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Abstract. We describe algorithms that directly infer regular expressions
from positive data and characterize the regular language classes that can
be learned this way.

1 Introduction

Over the last about forty years, many algorithms have been proposed and imple-
mented that are capable to infer a regular language, given only a finite number
of samples of the language. Probably most of them, especially the ones in ac-
tual use, are mere heuristics in the sense that there does not exist any concise
characterization of the class of languages that can be learned in this way.

In more mathematical terms, the “generalization capability” sketched in the
preceding paragraph is best captured by Gold’s learning paradigm of learning
(identification) in the limit from positive samples as proposed by Gold [10]. In
this well-established model, a language class L (defined via a class of language
describing devices D as, e.g., grammars or automata) is said to be identifi-
able if there is a so-called inference machine I to which as input an arbitrary
language L ∈ L may be enumerated (possibly with repetitions) in an arbi-
trary order, i.e., I receives an infinite input stream of words E(1), E(2), . . . ,
where E : N → L is an enumeration of L, i.e., a surjection, and I reacts with
an output device stream Di ∈ D such that there is an N(E) so that, for all
n ≥ N(E), we have Dn = DN(E) and, moreover, the language defined by DN(E)

equals L.
In practical applications of this learning scenario, learning regular languages

often means to infer regular expressions (REs), because REs are arguably the
more suitable model to specify regular languages, especially for human beings.
Therefore they (or variants thereof) are probably used in well-known tools as
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grep in UNIX. Unfortunately, to our knowledge all learning algorithms with
known characterizations of the learned language class are based on grammars
and/or automata.1 The disadvantage is that when you finally turn your results
into REs (as the “target structure” towards human beings) by standard algo-
rithms as contained in any introductory book to automata theory (e.g., [11]),
these are often quite clumsy and lengthy, containing lots of “nested loops” and
seeming repetitions of subsequences. Quite easily a human who wants to some-
how check the outcome of the automatic learning procedure is simply abhorred
by such output. We made some computer experiments in the context of infer-
ring DTDs for XML documents with the aid of known DFA learners that verified
these considerations [8]. Hence, although the (syntactic) task of DTD inference
basically boils down to learning regular expressions, most systems that are ac-
tually used for this purpose rely on heuristics, see [9] for the description of one
such system, as well as further references.

In order to improve on the readability of the resulting REs and probably also
giving a better intuitive “explanation” of the observed data (sample strings), we
are going to propose a learning procedure which is only generating REs of star
height one, i.e., starred expressions get never nested. Although the correspond-
ing class of languages is that restricted, many cases that occur in practice are
covered.

2 Blockwise Grouping and Alignment

The basic technique we are using can be best described as blockwise grouping
and alignment. This means the following: Given some sample strings, say

ababb, aabb, ababa, abc,

we would first transform them into

[a][b][a][bb], [aa][bb], [a][b][a][b][a], [a][b][c],

where we use square brackets to denote the “block letters.” Actually, and more
technically, we will call any [xn] a block letter whenever x is a character in the
alphabet over which the input words are formed. x is called the basic letter of
[xn]. When we only use block letters [x] representing xn for any n ≥ 1, we also
say that we ignore multiplicities. In our transformation, we also require that
the basic letters of neighboring block letters are different. At first glance, this
appears to mean that we are dealing with infinite alphabets. But since we will
only use block letters as derived from input samples, there are at any moment
only finitely many of them, so that they can be conveniently handled.

