous [1]. In the case of a
single iteration m = 1, the constant τ = θ0. When Eq. (4) is iterated, Eqs. (18)– (20)
are estimated at the time instant t − 1 according to Eq. (11) by replacing y(x) with
the estimate ut−1(x).
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Abstract. XCSF is a new extension to XCS that is developed to extend XCS’s 
reward calculation capability via computing. This new feature is called 
computable prediction. The first version of XCSF tries to find the most 
appropriate equation to compute each classifier’s reward using a weight update 
mechanism. In this paper, we try to propose a new evolutionary mechanism to 
compute these equations using genetic algorithms.  

1   Introduction 

XCSF [1] is a new extension to XCS [2] which extends ability of learning classifier 
systems to enable them to compute environmental rewards instead of memorizing 
them in all situations. In [1], author proposed XCSF and designed it to compute a 
linear piece-wise approximation for payoff function. This function is approximated 
using linear equations, which consist of two real coefficients that are called weights. 
These weights are updated using Widrow-Hoff update rule [3]. With respect to 
described issues in [4] to update these weights, we try to employ Genetic Algorithms 
[5] to approximate desired payoff functions. The rest of this paper is organized as 
follows: in the next section, we describe XCSF in brief, and then some relevant works 
on XCSF are presented. Then we describe our proposed method and our benchmark 
problems. At last, new method’s results are presented and discussed. 

2   XCSF in Brief 

XCSF [1] is a model of learning classifier system that extends the typical concept of 
classifiers through the introduction of a computed classifier prediction. To develop 
XCSF, XCS has to be modified in three respects: (i) classifier conditions are extended 
for numerical inputs, as done in XCSI [6]; (ii) classifiers are extended with a vector of 

weights
→
w , that are used to compute the classifier prediction; (iii) The original update 

of the classifier prediction must be modified so that the weights are updated instead of 
the classifier prediction. These three modifications result in a version of XCS, XCSF 
[1] that maps numerical inputs into actions [7] with an associated calculated prediction.  

Classifiers: In XCSF, classifiers consist of a condition, an action, and four main 
parameters. The condition specifies which input states the classifier matches; as in 
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XCSI[6], it is represented by a concatenation of interval predicates, inti = (li; ui), 
where li(“lower”) and ui (“upper”) are integers, though they might be also real. The 
action specifies the action for which the payoff is predicted. The four parameters are: 

(i) The weight vector
→
w , used to compute the classifier prediction as a function of the 

current input; (ii) The prediction errorε , that estimates the error affecting the 
classifier prediction; (iii) The fitness F that estimates the accuracy of the classifier 
prediction; (iv) The numerosity num, a counter used to represent different copies of 
the same classifier.   

Performance Component: XCSF works as XCS. At each time step t, XCSF builds a 
match set [M] containing the classifiers in the population [P] whose condition 
matches the current sensory input st; if [M] contains less than θmna actions, covering 
takes place and creates a new classifier that matches the current inputs and has a 
random action. Each interval predicate inti= (li; ui) in the condition of a covering 
classifier is generated as li = st(i)-rand1(r0), and ui = st(i) + rand1(r0), where st(i) is the 
input value of state st matched by the interval predicated in i, and the function rand1(r0) 
generates a random integer in the interval [0; r0] with r0 fixed integer. The weight 

vector 
→
w  of covering classifiers is initialized with zero values; all the other 

parameters are initialized as in XCS [8]. For each action ai in [M], XCSF computes 
the system prediction which estimates the payoff that XCSF expects when action ai is 
performed. As in XCS, in XCSF the system prediction of action a is computed by the 
fitness-weighted average of all matching classifiers that specify action a. However, in 
contrast with XCS, in XCSF the classifier prediction is computed as a function of the 
current state st and the classifier vector weight

→
w . Following a notation similar to [8], 

the system prediction for action a in state st, P(st; a), is defined as: 

[ ]
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Where cl is a classifier, [M]¦a represents the subset of classifiers in [M] with action a, 
cl.F is the fitness of cl ; cl.p(st) is the prediction of cl computed in the state st. In 
particular, cl.p(st) is computed as: 
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Where cl.wi is the weight wi of cl and x0 is a constant input. The values of P(st; a) form 
the prediction array. Next, XCSF selects an action to perform. The classifiers in [M] 
that advocate the selected action are put in the current action set [A]; the selected 
action is sent to the environment and a reward r is returned to the system together 
with the next input state st+1. Note that when XCSF is applied to function 
approximation problems, as in this paper, there is only one dummy action that the 
system can perform which has not actual effect on the environment [6]. 

Reinforcement Component: XCSF uses the incoming reward r to update the 
parameters of classifiers in action set [A]. First, the reward r is used to update the 



586 A. Hamzeh and A. Rahmani 

weight vector 
→
w  using a modified delta rule [3] as follows For each classifier 

cl∈[A], each weight cl.wi is adjusted by a quantity Δ wi computed as: 

)())(.(
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Where η is the correction rate and 1−

→

tx  is defined as the input state vector 2

1

→

−tx
 st-1 

augmented by a constant x0 (i.e. →

−−−− = )(),...,2(),1(, 11101 nsssxx tttt
) and is the 

norm of vector 1−

→

tx for further details refer to [1] The values Δ wi are used to update 
the weights of classifier cl as: 

iii wwclwcl Δ+← ..  (4) 

A classifier in XCSF basically represents a perceptron with a linear activation 
function [9] which is applied only on the inputs that match the classifier condition. 
Then the prediction error ε  is updated as: 

).)(.(.. 1 εβεε clspclrclcl t −−+← −
 (5) 

Classifier fitness is updated as in XCS. First, the raw accuracy κ of the classifiers 
in [A] is computed as follows. 
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The raw accuracy  is used to calculate the relative accuracy 0 as 
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Where cl.κ is the raw accuracy of classifier cl; cl.num is the numerosity of 
classifier cl. Finally, the relative accuracy 'κ  is used to update the classifier fitness 
as: )'( FFF −+← κβ . 

Discovery Component: The genetic algorithm in XCSF works as in XCSI [6]. The 
genetic algorithm is applied to classifiers in [A]. It selects two classifiers with 
probability proportional to their fitness, copies them, and with probability χ performs 

crossover on the copies; then, with probability μ it mutates each allele. Crossover and 
mutation work as in XCSI. 

3   Relevant Works on XCSF 

In [4], the authors study generalization in XCSF and introduce several different 
approaches to improve the generalization capabilities of XCSF. At first, they present 
experimental evidence showing that while XCSF always evolves accurate 
approximations, the types of generalizations evolved can be influenced by the input 
range. The presented results show that when the inputs are limited to small values, 
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XCSF evolves (accurate) piecewise linear approximations, as expected. But when the 
input range includes large values, XCSF does not fully exploit its learning capabilities 
and tends to evolve (accurate) piecewise constant approximations. 

In [11] authors take XCSF one step further and apply it to typical reinforcement 
learning problems involving delayed rewards. In essence, they use XCSF as a method 
of generalized (linear) reinforcement learning to evolve piecewise linear 
approximations of the payoff surfaces of typical multistep problems. Achieved results 
show that XCSF can easily evolve optimal and near optimal solutions for problems 
introduced in the literature to test linear reinforcement learning methods. 

Authors show in [12] that how XCSF can be easily extended to allow polynomial 
approximations. They test the extended version of XCSF on various approximation 
problems and shows that quadratic/cubic approximations can be used to significantly 
improve XCSF's generalization capabilities. 

Moreover, in [13] authors apply XCSF to the learning of Boolean functions. The 
presented results show that XCS with computable linear prediction performs 
optimally in typical Boolean domains and it allows more compact solutions evolving 
classifiers that are more general compared with XCS.  

4   XCSF with Evolutionary Function Approximation Approach 

In this section, we describe overall architecture and implementation details of the 
proposed extension to XCSF. As we described in previous section, Widrow-Hoff 
update rule encounter some difficulties in certain range of input variables. In [4], 
some solutions to solve these problems are proposed. We are trying to propose a new 
solution which has no need to any weight update process to approximate desired 
payoff functions.  This new system is called XCSF-G. XCSF-G’s overall architecture 
is the same as XCSF with some minor modifications. However, the major difference 
between XCSF-G and traditional XCSF is classifier’s structure. Classifier’s structure 
is XCSF-G is modified to support GA function approximation capability. 

 

Fig. 1. Structure of XCSF-G’s rule 

In this type of rule, prediction is calculated by a secondary population of 
chromosomes which is allocated for each rule separately. 

4.1   Evolutionary Prediction Calculation Procedure 

In this section we describe important points to understand genetic algorithm-based 
prediction calculation method: 
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4.1.1   Calculate Prediction 
To illustrate this, we describe structure of secondary population’s chromosomes. 

These chromosomes contain two real numbers. These numbers are imagined as w0 
and w1 in XCSF for each rule. To calculate prediction for each rule, we follow this 
procedure: At first, we choose best chromosome in the secondary population with 
respect to fitness and calculate the prediction using equation 7: 

110 xww +  (7) 

where w0 and w1 are evolved genes in the best chromosome of the population and x1 is 
environmental input for the current state. 

4.1.2   Secondary Population’s Architecture 
As we mentioned in previous section, to calculate prediction for each rule, we must 
choose best chromosome of its secondary population with respect to its fitness.  So 
fitness calculation of the secondary population is one of the most important parts of 
XCSF-G.  In fitness calculation routine, the most important goal is to select the 
individual with lowest error rate in previous prediction estimation epochs. So, in 
XCSF-G fitness calculation is done using rule’s prediction error.  In every trial of 
XCSF-G’s life cycle, a tuple is made of environmental input and reward; we call this 
tuple an Estimation Twin (ET). ETs are listed and memorized for each fired rule 
which was involved in reward gathering procedure. When number of stored ET’s of a 
specified rule reaches a predefined threshold nET, then fitness calculation of secondary 
populations of this rule begins as follows: 

• For each chromosome, estimated output for given input is calculated using 
equation 7 separately and overall error is calculated using equation: 
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Where Gj(xi) is estimated value of j’Th chromosome for xi and P(xi) is 
environmental reward for the same input. Then fitness for j’Th chromosome is 
calculated using:  
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• After calculating fitness for all chromosomes, mating pool for secondary 
population is constructed using tournament selection [10] with tour size of two.  

• After selecting parents from mating pool randomly, one offspring is generated 
using parent’s genes with respect to their calculated fitness.  
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• Above procedure is repeated until next generation of secondary population is 
constructed completely.  

4.1.3   Initial Population Initialization 
After producing new rule in XCSF-G, secondary population for this rule must be 
initialized. This population is initialized randomly and their fitness’s are set to a 
random number in [0; 0.1) interval.  
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5   Design of Experiments 

All the experiments discussed in this paper involve single step problems and are 
performed following the standard design used in the literature [4, 5]. In each 
experiment XCSF has to learn to approximate a target function f(x); each experiment 
consists of a number of problems that XCSF(-G) must solve. For each problem, an 
example )(, xfx of the target function f(x) is randomly selected; x is input to XCSF(-

G) whom computes the approximated value
^

)(xf has the expected payoff of the only 

available dummy action; the action is virtually performed (the action has no actual 
effect), and XCSF(-G) receives a reward equal to f(x). Each problem is either a 
learning problem or a test problem. In learning problems, the genetic algorithm is 
enabled while it is turned off during test problems. The covering operator is always 
enabled, but operates only if needed. XCSF performance is measured as the accuracy 

of the evolved approximation 
^

)(xf with respect to the target function f(x). To evaluate 

the evolved approximation 
^

)(xf we measure the mean absolute error, MAE: 

−=
x

xfxf
n

MAE )()(
1 ^  (11) 

Where n is the number of points for which f(x) is defined. In particular we use the 
average MAE over the performed experiments, dubbed MAE.  

6   Experimental Results 

We now compare XCSF with XCSF-G. For this purpose, we have considered 
problems from sin family. This family is very flexible. It means that we can change 
range of input variable and function slope with very simple parameter setting. This 
feature helps us to analyze our solution’s weaknesses and advantages with respect to 
discussed issues in [4]. This family of problems is represented using equation 13: 

)50/)(sin()( xUpSlpxf −∗= π  (12) 

where Slp determines function’s slope and Up determines range of input variable. In 
this paper, Slp and Up are chosen from table 1: 

Table 1. Experienced values for Up and Slp 

Slp Up 
1 2 5 

50 PR1 PR2 PR3 
1050 PR4 PR5 PR6 

This table is interpreted as follows: the problem number determines Slp and Up, for 
example PR1 is presented using equation 13 and PR5 is determined with equation 14. 

)50/)50(sin()(1 xxPR −= π  (13) 

)50/)1050(2sin()(5 xxPR −= π  (14) 
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(a)      (b) 

Fig. 2. XCSF (dashed-dot), XCSFG (dashed) in PR1 (a) and PR4 (b), PRs are dotted lines. 

 
(a)     (b) 

Fig. 3. XCSF (dashed- dot), XCSFG (dashed) in PR2 (a) and PR5 (b), PRs are dotted lines 

 
(a)     (b) 

Fig. 4. XCSF (dashed line), XCSFG (dashed) in PR3 (a) and PR6 (b), PRs are dotted lines 

It is notable that input variable x is chosen from the interval [Up-50, Up] for all 
problems. For the experiments discussed here we always use the same parameter 
settings: N = 1000; β = 0.2;α = 0.1; v = 5; χ = 0.8, μ = 0.04, θnma = 1, θdel = 50; θGA = 

50;δ = 0:1; GA-subsumption is on with θsub = 50; while action-set subsumption is off. 
Secondary genetic population in XCSF-G’s size is equal to 50 and nET=10.  Below 



 An Evolutionary Function Approximation Approach to Compute Prediction in XCSF 591 

XCSF and XCSF-G are compared in described problems and their approximated 
functions are shown in figure 2 to 4. These figures are drawn using the following 
procedure. Both XCSF and XCSF-G are allowed to run for 1500 learning trials then 
all of the 300 selected values which are uniformly distributed in the learning interval 
(e.g. [0,50]) are fed to both of them and this procedure is repeated 50 times and 
average values for this 50 runs are plotted in figures 2 to 4. 

7   Discussion 

As it was mentioned in previous sections, the numerical parameter to evaluate XCSF 
and XCSF-G is MAE that is calculated using equation 12. This value is calculated 
using 300 uniformly distributed points between [Up-50,Up]. These values are shown 
in table 2. 

Table 2. MAE values for XCSF and XCSF-G 

Problem Number XCSF’s MAE XCSF-G’s MAE 
PR1 0.015 0.009 
PR2 0.019 0.014 
PR3 0.02 0.04 
PR4 0.05 0.01 
PR5 0.15 0.025 
PR6 0.4 0.06 

It is  clear that  XCSF  and XCSF-G  both  can  solve the set of  problems  with small  
input values (such as PR1, PR2 and PR3). But an interesting issue is that when the 

desired function to approximate becomes more complex, XCSF-G seems to be less 
accurate than XCSF and becomes slightly weaker to approximate complex functions 
such as PR3. However, the most interesting issue arises when input range changes 
from small real numbers to big ones (e.g Up is set to 1050 instead of 50).  In this set 
of problems XCSF’s performance decreases dramatically as described in [4]. This 
issue is obvious by only looking to proposed approximation of XCSF for PR4 to PR6. 
it is clear that XCSF proposed a piece-wise constant approximation for these 
problems as discussed in [4] and table 2 confirms this idea. XCSF’s MAE becomes 
larger in PR4-6 than their similar problems in PR1-3, but XCSF-G’s performance just 
slightly changes and is significantly better than XCSF’s performance. 
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Abstract. Partially Observable Markov Decision Processes (POMDP) provide a
standard framework for sequential decision making in stochastic environments. In
this setting, an agent takes actions and receives observations and rewards from the
environment. Many POMDP solution methods are based on computing a belief
state, which is a probability distribution over possible states in which the agent
could be. The action choice of the agent is then based on the belief state. The
belief state is computed based on a model of the environment, and the history of
actions and observations seen by the agent. However, reward information is not
taken into account in updating the belief state. In this paper, we argue that rewards
can carry useful information that can help disambiguate the hidden state. We
present a method for updating the belief state which takes rewards into account.
We present experiments with exact and approximate planning methods on several
standard POMDP domains, using this belief update method, and show that it can
provide advantages, both in terms of speed and in terms of the quality of the
solution obtained.

1 Introduction

Sequential decision making and control problems in dynamic environments with incom-
plete and uncertain information have been the focus of many researchers in different
disciplines. Designing agents that can act under uncertainty is mostly done by mod-
elling the environment as a Partially Observable Markov Decision Process (POMDP)
[2]. In POMDPs, an agent interacts with a stochastic environment at discrete time steps.
The agent takes actions, and as a result, receives observations and rewards. The agent
then has to find a way of choosing actions, or policy, which maximizes the total reward
received over time. Most POMDP planning methods try to construct a Markovian state
signal using a model of the environment and the history of actions and observations
experienced by the agent. This signal is called a belief state. Planning methods then use
reward information in order to associate an (optimal) action to each belief state.

The fact that rewards are only used in the computation of the optimal policy, but
not in updating the belief state, is due to the fact that POMDPs have roots in Markov
Decision Processes (MDPs). In an MDP, the agent is provided with Markovian state
information directly, and uses the rewards in order to obtain an optimal policy. The same
scenario has been carried out to POMDP planning methods as well, except now the
Markovian belief state has to be recovered from the history. However, rewards are still
used only in policy computation, and not in updating the belief state. Intuitively, it seems
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that rewards can carry useful information, which can help the agent guess the hidden
state more precisely. Indeed, in related work, James et al. [7] used rewards to update
information about the state of an agent, in the context of predictive state representations
(PSRs). They noted that for some of the domains used in their experiments, using the
reward information seemed to help in finding better policies. Our goal in this paper is
to investigate whether rewards can be used to produce a similar effect using traditional
POMDP planning methods. Intuitively, in some tasks, rewards can provide additional
information, not captured by observations. In this case, we expect that using rewards
could result in a better estimate of the belief state, and perhaps, in belief states that can
identify more precisely the hidden state of the system. If the hidden state were known
with better precision, the action choices of the agent could be better as well.

In this paper we describe how rewards can be used for updating belief states. We
evaluate empirically the merit of this method, compared with usual belief updates, on
several POMDP benchmarks, using both exact and approximate planning, and find that
using rewards can be beneficial, if they contained additional information that is not
captured in the observations. We find that using rewards can help decrease the entropy
of the belief states.

2 Partially Observable Markov Decision Processes

Formally, a POMDP is defined by the following components: a finite set of hidden
states S; a finite set of actions A; a finite set of observations Z; a transition function T :
S×A×S→ [0,1], such that T (s,a,s′) is the probability that the agent will end up in state
s′ after taking action a in state s; an observation function O : A×S×Z→ [0,1], such that
O(a,s′,z) gives the probability that the agent receives observation z after taking action
a and getting to state s′; an initial belief state b0, which is a probability distribution over
the set of hidden states S; and a reward function R : S×A×S→ℜ, such that R(s,a,s′)
is the immediate reward received when the agent takes action a in hidden state s and
ends up in state s′. Additionally, there can be a discount factor, γ ∈ (0,1), which is used
to weigh less rewards received farther into the future.

The goal of planning in a POMDP environment is to find a way of choosing actions,
or policy, which maximizes the expected sum of future rewards E[∑T

t=0 γt rt+1] where T
is the number of time steps left to go in a finite horizon problem, or ∞ in an infinite
horizon problem. The agent in a POMDP does not have knowledge of the hidden states,
it only perceives the world through noisy observations as defined by the observation
function O. Hence, the agent must keep a complete history of its actions and obser-
vations, or a sufficient statistic of this history, in order to act optimally. The sufficient
statistic in a POMDP is the belief state b, which is a vector of length|S| specifying a
probability distribution over hidden states. The elements of this vector, b(i), specify the
conditional probability of the agent being in state si, given the initial belief b0 and the
history (sequence of actions and observations) experienced so far. After taking action a
and receiving observation z, the agent updates its belief state using Bayes’ Rule:

b′(s′) = P(s′|b,a,z) =
O(a,s′,z)∑s∈S b(s)T (s,a,s′)

P(z|a,b)
(1)
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The denominator is a normalizing constant and is given by the sum of the numerator
over all values of s′ ∈ S:

P(z|a,b) = ∑
s∈S

b(s) ∑
s′∈S

T (s,a,s′)O(a,s′,z)

We can transform a POMDP into a “belief state MDP” [2]. Under this transforma-
tion, the belief state b becomes the (continuous) state of the MDP. The actions of the
belief MDP are the same as in the original POMDP, but the transition and reward func-
tions are transformed appropriately, yielding the following form of Bellman optimality
equation for computing the optimal value function, V ∗:

V ∗(b) = max
a∈A

∑
z∈Z

P(z|a,b)

[
∑
s∈S

b(s)

(
∑
s′

b′(s′)R(s,a,s′)

)
+ γV ∗(b′)

]

where b′ is the unique belief state computed based on b, a and z, as in equation (1). As
in MDPs, the optimal policy that the agent is trying to learn is greedy with respect to
this optimal value function. The problem here is that there are infinite number of belief
states b, so solving this equation exactly is very difficult.

Exact solution methods for POMDPs take advantage of the fact that value functions
for belief MDPs are piecewise-linear and convex functions, and thus can be represented
by a finite number of hyperplanes in the space of beliefs. Value iteration updates can
be performed directly on these hyperplanes. Unfortunately, exact value iteration is in-
tractable for most POMDP problems with more than a few states, because the size of
the set of hyperplanes defining the value function can grow exponentially with each
step. Approximate solution methods usually rely on maintaining hyperplanes only for a
subset of the belief simplex. Different methods use different heuristics in order to define
which belief points are of interest (e.g. [1],[5], [9], [11]).

3 Using Rewards in the Computation of Belief States

Reward signals may provide useful information about the true state of a POMDP sys-
tem. Although many of the POMDP benchmarks used to evaluate POMDP planning
algorithms (e.g., from Tony Cassandra’s repository [3]) have been designed in such a
way that rewards do not carry any additional information that is not contained in the ob-
servations, extra information could potentially be present. In this section, we describe a
straightforward way of using rewards in the process of updating belief states.

As described in the previous section, rewards in POMDPs are given as a function
R(s,a,s′), which depends on the current state, the next state and the action taken. Hence,
we can treat rewards as random variables, with a conditional probability distribution
P(r|s,a,s′), where P(r|s,a,s′) = 1 if and only if r = R(s,a,s′), and 0 otherwise. Note
that if we had additional information about the distribution of immediate rewards, in-
stead of just knowing the expected values, this could be naturally incorporated in this
framework.

If there is only a discrete, finite set of reward values possible in the MDP,
{r1,r2, ...rk}, where each ri represents the immediate reward for taking some action
a from some hidden state s, this probability distribution can be easily specified using a
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table. We note that in most POMDP examples, the number of possible immediate re-
wards satisfies this assumption, and is often very small. However, if this assumption is
not satisfied, e.g. if reward are continuous, a conditional probability distribution over
rewards can still be specified in some parametric form, based on the given model of the
POMDP.

We note that rewards and observations are conditionally independent given the cur-
rent state s, the next state s′ and the action a. From now on we will treat rewards in the
same way as observations in predictions about the future. The definition of a history
will be extended to include the rewards: h = a1z1r1....anznrn.

We define belief state updates based on rewards and observations, by analogy with
equation (1), as follows:

b′(s′) = P(s′|r,z,a,b) =
P(b,a,s′,r,z)

P(b,a,r,z)

= ∑s∈S b(s)T (s,a,s′)O(a,s′,z)P(r|s,a,s′)
∑s′∈S ∑s∈S b(s)T (s,a,s′)O(a,s′,z)P(r|s,a,s′)

Value functions are computed in this case analogously to the case of regular beliefs. We
will call this model Reward-based POMDP (RPOMDP).

Rewards have been used by Poupart and Boutilier [10] in designing a compression
method for POMDPs. The value-directed POMDP compression algorithm of Poupart
and Boutilier is close to RPOMDP model. This algorithm computes a low dimensional
representation of a POMDP directly from the model parameters R,T,O by finding
Krylov subspaces for the reward function under belief propagation. The Krylov sub-
space for a vector and a matrix is the smallest subspace that contains the vector and is
closed under multiplication by the matrix. The authors use the smallest subspace that
contains the immediate reward vector and is closed under a set of linear functions de-
fined by the dynamics of the POMDP model. James et al’s variation of PSRs in [7] also
represents reward as a part of observation. It is interesting to note that this definition of
PSRs makes it very similar to value-directed compression [10] for POMDPs.

4 Empirical Evaluations

In this section we focus on studying the effect of using rewards in belief state updates.
We selected five standard domains from the POMDP repository [3] and from [10]. Table
1 lists these problems with their characteristics. We chose three domains in which the
rewards provide additional information compared to observations. These domains are:
Network, line4-2goals and coffee. The other two domains are ones in which rewards
possess the same information as the observations (4x4 grid world) or rewards have
more information than observations only for special actions (shuttle).

We performed a set of experiments to test the effect of rewards in reducing the
uncertainty about the hidden states on selected domains. The entropy of the agent’s be-
liefs have been measured for both the POMDP and RPOMDP model on 100 time steps
running the same random policy. Figure 1 shows the result of this experiment in the
five domains. The graphs are averages taken over 5 independent runs. For the network,
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Table 1. Domains used in the experiments

Domain |S | |A| |O| |R |
line4-2goals 4 2 1 2

network 7 4 2 6
4x4 grid 16 4 2 2
shuttle 8 3 5 3
coffee 32 2 3 12

Table 2. Performance comparison of exact solutions for POMDP original model and RPOMDP
model

Domain infinite horizon infinite horizon finite horizon finite horizon
POMDP RPOMDP POMDP RPOMDP

line4-2goals
time 0.01 0.01 0.00 0.00

α-vectors 2 2 2 2
reward 0.466 0.466 0.465 0.465

network
time 4539.15 5783.02 2.89 3.24

α-vectors 487 549 197 216
reward 293.185 340.15 121.27 173.94
coffee
time - 6.35 103 0.23

α-vectors N/A 5 263 5
reward N/A 0.00 0.00 0.00

4x4 grid
time 5578.5 6459.3 231 316

α-vectors 243 243 245 248
reward 1.209 1.209 1.073 1.073
shuttle

time - - 1270 81.4
α-vectors N/A N/A 2011 1152

reward N/A N/A 11.974 11.237

line4-2goals and coffee domains, the uncertainty of RPOMDP beliefs decreases consid-
erably and it stays always lower than the entropy of POMDP beliefs. Shuttle and 4x4
grid do not show noticeable difference for POMDP and RPOMDP running a random
policy. This is expected since the rewards carry little more or no more information than
the observations for some of the actions.

In a second set of experiments, we used exact and approximate POMDP solu-
tion techniques to evaluate the performance of the RPOMDP model in terms of time
to reach an optimal solution, the reached optimal value functions, and the complex-
ity of the optimal value function with respect to the number of alpha vectors used to
represent it.

The fastest exact solution method for POMDPs is the Witness algorithm [2]. We ran
this algorithm on all of the domains, but an optimal solution could not be found in a rea-
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Fig. 1. Comparison of the uncertainty in the agent’s state of the world, using standard POMDP
belief update vs. RPOMDP belief update, for 5 different tasks

sonable time for the shuttle and coffee domains. Table 2 shows a comparison between
POMDP and RPOMDP for updating the belief states, when the Witness algorithm is
used to finnd an optimal policy for a finite horizon 10 as well as for an infinite hori-
zon. The reward reported in this table corresponds to the value of an initial belief state
drawn uniformly. The dashes in the table show the cases where the algorithm has not
been able to solve the problem in 5 hours. The results for the coffee domain are quite
interesting interesting. The Witness algorithm cannot perform more than 14 iterations
in the time allowed with the usual belief state update, but can solve the problem very
quickly when the belief update includes rewards as well. It turns out that the true beliefs
for this problem occur on a very low dimensional manifold as it has been stated in [10]
and it seems that RPOMDP can take advantage of this problem structure.
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One of the most promising approaches for finding approximate POMDP value func-
tions are point-based methods. In this case, instead of optimizing the value function over
the entire belief space, only specific beliefs are considered. In our experiments we used
the PBVI algorithm [9] together with regular and reward-based belief state updates. In
PBVI, a finite set of reachable belief points is selected heuristically, and values are com-
puted only for these points. The algorithm has an anytime flavor, adding more points
over time to increase the accuracy of the value function representation. The results of
the evaluation are shown in Table 3. We have ran the PBVI algorithm for 10 iterations
for each domain and the results are averages over 5 independent runs. The results are
obtained when starting with a specified initial belief. In all cases, we performed 10 be-
lief set expansion of PBVI to obtain a value function. Then, we ran 250 trials of the
standard PBVI algorithm. Each trial runs for 250 steps. We averaged the results ob-
tained over these trials, and over 5 independent runs. The results in Table 3 confirm that
for the problems in which rewards possess information about states more than obser-
vations, a significant improvement can be achieved with respect to time, quality of the
solution obtained, or both. For the cases in which rewards do not help reduce the belief
state entropy, there is no gain. Although RPOMDP in these cases might not sacrifice
the solution quality, it can increase the computation time.

Table 3. Performance comparison of approximate solutions for POMDP original model and
RPOMDP model

Domain POMDP RPOMDP
line4-2goals

time 0.00 0.00
α-vectors 2 2

beliefs 232 157
discounted reward 1.24 0.48

network
time 2 62

α-vectors 23 208
beliefs 714 500

discounted reward 240.63 352.9
coffee
time 4 6

α-vectors 24 6
beliefs 323 169

discounted reward -1.92 -0.97
shuttle

time 0.8 0.01
α-vectors 17 18

beliefs 122 125
discounted reward 329.56 32.96

4x4 grid
time 2.4 8.2

α-vectors 24 24
beliefs 460 468

discounted reward 3.73 3.75
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5 Conclusions and Future Work

In this paper we studied the probabilistic reformulation of the POMDP model, focusing
on the assumption that rewards carry information about the states of the world indepen-
dent of observations. Following this assumption we represent and update belief states
taking into account the reward signal as part of the feedback that the agent receives
from the environment in order to reduce the uncertainty about the state of the world.
We presented the results of an empirical study confirming that the RPOMDP model
is very useful in reducing the entropy of beliefs for some domains. In this case, better
solutions can be obtained as well, and computation time is typically reduced.

This research can be extended in several directions. This model can be used to study
from a different perspective the space of reachable beliefs. Belief state entropy can be
used in order to guide more intelligent exploration strategies. In practical problems,
often the evolution of beliefs following a trajectory is embedded in a low dimensional
space. In the case of RPOMDP, linear dimensionality reduction involves no informa-
tion loss. We plan to study further how this way of updating beliefs affect non-linear
compression algorithms.
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Abstract. This paper examines the problem of finding an optimal policy for
a Partially Observable Markov Decision Process (POMDP) when the model is
not known or is only poorly specified. We propose two approaches to this prob-
lem. The first relies on a model of the uncertainty that is added directly into
the POMDP planning problem. This has theoretical guarantees, but is impracti-
cal when many of the parameters are uncertain. The second, called MEDUSA,
incrementally improves the POMDP model using selected queries, while still op-
timizing reward. Results show good performance of the algorithm even in large
problems: the most useful parameters of the model are learned quickly and the
agent still accumulates high reward throughout the process.

1 Introduction

Partially Observable Markov Decision Processes (POMDPs) are a popular framework
for sequential decision-making in partially observable domains (Littman et al, 1995).
Many recent algorithms for efficient planning in POMDPs have been proposed (e.g.,
Pineau et al. 2003; Poupart & Boutilier 2005).

However most of these rely crucially on having a known model of the environment.
On the other hand, experience-based approaches have been proposed which rely strictly
on experimentation with the system to learn a model which can then be used for plan-
ning (e.g., McCallum, 1996; Brafman and Shani, 2005; Singh et al. 2004). Yet these
typically require very large amounts of data, and are therefore impractical (to date) for
large problems. In practice, we would often prefer a more flexible trade-off between
these two extremes.

In particular, in many applications it is relatively easy to provide a rough model,
though much harder to provide an exact one, and so we would like to use some exper-
imentation to improve our initial model. The overall goal of this work is to investigate
POMDP approaches which can combine a partial model of the environment with di-
rect experimentation, in order to produce solutions that are robust to model uncertainty,
while scaling to large domains.

We based our work on the idea of active learning (Cohn et al. 1996), a well-known
machine learning technique for classification tasks with sparsely labeled data. The goal
is to select which examples should be labeled by considering the expected information
gain. These ideas extend nicely to dynamical systems such as HMMs (Anderson &
Moore 2005). Applying these ideas to POMDPs, we assume the availability of an oracle
that can provide the agent with exact information about the current state, upon request.

J. Gama et al. (Eds.): ECML 2005, LNAI 3720, pp. 601–608, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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This is a reasonable assumption in a number of real-world POMDP domains. Our work
is motivated especially by applications in robotics and dialogue management, where a
human is routinely involved in the initial calibration of the robot. However, we assume
that using the oracle is expensive and reserved for the learning phase, where we will
use it as little as possible.

Our first technique is conceptually simple, though not scalable. In essence, given a
problem with model uncertainty, we extend the original problem formulation to include
one additional state feature for each uncertain model parameter. The extended model
is used for planning, thereby allowing us to obtain a better way of choosing actions,
which is also robust to the uncertainty in the model. As discussed in Section 3, this is
a straightforward extension of the standard POMDP formulation, which performs well
when there are few uncertain parameters but scales poorly.

Our second technique, presented in Section 4, uses oracle queries while the agent
interacts optimally with the environment. The query result is used only to improve the
model, not in the action selection process. In this framework the uncertainty is repre-
sented using a Dirichlet distribution over all possible models, and its parameters are
updated whenever new experience is acquired.

2 Partially Observable Markov Decision Processes

We assume the standard POMDP formulation (Kaelbling et al., 1998). A POMDP con-
sists of a finite set of states S, actions A and observations Z. The model is defined
by transition probabilities {Pa

s,s′} = {p(st+1 = s′|st = s,at = a)} and observation prob-
abilities {Oa

s,z} = {p(zt = z|st = s,at−1 = a)},∀z ∈ Z,∀s,s′ ∈ S,∀a ∈ A. It also has
a discount factor γ ∈ (0,1] and a reward function R : S× A× S× Z → IR, such that
R(st ,at ,st+1,zt+1) is the immediate reward for the corresponding transition.

At each time step, the agent is in an unknown state st ∈ S. It executes action at ∈ A,
arriving in unknown state st+1 ∈ S and getting observation zt+1 ∈ Z. Agents using
POMDP planning algorithms typically keep track of the belief state b∈ IR|S|, which is a
probability distribution over all states given the history experienced so far. A policy is a
function that associates an action to each possible belief state. Solving a POMDP means
finding the policy that maximizes the expected return E(∑T

t=1 γtR(st ,at ,st+1,zt+1)).
While finding an exact solution to a POMDP is computationally intractable, many
methods exist for finding approximate solutions. In this paper, we use a point-based
algorithm (Pineau et al. 2003), in order to compute POMDP solutions. However, other
approximations could be used.

We assume the reward function is known, since it is directly linked to the task that
the agent should execute, and we focus on learning {Pa

s,s′} and {Oa
s,z}. These probability

distributions are typically harder to specify correctly by hand, especially in real appli-
cations. For instance in robotics, the sensor noise and motion error are often unknown.
We focus on a model-based approach because in many applications the model of the
dynamics and observations are re-usable.

To learn the transition and observation models, we assume the agent has the ability
to ask a query that will correctly identify the current state (we discuss later how the
correctness assumption can be relaxed). This is a strong assumption, but not entirely
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unrealistic. In fact, in many tasks it is possible (but very costly) to have access to the
full state information; it usually requires asking a human to label the state. As a result,
clearly we want the agent to make as few queries as possible.

3 Decision-Theoretic Model Learning in POMDPs

The first algorithm we propose assumes that (1) the parameters of the POMDP model
are not known exactly (2) the agent can perform query actions, and (3) these queries are
expensive, so they should not be used too much. Based on these three assumptions, we
modify the original POMDP model in order to reflect model uncertainty explicitly. First,
we increase the number of states: for each uncertain model parameter, we add a new
state feature. This feature is typically discretized into n levels. For instance, suppose
that for some pair of states s,s′ ∈ S and action a ∈ A we know that Pa

ss′ ∈ [0.5,1.0]. We
will discretize this interval in n bins and then the state space will receive a new feature,
which can take n possible values. We thereby obtain n groups of states; the transitions
are such that they always occur between states in the same group. Second, we need to
add a ”query” action to the set of actions. Finally, we have to set the reward function
such that it penalizes query actions adequately.

We analyze the performance of this algorithm on the standard Tiger problem (Littman
et al., 1995). We assume that we do not know the probability of the sensor providing
the correct state information and consider three possible levels of this probability: 0.7,
0.8 and 0.9.

Even with such a simple setting, no exact POMDP solution can be found, but the
approximate planning algorithm with a finite horizon finds solutions.

Figure 1 depicts the policies found and the expected reward, as a function of the
query penalty. The policies found either alternate between query and the optimal action,
or never do any query at all, if the query penalty is too high. Even when no query is done,
the agent still manages to learn the observation probabilities. However, we think this is
an artifact of having a Listen action, which is in effect a noisy version of a Query
action. The fact that some policies use the Listen action but not the Query action
suggests that noisy queries may be sufficient to learn the parameters of the system.

Fig. 1. Experimental results on the Tiger problem using decision-theoretic model learning. The
bars indicate the % of time each action is chosen (during both learning and testing). The line
indicates performance of the optimal solution obtained with each reward parameter.
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This approach will not scale well for large POMDPs, because the number of states
is multiplied by nk where n is the number of possible values for a given parameter and
k is the number of uncertain parameters. This greatly increases the complexity of the
belief state and the complexity of the policy. Furthemore, the cost of the query can be
very difficult to establish. The results above show that if the cost is too low, the query
action is used as part of permanent policies instead of being used only in the beginning
to gather information about the model. On the other hand, if the cost is too high, it is
likely that the query action will never be picked.

4 Active Learning in POMDPs

In the context of POMDPs, transition and observation probabilities are typically spec-
ified according to multinomial distributions. Therefore, we now investigate using a
Dirichlet distribution to represent the uncertainty over these model parameters (for each
state-action pair).

Consider an N-dimensional multinomial distribution with parameters (θ1, . . .θN). A
Dirichlet distribution is a probabilistic distribution over the θs, parameterized by hyper-
parameters (α1, . . .αN). The likelihood of the multinomial parameters is defined by:

p(θ1 . . .θN |D) = ∏N
i=1 θαi−1

i
Z(D) , where Z(D) = ∏N

i=1 Γ(αi)
Γ(∑N

i=1 αi)
The maximum likelihood multinomial parameters θ∗1 . . .θ∗N can be computed as:
θ∗i = αi

∑N
k=1 αk

,∀i = 1, . . .N

The Dirichlet distribution is convenient because its hyper-parameters can be updated
directly from data, and we can sample from it using Gamma distributions.

Our algorithm, called MEDUSA for ”Markovian Exploration with Decision based
on the Use of Sampled models Algorithm” is an active learning approach that follows
a familiar scenario. First, the agent samples a number of POMDP models according to
the current Dirichlet distribution. The agent takes an action in the environment, and as
a result, obtains an observation. At this point, the agent can decide to query the oracle
for the true identity of the hidden state. If it does so, it updates the Dirichlet parameters
according to the result of the query. This process is repeated until the distribution over
models is sufficiently well-known. Table 1 provides a detailed description of these steps,
including the implementation details.

A few aspects of this approach are worth discussing further. First, every time a new
model is sampled, the agent finds the corresponding (near-)optimal policy, which is
then used to select actions. This allows reasonable performance throughout the active
learning process: as the sampled models improve, so will the quality of the actions
chosen. This also allows the agent to focus the active learning in regions of the state
space most often visited by good policies.

We also note that our active learning approach assumes a learning rate, λ. This
is used to update the parameters of the Dirichlet distribution over models following
each query. In the experiments, we used a fixed learning rate throughout; however this
could be varied (e.g., decreasing over time, as is often done in reinforcement learning).
Another important characteristic of our approach is that we need not specify a separate
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Table 1. The MEDUSA algorithm

1. Let |S|, |Z| be the number of states and observations, and λ ∈ (0,1) be the learning rate.
2. Initialize the necessary Dirichlet distributions.

For any unknown transition probability, T a
s,·, define Dir ∼ {α1, . . .α|S|}.

For any unknown observation Oa
s,·, define Dir ∼ {α1, . . .α|Z|}.

3. Sample n POMDPs P1, . . .Pn from these distributions. (We typically use n = 20).
4. Compute the (normalized) probability of each model: {w1, . . .wn}.
5. Solve each model Pi → πi, i = 1, . . .n. (We use a finite point-based approximation.)
6. Initialize the history h = {}
7. Initialize a belief for each model b1 = . . .= bn = b0 (We assume a known initial belief b0).
8. Repeat:

(a) Compute the optimal actions for each model: a1 = π1(b1), . . .an = πn(bn).
(b) Pick and apply an action to execute: ai = πi(bi) is chosen with probability wi.
(c) Receive an observation z and update the history h = {h,a,z}
(d) Update the belief state for each model: b′i = ba,z

i , i = 1..n.
(e) If desired, query the current state, which reveals s, s′.
(f) Update the Dirichlet parameters according to the query outcome:

α(s,a,s′) ← α(s,a,s′)+λ
α(s′,a,z) ← α(s′,a,z)+λ

(g) Recompute the POMDP weights: {w′1, . . .w′n}.
(h) At regular intervals, remove the model Pi with the lowest weight and redraw another

model P′i according to the current Dirichlet distribution. Solve the new model: P′i → π′i
and update its belief b′i = bh

0, where bh
0 is the belief resulting when starting in b0 and

seeing history h.

Dirichlet parameter for each unknown POMDP parameter. It is often the case that a
small number of hyper-parameters suffice to characterize the model uncertainty.

For example, noise in the sensors may be highly correlated over all states and there-
fore we could use a single set of hyper-parameters for all states. In this setup, the corre-
sponding hyper-parameter would be updated whenever action a is taken and observation
z is received, regardless of the state.

Finally, while Table 1 assumes that a query for the state is performed at every time
step, this need not be the case. The decision of when to query could be addressed in
a decision-theoretic way (as in section 3), but this is intractable when there are many
unknown parameters. In the experimental section below, we investigate various heuris-
tics for deciding when to query. Another approach (which we have not investigated yet)
could be to use queries which do not directly reveal the state, but provide related infor-
mation, since it is possible to update the parameters of the Dirichlet distribution even
without explicit state identification.

5 Experimental Results

We evaluate MEDUSA first on the standard Tiger problem from Tony Cassandra’s
repository, considering two cases: (1) The observation probabilities when the Listen
action is performed are unknown. (2) All parameters are unknown.
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Fig. 2. Experiment 1: Convergence of the estimated parameter OListen
TL,HL (left). Discounted reward

as a function of the number of queries (right).

In the first experiment, we assume that all parameters are set to their correct value,
except the OListen

·,· parameters. (Note that in this experiment the Dirichlet distribution
implicitly enforces OListen

s,HL = 1.0−OListen
s,HR ,∀s ∈ S.) We test the following heuristics for

deciding when to query the state:

– Always query: perform a query at every step.
– Entropy>0.0: query when models disagree on which action to select.
– Entropy>0.1: query when the entropy of the probability distribution over actions, as sug-

gested by the different models, is larger than 0.1.
– Distance>0.01: query when the distance between the belief states corresponding to the

different models is too large. This distance is defined by: ∑n
k=1 wk ∑i∈S(bk(i)− b̂(i))2, where

∀i, b̂(i) = ∑n
k=1 wkbk(i)

Otherwise, the algorithm is applied exactly as described in Table 1. We also show
the return corresponding to the optimal solution obtained when solving the problem
with the known parameters.

As shown in Figure 2, the algorithm allows the agent to learn the correct parame-
ters, and performance quickly improves with additional queries. There is no significant
difference between the various heuristics for choosing when to perform queries. This
suggests that most queries are useful for learning the model.

In the second experiment, all transition and observation probabilities are learned
simultaneously. As shown in Figure 3, all correct parameters are learned accurately with
few queries (200-300), and about 2000 queries are needed to reach the optimal reward.
In comparison, recent results for learning models use on the order of 106− 107 steps
to learn this problem and others of similar size(Singh et al. 2004). We note, however,
that these algorithms are not allowed to query an oracle for additional information, and
therefore face a harder problem.

We also tested the scaling of the algorithm on a larger domain called Tiger-Grid
(Littman et al. 1995). It has 36 states, 5 actions, 17 observations, for a total of 9000+
parameters. It also features probability distributions that are more characteristic of real
robots, including noisy motion and sensors. In a domain of this size, it is unlikely that all
parameters will be uncorrelated. More likely, there are a few effects (e.g., sensor noise)
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Fig. 3. Experiment 2: Convergence of the parameters for the “always-query” case (left). Dis-
counted reward as a function of the number of queries (right).

Fig. 4. Experiment 3: Discounted reward as a function of the number of queries for Tiger-grid
domain for different numbers of alpha parameters .

that are similar over a number of states. Therefore, the uncertainty in these parameters
can be correlated through a single hyper-parameter, rather than learning all parameters
independently. In the experiments, we apply the algorithm described in Table 1 and vary
the number of α parameters used. The results in Figure 4confirm that with the appropriate
number of parameters, the algorithm can effectively improve the model using queries.
As expected, the speed of learning depends on the number of hyper-parameters. Thus,
our approach can effectively trade-off learning speed versus model accuracy.

6 Discussion

Chrisman (1992) was among the first to propose a method for acquiring a POMDP
model from data. Shatkay & Kaelbling (1997) used a version of the Baum-Welch algo-
rithm to learn POMDP models for robot navigation. Bayesian exploration was proposed
by Dearden et al.(1999) to learn the parameters of an MDP. Their idea was to reason
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about model uncertainty using Dirichlet distributions over uncertain model parameters.
The initial Dirichlet parameters can capture the rough model, and they can also be eas-
ily updated to reflect experience. The algorithm we present in Section 4 can be viewed
as an extension of this work to the POMDP framework, though it is different in many
respects, including the handling of exploration vs exploitation.

