

Lecture Notes in Artificial Intelligence 3734
Edited by J. G. Carbonell and J. Siekmann

Subseries of Lecture Notes in Computer Science

Sanjay Jain Hans Ulrich Simon
Etsuji Tomita (Eds.)

Algorithmic
Learning Theory

16th International Conference, ALT 2005
Singapore, October 8-11, 2005
Proceedings

13

Series Editors

Jaime G. Carbonell, Carnegie Mellon University, Pittsburgh, PA, USA
Jörg Siekmann, University of Saarland, Saarbrücken, Germany

Volume Editors

Sanjay Jain
National University of Singapore
School of Computing, Department of Computer Science
117543 Singapore
E-mail: sanjay@comp.nus.edu.sg

Hans Ulrich Simon
Ruhr-Universität Bochum
Fakultät für Mathematik, Lehrstuhl Mathematik und Informatik
44780 Bochum, Germany
E-mail: simon@lmi.ruhr-uni-bochum.de

Etsuji Tomita
The University of Electro-Communications
Department of Information and Communication Engineering
Chofugaoka 1–5–1, Chofu, Tokyo 182–8585, Japan
E-mail: tomita@ice.uec.ac.jp

Library of Congress Control Number: 2005933042

CR Subject Classification (1998): I.2.6, I.2.3, F.1, F.2, F.4, I.7

ISSN 0302-9743
ISBN-10 3-540-29242-X Springer Berlin Heidelberg New York
ISBN-13 978-3-540-29242-5 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11564089 06/3142 5 4 3 2 1 0

Preface

This volume contains the papers presented at the 16th Annual International
Conference on Algorithmic Learning Theory (ALT 2005), which was held in Sin-
gapore (Republic of Singapore), October 8–11, 2005. The main objective of the
conference is to provide an interdisciplinary forum for the discussion of the the-
oretical foundations of machine learning as well as their relevance to practical
applications. The conference was co-located with the 8th International Confer-
ence on Discovery Science (DS 2005). The conference was also held in conjunction
with the centennial celebrations of the National University of Singapore.

The volume includes 30 technical contributions, which were selected by the
program committee from 98 submissions. It also contains the ALT 2005 invited
talks presented by Chih-Jen Lin (National Taiwan University, Taipei, Taiwan)
on “Training Support Vector Machines via SMO-type Decomposition Methods,”
and by Vasant Honavar (Iowa State University, Ames, Iowa, USA) on “Algo-
rithms and Software for Collaborative Discovery from Autonomous, Semantically
Heterogeneous, Distributed, Information Sources.” Furthermore, this volume in-
cludes an abstract of the joint invited talk with DS 2005 presented by Gary
L. Bradshaw (Mississippi State University, Starkville, USA) on “Invention and
Artificial Intelligence,” and abstracts of the invited talks for DS 2005 presented
by Ross D. King (The University of Wales, Aberystwyth, UK) on “The Robot
Scientist Project,” and by Neil Smalheiser (University of Illinois at Chicago,
Chicago, USA) on “The Arrowsmith Project: 2005 Status Report.” The com-
plete versions of these papers are published in the DS 2005 proceedings (Lecture
Notes in Computer Science Vol. 3735).

Since 1999, ALT has been awarding the E. Mark Gold Award for the most
outstanding paper by a student author. This year the award was given to Rotem
Bennet for his paper, “Learning Attribute-Efficiently with Corrupt Oracles,”
co-authored by Nader Bshouty.

This conference was the 16th in a series of annual conferences established
in 1990. Continuation of the ALT series is supervised by its steering committee
consisting of: Thomas Zeugmann (Hokkaido University, Sapporo, Japan), Chair;
Arun Sharma (Queensland University of Technology, Brisbane, Australia), Co-
chair; Naoki Abe (IBM Thomas J. Watson Research Center, Yorktown, USA);
Klaus Peter Jantke (FIT Leipzig e.V., Germany); Roni Khardon (Tufts Univer-
sity, Medford, USA); Phil Long (Columbia University, New York, USA); Hiroshi
Motoda (Osaka University, Japan); Akira Maruoka (Tohoku University, Sendai,
Japan); Luc De Raedt (Albert-Ludwigs-University, Freiburg, Germany); Takeshi
Shinohara (Kyushu Institute of Technology, Iizuka, Japan); Osamu Watanabe
(Tokyo Institute of Technology, Japan).

We would like to thank all the individuals and institutions that contributed
to the success of the conference: the authors for submitting papers; the invited

VI Preface

speakers for accepting our invitation and lending us their insight into recent
developments in their research areas; the Lee Foundation and AOARD (Asian
Office of Aerospace Research and Development, US Air Force) for their generous
financial support; the Division of Computer Science of Hokkaido University for
maintaining the ALT 2005 Web-page together with software and for providing
the poster; the Mathematics Department of the Ruhr-University Bochum for
printing and distributing the posters; the Institute for Theoretical Computer
Science, University of Lübeck, where Frank Balbach provided useful software;
and the School of Computing, National University of Singapore for providing
secretarial support, seed funding and equipment; as well as MBZ Marketing
Büro Zeugmann for making the ALT 2005 Logo.

We are very grateful to Thomas Zeugmann for his continuous support in-
cluding maintenance of the ALT 2005 Program Committee Web-page, and for
providing his experience and active help in the process of publishing the pro-
ceedings.

Furthermore, we would like to express our gratitude to all program committee
members for their hard work in reviewing the submitted papers and participating
in on-line discussions. We are also grateful to the external referees whose reviews
made a considerable contribution to this process.

We would also like to thank the DS 2005 chairs Achim Hoffmann (PC Chair,
University of New South Wales, Australia), Tobias Scheffer (PC Chair, Hum-
boldt University, Berlin, Germany) and Hiroshi Motoda (Conference Chair, Os-
aka University, Japan) for their effort in coordinating with ALT 2005, and Lee
Wee Sun (National University of Singapore, Singapore) for his excellent work
as the local arrangements chair. Last but not least, Springer provided excellent
support in preparing this volume.

August 2005 Sanjay Jain
Hans Ulrich Simon

Etsuji Tomita

Organization

Conference Chair

Sanjay Jain National University of Singapore, Republic of
Singapore

Program Committee

Hans Ulrich Simon Ruhr-Universität Bochum, Germany (Chair)
Etsuji Tomita The University of Electro-Communications,

Japan (Chair)
Dana Angluin Yale University, USA
Hiroki Arimura Hokkaido University, Japan
John Case University of Delaware, USA
Nello Cristianini University of California at Davis, USA
Victor Dalmau Universitat Pompeu Fabra, Spain
Claudio Gentile Università dell’Insubria, Italy
Vasant Honavar Iowa State University, USA
Satoshi Kobayashi The University of Electro-Communications,

Japan
Phil Long Columbia University, USA
Frank Stephan National University of Singapore
Esko Ukkonen University of Helsinki, Finland
Vladimir Vovk Royal Holloway, UK
Manfred Warmuth University of California at Santa Cruz, USA
Kenji Yamanishi NEC Corporation, Japan
Takashi Yokomori Waseda University, Japan
Thomas Zeugmann Hokkaido University, Japan

Local Arrangements

Lee Wee Sun National University of Singapore, Republic of
Singapore

VIII Organization

Subreferees

Ilkka Autio
Francis Bach
Asa Ben-Hur
Tijl de Bie
Jorge Castro
Nicolò Cesa-Bianchi
Jiang Chen
Ricard Gavaldà
Kazuhiro Hotta
Matti Kääriäinen
Jyrki Kivinen
Mikko Koivisto
Dima Kuzmin
Michael Last

Jun Liao
Huma Lodhi
Satoshi Morinaga
Sayan Muckherjee
Jaakko Peltonen
Jan Poland
Roman Rosipal
Yasubumi Sakakibara
Johan Suykens
Yasuhiro Tajima
Haruhisa Takahashi
Jun-ichi Takeuchi
Noriyuki Tanida
Jason Weston

Sponsoring Institutions

Lee Foundation, Singapore, Republic of Singapore

Asian Office of Aerospace Research and Development, US Air Force

School of Computing, National University of Singapore

Fakultät für Mathematik, Ruhr-Universität Bochum

Division of Computer Science, Hokkaido University

Institute for Theoretical Computer Science, University of Lübeck

MBZ Marketing Büro Zeugmann

Table of Contents

Editors’ Introduction
Sanjay Jain, Hans Ulrich Simon, Etsuji Tomita 1

Invited Papers

Invention and Artificial Intelligence
Gary Bradshaw . 10

The Arrowsmith Project: 2005 Status Report
Neil R. Smalheiser . 11

The Robot Scientist Project
Ross D. King . 12

Algorithms and Software for Collaborative Discovery from Autonomous,
Semantically Heterogeneous, Distributed Information Sources

Doina Caragea, Jun Zhang, Jie Bao, Jyotishman Pathak,
Vasant Honavar . 13

Training Support Vector Machines via SMO-Type Decomposition
Methods

Pai-Hsuen Chen, Rong-En Fan, Chih-Jen Lin . 45

Kernel-Based Learning

Regular Contributions

Measuring Statistical Dependence with Hilbert-Schmidt Norms
Arthur Gretton, Olivier Bousquet, Alex Smola,
Bernhard Schölkopf . 63

An Analysis of the Anti-learning Phenomenon for the Class Symmetric
Polyhedron

Adam Kowalczyk, Olivier Chapelle . 78

Bayesian and Statistical Models

Learning Causal Structures Based on Markov Equivalence Class
Yang-Bo He, Zhi Geng, Xun Liang . 92

X Table of Contents

Stochastic Complexity for Mixture of Exponential Families
in Variational Bayes

Kazuho Watanabe, Sumio Watanabe . 107

ACME: An Associative Classifier Based on Maximum Entropy Principle
Risi Thonangi, Vikram Pudi . 122

PAC-Learning

Constructing Multiclass Learners from Binary Learners:
A Simple Black-Box Analysis of the Generalization Errors

Jittat Fakcharoenphol, Boonserm Kijsirikul . 135

On Computability of Pattern Recognition Problems
Daniil Ryabko . 148

PAC-Learnability of Probabilistic Deterministic Finite State Automata
in Terms of Variation Distance

Nick Palmer, Paul W. Goldberg . 157

Learnability of Probabilistic Automata via Oracles
Omri Guttman, S.V.N. Vishwanathan, Robert C. Williamson 171

Query-Learning

Learning Attribute-Efficiently with Corrupt Oracles
Rotem Bennet, Nader H. Bshouty . 183

Learning DNF by Statistical and Proper Distance Queries Under
the Uniform Distribution

Wolfgang Lindner . 198

Learning of Elementary Formal Systems with Two Clauses Using Queries
Hirotaka Kato, Satoshi Matsumoto, Tetsuhiro Miyahara 211

Gold-Style and Query Learning Under Various Constraints
on the Target Class

Sanjay Jain, Steffen Lange, Sandra Zilles . 226

Inductive Inference

Non U-Shaped Vacillatory and Team Learning
Lorenzo Carlucci, John Case, Sanjay Jain, Frank Stephan 241

Table of Contents XI

Learning Multiple Languages in Groups
Sanjay Jain, Efim Kinber . 256

Language Learning

Inferring Unions of the Pattern Languages by the Most Fitting Covers
Yen Kaow Ng, Takeshi Shinohara . 269

Identification in the Limit of Substitutable Context-Free Languages
Alexander Clark, Rémi Eyraud . 283

Algorithms for Learning Regular Expressions
Henning Fernau . 297

Learning and Logic

A Class of Prolog Programs with Non-linear Outputs Inferable
from Positive Data

M.R.K. Krishna Rao . 312

Absolute Versus Probabilistic Classification in a Logical Setting
Sanjay Jain, Eric Martin, Frank Stephan . 327

Learning from Expert Advice

Online Allocation with Risk Information
Shigeaki Harada, Eiji Takimoto, Akira Maruoka 343

Defensive Universal Learning with Experts
Jan Poland, Marcus Hutter . 356

On Following the Perturbed Leader in the Bandit Setting
Jussi Kujala, Tapio Elomaa . 371

Mixture of Vector Experts
Matthew Henderson, John Shawe-Taylor, Janez Žerovnik 386

Online Learning

On-line Learning with Delayed Label Feedback
Chris Mesterharm . 399

XII Table of Contents

Monotone Conditional Complexity Bounds on Future Prediction Errors
Alexey Chernov, Marcus Hutter . 414

Defensive Forecasting

Non-asymptotic Calibration and Resolution
Vladimir Vovk . 429

Defensive Prediction with Expert Advice
Vladimir Vovk . 444

Defensive Forecasting for Linear Protocols
Vladimir Vovk, Ilia Nouretdinov, Akimichi Takemura,
Glenn Shafer . 459

Teaching

Teaching Learners with Restricted Mind Changes
Frank J. Balbach, Thomas Zeugmann . 474

Author Index . 491

Editors’ Introduction

Sanjay Jain, Hans Ulrich Simon, and Etsuji Tomita

“Learning” is a complex phenomenon that is studied in different scientific dis-
ciplines. A computer program with the ability to “learn” contains mechanisms
for gathering and evaluating information and, consequently, for improving its
performance. Algorithmic Learning Theory provides a mathematical foundation
for the study of learning programs. It is concerned with the design and analysis
of learning algorithms. The analysis proceeds in a formal model such as to pro-
vide measures for the performance of a learning algorithm or for the inherent
hardness of a given learning problem.

The variety of applications for algorithms that learn is reflected in the variety
of formal learning models. For instance, we can distinguish between a passive
mode of “learning from examples” and active modes of learning where the algo-
rithm has more control about the information that is gathered. As for learning
from examples, a further decision is whether we impose statistical assumptions
on the sequence of examples or not. Furthermore, we find different success cri-
teria in different models (like “approximate learning” versus “exact learning”).

The papers collected in this volume offer a broad view on the current research
in the field including studies on several learning models (such as kernel-based
learning, pac-learning, query learning, inductive inference, learning from expert
advice, online learning and teaching). It comes without saying that these models
are getting more and more refined as a response to new challenges in computer
science (like taking advantage of the large amount of real-world data that become
available in digital form, or like serving the growing need for adaptive techniques
in the management and control of Internet applications).

The volume is structured as follows. It first presents the invited lectures and
then the regular contributions. The latter are grouped according to thematic
categories. In the remainder of the introduction, we provide the reader with a
rough “road map”.

The invited lecture for ALT 2005 and DS 2005 by Gary Bradshaw compares
Invention and Artificial Intelligence and points out some analogies. Starting from
two case studies, the invention of the air-plain (1799–1909) and the invention of
a model rocket by a group of high school students in rural West Virginia in the
late 1950’s, it is argued that general principals of invention may be applied to
expedite the development of AI systems.

The invited lecture for DS 2005 by Neil R. Smalheiser gives a report on the
current status of the Arrowsmith Project. The roots of this project trace back
to the 1980’s when Don Swanson proposed the concept of “undiscovered public
knowledge” and published several examples in which two disparate literatures
held complementary pieces of knowledge that, when brought together, made
compelling and testable predictions about potential therapies for human disor-
ders. In continuation of this work in the 1990’s, Smalheiser and Swanson created

S. Jain, H.U. Simon, and E. Tomita (Eds.): ALT 2005, LNAI 3734, pp. 1–9, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

2 S. Jain, H.U. Simon, and E. Tomita

a computer-assisted search strategy (“Arrowsmith”). The lecture reviews the
development until today.

Ross D. King, presenting the second invited lecture for DS 2005, pursues the
question whether it is possible to automate the scientific process. This question is
of increasing importance because, in many scientific areas, data are being gener-
ated much faster than they can be effectively analyzed by humans. In his lecture,
King describes a physically implemented robotic system that applies techniques
from artificial intelligence to carry out cycles of scientific experimentation. This
is fleshed out by describing the application of the system to complex research
problems in bioinformatics.

The invited lecture for ALT 2005 by Vasant Honavar (co-authored by Doina
Caragea, Jun Zhang, Jie Bao, and Jyotishman Pathak) is concerned with the
problem of data-driven knowledge acquisition and decision-making. Honavar de-
scribes the hurdles represented by massive size, semantic heterogeneity, auton-
omy, and distributed nature of the data repositories. He introduces some of the
algorithmic and statistical problems that arise in such a setting and presents
algorithms for learning classifiers from distributed data that offer rigorous per-
formance guarantees relative to their centralized counterparts. The lecture fur-
thermore presents techniques that help to cope with the problem of semantic
heterogeneity.

The second invited lecture for ALT 2005 by Chih-Jen Lin (co-authored by
Pai-Hsuen Chen and Rong-En Fan) concerns the convex quadratic optimization
problem that has to be solved by Support Vector Machines (SVMs). Since the
underlying cost matrix is high-dimensional and dense, this cannot be done by
classical methods (like, for example, “Interior Point”). Instead a decomposition
method is used. It proceeds iteratively and has, in each iteration, to solve a
small-dimensional subproblem. Lin focuses on decomposition methods of the
SMO-type and elaborates how the implementation of the procedure for “Working
Set Selection” affects the speed of convergence to the optimal solution. In a
sense, Lin’s lecture offers the opportunity of looking deeply inside a widely used
learning machine.

We now turn our attention to the regular contributions contained in this
volume.

Kernel-Based Learning: During the last decade there has been a lot of interest
in learning systems that express the “similarity” between two “instances” as
an inner product of vectors in an appropriate feature space. The inner product
operation is often not carried out explicitly, but reduced to the evaluation of a
so-called kernel function which operates on instances of the original space. This
offers the opportunity to handle high-dimensional feature spaces in an efficient
manner. This strategy, introduced by Vapnik and co-workers in connection with
the so-called Support Vector Machine, is a theoretically well founded and very
powerful method that, in the years since its introduction, has already outper-
formed many other learning systems in a wide variety of applications.

Gretton, Bousquet, Smola and Schölkopf continue a line of research where
the kernel-based approach is used as a tool for the detection of statistical de-

Editors’ Introduction 3

pendencies. More precisely, they provide a measure of statistical dependence
between random variables based on the Hilbert-Schmidt norm of a cross covari-
ance operator. Their method has some theoretically appealing features while
being experimentally competitive to existing methods.

Kowalczyk and Chapelle study the surprising phenomenon of “anti-learning”,
where data sets are represented in such a way that some well-known standard
learning techniques lead to hypotheses performing much worse than random
guessing. While there seem to exist “real-life” data sets which are of that type,
the authors consider artificial data whose analysis sheds some light on this (at
first glance) counterintuitive phenomenon. They identify some abstract prop-
erties of a given positive definite kernel which inevitably lead to anti-learning
(for some standard learning techniques including “large-margin classification” or
“nearest neighbour”). They furthermore explain which kernel-transformations
convert “anti-learning” into “learning” and which do not.

Bayesian and Statistical Models: Causal networks are graphical representations
for “causality” between random variables. Like Bayesian networks or other
graphical models they represent knowledge being not as strict as formal logi-
cal statements but being quite helpful for what is called “reasoning under un-
certainty”. Bayesian Inference leads to decisions that minimize a risk function.
Bayesian learning refers to the problem of inferring the unknown parameters of
a distribution (chosen from a known parameterized class of distributions). Typ-
ically the a priory distribution for the unknown parameters gives support to a
wide range of parameters, whereas the a posteriori distribution is peaked around
the true parameter values.

By means of statistical information we can determine causal networks only
up to Markov-equivalence. An equivalence class can be represented by a chordal
chain graphs that contains directed and undirected edges. Each undirected edge
represents two mutually correlated variables where we cannot know whether
causality (if any) goes in one or the other direction. He, Geng and Liang describe
a hierarchical partitioning of a class of Markov-equivalent causal networks (given
by a chordal chain graph) into finer and finer subclasses up to the point where
the partition consists of the single causal networks. They prove that, at each
stage of the refinement process, an equivalence class can be again represented as
a chordal chain graph.

Variational Bayesian Learning results from Bayesian Learning by introduc-
ing a simplifying assumption (in case there are hidden variables) that makes the
approach computationally more tractable. Empirically it is known to have good
generalization performance in many applications. Watanabe and Watanabe pro-
vide some additional theoretical support by proving lower and upper bounds on
the stochastic complexity in the Variational Bayesian learning of the mixture of
exponential families.

As for classification tasks, the Bayes classifier chooses the label that has
the maximum a posteriori probability. In order to apply the formula of Bayes,
we have to know the a priori probability and (an approximation of) the class-
conditional densities. Thonangi and Pudi suggest a new method for the approxi-

4 S. Jain, H.U. Simon, and E. Tomita

mation of the class-conditional densities: they use a class-conditional probability
model of the data (based on certain conjunctions of binary features and the cor-
responding relative frequencies) and determine the density function of maximum
entropy that satisfies this model.

PAC-Learning: In the PAC-learning model, the learner receives as input training
examples, drawn at random according to an unknown distribution and labeled
according to an unknown target function f , and returns a “hypothesis” h that
(with high probability of success) is a close approximation of f . While the first
papers on pac-learning focussed on binary classification problems with the prob-
ability of misclassification as an underlying pseudo-metric, there have been many
extensions of the basic model since then.

Fakcharoenphol and Kijsirikul revisit the well-studied problem of converting
base binary learners (coping with binary classification problems) into multi-class
learners. They reconsider various classical constructions, including “one-versus-
all” and the “(adaptive) directed acyclic graph approach”, and come up with
some new generalization error bounds.

The paper by Ryabko relates “PAC-learnability” and “computability” by
showing the following result: the number of examples needed by a recursive
PAC-learner to learn a computable function cannot be upper-bounded by any
computable function. The result is obtained by applying a negative result on
data compression based on Kolmogorov complexity.

The papers by Palmer and Goldberg and by Guttman, Vishwanathan and
Williamson are both dealing with so-called Probabilistic Deterministic Finite
State Automata (PDFA). A PDFA, in contrast to a DFA (its deterministic coun-
terpart), performs random state transitions and thus represents a probability
distribution over strings. In a recent paper from 2004, it was shown by Clark
and Thollard that the class of PDFAs is polynomially pac-learnable where the
polynomial (which bounds sample size and run-time) depends on the size of the
target PDFA, a measure for the “distinguishability” of states and the expected
length of strings generated from any state. Their pseudo-metric (measuring the
distance between target distribution and the hypothesis) is the KL-divergence.
By passing from KL-divergence to the variation distance (still useful for pattern
classification tasks), Palmer and Goldberg are able to considerably simplify the
proof for PAC-learnability and to remove the dependence on the expected string
length. Guttman, Vishwanathan and Williamson extend the result by Clark and
Thollard into another direction by generalizing the notion of “distinguishability”.

Query-Learning: In the query-learning model, the learner is allowed to ask cer-
tain queries to an oracle. The learning performance is measured by the number
and type of queries needed to exactly (sometimes approximately) identify an
unknown target concept f (where “concept” means “binary-valued function”).
Among the most popular query types are “membership queries (MQs)” (asking
for the class label of an instance) and “equivalence queries (EQs)” (asking for
a “counterexample” to the current hypothesis). Statistical queries can be used
to get a statistical estimate for the probability of an event that involves a la-
beled random example. This query type plays a special role because an algorithm

Editors’ Introduction 5

that learns by means of statistical queries can be converted into a noise-tolerant
pac-learning algorithm.

Bennet and Bshouty investigate the possibility of learning “attribute-
efficiently” (such that the time-bound grows only sub-linearly with the number
of irrelevant attributes) with “corrupted oracles” (whose answers may occasion-
ally be wrong or missing). Their main result is that an attribute-efficient learner
expecting a perfectly reliable oracle of type MQ or EQ can be converted into
an attribute-efficient learner that copes with corrupted oracles. (This extends a
result from FOCS 2004, where attribute-efficiency had not been an issue.)

As shown by Köbler and Lindner in their paper presented at ALT 2002, DNF-
formulas can be learned by statistical queries under the uniform distribution. The
paper by Lindner in this volume improves on this result by showing that the
learning algorithm can cope with larger inaccuracies of the empirical estimates
provided by the oracle. A similar remark holds for the related model of “learning
by proper distance queries”.

Kato, Matsumoto and Miyahara discuss the learnability of certain logic pro-
grams, called “Elementary Formal Systems (EFS)”, that represent formal lan-
guages. These programs can, for instance, succinctly represent the popular “reg-
ular pattern languages” whose learnability has been well studied in the past. It
is shown that EFS-definable languages can be learned in polynomial time with
membership and superset queries. Furthermore, it is shown that various other
combinations of query types are insufficient for this purpose.

Jain, Lange and Zilles extend work by Lange and Zilles from COLT 2004
and ALT 2004. The latter papers revealed surprising relations between Gold-
style and query learning of indexable classes of recursive languages. In their
contribution to this volume, they examine (arbitrary) classes of recursively enu-
merable languages and analyze which of the relations still hold. It turns out that,
although some of the relations are lost, there is still a nice hierarchy with several
cross-connections between Gold-style and query learning.

Inductive Inference: In Gold’s model of “learning in the limit from positive
data”, the learner should identify an unknown recursive (or recursively enumer-
able) target language L (where L belongs to a class C that is known to the
learner). To this end, it receives a “text” (basically an infinite list of the words
in L). It keeps track of a (description of a) “hypothesis” that is updated after the
reception of the next word from the text. We say that C is learned in the limit,
if the learner is able to identify every language L ∈ C after finitely many steps.
Within this model, one distinguishes between “explanatory learning” (learner
converges to one description of the target concept) and “behaviourally correct
learning” (learner converges to the target concept but may, in principle, use
arbitrarily many descriptions for it). Between these two extremes, we find the
possibility of converging to the target and using (in the limit) at most k different
descriptions. This leads to what is called “vacillatory learning” (actually an in-
finite hierarchy of models that is in-between explanatory and behaviourally cor-
rect learning). Another notion of interest is “U-shaped” versus “Non U-shaped”
learning, where a learner exhibits U-shaped behaviour if it passes from the cor-

6 S. Jain, H.U. Simon, and E. Tomita

rect hypothesis to an incorrect-one, but later returns to the correct-one. This
kind of learning behaviour is also discussed in the cognitive psychology literature.

Carlucci, Case, Jain and Stephan continue a line of research that explores
whether U-shaped learning behaviour is logically necessary within the model of
learning in the limit from positive data. It was known that U-shaped learning
behaviour is, indeed, necessary for “behaviourally correct learning” but not for
“explanatory learning”. The authors refine this result in several ways. They show
that non U-shaped vacillatory learning collapses to explanatory learning. More-
over, a U-shaped learner on the second level of the hierarchy can be transformed
into a non U-shaped behaviourally correct learner, whereas a transformation of
this kind is not in general possible if the U-shaped learner is located on the third
(or higher) level of the hierarchy.

Jain and Kinber consider the following variant of learning in the limit from
positive data: given a text for a union of n (pairwise disjoint) languages, find
in the limit m grammars such that each of them generates some union of the n
languages and every of the n languages occurs in exactly one of these unions.
The paper provides considerable insight in this model.

Language Learning: The next group of papers is concerned with learning lan-
guages in the limit from positive data. It is known, for instance, that bounded
unions of non-erasable pattern languages and erasable regular pattern languages
are learnable in this model whereas regular languages are not. Furthermore, a
learning strategy that selects a language from the version space that is minimal
with respect to inclusion ensures identification in the limit provided that each
language L in the target class has a characteristic set (i.e., a finite subset S with
L as the unique minimal language from the target class that contains S).

Ng and Shinohara introduce another notion of minimality that refers to the
number of elements in a language being shorter than a specified length. They
show that this notion of minimality and a suitably adapted notion of a charac-
teristic set fit the same purpose for learning languages in the limit from positive
data as the classical notions (with a range of applicability that has not be-
come smaller). Thus, the selection of a language from the version space that
is minimal in the new sense is an interesting alternative to the selection of an
inclusion-minimal language.

Clark and Eyraud consider the class of substitutable context-free languages
(building on the notion of substitutability by Harris from the 1950’s). They show
that every substitutable context-free language has a characteristic set, which
implies their learnability in the limit from positive data.

Fernau identifies a non-trivial subclass of regular languages (representable
by special regular expressions called “simple looping expressions” in the paper)
and presents an algorithm that has a polynomial update time and learns simple
looping expressions in the limit from positive data.

Learning and Logic: The following group of papers again deals with the model
of learnability in the limit from positive data. The target classes under consid-
eration are Prolog programs and logical structures, respectively.

Editors’ Introduction 7

The paper by Rao continues with the research project of identifying fragments
of Prolog that are learnable in the limit from positive data. The new fragment
studied in the paper (“recursion bounded” Prolog programs) is incomparable
with the previously identified fragments and contains programs that neither
belong to the class of “linearly-moded programs” (introduced by Rao himself)
nor to the class of “safe programs” (introduced by Martin and Sharma).

Jain, Martin and Stephan discuss the problem of learning logical structures in
the limit from positive examples, where the positive examples are logical formulas
that are satisfied by the unknown target structure. They prove learnability in
this model except for a set of logical structures of measure zero.

Learning from Expert Advice: In the classical model of learning an unknown
binary sequence from expert advice, the learner predicts the sequence bitwise
such that learning proceeds in rounds. In every round, it first receives N expert
predictions p1, . . . , pN ∈ [0, 1]. Then, it makes its own prediction p ∈ [0, 1] (in
dependence of the experts predictions). At the end of the round, it receives the
next bit b of the sequence and suffers loss |p − b| (the probability of making a
wrong prediction when 1 is chosen with probability p). The learner is exposed
to a worst-case analysis (like playing against an intelligent adversary) in an
“agnostic” setting (where any bit sequence is conceivable). The goal of the learner
is to keep the difference between its own total loss and the total loss of the best
expert as small as possible. This difference is called the “regret” of the learner.
Many version of this basic model are found in the literature. The goal within
the theoretical analysis is finding tight bounds on the smallest possible regret.

The paper by Harada, Takimoto and Maruoka studies the problem of se-
quentially assigning a probability vector p over k options. Then a cost vector c
over the k options is revealed and the learner suffers loss p�c (cost averaged over
p). Vector p is chosen in dependence of (an average of) N probability vectors
that represent the “expert advice” in this setting. The authors generalize the
known performance bounds for two well-known algorithms (Hedge Algorithm
and Aggregating Algorithm) to the case where each available option has dif-
ferent range of possible losses. As mentioned in the paper, the setting can be
applied to the problem of finding a route with minimum total expected delay
through a network.

The paper by Poland and Hutter and the paper by Kujala and Elomaa both
study a variation of a problem that was introduced by Kalai and Vempala at
COLT 2003. The latter authors consider a broad class of online optimization
problems that contains “learning from expert advice” as a special case. They fur-
thermore present and analyze a strategy named “follow the perturbed leader”.
Poland and Hutter extend this work in the bandit setting to the case of a count-
ably infinite pool of experts, and to the case in which, instead of uniform upper
bounds on the cost in each round, there are (slowly) increasing bounds. Kujala
and Elomaa likewise consider the framework of Kalai and Vempala. They apply
the strategy of Mc Mahan and Blum from COLT 2004 (which is designed such as
to cope with an adaptive adversary) to the more restricted case of an oblivious
adversary. This leads to stronger regret bounds.

8 S. Jain, H.U. Simon, and E. Tomita

The paper by Henderson, Shawe-Taylor and Žerovnik generalizes the results
in the standard model of learning a binary sequence with expert advice to the
multi-dimensional case of a binary vector sequence.

Online Learning: In the classical model of “online learning”, there is a class of
target functions that is fixed in advance. Learning proceeds in rounds. In every
round, the learner first receives an instance x, then makes a prediction ỹ and,
at the end of the round, receives the true label y = f(x) and suffers loss l(ỹ, y).
In case of a Boolean target class, a natural choice for l is the zero-one loss (such
that the accumulated loss counts the number of mistakes). Many versions of this
basic model are found in the literature. The goal within the analysis is finding
the best possible loss bounds (or mistake bounds, respectively) for a given class
of target functions.

The paper by Mesterharm extends the standard worst-case online learning
framework by allowing delayed label feedback. It is shown how a given standard
online learner can be converted into a learner being able to cope with delay and
analyzes how the mistake bounds are related. The analysis is provided for both
the adversarial setting and the setting when the instances are drawn according
to a (slowly) drifting distribution.

Chernov and Hutter establish bounds on future prediction errors in online
prediction of computably stochastic sequences. This is a setting where fairly
tight bounds exist for the total number of errors leading one to suspect that the
future errors must necessarily decrease with time. The main contribution of this
paper is a quantitative treatment of this observation in terms of (a variant of)
Kolmogorov complexity.

Defensive Forecasting: The next series of papers investigates the problem of
predicting (in an online fashion) the binary label associated with a given instance.
The setting is agnostic, i.e., it is not assumed that there is a hidden function (or
distribution) which maps instances to labels. Instead of using a comparison class
or expert advice (such that the learner competes with the best function from
the comparison class or with the best expert), the analysis aims at verifying
two abstract properties of the Forecasters prediction algorithm: being “well-
calibrated” and having “high resolution”. If a prediction p ∈ [0, 1] is viewed as
the Forecasters “confidence” that the (unknown) binary label associated with
a given instance x is 1 (where the label is revealed by the adversary after the
Forecaster made its commitment), then being well calibrated roughly means
that the Forecasters confidence estimates are accurate on average. Having high
resolution roughly means that the Forecaster is “suffficiently specific” to the
given instance x.

Vovk describes a prediction algorithm for the Forecaster that provably is well-
calibrated and has high resolution. The algorithm is kernel-based. The analysis
is quite involved with results given in terms of the Fermi-Sobolev norm of Lip-
schitzian functions.

The next paper in the volume (again by Vovk) demonstrates how one can
derive classical results in the “learning with expert advice” setting starting from

Editors’ Introduction 9

results of the preceding paper. Here, the “expert class” is infinite-dimensional.
Basically the learner competes with any decision rule of bounded Fermi-Sobolev
norm. The main result is quite general and applies to a wide variety of decision-
theoretic scenarios.

