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Abstract. U-shaped learning behaviour in cognitive development in-
volves learning, unlearning and relearning. It occurs, for example, in
learning irregular verbs. The prior cognitive science literature is occu-
pied with how humans do it, for example, general rules versus tables of
exceptions. This paper is mostly concerned with whether U-shaped learn-
ing behaviour may be necessary in the abstract mathematical setting of
inductive inference, that is, in the computational learning theory follow-
ing the framework of Gold. All notions considered are learning from text,
that is, from positive data. Previous work showed that U-shaped learn-
ing behaviour is necessary for behaviourally correct learning but not for
syntactically convergent, learning in the limit (= explanatory learning).
The present paper establishes the necessity for the whole hierarchy of
classes of vacillatory learning where a behaviourally correct learner has
to satisfy the additional constraint that it vacillates in the limit between
at most k grammars, where k ≥ 1. Non U-shaped vacillatory learning is
shown to be restrictive: Every non U-shaped vacillatorily learnable class
is already learnable in the limit. Furthermore, if vacillatory learning with
the parameter k = 2 is possible then non U-shaped behaviourally cor-
rect learning is also possible. But for k = 3, surprisingly, there is a class
witnessing that this implication fails.

1 Introduction and Motivation

U-shaped learning is a learning behaviour in which the learner first learns the
correct behaviour, then abandons the correct behaviour and finally returns to
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the correct behaviour once again. This pattern of learning behaviour has been
observed by cognitive and developmental psychologists in a variety of child de-
velopment phenomena, such as language learning [6, 15, 22], understanding of
temperature [22], understanding of weight conservation [5, 22], object perma-
nence [5, 22] and face recognition [7].

The case of language acquisition is paradigmatic. In the case of the past tense
of english verbs, it has been observed that children learn correct syntactic forms
(call/called, go/went), then undergo a period of overregularization in which they
attach regular verb endings such as ‘ed’ to the present tense forms even in the
case of irregular verbs (break/breaked, speak/speaked) and finally reach a final
phase in which they correctly handle both regular and irregular verbs. The irreg-
ular verb examples of U-shaped learning behaviour has figured so prominently
in the so-called “Past Tense Debate” in cognitive science that competing models
of human learning are often judged on their capacity for modeling the U-shaped
learning phenomenon [15, 19, 23].

The prior literature is typically concerned with modeling how humans achieve
U-shaped behaviour. Recently, Baliga, Case, Merkle, Stephan and Wiehagen [1]
looked at abstract mathematical models which give some indication why humans
exhibit this seemingly inefficient behaviour. Is it a mere harmless evolutionary
accident or is it necessary for full human learning power? Specifically, are there
some learning tasks for which U-shaped behaviour is logically necessary? In the
present paper we continue this line of work.

In order to explain our results, we have to be a bit more formal. Although
we refer to Section 2 below for an explanation of the mathematical terms used,
we summarize for the reader’s convenience the basics of inductive inference, that
is, Gold’s formal model of language learning from positive data [13].

The learning task is given by a subclass C of the class of all recursively
enumerable (r.e.) subsets of the natural numbers which are indexed by natural
numbers in an acceptable way [16, Section II.5]. The learner is then required to
learn all the languages in the class C. Here, a learner M learns a language L if it
produces, in parallel to reading a text for L (that is, an infinite sequence of all
elements of L in arbitrary order), a sequence e0, e1, . . . of hypotheses such that
almost all of these hypotheses are the same index/grammar of the set L. This
criterion is called TxtEx and stands for “explanatory learning from text” (see
[13]).

The above criterion has been relaxed to TxtBc [9, 17] where it is only re-
quired that almost all en are grammars for L, but each en can be different from
all previous ones. This criterion TxtBc is more general than TxtEx since lan-
guages have infinitely many grammars and the equality problem of the grammars
is undecidable.

TxtFexb [8] is the intermediate criterion where the learner succeeds iff there
is an n such that {en, en+1, . . .} is actually a finite set of up to b correct gram-
mars; the learner is then said to vacillate between these grammars. The criteria
TxtFex1,TxtFex2, . . . ,TxtFex∗ form a proper hierarchy between TxtEx and
TxtBc.
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Within this paper we continue the investigation of these standard criteria
with the requirement that the learner is non U-shaped (which would require
that en+1 generates the language to be learnt whenever en does).

Baliga, Case, Merkle, Stephan and Wiehagen [1] initiated the Gold style
learning theoretic study of U-shaped learning behaviour and showed that it is
circumventable for TxtEx-learning, see Theorem 5. In contrast to this, Fulk,
Jain and Osherson’s proof of [12, Theorem 4] shows that U-shaped learning
behaviour is necessary for the full learning power of TxtBc-learning. We show
in Theorem 7 below that U-shaped learning behaviour is also necessary for full
learning power for the whole hierarchy of the learning criteria TxtFexb strictly
between TxtEx and TxtBc. While Case [8] proved that the TxtFexb criteria
form a hierarchy of more and more powerful learning criteria, Theorem 7 of the
present paper shows that non U-shaped TxtFexb-learners are not more powerful
than TxtEx-learners. In other words, there are classes of languages that can be
TxtFexn-identified, for n > 1, but these learners must be U-shaped on some
texts.