Recent work by Anderson and Moore (2005) examines the question of active learn-
ing in HMMs. In particular, their framework for model learning addresses a very similar
problem (albeit without the complication of actions). The solution they propose selects
queries to minimize error loss (i.e., loss of reward). However, their work is not directly
applicable since they are concerned with picking the best query for a large set of pos-
sible queries. In our framework, there is only one query to consider, which reveals the
current state.

Finally, our work resembles some of the recent approaches for handling model-free
POMDPs (McCallum, 1996; Brafman & Shani, 2005; Singh et al. 2004). Unlike these
approaches, we make here strong assumptions about the existence of an underlying
state which allows us to partly specify a model whenever possible, thereby making the
learning problem much more tractable (e.g., orders of magnitude fewer examples). The
other key assumption we make, which is not used in model-free approaches, regards
the existence of an oracle (or human) for correctly identifying the state following each
query. We are currently studying how this assumption can be relaxed.

The question of when to do queries, and whether to consider a more varied set of
queries is of interest. Clearly the decision-theoretic approach of Section 3 can contribute
to this decision. However, using this approach calls for POMDP algorithms that can
handle very large (possibly continuous) state spaces, and these are currently lacking.
MEDUSA has a very good performance and scales nicely, but a theoretical analysis of
its convergence properties remains to be done. Our next goal is to apply MEDUSA to
the control of a mobile interactive robot.
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Abstract. Classical planning domain representations assume all the ob-
jects from one type are exactly the same. But when solving problems in
the real world systems, the execution of a plan that theoretically solves
a problem, can fail because of not properly capturing the special fea-
tures of an object in the initial representation. We propose to capture
this uncertainty about the world with an architecture that integrates
planning, execution and learning. In this paper, we describe the PELA
system (Planning-Execution-Learning Architecture). This system gen-
erates plans, executes those plans in the real world, and automatically
acquires knowledge about the behaviour of the objects to strengthen the
execution processes in the future.

1 Introduction

Suppose you have just been engaged as a project manager in an organization.
The organization staff consists of two programmers, A and B. Theoretically A
and B can do the same work, but probably they will have different skills. So
it would be common sense to evaluate their work in order to assign them tasks
according to their worthy.

In this example, it seems that the success of fulfilling a task depends on which
worker performs which task, that is how actions are instantiated, rather than
depending on what state the action is executed. The latter would be, basically,
what reinforcement learning does in the case of mdp models (fully instanti-
ated states and actions). It does not depend either on the initial characteristics
of a given instance, because the values of these characteristics might not be
known “a priori”. Otherwise, they could be modelled in the initial state. For
instance, one could represent the level of expertise of programmers, as a pred-
icate expertise-level(programmer,task,prob) where prob could be a num-
ber, reflecting the uncertainty of the task to be carried out successfully by the
programmer . Then, the robustness of each plan could be computed by cost-based
planners. So, we would like to acquire knowledge only about the uncertainty as-
sociated to instantiated actions, without knowing “a priori” the facts from the
� Fernando Fernández is currently with the Computer Science Department Carnegie
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state that should be true in order to influence the execution of an action. Exam-
ples of this type of situations arise in many real world domains, such as project
management, workflow domains, robotics, etc. We are currently working in the
domain of planning tourist visits. In this domain, we want to propose plans that
please the tourist as much as possible, and we have to deal with the uncertainty
about which is the best day to visit a place.

With an architecture that integrates planning, execution and learning we
want to achieve a system that is able to learn some knowledge about the effects
of actions execution, but managing a rich representation of the action model.
Thus, the architecture can be used for flexible kinds of goals as in deliberative
planning, together with knowledge about the expected future reward, as in Re-
inforcement Learning [1]. A similar approach is followed in [2], but they learn
the operators (actions models), while our goal is to acquire heuristics (as con-
trol knowledge) to guide the planner search towards more robust solutions. In a
classical AI setting, our approach tries to separate the domain model that might
be common to many different problems within the domain, from the control
knowledge that can vary over time. And we propose to gradually and automati-
cally acquire this type of control knowledge through repeated cycles of planning,
execution and learning, as it is commonly done in most real world planning
situations by humans.

2 The Planning-Execution-Learning Architecture

The aim of the architecture is to automatically acquire knowledge about the
objects behaviour in the real world to generate plans whose execution will be
more robust. Figure 1 shows a high level view of the proposed architecture.

Fig. 1. High level view of the planning-execution-learning architecture

To acquire this knowledge, the system begins with a deterministic knowledge
of the world dynamics and observes the effects that the execution of its actions
causes in the real world. The system registers whether an action execution is
successful or not in the real world. So it has information about the possibility of
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succeed on executing an action in the real world. This is what we call the robust-
ness of an action. To use this information, the system defines control knowledge
that decides the instantiation of the actions. So, the planner will choose the best
bindings for the actions according to the acquired robustness information. We
have developed a preliminary prototype of such architecture, that we call PELA
(Planning-Execution-Learning Architecture). To make this prototype come true,
we have made the following assumptions (we describe how we plan to relax them
in the future work section).

1. A domain consists of a set of operators or actions, and a set of specific
instances that will be used as parameters of the actions. This is something
relatively different from the way in which planning domains are handled,
since they usually do not include specific instances, which appear in the
planning problems. This assumption is only needed for learning and it is not
really needed for deterministic planning purposes.

2. As we are working in a preliminary prototype, the robustness of the execution
of plan actions only depends on the instantiation of the actions parameters,
and it does not depend on the states before applying the actions.

2.1 Planning

For the planning task we have used the nonlinear backward chaining planner
IPSS [3]. The inputs to the planner are the usual ones (domain theory and
problem definition), plus declarative control knowledge, described as a set of
control rules. These control rules act as domain dependent heuristics. They are
the main reason we have used this planner, given that they provide an easy
method for declarative representation of automatically acquired knowledge [4].
IPSS planning-reasoning cycle involves as decision points: select a goal from the
set of pending goals and subgoals; choose an operator to achieve a particular goal;
choose the bindings to instantiate the chosen operator and apply an instantiated
operator whose preconditions are satisfied or continue subgoaling on another
unsolved goal. The output of the planner, as we have used it in this paper, is a
total-ordered plan.

2.2 Execution

The system executes step by step the sequence of actions proposed by the planner
to solve a problem. When the execution of a plan step is a failure the execu-
tion process is aborted. To test the architecture, we have developed a module
that simulates the execution of actions in the real world. This simulator module
receives an action and returns whether the execution succeeded or failed. It is
very simple for the time being as it doesn’t take care of the current state of
the world. The simulator keeps a probability distribution function as a model of
execution for each possible action. When the execution of an action has to be
simulated, the simulator generates a random value following its corresponding
distribution probability. If the generated random value satisfies the model, the
action is considered successfully executed.
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2.3 Learning

The process of acquiring the knowledge can be seen as a process of updating
the robustness table. This table registers the estimation of success of an instan-
tiated action in the real world. It is composed of tuples of the form <op-name,
op-params, r-value> op-name is the action name, op-params is the list of the
instantiated parameters and r-value is the robustness value. In the planning
tourist visits domain, as we want to capture the uncertainty about which is the
best day for a tourist to visit a fixed place we register the robustness of the
operator PREPARE-VISIT with the parameters PLACE and DAY. An example of
the robustness-table for this domain is Table 1.

Table 1. An example of a Robustness-Table for the planning tourist visits domain

Action Parameters Robustness
prepare-visit (PRADO MONDAY) 5.0
prepare-visit (PRADO TUESDAY) 6.0
prepare-visit (PRADO WEDNESDAY) 8.0
prepare-visit (PRADO THURSDAY) 4.0
prepare-visit (PRADO FRIDAY) 2.0
prepare-visit (PRADO SATURDAY) 1.0
prepare-visit (PRADO SUNDAY) 1.0
prepare-visit (ROYAL-PALACE MONDAY) 2.0
prepare-visit (ROYAL-PALACE TUESDAY) 2.0

...

We update the robustness value of the actions using the learning algorithm
shown in Figure 2. According to this algorithm [5], when the action execu-
tion is successful, we increase the robustness of the action, but if the action
execution is a failure, the new robustness value is the square root of the old
robustness value.

Function Learning (ai, r,Rob-Table):Rob-Table
ai: executed action
r: execution outcome (failure or success)
Rob-Table: Table with the robustness of the actions
if r=success

Then
robustness(ai,Rob-Table) = robustness(ai,Rob-Table) +1

Else

robustness(ai,Rob-Table) =
√

robustness(ai, Rob − Table)
Return Rob-Table;

Fig. 2. Algorithm that updates the robustness of one action

2.4 Exploitation of Acquired Knowledge

Control rules guide the planner among all the possible actions, choosing the
action bindings with the greatest robustness value in the Robustness Table.
In the planning tourist visits domain, these control rules will make the planner
prefer the most ’robust’ day to prepare the visit of the tourist <user-1> to
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the place <place-1>. An example of these control rules is shown in Figure 3.
Suppose that a tourist called Mike wants to visit the Prado museum, the system
will decides to prepare the visit to the Prado museum on Wednesday, among
all the possible instantiations, because PREPARE-VISIT PRADO WEDNESDAY 8.0
is the tuple with the greatest robustness value in the Robustness-Table for the
PRADO. To achieve a balance between exploration and exploitation the system
only use the control rules in 80% of the times.

(control-rule prefer-bindings-prepare-visit

(IF

(and

(current-goal (prepared-visit <user-1> <place-1>))

(current-operator prepare-visit)

(true-in-state (current-time <user-1> <day-1> <time-1>))

(true-in-state (current-time <user-1> <day-2> <time-2>))

(diff <day-1> <day-2>)

(more-robustness-than

(list ’prepare-visit <place-1> <day-1>)

(list ’prepare-visit <place-1> <day-2>))))

(THEN prefer bindings ((<day> . <day-1>))((<day> . <day-2>))))

Fig. 3. Control rule for preferring the best day to visit a museum

3 Experiments and Results

The experiments carried out to evaluate the proposed architecture have been
performed in the planning tourist visits domain. The used domain is a simpli-
fication of the SAMAP project domain [6], but given that this is preliminary
work, we have left out the part of path planning. We assume a tourist is always
able to move from any zone in the city to another. The operators in this domain
are MOVE, VISIT-PLACE and PREPARE-VISIT. In order to test the system we have
developed a simulator that emulates the execution of the planned actions in the
real world. The simulator decides whether visiting a place is a failure or not. It
decides with probability 0.1 that the visit was successfully in Mondays, Tuesdays,
Wednesdays or Thursdays. And with probability 0.5 when the visit happens on
Fridays, Saturdays or Sunday.

We have used a test problem set with 100 random generated problems with
different complexity. The state of the random problems represents the free time
of the tourist for each day in the week, its available money and its initial location.
The problem goals describe the places the tourist wants to visit. We measure
the complexity of the problems in terms of the available time the user has to
visit all the goals. For that purpose we have defined the following ratio:

complexity = goals-time / available-time

Where goals-time represents the time needed to visit all the goals and available-
time represents the sum of the tourist free time. So, when a problem have a
complexity ratio over 1.0 the planner will not be able to find a solution.



614 S. Jimenez, F. Fernández, and D. Borrajo

Fig. 4. Steps of plan successfully executed in the planning tourist visits domain

The first graph in figure 4 shows the evolution of the learning process. This
graph presents the number of successfully executed actions for 25 epochs. This
number converges quickly to approximately 13-14 steps. The average length of
the plans that solve the problems from the test set is 19,5. So, in terms of
percentage, 13-14 steps executed succesfully represents approximately 66-72%
percentage of plan executed succesfully. The fast convergence is because of failure
and success probabilities for an action don’t change with time. The second graph
in figure 4 compares the behaviour of our system to the behaviour of a system
that does not use the learned knowledge in the planning process. The number
of successful actions is computed after 25 epochs of learning with a ten random
problems train set.

4 Related Work

Learning to plan and act in uncertain domains is an important kind of machine
learning task. Most of literature in the field separates this task in two different
phases: A first phase to capture the uncertainty and a second phase to plan
dealing with it.

1. A first phase when the uncertainty is captured, [2] propose to obtain the
world dynamics by learning from examples representing action models as
probabilistic relational rules. A similar approach was previously used in
propositional logic in [7]. [8] proposes using Adaptive Dynamic Program-
ming, this technique allows reinforcement learning agents to build the tran-
sition model of an unknown environment whereas the agent is solving the
Markov Decission Process through exploring the transitions.

2. A second phase when problems are solved using planners able to handle
actions with probabilistic effects. This kind of Planning is a well studied
problem [9]. We can also include in this second phase the systems that solve
Markov Decision Processes. The standard Markov Decission Process algo-
rithms seek a policy (a function to choose an action for every possible state)
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that guarantees the maximum expected utility. So, once the optimal policy is
found planning under uncertainty can be considered as following the policy
starting from the initial state [10].

So, as our system propose the integration of these two phases, it presents
several differences with the previous systems:

– Our system does not learn a probabilistic action model, the system starts
with a deterministic description of the actions. Then it explores the envi-
ronment not to learn the whole world dynamics but to complete the domain
theory.

– We don’t assume completely the object abstraction as we are interested in
domains where the execution of an action depends on the identity of the
instances rather than on their type.

– Our system uses the learnt information about instances as control knowledge
so it keeps separately the domain model from the control knowledge.

We have also found another architecture that integrates planning, executing
and learning to in a similar way. [11] interleaves high-level task planning with
real world robot execution and learns situation-dependent control rules from
selecting goals to allow the planner to predict and avoid failures. The main
differences between this architecture and ours, are that: we don’t learn control
rules, control rules are part of the initial domain representation, what we learn
is the robustness of the actions. And we don’t guide the planner choosing the
goals but choosing the instantiations of the actions.

5 Future Work

We plan to remove, when possible, the initial assumptions, mentioned in the
introduction section. Relaxing the first assumption requires generating robust-
ness knowledge with generalized instances and then mapping new problems in-
stances to those used in the acquired knowledge. As we described in the in-
troduction section, we believe this is not really needed in many domains, since
one always has the same instances in all problems of the same domain. In that
case, we have to assure that there is a unique mapping between real world in-
stances and instance names in all problems. When new instances appear, their
robustness values can be initialized to a specific value, and then gradually be
updated with the proposed learning mechanism. To relax the second assump-
tion, we will use a more complex simulator that considers not only the instanti-
ated action, but also the state before applying each action. We are planning
to test the system with the simulator and the domains of the probabilistic
track of the International Planning Competition1. Thus, during learning, the
reinforcement formula should also consider the state where it was executed.

1 http://ipc.icaps-conference.org/
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One could use standard reinforcement learning techniques [12] for that pur-
pose, but states in deliberative planning are represented as predicate logic for-
mulae. One solution would consist on using relational reinforcement learning
techniques [13].

And finally, for the time being the learning algorithm and the exploration-
exploitation strategy we use are very simple, both of them must be studied
deeper [14] in order to obtain better results in more realistic domains.
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Abstract. A constraint is a relation with an active behavior. For a
given relation, we propose to learn a representation adapted to this ac-
tive behavior. It yields two contributions. The first is a generic meta-
technique for classifier improvement showing performances comparable
to boosting. The second lies in the ability of using the learned concept in
constraint-based decision or optimization problems. It opens a new way
of integrating Machine Learning in Decision Support Systems.

1 Introduction

A constraint is a relation with an active behavior. In Constraint Programming,
relations are used to model decision or optimization problems. Its success relies
on two aspects: first the model is high level, declarative and easy to understand
and second, there exists a range of powerful techniques to find and optimize solu-
tions. The key concept of Constraint Programming is that relations are actively
used during search for enforcing a consistency. In the context of finite domains
constraints, consistencies are used to reduce variable domains in order to limit
the search effort. The more the domains get reduced, the less branches are ex-
plored in the search tree. It works so well that, while theoretically intractable,
many problems are practically solvable.

But the model is usually limited to relations which are completely known.
In this paper, we propose to learn concepts as constraints. We call them open
constraints because they are only partially known by a set of positive and neg-
ative examples. While the acquisition of such an object has been extensively
studied in Machine Learning, no other work, to the authors’ best knowledge,
has considered to acquire the relation in such a way that consistency inference
could be performed. This paper deals with the induction of a relation using a
representation suitable for constraint propagation.

The first contribution is a generic meta-technique for classifier improvement.
The constraint-based representation involves a decomposition of the relation in
multiple parts according to some projections. Each part is learnable with classical
techniques and the relation is reconstituted by a vote mechanism. By reference
to Constraint Programming and because they represent a kind of internal consis-
tency of the relation, we call the resulting representation a Consistency Checking
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Classifier. It happens that classical techniques are improved by this decomposi-
tion and the resulting combination of decisions. The improvement provided by
this technique is different and orthogonal to boosting [5]. Actually, both can
be combined and the best results are obtained by using both techniques at the
same time.

The second contribution is the transformation of a classifier into a propa-
gator. We show that if the relation is acquired with the suggested constraint
representation, the relation can be turned into a constraint. In order to do this,
the classifiers are transformed into propagators which ensure the active behavior
of the constraint. This allows Machine Learning to be used in new applications
when included in constraint-based decision support systems. Basically, this kind
of system routinely considers millions of alternatives and tries to find a satisfac-
tory solution. Using a relation represented by a classifier inside such a system
imposes to first generate an alternative and evaluate it with the classifier. This
technique, known as “generate and test”, is computationally very expensive. The
purpose of an active constraint is to filter wrong alternatives much earlier in the
search process.

We first present a short introduction to constraint solving useful to under-
stand the idea of consistency checking classifier and the transformation of a
classifier into propagator. Section 3 is devoted to the presentation of the learn-
ing technique and its experimental evaluation. In section 4, we present shortly
how to turn a classifier into propagator.

2 Open Constraints

First, let us set the notations we use. Let V be a set of variables and D =
(DX)X∈V be the family of their finite domains. For W ⊆ V , we denote the
Cartesian product ΠX∈WDX by DW . For a set E, we denote by P(E) its pow-
erset, by E its complementary and by |E| its cardinal. Projection of a tuple (or
a set of tuples) on a set of variables is denoted by |. For X ∈ W , we denote by
W−X the set W\{X}.

A constraint c = (W,T ) is composed of a subset W ⊆ V of variables and
a relation T ⊆ DW . A Constraint Satisfaction Problem (or CSP) is a set of
constraints. A solution of a CSP is an assignment of the variables which satisfy
all constraints. Solving a CSP means finding a solution but in some cases it
is also required to find the best solution according to an external optimization
criterion. Instead of searching in a space of possible assignments, a search state s
is composed of a set of currently possible values for each variable. Formally, s =
(sX)X∈V where sX ⊆ DX . It represents the set ΠX∈V sX . This representation is
economic in term of space but the counterpart is that only Cartesian products
are representable. Thus an assignment is represented by a search state in which
all variable domains are singletons.

Domains are reduced by the application of propagators. A propagator for a
constraint c = (W,T ) and a variable X ∈ W is a function fX which reduces the
domain sX of variableX in such a way that no solution of c included in the search
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state s is lost [2]. In other words, a propagator suppresses values which do not
occur in any solution: these values have no support in the constraint. The most
reducing propagator is the one associated with the well-known arc-consistency.
It only keeps in the domain of a variable the values which can be extended to a
solution of the constraint. Propagators for all constraints are iterated up to reach
their greatest fixpoint, and this defines the expected consistency. A possible way
to implement a propagator is to associate a boolean function fX=a to every
value a ∈ DX . We call such a function an Elementary Reduction Function (or
ERF). This function takes as input the current domain of all variables but X ,
i.e. s|W−X , and answers true if there is a support for X = a in c according to
the current search state s and false otherwise. By applying ERFs associated to
each value of the domain, we are able to reconstitute a propagator: fX(s|W ) =
sX ∩ {a ∈ DX | fX=a(s|W−X ) = true}. An ERF must be correct, which means
that it does not suppress a value which has a support. But it can be incomplete,
i.e. that an unsupported value may remain undetected if the condition verified
by the ERF is too weak.

In classical Constraint Programming, all relations are completely known.
If we want to use a concept known by positive and negative examples as a
constraint, we have to switch to a broader setting:

Definition 1 (Open Constraint).
An open constraint is a triple c = (W, c+, c−) where c+ ⊆ DW , c− ⊆ DW and
c+ ∩ c− = ∅.

In an open constraint c = (W, c+, c−), c+ represents the set of known allowed
tuples (positive examples) and c− the forbidden ones (negative examples). The
remaining tuples are unknown. For an open constraint c = (W, c+, c−), the
learning task is to find a complete relation compatible with the open one, i.e. a
constraint c′ = (W,T ) such that c+ ⊆ T and c− ⊆ T . We call such a constraint
c′ an extension of the open constraint c.

3 Consistency Checking Classifiers

A classical learning technique for a relation consists in finding a classifier which
answers true for a tuple which belongs to the relation and false otherwise. In-
spired by the way constraints check their satisfiability, we propose instead to
learn the projections of the relation on the hyperplane orthogonal to a value of a
variable. For an open constraint c = (W, c+, c−), a variable X ∈ W and a value
a ∈ DX , this projection is defined by:

c<X=a> = (W−X , {t|W−X | t ∈ c+ ∧ t|X = a}, {t|W−X | t ∈ c− ∧ t|X = a})

Since the projection defines a new relation, we can use an arbitrary classifier
to learn it. We call it an elementary classifier by analogy with ERFs. We build
an elementary classifier for all values in the domain of all variables and we call
this set an consistency checking classifier:
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Definition 2 (Consistency Checking Classifier).
Let c = (W, c+, c−) be an open constraint, X ∈ W , a ∈ DX and let cl<X=a> be
a classifier for the relation c<X=a>. A consistency checking classifier (or CCC)
for c is the set of elementary classifiers {cl<X=a> | X ∈ W,a ∈ DX}.

Following the intuition of ERFs for solving, we can use these elementary clas-
sifiers to decide if a tuple belongs to the extension of the open constraint or
not. It can be done by checking if the tuple gets rejected by the classifiers. Let
t ∈ DW be a candidate tuple and let (cl<X=t|X>(t|W−X ))X∈W be the family of
0/1 answers of the elementary classifiers which are concerned by the tuple. We
can interpret the answers according two points of view: (a) vote with veto: the
tuple is accepted if and only if accepted by all classifiers, (b) majority vote: the
tuple is accepted if accepted by a majority of elementary classifiers. Many other
combinations could be envisaged [13] but our aim in this article is only to prove
the validity of the method, not to find the best combination of votes. In the rest
of this section, we only consider majority vote.

In order to learn the projection relations, we used two types of classifiers
in our experiments: a multi-layer perceptron (MLP) and the C5.0 decision tree
learning algorithm. For W ⊆ V , a neuron is a function n : R

|W | → R computing
the weighted sum of its inputs followed by a threshold sigmoid unit. A dummy
input set at 1 is added to tune the threshold. Let (ωX)X∈W be the weights
associated with each input variable and ω0 be the adjustment weight for the
dummy input. Here is the function computed by a neuron taking as input t =
(tX)X∈W :

η(t) =
1

1 + eω0−
∑

X∈W ωX .tX

For a constraint c = (W, c+, c−), the classifier we build for X = a is a tree
of neurons with one hidden layer as depicted in figure 1. Let (ηi)i∈I be the
intermediary nodes and out be the output node. All neurons of the hidden
layer have as input a value for each variable in W−X and are connected to
the output node. Let us call n<X=a> the network which concerns X = a. Since

Fig. 1. Structure of the ANN

neurons are continuous, we use an analog
coding of the domains: D is mapped on
[0..1] by coding ai ∈ D by i/n. The output
is in the interval [0..1] and we choose as
convention that the value a should be re-
moved from the domain of X if out ≤ 0.5.
This threshold is the last level of the net-
work depicted in figure 1. The networks
are trained by the classical backpropaga-
tion algorithm [12]. For decision trees, we
use the See5.0 system [11]. This system

implements the C5.0 algorithm, which is an evolution of C4.5 [9] and also the
technique of boosting [5].

The classification technique has been run on a database called salad defining
the concept of recipe for good salads and the following training sets from the
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UCI Machine Learning repository1: mush: mushroom, cancer: breast-cancer-
wisconsin, votes: house-votes-84, spam: spambase, hepat: hepatitis, cr-scr:
credit screening. Continuous data are discretized such that roughly the same
number of examples is put in each interval. As for boosting, the learning time
is proportional to the learning time of the underlying technique (typically less
than a minute for decision trees in our benchmarks). To evaluate and compare

Table 1. Learning results

Database salad mush cancer votes spam hepat cr-scr
Arity 22 22 9 16 58 20 16

Size of DB 334 8124 699 435 4601 155 690
Type symb symb symb symb cont mixed mixed

Domain sz 2-4 2-12 10 2 2-29 2-4 2-14
# neurons in HL 3 3 5 5 10 5 5

MLP err 3.89 1.75 4.49 5.78 10.80 22.07 16.12
C5.0 err 9.86 1.39 5.46 3.71 8.65 20.63 14.35

C5.0b err 4.83 0.31 3.67 4.37 5.85 17.23 12.89
# classifiers 64 115 89 32 487 49 90

CCC (MLP) err 3.64 0.81 3.48 3.77 7.30 17.30 15.95
CCC (C5.0) err 4.58 0.81 2.61 3.68 6.90 19.53 13.87

CCC (C5.0b) err 3.88 0.27 2.90 3.62 4.90 16.83 12.73

the technique, we used a classical 10-fold cross-validation repeated 3 times. Re-
sults are shown in Table 1: the database arity (Arity); Size of DB in number of
tuples (only 500 are actually considered for mushroom); Type between symbolic,
continuous or mixed; the range of domain sizes of the variables (Domain sz);
number of neurons in the hidden layer of the MLP (# neurons in HL); aver-
age error ratio of the underlying techniques we used, i.e. multi-layer perceptron
(MLP), C5.0 and C5.0 with boosting (C5.0b); the number of classifiers we learn
for each relation with the CCC technique; error rate for the consistency checking
classifier on top of an underlying technique. The best result in classification is
depicted in bold face. The first remark is that the CCC technique always im-
proves its underlying technique. It also provides an improvement in classification
comparable in performance to boosting, boosting being slightly better in aver-
age. But since both are usable at the same time, it appears that using CCC on
top of one of the classifiers is able to outperform its underlying technique.

4 From Classifiers to Solvers

The second contribution consists in extending learning technique to problem
solving. In order to do this, we propose to transform a consistency-checking
classifier into a propagator. Then, a learned concept can be used for problem
1 http://www.ics.uci.edu/~mlearn
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solving. While a classifier gives an answer for a single tuple, a propagator gives
an answer for a Cartesian product. Since a propagator should never reject a
solution, its answer should be false only if the absence of solution in the search
space is proven. If there is a solution or if the absence of solution cannot be
ensured because a full computation would be too expensive, then the answer has
to be true. Because of the independent schedule of propagators [2], the learned
relation is the one obtained in veto mode. It yields that the concept is more
centered on positive examples, which is an advantage in optimization problems.

The simplest way to know if there is a solution in such a search space is
to apply the elementary classifier on each tuple and combine all results with a
disjunction. Unfortunately, this solution is computationally intractable for rea-
sonable constraint arity or domain size. Another idea could be to first generate
off-line the solutions of the extension of the constraint and use them for solving
with a standard but efficient arc-consistency propagation algorithm like GAC-
schema [4]. Unfortunately again, the generation time and representation size are
prohibitive. Since actually covering the whole Cartesian product is impossible,
the intuition of the method is to cover it virtually. In order to do this, we have to
find a cheap sufficient condition to ensure that a sub-space does not contain any
solution. We expose on two examples the cases of decision trees and multi-layer
perceptrons.

Example 1 (Decision tree). Consider the decision tree depicted in figure 2 and
assume that it is associated with the value X = 1. The domain of the other
variables are (Y 1→ {0, 1, 2, 3}, Z 1→ {0, 1}, T 1→ {2, 3}). In order to know if

Fig. 2. A decision tree

there is a solution in this space, we define an output value eval(n) for a node
n of the tree. We start from node a and evaluate the conditions to get to the
children nodes b and c. Both conditions are satisfied by some element of the
search space, so the result will be the disjunction of the evaluation of both nodes:
eval(a) = eval(b) ∨ eval(c). In order to evaluate b, we test the conditions of the
children nodes d and e. Since the condition for node e is not met, we can stop
here the evaluation of the subtree and return eval(e) = false. Since eval(d) =
false, we can complete the evaluation of node b with eval(b) = eval(d)∨eval(e) =
false ∨ false = false. Back to a, we output eval(a) = false ∨ false = false. The
answer of the classifier is the answer of the root of the decision tree. It yields
that value 1 should be suppressed from X ’s domain.
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This transformation of a function from set to powerset is known as extension to
sets [14]. The case of decision trees is particularly interesting since it allows a
fast computation of this extension. This is not the case for arithmetic functions,
but they can be given a less precise extension called extension to intervals [8].
We call IntR the interval lattice built on the set R of real numbers. First, all
functions have extensions to intervals. Let f : R → R be a function. A function
F : IntR → IntR is an extension to intervals of f if ∀I ∈ IntR, ∀x ∈ I, f(x) ∈
F (I). An extension F is monotonic if A ⊆ B ⇒ F (A) ⊆ F (B). Between all
extensions to intervals of f , there is a smallest one, called canonical extension to
intervals: f̂(I) = [{f(x) | x ∈ I}]. The canonical extension is monotonic. Here
are the canonical extensions to intervals of the operators used in perceptrons:

[a, b] + [c, d] = [a+ c, b+ d]
[a, b]× [c, d] = [min(P ),max(P )] where P = {ac, ad, bc, bd}

exp([a, b]) = [exp(a), exp(b)]

Division is not a problem in our setting since no interval contains 0 (see the
sigmoid denominator). If e is an expression using these operators and E the
same expression obtained by replacing each operator by a monotonic extension,
then ∀I ∈ IntR, ∀x ∈ I, e(x) ∈ E(I). This property of monotonic extensions is
called “The Fundamental Theorem of Interval Arithmetic” [8]. It also holds when
domains are replaced by cartesian products of intervals. By taking the canonical
extension of all basic operators in an expression e, we do not always obtain an
extension E which is canonical. We instead call it the natural extension.

Example 2 (Multi-layer perceptron). The multi-layer perceptron n<X=a> de-
fines naturally a boolean function of its input variables. Let N<X=a> be its
natural interval extension, defined by taking the canonical extension of each ba-
sic operator +,−,×, /, exp. Then, by using as input the current domain of the
variables, we can obtain a range for its output. In order to do this, we compute
the interval range of every neuron of the hidden layer and we use these results
to feed the output neuron and compute its domain. Since we put a 0.5 threshold
after the output neuron, we can reject the value a for X if the maximum of the
output range is less than 0.5, which means that all tuples are rejected in the
current domain intervals. Otherwise, the value remains in the domain.

The extension (to sets or to intervals) CL<X=a> of the classifier cl<X=a> is
an ERF. The resulting propagator defines a consistency for the constraint. We
have also experimented the resulting consistencies. Decision trees and multi-
layer perceptrons provide a consistency weaker than arc-consistency but faster to
evaluate. While arc-consistency could theoretically be obtained for some decision
trees, it is not generally the case. Related work in constraint acquisition does
not provide any technique for learning a constraint and building its propagator
at the same time [3, 1, 6, 10]. The same holds for the work in Inductive Logic
Programming [7] since Prolog evaluation implements generate and test. On the
other hand the logic program representation is even more concise than ours.
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5 Conclusion

In this paper, we propose a generic meta-technique for learning a relation and a
way to use Machine Learning techniques in decision or optimization problems.
The first involves a decomposition of the relation in projections and improves
the performances in classification. The second consists in the transformation of
the classifier into a constraint propagator, which allows to use the classifier on
sub-spaces instead of only tuples. We hope this work will foster cross-fertilization
between these two fields.
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4. Christian Bessière and Jean-Charles Régin. Arc-consistency for general constraint
networks: preliminary results. In IJCAI, pages 398–404, Nagoya, Japan, 1997.
Morgan Kaufmann.

5. Y. Freund and R. Shapire. A short introduction to boosting. Journal of Japanese
Society for Artificial Intelligence, 14(5):771–780, 1999.

6. Arnaud Lallouet, Thi-Bich-Hanh Dao, Andrëı Legtchenko, and AbdelAli Ed-Dbali.
Finite domain constraint solver learning. In Georg Gottlob, editor, International
Joint Conference on Artificial Intelligence, pages 1379–1380, Acapulco, Mexico,
2003. AAAI Press.

7. Nada Lavrac and Saso Dzeroski. Inductive Logic Programming: Techniques and
Applications. Ellis Horwood, 1994.

8. Ramon E. Moore. Interval Analysis. Prentice Hall, 1966.
9. J. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, 1993.

10. F. Rossi and A. Sperduti. Acquiring both constraint and solution preferences in
interactive constraint system. Constraints, 9(4), 2004.

11. RuleQuest Research. See5: An informal tutorial, 2004. http://www.rulequest.com/
see5-win.html.

12. D.E. Rumelhart, G.E. Hinton, and R.J. Williams. Learning internal representations
by error propagation. Parallel Distributed Processing, vol 1:318–362, 1986.

13. Grigorios Tsoumakas, Ioannis Katakis, and Ioannis P. Vlahavas. Effective voting
of heterogeneous classifiers. In J.-F. Boulicaut, F. Esposito, F. Giannotti, and
D. Pedreschi, editors, ECML, volume 3201 of LNCS, pages 465–476, Pisa, Italy,
September 20-24 2004. Springer.

14. R. C. Young. The algebra of multi-valued quantities. Mathematische Annalen,
104:260–290, 1931.



A Clustering Model Based on Matrix Approximation
with Applications to Cluster System Log Files

Tao Li and Wei Peng

School of Computer Science, Florida International University,
11200, SW 8th street, Miami, FL, 33199
{taoli, wpeng002}@cs.fiu.edu

Abstract. In system management applications, to perform automated analysis of
the historical data across multiple components when problems occur, we need to
cluster the log messages with disparate formats to automatically infer the com-
mon set of semantic situations and obtain a brief description for each situation. In
this paper, we propose a clustering model where the problem of clustering is for-
mulated as matrix approximations and the clustering objective is minimizing the
approximation error between the original data matrix and the reconstructed ma-
trix based on the cluster structures. The model explicitly characterizes the data
and feature memberships and thus enables the descriptions of each cluster. We
present a two-side spectral relaxation optimization procedure for the clustering
model. We also establish the connections between our clustering model with ex-
isting approaches. Experimental results show the effectiveness of the proposed
approach.

1 Introduction

1.1 Background on System Log Files

With advancement in science and technology, computing systems are becoming increas-
ingly more complex with an increasing variety of heterogeneous software and hardware
components. They are thus becoming increasingly more difficult to monitor, manage
and maintain. A popular approach to system management is based on analyzing system
log files. The data in the log files describe the status of each component and record
system operational changes.

The heterogeneous nature of the system makes the data more complex and compli-
cated. As we know, a typical computing system contains different devices (e.g., routers,
processors, and adapters) with different software components (e.g., operating systems,
middleware, and user applications), possibly from different providers (e.g., Cisco, IBM,
and Microsoft). These various components have multiple ways to report events, condi-
tions, errors and alerts. The heterogeneity and inconsistency of log formats make it
difficult to automate problem determination [5]. For example, there are many different
ways for the components to report the start up process. Some might log “the component
has started”, while others might say that “the component has changed the state from
starting to running”. Imagine that we would like to automatically perform the following
rule: if any component has started, notify the system operators. Given the inconsistent

J. Gama et al. (Eds.): ECML 2005, LNAI 3720, pp. 625–632, 2005.
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content and sometimes subtle differences in the way components report the “started”
process, writing a program to automate this simple task is difficult, if not impossi-
ble [10]. One would need to know all the messages that reflect the “started” status, for
all the components involved in the solution. Every time a new component is installed,
the program has to be updated by adding the new component’s specific terminology for
reporting “started” situations. This makes it difficult to perform automated analysis of
the historical event data across multiple components when problems occur.

To perform automated analysis of the historical event data across multiple compo-
nents when problems occur, we need to categorize the text messages with disparate
formats into common situations [10]. Clustering techniques are then needed to auto-
matically infer the common set of situations from historical data and obtain a brief
description for each situation. This would create consistency across similar fields and
improve the ability to correlate across multiple component logs.

1.2 Clustering

As a fundamental and effective tool for efficient organization, summarization, navi-
gation and retrieval of large amount of documents, clustering has been very active
and enjoying a growing amount of attention with the ever-increasing growth of the
on-line information. The clustering problem can be intuitively described as the prob-
lem of finding, given a set W of some n data points in a multi-dimensional space, a
partition of W into classes such that the points within each class are similar to each
other. The clustering problem has been studied extensively in machine learning [11],
databases [7, 13], and statistics [2] from various perspectives and with various ap-
proaches and focuses.

Despite significant research on various clustering methods, few attempts have been
made to obtain the descriptions for each cluster. In this paper, we present a clustering
model 1 where the problem of clustering is formulated as matrix approximations. The
model explicitly characterizes the data and feature memberships and thus enables the
descriptions of each cluster. The goal of clustering is then transformed to minimizing
the approximation error between the original data matrix and the reconstructed matrix
based on the cluster structures. We provide an optimization procedure based on two-
side spectral relaxation. In addition, we show the connections between our model with
other clustering algorithms.

The rest of the paper is organized as follows: Section 2 introduces the notations and
describes the general clustering model, Section 3 presents the optimization procedures
based on two-side spectral relaxations, Section 4 presents the experimental results on
system log data, finally, our discussions and conclusions are presented in Section 5.

2 The Clustering Model

We first present the clustering model for clustering problem. The notations used in the
paper are introduced in Table 1.

1 In this paper, we use model and framework interchangeably.
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Table 1. Notations used throughout the paper

W = (wi j)n×m The Data set
D = (d1,d2, · · · ,dn) Set of data points
F = ( f1, f2, · · · , fm) Set of features
K Number of clusters for data points
C Number of clusters for features
P = {P1,P2, · · · ,PK} Partition of D into K clusters
i ∈ Pk,1≤ k ≤ K i-th data point in cluster Pk
p1, p2, · · · , pK Sizes for the K data clusters
Q = {Q1,Q2, · · · ,QC} Partition of F into C clusters
q1,q2, · · · ,qC Sizes for the C feature clusters
j ∈Qc,1≤ c≤C j-th feature in cluster Qc

A = (aik)n×K Matrix designating the data membership
B = (b jc)m×C Matrix designating the feature membership
X = (xkc)K×C Matrix specifies/indicates the association

between data and features or
the cluster representation

Trace(M) Trace of the Matrix M

The model is formally specified as follows:

W = AXBT + E (1)

where matrix E denotes the error component. The first term AXBT characterizes the
information of W that can be described by the cluster structures. A and B designate
the cluster memberships for data points and features, respectively. X specifies cluster
representation. Let Ŵ denote the approximation AXBT and the goal of clustering is to
minimize the approximation error (or sum-of-squared-error)

O(A,X ,B) = ‖W −Ŵ ‖2
F

= Trace[(W −Ŵ)(W −Ŵ )T ]

=
n

∑
i=1

m

∑
j=1

(wi j− ŵi j)2 (2)

=
n

∑
i=1

m

∑
j=1

(wi j−
K

∑
k=1

C

∑
c=1

aikb jcxkc)2 (3)

Note that the Frobenius norm, ‖ M ‖F , of a matrix M = (Mi j) is given by ‖ M ‖F=√
∑i, j M2

i j .

3 The Optimization Procedure

Without loss of generality, we assume that the rows belong to a particular cluster are
contiguous, so that all data points belonging to the first cluster appear first and the
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second cluster next, etc 2. Then A can be represented as A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 · · · 0
1 0 · · · 0
... 0 · · · 0
0 1 · · · 0
0 1 · · · 0
...

... · · ·
...

0 0 · · · 1
...

... · · ·
...

0 0 · · · 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. Note that

AT A =

⎡⎢⎢⎣
p1 0 · · · 0
0 p2 · · · 0
· · · · · · · · · · · ·
0 0 · · · pK

⎤⎥⎥⎦ is a diagonal matrix with the cluster size on the diagonal. The

inverse of AT A serves as a weight matrix to compute the centroids. Hence, in general,
if A and B denote the cluster membership, then we have AT A = diag(p1, · · · , pK) and
BT B = diag(q1, · · · ,qC) are two diagonal matrices.

Double K-Means. Suppose A = (aik),aik ∈ {0,1},∑K
k=1 aik = 1,B = (b jc),b jc ∈ {0,1},

∑C
c=1 b jc = 1. Thus, based on Equation 3, we obtain

O(A,X ,B) = ‖W −Ŵ ‖2
F=

n

∑
i=1

m

∑
j=1

(wi j−
K

∑
k=1

C

∑
c=1

aikb jcxkc)2

=
K

∑
k=1

C

∑
c=1

∑
i∈Pk

∑
j∈Qc

(wi j− xkc)2 (4)

For fixed Pk and Qc, it is easy to check that the optimum X is obtained by xkc =
1

pkqc
∑i∈Pk ∑ j∈Qc wi j , In other words, X can be thought as the matrix of centroids for the

two-side clustering problem and it represents the associations between the data clusters
and the feature clusters [3]. O(A,X ,B) can then be minimized via a two-side itera-
tive procedure (i.e., the natural extensions of the K-means type algorithm for two-side
cases [1, 3, 8].

Spectral Relaxation. If we relax the conditions on A and B, requiring AT A = IK and
BT B = IC, we would obtain an optimziation procedure based on a two-side spectral
relaxation. Similar ideas have been explored in for gene expression data in [4]. Here we
illustrated in our clustering model. Note that

O(A,X ,B) = ‖W −AXBT ‖2
F

= Trace((W −AXBT )(W −AXBT )T )
= Trace(WW T )+ Trace(XXT )−2Trace(AXBTW T )

Since Trace(WW T ) is constant, hence minimizing O(A,X ,B) is equivalent to
minimizing

O′(A,X ,B) = Trace(XXT )−2Trace(AXBTW T ). (5)

2 This can also be applied to column clusters.
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The minimum of Equation 5 is achieved where X = ATWB as ∂O′
∂X = X−ATWB.

Plugging X = ATWB into Equation 5, we have

O′(A,X ,B) = Trace(XXT )−2Trace(AXBTW T )
= Trace(ATWBBTW T A)−2Trace(AATWBBTW T )
= Trace(WW T )−2Trace(ATWBBTW T A)

Since the first term Trace(WW T ) is constant, minimizing O′(A,X ,B) is thus equivalent
to maximizing Trace(ATWBBTW T A).

Let G = WB, then Trace(ATWBBTW T A) = Trace(AT GGT A).

Proposition 1. Given B, Trace(AT GGT A) can be maximized by constructing A with
the eigenvectors of GGT corresponding to the K largest eigenvalues.

Note that Trace(ATWBBTW T A)= Trace(BTW T AATWB). Denote H =W T A. Similarly,
we have

Proposition 2. Given A, Trace(BT HHT B) can be maximized by constructing B with
the eigenvectors of HHT corresponding to the C largest eigenvalues.

Proposition 1 and Proposition 2 can be proved via matrix computations [6] and they lead
to an alternating optimization procedure to maximize Trace(ATWBBTW T A), i.e., up-
date B to maximize Trace(ATW BW T BT A) and update A to maximize Trace
(BTW T AATWB). The alternative optimization procedure can be thought as a two-side
generalization of the spectral relaxation [12]. After obtaining the relaxed A and B, the
final cluster assignments of the data points and features are obtained by applying or-
dinary K-means clustering in the reduced spaces. A short description of the clustering
procedure is presented as Algorithm 1.

Algorithm 1. Two-Side Spectral Relaxation

Input: (Wn×m, K and C)
Output: P,Q: set of clusters;
begin
1 Initialize A;
2. Iteration: Do while the stop criterion is not met

begin
2.1 Update B to maximize Trace(ATW BW T BT A)
2.2 Compute X = ATWB
2.3 Update A to maximize Trace(BTW T AATW B)

end
3. Get the final clusterings P and Q
end
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4 Experiments

We performed experimental studies to 1) show that the clustering model can identify
the inherent structure in real application studies on system log files, and 2) verify that
our proposed clustering method can improve the clustering performance. Due to space
limit, we only present a case study on clustering system log files, showing that the
cluster model can identify the inherent structures of the datasets.

4.1 Log Data Generation

The log files used in our experiments are collected from several different machines
with different operating systems using logdump2td (NT data collection tool) developed
at IBM T.J. Watson Research Center. The raw log files contains a free-format ASCII
description of the event. In our experiment, we apply clustering algorithms to group the
messages into different situations. To pre-process text messages, we remove stop words
and skip HTML labels.

4.2 Experimental Results on Log Data

The general cluster framework introduced in Section 2 explicitly models both data and
feature assignments. With the feature assignments, we can get the distinguishing words
for each cluster and consequently obtain a description for the cluster. We use Algorithm
1 described in Section 3 in our experiments.

Figure 1 shows the original word-document matrix of the log file and the reordered
matrix obtained by arranging rows and columns based on the cluster assignments. The
figure reveals the hidden sparse structureofboth the document messageand word clusters.
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(b) Dataset after Reordering

Fig. 1. Visualization of the original message-data matrix and the reordered document-data matrix

Table 2 lists the discriminating words for several clusters. We can derive meaningful
common situations from the cluster results. For example, cluster 1 mainly concerns
product configuration, Cluster 2 is about aspects related to a connection to another
component, Cluster 3 describes the problem of creating temporary files etc.
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Table 2. Keywords and their clusters

Cluster Number Words
1 product, configuration, completed
2 inventory, server, respond, network, connection, party, root
3 create, temporary, file
4 exist, directory, domain, contacted, contact, failed, certificate, enrollment
5 profile, service, version, faulting, application, module, fault, address
6 completed, update, installation
7 service, started, application, starting
8 stopped, restarted, completed, failed, shell, explorer

The case study on clustering log message files for computing system management
provides a successful story of applying the cluster model in real applications. The log
messages are relatively short with a large vocabulary size [9]. Hence they are usually
represented as sparse high-dimensional vectors. In addition, the log generation mecha-
nisms implicitly create some associations between the terminologies and the situations.
Our clustering model explicitly models the data and feature assignments and is also able
to exploit the association between data and features. The synergy of these factors leads
to the good application on system management.