In a second step, we try to align the blocks from left to right:

1 There are even only few learning algorithms that directly deal with regular expres-
sions, see [4, 5, 12] and the literature quoted therein, but they are not addressing
the text learning model we are using here.
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[a] [b] [a] [bb]
[aa] [bb]
[a] [b] [a] [b] [a]
[a] [b] [c]

As an aside, let us mention that committing and restricting ourselves to leftmost
alignments seems to be quite suited to what humans are doing in such a case, as
well. Namely, when given the task of describing the common nature of the given
four strings, most people I dare to claim would describe this nature along the
following lines: “each string starts with one or two a, then there are one or two
b, possibly followed by. . . ” But there other obvious alternatives, as well, e.g.:
“each string possibly starts with ab, followed by one or two a, then one or two b,
and finally (optionally) one a or one c.” Observe that in this second description,
the second and fourth sample was aligned starting with the third block of the
other two samples, i.e.:

[a] [b] [a] [bb]
[aa] [bb]

[a] [b] [a] [b] [a]
[a] [b] [c]

Due to the above “psychologic” argument and because the general problem of
finding “best alignments” is NP hard (corresponding to the multiple sequence
alignment problem), we will restrict our attention to leftmost alignments in what
follows.

So, sticking to our first “generalization” we would end up with the language
describable with the following RE:

(a|aa)(b|bb)(λ|a(b|bb)(λ|a)|c).
Since this is still denoting a finite language, we might wish to further generalize.
Then, it is quite natural to consider “one or two repetitions” as a (very) special
case of “one or more repetitions”. Having this in mind, we might then arrive at:

a+b+(λ|ab+(λ|a)|c),
which, moreover, gives a shorter “explanation” of the given “observations” and is
hence preferable by the “minimum description length” principle, likewise known
as “Occam’s razor,” see [9, 13, 14] for a discussion with respect to Grammatical
Inference.

Note that we were writing down Kleene plus rather than Kleene star opera-
tions to be sure not to destroy the “blockwise readings” we originally provided.

There is still one issue we did not discuss up to now: how should we, in
general terms, arrive at a suitable “explanation” when facing the block letters
[xk1 ], . . . , [xkj ] within one block (e.g., assuming that {xk1 , . . . , xkj} was the given
input sample)? Without loss of generality, assume that 0 < k1 < k2 < · · · < kj .
Of course, we could generalize every time directly to x+, but this might override
to quickly the “multiplicity information” contained in the sample. We will instead
choose integer numbers � ≥ 0 and r ≥ 1 such that, for each 1 ≤ i ≤ j, r divides
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ki − �, and such that r is maximal with this property. So, r = 1 and � = 0 will
always satisfy the first part of the property (and this would correspond to the
generalization x+ mentioned above), but larger r will reveal more information
within the loop. More concretely, if ki = 2i + 1, i.e., given x3, x5, x7, . . . , the
“explanation” x(xx)+ might look better than simply guessing at x+. In other
words, we would have taken � = 1 and r = 2 in that case.

On the downside, let us mention that this way only so-called strictly bounded
languages can be derived, i.e., subsets of x∗

1x
∗
2 . . . x∗

k, where the xi are characters
of the original alphabet. Especially, this means that the universal language Σ∗

cannot be derived for any input alphabet Σ with more than one letter. We will
therefore also discuss strategies how to overcome this sort of dilemma, see Sec. 4.

3 Working out Details of RE Learning Strategies

We start analyzing a simplified version of our learning strategy.

3.1 Creating the Start Tree

This algorithm can be explained as follows for a basic alphabet Σ and an in-
put sample I+ ⊂ Σ+, yielding the recursive procedure create-tree(I), which
initially takes as input I the sample I+.

Algorithm 1 (create-tree(I)).

1. Left-align the input words.
Due to the recursion within this procedure, aligning according to the first
symbols is sufficient, so that this step can be very efficiently implemented.

2. This gives, for each symbol a ∈ Σ, the set

I(a) = {w ∈ I | w starts with a }.
This yields a partition of I into the different sets I(a).

3. For each I(a), form the set

Ia = {v ∈ bΣ∗ | b �= a ∧ ∃n > 0(anv ∈ I(a))}.
4. Recursively call, for all a ∈ Σ, create-tree(Ia).