What if we consider the more liberal criterion TxtBc? Our Theorem 18
strengthens the collapse result of Theorem 7 considerably by showing that there
are classes in TxtFex3 that cannot be TxtBc-learned by a non U-shaped
learner. This means that U-shaped learning behaviour cannot be dispensed with
for learning such classes, even if we only require behavioural convergence and
permit convergence to possibly infinitely many syntactically different correct hy-
potheses. By contrast, one of our main results, Theorem 17, shows that every
class of languages that can be TxtFex2-identified can be TxtBc-identified by a
non U-shaped learner. Hence, for only this early stage of the hierarchy, the cases
in which TxtFex2-identification necessitates U-shaped learning behaviour can
be circumvented by shifting to TxtBc-identification.

A further interesting aspect is that this paper gives a close relation between
vacillatory learning and team learning. Theorem 2 gives the basic connection:
A class is TxtFexb-learnable iff there is a team of b learners where all team-
members converge on every text of a language to be learned and at least one
of the team-members has to be correct. Furthermore, in Sections 3 and 5 some
general inclusions for non U-shaped team learning are established.

We note that the relevance of Gold style learning to cognitive science has
been supported in the cognitive science literature, for example, in [14, 18]. The
publications [8, 24] critically discuss the relevance of the well studied criterion
TxtBc to human learning; in order to avoid a mere interpolation of the data,
one might want that a learner does not generate larger and larger hypotheses
but tries to concentrate on finding a few correct ones. When TxtEx-learning is
impossible, this can only be done by vacillating between some few hypotheses.
Case [8] formalized this approach by introducing the criteria TxtFexb for small,
feasibly sized b > 1. Case also argues that these criteria may better fit the human
case than the TxtEx criterion. Certainly, then, the new results of the present
paper, regarding, for example, the TxtFex3 criterion are of interest for cognitive
science, and may inform regarding the human case.
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2 Preliminaries

N denotes the set of natural numbers, {0,1,2,. . . }. card(D) denotes the cardi-
nality of a set D. card(D) ≤ ∗ means that card(D) is finite. The symbol ∗ is
used to denote the “finite with no preassigned bound”. The symbols ⊆,⊂,⊇,⊃
respectively denote the subset, poper subset, superset and proper superset rela-
tion between sets. The quantifiers ∀∞ and ∃∞ mean “for all but finitely many”
and “there exists infinitely many”, respectively.

A pair 〈·, ·〉 stands for an arbitrary, computable one-to-one encoding of all
pairs of natural numbers onto N [20]. Similarly we can define 〈·, . . . , ·〉 for en-
coding n-tuples of natural numbers, for n > 1, onto N.

ϕ denotes a fixed acceptable programming system for the partial-recursive
functions [20]. ϕe denotes the partial-recursive function computed by the pro-
gram with code number e in the ϕ-system. We will unambiguously refer to pro-
grams using their code number in the ϕ-system. We denotes domain of ϕe. We,s

denotes We enumerated within s computation stages [4]. For our purposes, we
need We,s to satisfy the following additional constraints, which can be easily en-
sured using standard techniques: (a) We,s ⊆ {0, . . . , s−1}, (b) {(x, s) : x ∈ We,s}
is primitive recursive for all e and (c) for every primitive-recursive enumeration
As of some set A with A0 = ∅ ∧ (∀s) [As ⊆ As+1 ⊆ {0, . . . , s}] there is an in-
dex e with (∀s) [We,s = As]; furthermore, e can be computed from an index of
the enumeration for As. Any unexplained recursion-theoretic notions are from
[16, 20].

We now introduce the basic definitions of Gold-style computational learning
theory.

A sequence σ is a mapping from an initial segment of N into N ∪ {#}. An
infinite sequence is a mapping from N into N ∪ {#}. The content of a finite or
infinite sequence σ is the set of natural numbers occurring in σ and is denoted
by content(σ). The length of a sequence σ is the number of elements in the
domain of σ and is denoted by |σ|. For a subset L of N, seg(L) denotes the set
of sequences σ with content(σ) ⊆ L. An infinite sequence T is a text for L iff
L = content(T ).

Intuitively, a text for a language L is an infinite stream or sequential presenta-
tion of all the elements of the language L in any order with the #’s representing
pauses in the presentation of the data. For example, the only text for the empty
language is an infinite sequence of #’s. Furthermore, T [n] denotes the first n
elements of a text T : N → N ∪ {#}.

A learner will map sequences from (N ∪ {#})∗ to hypotheses. These are
represented by natural numbers and interpreted as codes for programs in the ϕ-
system. M, with possible superscripts and subscripts, is intended to range over
language learning machines.