The third result in this series about “defensive forecasting” is the paper by
Vovk, Nouretdinov, Takemura and Shafer which goes one step further. It con-
siders multi-class forecasting and inserts an additional player called “Skeptic”.
Loosely speaking, the Skeptic tries to make money on any lack of agreement
between Forecaster and Reality. The main result basically states that, for any
continuous strategy of Skeptic, there exists a strategy of Forecaster that does
not allow Skeptic’s capital to grow, regardless of what Reality is doing.

Teaching: In the teaching model, a teacher delivers examples to a learner. The
examples are labeled according to a target function (known to the teacher but
unknown to the learner). In order to avoid collusion between a learner and a
teacher (such as agreement on a coding scheme which allows the teacher to
encode a representation of the target function), the success criterion for teach-
ing must be carefully defined. One popular definition prescribes that the target
should be the only function which is left in the version space after all examples
in the teaching sequence have been processed. It turns out, unfortunately, that,
with this definition, many harmless looking concept classes may require intoler-
ably long teaching sequences in the worst-case. For this reason, one finds several
alternative success criteria in the literature.

Balbach and Zeugmann make a new suggestion for a teaching model where
collusion is avoided in a different fashion. They augment the concept class by a
neighbourhood relation and let the teaching process proceed in rounds. In each
round, the teacher presents a new example x. If the learners current hypoth-
esis errs on x, the learner may pass from h to a new hypothesis h′ from the
neighbourhood (where h′ must be chosen such as to make a minimal number of
mistakes on the seen examples). Balbach and Zeugman analyze several variants
of this approach and relate it to the classical models. It is a nice feature of their
approach that it leads to meaningful statements about teachability of classes
over an infinite domain.

Invention and Artificial Intelligence�

Gary Bradshaw

Psychology Department, P.O. Box 6161,
Mississippi State University, MS 39762, USA

glb2@ra.msstate.edu

Abstract. Invention, like scientific discovery, sometimes occurs through
a heuristic search process where an inventor seeks a successful invention
by searching through a space of inventions. For complex inventions, such
as the airplane or model rockets, the process of invention can be expe-
dited by an appropriate strategy of invention. Two case studies will be
used to illustrate these general principles: the invention of the airplane
(1799-1909) and the invention of a model rocket by a group of high school
students in rural West Virginia in the late 1950’s. Especially during the
invention of the airplane, inventors were forced to make scientific dis-
coveries to complete the invention. Then we consider the enterprise of
artificial intelligence and argue that general principles of invention may
be applied to expedite the development of AI systems.

� The full version of this paper is published in the Proceedings of the 8th International
Conference on Discovery Science, Lecture Notes in Artificial Intelligence Vol. 3735.

S. Jain, H.U. Simon, and E. Tomita (Eds.): ALT 2005, LNAI 3734, p. 10, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

The Arrowsmith Project: 2005 Status Report�

Neil R. Smalheiser

UIC Psychiatric Institute, University of Illinois-Chicago,
MC912, 1601 W. Taylor Street, Chicago, IL 60612, USA

neils@uic.edu

Abstract. In the 1980s, Don Swanson proposed the concept of “undis-
covered public knowledge,” and published several examples in which
two disparate literatures (i.e., sets of articles having no papers in com-
mon, no authors in common, and few cross-citations) nevertheless held
complementary pieces of knowledge that, when brought together, made
compelling and testable predictions about potential therapies for human
disorders. In the 1990s, Don and I published more predictions together
and created a computer-assisted search strategy (“Arrowsmith”). At
first, the so-called one-node search was emphasized, in which one begins
with a single literature (e.g., that dealing with a disease) and searches
for a second unknown literature having complementary knowledge (e.g.
that dealing with potential therapies). However, we soon realized that
the two-node search is better aligned to the information practices of
most biomedical investigators: in this case, the user chooses two litera-
tures and then seeks to identify meaningful links between them. Could
typical biomedical investigators learn to carry out Arrowsmith analyses?
Would they find routine occasions for using such a sophisticated tool?
Would they uncover significant links that affect their experiments? Four
years ago, we initiated a project to answer these questions, working with
several neuroscience field testers. Initially we expected that investiga-
tors would spend several days learning how to carry out searches, and
would spend several days analyzing each search. Instead, we completely
re-designed the user interface, the back-end databases, and the methods
of processing linking terms, so that investigators could use Arrowsmith
without any tutorial at all, and requiring only minutes to carry out a
search. The Arrowsmith Project now hosts a suite of free, public tools.
It has launched new research spanning medical informatics, genomics and
social informatics, and has, indeed, assisted investigators in formulating
new experiments, with direct impact on basic science and neurological
diseases.

� The full version of this paper is published in the Proceedings of the 8th International
Conference on Discovery Science, Lecture Notes in Artificial Intelligence Vol. 3735.

S. Jain, H.U. Simon, and E. Tomita (Eds.): ALT 2005, LNAI 3734, p. 11, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

The Robot Scientist Project�

Ross D. King

Department of Computer Science, The University of Wales,
Aberystwyth Penglais, Aberystwyth, Ceredigion, Wales, U.K.

rdk@aber.ac.uk

Abstract. The question of whether it is possible to automate the scien-
tific process is of both great theoretical interest and increasing practical
importance because, in many scientific areas, data are being generated
much faster than they can be effectively analysed. We describe a physi-
cally implemented robotic system that applies techniques from artificial
intelligence to carry out cycles of scientific experimentation. The sys-
tem automatically originates hypotheses to explain observations, devises
experiments to test these hypotheses, physically runs the experiments
using a laboratory robot, interprets the results to falsify hypotheses in-
consistent with the data, and then repeats the cycle. We applied this
system to the determination of gene function using deletion mutants of
yeast (Saccharomyces cerevisiae) and auxotrophic growth experiments.
We built and tested a detailed logical model (involving genes, proteins
and metabolites) of the aromatic amino acid synthesis pathway. In bio-
logical experiments that automatically reconstruct parts of this model,
we show that an intelligent experiment selection strategy is competi-
tive with human performance and significantly outperforms, with a cost
decrease of 3-fold and 100-fold (respectively), both cheapest and random-
experiment selection. We have now scaled up this approach to discover
novel biology. To achieve this we combined our logical reasoning approach
with bioinformatics. We have built a logical model of all known S. cere-
visiae metabolism. In this model there are still reactions where the gene
encoding the enzyme is unknown.

We demonstrate that we can automatically hypothesize these genes,
and generate “wet” biological evidence that either confirms or contradicts
this hypothesis. This approach can also be used to automatically test
biological genome annotations.

� The full version of this paper is published in the Proceedings of the 8th International
Conference on Discovery Science, Lecture Notes in Artificial Intelligence Vol. 3735.

S. Jain, H.U. Simon, and E. Tomita (Eds.): ALT 2005, LNAI 3734, p. 12, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Algorithms and Software for Collaborative
Discovery from Autonomous, Semantically

Heterogeneous, Distributed Information Sources

Doina Caragea, Jun Zhang, Jie Bao, Jyotishman Pathak, and Vasant Honavar

Artificial Intelligence Research Laboratory,
Center for Computational Intelligence, Learning, and Discovery,

Department of Computer Science, Iowa State University,
226 Atanasoff Hall, Ames, IA 50011

honavar@cs.iastate.edu

Abstract. Development of high throughput data acquisition technolo-
gies, together with advances in computing, and communications have
resulted in an explosive growth in the number, size, and diversity of
potentially useful information sources. This has resulted in unprece-
dented opportunities in data-driven knowledge acquisition and decision-
making in a number of emerging increasingly data-rich application
domains such as bioinformatics, environmental informatics, enterprise in-
formatics, and social informatics (among others). However, the massive
size, semantic heterogeneity, autonomy, and distributed nature of the
data repositories present significant hurdles in acquiring useful knowl-
edge from the available data. This paper introduces some of the algo-
rithmic and statistical problems that arise in such a setting, describes
algorithms for learning classifiers from distributed data that offer rigor-
ous performance guarantees (relative to their centralized or batch coun-
terparts). It also describes how this approach can be extended to work
with autonomous, and hence, inevitably semantically heterogeneous data
sources, by making explicit, the ontologies (attributes and relationships
between attributes) associated with the data sources and reconciling the
semantic differences among the data sources from a user’s point of view.
This allows user or context-dependent exploration of semantically hetero-
geneous data sources. The resulting algorithms have been implemented
in INDUS - an open source software package for collaborative discovery
from autonomous, semantically heterogeneous, distributed data sources.

1 Introduction

Recent development of high throughput data acquisition technologies in a num-
ber of domains (e.g., biological sciences, environmental sciences, atmospheric
sciences, space sciences, commerce) together with advances in digital storage,
computing, and communications technologies have resulted in the proliferation of
a multitude of physically distributed data repositories created and maintained by
autonomous entities (e.g., scientists, organizations). The resulting increasingly

S. Jain, H.U. Simon, and E. Tomita (Eds.): ALT 2005, LNAI 3734, pp. 13–44, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

14 D. Caragea et al.

data rich domains offer unprecedented opportunities in computer assisted data-
driven knowledge acquisition in a number of applications including in particular,
data-driven scientific discovery in bioinformatics (e.g., characterization of protein
sequence-structure-function relationships in computational molecular biology),
environmental informatics, health informatics; data-driven decision making in
business and commerce, monitoring and control of complex systems (e.g., load
forecasting in electric power networks), and security informatics (discovery of
and countermeasures against attacks on critical information and communication
infrastructures). Machine learning algorithms [1, 2, 3, 4, 5, 6, 7] offer some of the
most cost-effective approaches to knowledge acquisition (discovery of features,
correlations, and other complex relationships and hypotheses that describe po-
tentially interesting regularities) from large data sets. However, the applicability
of current approaches to machine learning in emerging data rich applications in
practice is severely limited by a number of factors:

(a) Data repositories are large in size, dynamic, and physically distributed. Con-
sequently, it is neither desirable nor feasible to gather all of the data in
a centralized location for analysis. Hence, there is a need for efficient al-
gorithms for learning from multiple distributed data sources without the
need to transmit large amounts of data. In other domains, the ability of au-
tonomous organizations to share raw data may be limited due to a variety
of reasons (e.g., privacy considerations). In such cases, there is a need for
knowledge acquisition algorithms that can learn from statistical summaries
of data (e.g., counts of instances that match certain criteria) that are made
available as needed from the distributed data sources in the absence of access
to raw data.

(b) Autonomously developed and operated data sources often differ in their
structure and organization (relational databases, flat files, etc.) and the op-
erations that can be performed on the data source (e.g., types of queries -
relational queries, restricted subsets of relational queries, statistical queries,
keyword matches; execution of user-supplied code to compute answers to
queries that are not directly supported by the data source; storing results
of computation at the data source for later use) and the precise mode of
allowed interactions can be quite diverse. Hence, there is a need for theoreti-
cally well-founded strategies for efficiently obtaining the information needed
for learning within the operational constraints imposed by the data sources.

(c) Autonomously developed data sources differ in terms of their underlying
ontological commitments [8], i.e., assumptions concerning the objects that
exist in the world, the properties or attributes of the objects, the possible
values of attributes, and their intended meaning, as well as the granularity
or level of abstraction at which objects and their properties are described.
The increasing need for information sharing between organizations, indi-
viduals and scientific communities have led to significant community-wide
efforts aimed at the construction of ontologies in many areas: Gene Ontol-
ogy - GO (www.geneontology.org) [9] for molecular biology, Unified Medical
Language System -UMLS (www.nlm.nih.gov/research/umls) for heath infor-

Algorithms and Software for Collaborative Discovery 15

matics, Semantic Web for Earth and Environmental Terminology - SWEET
(sweet.jpl.nasa.gov) for geospatial informatics. While explicit declaration of
the ontology associated with a data repository helps standardize the seman-
tics to an extent, because the ontological commitments associated with a
data source (and hence its implied semantics) are typically determined by
the data source designers based on their understanding of the intended use
of the data repository and because data sources that are created for use in
one context or application often find use in other contexts or applications,
semantic differences among autonomously designed, owned, and operated
data repositories are simply unavoidable. Effective use of multiple sources
of data in a given context requires reconciliation of such semantic differ-
ences from the user’s perspective [10, 11]. Collaborative scientific discovery
applications often require users to be able to analyze data from multiple,
semantically disparate data sources there is no single privileged perspective
that can serve all users, or for that matter, even a single user, in every con-
text. Hence, there is a need for methods that can dynamically and efficiently
extract and integrate information needed for learning (e.g., statistics) from
distributed, semantically heterogeneous data based on user-specified ontolo-
gies and user-specified mappings between ontologies.

Against this background, we consider the problem of data driven knowl-
edge acquisition from autonomous, distributed, semantically heterogeneous, data
sources. The rest of this paper is organized as follows:

2 Learning from Distributed Data

2.1 Problem Formulation

Given a data set D, a hypothesis class H , and a performance criterion P , an
algorithm L for learning (from centralized data D) outputs a hypothesis h ∈ H
that optimizes P . In pattern classification applications, h is a classifier (e.g., a
decision tree, a support vector machine, etc.) (See Figure 1). The data D typi-
cally consists of a set of training examples. Each training example is an ordered
tuple of attribute values, where one of the attributes corresponds to a class la-
bel and the remaining attributes represent inputs to the classifier. The goal of
learning is to produce a hypothesis that optimizes the performance criterion e.g.,
minimizing classification error (on the training data) and the complexity of the
hypothesis.

In a distributed setting, a data set D is distributed among the sites 1, ..., p
containing data set fragments D1, ..., Dp. Two common types of data fragmen-
tation are: horizontal fragmentation and vertical fragmentation. In the case of
horizontal fragmentation, each site contains a subset of the data tuples that
make up D, i.e., D = ∪p

i=1Di . In the case of vertical fragmentation each site
stores the subtuples of data tuples (corresponding to a subset of the attributes
used to define data tuples in D). In this case, D can be constructed by taking the
join of the individual data sets D1, ..., Dp (assuming a unique identifier for each

16 D. Caragea et al.

Fig. 1. Learning from centralized data

data tuple is stored with the corresponding subtuples). More generally, the data
may be fragmented into a set of relations (as in the case of tables of a relational
database, but distributed across multiple sites) i.e., D =

⊗p
i=1 Di (where

⊗
denotes the join operation). If a data set D is distributed among the sites 1, ..., p
containing data set fragments D1, ..., Dp, we assume that the individual data
sets D1, ..., Dp collectively contain (in principle) all the information needed to
construct the dataset D. More generally, D may be fragmented across multiple
relations [12, 13, 14, 15, 16].

The distributed setting typically imposes a set of constraints Z on the learner
that are absent in the centralized setting. For example, the constraints Z may
prohibit the transfer of raw data from each of the sites to a central location while
allowing the learner to obtain certain types of statistics from the individual sites
(e.g., counts of instances that have specified values for some subset of attributes).
In some applications of data mining (e.g., knowledge discovery from clinical
records), Z might include constraints designed to preserve privacy.

The problem of learning from distributed data can be stated as follows: Given
the fragments D1, ..., Dp of a data set D distributed across the sites 1, ..., p, a set
of constraints Z, a hypothesis class H , and a performance criterion P , the task of
the learner Ld is to output a hypothesis that optimizes P using only operations
allowed by Z. Clearly, the problem of learning from a centralized data set D is
a special case of learning from distributed data where p = 1 and Z = φ. Having
defined the problem of learning from distributed data, we proceed to define some
criteria that can be used to evaluate the quality of the hypothesis produced by
an algorithm Ld for learning from distributed data relative to its centralized
counterpart. We say that an algorithm Ld for learning from distributed data
sets D1, ..., Dp is exact relative to its centralized counterpart L if the hypothesis
produced by Ld is identical to that obtained by L from the data set D obtained
by appropriately combining the data sets D1, ..., Dp.

Example: Let Ld be an algorithm for learning a Support Vector Machine
(SVM) classifier [Cortes and Vapnik, 1995] hd : RN → {−1, 1} under a set of
specified constraints Z from horizontally fragmented distributed data D1, ..., Dp,
where each Di ⊂ D ⊂ RN×{−1, 1} . Let L be a centralized algorithm for learning
an SVM classifier h : RN → {−1, 1} from data set D ⊂ RN ×{−1, 1} . Suppose
further that D = ∪p

i=1Di Then we say that Ld is exact with respect to L if and
only if ∀X ∈ RN , h(X) = hd(X).

Proof of exactness of an algorithm for learning from distributed data rel-
ative to its centralized counterpart ensures that a large collection of existing
theoretical (e.g., sample complexity, error bounds) as well as empirical results

Algorithms and Software for Collaborative Discovery 17

obtained in the centralized setting apply in the distributed setting. We can de-
fine exactness of learning from distributed data with respect to other criteria of
interest (e.g., expected accuracy of the learned hypothesis). More generally, it
might be useful to consider algorithms for learning from distributed data that
are provably approximate relative to their centralized counterparts. However, in
the discussion that follows, we focus on algorithms for learning from distributed
data that are provably exact with respect to their centralized counterparts in
the sense defined above.

2.2 A General Framework for Designing Algorithms for Learning
from Distributed Data

Our general strategy for designing an algorithm for learning from distributed
data that is provably exact with respect to its centralized counterpart (in the
sense defined above) follows from the observation that most of the learning
algorithms use only certain statistics computed from the data D in the process
of generating the hypotheses that they output. (Recall that a statistic is simply
a function of the data. Examples of statistics include mean value of an attribute,
counts of instances that have specified values for some subset of attributes, the
most frequent value of an attribute, etc.) This yields a natural decomposition of
a learning algorithm into two components:

(a) an information extraction component that formulates and sends a statistical
query to a data source and

(b) a hypothesis generation component that uses the resulting statistic to mod-
ify a partially constructed hypothesis (and further invokes the information
extraction component as needed).

A statistic s(D) is called a sufficient statistic for a parameter θ if s(D), loosely
speaking, provides all the information needed for estimating the parameter from
data D. Thus, sample mean is a sufficient statistic for the mean of a Gaussian
distribution. A sufficient statistic s for a parameter θ is called a minimal suf-
ficient statistic if for every sufficient statistic sθ for θ, there exists a function
gsθ

(sθ(D)) = s(D) [17, 18].
We have, inspired by theoretical work on PAC learning from statistical queries

[19], generalized this notion of a sufficient statistic for a parameter θ into a suf-
ficient statistic sL,h(D) for learning a hypothesis h using a learning algorithm L
applied to a data set D [20].

Trivially, the data D is a sufficient statistic for learning h using L. However,
we are typically interested in statistics that are minimal or at the very least,
substantially smaller in size (in terms of the number of bits needed for encoding)
than the data set D. In some simple cases, it is possible to extract a sufficient
statistic sL,h(D) for constructing a hypothesis h in one step (e.g., by querying the
data source for a set of conditional probability estimates when L is the standard
algorithm for learning a Naive Bayes classifier). In such a case, we say that
sL,h(D) is a sufficient statistic for learning h using the learning algorithm L if
there exists an algorithm that accepts sL,h(D) as input and outputs h = L(D).

18 D. Caragea et al.

In a more general setting, h is constructed by L by interleaving information
extraction (statistical query) and hypothesis generation operations. For example,
a decision tree learning algorithm would start with an empty initial hypothesis
h0, obtain the sufficient statistics (expected information concerning the class
membership of an instance associated with each of the attributes) for the root
of the decision tree (a partial hypothesis h1), and recursively generate queries
for additional statistics needed to iteratively refine h1 to obtain a succession of
partial hypotheses h1, h2 culminating in h (See Figure 2).

Fig. 2. Learning = Statistical Query Answering + Hypothesis Generation

We say that s(D,hi) is a sufficient statistic for the refinement of a hypothesis
hi into hi+1 (denoted by shi→hi+1) if there exists an algorithm R which accepts
hi and s(D,hi) as inputs and outputs hi+1 . We say that sh(D,h1, ..., hm) is a
sufficient statistic for the composition of the hypotheses (h1...hm) into h (denoted
by s(h1,...,hm)→h) if there exists an algorithm C which accepts as inputs h1...hm

and sh(D,h1, ..., hm) and outputs the hypothesis h. We say that shi→hi+k
(where

i ≥ 0 and k > 0 are positive integers) is a sufficient statistic for iteratively re-
fining a hypothesis hi into hi+k if hi+k can be obtained through a sequence of
refinements starting with hi . We say that s(h1,...,hm)→h is a sufficient statistic
for obtaining hypothesis h starting with hypotheses h1, ..., hm if h can be ob-
tained from h1, ..., hm through some sequence of applications of composition and
refinement operations. Assuming that the relevant sufficient statistics (and the
procedures for computing them) can be defined, the application of a learning al-
gorithm L to a data set D can be reduced to the computation of s(h0,...,hm)→h)
through some sequence of applications of hypothesis refinement and composition
operations starting with the hypothesis h (See Figure 3). In this model, the only
interaction of the learner with the repository of data D is through queries for the
relevant statistics. Information extraction from distributed data entails decom-
posing each statistical query q posed by the information extraction component
of the learner into sub queries q1, ..., qn that can be answered by the individual
data sources D1, ..., Dp respectively, and a procedure for combining the answers
to the sub queries into an answer for the original query q. (See Figure 3).

It is important to note that the general strategy for learning classifiers from
distributed data is applicable to a broad class of algorithms for learning classi-

Algorithms and Software for Collaborative Discovery 19

Fig. 3. Learning from Distributed Data = Statistical Query Answering + Hypothesis
generation

fiers from data[20]. This follows from the fact that the output h of any learning
algorithm is in fact a function of the data D, and hence by definition, a statis-
tic. Consequently, we can devise a strategy for computing h from the data D
through some combination of refinement and composition operations starting
with an initial hypothesis (or an initial set of hypotheses). When the learner’s
access to data sources is subject to constraints Z, the resulting plan for infor-
mation extraction has to be executable without violating the constraints Z. The
exactness of the algorithm Ld for learning from distributed data relative to its
centralized counterpart, which requires access to the complete data set D follows
from the correctness (soundness) of the query decomposition and answer com-
position procedure. The separation of concerns between hypothesis construction
and extraction of sufficient statistics from data makes it possible to explore the
use of sophisticated techniques for query optimization that yield optimal plans
for gathering sufficient statistics from distributed data sources under a specified
set of constraints that describe the query capabilities of the data sources, opera-
tions permitted by the data sources (e.g., execution of user supplied procedures),
and available computation, bandwidth, and memory resources.

2.3 Representative Algorithms for Learning Classifiers from
Distributed Data

We have applied the general framework described above for construction of al-
gorithms for learning classifiers from distributed data to design provably exact
algorithms for learning Naive Bayes, Nearest Neighbor, and Decision Tree classi-
fiers from distributed data under horizontal as well as vertical data fragmentation
[21], and Support Vector Machine (SVM) Classifiers under horizontal data frag-
mentation [22, 23]. We briefly summarize our results on learning decision tree
classifiers and SVM classifiers from distributed data We have obtained similar
results for algorithms for learning Naive Bayes, Neural Network, and Bayesian
Network classifiers [24].

Algorithms for Learning Decision Tree Classifiers from Distributed
Data. Algorithms that construct decision tree classifiers [25, 26] search in a
greedy fashion for attributes that yield the maximum amount of information for
determining the class membership of instances in a training set D of labeled

20 D. Caragea et al.

instances. The information gain associated with an attribute under considera-
tion at a particular node can be expressed in terms of the relative frequencies of
instances that satisfy certain constraints on attribute values (determined by the
path from the root to each of the nodes resulting from the split) for each pos-
sible class [21, 27, 28]. We have devised provably sound strategies for gathering
the necessary statistics from distributed data sets, thereby obtaining distributed
decision tree learning algorithms that are provably exact relative to their central-
ized counterparts [21]. This approach to learning decision trees from distributed
data provides an effective way to learn classifiers in scenarios in which the dis-
tributed data sources provide only statistical summaries of the data and the set
of unique keys on demand but prohibit access to data instances. Even when it
is possible to access the raw data, the proposed algorithm compares favorably
with the centralized counterpart which needs access to the entire data set when-
ever the communication cost incurred by the former is lower than the cost of
collecting the entire data set in a central location. Let |D| be the total number
of examples in the distributed data set; |A|, the number of attributes; V the
maximum number of possible values per attribute; p the number of sites across
which the data set D is distributed; M the number of classes; and size(T) the
number of nodes in the decision tree. Our analysis [20] has shown that in the
case of horizontally fragmented data, the distributed algorithm has an advantage
when MV p size(T) < |D|. In the case of vertically fragmented data, the corre-
sponding conditions are given by size(T) < |A|. Our experiments have shown
that these conditions are often met in the case of large, high-dimensional data
sets that are encountered in several applications (e.g., construction of decision
trees for classification of protein sequences into functional families) [29, 30] in
computational biology.

Learning Support Vector Machine Classifiers from Distributed Data.
Support Vector Machine (SVM) algorithm [31, 32] constructs a binary classifier
that corresponds to a separating hyperplane that maximizes the margin of sep-
aration in RN between instances belonging two classes. Because the weight vec-
tor that defines the maximal margin hyperplane can be expressed as a weighted
sum of a subset of training instances (called support vectors), the support vec-
tors and the associated weights also constitute a sufficient statistic for SVM. In
a distributed setting under horizontal fragmentation of data, it is possible to
compute the maximal margin separating hyperplane by making several passes
through the distributed data sets (without having to gather all of the data in
a centralized place), and updating the hyperplane on each pass so as to max-
imize the margin of separation. We have shown (based on convergence results
for SVM algorithms proved by [33]) that this strategy yields a provably exact
algorithm for learning an SVM classifier from distributed data under horizontal
fragmentation [22, 23].

2.4 Related Work on Learning Classifiers from Distributed Data

Srivastava et al. [34] propose methods for distributing a large centralized data
set to multiple processors to exploit parallel processing to speed up learning.

Algorithms and Software for Collaborative Discovery 21

Grossman and Guo [35], and Provost and Kolluri [36] survey several methods
that exploit parallel processing for scaling up data mining algorithms to work
with large data sets. In contrast, the focus of the our work is on learning classifiers
from a set of autonomous distributed data sources. The autonomous nature of
the data sources implies that the learner has little control over the manner in
which the data are distributed among the different sources.

Distributed data mining has received considerable attention in the literature
[37]. Domingos [38] and Prodromidis et al. [39] propose an ensemble of classi-
fiers approach to learning from horizontally fragmented distributed data which
essentially involves learning separate classifiers from each data set and combining
them typically using a weighted voting scheme. This requires gathering a subset
of data from each of the data sources at a central site to determine the weights to
be assigned to the individual hypotheses (or shipping the ensemble of classifiers
and associated weights to the individual data sources where they can be executed
on local data to set the weights). In contrast, our approach is applicable even
in scenarios which preclude transmission of data or execution of user-supplied
code at the individual data sources but allow transmission of minimal sufficient
statistics needed by the learning algorithm. A second potential drawback of the
ensemble of classifiers approach to learning from distributed data is that the
resulting ensemble of classifiers is typically much harder to comprehend than a
single classifier. A third important limitation of the ensemble classifier approach
to learning from distributed data is the lack of strong guarantees concerning
accuracy of the resulting hypothesis relative to the hypothesis obtained in the
centralized setting.

Bhatnagar and Srinivasan [40] propose an algorithm for learning decision
tree classifiers from vertically fragmented distributed data. Kargupta et al. [41]
describe an algorithm for learning decision trees from vertically fragmented dis-
tributed data using a technique proposed by Mansour [42] for approximating a
decision tree using Fourier coefficients corresponding to attribute combinations
whose size is at most logarithmic in the number of nodes in the tree. At each
data source, the learner estimates the Fourier coefficients from the local data,
and transmits them to a central site. These estimates are combined to obtain a
set of Fourier coefficients for the decision tree (a process which requires a subset
of the data from each source to be transmitted to the central site). A given set
of Fourier coefficients can correspond to multiple decision trees. At present, such
approaches offer no guarantees concerning the performance of the hypothesis
obtained in the distributed setting relative to that obtained in the centralized
setting.

Unlike the papers summarized above, our approach summarized in Section
2.2 [20] offers a general framework for the design of algorithms for learning from
distributed data that is provably exact with respect to its centralized coun-
terpart. Central to our approach is a clear separation of concerns between hy-
pothesis construction and extraction of sufficient statistics from data, making
it possible to explore the use of sophisticated techniques for query optimization
that yield optimal plans for gathering sufficient statistics from distributed data

22 D. Caragea et al.

sources under specified set of constraints Z that describe the query capabilities
and operations permitted by the data sources (e.g., execution of user supplied
procedures). Our approach also lends itself to adaptation to learning from seman-
tically heterogeneous data sources (see below). Provided the needed mappings
between ontologies can be specified, our approach to learning from distributed
data can be extended to yield a sound approach to learning from heterogeneous
distributed data encountered in practical applications (see Section 3).

3 Information Integration from Semantically
Heterogeneous Distributed Data

3.1 Semantic Data Integration Problem

In order to extend our approach (summarized in Section 2.2) to learning from
distributed data (which assumes a common ontology that is shared by all of
the data sources) into effective algorithms for learning classifiers from semanti-
cally heterogeneous distributed data sources, techniques need to be developed for
answering the statistical queries posed by the learner in terms of the learner’s
ontology O from the heterogeneous data sources (where each data source Di has
an associated ontology Oi). Thus, we have to solve a variant of the problem of
integrated access to distributed data repositories - the data integration problem
[43] in order to be able to use machine learning approaches to acquire knowl-
edge from semantically heterogeneous data. This problem is best illustrated by
an example: Consider two academic departments that independently collect in-
formation about their Students. Suppose a data set D1 collected by the first
department is described by the attributes ID, Student Level, Monthly Income
and Internship and it is stored into a table as the one corresponding to D1 in
Table 1. Suppose a data set D2 collected by the second department is described
by the attributes Student ID, Student Program, Hourly Income and Intern and
it is stored into a table as the one corresponding to D2 in Table 1.

Table 1. Student data collected by two departments and a university statistician

ID Student Level Monthly Income Internship
34 M.S. 1530 yes

D1 49 1st Year 600 no
23 Ph.D. 1800 no
SID Student Program Hourly Income Intern
1 Master 14 yes

D2 2 Doctoral 17 no
3 Undergraduate 8 yes

SSN Student Status Yearly Income Intern
475 Master 16000 ?

DU 287 Ph.D. 18000 ?
530 Undergrad 7000 ?

Algorithms and Software for Collaborative Discovery 23

Consider a user, e.g., a university statistician, who wants to construct a pre-
dictive model based on data from two departments of interest from his or her own
perspective, where the representative attributes are Student SSN, Student Sta-
tus, Yearly Income and Industry Experience. For example, the statistician may
want to construct a model that can be used to infer whether a typical student
(represented as in the entry corresponding to DU in Table 1) drawn from the
same population from which the two departments receive their students is likely
to have completed an internship. This requires the ability to perform queries
over the two data sources associated with the departments of interest from the
user’s perspective (e.g., fraction of doctoral students who completed an intern-
ship). However, because the two data sources differ in terms of semantics from
the user’s perspective the user must recognize the semantic correspondences be-
tween the attributes ID in the first data source, Student ID in the second data
source and Student SSN in the user data; the attributes Student Level, Student
Program and Student Status, etc. From our perspective, a data integration sys-
tem should: allow users to specify what information is needed instead of how it
can be obtained; allow each user to impose his or her own points of view (onto-
logical commitments) on the data sources and post queries specified using terms
in that ontology; hide the complexity of communication and interaction with
heterogeneous distributed data sources; automatically transform user queries
into queries that are understood by the respective data sources; map the results
obtained into the form expected by the user and store them for future analy-
sis; allow incorporation of new data sources as needed; and support sharing of
ontologies (hence ontological commitments) and among users as needed [10].

3.2 INDUS: An Ontology Based Federated Query Centric Data
Integration System

Our recent work has led to the development of a federated, query-centric ap-
proach to information integration from heterogeneous, distributed information
sources which has been implemented in the data integration component of
INDUS (Intelligent Data Understanding System) prototype [10, 11, 44] (See
Figure 4).

The choice of the federated (as opposed to data warehouse) and query centric
(as opposed to source centric) approach to information integration was motivated
by characteristics of a class of scientific applications of data-driven knowledge
acquisition. A detailed discussion of the design rationale of INDUS can be found
in [10, 20, 44]. In brief, a federated approach lends itself much better to settings
where it is desirable to postpone specification of user ontology O and the map-
ping M(O,O1, · · · , Op) = {M(O,O1), · · ·M(O,Op)} between O and data source
specific ontologies O1, · · · , Op until when the user is ready to use the system.
The choice of a query centric approach in INDUS enables users the desired flexi-
bility in integrating data from multiple autonomous sources in ways that match
their own context or application specific ontological commitments whereas in a
source centric approach, the semantics of the data (what the data from a source
should mean to a user) are determined by the source. INDUS enables a scientist

24 D. Caragea et al.

Fig. 4. INDUS (Intelligent Data Understanding System) for Information Integration
from Heterogeneous, Distributed, Autonomous Information Sources. D1, D2, D3 are
data sources with associated ontologies O1, O2, O3 and O is a user ontology. Queries
posed by the user are answered by a query answering engine in accordance with the
mappings between user ontology and the data source ontologies, specified using a user-
friendly editor.

to view a collection of physically distributed, autonomous, heterogeneous data
sources (regardless of their location, internal structure, and query interfaces) as
though they were relational databases, (i.e. a collection of inter-related tables.
Each data source in INDUS has associated with it, a data source description
which includes the ontology of the data source and a description of the query
capabilities of the data source (i.e., the schema of the data source). INDUS makes
explicit the (sometimes implicit) ontologies associated with data sources. This
allows the specification of semantic correspondences between data sources [11]
which can be expressed in ontology-extended relational algebra (independently
developed by [45]).