Let us introduce some further notations: Given a set I ⊂ Σ+, consider

I(a) = {an1v1, a
n2v2, . . . , a

nmvm}
with vi ∈ (Σ\{a})Σ∗∪{λ} and nj ≤ nj+1; then, the m = |I(a)|-tuple S(I(a)) =
(n1, n2, . . . , nm) is also called the a-spectrum of I.

Further denotations are: α(S(I(a))) = n1, ω(S(I(a))) = nm.
The set Jb with J = Ia is also denoted Iab. In accordance, Iλ = I.
It is obvious that we can associate to I+ a rooted labeled directed tree,

the root being labeled I+ = Iλ
+, and the children of a node labeled Ix

+ being
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labeled with the Ixa
+ for a ∈ Σ if Ix

+(a) is non-empty. The arc from Ix
+ to Ixa

+

is then labeled a. This tree is in direct correspondence with the recursion tree
of create-tree(I+) and will be also called the start tree for I+. Sometimes, it
is more convenient to label non-root vertices of this tree Ix(a) instead of Ixa.
Then, the root will be labeled r.

Getting back to our start example, we illustrate these notions.

Example 1. We take

I+ = {ababb, aabb, ababa, abc} ⊂ Σ+ = {a, b, c}+

Hence, I+(a) = I+, and moreover,

Ia
+ = {babb, bb, baba, bc}.

Since Ia
+(b) = Ia

+, we get
Iab
+ = {abb, aba, c}.

Note that bb ∈ Ia
+(b) did not leave any trace in Iab

+ . Now, Iab
+ (a) = {abb, aba}

and Iab
+ (c) = {c}. Since Iabc

+ = ∅, we continue with aligning Iaba
+ = {bb, ba},

finally giving Iabab
+ = {a}.

I+ = {ababb, aabb, ababa, abc}

Ia
+ = {babb, bb, baba, bc}

Iab
+ = {abb, aba, c}

Iaba
+ = {bb, ba}

Iabab
+ = {a}

b

a

a

a

b

c

Fig. 1. A simple prefix block tree

In our example, the nodes of the start tree are labeled I+, Ia
+, Iab

+ , Iaba
+ , Iabc

+ ,
Iabab
+ , and Iababa

+ . Leaves in this tree are always labeled with the empty set. This
gives the picture of Fig. 1. The alternative node labeling convention is displayed
in Fig. 2.
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3.2 Constructing NFAs by Alignment

Recall now the notion of a generalized nondeterministic finite automaton (NFA):
arcs of such an NFA may be labeled with whole words (or even finite set of
words), not just single symbols. By way of contrast, a generalized deterministic
finite automaton (DFA) is a generalized NFA which maintains the “determinism”
property; therefore, we require that the labels of the arcs emanating from an
arbitrary node form a prefix code.

I+ = {ababb, aabb, ababa, abc}

Ia
+ = {babb, bb, baba, bc}

Iab
+ = {abb, aba, c}

Iaba
+ = {bb, ba}

Iabab
+ = {a}

b

a

a

a

b

c

Fig. 2. The resulting NFA

It is now easy to turn the start tree into a (generalized) NFA: If a node is
carrying the label Ix(a), then label the arc ending in Ix(a) with the finite set
{aj | j ∈ S(Ix(a))}. The resulting NFA in our example is displayed in Fig. 2. The
root obviously becomes the start state, and the terminal states are (as usual)
indicated by double-circles. Observe that this leads to some generalization (e.g.,
now the word ab /∈ I+ will be accepted), according to the following principle
which is a common characteristics of alignment-based learning algorithms [15]:

Aligned pieces of words are considered to be interchangeable.