Definition 1. [1, 2, 8, 9, 10, 13, 17] A language learning machine M is a com-
putable mapping from seg(N) into N. M TxtBc-learns a class L of r.e. languages
iff for every L ∈ L and every text T for L, almost all hypotheses M(T [n]) are
indices for the language L to be learned.
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A TxtBc-learner M for L is a TxtFex∗-learner iff for every L ∈ L and every
text T for L the set {M(T [n]) : n ∈ N} is finite.

A TxtFex∗-learner M for L is a TxtFexb-learner for a b ∈ {1, 2, . . .} iff
there are for every L ∈ L and every text T for L at most b indices which M
outputs infinitely often, that is, |{e : (∃∞n) [e = M(T [n])]}| ≤ b.

A TxtBc-learner M for L is a TxtEx-learner iff for every L ∈ L and every
text T for L almost all hypotheses M(T [n]) are the same grammar for L.

A TxtBc-learner M for L is non U-shaped iff for every L ∈ L and every
text T for L there are no three numbers k, m, n such that k < m < n and
WM(T [k]) = L, WM(T [m]) 6= L and WM(T [n]) = L. Furthermore, NUShTxtBc-
learners, NUShTxtFexb-learners and NUShTxtEx-learners (for a class L) are
those learners which are non U-shaped and at the same time a TxtBc-learner,
TxtFexb-learner and TxtEx-learner, respectively (for L).

The criteria TxtBc, TxtFexb, TxtEx, NUShTxtBc, NUShTxtFexb,
NUShTxtEx are the sets consisting of all those classes which are learnable
by a learner satisfying the respective above defined requirements.

The historically most important learning criterion is TxtEx where the learner
has to converge syntactically to a single index of the language to be learned
[13]. TxtEx stands for “explanatory identification from text”. Intuitively, the
notion TxtBc captures what could be called learning in the most general sense,
where “Bc” stands for “behaviourally correct” identification. In this, the learner
outputs correct grammars almost always. A class L of r.e. languages is TxtFexb

identified by a machine M iff when M is given as input any listing T of any
L ∈ L, it outputs a sequence of grammars such that, past some point in this
sequence, no more than b syntactically different grammars occur and each of
them is a grammar for L. TxtFex stands for ‘finite explanatory identification
from text’. TxtFex1 is equivalent to TxtEx. Osherson and Weinstein [17] first
studied the case with b = ∗, later Case [8] studied the whole hierarchy with
b ∈ N+.

We say σ is a TxtEx-stabilizing-sequence [11] for a learner M on a set L
iff σ ∈ seg(L) and M(στ) = M(σ) for all τ ∈ seg(L). Furthermore a TxtEx-
stabilizing-sequence σ is called a TxtEx-locking-sequence [3] for M on L iff
WM(σ) = L. Note that stabilizing and locking sequence definitions can be
generalized to other learning criteria such as TxtFex and TxtBc; we often
drop “TxtEx” (respectively, “TxtBc”, “TxtFex”) from “TxtEx-stabilizing-
sequence” and “TxtEx-locking-sequence”, when it is clear from context.

Smith [21] studied learning by teams of machines, and, we can show vacilla-
tory learning can be characterized by teams as follows.

Theorem 2. A class L has a TxtFexb-learner iff there is a team of b machines
N1, . . . ,Nb such that for every L ∈ L and for every text T for L, each machine
Na converges to a single index ea and at least one of these indices ea is an index
for L.

Case [8] showed TxtFex1 ⊂ TxtFex2 ⊂ . . . ⊂ TxtFex∗, as stated in the
following Theorem.
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Theorem 3. [8] For b ∈ {1, 2, . . .}, Hb = {We : e ∈ We ∧ |We ∩ {0, . . . , e}| ≤
b + 1} is in TxtFexb+1−TxtFexb and H∗ = {We : We 6=∅ ∧ e≤min(We)} is in
TxtFex∗−

⋃
b∈{1,2,...}TxtFexb.

Proposition 4. NUShTxtBc 6⊆ TxtFex∗.

The next theorem is from [1] and states that being non U-shaped is not restrictive
for TxtEx-learning. Its proof can also be obtained by letting b = 1 in Theorem 12
below. Its fundamental equality will be extended to all classes NUShTxtFexb

in Theorem 7.

Theorem 5. [1] NUShTxtEx = TxtEx.

Hence, for TxtEx, U-shaped behaviour is not necessary for full learning power.
By contrast, an easy adaptation of the proof of Theorem 4 in [12] shows that,
for TxtBc, U-shaped behaviour is necessary for full learning power.

Theorem 6. [1, 12] NUShTxtBc ⊂ TxtBc.

We show that the TxtFexb-hierarchy collapses if U-shaped behaviour is forbid-
den.

Theorem 7. NUShTxtFex∗ ⊆ TxtFex1.

Proof. Let L ∈ NUShTxtFex∗ and let M be a learner witnessing this fact.
We define a new learner N witnessing that L ∈ TxtFex1 as follows.