We assume that each data source has associated with it, an ontology that
includes hierarchies corresponding to attribute value taxonomies (AVT) (See Fig-
ure 5). We specify the correspondence between semantically similar attributes,
by mapping the domain of the type of one attribute to the domain of the type
of the semantically similar attribute (e.g., Hourly Income to Yearly Income or
Student Level to Student Status) [11]. Explicit specification of mappings between
AVTs in the user ontology OU and data source ontologies O1 and O2 allows the
user to view data D1 and D2 from his or her own perspective. Such mappings can
be used to answer user queries that are expressed in terms of OU from the data
sources D1 and D2. Let < D1, O1, S1 >, · · · , < Dp, Op, Sp > be an ordered set
of p ontology-extended data sources and U a user that poses queries against the
heterogeneous data sources D1, · · · , Dp. A user perspective PU is given by a user
ontology OU and a set of semantic correspondences or interoperation constraints
IC that define relationships between terms in O1, · · · , Op, respectively, and the
terms in OU . The semantic correspondences take one of the two forms: x ≤ y

Algorithms and Software for Collaborative Discovery 25

Fig. 5. Attribute value taxonomies (ontologies) O1 and O2 associated with the at-
tributes Student Level, Student Program in two data sources of interest. OU is the
ontology for Student Status from the user’s perspective. An example of user-specified
semantic correspondences between the user ontology OU and data source ontologies
O1 and O2 respectively is also shown.

(x is semantically subsumed by y), x ≥ y (x semantically subsumes y), x ≡ y
(x is semantically equivalent to y), x
= y (x is semantically incompatible with
y), x ≈ y (x is semantically compatible with y) (inspired by bridge rules intro-
duced by Bouquet et al. [46]). See 5 for an illustration of user-defined semantic
correspondences between data sources O1 and O2, respectively, and OU .

Let O1, · · · , Op (respectively) be the ontologies associated with the data
sources D1, · · · , Dp. Let PU = (OU , IC) a user perspective with respect to these
ontologies. We say that the ontologies O1, · · ·Op, are integrable according to
the user ontology OU in the presence of semantic correspondences IC if there
exist p partial injective mappings M(OU , O1), · · · ,M(OU , Op) from O1, · · · , Op,
respectively, to OU . Examples of such mappings include functions for converting
monthly income and hourly income (respectively) from the ontologies associ-
ated with data sources D1 and D2 (see Figure 5) into yearly income in terms
of user ontology OU ; or for mapping instances corresponding to 1st year stu-
dents from data source D1 into instances described as Freshman from the user
perspective. We have completed the implementation of a working prototype of
the INDUS system to enable users with some familiarity with the relevant data
sources to rapidly and flexibly assemble data sets from multiple data sources
and to query these data sets. This can be done by specifying a user ontol-
ogy, simple semantic mappings between data source specific ontologies and the
user ontolgy and queries - all without having to write any code. The current
implementation of INDUS which has been released under Gnu public license
(http://www.cild.iastate.edu/software/indus.html) includes support for:

(a) Import and reuse of selected fragments of existing ontologies and editing of
ontologies [47].

26 D. Caragea et al.

(b) Specification of semantic correspondences between a user ontology OU and
data source ontologies [11]. Semantic correspondences between ontologies can
be defined at two levels: schema level (between attributes that define data
source schemas) and attribute level (between values of attributes). Consis-
tency of semantic correspondences is verified by reasoning about subsump-
tion and equivalence relationships [48]

(c) Registration of a new data source using a data-source editor for defining
the schema of the data source (the names of the attributes and their cor-
responding ontological types), location, type of the data source and access
procedures that can be used to interact with a data source.

(d) Specification and execution of queries across multiple semantically heteroge-
neous, distributed data sources with different interfaces, functionalities and
access restrictions. Each user may choose relevant data sources from a list
of data sources that have been previously registered with the system and
specify a user ontology (by selecting an ontology from a list of available on-
tologies or by invoking the ontology editor and defining a new ontology).
The user can select mappings between data source ontologies and user on-
tology from the available set of existent mappings (or invoke the mapings
editor to define a new set of mappings). The data needed for answering
a query is specified by selecting (and possibly restricting) attributes from
the user ontology, through a user-friendly interface. Queries posed by the
user are sent to a query-answering engine (QAE) that automatically decom-
poses the user query expressed in terms of the user ontology into queries
that can be answered by the individual data sources. QAE combines (af-
ter applying the necessary mappings) to generate the answer for the user
query. The soundness of the data integration process (relative to a set of
user-specified mappings between ontologies) follows from the soundness of
the query decomposition procedure, and the correctness of the behavior of
the query answering engines associated with the individual data sources, and
the answer composition procedure [11].

(e) Storage and further manipulation of results of queries. The results returned
by a user query can be temporarily stored in a local relational database.
This in effect, represents a materialized relational view (modulo the map-
pings between user and data source specific ontologies) across distributed,
heterogeneous (and not necessarily relational) data repositories. The cur-
rent design of INDUS supports further analysis (e.g., by applying machine
learning algorithms) on the retrieved data.

In summary, INDUS offers the functionality necessary to flexibly integrate in-
formation from multiple heterogeneous data sources and structure the results
according to a user-supplied ontology. INDUS has been used to assemble several
data sets used in the exploration of protein sequence-structure-function relation-
ships [44].

3.3 Related Work on Data Integration

Hull [49], Davidson et al. [50] and Eckman [51] survey alternative approaches
to data integration. A wide range of approaches to data integration have been

Algorithms and Software for Collaborative Discovery 27

considered including multi-database systems [52, 53, 54], mediator based ap-
proaches [55, 56, 57, 58, 59, 60, 61, 62]. Several data integration projects have
focused specifically on integration of biological data [63, 64, 65, 66, 67]. Toma-
sic et al. [68] proposed an approach to scaling up access to heterogeneous data
sources. Haas et al. [69] investigated optimization of queries across heterogeneous
data sources. Space does not permit a detailed survey of the extensive literature
on data integration. Rodriguez-Martinez and Roussoloulos [70] proposed a code
shipping approach to design of an extensible middleware system for distributed
data sources. Lambrecht et al. [71] proposed a planning framework for gathering
information from distributed sources. These efforts addressed, and to varying
degrees, solved the following problems in data integration: design of query lan-
guages and rules for decomposing queries into sub queries and composing the
answers to sub queries into answers to the initial query. Maluf and Wiederhold
[72] proposed an ontology algebra for merging of ontologies. Our group developed
an approach to specifying semantic correspondences between ontologies and for
querying semantically heterogeneous data using ontologies and inter-ontology
mappings [10]. This approach is similar to the ontology-extended relational al-
gebra developed by Bonatti et al. [45]. The design of INDUS [10, 11, 44] was
necessitated by the lack of publicly available data integration platforms that
could be used as a basis for learning classifiers from semantically heterogeneous
distributed data. INDUS draws on much of the existing literature on data in-
tegration and hence shares some of the features of existing data integration
platforms. But it also includes some relatively novel features (See Section 3.2).

4 Knowledge Aquisition from Semantically
Heterogeneous Distributed Data

The stage is now set for developing sound approaches to learning from seman-
tically heterogeneous, distributed data (See Figure 6). While it is possible to
retrieve the data necessary for learning from a set of heterogeneous data sources
using INDUS, store the retrieved data in a local database, and then apply stan-
dard (centralized) learning algorithms, such approach is not feasible when the
amounts of data involved are large, and bandwidth and memory are limited,
or when the query capabilities of the data sources are limited to answering a
certain class of statistical queries (e.g., counts of instances that satisfy certain
constraints on the values of their attributes). Hence, the development of sound
approaches to answering statistical queries from semantically heterogeneous data
sources a variety of constraints and assumptions motivated by application sce-
narios encountered in practice is a key element of our research plan.

4.1 Partially Specified Data

Our approach to design of algorithms for learning classifiers from semantically
heterogeneous distributed data is a natural extension of our approach to learning
from distributed data discussed in Section 2 (See Figure 3) which assumed a com-
mon ontology that is shared by all of the data sources. We propose to extend this

28 D. Caragea et al.

Fig. 6. General Framework for learning classifiers from semantically heterogeneous
distributed data. The learner generates statistical queries expressed in terms of user
ontology). These queries have to be mapped into queries expressed in terms of data
source specific ontologies that can be executed directly on the data sources and the
results combined and mapped into the answer to the query posed by the learner.

framework to work with semantically heterogeneous distributed data sources by
developing techniques for answering the statistical queries posed by the learner
in terms of the learner’s ontology O using the heterogeneous data sources (where
each data source Di has an associated ontology Oi) (See Figure 6).

Before we can discuss approaches for answering statistical queries from se-
mantically heterogeneous data, it is useful to explore what it means to answer a
statistical query in a setting in which autonomous data sources differ in terms
of the levels of abstraction at which data are described. We illustrate some of
the issues that have to be addressed using an example: Consider the data source
ontologies O1 and O2 and the user ontology OU shown in Figure 5. The at-
tribute Student Status in data source D1 is specified in greater detail (lower
level of abstraction) than in D2. That is, data source D1 carries information
about the precise categorization of Undergrad students into 1st year, 2nd year,
3rd year, and 4th year students, whereas data source D2 makes no such distinc-
tions among Undergraduate students. Now suppose that D1 contains 5, 10, 15, 10
instances (respectively) of 1st year, 2nd year, 3rd year, and 4th year (undergrad)
students and 20 instances of Grad students. Suppose D2 contains 20 instances
of Undergraduate students, 40 instances of Graduate students respectively.

Suppose a statistical query qOU is posed by the user against the two data
sources D1 and D2 based on ontology OU : What fraction of students are Under-
grads? The answer to this query can be computed in a straightforward fashion as
the ratio of number of Undergrad students ((5+10+15+10)+20=60) divided by
the total number of students whose Student Status is recorded in the two data
sources (60+20+40=120) yielding an answer of 0.5.

Now consider a different statistical query rOU : What fraction of the students
in the two data sources are sophomores? The answer to this query is not as
straightforward as the answer to the previous query qOU . This is due to the fact
that the Student Status of student records in data source D2 are only partially

Algorithms and Software for Collaborative Discovery 29

specified [73, 74] with respect to the ontology O. Consequently, we can never know
the precise fraction of students that are Sophomores based on the information
available in the two data sources. However, if it is reasonable to assume that the
data contained in both D1 and D2 are drawn from the same universe (i.e., can
be modeled by the same underlying distribution), we can estimate the fraction
of students that are Sophomores in the data source D2 based on the fraction of
Undergrad students that are Sophomores in the data source D1 (i.e., 10 out of
40) and use the result to answer the query rOU . Under the assumption that the
population of students in D1 and D2 can be modeled by the same distribution,
the estimated number of Sophomore students in D2 is given by (10

40)(20) = 5 .
Hence, the estimated number of Sophomore students in D1 and D2 = 10+5 = 15.
Thus, the answer to the query rOU is 15

120 = 0.125. Note that the answer to
query qOU is completely determined by the data source ontologies O1, O2, the
user ontology OU and the mappings shown in Figure 5. However, answer to
the query rOU is only partially determined by the ontologies and the mappings
shown in Figure 5. In such cases, answering statistical queries from semantically
heterogeneous data sources requires the user to supply not only the mapping
between the ontology and the ontologies associated with the data sources but
also additional assumptions of a statistical nature (e.g., that data in D1 and
D2 can be modeled by the same underlying distribution) and the validity of the
answer returned depends on the validity of the assumptions and the soundness
of the procedure that computes the answer based on the supplied assumptions.

Hence, the development of algorithms for learning classifiers from seman-
tically heterogeneous data requires addressing the problem of learning classi-
fiers from partially specified data. Specifically, this entails development provably
sound methods based extensions to our current formulations of ontology-based
query decomposition and answer composition methods in INDUS [11] for an-
swering statistical queries from semantically heterogeneous data sources under
alternative statistical assumptions.

4.2 The Problem of Learning Classifiers from Partially Specified
Data

Let us start by considering a partially specified centralized data set D with
an associated ontology O. Let {A1, A2, ..., An} be an ordered set of nominal
attributes, and let dom(Ai) denote the set of values (the domain) of attribute
Ai. An attribute value taxonomy Ti for attribute Ai is a tree structured concept
hierarchy in the form of a partially order set (dom(Ai),≤), where dom(Ai) is a
finite set that enumerates all attribute values in Ai, and ≤ is the partial order
that specifies isa relationships among attribute values in dom(Ai) (see any of the
ontologies in Figure 5). Collectively, O = {T1, T2, ..., Tn} represents the ordered
set of attribute value taxonomies associated with attributes {A1, A2, ..., An} (see
Figure 7).

Let Nodes(Ti) represent the set of all values in Ti, and Root(Ti) stand for
the root of Ti. The set of leaves of the tree, Leaves(Ti), corresponds to the
set of primitive values of attribute Ai (e.g., Freshman, Sophomore, etc. in the
hierarchy corresponding to the attribute Student Status in Figure 5). The internal

30 D. Caragea et al.

nodes of the tree (i.e., Nodes(Ti) − Leaves(Ti)) correspond to abstract values
of attribute Ai (e.g., Undergrad, Grad, Ph.D. in in the hierarchy corresponding
to the attribute Student Status Figure 5). Each arc of the tree corresponds to
a isa relationship over attribute values in the AVT. Thus, an AVT defines an
abstraction hierarchy over values of an attribute.

The set of abstract values at any given level in the tree Ti form a partition
of the set of values at the next level (and hence, the set of primitive values of
Ai). For example, in Figure 5, the nodes at level 1, i.e., Undergrad, Grad, define
a partition of attribute values that correspond to nodes at level 2 (and hence, a
partition of all primitive values of the Student Status attribute). After Haussler
[75], we define a cut γi of an AVT Ti as a subset of nodes in Ti satisfying the
following two properties: (1) For any leaf l ∈ Leaves(Ti), either l ∈ γi or l is a
descendent of a node n ∈ γi; and (2) For any two nodes f, g ∈ γi, f is neither a
descendent nor an ancestor of g. Cuts through AVT Ti correspond to a partition
of Leaves(Ti). Thus, the cut corresponding to Undergrad, Master, Ph.D. defines
a partition over the primitive values of the Student Status attribute.

Fig. 7. Global cut through a set of attribute value taxonomies

The original instance space I in the absence of AVT is an instance space
defined over the domains of all attributes. Let Γ = {γ1, ..., γn} be a global cut
through T , where γi stands for a cut through Ti (see Figure 7). The cut Γ defines
an abstract instance space IΓ . A set of AVT O = {T1, T2, ..., Tn} associated with
a set of attributes A = {A1, A2, ..., An} induces an instance space IO = ∪Γ IΓ

(the union of instance spaces induced by all the cuts through the set of AVT
O). We say that an instance x ∈ IO is partially specified if one or more of its
attribute values are not primitive. A partially specified data set DO (relative to
a set O of AVT) is a collection of instances drawn from IO where each instance
is labeled with the appropriate class label from C = {c1, c2, ..., ck}, a finite set
of mutually disjoint classes. Thus, DO ⊂ IO × C.

The problem of learning classifiers from AVT and partially specified data
can be formulated as follows: Given a user-supplied set of AVT O and a data
set DO of (possibly) partially specified labeled instances, construct a classifier
hO : IO → C for assigning appropriate class labels to each instance in the
instance space IO.

Algorithms and Software for Collaborative Discovery 31

4.3 Learning from Partially Specified Semantically Heterogeneous
Data

Suppose that a data set D is distributed over the data sources D1, · · · , Dp,
where each data source Di contains only a horizontal fragment (subset of data
tuples) of the data D. Each distributed data set Di is described by the set of
attributes {Ai

1, · · · , Ai
n} and their corresponding AVT Oi = {T i

1, · · · , T i
n}. Let

{AU
1 , · · · , AU

n } be the set of attributes that describe the data D in a user view
and let OU = TU

1 , ..., TU
n be a user-supplied collection of taxonomies over the set

of attributes AU
1 , ..., AU

n . Let Ψ = {ϕ1, ϕ2, · · · , ϕp} be a collection of user-defined
mappings from data source taxonomies Oi to user taxonomies OU , respectively.
A global cut ΓU in the user’s collection of taxonomies OU = {TU

1 , · · · , TU
n }

determines cuts {Γ1, Γ2, · · · , Γn} in the data source taxonomies, through the
means of user-defined mappings Ψ . The abstract instance space defined by ΓU

is denoted by IΓ U and is given by IΓU = ϕ1(IΓ1) ∪ ϕ2(IΓ2)... ∪ ϕp(IΓn). The set
of user AVT OU = TU

1 , ..., TU
n induces an instance space IOu = ∪Γ U IΓ U . We

say that an instance x ∈ IOU is partially specified if one of more of its attribute
values are not primitive. A partially specified data set DOU (relative to a set OU

of user AVT) is a collection of instances drawn from IOU where each instance is
labeled with the appropriate class label from C = {c1, c2, · · · , ck}, a finite set of
mutually disjoint classes. Thus, DOU ⊂ IOU × C.

The problem of learning classifiers from distributed, semantically heteroge-
neous data sources can be formulated as follows: Given a collection of (possibly)
partially specified data sources D1, · · · , Dp and their associated collections of
taxonomies {O1, ..., Op}, a user collection of taxonomies OU and a set of map-
pings Ψ from data source taxonomies Oi to user taxonomies OU , construct a
classifier hOU : IOU → C for assigning appropriate class labels to each instance
in the instance space IOU .

4.4 AVT-Guided Learning Algorithms

AVT-guided learning algorithms extend standard learning algorithms in princi-
pled ways so as to exploit the information provided by AVT. We have designed
and implemented AVT-NBL [74] and AVT-DTL [73] for learning AVT-guided
Naive Bayes and Decision Tree classifiers, respectively. The standard Decision
Trees or Naive Bayes learning algorithms can be viewed as special cases of AVT-
DTL or AVT-NBL, where the AVT associated with each attribute has only one
level. The root of such an AVT corresponds to the value of the attribute being
unknown and the leaves correspond to the primitive values of the attribute. We
will use Naive Bayes Learner (NBL) as an example to illustrate our approach
to AVT-guided learning algorithms. Naive Bayes classifier operates under the
assumption that each attribute is independent of the others given the class.
Thus, the joint class conditional probability of an instance can be written as
the product of individual class conditional probabilities corresponding to each
attribute defining the instance. The Bayesian approach to classifying an instance
x = {v1, · · · , vn} is to assign it to the most probable class cMAP (x). We have:
cMAP (x) = argmax

cj∈C
p(v1, · · · , vn|cj)p(cj) = argmax

cj∈C
p(cj)

∏
i

p(vi|cj).

32 D. Caragea et al.

Therefore, the task of the Naive Bayes Learner (NBL) is to estimate the class
probabilities p(cj) and the class conditional probabilities p(vi|cj), for all classes
cj ∈ C and for all attribute values vi ∈ dom(Ai). These probabilities can be
estimated from a training set D using standard probability estimation methods
[1] based on relative frequency counts. We denote by σ(vi|cj) the frequency
count of a value vi of the attribute Ai given the class label cj , and by σ(cj) the
frequency count of the class label cj in a training set D.

AVT-guided NBL, called AVT-NBL [74] efficiently exploits taxonomies de-
fined over values of each attribute in a data set to find a Naive Bayes classifier
that optimizes the Conditional Minimum Description Length (CMDL) score
[Friedman et al., 1997]. More precisely, the task of AVT-NBL is to construct a
Naive Bayes classifier for assigning an unlabeled instance x ∈ IO to its most
probable class cMAP (x). As in the case of NBL, we assume that each attribute
is independent of the other attributes given the class. A Naive Bayes classifier
defined on the instance space IO is completely specified by a set of class con-
ditional probabilities for each value of each attribute. Suppose we denote the
table of class conditional probabilities associated with values in γi by CPT (γi).
Then the Naive Bayes classifier defined over the instance space IO is specified
by h(Γ) = {CPT (γ1), · · · , CPT (γn)}.

AVT-NBL starts with the Naive Bayes Classifier that is based on the most
abstract value of each attribute (the most general hypothesis) and successively
refines the classifier (hypothesis) using a criterion that is designed to tradeoff
between the accuracy of classification and the complexity of the resulting Naive
Bayes classifier. Successive refinements of Γ correspond to an ordering of Naive
Bayes classifiers based on the structure of the AVTs in O. For example, in Figure
8, Γ ′ is a refinement of Γ , and hence the corresponding hypothesis h(Γ ′) is a
refinement of h(Γ) [74].

The scoring function that we use to evaluate a candidate AVT-guided refine-
ment of a Naive Bayes Classifier is an adaptation (for the case of classifiers con-
structed from partially specified data) of the Conditional Minimum Description
Length (CMDL) criterion [76] and captures the tradeoff between the accuracy
and the complexity of the resulting Naive Bayes classifier [74].

The parameters that define the classifier can be estimated from the observed
class distribution in the data D based on frequency counts σi(cj)) and pi(v|cj) is
the class conditional probability of value v of attribute Ai given the class label cj .

Fig. 8. Global cut through a set of attribute value taxonomies

Algorithms and Software for Collaborative Discovery 33

The value of pi(v|cj) can similarly estimated from the frequency counts σi(v|cj))
obtained from the data set D. When some of the data are partially specified, we
can use a 2-step process for computing σi(v|cj)). First we make an upward pass
through the AVT for each attribute aggregating the class conditional frequency
counts based on the specified attribute values in the data set; Then we propagate
the counts associated with partially specified attribute values down through the
tree, augmenting the counts at lower levels according to the distribution of values
along the branches based on the subset of the data for which the corresponding
values are fully specified [73, 74]. This procedure can be seen as a special case of
EM (Expectation Maximization) algorithm for estimation of σi(v|cj) under the
assumption that the attributes are independent given the class [74].

Thus, AVT-NBL produces a hypothesis h that intuitively trades off the com-
plexity of Naive Bayes classifier (in terms of the number of parameters used to
describe the relevant class conditional probabilities) against accuracy of clas-
sification. The algorithm terminates when none of the candidate refinements
of the classifier yield statistically significant improvement in the CMDL score
[74]. Our experiments with several synthetic as well as real-world data sets have
demonstrated the efficacy of AVT-NBL [74] and AVT-DTL [73].

4.5 Learning Classifiers from Partially Specified Semantically
Heterogeneous Data

Our approach to AVT-guided learning from partially specified semantically het-
erogeneous data [77] relies on our general strategy for transforming algorithms
for learning from data into algorithms for learning from distributed, semantically
heterogeneous data [11, 20]. As mentioned before, this strategy is based on the
decomposition of the learning task into an information extraction component
(when sufficient statistics needed for learning are gathered) and a hypothesis
generation component (that uses the sufficient statistics to generate or refine a
current hypothesis).

Recall that a statistic sL(D) is a sufficient statistic for learning a hypothesis
h using a learning algorithm L applied to a data set D if there exists a procedure
that takes sL(D) as input and outputs h [20]. For example, in the case of NBL,
the frequency counts σ(vi|cj) of the value vi of the attribute Ai given the class
label cj in a training set D, and the frequency count σ(cj) of the class label cj in
a training set D completely summarize the information needed for constructing
a Naive Bayes classifier from D, and thus, they constitute sufficient statistics
for NBL. As noted in Section 2, some simple learning algorithms such as NBL
sL(D), the sufficient statistics required for constructing the classifier can be
computed in one step, in general, a learning algorithm may require assembly
of sL(D) through an interleaved execution of the information extraction and
hypothesis generation components [20].

We illustrate our approach to using this strategy to design AVT-guided al-
gorithms for learning classifiers from semantically heterogeneous data using the
Naive Bayes classifier as an example. However, the proposed approach can be
extended to a broad range of machine learning algorithms including variants

34 D. Caragea et al.

of Decision Tree, Bayesian networks (Naive Bayes and Tree-Augmented Naive
Bayes classifiers), generalized linear models, support vector machines.

Sufficient Statistics for AVT-NBL. As we have shown, AVT-NBL starts
with a Naive Bayes classifier h0 = h(Γ0) corresponding to the most abstract
cut Γ0 in the attribute value taxonomy associated with the data (i.e., the most
general classifier that simply assigns each instance to the class that is apriori most
probable) and it iteratively refines the classifier by refining the corresponding
cut until a best cut, according to the performance criterion, is found. More
precisely, let hi be the current hypothesis corresponding to the current cut Γ
(i.e., hi = h(Γ)) and Γ ′ a (one-step) refinement of Γ (see Figure 8).

Let h(Γ ′) be the Naive Bayes classifier corresponding to the cut Γ ′ and let
CMDL(Γ |D) and CMDL(Γ ′|D) be the CMDL scores corresponding to the
hypotheses h(Γ) and h(Γ ′), respectively. If CMDL(Γ) > CMDL(Γ ′) then
hi+1 = h(Γ ′), otherwise hi+1 = h(Γ). This procedure is repeated until no (one-
step) refinement Γ ′ of the cut Γ results in a significant improvement of the
CMDL score, and the algorithm ends by outputing the classifier h(Γ).

Thus, the classifier that the AVT-NBL finds is obtained from h0 = h(Γ0)
through a sequence of refinement operations. The refinement sufficient statistics
sL(D,hi → hi+1) are identified below.

Let hi be the current hypothesis corresponding to a cut Γ and CMDL(Γ |D)
its score. If Γ ′ is a refinement of the cut Γ , then the refinement sufficient statis-
tics needed to construct hi+1 are given by the frequency counts needed to con-
struct h(Γ ′) together with the probabilities needed to compute CLL(h(Γ ′)|D)
(calculated once we know h(Γ ′)). If we denote by domΓ ′(Ai) the domain of
the attribute Ai when the cut Γ ′ is considered, then the frequency counts
needed to construct h(Γ ′) are σ(vi|cj) for all values vi ∈ domΓ ′ (Ai) of all at-
tributes Ai and for all class values cj ∈ domΓ ′(C), and σ(cj) for all class values
cj ∈ domΓ ′(C). To compute CLL(h(Γ ′)|D) the products

∏
j ph(Γ ′)(vij |ck) for

all examples xi = (vi1, · · · , vin) and for all classes ck ∈ C are needed.
The step i+1 of the algorithm corresponding to the cut Γ ′ can be briefly de-

scribed in terms of information gathering and hypothesis generation components
as follows:
(1) Compute σ(vi|cj) and σ(cj) corresponding to the cut Γ ′ from the training

data D
(2) Generate the NB classifier h(Γ ′)
(3) Compute

∏
j ph(Γ ′)(vij |ck) from D

(4) Generate the hypothesis hi+1

Learning Naive Bayes Classifiers from Semantically Heterogeneous
Data. Let {D1, · · · , Dp} be a set of semantically heterogeneous data sources
with associated ontologies {O1, · · ·Op}. Let OU be a user collection of AVT and
Γ a cut through the user AVT.

The step i + 1 (corresponding to the cut Γ ′ in the user ontology) of the
algorithm for learning Naive Bayes classifiers from distributed, semantically het-
erogeneous data sources D1, · · · , Dp can be described in terms of information
gathering and hypothesis generation components as follows:

Algorithms and Software for Collaborative Discovery 35

(1) Compute σ(vi|cj) and σ(cj) corresponding to the cut Γ ′ from the distributed
data sources D1, · · · , Dp

(2) Generate the NB classifier h(Γ ′) at the user location and send it to the data
sources D1, · · · , Dp

(3) Compute
∏

j ph(Γ ′)(vij |ck) from D1, · · · , Dp

(4) Generate the hypothesis hi+1 at the user location

Thus, using the decomposition of an AVT-guided algorithm for learning clas-
sifier from partially specified data into information extraction and hypothesis
generation components, we reduce the problem of learning classifiers from dis-
tributed, semantically heterogeneous data sources to the problem of querying
for sufficient statistics from such data sources (e.g., frequency counts σ(vi|cj)
and σ(cj) corresponding to a cut). This involves design of procedures for decom-
posing statistical queries into sub-queries corresponding to the distributed data
sources and procedures for combining the partial answers into a final answer to
the initial queries (e.g., adding up counts) [77].

4.6 Related Work on Learning Classifiers from Partially Specified
Data

Walker [78] first used attribute value taxonomies in information retrieval from
large databases. DeMichiel [79], and Chen and Tseng [80] proposed database
models to handle imprecision using partial values and associated probabilities
where a partial value refers to a set of possible values for an attribute. McClean
et al. [81] proposed aggregation operators defined over partial values. While this
work suggests ways to aggregate statistics so as to minimize information loss,
it does not address the problem of learning from AVT and partially specified
data. The problem of learning classifiers from AVT and partially specified data
was formulated and solved in the case of decision tree classifiers by Zhang and
Honavar [73] and in the case of Naive Bayes classifiers by Zhang and Honavar [74].
Development of approaches to exploit abstractions over attribute values and class
labels to optimally exploit partially specified data. The use of prior knowledge
or domain theories specified typically in first order logic or propositional logic to
guide learning from data has been explored in ML-SMART [82], FOCL [83] and
KBANN [84] systems as well as in the work of Aronis et al. [85] and Aronis and
Provost [86]. However, the work on exploiting domain theories in learning has
not focused on the effective use of AVT to learn classifiers from partially specified
data. Approaches to exploiting abstractions in learning from fully specified data
have been studied by several authors [87, 88, 89, 90, 91, 92, 93, 94, 95]. We have
developed simple algorithms for learning decision tree [73] and Naive Bayes [74]
classifiers from partially specified data. These methods assume independence of
attributes in estimating answers to statistical queries from partially specified
data based on the distribution of observed values. in fully specified instances. It
is also of interest to investigate methods based on multiple imputation [96, 97, 98]
which has been used with success in a number of applications such as studies of
air quality [99], employment [100], and health care [101] to cope with missing
observations. Multiple imputation aims to: (a) use available information to make

36 D. Caragea et al.

good predictions of the missing values and (b) reflect uncertainty due to the fact
that some of the data were in fact not observed. Some causes of missing data
such as when an individual does not answer a particular question, and when an
individual refuses to answer any questions, but some demographic information
such as the identity of the data source that the person is associated with is
available, have been considered in the statistical literature [102, 103, 104].

5 Summary and Discussion

Biological, environmental, ecological, engineering, social, and biomedical sciences
are in the midst of being transformed from data poor sciences into data rich sci-
ences, in large part, due to rapid advances in experimental and data acquisition
methods. Recent advances in computer science, statistical methods, and infor-
mation theory provide powerful conceptual tools for extracting knowledge from
data and for developing algorithmic models of causal interactions within and
across multiple levels of organization in complex systems. Advances in comput-
ing, storage, communication, and software technologies (e.g., web services that
can be invoked and on the Internet and executed on remote computers or data
repositories) provide unprecedented opportunities for exploiting disparate data
and knowledge to address fundamental scientific questions. Because data sources
that are created for use by one scientific community (e.g., structural biologists)
find use in other contexts (e.g. exploration of macromolecular function), given
the prevalence of discipline-specific terminologies (ontologies), semantic differ-
ences among autonomous data repositories are simply unavoidable. Effective
use of multiple sources of data in a given context requires reconciliation of such
semantic differences from the user’s point of view. This is especially true in
emerging areas of scientific inquiry at the boundaries of established disciplines
(e.g., computational biology) that draw on multiple areas of inquiry (e.g., molec-
ular biology, biophysics, structural biology). Furthermore, because many of the
data sources of interest are autonomous and geographically distributed, it is
neither desirable nor feasible to gather all of the data in a centralized location
for analysis. Hence, there is an urgent need for algorithms and software for col-
laborative discovery from autonomous, semantically heterogeneous, distributed
information sources. Against this background, the research summarized in this
paper has led to:

(a) The development of a general theoretical framework for learning predictive
models (e.g., classifiers) from large, physically distributed data sources where
it is neither desirable nor feasible to gather all of the data in a centralized
location for analysis [20]. This framework offers a general recipe for the design
of algorithms for learning from distributed data that are provably exact
with respect to their centralized counterparts (in the sense that the model
constructed from a collection of physically distributed data sets is provably
identical to that obtained in the setting where the learning algorithm has
access to the entire data set). A key feature of this framework is the clear
separation of concerns between hypothesis construction and extraction and

Algorithms and Software for Collaborative Discovery 37

refinement of sufficient statistics needed by the learning algorithm from data
which reduces the problem of learning from data to a problem of decomposing
a query for sufficient statistics across multiple data sources and combining
the answers returned by the data sources to obtain the answer for the original
query. This work has resulted in the identification of sufficient statistics
for a large family of learning algorithms including in particular, algorithms
for learning decision trees [20], neural networks, support vector machines
[23] and Bayesian networks, and consequently, provably exact algorithms for
learning the corresponding classifiers from distributed data.

(b) The development of theoretically sound yet practical variants of a large class
of algorithms [20, 23] for learning predictive models (classifiers) from dis-
tributed data sources under a variety of assumptions (motivated by practi-
cal applications) concerning the nature of data fragmentation, and the query
capabilities and operations permitted by the data sources (e.g., execution of
user supplied procedures), and precise characterization of the complexity
(computation, memory, and communication requirements) of the resulting
algorithms relative to their centralized counterparts.

(c) The development of a theoretically sound approach to formulation and ex-
ecution of statistical queries across semantically heterogeneous data sources
[11]. This work has demonstrated how to use semantic correspondences and
mappings specified by users from a set of terms and relationships among
terms (user ontology) to terms and relations in data source specific ontolo-
gies to construct a sound procedure for answering queries for sufficient statis-
tics needed for learning classifiers from semantically heterogeneous data. An
important component of this work has to do with the development of statis-
tically sound approaches to learning classifiers from partially specified data
resulting from data described at different levels of abstraction across different
data sources [73, 74].

(d) The design and implementation of INDUS, a modular, extensible, open-
source software toolkit (http://www.cild.iastate.edu/software/indus.
html) for data-driven knowledge acquisition from large, distributed, au-
tonomous, semantically heterogeneous data sources [44, 11].

(e) Applications of the resulting approaches to data-driven knowledge acquisi-
tion tasks that arise in bioinformatics [30, 44, 105, 106].