5 Discussions and Conclusions

Based on different constraints on the matrices A, B and X , our cluster model encom-
passes different clustering algorithms. The relationships between our clustering model
and other well-known clustering approaches can be briefly summarized in Figure 2.

Double K−Means

One−Side Clustering

Two−Side Spectral Relaxation

Our Clustering Model

Consistent optimization criteria

B is identity matrix

A and B are orthonormal

Information−Theoretic Clustering

Entries of A and B are positive

Iterative Data and Feature Clustering

Fig. 2. Relations of Our Clustering Models and Other Approaches

In this paper, we present a clustering model and investigates its applications to clus-
ter system log data. The model explicitly characterizes the data and feature member-
ships and thus enables the descriptions of each cluster. A two-side spectral relaxation
method is presented as the optimization procedure for clustering. In addition, we also
establish the connections between our clustering model with existing approaches. Ex-
perimental results show the effectiveness of the proposed approach.
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Abstract. Benford’s Law [1] specifies the probabilistic distribution of digits for
many commonly occurring phenomena, ideally when we have complete data of
the phenomena. We enhance this digital analysis technique with an unsupervised
learning method to handle situations where data is incomplete. We apply this
method to the detection of fraud and abuse in health insurance claims using real
health insurance data. We demonstrate improved precision over the traditional
Benford approach in detecting anomalous data indicative of fraud and illustrate
some of the challenges to the analysis of healthcare claims fraud.

1 Introduction

In this paper we explore a new approach to detecting fraud and abuse by using a digital
analysis technique that utilizes an unsupervised learning approach to handle incomplete
data. We apply the technique to the application area of healthcare insurance claims. We
utilize real health insurance claims data, provided by Manulife Financial, to test our
new technique and demonstrate improved precision for detecting possible fraudulent
insurance claims.

A variety of techniques for detecting fraud have been developed. The most com-
mon are supervised learning methods, which train systems on known instances of fraud
patterns to then detect these patterns in test data. A less common approach is to have
a pattern for non-fraudulent data and then compare the test data to this pattern. Any
data that deviates significantly from the non-fraudulent pattern could be indicative of
possible fraud [2]. The difficulty with the latter approach for fraud detection is in ob-
taining a pattern that one is confident is free of fraud. Digital analysis is an approach
which addresses this difficulty. Benford’s Law [1] is one digital analysis technique that
specifies a model of non-fraudulent data that test data may be compared against.

In 1938 Frank Benford demonstrated that for many naturally occurring phenomena,
the frequency of occurrences of digits within recorded data follows a certain logarith-
mic probability distribution (a Benford distribution). This Benford’s Law can only be
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applied to complete recorded data. However, incomplete records are very common. We
introduce an algorithm to detect and adjust the distribution to take into account missing
data. By doing so, we allow for true anomalies such as those due to fraud and abuse to
be more accurately detected.

In this paper, we consider the situation where data is contiguously recorded so that
the only missing data are due to cutoffs below and/or above some thresholds. Our algo-
rithm, which we will call Adaptive Benford, adjusts its distribution of digit frequencies
to account for any missing data cutoffs and produces a threshold cutoff for various
ranges of digits. Our algorithm then uses those learned values to analyse test data. We
return any digits exceeding a learned set of threshold bounds.

We apply our Adaptive Benford algorithm to the analysis of real healthcare insur-
ance claims data provided by Manulife Financial. The data is a list of health, dental and
drug insurance reimbursement claims for a three year period covering a single com-
pany’s group benefits plan with all personal information removed.

2 Background

2.1 Benford’s Law and Fraud Detection

As Benford’s Law is a probability distribution with strong relevance to accounting
fraud, much of the research on Benford’s Law has been in areas of statistics [3, 4] as
well as auditing [5, 2]. The first machine learning related implementation was done by
Bruce Busta & Randy Weinberg [6].

The significant advantage of using the digital analysis approach over previous su-
pervised learning methods for fraud detection is that we are not restricted to already
known instances of fraud [7, 8]. By looking for anomalies that deviate from the ex-
pected Benford distribution that a data set should follow, we may discover possible new
fraud cases.

2.2 Digit Probabilities

Benford’s Law is a mathematical formula that specifies the probability of leading digit
sequences appearing in a set of data. What we mean by leading digit sequences is best
illustrated through an example. Consider the set of data

S = {231, 432, 1, 23, 634, 23, 1, 634, 2, 23, 34, 1232}.

There are twelve data entries in set S. The digit sequence ‘23’ appears as a leading digit
sequence (i.e. in the first and second position) 4 times. Therefore, the probability of the
first two digits being ‘23’ is 4

9 ≈ 0.44. The probability is computed out of 9 because
only 9 entries have at least 2 digit positions. Entries with less than the number of digits
being analysed are not included in the probability computation.

The actual mathematical formula of Benford’s law is:

P (D = d) = log10(1 +
1
d
), (1)
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where P (D = d) is the probability of observing the digit sequence d in the first ‘y’
digits and where d is a sequence of ‘y’ digits. For instance, Benford’s Law would state
that the probability that the first digit in a data set is ‘3’ would be log10(1+ 1

3 ). Similarly,
the probability that the first 3 digits of the data set are ‘238’, would be log10(1 + 1

238 ).
The numbers ‘238’ and ‘23885’ would be instances of the first three digits being ‘238’.
However this probability would not include the occurrence ‘3238’, as ‘238’ is not the
first three digits in this instance.

2.3 Benford’s Law Requirements

In order to apply equation 1 as a test for a data set’s digit frequencies, Benford’s Law
requires that:

1. The entries in a data set should record values of similar phenomena. In other words,
the recorded data cannot include entries from two different phenomena such as both
census population records and dental measurements.

2. There should be no built-in minimum or maximum values in the data set. In other
words, the records for the phenomena must be complete, with no artificial start
value or ending cutoff value.

3. The data set should not be made up of assigned numbers, such as phone numbers.
4. The data set should have more small value entries than large value entries.

Further details on these rules may be found in [9]. Under these conditions, Benford
noted that the data for such sets, when placed in ascending order, often follows a geo-
metric growth pattern.1 Under such a situation, equation 1 specifies the probability of
observing specific leading digit sequences for such a data set.

The intuitive reasoning behind the geometric growth of Benford’s Law is based on
the notion that for low values it takes more time for some event to increase by 100%
from ‘1’ to ‘2’ than it does to increase by 50% from ‘2’ to ‘3’. Thus, when recording
numerical information at regular intervals, one often observes low digits much more
frequently than higher digits, usually decreasing geometrically.

3 Adaptive Benford

As section 2.3 specifies, one of the requirements to be able to apply Benford’s law is
that there are ‘no built-in minimum or maximum values.’ However, often data is only
partially observed, such as when only a single month of expenses are reported. Adaptive
Benford’s Law has been designed to handle such missing data situations.

3.1 Missing Data Inflating

The problem with traditional Benford’s Law and incomplete data is that the frequency
of the digits that are observed become inflated when computed as a probability. For in-
stance, Benford’s Law states that in a data set, a first digit of ’4’ should occur with prob-
ability log10(1 + 1

4 ) ≈ 0.0969. Suppose with complete data, out of 100 observations, 4

1 Note: The actual data does not have to be recorded in ascending order. This ordering is merely
an illustrative tool to understand the intuitive reasoning for Benford’s law.
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appeared as a first digit 10 times, which closely approximates the Benford probability.
However if the data set is incomplete with only 50 observations recorded, but all 10
occurrences of first digit 4 are still recorded, then we get a probability of 10/50 = 0.20,
essentially inflating the probability of digits that are observed higher due to the missing
digits not being included in the total count for the probability computation.

3.2 Algorithm

Under the condition that we are aware that the observed data follows a Benford distribu-
tion and is contiguous, if we are missing data only above or below an observed cutoff,
we can use this knowledge to artificially build the missing data. First, let

– d be a leading digit sequence of length i.
– fd,observed be the frequency that the leading digit sequence d occurs in the data

set, and
– P (Di) be the Benford probability for digit sequence Di, where Di is any digit

sequence of length i.

Now, consider that to compare the actual frequency of occurrence of a leading digit
sequence ‘d’ to the actual Benford probability we would compute the ratio:

fd,observed∑
Di
fDi,observed

3 P (Di = d), (2)

where the denominator is summed over all digit sequences of the same length as digit
sequence ‘d’, in other words over all digits of length i. Let

Ci =
∑
Di

fDi,observed. (3)

Then equation 2 can be rearranged to

fd,observed
P (Di = d)

3
∑
Di

fDi,observed = Ci, (4)

Ci is essentially a constant scaling factor for all digit sequences of the same length i.
If there are missing digit sequences in our observed data due to cutoff thresholds, we
can compute Ci using the observed digit sequences, since those sequences that do still
appear should still follow the Benford’s Law probabilities.

In order to produce a best fit for the missing data, we average over all possible Ci

values for a given digit sequence length i. Therefore, let

Ci =
fd,observed/P (Di = d)

|digit sequences of length i|
. (5)

This scaling factor Ci will be used to ’fill-in’ the missing data of our Benford
distribution.
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As an example, C2 would be the averaged constant scaling factor over all first two
digit frequencies. We use Ci to multiply our Benford probabilities for the digit se-
quences of length i and use that as a benchmark to compare the frequencies of the
actual observed data against.

Appendix A illustrates the Adaptive Benford algorithm. The major steps of the
Adaptive Benford algorithm are:

1. Compute the Ci constant values for various leading digit sequence lengths.
2. Compute artificial Benford frequencies for the digit sequence lengths.
3. Compute a standard deviation for each of the sequence lengths.
4. Flag any digit sequences in the recorded data that deviate more than an upper bound

number of standard deviations from the artificial Benford frequencies.

We compute the artificial Benford frequencies as follows:

fd,expected = Ci × log10(1 +
1
d
). (6)

We scale up to actual frequencies in contrast to dividing by a sum total of observed
instances that would produce probabilities. By doing so, we avoid the inflating effect
we noted in section 3.1. We may compute a variance against observed data by:

σ2
expected,i =

1
ni

∑
Di

(fDi,observed − fDi,expected)2, (7)

where ni is the number of different digit sequences of size i. We compute an upper
boundUi based on a number of standard deviations from the artificial Benford frequen-
cies. We use this upper bound to determine if the observed data deviates enough to be
considered anomalous and potentially indicative of fraud or abuse.

4 Experiments

For the purposes of our experiments, we will analyse up to the first 3 leading digit
sequences. The choice of digit sequence lengths to be analysed is dependent on the
data set’s entries (the digit lengths of the data set’s elements as well as the number of
elements in the data set). For a further discussion on choice of digit sequence length
see [10].

4.1 Census Data Tests

As an initial test of our system we use as a test database the year 1990 population
census data for municipalities in the United States, which has been analysed previously
by Nigrini [9] and been verified to follow a Benford Law distribution.

Table 1 records the amount of conformity for complete and incomplete census data
whereby we measure conformity as the percentage of digit sequences that fall within
±2 standard deviations of the Benford estimate value out of the total number of digit
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Table 1. Census Data: Percentage of Digits within ± two standard deviations of Benford and
Adaptive Benford distributions.

Range of Values Data Classic Adaptive
x 104 Size Benford Benford

Complete Census 3141 96.2% 94.9%
100,000 - 1,100,000 431 85.0% 89.4%
200,000 - 1,200,000 220 85.6% 96.9%
300,000 - 1,300,000 144 49.5% 94.4%
400,000 - 1,400,000 106 30.8% 91.7%
500,000 - 1,500,000 84 32.0% 87.2%
600,000 - 1,600,000 65 34.0% 84.0%
700,000 - 1,700,000 48 33.8% 82.4%
800,000 - 1,800,000 36 19.2% 82.7%
900,000 - 1,900,000 24 11.8% 73.5%

sequences that had non-zero frequency.2 We modified the 1990 census data to include
sets of various population ranges of municipalities. Notice that for the range 100,000-
1,100,000 all leading digit sequences may start with any of 1,2,...,9. However, for the
range 900,000-1,900,000, the only possible leading digits start with 9 or 1. With fewer
possible leading digit sequences, the inflating effect mentioned in section 3.1 becomes
more likely, resulting in lower conformity as the population range shifts higher. The
Adaptive Benford, which compensates for the cutoff data, produces higher conformity
values, ranging from 73.5% to 96.9%.

4.2 Health Insurance Data Tests

We now analyse health insurance claims data covering general health, dental and drug
claims for financial reimbursement to Manulife Financial covering a single company’s
group benefits plan for its employees from 2003 to 2005. With recorded data before
2003 cutoff, we expect ‘inflated’ percentages of anomalous digits with traditional Ben-
ford compared with our Adaptive Benford method.

Our goal is to detect anomalies in our data sets that may be indicative of fraud ac-
tivity. Table 2 reports the percentage of anomalous digit sequences for the insurance
database for various data sets. As expected, by handling missing data ranges due to
cutoff levels, Adaptive Benford can be more precise, reporting fewer actual anoma-
lous digit sequences then traditional Benford. We used a 95% upper bound confidence
interval as our anomaly threshold.

The main advantage of our Adaptive Benford algorithm over traditional Benford for
fraud detection is its improved precision for detecting anomalies. The goal, once anoma-
lous digit sequences have been identified, is then to determine the data entries that are
causing the high amounts of anomalous digit sequences. A forensic auditor may then,

2 The two standard deviations should cover approximately 95% of the digit sequences if the
data conforms to Benford’s distributions. The standard deviation used for all tests of table 1
are computed using the complete 1990 census data.
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Table 2. Health Insurance Fraud Detection: Comparing Traditional and Adaptive Benford against
percentage of anomalous digit sequences.

Data Set Description Data Size Classic Adaptive
Benford Benford

1 Misc. Dental Charges 589 21.05% 11.48%
2 Expenses Submitted by Provided 31,693 3.77% 3.44%
3 Submitted Drug Costs 6,149 16.80% 10.40%
4 Submitted Dispensing Fee 7,644 18.18% 9.09%
5 Excluded Expenses 1,167 10.39% 5.19%
6 Expenses after deductibles 29,215 3.65% 3.13%
7 Coinsurance reductions 3,871 8.85% 6.19%
8 Benefit Coordination Reductions 286 29.29% 6.06%
9 Net Amount Reimbursed 28,132 4.40% 3.70%

for instance, decide whether these entries are likely cases of fraud or abuse. Making such
decisions is often a qualitative judgement call dependent often on factors related to the
specific application area. Anomalies, in some cases, may be due to odd accounting or
data entry practices that are not actual instances of fraud. We therefore have avoided here
labeling our reported anomalies as actual fraud. Instead, we emphasize that these digit
sequence anomalies are to be used as a tool to indicate possible fraud.

5 Discussion and Conclusions

In contrast to typical supervised learning methods which will train on known fraud in-
stances, our Adaptive Benford algorithm models the data to an expected non-fraudulent
Benford data pattern and any large anomalies are reported as possible fraud.3 Our Adap-
tive Benford algorithm allows us to analyse data even when the data is partially incom-
plete. We made such an analysis with incomplete health insurance data, which only
included data for a three year period. Our Adaptive Benford algorithm reports fewer
anomalous digit sequences, avoiding the transient effect due to artificial cutoff start and
end points for recorded data. This produces a more precise set of anomalous leading
digit sequences than traditional Benford for forensic auditors to analyse for fraud. In
effect, our Adaptive Benford algorithm removes requirement 2 of the rules specified in
section 2.3 needed for Benford’s Law to be applied. Our Adaptive Benford algorithm
therefore expands the areas where Benford’s Law may be applied.
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A Adaptive Benford Algorithm

Let S be the observed testing data
Let Ui be an upper bound on the number of standard deviations
For digit sequences d = 1,2,3,...,Upperbound:

fd,observed = number of times digit sequence d appears as a leading digit sequence in S
For i = 1...Upperbound on digit length:

Let ni be number of digits of length i that appeared at least once in S
Compute over all digit sequences Di of length i:

Ĉi = 1
ni

∑
Di

fDi,observed

log10(1+ 1
Di

)

Compute for each digit sequence d of length i:
fd,expected = Ĉi × log10(1 + 1

d
)

Compute over all digit sequences Di of length i:
σ̂2

i = 1
ni

∑
Di

(fDi,observed − fDi,expected)2

Compute for each digit sequence d of length i:

if Ui <
fd,observed−fd,expected

σi
then store d as anomalous

References

1. Benford, F.: The Law of Anomalous Numbers. In: Proceedings of the American Philosoph-
ical Society. (1938) 551–571

2. Crowder, N.: Fraud Detection Techniques. Internal Auditor April (1997) 17–20
3. Pinkham, R.S.: On the Distribution of First Significant Digits. Annals of Mathematical

Statistics 32 (1961) 1223–1230
4. Hill, T.P.: A Statistical Derivation of the Significant-Digit Law. Statistical Science 4 (1996)

354–363
5. Carslaw, C.A.: Anomalies in Income Numbers: Evidence of Goal Oriented Behaviour. The

Accounting Review 63 (1988) 321–327
6. Busta, B., Weinberg, R.: Using Benford’s Law and neural networks as a review procedure.

In: Managerial Auditing Journal. (1998) 356–266
7. Fawcett, T.: AI Approaches to Fraud Detection & Risk Management. Technical Report

WS-97-07, AAAI Workshop: Technical Report (1997)
8. Bolton, R.J., Hand, D.J.: Statistical Fraud Detection: A Review. Statistical Science 17(3)

(1999) 235–255
9. Nigrini, M.J.: Digital Analysis Using Benford’s Law. Global Audit Publications, Vancouver,

B.C., Canada (2000)
10. Nigrini, M.J., Mittermaier, L.J.: The Use of Benford’s Law as an Aid in Analytical Proce-

dures. In: Auditing: A Journal of Practice and Theory. Volume 16(2). (1997) 52–67



Efficient Case Based Feature Construction

Ingo Mierswa and Michael Wurst

Artificial Intelligence Unit,Department of Computer Science,
University of Dortmund, Germany

{mierswa, wurst}@ls8.cs.uni-dortmund.de

Abstract. Feature construction is essential for solving many complex
learning problems. Unfortunately, the construction of features usually
implies searching a very large space of possibilities and is often compu-
tationally demanding. In this work, we propose a case based approach
to feature construction. Learning tasks are stored together with a corre-
sponding set of constructed features in a case base and can be retrieved
to speed up feature construction for new tasks. The essential part of
our method is a new representation model for learning tasks and a corre-
sponding distance measure. Learning tasks are compared using relevance
weights on a common set of base features only. Therefore, the case base
can be built and queried very efficiently. In this respect, our approach is
unique and enables us to apply case based feature construction not only
on a large scale, but also in distributed learning scenarios in which com-
munication costs play an important role. We derive a distance measure
for heterogeneous learning tasks by stating a set of necessary conditions.
Although the conditions are quite basic, they constraint the set of appli-
cable methods to a surprisingly small number.

1 Introduction

Many inductive learning problems cannot be solved accurately by using the
original feature space. This is due to the fact that standard learning algorithms
cannot represent complex relationships as induced for example by trigonometric
functions. For example, if only base features X1 and X2 are given but the target
function depends highly on Xc = sin(X1 ·X2), the construction of the feature Xc

would ease learning – or is necessary to enable any reasonable predictions at all
[1, 2, 3]. Unfortunately, feature construction is a computationally very demanding
task often requiring to search a very large space of possibilities [4, 5]. In this
work we consider a scenario in which several learners face the problem of feature
construction on different learning problems. The idea is to transfer constructed
features between similar learning tasks to speed up the generation in such cases
in which a successful feature has already been generated by another feature
constructor. Such approaches are usually referred to as Meta Learning [6].

Meta Learning was applied to a large variety of problems and on different
conceptual levels. The importance of the representation bias, which is closely
related to feature construction, was recognized since the early days of Meta
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Learning research [7, 8]. The key to many Meta Learning methods is the defini-
tion of similarity between different learning tasks [9, 10]. In this work we propose
a Meta Learning scheme that compares two learning tasks using only relevance
weights assigned to a set of base features by the individual learners.

This is motivated by a set of constraints found in many distributed Meta
Learning scenarios. Firstly, the retrieval of similar learning tasks and relevant
features usually has to be very efficient, especially for interactive applications.
This also means that methods should enable a best effort strategy, such that the
user can stop the retrieval process at any point and get the current best result.
Secondly, the system should scale well with an increasing number of learning
tasks. Also, it has to deal with a large variety of heterogeneous learning tasks,
as we cannot make any strict assumptions on the individual problems. Finally,
as many Meta Learning systems are distributed, communication cost should be
as low as possible. As a consequence, methods that are based on exchanging
examples or many feature vectors are not applicable.

2 Basic Concepts

Before we state the conditions which must be met by any method comparing
learning tasks using feature weights only, we first introduce some basic defini-
tions. Let T be the set of all learning tasks, a single task is denoted by ti. Let
Xi be a vector of numerical random variables for task ti and Yi another random
variable, the target variable. These obey a fixed but unknown probability distri-
bution Pr(Xi, Yi). The components of Xi are called features Xik. The objective
of every learning task ti is to find a function hi(Xi) which predicts the value of
Yi. We assume that each set of features Xi is partitioned in a set of base features
XB which are common for all learning tasks ti ∈ T and a set of constructed
features Xi \XB.

We now introduce a very simple model of feature relevance and interaction.
The feature Xik is assumed to be irrelevant for a learning task ti if it does not
improve the classification accuracy:

Definition 1. A feature Xik is called irrelevant for a learning task ti iff Xik

is not correlated to the target feature Yi, i. e. if Pr(Yi|Xik) = Pr(Yi).

The set of all irrelevant features for a learning task ti is denoted by IFi.
Two features Xik and Xil are alternative for a learning task ti, denoted by

Xik ∼ Xil if they can be replaced by each other without affecting the classifica-
tion accuracy. For linear learning schemes this leads to the linear correlation of
two features:

Definition 2. Two features Xik and Xil are called alternative for a learning
task ti (written as Xik ∼ Xil) iff Xil = a+ b ·Xik with b > 0.

This is a very limited definition of alternative features. However, we will show
that most weighting algorithms are already ruled out by conditions based on
this simple definition.
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3 Comparing Learning Tasks Efficiently

The objective of our work is to speed up feature construction and improve pre-
diction accuracy by building a case base containing pairs of learning tasks and
corresponding sets of constructed features. We assume that a learning task ti is
completely represented by a feature weight vector wi. The vector wi is calculated
from the base features XB only. This representation of learning tasks is moti-
vated by the idea that a given learning scheme approximate similar constructed
features by a set of base features in a similar way, e. g. if the constructed feature
“sin(Xik ·Xil)” is highly relevant the features Xik and Xil are relevant as well.

Our approach works as follows: for a given learning task ti we first calculate
the relevance of all base features XB. We then use a distance function d (ti, tj)
to find the k most similar learning tasks. Finally, we create a set of constructed
features as union of the constructed features associated with these tasks.

This set is then evaluated on the learning task ti. If the performance gain
is sufficiently high (above a given fixed threshold) we store task ti in the case
base as additional case. Otherwise, the constructed features are only used as
initialization for a classical feature construction that is performed locally. If this
leads to a sufficiently high increase in performance, the task ti is also stored to
the case base along with the locally generated features.

While feature weighting and feature construction are well studied tasks, the
core of our algorithm is the calculation of d using only the relevance values of
the base features XB. In a first step, we define a set of conditions which must
be met by feature weighting schemes. In a second step, a set of conditions for
learning task distance is defined which makes use of the weighting conditions.

Weighting Conditions. Let w be a weighting function w : XB → IR.
Then the following must hold:

(W1) w(Xik) = 0 if Xik ∈ XB is irrelevant
(W2) Fi ⊆ XB is a set of alternative features. Then

∀S ⊂ Fi, S �= ∅ :
∑

Xik∈S

w(Xik) =
∑

Xik∈Fi

w(Xik) = ŵ

(W3) w(Xik) = w(Xil) if Xik ∼ Xil

(W4) Let AF be a set of features where

∀Xik ∈ AF : (Xik ∈ IFi ∨ ∃Xil ∈ XB : Xik ∼ Xil) .

Then

∀Xil ∈ XB :� ∃Xik ∈ AF : Xil ∼ Xik ∧ w′(Xil) = w(Xil)

where w′ is a weighting function for X ′
B = XB ∪AF .

These conditions state that irrelevant features have weight 0 and that the
sum of weights of alternative features must be constant independently of the
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actual number of alternative features used. Together with the last conditions this
guarantees that a set of alternative features is not more important than a single
feature of this set. Obviously, this is a desired property of a weighting function
used for the comparison of learning tasks. In the following we assume that for
a modified space of base features X ′

B the function w′ denotes the weighting
function for X ′

B according to the definition in (W4).
Additionally, we can define a set of conditions which must be met by distance

measures for learning tasks which are based on feature weights only:

Distance Conditions. A distance measure d for learning tasks is a mapping
d : T × T → IR+ which should fulfill at least the following conditions:

(D1) d(t1, t2) = 0 ⇔ t1 = t2
(D2) d(t1, t2) = d(t2, t1)
(D3) d(t1, t3) ≤ d(t1, t2) + d(t2, t3)
(D4) d(t1, t2) = d(t′1, t

′
2) if X ′

B = XB ∪ IF and IF ⊆ IF1 ∩ IF2

(D5) d(t1, t2) = d(t′1, t′2) if X ′
B = XB ∪AF and ∀Xk ∈ AF : ∃Xl ∈ XB :

Xk ∼ Xl

(D1)–(D3) represent the conditions for a metric. These conditions are re-
quired for efficient case retrieval and indexing. (D4) states that irrelevant fea-
tures should not have an influence on the distance. Finally, (D5) states that
adding alternative features should not have an influence on distance.

4 Negative Results

In this section we will show that many feature weighting approaches do not
fulfill the conditions (W1)–(W4). Furthermore, one of the most popular distance
measures, the euclidian distance, cannot be used as a learning task distance
measure introduced above.

Lemma 1. Any feature selection method does not fulfill the conditions (W1)–
(W4).

Proof. For a feature selection method, weights are always binary, i. e. w(Xik) ∈
{0, 1}. We assume a learning task ti with no alternative features and X ′

B =
XB ∪ {Xik} with ∃Xil ∈ XB : Xil ∼ Xik, then either w′(Xil) = w′(Xik) =
w(Xil) = 1, leading to a contradiction with (W2), or w′(Xil) �= w′(Xik) leading
to a contradiction with (W3).

Lemma 2. Any feature weighting method for which w(Xik) is calculated inde-
pendently of XB \Xik does not fulfill the conditions (W1)–(W4).

Proof. We assume a learning task ti with no alternative features and X ′
B =

XB ∪{Xik} with ∃Xil ∈ XB : Xil ∼ Xik. If w is independent of XB \Xik adding
Xik would not change the weight w′(Xil) in the new feature space X ′

B. From
(W3) follows that w′(Xik) = w′(Xil) = w(Xil) which is a violation of (W2).
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Lemma 2 essentially covers all feature weighting methods that treat features
independently such as information gain [11] or Relief [12]. The next theorem
states that the euclidian distance cannot be used as a distance measure based
on feature weights.

Theorem 3. Euclidean distance does not fulfill the conditions (D1)–(D5).

Proof. We give a counterexample. We assume that a weighting function w is
given which fulfills the conditions (W1)–(W4). Further assume that learning
tasks ti, tj are given with no alternative features. We add an alternative feature
Xik to XB and get X ′

B = XB ∪ {Xik} with ∃Xil ∈ XB : Xil ∼ Xik. We infer
from conditions (W2) and (W3) that

w′(Xik) = w′(Xil) =
w(Xil)

2
and w′(Xjk) = w′(Xjl) =

w(Xjl)
2

and from condition (W4) that

∀p �= k : w′(Xip) = w(Xip) and ∀p �= k : w′(Xjp) = w(Xjp).

In this case the following holds for the euclidian distance

d(t′i, t
′
j) =

√
S + 2 (w′(Xik)− w′(Xjk))2) =

√
S + 2

(
w(Xik)

2
− w(Xjk)

2

)2

=

√
S +

1
2

(w(Xik)− w(Xjk))2 �=
√
S + (w(Xik)− w(Xjk))2 = d(ti, tj)

with

S =
|XB |∑

p=1,p�=k

(w′(Xip)− w′(Xjp))2 =
|XB |∑

p=1,p�=k

(w(Xip)− w(Xjp))2 .

5 Positive Results

In this section we will prove that a combination of feature weights delivered by
a linear Support Vector Machine (SVM) with the Manhattan distance obeys the
proposed conditions. Support Vector Machines are based on the work of Vapnik
in statistical learning theory [13]. They aim to minimize the regularized risk
Rreg[f ] of a learned function f which is the weighted sum of the empirical risk
Remp[f ] and a complexity term ||w||2:

Rreg[f ] = Remp[f ] + λ||w||2.

The result is a linear decision function y = sgn(w ·x+b) with a minimal length of
w. The vector w is the normal vector of an optimal hyperplane with a maximal
margin to both classes. One of the strengths of SVMs is the use of kernel functions
to extend the feature space and allow linear decision boundaries after efficient
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nonlinear transformations of the input [14]. Since our goal is the construction of
(nonlinear) features during preprocessing we can just use the most simple kernel
function which is the dot product. In this case the components of the vector w
can be interpreted as weights for all features.

Theorem 4. The feature weight calculation of SVMs with linear kernel function
meets the conditions (W1)–(W4).

Proof. Since these conditions can be proved for a single learning task ti we write
Xk and wk as a shortcut for Xik and w(Xik).

(W1) Sketch We assume that the SVM finds an optimal hyperplane. The
algorithm tries to minimize both the length of w and the empirical error. This
naturally corresponds to a maximum margin hyperplane where the weights of
irrelevant features are 0 if enough data points are given.

(W2) SVMs find the optimal hyperplane by minimizing the weight vector
w. Using the optimal classification hyperplane with weight vector w can be
written as y = sgn (w1x1 + . . .+ wixi + . . .+ wmxm + b). We will show that
this vector cannot be changed by adding the same feature more than one time.
We assume that all alternative features can be transformed into identical features
by normalizing the data. Adding k − 1 alternative features will result in

y = sgn

⎛⎜⎝. . .+ (w1
i + . . .+ wk

i

)︸ ︷︷ ︸
alternative features

xi + . . .+ b

⎞⎟⎠ .

However, the optimal hyperplane will remain the same and does not depend on
the number of alternative attributes. This means that the other values wj will
not be changed. This leads to wi =

∑k
l=1 w

l
i which proofs condition (W2).

(W3) The SVM optimization minimizes the length of the weight vector w.
This can be written as

w2
1 + . . .+ w2

i + . . .+ w2
m

!= min .

We replace wi using condition (W2):

w2
1 + . . .+

⎛⎝ŵ −∑
j �=i

wj

⎞⎠2

+ . . .+ w2
m

!= min .

In order to find the minimum we have to partially differentiate the last equation
for all weights wk:

∂

∂wk

⎛⎜⎝. . .+
⎛⎝ŵ −∑

j �=i

wj

⎞⎠2

+ w2
k + . . .

⎞⎟⎠ = 0

⇔ 2wk − 2

⎛⎝ŵ −∑
j �=i

wj

⎞⎠ = 0 ⇔ wk +
∑
j �=i

wj = ŵ
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The sum on the left side contains another wk. This leads to a system of linear
equations of the form . . .+ 0 ·wi + . . .+ 2 ·wk + . . . = ŵ. Solving this system of
equations leads to wp = wq (condition (W3)).

(W4) Sketch We again assume that a SVM finds an optimal hyperplane given
enough data points. Since condition (W1) holds adding an irrelevant feature
would not change the hyperplane and thus the weighting vector w for the base
features will remain. The proofs of conditions (W2) and (W3) state that the
optimal hyperplane is not affected by alternative features as well.

In order to calculate the distance of learning tasks based only on a set of
base feature weights we still need a distance measure that met the conditions
(D1)–(D5).

Theorem 5. Manhattan distance does fulfill the conditions (D1)–(D5).

Proof. The conditions (D1)–(D3) are fulfilled due to basic properties of the man-
hattan distance. Therefore, we only give proofs for conditions (D4) and (D5).

(D4) We follow from the definition of the manhattan distance that

d(t′i, t
′
j) =

∑
Xip,Xjp∈XB

|w′
i(Xip)− w′

j(Xjp)|+
∑

Xiq ,Xjq∈IF

|w′
i(Xiq)− w′

j(Xjq)|︸ ︷︷ ︸
0

= d(ti, tj)

from (W4).
(D5) Sketch We show the case for adding k features with ∀Xik : Xik ∼ Xil

for a fixed Xil ∈ XB:

d(t′i, t
′
i) =

|XB |∑
p=1,p�=k

|w′
i(Xip)− w′

j(Xjp)|+ (k + 1) · |w′
i(Xik)− w′

j(Xjk)|

=
|XB |∑

p=1,p�=k

|wi(Xip)− wj(Xjp)|+ |wi(Xik)− wj(Xjk)| = d(ti, tj)

from (W4) and (W2).

Therefore, we conclude that SVM feature weights in combination with man-
hattan distance fulfill the necessary constraints for an efficient learning task
distance measure based on feature weights.

6 Conclusion and Outlook

We presented a Meta Learning approach to feature construction that compares
tasks using relevance weights on a common set of base features only. After stat-
ing some very basic conditions for such a distance measure, we have shown that
a SVM as base feature weighting algorithm and the manhattan distance fulfill
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these conditions, while several other popular feature weighting methods and dis-
tance measures do not. In [15] we have presented experimental results indicating
that our method can speed up feature construction considerably. Our approach
is therefore highly relevant for practical problems involving feature construction.
Some limitations of the work presented here are the following. Firstly, our def-
inition for alternative or exchangeable features is rather simple and should be
generalized to a weaker concept as e. g. highly correlated features. Also, complex
interactions between features are not covered by our conditions. However, it is
very interesting that the conditions stated in this work are already sufficient to
rule out large sets of feature weighting methods and distance measures. Finally,
the assumption of estimating the distance of constructed features by the distance
of base features is well motivated, though it would be interesting to analyze this
relationship analytically to get a better estimation in which cases our approach
can be successfully applied.
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Abstract. Finding a point which minimizes the maximal distortion
with respect to a dataset is an important estimation problem that has
recently received growing attentions in machine learning, with the advent
of one class classification. We propose two theoretically founded general-
izations to arbitrary Bregman divergences, of a recent popular smallest
enclosing ball approximation algorithm for Euclidean spaces coined by
Bădoiu and Clarkson in 2002.

1 Introduction

Consider the following problem: given a set of observed data S, compute some ac-
curate set of parameters, or simplified descriptions, that summarize (“fit well”) S
according to some criteria. This problem is well known in various fields of statistics
and computer science. In many cases, it admits two different formulations:

(1.) Find a point c∗ which minimizes an average distortion with respect to S.
(2.) Find a point c∗ which minimizes a maximal distortion with respect to S.

These two problems are cornerstones of different subfields of applied mathemat-
ics and computer science, such as (i) parametric estimation and the computation
of exhaustive statistics for broad classes of distributions in statistics, (ii) one class
classification and clustering in machine learning, (iii) the one center problem and
its generalizations in computational geometry, among others [1, 2, 5, 7]. The main
unknown in both problems is what we mean by distortion.

In fact, many examples of distortion measures found in domains concerned
by the problems above (computational geometry, machine learning, signal pro-
cessing, probabilities and statistics, among others) fall into a single family of
distortion measures known as Bregman divergences [3]. Informally, each of them
is the tail of the Taylor expansion of a strictly convex function. Using a neat
result in [2], it can be shown that the solution to problem (1.) above is always
the average member of S, regardless of the Bregman divergence. This means that
problem (1.) can be solved in optimal linear time / space in the size of S: since
S may be huge, this property is crucial. Unfortunately, the solution of (2.) does
not seem to be as affordable; tackling the problem with quadratic programming
buys an expensive time complexity cubic in the worst case, and the space com-
plexity is quadratic [8]. Notice also that it is mostly used with L2

2. Instead of
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smallest enclosing L2
2 ball

center c∗ of the Itakura-Saito ball

center of the L2
2 ball

Itakura-Saito ball

Fig. 1. An optimal Itakura-Saito ball and its smallest enclosing L2
2 ball, for d = 2.

Notice the poor quality of this optimal approximation: the center of the L2
2 ball does

not even lie inside the Itakura-Saito ball.

finding an exact solution, a recent approach due to [1] approximates the solu-
tion of the problem for L2

2: the user specifies some ε > 0, and the algorithm
returns, in time linear in the size of S (quadratic in 1/ε) and in space linear
in the size of S, the center c of a ball which is at L2

2 divergence no more than
ε2r∗ from c∗. Here, r∗ is the squared radius of the so-called smallest enclosing
ball of S, whose center c∗ is obviously the solution to problem (2.). Let us name
this algorithm the Bădoiu-Clarkson algorithm, and abbreviate it BC. The key
point of the algorithm is its simplicity, which deeply contrasts with quadratic
programming approaches: basically, after having initialized c to a random point
of S, we iterate through finding the farthest point away from the current center,
and then move along the line between these two points. The popularity of the
algorithm, initially focused in computational geometry, has begun to spread to
machine learning as well, with its adaptation to fast approximations of SVM
training [8].

The applications of BC have remained so far focused on L2
2, yet the fact

that the algorithm gives a clean and simple approach to problem (2.) for one
Bregman divergence naturally raises the question of whether it can be tailored
to approximating problem (2.) for any Bregman divergence as well. Figure 1
highlights the importance of this issue.

In this paper, we propose two theoretically founded generalizations of BC to
arbitrary Bregman divergences, along with a bijection property that has a flavor
similar to a Theorem of [2]: we show a bijection between the set of Bregman
divergences and the set of the most commonly used functional averages, which
yields that each element of the latter set encodes the minimax distortion solution
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for a Bregman divergence. This property is the cornerstone of our modifications
to BC. The next Section presents some definitions. Section 3 gives the theoretical
foundations and Section 4 the experiments regarding our generalization of BC.

2 Definitions

Our notations mostly follow those of [1, 2]. Bold faced variables such as x and
α, represent column vectors. Sets are represented by calligraphic upper-case
alphabets, e.g. S, and enumerated as {si : i ≥ 1} for vector sets, and {si : i ≥ 1}
otherwise. The jth component of vector s is noted sj , for j ≤ 1. Vectors are
supposed d-dimensional. We write x ≥ y as a shorthand for xi ≥ yi, ∀i. The
cardinal of a set S is written |S|, and 〈., .〉 defines the inner product for real valued
vectors, i.e. the dot product. Norms are L2 for a vector, and Frobenius for a
matrix. Bregman divergences are a parameterized family of distortion measures:
let F : X → IR be strictly convex and differentiable on the interior int(X ) of
some convex set X ⊆ IRd. Its corresponding Bregman divergence is:

DF (x’,x) = F (x’)− F (x)− 〈x’ − x,∇F (x)〉 . (1)

Here, ∇F is the gradient operator of F . A Bregman divergence has the following
properties: it is convex in x’, always non negative, and zero iff x = x’. Whenever
F (x) =

∑d
i=1 x

2
i = ‖x‖22, the corresponding divergence is the squared Euclidean

distance (L2
2): DF (x’,x) = ‖x − x’‖22, with which is associated the common

definition of a ball in an Euclidean metric space:

Bc,r = {x ∈ X : ‖x− c‖22 ≤ r} , (2)

with c ∈ S the center of the ball, and r ≥ 0 its (squared) radius. Eq. (2)
suggests a natural generalization to the definition of balls for arbitrary Bregman
divergences. However, since a Bregman divergence is usually not symmetric, any
c ∈ S and any r ≥ 0 define actually two dual Bregman balls:

Bc,r = {x ∈ X : DF (c,x) ≤ r} , (3)
B′
c,r = {x ∈ X : DF (x, c) ≤ r} . (4)

Remark that DF (c,x) is always convex in c while DF (x, c) is not always, but
the boundary ∂Bc,r is not always convex (it depends on x, given c), while ∂B′

c,r

is always convex. In this paper, we are mainly interested in Bc,r because of the
convexity of DF in c. The conclusion of the paper extends some results to build
B′
c,r as well. Let S ⊆ X be a set of m points that were sampled from X . A

smallest enclosing Bregman ball (SEBB) for S is a Bregman ball Bc∗,r∗ with r∗

the minimal real such that S ⊆ Bc∗,r∗ . With a slight abuse of language, we will
refer to r∗ as the radius of the ball. Our objective is to approximate as best as
possible the SEBB of S, which amounts to minimizing the radius of the enclosing
ball we build. As a simple matter of fact indeed, the SEBB is unique.

Lemma 1. The smallest enclosing Bregman ball Bc∗,r∗ of S is unique.

(proof omitted due to the lack of space) Algorithm 1 presents Bădoiu-Clarkson’s
algorithm for the SEBB approximation problem with the L2

2 divergence [1].
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Algorithm 1: BC(S, T)
Input: Data S = {s1, s2, ..., sm};
Output: Center c;
Choose at random c ∈ S ;
for t = 1, 2, ..., T − 1 do

s ← arg maxs′∈S ‖c − s′‖2
2;

c ← t
t+1c + 1

t+1s;

3 Extending BC

The primal SEBB problem is to find:

arg min
c∗,r∗ r

∗ s.t. DF (c∗, si) ≤ r∗, ∀1 ≤ i ≤ m . (5)

Its Lagrangian is L(S,α) = r∗ −
∑m

i=1 αi(r∗ −DF (c∗, si)), with the additional
Karush-Kuhn-Tucker condition α ≥ 0. The solution to (5) is obtained by min-
imizing L(S,α) for the parameters c∗ and r∗, and then maximize the resulting
dual for the Lagrange multipliers. We obtain ∂L(S,α)/∂c∗ = ∇F (c∗)

∑m
i=1 αi−∑m

i=1 αi∇F (si) and ∂L(S,α)/∂r∗ = 1−
∑m

i=1 αi. Setting ∂L(S,α)/∂c∗ = 0 and
∂L(S,α)/∂r∗ = 0 yields

∑m
i=1 αi = 1 and:

c∗ = ∇−1
F

(
m∑

i=1

αi∇F (si)

)
. (6)

Table 1. Some common Bregman divergences and their associated functional averages.
The second row depicts the general I (information) divergence, also known as Kullbach-
Leibler (KL) divergence on the d-dimensional probability simplex. On the fourth row,
A is the inverse of the covariance matrix [2].

domain F (s) DF (c, s) cj (1 ≤ j ≤ d)
L2

2 norm arithmetic mean
IRd ∑d

j=1 s2
j

∑d
j=1 (cj − sj)2

∑m
i=1 αisi,j

(IR+,∗)d (I/KL)-divergence geometric mean
/ d-simplex

∑d
j=1 sj log sj − sj

∑d
j=1 cj log(cj/sj) − cj + sj

∏m
i=1 sαi

i,j

Itakura-Saito distance harmonic mean
(IR+,∗)d −∑d

j=1 log sj

∑d
j=1 (cj/sj) − log(cj/sj) − 1 1/

∑m
i=1 (αi/si,j)

Mahalanobis distance arithmetic mean
IRd sT As (c − s)T A(c − s)

∑m
i=1 αisi,j

p ∈ IN\{0, 1} weighted power mean

IRd/IR+d (1/p)
∑d

j=1 sp
j

∑d
j=1

c
p
j

p
+

(p−1)sp
j

p
− cjs

p−1
j

(∑m
i=1 αis

p−1
i,j

)1/(p−1)



Fitting the Smallest Enclosing Bregman Ball 653

Because F is strictly convex, ∇F is bijective, and c∗ lies in the convex closure
of S. Finally, we are left with finding:

argmax
α

m∑
i=1

αiDF

⎛⎝∇−1
F

⎛⎝ m∑
j=1

αj∇F (sj)

⎞⎠ , si

⎞⎠ s.t. α ≥ 0,
m∑

i=1

αi = 1 . (7)

This problem generalizes the dual of support vector machines: whenever F (s) =∑d
i=1 s

2
i = 〈s, s〉 (Table 1), we return to their kernel-based formulation [4]. There

are essentially two categories of Lagrange multipliers in vector α. Those corre-
sponding to points of S lying on the interior of Bc∗,r∗ are zero, since these points
satisfy their respective constraints. The others, corresponding to the support
points of the ball, are strictly positive. Each αi > 0 represents the contribution
of its support point to the computation of the circumcenter of the ball. Eq. (6)
is thus some functional average of the support points of the ball, to compute c∗.

3.1 The Modified Bădoiu-Clarkson Algorithm, MBC

There is more on eq. (6). A Bregman divergence is not affected by linear terms:
DF+q = DF for any constant q [6]. Thus, the partial derivatives of F in ∇F (.) de-
termine entirely the Bregman divergence. The following Lemma is then
immediate.

Lemma 2. The set of functional averages (6) is in bijection with the set of
Bregman divergences (1).

The connection between the functional averages and divergences is much inter-
esting because the classical means commonly used in many domains, such as
convex analysis, parametric estimation, signal processing, are valid examples of
functional averages. A nontrivial consequence of Lemma 2 is that each of them
encodes the SEBB solution for an associated Bregman divergence. Apart from
the SEBB problem, this is interesting because means are popular statistics, and
we give a way to favor the choice of a mean against another one depending on
the domain of the data and its “natural” distortion measure. Table 1 presents
some Bregman divergences and their associated functional averages, for the most
commonly encountered.