On a text T , N keeps a list of all of M’s conjectures in order of appearance
and without repetitions and outputs the most recent entry in the list.

If T is a text for a language L ∈ L, then M outputs on T only finitely many
different hypotheses and at least one of them, say e, infinitely often, and We = L.
Furthermore, N converges to that hypothesis e′ which goes into the list last. If
e = e′ then N is correct on T . If e 6= e′ then M has output e′ the first time after
having already output e at least once. Since M is not U-shaped and e is correct,
so is e′. Thus N is correct on T again.

Theorems 5 and 7 give NUShTxtFex1 = TxtFex1 and NUShTxtFex∗ ⊆
NUShTxtFex1. Furthermore, the definition of NUShTxtFexb immediately
gives NUShTxtFex1 ⊆ NUShTxtFexb ⊆ NUShTxtFex∗. Thus all these
criteria coincide.

Corollary 8. (∀b ∈ {1, 2, . . . , ∗}) [NUShTxtFexb = TxtFex1].

The result NUShTxtFex1 = TxtFex1 stands in contrast to the fact that
TxtFex1 ⊂ TxtFex2 ⊂ . . . ⊂ TxtFex∗. Thus we have that the following
inclusions are proper.

Corollary 9. (∀b ∈ {2, 3, . . . , ∗}) [NUShTxtFexb ⊂ TxtFexb].

3 Non U-Shaped Vacillatory Learning
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Corollaries 8 and 9 show that U-shaped learning behaviour is necessary for the
full learning power of TxtFexb-identification for b > 1 in a strong sense: if
U-shaped learning behaviour is forbidden, the hierarchy collapses to TxtFex1.
Hence, TxtFex∗-learnability of any class in (TxtFex∗ −TxtFex1) requires U-
shaped learning behaviour.

Corollary 10. Let b ∈ {1, 2, . . . , ∗} and Hb be the class from Theorem 3. Then
any machine witnessing Hb ∈ TxtFexb+1 necessarily employs U-shaped learning
behaviour on Hb.

A non U-shaped learner does not make a mind change from a correct to an
incorrect hypothesis since it cannot learn the set otherwise. This property is
enforced on all machines for the case of team learning.

Definition 11. A team learning a class L is non U-shaped iff no machine in
the team on any text for any language L ∈ L ever makes a mind change from
an index for L to an index for a different language. In particular, the class L
is in [a, b]NUShTxtEx iff there are b machines such that on any text for any
language in L at least a machines converge to an index for that language and no
machine makes a mind change from a correct to an incorrect hypothesis. For any
learning criterion I, [a, b]I is the corresponding team variant of this criterion.

The next result shows that Theorem 2 can be extended such that every
class in TxtFexb is learnable by a non U-shaped team. So the restriction
NUShTxtFexb = TxtFex1 is caused by the fact that the hypothesis of the
learner have to be brought into an ordering and cannot be done in parallel as
in the case of the team below. Actually Theorem 12 enables us to achieve more
properties of the team than that it is just non U-shaped.

Theorem 12. Let b ∈ N+ and L ∈ TxtFexb. Then there is a team of b learners
M1, . . . ,Mb such that for all L ∈ L and all texts T for L there is an n ∈ N such
that,

(1) T [n] is a stabilizing sequence of all members of the team on L, in
particular, Ma(T [m]) = Ma(T [n]) for all m ≥ n;

(2) there is an a ∈ {1, . . . , b} such that Ma(T [n]) is an index for L;
(3) if a ∈ {1, . . . , b} and Ma(T [m]) is an index for L then m ≥ n.

In particular, M1, . . . ,Mb [1, b]NUShTxtEx-learns L.

Proof. By Theorem 2 there is a team N1, . . . ,Nb of TxtEx-learners for L such
that for every L ∈ L and every text T for L, every machine converges on T to
some hypothesis and at least one of these hypotheses is an index for L.

The basic idea of the proof is to search for a σ ∈ seg(L), which is a TxtEx-
stabilizing-sequence for each member of the team N1, . . . ,Nb on L. Additionally,
we will also find a maximal set D ⊆ {1, . . . , b} such that σ is a stabilizing
sequence for each Ni, i ∈ {1, . . . , b} on WNj(σ), j ∈ D. Before such σ,D, is
obtained, we will make sure that the output of Ma below is not a grammar for
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L. Once such σ,D is obtained, we will have that the learners Ma do not change
their hypothesis and one of them correctly outputs a grammar for L. We now
proceed formally.

Let E to be an infinite recursive set such that E ∪ Ẽ /∈ L for all finite sets
Ẽ. Such an E can be defined as follows. Let M be a TxtFexb-learner for L. If
N /∈ L, then let E = N. If N ∈ L, then there exists a TxtFexb-locking sequence
σ′ for M on N. Now we can take E to be any infinite and coinfinite recursive set
such that content(σ′) ⊆ E.