However, this kind of generalization is very cautious, since it will always cre-
ate only finite languages, given a finite sample. In order to arrive at infinite
languages, loops must be introduced.
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(a) The resulting DFA in SL
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(b) Another DFA proposal

Fig. 3. Two ways to generalize

3.3 Introducing Loops by Determinization

We will introduce loops by turning the (generalized) NFA we obtained so far into
a (generalized) DFA. To this end, if an arc A in the NFA is labeled with a finite
set of words, say {an1 , . . . , aam} containing more than one word, (i.e., m > 1)
then only keep the shortest among these words as a label of A and enable the
generation of the longer words by introducing a loop labeled a at the node A
points to. The resulting generalized automaton is indeed deterministic, since in
the situation sketched above, in the original generalized NFA there was no arc
labeled a starting at the node A points to due to the alignment we performed in
the very beginning. The resulting DFA for our example is depicted in Fig. 3(a).
We can also summarize both generalization steps into one algorithm as follows:

Algorithm 2 (generalize-simple(start tree)).
If a node is carrying the label J(a), then

– (re)label the arc ending in J(a) with aα(S(J(a)));
– moreover, if ω(S(J(a))) > α(S(J(a))), then introduce a loop on the node

labeled J(a); this loop arc is labeled a.

Let us have a look at another example where we actually obtain generalized
automata.

Example 2. Let I+ = {aaa, aab}. The generalized NFA resulting from the start
tree has three states (labeled r, I+(a) and Ia

+(b), the first being the start state
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and the latter two being final states). The arc from r to I+(a) is labeled {aa, aaa}
and the arc from I+(a) to Ia

+(b) is labeled b. This yields a generalized DFA with
the same states and the following three arcs:

– One arc labeled aa = aα(S(I+(a))) from r to I+(a).
– One loop arc at I+(a) labeled a.
– One arc labeled b from I+(a) to Ia

+(b).

Obviously, it is the label of the arc from the root r to I+(a) which makes the
automata “truely generalized.”

3.4 The Language Class SL
Which language class can we learn this way? In fact, this is an interesting question
which can be posed for many “heuristics” which have been proposed in the litera-
ture (or merely presented as programs, nowadays on the web) for learning regular
expressions (or more generally, certain classes of [descriptions of] languages). We
now give two definitions, restricting the usual notion of a regular expressions and
the usual notion of a DFA, which turn out to be two characterizations of the lan-
guages which can be learned by the algorithm generalize-simple.

Definition 1 (simple looping expressions). Let us call two union-free reg-
ular expressions

by1
1 by2

2 . . . byi

i

and
cz1
1 cz2

2 . . . c
zj

j

(where b� and c� are elements of the basic alphabet Σ and y� and z� equal either
1 or ∗; this should also cover the boundary case i = 0, i.e., β = λ [the empty
word]) left-aligned if yk = zk for 1 ≤ k ≤ K, where K ≤ min(i, j) is defined
as the largest non-negative integer obeying bk = ck for all 1 ≤ k ≤ K and
bK+1 �= cK+1; here by convention let bi+1 = cj+1 = $ be a special symbol not
contained in the basic alphabet Σ. Observe the special case that two identical
union-free regular expressions are not left-aligned according to our definition.

We call a regular expression simple looping if it is either empty (denoting
the empty language), or a single union-free RE, or the finite union of pairwisely
left-aligned expressions α such that either α = λ or they can be written in the
following normal form:

α = ak1
1 ax1

1 ak2
2 ax2

2 . . . akK

K axK

k

where

– all ai are single symbols from the basic alphabet Σ,
– each of the ai are different from its (at most two) “neighbors” (i.e., ai−1 if

i > 1, and ai+1 if i < K),
– each ki is some positive integer, and
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– each xi equals either 0 or ∗ (if xi = 0, the part a0
i of the expression will not

be written down, since it denotes the empty word).

Call a language L simple looping if there is a simple looping regular expres-
sion describing L. The corresponding language class is denoted by SL.