Speaking of bijections, previous results showed the existence of a bijection
between Bregman divergences and the family of exponential distributions [2].
This has helped the authors to devise a generalization of the k-means algorithm.
In our case, Lemma 2 is also of some help to generalize BC. Clearly, the dual
problem in eq. (7) does not admit the convenient representation of SVMs, and
it seems somehow hard to use a kernel trick replacing the elements of S by local
transformations involving F prior to solving problem (7). However, the dual
suggests a very simple algorithm to approximate c∗, which consists in making the
parallel between ∇(c∗) =

∑m
i=1 αi∇F (si) (6) and the arithmetic mean in Table

1, and consider (6) as the solution to a minimum distortion problem involving
gradients into a L2

2 space. We can thus seek:

arg min
g∗,r′∗

r′∗ s.t. ‖g∗ −∇F (si)‖22 ≤ r′∗, ∀1 ≤ i ≤ m . (8)
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Finally, approximating (5) amounts to running the so-called Modified Bădoiu-
Clarkson algorithm in the gradient space, MBC . Because ∇F is bijective, this is
guaranteed to yield a solution. The remaining question is whether ∇−1

F (g) = c
is close enough from the solution c∗ of (5). The following Lemma upperbounds
the sum of the two divergences between c and any point of S, as a function of
r′∗. It shows that the two centers can be very close to each other; in fact, they
can be much closer than with a naive application of Bădoiu-Clarkson directly in
S. The Lemma makes the hypothesis that the Hessian of F , HF , is non singular.
As a matter of fact, it is diagonal (without zero in the diagonal) for all classical
examples of Bregman divergences, see Table 1, so this is not a restriction either.
In the Lemma, we let f denote the minimal non zero value of the Hessian norm
inside the convex closure of S: f = minx∈co(S):‖HF (x)‖2>0 ‖HF (x)‖2.

Lemma 3. ∀s ∈ S, we have:

DF (s,∇−1
F (g)) +DF (∇−1

F (g), s) ≤ (1 + ε)2r′∗/f , (9)

where g = BC({∇F (si) : si ∈ S}, T ), r′∗ is defined in eq. (8), and ε is the error
parameter of BC.

(proof omitted due to the lack of space) Remark that Lemma 3 is optimal, in the
sense that if we consider DF = L2

2, then each point si ∈ S becomes 2si in S′. The
optimal radii in (5) and (8) satisfy r′∗ = 4r∗, and we have f = 2. Plugging this
altogether in eq. (9) yields 2‖c−s‖22 ≤ (1+ε)2×4r∗/2, i.e. ‖c−s‖2 ≤ (1+ε)

√
r∗,

which is exactly Bădiou-Clarkson’s bound [1] (here, we have fixed c = ∇−1
F (g),

like in Lemma 3). Remark also that Lemma 3 upperbounds the sum of both
possible divergences, which is very convenient given the possible asymmetry
of DF .

3.2 The Bregman-Bădoiu-Clarkson Algorithm, BBC

It is straightforward to check that at the end of BC (algorithm 1), the following
holds true:{

c =
∑m

i=1 α̂isi ,
∑m

i=1 α̂i = 1 , α̂ ≥ 0 ,
∀1 ≤ i ≤ m, α̂i �= 0 iff si is chosen at least once in BC .

Since the furthest points chosen by BC ideally belong to ∂Bc∗,r∗ , and the final ex-
pression of c matches the arithmetic average of Table 1, it comes that BC directly
tackles an iterative approximation of eq. (6) for the L2

2 Bregman divergence. If
we replace L2

2 by an arbitrary Bregman divergence, then BC can be generalized
in a quite natural way to algorithm BBC (for Bregman-Bădoiu-Clarkson) below.
Again, it is straightforward to check that at the end of BBC, we have generalized
the iterative approximation of BC to eq. (6) for any Bregman divergence, as we
have: {

c = ∇−1
F (

∑m
i=1 α̂i∇F (si)) ,

∑m
i=1 α̂i = 1 , α̂ ≥ 0 ,

∀1 ≤ i ≤ m, α̂i �= 0 iff si is chosen at least once in BC .
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Algorithm 2: BBC(S)
Input: Data S = {s1, s2, ..., sm};
Output: Center c;
Choose at random c ∈ S ;
for t = 1, 2, ..., T − 1 do

s ← arg maxs′∈S DF (c, s′);
c ← ∇−1

F

(
t

t+1∇F (c) + 1
t+1∇F (s)

)
;

The main point is whether α̂ is a good approximation to the true vector of
Lagrange multipliers α. From the theoretical standpoint, the proof of BC’s ap-
proximation ratio becomes tricky when lifted from L2

2 to an arbitrary Bregman
divergence, but it can be shown that many of the key properties of the initial
proof remain true in this more general setting. An experimental hint that speaks
for itself for the existence of such a good approximation ratio is given in the
next Section.

4 Experimental Results

Due to the lack of space, we only present results on BBC . To evaluate the quality
of the approximation of BBC for the SEBB, we have ran the algorithm for three
popular representative Bregman divergences. For each of them, averages over
a hundred runs were performed for T = 200 center updates (see algorithm 2).
In each run, a random Bregman ball is generated, and S is sampled uniformly
at random in the ball. Since we know the SEBB, we have a precise idea of
the quality of the approximation found by BBC on the SEBB. Figure 2 gives a
synthesis of the results for d = 2. [1]’s bound is plotted for each divergence,
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Fig. 2. Average approximation curves for 100 runs of BBC algorithm for three Bregman
divergences: Itakura-Saito, L2

2 and KL (d = 2, m = 1000, T = 200). The dashed curves
are Bădoiu-Clarkson’s error bound as a function of the iteration number t, and the
bottom, plain curves, depict (DF (c∗, c) + DF (c, c∗))/2 as a function of t for each
divergence, where c is the output of BBC and c∗ is the optimal center. The bottom
number depict the estimated error (%) ± standard deviation.
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Table 2. Estimated errors for the SEBB problem for data generated using a mixture
of u gaussians, for u = 1, 3, 5, 10, 20. Conventions and parameters follow Figure 2.

u Itakura-Saito L2
2 Kullbach-Leibler

1 0.37 ± 0.06 0.43 ± 0.09 0.39 ± 0.08
3 0.40 ± 0.04 0.41 ± 0.10 0.41 ± 0.06
5 0.41 ± 0.04 0.43 ± 0.10 0.41 ± 0.04
10 0.40 ± 0.02 0.44 ± 0.09 0.42 ± 0.05
20 0.41 ± 0.02 0.43 ± 0.08 0.41 ± 0.04

even when it holds formally only for L2
2. The other two curves give an indication

of the way this bound behaves with respect to the experimental results. It is easy
to see that for each divergence, there is a very fast convergence of the center
found, c, to the optimal center c∗. Furthermore, the experimental divergences
are always much smaller than [1]’s bound, for each divergence (very often by a
factor 100 or more). We have checked this phenomenon for higher dimensions, up
to d = 20. Following [7], the errors given are the ratio of the number of support
points over the whole number of points. A good method would typically select
a very small number of points, regardless of the domain. While this is clearly
displayed in Figure 2, Table 2 goes deeper in this phenomenon, as it displays the
errors when the points are drawn from random mixtures of Gaussians. Even in
this case, where the Gaussians may be very distant from each other, MBC with
the three Bregman divergences of Figure 2 still displays a very low error.
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Abstract. We present a novel approach to learning predictive sequen-
tial models, called similarity-based alignment and generalization, which
incorporates in the induction process a specific form of domain knowledge
derived from a similarity function between the points in the input space.
When applied to Hidden Markov Models, our framework yields a new
class of learning algorithms called SimAlignGen. We discuss the applica-
tion of our approach to the problem of programming by demonstration–
the problem of learning a procedural model of user behavior by observing
the interaction an application Graphical User Interface (GUI). We de-
scribe in detail the SimIOHMM, a specific instance of SimAlignGen that
extends the known Input-Output Hidden Markov Model (IOHMM). Em-
pirical evaluations of the SimIOHMM show the dependence of the predic-
tion accuracy on the introduced similarity bias, and the computational
gains over the IOHMM.

1 Introduction

Many domains require building predictive models from multiple observed data
sequences. Examples from the biological domain include protein and DNA se-
quence alignment or prediction, and from the financial domain include market
performance prediction and risk analysis. In the computer networking domain,
models of network performance or detection of illegal intrusions have also been
learned from observed data sequences. Learning approaches for these domains
(like Hidden Markov Model induction [1]) rely primarily on the sequence data
itself and utilize little (if any) additional domain knowledge. In this paper we
investigate a particular form of domain knowledge that we call similarity knowl-
edge. We show how this knowledge can be employed in learning predictive mod-
els from sequential data, and empirically measure the impact of utilizing this
additional source of knowledge.

A second thrust of this paper is to present a novel approach for using se-
quence modeling techniques like HMM learning for the problem of PBD [2,
3] described in Section 2. We will show that, in the PBD domain, similar-
ity knowledge is readily available and that its use improves learning perfor-
mance

Contributions of this paper include:
− A novel application of traditional sequence alignment algorithms to PBD for

learning procedures with complex structure.
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− The SimAlignGen class of algorithms, an extension of traditional HMMs that
that adds a similarity function over the input as a new source of bias.

− An instance of an SimAlignGenalgorithm, the SimIOHMM, implemented as
part of a PBD system on the Microsoft Windows platform.

− An empirical evaluation of the SimIOHMM’s ability to learn a real-world
procedure from demonstrations and of its significant performance improve-

ment over the IOHMM.

2 An HMM Approach to PBD

For the purposes of this paper, we define programming by demonstration as the
problem of generating a procedure model consistent with a set of demonstrations.
Each demonstration is a sequence of events, such as user actions and changes to
the application GUIs. A procedure model is consistent with a demonstration if
it correctly predicts the actions in the sequence given the prior events in that
sequence. Existing PBD systems work well when there is a fixed number of steps
in the procedure [4] or when the procedure author can identify the specific step
to be generalized [5]. These assumptions are violated when a procedure contains
a large number of steps and has complex structure, such as conditional branches.
Known sequence learning algorithms like HMMs seem appropriate in these cases
since they focus on the problem of identifying optimal sequence alignment.

In this section we briefly outline the primary components necessary for ap-
plying these sequence alignment algorithms in the PBD context. A user demon-
strates procedures by performing actions, such as clicking the mouse or pressing
keyboard keys, on an application’s GUI. In response, the application updates
the GUI contents. An instrumentation component captures both user and appli-
cation actions. An abstraction component converts the stream of events recorded
by the instrumentation into a sequence of snapshot-action pairs, called a trace.
Logically, a snapshot-action pair represents the complete content of the GUI
at a point in time, coupled with the action performed by the user. Using the
snapshot-action representation we can reduce the problem of learning a proce-
dure to that of predicting the user action from the content of the GUI (and
perhaps its history).

The learning algorithm combines multiple traces into a procedure model,
that can be automatically executed by an execution component. The ability of
simultaneously combining multiple traces into a procedure model is a feature of
our approach that differentiates it from other work in PBD.

3 The SimAlignGen Family of Algorithms

In the PBD domain the visual cues prevalent on GUIs provide a source of
knowledge which can be explicitly used to augment the sequence data em-
ployed by traditional HMM learning. Typically, an expert can determine how
far along a user is in performing a task by observing the content of the visi-
ble windows. We provide this visual similarity knowledge to our family of al-
gorithms as a similarity function, which returns a real-valued score measuring
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“similarity” between two captured GUI snapshot action pairs (S,A). Formally:
Similarity : ((S×A)×(S×A)) → .+. Thus, instances of the SimAlignGen fam-
ily of algorithms accept an input set of traces, namely, of snapshot-action pairs,
and a real-valued similarity function over the snapshot-action pairs. SimAlign-
Gen algorithms first align the snapshot-action pairs by simultaneously employing
three sources of constraint described blow, and then generate an executable pro-
cedure model based on the partitioning result. Here, the alignment of a set of
traces is formally defined as a partition of the snapshot-action pairs. A useful
alignment for our purposes is one that groups similar snapshot-action pairs, such
that each set of the partition corresponds to what a human would think of as a
step in the procedure model. The three sources of constraint are:

1. The alignment should preserve transitions between successive steps. For
example, let trace 1 consist of step A followed by step B and trace 2 consist
of step A′ followed by B′; then aligning A with A′ and B with B′ is a good
alignment, since it preserves the ordering of transitions within the traces.

2. The alignment should yield sets that can be generalized: for each partition
set, we should be able to induce a predictive map from snapshot to action.

3. The snapshots in a partition set should be similar according to the provided
similarity function.

Constructing a learner with the first two biases—transition preservation and
generalization—is a difficult problem for which no optimal algorithm exists. One
solution consists of iteratively alternating two steps: finding the best alignment
of the training data consistent with a given transition and generalization struc-
ture, and finding the best transition and generalization structure consistent with
a given alignment of the training data. If we represent the alignment by associat-
ing with each snapshot-action pair a probability distribution over the partition
sets, we can immediately reduce the iterative algorithm to the Baum-Welch al-
gorithm,an expectation-maximization (E-M) algorithm used to induce discrete
Hidden Markov Models from sequences of symbols [1]. We interpret the E-step
as a way of determining the best alignment of the sequences relative to a given
HMM, and the M-step as a way of inducing the best procedure model given
an alignment. For PBD applications, where user actions are often dependent on
the current “place” within the procedure and on the content of the screen, it is
additionally necessary to induce predictive mappings from inputs (snapshots) to
outputs (actions) and next states. Bengio and Frasconi [6] introduced an exten-
sion to HMMs, called the Input-Output Hidden Markov Model, or IOHMM, that
satisfies this assumption. IOHMMs predict the next state and the next output
symbol as a function of the current state and of the current input symbol.

The third source of constraint above cannot be employed by either HMM or
IOHMM algorithms, yet as we discussed it is a natural form of knowledge in
the PBD domain. These algorithms do not take any form of explicit knowledge
about the domain, rather they rely entirely on the dataset provided.

SimAlignGen algorithms extend Hidden Markov Model induction by incor-
porating this similarity domain knowledge as a bias on the alignments which the
algorithm considers in its search for a predictive model of the observed data.
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We now formally define the SimIOHMM by describing how it differs from the
standard IOHMM as described in [6]. We use standard notational convention.

Bengio and Frasconi’s IOHMM
The goal of a IOHMM is to model the conditional distribution of an output se-
quence Y given an input sequence U as an HMM, i.e., by postulating the ex-
istence of a hidden variable, the state X , belonging to a finite set X , such that

P
[
(Ut,Yt, Xt) | {(Uj ,Yj , Xj)}t−1

j=1

]
= P [(Ut,Yt, Xt) | Xt−1] .

The same structure is inherited by the conditional distribution of the outputs
given the inputs (i.e., P

[
(Yt, Xt) | Ut, {(Uj ,Yj , Xj)}t−1

j=1

]
) that can now be writ-

ten as P [(Yt, Xt) | Ut, Xt−1] . Note that this probability can be further decom-
posed as P [Xt | Ut, Xt−1] P [Yt | Xt,Ut, Xt−1]=P [Xt | Ut, Xt−1] P [Yt | Xt,Ut] ,
namely, as a conditional transition probability to state Xt given the previous
state and the input at time t, and a conditional probability of the output at
time t given the state and input at time t. Hence, inducing a IOHMM is equiv-
alent to estimating the initial probability distribution over the states, P [X0]
(note that the first input is observed at t = 1), the transition probabilities
P [Xt | Ut, Xt−1], and the conditional output probabilities P [Yt | Xt,Ut]. The
transition an output probabilities are assumed to be time-independent, namely,
for every s and t,

P [Xt=a|Ut=u,Xt−1 =b]=P [Xs =a|Us =u,Xs−1 =b] and
P [Yt =y|Xt =x,Ut =u]=P [Ys = y|Xs = x,Us = u].

These assumptions make the IOHMM very flexible and yet computationally
manageable. The IOHMM allows arbitrarily long time-dependence between the
input-output pairs, and is therefore more powerful than a fixed-order Markov
model. At the same time, the IOHMM can be efficiently induced from training
data using the Baum-Welch algorithm, consisting of two steps: an Expectation
step, where the training sequences are aligned to an existing model, and a Max-
imization step, there the model is updated given the alignment.

The IOHMM E-step efficiently computes a probability distribution over the
state space for each input-output pair by means of two steps: the forward re-
cursion computes, for each time t the joint probability of the state at time t
and all outputs up to time t given the inputs up to time t; the backward re-
cursion computes the probability of the outputs after time t, given the state
at time t and the inputs from time t on. The results of the forward and back-
ward recursions are then appropriately combined, for each t, to estimate the
probability distribution over the states as well as the posterior transition
probabilities.

The M-step efficiently recomputes the initial probability distribution over the
states, the conditional transition probabilities given the current input, and the
conditional distributions of the output given the current state and input either by
maximum likelihood or with a generic likelihood estimation method. Bengio and
Frasconi followed the latter approach, and used neural networks in the M-step.
The efficiency of the M-step stems from the fact that the global maximization
of the likelihood is performed by separately maximizing the likelihoods at each
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individual state, namely, by finding the parameters that maximize the transition
and output probabilities for each state given the results of the expectation step.

The SimIOHMM

The SimIOHMM extends the IOHMM by further incorporating the bias de-
scribed earlier in this Section. To this end, each hidden Markov state is asso-
ciated with one or more representative inputs, as well as with a transition and
output distribution. The representative inputs come into play during the E-step
and are updated during the M-step, as follows.
The E-Step. The forward recursion is

αi,t = P [yt | Xt = i,ut] S (ut,vi)
∑
�∈X

φi,�(ut)α�, t−1, (1)

which adds to [6–Equation(20)] the additional term S (ut,vi), the similarly score
between the input ut and the representative sample vi of state i, that provides
the required bias. Similarity, the backward recursion is

βi,t =
∑
�∈X

S (ut+1,v�) P [yt+1 | Xt+1 = �,ut+1]φ�,i(ut+1)β�, t+1, (2)

which again adds a bias term to [6–Equation(22)].1

The bias term S (ut,vi), a similarity score, is designed to concentrate the
distribution over the states at time t onto those states having representative
samples similar to ut. For sake of simplicity, assume that each state has a unique
representative sample. Then S (ut,vi) is computed as follows: first, the distances
{d(ut,vi)}|X |

i=1 between ut and the representatives of the states are computed;
then these distances are converted into a similarity score by means of a kernel
K(·) (for example, a finite-support decreasing function or a Gaussian):

S (ut,vi) = K (d(ut,vi)) .
The definition of S (·, ·) can be obviously extended to capture the similari-

ties between input-output pairs, rather than between inputs. Adding the bias
term substantially improves the training time and can improve the classification
accuracy, as illustrated in the experiments section.
The M-step. The M-step of the SimIOHMM consists of the M-Step of the
IOHMM, plus the recomputation of representative samples. For each HMM state,
the sample with highest alignment probability becomes the new representative.

4 Experimental Results

We evaluate our SimAlignGen in two ways. We evaluate the utility of using a
similarity bias for learning HMM models in a general setting using synthetic
data where we can vary the “correctness” of similarity data presented. We then
evaluate the predictive performance of this approach in a practical PBD setting
implemented on the Microsoft Windows GUI where we measure the effectiveness
of the SimAlignGen approach as well as the utility of the similarity bias.
1 The small discrepancies with the actual Equation [6–Equation(22)] are due to typo-

graphical errors in the original paper.
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Fig. 1. Accuracy as a function of similarity score

Experiment 1: Effectiveness of similarity knowledge
We measure the accuracy of the SimIOHMM as a function of the correctness
of the similarity information presented, and compare it to the accuracy of the
IOHMM. We expect the performance of SimAlignGen algorithms to vary as a
function of how well the similarity knowledge matches the process underlying
the generated data. We quantify this degree of match by introducing a similarity
correctness score. Given dataset generated by an HMM and a similarity function,
we compute the similarities between each sample and the other samples in the
dataset, and find its nearest neighbor. We then define the similarity correctness
as the fraction of samples that were generated by the same HMM state as their
nearest neighbor. Thus a score of 100% would imply that is possible to partition
the dataset points into sets corresponding to the generating Markov nodes using
the similarity function alone. Lesser scores are associated with increasing levels
of “noise”, or misinformation regarding the underlying generating process.

The data for the experiments is constructed as follows. We start with an
HMM template with 10 hidden states. We instantiate an HMM from the tem-
plate by randomly generating, for each node, a probability distribution on input
(binary) feature vectors, a conditional probability distribution on the (binary)
outputs given the inputs, and a conditional transition distribution given the in-
puts. The additional feature used to compute the similarity score is the index
number for the state generating each data point to which a zero-mean Gaus-
sian perturbation of chosen variance is added. Figure 1 shows the accuracy of
SimIOHMM as a function of the correctness of the provided similarity knowl-
edge. The graph is generated from 180 runs of the SimIOHMM obtained from
three-fold cross validation of 60 data sets from different randomly generated
HMM models. Each dataset is composed of 400 data-points (20 traces with 20
snapshot-action pairs in each) along with a varying Gaussian noise added to
the similarity feature. A similarity correctness score and an accuracy were com-
puted for each run. The resulting points are binned according to similarity score
and then averaged to produce the predictive accuracies reported in the box plot.
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The box plot shows the median, upper and lower quartile as well as the maximum
and minimum accuracies obtained at each level.

The horizontal line just below 70% represents the average comparative
IOHMM performance (which does not take into account similarity knowledge).
As expected SimAlignGen outperforms IOHMMs when the similarity bias pro-
vides an accurate model of the underlying HMM. Conversely, learning perfor-
mance is degraded by a similarity bias that does not represent well the model
generating the data. In this experiment the cross-over point between the perfor-
mance of the two algorithms is between 60% and 70% similarity correctness.

This result raises the question of what kind of correctness scores can we ex-
pect in practical applications to programming by demonstration. To investigate
this question we used our system to observe eleven Microsoft Window R©’s users
whose task was to modify the DNS settings of the machine according to writ-
ten instruction. We then annotated each snapshot-action pair with a label that
specifies the corresponding documentation step, and computed the similarity
correctness score for the Windows R©-specific similarity function implemented in
our system (This similarity functions combines several factors, including the pre-
vious action taken by the user, and the text on the title bar of the window with
focus, etc). We finally obtained a similarity correctness of 88%, much above the
60-70% cross over point for the two algorithms. This is not unsurprising: differ-
ent parts of an underlying application will intentionally have many redundantly
distinguishing GUI features as cues to the user. SimAlignGen is a novel approach
to leveraging those redundant cues towards inducing a procedure model.

Experiment 2: SimIOHMM training time
In our second set of experiments we measure the performance of the SimIOHMM
as part of a PBD system for capturing procedures on the Microsoft Windows
GUI. In addition to the gains in accuracy demonstrated above, we show that
SimIOHMM can result in substantial reductions in training time and better
scalability as a function of training set size when compared with IOHMMs.
Figure 2(a) shows the average training time verses number of training traces.

In the figure, it is apparent that the from the viewpoint of training time,
the SimIOHMM scales much better than the IOHMM, and that the ratio of the
IOHMM training time to the SimIOHMM training time is superlinear in the
number of training traces. The faster training time of the SimIOHMM is due to
the fact that the training sets used to train the classifiers tend to be smaller. The
main reason is that a snapshot-action pair can be aligned only with states having
similar representative samples. A way of measuring this effect is by analyzing
the dispersion of the alignment distributions γn(t) for the training traces once
convergence is reached. A measure of dispersion of a probability distribution is
its entropy. Figure 2 (b) shows the average entropy (in bits) of the alignment at
convergence as a function of the number of training traces. The experiments are
the same used for Figure 2 (a). Due to the similarity bias, the SimIOHMM yields
substantially more concentrated alignment probabilities than the IOHMM, and
the difference between these entropies is an increasing function of the number of
traces. These findings are also confirmed by the analysis of simulated data.
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Fig. 2. (a) Training time for IOHMM and SimIOHMM as a function of the number
of training traces. (b) Alignment entropy (in bits) for IOHMM and SimIOHMM as a
function of the number of training traces.

5 Conclusions

This paper presents an approach to procedure model induction based on the idea
of similarity-based alignment and generalization, and makes the following con-
tributions: (i) a novel approach to PBD based on similarity-based alignment and
generalization; (ii) the SimAlignGen class of algorithms that extend traditional
sequence alignment algorithms by the addition of a third bias based on a simi-
larity metric; (iii) an instance of an SimAlignGen algorithm, called SimIOHMM,
which has been implemented as part of a programming by demonstration sys-
tem on the Windows platform; and (iv) an empirical evaluation showing accu-
racy improvements as a function of synthetic similarity data, and large efficiency
improvements over traces collected from a real-world procedure.
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Abstract. In this paper, dimensionality reduction via matrix factor-
ization with nonnegativity constraints is studied. Because of these con-
straints, it stands apart from other linear dimensionality reduction meth-
ods. Here we explore nonnegative matrix factorization in combination
with a classifier for protein fold recognition. Since typically matrix fac-
torization is iteratively done, convergence can be slow. To alleviate this
problem, a significantly faster (more than 11 times) algorithm is
proposed.

1 Introduction

It is not uncommon that for certain data sets the number of attributes m is
greater than the number of examples n. In such cases, the effect referred to
as curse of dimensionality occurs, which negatively influences on clustering and
classification of a given data set. Dimensionality reduction is typically used to
mitigate this effect. The simplest way to reduce dimensionality is to linearly
transform the original data. Given the original, high-dimensional data gathered
in an n ×m matrix V, a transformed matrix H, composed of m r-dimensional
vectors (r < n and often r � n), is obtained from V according to the following
linear transformation W: V ≈ WH, where W is an n × r (basis) matrix. It is
said that W and H are the factorized matrices and WH is a factorization of V.
PCA and ICA are well-known techniques performing this operation.

Nonnegative matrix factorization (NMF) also belongs to this class of meth-
ods. Unlike the others, it is based on nonnegativity constraints on all matrices
involved. Thanks to this fact, it can generate a part-based representation, since
no subtractions are allowed. Due that, it is claimed that NMF is capable of
decomposing the whole object into meaningful parts, and having such a decom-
position can make object recognition easier and often more accurate.

Lee and Seung [1] proposed a simple iterative algorithm for NMF and proved
its convergence. The factorized matrices are initialized with positive random
numbers before starting matrix updates. It is well known that initialization is of
importance for any iterative algorithm: properly initialized, an algorithm con-
verges faster. However, this issue was not yet investigated in case of NMF. In
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this paper, our contribution is two modifications accelerating algorithm conver-
gence: 1) feature scaling prior to NMF and 2) combination of two techniques for
mapping unseen data with theoretical proof of faster convergence.

Because of its straightforward implementation, NMF has been applied to
pattern classification (faces, handwritten digits, documents) [2, 3, 4]. Here we
extend the application of NMF to bioinformatics: NMF coupled with a classifier
is applied to protein fold recognition. Our results show a dramatic acceleration of
NMF convergence (greater than 11 times on average), compared to the conven-
tional algorithm. Moreover, statistical analysis of the error rates demonstrates
that dimensionality reduction done by NMF prior to the classification in reduced
space does not cause significant accuracy degradations.

2 Nonnegative Matrix Factorization

Given the nonnegative matrices V, W and H whose sizes are n×m, n× r and
r×m, respectively, we aim at such factorization that V ≈WH. The value of r is
selected according to the rule r < nm

n+m in order to obtain dimensionality reduc-
tion. NMF provides the following simple learning rule guaranteeing monotonical
convergence to a local maximum [1]:

Wia ← Wia

∑
μ

Viμ

(WH)iμ
Haμ , (1)

Wia ←
Wia∑
j Wja

, (2)

Haμ ← Haμ

∑
i

Wia
Viμ

(WH)iμ
. (3)

The matrices W and H are initialized with positive random values. Eqs. (1-3)
iterate until convergence to a local maximum of the following objective function:

F =
n∑

i=1

m∑
μ=1

(Viμ log(WH)iμ − (WH)iμ) . (4)

After learning the NMF basis functions, i.e. the matrix W, unseen data in
the matrix Hnew are mapped to r-dimensional space by fixing W and using one
of the following techniques:

1. randomly initializing H and iterating Eq. 3 until convergence,
2. initializing Hnew = (WT W)−1WT Vnew, since Vnew = WHnew, where

Vnew contains the new data.

Further we will call the first technique iterative while the second - direct, because
the latter provides a straightforward non-iterative solution.
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3 Our Contribution

We propose two modifications in order to accelerate convergence of the iterative
NMF algorithm.

The first modification concerns feature scaling (normalization) linked to the
initialization of the factorized matrices. Typically, these matrices are initialized
with positive random numbers, say uniformly distributed between 0 and 1, in
order to satisfy the nonnegativity constraints. Hence, elements of V (matrix of
the original data) also need to be within the same range. Given that Vj is an
n-dimensional feature vector, where j = 1, . . . ,m, its components Vij are nor-
malized as follows: Vij/Vkj , where k = argmaxl Vlj . In other words, components
of each feature vector are divided by the maximal value among them. As a re-
sult, feature vectors are composed of components whose nonnegative values do
not exceed 1. Since all three matrices (V, W, H) have now entries between 0
and 1, it takes much less time to perform matrix factorization V ≈WH (values
of the entries in the factorized matrices do not have to grow/decrease much in
magnitude in order to satisfy the stopping criterion for the objective function
F in Eq. 4) than if V had the original (unnormalized) values. Given that the
same iterative algorithm is used in both cases (unnormalized and normalized
features), it takes less time to change from 0.5 to 0.7 (normalized feature) than
to change from 0.5 to 10 (unnormalized feature), because on each step the con-
vergence rate is the same. As additional benefit, MSE becomes much smaller,
too, because a difference of the original (Vij) and approximated ((WH)ij) values
becomes smaller, given that mn is fixed. Though this modification is simple, it
brings significant speed of convergence as will be shown below.

The second modification concerns initialization of NMF iterations for map-
ping unseen data (aka generalization), i.e. after the basis matrix W has been
learned. Since such a mapping in NMF involves only the matrix H (W is
kept fixed), its initialization is to be done. We propose to initially set H to
(WT W)−1WT Vnew , i.e. to the solution provided by the direct mapping tech-
nique with zeroing negative values as in Section 2, because 1) it provides a better
initial approximation for Hnew than a random guess, and 2) it moves the start
of iterations closer toward the final point, since the objective function F in Eq. 4
is increasing [1], and the inequality F direct > F iter always holds at initialization
(theorem below proves this fact), where F direct and F iter stand for the values
of F when using the direct and iterative techniques, respectively.

Theorem 1. Given F direct and F iter are values of the objective function when
mapping unseen data with the direct and iterative techniques, respectively. Then
F direct − F iter > 0 always holds at the start of iterations when using Eq. 3.

Proof. By definition,

F iter =
n∑

i=1

m∑
j=1

(Vij log(WH)ij − (WH)ij) ,
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F direct =
n∑

i=1

m∑
j=1

(Vij logVij − Vij) .

The difference F direct − F iter is equal to

n∑
i=1

m∑
j=1

(Vij logVij − Vij − Vij log(WH)ij + (WH)ij) =

n∑
i=1

m∑
j=1

(
Vij(log

Vij

(WH)ij
− 1) + (WH)ij

)
=

n∑
i=1

m∑
j=1

(
Vij log

Vij

10(WH)ij
+ (WH)ij

)
.

Given all three matrices involved are nonnegative, the last expression is pos-
itive if either condition is satisfied:

1. log Vij

10(WH)ij
> 0,

2. (WH)ij > Vij log 10(WH)ij

Vij
.

Let us introduce a new variable, t: t = Vij

(WH)ij
. Then the above conditions can

be written as

1. log t
10 > 0 or logt > 1,

2. 1 > t log t
10 or log t < t+1

t .

The first condition is satisfied if t > 10 whereas the second if t < t0 (t0 ≈ 12).
Therefore either t > 10 or t < 12 should be satisfied for F direct > F iter . Since
the union of both conditions covers the whole interval [0,+∞[, it means that
F direct > F iter, independently of t, i.e. of whether Vij > (WH)ij or not. Q.E.D.

�

Because our approach combines both direct and iterative techniques for mapping
unseen data, we will call it iterative2.

4 Summary of Our Algorithm

1. Scale both training and test data and randomly initialize the factorized ma-
trices as described in Section 3. Choose r.

2. Iterate Eqs. 1-3 until convergence to obtain the NMF basis matrix W and
to map training data to NMF (reduced) space.

3. Given W, map test data by using the direct technique. Set to zero negative
values in the resulting matrix Hdirect

new .
4. Fix the basis matrix and iterate Eq. 3 until convergence by using Hdirect

new at
initialization of iterations.
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5 Experiments

Experiments with NMF involve estimation of the error rate when combining
NMF and a classifier. Three techniques for generalization are used: direct, itera-
tive, and iterative2. The training data are mapped into reduced space according
to Eqs. 1-3 with simultaneous learning of the matrix W. Tests were repeated
10 times to collect statistics necessary for comparison of three generalization
techniques. Each time, a different random initialization for learning the basis
matrix W was used, but the same learned basis matrix was utilized in each run
for all generalization techniques in order to create as fair comparison of three
generalization techniques as possible.

Values of r (dimensionality of reduced space) were set to 25, 50, 75, and 88
(max), which constitutes 20%, 40%, 60%, and 71.2% of the original dimension-
ality, respectively. In all reported statistical tests α = 0.05. All algorithms were
implemented in MATLAB running on a Pentium 4 (3 GHz CPU, 1GB RAM).

5.1 Data

In bioinformatics, it is rather common to use a single data set in experiments,
since many tasks in this field are much more difficult than those in general
machine learning. A challenging data set [5] was used in experiments. The data
set contains the 27 most populated folds represented by seven or more proteins.
Ding and Dubchak already split it into the training and test sets, which we will
use as other authors did. Feature vectors have 125 dimensions. The training set
consists of 313 protein folds having no more than 35% of the sequence identity
for aligned subsequences longer than 80 residues. The test set of 385 folds is
composed of protein sequences of less than 40% identity with each other and
less than 35% identity with the proteins of the first set. This, as well as multiple
classes, many of which sparsely represented, render this task extremely difficult.

5.2 Classification Results

The K-Local Hyperplane Distance Nearest Neighbor (HKNN) [6] was selected
as a classifier, since it demonstrated a competitive performance. Table 1 shows
the error rates obtained with HKNN, SVM, and various neural networks when
classifying protein folds in the original, 125-dimensional space.

The normalized features were used since feature normalization prior to
HKNN increases classification accuracy. The optimal values for two parameters
of HKNN, K and λ, determined via cross-validation, are 7 and 8, respectively.

Let us now turn to the error rates in dimensionally reduced space. For each
value of r, NMF followed by HKNN were repeated 10 times. As a results, a 40x6
matrix containing the error rates was generated. This matrix is then subjected
to the one-way analysis of variance (ANOVA) and multiple comparison tests
in order to make statistically driven conclusions. Table 5.2 shows identifiers
associated with the generalization techniques. Error bars for all generalization
techniques are given in Fig. 1.
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Fig. 1. (a) Error bars resulting from NMF using six generalization techniques; (b)
Classification errors on the original space of the protein folds dataset

The one-way ANOVA test is first utilized in order to find out whether the
mean error rates of all six techniques are the same (null hypothesis H0 : μ1 =
μ2 = · · · = μ6) or not. If the returned p-value is smaller than α = 0.05, the null
hypothesis is rejected, which implies that the mean error rates are not the same.
The next step is to determine which pairs of means are significantly different,
and which are not by means of the multiple comparison test.

Table 5.2 contains results of the multiple comparison test and it is seen
that these results confirm that the direct technique stands apart from both
iterative techniques. The main conclusions from Table 5.2 are μ1 = μ4 and
μ2 = μ3 = μ5 = μ6, i.e. there are two groups of techniques, and the mean of the
first group is larger than that of the second group.

The last column in Table 5.2 points to the very interesting result: whether
feature normalization prior to NMF is applied or not, the standard deviation
of the error rate of our technique is lower than that for the conventional one,
which, in turn, is lower than the standard deviation for the direct technique. It
implies that our modifications of NMF led to a visible reduction in the deviation
of classification error ! This reduction is caused by shrinking the search space of
possible factorizations, and it is larger if normalization prior to NMF is used.

Table 1. Mean error for each generalization technique (standard error 0.4)

Identifier Technique Scaling prior to NMF Mean error Std. deviation
1 Direct No 50.93 3.08
2 Iterative No 44.94 2.52
3 Iterative2 No 45.98 2.11
4 Direct Yes 51.38 3.31
5 Iterative Yes 44.52 2.13
6 Iterative2 Yes 46.32 1.72
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Table 2. Results of the multiple comparison test

Identifier Identifier 2 Lower bound Difference Upper bound Outcome
4 5 5.25 6.87 8.48 Reject H0 : μ4 �= μ5

4 2 4.83 6.45 8.07 Reject H0 : μ4 �= μ2

4 3 3.79 5.41 7.03 Reject H0 : μ4 �= μ3

4 6 3.45 5.07 6.69 Reject H0 : μ4 �= μ6

4 1 -1.16 0.46 2.07 Accept H0 : μ4 = μ1

1 5 4.79 6.41 8.03 Reject H0 : μ1 �= μ5

1 2 4.38 5.99 7.61 Reject H0 : μ1 �= μ2

1 3 3.34 4.96 6.57 Reject H0 : μ1 �= μ3

1 6 3.00 4.61 6.23 Reject H0 : μ1 �= μ6

6 5 0.18 1.80 3.42 Reject H0 : μ6 �= μ5

6 2 -0.24 1.38 3.00 Accept H0 : μ6 = μ2

3 5 -0.16 1.46 3.07 Accept H0 : μ3 = μ5

Table 3. Gains in time resulted from modifications of the conventional NMF algorithm

Gain due to scaling prior to NMF for Gain due to initialization for
learning generalization learning+generalization generalization

r R1 R2 R3 R4 R5 R6 R7

88 11.9 11.4 10.4 11.7 11.5 1.5 1.4
75 13.8 12.9 13.1 13.6 13.7 1.6 1.6
50 13.2 11.1 12.5 12.6 13.1 1.6 1.7
25 9.5 6.4 8.8 8.7 9.5 1.6 2.2
Average 12.1 10.4 11.2 11.6 11.9 1.6 1.8

That is, our initialization eliminates some potentially erroneous solutions before
iterations even start and leads to more stable classification error.

One can say that the error rates in reduced space are larger than the error rate
(42.7%) achieved in the original space. However, it is not, in general, uncommon
to observe similar effects when doing classification after dimensionality reduc-
tion (see, e.g. [7]). Nevertheless, we observed that sometimes error in reduced
space can be lower than 42.7: for example, the minimal error when applying the
iterative technique with no scaling before NMF and r = 50 is 39.22, while the
minimal error when using the iterative2 technique under the same conditions is
42.34. Varying errors can be attributed to the fact that NMF factorization of a
given matrix may not be unique. Finally, even though NMF+HKNN led to the
higher error rates than HKNN alone, the former was nevertheless superior (see
Tables 1 and 5.2) to neural networks and comparable to SVMs, applied without
NMF.

5.3 Time Results

Table 3 presents speed gains resulted from our modifications for different di-
mensionalities of reduced space. R1 stands for the speed gains due to scaling on
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the task of learning and mapping training data. R2 and R3 are the speed gains
obtained due to scalling on the generalization task using iterative and iterative2.
R4 and R5 are the same gains obtained on the task of training followed by gen-
eralization. R6 and R7 are the speed gains obtained due to applying iterative2
instead of iterative versus scaling. As a result, the average gain in time obtained
with our modifications is more than 11 times.

6 Conclusion

The main contribution of this work is two modifications of the basic NMF al-
gorithm and its practical application to a challenging real-world task, namely
protein fold recognition. The first modification concerns feature scaling before
NMF while the second modification combines two known generalization tech-
niques, which we called direct and iterative; the former is used as a starting
point for updates of the latter, thus leading to a new generalization technique.
We proved (both theoretically and experimentally) that our technique converges
faster than the ordinary iterative technique. On the data set studied, the average
gain in convergence speed exceeds 11 times.

When combining the modified NMF with a classification algorithm, statistical
analysis of the obtained results indicates that the mean error associated with the
direct technique is higher than that related to either iterative technique while
both iterative techniques lead to the statistically similar error rates. Since our
technique provides a faster mapping of unseen data, it is advantageous to apply
it instead of the ordinary one. In addition, our technique results in a smaller
deviation of classification error, thus making classification more stable.
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Abstract. Learning from multi-relational domains has gained increas-
ing attention over the past few years. Inductive logic programming (ILP)
systems, which often rely on hill-climbing heuristics in learning first-order
concepts, have been a dominating force in the area of multi-relational
concept learning. However, hill-climbing heuristics are susceptible to lo-
cal maxima and plateaus. In this paper, we show how we can exploit the
links between objects in multi-relational data to help a first-order rule
learning system direct the search by explicitly traversing these links to
find paths between variables of interest. Our contributions are twofold:
(i) we extend the pathfinding algorithm by Richards and Mooney [12]
to make use of mode declarations, which specify the mode of call (in-
put or output) for predicate variables, and (ii) we apply our extended
path finding algorithm to saturated bottom clauses, which anchor one
end of the search space, allowing us to make use of background knowl-
edge used to build the saturated clause to further direct search. Experi-
mental results on a medium-sized dataset show that path finding allows
one to consider interesting clauses that would not easily be found by
Aleph.

1 Introduction

Over the past few years there has been a surge of interest in learning from multi-
relational domains. Applications have ranged from bioinformatics [9], to web
mining [2], and security [7]. Typically, learning from multi-relational domains
has involved learning rules about distinct entities so that they can be classified
into one category or another. However, there are also interesting applications
that are concerned with the problem of learning whether a number of entities are
connected. Examples of these include determining whether two proteins interact
in a cell, whether two identifiers are aliases, or whether a web page refers to
another web page; these are examples of link mining [6]. A number of approaches
for exploiting link structure have been proposed; most of these approaches are
graph based, including SUBDUE [3], and ANF [10].

Our focus is on first-order learning systems such as ILP. Most of the ap-
proaches in ILP rely on hill-climbing heuristics in order to avoid the combina-
torial explosion of hypotheses that can be generated in learning first-order con-
cepts. However, hill-climbing is susceptible to local maxima and local plateaus,
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which is an important factor for large datasets where the branching factor per
node can be very large [4, 5]. Ideally, saturation-based search and a good scor-
ing method should eventually lead us to interesting clauses, however, the search
space can grow so quickly that we risk never reaching an interesting path in a rea-
sonable amount of time (see Figure 1). This prompted us to consider alternative
ways, such as pathfinding [12], to constrain the search space.

Richards and Mooney [12] realized that the problem of learning first-order
concepts could be represented using graphs. Thus, using the intuition that if
two nodes interact there must exist an explanation of the interaction, they pro-
posed that the explanation should be a connected path linking the two nodes.
However, pathfinding was originally proposed in the context of the FOIL ILP
system, which does not rely on creating a saturated clause. A seminal work in
directing the search in ILP systems was the use of saturation [14], which gen-
eralizes literals in the seed example to build a bottom clause [8], which anchors
one end of the search space. Hence, we propose to find paths in the saturated
clause.

The original pathfinding algorithm assumes the background knowledge forms
an undirected graph. In contrast, the saturated clause is obtained by using mode
declarations: in a nutshell, a literal can only be added to a clause if the literal’s
input variables are known to be bound. Mode declarations thus embed direc-
tionality in the graph formed by literals. Our major insight is that a saturated
clause for a moded program can be described as a directed hypergraph, which
consists of nodes and hyperarcs that connect a nonempty set of nodes to one
target node. Given this, we show that path finding can be reduced to reachabil-
ity in the hypergraph, whereby each hyperpath will correspond to a hypothesis.
However, we may be interested in non-minimal paths and in the composition of
paths. We thus propose and evaluate an algorithm that can enumerate all such
hyperpaths according to some heuristic.

a(X,Y)

b(X,W) c(Y,Z)

d(W,E) d(W,P) e(W,F) h(Z,B)g(Z,Q)f(Z,F)

k(Q,D)j(P,C)i(E,R)

Fig. 1. Search space induced by a saturated clause. The literal at the root of the graph
represents the head of the saturated clause. All the other literals in the graph are
literals from the body of the saturated clause. Bold arcs indicate a possibly interesting
path linking X to Y. Dotted arcs indicate parts of the search space that will not lead
to determining connectivity of X and Y.
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2 The Saturated Clause and Hypergraph

The similarities between the properties of a saturated clause and a hypergraph
provide a natural mapping from one to the other. A directed hypergraph H is
defined by a set of nodes N and a set of hyperarcsH . A hyperarc has a nonempty
set of source nodes S ⊆ N linked to a single target node i ∈ N [1].

A saturated clause can be mapped to a hypergraph in the following way.
First, as a saturated clause is formed by a set of literals, it is thus natural to
say that each literal Li is a node in the hypergraph. Second, we observe that
each literal or node Li may need several input arguments, and that each input
argument may be provided from a number of other literals or nodes. Thus, if a
node Li has a set of input variables, Ii, each hyperarc is given by a set of literals
generating Ii and Li. Specifically, a mapping can be generated as follows:
1. Each node corresponds to a literal, Li.
2. Each hyperarc with N ′ ⊆ N nodes is generated by a set V of i− 1 variables

V1, . . . , Vi−1 appearing in literals L1, . . . , Li−1. The mapping is such that
(i) every variable Vk ∈ Ii appears as an output variable of node Lk

(ii) every variable Vk appears as argument k in the input variables, Ii, of Li.
Intuitively, the definition says that nodes in L1, . . . , LN ′−1 with output vari-
ables that generates input variables for node LN ′ , will be connected by hy-
perarcs. Note that if node LN ′ has a single input argument, the hyperarc will
reduce to a single arc. Note also that the same variable may appear as dif-
ferent input arguments, or that the same literal may provide different output
variables.