Let σ v τ denote that content(σ) ⊆ content(τ) and |σ| ≤ |τ |. Furthermore,
let Te be the canonical text for We, that is, Te is the text generated by some
standard enumeration of We.

As long as the content of the input is ∅ or no σ is found in the algorithm
below, all machines M1, . . . ,Mb output the least index of ∅. The σ searched for
on input τ = T [t] has to satisfy the following conditions:

(a) σ v T [t] and content(σ) 6= ∅;
(b) Na(ση) = Na(σ) for all a ∈ {1, . . . , b} and η v T [t].

Once having σ, this is only replaced by a σ′ on a future input T [t′] iff σ′ but not
σ satisfies (a) and (b) with respect to T [t′] (if there are several choices to replace
σ, the first one with respect to some fixed recursive enumeration of seg(N) is
taken). Having σ, define D as follows.

(c) D = {a ∈ {1, ..., b} : (∀η v TNa(σ)[t]) (∀c ∈ {1, ..., b}) [Nc(ση) =
Nc(σ)]}.

Having σ and D, Ma(τ) = F (σ,D, a) where WF (σ,D,a) is the set of all x for
which there is an s such that the conditions (d) and either (e) or (f) below hold.

(d) a ∈ D and σ v content(TNa(σ)[s]);
(e) x ∈ content(TNa(σ)[s]) and Nc(ση) = Nc(σ) for all c ∈ {1, . . . , b},

d ∈ D and η v TNd(σ)[s];
(f) x ∈ E and Nc(ση) 6= Nc(σ) for some c ∈ {1, . . . , b}, d ∈ D and

η v TNd(σ)[s].

It is easy to see that the sets WF (σ,D,a) are uniformly recursively enumerable
and thus the specified function F can be taken to be recursive. Thus also the
learners M1, . . . ,Mb are recursive. Verification of properties (1), (2) and (3) is
omitted.

The next result gives a further inclusion between vacillatory learning and team-
learning.

Theorem 13. TxtFexb ⊆ [2, b + 1]NUShTxtEx for all b ∈ {1, 2, 3, . . .}.
TxtFexb ⊂ [1, b]NUShTxtEx for all b ∈ {2, 3, . . .}.

As TxtFex2-learning is more general than TxtEx-learning, one gets the follow-
ing corollary.

Corollary 14. [2, 3]NUShTxtEx 6⊆ NUShTxtEx.
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As every NUShTxtFexb-learner can be turned into a NUShTxtEx-learner
identifying the same class, the restriction to non U-shaped learning without loss
of learning power is only possible in the least class TxtFex1 of the TxtFexb hi-
erarchy. But, the next, quite surprising result shows that in the case of TxtFex2

one can avoid U-shaped learning behaviour if one gives up the constraint that
the learner has to vacillate between finitely many indices. That is, TxtFex2 ⊆
NUShTxtBc. In Theorem 16 it is shown that there is a uniform learner U which
is given a set E of up to 2 indices and NUShTxtBc-identifies every {We : e ∈ E}
such that every hypothesis is a subset of an We with e ∈ E. Then this result
is combined with Theorem 12 to show the inclusion TxtFex2 ⊆ NUShTxtBc.
But before turning to Theorem 16, the following auxiliary proposition gives a
method to enforce that the sets Wi′ ,Wj′ mentioned there are represented by cor-
responding approximations Wi,Wj which differ from one another at all relevant
stages of their enumerations.

Proposition 15. Given a set F = {i′, j′} one can compute a set G(F ) = {i, j}
such that

- For all s, either Wi,s ∪Wj,s = ∅ or Wi,s 6= Wj,s;
- Wi ⊆ Wi′ and if Wi′ is infinite then Wi = Wi′ ;
- Wj ⊆ Wj′ and if Wj′ is infinite then Wj = Wj′ ;
- {Wi′ ,Wj′} ⊆ {Wi,Wj}.

This also holds with j′ = i′ for the case that F = {i′}.

Theorem 16. There is a learner U such that for all r.e. sets L,H and every
set F of indices for L,H with |F | ≤ 2, U NUShTxtBc-identifies {L, H} using
the additional information F . Furthermore, for every σ ∈ seg(N),

(1) WU(F,σ) ⊆ L or WU(F,σ) ⊆ H;
(2) if L = H and L is infinite then WU(F,σ) ∈ {∅, L}.

Note that L = H is explicitly permitted.

Given F , let G(F ) be as in Proposition 15. Figure 1 gives the algorithm witness-
ing this inclusion. We omit the proof that it works.

Theorem 17. Every TxtFex2-learnable class is NUShTxtBc-learnable.