Definition 2 (simple looping automata). A deterministic finite automaton
is called simple looping if

– when deleting all the loops in the automaton graph, the resulting (arc-labeled)
so-called skeleton graph would be a directed tree without multiple arcs such
that any node of outdegree larger than one in that tree has the property that
all emanating arcs carry pairwisely different labels, and if

– the label a carried by some loop arc (at some state s) in the automaton graph
is likewise carried by the necessarily existing other arc pointing to s.

Observe that the first property of the previous definition ensures that the
only cycles in the automaton graph are loops.

Lemma 1. A simple looping DFA is not necessarily minimal. Conversely, if L
is simple looping, then the minimal automaton A(L) is not necessarily simple
looping.

Proof. If a �= b are two letters, then A({a, b}) has two states, while this au-
tomaton is not simple looping, since it contains multiple arcs, namely two arcs
(labeled a and b, respectively) from the start state to the final state. The corre-
sponding simple looping DFA has three states (and is hence not minimal): one
of its final states is reached via an a-transition from the start state, while the
other final state is reached by a b-transition from the start state.

Theorem 1 (Characterization Theorem). The following conditions are equiv-
alent for a given language L ⊆ Σ∗:

– L is simple looping.
– L is generatable by a simple looping DFA.

Proof. If L is simple looping, then there is a simple looping regular expression
E describing L, consisting of pairwisely left-aligned union-free subexpressions
Ei, 1 ≤ i ≤ m. Each Ei can be straightforwardly turned into a DFA Ai which
is simple looping. A part ak of Ei is thereby turned into a path of length k
within the automaton graph of Ai where each arc is labeled a; if a∗ follows ak

in Ei, then the endpoint of the mentioned part will carry a loop labeled a. Since
the expressions Ei are left-aligned, we can “overlay” the different Ai graphs to
produce a DFA A which is simple looping.

Conversely, if L is generated by a simple looping DFA A, we can decompose
A (due to the underlying “tree structure”) into a collection of paths Ai (which
may contain loops), such that each Ai contains only one final state, namely
the last one on the path. (This means that “intermediate” final states are not
considered to be final in “larger paths.”) Each such Ai can be turned into a
regular expression Ei whose collection yields the required simple looping regular
expression E.
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Since (as remarked upon introducing simple looping regular expressions)
union-free “subexpressions” only turn up once, we can conclude:

Corollary 1. Every simple looping language has a only one representation as a
simple looping regular expression if we disregard the order in which the union-free
components of the expression are listed.

The following lemma relates SL with our learning algorithm. Recall that a
generalized DFA can be turned into a “usual” DFA by possibly introducing “in-
termediate states” used for spelling the words labeling arcs. If A is a generalized
DFA, let DFA(A) denote the DFA obtained in this way. The following lemma is
immediate from the definition, yet crucial.

Lemma 2. If A is the generalized DFA obtained as output of the learning algo-
rithm generalize-simple, then DFA(A) is a simple looping DFA.

3.5 SL Can be Learned from Positive Data

Let us now discuss the identifiability of SL. To this end, let us first describe how
to obtain a characteristic sample for a simple looping DFA A.

For every final state s, there is a unique path from the initial state s0 of A
to s in the skeleton graph (tree) associated to A: upon reading the labels of the
arcs, this yields a unique word ws ∈ L(A). In fact, ws is the shortest word in
L(A) that is accepted via state s. Observe that the collection LF of all those ws

pass through all states of A, since A has no useless states. Therefore, we may
extend our notation, so that for each state s (not only for final ones), ws refers
to some word from LF such that ws passes through s. Then, let us be the initial
part of ws that describes how to get from the initial state s0 into s. Let vs refer
to the remaining part of ws, i.e., ws = usvs. Now, if A has a loop labeled a at
state s, let w◦

s = usavs. Let L◦ collect all such loop indicating words w◦
s . Then,

χ(L) = LF ∪ L◦ is a characteristic sample of L.
Namely, upon getting the sample χ(L), LF will provide the information to

construct the skeleton graph (which corresponds to the prefix block tree dis-
cussed above, except that block words are spelled out). Then, the loops are
reconstructed using the words from L◦.