Figure 2a shows an example saturated clause and resulting hypergraph. The
literal at the root of the graph, a(X,Y ), is the head of the saturated clause.
Other literals in the graph appear in the body of the saturated clause. All lit-
erals of arity 2 have mode +,−, that is, input and output. Literal e(F,B,D),
has arity 3 and mode +,+,−. Arcs in the figure correspond to dependencies
induced by variables, thus there is an arc between c(X,W ) and d(W,F ) because
d(W,F ) requires input variable W . On the other hand, there is no arc between
c(X,B) and f(C,B) since variable B is an output variable in both cases. All of
the literals except e(F,B,D) has a single input variable, hence those hyperarcs
consists of a single arc. However, there are four hyperarcs for node e(F,B,D);
they are d(W,F ), c(X,B), g(A,F ) and f(C,B).

Before we present the path finding algorithm, we need to perform a simple
transformation. The graph for a saturated clause is generated from the seed
example, L0. If the seed example has M arguments, it generates M variables,
which we transform as follows:
1. Generate M new nodes L′

j , where j = 1, ...,M , such that each node will have
one of the variables in L0. Each such node will have an output variable Vj .

2. Replace the edge between L0 and some other node induced by the variable
Vj by an edge from the new node L′

j .
Figure 2b shows this transformation for the hypergraph in Figure 2a. Path gen-

eration thus reduces to finding all hyperpaths that start from nodes L′
1, . . . , L

′
M .
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Fig. 2. (a) Hypergraph of our example saturated clause where a(X,Y ) is the head of
the clause and ’+’ indicates input variable, ’−’ indicates output variable: a(X, Y ) ←
c(X, W ), c(X, B), b(Y, Z), b(Y,A), d(W,F ), e(Z, C), g(A,F ), e(F,B, D), f(C, B). (b)
Transformation of hypergraph (a) splits the head literal into its component arguments,
which then serve as different sources for the path finding algorithm. The number
preceeding each literal indicates the label that will be used for that literal in Figure 3.

3 Algorithm

In directed graphs, a path π is a sequence of edges e1, e2, . . . , ek and nodes
n1, n2, . . . , nk, such that ei = (ni−1, ni), 1 ≤ i ≤ k. The shortest hyperpath
problem is the extension of the classic shortest path problem to hypergraphs.
The problem of finding shortest hyperpaths is well known [1, 11]. We do not
require optimal hyperpaths; rather, we want to be able to enumerate all possible
paths, and we want to do it in the most flexible way, so that we can experiment
with different search strategies and heuristics.

We present our path finding algorithm through the transformed hypergraph
shown in Figure 2b. First, we want to emphasize that our goal is to generate paths
in the ’path finding’ sense, which is slightly different from the graph theoretical
sense. More precisely, a hyperpath will lead from a node to a set of other nodes in
the hypergraph (i.e. a path is a set of hyperpaths), each starting from different
source nodes, such that the two hyperpaths have a variable in common. For
example, in Figure 2b, nodes {1, 4} form a hyperpath, and nodes {2, 5, 8, 11}
form another hyperpath. Since nodes 4 and 11 share variable B, {1, 2, 4, 5, 8, 11}
form a path. Our algorithm generates paths as combinations of hyperpaths.

Given hypergraph H, which includes information for input and output vari-
ables for each node or literal, source nodes and desired maxdepth (a function
of clause length), we describe an algorithm that returns a list of paths connect-
ing all input variables. Figure 3 illustrates our path finding algorithm on the
example hypergraph in Figure 2b. The numbered nodes in Figure 3 correspond
to the labels of literals in Figure 2b. The depth of the graph is indicated on
the left hand side. Current paths are expanded at each depth if the node to be
expanded has its input variables bound. Otherwise, they are crossed out (e.g.,
P (2, 2) and P (3, 3)). V ariableSet(s, d) represents the set of variables reachable
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4 4

VariableSet(1,0) −> {X}

VariableSet(1,1) −> {X,W,B} VariableSet(2,1) −> {Y,Z,A}

VariableSet(2,0) −> {Y}

{X,W,F} {X,B} {Y,Z,C} {Y,A,F}

VariableSet(1,2) −> {X,W,B,F} VariableSet(2,2) −> {Y,Z,A,C,F}

VariableSet(2,3) −> {Y,Z,A,C,F,B}VariableSet(1,3) −> {X,W,B,F,D}

Depth 2

Depth 1

Depth 3

Depth 0
P(0,1) P(0,2)

P(1,1) P(1,2) P(1,3) P(1,4)

P(2,1) P(2,2) P(2,3) P(2,4)

P(3,1) P(3,2) P(3,3)

Path P(2,1)−P(2,4): 1 − 3 − 7 − 9 − 6 − 2

{Y,A,F}

P(1,2)−P(3,2): 1 − 4 − 11 − 8 − 5 − 2

, P(3,1)−P(2,4): 1 − 3 − 7 − 10 − 9 − 6 − 2 ,Paths P(3,1)−P(3,2): 1 − 3 − 7 − 10 − 11 − 8 − 5 − 2

Fig. 3. Illustration of path finding algorithm using mode declarations. The numbered
nodes in the graphs are the labels of literals in Figure 3.

from s at depth d. They are used to find common variables between variable sets
of different sources at a particular depth. Hyperpaths found so far are indicated
by P (d, n), where d indicates the depth and n is the node index at that depth.
Paths found are denoted P (d, n1)− P (d, n2).

For each source and each depth, starting at depth 1, the algorithm proceeds:

1. Expand paths from previous depth, d − 1, only if input variables for the
newly expanded node, n, exist in V ariableSet(s, d−1) of the previous depth
and are bound by parents reachable at the current depth (i.e., all n’s input
variables are bound by parent nodes which contain n’s input variables).

2. Place all variables reachable from s at current depth d in V ariableSet(s, d).
3. Check V ariableSet of each source at the current depth for an intersection of

variables; for each variable in the intersection create paths from permutations
of all nodes containing the variable, including those from previous depths.
Depth 0 corresponds to the initial configuration with our 2 source nodes, 1

and 2, which we represent as hyperpaths P (0, 1) and P (0, 2) respectively. The
variables of source nodes 1 and 2, X and Y are placed into their respective vari-
able sets (V ariableSet(1, 0) and V ariableSet(2, 0)). We begin at Depth 1. Node
1 has two hyperpaths of size 2; one to node 3 (shown by hyperpath P (1, 1))
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and the other to node 4 (P (1, 2)). Node 2 can reach nodes 5 and 6 giving hy-
perpaths P (1, 3) and P (1, 4). At this depth we can reach variables W and B
from X , and variables Z and A from Y , indicated by V ariableSet(1, 1) and
V ariableSet(2, 1). Since we do not have an intersection of the variable sets, we
cannot build a path.

Depth 2 corresponds to expanding the hyperpaths of nodes 3, 4, 5 and 6.
Hyperpath P (1, 1) can reach node 7 allowing X to reach variable F . Hyperpath
P (1, 2) tries to expand to node 10, but this hyperpath only contains variable B,
whereas node 10 requires both F and B as input, hence P (2, 2) is not expanded
(crossed out). Hyperpath P (1, 3) can be expanded with 8, and hyperpath P (1, 4)
can be extended with node 9. At this point we have hyperpaths from the first
argument reaching variables W,B,F , and from the second argument reaching
Z,A,C, F . Variable F can be reached with hyperpaths starting at the nodes
that define variables X and Y , so we have a path. We thus find that if we
combine hyperpaths P (2, 1) and P (2, 4) we have our first path: 1, 3, 7, 9, 6, 2
(P (d, n1)− P (d, n2)).

At Depth 3, hyperpath P (2, 1) can reach node 10 by merging with hy-
perpath P (1, 2). This creates the hyperpath P (3, 1) which reaches variables
X,W,F,B,D. Hyperpath P (2, 3) is expanded to include node 11 but hyper-
path P (2, 4) cannot be expanded to include node 10 as it does not contain
variable B required as an input variable for node 10. Hence P (3, 3) is omit-
ted. Now we have two new hyperpaths that can be combined between them-
selves and with older hyperpaths to generate new paths. Hyperpath P (3, 1)
reaches variables X,W,F,B,D. We can build a new path by connecting P (3, 1)
with hyperpath P (3, 2), as they both share variable B. P (3, 2) can also be
connected to P (2, 4), as they both share F . Hyperpaths P (3, 2) and P (1, 2)
share variable B, so we can generate the new path P (3, 2) − P (1, 2). For hy-
perpaths that are already a path, as they touch X and Y , we can further
extend them by merging them with other hyperpaths, obtaining non-minimal
paths.

4 Experimental Evaluation

Paths found can be used in a number of ways. One way is to use Richards
and Mooney’s method to perform search by generating a number of paths,
and then refining them [12, 15]. Alternatively, one can consider the paths found
as a source of extra information that can be used to extend the background
knowledge (i.e., add paths as background knowledge). In this case, paths can
be seen as intensional definitions for new predicates in the background knowl-
edge.

We used the UW-CSE dataset by Richardson and Domingos [13] for a first
study of path finding on a heavily relational dataset. The dataset concerns learn-
ing whether one entity is advised by other entity based on real data from the
University of Washington CS Department. The example distribution are skewed
as we have 113 positive examples versus 2711 negative examples. Following the
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Table 1. Theory Comparison

Folds Aleph Path Finding
# Clauses Avg Clause Length # Clauses Avg Clause Length

Theory 2 4.5 2 5
AI 3 3.7 2 5.5

Graphics 3 4 2 6
Languages 1 3 3 7
Systems 1 4 3 5.7

Table 2. Test Set Performance (results given as percentage)

Folds Aleph Path Finding
Recall Precision F1 measure Recall Precision F1 measure

Theory 38 27 32 81 11 19
AI 63 9 16 75 12 21

Graphics 85 46 60 95 20 33
Languages 22 100 36 33 100 50
Systems 87 8 15 82 9 16

original authors, we divided the data into 5 folds, each one corresponding to a
different group in the CS Department. We perform learning in two ways for our
control and experiment. In the first approach, we used Aleph to generate a set
of clauses. In the second approach, we used path finding to find paths, which are
treated as clauses. Further, we allow Aleph to decorate paths with attributes by
trying to refine each literal on each path.

We were interested in maximizing performance in the precision recall space.
Thus, we extended Aleph to support scoring using the f-measure. The search
space for this experiment is relatively small, so we would expect standard Aleph
search to find most paths. The two systems do find different best clauses, as
shown in Table 1 which show both number of clauses and average clause length,
including the head literal. Although most of the clauses found by Aleph are paths,
the path finding implementation does find longer paths that are not considered
by Aleph and also performs better on the training set.

Table 2 summarizes performance on the test set. This dataset is particularly
hard as each fold is very different from the other [13], thus performance on the
training set may not carry to the testing set. Both approaches perform simi-
larly on the Systems fold. The AI fold is an example where both approaches
learn a common rule, but path finding further finds an extra clause which
performs very well on the training set, but badly on the test data. On the
other hand, for the Languages fold both approaches initially found the same
clause, but path finding goes on to find two other clauses, which in this case
resulted in better performance. We were surprised that for both Graphics and
Systems, path finding found good relatively small clauses that were not found
by Aleph.
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5 Conclusions and Future Work

We have presented a novel algorithm for path finding in moded programs. Our
approach takes advantage of mode information to reduce the number of possible
paths and generate only legal combinations of literals. Our algorithm is based on
the idea that the saturated clause can be represented as a hypergraph, and the
use of hyperpaths within the hypergraph to compose the final paths. Muggleton
used a similar intuition in seed based search, using a heuristic to classify clauses:
a clause’s score depends on coverage and the distance the literals have to each
entity [8]. In contrast, our approach is independent of scoring function.

Preliminary results on a medium sized dataset showed that path finding
allows one to consider a number of interesting clauses that would not easily be
considered by Aleph. On the other hand, path finding does seem to generate
longer clauses, which might be more vulnerable to overfitting. In future work we
plan to combine paths using the approach in Davis et al. [4] as well as apply this
algorithm to larger datasets, where path finding is necessary to direct search.
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Abstract. This paper presents a new classification model in which a
classifier is built upon predictive association rules (PARs) and the max-
imum entropy principle (maxent). In this model, PARs can be seen as
confident statistical patterns discovered from training data with strong
dependencies and correlations among data items. Maxent, on the other
hand, is an approach to build an estimated distribution having maxi-
mum entropy while obeying a potentially large number of useful features
observed in empirical data. The underlying idea of our model is that
PARs have suitable characteristics to serve as features for maxent. As a
result, our classifier can take advantage of both the useful correlation and
confidence of PARs as well as the strong statistical modeling capability
of maxent. The experimental results show that our model can achieve
significantly higher accuracy in comparison with the previous methods.

1 Introduction

Building efficient classifiers is a major task of machine learning research. Given
a training set of data instances together with their class labels, the classification
task is to induce a classifier that can predict labels for unseen instances. Tradi-
tional methods for this task have followed various approaches like rule learning
[5] [6], decision trees [21], and statistical models (e.g., Naive Bayes [10]).

With the emergence of high–performance data mining techniques for large–
scale databases, recent studies have shown that associative classification, using
confident PARs discovered from training data, is competitive with the traditional
methods in terms of both accuracy and scalability. The associative classification
methods, such as CBA [16], CAEP [9], CMAR [17], and ART [3], build classifiers
based on confident PARs whose consequent is a class label. Since the number
of PARs is usually large, these methods attempt to select a subset by pruning
the original set according to some heuristic assumption. The selected rules are
then used to predict labels for new instances in a number of ways: ranking and
searching for the most appropriate rule (CBA), computing an aggregated differ-
entiating score based on emerging patterns to determine the most suitable class

J. Gama et al. (Eds.): ECML 2005, LNAI 3720, pp. 682–689, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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(CAEP), analyzing to select a small subset of the most related rules and making
a collective classification decision on that subset (CMAR), and classifying with
a decision list of PARs which is built by using Occam’s razor as an inductive
bias (ART), i.e., giving a higher priority to simpler hypotheses.

This presents a new strategy to build a classifier upon PARs and maxent.
In our approach, those PARs are treated as features/constraints of the maxent
distribution, and each of them is associated with a learnable weight. Training
the classifier is to find the weight values that maximize the entropy of the above
distribution. Once trained, the classifier can predict a label for each new data
instance by summing over the learned weights of PARs belonging to different
class labels in order to determine the most appropriate one. The main motivation
of our approach can be summarized as follows.

– PARs are confident facts with highly correlated conjunctions of data items
at their antecedent. And they, in a sense, can be viewed as complex statistic
patterns hidden in empirical data. Thus, incorporating those PARs into a
statistical model means that we can project the original feature space into a
richer one where PARs can cover and control various classifying situations.

– Maxent is a powerful statistical model that can include millions of overlap-
ping, non–independent features/constraints, and thus provides enough room
for a potentially large number of PARs. Further, the maxent distribution is
totally consistent with the maximum likelihood distribution [2]. Thus, our
classifier relies not only on confident implications, but also on a solid statisti-
cal principle. Also, this principle can be seen as an inductive bias for inducing
our classifier because maxent follows Occam’s razor to choose the least com-
plex distribution among the others that satisfy empirical constraints.

– Unlike other rule-based classifiers, our method predicts class labels for new
instances based on multiple PARs w.r.t the global interaction among them
and the aggregation of their weights. Obviously, this helps avoid prediction
based on a single PAR, which sometimes leads to biased decisions. This is
very important because predicting based on a high-ranked rule is not always
optimal for hard instances that may exist in ambiguous or unbalanced data.

The remainder of the paper is organized as follows. Section 2 mainly presents
our classification model. Section 3 gives the experimental results and some dis-
cussion. Finally, conclusions are given in Section 4.

2 The Proposed Classification Model

2.1 Conditional Maximum Entropy

Although maxent has a long history and a wide range of applications, this paper
confines this principle to the problem of building a model that can best describe
empirical data. Intuitively, maxent models all that is known and assume nothing
about what is unknown [2]. In other words, given a collection of facts, choose a
model consistent with all the facts, but otherwise as uniform as possible. Maxent
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has been successfully applied to many natural language processing tasks, e.g.
machine translation [2], named entity recognition [4], and POS tagging [22].

Given a training dataset D = {(oi, li)}n
i=1 in which oi is the ith data instance

and li(∈ L) is its class label. Conditional maxent is a conditional distribution
P (l|o) – the conditional probability of having the class label l given the instance
o. To train maxent model, experimenters have to determine significant features
in the training data and integrate them into the model in terms of constraints.
Maxent features have the form of two–argument function f : (o, l) → R below:

f<cp, l′>(o, l) =
{

1 if l = l′ and cp(o) = TRUE
0 otherwise (1)

where l′ is a particular label and cp is a particular context predicate indicating a
useful property of o. The maxent model is consistent with D w.r.t every feature
fi by satisfying constraints like E(fi) = F (fi): the expected value of fi w.r.t
D is equal to the expected value of fi w.r.t P (l|o). The maxent model is the
distribution having the highest entropy while satisfying those constraints. Using
the Lagrange multipliers method and theory of constrained optimization, Pietra
et al. [20] proved that maxent model is unique and has the exponential form.

Pλ(l|o) =
1

Zλ(o)
exp

(∑
i=1

λifi(o, l)

)
, (2)

where λi is the weight associated with fi, and Zλ(o) is the normalizing factor.
Maxent is trained by setting the weight set {λ1, . . .} to maximize the entropy
H(Pλ). The maxent model was often trained using GIS [7]. Recent studies [19]
have shown that quasi–Newton methods like L–BFGS [18] are more efficient than
the others. Once trained, the model will be used to predict labels for unseen data.
Given a new instance o, the predicted label of o is lo = argmaxl∈L Pλ(l|o).

2.2 Mining Predictive Association Rules from Training Data

Let A = (A1, . . . , Am) be a data schema of m attributes in which Ai is either
discrete or continuous. For any continuous attribute, its domain can be divided
into non–overlapping intervals by using discretization methods [11], [12] so that
all attributes can be treated uniformly as discrete. Let L = {l1, . . . , lq} be the
class attribute having q class labels. Given a training data D = {(oi, li)}n

i=1 of
n data instances in which each oi = (ai

1, . . . , a
i
m) follows the above schema and

li is a label associated with oi. PAR, discovered from D, is a special type of
association rule [1] and has the form:

{[Ai1=ai1 ] ∧ [Ai2=ai2 ] ∧ . . . ∧ [Aik
=aik

]} ⇒ l, (3)

where the PAR antecedent is a conjunction of k attribute-value pairs and the
consequent is a class label. The support of a PAR is the number of instances in
D that match both its antecedent and its consequent. The confidence of a PAR
is the conditional probability that an instance matches the consequent given
that it matches the antecedent. Confident PARs are those whose support and
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confidence are greater than or equal to given minimum support (minsup) and
minimum confidence (minconf), respectively.

We use the FP–growth algorithm [14], a very efficient frequent pattern min-
ing technique, to mine association rules [1]. Then, we filter confident PARs from
outputs of FP–growth. Unlike the previous methods, we apply different min-
conf thresholds (minconf1, . . . , minconfk) corresponding to different antecedent
lengths. This is because of an important observation that short rules usually have
smaller confidence but are very useful for generalization while long rules have
higher confidence but often are too specific.

2.3 MEPAR: Maximum Entropy Modeling of PARs

This section describes how to incorporate confident PARs into the maxent model
to build our classifier – MEPAR. As mentioned earlier, maxent features are two–
argument functions f<cp, l′>(o, l). For example, in the problem of determining
part–of–speech (POS) labels (e.g., noun, verb, adjective, etc.) for English words
using a maxent model, we should include the useful fact that “if a word o ends
with a suffix tive, it is very likely that the word o is an adjective”. We interpret
this fact as a maxent feature f<suffix tive, adj>(o, l). Obviously, this feature is
useful for predicting POS labels for new words because it relies on a confident
statistic from empirical data. Interestingly, confident PARs are also confident
facts in training data, and thus can naturally be incorporated into the maxent
model as normal maxent features. Given a confident PAR r : {[Ai1=ai1 ] ∧ . . . ∧
[Aik

=aik
]} ⇒ lr, its corresponding maxent feature can be written as,

f
<match {. . . }, lr>

(o, l) =

⎧⎨⎩1+conf(r) if l = lr and “o matches
{[Ai1=ai1 ] ∧ . . . ∧ [Aik

=aik
]}”

0 otherwise
(4)

In (4), a feature is active (= 1 + conf(r)) if the label l of o is matching with
lr and o holds the antecedent of r. Training maxent is very complicated in such a
way that features interact with each other to yield an optimal estimated distribu-
tion over the training data. Thus, the learned weight of a PAR not only reflects
how important the PAR is but also w.r.t the global optimum. One important
observation is that the maxent model relies mainly on the occurrence frequency
of its features and ignores feature confidence. In our model, we provide a priori
for PARs by adding their confidence (conf(r)) to their corresponding feature val-
ues. After being trained, MPEAR can be used to predict class labels for unseen
instances: given a new instance oj , its predicted label lj will be:

lj = argmaxl∈L Pλ(l|oj)

= argmaxl∈L
1

Zλ(oj)
exp

(
N∑

r=1

λ
<match {. . . }, lr>

f
<match {. . . }, lr>

(oj , l)

)

= argmaxl∈L
N∑

r=1

λ
<match {. . . }, lr>

f
<match {. . . }, lr>

(oj , l), (5)
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3 Experiments

3.1 Experimental Environments, Parameters, and Evaluation

The experiments were performed using our C/C++ implementation of maxent
(FlexME: www.jaist.ac.jp/∼hieuxuan/flexcrfs/flexcrfs.html#FlexME). PARs w-
ere discovered by using an efficient implementation of FP–growth by B. Goethals.

We used two groups of datasets from UCI ML Repository [15] as the ex-
perimental data. The first group includes 26 datasets which were tested with
CBA [16] and CMAR [17] and the second group contains 13 datasets which were
tested with ART [3]. Data discretization was done by using the entropy–based
discretization method in [11]. The code is taken from MLC++ library [13].

All experimental parameters and results of learning methods for the first
data group were derived from CMAR [17]; and those of the learning methods
for the second data group were taken from ART [3].

We discovered all PARs with the antecedent length k=1, . . . , 5 withminconf1
= 40%,minconf2 = 70%,minconf3 = 80%,minconf4 = 90%,minconf5 = 95%,
respectively. Theminsup is 1%. All the experimental results, including ours, were
obtained from 10–CV (ten fold cross–validation) tests.

3.2 Experimental Results

For each dataset, we performed 10–CV test, and in each CV–fold we trained
MEPAR for 50 L–BFGS iterations and then chose the highest accuracy to cal-
culate the 10–CV accuracy. We observed that MEPAR models for UCI datasets
converged around the first 20 L–BFGS iterations.

Table 1 shows the results of five methods (C4.5 [21], CBA [16], CAEP [9],
CMAR [17], and ours – MEPAR) for the first data group. The first column is the
list of 26 datasets; the second is the number of records; the third is the number
of attributes; and the fourth is the number of class labels. The results for C4.5,
CBA, and CMAR were taken from [17]; the results for CAEP were taken from
[9] in which the results of several datasets are ignored because of their omission
from the original paper. The ninth is the accuracy of our model, MEPAR, and
the last column is the accuracy of normal maxent (i.e., without PARs). For each
row, the highest accuracy is printed using italics.

In the first data group, MEPAR outperformed the other methods on 24 of
26 datasets including both the largest dataset (Waveform, 5,000 records) and
the smallest one (Labor, 57 records). MEPAR performs well on datasets with
a large number of attributes. This is because these datasets usually generate a
large number of PARs with rich dependencies among data items, very useful for
the MEPAR model. For those with small number of attributes, MEPAR obtains
accuracies similar to the others. The average accuracy of MEPAR is 88.39%,
significantly higher than those of CMAR, CBA, C4.5, and normal maxent.

Table 2 shows the results of six methods (ART [3], C4.5 [21], RIPPERk=2
[6], CN2 [5], Naive Bayes [10], and ours – MEPAR) for the second data group.
The experimental results of ART, C4.5, RIPPER, CN2, and Naive Bayes were
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Table 1. Accuracy comparison: C4.5, CBA, CAEP, CMAR, and MEPAR

Datasets #Rec #Attr #Cls C4.5 CBA CAEP CMAR MEPAR N.Maxent
Anneal 898 38 6 94.8 97.9 N/A 97.3 98.9 97.5
Austra 690 14 2 84.7 84.9 86.2 86.1 88.4 88.0
Auto 205 25 7 80.1 78.3 N/A 78.1 83.5 83.5
Breast 699 10 2 95 96.3 97.3 96.4 97.8 97.2
Cleve 303 13 2 78.2 82.8 83.3 82.2 85.3 82.2
Crx 690 15 2 84.9 84.7 N/A 84.9 84.6 83.0
Diabetes 768 8 2 74.2 74.5 N/A 75.8 77.6 77.6
German 1000 20 2 72.3 73.4 72.5 74.9 76.6 73.5
Glass 214 9 7 68.7 73.9 N/A 70.1 81.9 81.7
Heart 270 13 2 80.8 81.9 83.7 82.2 84.8 84.8
Hepatitis 155 19 2 80.6 81.8 83.0 80.5 84.8 82.6
Horse 368 22 2 82.6 82.1 N/A 82.6 86.7 86.0
Hypo 3163 25 2 99.2 98.9 N/A 98.4 99.4 99.4
Iono 351 34 2 90.0 92.3 90.0 91.5 94.3 92.5
Iris 150 4 3 95.3 94.7 94.7 94.0 94.7 94.7
Labor 57 16 2 79.3 86.3 N/A 89.7 90.0 86.3
Led7 3200 7 10 73.5 71.9 N/A 72.5 74.3 73.8
Lymph 148 18 4 73.5 77.8 N/A 83.1 90.0 90.0
Pima 768 8 2 75.5 72.9 75.0 75.1 78.4 76.2
Sick 2800 29 2 98.5 97.0 N/A 97.5 97.9 97.3
Sonar 208 60 2 70.2 77.5 N/A 79.4 90.0 88.6
Tic–tac–toe 958 9 2 99.4 99.6 99.1 99.2 99.2 99.1
Vehicle 846 18 4 72.6 68.7 66.3 68.8 76.3 74.9
Waveform 5000 21 3 78.1 80.0 84.7 83.2 87.3 85.5
Wine 178 13 3 92.7 95.0 97.1 95.0 98.3 98.3
Zoo 101 16 7 92.2 96.8 N/A 97.1 97.1 97.1
Average 83.34% 84.69% N/A 85.22% 88.39% 87.36%

taken from [3]. The last column is the accuracy of MEPAR. In this data group,
MEPAR performed better than the others on 7 of 13 datasets. It also performed
well on both large (Nursery, Mushroom, Splice) and small ones (Lenses, Lung–
cancer). The average accuracy of MEPAR is significantly higher than those of
the others.

we also analyzed the stability of MEPAR. Figure 1 shows a comparison of
the log–likelihood and the accuracy between two cases: normal maxent (without
PARs) and MEPAR (with PARs). The left graph shows that the log–likelihood
of MEPAR increases more strongly than that of the normal maxent. This means
that MEPAR can describe the empirical data better. The right graph depicts the
accuracy values of MEPAR and the normal maxent as functions of the number of
training iterations. As we can see, the accuracy of MEPAR is significantly higher
than that of the normal maxent. Further, the accuracy of MEPAR increases
smoothly, without large fluctuations of the normal maxent.
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Table 2. Accuracy comparison: ART, C4.5, RIPPER, CN2, N. Bayes, and MEPAR

Datasets #Rec #Attr #Cls ART C4.5 RIPPER CN2 N.Bayes MEPAR
Audiology 226 69 24 65.2 81.4 73.9 75.6 23.4 84.1
Car 1728 6 4 98.6 92.9 78.4 93.9 70.0 97.0
Chess 3198 35 2 97.7 99.2 99.2 99.4 62.5 96.3
Hayes–roth 160 4 3 84.4 73.8 78.1 76.2 61.9 87.5
Lenses 24 5 3 70.0 81.7 65.0 76.7 63.3 80.0
Lung–cancer 32 56 3 40.8 43.3 45.0 39.2 43.3 53.3
Mushrooms 8124 22 2 98.5 100. 100. 100. 94.3 100.
Nursery 12960 8 5 99.1 96.2 96.7 98.1 88.0 98.5
Soybean 683 35 19 91.5 93.7 91.1 92.1 58.7 92.8
Splice 3190 60 3 89.3 94.1 93.1 92.3 51.9 96.1
Tic–tac–toe 958 9 2 81.6 83.8 97.5 98.0 65.3 99.2
Titanic 2201 3 2 78.6 79.1 78.3 75.8 68.0 78.1
Vote 435 16 2 95.9 95.9 94.9 94.7 89.2 97.2
Average 83.94% 85.76% 83.94% 85.54% 64.61% 89.24%

Fig. 1. Log–likelihood and accuracy as functions of # of L–BFGS training iterations
(with and without PARs) – measured on the Nursery dataset at the 1st fold of 10–CV

4 Conclusions

This paper presented the hybrid classification model, MEPAR, that is based on
PARs discovered from training data and maxent. Unlike other rule–based meth-
ods, our model predicts labels for new data instances based on multiple PARs
whose weights are trained using maxent. This ensures that weights of PARs not
only precisely measure how important the PARs are, but are also consistent
with the empirical data. Also, a prediction based on multiple PARs should avoid
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biased decisions. Our future work will focus on how to tune parameters auto-
matically in order to obtain higher performance. Also, the theoretical aspect will
be further investigated to clarify why MEPAR can achieve such high accuracy.
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Abstract. Many real life problems require the classification of items in
naturally ordered classes. These problems are traditionally handled by
conventional methods for nominal classes, ignoring the order. This pa-
per introduces a new training model for feedforward neural networks,
for multiclass classification problems, where the classes are ordered. The
proposed model has just one output unit which takes values in the in-
terval [0,1]; this interval is then subdivided into K subintervals (one for
each class), according to a specific probabilistic model. A comparison is
made with conventional approaches, as well as with other architectures
specific for ordinal data proposed in the literature. The new model com-
pares favourably with the other methods under study, in the synthetic
dataset used for evaluation.

1 Introduction

Many pattern recognition problems involve classifying examples into classes
which have a natural ordering. Settings in which it is natural to rank instances
arise in many fields, such as information retrieval [1], collaborative filtering [2]
and econometric modelling [3].

Suppose that examples in a classification problem belong to one of K classes,
numbered from 1 to K, corresponding to their natural order if one exists, and
arbitrarily otherwise. The learning task is to select a prediction function f(x)
from a family of possible functions that minimizes the expected loss.

Although conventional methods for nominal classes could be employed, the
use of techniques designed specifically for ordered classes results in simpler classi-
fiers, making it easier to interpret the factors that are being used to discriminate
among classes [3]. We propose a classifier for ordered classes based on neural
networks by imposing that the output layer with K units has just one mode,
corresponding to the predicted class. In fact the model is equivalent to a net-
work with just one output unit, as the final layer serves only to compute the
error and has no weights associated with its input values (see figure 1).

The novel proposed algorithm attains the best generalization capability for
the group of methods evaluated.

J. Gama et al. (Eds.): ECML 2005, LNAI 3720, pp. 690–697, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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2 A Neural Network Architecture for Ordinal Data

To use a neural network for classification, we need to construct an equivalent
function approximation problem by assigning a target value for each class. For
a two-class problem we can use a network with a single output, and binary
target values: 1 for one class, and 0 for the other. The training of the network
is commonly performed using the popular mean square error. For multiclass
classification problems (1-of-K, where K > 2) we use a network with K outputs,
one corresponding to each class, and target values of 1 for the correct class, and
0 otherwise. Since these targets are not independent of each other, however, it is
no longer appropriate to use the same error measure. The correct generalization
is through a special activation function (the softmax) designed so as to satisfy
the normalization constraint on the total probability.

However this approach does not retain the ordinality or rank order of the
classes and is not, therefore, appropriate for ordinal multistate classification
problems.

Let us formulate the problem of separating K ordered classes C1, · · · , CK .
Consider the training set {x(k)

i }, where k = 1, · · · ,K, denotes the class number,
i = 1, · · · , �k is the index within each class, and x(k)

i ∈ IRp. Let � =
∑K

k=1 �k be
the total number of training examples.

Given a new query point x, Bayes decision theory suggests to classify x in the
class which maximizes the a posteriori probability P (Ck|x). To do so, one usually
has to estimate these probabilities, either implicitly or explicitly. Suppose for in-
stance that we have 7 classes and, for a given point x0, the highest probability is
P (C5|x0); we then attribute class C5 to the given point. If there is not an order
relation between the classes, it is perfectly natural that the second highest a pos-
teriori probability is, for instance, P (C2|x). However, if the classes are ordered,
C1 < C2 <, . . . , < C7, classes C4 and C6 are closer to class C5 and therefore the
second and third highest a posteriori probabilities should be attained in these
classes. This argument extends easily to the classes, C3 and C7, and so on. This
is the main idea behind the method proposed here, which we now detail.

Our method assumes that in a supervised classification problem with ordered
classes, the random variable class associated with a given query x should be
unimodal. That is to say that if we plot the a posteriori probabilities P (Ck|x),
from the first C1 to the last CK , there should be only one mode in this graphic.
Here, we apply this idea in the context of neural networks. Usually in neural
networks, the output layer has as many units as there are classes, K. We will
use the same order for these units and the classes. In order to force the output
values (which represent the a posteriori probabilities) to have just one mode,
we will use a parametric model for these output units. This model consists in
assuming that the output values come from a binomial distribution, B(K−1, p).
This distribution is unimodal in most cases and when it has two modes, these
are for contiguous values, which makes sense in our case, since we can have
exactly the same probability for two classes. This binomial distribution takes
integer values in the set {0, 1, . . . ,K − 1}; value 0 corresponds to class C1, value
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Fig. 1. unimodal neural network architecture

1 to class C2 and so on until value K − 1 to class CK . As K is known, the only
parameter left to be estimated from this model is the probability p. We will
therefore use a different architecture for the neural network; that is, the output
layer will have just one output unit, corresponding to the value of p – figure 1.
For a given query x, the output of the network will be a single numerical value in
the range [0,1], which we call px. Then, the probabilities P (Ck|x) are calculated
from the binomial model:

P (Ck|x) =
(K − 1)!pk−1

x (1 − px)K−k

(k − 1)!(K − k)!
, k = 1, 2, . . . ,K

In fact these probabilities are calculated recursively, to save computing time:

P (Ck|x)
P (Ck−1|x)

=
px(K − k + 1)
(k − 1)(1− px)

, and so P (Ck|x) = P (Ck−1|x)
px(K − k + 1)
(k − 1)(1− px)

.

We start with P (C1|x) = (1 − px)K−1 and compute the other probabilities,
P (Ck|x), k = 2, 3, . . . ,K, using the above formula.

When the training case x is presented, the error is defined as

K∑
k=1

(P (Ck|x)− δ(k − Cx))2

where δ(n) =

{
1 if n = 0
0 otherwise

and Cx the true class of x. The network is trained

to minimize the average value over all training cases of such error. Finally, in
the test phase, we choose the class k which maximizes the probability P (Ck).
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3 Experimental Results

In this section we present experimental results for several models based on neural
networks, when applied to a synthetic dataset.

3.1 Implementation Details

We compared the following algorithms:

– Conventional neural network (cNN). To test the hypothesis that methods
specifically targeted for ordinal data improve the performance of a standard
classifier, we tested a conventional feed forward network, fully connected,
with a single hidden layer, trained with the traditional least square approach.

– Pairwise NN (pNN): Frank [4] introduced a simple algorithm that enables
standard classification algorithms to exploit the ordering information in or-
dinal prediction problems. First, the data is transformed from a K-class
ordinal problem to K−1 binary class problems. To predict the class value of
an unseen instance the probabilities of the K original classes are estimated
using the outputs from the K − 1 binary classifiers.

– Costa [5], following a probabilistic approach, proposes a neural network ar-
chitecture (itNN) that exploits the ordinal nature of the data, by defining
the classification task on a suitable space through a “partitive approach”.
It is proposed a feedforward neural network with K − 1 outputs to solve a
K-class ordinal problem. The probabilistic meaning assigned to the network
outputs is exploited to rank the elements of the dataset.

– proposed unimodal model (uNN), as previously introduced.

Experiments were carried out in Matlab 7.0 (R14), making use of the Neural
Network Toolbox1.

The first three models were configured with a single hidden layer and trained
with Levenberg-Marquardt back propagation method, over 2000 epochs. The
uNN model was also configured with a single hidden layer and trained with the
lsqnonlin Matlab function over 1000 iterations.

The number of neurons in the hidden layer was experimentally set for the
best performance.

3.2 Measuring Classifier Performance

Having built a classifier, the obvious question is “how good is it?”. This begs
the question of what we mean by good. The obvious answer is to treat every
misclassification as equally likely. This translates to adopting the non-metric
indicator function l0−1(f(x), y) = 0 if f(x) = y and l0−1(f(x), y) = 1 if f(x) �= y,
where f(x) and y are the predicted and true classes, respectively. Measuring the
performance of a classifier using the l0−1 loss function is equivalent to simply

1 The code is available upon request to the authors.
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Fig. 2. Test setup for 5 classes in IR2

considering the misclassification error rate (MER). However, for ordered classes,
losses that increase with the absolute difference between the class numbers are
more natural choices in the absence of better information [3].

The mean absolute error (MAE) criterion takes into account the degree of
misclassification and is thus a richer criterion than MER. The loss function
corresponding to this criterion is l(f(x), y) = |f(x)− y|.

A variant of the above MAE measure is the root mean square error (RMSE),
where the absolute difference is replaced with the square of the difference,
l(f(x), y) = (f(x)− y)2.

Finally, the performance of the classifiers was also assessed with the Spear-
man coefficient (rs), a nonparametric rank-order correlation coefficient, well es-
tablished in the literature.

3.3 Experimental Methodology and Results

To check the adequacy of the proposed model we generated a synthetic dataset
in a similar way to Herbrich [1].

We generated 1000 example points x = [x1 x2]t uniformly at random in the
unit square [0, 1]× [0, 1] ⊂ IR2. Each point was assigned a rank y from the set
{1, 2, 3, 4, 5}, according to

y = min
r∈{1,2,3,4,5}

{r : br−1 < 10(x1 − 0.5)(x2 − 0.5) + ε < br}

(b0, b1, b2, b3, b4, b5) = (−∞,−1,−0.1, 0.25, 1,+∞)

where ε is a random value, normally distributed with zero mean and standard
deviation σ = 0.125. Figure 2(a) shows the five regions and figure 2(b) the points
which were assigned to a different rank after the corruption with the normally
distributed noise.

In order to compare the different algorithms, and similarly to [1], we randomly
selected training sequences of point-rank pairs of length � ranging from 20 to 100.
The remaining points were used to estimate the classification error, which were



Classification of Ordinal Data Using Neural Networks 695

20 30 40 50 60 70 80 90 100
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Training set size

M
E

R

cNN
itNN
pNN
uNN

20 30 40 50 60 70 80 90 100

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

(a) MER criterion.

20 30 40 50 60 70 80 90 100
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Training set size

R
M

S
E

20 30 40 50 60 70 80 90 100

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

(b) RMSE criterion.

20 30 40 50 60 70 80 90 100
0.2

0.4

0.6

0.8

M
A

E

20 30 40 50 60 70 80 90 100

0.2

0.4

0.6

0.8

20 30 40 50 60 70 80 90 100
0.6

0.7

0.8

0.9

Training set size

r s

20 30 40 50 60 70 80 90 100

0.6

0.7

0.8

0.9

(c) MAE criterion and
Spearman coefficient.

Fig. 3. Results for 5 classes in IR2
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Fig. 4. Results for 10 classes in IR2

averaged over 10 runs of the algorithms for each size of the training sequence.
Thus we obtained the learning curves shown in figure 3, for 5 neurons in the
hidden layer.
Accuracy dependence on the number of classes. To investigate the relation
between the number of classes and the performance of the evaluated algorithms,
we also ran the four models on the same dataset but with 10 classes.

This time each point was assigned a rank y from the set {1,2, 3, 4, 5, 6, 7, 8, 9, 10},
according to

y = min
r∈{1,2,3,4,5,6,7,8,9,10}

{r : br−1 < 10(x1 − 0.5)(x2 − 0.5) + ε < br}

(b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, b10) =
(−∞,−1.75,−1,−0.5,−0.1, 0.1, 0.25, 0.75, 1, 1.75,+∞)

where ε is a random value, normally distributed with zero mean and standard
deviation σ = 0.125/2.

The learning curves obtained for this arrangement are shown in figure 4 (again,
for 5 neurons in the hidden layer).
Accuracy dependence on the data dimension. The described experiments
in IR2 were repeated for data points in IR4, to evaluate the influence of data di-
mension on the models’ relative performance.
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Table 1. Results for 5 classes in IR4 (MER;RMSE;MAE;rs)

Set size cNN pNN itNN uNN
100 (0.64;1.60;1.12;0.28) (0.59;1.14;0.81;0.58) (0.61;1.39;0.96;0.42) (0.63;1.58;1.12;0.48)
200 (0.61;1.53;1.05;0.36) (0.53;0.97;0.66;0.70) (0.53;1.13;0.75;0.63) (0.47;1.03;0.64;0.75)
300 (0.57;1.44;0.94;0.44) (0.51;0.91;0.61;0.75) (0.45;0.97;0.60;0.73) (0.39;0.80;0.46;0.84)
400 (0.52;1.36;0.85;0.52) (0.48;0.86;0.57;0.77) (0.35;0.76;0.42;0.84) (0.33;0.68;0.37;0.89)
500 (0.51;1.27;0.80;0.57) (0.44;0.79;0.50;0.82) (0.29;0.65;0.32;0.88) (0.31;0.67;0.35;0.89)

We generated 2000 example points x = [x1 x2 x3 x4]t uniformly at random in
the unit square in IR4.

For 5 classes each point was assigned a rank y from the set {1, 2, 3, 4, 5}, ac-
cording to

y = min
r∈{1,2,3,4,5}

{r : br−1 < 1000
4∏

i=1

(xi − 0.5) + ε < br}

(b0, b1, b2, b3, b4) = (−∞, −2.5, −0.5, 0.5, 3, +∞)

where ε is a random value, normally distributed with zero mean and standard
deviation σ = 0.25.

Finally, for 10 classes the rank was assigned according to the rule

y = min
r∈{1,2,3,4,5,6,7,8,9,10}

{r : br−1 < 1000
4∏

i=1

(xi − 0.5) + ε < br}

(b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, b10) = (−∞, −5, −2.5, −1, −0.4, 0.1, 0.5, 1.1, 3, 6, +∞)

where ε is a random value, normally distributed with zero mean and σ = 0.125.
The results are presented in a tabular form, tables 1 and 2.
Network complexity One final point to make in any comparison of methods re-
gards complexity. The number of learnable parameters for each model is presented
in table 3.

Table 2. Results for 10 classes in IR4 (MER;RMSE;MAE;rs)

Set size cNN pNN itNN uNN
100 (0.81;3.42;2.54;0.25) (0.79;2.10;1.60;0.66) (0.76;2.83;1.99;0.49) (0.79;3.25;2.36;0.34)
200 (0.78;3.24;2.32;0.33) (0.74;1.73;1.31;0.80) (0.68;2.28;1.50;0.66) (0.65;2.16;1.41;0.72)
300 (0.74;3.04;2.14;0.42) (0.70;1.55;1.14;0.84) (0.54;1.37;0.84;0.88) (0.58;1.74;1.07;0.80)
400 (0.74;3.08;2.11;0.44) (0.67;1.42;1.03;0.87) (0.47;1.13;0.66;0.92) (0.51;1.15;0.71;0.91)
500 (0.70;2.88;1.95;0.49) (0.63;1.29;0.92;0.89) (0.42;0.96;0.55;0.94) (0.47;1.01;0.61;0.93)

4 Conclusion

This study presents a new approach to neural networks training for ordinal data.
The main idea is to retain the ordinality of the classes by imposing a parametric
model for the output probabilities.
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Table 3. Number of parameters for each neural network model

Model cNN pNN itNN uNN
IR2, K = 5 45 21 × 4 39 21
IR2, K = 10 75 21 × 9 69 21

Model cNN pNN itNN uNN
IR4, K = 5 165 97 × 4 148 97
IR4, K = 10 250 97 × 9 233 97

The study compares the results of the proposed model with conventional neu-
ral network for nominal classes, and two models proposed in the literature specif-
ically for ordinal data.

Simple misclassification, mean absolute error, root mean square error and
spearman coefficient are used as measures of performance for all models and used
for model comparison. This new method is likely to produce a simpler and more
robust classifier, and compares favourably with state-of-the-art methods.

Other directions in future work include the use of similar networks with two
or more output units and more flexible models other than the binomial. We think
this increased flexibility might improve further the results for more complicated
problems, like when we increase the number of classes and of dimensions in our
experiments. Another idea which we will consider consists in using these type of
models in conjunction with other learning algorithms, like for instance SVMs. We
plan also to investigate the performance of this type of models for non ordinal
classes.
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Abstract. Independent subspace analysis (ISA) that deals with multi-
dimensional independent sources, is a generalization of independent com-
ponent analysis (ICA). However, all known ISA algorithms may become
ineffective when the sources possess temporal structure. The innovation
process instead of the original mixtures has been proposed to solve ICA
problems with temporal dependencies. Here we show that this strategy
can be applied to ISA as well. We demonstrate the idea on a mixture
of 3D processes and also on a mixture of facial pictures used as two-
dimensional deterministic sources. ISA on innovations was able to find
the original subspaces, while plain ISA was not.

1 Introduction

Independent Component Analysis (ICA) [1,2] aims to recover linearly or non-
linearly mixed independent and hidden sources. There is a broad range of appli-
cations for ICA, such as blind source separation and blind source deconvolution
[3], feature extraction [4], denoising [5]. Particular applications include, e.g., the
analysis of financial data [6], data from neurobiology, fMRI, EEG, and MEG
(see, e.g., [7,8] and references therein). For a recent review on ICA see [9].