Proof. Given a TxtFex2-learnable class L, there is by Theorem 2 a pair of
two learners N1,N2 which converge on every language from L and [1, 2]TxtEx-
identify L. Obtain from these two learners the team M1,M2 as done in the proof
of Theorem 12. Let F be as defined in the proof of Theorem 12. Let στ , Dτ be the
values of σ,D computed on input τ by the algorithm for M1,M2 in the proof
of Theorem 12. Note that one can, for each input στ , Dτ , check in the limit
whether WF (στ ,Dτ ,a) enumerates some elements using part (f) of the algorithm
in the proof of Theorem 12. Let U be as in Theorem 16.

4 Vacillatory Versus Behaviourally Correct Learning
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Uniform non U-shaped Behaviourally Correct Learner U
Parameter: F . Input: σ. Output: k, specified implicitly.
Algorithm to enumerate Wk =

S
r Wk,r.

(Start) Let u = |σ|, C = content(σ) and s = 0.
Let Wk,t = ∅ for all t < |σ|.
If C = ∅ or We,u = ∅ for all e ∈ G(F ), Then go to (Empty).
Let τ = σ[|σ| − 1].
Select i, j, x such that

(a) {i, j} = G(F );
(b) x = min((Wi,u −Wj,u) ∪ (Wj,u −Wi,u));
(c) x ∈ Wi,u ⇔ x ∈ C.

Go to (Branch).
(Branch) If C ∪Wi,s ⊆ WU(F,τ),u and (Wi,u −Wi,|σ|) ∪ (Wj,u −Wj,|σ|) 6= ∅ Then go

to (Copy) Else go to (Enum).
(Enum) Let t be the maximal element of {s, . . . , u} such that one of the following

conditions holds:
(Min) t = s;
(Equal) C ⊆ Wi,t ∪Wj,t ⊂ Wi,u ∩Wj,u;
(Inf) C ⊆ Wi,t ⊂ Wi,u ∧ (∀y ≤ x) [y /∈ (Wi,u −Wi,|σ|) ∪ (Wj,u −Wj,|σ|)];
(Diff) C ⊆ Wi,t ⊂ Wi,u and Wj,u = Wi,s;
(Sub) C ⊆ Wi,t ⊆ WU(F,τ),u;
(Exact) C = Wi,t and t = |σ|.

Let Wk,u = Wi,t, update s = t, u = u + 1 and go to (Branch).
(Copy) Let Wk,u = WU(F,τ),u, update u = u + 1 and go to (Copy).
(Empty) Let Wk,u = ∅, update u = u + 1 and go to (Empty).

Fig. 1. Algorithm to enumerate WU(F,σ) from Theorem 16

Now one builds the following new learner U′(τ) which outputs the least index
of ∅ if content(τ) = ∅ or, in the definition of M1,M2 on input τ , the search for
σ satisfying (a), (b) (as in proof of Theorem 12) fails. Otherwise U ′(τ) is defined
as follows.

WU′(τ) = WU({e1,e2},τ) where, for a = 1, 2,

Wea =


WF (στ ,Dτ ,a) if (f) is not used for

WF (στ ,Dτ ,1) or WF (στ ,Dτ ,2);
WF (στ ,Dτ ,1) ∪WF (στ ,Dτ ,2) if (f) is used for

WF (στ ,Dτ ,1) or WF (στ ,Dτ ,2).

Let L ∈ L and T be a text for L. Let n be the first number where L ∈
{WM1(T [n]),WM2(T [n])}. Then, for any m ≥ n and any a ∈ {1, 2}, WMa(T [m]) =
WMa(T [n]) and WMa(T [m]) is not of the form E ∪ Ẽ, where E is as introduced
in the proof of Theorem 12 and Ẽ is finite. Then U is fed with the same pa-
rameter set {e1, e2} for all m ≥ n and one of the e1, e2 enumerates L. Thus U′

TxtBc-learns L on T .
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It remains to show that U′ is non U-shaped on T . This is clearly true if L is
the empty set. So assume L 6= ∅. Consider any m with WU′(T [m]) = L. If case
(f) of the algorithm for F (σT [m], DT [m], 1) or F (σT [m], DT [m], 2) applies, then
We1 and We2 are the same infinite set E ∪ Ẽ for some finite set Ẽ. It follows by
the additional property (2) of U in Theorem 16 that U′(T [m]) either outputs
an index for the empty set or for E ∪ Ẽ; both sets are different from L, thus
case (f) does not apply. Hence, T [m] is a stabilizing sequence for both M1,M2

on those sets WM1(T [m]),WM2(T [m]) which are not empty. Since one of these is
a superset of L by the additional property (1) of U in Theorem 16, it follows
that M1,M2 do not change mind on T beyond T [m]. For a = 1, 2 the parameter
ea is defined as above for τ = T [m] and it holds that Wea = WMa(T [m]). Thus
U′(T [o]) coincides with U({e1, e2}, T [o]) for all o ≥ m and U with the parameter
set {e1, e2} is non U-shaped on the text T for L. The same holds for U′. Thus
U′ NUShTxtBc-learns L.