Work in progress is aimed at:

(a) Extending the INDUS query answering engine to flexibly interact with dif-
ferent data sources that might support different functionalities or impose
different constraints on users (For example, some data sources might answer
only restricted classes of statistical queries. Others might allow retrieval of
raw data. Still others might allow execution of user-supplied procedures at
the data source, there by allowing the users to effectively extend the query
capabilities of the data source);

(b) Investigation of resource-bounded approximations of answers to statistical
queries generated by the learner; develop approximation criteria for evalu-
ation of the quality of classifiers obtained in the distributed setting under

38 D. Caragea et al.

a given set of resource constraints and query capabilities relative to that
obtained in the centralized setting with or without such constraints. This is
especially important in application scenarios in which it is not feasible to ob-
tain exact answers to statistical queries posed under the access and resource
constraints imposed by the distributed setting;

(c) Development of tools to support modular development of ontologies, interac-
tive specification of mappings between ontologies including automated gen-
eration of candidate mappings for consideration by users, and reasoning al-
gorithms for ensuring semantic integrity of user-specified mappings between
ontologies;

(d) Development of sophisticated approaches to estimation from partially spec-
ified data, of the statistics needed by learning algorithms; and

(e) Application of the resulting algorithms and software to collaborative discov-
ery problems that arise in areas such as computational biology e.g., discovery
of relationships between macromolecular sequence, structure, expression, in-
teraction, function, and evolution; discovery of genetic regulatory networks
from multiple sources of data (e.g., gene expression, protein localization,
protein-protein interaction).

Acknowledgements

This research was supported in part by grants from the National Science Foun-
dation (NSF IIS 0219699) and the National Institutes of Health (GM 066387) to
Vasant Honavar. This work has benefited from discussions with Adrian Silvescu,
Jaime Reinoso-Castillo, and Drena Dobbs.

References

[1] Mitchell, T.: Machine Learning. McGraw Hill (1997)
[2] Duda, R., Hart, E., Stork, D.: Pattern Recognition. Wiley (2000)
[3] Thrun, S., Faloutsos, C., Mitchell, M., Wasserman, L.: Automated learning and

discovery: State-of-the-art and research topics in a rapidly growing field. AI
Magazine (1999)

[4] Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning :
Data Mining, Inference, and Prediction. Springer-Verlag (2001)

[5] Bishop, C.M.: Neural Networks for Pattern Recognition. New York: Oxford
University Press (1995)

[6] Baldi, P., Frasconi, P., Smyth, P.: Modeling the Internet and the Web - Proba-
bilistic Methods and Algorithms. New York: Wiley (2003)

[7] Baldi, P., Brunak, S.: Bioinformatics - A Machine Learning Approach. Cam-
bridge, MA: MIT Press (2003)

[8] Sowa, J.: Knowledge Representation: Logical, Philosophical, and Computational
Foundations. New York: PWS Publishing Co. (1999)

[9] Ashburner, M., Ball, C., Blake, J., Botstein, D., Butler, H., Cherry, J., Davis,
A., Dolinski, K., Dwight, S., Eppig, J., Harris, M., Hill, D., Issel-Tarver, L.,
Kasarskis, A., Lewis, S., Matese, J., Richardson, J., Ringwald, M., Rubin, G.,
Sherlock, G.: Gene ontology: tool for unification of biology. Nature Genetics 25
(2000) 25–29

Algorithms and Software for Collaborative Discovery 39

[10] Reinoso-Castillo, J., Silvescu, A., Caragea, D., Pathak, J., Honavar, V.: Infor-
mation extraction and integration from heterogeneous, distributed, autonomous
information sources: a federated, query-centric approach. In: IEEE International
Conference on Information Integration and Reuse, Las Vegas, Nevada (2003)

[11] Caragea, D., Pathak, J., Honavar, V.: Learning classifiers from semantically het-
erogeneous data. In: Proceedings of the International Conference on Ontologies,
Databases, and Applications of Semantics for Large Scale Information Systems.
(2004)

[12] Dzeroski, S., Lavrac, N., eds.: Relational Data Mining. Springer-Verlag (2001)
[13] Getoor, L., Friedman, N., Koller, D., Pfeffer, A.: Learning probabilistic relational

models. In Dzeroski, S., N. Lavrac, E., eds.: Relational Data Mining. Springer-
Verlag (2001)

[14] Friedman, N., Getoor, L., Koller, D., Pfeffer, A.: Learning probabilistic rela-
tional models. In: Proceedings of the Sixteenth International Joint Conference
on Artificial Intelligence, Orlando, FL, Morgan Kaufmann Publishers Inc. (1999)
1300–1309

[15] Atramentov, A., Leiva, H., Honavar, V.: Learning decision trees from multi-
relational data. In Horvth, T., Yamamoto, A., eds.: Proceedings of the 13th
International Conference on Inductive Logic Programming. Volume 2835 of Lec-
ture Notes in Artificial Intelligence., Springer-Verlag (2003) 38–56

[16] Neville, J., Jensen, D., Gallagher, B.: Simple estimators for relational bayesian
classifiers. In: ICDM 2003. (2003)

[17] Casella, G., Berger, R.: Statistical Inference. Duxbury Press, Belmont, CA
(2001)

[18] Davidson, A.: Statistical Models. London: Cambridge University Press (2003)
[19] Kearns, M.: Efficient noise-tolerant learning from statistical queries. Journal of

the ACM 45 (1998) 983–1006
[20] Caragea, D., Silvescu, A., Honavar, V.: A framework for learning from dis-

tributed data using sufficient statistics and its application to learning decision
trees. International Journal of Hybrid Intelligent Systems 1 (2004)

[21] Caragea, D., Silvescu, A., Honavar, V.: Decision tree induction from distributed
heterogeneous autonomous data sources. In: Proceedings of the International
Conference on Intelligent Systems Design and Applications, Tulsa, Oklahoma
(2003)

[22] Caragea, D., Silvescu, A., Honavar, V.: Agents that learn from distributed dy-
namic data sources. In: Proceedings of the Workshop on Learning Agents, Agents
2000/ECML 2000, Barcelona, Spain (2000) 53–61

[23] Caragea, C., Caragea, D., , Honavar, V.: Learning support vector machine clas-
sifiers from distributed data. extended abstract. In: Proceedings of the 22nd
National Conference on Artificial Intelligence (AAAI 2005). (2005)

[24] Caragea, D.: Learning classifiers from Distributed, Semantically Heterogeneous,
Autonomous Data Sources. Ph.d. thesis, Department of Computer Science. Iowa
State University, Ames, Iowa, USA (2004)

[25] Quinlan, R.: Induction of decision trees. Machine Learning 1 (1986) 81–106
[26] Breiman, L., Friedman, J., Olshen, R., Stone, C.: Classification and regression

trees. Wadsworth, Monterey, CA (1984)
[27] Graefe, G., Fayyad, U., Chaudhuri, S.: On the efficient gathering of sufficient

statistics for classification from large sql databases. In: Proceedings of the Fourth
International Conference on KDD, Menlo Park, CA, AAAI Press (1998) 204–208

[28] Moore, A.W., Lee, M.S.: Cached sufficient statistics for efficient machine learning
with large datasets. Journal of Artificial Intelligence Research 8 (1998) 67–91

40 D. Caragea et al.

[29] Wang, X., Schroeder, D., Dobbs, D., , Honavar, V.: Data-driven discovery of rules
for protein function classification based on sequence motifs: Rules discovered for
peptidase families based on meme motifs outperform those based on prosite pat-
terns and profiles. In: Proceedings of the Conference on Computational Biology
and Genome Informatics. (2002)

[30] Andorf, C., Silvescu, A., Dobbs, D., Honavar, V.: Learning classifiers for assign-
ing protein sequences to gene ontology functional families. In: Fifth International
Conference on Knowledge Based Computer Systems (KBCS 2004), India (2004)

[31] Cortes, C., Vapnik, V.: Support vector networks. Machine Learning 20 (1995)
273–297

[32] Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines.
Cambridge University Press (2000)

[33] Bradley, P.S., Mangasarian, O.L.: Massive data discrimination via linear support
vector machines. Optimization Methods and Software 13(1) (2000) 1–10

[34] Srivastava, A., Han, E., Kumar, V., Singh, V.: Parallel formulations of decision-
tree classification algorithms. Data Mining and Knowledge Discovery 3 (1999)
237–261

[35] Grossman, L., Gou, Y.: Parallel methods for scaling data mining algorithms to
large data sets. In Zytkow, J., ed.: Handbook on Data Mining and Knowledge
Discovery. Oxford University Press (2001)

[36] Provost, F.J., Kolluri, V.: A survey of methods for scaling up inductive algo-
rithms. Data Mining and Knowledge Discovery 3 (1999) 131–169

[37] Park, B., Kargupta, H.: Constructing simpler decision trees from ensemble mod-
els using Fourier analysis. In: Proceedings of the 7th Workshop on Research
Issues in Data Mining and Knowledge Discovery (DMKD’2002), Madison, WI,
ACM SIGMOD (2002) 18–23

[38] Domingos, P.: Knowledge acquisition from examples via multiple models. In:
Proceedings of the Fourteenth International Conference on Machine Learning,
Nashville, TN, Morgan Kaufmann (1997) 98–106

[39] Prodromidis, A., Chan, P., Stolfo, S.: Meta-learning in distributed data mining
systems: issues and approaches. In Kargupta, H., Chan, P., eds.: Advances of
Distributed Data Mining. AAAI Press (2000)

[40] Bhatnagar, R., Srinivasan, S.: Pattern discovery in distributed databases.
In: Proceedings of the Fourteenth AAAI Conference, Providence, RI, AAAI
Press/The MIT Press (1997) 503–508

[41] Kargupta, H., Park, B., Hershberger, D., Johnson, E.: Collective data mining:
A new perspective toward distributed data mining. In Kargupta, H., Chan, P.,
eds.: Advances in Distributed and Parallel Knowledge Discovery. MIT Press
(1999)

[42] Mansour, J.: Learning boolean functions via the fourier transform. In: Theoret-
ical Advances in Neural Computation and Learning. Kluwer (1994)

[43] Levy, A.: Logic-based techniques in data integration. In: Logic-based artificial
intelligence. Kluwer Academic Publishers (2000) 575–595

[44] Caragea, D., Silvescu, A., Pathak, J., Bao, J., Andorf, C., Dobbs, D., Honavar,
V.: Information integration and knowledge acquisition from semantically het-
erogeneous biological data sources. In: Proceedings of the Second International
Workshop on Data Integration in Life Sciences, (DILS 2005), San Diego, CA,
Berlin: Springer-Verlag. Lecture Notes in Computer Science (2005)

[45] Bonatti, P., Deng, Y., Subrahmanian, V.: An ontology-extended relational al-
gebra. In: Proceedings of the IEEE Conference on Information Integration and
Reuse, IEEE Press (2003) 192–199

Algorithms and Software for Collaborative Discovery 41

[46] Bouquet, P., Giunchiglia, F., van Harmelen, F., Serafini, L., Stuckenschmidt, H.:
C-owl: Contextualizing ontologies. In: Proceedings of the Second International
Semantic Web Conference, Springer Verlag, LNCS 2870 (2003)

[47] Bao, J., Honavar, V.: Collaborative ontology building with wiki@nt - a multi-
agent based ontology building environment. In: Proceedings of the Third Inter-
national Workshop on Evaluation of Ontology based Tools, at the Third Inter-
national Semantic Web Conference ISWC, Hiroshima, Japan (2004)

[48] Bao, J., Honavar, V.: An efficient algorithm for reasoning about subsumption
and equivalence relationships to support collaborative editing of ontologies and
inter-ontology mappings. under review. (2005)

[49] Hull, R.: Managing semantic heterogeneity in databases: A theoretical perspec-
tive. In: PODS, Tucson, Arizona (1997) 51–61

[50] Davidson, S., Crabtree, J., Brunk, B., Schug, J., Tannen, V., Overton, G., Stoeck-
ert, C.: K2/Kleisli and GUS: experiments in integrated access to genomic data
sources. IBM Journal 40 (2001)

[51] Eckman, B.: A practitioner’s guide to data management and data integration in
bioinformatics. Bioinformatics (2003) 3–74

[52] Sheth, A., Larson, J.: Federated databases: architectures and issues. ACM
Computing Surveys 22 (1990) 183–236

[53] Barsalou, T., Gangopadhyay, D.: M(dm): An open framework for interoperation
of multimodel multidatabase systems. IEEE Data Engineering (1992)

[54] Bright, M., Hurson, A., Pakzad, S.: A taxonomy and current issues in multi-
batabase systems. Computer Journal 25 (1992) 5–60

[55] Wiederhold, G., Genesereth, M.: The conceptual basis for mediation services.
IEEE Expert 12 (1997) 38–47

[56] Garcia-Molina, H., Papakonstantinou, Y., Quass, D., Rajaraman, A., Sagiv, Y.,
Ullman, J., Vassalos, V., Widom, J.: The TSIMMIS approach to mediation: data
models and languages. Journal of Intelligent Information Systems, Special Issue
on Next Generation Information Technologies and Systems 8 (1997)

[57] Chang, C.K., Garcia-Molina, H.: Mind your vocabulary: query mapping across
heterogeneous information sources. In: ACM SIGMOD International Conference
On Management of Data, Philadelphia, PA (1999)

[58] Arens, Y., Chin, C., Hsu, C., Knoblock, C.: Retrieving and integrating data
from multiple information sources. International Journal on Intelligent and Co-
operative Information Systems 2 (1993) 127–158

[59] Knoblock, C., Minton, S., Ambite, J., Ashish, N., Muslea, I., Philpot, A., Tejada,
S.: The ariadne approach to Web-based information integration. International
Journal of Cooperative Information Systems 10 (2001) 145–169

[60] Lu, J., Moerkotte, G., Schue, J., Subrahmanian, V.: Efficient maintenance of
materialized mediated views. In: Proceedings of 1995 ACM SIGMOD Conference
on Management of Data, San Jose, CA (1995)

[61] Levy, A.: The information manifold approach to data integration. IEEE Intelli-
gent Systems 13 (1998)

[62] Draper, D., Halevy, A.Y., Weld, D.S.: The nimble XML data integration system.
In: ICDE. (2001) 155–160

[63] Etzold, T., Harris, H., Beulah, S.: SRS: An integration platform for databanks
and analysis tools in bioinformatics. Bioinformatics Managing Scientific Data
(2003) 35–74

[64] Haas, L., Schwarz, P., Kodali, P., Kotlar, E., Rice, J., Swope, W.: DiscoveryLink:
a system for integrated access to life sciences data sources. IBM System Journal
40 (2001)

42 D. Caragea et al.

[65] Stevens, R., Goble, C., Paton, N., Becchofer, S., Ng, G., Baker, P., Bass, A.:
Complex query formulation over diverse sources in tambis. Bioinformatics (2003)
189–220

[66] Chen, J., Chung, S., Wong, L.: The Kleisli query system as a backbone for
bioinformatics data integration and analisis. Bioinformatics (2003) 147–188

[67] Tannen, V., Davidson, S., Harker, S.: The information integration in K2. Bioin-
formatics (2003) 225–248

[68] Tomasic, A., Rashid, L., Valduriez, P.: Scaling heterogeneous databases and
design of DISCO. IEEE Transactions on Knowledge and Data Engineering 10
(1998) 808–823

[69] Haas, L., Kossmann, D., Wimmers, E., Yan, J.: Optimizing queries across diverse
sources. In: Proceedings of the 23rd VLDB Conference, Athens, Greece (1997)
267–285

[70] Rodriguez-Martinez, M., Roussopoulos, R.: MOCHA: a self-extensible database
middleware system for distributed data sources. In: Proceedings of the 2000
ACM SIGMOD International Conference on Management of Data, Dallas, TX
(2000) 213–224

[71] Lambrecht, E., Kambhampati, S., Gnanaprakasam, S.: Optimizing recursive
information-gathering plans. In: Proceedings of the International Joint Confer-
ence on Artificial Intelligence, AAAI Press (1999) 1204–1211

[72] Maluf, D., Wiederhold, G.: Abstraction of representation in interoperation. Lec-
ture Notes in AI 1315 (1997)

[73] Zhang, J., Honavar, V.: Learning decision tree classifiers from attribute-value
taxonomies and partially specified data. In Fawcett, T., Mishra, N., eds.: Pro-
ceedings of the International Conference on Machine Learning, Washington, DC
(2003) 880–887

[74] Zhang, J., Honavar, V.: Learning concise and accurate naive bayes classifiers
from attribute value taxonomies and data. In: Proceedings of the Fourth ICMD.
(2004)

[75] Haussler, D.: Quantifying inductive bias: AI learning algorithms and Valiant’s
learning framework. Artificial Intelligence 36 (1988) 177–221

[76] Friedman, N., Geiger, D., Goldszmidt, M.: Bayesian network classifiers. Machine
Learning 29 (1997)

[77] Caragea, D., Zhang, J., Pathak, J., Honavar, V.: Learning classifiers from dis-
tributed, ontology-extended data sources. under review. (2005)

[78] Walker, A.: On retrieval from a small version of a large database. In: VLDB
Conference, 1989. (1989)

[79] DeMichiel, L.: Resolving database incompatibility: An approach to performing
relational operations over mismatched domains. IEEE Trans. Knowl. Data Eng.
1 (1989)

[80] Chen, A., Tseng, F.: Evaluating aggregate operations over imprecise data. IEEE
Trans. On Knowledge and Data Engineering 8 (1996)

[81] McClean, S., Scotney, B., Shapcott, M.: Aggregation of imprecise and uncertain
information in databases. IEEE Transactions on Knowledge and Data Engineer-
ing 6 (2001)

[82] Bergadano, F., Giordana, A.: Guiding induction with domain theories. In:
Machine Learning An Artificial Intelligence Approach. Volume 3. Palo Alto,
CA: Morgan Kaufmann (1990)

[83] Pazzani, M., Kibler, D.: The role of prior knowledge in inductive learning.
Machine Learning 9 (1992)

Algorithms and Software for Collaborative Discovery 43

[84] Towell, G., Shavlik, J.: Knowledge-based artificial neural networks. Artificial
Intelligence 70 (1994)

[85] Aronis, J., Kolluri, V., Provost, F., Buchanan, B.: The WoRLD: knowledge
discovery from multiple distributed databases. Technical Report ISL-96-6, In-
telligent Systems Laboratory, Department of Computer Science, University of
Pittsburgh, Pittsburgh, PA (1996)

[86] Aronis, J., Provost, F.: Increasing the efficiency of inductive learning with
breadth-first marker propagation. In: Proceedings of the Third International
Conference on Knowledge Discovery and Data Mining. (1997)

[87] Nunez, M.: The use of background knowledge in decision tree induction. Machine
Learning 6 (1991)

[88] H., A., Akiba, Y., Kaneda, S.: On handling tree-structured attributes. In: Pro-
ceedings of the Twelfth International Conference on Machine Learning. (1995)

[89] Dhar, V., Tuzhilin, A.: Abstract-driven pattern discovery in databases. IEEE
Transactions on Knowledge and Data Engineering 5 (1993)

[90] Han, J., Fu, Y.: Exploration of the power of attribute-oriented induction in data
mining, u.m. fayyad el al. (eds.). In: Advances in Knowledge Discovery and Data
Mining. AAAI/MIT Press (1996)

[91] Hendler, J., Stoffel, K., , Taylor, M.: Advances in high performance knowledge
representation (1996)

[92] Taylor, M., Stoffel, K., Hendler, J.: Ontology-based induction of high level clas-
sification rules. In: SIGMOD Data Mining and Knowledge Discovery workshop
proceedings, Tuscon, Arizona (1997)

[93] Pazzani, M., Mani, S., Shankle, W.: Beyond concise and colorful: Learning
intelligible rules. In: Proceedings of the Fourth International Conference on
Knowledge Discovery and Data Mining, Newport Beach, CA (1997)

[94] Pazzani, M., Mani, M., Shankle, W.: Comprehensible knowledge discovery in
databases. In: Proceedings of the the Cognitive Science Conference. (1997)

[95] desJardins, M., Getoor, L., Koller, D.: Using feature hierarchies in bayesian
network learning. In: Proceedings of the Symposium on Abstraction, Refor-
mulation, Approximation. Lecture Notes in Artificial Intelligence 1864: 260-270,
Springer-Verlag (2000)

[96] Rubin, D.: Multiple imputations in sample surveys: A phenomenological bayesian
approach to nonresponse (c/r: p29-34). In: Proceedings of the American Statis-
tical Association, Section on Survey Research Methods. ((1978))

[97] Rubin, D.: Multiple imputation for nonresponse in surveys. John Wiley and
Sons (New York; Chichester) (1987)

[98] Rubin, D.: Multiple imputation after 18+ years. Journal of the American Sta-
tistical Association 91 (1996)

[99] Junninen, H., Niska, H., Tuppurainen, K., Ruuskanen, J., , Kolehmainen, M.:
Methods for imputation of missing values in air quality data sets. Atmospheric
Environment 38 (2004)

[100] Longford, N.: Missing data and small area estimation in the uk labour force
survey. Journal of the Royal Statistical Society Series A-Statistics in Society
167 (2004)

[101] Raghunathan, T.: What do we do with missing data? some options for analysis
of incomplete data. Annual Review of Public Health 25 (2004)

[102] Little, R., Rubin, D.: Statistical analysis with missing data. John Wiley and
Sons (New York; Chichester), 2nd edition (2002)

[103] Madow, W., Olkin, I., , Rubin, D.B., e.: Incomplete data in sample surveys (Vol.
2): Theory and bibliographies. Academic Press (New York; London) (1983)

44 D. Caragea et al.

[104] Madow, W., Nisselson, J., Olkin, I.e.: Incomplete data in sample surveys (Vol.
1): Report and case studies. Academic Press (New York; London) (1983)

[105] Yan, C., Dobbs, D., Honavar, V.: A two-stage classifier for identification of
protein-protein interface residues. Bioinformatics 20 (2004) i371–378

[106] Yan, C., Honavar, V., Dobbs, D.: Identifying protein-protein interaction sites
from surface residues - a support vector machine approach. Neural Computing
Applications 13 (2004) 123–129

Training Support Vector Machines via
SMO-Type Decomposition Methods

Pai-Hsuen Chen, Rong-En Fan, and Chih-Jen Lin

Department of Computer Science, National Taiwan University

Abstract. This article gives a comprehensive study on SMO-type (Se-
quential Minimal Optimization) decomposition methods for training sup-
port vector machines. We propose a general and flexible selection of the
two-element working set. Main theoretical results include 1) a simple
asymptotic convergence proof, 2) a useful explanation of the shrinking
and caching techniques, and 3) the linear convergence of this method.
This analysis applies to any SMO-type implementation whose selection
falls into the proposed framework.

1 Introduction

Given training vectors xi ∈ Rn, i = 1, . . . , l, in two classes, and a vector y ∈ Rl

such that yi ∈ {1,−1}, the support vector machines (SVM) [1, 5] require the
solution of the following optimization problem:

min
α

f(α) =
1
2
αTQα− eT α

subject to 0 ≤ αi ≤ C, i = 1, . . . , l , (1)
yT α = 0 ,

where e is the vector of all ones, C < ∞ is the upper bound of all variables,
and Q is an l by l symmetric positive semi-definite (PSD) matrix. Training
vectors xi are mapped into a high dimensional space by the function φ, Qij ≡
yiyjK(xi,xj) = yiyjφ(xi)Tφ(xj), and K(xi,xj) is the kernel function.

Due to the density of the matrix Q, traditional optimization methods cannot
be directly applied to solve (1). Currently the decomposition method is one of
the major methods to train SVM (e.g. [3, 8, 17, 19]). This method, an iterative
procedure, considers only a small subset of variables per iteration. Denoted as
B, this subset is called the working set. Since each iteration involves only |B|
columns of the matrix Q, the memory problem is solved.

A special type of decomposition methods is the Sequential Minimal Opti-
mization (SMO) [19], which restricts B to have only two elements. Then at each
iteration one solves a simple two-variable problem without needing optimization
software. It is sketched in the following:

S. Jain, H.U. Simon, and E. Tomita (Eds.): ALT 2005, LNAI 3734, pp. 45–62, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

46 P.-H. Chen, R.-E. Fan, and C.-J. Lin

Algorithm 1 (SMO-type Decomposition methods)
1. Find α1 as the initial feasible solution. Set k = 1.
2. If αk is an stationary point of (1), stop. Otherwise, find a two-element work-

ing set B = {i, j} ⊂ {1, . . . , l}. Define N ≡ {1, . . . , l}\B and αk
B and αk

N as
sub-vectors of αk corresponding to B and N , respectively.

3. Solve the following sub-problem with the variable αB:

min
αB

1
2
[
αT

B (αk
N)T
] [QBB QBN

QNB QNN

] [
αB

αk
N

]
− [eT

B eT
N

] [αB

αk
N

]
=

1
2
[
αi αj

] [Qii Qij

Qij Qjj

] [
αi

αj

]
+ (−eB + QBNαk

N)T

[
αi

αj

]
+ const.

subject to 0 ≤ αi, αj ≤ C , (2)
yiαi + yjαj = −yT

Nαk
N .

Set αk+1
B to be the optimal point of (2).

4. Set αk+1
N ≡ αk

N . Set k← k + 1 and goto Step 2.

Note that the set B changes from one iteration to another. To simplify the
notation, we use B instead of Bk. If a proper working set is used at each iteration,
the function value f(αk) strictly decreases. However, this property does not
imply that the sequence {αk} converges to a stationary point of (1). Thus,
proving the convergence of decomposition methods is usually a challenging task.
Under certain rules for selecting the working set, the asymptotic convergence
has been established (e.g. [13, 2, 7, 18, 16]).

In this article, we give a comprehensive study on SMO-type decomposition
methods. The selection of the two-element working set B is very general. Thus,
all results obtained here apply to any SMO-type implementation whose selection
falls into the category of consideration. In Section 2, we discuss existing working
set selections for SMO-type methods and propose a general scheme. Section 3
then proves the asymptotic convergence.

Shrinking and caching are two effective techniques to speed up the decom-
position methods. Earlier [15] has given the theoretical foundation of these two
techniques, but requires some assumptions. In Section 4, we provide better and
more general explanation without assumptions. Convergence rates are another
important issue which indicates how fast the method approaches an optimal so-
lution. We establish the linear convergence of the proposed method in Section 5.
An example showing that linear rate is the best worst case analysis is in Section
6. This paper is based on the reports [4, 12], which include all proofs. Note that
here we assume Q to be PSD, but [4] also considers indefinite kernels (e.g. tanh
kernel).

2 Existing and New Working Set Selections

In this Section, we discuss existing working set selections and then propose a
general scheme for SMO-type methods.

.

Training Support Vector Machines via SMO-Type Decomposition Methods 47

2.1 Existing Selections

A popular way to select the working set B is via the “maximal violating pair:”

WSS 1 (Working set selection via the “maximal violating pair”)
1. Select

i ∈ arg max
t∈Iup(αk)

−yt∇f(αk)t, j ∈ arg min
t∈Ilow(αk)

−yt∇f(αk)t ,

where

Iup(α) ≡ {t | αt < C, yt = 1 or αt > 0, yt = −1} ,

Ilow(α) ≡ {t | αt < C, yt = −1 or αt > 0, yt = 1} .
(3)

2. Return B = {i, j}.
This working set was first proposed in [11] and has been used in, for example,

LIBSVM [3] and SV M light [8]1. WSS1 can be derived through the Karush-Kuhn-
Tucker (KKT) optimality condition of (1): A vector α is a stationary point if
and only if there is a scalar b and two nonnegative vectors λ and μ such that

∇f(α) + by = λ− μ ,

λiαi = 0, μi(C −α)i = 0, λi ≥ 0, μi ≥ 0, i = 1, . . . , l ,

where ∇f(α) ≡ Qα− e is the gradient of f(α). This can be rewritten as

∇f(α)i + byi ≥ 0 if αi < C , (4)
∇f(α)i + byi ≤ 0 if αi > 0 . (5)

Since yi = ±1, by defining Iup(α) and Ilow(α) as in (3), and rewriting (4)-(5)
to obtain the range of b, a feasible α is a stationary point of (1) if and only if

m(α) ≡ max
i∈Iup(α)

−yi∇f(α)i ≤M(α) ≡ min
i∈Ilow(α)

−yi∇f(α)i . (6)

Following [11], we define a “violating pair” of the condition (6).

Definition 1 (Violating pair). If i ∈ Iup(α), j ∈ Ilow(α), and −yi∇f(α)i >
−yj∇f(α)j , then {i, j} is a “violating pair.”

From (6), the indices {i, j} which most violate the condition are a natural choice
of the working set. They are called a “maximal violating pair” in WSS1. Violating
pairs are essential in making decomposition methods work:

Theorem 1 ([7]). SMO-type methods have the strict decrease of the function
value (i.e. f(αk+1) < f(αk), ∀k) if and only if B is a violating pair.

1 Though SV M light allows |B| > 2, if |B| = 2, it essentially implements WSS1.

.

48 P.-H. Chen, R.-E. Fan, and C.-J. Lin

Unfortunately, having a violating pair in B and then the strict decrease
of f(αk) do not guarantee the convergence to a stationary point. An interest-
ing example is from [10]: Given five data x1 = [1, 0, 0]T ,x2 = [0, 1, 0]T ,x3 =
[0, 0, 1]T ,x4 = [0.1, 0.1, 0.1]T , and x5 = [0, 0, 0]T . If y1 = · · · = y4 = −1, y5 = 1,
C = 100, and the linear kernel K(xi,xj) = xT

i xj is used, then the optimal solu-
tion of (1) is [0, 0, 0, 200/3, 200/3]T and the optimal objective value is −200/3.

Starting with α1 = [2, 0, 0, 0, 2]T , if in the next three iterations we choose
the following working sets:

{1, 2} → {2, 3} → {3, 1} , (7)

the next three α are:

[1, 1, 0, 0, 2]T → [1, 0.5, 0.5, 0, 2]T → [0.75, 0.5, 0.75, 0, 2]T .

If we continue the same way in (7) to choose the working set, the algorithm
requires an infinite number of iterations. In addition, the sequence converges to
a non-optimal point [2/3, 2/3, 2/3, 0, 2]T with the objective value −10/3. Note
that all working sets used are violating pairs.

A careful look at the procedure reveals why it fails to obtain the optimal
solution. We have the following from the second to the fourth iterations:

−yt∇f(αk)t, t = 1, . . . , 5 −yi∇f(αk)i + yj∇f(αk)j m(αk)−M(αk)
[0, 0,−1,−0.8, 1]T 1 2
[0,−0.5,−0.5,−0.8, 1]T 0.5 1.8
[−0.25,−0.5,−0.25,−0.8, 1]T 0.25 1.8

Clearly, the selected {i, j} is a violating pair, but does not reduce the max-
imal violation m(αk) − M(αk). This discussion shows the importance of the
maximal violating pair in the decomposition method. When such a pair is used
(i.e. WSS1), the convergence has been established in [13, 14]. However, if B is
any other violating pair, it is unclear whether SMO-type methods still converge
to a stationary point or not. Motivated from the above analysis, we conjecture
that a “sufficiently violated” pair is enough and propose a general working set
selection in the following subsection.

2.2 A General Working Set Selection for SMO-Type Methods

We propose choosing a “constant-factor” violating pair as the working set. That
is, the difference between the two selected indices is larger than a constant frac-
tion of the maximal violation.

WSS 2 (Working set selection: constant-factor violating pair)
1. Consider a fixed 0 < σ ≤ 1 for all iterations.
2. Return B = {i, j} via selecting any i ∈ Iup(αk), j ∈ Ilow(αk) satisfying

−yi∇f(αk)i + yj∇f(αk)j ≥ σ(m(αk)−M(αk)) > 0 . (8)

.

Training Support Vector Machines via SMO-Type Decomposition Methods 49

Clearly (8) maintains the quality of the selected pair by linking it to the max-
imal violating pair. We can consider an even more general relationship between
the two pairs:

WSS 3 (Working set selection: a generalization of WSS2)
1. Throughout all iterations, let h : R1 → R1 be any function satisfying

(a) h strictly increases on x ≥ 0, and
(b) h(x) ≤ x,∀x ≥ 0, h(0) = 0.

2. Return B = {i, j} via selecting any i ∈ Iup(αk), j ∈ Ilow(αk) satisfying

−yi∇f(αk)i + yj∇f(αk)j ≥ h(m(αk)−M(αk)) > 0 . (9)

The condition h(x) ≤ x ensures that there is at least one pair {i, j} satisfying
(9). Clearly, h(x) = σx with 0 < σ ≤ 1 fulfills all required conditions and
WSS3 reduces to WSS2. The function h can be in a more complicated form. For
example, if

h(m(αk)−M(αk)) ≡ min
(
m(αk)−M(αk), (m(αk)−M(αk))2

)
, (10)

then it also satisfies all requirements. In the rest of this paper, we analyze the
SMO-type method using WSS3 for the working set selection.

3 Asymptotic Convergence of Using WSS3

The decomposition method generates a sequence {αk}. If it is finite, then a
stationary point has been obtained. Hence we consider only the case of an infinite
sequence. First we require a lemma:

Lemma 1 ([13, 14]). Assume the working set at each iteration of Algorithm 1
is a violating pair. If a subsequence {αk}, k ∈ K converges to ᾱ, then for any
given positive integer s, the sequence {αk+s}, k ∈ K converges to ᾱ as well.

Since the feasible region of (1) is compact, there is at least one convergent
subsequence of {αk}. The main convergence result is in the following:

Theorem 2. Let {αk} be the infinite sequence generated by the SMO-type
method using WSS3. Then any limit point of {αk} is a stationary point of (1).

Proof. Assume that ᾱ is the limit point of any convergent subsequence {αk}, k ∈
K. If ᾱ is not a stationary point of (1), it does not satisfy the KKT condition
(6). Thus, there is at least one “maximal violating pair”:

ī ∈ argm(ᾱ), j̄ ∈ argM(ᾱ), and Δ ≡ −yī∇f(ᾱ)̄i + yj̄∇f(ᾱ)j̄ > 0 . (11)

.