Original ICA algorithms are 1-dimensional: all sources are assumed to be in-
dependent real valued stochastic variables. However, applications where not all,
but only certain groups of the sources are independent may have high relevance
in practice. In this case, independent sources can be multi-dimensional. Con-
sider, e.g., the generalization of the cocktail-party problem, where independent
groups of musicians are playing at the party. This is the subject of Independent
Subspace Analysis (ISA), an extension of ICA, also called Multi-dimensional In-
dependent Component Analysis [10,11]. Efforts have been made to develop ISA
algorithms [10,11,12,13,14,15,16]. Certain approaches use 2-dimensional Edge-
worth expansion [12] leading to sophisticated equations. They have not been
extended to 3 or higher dimensions. Another suggestion is to start with ICA and
then permute the columns of the mixing matrix to find the best ISA estimation
[10]. This case has not been worked out and permutations may not be general
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enough. Another recent approach searches for independent subspaces via kernel
methods [14].

These ISA algorithms all have a serious drawback: they require independently
and identically distributed (i.i.d.) sources. For the ICA problem several authors
[17,18,19] suggested that the innovation process, instead of the original mixtures,
could be used if input had a temporal structure. The innovation process can be
calculated relatively easily, if one assumes that the sources are AR processes.
Here we propose to compute the innovation process of the mixed signal by as-
suming an underlying autoregressive (AR) process first, and then to apply our
new, efficient ISA algorithms [15,16].

The paper is built as follows: Section 2 is an overview of the ISA problem.
Section 3 presents the motivation for using the innovation process. This section
describes the corresponding ISA algorithm. Numerical simulations are presented
in Section 4. Short discussion and conclusions are provided in Section 5.

2 The ISA Model

Assume we have d of m-dimensional independent sources denoted by y1, . . . ,yd,
respectively, where yi ∈ IRm. Let y = [(y1)T , . . . , (yd)T ]T ∈ IRdm, where super-
script T stands for transposition. We assume that these sources are hidden and
we can only observe the following signal

x = Ay (1)

where A ∈ IRdm×dm. The task is to recover hidden source y and mixing matrix A
given the observed signal x ∈ IRdm. In the ISA model we assume that yi ∈ IRm

is independent of yj ∈ IRm for i �= j. For the special case of m=1, the ICA
problem is recovered.

In the ICA problem, given the signals, sources yi (i = 1, . . . , d) can be
recovered only up to sign, up to arbitrary scaling factors, and up to an ar-
bitrary permutation. The ISA task has more freedom; signals yi can be re-
covered up to an arbitrary permutation and an m-dimensional linear, invert-
ible transformation. It is easy to see this by considering matrix C ∈ IRdm×dm

made of a permutation matrix of size d × d, where each element is made of
an m × m block-matrix having invertible Ci blocks replacing the non-zero
elements of the permutation matrix. Then, x = Ay = AC−1Cy, and be-
cause yi is independent of yj , thus Ciy

i is independent of Cjy
j ∀i �= j.

That is, in the ISA model, matrices A and AC−1 and sources yi and Ciy
i

are indistinguishable. This ambiguity of the ISA task can be lowered by as-
suming E{y} = 0, and E{yyT } = Imd, where E is the expected value oper-
ator, In is the n-dimensional identity matrix. Similarly, by scaling observed
signal x, one can assure that E{x} = 0, and E{xxT } = Imd, which is
called the whitening of the inputs. Then, Eq. (1) ensures that E{xxT } =
AE{yyT }AT and Imd = AAT . It then follows that under our assumptions,
signals yi can be recovered up to permutation and up to m-dimensional or-
thogonal transformation in the ISA problem. In other words, if Ci ∈ IRm×m
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is an arbitrary orthogonal matrix, then signals x will not provide informa-
tion whether the original sources correspond to yi or, instead, to Ciy

i. For
the 1D case this is equivalent to the uncertainty that Ci = 1 or Ci = −1.
That is, in 1D, the sign of yi is not determined. Thus, without any loss
of generality, it is satisfactory to restrict the search for mixing matrix A
(or, for its inverse, i.e., for separation matrix W ) to the set of orthogonal
matrices.

2.1 The ISA Objective

We introduce the ISA objective subject to the constraint of W T W = Imd.
The separation matrix W is amongst the global minima of this ISA objec-
tive function. Let I(y1, . . . ,yd) denote the mutual information between vectors
y1, . . . ,yd ∈ IRm. Further, let H(y) denote the joint Shannon-entropy of vector-
valued stochastic variable y. Let y = Wx. Then

I(y1,y2, . . . ,yd) = −H(x) + log |W |+H(y1) + . . .+H(yd) (2)

Our task is to minimize (2). However, H(x) is constant and W T W = I. Thus
log |W | = 0 and the minimization of (2) is equivalent to the minimization of

J(W ) .= H(y1) + . . .+H(yd). (3)

2.2 Multi-dimensional Entropy Estimation

Recently, we have developed efficient solutions to the ISA problem [15,16],
which are based on efficient multi-dimensional estimations of the entropy H(yi).
Under mild assumptions, the Beadword-Halton-Hammersley theorem [20,21]
approximates Rényi’s α-entropy, which in turn can be used for approxima-
tion of the Shannon entropy. This estimation is asymptotically unbiased and
strongly consistent [20]. We modify the result of this theorem by a mono-
tone increasing transformation and propose the following estimation [15]: Let
{yi(1), . . . ,yi(n)} be an i.i.d. sample set from distribution yi. Let N i

k,j be
the k nearest neighbors of yi(j) in this sample set. Then a possible estima-
tion of H(yi) up to an irrelevant additive and multiplicative constant is the
following:

Ĥ1(yi) .= lim
γ→0

n∑
j=1

∑
z∈N i

k,j

‖z − yi(j)‖γ (4)

In [15] we also derived another estimation for the entropy:

Ĥ2(yi) .=
n∑

j=1

∑
z∈N i

k,j

log(‖z − yi(j)‖) (5)
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2.3 Optimization and Error Measurement

We have used ICA as a preprocessing step, because (3) can be written as

J(W ) =
d∑

j=1

m∑
i=1

H(yj
i )−

d∑
j=1

I(yj
1, . . . , y

j
m), (6)

Then, the minimization of (3) is equivalent to the maximization of the mu-
tual information (I(yj

1, . . . , y
j
m) for all j) within the subspaces. To this end,

1-dimensional (1D) D Jacobi-rotations can be applied between the components.
Details can be found in [15,16]. 1D global search is executed in each 1D opti-
mization. An iteration cycle is made of m2d(d − 1)/2 steps of 1D optimization
tasks, which is much less demanding than the exhaustive search for optimal ro-
tation in IRmd×md. According to [10] in some cases, only 90 degree rotations
(i.e., permutations of the components between subspaces) were allowed. Cycles
are repeated until convergence.

Note also that if the ISA algorithm works properly, then the product of the
estimated separation matrix W and the original mixing matrix A produces a
permutation matrix made of m × m blocks. We measure the distance of WA
and the permutation matrix by using a generalization of the Amari-distance [22].
Let bij denote the sum of the absolute values of elements at the intersection of
the i(m − 1) + 1, . . . , im rows and the j(m − 1) + 1, . . . , jm columns of matrix
WA. Then the generalized Amari-distance ρ(A,W ) is defined as follows:

ρ(A,W ) .=
1
2d

d∑
i=1

(∑d
j=1 |bij |

maxj |bij |
− 1
)

+
1
2d

d∑
j=1

(∑d
i=1 |bij |

maxi |bij |
− 1
)
≥ 0 (7)

Clearly, ρ(A,W ) = 0 iff WA is a permutation matrix made of m ×m blocks.
Amari distance is a non-monotonic function of our objective, but low Amari
distance is a good sign of the success of the optimization.

3 ISA Using Innovations

The innovation process ŝ(t) of a stochastic process s(t) can be written as

ŝ(t) = s(t)−E(s(t)|t, s(t− 1), s(t− 2), . . . ), (8)

see e.g., [17] and the cited references. In other words, the innovation process is
the error of the best prediction. Estimation of the innovation process can be per-
formed by approximating the conditional expectation of Eq. (8), which is the best
prediction of s(t) given its past in the least mean-square sense. This regression
problem can be approximated by ordinary linear AR or by more sophisticated
nonlinear predictions.

A special group of time-dependent stochastic processes are formed by m-
dimensional τ -order AR processes:

y(t) = F 1y(t− 1) + . . .+ F τy(t− τ) + ε (9)
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where F p are m×m matrices and ε is an m-dimensional i.i.d. noise. Note that
for AR processes the innovation is equivalent to the ε noise. If such processes
are mixed in the ISA problem, then the task is to identify and ‘subtract’ the
deterministic part of the temporal process and to recover the mixed, but i.i.d.
noises. Mixed noise components then enable the ISA procedure.

In the ISA problem, the innovation process of the mixed input is the same
as the mixture of the innovations of the original processes

Aŷ(t) = x(t)−E(x(t)|t,x(t− 1),x(t− 2), . . . ) = x̂(t) (10)

because of the linearity of the expectation operator. Mixing matrix A is the
same for both the original and for the innovation processes. Therefore an ISA
estimation which operates on the innovation process identifies the desired model.

3.1 Algorithm

We extended the ISA algorithm of [15]: We preprocessed the mixed data by the
autoregressive model of [23]. The order of the AR model was also estimated.
In the next step, traditional ICA processing was used on the gained innovation
process, i.e., on the error of the prediction. This step was followed by a series
of Jacobi-rotations. For all rotations the global minimum of cost function J
was computed, where entropy was estimated through Eq. (4) or Eq. (5). For all
Jacobi-rotations, 1D global optimizations using exhaustive search for each single
rotational angle θ ∈ [−π

2 ,
π
2 ], or, only simple permutations were made.

4 Computational Experiments

First, we tested ISA on an artificial problem of mixed processes with known inno-
vation processes. 2nd-order AR process were generated; the coefficient matrices
of the AR process were selected randomly. Each subspace had 3 dimensions
(there were 6 subspaces in total). Independent noise was added from six dif-
ferent 3D wireframe shapes used as sampling distributions (Fig. 1). The data,
which consisted of 6 × 3 dimensional vectors, were mixed with random matrix
A ∈ IR18×18.

Here we ensured that an AR model is sufficient for the estimation of the
innovations. Plain ISA was not able to separate the independent sources from
the data (Fig. 1(e)). The combination of the autoregressive model and the ISA
algorithm could, however, recover the original distributions (Figs. 1(d) and 1(f)).

In another experiment, we used 6 different facial images with 50× 50 pixels
(Fig. 2(a)). The pixel values were linearly scaled and truncated to integers such
that their sum was 100,000 for each image. Then we scanned the images from
left-to-right and from top-to-bottom and took the 2D coordinate samples of the
pixels as many times as directed by the value of each pixel. This is referred to
as the ‘pixelwise’ procedure in the caption of Fig. 2. In this case, ISA could not
find the proper subspaces because the sampling is very far from being temporally
independent (Figs. 2(c) and 2(e)). The problem is not an AR problem, there are
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Fig. 1. ISA results for the 3D illustrative example
(a): noise of AR processes, (b): AR processes before mixing, (c): innovations, (d):
estimated sources of innovations, (e): Performance without using innovations, (f): Per-
formance with innovations, (g): Amari distance. Performance is shown in the form of
Hinton-diagrams on the product of mixing and estimated separation matrices.

strong echoes in these ‘processes’ from one line to another one. Arguably, the
‘processes’ are deterministic. Nevertheless, when we used the innovation, ISA
estimated the subspaces properly as shown in Figs. 2(d) and 2(f). Figures were
produced using Eq. (5), but both Eqs. (4) and (5) gave similar results.

5 Discussion and Conclusions

We have introduced the innovation process into independent subspace analysis.
This step is useful if the sources have a temporal structure, but the noises in
the processes are independent. A 2D problem using ‘processes’ generated from
mixtures of facial pictures was also demixed by the innovationX process.

The concept of innovation in blind source separation techniques and the fact
that it extends the range of addressable problems for ICA is not new. Autore-
gressive processes were used in [17,18,19,24,25] for modelling the independent
sources. Some ICA algorithms assume that independent sources have different
autocorrelation structures and use temporal second-order correlations. If this
restriction is not fulfilled, e.g., if the sources have approximately the same distri-
butions, then separation may fail. Generalization to the multi-dimensional case
is not trivial.
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(a) (b) (c)

(d) (e) (f)

Fig. 2. Example when multi-dimensional samples drawn pixelwise
(a): original facial images, (b): mixed sources, pixelwise sampling, (c): ISA estimations,
(d): estimations with ISA on innovations, (e): performance of ISA, (f): performance of
ISA on innovations. Image quality is enhanced by median-filter.

Processes which are not stationary, are hard to manage with ISA, because
the estimation of some quantities, e.g., the entropy and the expectations are
hard. However, for AR ISA problems, the innovation is i.i.d. and our algorithm
works properly. Hyvärinen [17] also argues that the innovation process has other
valuable properties: Innovations are usually more independent from each other
than the original processes, because the independence of the innovations does not
imply that the original processes were independent - only the opposite is true.
In summary, switching to the innovation process before processing the data can
lead to more accurate estimations of the mixing matrix.

Our numerical simulations demonstrate that ISA alike to ICA may benefit
from innovations. For AR processes, the underlying model remains unchanged
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when the original data are replaced by the innovations. We note that for the
pixelwise case, the AR assumption is not valid, the problem is deterministic.
Still, ISA on the ‘innovations’ produced good results. Thus, the robustness of
the ISA makes the AR assumption the trick of demixing.
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Abstract. Inductive Logic Programming (ILP) is an established sub-
field of Machine Learning. Nevertheless, it is recognized that efficiency
and scalability is a major obstacle to an increased usage of ILP sys-
tems in complex applications with large hypotheses spaces. In this work,
we focus on improving the efficiency and scalability of ILP systems by
exploring tabling mechanisms available in the underlying Logic Program-
ming systems. Tabling is an implementation technique that improves the
declarativeness and performance of Prolog systems by reusing answers
to subgoals. To validate our approach, we ran the April ILP system in
the YapTab Prolog tabling system using two well-known datasets. The
results obtained show quite impressive gains without changing the accu-
racy and quality of the theories generated.

1 Introduction

Inductive Logic Programming (ILP) has been successfully applied to problems
in several application domains [1]. Nevertheless, the flexibility of ILP comes at
a price: for complex applications with large hypotheses spaces, ILP systems can
take several hours, if not days, to return a theory. Past research on improving
the efficiency of ILP systems has mainly focused in reducing their sequential
execution time, either by reducing the number of hypotheses generated [2,3],
or by efficiently testing candidate hypotheses [4,5]. One key observation in this
research is that ILP search space is highly redundant: we repeatedly test similar,
and sometimes even the same, hypotheses. This argues for using techniques such
as memoing or tabling [6], that have been developed for this very purpose.

On the other hand, ILP systems are often developed on top of logic pro-
gramming systems, such as Prolog systems. One reason is that ILP systems can
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(POSC/EIA/59154/2004), U.S. Air Force (grant F30602-01-2-0571), and by funds
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para a Ciência e Tecnologia (FCT) and Programa POSC. Nuno Fonseca is funded
by the FCT grant SFRH/BD/7045/2001.
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benefit from the extensive work done in improving the performance of Prolog
systems. An emerging technology is tabling, that showed to be very effective for a
variety of applications. Tabling based models can reduce the search space, avoid
looping, and have better termination properties than traditional Prolog based
models. The question thus arises if the tabling mechanisms being developed for
efficient execution of logic programs can be useful in improving ILP performance.

In this work, we show that tabling can indeed significantly reduce the exe-
cution time of ILP applications. We present two different approaches to achieve
this goal. Our first approach is a direct application of tabling to query execution.
The second approach is designed to take advantage of the redundancy in ILP
search. We validate our approach by experimenting the April ILP system [7] on
two well known ILP datasets. One advantage of using April in our study is that
it includes a strong caching mechanism, thus giving us a good baseline for our
studies. Tabling is implemented through the YapTab Prolog tabling system [8].

The remainder of the paper is organized as follows. First, we introduce the
motivation for our work. Then, we briefly describe tabling for logic programs.
Next, we discuss how tabling can be used to speedup ILP applications. We then
present initial experimental results and conclude by outlining some conclusions.

2 Background and Motivation

The fundamental goal of an ILP system is to find a consistent and complete
theory, from a set of examples and prior knowledge, the background knowledge,
that explains all given positive examples, while being consistent with the given
negative examples. In general, the background knowledge and the set of examples
can be arbitrary logic programs.

Since it is not usually obvious which set of hypotheses should be selected as
the theory, an ILP system must traverse the hypotheses space searching for a
set with the desired properties. A general ILP system thus spends most of its
time evaluating hypotheses, either because the number of examples is large or
because testing each example is computationally hard.

path(G,X,Z):- path(G,X,Y),path(G,Y,Z).
path(G,X,Z):- edge(G,X,Z).

edge(g1,a,b).            edge(g2,a,b).
edge(g1,b,a).            edge(g2,b,c).

cyclic(g1).
...

Positive ExamplesBackground Knowledge

a
b

graph g2

a b

graph g1

c
cyclic(g2).
...

Negative Examples

Fig. 1. Representing cyclic graphs in a ILP dataset

An important char-
acteristic of ILP sys-
tems is that they gener-
ate candidate hypothe-
ses (clauses) which have
many similarities among
them. Usually, these
similarities tend to cor-
respond to common pre-
fixes (subgoals) among
the candidate hypothe-
ses. Consider, for example, a background knowledge containing a set of directed
graphs, represented by edge/3 facts, with a relation of reachability, given by a
path/3 predicate (see Fig. 1 for details). Consider also that we are interested in
learning the concept of being a cyclic graph.
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Now assume that, during the search process, the ILP system generates an
hypothesis ’cyclic(G):- path(G,X,Y).’ which obtains good coverage, that is,
the number of positive examples covered by it is high and the number of negative
example is low. Then, it is quite possible that the system will use it to generate
more specific hypotheses such as ’cyclic(G):- path(G,X,Y),edge(G,Y,Z).’.

Computing the coverage of an hypothesis requires, in general, running all pos-
itives and negatives examples against the clause. For example, to evaluate if the
example cyclic(g1) is covered by the hypothesis ’cyclic(G):-path(G,X,Y).’,
the system executes the goal once(path(g1,X,Y)). The once/1 predicate is a
primitive that prunes over the search space preventing the unnecessary search for
further answers. It can be defined in Prolog as ’once(Goal):- call(Goal),!.’.

If the same example, cyclic(g1), is later evaluated against the other hy-
pothesis, goal once(path(g1,X,Y),edge(g1,Y,Z)), part of the computation of
path(g1,X,Y)will be repeated. This suggests two approaches to avoid recompu-
tation. First, if the computation of path(g1,X,Y) is computationally expensive,
we can table this query. Second, the subgoal path(g1,X,Y) forms a prefix of the
new clause. We can table prefixes, in the hope that they will be called repeatedly.

Notice that both approaches have problems. The first approach will only work
if the computation for a subgoal is expensive. It will bring no benefit if, say, the
subgoal reduces to a database access. The second approach is only useful if we
repeatedly generate the same prefix. If we have a large number of prefixes which
are only called a few times, we may need large amounts of space to store the
tables, and gain little time-wise. To best implement these approaches requires
some understanding of the basic tabling mechanisms, that we discuss next.

3 Tabling for Inductive Logic Programming

The basic idea behind tabling is straightforward: programs are evaluated by
storing newly found answers for current subgoals in an appropriate data space,
called the table space. The method then uses this table to verify whether calls
to subgoals are repeated. Whenever such a repeated call is found, the subgoal’s
answers are recalled from the table instead of being re-evaluated against the
program clauses. One of the major characteristics of this execution model is that
it reduces the search space by avoiding the recomputation of tabled subgoals.
This is the most significant contribution that tabling can offer to ILP. Moreover,
because tabling based models are also able to avoid infinite loops, they can ensure
termination for a wider class of programs. The latter can be useful when dealing
with datasets with recursive definitions in the background knowledge.

3.1 Tabled Evaluation

Figure 2 uses the example from the background knowledge in Fig. 1 to illus-
trate how tabling works. At the top, the figure shows the program code (the
left box), and the final state of the table space (the right box). Declaration
’:-table path/3.’ indicates that calls to predicate path/3 should be tabled.
The main sub-figure below shows the evaluation sequence for the query goal
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’?- path(g1,b,Z).’. Note that traditional Prolog would immediately enter an
infinite loop because the first clause of path/3 leads to a repeated call to
path(g1,b,Z). In contrast, if tabling is applied then termination is ensured.

Whenever a tabled subgoal is first called, a new entry is added to the table
space. We name these calls generator nodes (nodes depicted by white oval boxes).
In this example, the execution begins with a generator. The first step is to resolve
path(g1,b,Z) against the first clause for path/3, creating node 1. Node 1 is a
variant call to path(g1,b,Z). We do not resolve the subgoal against the program
at these nodes, instead we consume answers from the table. Such nodes are thus
called consumer nodes (nodes depicted by black oval boxes). At this point, the
table does not have answers for this call, and thus, the current evaluation is
suspended. We then backtrack to node 0, thus calling edge(g1,b,Z). The edge/3
predicate is not tabled, hence it must be resolved against the program, as Prolog
would. The first clause for edge/3 fails, but the second succeeds obtaining an
answer for path(g1,b,Z) (step 4).

9. Z= b 19. fail
(Z= a)

20. fail
(Z= b)

13. fail
(Z= a)

12. Z= a 16. fail
(Z= b)

17. fail
(Z= a)

14. fail
(Z= b)

:- table path/3.

path(G,X,Z):- path(G,X,Y),path(G,Y,Z).
path(G,X,Z):- edge(G,X,Z).

edge(g1,a,b).
edge(g1,b,a).

0. path(g1,b,Z)

1. path(g1,b,Y),path(g1,Y,Z) 2. edge(g1,b,Z)

18. path(g1,b,Z) 3. fail5. path(g1,a,Z) 4. Z= a

5. path(g1,a,Z)

6. path(g1,a,Y),path(g1,Y,Z)

15. path(g1,a,Z) 8. Z= b11. path(g1,b,Z) 10. fail

0. path(g1,b,Z)

5. path(g1,a,Z)

4. Z= a

8. Z= b

9. Z= b

Subgoal Answers

12. Z= a

21. complete

21. complete

7. edge(g1,a,Z)

Fig. 2. A tabled evaluation

In the contin-
uation, we back-
track again to node
0, but now it has
no more clauses
left to try. So, we
check whether it
has completed. It
has not, as node
1 has now one un-
consumed answer.
We thus forward
the answer to it,
and path(g1,a,Z)
is then called. As
this is the first call
to path(g1,a,Z),
we add a new en-
try for it in the
table, and proceed
as shown in the
bottommost tree.
Again, path(g1,a,Z) calls itself recursively, suspends at node 6, backtracks,
and succeeds with Z=b (step 8). We then follow a Prolog-like strategy and con-
tinue forward execution. The binding Z=b is thus returned to path(g1,b,Z) and
stored in its table entry (step 9). This will be the last answer to path(g1,b,Z),
but we can only prove so after fully exploiting the tree.

We then fail in step 10, backtrack to node 5, and resume node 6 with an-
swer Z=b. This leads to a new consumer for path(g1,b,Z) (node 11). The table
has two answers for it, so we can continue immediately. This gives new answers
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to path(g1,a,Z) (step 12) and to path(g1,b,Z) (step 13). However, this last
answer repeats what we found in step 4. Tabled resolution do not stores dupli-
cate answers in the table. Instead, repeated answers fail. This is how we avoid
unnecessary computations, and even looping in some cases.

Backtracking sends us back to consumer node 11. We then consume the
second answer for it, which generates a repeated answer, so we fail again (step
14). We then try the second answer for node 6, again leading to a repeated
subgoal (node 15) and two repeated answers (steps 16 and 17). We then fail back
to node 5, but at this point, all answers to the consumers below (nodes 6, 11, and
15) have been tried. However, unfortunately, node 5 cannot complete, because it
depends on subgoal path(g1,b,Z) (node 11). Completing path(g1,a,Z) earlier
is not safe because we can loose answers. Note that, new answers can still be
found for subgoal path(g1,b,Z). If new answers are found, node 11 should be
resumed with the newly found answers, which in turn can lead to new answers
for subgoal path(g1,a,Z). If we complete sooner, we can loose such answers.

Execution thus backtracks and we try the answer left for node 1. Steps 19 to
20 show that again we only get repeated answers. We fail and return to node 0.
All nodes in the trees for node 0 and node 5 have been exploited. As these trees
do not depend on any other tree, we are sure no more answers are forthcoming,
so at last step 21 declares the two trees to be complete.

3.2 Tabling Subgoals and Conjunction of Subgoals

The first application of tabling in ILP is simply to table subgoals. The main
advantage of this approach is that we need to perform minimal changes to the
ILP system. A drawback is that this technique will not help if the subgoal gen-
erates a very small computation, say, if the subgoal is defined extensionally in
the database as Prolog facts. A second approach is to take advantage of the
tabling paradigm and replace the conjunction of predicates in the hypotheses
with proper tabled predicates inferred during execution. Consider, for example,
the following set of hypotheses:

cyclic(G):- edge(G,X,Y), path(G,Y,Z), edge(G,Z,X).
cyclic(G):- edge(G,X,Y), path(G,Y,Z), edge(G,X,Z).
cyclic(G):- edge(G,X,Y), path(G,Y,Z), path(G,Z,X).

Note that the two first subgoals, edge(G,X,Y) and path(G,Y,Z), are common
to all the hypotheses. Thus, if we are able to table the conjunction of both,
we only need to compute it once. This idea can be recursively applied as the
system generates more specific hypothesis. This idea is similar to the query packs
technique proposed by Blockeel et al. [4].

To implement this approach, we designed the following solution. First, we
use a single predicate, t all/2, to table all the conjunctions. The first argu-
ment for t all/2 is an atom that defines the name given to the conjunction.
The second is the set of variables involved. This predicate then calls a t conj/2
predicate (with the same arguments) where the conjunctions are defined. The
clauses for the t conj/2 predicate are dynamically asserted by the ILP sys-
tem as new conjunctions are generated. A conjunction of N subgoals is defined



712 R. Rocha, N. Fonseca, and V. Santos Costa

as the conjunction of the N − 1 previous subgoals followed by the Nth sub-
goal. For example, we would have the following clauses for the set of hypotheses
above:

% the tabled predicate for all the conjunctions
:- table t_all/2.
t_all(ConjunctionName,VarsList):- t_conj(ConjunctionName,VarsList).

% level 1 conjunctions
t_conj(edge,[V1,V2,V3]):- edge(V1,V2,V3).
t_conj(path,[V1,V2,V3]):- path(V1,V2,V3).

% level 2 conjunctions
t_conj(edge_path,[V1,V2,V3,V4,V5,V6]):- t_all(edge,[V1,V2,V3]),

t_all(path,[V4,V5,V6]).

Finally, we need to transform the clauses for the hypotheses. We thus replace
the conjunctions of subgoals in the hypotheses to calls to the t all/2 predicate.
For example, the previous set of hypotheses will be transformed to:

cyclic(G):- t_all(edge_path,[G,X,Y,G,Y,Z]), t_all(edge,[G,Z,X]).
cyclic(G):- t_all(edge_path,[G,X,Y,G,Y,Z]), t_all(edge,[G,X,Z]).
cyclic(G):- t_all(edge_path,[G,X,Y,G,Y,Z]), t_all(path,[G,Z,X]).

Note that this may cause the same variables to appear at several positions
in the second argument for the t all/2 predicate (e.g., both G and Y appear
twice for edge path). In practice, the tabling engine only stores the answers
once for each different variable, so this only has a small cost. A major problem
with our approach is the amount of memory that is needed to represent the
answers for the different conjunctions. A simple solution is to abolish the full
set of tables from the table space when we run out of memory. An alternative
would be to abolish the tables potentially useless when we backtrack in the hy-
potheses space. This later approach requires further study to avoid incorrect
deletions.

At that point, we should reinforce the differences between tabling and be-
tween the approach of tabling conjunction of subgoals. Tabling is an implemen-
tation technique that comes for free if using a Prolog engine with such support.
The tabling of conjunctions is an alternative evaluation strategy that can be
explored by ILP systems. Like in query packs, this is done automatically in the
innards of the ILP system, and can be parameter controlled. Thus, the final user
of the system only needs to declare the strategy to be used: no tabling, subgoal
tabling, or subgoal and conjunction tabling.

4 Initial Experimental Results

To evaluate the impact of using tabling in real application problems, we ran
the April ILP system [7] with the YapTab Prolog tabling system [8] using two
ILP datasets: mutagenesis and carcinogenesis. April was configured to find hy-
potheses using breadth-first search, and to evaluate hypotheses using a heuristic
that relies on the number of positive and negative examples. YapTab is based on



On Applying Tabling to Inductive Logic Programming 713

the current development version of Yap, version 4.5.7. The environment for our
experiments was an AMD Athlon MP 2600+ processor with 2 GBytes of main
memory and running the Linux kernel 2.6.11.

To evaluate hypotheses we experimented with three different approaches: (i)
without tabling; (ii) subgoals being evaluated using tabling; and (iii) subgoals
and conjunction of subgoals being evaluated using tabling.

Table 1 shows the running times, in seconds, and the table memory usage, in
Mbytes, for the three approaches. We use na to mark the experiments not ran
and mo to mark the runs where a memory overflow occurred. Note that we are
not considering any strategy to avoid memory overflows. The value nodes is the
upper bound on the number of hypotheses, and hypotheses is the number of
hypotheses effectively generated during the search.

Table 1. Running times and table usage with one example as seed

Datasets Running Time (s) Table Usage (Mb)
nodes/hypotheses without subgs conjs subgs conjs
mutagenesis
1,000/981 > 4 hours 94 92 2 6
10,000/6,514 na 162 140 5 205
20,000/14,020 na 169 146 6 281
30,000/20,299 na 197 mo 6 mo
40,000/26,484 na 219 mo 6 mo
50,000/32,852 na 236 mo 6 mo
carcinogenesis
1,000/998 1 1 1 3 11
10,000/9,998 7 9 13 11 259
20,000/19,998 81 91 mo 11 mo
30,000/29,932 121 124 mo 11 mo
40,000/39,932 161 154 mo 11 mo
50,000/49,869 225 209 mo 12 mo

The results obtained for mutagenesis show that tabled evaluation can sig-
nificantly reduce the execution time for these kind of problems. In particular,
for the subgoal approach the gains are quite impressive. The theorem proving
effort involved to evaluate a single example against an hypothesis is quite high
for this dataset. The conjunction approach also achieved the goal of reducing
the execution time (however, we were not able to use more than 20,000 nodes).
Regarding memory usage, the results show an insignificant increase in mem-
ory consumption when tabling subgoals and a more considerable increase when
tabling conjunctions of subgoals.

In the carcinogenesis dataset, the results where not so good. The main reason
for this relies on the type of predicates that compose its background knowledge.
In this dataset most of the predicates are defined extensionally in the database
as Prolog facts, and thus, it is quite difficult for the tabling engine reduce the
execution time. Even so, when we increase the size of the search space for the
carcinogenesis dataset (for more than 40,000 nodes), the tabling subgoal ap-
proach slightly reduces the execution time when compared with the execution
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without tabling. Regarding the conjunction approach we were not able to see its
impact in this dataset.

The results obtained suggest that tabling is particular suited for ILP ap-
plications with a background knowledge non-deterministic, as the mutaganesis
dataset. The results also confirm that tabling is not suitable for datasets with
a background knowledge defined extensionally. However, apart the small extra
memory consumption in the case of tabling subgoals, the execution with tabling
do not introduces significant overheads.

5 Conclusions and Further Work

In this work, we proposed the ability of using tabling mechanisms available
in the underlying Logic Programming systems to minimize recomputation in
ILP systems. The results obtained showed that tabling based models are indeed
able to improve the performance of ILP applications. In particular, for some
applications, they show quite impressive gains. As tabled evaluation does not
influences the accuracy and quality of the models found, we believe that our
proposals would apply to several ILP systems.

A major problem with our current implementation, is that we can increase the
table memory usage arbitrarily when tabling conjunction of subgoals. We plan
to study how we can abolish potentially useless tables when we backtrack in the
hypotheses space. We also plan to further investigate the impact of applying our
proposals to a larger set of ILP applications.
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Abstract. Processes involving change over time, uncertainty, and rich relational
structure are common in the real world, but no general algorithms exist for learn-
ing models of them. In this paper we show how Markov logic networks (MLNs),
a recently developed approach to combining logic and probability, can be applied
to time-changing domains. We then show how existing algorithms for parameter
and structure learning in MLNs can be extended to this setting. We apply this ap-
proach in two domains: modeling the spread of research topics in scientific com-
munities, and modeling faults in factory assembly processes. Our experiments
show that it greatly outperforms purely logical (ILP) and purely probabilistic
(DBN) learners.

1 Introduction

Stochastic processes involving the creation and modification of objects and relations
over time are widespread, but relatively poorly studied. Examples of such systems in-
clude social networks, manufacturing processes, bioinformatics, natural language, etc.
Until recently, graphical models like DBNs and HMMs were the most powerful rep-
resentations for reasoning about stochastic sequential phenomena. However, modeling
relational domains using these graphical models requires exhaustively representing all
possible objects and the relations among them. Such a model is both hard to learn and
difficult to understand. For example, consider a social network such as an evolving sci-
entific community. One might wish to model the spread of topics across the various
groups of researchers. This might mean discovering rules such as “An author’s inter-
est in topics in the future is influenced by the interests of his main collaborators and
the communities in which he has recently participated.” Such rules, being probabilistic,
cannot be encoded using pure first-order logic. But a DBN or an HMM would require
a model for each individual researcher, and would not generalize from one author to
another.

In recent years, researchers have proposed many approaches to combining aspects
of first-order logic with probabilistic representations [6]. The most powerful of these
is Markov logic networks (MLNs), which combine Markov networks and (for the first
time) the full power of first-order logic [14]. However, these models lack the dynamic
nature of DBNs and HMMs. Previously, we introduced dynamic probabilistic relational
models (DPRMs) [15] and relational dynamic Bayesian networks (RDBNs) [17] for
modeling relational stochastic processes, but no learning methods have been proposed
for these models, limiting their applicability.
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In this paper we extend MLNs to model time-changing relational data. We term
this extension DMLNs. Learning DMLNs is relatively easy, requiring only straightfor-
ward modifications to an MLN learner. We apply DMLN learning in two domains: the
evolution of research topics in high-energy physics and fault modeling of mechanical
assembly plans. Our experiments show that DMLNs greatly outperform a purely prob-
abilistic approach (DBN learning) and a purely logical approach (ILP).

In the next section, we cover MLNs. Then, we introduce DMLNs and describe the
learning methods for them (see [16] for more details). Finally, we report our experi-
mental results and conclude with a discussion of related and future work.

2 Markov Logic Networks

A Markov network (also known as Markov random field) is a model for the joint distri-
bution of a set of variablesX = (X1, X2, . . . , Xn) [5]. It is composed of an undirected
graph G on the variables and a set of non-negative potential functions φk for the state
of each clique in the graph. The joint distribution represented by a Markov network is
given by P (X = x) = 1

Z

∏
k φk(x{k}) where x{k} is the state of the kth clique (i.e.,

the state of the variables that appear in that clique). Z , known as the partition function,
is given by Z =

∑
x∈X

∏
k φk(x{k}. Markov networks are often conveniently repre-

sented as log-linear models, with each clique potential replaced by an exponentiated
weighted sum of features of the state: P (X = x) = 1

Z exp(
∑

j wjfj(x)). This paper
will focus on binary features, fj(x) ∈ {0, 1}. In the presence of large cliques, logical
functions of the state of the cliques can be used as features leading to a more compact
representation than the potential-function form. MLNs take advantage of this.

A first-order knowledge base (KB) can be seen as a set of hard constraints on the
set of possible worlds: if a world violates even one formula, it has zero probability. The
basic idea in MLNs is to soften these constraints: when a world violates one formula
in the KB it is less probable, but not impossible. The fewer formulas a world violates,
the more probable it is. Each formula has an associated weight that reflects how strong
a constraint it is: the higher the weight, the greater the difference in log probability
between a world that satisfies the formula and one that does not, other things being
equal.

Definition 1. [14] A Markov logic network L is a set of pairs (Fi, wi), where Fi is
a formula in first-order logic and wi is a real number. Together with a finite set of
constants C = {c1, c2, . . . , c|C|}, it defines a Markov network ML,C as follows:

1. ML,C contains one binary node for each possible grounding of each predicate
appearing in L. The value of the node is 1 if the ground predicate is true, and 0
otherwise.

2. ML,C contains one feature for each possible grounding of each formula Fi in L.
The value of this feature is 1 if the ground formula is true, and 0 otherwise. The
weight of the feature is the wi associated with Fi in L.

Thus there is an edge between two nodes of ML,C iff the corresponding ground
predicates appear together in at least one grounding of one formula in L. An MLN can
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be viewed as a template for constructing Markov networks. The probability distribution
over possible worlds x specified by the ground Markov network ML,C is given by

P (X=x) =
1
Z

exp

(
F∑

i=1

wini(x)

)
(1)

whereF is the number formulas in the MLN and ni(x) is the number of true groundings
of Fi in x. As formula weights increase, an MLN increasingly resembles a purely logi-
cal KB, becoming equivalent to one in the limit of all infinite weights. In this paper we
focus on MLNs whose formulas are largely function-free clauses and assume domain
closure, ensuring that the Markov networks generated are finite [14]. In this case the
groundings of a formula are obtained simply by replacing its variables with constants
in all possible ways.

3 Modeling Relational Stochastic Processes

Traditionally, graphical models like dynamic Bayesian networks (DBNs), hidden
Markov models (HMMs), etc., have been used to model the joint distribution of vari-
ables involved in complex stochastic processes. They have been quite successful in
practice (e.g., [12]), but they cannot be used to compactly model complex domains with
multiple classes, objects and relationships. Modeling such domains requires the repre-
sentational power of first-order logic. DPRMs [15] and RDBNs [17] provide some of it,
and could in principle be learned using ILP and PRM learning techniques, but to date
this has not been attempted. In this paper, we instead extend MLNs and their learning
algorithms [14,11] to dynamic domains. This extension turns out to be quite straight-
forward, and gives us the full power of MLNs in dynamic domains. We experimentally
demonstrate the effectiveness of this approach.

3.1 Dynamic Markov Logic Networks

In a relational stochastic process, the world is not static. A ground predicate can be true
or false depending on the time step t. To model a dynamic relational domain we use
the following approach:

1. Instead of standard first-order predicates, we use fluents, a special form of predicate
having an additional time argument. Time is modeled as a non-negative integer
variable. Each predicate in the network is now of the form R(x1, . . . , xn, t), where
t denotes time.

2. Our model includes a successor function succ(t), which maps the integer t, repre-
senting time, to t+ 1, i.e., succ(0) = 1, succ(1) = 2, and so on.

3. We define a dynamic Markov logic network (DMLN) to be a set of weighted for-
mulas defined on the fluents.

4. Each formula in the DMLN contains exactly one variable denoting a time slice, and
constants may not be used as a fluent’s time argument. For example, we disallow
formulae such as:
∀Auth, Topic, t, t′ : Writes(Auth, Topic, t) => Writes(Auth, Topic, t′).
The only exception to this is that we allow formulas where all time arguments are
the constant 0; these represent the initial distribution.
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5. To enforce the first-order Markov assumption, each term in each formula in the
DMLN is restricted to at most one application of the succ function, i.e., a term
such as succ(succ(t)) is disallowed. This precludes a ground predicate at time t
from depending on ground predicates at time t− 2 or before.

Given the domain of constants, i.e., the objects at each time slice and the time range
of interest, the DMLN will give rise to a ground Markov network whose nodes corre-
spond to the grounding of the predicates (fluents) for each time slice.

3.2 Learning DMLNs

As is common in graphical models, we divide learning DMLNs into two separate prob-
lems: parameter learning and structure learning.

The weights of a DMLN can be learned in the same manner as in MLNs, by max-
imizing the likelihood of a relational database [14]. (A closed-world assumption is
made, whereby all ground atoms not in the database are assumed false.) However, as in
Markov networks, this requires computing the expected number of true groundings of
each formula, which can take exponential time. Although this computation can be done
approximately using Markov chain Monte Carlo (MCMC) inference [5], Richardson
and Domingos found this to be too slow. Instead, they maximized the pseudo-likelihood
of the data, a widely used alternative measure [3]. If x is a possible world (relational
database) and xl is the lth ground atom’s truth value, the pseudo-log-likelihood of x
given weights w is

logP ∗
w(X=x) =

n∑
l=1

logPw(Xl =xl|MBx(Xl)) (2)

where MBx(Xl) is the state of Xl’s Markov blanket in the data (i.e., the truth values of
the ground atoms co-occuring with it in some ground formula). Computing the pseudo-
likelihood and its gradient does not require inference, and is therefore much faster.

3.3 Structure Learning in DMLNs

In theory one can learn a fully general DMLN for any relational stochastic process.
In other words, one could use a single large example to store a history of the entire
relational process and learn a DMLN which does not obey the first-order Markovian
restrictions. However, this might lead to an unintuitive model and costly inference. In
addition, if the number of time slices is large, formulas involving the time variable may
become complex and difficult to learn.

However, we can make certain restrictions on the formulas learned and also equip
the learner with background knowledge, making the task easier. We divide the structure
learning problem into distinct classes depending on the information provided to the
learner:

Learning DMLNs with a Markovian assumption: Like learning in a DBN, we can
split the domain into multiple examples. Each example, corresponding to a time
step t, is a pair of states at time t and t+ 1. When learning, one can avoid formulas
which only involve predicates at time t. A model learned in this way is automati-
cally first-order Markovian and stationary.
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Learning in presence of background knowledge: The learner is provided with a set
of formulas as background knowledge and allowed to modify existing formulas and
add a small number of additional formulas so as to maximize the likelihood of the
data.

Learning with templates: In ILP systems learning becomes practical only when com-
bined with a declarative bias. For example, when learning a relational stochastic
process involving actions, one might want to make sure that each formula contains
at least one action. This restriction can be specified using templates. Other forms of
bias include restricting the number of predicates in a formula, defining an order on
the predicates to be considered during search, creating new predicates and formulas
for them, etc.

All of these cases can be handled by appropriately extending the MLN learning tech-
niques [11], as we now show.

The structure learned is the one that maximizes the pseudo-likelihood of the
database [11]. The algorithm starts with a set of unit clauses and greedily adds or mod-
ifies clauses that give the best pseudo-likelihood. At every iteration, weights for all
candidate structures are learned. To do this, the weights are initialized to their values
from the previous iteration and they quickly converge to the optimum. Each new candi-
date clause is obtained by adding or removing predicates from already present clauses,
or flipping the signs of the predicates. One of two search techniques is used: (i) a beam
search where a set of b best clauses is selected and modified until the pseudo-likelihood
ceases to improve, and finally the clause which gives the best pseudo-likelihood is
added, or (ii) shortest-first search where all good clauses of a smaller length l are added
before adding any of a higher length.

The above algorithm may be combined with the first-order Markovian assumption
and templates to learn DMLNs. As we will see in the experiments below, no other
techniques are needed.

In this paper, we apply our learned model to infer a distribution over the immediately
succeeding time step. Additionally, in our examples, all the state variables are observed.
So, we use a standard Gibbs sampler for inference.

4 Experiments

In this section we learn DMLNs for two domains in an effort to answer the following
questions about methods for learning models of relational stochastic processes.
Q1 Do DMLNs outperform purely logical approaches such as ILP?
Q2 Do DMLNs outperform purely probabilistic methods such as DBN learning?
Q3 Can formulas that model the dynamics of a relational world be learned, and do such

formulas outperform pure parameter learning?
Q4 Does enforcing the Markovian assumption improve the accuracy of a learned

DMLN?
Q5 Do templates help in learning better DMLNs?

We investigate these questions by applying our algorithms to problems in two do-
mains: (a) modeling the spread of research topics in the theoretical high-energy physics
community, and (b) modeling faults in factory assembly processes.



720 S. Sanghai, P. Domingos, and D. Weld

4.1 Evolution of Topics in High-Energy Physics

For our first domain we used the dataset from the KDDCup 2003 [8] which is a col-
lection of papers from the theoretical high energy physics (hep-th) area of arXiv.org.
This dataset consists of 30,000 papers authored by 9,000 scientists over 10 years. We
restricted the author set to scientists who have published at least 10 papers. To iden-
tify the topics of the papers we ran Kleinberg’s burst-detection algorithm [10] on the
words appearing in the titles and abstracts of the papers. We intersected the top “bursty”
words with words appearing in highly-cited papers and chose the top fifty. Thus, each
paper may be associated with multiple topics. In addition, we clustered both authors
and journals using K-means, and added a relation connecting them to their clusters. We
organized this dataset into constants of different types, e.g., Author, Paper, Journal,
etc., and predicates, e.g., AuthorOf, HasTopic, Cites, etc.

Our task was modeling the evolution of topic popularity over time. Specifically, we
wished to predict the distribution of each author’s paper topics for one year, given the
distribution over previous years along with citation patterns, and the interests of scien-
tific communities in which she publishes. The test predicate was set to Authored(A, To-
pic, Year).

We compared DMLNs with five alternative methods: a purely logical approach (the
CLAUDIEN ILP engine [4]), a purely probabilistic method (DBN learning), and three
approaches that use only statistics concerning the author’s topic distribution in previ-
ous years. These latter approaches include predicting the most recent topic distribu-
tion (LYr), predicting the average of distributions across the last three years (Avg), and
extrapolating the average gradient of the topic distributions over the last three years
(Gdnt). To compute probabilities using CLAUDIEN, we associate a very high weight
(of 20) with each formula. We used three test sets, the topic distributions for years 2000,
2001 and 2002, always using a training set consisting of the data up to the test year. Our
results were similar for all three years, so we report results only for 2002.