In our example from Fig. 3(a), the characteristic sample would be

χ = {ab, abc, abab, ababa, aab, abb, ababb}.
Notice that this is larger than the input sample I+ in Ex. 1 due to the following
reasons: (i) ab and abab are prefixes of other words in LF and could hence be
omitted; (ii) we introduce one loop-generating word per loop in our systematic
construction of L◦, ignoring the possibility of describing more than one loop in
a (longer) word.

Finally notice that the algorithm we presented so far for learning SL lan-
guages is a “bulk algorithm” in the sense that it expects the whole sample at
one gulp. From the point of view of practice, also incremental algorithms are
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interesting. It is not too hard to convert the given algorithm into an incremental
one. Firstly, we would scan a new word w with the automaton derived so far. If
w is accepted, we continue with the next input word. If not, this can have two
reasons: (i) either, we have reached a state that has not been marked final; then,
marking this state final will cope with the situation; or (ii) we would have to use
a yet non-existing transition in a certain state. In that case, we might (a) either
introduce a loop in the state we are just dealing with, or (b) we will leave the
state via a new arc to a new state, and the remainder of the word will create
more new states. Notice that also the case (a) might in continuation lead to cases
(i) or (ii)(b) upon further reading of w by means of the (modified) automaton.

We summarize our findings:

Theorem 2. SL is identifiable in the limit (also with polynomial update time).

4 Extensions of Our Approach

4.1 Dealing with Multiplicities

In Sec. 2, we described another way of dealing with loops: namely, we described
how to actually count multiple occurrences of a letter upon looping. It is not
hard to see how this can be actually incorporated into the framework developed
in the preceding section.

More precisely, we would now allow looping regular expressions that contain
loops of the form (an)∗, or an∗ for short. This would have to be incorporated
into the left-alignment definition (allowing y�/z� to be 1 or n∗, not only 1 or
∗, in the notation of that definition). This way, we can describe a superclass
SL′ of SL. This would naturally also entail that the corresponding looping DFA
may contain “larger loops.” The inference algorithm itself is again very similar,
except that when it observes, e.g., {b, bbb} as arc label of a resulting NFA, it
would create a loop with arc label bb in the resulting (general) DFA. Keeping
in mind the intention of the characteristic sample definition (to exercise each
transition at least once), also that definition can be extended.

This reasoning allows us to conclude:

Theorem 3. SL′ is identifiable in the limit.

4.2 Introducing Wildcards

There is another type of generalization that one easily comes up with when
thinking of easy regular expressions: the use of wildcards, maybe in the slightly
general form of introducing character groups. It is exactly the generalizing ca-
pacity formalized in SL together with the ability of forming character groups
that has been realized in the SWYN system of Blackwell [4].

Introducing wildcards (for simplicity) on top of the SL-mechanism means
that we are finally arriving at an identifiable language class different from SL
(so not generalizing SL as we did in the preceding section). How can we find
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places where we might wish to insert wildcards (denoted by the letter ′?′ in what
follows, assuming that this is not part of the usual alphabet we are dealing with)?
The easiest way to find such places is to look at it in terms of preprocessing,
given an input sample I+:

Algorithm 3 (preprocess-wildcards(I+)).

1. Form the set of blocks [I+] consisting of all sequences of block letters of all
words from I+ while ignoring multiplicity information.

2. Pairwisely left-align the blocks in [I+]; whenever we find a pair (x, y) with
– x = [a1] . . . [am][a][am+2] . . . [an] and
– y = [b1] . . . [bm][b][bm+2] . . . [b�]

such that, for all i = 1, . . . , m, m + 2, . . . , min(n, �), either ai =? or bi =? or
ai = bi; then we can replace both a and b by ′?′. Moreover, we would replace
ai by ′?′ if bi =? and (conversely) bi by ′?′ if ai =?. Notice that in accordance
with our usage of block letters, the actual interpretation of ′?′ depends on
its context: so, if we result in [?][?], then this refers to two different basic
letters upon unfolding into the usual alphabet.