50 P.-H. Chen, R.-E. Fan, and C.-J. Lin

Lemma 1, the continuity of ∇f(α), and h(Δ/2) > 0 from (11) imply that
for any given r, there is k̄ ∈ K such that for all k ∈ K, k ≥ k̄:

For u = 0, . . . , r, −yī∇f(αk+u)̄i + yj̄∇f(αk+u)j̄ > Δ/2 . (12)

If i ∈ Iup(ᾱ), then i ∈ Iup(αk), . . . , i ∈ Iup(αk+r) . (13)
If i ∈ Ilow(ᾱ), then i ∈ Ilow(αk), . . . , i ∈ Ilow(αk+r) . (14)
If − yi∇f(ᾱ)i > −yj∇f(ᾱ)j , then for u = 0, . . . , r ,

−yi∇f(αk+u)i > −yj∇f(αk+u)j . (15)
If − yi∇f(ᾱ)i = −yj∇f(ᾱ)j , then for u = 0, . . . , r ,

| − yi∇f(αk+u)i + yj∇f(αk+u)j | < h(Δ/2) . (16)
If − yi∇f(ᾱ)i > −yj∇f(ᾱ)j and {i, j} is the working set at the (k + u)th
iteration, 0 ≤ u ≤ r − 1, then i /∈ Iup(αk+u+1) or j /∈ Ilow(αk+u+1) . (17)

We give the details of deriving (12), and (13)-(16) are similar. Lemma 1 implies
sequences {αk}, {αk+1}, . . . , {αk+r}, k ∈ K all converge to ᾱ. For {αk+u}, there
is ku such that (12) holds for k ≥ ku, k ∈ K. As r is finite, by selecting k̄ to be
the largest of these ku, u = 0, . . . , r, we have (12) for all u = 0, . . . , r. Next we
derive (17) [13–Lemma IV.4]: Similar to the optimality condition (6) for problem
(1), for the (k + u)th sub-problem, if αB is a stationary point, then

max
t∈Iup(αB)

−yt∇f
([

αB

αk+u
N

])
t
≤ min

t∈Ilow(αB)
−yt∇f

([
αB

αk+u
N

])
t

.

Now B = {i, j} and αk+u+1
B is a stationary point of the sub-problem satisfy-

ing the above inequality. If i ∈ Iup(αk+u+1) and j ∈ Ilow(αk+u+1), the above
inequality implies −yi∇f(αk+u+1)i ≤ −yj∇f(αk+u+1)j , an inequality which
contradicts (15). Thus, (17) is valid.

We then rearrange components in ᾱ so that

−y1∇f(ᾱ)1 ≤ · · · ≤ −yl∇f(ᾱ)l , (18)

and define

S1(k) ≡
∑
{i | i ∈ Iup(αk)} and S2(k) ≡

∑
{l− i | i ∈ Ilow(αk)} .

Clearly,
l ≤ S1(k) + S2(k) ≤ l(l − 1) . (19)

If {i, j} is selected at the (k + u)th iteration (u = 0, . . . , r), we claim that

−yi∇f(ᾱ)i > −yj∇f(ᾱ)j . (20)

It is impossible that −yi∇(ᾱ)i < −yj∇(ᾱ)j as −yi∇(αk+u)i < −yj∇(αk+u)j

from (15) then violates (8). If they are equal, then

− yi∇(αk+u)i + yj∇(αk+u)j < h(Δ/2) < h(−yī∇f(αk+u)̄i + yj̄∇f(αk+u)j̄)

≤ h(m(αk+u)−M(αk+u)) . (21)

Training Support Vector Machines via SMO-Type Decomposition Methods 51

The first two inequalities come from (16) and (12), while the last is from ī ∈
Iup(ᾱ), j̄ ∈ Ilow(ᾱ), (13), and (14). Clearly, (21) contradicts (8), so we have (20).

Next we use a counting procedure to obtain the contradiction of (11). From
the kth to the (k + 1)st iteration, (20) and then (17) show that

i /∈ Iup(αk+1) or j /∈ Ilow(αk+1) .

For the first case, (13) implies i /∈ Iup(ᾱ) and hence i ∈ Ilow(ᾱ). From (14)
and the selection rule (8), i ∈ Ilow(αk) ∩ Iup(αk). With i /∈ Iup(αk+1) and
j ∈ Ilow(αk),

S1(k + 1) ≤ S1(k)− i + j ≤ S1(k)− 1, S2(k + 1) ≤ S2(k) , (22)

where −i + j ≤ −1 comes from (18). Similarly, for the second case,

S1(k + 1) ≤ S1(k), S2(k + 1) ≤ S2(k)− (l− j) + (l− i) ≤ S2(k)− 1 . (23)

From iteration (k + 1) to (k + 2), we can repeat the same argument. Note that
(17) can still be used because of (20). Using (22) and (23), in r ≡ l(l − 1)
iterations, S1(k) + S2(k) is reduced to zero, a contradiction to (19). Therefore,
the assumption (11) is wrong and the proof is complete. ��

We can easily prove that if (1) has a unique optimal solution, then {αk}
globally converges. This happens under very general circumstances. For example,
if the RBF kernel K(xi,xj) = e−γ‖xi−xj‖2

is used and all xi
= xj , Q is PD, so
(1) is strictly convex. Hence it has a unique solution.

Earlier convergence work [13] of using WSS1 (i.e., maximal violating pair)
can not be applied here for WSS3, so we develop a novel counting technique in
the proof. Details of the differences are discussed in [4].

4 Stopping Condition, Shrinking and Caching

In this section we discuss other important properties of the proposed method.
Due to space limitation, we omit all proofs, which can be found in [4]. To begin,
we show a set I used later is well defined.

Theorem 3. If ᾱ
= α̂ are any two optimal solutions of (1), then M(ᾱ) =
m(ᾱ) = M(α̂) = m(α̂). Thus, the following set is independent of any optimal
solution ᾱ:

I ≡ {i | −yi∇f(ᾱ)i > M(ᾱ) or − yi∇f(ᾱ)i < m(ᾱ)} , (24)

and problem (1) has unique and bounded optimal solutions at αi, i ∈ I.

4.1 Stopping Condition and Finite Termination

As the decomposition method only asymptotically approaches an optimum, in
practice, it terminates after satisfying a stopping condition. For example, we can
pre-specify a small stopping tolerance ε > 0 and check if

m(αk)−M(αk) ≤ ε (25)

52 P.-H. Chen, R.-E. Fan, and C.-J. Lin

has been satisfied or not. Though there are other stopping conditions, (25) is
commonly used due to its closeness to the optimality condition (6). To justify
its use, we must have that under any ε > 0, the proposed method stops in a
finite number of iterations. Thus, an infinite loop never happens. To have (25),
one can prove a stronger condition:

lim
k→∞

m(αk)−M(αk) = 0 . (26)

This condition is not readily available as from the respective definitions of m(α)
and M(α), it is unclear if they are continuous functions of α or not.

The first study on the stopping condition of SMO-type methods is [9]. They
consider a selection rule involving the stopping tolerance ε. Since our selection is
independent of ε, their analysis cannot be applied here. Another work [15] proves
(26) for WSS1 under the assumption that the sequence {αk} globally converges.
Here, for the more general WSS3, we prove (26) without any assumption.

Theorem 4. Assume the SMO-type decomposition method using WSS3 gener-
ates an infinite sequence {αk}. Then (26) is valid.

4.2 Shrinking and Caching

Shrinking and caching are two effective techniques to make the decomposition
method faster. If an αk

i remains at 0 or C for many iterations, eventually it
may stay at the same value. Based on this principle, the shrinking technique [8]
reduces the size of the optimization problem without considering some bounded
variables. The procedure then works on a smaller problem. In the end we add
shrinked components back and check if an optimal solution of the original prob-
lem is obtained.

Another technique to reduce the training time is caching. Since Q may be
too large to be stored, its elements are calculated as needed. We can allocate
some space (called cache) to store recently used Qij [8]. If in final iterations
only few columns of Q are still needed and the cache contains them, we can
save many kernel evaluations. [15–Theorem II.3] has proved that in the final
iterations of using WSS1, only a small subset of variables are still updated. Such
a result supports the use of shrinking and caching techniques. However, this
proof considers only any convergent subsequence of {αk} or assumes the global
convergence. Here, we provide a more general theory without such assumptions.

Theorem 5. Assume the SMO-type method uses WSS3 and I is the set defined
in (24). There is k̄ such that after k ≥ k̄, every αk

i , i ∈ I has reached the unique
optimal solution. It remains the same in all subsequent iterations and ∀k ≥ k̄,

i /∈ {t |M(αk) ≤ −yt∇f(αk)t ≤ m(αk)} . (27)

Theorem 5 implies that in all final iterations, the SMO-type method involves
only indices in the set

I ′ ≡ {1, . . . , l}\I . (28)

Training Support Vector Machines via SMO-Type Decomposition Methods 53

Thus, caching could be very effective. This theorem also illustrates two possible
shrinking implementations:

1. Elements not in the set (27) are removed.
2. Any αi which has stayed at the same bound for a certain number of iterations

is removed.

LIBSVM [3] considers the former approach, while SV M light [8] uses the latter.

5 Linear Convergence

Though we have proved the asymptotic convergence, it is important to investi-
gate how fast the method converges. Under some assumptions, [12] was the first
to prove the linear convergence of certain decomposition methods. It allows the
working set to have more than two elements and WSS1 is a special case. Here
we show that when the SMO-type working set selection is extended from WSS1
to WSS2, the same analysis holds.

Note that WSS3 uses a function h to control the quality of the selected
pair. We will see in the proof that it may affect the convergence rate. Proving
the linear convergence requires the condition (8), so results established in this
section are for WSS2 but not WSS3.

First we make a few assumptions.

Assumption 1. Q is positive definite.

Then (1) is a strictly convex programming problem and hence has a unique
global optimum ᾱ.

By Theorem 5, after large enough iterations working sets are all from the
set I ′ defined in (28). From the optimality condition (6), the scalar b̄ satisfies
b̄ = m(ᾱ) = M(ᾱ), and the set I ′ corresponds to elements satisfying

∇f(ᾱ)i + b̄yi = 0 . (29)

From (4)-(5), another form of the optimality condition, if ᾱi is not at a bound,
(29) holds. We further assume that this is the only case that (29) happens:

Assumption 2 (Nondegeneracy). For the optimal solution ᾱ, ∇f(ᾱ)i +
b̄yi = 0 if and only if 0 < ᾱi < C.

This assumption, commonly used in optimization analysis, implies that indices of
all bounded ᾱi are exactly the set I. Therefore, after enough iterations, Theorem
5 and Assumption 2 imply that all bounded variables are fixed and are not
included in the working set. By treating these variables as constants, essentially
we solve a problem with the following form:

min
α

f(α) =
1
2
αT Qα + pT α

subject to yT α = Δ , (30)

54 P.-H. Chen, R.-E. Fan, and C.-J. Lin

where p is a vector by combining −e and other terms related to the bounded
components, and Δ is a constant. Moreover, 0 < αk

i < C for all k and i even
though we do not explicitly write down inequality constraints in (30). Then the
optimal solution ᾱ with the corresponding b̄ can be obtained by the following
linear system: [

Q y
yT 0

] [
ᾱ
b̄

]
=
[−p
Δ

]
. (31)

At each iteration, we consider minimizing f(αk
B + d), where d is the direction

from αk
B to αk+1

B , so the sub-problem (2) is written as

min
d

1
2
dT QBBd +∇f(αk)T

Bd

subject to yT
Bd = 0 , (32)

where ∇f(αk) = Qαk + p. If an optimal solution of (32) is dk, then αk+1
B =

αk
B +dk and αk+1

N = αk
N . With the corresponding bk, this sub-problem is solved

by the following equation:[
QBB yB

yT
B 0

] [
dk

bk

]
=
[−∇f(αk)B

0

]
. (33)

Using (31),

Q(αk − ᾱ) = Qαk + p + b̄y

= ∇f(αk) + b̄y . (34)

By defining Y ≡ diag(y) to be a diagonal matrix with elements of y on the
diagonal, and using yi = ±1,

−Y Q(αk − ᾱ) = −Y∇f(αk)− b̄e . (35)

The purpose of checking Q(αk − ᾱ) is to see how close the current solution
is to the optimal one. Then (35) links it to −Y∇f(αk), a vector used for the
working set selection. Remember that for finding violating pairs, we first sort
−yi∇f(αk)i in an ascending order.

The following two theorems are main results on the linear convergence.

Theorem 6. Assume the SMO-type decomposition method uses WSS2 for the
working set selection. If problem (1) satisfies Assumptions 1 and 2, then there
are c < 1 and k̄ such that for all k ≥ k̄

(αk+1 − ᾱ)T Q(αk+1 − ᾱ) ≤ c(αk − ᾱ)T Q(αk − ᾱ) . (36)

Proof. First, Theorem 5 implies that there is k̄ such that after k ≥ k̄, the problem
is reduced to (30). We then directly calculate the difference between the (k+1)st
and the kth iterations:

Training Support Vector Machines via SMO-Type Decomposition Methods 55

(αk+1 − ᾱ)T Q(αk+1 − ᾱ)− (αk − ᾱ)T Q(αk − ᾱ) (37)
= 2(dk)T (Q(αk − ᾱ))B + (dk)TQBBdk

= (dk)T (2(Q(αk − ᾱ))B −∇f(αk)B − bkyB) (38)
= (dk)T ((Q(αk − ᾱ))B + (b̄ − bk)yB) (39)
= (dk)T ((Q(αk − ᾱ))B + (bk − b̄)yB) (40)
= −[−(Q(αk − ᾱ))B + (b̄− bk)yB]T Q−1

BB[−(Q(αk − ᾱ))B + (b̄− bk)yB] ,

where (38) is from (33), (39) is from (34), (40) is by using the fact yT
Bdk = 0

from (33), and the last equality is from (33) and (34). If we define

Q̂ ≡ YBQ−1
BBYB and v ≡ −Y (Q(αk − ᾱ)) , (41)

where YB ≡ diag(yB), then vB = −YB(Q(αk − ᾱ))B and (37) becomes

−[vB + (b̄− bk)eB]T Q̂[vB + (b̄− bk)eB] . (42)

From (35), we define

v1 ≡ max
t

(vt) = m(αk)− b̄ ,

vl ≡ min
t

(vt) = M(αk)− b̄ . (43)

Thus, the selection rule (8) of WSS2 implies

|vi − vj | ≥ σ(v1 − vl) , (44)

where {i, j} is the working set of the kth iteration.
We denote that min(eig(·)) and max(eig(·)) to be the minimal and maximal

eigenvalues of a matrix, respectively. A further calculation of (42) shows

[vB + (b̄− bk)eB]T Q̂[vB + (b̄ − bk)eB]
≥ min(eig(Q̂))[vB + (b̄− bk)eB]T [vB + (b̄ − bk)eB]
≥ min(eig(Q̂))max

t∈B
(vt + (b̄ − bk))2

≥ min(eig(Q̂))(
vi − vj

2
)2, where {i, j} is working set (45)

≥ min(eig(Q̂))σ2(
v1 − vl

2
)2 (46)

≥ min(eig(Q̂))(
yT Q−1y

2
∑

i,j |Q−1
ij |

)2σ2 max(|v1|, |vl|)2 (47)

≥ min(eig(Q̂))
l

(
yT Q−1y

2
∑

t,s |Q−1
ts |

)2σ2(Q(αk − ᾱ))T Q(αk − ᾱ) (48)

≥ min(eig(Q̂))
lmax(eig(Q−1))

(
yT Q−1y

2
∑

t,s |Q−1
ts |

)2σ2(Q(αk − ᾱ))T Q−1Q(αk − ᾱ)

≥ min(eig(Q̂))
lmax(eig(Q−1))

(
yT Q−1y

2
∑

t,s |Q−1
ts |

)2σ2(αk − ᾱ)T Q(αk − ᾱ) , (49)

56 P.-H. Chen, R.-E. Fan, and C.-J. Lin

where (45) is from Lemma 4, (46) is from (44), (47) is from Lemma 5, and (48)
follows from (43). Note that both lemmas are given in Appendix A.

Here we give more details about the derivation of (47): If v1vl ≤ 0, then of
course

|v1 − vl| ≥ max(|v1|, |vl|) .

With yi = ±1, yT Q−1y∑
t,s |Q−1

ts | ≤ 1 so (47) follows. On the other hand, if v1vl ≥ 0, we

consider v = (Y QY)(−Y (αk−ᾱ)) from (41). Since −eTY (αk−ᾱ) = −yT (αk−
ᾱ) = 0, we can apply Lemma 5: With

|(Y QY)−1
ij | = |Q−1

ij yiyj | = |Q−1
ij | and

eT (Y QY)−1e = yT Q−1y ,

we have

|v1 − vl| ≥ max(|v1|, |vl|)−min(|v1|, |vl|)
≥ (

yT Q−1y∑
t,s |Q−1

ts |
)max(|v1|, |vl|) ,

which implies (47).
Finally we can define a constant c as follows:

c ≡ 1−min
B

(
min(eig(Q−1

BB))
lmax(eig(Q−1))

(
yT Q−1y

2
∑

t,s |Q−1
ts |

)2σ2

)
< 1 ,

where B is any two-element subset of {1, . . . , l}. Combining (42) and (49), after
k ≥ k̄, (36) holds. ��
Note that the condition (8) of Algorithm 2 is used in (44) and then (46). If WSS3
is considered, in (46) we will have a term h((v1 − vl)/2)2. Thus, the function h
affects the convergence rate. Since h(x) ≤ x, linear rate is the best using our
derivation.

The linear convergence of the objective function is as follows:

Theorem 7. Under the same assumptions of Theorem 6, there are c < 1 and k̄
such that for all k ≥ k̄,

f(αk+1)− f(ᾱ) ≤ c(f(αk)− f(ᾱ)) .

Proof. We will show that for any k ≥ k̄,

f(αk)− f(ᾱ) =
1
2
(αk − ᾱ)TQ(αk − ᾱ) , (50)

so the proof immediately follows from Theorem 6. Using (31),

Training Support Vector Machines via SMO-Type Decomposition Methods 57

f(αk)− f(ᾱ)

=
1
2
(αk)T Qαk + eT αk − 1

2
(ᾱ)T Qᾱ− eT ᾱ

=
1
2
(αk)T Qαk + (−Qᾱ− b̄y)T αk − 1

2
(ᾱ)T Qᾱ− (−Qᾱ− b̄y)T ᾱ

=
1
2
(αk)T Qαk − (ᾱ)T Qαk +

1
2
(ᾱ)TQᾱ (51)

=
1
2
(αk − ᾱ)TQ(αk − ᾱ) .

Since we always keep the feasibility of αk, (51) comes from yT αk = yT ᾱ. ��

6 An Example of Linear Convergence

We have shown that under some general conditions, the decomposition method
using WSS 2 is at least linearly convergent. However, it is unclear whether the
convergence is actually better than linear or not. Here, we present a simple
example which exactly has the linear convergence. Hence, in theory, the linear
convergence is already the best worst-case analysis.

Consider x1,x2,x3 with ‖x1−x2‖ = ‖x1−x3‖ = ‖x2−x3‖, y = [1, 1,−1]T ,
and C is large enough. If the RBF kernel is used, the dual SVM problem is

min
α1,α2,α3

1
2
[
α1 α2 α3

]⎡⎣ 1 a −a
a 1 −a
−a −a 1

⎤⎦⎡⎣α1

α2

α3

⎤⎦− (α1 + α2 + α3)

subject to α1 + α2 − α3 = 0 , (52)
0 ≤ α1, α2, α3 ,

where a = e−γ‖xi−xj‖2
. At the optimal solution,

ᾱ =
[

2
3(1−a)

2
3(1−a)

4
3(1−a)

]T
. (53)

It satisfies the linear constraint α1 + α2 − α3 = 0. With b ≡ 1/3, it also satisfies
the following condition:⎡⎣ 1 a −a

a 1 −a
−a −a 1

⎤⎦⎡⎣α1

α2

α3

⎤⎦−
⎡⎣1
1
1

⎤⎦+ b

⎡⎣ 1
1
−1

⎤⎦ =

⎡⎣0
0
0

⎤⎦ .

Thus, ᾱ is an optimal solution. For convenience, we define

ek
i ≡ αk

i − ᾱi, i = 1, 2, 3 .

For the discussion below, we require only that the working set is a violating pair.
We then state two lemmas and give proofs in Appendix B.

58 P.-H. Chen, R.-E. Fan, and C.-J. Lin

Lemma 2. If α1 = [0, 0, 0]T , for all k ≥ 3, αk satisfies

αk
1 , α

k
2 , α

k
3 > 0, and

−yi∇f(αk)i = −yj∇f(αk)j ,

where {i, j} is the working set of the (k − 1)st iteration.

Lemma 3.

1. For all k ≥ 3, at the (k − 1)st iteration,
(a) if {1, 3} is the working set, then

2ek
1 + ek

2 = 0 . (54)

(b) if {2, 3} is the working set, then

ek
1 + 2ek

2 = 0 . (55)

(c) if {1, 2} is the working set, then

ek
1 − ek

2 = 0 . (56)

2. For all k ≥ 2, ek
i
= 0, i = 1, 2, 3.

The following theorem proves the linear reduction of the objective value.

Theorem 8. Consider any SMO-type method whose working set is a violating
pair. If α1 = [0, 0, 0]T , after k ≥ 3,

(αk+1 − ᾱ)TQ(αk+1 − ᾱ) =
1
4
(αk − ᾱ)T Q(αk − ᾱ) . (57)

Proof. Now the size of the working set is two, so the three possible sets are
{1, 2}, {1, 3}, and {2, 3}. With αk

3 = αk
1 + αk

2 ,

(αk − ᾱ)TQ(αk − ᾱ)
= 2(1− a)((ek

1)2 + (ek
2)2 + ek

1e
k
2) .

If {1, 3} is the working set at the kth iteration, then from (54) and αk+1
2 = αk

2 ,

(αk+1 − ᾱ)T Q(αk+1 − ᾱ)
= 2(1− a)((ek+1

1)2 + (ek+1
2)2 + ek+1

1 ek+1
2) (58)

=
3
2
(1− a)(ek

2)2 .

To have (57), we thus need

3
2 (1− a)(ek

2)2

2(1− a)((ek
1)2 + (ek

2)2 + ek
1e

k
2)

=
1
4

,

which is equivalent to

Training Support Vector Machines via SMO-Type Decomposition Methods 59

(ek
1 − ek

2)(e
k
1 + 2ek

2) = 0 . (59)

The current working set {1, 3} can not be the working set of the (k − 1)st (i.e.,
the previous) iteration. Otherwise, Lemma 2 implies that it is not a violating
pair at the kth iteration, a contradiction to our assumption on the selecting the
working set. Therefore, at the (k− 1)st iteration, the working set must be either
{1, 2} or {2, 3}. Thus, (59) follows from (56) or (55) under Lemma 3.

The proof for the case that {2, 3} is the working set is very similar. If {1, 2}
is the working set, putting (56) into (58), (59) becomes

(2ek
1 + ek

2)(e
k
1 + 2ek

2) = 0 ,

so the result also follows. ��
Finally, using (50), we have the linear convergence:

f(αk+1)− f(ᾱ) =
1
4
(f(αk)− f(ᾱ)) .

7 Conclusions

Optimization issues in training support vector machines are interesting and chal-
lenging. In this article we have studied many theoretical issues on solving the
SVM quadratic programming problem. Practical implementations also benefit
from such analysis. The recent paper [6] considers a working set selection based
on WSS 2 and reports faster training than existing implementations.

References

[1] B. Boser, I. Guyon, and V. Vapnik. A training algorithm for optimal margin clas-
sifiers. In Proceedings of the Fifth Annual Workshop on Computational Learning
Theory, pages 144–152. ACM Press, 1992.

[2] C.-C. Chang, C.-W. Hsu, and C.-J. Lin. The analysis of decomposition methods
for support vector machines. IEEE Transactions on Neural Networks, 11(4):1003–
1008, 2000.

[3] C.-C. Chang and C.-J. Lin. LIBSVM: a library for support vector machines, 2001.
Software available at http://www.csie.ntu.edu.tw/∼cjlin/libsvm.

[4] P.-H. Chen, R.-E. Fan, and C.-J. Lin. A study on SMO-type
decomposition methods for support vector machines. Technical re-
port, Department of Computer Science, National Taiwan University, 2005.
http://www.csie.ntu.edu.tw/∼cjlin/papers/generalSMO.pdf.

[5] C. Cortes and V. Vapnik. Support-vector network. Machine Learning, 20:273–297,
1995.

[6] R.-E. Fan, P.-H. Chen, and C.-J. Lin. Working set selection using the second
order information for training SVM. Technical report, Department of Computer
Science, National Taiwan University, 2005.

[7] D. Hush and C. Scovel. Polynomial-time decomposition algorithms for support
vector machines. Machine Learning, 51:51–71, 2003.

60 P.-H. Chen, R.-E. Fan, and C.-J. Lin

[8] T. Joachims. Making large-scale SVM learning practical. In B. Schölkopf, C. J. C.
Burges, and A. J. Smola, editors, Advances in Kernel Methods - Support Vector
Learning, Cambridge, MA, 1998. MIT Press.

[9] S. S. Keerthi and E. G. Gilbert. Convergence of a generalized SMO algorithm for
SVM classifier design. Machine Learning, 46:351–360, 2002.

[10] S. S. Keerthi and C. J. Ong. On the role of the threshold parameter in SVM
training algorithms. Technical Report CD-00-09, Department of Mechanical and
Production Engineering, National University of Singapore, Singapore, 2000.

[11] S. S. Keerthi, S. K. Shevade, C. Bhattacharyya, and K. R. K. Murthy. Improve-
ments to Platt’s SMO algorithm for SVM classifier design. Neural Computation,
13:637–649, 2001.

[12] C.-J. Lin. Linear convergence of a decomposition method for support vector
machines. Technical report, Department of Computer Science and Information
Engineering, National Taiwan University, Taipei, Taiwan, 2001.

[13] C.-J. Lin. On the convergence of the decomposition method for support vector
machines. IEEE Transactions on Neural Networks, 12(6):1288–1298, 2001.

[14] C.-J. Lin. Asymptotic convergence of an SMO algorithm without any assumptions.
IEEE Transactions on Neural Networks, 13(1):248–250, 2002.

[15] C.-J. Lin. A formal analysis of stopping criteria of decomposition methods for
support vector machines. IEEE Transactions on Neural Networks, 13(5):1045–
1052, 2002.

[16] N. List and H. U. Simon. A general convergence theorem for the decomposition
method. In Proceedings of the 17th Annual Conference on Learning Theory, pages
363–377, 2004.

[17] E. Osuna, R. Freund, and F. Girosi. Training support vector machines: An appli-
cation to face detection. In Proceedings of CVPR’97, pages 130–136, New York,
NY, 1997. IEEE.

[18] L. Palagi and M. Sciandrone. On the convergence of a modified version of SVMlight

algorithm. Optimization Methods and Software, 20(2-3):315–332, 2005.
[19] J. C. Platt. Fast training of support vector machines using sequential minimal

optimization. In B. Schölkopf, C. J. C. Burges, and A. J. Smola, editors, Advances
in Kernel Methods - Support Vector Learning, Cambridge, MA, 1998. MIT Press.

A Proof of Lemmas Used in Section 5

Lemma 4. If v1 ≥ · · · ≥ vl, then

max
i

(|vi|) ≥ v1 − vl

2
.

Proof. We notice that maxi(|vi|) must happen at v1 or vl. It is easy to see

v1 − vl

2
≤ |v1|+ |vl|

2
≤ max(|v1|, |vl|) . ��

Lemma 5. If Q is invertible, then for any x such that

1. eT x = 0,
2. v ≡ Qx, maxi((Qx)i) = v1 > vl = mini((Qx)i), and v1vl ≥ 0,

Training Support Vector Machines via SMO-Type Decomposition Methods 61

we have

min(|v1|, |vl|) ≤ (1 − eTQ−1e∑
i,j |Q−1

ij |
)max(|v1|, |vl|) .

Proof. Since v1 > vl and v1vl ≥ 0, we have either v1 > vl ≥ 0 or 0 ≥ v1 > vl.
For the first case, if the result is wrong,

vl > (1− eTQ−1e∑
i,j |Q−1

ij |
)v1 ,

so for j = 1, . . . , l,

v1 − vj ≤ v1 − vl

< (
eTQ−1e∑

i,j |Q−1
ij |

)v1 . (60)

With x = Q−1v and (60),

eT x = eTQ−1v

=
∑
i,j

Q−1
ij vj

=
∑
i,j

Q−1
ij (v1 − (v1 − vj))

≥ v1eTQ−1e− (v1 − vl)
∑
i,j

|Q−1
ij |

> v1

(
eTQ−1e− (

eTQ−1e∑
i,j |Q−1

ij |
)
∑
i,j

|Q−1
ij |
)

= 0

causes a contradiction. The case of 0 ≥ v1 > vl is similar. ��

B Proof of Lemmas Used in Section 6

B.1 Proof of Lemma 2

At the first iteration, {1, 3} and {2, 3} are violating pairs and can be selected as
the working set. Without loss of generality, we assume it is {1, 3}. Thus,

α2 =
[

1
1−a 0 1

1−a

]T
.

For k ≥ 3, αk
3 must be larger than 0. Otherwise, from yT αk = 0, αk

1 = αk
2 =

αk
3 = 0. Then f(αk) = f(α1) contradicts that f(αk) is strictly decreasing.

Since α2 is the optimum when α2 = 0, if αk
2 = 0, then f(αk) ≥ f(α2). This

62 P.-H. Chen, R.-E. Fan, and C.-J. Lin

result again violates the decreasing property. Hence αk
2 > 0, ∀k ≥ 3. Similarly, if

αk
1 = 0, then f(αk) ≥ f([0 1

1−a
1

1−a]T) = f(α2) causes a contradiction.
Consider any k ≥ 3 and assume {i, j} is the working set at the (k − 1)st

iteration. By the above discussion, αk
i > 0 and αk

j > 0. The optimality condition
of the sub-problem then implies −yi∇f(αk)i = −yj∇f(αk)j .

B.2 Proof of Lemma 3

We calculate the gradient at α:

∇f(α)1 = α1 + aα2 − aα3 − 1 , (61)
∇f(α)2 = aα1 + α2 − aα3 − 1 , (62)
∇f(α)3 = −aα1 − aα2 + α3 − 1 . (63)

If {1, 3} is the working set at the (k − 1)st iteration, then Lemma 2 implies
−y1∇f(αk)1 = −y3∇f(αk)3. We obtain

αk
1 + αk

3 = 2/(1− a) , (64)

Using (64) and yT αk = 0,

2αk
1 + αk

2 = 2/(1− a) . (65)

Since ᾱ is optimal and ᾱ1 > 0, ᾱ3 > 0, we have −y1∇f(ᾱ)1 = −y3∇f(ᾱ)3. This
and yT ᾱ = 0 implies

2ᾱ1 + ᾱ2 = 2/(1− a) . (66)

Combining (65) and (66), we obtain the desired result:

2ek
1 + ek

2 = 0 . (67)

For {2, 3} or {1, 2} to be the working set at the (k−1)st iteration, the deviation
is similar. Thus the first result of this lemma is complete.

We prove the second result by induction. Directly from α2 − ᾱ, we have
e2

i
= 0, i = 1, 2, 3. Given k ≥ 3, assume results hold for the (k − 1)st iteration.
If {1, 3} is the working set at the (k − 1)st iteration, then ek

2 = ek−1
2
= 0. With

(67) from the above discussion, ek
1 = −ek

2/2
= 0. Using yT αk = yT ᾱ = 0,
ek
1 + ek

2 − ek
3 = 0, so

ek
3 = ek

1 + ek
2 = ek

2/2
= 0 .

For {2, 3} or {1, 2} to be the working set, the proof is similar.

Measuring Statistical Dependence with
Hilbert-Schmidt Norms

Arthur Gretton1, Olivier Bousquet2, Alex Smola3, and Bernhard Schölkopf1

1 MPI for Biological Cybernetics, Spemannstr. 38, 72076 Tübingen, Germany
{arthur, bernhard.schoelkopf}@tuebingen.mpg.de

2 Pertinence, 32, Rue des Jeûneurs, 75002 Paris, France
olivier.bousquet@pertinence.com

3 National ICT Australia, North Road, Canberra 0200 ACT, Australia
alex.smola@nicta.com.au

Abstract. We propose an independence criterion based on the eigen-
spectrum of covariance operators in reproducing kernel Hilbert spaces
(RKHSs), consisting of an empirical estimate of the Hilbert-Schmidt
norm of the cross-covariance operator (we term this a Hilbert-Schmidt In-
dependence Criterion, or HSIC). This approach has several advantages,
compared with previous kernel-based independence criteria. First, the
empirical estimate is simpler than any other kernel dependence test, and
requires no user-defined regularisation. Second, there is a clearly defined
population quantity which the empirical estimate approaches in the large
sample limit, with exponential convergence guaranteed between the two:
this ensures that independence tests based on HSIC do not suffer from
slow learning rates. Finally, we show in the context of independent com-
ponent analysis (ICA) that the performance of HSIC is competitive with
that of previously published kernel-based criteria, and of other recently
published ICA methods.

1 Introduction

Methods for detecting dependence using kernel-based approaches have recently
found application in a wide variety of areas. Examples include independent com-
ponent analysis [3, 10], gene selection [20], descriptions of gait in terms of hip and
knee trajectories [15], feature selection [9], and dependence detection in fMRI
signals [11]. The principle underlying these algorithms is that we may define
covariance and cross-covariance operators in RKHSs, and derive statistics from
these operators suited to measuring the dependence between functions in these
spaces.