We compared structure learning with and without background knowledge. The
knowledge consisted of formulas such as: authors’ future interests are influenced by
their past interests, collaborators’ interests, and the interests of highly cited authors
from the same author cluster; authors are more likely to publish on “bursting” topics
than on “dead” ones; authors publish on topics that are “hot” in their favorite jour-
nals or other journals in the same journal cluster; etc. We used these formulas first
as the complete structure (i.e., we only performed parameter learning) and then as
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Fig. 1. DMLNs outperform the other methods at predicting author-topic distributions
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background knowledge (here we learned additional formulas). Learning DMLNs with-
out background knowledge does better than CLAUDIEN, DBN learning and the other
methods, but the difference is insignificant. Both knowledge-based approaches did well,
and we report on the latter approach, which was marginally better.

We present our results by plotting the negative log-likelihood (Figure 1(a)) and the
precision-recall curves (Figure 1(b)). Each measure has its own advantages: the nega-
tive log-likelihood directly measures the quality of the probability estimates, while the
precision-recall curves are insensitive to the large number of true negatives (i.e., ground
predicates that are false and predicted to be false). The figures show clearly that DMLNs
learned with background knowledge surpass all other approaches in this domain.

4.2 Faults in Manufacturing Assembly Plans

For our second test, we used a completely-
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observable version of Sanghai et al.’s [15,17] man-
ufacturing domain. An example in this domain is an
execution trace of an assembly plan comprised of
actions such as Paint, Polish, Bolt, etc. There are
three classes of objects: Plate, Bracket and Bolt,
with propositional attributes such as weight, shape,
color, surface type, hole size and hole type, and re-
lations for the parts to which they are attached. Ac-
tions are performed at every time step and are fault-
prone; for example, a Weld action may fail or may
weld two incorrect objects based on their similarity
to the original objects. This gives rise to uncertainty
in the domain and the corresponding dependence
model for the various attributes. Given the simulated
execution trace of a plan in this domain, we wished
to use learning to recover each action’s exact fault
model.

Since it is clear that DMLN parameter learning would excel in this domain if given
a good set of formulas, we compared DMLN learning (with no background knowledge)
to CLAUDIEN and DBN learning. Our goal was to answer questions Q3, Q4 and Q5 by
learning structure in various settings, i.e., without any help, splitting the examples into
time slice pairs, and using templates. We considered a template that made the following
restrictions: 1) at most one action predicate per clause, 2) only negated action predicates
in clauses, 3) at most five predicates per clause, and 4) biasing to shorter clauses.

Figure 2 shows the negative log-likelihood of unbiased DMLN learning, DMLNs
with a Markovian assumption, and DMLNs with templates, compared with ILP and
DBN learning, when applied to a 1000-step assembly plan with 100 objects. These
results illustrate the ability of DMLNs to learn both the relational structure and the
probabilistic parameters of a time-changing process. DBNs have the disadvantage that
they separately learn formulas for each ground predicate, while CLAUDIEN has the
disadvantage that it gives inaccurate probability predictions. DMLNs combine the ca-
pabilities of each. We also note that templates and formulas obeying the first-order
Markovian assumption lead to improved learning.
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We also tested our algorithms on plans of varying length. As expected, every algo-
rithm improves with an increasing number of time slices.

The DMLN structure learning algorithm took around 7 hours on the hep-th data and
5 hours on the assembly data. CLAUDIEN was allowed to run for a maximum of 15
hours on both the datasets.

5 Discussion

Several researchers have worked on temporal prediction in relational domains like so-
cial networks. Successful models include preferential attachment [2] and its extensions.
But, many of these models are domain specific and do not explicitly represent uncer-
tainty. DMLNs allow easy specification of complex models using first-order formulae.
Learning probabilistic relational planning rules has also received some attention [13].
These application-specific techniques may be viewed in terms of DMLN learning.

In recent years, much research has focused on combining uncertainty with first-
order logic (or some subset of it) [6]. Relational Markov models (RMMs) [1] and logical
hidden Markov models (LOHMMs) [9] can be viewed as special cases of DMLNs. Dy-
namic object-oriented Bayesian networks (DOOBNs) [7] combine DBNs with OOBNs,
but no learning algorithms for them have been proposed.

In conclusion, we have shown that MLNs can be successfully extended to learn-
ing models of relational stochastic process. Experimental results show that DMLNs are
more accurate than previous approaches, such as DBN learning and ILP. Some direc-
tions for future work include handling continuous variables, learning in the presence
of missing data and hidden state, modeling object creation and deletion, and applying
DMLNs to other complex real-world problems.
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Abstract. Ensemble learning is a powerful learning approach that com-
bines multiple classifiers to improve prediction accuracy. An important
decision while using an ensemble of classifiers is to decide upon a way of
combining the prediction of its base classifiers. In this paper, we intro-
duce a novel grading-based algorithm for model combination, which uses
cost-sensitive learning in building a meta-learner. This method distin-
guishes between the grading error of classifying an incorrect prediction
as correct, and the other-way-round, and tries to assign appropriate costs
to the two types of error in order to improve performance. We study is-
sues in error-sensitive grading, and then with extensive experiments show
the empirically effectiveness of this new method in comparison with rep-
resentative meta-classification techniques.

1 Introduction

The accessibility and abundance of data in today’s information age and the
advent of multimedia and Internet have made machine learning an indispensable
tool for knowledge discovery. Ensemble learning is a powerful and widely used
technique which combine the decision of a set of classifiers to make the final
prediction, this not only help in reducing the variance of learning, but also
facilitates learning concepts (or hypothesis) from training data which are difficult
for a single classifier. In large datasets, where there may be multiple functions
defining the relationship between the predictor and response variables, ensemble
methods allow different classifiers to represent each function individually instead
of using one single overly complex function to approximate all the functions.

Building a good quality ensemble is a two steps process. During the first
step (model generation phase), the constituent (or base level) classifiers should
be selected such that they make independent or uncorrelated errors, or in other
words, ensemble should be as diverse as possible. One way of introducing di-
versity is by varying the bias of learning, i.e., by employing different learning
algorithms (results in heterogeneous ensemble); another technique is to keep the
learning algorithm same, but manipulate the training data, so that the classifiers
learn different functions in the hypothesis space (results in homogeneous ensem-
ble). After an ensemble of classifiers is obtained, the next important step is to
construct a meta classifier, which combines the predictions of the base classifiers
(or model combination phase). This is the main focus of this paper.

J. Gama et al. (Eds.): ECML 2005, LNAI 3720, pp. 724–732, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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Different model combination techniques, depending upon the methods used
by them can be partitioned into three categories i.e., voting, stacking and grad-
ing. The nomenclature for these categories was decided based on the most basic
methods which represent the underlying principle of the methods falling under
that category.

Voting. The techniques in this category are very simple, and widely used with
homogeneous ensembles. Majority voting is a naive voting technique, in which a
simple summation of the output probabilities (or 0, 1 values) of base classifiers is
done, and a normalized probability distribution is returned. Weighted Voting, is a
variation in which, a reliability weight or confidence value inversely proportional
to the validation-set error rate, is assigned to each classifier. The meta-classifier
then does a weighted sum to arrive at the final class probabilities. In one possible
variation, instead of assigning a single reliability weight to the base classifier, for
each class a separate reliability weight can be assigned.

Stacking. The stacking techniques are based on the idea of stacked general-
ization [1]. The distinguishing feature of the stacking techniques is that, the
meta-classifier tries to learn the pattern or relationship between the predictions
of the base classifiers and the actual class. Stacking with Multi-response Linear
Regression (MLR) [2], is a stacking technique in which the MLR algorithm is
used as the meta-classifier algorithm. Based on probability estimates given by
the base-classifiers, meta-training datasets are constructed for each class. Then
from these meta-training datasets linear regression models are built, the number
of linear regression models is same as the number of classes. Dzeroski [3] shows
that using Model Tree instead of Multi-response Linear Regression may yield
better result. StackingC [4] is a variation, in which while building the meta-
training datasets, instead of using class probabilities given by the base classifiers
for all the different classes; only class probabilities corresponding to the particu-
lar class for which regression model is being built, are used. This results in faster
model building time for the meta-classifier and also has the added benefit of the
giving more diverse models for each classifier.

Table 1. Grading meta-
training dataset, for a dataset
with m features and n
instances

Attributes Graded
A1 . . . . Am Class
x1,1 ... x1,m 1
x2,1 ... x2,m 1
... ... ... ...
xn,1 ... xn,m 0

Grading. The defining feature of methods in this
category (also known as referee method [5,6]) is
that, instead of directly finding the relationship
between the predictions of the base classifier and
the actual class (as in stacking); the meta-classifier
grades the base-classifiers, and selects either a sin-
gle or subset of base-classifier(s) which are likely
to be correct for the given test instance. The in-
tuition behind grading is that in large datasets
where there may be multiple functions defining
the relationship between predictor and response
variables, it is important to choose the correct
function for any given test instance. In stacking the meta-classifier uses the
predictions of the base classifier to decide the way they (predictions) should be
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combined to make the final decision; but in grading the test instance is used to
decide which all base-classifiers, and with what reliability weight should they be
used to make the final prediction.

In Grading, the meta-classifier itself is an ensemble of grader classifiers. Cor-
responding to each base level classifier there is a grader classifier which tries
to learn its area of expertise or high predictive accuracies. For training the
grader, as shown in Table 1 the original attributes are also used as the at-
tributes for the grading dataset, but instead of using the original class attribute,
a new graded class attribute with two possible values 1 (correct prediction)
or 0 (incorrect prediction) is used. While making predictions the grader clas-
sifier assigns a weight to the base classifier’s likelihood of being correct. This
weight can be either absolute 1 or 0 score or it can also be a probability values.
Only predictions from base classifiers, with reliability weight above a certain
threshold or which are more likely to be correct than incorrect are taken; and
then these predictions are combined using weighted voting to make the final
prediction.

2 Error Sensitive Grading

We propose a new approach to doing Grading which combines cost-sensitive
learning in assigning different costs to meta-training instances, and tries to make
the graders conservative in assigning prediction tasks to the base classifiers. The
intuition behind this method is to increase the prediction accuracy of each base
classifier by using it only for instances for which it is very likely to be correct,
but an immediate side-effect of this is that the number of instances for which the
base classifier is used to make prediction decreases. In this work we study various
research issues related to error-sensitive grading, including a new tie-breaking
scheme designed for grading.

2.1 Cost-Sensitive Learning

In many machine learning domains, different misclassification incur different
penalties and hence misclassification costs are different, given a test instance,
cost-sensitive learning aims to predict the class that will lead to the lowest ex-
pected cost, where the expectation is computed using the conditional probabil-
ity of each class and the misclassification cost. The most common method of
achieving this objective is by re-balancing the training set given to the learning
algorithm, i.e., to change the proportion of positive and negative training exam-
ples in the training set by over-sampling or under-sampling. An alternative, if
the learning algorithm can use weights on training examples, is to set the weight
of each example depending upon the cost.

2.2 Type A vs. Type B Errors

While grading the base classifiers, there could be two types of mistakes: when a
base classifier predicts correctly, the grader says it is wrong (Type A); or when
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a base classifier predicts wrongly, the grader considers it right (Type B). The
issue is that if there are enough good classifiers then it doesn’t hurt to leave
one out. Yet, including a classifier when it is bad can really hurt performance.
So, it is important to differentiate the two types of errors: the cost of Type B
errors should be far higher than that of Type A errors. In other words, the cost
of classifying an incorrect prediction as a correct prediction should be higher
than the cost of classifying a correct prediction as incorrect. A base classifier
generally predicts a high percentage of validation instances as correct, and so
the majority of instances in the meta-training dataset for the graders are correct,
and as a result the grader assigns a lower cost to Type A errors compared to the
Type B error. This can lead to poor performance by graders, and hence by the
meta-classifier and the ensemble.

2.3 Error Sensitive Grading Algorithm

The balance between the different misclassification costs can be readjusted by
explicitly using cost-sensitivity. We call this modified version of grading as Error
Sensitive Grading (ESGrading). Assigning higher cost to wrong grading makes
the graders conservative in their decision making, i.e., the grader will predict a
base classifier to be correct only when it is extremely sure. But one immediate
drawback of making the graders conservative is that none of the base classifiers
may be selected to predict on a test instance, to avoid this limitation the en-
semble should have a large pool of diverse classifiers, so that the graders choose
at least one base classifier to make the prediction. While using error-sensitive
grading an important parameter which has to be chosen is, the different misclas-
sification costs, because it is this cost which determines how conservative the
grader should be. As graders have to deal with binary classification problem,
i.e., predict whether the base classifier is correct or incorrect, the misclassifica-
tion cost of two types can be combined into a single cost-ratio, which we define
below.

Definition 1 (Cost-ratio). It is the ratio of cost of Type A error over cost of
Type B error.

A lower value of the cost-ratio means that there is a heavy penalty for predicting
an incorrect base classifier as correct. A value of cost-ratio equal to 1 means that
the cost of grader misclassifying a base-classifier, whether the base-classifier is
correct or incorrect is equal (the method is then equivalent to normal Grading).
A value of cost-ratio equal to 0 on the other hand, indicates that the base
classifier should never misclassify an incorrect base-classifier as correct, that is
the base-classifier should never be trusted. To prove our hypothesis we did an
experiment of varying the cost-ratio and observing the error rate of Grading
method (Figure 1). In this experiment we used 10 bagged decision trees (Weka
J4.8, a JAVA port to C4.5 Release 8 [7]) classifiers at the base level and decision
trees again as the grader. The figure confirms to intuition and shows how when
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Algorithm 1. Error-Sensitive Grading algorithm

procedure ESGrading(baseClassifiers,validSet)
costRatio ← F indCostRatio(baseClassifiers, validSet)
for all classifier ∈ baseClassifiers do

Grader ← BuildGrader(classifier, costRatio, validSet)
Add Grader to the meta-classifiers

end for
end procedure

procedure FindCost(baseClassifiers,validSet)
for costRatio ← 0.0 to 1.0 Step δ do

Find cross validation error on validation set using costRatio and the base classifiers
end for
return costRatio with minimum cross validation error

end procedure

the cost is close to 0, the graders will be conservative and none of the base-
classifiers will be predicted to be correct, and this results in a higher error, as
the default majority-voting tie-breaking will be used. As the cost is increased
the error rate decreases till it reaches a low-point after which it again begins to
increase as the graders becomes lax in their grading and more base-classifiers
are predicted to be correct.
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Fig. 1. Error rate of Error Sensitive Grad-
ing vs. the cost ratio

One way to determine this cost-
ratio is using cross-validation. It helps
dynamically adjust the cost depend-
ing upon the number and diversity of
base classifiers in an ensemble. When
there are a large number of diverse
base classifiers, then the graders can
afford to be more conservative in pick-
ing base classifiers for making pre-
diction, as the probability that at
least one correct base classifier will
be picked is high. On the other hand,
when the number of base classifiers is
small, the graders should be compara-
tively lenient to avoid the possible sce-
narios in which no base classifiers is picked for model combination. Using cross
validation to determine the cost helps in striking the balance between making
the graders conservative or lenient.

Algorithm 1 shows how to create an Error Sensitive Grading meta-classifier.
The first step is to call the procedure FindCostRatio to decide the cost-ratio
which should be used. The variable validSet is used to denote the validation
set for building the meta-learner. The procedure FindCostRatio evaluates var-
ious cost-ratios and then uses cross validation to build graders via cost-sensitive
learning and finally determines the error rate. The cost-ratio associated with the
least error rate is returned and then used to build the final graders with the
entire validation dataset.
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2.4 Tie Breaking for Grading

In the Grading method as proposed by [6], when there is a tie in the likelihood of
an instance belonging to different classes, the meta-classifier checks which of the
class has higher prior probability and accordingly makes a decision. We suggest
an alternative scheme in which instead of completely ignoring the predictions of
some of the base classifiers (the classifiers with higher probability of being wrong
than correct), the grader should assign a delta (close to zero) probability to all
such classifiers being correct. This will ensure that under normal circumstances
the meta-classifier only uses the prediction of the graders which are correct, but
when there is a tie, majority voting is used.

In our experiments (not shown here due to space limitation), we observed
that in general the ties are so rare that this tie-breaking scheme does not make
any difference for the normal Grading algorithm. But in Error Sensitive Grading
when the number of base classifiers is small, and the cost-ratio is close to 0, the
graders may assign higher probability to all the base classifiers of being wrong
than correct, and then none of the base classifiers will be selected to make the
final prediction. In such, a scenario the above tie-breaking scheme is a better
alternative (than the current prior probability method of breaking ties), because
it makes use of majority voting to break the ties.

2.5 Time Complexity of Error-Sensitive Grading

The time complexity of Error-Sensitive Grading algorithm depends upon the
method used for setting the cost-ratio. When c-fold cross-validation is used to
determine cost-ratio, and t different cost-ratios are tried, then the time com-
plexity is O(c ∗ t ∗ G) where G is the time complexity of the Grading method.
Grading is a time-consuming algorithm, but because learning is done offline,
generally time is not a big issue for building classifiers.

3 Experiments and Discussion

For empirical evaluation we chose nineteen datasets from the UCI Machine
Learning Repository [8]. Following the research done in [9], for all the experi-
ments the reported results are obtained by ten ten-fold stratified cross-validations
and t-test is done with calibrated degrees of freedom equal to 10. The reported
estimates are the average of the 100 runs and the values after the ± sign is the
average standard deviation. Superscripts denote significance levels for the dif-
ference in accuracy between the Error Sensitive Grading and the corresponding
algorithm, using a one-tailed paired t test: 1 is 0.01, 2 is 0.025, 3 is 0.05, 4 is 0.1
and 5 is above 0.1.

We decided to use bagging [10] to study the effect of error sensitive grad-
ing as it is a widely used ensemble method and easily allows us to adjust the
number of base classifiers. We implemented the Error Sensitive Grading method
within WEKA [11]. All other algorithms are available within WEKA, but we
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Table 2. Error rate for Bagging with different model combination techniques

Dataset Maj. Voting Stacking MT StackingC Grading E. S. Grading
audiology 19.59 ± 6.731 20.40 ± 6.911 17.53 ± 5.924 19.36 ± 6.662 18.36 ± 6.26

autos 16.97 ± 5.812 17.17±6.034 15.95±5.685 17.41±5.901 16.14±5.51
credit-a 13.78± 4.625 14.85 ± 5.10 3 14.75 ± 5.002 13.69 ± 4.592 13.91 ± 4.66
credit-g 26.73 ± 8.955 28.86 ± 9.651 28.06 ±9.411 26.84 ± 8.995 26.74±8.93

glass 26.32 ± 8.943 28.23 ±9.844 27.08 ± 9.235 26.61 ± 9.094 26.88 ± 9.22
heart-c 21.22 ± 7.172 22.58 ± 7.795 22.42±7.615 21.76 ± 7.403 22.08 ± 7.51
hepatitis 18.25 ±6.135 21.02 ±7.151 18.80±6.385 19.43±6.675 18.97±6.63

hypo 0.45 ± 0.165 7.64 ±2.56 1 0.43 ± 0.155 0.46 ±0.162 0.43 ± 0.15
kr 0.63±0.225 0.56 ± 0.225 0.57 ± 0.235 0.64 ± 0.234 0.60 ± 0.22

labor 16.03 ± 5.95 3 15.77± 6.004 14.23 ± 5.115 13.8 ± 4.995 14.2 ± 5.26
primary-tumor 56.49 ± 18.901 58.59 ± 19.572 58.94 ± 19.681 57.58 ± 19.24 5 57.55 ± 19.24

segment 2.55± 0.883 2.80±0.991 2.44±0.875 2.51±0.844 2.45±0.83
sick 1.16 ±0.391 1.07±0.395 1.07±0.385 1.11 ± 0.382 1.09 ±0.38

sonar 21.78 ± 7.505 25.76 ± 9.091 22.43 ±7.922 21.30 ± 7.375 21.24 ± 7.33
soybean 7.44 ± 2.565 7.01 ±2.435 6.87±2.455 7.61±2.642 7.19±2.48
splice 5.68 ±1.905 6.27 ±2.101 5.79±1.933 5.87 ±1.961 5.69 ±1.90

vehicle 25.59± 8.57 5 25.48 ± 8.585 25.30 ± 8.47 5 25.48±8.55 5 25.36±8.50
vote 3.56±1.224 3.67±1.515 3.81±1.375 3.63 ± 1.25 3.67 ±1.29

vowel 10.06 ± 3.391 13.90 ± 4.721 10.15±3.431 10.47 ± 3.601 9.25 ± 3.17
Loss/Tie/Win 3/10/6 0/10/9 0/13/6 2/10/7 -

adapted them to be used with bagging. During the experiments, it was ensured
that the meta-classifiers, do not rebuild the base level decision trees built dur-
ing model generation phase, as it goes against the spirit of meta-classifier as
a model-combination method. Moreover, this ensures that the comparison of
strengths of different model combination techniques can be done with a lower
Type I error, as all the techniques are being used to combine the same set of
classifiers.

3.1 Against Different Model Combination Methods

In this experiment we compared Error-Sensitive Grading against different model-
combination techniques such as Majority Voting, Stacking with Model Trees,
StackingC with MLR, and Grading on the chosen datasets. We used 10 bagged
decision trees as the base-classifiers, and for the two grading methods we used
decision tree as the grader too. Table 2 shows the results of the experiment.
The loss/tie/win row in the table summarizes the number of datasets in which
error sensitive grading performed worse, at par, or better than other meth-
ods. This loss, tie and win was determined using significance levels of 1, 2,
and 3. We can clearly observe from this comparison that Error-Sensitive Grad-
ing performs well in comparison with representative methods of model
combination.

The reason for the robustness of Error-Sensitive Grading is that it uses cross
validation to determine the cost such that in the worst case it will perform
similar to Grading or Majority Voting. Depending upon the base classifiers cross
validation attempts to adjust the cost such that the graders are selective in
picking the base classifiers for predicting the class for a new instance. The reader
might observe that Error Sensitive Grading has two losses compared to Grading,
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the reason for this is that as the same data is used during model generation and
then during the meta-classifier creation process, the resultant model sometimes
over fits the data and hence does worse.

3.2 Performance with Different Base Classifiers

In this experiment (Table 3) we decided to observe the benefit of Error Sen-
sitive Grading against traditional Grading and Majority Voting when different
algorithms (decision tree, naive bayes and support vector machines) are used
for building the base classifiers. The Grading meta-learner used for all these

Table 3. Loss/Tie/Win for ES-
Grading vs. Maj. Voting and nor-
mal Grading when different algo-
rithms used for base learner.

Algorithm Maj. Voting Grading
Decision Tree 3/10/6 2/10/7
Naive Bayes 0/8/11 0/16/3

Support Vector 1/10/8 0/15/4

experiments was the same i.e., decision tree.
Again, the loss/tie/win was determined by us-
ing significance levels of 1, 2, and 3 with t-test
using the method described earlier. The re-
sults for decision tree are from the Table 2.
From the table it is quite clear that Error-
Sensitive Grading outperforms both Majority
Voting, and Grading, across all kinds of base
learners. This table shows the robustness and
stability of the Error Sensitive Grading method when different types of base
classifiers are used.

4 Conclusion and Further Work

In this paper, we proposed a new grading-based method for model combination
called Error-Sensitive Grading which applies cost-sensitive learning to grading
base classifiers, such that the grader classifiers are made conservative in selec-
tive base classifiers for making predictions. We also studied issues about Error-
Sensitive Grading such as cost assignment via cross validation, and introduced a
new tie-breaking scheme for grading. The experimental results show that Error-
Sensitive Grading is very competitive against all types of model combination
methods. Using cross-validation to determine the cost is just one possible way,
in our future research we plan to study other alternatives to determine the cost.
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Abstract. We present a method for knowledge-based agents to learn
strategies. Using techniques of inductive logic programming, strategies
are learned in two steps: A given example set is first generalized into an
overly general theory, which then gets refined. We show how a learning
agent can exploit background knowledge of its actions and environment
in order to restrict the hypothesis space, which enables the learning of
complex logic program clauses. This is a first step toward the long term
goal of adaptive, reasoning agents capable of changing their behavior
when appropriate.

1 Introduction

Endowing agents with the cognitive capability of reasoning is a major research
topic of Artificial Intelligence [1]. The high-level control of a reasoning agent com-
prises two parts: a background theory which contains knowledge about actions
and their effects, and a goal-oriented strategy according to which the agent rea-
sons and acts. Existing programming methods, such as GOLOG [2] or FLUX [3],
require the programmer to provide both the background theory for the under-
lying domain and strategies in view of specific goals. Learning techniques have
recently been applied to let agents find out the effects of their actions from ex-
periments [4, 5], but the learning of goal directed strategies on top of this has
not yet been considered.

In this paper, we present a method to learn strategy programs from examples
using Inductive Logic Programming (ILP). As the underlying action formalism
we use FLUX, a logic programming method for the design of intelligent agents
based on the action formalism of the fluent calculus [6]. One of the key advantages
of combining reasoning about actions with learning is that agents can use their
background knowledge to considerably restrict the hypothesis space. Thus it
becomes possible to learn rather complex clauses including negated conjunctions.
Strategies are learned in two steps: First, the given examples are generalized
based on the notion of Least General Generalization of [7]. The resulting, overly
general theory is then refined to obtain a strategy program that is sound and
complete wrt. the given example set.

In the next section, we briefly recapitulate the basics and notations of the
agent programming method FLUX. In Section 3, we define the general hypothesis
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space for FLUX strategies and show how the background theory of a reasoning
agent can be used to restrict the search space. In Section 4, we present a method
for constructing overly general strategies from examples, and in Section 5 we
then explain how these theories are corrected by specialization. In Section 6, we
present and discuss experimental results. We conclude in Section 7.

2 FLUX

The fluent calculus [6] is an axiomatic approach for representing and reasoning
about actions and change. The basic notion is that of a state and its atomic
components, the so-called fluents. The fundamental predicate holds(F,Z) is used
to express that fluent F is true in state Z. Actions are specified in the fluent
calculus by precondition and effect axioms.

Based on logic programming, FLUX is a method for the design of agents
that reason logically about their actions. The background theory BK of a FLUX
agent consists of a kernel program encoding the foundational axioms of the fluent
calculus, along with domain-dependent knowledge in form of domain constraints,
precondition axioms, and state update axioms. Here, we focus on a simplified
variant of FLUX in which agents have complete state knowledge, called Special
FLUX in the remainder of this paper.

On top of the background theory BK, the behavior of FLUX agents is given
by logic programs that describe acting strategies. The agents use a state as their
mental model of the world, on the basis of which they decide which action to
take. As they move along, the agents constantly update their world model to
reflect changes they have effected and sensor information they have acquired.

As an example, Figure 1 depicts a FLUX control program for a simple eleva-
tor originally formulated in GOLOG [2]. The states in this domain are composed
of the three fluents cur_floor(N), on(M) and opened meaning, respectively,
that the elevator is at floor N, the button for floor M has been activated, and the
door is open. The elevator can perform the actions up(N), down(N) of going up
(respectively, down) to floor N; turnoff(N) of turning off the button at floor N;
and open, close of opening and closing the door.

3 Hypothesis Space

The hypothesis space is the space of all programs the Inductive Inference Ma-
chine (IIM) might consider as a solution to a learning problem. A strategy for
a Special FLUX agent is a logic program selecting in each state an action to
be executed. Thereby the strategy relates states to actions. We use a single,
recursive predicate to express strategies:

loop(Z):- strategy(Z,A) ->
(A \= stop, execute(A,Z,Z2), loop(Z2); true).

Here, the predicate strategy/2 selects the action to be executed. For Special
FLUX programs, this is the only predicate to be learned.
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main(Z) :- serve_a_floor(Z,Z1) -> main(Z1) ; park(Z).

serve_a_floor(Z,Z1) :- holds(cur_floor(N),Z), holds(on(M),Z),
\+ (holds(on(M1),Z), closer(M1,M,N)),
serve(M,Z,Z1).

serve(M,Z,Z4) :- go_floor(M,Z,Z1), execute(open,Z1,Z2),
execute(turn_off(M),Z2,Z3), execute(close,Z3,Z4).

go_floor(M,Z,Z1) :- poss(up(M),Z) -> execute(up(M),Z,Z1) ;
poss(down(M),Z) -> execute(down(M),Z,Z1) ;
Z1=Z.

park(Z) :- execute(down(1),Z,Z1), execute(open,Z1,_).

closer(M1,M2,N) :- abs(M1-N)<abs(M2-N).

Fig. 1. A simple FLUX strategy for elevator control

The elements of hypothesized programs are called strategy-clauses. A
strategy-clause is a non-recursive Prolog clause having an instance of
strategy(Z,A) as head and a body containing atoms and negated conjunctions
of atoms. These atoms are defined in BK. With this definition, we assume that
the relation between states and actions is functional, i.e., the action to be ex-
ecuted can be uniquely identified by the current state. Moreover, the absence
of state update axioms and recursive definitions of strategy-clauses prohibits
learned programs from planning.

The set of all examples E provided for the IIM contains pairs (z, a) of a
state z and an action a, meaning the agent has to execute action a in state z.
In this way, every example is positive. However, given the functional nature of
the mapping from states to actions, an example (z, a) implicitly entails negative
examples for every action other than a. This treatment of positive-only examples
has already been applied in the system FILP [8].

In order to restrict the hypothesis space by expressing additional knowledge
about specific domains, we use sorts, modes and occurrence restrictions, de-
scribed subsequently. Moreover, we restrict the hypotheses space by a maximum
newsize [9] to achieve finiteness.

Sorts Since the fluent calculus uses a sort signature to categorize terms, it is
quite natural to use this information in a corresponding learning algorithm,
too. We developed constraint handling rules to restrict variables to be of
a certain sort. A relation �sort spans a tree in the set of sorts having the
universal sort ANY as root. This relation enables us to compute a least
general sort roughly following [10].

Modes have been employed with success in a variety of ILP systems [11]. They
are used to reflect the computational behavior of predicates. Arguments of
predicates are either of input or output mode. Hypothesized clauses are
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required to obey mode declarations. Put simply, a variable occurrence in an
input argument has to be preceded by an occurrence of the same variable in
an output argument.

Occurrence restrictions are used to rule out certain combinations of literals
in the body of hypothesized clauses. These restrictions can be drawn from
domain specific knowledge. For instance, we can express that the arguments
of a predicate encoding a binary, irreflexive relation should always differ.

4 Generalization

Examples, understood as pairs (z, a) of a state z and an action a, can trivially be
transformed into strategy-clauses: An example ([f1, . . . , fn], ae) corresponds to
the clause strategy(Z, ae)← holds(f1, Z), . . . , holds(fn, Z). This transformation
can be understood as adding background knowledge to unit clauses, in order
to compute a relative least generalization. The clauses serve as the input of a
generalization procedure based on a sorted version of Plotkin’s Least General
Generalization [7], where a generalized term lggs(t1 : s1, t2 : s2) is of the smallest
sort s wrt. �sort such that s �sort s1 ∧ s �sort s2.

Since the lggs of a set of clauses grows exponentially with the size of the set,
we define a generalization operator gs on top of the lggs producing generaliza-
tions of constant size. Literals in bodies of strategy-clauses directly or indirectly
express properties of the state. In FLUX, a state is represented by a list. Our
generalization operator is motivated by the idea that the quality of a generaliza-
tion of two lists representing states depends on the order of the fluents inside the
lists. This order, however, has no semantical meaning1 and thus ordering can be
seen as a task of the generalization algorithm.

Definition 1. A generalization of two strategy-clauses using sorts:
Let c1 = p1 ← l1 ∧ . . . ∧ ln and c2 = p2 ← k1 ∧ . . . ∧ km be two strategy-clauses
without negations such that n ≤ m then a generalization is given by:

gs(c1, c2)
def
= lggs(p1, p2)←

∧
W

where W satisfies

– W ⊆ {lggs(li, kj)|1 ≤ i ≤ n ∧ 1 ≤ j ≤ m ∧ lggs(li, kj) is defined}
– |W | ≤ n
– (∀li, 1 ≤ i ≤ n) lggs(li, x) ∈W ∧ lggs(li, y) ∈W ⊃ x = y
– (∀ki, 1 ≤ i ≤ m) lggs(x, ki) ∈W ∧ lggs(y, ki) ∈ W ⊃ x = y

The choice of W is determined by a heuristic function g(W,a), with a being the
action occurring in the head of the clause gs(c1, c2). W is chosen to maximize g.

g(W,a)
def
=
∑
l∈W

( ∑
k∈W\{l}

1
2
σlink(l, k)

)
+ σlink(l, a) +

1
1000

σcomp(l)

1 State composition is commutative and associative in the fluent calculus.
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Here,

σlink(x, y)
def
= Number of variables not of sort STATE shared between x and y

σcomp(x)
def
= Number of subexpressions of x−Number of variables in x

In this way, we maximize the number of variable occurrences in multiple liter-
als, while constraining the generalized clause to the size of the smallest clause
involved. Variables of sort STATE are ignored, since the variable Z, denoting
the current state, occurs in the head of every strategy-clause and in every literal
of the form holds(F,Z).

Because maximizing the number of links does not necessarily lead to a
unique solution, we incorporate other syntactic information into the heuristic
function as well. Intuitively, from two literals which yield the same amount of
links, we want to choose the more specific one. Function σcomp allows compar-
ison of literals not comparable by θ-subsumption, but if t1 θ-subsumes t2 then
σcomp(t1) ≤ σcomp(t2). To search for the optimal W efficiently, we use A* [12].
Note that this approach is not limited to strategy-clauses and can be applied
to arbitrary horn clauses. In particular, it is designed to deal with clauses built
from extensive background knowledge which usually contain many redundant
literals.

The Generalization Loop

Initially, for every function symbol a into sort ACTION the corresponding set of
examples {(z, a(x))|(z, a(x)) ∈ E} is generalized. If a heuristic quality threshold
finds the result too general, the corresponding set of examples is split into disjoint
subsets. Splitting is done by either instantiating a variable in the corresponding
action or by using a fluent as classificator. The first possibility yields a subset
for every possible substitution of the chosen variable. The second one yields
two sets of examples, one with all examples in whose state the fluent holds and
one with all examples in whose state the fluent does not hold. Thus, splitting
is a heuristic way of specializing the initial clauses, before the actual top-down
search takes place. Generalization, evaluation and splitting are repeated until the
quality threshold is reached or no further splitting is possible. The conditions
under which splitting is possible also ensure that this process terminates.

5 Specialization

The specialization process searches for a correct program consisting of clauses
which are each subsumed by one of the computed generalizations. To be able
to introduce negations inside bodies of clauses while still maintaining top-down
behavior of the search, we need a way to group multiple literals in a meaningful
way. We therefore introduce computation chains.

Definition 2. A computation chain is a conjunction l1, . . . , ln of at least one
positive literal, such that for every li with i < n at least one output argument of
li also occurs as input argument in a literal lj with j > i.
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The notion of computation chains, together with sort constraints, allows to add
multiple literals to a clause at once in a meaningful manner. This reduces the
effects of the plateau problem and enables the use of negated conjunctions as
an expressive part of our language. The employed refinement operator ρ : H 1→
P(H) computes specializations by either

– unifying two variables of the same sort
– substituting a variable with a function of distinct new variables into the right

sort
– adding a computation chain to the body of the clause
– adding the negation of a computation chain to the body of the clause

Note that after addition of a computation chain, the refined clause is still subject
to mode restrictions. Therefore, if a variable occurs in an input argument in the
chain and not in an output argument, it is bound to a variable occurring in
the body of the clause. To maintain the top-down manner of the search, when
refining clauses containing negations it is neither allowed to instantiate a variable
occurring only negated nor to unify it with any other variable.

The Specialization Loop

Each of the initial schemes becomes the root node of a search tree. The search
trees are searched in parallel in a greedy manner, similar to the covering algo-
rithm, which was first used in the AQ system [9].

In each search iteration, the clause with the highest heuristic evaluation in
each search tree is refined and replaced by its specializations. A subsequent goal
test identifies correct clauses. If a correct clause is found, it is asserted and the
corresponding examples are removed.

A post-processing step is applied to both asserted clauses and the final pro-
gram to remove redundant literals and clauses. A top level loop over generalization
and specialization ensures completeness, if a finite hypotheses space is specified.

6 Experimental Results

We first applied the learning algorithm to the elevator control program, origi-
nally written in GOLOG [2]. Examples were generated by the strategy depicted
in Fig. 1. We provided predicates encoding the binary relations unequal and less-
than, and the ternary relation closer in BK. To restrict the hypothesis space, we
only used knowledge automatically derivable from a domain axiomatization.

If at least one example indicated that the elevator sometimes has to leave the
first floor, a programwas learned which is semantically equivalent to the one which
generated the examples, otherwise the learned programs always terminate once
they reached the first floor. This result was stable throughout all tests.

As a more complex scenario, we chose the mailbot example, described in [13].
The main difference to the elevator scenario lies in the action related to move-
ment. In the elevator scenario, this action has a destination as argument, while
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Example Set Solved (%) Completeness (%)
Large Search Space

Optimal 23 0
Good 23 0
Naive 47 25

Medium Search Space
Optimal 24 2
Good 31 2
Naive 61 44

Small Search Space
Optimal 18 0
Good 64 37
Naive 92 84

Fig. 2. Results in the Mailbot Scenario

the mailbot can only choose to go up or down, without initially knowing a rela-
tion between destinations and directions. Moreover, the mailbot’s movement is
motivated by two state properties, namely packages to be picked up and packages
to be delivered.

Figure 2 shows the results of nine different experiments in the mailbot scenario.
We conducted tests using different example sets and hypothesis spaces. “Optimal”
denotes example sets generated by an optimal strategy which minimizes the num-
ber of actions to solve the problem. “Good” denotes example sets generated by a
suboptimal, but sophisticated program, described in [13], while “naive” refers to
example sets generated by a very simple strategy.

Each test was repeated using different hypothesis spaces. “Large Search
Space” refers to a hypothesis space restricted only by domain dependent knowl-
edge, i.e., sorts, modes and occurrence restrictions are direct consequences of the
scenario. We provided the same predicates as we did in the elevator scenario. In
the “medium search space”, we removed the inequality relation and prohibited in-
stantiations of bags and rooms in the top-down search. The “small search space” is
very artificial, as we used additional restrictions not corresponding to any domain
property.

Each row in Fig. 2 corresponds to the evaluation of hundred learned programs.
The learned programs were tested against 200 instances of the problem. A pro-
gram solved the problem instance if it delivered all initial packages and termi-
nated, otherwise the test was considered a failure. “Solved” refers to the ratio of
solved problem instances by the learned programs. “Completeness” indicates the
ratio of learned programs solving all test cases confronted with.

7 Summary

In this paper, we have shown a way to apply ILP techniques to learn simple Special
FLUX strategies. The learning algorithm makes strong use of background knowl-
edge to learn programs complete and consistent with the given examples. The ap-
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proach benefits from the combination of top-down and bottom-up techniques, as
the top-down search does not start from unit clauses, but from a set of rather spe-
cific clauses, situated nearer potential solutions in the subsumption lattice. The
techniques presented here do not depend on specific FLUX characteristics and it
should be easy to adopt it to other action formalisms such as GOLOG.

This work is a first attempt to learn strategies for FLUX agents. It is strongly
affected by local optima due to the rather wide search trees, i.e., the size of ρ(C).
This size leads to comparatively large programs incomplete wrt. the corresponding
problems and is the main reason for the bad results in the mailbot scenario (see
Figure 2). Reducing the influence of local optima will therefore be one of the main
aspects of continuative work.
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Abstract. Gradient Boosting and bagging applied to regressors can reduce the
error due to bias and variance respectively. Alternatively, Stochastic Gradient
Boosting (SGB) and Iterated Bagging (IB) attempt to simultaneously reduce the
contribution of both bias and variance to error. We provide an extensive empir-
ical analysis of these methods, along with two alternate bias-variance reduction
approaches — bagging Gradient Boosting (BagGB) and bagging Stochastic Gra-
dient Boosting (BagSGB). Experimental results demonstrate that SGB does not
perform as well as IB or the alternate approaches. Furthermore, results show that,
while BagGB and BagSGB perform competitively for low-bias learners, in gen-
eral, Iterated Bagging is the most effective of these methods.

1 Introduction

The decomposition of a learner’s error into bias and variance terms provides a way of
analyzing the behavior of different learning algorithms [1]. Various methods have been
devised to reduce either the bias or variance of a learner. Some methods, such as Gradi-
ent Boosting [2], can reduce bias by increasing the expressive power of the base learner.
While other methods, such as bagging [3], mainly reduce variance by subsampling the
training data. There have been some attempts of combining techniques for bias and
variance reduction, both for classification [4, 5] and for regression [6, 7]. For regres-
sion, Friedman [7] introduced Stochastic Gradient Boosting (SGB) as a method that
reduces the variance of Gradient Boosting (GB) by incorporating randomization in the
process. Breiman [6] presented a related method, Iterated Bagging (IB) that attempts
to reduce the bias of bagging predictors. Despite their similarities, to our knowledge,
there has been no direct experimental comparison of these two methods. In this paper,
we present a detailed empirical analysis of SGB and IB. We show that IB significantly
outperforms SGB when applied to both pruned and unpruned regression trees. We also
explored two alternate methods for combining bias and variance reduction techniques
for regression — bagging Gradient Boosting (BagGB) and bagging Stochastic Gradi-
ent Boosting (BagSGB). Our experiments show that these methods also significantly
outperform SGB. In comparison to IB, BagGB and BagSGB are equally effective when
applied to unpruned regression trees. However, for pruned regression trees, which have
a higher bias, we observe that IB is the most effective at error reduction. This paper also
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presents a bias-variance analysis of the different algorithms, which provides a better
understanding of the relative effectiveness of these methods.

Section 2 provides a brief background on the bias-variance decomposition of error.
In section 3, we describe all the algorithms discussed in this paper, and our main ex-
perimental results are presented in section 4. In section 5, we discuss the results of our
bias-variance analysis; and section 6 presents our future work and conclusions.

2 Bias-Variance Decomposition of Error

The following formulation of the bias-variance (BV) decomposition is based on [8]. Let
us assume our data arose from a model y = F (x) + ε, where the random error ε has
E(ε) = 0 and V ar(ε) = σ2

ε . Then the expected prediction error of a regression model
F̂ (x) for a point x = xi using squared-error loss can be expressed as:

Ψ(y, F̂ (xi)) = E[(y − F̂ (xi))2|x = xi]
= σ2

ε + [E(F̂ (xi))− F (xi)]2 + E[F̂ (xi)− E(F̂ (xi))]2 (1)

= σ2
ε + bias2(F̂ (xi)) + variance(F̂ (xi))

The first term is the irreducible error, which is the variance of the target function
around its true mean F (x). This error cannot be avoided no matter how well we model
F (x). The second term is the contribution of squared bias to error, which is the amount
by which the average of our estimates differs from the true mean. The last term is
the contribution of variance to error, which is the expected squared deviation of F̂ (xi)
around its mean. For brevity, we will refer to the contribution of squared bias and vari-
ance to error as bias2 and variance respectively. In general, more complex models have
lower bias and higher variance; e.g., unpruned decision trees tend to have low bias and
high variance, while decision stumps have a very high bias but low variance.

3 Algorithms

3.1 Gradient Boosting and Stochastic Gradient Boosting

Gradient Boosting (GB) [2] is an iterative algorithm which constructs additive models
by fitting a base learner to the current residue at each iteration; where the residue is
the gradient of the loss function being minimized with respect to the model values at
each data point. In [9], Friedman introduced Stochastic Gradient Boosting (SGB) which
improves the accuracy of GB by reducing its error due to variance. In SGB, at each
iteration a subsample of data is drawn uniformly at random, without replacement, from
the full training set. This random subsample is used to train the base learner to produce
a model for the current stage. Friedman [7] states that the idea of using a random subset
of the training set at each stages originates from bootstrap sampling in bagging, and
has a similar variance-reducing effect on the combined model. The SGB method (for
squared-error loss) is presented in Algorithm 1. GB can be viewed as a special case of
this algorithm in which the entire training set is used at each iteration, i.e., f = 1.0. In
our experiments, the shrinkage parameter ν for GB and SGB was set to 1.
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Algorithm 1. Stochastic Gradient Boosting

Given: M – maximum number of stages; {xn, yn}N
n=1 – training set of size N ; f = Ñ

N
, 0 <

Ñ ≤ N – fraction parameter that determines the size of subsample; ν – shrinkage parameter;
L – base learner

1. For m = 1 to M do:
2. Select random subset {xñ, y(ñ,m)}Ñ

ñ=1 from {xn, y(n,m)}N
n=1

3. Apply learner L to sample set {xñ, y(ñ,m)}Ñ
ñ=1 to produce predictor F̂m

4. Replace residues of training set {xn, y(n,m)}N
n=1 to form {xn, y(n,m+1)}N

n=1,
where y(n,m+1) = y(n,m) − ν · F̂m(xn)

Output: y =
∑M

m=1 ν · F̂m(x)

3.2 Iterated Bagging

Bagging has been shown to reduce the variance of predictors, while leaving the bias
largely unchanged [3]. Iterated Bagging (IB) [6], also known as Adaptive Bagging [10],
is an effort to reduce the bias error of the low-variance bagging predictors. Similar to
SGB, it is a stage-wise algorithm that attempts to minimize the residue in each stage.
IB addresses bias and variance reduction in two ways: (1) it uses low-variance bagging
predictors to compute residues and (2) it computes unbiased estimates of residues us-
ing out-of-bag calculations [10]. The outline of IB is presented in Algorithm 2. In our
experiments, the threshold parameter τ for IB was set to 1.1, as done in [6].