3. If the second step permits no further changes, we go back to the original
input I+ and replace letters by ′?′ whenever such a change was indicated by
the second step (working on block letters), yielding a new instance I?

+.

Then, we run the procedure for SL-learning (or say for SL′-learning) on I?
+.

Let us explain the wildcard usage by means of a little example. Consider I+ =
{ab, ac, bc}. Hence, [I+] = {[a][b], [a][c], [b][c]}. Matching [a][b], [a][c] gives [a][?].
Alternatively, we can match [a][?], [b][c] yielding [?][?]. Since this last expression
matches (subsumes) all original ones, we arrive at I?

+ = {??}.
Starting with the less pathological sample I+ = {ababb, aabb, ababa, abc} from

Ex. 1, we get

[I+] = {[a][b][a][b], [a][b], [a][b][a][b][a], [a][b][c]}.
Matching [a][b][a][b] against [a][b][c] yields [a][b][?][b] and [a][b][?]. Similarly, we
might match [a][b][a][b][a] against [a][b][c]. Hence, I?

+ = {ab?bb, aabb, ab?ba, ab?}.
The (finally) resulting DFA is depicted in Fig. 3(b).

How can we characterize the class of languages that is identifiable in this way?
This can be easiest explained using simple looping expressions that may contain
the special letter ′?′. We can define a compatibility relation of two left-aligned,
union-free expressions if we consider the “mergibility” of the corresponding block
letter words as described above. Then, we would only allow looping expressions
(that may contain ′?′) that are decomposed as finite union of expressions which
are incompatible in the sense sketched above. For reasons of space, we omit the
corresponding technical details. These details become even more cumbersome if
we aim to generalize SL′ or if try to introduce character groups (as “lowercase
letters”, “alphanumerical symbols”, etc., as known from certain application ar-
eas), thus enabling to have different sorts of wildcards. However, let us state that
all these ways of introducing wildcards lead to identifiable language classes that
can be syntactically characterized by certain forms of regular expressions.
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5 A Possible Application: Learning DTDs

XML. The expectations surrounding XML (eXtendible Markup Language) as
universal syntax for data representation and exchange are huge, as underlined by
the amount of effort being committed to XML by the World Wide Web Consor-
tium (W3C) (see www.w3.org/TR/REC-XML), by the huge number of academics
involved in the research of the backgrounds of XML, as well as by numerous
private companies. Moreover, many applications arise which make use of XML,
although they are not directly related to the world wide web. For example, nowa-
days XML plays an important role in the integration of manufacturing and man-
agement in highly automated fabrication processes such as in car companies [7].
For further information, refer to www.oasis-open.org/cover/xmlIntro.html.

XML grammars. The syntactic part of the XML language describes the relative
position of pairs of corresponding tags. This description is done by means of a
document type definition (DTD). Ignoring attributes of tags, a DTD is a spe-
cial form of a context-free grammar. This sort of grammar formalism has been
formalized and studied by Berstel and Boasson [3], defining XML grammars.

Three applications of grammatical inference. As already worked out by Aho-
nen, grammatical inference (GI) techniques can be very useful for automatic
document processing, see [1, 2]. Building upon her work, we described [8] three
possible applications of grammatical inference in the context of DTD inference:

– to assist designing grammars for (semi-) structured documents;
– to create views and sub-documents; and
– to optimize the performance of database queries based on XML by the help

of adequate DTDs.

To underline the first of these applications, let us quote Tim Bray, one of the
“fathers” of XML, who wrote (see www.xml.com/axml/notes/Any1.html):

Suppose you’re given an existing well-formed XML document and you want to build
a DTD for it. One way to do this is as follows:

1. Make a list of all the element types that actually appear in the document, and
build a simple DTD which declares each and every one of them as ANY. Now
you’ve got a DTD (not a very useful one) and a valid document.