In the method of Bach and Jordan [3], a regularised correlation operator
was derived from the covariance and cross-covariance operators, and its largest
singular value (the kernel canonical correlation, or KCC) was used as a statistic
to test independence. The approach of Gretton et al. [11] was to use the largest
singular value of the cross-covariance operator, which behaves identically to the

S. Jain, H.U. Simon, and E. Tomita (Eds.): ALT 2005, LNAI 3734, pp. 63–77, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

64 A. Gretton et al.

correlation operator at independence, but is easier to define and requires no reg-
ularisation — the resulting test is called the constrained covariance (COCO).
Both these quantities fall within the framework set out by Rényi [17], namely
that for sufficiently rich function classes, the functional correlation (or, alterna-
tively, the cross-covariance) serves as an independence test, being zero only when
the random variables tested are independent. Various empirical kernel quantities
(derived from bounds on the mutual information that hold near independence)1

were also proposed based on the correlation and cross-covariance operators in
[3, 10], however their connection to the population covariance operators remains
to be established (indeed, the population quantities to which these approxima-
tions converge are not yet known). Gretton et al. [11] showed that these various
quantities are guaranteed to be zero for independent random variables only when
the associated RKHSs are universal [19].

The present study extends the concept of COCO by using the entire spec-
trum of the cross-covariance operator to determine when all its singular values
are zero, rather than looking only at the largest singular value; the idea being to
obtain a more robust indication of independence. To this end, we use the sum
of the squared singular values of the cross-covariance operator (i.e., its squared
Hilbert-Schmidt norm) to measure dependence — we call the resulting quan-
tity the Hilbert-Schmidt Independence Criterion (HSIC).2 It turns out that the
empirical estimate of HSIC is identical to the quadratic dependence measure of
Achard et al. [1], although we shall see that their derivation approaches this
criterion in a completely different way. Thus, the present work resolves the open
question in [1] regarding the link between the quadratic dependence measure
and kernel dependence measures based on RKHSs, and generalises this measure
to metric spaces (as opposed to subsets of the reals). More importantly, however,
we believe our proof assures that HSIC is indeed a dependence criterion under
all circumstances (i.e., HSIC is zero if and only if the random variables are in-
dependent), which is not necessarily guaranteed in [1]. We give a more detailed
analysis of Achard’s proof in Appendix B.

Compared with previous kernel independence measures, HSIC has several
advantages:

– The empirical estimate is much simpler — just the trace of a product of
Gram matrices — and, unlike the canonical correlation or kernel generalised
variance [3], HSIC does not require extra regularisation terms for good finite
sample behaviour.

– The empirical estimate converges to the population estimate at rate 1/
√
m,

where m is the sample size, and thus independence tests based on HSIC
do not suffer from slow learning rates [8]. In particular, as the sample size
increases, we are guaranteed to detect any existing dependence with high

1 Respectively the Kernel Generalised Variance (KGV) and the Kernel Mutual Infor-
mation (KMI).

2 The possibility of using a Hilbert-Schmidt norm was suggested by Fukumizu et al. [9],
although the idea was not pursued further in that work.

Measuring Statistical Dependence with Hilbert-Schmidt Norms 65

probability. Of the alternative kernel dependence tests, this result is proved
only for the constrained covariance [11].

– The finite sample bias of the estimate is O(m−1), and is therefore negligible
compared to the finite sample fluctuations (which underly the convergence
rate in the previous point). This is currently proved for no other kernel
dependence test, including COCO.

– Experimental results on an ICA problem show that the new independence
test is superior to the previous ones, and competitive with the best existing
specialised ICA methods. In particular, kernel methods are substantially
more resistant to outliers than other specialised ICA algorithms.

We begin our discussion in Section 2, in which we define the cross-covariance
operator between RKHSs, and give its Hilbert-Schmidt (HS) norm (this being
the population HSIC). In Section 3, we given an empirical estimate of the HS
norm, and establish the link between the population and empirical HSIC by
determining the bias of the finite sample estimate. In Section 4, we demonstrate
exponential convergence between the population HSIC and empirical HSIC. As
a consequence of this fast convergence, we show in Section 5 that dependence
tests formulated using HSIC do not suffer from slow learning rates. Also in this
section, we describe an efficient approximation to the empirical HSIC based on
the incomplete Cholesky decomposition. Finally, in Section 6, we apply HSIC to
the problem of independent component analysis (ICA).

2 Cross-Covariance Operators

In this section, we provide the functional analytic background necessary in de-
scribing cross-covariance operators between RKHSs, and introduce the Hilbert-
Schmidt norm of these operators. Our presentation follows [21, 12], the main
difference being that we deal with cross-covariance operators rather than the
covariance operators.3 We also draw on [9], which uses covariance and cross-
covariance operators as a means of defining conditional covariance operators,
but does not investigate the Hilbert-Schmidt norm; and on [4], which charac-
terises the covariance and cross-covariance operators for general Hilbert spaces.

2.1 RKHS Theory

Consider a Hilbert space F of functions from X to R. Then F is a reproducing
kernel Hilbert space if for each x ∈ X , the Dirac evaluation operator δx : F → R,
which maps f ∈ F to f(x) ∈ R, is a bounded linear functional. To each point x ∈
X , there corresponds an element φ(x) ∈ F such that 〈φ(x), φ(x′)〉F = k(x, x′),
where k : X × X → R is a unique positive definite kernel. We will require in
particular that F be separable (it must have a complete orthonormal system).

3 Briefly, a cross-covariance operator maps from one space to another, whereas a
covariance operator maps from a space to itself. In the linear algebraic case,
the covariance is Cxx := Ex[xx�] − Ex[x]Ex[x�], while the cross-covariance is
Cxy := Ex,y[xy�] − Ex[x]Ey[y�].

66 A. Gretton et al.

As pointed out in [12–Theorem 7], any continuous kernel on a separable X (e.g.
Rn) induces a separable RKHS.4 We likewise define a second separable RKHS,
G, with kernel l(·, ·) and feature map ψ, on the separable space Y.

Hilbert-Schmidt Norm. Denote by C : G → F a linear operator. Then provided
the sum converges, the Hilbert-Schmidt (HS) norm of C is defined as

‖C‖2HS :=
∑
i,j

〈Cvi, uj〉2F , (1)

where ui and vj are orthonormal bases of F and G respectively. It is easy to see
that this generalises the Frobenius norm on matrices.

Hilbert-Schmidt Operator. A linear operator C : G → F is called a Hilbert-
Schmidt operator if its HS norm exists. The set of Hilbert-Schmidt operators
HS(G,F) : G → F is a separable Hilbert space with inner product

〈C,D〉HS :=
∑
i,j

〈Cvi, uj〉F 〈Dvi, uj〉F .

Tensor Product. Let f ∈ F and g ∈ G. Then the tensor product operator
f ⊗ g : G → F is defined as

(f ⊗ g)h := f〈g, h〉G for all h ∈ G. (2)

Moreover, by the definition of the HS norm, we can compute the HS norm of
f ⊗ g via

‖f ⊗ g‖2HS = 〈f ⊗ g, f ⊗ g〉HS = 〈f, (f ⊗ g)g〉F
= 〈f, f〉F 〈g, g〉G = ‖f‖2F‖g‖2G (3)

2.2 The Cross-Covariance Operator

Mean. We assume that (X , Γ) and (Y, Λ) are furnished with probability mea-
sures px, py respectively (Γ being the Borel sets on X , and Λ the Borel sets on
Y). We may now define the mean elements with respect to these measures as
those members of F and G respectively for which

〈μx, f〉F := Ex [〈φ(x), f〉F] = Ex[f(x)],
〈μy , g〉G := Ey [〈ψ(y), g〉G] = Ey[g(y)],

(4)

where φ is the feature map from X to the RKHS F , and ψ maps from Y to G.
Finally, ‖μx‖2F can be computed by applying the expectation twice via

‖μx‖2F = Ex,x′ [〈φ(x), φ(x′)〉F] = Ex,x′[k(x, x′)]. (5)

4 For more detail on separable RKHSs and their properties, see [12] and references
therein.

Measuring Statistical Dependence with Hilbert-Schmidt Norms 67

Here the expectation is taken over independent copies x, x′ taken from px. The
means μx, μy exist as long as their respective norms in F and G are bounded,
which is true when the kernels k and l are bounded (since then Ex,x′[k(x, x′)] <
∞ and Ey,y′[l(y, y′)] < ∞). We are now in a position to define the cross-
covariance operator.

Cross-Covariance. Following [4, 9],5 the cross-covariance operator associated
with the joint measure px,y on (X ×Y, Γ ×Λ) is a linear operator Cxy : G → F
defined as

Cxy := Ex,y [(φ(x) − μx)⊗ (ψ(y)− μy)] = Ex,y [φ(x) ⊗ ψ(y)]︸ ︷︷ ︸
:=C̃xy

−μx ⊗ μy︸ ︷︷ ︸
:=Mxy

. (6)

Here (6) follows from the linearity of the expectation. We will use C̃xy and Mxy

as the basis of our measure of dependence. Our next goal is to derive the Hilbert-
Schmidt norm of the above quantity; the conditions under which Cxy is a HS
operator will then follow from the existence of the norm.

2.3 Hilbert-Schmidt Independence Criterion

Definition 1 (HSIC). Given separable RKHSs F ,G and a joint measure pxy

over (X × Y, Γ × Λ), we define the Hilbert-Schmidt Independence Criterion
(HSIC) as the squared HS-norm of the associated cross-covariance operator Cxy:

HSIC(pxy,F ,G) := ‖Cxy‖2HS. (7)

To compute it we need to express HSIC in terms of kernel functions. This is
achieved by the following lemma:

Lemma 1 (HSIC in terms of kernels).

HSIC(pxy,F ,G) = Ex,x′,y,y′ [k(x, x′)l(y, y′)] + Ex,x′[k(x, x′)]Ey,y′ [l(y, y′)] (8)
−2Ex,y [Ex′ [k(x, x′)]Ey′ [l(y, y′)]]

Here Ex,x′,y,y′ denotes the expectation over independent pairs (x, y) and (x′, y′)
drawn from pxy. This lemma is proved in Appendix A. It follows from Lemma 8
that the HS norm of Cxy exists when the various expectations over the kernels
are bounded, which is true as long as the kernels k and l are bounded.

3 Empirical Criterion

In order to show that HSIC is a practical criterion for testing independence, and
to obtain a formal independence test on the basis of HSIC, we need to perform
three more steps. First, we need to approximate HSIC(pxy,F ,G) given a finite

5 Our operator (and that in [9]) differs from Baker’s in that Baker defines all measures
directly on the function spaces.

68 A. Gretton et al.

number of observations. Second, we need to show that this approximation con-
verges to HSIC sufficiently quickly. Third, we need to show that HSIC is, indeed,
an indicator for the independence of random variables (subject to appropriate
choice of F and G). We address the first step in this section, and the remaining
two steps in the two sections that follow.

3.1 Estimator of HSIC

Definition 2 (Empirical HSIC). Let Z := {(x1, y1), . . . , (xm, ym)} ⊆ X × Y
be a series of m independent observations drawn from pxy. An estimator of
HSIC, written HSIC(Z,F ,G), is given by

HSIC(Z,F ,G) := (m− 1)−2trKHLH (9)

where H,K,L ∈ Rm×m, Kij := k(xi, xj), Lij := l(yi, yj) and Hij := δij −m−1.

An advantage of HSIC(Z,F ,G) is that it can be computed in O(m2) time,
whereas other kernel methods cost at least O(m3) before approximations are
made (although in practice, this advantage is somewhat academic, since good
approximations to all kernel dependence criteria can be computed in similar
time: see [3–Section 4] and Section 5.2). What we now need to show is that it is
indeed related to HSIC(pxy,F ,G):
Theorem 1 (O(m−1) Bias of Estimator). Let EZ denote the expectation
taken over m independent copies (xi, yi) drawn from pxy. Then

HSIC(pxy,F ,G) = EZ [HSIC(Z,F ,G)] + O(m−1).

This means that if the variance of HSIC(Z,F ,G) is larger than O(m−1) (and
indeed, the uniform convergence bounds we derive with respect to px,y will be
O(m−1/2)), the bias arising from the definition of HSIC(Z,F ,G) is negligible in
the overall process. The proof is in Appendix A.

4 Large Deviation Bounds

As a next step we need to show that the deviation between HSIC[Z,F ,G] and its
expectation is not too large. This section repeatedly uses a bound from [13–p.25],
which applies to U-statistics of the form we encounter in the previous section.

Theorem 2 (Deviation bound for U-statistics). A one-sample U-statistic
is defined as the random variable

u := 1
(m)r

∑
imr

g(xi1 , . . . , xir),

where g is called the kernel of the U-statistic.6 If a ≤ g ≤ b, then for all t > 0
the following bound holds:

Pu {u−Eu[u] ≥ t} ≤ exp
(
−2t2�m/r�

(b − a)2

)
.

We now state our main theorem.The proof is in Appendix A.
6 We denote (m)n := m!

(m−n)!
.

Measuring Statistical Dependence with Hilbert-Schmidt Norms 69

Theorem 3 (Bound on Empirical HSIC). Assume that k and l are bounded
almost everywhere by 1, and are non-negative. Then for m > 1 and all δ > 0,
with probability at least 1− δ, for all px,y,

|HSIC(pxy,F ,G)−HSIC(Z,F ,G)| ≤
√

log(6/δ)
α2m

+
C

m
,

where α2 > 0.24 and C are constants.

5 Independence Tests Using HSIC

In this section, we describe how HSIC can be used as an independence measure,
and as the basis for an independence test. We also describe an approximation to
HSIC which is more efficient to compute. We begin by demonstrating that the
Hilbert-Schmidt norm can be used as a measure of independence, as long as the
associated RKHSs are universal [19].

Theorem 4 (Cxy and Independence). Denote by F ,G RKHSs with universal
kernels k, l on the compact domains X and Y respectively. We assume without
loss of generality that ‖f‖∞ ≤ 1 and ‖g‖∞ ≤ 1 for all f ∈ F and g ∈ G. Then
‖Cxy‖HS = 0 if and only if x and y are independent.

Proof. According to Gretton et al. [11], the largest singular value (i.e., the spectral
norm) ‖Cxy‖S is zero if and only if x and y are independent, under the conditions
specified in the theorem. Since ‖Cxy‖S = 0 if and only if ‖Cxy‖HS = 0, it follows
that ‖Cxy‖HS = 0 if and only if x and y are independent.

5.1 Independence Tests

We now describe how to use HSIC as the basis of an independence test. Consider
a set P of probability distributions px,y. We may decompose P into two subsets:
Pi contains distributions p

(i)
x,y under which x and y are independent, and Pd

contains distributions p
(d)
x,y under which x and y are dependent.

We next introduce a test Δ(Z), which takes a data set Z ∼ pZ , where pZ is
the distribution corresponding to m independent draws from px,y, and returns

Δ(Z) =

{
1 if Z ∼ p

(d)
Z

0 if Z ∼ p
(i)
Z

Given that the test sees only a finite sample, it cannot determine with complete
certainty from which class of distributions the data are drawn. We call Δ an
α-test when

sup
p
(i)
x,y∈Pi

E
Z∼p

(i)
Z

[Δ(Z) = 1] ≤ α.

In other words α upper bounds the probability of a Type I error. It follows from
Theorem 3 that the empirical HSIC converges to the population HSIC at speed

70 A. Gretton et al.

1/
√
m. This means that if we define the independence test Δ(Z) as the indicator

that HSIC is larger than a term of the form C
√

log(1/α)/m, with C a suitable
constant, then Δ(Z) is an α-test with Type II error upper bounded by a term
approaching zero as 1/

√
m.

5.2 Efficient Computation

Computational cost is another factor in using HSIC as an independence cri-
terion. As in [3], we use a low rank decomposition of the Gram matrices via
an incomplete Cholesky decomposition, which permits an accurate approxima-
tion to HSIC as long as the kernel has a fast decaying spectrum. This results
in the following cost saving, which we use in our experiments. The proof is in
Appendix A.

Lemma 2 (Efficient approximation to HSIC). Let K ≈ AA� and L ≈
BB�, where A ∈ Rm×df and B ∈ Rm×dg . Then we may approximate trHKHL
in O(m(d2

f + d2
g)) time.

Finally, note that although the present measure of dependence pertains only to
the two-variable case, a test of pairwise dependence for a greater number of vari-
ables may easily be defined by summing HSIC over every pair of variables — this
quantity vanishes if and only if the random variables are pairwise independent.
We use this generalisation in the experiments of Section 6.

6 Experimental Results

We apply our estimates of statistical dependence to the problem of linear in-
stantaneous independent component analysis [14]. In this setting, we assume a
random source vector s of dimension n, where si ∈ R, such that the components
are mutually independent; ps (s) =

∏n
i=1 psi (si). We observe a vector t that cor-

responds to a linear mixing t = As of the sources s, where A is an n×n matrix
with full rank.7 We wish to recover an estimate x of the unmixed elements s
given m i.i.d. samples from pt(t), and using only the linear mixing model and
the fact that the unmixed components are independent. This problem is inde-
terminate in certain respects: for instance, the ordering and scale of the sources
cannot be recovered using independence alone.

It is clear that the various cross-covariance based kernel dependence tests,
including HSIC, can each be used to determine when the inverse V of A is found,8

by testing the pairwise independence of the components in x = Vt (bearing in
mind Theorem 4 and its implications for the various kernel dependence tests).
This requires a gradient descent procedure in which the kernel contrasts are
minimised as a function of V; see [3, 10] for details. The Amari divergence [2],

7 This assumes the number of sources is equal to the number of sensors, and the
sources are spatially distinct.

8 Up to permutation and scaling, and assuming no more than one source is Gaussian
[14].

Measuring Statistical Dependence with Hilbert-Schmidt Norms 71

which is invariant to permutation and scaling, is used to compare V and A−1.
We acknowledge that the application of a general dependence function to linear
ICA is not an optimal non-parametric approach to the problem of estimating
the entries in A, as discussed in [18]. Indeed, most specialised ICA algorithms
exploit the linear mixing structure of the problem to avoid having to conduct a
general test of independence, which makes the task of recovering A easier. That
said, ICA is in general a good benchmark for dependence measures, in that it
applies to a problem with a known “ground truth”, and tests that the dependence
measures approach zero gracefully as dependent random variables are made to
approach independence (through optimisation of the unmixing matrix).

Table 1. Densities used, and their
respective kurtoses. Densities have
zero mean and unit variance.

Density Kurtosis

Student, 3 DOF ∞
Double exponential 3.00
Uniform -1.20
Student, 5 DOF 6.00
Exponential 6.00
2 double exponentials -1.70
Symmetric. 2 Gaussians, mul-
timodal

-1.85

As above, transmodal -0.75
As above, unimodal -0.50
Asymmetric. 2 Gaussians,
multimodal

-0.57

As above, transmodal -0.29
As above, unimodal -0.20
Symmetric. 4 Gaussians, mul-
timodal

-0.91

As above, transmodal -0.34
As above, unimodal -0.40
Asymmetric. 4 Gaussians,
multimodal

-0.67

As above, transmodal -0.59
As above, unimodal -0.82

As well as the kernel algorithms, we also
compare with three standard ICA methods
(FastICA [14], Jade [6], and Infomax [5]); and
two recent state of the art methods, neither of
them based on kernels: RADICAL [16], which
uses order statistics to obtain entropy esti-
mates; and characteristic function based ICA
(CFICA) [7].9 It was recommended to run
the CFICA algorithm with a good initialising
guess; we used RADICAL for this purpose. All
kernel algorithms were initialised using Jade
(except for the 16 source case, where Fast ICA
was used due to its more stable output). RAD-
ICAL is based on an exhaustive grid search
over all the Jacobi rotations, and does not re-
quire an initial guess.

Our first experiment consisted in de-
mixing data drawn independently from sev-
eral distributions chosen at random with re-
placement from Table 1, and mixed with a
random matrix having condition number be-
tween 1 and 2. In the case of the KCC and
KGV, we use the parameters recommended in
[3]: namely, κ = 2 × 10−2 and σ = 1 for m ≤ 1000, κ = 2 × 10−3 and σ = 0.5
for m > 1000 (σ being the kernel size, and κ the coefficient used to scale the
regularising terms). In the case of our dependence tests (COCO, KMI, HSIC),
we used σ = 1 for the Gaussian kernel, and σ = 3 for the Laplace kernel. After
convergence, the kernel size was halved for all methods, and the solution refined
in a “polishing” step. Results are given in Table 2.

9 We are aware that the same authors propose an alternative algorithm, “Efficient
ICA”. We did not include results from this algorithm in our experiments, since it is
unsuited to mixtures of Gaussians (which have fast decaying tails) and discontinuous
densities (such as the uniform density on a finite interval), which both occur in our
benchmark set.

72 A. Gretton et al.

We note that HSIC with a Gaussian kernel performs on par with the best
alternatives in the final four experiments, and that HSIC with a Laplace kernel
gives joint best performance in six of the seven experiments. On the other hand,
RADICAL and the KGV perform better than HSIC in the m = 250 case. While
the Laplace kernel clearly gives superior performance, this comes at an increased
computational cost, since the eigenvalues of the associated Gram matrices de-
cay more slowly than for the Gaussian kernel, necessitating the use of a higher
rank in the incomplete Cholesky decomposition. Interestingly, the Laplace ker-
nel can improve on the Gaussian kernel even with sub-Gaussian sources, as seen
for instance in [10–Table 6.3] for the KMI and COCO.10 This is because the
slow decay of the eigenspectrum of the Laplace kernel improves the detection
of dependence encoded at higher frequencies in the probability density function,
which need not be related to the kurtosis — see [11–Section 4.2].

Table 2. Demixing of n randomly chosen i.i.d. samples of length m, where n varies
from 2 to 16. The Gaussian kernel results are denoted g, and the Laplace kernel results
l. The column Rep. gives the number of runs over which the average performance was
measured. Note that some algorithm names are truncated: Fica is Fast ICA, IMAX
is Infomax, RAD is RADICAL, CFIC is CFICA, CO is COCO, and HS is HSIC.
Performance is measured using the Amari divergence (smaller is bettter).

n m Rep. FICA Jade IMAXRAD CFIC KCC COg COl KGV KMIg KMIl HSg HSl

2 250 1000 10.5±
0.4

9.5 ±
0.4

44.4±
0.9

5.4 ±
0.2

7.2 ±
0.3

7.0 ±
0.3

7.8 ±
0.3

7.0 ±
0.3

5.3 ±
0.2

6.0 ±
0.2

5.7 ±
0.2

5.9 ±
0.2

5.8 ±
0.3

2 1000 1000 6.0 ±
0.3

5.1 ±
0.2

11.3±
0.6

2.4 ±
0.1

3.2 ±
0.1

3.3 ±
0.1

3.5 ±
0.1

2.9 ±
0.1

2.3 ±
0.1

2.6 ±
0.1

2.3 ±
0.1

2.6 ±
0.1

2.4 ±
0.1

4 1000 100 5.7 ±
0.4

5.6 ±
0.4

13.3±
1.1

2.5 ±
0.1

3.3 ±
0.2

4.5 ±
0.4

4.2 ±
0.3

4.6 ±
0.6

3.1 ±
0.6

4.0 ±
0.7

3.5 ±
0.7

2.7 ±
0.1

2.5 ±
0.2

4 4000 100 3.1 ±
0.2

2.3 ±
0.1

5.9 ±
0.7

1.3 ±
0.1

1.5 ±
0.1

2.4 ±
0.5

1.9 ±
0.1

1.6 ±
0.1

1.4 ±
0.1

1.4 ±
0.05

1.2 ±
0.05

1.3 ±
0.05

1.2 ±
0.05

8 2000 50 4.1 ±
0.2

3.6 ±
0.2

9.3 ±
0.9

1.8 ±
0.1

2.4 ±
0.1

4.8 ±
0.9

3.7 ±
0.9

5.2 ±
1.3

2.6 ±
0.3

2.1 ±
0.1

1.9 ±
0.1

1.9 ±
0.1

1.8 ±
0.1

8 4000 50 3.2 ±
0.2

2.7 ±
0.1

6.4 ±
0.9

1.3 ±
0.05

1.6 ±
0.1

2.1 ±
0.2

2.0 ±
0.1

1.9 ±
0.1

1.7 ±
0.2

1.4 ±
0.1

1.3 ±
0.05

1.4 ±
0.05

1.3 ±
0.05

165000 25 2.9 ±
0.1

3.1 ±
0.3

9.4 ±
1.1

1.2 ±
0.05

1.7 ±
0.1

3.7 ±
0.6

2.4 ±
0.1

2.6 ±
0.2

1.7 ±
0.1

1.5 ±
0.1

1.5 ±
0.1

1.3 ±
0.05

1.3 ±
0.05

In our next experiment, we investigated the effect of outlier noise added to
the observations. We selected two generating distributions from Table 1, ran-
domly and with replacement. After combining m = 1000 samples from these
distributions with a randomly generated matrix having condition number be-
tween 1 and 2, we generated a varying number of outliers by adding ±5 (with
equal probability) to both signals at random locations. All kernels used were
Gaussian with size σ = 1; Laplace kernels resulted in decreased performance for
this noisy data. Results are shown in Figure 1. Note that we used κ = 0.11 for
the KGV and KCC in this plot, which is an order of magnitude above the level
recommended in [3]: this resulted in an improvement in performance (broadly

10 COCO is referred to in this table as KC.

Measuring Statistical Dependence with Hilbert-Schmidt Norms 73

0 5 10 15 20 25
0

5

10

15

20

25

30

35

Outliers

A
m

ar
i d

iv
er

ge
nc

e

10
−4

10
−3

10
−2

10
−1

10
0

10

15

20

25

30

35

40

Regulariser scale κ

A
m

ar
i d

iv
er

ge
nc

e

RADICAL
CFICA
KCCA
COCO
KGV
KMI
HSIC

KCCA
COCO
KGV
KMI
HSIC

Fig. 1. Left: Effect of outliers on the performance of the ICA algorithms. Each point
represents an average Amari divergence over 100 independent experiments (smaller is
better). The number of corrupted observations in both signals is given on the horizontal
axis. Right: Performance of the KCC and KGV as a function of κ for two sources of size
m = 1000, where 25 outliers were added to each source following the mixing procedure.

speaking, an increase in κ causes the KGV to approach the KMI, and the KCC
to approach COCO [10]).11

An additional experiment was also carried out on the same data, to test the
sensitivity of the KCC and KGV to the choice of the regularisation constant κ.
We observe in Figure 1 that too small a κ can cause severe underperformance for
the KCC and KGV. On the other hand, κ is required to be small for good perfor-
mance at large sample sizes in Table 2. A major advantage of HSIC, COCO, and
the KMI is that these do not require any additional tuning beyond the selection
of a kernel.

In conclusion, we emphasise that ICA based on HSIC, despite using a more
general dependence test than in specialised ICA algorithms, nonetheless gives
joint best performance on all but the smallest sample size, and is much more
robust to outliers. Comparing with other kernel algorithms (which are also based
on general dependence criteria), HSIC is simpler to define, requires no regular-
isation or tuning beyond kernel selection, and has performance that meets or
exceeds the best alternative on all data sets besides the m = 250 case.

Acknowledgements. The authors would like to thank Kenji Fukumizu and
Matthias Hein for helpful discussions. This work was supported in part by the
IST Programme of the European Community, under the PASCAL Network of
Excellence, IST-2002-506778. National ICT Australia is funded through the Aus-
tralian Government’s Backing Australia’s Ability initiative, in part through the
Australian Research Council.

11 The results presented here for the KCC and KGV also improve on those in [16, 3]
since they include a polishing step for the KCC and KGV, which was not carried
out in these earlier studies.

74 A. Gretton et al.

References

[1] S. Achard, D.-T. Pham, and C. Jutten, Quadratic dependence measure for nonlin-
ear blind source separation, 4th International Conference on ICA and BSS, 2003.

[2] S.-I. Amari, A. Cichoki, and Yang H., A new learning algorithm for blind sig-
nal separation, Advances in Neural Information Processing Systems, vol. 8, MIT
Press, 1996, pp. 757–763.

[3] F. Bach and M. Jordan, Kernel independent component analysis, Journal of Ma-
chine Learning Research 3 (2002), 1–48.

[4] C. R. Baker, Joint measures and cross-covariance operators, Transactions of the
American Mathematical Society 186 (1973), 273–289.

[5] A. Bell and T. Sejnowski, An information-maximization approach to blind sepa-
ration and blind deconvolution, Neural Computation 7 (1995), no. 6, 1129–1159.

[6] J.-F. Cardoso, Blind signal separation: statistical principles, Proceedings of the
IEEE 90 (1998), no. 8, 2009–2026.

[7] A. Chen and P. Bickel, Consistent independent component analysis and prewhiten-
ing, Tech. report, Berkeley, 2004.

[8] L. Devroye, L. Györfi, and G. Lugosi, A probabilistic theory of pattern recognition,
Applications of mathematics, vol. 31, Springer, New York, 1996.

[9] K. Fukumizu, F. R. Bach, and M. I. Jordan, Dimensionality reduction for super-
vised learning with reproducing kernel hilbert spaces, Journal of Machine Learning
Research 5 (2004), 73–99.

[10] A. Gretton, R. Herbrich, and A. Smola, The kernel mutual information, Tech.
report, Cambridge University Engineering Department and Max Planck Institute
for Biological Cybernetics, 2003.

[11] A. Gretton, A. Smola, O. Bousquet, R. Herbrich, A. Belitski, M. Augath, Y. Mu-
rayama, J. Pauls, B. Schölkopf, and N. Logothetis, Kernel constrained covariance
for dependence measurement, AISTATS, vol. 10, 2005.

[12] M. Hein and O. Bousquet, Kernels, associated structures, and generalizations,
Tech. Report 127, Max Planck Institute for Biological Cybernetics, 2004.

[13] W. Hoeffding, Probability inequalities for sums of bounded random variables, Jour-
nal of the American Statistical Association 58 (1963), 13–30.

[14] A. Hyvärinen, J. Karhunen, and E. Oja, Independent component analysis, John
Wiley and Sons, New York, 2001.

[15] S. E. Leurgans, R. A. Moyeed, and B. W. Silverman, Canonical correlation anal-
ysis when the data are curves, Journal of the Royal Statistical Society, Series B
(Methodological) 55 (1993), no. 3, 725–740.

[16] E. Miller and J. Fisher III, ICA using spacings estimates of entropy, JMLR 4
(2003), 1271–1295.

[17] A. Rényi, On measures of dependence, Acta Math. Acad. Sci. Hungar. 10 (1959),
441–451.

[18] A. Samarov and A. Tsybakov, Nonparametric independent component analysis,
Bernoulli 10 (2004), 565–582.

[19] I. Steinwart, On the influence of the kernel on the consistency of support vector
machines, JMLR 2 (2001).

[20] Y. Yamanishi, J.-P. Vert, and M. Kanehisa, Heterogeneous data comparison and
gene selection with kernel canonical correlation analysis, Kernel Methods in Com-
putational Biology (Cambridge, MA) (B. Schölkopf, K. Tsuda, and J.-P. Vert,
eds.), MIT Press, 2004, pp. 209–229.

[21] L. Zwald, O. Bousquet, and G. Blanchard, Statistical properties of kernel prin-
cipal component analysis, Proceedings of the 17th Conference on Computational
Learning Theory (COLT), 2004.

Measuring Statistical Dependence with Hilbert-Schmidt Norms 75

A Proofs

A.1 Proof of Lemma 1

We expand Cxy via (6) and using (3):

‖Cxy‖2HS = 〈C̃xy −Mxy, C̃xy −Mxy〉HS

= Ex,y,x′,y′ [〈φ(x) ⊗ ψ(y), φ(x) ⊗ ψ(y)〉HS]
−2Ex,y [〈μx ⊗ μy, φ(x) ⊗ ψ(y)〉HS] + 〈μx ⊗ μy, μx ⊗ μy〉HS

Substituting the definition of μx and μy and using that 〈φ(x), φ(x′)〉F = k(x, x′)
(and likewise for l(y, y′)) proves the claim.

A.2 Proof of Theorem 1

The idea underlying this proof is to expand trHKHL into terms depending on
pairs, triples, and quadruples (i, j), (i, j, q) and (i, j, q, r) of non-repeated terms,
for which we can apply uniform convergence bounds with U-statistics.

By definition of H we can write

trKHLH = trKL︸ ︷︷ ︸
(a)

−2m−1 1�KL1︸ ︷︷ ︸
(b)

+m−2 trKtrL︸ ︷︷ ︸
(c)

where 1 is the vector of all ones, since H = 1 − m−111� and since K,L are
symmetric. We now expand each of the terms separately and take expectations
with respect to Z.

For notational convenience we introduce the Pochhammer symbol (m)n :=
m!

(m−n)! . One may check that (m)n

mn = 1+O(m−1). We also introduce the index set
imr , which is the set of all r-tuples drawn without replacement from {1, . . . ,m}.

(a) We expand EZ [trKL] into

EZ

⎡⎣∑
i

KiiLii +
∑

(i,j)∈im2

KijLji

⎤⎦ = O(m) + (m)2 Ex,y,x′,y′ [k(x, x′)l(y, y′)]

(10)
Normalising terms by 1

(m−1)2 yields the first term in (8), since m(m−1)
(m−1)2 = 1 +

O(m−1).

(b) We expand EZ [1�KL1] into

EZ

⎡⎣∑
i

KiiLii +
∑

(i,j)∈im2

(KiiLij + KijKjj)

⎤⎦ + EZ

⎡⎣ ∑
(i,j,r)∈im3

KijLjr

⎤⎦
= O(m2) + (m)3 Ex,y [Ex′ [k(x, x′)]Ey′ [l(y, y′)]]

Again, normalising terms by 2
m(m−1)2 yields the second term in (8). As with (a)

we used that m(m−1)(m−2)
m(m−1)2 = 1 + O(m−1).

76 A. Gretton et al.

(c) As before we expand EZ [trKtrL] into terms containing varying numbers of
identical indices. By the same argument we obtain

O(m3) + EZ

⎡⎣ ∑
(i,j,q,r)∈im4

KijLqr

⎤⎦ = O(m3) + (m)4 Ex,x′[k(x, x′)]Ey,y′ [l(y, y′)].