From Theorem 7 it is already known that, for all b > 1, U-shaped learning
behaviour is necessary for TxtFexb identification of any class in TxtFexb −
TxtFex1. Theorem 18 strengthens this result by showing that, for some classes
of languages in TxtFexb for b > 2, the necessity of U-shaped behaviour cannot
be circumvented by allowing infinitely many correct grammars in the limit, that
is, by shifting to the more liberal criterion of TxtBc-identification. This is one
of the rare cases in inductive inference where the containment in a class defined
without numerical parameters holds for level 2 but not for level 3 and above
of a hierarchy. The proof is a diagonalization proof reminiscent of the proof of
Theorem 4 in [12].

Theorem 18. TxtFex3 6⊆ NUShTxtBc.

Proof. Let Li,j = {〈i, j, k〉 : k ∈ N}, Ii,j = Wi ∩ Li,j and Ji,j = Wj ∩ Li,j for
i, j ∈ N. The class L = {Li,j : i, j ∈ N}∪{Ii,j , Ji,j : i, j ∈ N∧ Ii,j ⊂ Ji,j ∧ |Ii,j | <
∞} witnesses the separation.

To see that L is in TxtFex3, consider the following machines NI ,NJ ,NL

which initially output indices of the empty set. Each of them waits for the first
tuple of the form 〈i, j, k〉 for some k to come up in the input. From then on,
NI outputs an index for Ii,j forever, NJ an index for Ji,j forever and NL an
index for Li,j forever. So, for every i, j ∈ N, NI learns the set Ii,j , NJ the set
Ii,j and NL the set Li,j . The class L is learnable by a team of three machines
which converge on every text for every language in L to some index. It follows
from Theorem 2 that L is in TxtFex3.

So it remains to show that L is not in NUShTxtBc, that is, to show that
any given TxtBc-learner for L is U-shaped on some text for some language in L.
Given the learner M, one defines the following function F by an approximation
from below.

Non U-Shaped Vacillatory and Team Learning 251



Fs(i, j) =


Fs−1(i, j) if s > 0 and

WM(〈i,j,0〉 〈i,j,1〉 ... 〈i,j,Fs−1(i,j)〉),s ⊆ Li,j ;
k otherwise where k is the first number

found with k > Ft(i + j) + s, for all t < s, and
{〈i, j, 0〉, 〈i, j, 1〉, ..., 〈i, j, k〉} ⊂ WM(〈i,j,0〉 〈i,j,1〉 ... 〈i,j,k〉).

Since 〈i, j, 0〉, 〈i, j, 1〉, . . . is a text for Li,j and M TxtBc-learns Li,j , almost
all hypotheses M(〈i, j, 0〉 〈i, j, 1〉 . . . 〈i, j, k〉) are indices for Li,j . Thus the k is
always found in the second part of the definition of Fs and Fs is well-defined.
Furthermore, if Fs−1(i, j) is sufficiently large, the condition

WM(〈i,j,0〉 〈i,j,1〉 ... 〈i,j,Fs−1(i,j)〉),s ⊆ Li,j

holds for all s and thus Fs(i, j) = Fs−1(i, j). So the limit F (i, j) of all Fs(i, j)
exists and is approximated from below. By considering the first s where F (i, j) =
Fs(i, j) and the fact that it is then no longer updated, one has

{〈i, j, 0〉, 〈i, j, 1〉, . . . , 〈i, j, F (i, j)〉} ⊂ WM(〈i,j,0〉 〈i,j,1〉 ... 〈i,j,F (i,j)〉) ⊆ Li,j .

Now there are r.e. sets Wa,Wb such that

Wa = {〈i, j, l〉 : i, j ∈ N ∧ l ∈ {0, 1, . . . , F (i, j)} },
Wb = {〈i, j, l〉 : i, j ∈ N ∧ (∃t > l) [〈i, j, l〉 ∈ WM(〈i,j,0〉 〈i,j,1〉 ... 〈i,j,Ft(i,j)〉),t]}.

Now fix the parameters i, j such that i = a and j = b; the cases where i 6= a or
j 6= b are not important in the considerations below.

Assume that 〈i, j, l〉 ∈ Wb using a parameter t with Ft(i, j) 6= F (i, j). Let s
be the first stage with Fs(i, j) = F (i, j); note that s > t. Then by the defini-
tion of Fs, F (i, j) = Fs(i, j) > s > t and {〈i, j, 0〉, 〈i, j, 1〉, . . . , 〈i, j, Fs(i, j)〉} ⊂
WM(〈i,j,0〉 〈i,j,1〉 ... 〈i,j,Fs(i,j)〉). So 〈i, j, l〉 is in WM(〈i,j,0〉 〈i,j,1〉 ... 〈i,j,F (i,j)〉) as well.
Thus {〈i, j, 0〉, 〈i, j, 1〉, . . . , 〈i, j, F (i, j)〉} = Wi ∩ Li,j = Ii,j ⊂ Ji,j = Wj ∩ Li,j =
WM(〈i,j,0〉 〈i,j,1〉 ... 〈i,j,F (i,j)〉) and Ii,j is finite. Hence Ii,j , Ji,j ∈ L.