Algorithm 2. Iterated Bagging
Given: M – maximum number of stages; K – number of bagging predictors in each stage; τ –
threshold of mean sum-of-squares of residues; {xn, yn}N

n=1 – training set of size N ; L – base
learner

1. Initialize minimum residue, εM∗ = ∞, M∗ = 0
2. For m = 1 to M do:
3. Learn a set of K bagging predictors {β(k,m)}K

k=1 with learner L
applied to bootstrap samples selected from {xn, y(n,m)}N

n=1

4. Calculate the residue y(n,m+1) = yn,m −∑K̂
k̂=1 β(k̂,m)(xn)/K̂ ,

where β(k̂,m) is one of the K̂ bagging predictors not trained on xn

5. Replace residues of the training set to form {xn, y(n,m+1)}N
n=1

6. Calculate the mean sum-of-squares of residues, εm =
∑N

n=1 (y(n,m+1))2/N
7. If εm < εM∗ then M∗ = m, εM∗ = εm

8. Exit the loop if εm > τ · εM∗

Output: y =
∑M∗

m=1

∑K
k=1 β(k,m)(x)/K

3.3 Bagging GB and Bagging SGB

We explored two alternative approaches to bias-variance reduction — bagging Gradient
Boosting (BagGB) and bagging Stochastic Gradient Boosting (BagSGB). BagGB and
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BagSGB use GB and SGB, respectively, as the base learners in each stage of building
a bagging predictor. A total of K bootstrap sets of training instances are randomly
selected to train K GB (or SGB) predictors. The output y of a test input x is predicted
by averaging the predictions of the K base predictors.

BagGB should reduce the variance error of predictions by stabilizing the predic-
tions of the GB base learners. BagGB and IB are similar as they both possess two
components: (1) a bagging predictor to stabilize the predictions of the base learners
by averaging the results of the predictors each trained with a different bootstrap sam-
ple and (2) a greedy stage-wise training of base predictors to minimize the residues.
The difference between IB and BagGB is that IB performs greedy stage-wise training
with a set of bagging predictors to stabilize the predictions of their base learners, while
BagGB stabilizes the predictions of a set of base-predictors, each of which performs
greedy stage-wise training. Although SGB already attempts to reduce the variance of
GB through randomization, we believe that bagging SGB may further enhance its vari-
ance reduction.

4 Experimental Evaluation

4.1 Methodology

We ran all our experiments on 25 datasets, with continuous class (target) values, from
the UCI repository [11]. Details on the datasets can found in the extended version of
this paper [12]. We compared 7 different regression methods, which are listed in Table 1
along with their setup parameters. The performance of most meta-learners (additive
models) varies with the number of base models used. In order to make the comparison
fair, we chose parameters such that each method produces 100 base models. In the
case of IB, this is an upper bound since it can choose to use fewer models. As a base
learner for all the meta-learners we used M5′ [13], which is regression tree induction
modified based on [14] and [15]. We ran separate sets of experiments on pruned M5′

and unpruned M5′. In pruned M5′, the regression tree is pruned back from the leaves,
so long as the expected estimated error decreases. All our results were averaged over 10
runs of 10-fold stratified cross-validation. The difference in performance between two
systems was compared using a two-tailed paired t-test (p < 0.05).

The performance of SGB and BagSGB is dependent on the fraction parameter f
chosen for the experiment. Some values for f perform significantly better than others
on the same dataset. In order to compare with the best instances of SGB and BagSGB,

Table 1. Experimental setup of each method

Algorithm Description
IB 10 stages of IB with 10 stages of bagging each (M = 10, K = 10).
BagSGB/BagGB 10 stages of bagging × 10 SGB/GB iterations each (M = 10).
SGB/GB 100 iterations (M = 100).
Bagging 100 stages of bagging M5′ trees.
M5′ pruned or unpruned M5′ tree induction
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Table 2. Summary of results comparing the different methods

IB BagSGB BagGB SGB GB Bag M5′ %ErrRed
IB - 13/1/11 10/6/9 10/12/3 18/4/3 16/1/8 17/1/7 16.44
BagSGB 11/1/13 - 10/8/7 16/5/4 15/5/5 18/4/3 21/2/2 16.35
BagGB 9/6/10 7/8/10 - 10/11/4 15/5/5 16/2/7 18/2/5 15.61
SGB 3/12/10 4/5/16 4/11/10 - 12/10/3 13/1/11 14/5/6 14.39
GB 3/4/18 5/5/15 5/5/15 3/10/12 - 13/0/12 13/1/11 7.45
Bag 8/1/16 3/4/18 7/2/16 11/1/13 12/0/13 - 17/5/3 1.98
M5′ 7/1/17 2/2/21 5/2/18 6/5/14 11/1/13 3/5/17 - -

(a)Base learner: unpruned M5′

IB BagSGB BagGB SGB GB Bag M5′ %ErrRed
IB - 18/4/3 20/3/2 23/1/1 24/0/1 19/3/3 22/1/2 16.89
BagSGB 3/4/18 - 9/9/7 19/6/0 18/6/1 19/4/2 22/3/0 11.82
BagGB 2/3/20 7/9/9 - 18/7/0 17/7/1 21/2/2 22/2/1 11.85
SGB 1/1/23 0/6/19 0/7/18 - 2/18/5 13/5/7 16/8/1 8.14
GB 1/0/24 1/6/18 1/7/17 5/18/2 - 13/4/8 16/7/2 8.55
Bag 3/3/19 2/4/19 2/2/21 7/5/13 8/4/13 - 16/7/2 2.59
M5′ 2/1/22 0/3/22 1/2/22 1/8/16 2/7/16 2/7/16 - -

(b)Base learner: pruned M5′

we performed 10 runs of 10-fold cross-validation on SGB and BagSGB with different
values of f from {0.4, 0.5, 0.6, 0.7, 0.8, 0.9}and selected the f that produced the lowest
error for each dataset.

4.2 Results

Tables 2(a) and 2(b) summarize the results of our experiments using unpruned and
pruned M5′ base learners respectively. Each cell in the tables reports a win/draw/loss
comparison between the algorithm in the row versus the algorithm in the column. The
win/draw/loss record presents three values, the number of data sets for which algorithm
A obtained better, equal, or worse performance than algorithm B with respect to root-
mean-squared (RMS) error. A win or loss is only counted if the difference in values is
determined to be significant at the 0.05 level by a paired t-test. The last column of each
table presents the percentage reduction of the RMS error using different algorithms
compared with using M5′. This value is averaged over all the 25 datasets, and provides
an indication of the magnitude of improvements one can expect on average. In the
following subsections we summarize the key comparisons from Table 2.

IB vs. SGB: Our results show that IB significantly outperforms SGB, both in terms
of win/draw/loss records and error reduction. The differences in performance are more
dramatic on pruned M5′, where IB performs better than SGB on 23 of the 25 datasets,
and produces twice the error reduction on average. The marked performance difference
on pruned M5′ can be attributed to IB’s superior bias-reduction.

SGB, BagGB and BagSGB: BagGB performs significantly better than SGB, both
for pruned and unpruned M5′. Similarly to IB, the differences are more pronounced
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on pruned M5′, where BagGB wins over SGB on 18 of the datasets, with no signif-
icant losses. The results suggest that applying bootstrap sampling to GB has a better
variance-reducing effect than the randomization incorporated in SGB. In fact, applying
bagging to SGB (BagSGB), can significantly drive down the error of SGB, as can be
seen for both M5′ settings. BagSGB performs marginally better than BagGB in terms
of win/draw/loss records, though their error reductions are quite comparable.

IB vs. BagGB/BagSGB: On unpruned M5′, BagGB and BagSGB perform compara-
bly to IB both in terms of win/draw/loss records and error reduction — all methods pro-
ducing approximately a 16% reduction in RMS error. However, for pruned M5′ trees,
which have higher bias, IB exhibits a significant advantage over BagGB and BagSGB.
It wins over BagGB and BagSGB on 20 and 18 datasets respectively. We also observe
approximately a 5% difference in error reduction between IB and the other methods.
IB’s effectiveness at debiasing learners makes it a clear winner in higher bias settings.

SGB vs GB: Our results on high-variance unpruned M5′ support the claim in [7] that
SGB has a better variance-reducing effect than GB. SGB on average reduced 14.39%
of the error of unpruned M5′, while GB reduced only 7.45%. However, SGB has signif-
icant wins in only 12 datasets and ties with GB in 10. Although, the error reduction of
SGB is quite good, the win/draw/loss results do not suggest as significant an advantage
of SGB over GB as in [9]. In fact, on pruned M5′, the performance of SGB and GB are
tied on 18 datasets, with SGB performing slightly worse on the other datasets.

Bias-variance reduction vs. bias or variance reduction: GB and bagging focus
solely on reducing the bias or the variance of learners. On the other hand, IB, SGB,
BagGB and BagSGB attempt to reduce both the contribution of bias and variance to
error. For brevity, we will refer to these four methods as BV-methods. Our results show
that generally the BV-methods have a significant advantage over GB and bagging, even
when using the same number of base models. When compared to GB, BV-methods per-
form significantly better on at least 12 datasets and lose on at most 5 datasets. The only
exception is SGB using pruned M5′, which loses to GB by a margin of 3 datasets. Even
when compared to bagging, SGB is less effective than the other BV-methods. It wins by
a margin of 2 (13 wins vs. 11 losses) and 6 (13 wins vs. 7 losses) when using unpruned
M5′ and pruned M5′ respectively. The other BV-methods win by at least 16 datasets
and lose on at most 8 when compared to bagging. The results clearly indicate that com-
bining techniques for bias and variance reduction is more effective than focusing on
either component alone.

5 Bias-Variance Analysis

We explain most of our results based on how the different learners effect the bias and
variance components of the error. To support our conjectures, we ran additional ex-
periments to explicitly measure the bias and variance reducing effects of the methods
presented. As in [6], we performed BV decompositions on three synthetic datasets —
Friedman1, 2 and 3 1. We do not introduce noise in these datasets, so that the evalua-

1 Details of the datasets can be found in [12].
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Table 3. Methods in order of increasing bias, variance and overall error

Friedman1 Friedman2 Friedman3
Bias2 Var. Err. Bias2 Var. Err. Bias2 Var. Err.
IB Bag IB IB IB IB IB Bag IB
GB BagSGB BagSGB GB Bag BagSGB GB BagSGB BagGB
SGB BagGB BagGB BagGB BagSGB BagGB SGB IB GB
BagGB IB GB SGB BagGB GB BagGB BagGB BagSGB
BagSGB M5′ SGB BagSGB GB SGB BagSGB M5′ SGB
M5′ GB Bag M5′ M5′ Bag M5′ SGB Bag
Bag SGB M5′ Bag SGB M5′ Bag GB M5′

tion of the bias and variance reduction capability of a learner is not confounded with its
ability to handle noise. We use synthetic datasets, so that we can control for noise and
get better estimates of bias and variance.

To estimate bias and variance we used the method proposed by Kohavi and Wolpert
[16], appropriately modified for regression (as opposed to classification). Each dataset
was divided into two halves, D and E. D was used to draw our sample of training sets
from, and E was used to estimate the terms in the BV decomposition. We generated
50 training sets from D sampled uniformly at random without replacement. Each train-
ing set of size 200 was selected from the pool of 400 examples in D. Each learning
algorithm was run on each of the training sets and the squared bias and variance terms
were calculated on set E based on equation 1. These values were averaged over all 50
train-test cycles. For SGB and BagSGB, we used a fraction f = 0.6; which is roughly
equivalent to drawing bootstrap samples at each iteration.

Table 3 presents the different algorithms applied to unpruned M5′, in the order of
increasing bias, variance and overall error on each dataset. The results for pruned trees
were qualitatively similar, though in general the errors were higher for all methods. For
detailed results see [12]. We observe that GB performs very well at reducing bias, but
does not perform well at variance reduction. In fact, on Friedman1 and Friedman3, GB
actually increases the variance of the base learner. Analogously, bagging can increase
the bias of the learner, but performs very well in terms of variance reduction. By com-
bining the power of bagging and GB, BagGB produces a lower overall error than each
of its components. Similarly, BagSGB improves on the bias reduction of bagging and
the variance reduction of SGB, and as a result produces a lower overall error than both
component algorithms. IB shows the best performance on overall error, and it appears
to be quite effective in reducing both bias and variance. In fact, IB also performs the
best in terms of bias reduction on all three datasets.

6 Future Work and Conclusion

We compared four approaches to combining bias and variance reduction techniques —
Stochastic Gradient Boosting, Iterated Bagging, bagging Gradient Boosting and bag-
ging Stochastic Gradient Boosting. Our results demonstrate that methods for combining
bias and variance reduction (BV-methods) are more effective than methods that focus
either on bias or variance in isolation. We also showed that while SGB often improves
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on GB, it is not very consistent and is easily outperformed by the other BV-methods.
Experimental results show that for unpruned trees, which are low-bias learners, BagGB
and BagSGB perform somewhat comparably to IB. However, IB, being a more effec-
tive bias-reduction method, performs much better compared to other algorithms when
applied to pruned trees.

In our study, we restricted our methods to building at most 100 models each. Typ-
ically, the performance of these ensemble methods (or additive models) improve with
ensemble size. In future work, we would like to explore the relationship between the
number of models used and the effectiveness of each method. All our experiments
were run on UCI datasets, commonly used in previous studies. However, these datasets
are not very large — the largest has 625 instances. It would be good to see how re-
sults vary for much larger datasets. Experimenting with base learners other than deci-
sion trees, such as neural networks and support vector machines would also be very
useful.
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Abstract. We analyse perceptron-like algorithms with margin consider-
ing both the standard classification condition and a modified one which
demands a specific value of the margin in the augmented space. The
new algorithms are shown to converge in a finite number of steps and
used to approximately locate the optimal weight vector in the augmented
space. As the data are embedded in the augmented space at a larger dis-
tance from the origin the maximum margin in that space approaches
the maximum geometric one in the original space. Thus, our procedures
exploiting the new algorithms can be regarded as approximate maximal
margin classifiers.

1 Introduction

Rosenblatt’s perceptron algorithm [6] is the simplest on-line learning algorithm
for binary linear classification [3]. A variant of the perceptron also exists which
unlike the original algorithm aims at a solution hyperplane with respect to which
the data possess a non-zero margin. The problem, however, of finding the optimal
hyperplane has been successfully addressed only with the advent of the Adatron
algorithm [1] and later by the Support Vector Machines (SVMs) [7, 2].

Our purpose here is to address the problem of maximal margin classification
using the less time consuming, compared to SVMs, perceptron-like algorithms.
We work in a space augmented by one additional dimension [3] in which we
embed the data by placing them at a distance ρ in the extra dimension and
replace the perceptron classification condition with a new one insisting on a spe-
cific value of the margin in this augmented space. We show that the algorithms
with the modified condition converge in a finite number of steps and use them
to approximately locate the solution with maximum margin in the augmented
space. As ρ→∞ the maximum margin in the augmented space approaches the
maximum geometric one in the original space. Thus, our algorithmic procedures
can be considered as approximate maximal margin classifiers.

Whilst proving convergence of the new algorithms we found it useful to intro-
duce the notion of stepwise convergence, the property of the algorithms that ap-
proach the optimal solution vector at each step. Through a formulation involving
stepwise convergence we provide a unified approach in establishing convergence
for a large class of algorithms with additive perceptron-like update rules.
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Section 2 contains our theoretical analysis. In Sect. 3 we describe algorith-
mic implementations aiming at an approximate determination of the maximum
margin. Finally, Sect. 4 contains our conclusions.

2 Theoretical Analysis

In what follows we make the assumption that we are given a training set which,
even if not initially linearly separable can, by an appropriate feature mapping
into a space of a higher dimension, be classified into two categories by a lin-
ear classifier. This higher dimensional space in which the patterns are linearly
separable will be the considered space. By adding one additional dimension and
placing all patterns in the same position ρ0 = ρ > 0 in that dimension we
construct an embedding of our data into the so-called augmented space. The ad-
vantage of this embedding is that the linear hypothesis in the augmented space
becomes homogeneous.

We concentrate on algorithms that update the augmented weight vector at by
adding a suitable positive amount in the direction of the misclassified (according
to an appropriate condition) training pattern yk. The general form of such an
update rule is

at+1 = at + ηftyk , (1)

where η is the (constant) learning rate and ft a function of the current step
(time) t which we require to be positive and bounded, i.e.

0 < fmin ≤ ft ≤ fmax . (2)

For the special case of the perceptron algorithm ft = 1. Each time the prede-
fined misclassification condition is satisfied by a training pattern the algorithm
proceeds to the update of the weight vector. Throughout our discussion a reflec-
tion with respect to the origin in the augmented space of the negatively labelled
patterns is assumed in order to allow for a common classification condition for
both categories of patterns [3]. Also, we use the notation R = max

k
‖yk‖ and

r = min
k
‖yk‖.

The relation characterising optimally correct classification of the training
patterns by a weight vector u of unit norm in the augmented space is

u · yk ≥ γd ∀k . (3)

The quantity γd, which we call the optimal directional margin, is defined as

γd = max
u:‖u‖=1

min
k
{u · yk} (4)

and is obviously bounded from above by r. The optimal directional margin de-
termines the maximum distance from the origin in the augmented space of the
hyperplane normal to u placing all training patterns on the positive side. In the
determination of this hyperplane only the direction of u is exploited with no
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reference to its projection onto the original space. As a consequence the above
maximum margin in the augmented space is not necessarily realised with the
same weight vector that gives rise to the optimal geometric margin in the origi-
nal space. Notice, however, that the existence of a directional margin means that
there exists a geometric margin at least as large as the directional one.

First, in Sect. 2.1, we examine algorithms in which the misclassification con-
dition takes the form

at · yk ≤ b , (5)

where b is a positive parameter. A slight transformation of (5) to

ut · yk ≤
b

‖at‖
, (6)

where ut is the weight vector at normalised to unity, reveals that the minimum
directional margin required by the standard margin condition is lowered as the
length of the weight vector grows.

Subsequently, in Sect. 2.2, we examine algorithms with a misclassification
condition of the form

ut · yk ≤ β , (7)

where β is a positive parameter. Notice that the above condition amounts to
requiring a minimum directional margin which is not lowered with the number
of steps. Therefore, successful termination of the algorithm leads to a solution
with a guaranteed geometric margin at least as large as the directional margin
β found. This is an important difference from the misclassification condition
of (5) which, as (6) illustrates, cannot by itself guarantee a minimum margin.
Obviously, convergence of the algorithm is not possible unless

β < γd . (8)

The condition (7) involving only the direction of the weight vector motivates new
positive and bounded functions ft like the function ft = (βu − ut · yk)/‖yk‖
with βu > β. We consider two cases depending on whether the length of the
augmented weight vector is free to grow or is kept constant throughout the
algorithm. In the last category of algorithms a fixed-length weight vector is
achieved by a renormalisation of the newly produced weight vector to the target
margin value β each time an update according to (1) takes place.

A very desirable property of an algorithm is certainly progressive convergence
at each step meaning that at each update ut moves closer to the optimal direction
u. Let us assume that

ut · u > 0 . (9)

Because of (9) the criterion for stepwise angle convergence, namely

Δ ≡ ut+1 · u− ut · u > 0 , (10)

can be equivalently expressed as a demand for positivity of D

D ≡ (ut+1 · u)2 − (ut · u)2 = 2
ηft

‖at‖
(ut · u)

∥∥∥∥ut +
ηft

‖at‖
yk

∥∥∥∥−2

A , (11)
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where use has been made of the update rule (1) and A is defined by

A ≡ yk · u− (ut · u)(yk · ut)−
1
2
ηft

‖at‖

(
‖yk‖2 (ut · u)− (yk · u)2

(ut · u)

)
. (12)

Positivity of A leads to positivity of D on account of (2) and (9) and conse-
quently to stepwise convergence. Actually, convergence occurs in a finite number
of steps provided that after some time ‖at‖ and A become bounded from below
by a positive constant and ‖at‖ increases at most linearly with t. Following this
rather unified approach one can show that sooner or later the algorithms under
consideration enter the stage of stepwise convergence and terminate successfully
in a finite number of steps. Better time bounds are, however, obtainable by
alternative methods.

Finally, Sect. 2.3 contains our derivations which place an upper bound on the
optimal geometric margin of a training set in terms of the optimal directional
one, thereby leading to an estimate of the optimal geometric margin.

2.1 Algorithms with the Standard Margin Condition

We first analyse the algorithms with the general update rule (1) by calculating
an upper bound on the number of updates until a solution is found, thereby
extending Novikoff’s theorem [5, 4]. From the difference at+1 · u − at · u we
obtain a relation whose repeated application, assuming a0 = 0, implies

‖at‖ ≥ at · u ≥ ηfminγdt . (13)

Also the difference ‖at+1‖2 − ‖at‖2 gives a relation whose repeated application
leads to

‖at‖ ≤
√

(η2f2
maxR

2 + 2ηfmaxb)t . (14)

Combining (13) and (14) we get Novikoff’s time bound

t ≤ tN ≡
f2
max

f2
min

R2

γ2
d

(
1 +

2
ηfmax

b

R2

)
. (15)

We next turn to a discussion of stepwise convergence. From (13) it is clear that
for t > 0 (9) holds. Also, yk · u appearing in A is definitely positive due to (3)
whereas ‖at‖ increases with time because of (13), thereby making the term of
A linear in η negligible. Moreover, (6) shows that the term (ut · u)(yk · ut) is
suppressed with time. Thus, for time t larger than a critical time tc positivity of
A and consequently of D is accomplished. By using (3), (5) and (13) we obtain

A ≥ γd −
1

2ηfminγdt

(
2b+ ηfmax(R2 − γ2

d)
)
. (16)

From the above inequality the time sufficient for stepwise convergence to begin
is

tc ≡
1
2
fmax

fmin

R2

γ2
d

(
1 +

2
ηfmax

b

R2 −
γ2
d

R2

)
<

1
2
fmin

fmax
tN . (17)
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Therefore, unless the algorithm terminates much before Novikoff’s time tN is
exhausted, it will definitely enter the phase of stepwise convergence. Actually,
because of (13), (14) and (16) an alternative proof of convergence in a finite
number of steps is obtained.

It would be interesting to estimate the margin that the algorithm is able
to achieve [4]. For t = tN (13) and (14) hold as equalities leading to the largest
possible value of ‖at‖, namely ‖atN‖ = ηfminγdtN, which provides a lower bound
βmin = b/‖atN‖ on the directional margin β = b/‖at‖ appearing in (6)

βmin =
fmin

fmax

γd

(2 + fmax(ηR2/b))
=

1
2
fmin

fmax
γd

(
1− f2

max

f2
min

R2

γ2
d
t−1
N

)
. (18)

The above guaranteed value of the directional margin acquires a maximum of
1
2

fmin
fmax

γd ≤ 1
2γd for b5 ηR2 or tN 5 R2/γ2

d.

2.2 Algorithms with Fixed Directional Margin Condition

Algorithms with Free-Length Weight Vector. In the case that at is free
to grow indefinitely and a0 = 0 (13) is again obtained and as a consequence
for t > 0 (9) is once more recovered. Therefore, positivity of D is equivalent
to stepwise convergence. By using (3) and (7) we get a lower bound on the
η-independent part of A

yk · u− (ut · u)(yk · ut) ≥ γd − β , (19)

which is definitely positive on account of (8). Furthermore, because of (13) the
terms of A linear in η, which are not necessarily positive, become less important
with time leading to positivity of A and consequently of D for t larger than a
critical time tc. More formally, employing (3), (7) and (13) we can place a lower
bound on A

A ≥ γd − β − 1
2
fmax

fmin

1
γdt

(R2 − γ2
d) (20)

and demanding positivity estimate the time tc sufficient for the onset of stepwise
convergence

tc ≡
1
2
fmax

fmin

R2

γ2
d

(
1− γ2

d

R2

)(
1− β

γd

)−1

. (21)

Notice the crucial dependence of tc on γd − β. Since we initially set the weight
vector to zero, at is entirely generated by the first t updates and its norm satisfies
the obvious bound

‖at‖ ≤ ηfmaxRt . (22)

Then, stepwise convergence along with (13), (20) and (22) lead to convergence
in a finite number of steps.

Following a Novikoff-like procedure and provided fminγd− fmaxβ > 0 (which
always holds if ft = 1) we can obtain for every positive integer N a relation

t−N

CN + ln
√
t− 1

≤
(
fmax

fmin

R

γd

)2(
1− fmax

fmin

β

γd

)−1

(23)
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constraining the growth of t. Here

CN = N
fmin

fmax

γd

R

(
1− fmin

fmax

γd

R

)
− 1

2

(
lnN − 1

N

)
. (24)

If [x] denotes the integer part of x the optimal value of N is given by

Nopt =

[
1
2
fmax

fmin

R

γd

(
1− β

R

)−1
]

+ 1 . (25)

Notice that both (21) and (23) are independent of η. This is an interesting prop-
erty of all algorithms of this class with a0 = 0 under the additional assumption
that ft depends on at only through ut. This may be understood by observing
that a rescaling of η results in a rescaling of at by the same factor which does
not affect either the hyperplane normal to at or the classification condition.

Algorithms with Fixed-Length Weight Vector. We demand that ut ·u > 0
for all t which requires an appropriate choice of the initial condition. Notice that
in this particular class of algorithms at cannot be set initially to zero since
‖at‖ = β. We propose that u0 be chosen in the direction of one of the yk’s.
Then, due to the form of the update rule and the positivity of ft, it is obvious
that at is a linear combination with positive coefficients of the training patterns.
Therefore, since according to (3) yk satisfies yk · u > 0 the same is true for
at and consequently for ut. Positivity of ut · u allows us to use positivity of D
as a criterion for stepwise convergence. Taking a closer look at A reveals that
according to (8) and (19) the η-independent term remains positive throughout
the algorithm. For the term linear in η which has no definite sign we conclude
that an appropriate choice of η can render it smaller than the η-independent one,
thereby leading to stepwise convergence from the first step of the algorithm. More
specifically, using (3), (7) and the fact that ‖at‖ = β we have

A ≥ γd − β − ηfmax

2β
(R2 − γ2

d) . (26)

Positivity of A and D is achieved for η smaller than the critical value

ηc ≡
2

fmax

(γd − β)β
R2

(
1− γ2

d

R2

)−1

. (27)

Taking into account (9) and (26) and given that ‖at‖ = β stepwise convergence
from the first step implies convergence in a finite number of steps.

By placing a t-independent lower bound on Δ defined in (10) and repeatedly
applying the resulting inequality it is possible to derive an upper bound on t.
For the optimal value of the learning rate

ηopt 3
1

fmax

(γd − β)β
R2

(
1 +

2β
R

)−1

(28)
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we have

t < 2
fmax

fmin

R2

(γd − β)2

(
1 +

2β
R

)(
1− (γd − β)R

(R+ 2β)2

)−1

. (29)

This bound is rather analogous to the one of the perceptron without margin.
The main differences are a factor of 2 and the replacement of γ2

d by (γd − β)2.

2.3 Estimating the Optimal Geometric Margin

If we denote by a = [w w0] a weight vector in the augmented space that classifies
the patterns correctly the geometric margin γ(a) of the set is

γ(a) =
‖a‖
‖w‖γd(a) =

1
‖w‖min

k
{a · yk} =

1
‖w‖min

k
{w · xk + w0ρ0} , (30)

where γd(a) is the corresponding directional margin and yk = [xk ρ0]. Notice
that |w0|ρ/‖w‖ (with ρ = |ρ0|) is the distance from the origin of the hyperplane
normal to w which cannot exceed Rx = max

k
‖xk‖. Hence, |w0|/‖w‖ ≤ Rx/ρ.

As a consequence, ‖w‖ ≤ ‖a‖ =
√
‖w‖2 + w2

0 ≤ ‖w‖
√

1 +R2
x/ρ

2 = ‖w‖R/ρ
given that R2 = ρ2 +R2

x. Then, (30) leads to γd(a) ≤ γ(a) but also to

γ(a) ≤ R

ρ
γd(a) . (31)

In the case that the weight vector a is the optimal one aopt maximising the
geometric margin and taking into account that γd = max

a
γd(a) ≥ γd(aopt) and

γ ≡ γ(aopt) = max
a

γ(a) ≥ max
a

γd(a) = γd the inequality (31) leads to

1 ≤ γ

γd
≤ R

ρ
. (32)

In the limit ρ → ∞, R/ρ → 1 and from (32) γd → γ. Thus, with ρ increasing
the optimal directional margin γd approaches the optimal geometric one γ.

3 Algorithmic Implementation

In this section we present algorithms seeking the optimal directional margin
which, however, due to the analysis of Sect. 2.3 could be used to approximately
obtain the optimal geometric margin.

A first implementation makes repeated use of the algorithms of Sect. 2.2. In
each round of its application the algorithm looks for a fixed directional margin
β according to the condition ut · yk > β. Each round lasts until the condition is
satisfied by all yk’s or until an upper bound on the number of checks is reached.
The range of feasible β values and therefore the interval that the algorithm should
search extends from 0 to r. The search can be performed efficiently by a Bolzano-
like bisection method with an initial target margin β = r

2 and a step parameter
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set initially to r
2 . If the algorithm comes up with a solution without exhausting

the upper number of checks the round is considered successful. The weight vector
is stored as the best solution found so far and is exploited as the initial condition
of the next trial, thereby speeding up the procedure substantially. One could also
envisage using the final weight vector of an unsuccessful previous round as the
initial weight vector of a subsequent one until the first successful trial is reached.
At the end of each trial the step is divided by 2. A successful (unsuccessful) trial
is followed by an increase (decrease) of the target margin β by the current step
value. Therefore, for a sufficiently large upper number of checks, the procedure
guarantees that the deviation of β from the maximum margin is halved in each
round. Termination occurs when the step reaches a certain predefined value.

A second possibility is to first use the standard perceptron algorithm with
margin of Sect. 2.1 in order to obtain a solution with a guaranteed fraction of
the existing directional margin given by (18) and then attempt to incrementally
boost the margin obtained by repeatedly employing the algorithms of Sect. 2.2.
The initial condition of each round of boosting will be the final weight vector
of the previous round and the step by which the target margin increases will be
determined as a fraction of the margin found in the first stage. The algorithm
ends with the first unsuccessful trial. An analogous boosting procedure could
follow a first stage of successful employment of the Bolzano-like method.

The above procedures were tested on artificial as well as real-life data with
encouraging preliminary results.

4 Conclusions

We examined perceptron-like algorithms with margin and developed a criterion
for the stronger requirement of stepwise convergence which allowed us to adopt
a unified approach in the analysis. We also proposed a new class of such al-
gorithms in which the standard classification condition is replaced by a more
stringent one insisting on a fixed value of the directional margin and proved
that they converge in a finite number of steps. Two implementations made
possible a fast search for the optimal directional margin. We finally showed
that as the data are placed increasingly far in the augmented space the opti-
mal directional margin approaches the optimal geometric one. This observation
transforms our procedures into fast and simple approximate maximal margin
classifiers.
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Abstract. A new hybrid Particle Swarm Optimization (PSO) algorithm is pro-
posed in this paper based on the Nonlinear Simplex Search (NSS) method for 
multimodal function optimizing tasks. At late stage of PSO process, when the 
most promising regions of solutions are fixed, the algorithm isolates particles 
that fly very close to the extrema and applies the NSS method to them to en-
hance local exploitation searching. Explicit experimental results on famous 
benchmark functions indicate that this approach is reliable and efficient, espe-
cially on multimodal function optimizations. It yields better solution qualities 
and success rates compared to other three published methods. 

1   Introduction 

A new research field called Swarm Intelligence (SI) arose [1], [2] in the beginning of 
90's, which focuses on analogies of swarm behavior of natural creatures. These opti-
mization techniques suggest that the main ideas of intelligent individuals’ socio-
cognition can be effectively introduced to develop efficient optimization algorithms. 
Among all SI algorithms, the Ant Colony Optimization (ACO) proposed by Dorigo 
[3] is the most well known technique and is mainly used for combinatorial optimiza-
tion tasks. The Particle Swarm Optimization (PSO) is another SI method, which is 
mostly used for continuous function optimizing and has been originally proposed by 
R.C. Eberhart and J. Kennedy [4]. PSO exhibits good performance in solving hard 
optimization problems and engineering applications, and compares favorably to other 
optimization algorithms [5], [6]. 

Numerous variations of the basic PSO algorithm have been projected by research-
ers in this field [7] to improve its overall performance since its introduction in 1995. 
Hybrid PSO algorithms with determinate methods, such as the Nonlinear Simplex 
Search method, are proved to be superior to the original two techniques and have 
many advantages over other techniques, such as Genetic Algorithms (GAs) and Tabu 
Search (TS), because these hybrid methods can perform exploration search with PSO 
and exploitation search with determinate methods [8]. Generating initial swarm by the 
NSS might improve, but is not satisfying for multimodal function optimizing tasks 
[9]. Developing the NSS as an operator to the swarm during the optimization may 
increase the computational complex considerably. 
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In this paper, the Nonlinear Simplex Search method is adopted at late stage of PSO 
algorithm when particles fly quite near to the extrema. Experimental results on several 
famous test functions show that this is a very promising way to increase both the 
convergence speed and the success rate significantly. We briefly introduce the PSO 
algorithm and the nonlinear simplex search method in section 2. In section 3, the 
proposed algorithm and experimental design is described, correlative results of ex-
periments are exhibited in section 4. The paper comes to the end with terse conclu-
sions and some ideas for further work. 

2   Background Knowledge 

2.1   The Particle Swarm Algorithm 

As mentioned in previous section, the particle swarm algorithm is proposed mainly 
for continuous optimization tasks based on the analogy of swarm of bird and fish 
school. In PSO algorithm, the population of potential solutions is called swarm, which 
is usually initialized by a uniform distribution over the search space and then itera-
tively explores the search space, simulating the movement of a “birds’ flock” while 
searching for food. During the search process, global exchange of information among 
all individuals, which are called particles, takes place so that each particle can benefit 
from the current search results of other particles. 

In the original PSO formulae, particle i is denoted as Xi=(xi1,xi2,...,xiD), which 
represents a potential solution to a problem in D-dimensional space. Each particle 
maintains a memory of its previous best position, Pi=(pi1,pi2,...,piD), and a velocity 
along each dimension, represented as Vi=(vi1,vi2,...,viD). At each iteration, the P vector 
of the particle with the best fitness in the swarm, designated g, and the P vector of the 
current particle are combined to adjust the velocity along each dimension, and that 
velocity is then used to compute a new position for the particle. 

The velocity and position of particle i at (t+1)th iteration are updated by [5]: 
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Constants c1 and c2 determine the relative influence of the social and cognition 
components (learning rates), which often both are set to the same value to give each 
component equal weight; r1 and r2 are random numbers uniformly distributed in the 
interval [0,1]. A constant, Vmax, was used to limit the velocities of the particles. The 
parameter w, which was introduced as an inertia factor, can dynamically adjust the 
velocity over time, gradually focusing the PSO into a local search [6]. 

Maurice Clerc has derived a constriction coefficient K, a modification of the PSO 
that runs without Vmax, reducing some undesirable explosive feedback effects [10], 
[11]. The constriction factor is computed as: 
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With the constriction factor K, the PSO formula for computing the new velocity is: 
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Carlisle and Dozier investigated the influence of different parameters in PSO, se-
lected c1=2.8, c2=1.3, population size as 30, and proposed the Canonical PSO [12]. 

To speed up the convergence process and avoid premature problem, Shi YH [13] 
proposed a method to linearly decrease the inertia weight (LDW) by: 

max
minmaxmax *)(

iter

iter
wwww −−=                                (5) 

Where wmax and wmin is the maximum and minimum of inertia weight, iter is the cur-
rent iteration number, itermax is the maximum iteration times. 

2.2   The Nonlinear Simplex Search Method 

Spendley et al presented the basic simplex method in 1962, which is an efficient se-
quential optimization method for function minimization tasks, and then improved by 
Nelder and Mead, to what is called the Nonlinear Simplex Search method [14]. It 
needs only values and not derivatives of the objective function. In general, the NSS is 
considered as the best method if the figure of merit is “get something to work 
quickly”. 

A D-dimensional simplex is a geometrical figure consisting of D+1 vertices (D-
dimensional points) and all their interconnecting segments, polygonal faces etc. We 
consider only simplexes that are non-degenerated, i.e., that enclose a finite inner D-
dimensional volume. 

The NSS starts with an initial simplex generated using the found minimum as 
one of its vertices and generating the rest D points randomly. Then it takes a series 
of steps as follows to rescale the simplex: first, it finds the points where the objec-
tive function is highest (the least favorable trial W) and lowest (the most favorable 
trial B); then it reflects the simplex around the high point to point R. If the solution 
is better, it tries an expansion in that direction to point E; else if the solution is 
worse than the second-highest (next-to-the worst) point Nw, it tries an intermediate 
point. When the method reaches a “valley floor”, the simplex is contracted in the 
transverse direction in order to ooze down the valley or it can be contracted in all 
directions, pulling itself in around its lowest point, and started again. 

The different moves of a two-dimensional simplex are shown in Figure 1. 
At each step, the rejected trial W is replaced by one of the following trials on con-

ditions that: 
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Where C  is the centroid of the remaining vertices;α ,γ , +β and −β is coefficients 

of reflection, expansion, positive contraction and negative contraction; fB, fNw, fW and 
fR is the values of object function on point B, Nw, W and R respectively. 

 

Fig. 1. Different simplex moves from the rejected trial condition, W= the rejected trial, R = 
reflection, E = expansion, C+ = positive contraction, C- = negative contraction. 

3   The Proposed Algorithm and Experimental Design 

At late stage of PSO running, promising regions of solutions have been located. Ap-
plying the NSS to enhance exploitation search at this stage is capable of improving 
the solution quality and convergence rate.  

We propose a hybrid Nonlinear Simplex Search PSO (NSSPSO) based on the Ca-
nonical PSO algorithm, which isolates a particle and apply the NSS to it when it 
reaches quite close to the extrema (within the diversion radius). If the particle “lands” 
within a specified precision of a goal solution (error goal) during the NSS running, a 
PSO process is considered to be successful, otherwise it may be laid back to the 
swarm and start the next PSO iteration. 

The diversion radius is computed as: 

δ+= ErrorGoalDRadius                                                        (6) 
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=

−

otherwiseErrorGoal
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,*01.0

10,*100 4

δ                              (7) 

In a NSS process, an initial simplex is consists of the isolated particle i and other D 
vertices randomly generated with the mean of Xi and standard deviation of DRadius. 

The stopping criterion is defined as: 

                                          ErrorGoalGMXf g <−)(                                        (8) 

In order to get quicker convergence, we set maximums of iterations in all experi-
ments as a second stopping criterion. In the later case, we consider the search process 
to be failed. 
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The benchmark functions [15] on which the proposed algorithm has been tested 
and compared to other methods in the literature, and the corresponding parameters are 
listed in Table 1. 

Table 1. Benchmark functions used in our experiments 

Function Xmax GM Error Goal Dimension 
10-7 2 
10-7 10 Sp: Sphere 100 0 
10-4 30 
10-7 2 
10 10 Ro: Rosenbrock 30 0 

100 30 
10-7 2 
10 10 Ra: Rastrigin 5.12 0 

100 30 
10-7 2 
10-1 10 Gr: Griewank 600 Dimension-1 
10-1 30 

Sc: Schaffer 5.12 -1 10-4 2 
L3: Levy No.3 10 -176.5418 10-4 2 
L8: Levy No.8 10 0 10-7 3 

Co: Corana 5.12 0 10-7 4 
Fr: Freudenstein 10 0 10-7 2 
Go: Goldstern 5.12 3 10-7 2 

*Note: for function Sphere, Rosenbrock, Rastrigin and Griewank, three Error Goals are 
given for separate dimension of three tests. GM is the known theoretic extremum of 
each test function. 

To eliminate the influence of different initial swarms, we implement 200 experi-
ments for each test and the maximum number of PSO iterations is set to be 500, 
swarm size is 60 for 30-dimension functions and 30 for others. We use symmetric 
search spaces as [-Xmax…Xmax], and set Vmax=Xmax. In LDW PSO algorithm, 
c1=c2=2.0, and the inertia weight w was initially set to 0.9 and gradually decreased 

toward 0.4. Parameters used in the NSS are: α =1.0, γ =2.0, +β = −β =0.5. We re-

implemented all the algorithms mentioned in Section 4 and executed them under the 
same environment: Matlab 7.0 [16], Pentium IV 2.8GHz CPU, 512M RAM, Win-
dows2000 Professional OS. 

4   Experimental Results 

The rate of success, mean function evaluations, average optima and total CPU time 
for each test are listed in Table 2~4. The subscripts of test functions denote different 
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dimensions. The proposed algorithm is denoted as NSSPSO, NS-PSO is another NSS 
hybrid PSO proposed by Parsopoulos and Vrahatis [9], LDW represents Linearly 
Decreasing Weight method by Shi YH [5], [6], and CPSO is the Canonical PSO by 
Carlisle A [12]. From the tables we can see that the overall performance of NSSPSO 
algorithm is apparently superior to the other 3 algorithms in terms of success rate, 
solution quality and convergence speed as well, especially on multimodal functions 
such as Levy No.3, Schaffer, Rosenbrock and Griewank. As to high dimension func-
tion optimizing, NSSPSO operates appreciably inferior to NS-PSO due to its compu-
tational expense, but is still equal to the Canonical PSO algorithm in most cases. 
LDW PSO yields poorest performance in nearly all tests. 

Table 2. Rate of success, mean function evaluations for each test function 

Rate of success Mean function evaluations 
 

NSSPSO NS-PSO CPSO LDW 
 

NSSPSO NS-PSO CPSO LDW 

Ro2 0.99 0.845 0.97 0.075  7589.6 9421.8 8450.3 14876 
Ra2 1 0.84 1 0.94  2970.6 5573.3 3181.8 9627.1 

Gr2 0.8 0.685 0.735 0.335  8383.9 9397.6 8985.9 13752 

Sc 0.7 0.57 0.645 0.2  8662.6 9906.8 9119.7 14194 

L3 1 0.83 1 0.155  2595.7 4827 2853.3 14194 

L8 1 0.995 1 1  2259.9 2045 2327.6 8526.6 

Co 1 0.99 1 1  6493.7 4877.4 5524.5 12159 

Fr 0.98 0.52 0.975 0.05  4466.6 9321.1 4349.6 10629 

Go 1 0.94 1 1  2844.5 3601.2 2955.4 8510.9 

Sp10 1 1 1 0.35  9677.9 5723.4 6306.8 14948 

Ro10 0.83 0.945 0.84 0.62  5365.1 3552 5461.6 13600 

Ra10 0.963 0.83 0.96 0.71  5390.7 5929.5 5094.3 13471 

Gr10 0.845 0.8 0.845 0.515  8997.5 7084.1 7332.3 14124 

Sp30 1 1 1 0  11716 13789 15448 30060 

Ro30 0.825 0.94 0.795 0  14945 10697 16576 30060 

Ra30 0.995 1 1 0.295  8987.1 3475.5 8511.3 29604 

Gr30 0.99 1 0.995 0  11019 8999.1 10801 30060 

5   Conclusions and Future Work 

In this paper, we propose a new hybrid Particle Swarm Optimization algorithm, 
which applies the Nonlinear Simplex Search method at late stage of PSO running 
when the most promising regions of solutions have been located. We implement 
wide variety of experiments on well-known benchmark functions to test the pro-
posed algorithm. The results compared to other 3 published methods demonstrate 
that this method is very effective and efficient, especially for continuous multimodal 
function optimization tasks. 
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Table 3. Average optima for each test function 

Average optima Test 
Function 

GM 
NSSPSO NS-PSO CPSO LDW 

Ro2  0 7.8299e-8 0.76162 0.002373 1.3522 
Ra2 0 4.7472e-9 0.42783 4.9856e-9 0.059704 
Gr2 1 1.0012 1.003 1.0016 1.0057 
Sc -1 -0.99716 -0.99334 -0.99664 -0.99269 
L3 -176.5418 -176.54 -163.17 -176.54 -175.04 
L8 0 5.9397e-9 5.8974e-9 6.0348e-9 6.4366e-9 
Co  0 7.7393e-9 5.0382e-6 6.7979e-9 6.67e6e-9 
Fr 0 0.97969 80.237 1.2246 7.3476 
Go 3 3 104.1 3 3 
Sp10 0 8.9723e-9 8.2146e-9 8.2073e-9 1.0912e-7 
Ro10 0 298.01 461.95 20.688 372.75 
Ra10 0 9.6195 10.14 9.7158 10.585 
Gr10 9 9.0979 9.1038 9.1003 9.1272 

Sp30 0 9.2039e-5 9.3474e-5 9.2407e-5 47.088 

Ro30 0 2009.3 100.63 2856.7 79609 

Ra30 0 97.418 95.818 97.752 122.48 

Gr30 29 29.098 29.094 29.094 30.487 

Table 4. Total CPU time for each test function 

Total CPU time Test 
Function NSSPSO NS-PSO CPSO LDW Improved 

Ro2   31.031 36.422 31.781 59.984 2.4~48.3% 
Ra2  14.875 27.156 14.906 48.156 0.2~69.1% 
Gr2  42.469 49.141 44.813 72.656 5.2~41.5% 
Sc  30.609 35.484 31.047 52.031 1.4~74.5% 
L3  13.063 22.688 12.813 69.578 -1.9~81.2% 
L8  11.953 10.891 11.188 43.234 -9.7~72.3% 
Co   36.719 26.219 28.75 65.922 -29.6~44.3% 
Fr  16.672 31.875 14.516 38.094 -4.8~56.2% 
Go  10.5 12.859 9.8125 30.438 -7.0~65.6% 
Sp10  40.453 23.125 24.656 65.016 -34.9~39.8% 
Ro10  22.172 15.266 22.547 60.672 -45.2~63.5% 
Ra10  29.359 32.625 27.641 78.469 -6.2~62.6% 
Gr10  102.311 42.25 43.156 89.313 -102.1~-14.5% 

Sp30  241.98 67.594 68.609 151.52 -187.9~-59.7% 

Ro30  79.952 56.281 80.047 162.58 -22.6~50.8% 

Ra30  64.094 47.574 60.75 323.47 -19.7~80.2% 

Gr30  83.063 71.609 81.547 269.13 -11.9~69.1% 
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Future work may focus on accelerating the convergence for high dimension prob-
lems, extending the approach to constrained multi-objective optimization, and apply-
ing the proposed technique in real hybrid intelligent systems. 
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