(11)
Normalisation by 1

m2(m−1)2 takes care of the last term in (8), which completes
the proof.

A.3 Proof of Theorem 3

As in the proof in Appendix A.2, we deal separately with each of the three terms
in (8), omitting for clarity those terms that decay as O(m−1) or faster.12 Denote
by PZ the probability with respect to m independent copies (xi, yi) drawn from
pxy. Moreover, we split t into αt+βt+(1−α−β)t where α, β > 0 and α+β < 1.
The probability of a positive deviation t has bound

PZ{HSIC(Z,F ,G)−HSIC(pxy,F ,G) ≥ t}

≤ PZ

⎧⎨⎩Ex,y,x′,y′ [k(x, x′)l(y, y′)]− 1
(m)2

∑
im2

Ki1i2Li1i2 ≥ αt

⎫⎬⎭
+PZ

⎧⎨⎩Ex,y[Ex′ [k(x, x′)]Ey′ [l(y, y′)]]− 1
(m)3

∑
im3

Ki1i2Li2i3 ≥
β

2
t

⎫⎬⎭
+PZ

⎧⎨⎩Ex,x′[k(x, x′)]Ey,y′ [l(y, y′)]− 1
(m)4

∑
im4

Ki1i2Li3i4 ≥
1− α− β

t

⎫⎬⎭
Using the shorthand z := (x, y) we define the kernels of the U-statistics in
the three expressions above as g(zi, zj) = KijLij , g(zi, zj , zr) = KijLjr and
g(zi, zj, zq, zr) = KijLqr. Finally, employing Theorem 2 allows us to bound the
three probabilities as

e−2mt2 α2
2 , e−2mt2 β2

3×4 , and e−2mt2 (1−α−β)2

4 ,

Setting the argument of all three exponentials equal yields α2 > 0.24: conse-
quently, the positive deviation probability is bounded from above by 3e−α2mt2 .
The bound in Theorem 2 also holds for deviations in the opposite direction, thus
the overall probability is bounded by doubling this quantity. Solving for t yields
the desired result.
12 These terms are either sample means or U-statistics scaled as m−1 or worse, and are

thus guaranteed to converge at rate m−1/2 according to reasoning analogous to that
employed below. Thus, we incorporate them in the C/m term.

Measuring Statistical Dependence with Hilbert-Schmidt Norms 77

A.4 Proof of Lemma 2

Computing A and B costs O(md2
f) and O(md2

g) time respectively. Next note
that

trH(AA�)H(BB�) = tr
(
B�(HA)

) (
B�(HA)

)�
= ‖(HA)�B‖2HS

Here computing (HA) costs O(mdf) time. The dominant term in the remainder
is the matrix-matrix multiplication at O(mdfdg) cost. Hence we use

H̃SIC(Z;F ,G) := (m− 1)−2‖(HA)�B‖2HS.

B HSIC Derivation of Achard et al.

Achard et al. [1] motivate using HSIC to test independence by associating the
empirical HSIC with a particular population quantity, which they claim is zero if
and only if the random variables being tested are independent. We now examine
their proof of this assertion. The derivation begins with [1–Lemma 2.1], which
states the components xi of the random vector x are mutually independent if
and only if

Ex

[
n∏

i=1

k(xi − yi)

]
=

n∏
i=1

[Exik(xi − yi)] ∀y1, . . . , ym, (12)

as long as the kernel k has Fourier transform everywhere non-zero (here yi are
real valued offset terms). Achard et al. claim that testing the above is equivalent
to testing whether Q(x) = 0, where

Q(x) =
1
2

∫ (
Ex

[
n∏

i=1

k

(
xi

σi
− yi

)]
−

n∏
i=1

[
Exik

(
xi

σi
− yi

)])2

dy1 . . . dyn,

(13)
for scale factors σi > 0 (the empirical HSIC is then recovered by replacing the
population expectations with their empirical counterparts, and some additional
manipulations). However Q(x) = 0 tells us only that (12) holds almost surely,
whereas a test of independence requires (12) to hold pointwise. In other words,
Q(x) = 0 does not imply x are mutually independent, even though mutual
independence implies Q(x) = 0.

An Analysis of the Anti-learning Phenomenon
for the Class Symmetric Polyhedron

Adam Kowalczyk1 and Olivier Chapelle2

1 National ICT Australia and RSISE,
The Australian National University, Canberra, Australia

adam.kowalczyk@nicta.com.au
2 Max Planck Institute for Biological Cybernetics,

Tübingen, Germany
olivier.chapelle@tuebingen.mpg.de

Abstract. This paper deals with an unusual phenomenon where most
machine learning algorithms yield good performance on the training set
but systematically worse than random performance on the test set. This
has been observed so far for some natural data sets and demonstrated
for some synthetic data sets when the classification rule is learned from
a small set of training samples drawn from some high dimensional space.

The initial analysis presented in this paper shows that anti-learning is
a property of data sets and is quite distinct from over-fitting of a train-
ing data. Moreover, the analysis leads to a specification of some machine
learning procedures which can overcome anti-learning and generate ma-
chines able to classify training and test data consistently.

1 Introduction

The goal of a supervised learning system for binary classification is to classify
instances of an independent test set as well as possible on the basis of a model
learned from a labeled training set. Typically, the model has similar classifica-
tion behavior on both the training and test sets, i.e., it classifies training and
test instances with precision higher than the expected accuracy of the random
classifier. Thus it has what we refer to as “the learning mode”. However, there
are real life situations where better than random performance on the training set
yields systematically worse than random performance on the off-training test set.
One example is the Aryl Hydrocarbon Receptor classification task in KDD Cup
2002 [3, 9, 11]. These systems exhibit what we call “the anti-learning mode”. As
it has been discussed in [8], anti-learning can be observed in publicly available
microarray data used for prediction of cancer outcomes, which can show both
learning and anti-learning mode, depending on the features selected.

In this paper however, we focus on synthetic data which facilitates rigorous
analysis. The aim is to demonstrate rigorously that anti-learning can occur,
and can be primarily a feature of the data as it happens for many families of
algorithms, universally across all setting of tunable parameters. In particular,
we analyse a task of classification of binary labeled vertices of a class symmetric
polyhedron embedded in a sphere (Section 2). The classification task seems to

S. Jain, H.U. Simon, and E. Tomita (Eds.): ALT 2005, LNAI 3734, pp. 78–91, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

An Analysis of the Anti-learning Phenomenon 79

be very easy: the data is linearly separable and any two labeled vertices can
unravel all labels. However, this simplicity is very deceptive: we prove in Section 3
that none of the wide range of well establish algorithms such as perceptron,
Support Vector Machines, generalised regression, κ-nearest neighbours can learn
to classify consistently the data. In fact, given a proper subset of the domain to
train, they can easily learn to classify it, but they always totally misclassify the
remaining data. This effect is very different from poor generalization abilities
where a classifier would perform close to random: here the predictions on the
test set are not random, they are exactly the opposite of what they should be. In
Section 3.2 we show that there exists kernel transformations which can actually
change perfect anti-learning data into perfectly learnable data. Finally, Section 4
discuses the results.

2 Geometry of Class Symmetric Kernels

Let S be a set of labeled examples {(xi, yi)}i∈S ⊂ X×{−1,+1} indexed uniquely
by the index set S, with X ⊂ RN . We are interested in classification rules of the
form sign ◦ f : X → {−1,+1}, where f = A(T). A may also depend on some
hyperparameters such as kernel k : X×X → R, the regularization constant, etc.

2.1 Performance Measures

Assume we are given f : X → R and a non-void test subset

T = {(xi, yi)}i∈T ⊂ S

indexed uniquely by T ⊂ S and containing samples from both labels.

Accuracy. We define the accuracy of the decision rule x �→ sign(f(x)) as

acc(f, T) =
1
2

∑
y=±1

PT

(
yjf(xj) > 0 | yj = y

)
Here PT denotes the frequency calculated for the subset T ⊂ S. Note this is the
balanced performance measure, independent of prior distribution of data classes.

Area Under ROC. For f as above, we use the Area under the Receiver Oper-
ating Characteristic curve, AROC(f, T)1, the plot of true vs. false positive rate,
as another performance measure. Following [1] we use the formula

aroc(f, T) = PT

(
f(xi) < f(xj) | yi = −1, yj = 1

)
+

1
2

PT

(
f(xi) = f(xj) | yi
= yj

)
1 Also known as the area under the curve, AUC; it is essentially the well known order

statistics U .

80 A. Kowalczyk and O. Chapelle

Note that the second term in the above formula takes care of ties, when instances
from different labels are mapped to the same value.

The expected value of both aroc(f, T) and acc(f, T) for the trivial, uni-
formly random predictor f , is 0.5. This is also the value for these metrics for
the trivial constant classifier mapping all T to a constant value, ±1. Note the
following fact:

aroc(f, T) = 1 ⇔ ∃C, ∀i ∈ T, yi(f(xi)− C) > 0; (1)
aroc(f, T) = 0 ⇔ ∃C, ∀i ∈ T, yi(f(xi)− C) < 0. (2)

Remark 1. There are at least two reasons why we use aroc in this paper.

1. aroc is a widely used measure of classifier performance in practical applica-
tions, especially biological and biomedical classification. As we have indicated
in the introduction, this paper is step toward understanding anti-learning in
biomedical classification problems, so explicit usage of aroc makes a direct
link to such applications.

2. aroc is independent of an additive bias term while accuracy or error rate
are critically dependent on a selection of such a term. For instance, acc(f +
b, T) = 0.5 for any b ≥ max(f(T)), even if acc(f, T) = 0. Typically, in such
a case other intermediate values for acc(f + b′, T) could be also obtained
for other values of the bias b′. However, aroc(f + b, T) = const, since aroc
depends on the order in the set (f + b)(T) ⊂ R and this is independent of
the additive constant b. (Note that modulo a constant factor, aroc is a well
known order statistic U [1].) �

2.2 Class Symmetric Matrices

Now we introduce the basic object for theoretical analysis in this paper. In order
to simplify deliberations we consider synthetic datasets for which the entries in
the Gram matrix depend only on the classes of the corresponding points.

Definition 1. A matrix [kij]i,j∈S is called class symmetric if there exists con-
stants r > 0 and cy ∈ R for y ∈ {0,±1} such that for i, j ∈ S,

kij := k(xi,xj) =

⎧⎨⎩
r2, i = j
r2cyi , yi = yj, i
= j
r2c0, yi
= yj

(3)

We will also say that the kernel k is class symmetric on S.

Now we establish a necessary and sufficient condition on the coefficients of
this matrix for it to be a positive definite kernel matrix.

Lemma 1. The following conditions are equivalent:
(i) For Dy := 1−cy

ny
+ cy, where ny := |i ∈ S ; yi = y| for y = ±1 we have

D+D− > c20, Dy > 0 and 1− cy > 0 for y = ±1; (4)

(ii) The matrix [kij]i,j∈S defined by (3) is positive definite;
(iii) There exist linearly independent vectors zi ∈ R|S|, such that kij = zi ·zj

for any i, j ∈ S.

An Analysis of the Anti-learning Phenomenon 81

See Appendix for the proof.
The points zi as above belong to the sphere of radius r centered at the

origin. They are vertices of a class symmetric polyhedron, (CS-polyhedron), of
n = |S| vertices and n(n + 1)/2 edges. The vertices of the same label y form
an ny-simplex, with all edges of constant length dy := r

√
2− 2cy, y = ±1.

The distances between any pair of vertices of opposite labels are equal to d0 :=
r
√

2− 2c0. Note that the linear independence in Lemma 1 insures that the dif-
ferent labels on CS-polyhedron are linearly separable.

It is interesting to have a geometrical picture of what happens in the case
cy < c0, y± 1. In that case, each point is nearer to all the points of the opposite
class than to any point of the same class. In this kind of situation, the nearest
κ-neighbors classifier would obviously lead to anti-learning. Thus we have:

Proposition 1. Let κ > 1 be an odd integer, k be an CS-kernel on S, and T
contains > κ/2 points from each label. If cy < c0 for y ± 1, then the κ-nearest
neighbours algorithm fκ based on the distance in the feature space, ρ(x,x′) :=√

2r2 − 2k(x,x′), will allocate opposite labels to every point in S, i.e. acc(fκ, S)
= aroc(fκ, S) = 0.

An example of four point perfect anti-learning subset S ⊂ R3 is given in Figure 1.

Fig. 1. Elevated XOR - an example of the perfect anti-learning data in 3-dimensions.
The z-values are ±ε. The linear kernel satisfies the CS-condition (3) with r2 = 1 +
ε2, c0 = −ε2r−2 and c−1 = c+1 = (−1 + ε2)r−2. Hence the perfect anti-learning
condition (6) holds if ε < 0.5. It can be checked directly, that any linear classifier
such as perceptron or maximal margin classifier, trained on a proper subset misclassify
all the off-training points of the domain. This can be especially easily visualized for
0 < ε � 1.

The geometry of CS-polyhedron can be hidden in the data. An example
which will be used in our simulations follows.

Example 1 (Hadamard matrix). Hadamard matrices are special (square) orthog-
onal matrices of 1’s and -1’s. They have applications in combinatorics, signal

82 A. Kowalczyk and O. Chapelle

processing, numerical analysis. An n × n Hadamard matrix, Hn, with n > 2
exists only if n is divisible by 4. The Matlab function hadamard(n) handles only
cases where n, n/12 or n/20 is a power of 2. Hadamard matrices give rise to
CS-polyhedrons So(Hn) =

{
(xi, yi)

}
i=1,...,n

⊂ Rn−1. The recipe is as follows.
Choose a non-constant row and use its entries as labels yi. For data points,
x1, ...,xn ∈ Rn−1, use the columns of the remaining (n− 1)× n matrix. An ex-
ample of 4× 4-Hadamard matrix, the corresponding data for the 3-rd row used
as labels and the kernel matrix follows :

H4 =

⎡⎢⎢⎣
1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

⎤⎥⎥⎦ ; y =

⎡⎢⎢⎣
1
1
−1
−1

⎤⎥⎥⎦ ; [x1, ...,x4] =

⎡⎣1 1 1 1
1 −1 1 −1
1 −1 −1 1

⎤⎦ ;

[kij] =

⎡⎢⎢⎣
3 −1 1 1
−1 3 1 1

1 1 3 −1
1 1 −1 3

⎤⎥⎥⎦ .

Since the columns of Hadamard matrix are orthogonal, from the above con-
struction we obtain xi ·xj+yiyj = nδij . Hence the dot-product kernel k(xi,xj) =
xi · xj satisfies (3) with c0 = −cy = 1/(n− 1) and r2 = n− 1.

Note that the vectors of this data set are linearly dependent, hence this set
does not satisfy Lemma 1 (condition (iii) does not hold). It is instructive to
check directly that the first inequality in (4) is violated as well. Indeed, in such
case we have Dy = 1

n−1 , hence the equality D+D− = c20 holds.
In order to comply strictly with Lemma 1, one of the vectors from So(Hn)

has to be removed. After such removal we will have a set of n − 1 vectors in
the n− 1 dimensional space which are linearly independent. This can be easily
checked directly, but also we check equivalent condition (ii) of Lemma 1. Indeed,
in such a case we obtain D+ = n+2

(n−1)(n−2) and D− = 1
n−1 assuming that the

first, constant vector (with the positive label) has been removed. Hence,

D+D− =
n + 2

(n− 1)2(n + 2)
>

1
(n− 1)2

= c20

and all inequalities in (4) hold.
We shall denote this truncated Hadamard set by S(Hn).

3 Perfect Learning/Anti-learning Theorem

Standing Assumption: In order to simplify our considerations, from now
on we assume that ∅
= T ⊂ S is a subset such that both T and S\T contain
examples from both labels.

Now we consider the class of kernel machines [4, 12, 13]. We say that the
function f : X → R has a convex cone expansion on T or write f ∈ cone(k, T),
if there exists coefficients αi ≥ 0, i ∈ T, such that α
= 0 and

An Analysis of the Anti-learning Phenomenon 83

f(x) =
∑
i∈T

yiαik(xi,x) for every x ∈ X. (5)

As for the κ-nearest neighbours algorithm (see Proposition 1) the learning
mode for kernel machines with CS-kernel depends on the relative values of cy

and c0. More precisely, the following theorem holds.

Theorem 1. If k is a positive definite CS-kernel on S then the following three
conditions (the perfect anti-learning) are equivalent:

cy < c0 for y = ±1, (6)
∀T ⊂ S, ∀f ∈ cone(k, T), aroc(f, S\T) = 0, (7)

∀T ⊂ S, ∀f ∈ cone(k, T), ∃b ∈ R, acc(f + b, S\T) = 0, (8)

Likewise, the following three conditions (the perfect learning) are equivalent

cy > c0 for y = ±1, (9)
∀T ⊂ S, ∀f ∈ cone(k, T), aroc(f, S\T) = 1, (10)

∀T ⊂ S, ∀f ∈ cone(k, T), ∃b ∈ R, acc(f + b, S\T) = 1, (11)

Proof. For f as in (5), (3) holding for the CS-kernel k and b :=
∑

i∈T
αiyic0, we

have

yj

(
f(xi)− b

)
= yj

∑
i∈T

αiyi(kij − c0)=
∑

i∈T,yi=yj

αi(cyj − c0)−
∑

i∈T,yi
=yj

αi(c0 − c0)

=
{

< 0, if (6) holds;
> 0, if (9) holds;

for j ∈ S − T. This proves immediately the equivalences (6) ⇔ (8) and (9) ⇔
(11), respectively. Application of (1) and (2) completes the proof. ��

Note that for the Hadamard matrix example given above, cy = − 1
n−1 <

1
n−1 = c0 and the perfect anti-learning condition holds. See also the caption of
figure 1 for the XOR problem.

A number of popular supervised learning algorithms outputs solutions f(x)+
b where f ∈ cone(k, T) and b ∈ R. This includes the support vector machines
(both with linear and non-linear kernels) [2, 4, 12], the classical, kernel or voting
perceptron [5]. The class cone(k, T) is convex, hence boosting of weak learners
from cone(k, T) produces also a classifier in this class. Others algorithms, such
as regression or the generalized (ridge) regression [4, 12] applied to the CS-kernel
k on T , necessarily output such a machine. Indeed the following proposition holds

Proposition 2. Let k be a positive definite CS-kernel on S. The kernel ridge
regression algorithm minimizes in feature space,

R = λ‖w‖2 +
∑
i∈T

ξ2
i , with ξi := 1− yi(w · Φ(xi) + b),

and the optimal solution x �→ w · Φ(x) ∈ cone(k, T)

84 A. Kowalczyk and O. Chapelle

Proof. It is sufficient to consider the linear case, i.e. f(x) = w · x + b. Due to
the linear independence and class symmetry in vectors xi, the vector w has the
unique expansion

λw =
∑

i

yiξixi = ξ+
∑

i,yi=+1

xi − ξ−
∑

i,yi=−1

xi.

Both slacks ξ+ and ξ− are ≥ 0 at the minimum. Indeed, if one of them is < 0, we
can “shrink” ‖w‖, i.e. the replacement w← aw, where 0 < a < 1, and adjust b,
in a way which will decrease the magnitude of this slack leaving the other one
unchanged. So R would decrease. This contradicts that (w, b) minimizes R. ��

3.1 Transforming the Kernel Matrix

Consider the case where the linear kernel klin(xi,xj) := xi · xj applied to some
data (such as the Hadamard matrix) yields a CS-kernel for which anti-learning
occurs (i.e. cy < c0, y ± 1 from the Theorem 1). A natural question arises: can
we instead apply a non-linear kernel which would suppress anti-learning?

First note that several non-linear kernels can be expressed as a composition
with the linear kernel k = ϕ ◦ klin. For instance, the polynomial kernel of degree
d, kd = (klin + b)d or the Gaussian kernel

kσ(xi,xj) = exp
(
−‖xi − xj‖2

σ2

)
= exp

(
−‖xi‖2 + ‖xj‖2 − 2klin(xi,xj)

σ2

)
.

Indeed, if k is a class symmetric kernel satisfying (3) then kσ = ϕ1◦k, where ϕ1 :
ξ ∈ R �→ exp

(−2(r2 − ξ)/σ2
)

is a monotonically increasing function. Similarly,
for the odd degree d = 1, 3, ... we have kd = ϕ2 ◦k, where ϕ2 : ξ ∈ R �→ (ξ + b)d,
ξ ∈ R, is a monotonically increasing function.

Note that when this composition function is a monotonically increasing one,
the relative order of cy and c0 in the new non-linear kernel matrix will be un-
changed and anti-learning will persist.

Corollary 1. Let k, k′ be two positive definite kernels on S such that k′ = ϕ ◦ k
where ϕ : R→ R is a function monotonically increasing on the segment (a, b) ⊂
R containing all c−1, c+1 and c0. Then if one of these kernels is class symmetric,
then the other on is too; if one is perfectly anti-learning (perfectly learning,
respectively), then the other one is too.

In the next section, we introduce a non-monotonic modification of the kernel
matrix which can overcome anti-learning.

3.2 From Anti-learning to Learning

Consider the special case of a CS−kernel with c0 = 0, i.e. when examples from
opposite labels are positioned on two mutually orthogonal hyperplanes. Accord-
ing to theorem 1, anti-learning will occur if cy < 0, for y ∈ {±1}. A way to
reverse this behavior would be for instance to take the absolute values of the

An Analysis of the Anti-learning Phenomenon 85

−3 −2.5 −2 −1.5 −1 −0.5 0
0

0.2

0.4

0.6

0.8

1

Noise level (log scale)

A
cc

ur
ac

y Poly 1

Poly 2

Poly 3

Poly 4

Fig. 2. Switch from anti-learning to learning upon non-monotonic transformation of
the kernel, Theorem 2. Plots show independent test set accuracy, average over 30 trials.
For the experiments we have used Hadamard data set S(H128), see Example 1 of Section
2.2, with the gaussian noise N (0, σ) added independently to each data matrix entry.
The data set has been split randomly into training and test sets (respectively two
thirds and one third). We have used the hard margin SVM exclusively, so the training
accuracy was always 1. We plot averages for 30 repeats of the experiments and also
the standard deviation bars. We have used four different kernels, the linear kernel
k1 = klin and its three non-monotonic transformations, kd := (klin − ĉ0)d, d = 2, 3, 4,
where ĉ0 := meanyi �=yj

xi·xj

‖xi‖ ‖xj‖ was estimated from the training data.

kernel matrix such that the new cy becomes positive. Then, according to Theo-
rem 1 again, perfect learning could take place.

This is the main idea behind the following theorem which makes it possible
to go from anti-learning to learning, for the CS-kernel case at least. Its main
task here is to establish that the new kernel matrix is positive definite.

Theorem 2. Let k be a positive definite CS-kernel on S and ϕ : R → R be a
function such that ϕ(0) = 0 and

0 < ϕ(−θ) ≤ ϕ(θ) ≤ ϕ(θ′) for 0 < θ ≤ θ′. (12)

Then kϕ := ϕ(k− c0), is a positive definite CS-kernel on S satisfying the perfect
learning condition (9) of Theorem 1.

Note that this theorem shows an advantage of using kernels for formulating the
results of this paper. Indeed, the claims of this section are straightforward to
formulate and prove using CS-kernels but next to impossible directly.

Proof. It is easy to see that the kernel kϕ satisfies conditions (3) of CS-symmetry
with coefficients r2

ϕ := ϕ(r2(1 − c0)) > 0, cϕ,0 = 0 and cϕ,y := ϕ
(
r2(cy −

c0)
)
/ϕ
(
r2(1 − c0)

)
> cϕ,0 = 0 for y = ±1. Now a straightforward algebra gives

the relation

Dϕ,y =
1− cϕ,y

ny
+ cϕ,y ≥ cϕ,y

(
1− 1

ny

)
> 0 = |cϕ,0|,

86 A. Kowalczyk and O. Chapelle

hence the first two conditions of (4) holds. The last condition of (4) is equivalent
to ϕ

(
r2(cy − c0)

)
< ϕ

(
r2(1 − c0)

)
. When cy − c0 ≥ 0, this is satisfied thanks

to (12) and the last condition of (4). When cy − c0 ≤ 0, we have 2c0 − cy <

cy +2 1−cy

ny
= cy(1− 2

ny
)+ 2

ny
< 1, the first (resp. second) inequality coming from

the first (resp. second) condition of (4). This gives −(cy − c0) < 1 − c0 and the
desired result through (12). ��

The examples of functions ϕ satisfying the above assumptions are θ �→ |θ|d,
d = 1, 2, ..., leading to a family of Laplace kernels |k − c0|d [13]; this family
includes polynomial kernels (k − c0)d of even degree d. This is illustrated by
simulation results in Figure 2.

4 Discussion

CS-Polyhedrons in Real Life. The CS-polyhedron is a very special geomet-
rical object. Can it emerge in more natural settings? Surprisingly the answer is
positive. For instance, [6] have shown that it emerges for a high dimensionial
dataset with low sample size. They studied a non-standard asymptotic, where
the dimension tends to infinity while the sample size is fixed. Their analysis
shows a tendency for the data to lie deterministically at the vertices of a CS-
polyhedron. Essentially all the randomness in the data appears as a random
rotation of this polyhedron. This CS-polyhedron is always of the perfect learn-
ing type, in terms of Theorem 1. All abnormalities of support vector machine
the authors have observed, reduce to sub-optimality of the bias term selected by
the maximal margin separator.

CS-polyhedron structure can be also observed in some biologically motivated
models of growth under constraints of competition for limited resources [7, 8].
In this case the models can generate both perfectly learning and perfectly anti-
learning data, depending on modeling assumptions.

Relation to Real Life Data. As mentioned already in the introduction, the
example of the Aryl Hydrocarbon Receptor used in KDD’02 Cup competition
is unsual: this dataset shows strong anti-learning while modeled by ordinary
two-class SVM, but is “learnable” if non-standard one-class SVM is used, and
this behavior changes abruptly if the continuous transition from one model to
the other is used [9, 11]. In [7] this has been also shown to be the case for
a dedicated CS-polyhedron model, which with an addition noise, reproduces
closely also other results observed for the KDD’02 data.

Anti-learning is not Over-Fitting. In a complete over-fitting situation, a
supervised learning algorithm generates a classifier performing on a level of ran-
dom guessing. Such a classifier does not allow to discern any useful information
for classification of independent data, yielding AROC ≈ 0.5. This is not the case
of anti-learning. In its perfect form (Theorem 1) we obtain a predictor f which
perfectly misclassify the test data, AROC(f, S\T) = 0, hence its negation, −f ,
allows to recover the ordering fully consistent with labels, AROC(−f, T−S) = 1.

An Analysis of the Anti-learning Phenomenon 87

Noise Suppresses Anti-learning. Furthermore, the anti-learning occurs for a
data set, or more generally a kernel, with the special “symmetries”. Addition of
random noise suppresses these symmetries and kills the anti-learning effect. This
is vividly demonstrated in Figure 2, where in tune with the increased variance
of noise in the data, the average accuracy on the test set for the linear SVM
increases from ≈ 0 to the average level of random guessing, ≈ 0.5. At the same
time, for the transformed quadratic kernel SVM, for which learning occurs in
line with the predictions of Theorem 2, the average accuracy decreases from ≈ 1
to the average level of random guessing, ≈ 0.5.

Relation to Some Other Research. Anti-learning should not be mixed with
No-Free-Lunch theorems promoted by Wolpert [15]. The “No-Free-Lunch” type
results make statements about averages across all target concepts (this is the
crux of all its incarnations), while anti-learning deals with a single, very special,
target concepts at a time and makes statements on behavior of wide classes of
algorithms. However, anti-learnable datasets are constructive examples of data
where many standard supervised learning algorithms have high error rate on the
test data, a phenomenon envisaged by the No-Free-Lunch Theorems.

There are some similarities of this paper with another recent one [14]. Both
studies make use of Hadamard matrices and discuss problems with using classi-
fiers within the span of the training set. However, the main differences are as fol-
lows. (i) The setting of [14] is more about feature selection since the target vector
is still part of the data matrix and the goal is to identify it. (ii) Their results are
about regression (square loss). (iii) Like in the case of No-Free-Lunch Theorem,
claims in [14] are about averages across multiple learning target concepts and
also across both, the combined the training and the test sets. However, in this
paper we are in position to evaluate the performance on each of these data sets
separately and for a single target concept at a time. (iv) In our study Hadamard
matrix is only one example of CS-polyhedrons displaying anti-learning. This is
clear from the main Theorem 1. Thus our results are applicable to a wider class
of datasets.

Deceptive Simplicity of Classification of CS-Polyhedrons. In the per-
fect anti-learning setting two labeled samples are sufficient to classify perfectly
all data. To be concrete, let us consider the perfect anti-learning CS-kernel k
on (xi, yi)i∈S ⊂ RN , see (6). Given two labeled examples, say io and jo, the
classification rule

x ∈ RN �→=
{

yjo , if k(xio ,x) = k(xio ,xjo);
−yjo , otherwise,

perfectly allocates labels the whole space S. However, many well established
“work-horses” of machine learning, such as SVM, ridge regression, perceptron,
voting perceptron, k-nearest neighbours is provably unable to discover solutions
(existing in their hypothesis spaces) doing this task, even when given all but two
points for the training. Thus this is not the problem of “inadequate” hypothesis
space or too poor representation. In fact the algorithms always find rules which

88 A. Kowalczyk and O. Chapelle

systematically miss-order any two data points of different labels not included in
the training. And boosting these “weak learners” leads to the similar result.

All this can be interpreted as follows. These learning algorithms are unable
to estimate the distribution of labels in the data space, since the samples is too
small. However, they are capable of discerning hidden “patterns” in the data
very efficiently. Thus they learn although in a different way than expected. How
to harness this capability is another issue.

Non-linear Classifiers. Theorem 2 shows however, that at least in some sit-
uations, a non-linear transformation of the kernel can convert an anti-learning
task into a learning task. In the future we will also present some ensemble based
machine learning algorithms capable of achieving this goal.

Relation to Machine Learning Theory. Anti-learning is relevant to spe-
cial cases of the classification, when inference is to be done form a very small
training sample from a very high dimensional space. This occurs especially in
bio-informatics [9, 11, 8, 7]. It is worth to note that this is the regime where
ordinary machine theory and statistics is void. In particular, this paper does not
contradict the VC theory [13] which states that the training error and the test
error should be close to each other when the number of training samples is signif-
icantly larger than the VC dimension (i.e. capacity) of the learning system. In all
the anti-learning examples we encountered here the number of learning examples
is always not larger than the number of dimensions (i.e. VC-dimension).

Learning Distributed Concepts. An interesting observation on anti-learning
has been made by J. Langford [10], where anti-learning is linked to learning
concepts which are distributed, rather than concentrated.

Final Summary. This study is a primarily introduction to a phenomenon of
anti-learning. We have concentrated on a very simple synthetic data set for
which anti-learning can be demonstrated formally for a large classes of learning
algorithms. This dataset class is so simple that it can be analyzed analytically,
but it is also rich enough to demonstrate unexpected and novel behavior of many
“standard” learning algorithms. But we must stress, that the motivation for this
research comes from real life cancer genomic data sets (unpublished at this stage)
which consistently display anti-learning behavior. Obviously, this is not exactly
the perfect anti-learning, but rather a consistent performance below random
guessing on an independent test set. So this paper is an initial step in an attempt
to understand properties of some real datasets and ultimately to work out the
practical ways to deal with such non-standard leaning problems. Its aim is also
to build awareness and initial acceptance for this class of learning problems and
to encourage other researchers to come forward with datasets which do display
such “counter-intuitive” properties, rather than dismissing them as non-sense.
(This last point reflects also our personal experience.)

It is too early to draw any definite conclusions in this paper, as to whether and
how anti-learning data sets should be dealt with. Our Theorem 2 says how to deal
with some classes of anti-learning data, i.e. the CS-kernels or, equivalently, of
CS-polyhedrons. However, such transformations are ineffective for noisy real life

An Analysis of the Anti-learning Phenomenon 89

anti-learning data we are interested in. Thus alternative, more robust techniques
to deal with this issue have still to be investigated. We would like to add that
the standard approach to learning from a small size sample, namely aggressive
feature selection, does not solve the problem, at some real life cases at least. In
particular, this is demonstrated by experimental results reported in [8, 11].

Future Research. There is a number of directions this research can be ex-
tended to in future. We shall list some of our current preferences now.

1. Identify and research novel examples of anti-learning datasets, both synthetic
and natural.

2. Develop techniques for consistent classification of anti-learning data.
3. Research techniques capable of seamless learning from both learnable and

anti-learnable datasets.
4. Study the problem of regression (square loss) for the anti-learning datasets.
5. Research iid sampling models, in particular learning curves, for the anti-

learning datasets.

5 Conclusions

Anti-learning does occur in some machine learning tasks when inference is done
from very low sample sizes in high dimensional feature spaces. This warrants
radical re-thinking of basic concepts of learnability and generalization which are
currently totally biased towards the “learning mode” of discerning the knowl-
edge from data. It also warrants further research into theoretical analysis and
development of practical methods for dealing with anti-learning problems, since
such do occur in important real life applications.

Acknowledgements

Many thanks to Cheng Soon Ong, Alex Smola and Grant Baldwin for help in
preparation of this paper and to Manfred Warmuth and S.V.N. Vishwanathan
for clarifying discussions.

National ICT Australia is funded by the Australian Government’s Depart-
ment of Communications, Information Technology and the Arts and the Aus-
tralian Council through Baking Australia’s Ability and the ICT Center of Ex-
cellence program.

This work was supported in part by the IST Programme of the European
Community, under the PASCAL Network of Excellence, IST-2002-506778. This
publication only reflects the authors’ views.

References

[1] D. Bamber, The area above the ordinal dominance graph and the area below the
receiver operating characteristic graph, J. Math. Psych. 12 (1975), 387 – 415.

[2] C. Cortes and V. Vapnik, Support vector networks, Machine Learning 20 (1995),
273 – 297.