2. Pick one of the elements, and work out how it’s actually used in the document.
Design a rule, and replace the ANY declaration with a . . . content declaration.
This, of course, is the tricky part, particularly in a large document.

3. Repeat step 2, working through the elements . . . , until you have a useful DTD.

Instead of explaining these notions formally (as done in [8]), let us rather
discuss a small but realistic example.

Fig. 4 shows the first lines of a short novel in somewhat simplified XML
format. Disregarding the actual contents (i.e., the novel itself), we obtain the
following possible samples of what a paragraph could be: it could consist in
one sentence (see the headline etc.), of three sentences (first paragraph of the

www.oasis-open.org/cover/xmlIntro.html
www.xml.com/axml/notes/Any1.html
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<book>

<part>

<chapter>

<paragraph>

<sentence>Die Verwandlung</sentence>

</paragraph>

<paragraph>

<sentence>von Franz Kafka</sentence>

</paragraph>

</chapter>

<chapter>

<paragraph>

<sentence>I</sentence>

</paragraph>

<paragraph>

<sentence>Als Gregor Samsa eines Morgens aus unruhigen Träumen erwachte,

fand er sich in seinem Bett zu einem ungeheueren Ungeziefer verwandelt.

</sentence>

<sentence>Er lag auf seinem panzerartig harten Rücken und sah, wenn er den Kopf ein wenig hob, seinen gewölbten,

braunen, von bogenförmigen Versteifungen geteilten Bauch, auf dessen Höhe sich die Bettdecke,

zum gänzlichen Niedergleiten bereit, kaum noch erhalten konnte.

</sentence>

<sentence>Seine vielen, im Vergleich zu seinem sonstigen Umfang kläglich dünnen Beine

flimmerten ihm hilflos vor den Augen.

</sentence>

</paragraph>

<paragraph>

<sentence>"Was ist mit mir geschehen?", dachte er. </sentence>

<sentence>Es war kein Traum. </sentence>

</paragraph>

</chapter>

</part>

</book>

Fig. 4. The first lines of Kafka’s short novel “Verwandlung” in XML format

novel itself) or two (due to cutting short the novel after the introductory part).
Hence, our learner would generalize these examples to express that a paragraph
could consist of one or more sentences. However, all learning algorithms that we
proposed would insist in a chapter consisting of at least two paragraphs according
to the examples seen up to now. Both ways of generalization are according to
common sense: chapters with one paragraph are rarely observed.

6 Conclusions

We are aware of the fact that our proposed learners can only generate very
simple kinds of regular expressions. However, first of all this is intrinsic to the
learning model we used, since text learning (identification in the limit from
positive samples) does not allow to learn all regular languages (be them encoded
by automata or expressions); even the class of languages that definable by all
REs (based on the operations union, catenation and star) without nested stars is
not identifiable from positive data: ponder the sample wn = (ab)n versus (ab)∗.

Secondly, there do exist applications for at least similarly simplistic versions
of regular expressions. For example, the path expressions as discussed in [6] in
the context of XML path queries are of a similar simplicity.

Moreover, many web browsers do only admit a limited form of regular expres-
sions which pretty much resemble the subset we propose. We already mentioned
the SWYN system [4] that employs practically the same sorts of expressions.2

However, it would be nice to extend the results of this paper in a direction that
2 From the system description, it is not quite clear how the alignment is actually

performed, so there might be some technical differences.
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allows longer strings (containing different sorts of letters) to be starred. Finding
a reasonable subclass of regular languages that can be inferred in this way re-
mains a topic of future study, obviously limited by the observed sample in the
first paragraph.

We have also considered the (non-)closure properties of SL (all standard
operations but intersection show non-closure behavior) and have derived an al-
ternative, more compact characterization of SL in terms of REs. We skipped
details here for reasons of space.
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