Now consider a text T for Ji,j formed as follows. Let σ be the sequence
〈i, j, 0〉 〈i, j, 1〉 . . . 〈i, j, F (i, j)〉. Note that M(σ) outputs an index for Ji,j . Let
τ = σ#r, for some r, be such that M(τ) is an index for Ii,j . Note that there
exists such τ since M TxtBc-identifies Ii,j . Let T be a text for Ji,j starting with
τ . Now M on T has to output an index Ji,j beyond τ . Hence, M is U-shaped on
text T , and thus M is not a NUShTxtBc-learner for L. Since M was chosen
arbitrarily, L is not NUShTxtBc-learnable.

Since TxtFex3 ⊂ TxtFex4 ⊂ . . . ⊂ TxtFex∗, one immediately gets the follow-
ing corollary.

Corollary 19. (∀b ∈ {3, 4, . . . , ∗}) [TxtFexb 6⊆ NUShTxtBc].

A further corollary is that the counterpart of Theorem 16 does not hold for
sets of three indices. Indeed, if such an algorithm would exist, then one could
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NUShTxtBc-learn L from Theorem 18 by conjecturing ∅ until the first triple
〈i, j, k〉 comes up and then simulating the uniform learner with a set of three
indices for the sets Ii,j , Ji,j , Li,j from then on without changing this parameter
set anymore. But Theorem 18 clearly showed that such a learner does not exist.

Corollary 20. No machine uniformly NUShTxtBc-learns {We : e ∈ F} with
F as additional information where F is a set of 3 indices.

5 Teams Revisited

Classes in TxtFex2 are in TxtBc and in [1, 2]NUShTxtEx. The next propo-
sition shows that one cannot weaken the condition of being in TxtFex2 to the
combination of the two consequences in Theorem 17. Furthermore the condition
that the team members converge on every text for a language in L is essential
in Theorem 2.

Proposition 21. The class L from Theorem 18 is [1, 2]NUShTxtEx-learnable
and TxtFex3-learnable but it is not NUShTxtBc-learnable.

Remark 22. TxtFex∗ 6⊆ [1, b]TxtEx for all b ∈ N+, as witnessed by H∗. Note
that by Proposition 21 it can be that a class in TxtFexb+1−TxtFexb is already
[1, b]TxtEx-learnable.

A further interesting question is whether one can at least obtain non U-shaped
team learning for arbitrary team learnable classes. This is true for [1, 1]TxtEx
by Theorem 12 but it fails for [1, 2]TxtEx-learning.

Theorem 23. For all b ∈ {2, 3, . . .}, [1, b]NUShTxtEx ⊂ [1, b]TxtEx.
For all a, b with 1 ≤ a ≤ b, [a, b]TxtEx ⊆ [a, a + b]NUShTxtEx.

6 Conclusion

The following results were obtained.

- TxtFexb ⊂ [1, b]NUShTxtEx for all b ∈ {2, 3, . . .}.
- TxtFex1 = TxtEx = NUShTxtEx = [1, 1]NUShTxtEx, see also [1].
- [1, b]NUShTxtEx ⊂ [1, b]TxtEx, for all b ∈ {2, 3, . . .}.
- NUShTxtFexb = NUShTxtEx for all b ∈ {1, 2, . . . , ∗}.
- TxtFex2 ⊆ NUShTxtBc.
- TxtFex3 6⊆ NUShTxtBc.

These results and the facts known from previous work [1, 8] are summarized in
Figure 2. Single-headed arrows in the diagram denote proper inclusions. Double-
headed arrows denote equality. All transitive closures of the inclusions displayed
are valid and no other inclusions hold between language learning criteria in the
diagram.
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NUShTxtFexb ↔ TxtFex1 ↔ [1, 1]NUShTxtEx ↔ [1, 1]TxtEx

6 6 6 6@I

NUShTxtBc � TxtFex2 → [1, 2]NUShTxtEx → [1, 2]TxtEx

6

6 6 6@I

TxtFex3 → [1, 3]NUShTxtEx → [1, 3]TxtEx

6 6 6@I

TxtFex4 → [1, 4]NUShTxtEx → [1, 4]TxtEx

6 6 6@I

TxtFex5 → [1, 5]NUShTxtEx → [1, 5]TxtEx

6
...

...
...

TxtBc � TxtFex∗

Fig. 2. Summary of the results for b ∈ {1, 2, 3, 4, 5, ∗}

We note that our proof that TxtFex3 6⊆ NUShTxtBc intriguingly features
learning finite tables versus general rules, but does not, as might be expected
from some models of the human case of U-shaped learning, feature, among other
things, learning an incorrect general rule followed by learning a general rule
augmented by a correcting finite table. This difference may be significant or,
more likely, nothing more than an artifact of our particular proof. Not explored
herein, but very interesting to investigate in the future, are complexity-issues of
U-shaped learning.
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