90 A. Kowalczyk and O. Chapelle

[3] M. Craven, The Genomics of a Signaling Pathway: A KDD Cup Challenge Task,
SIGKDD Explorations 4(2) (2002).

[4] N. Cristianini and J. Shawe-Taylor, An introduction to support vector machines
and other kernel-based learning methods, Cambridge University Press, Cambridge,
2000.

[5] Y. Freund and R.E. Schapire, Large margin classification using the perceptron
algorithm, Machine Learning 37 (1999), 277–296.

[6] P. Hall, J. S. Marron, and A. Neeman, Geometric representation of high dimension
low sample size data, preprint, to appear in the Journal of the Royal Statistical
Society, Series B, 2005.

[7] A. Kowalczyk, O. Chapelle, and G. Baldwin, Analysis of the anti-learning phe-
nomenon, http://users.rsise.anu.edu.au/∼akowalczyk/antilearning/, 2005.

[8] A. Kowalczyk and C.S. Ong, Anti-learning in binary classification,
http://users.rsise.anu.edu.au/∼akowalczyk/antilearning/, 2005.

[9] A. Kowalczyk and B. Raskutti, One Class SVM for Yeast Regulation Prediction,
SIGKDD Explorations 4(2) (2002).

[10] J. Langford, 2005, http://hunch.net/index.php?p=35.
[11] B. Raskutti and A. Kowalczyk, Extreme re-balancing for SVMs: a case study ,

SIGKDD Explorations 6 (1) (2004), 60–69.
[12] B. Schölkopf and A. J. Smola, Learning with Kernels: Support Vector Machines,

Regularization, Optimization and Beyond, MIT Press, 2001.
[13] V. Vapnik, Statistical learning theory, Wiley, New York, 1998.
[14] M.K. Warmuth and S.V.N. Vishwanathan, Leaving the Span, COLT 2005, to ap-

pear.
[15] D.H. Wolpert, The supervised learning no-free-lunch theorems, World Conference

on Soft Computing 2001.

Appendix: Proof of Lemma 1, Section 2

Equivalence (ii) ⇐⇒ (iii) is a standard linear algebra result. The vectors zi

can be found with a Cholesky decomposition of k. Note that they are linearly
independent if and only if the Gram matrix k is is non-singular.

We prove the crucial equivalence (i) ⇐⇒ (ii) now. In order to simplify the
notation, without lost of generality we may assume that r2 = 1. Let us assume
that indices are ordered in such a fashion that yi = +1 for 1 ≤ i ≤ n+ and
yi = −1 for n+ < i ≤ n+ + n−. The kernel matrix can be written as follows

k = [kij] =
[

(1− c+)In+ + c+ c0
c0 (1− c−)In− + c−

]
,

where In is the (n×n) identity matrix. First we observe that k being symmetric
has n++n− linearly independent eigenvectors with real eigenvalues. Now observe
that for any vector v = (vi) = ((v+,i), 0) ∈ Rn+ × Rn− such that

∑n+
i=1 v+,i = 0

we have kv = (1− c+)v. Thus this is an eigenvector with eigenvalue λ = 1− c+.
Obviously the subspace of such vectors has dimensionality (n+−1). Similarly we
find (n− − 1) dimensional subspace of vectors of the form (0,v−) ∈ Rn+ × Rn−

with eigenvalues λ = 1− c−.

An Analysis of the Anti-learning Phenomenon 91

The remaining two linearly independent eigenvectors are of the form v =
(v+, ..., v+, v−, ..., v−) ∈ Rn+ × Rn− , where v+, v− ∈ R. For such a vector the
eigenvector equation kbv = λv reduces to two linear equations:[

n+D+ − λ n−c0
n+c0 n−D− − λ

] [
v+

v−

]
= λ

[
v+

v−

]
.

This 2 × 2 matrix has positive eigenvalues if and only if its determinant and
trace are positive or equivalently if D+D− > c20 and Dy > 0, y = ±1. ��

Learning Causal Structures Based on Markov
Equivalence Class

Yang-Bo He1,2, Zhi Geng2, and Xun Liang1

1 Institute of Computer Science and Technology,
Peking University, Beijing 100871, China
{heyangbo, liangxun}@icst.pku.edu.cn

2 The Mathematic College of Peking University, Beijing 100871, China
zgeng@math.pku.edu.cn

Abstract. Because causal learning from observational data cannot
avoid the inherent indistinguishability for causal structures that have the
same Markov properties, this paper discusses causal structure learning
within a Markov equivalence class. We present that the additional causal
information about a given variable and its adjacent variables, such
as knowledge from experts or data from randomization experiments,
can refine the Markov equivalence class into some smaller constrained
equivalent subclasses, and each of which can be represented by a chain
graph. Those sequential characterizations of subclasses provide an
approach for learning causal structures. According to the approach, an
iterative partition of the equivalent class can be made with data from
randomization experiments until the exact causal structure is identified.

Keywords: Bayesian networks; Causal structure; Directed acyclic
graphs; Constrained essential graph; Randomization experiments.

1 Introduction

Bayesian network is a powerful tool to represent an interested system in many
fields such as sociology, epidemiology, business and biology [2, 9]. The struc-
ture of Bayesian network can be used to represent both dependent relations
and causal relations. For example, in bioinformatics, Friedman [3] used them
to provide a concise representation of complex cellular networks by composing
simpler submodels, and Jansen et al. [5] developed an approach using them to
predict protein-protein interactions genome-wide in yeast. In those applications,
directed acyclic graphs (DAG) are used to represent both dependent and causal
structures[7, 8]. It’s crucial to discover the structure of a DAG for understanding
the interested system represented by it or for doing some uncertainty inference
with it [6].

There are many methods of causal structure discovery, and the main methods
are Bayesian methods [2, 4] and constraint-based methods [8, 9]. From observa-
tional studies, neither Bayesian methods nor constraint-based methods can avoid
the inherent indistinguishability for DAGs that have the same Markov proper-
ties [2, 4]. When a DAG is used to depict a causal structure, its directed edges

S. Jain, H.U. Simon, and E. Tomita (Eds.): ALT 2005, LNAI 3734, pp. 92–106, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Learning Causal Structures Based on Markov Equivalence Class 93

denote causal relationships from causes to effects. To discovery exact causal rela-
tionships among variables, we need to distinguish the DAGs in the same Markov
equivalence class with additional information. Knowledge from domain experts
and data generated by interventional experiments can provide this kind of infor-
mation. Heckerman, Geiger and Chickering [4] discussed the problem of learning
Bayesian networks with the combination of knowledge and statistical data. Based
on this idea, Cooper and Yoo [2] presented a method of causal discovery from a
mixture of experimental and observational data. Tian and Pearl [9, 10] proposed
a method of discovering causal structures based on dynamic environment. All of
those methods try to discover casual structure based on Bayesian methods by
utilizing the additional information from domain experts or experimental data.

Randomization interventional experiment is often used to generate experi-
mental data that can provide the additional information to distinguishing un-
derlying causal structure from other structures in the same Markov equivalence
class. Repeated experiments on a given variable can produce the data that con-
tains the causal knowledge about the given variable and its adjacent variables.
Data from this kind of experiments can identify the causal directions of the
edges adjacent to the given variable. Because the constrain of directed acyclic
graph, the causal directions of other edges can also be identified. Consequently,
the original Markov equivalence class is refined into smaller subsets with addi-
tional knowledge. Does there exist a graph representation of those subsets? Does
there exist a repeatable framework to identify the underlying causal structure
from Markov equivalence class based on randomization experiments? All of those
questions motivate us to discuss the properties of Markov equivalence class.

In this paper, we discuss a partition of a Markov equivalence class of directed
acyclic graphs based on the causal knowledge of a given variable. This partition
divides the DAGs in the same Markov equivalence class into several subclasses.
We also present the characterizations of the partition. Those results provide
an approach for learning structures of directed acyclic graphs with data from
Markov Equivalence Class based on randomization experiments.

This paper is organized as follows. In Section 2, we introduce notation and
definitions and then review two foundational results in literatures of Markov
equivalence class. In Section 3, the theoretical results of our approach for par-
titioning a Markov equivalence class and the sequential properties of the itera-
tive partition will be discussed. Based on those results, a framework of learning
causal structure from Markov equivalence class will be presented. In Section 4,
we discuss the influence of randomization experiment on learning causal struc-
ture. Then an approach with experimental data to discover causal structure is
presented. We also give some examples to illuminate the approach. Conclusion
is discussed in Section 5.

2 Markov Equivalence Class

Verma and Pearl [12] presented a criterion to judge whether two DAGs are
Markov equivalent. This criterion provides a method for portioning DAGs into

94 Y.-B. He, Z. Geng, and X. Liang

classes in each of which DAGs have the same Markov properties. Andersson,
Madigan and Perlman [1] discussed characterization of Markov equivalence
classes of DAGs and presented essential graphs to depict Markov equivalence
classes. Below we introduce notations, definitions and related results.

A graph G is a pair (V,E), where V is a set of variables and E is a set of
edges. Let (v1, v2) denote a directed edge in E, depicted as an arrow v1 → v2 ∈ E
if (v1, v2) ∈ E and (v2, v1) /∈ E. If both (v1, v2) ∈ E and (v2, v1) ∈ E, then v1

and v2 are connected with an undirected edge, depicted as a line. The graph
G is directed if all edges of it are directed. The triple (v1, v2, v3) is called an
immorality of G if the subgraph G{v1,v2,v3} induced by (v1, v2, v3) is v1 → v2 ←
v3, where v1 and v3 are not connected by direct edge. The skeleton Gu of a graph
G = (V,E) is defined as Gu = (V,Eu), where Eu = {(v1, v2)|(v1, v2) ∈ E or
(v2, v1) ∈ E}. A directed path π of length n ≥ 1 from v to w in G is a sequence
π = {v0, v1, · · · , vn} ⊆ V of distinct variables such that v0 = v, vn = w and
either vi−1 → vi ∈ G or vi−1 − vi ∈ G for i = 1, · · · , n. A cycle is a path of
v0 = vn. A DAG is a directed graph that contains no directed cycle, and a chain
graph is a graph that contains no directed cycle. A graph is chordal if each circle
of length larger than or equal four has a chord. Let G1 ∼ G2 denote that DAGs
G1 and G2 are Markov equivalent. The essential graph G∗ is defined as

G∗ = ∪{G′|G′ ∼ G}. (1)

Here ∪ is an operation with some equivalent DAGs as input. The output of this
operation is a graph with the same skeleton as any input and its edge is directed
if and only if it occurs as a directed edge with the same orientation in every
DAGs of the input set. The essential graph G∗ represents a set of DAGs that
have the same Markov properties. Let paG(v) = (w ∈ V |w → v ∈ G) denote
the set of parents of v. We say that a variable v is a root in G if paG(v) = ∅.
The set of edges adjacent to a variable v is denoted as E(v), and e(v) is one of
configuration of it.

Figure 1 shows two graphs, one is a directed acyclic graph G with five
variables and the other is its essential graph G∗ that represents all DAGs
equivalent to G. For the graph G in Figure 1, V = (v1, · · · v5) and E =
{(v1, v2), · · · , (v3, v5)}. Because all edges are directed edges and there is no di-
rected circle, the graph G is a directed acyclic graph. The triple (v2, v5, v3), with
an induced subgraph v2 → v5 ← v3 and without direct edge between V2 and
v3, is an immorality of G. The graph G∗ in Figure 1 has the same variables and
skeleton with G. There are three undirected edges, so G∗ is not a directed graph.
Because there is no directed circle, G∗ is a chain graph. An important concept
in chain graph is the chain component; it is the biggest variable set that can
induce an undirected subgraph. The variable set τ = (v1, v2, v3, v4) is a chain
component of G∗ and v5 is a chain component with one variable. According to
the properties of chain graphs, there is no directed edge within a given chain
component and no undirected edge between any two chain components. In Fig-
ure 1, G∗ has two chain components τ and v5, and there is no directed edge in
G∗

τ and all edges between τ and v5 are directed.

Learning Causal Structures Based on Markov Equivalence Class 95

�

� �

� �

v1

v2 v3

v4 v5

�
���

�
���

� �

�
�

�
���

(G)

�

� �

� �

v1

v2 v3

v4 v5

�
��

�
��

�

�
�

�
���

(G∗)

Fig. 1. Directed acyclic graph G with five variables and its essential graph G∗. The
essential graph G∗ has two essential edges, and three undirected edges.

�

� �

� �

v1

v2 v3

v4 v5

��� ���

� �

�
�

�
��

(G1)

�

� �

� �

v1

v2 v3

v4 v5

��� ���
�

�

�
�

�
��

(G2)

�

� �

� �

v1

v2 v3

v4 v5

��� �
�	

� �

�
�

�
��

(G3)

Fig. 2. Three DAGs,G1, G2, G3 that are equivalent to the DAG G in Fig 1, Those four
DAGs have the same skeleton and the same immorality

A well-known graph-theoretic criterion for Markov equivalence of DAG is
presented by Verma and Pearl [12] as follows.

Lemma 1. Two DAGs are Markov equivalent if and only if they have the same
skeleton and the same immoralities.

If G1 and G2 have the same skeleton and the same immoralities, they are
Markov equivalence, denoted as G1 ∼ G2. The equivalence class containing G is
denoted by [G]. This lemma provides a practical criterion for deciding whether
two DAGs are Markov equivalent. Figure 2 lists all DAGs that are equivalent
to G in Figure 1. In Figure 2, three DAGs, G1,G2 and G3 have the same edges
as G regardless of their directions, that is, they have the same skeleton as G.
Moreover, there is the same immorality, v2 → v5 ← v3, in each DAG, so we can
get that {G,G1, G2, G3} form a Markov equivalence class [G] represented by G∗.

Lemma 1 presents the relationships among DAGs in a Markov equivalence
class. However, it does not concern the properties of an equivalence class as a
whole. Andersson et al. [1] introduced an essential graph to represent a Markov
equivalence class and showed the properties of essential graphs.

Lemma 2. If a graph G = (V,E) is equal to G∗
1 for some DAG G1, then G

satisfies the following conditions.

a) G is a chain graph,
b) for each chain component τ of G, Gτ is chordal, and
c) the configuration v1 → v2 − v3 does not occur as an induced subgraph of G.

From this lemma, we can get that each Markov equivalence class can be
represented by a unique chain graph defined by (1). So the chain graph G∗ is

96 Y.-B. He, Z. Geng, and X. Liang

the essential graph and can represent uniquely the Markov equivalence class
{G,G1, G2, G3} showed in Figures 1 and 2.

3 The Framework of Learning Causal Structure Based on
Markov Equivalence Class

In this section, we will present the framework of learning causal structure based
on a Markov equivalence class using additional causal information of a given
variable. In order to do so, some theoretical results about the partition of Markov
equivalence class will be given. We can get that, based on the additional causal
information, the original Markov equivalence class can be partitioned into smaller
constrained equivalence subclasses iteratively until each subclass contains only
one causal structure.

Let E(v)G be the edges adjacent to v in graph G, and a constrained subclass
of Markov equivalence class [G] is defined as

Ce(v) = {G′|G′ ∈ [G], E(v)G′ = e(v)}. (2)

Thus Cv is a set that consists of DAGs with E(v) = e(v) in the Markov equiva-
lence class [G]. A Markov equivalence class can be divided into several subclasses
by a given e(v). If v is not in any chain component of an essential graph G∗, the
directions of edges in E(v) of G∗ are determined, and thus we have Ce(v) = [G].
But if v is in some chain component of G∗, we can partition the Markov equiv-
alence class into several subclasses because there are undirected edges adjacent
to v in a chain graph, that is, the configuration of E(v) is not determined.

We use a graph to represent each subclass. Defining e(v)-constrained essential
graph as following,

G∗
e(v) = ∪{G′|G′ ∈ [G], E(v)G′ = e(v)}. (3)

Andersson et al. [1] showed that the essential graph G∗ satisfies the three con-
ditions mentioned in Lemma 2. Now we show that the e(v)-constrained essential
graph also satisfies those conditions.

Theorem 1. The graph G∗
e(v) is an e(v)-constrained essential graph, v ∈ τ and

τ is a chain component of essential graph G∗. Let H be the subgraph of G∗
e(v)

over τ . Then Hsatisfies the following conditions:

a) H is a chain graph,
b) H is chordal, and
c) the configuration v1 → v2 − v3 does not occur as an induced subgraph of H.

From the definition of G∗
e(v), we have that G∗

e(v) has the same skeleton as the
essential graph G∗ and contains all directed edges of G∗. That is, all directed
edges in G∗ is also directed in G∗

e(v). So the second condition of Theorem 1
holds obviously. The third condition of Theorem 1 also holds because all DAGs
represented by G∗

e(v) are Markov equivalent.

Learning Causal Structures Based on Markov Equivalence Class 97

In order to prove that G∗
e(v) is also a chain graph, we first introduce an

algorithm to construct a graph, in which some undirected edges of the initial
essential graph are oriented according to e(v).

Algorithm 1. Let G∗ be the essential graph of G, v ∈ τ , τ be a chain graph of
G∗ and e(v) be a configuration of undirected edges adjacent to v. We construct
the constrained equivalence as follows:

1) Orienting the undirected edges adjacent to v in the essential graph G∗ ac-
cording to e(v). We get the graph denoted as H,

2) Repeat
– if v1 → v2 − v3 ∈ H, and v1, v3 are not adjacent in H, then convert

v2 − v3 to v2 → v3 and renew the graph H,
– if v1 → v2 → v3 ∈ H and v1 − v3 ∈ H, then convert v1 − v3 to v1 → v3

and renew the graph H,
until no above two types of structures appear in H.

It can be shown that the graph H constructed by Algorithm 1 is a chain
graph and H is equal to the constrained essential graph G∗

e(v). We show those
results as following two Lemma.

Lemma 3. Let H be the graph constructed by algorithm 1. Then H is a chain
graph.

Proof. If H is not a chain graph, there must be a directed circle in subgraph Hτ

for some chain component τ of G∗. Moreover, G∗
τ be chordal and H ⊂ G∗, so

Hτ is chordal too. we can educe a three-edge directed circle in Hτ as Figure 3
or Figure 4.

�

� �

d

b c

�
��� �

��

Fig. 3. SG6

�

� �

d

b c

�
��� �

��	

Fig. 4. SG61

� �

�

�

b c

d

d1

�

�
�

�

Fig. 5. SG7

� �

�

�

b c

d

d1

�

�
�

�

�

Fig. 6. SG8

� �

�

�

b c

d

d1

��

�
�

�

�

Fig. 7. SG9

If Figure 4 is a subgraph of H at some stage of the algorithm, the undirected
edge b c will be oriented to b← c according to the Algorithm 1. So, only Figure
3 could be a subgraph of H .

98 Y.-B. He, Z. Geng, and X. Liang

� �

�

�

b c

d

d1

�

�
�

��
�

�
��

Fig. 8. SG10

� �

�

�

b c

d

d1

�

�
�

��
�

�
��

�

Fig. 9. SG11

� �

�

�

b c

d

d1

�

�
��

��
�

�
��

�

Fig. 10. SG12

Because all edges adjacent to a have been oriented in the first step of Al-
gorithm 1 and the directed edge d → b be not in G∗, d → b also not a edge
adjacent to a according to the Algorithm 1. So d→ b must be identified by the
second step of Algorithm 1. There are two situation, one is in order to avoid-
ing immorality as Figure 5, the other is in order to avoiding directed circle as
Figure 8.

We can get an order of all directed edges in Hτ in which the preceding
directed edges be oriented before the posterior directed edges according to the
Algorithm 1. Firstly, we prove that the directed edge d → b in Figure 3 is not
the first directed edge oriented in the second step of Algorithm 1.

In the first case as Figure 5, if d→ b is the first directed edge oriented in the
second step of Algorithm 1, we have d1 = a. Because b and a are not adjacent,
and d c be a undirected edge in H , so d1 → c must be in H as Figure 6,
where d1 = a. Now we consider the subgraph b c← d1, according to the rule in
Algorithm 1, b← c be in G∗

e(a) as Figure 7, it’s a contradiction to the assumption
that b c ∈ H .

In the second case as Figure 8, if d→ b is the first directed edge oriented in
the second step of Algorithm 1, we also have d1 = a.

Considering the structure d1 → b c, and d c be a undirected edge in H ,
we have d1 → c must be in H as Figure 9. Now we consider the subgraph of
{d, d1, c} and, according to the rule in Algorithm 1, d→ c be in H as Figure 10,
it’s a contradiction to the assumption that d c ∈ H .

So, we have the first directed edge oriented in the second step of Algorithm 1
be not in a directed circle. Supposing that the first k directed edges oriented in
the second step of Algorithm 1 be not in any directed circle, we intend to prove
that the (k + 1)th directed edge also be not in a directed circle.

Let d → b be the (k + 1)th directed edge oriented in the second step of
Algorithm 1, Suppose Figure 3 be a subgraph of H . There also have only two
situations as Figure 5 and Figure 8 for orienting d→ b.

In situation as Figure 5, Because d1 → d be in the first k directed edges and
d c ∈ H , so d1 → c must be in H . We also get that b ← c must be in H as
Figure 7. It’s a contradiction to the assumption that b c ∈ H .

In situation as Figure 5, Because d1 → b and d→ d1 be in the first k directed
edges and b c ∈ H , so d1 → c must be in H . We also get that d ← c must be
in H as Figure 10. It’s a contradiction to the assumption that d c ∈ H .

So,the (k+1)th directed edge also be not in any directed circle. Now, we can
get that any directed edges in Hτ be not in directed circle. It imply that there
be no directed circles in Hτ . So H be a chain graph. �

Learning Causal Structures Based on Markov Equivalence Class 99

Lemma 4. Let G∗
e(v) be the e(v)−constrained essential graph defined as equa-

tion 3 and H be the graph constructed by algorithm 1. Then H is equal to the
constrained essential graph G∗

e(v), that is G∗
e(v) = H.

Proof. We first prove G∗
e(a) ⊆ H . We just need to prove that all directed edges

in H must be in G∗
e(a) too. We use induction to finish the proof.

Obviously, after the first step of Algorithm 1, all directed edges in H be in
G∗

e(a). We now prove that the first directed edge identified by the second step
of Algorithm 1 , such as b ← c, be in G∗

e(a). b ← c must be identified by the
first rule of the second step of Algorithm 1. There must be a variable d /∈ τ such
that b c← d be the subgraph of H in the same step. Because all directed edges
in H be in G∗

e(a) in the same step, b ← c ← d must be the same subgraph in
any G′ ∈ G∗

e(a). Otherwise b → c ← d form a v-structure such thatG′ /∈ [G]. So
b← c ∈ G∗

e(a).
Suppose that the first k directed edges identified by the second step of Algo-

rithm 1 be in G∗
e(a), we now prove that the k + 1 directed edge identified by the

second step of Algorithm 1 also be in G∗
e(a). Denoting the k +1 directed edge as

c ← d, according to the rules in the Algorithm 1,there are only two situations
that can identify the c← d as following:

�

� �

f

c d

�
���

Fig. 11. SG4

�

� �

f

c d

�
��� �

��	

Fig. 12. SG5

In the situation as Figure 11, because f → d be in every DAG G′ ∈ G∗
e(a),

In order to voiding new v-structure, c ← d must be in every DAG G′ ∈ G∗
e(a)

too. So c ← d ∈ G∗
e(a). In Figure 12, because d → f and f → c be in every

DAG G′ ∈ G∗
e(a), In order to voiding directed circle, c ← d must be in every

DAG G′ ∈ G∗
e(a) too. So c← d ∈ G∗

e(a). Now we get that the k +1 directed edge
identified by the second step of Algorithm 1 also be in G∗

e(a). And all directed
edges in H also be in G∗

e(a). So G∗
e(a) ⊆ H .

Because H is a chain graph form Lemma 3, and we also have H ⊆ G∗. From
the Lemma 2, for any undirect edge a b of Hτ , where τ is a chain component
of H , there exists G1,G2 ∈ G∗

e(a)τ
such that a → b occurs in G1 and a ← b

occurs in G2. It means that a b also occurs in G∗
e(a). So H ⊆ G∗

e(a), we have
G∗

e(a) = H . �

Now, we give the proof of the Theorem 1 as follows.

Proof. From the definition of G∗
e(v), we have that G∗

e(v) has the same skeleton as
the essential graph G∗ and contains all directed edges of G∗. That is, all directed
edges in G∗ is also directed in G∗

e(v). So the second condition of Theorem 1
holds obviously. The third condition of Theorem 1 also holds because all DAGs
represented by G∗

e(v) are Markov equivalent. From Lemmas 3 and 4, we can easily
get that G∗

e(v) is a chain graph. So, the three conditions all hold. �

100 Y.-B. He, Z. Geng, and X. Liang

Theorem 1 shows that the constrained essential graph G∗
e(v) representing

the equivalent subclass is a chain graph. If we have the information about the
directions of edges between another given variable in some chain component of
G∗

e(v) and its adjacent variables, we can refine the equivalent subclass into smaller
subclasses. A iterated procedure is introduced as follow to refine a Markov equiv-
alence class until the subset contains only one DAG.

Theorem 2. Let G∗, G1, · · · , Gk be a series of graph, and G∗ is essential graph
of G defined as (1) and G∗

k = G. Let v1, v2, · · · , vk be a series of variables in the
chain components of G∗ and each vi, 1 ≤ i ≤ k, has undirected adjacent edges in
Gi−1. If the graph Gi is the constrained essential graph over e(v1, · · · , vi), then
we have

a) G∗, G1, · · · , Gk are chain graphs, and for each i, 1 < i ≤ k, the chain com-
ponents of Gi is subset of the chain components of Gi−1,

b) the subgraph of G∗, G1, · · · , Gk over chain graph are chordal , and
c) the configuration v1 → v2−v3 does not occur as an induced subgraph of each

graph in G∗, G1, · · · , Gk.

Theorem 2 provides us a framework for learning causal structures as follows.
First we learn the essential graph from observational data to identify the Markov
equivalence class of the underlying directed acyclic graph [4, 12], and the learned
graph is a chain graph [1, 11]. Then choosing some variable, we attempt to iden-
tify the directions of its adjacent edges by experiments or some other knowledge.
From our results, the underlying directed acyclic graph is restricted to a smaller
subclass that can be represented by a chain graph. The iterative procedures can
be done until the underlying directed acyclic graph is identified. We know that
intervention in a variable can provide us information to distinguish the direc-
tions of edges that is indistinguishability in observational study. So interventions
could be used to identify the direction of adjacent edges of a given variable. The
related problems will be discussed in the next section.

4 Approach for Learning Causal Structure and Examples

Suppose that G be a causal graph, for example G in Figure 1, the causal inter-
pretation treats the arrows in G as representing causal influences between the
corresponding variables. The joint distribution of V can be factorized as

P (v1, v2, · · · , vn) =
n∏

i=1

P (vi|pa(vi)). (4)

The factors are further assumed to represent autonomous data-generation pro-
cesses, that is, each conditional probability P (vi|pa(vi)) represents a stochastic
process that the value of Vi is related to the value of pa(Vi), and different assign-
ments processes are assumed to be independent of each other. Those assumptions
enable us to depict the joint distribution of system after interventions, whenever

Learning Causal Structures Based on Markov Equivalence Class 101

interventions are described as specific modifications of some factors in the prod-
ucts of (4).

Let Vi be a variable of DAG G = (V,E). If we intervene Vi with distribution
P ′(Vi), then the post-interventional joint distribution PVi(V) should be

PVi(v1, v2, · · · , vn) = P ′(vi)
∏

{j|j
=i}
P (vj |pa(vj)). (5)

Given a causal graph, the Markov condition determines a set of independence
relations, which are encoded in the factorization of joint distribution. In order to
discover causal structure, a further axiom other than Markov condition should
be introduced, Spirts [8] called it faithfulness condition and defined it as follow:

Definition 1. Faithfulness Condition
Let G be a causal graph and P a probability distribution generated by G. < G,P >
satisfies the faithfulness condition if and only if every conditional independence
relation true in P is entailed by the causal Markov condition applied to G.

If a distribution P satisfies both the Markov condition and the faithfulness
condition according to a causal graph G, we have that all and only the indepen-
dence relations of P are entailed by the Markov condition applied to G.

Let pa(Vi) and child(Vi) represent the parents and children of Vi respec-
tively. From the factorization of (5), we can easily get lemma 5 to describe the
independent relations of Xi in the post-interventional distribution.

Lemma 5. If a distribution P satisfies both the Markov condition and the faith-
fulness condition according to a causal graph G, and PXi(X) is the post-interven-
tional distribution as (5), then the variable Xi is independent of its parents
and dependent of its children according to the distribution PXi (X), denoting as
(Xi pa(Xi))PXi

(X) and (Xi / child(Xi))PXi
(X) respectively.

Theorem 3. Based on a constrained essential graph G′ with τ as one chain
component, interventions on any variable b ∈ τ can identify the orientations of
the undirected edges adjacent to b.

From lemma 5, for each neighbor c of b, we orient the c b to c → b if
(b c)Pb(X) and to c ← b if (b/ c)Pb(X). So, the correction of Theorem 3 is
obvious.

Now, we can give the procedure of learning causal structure based on Markov
equivalence class using data from randomization interventional experiments. The
main steps of this procedure are shown in following table 1.

This procedure provides an approach to discover the exact causal structure
form a given Markov equivalence class. We obtain the additional causal infor-
mation from randomization experiments. In each iterative step, we choose one
variable to do experiments on. There may be exist an optimization criterion to
choose the sequence of variable to do experiments on such that we can discover
exact structure with the minimum times of experiments. However, we do not
intend to discuss this problem in this paper.

102 Y.-B. He, Z. Geng, and X. Liang

Table 1. The procedure of learning causal structure based on Markov equivalence class
using data from randomization interventional experiments

Input: The essential graph G∗. Let H = G∗

Output: The directed acyclic graph G
Step 1. Choose a variable v that is in a chain component of H ;
Step 2. Randomization interventional experiments on v, get data set D;
Step 3. Test the dependent relations of the variable v and its adjacent variables

denoting as adj(v);
Step 4. For any variable w ∈ adj(v), if v w according to the dependent test with

data D, then orient v w to w → v, otherwise w ← v;
Step 5. Carry out Algorithm 1 to identify other undirected edges in H ;
Step 6. Get a new chain graph H ;
Step 7. Return to step 1 if H is not directed acyclic graph;
Step 8. Let G = H and output G.

�

�

�

� �v1

v2

v3

v4
v5

(1)

�
����

���

�
� �

�

�

� �

(2)

�
���

����

�
� �

�

�

� �

(3)���

�����

�
�

�

�

�

� �

(4)���

� ����

�
� �

�

�

� �

(5)���

� ����

�
� �

�

�

� �

(6)

� ���
�

�
���

�

�

�

�

� �

(7)

� ���
�

�
���

�

�

�

�

� �

(8)

� ���
�

�
���

�

�

�

�

� �

(9)

�

��� �

�
��� �

�

�

�

� �

(10)

�

���
�

�
��� � �

�

�

� �

(11)

�

��� �

�
��� � �

�

�

� �

(12)

�

���
�

�
��� �

Fig. 13. All DAGs are equivalent to directed acyclic graph (1),There are 12 directed
acyclic graphs that have the same skeleton and immortalities as DAG (1), all unlabelled
graph have the same labels as DAG (1)

Now, we give some examples to illuminate the results of this paper. Figure 13
shows 12 DAGs from the same Markov equivalence class. The variables are la-
belled only in graph (1) for concision. Other graphs have the same labels. Table 2
shows the four subclasses of the Markov equivalence class according to the direc-
tions of edges adjacent to v1. They include graphs {1,2},{3},{4,5,7,8,9,10,11,12},

Learning Causal Structures Based on Markov Equivalence Class 103

and {6} respectively. The second subset ii and the fourth subset iv have only one
DAG. In the same subclass, the adjacent edges of v1 have the same directions for
all DAGs . The constrained essential graphs (13) and (14) in table 2 represent
two subclasses with E(v1) equal to v2 ← v1 → v3 and v2 → v1 ← v3 respectively.
We can find that the graphs (13) and (14) are chain graphs and also satisfy the
second and third conditions in Theorem 2. A sequential partition according to
sequential constraints E(v1), E(v2), E(v3), and E(v4) is shown as Table 3.

Table 2. The subclasses and constrained essential graph given E(v1). There are four
configurations of E(v1), each of them identify a constrained essential graph.

No of subset E(v1)
DAGs

in Subclasses
constrained

essential graphs

(i) v2 ← v1 → v3 (1, 2) �

�

�

� �

(13)

�
���

���

�
�

(ii) v2 → v1 → v3 (3)

(iii) v2 → v1 ← v3
(4, 5,

7 − 12)
�

�

�

� �

(14)���

� ��

(iv) v2 ← v1 ← v3 (6)

If the underlying causal structure is one of directed acyclic graphs in Figure
13, we can get that the constrained essential graphs in Table 2 after random-
ization interventional experiments on v1. There are four possible independent
relations among v1, v2 , and v3 as shown in Table 4. Obviously, if the underlying
causal structure is DAG (3) or DAG (6) in Figure 13, we can learn the exact
structure only based on randomization experiments on variable v1. If the under-
lying structure is other than DAG (3) and (6), experiments just on variable v1

can not provide enough information to distinguish the underlying structure from
other DAGs in the same subset. A sequential procedure is needed to learn exact
structure. Table 5 shows all possible dependent relations of variables according
to sequential distributions of randomization experiments, where denotes the
independent relation and / denotes the dependent relation for the test of data..
It also presents the procedures of learning exact structure shown in Figure 13.

For example, if we obtain data satisfying v1 v2 and v1 v3 from random-
ization experiments on v1. We can get that v2 → v1 ← v3 from Theorem 3.
Carrying out Algorithm 1, we find that no other undirected edges could be ori-
ented. The hypotheses causal structure space is refined to a smaller constrained
equivalence class, which is the third subset including DAGs {4,5,7,8,9,10,11,12}

104 Y.-B. He, Z. Geng, and X. Liang

Table 3. A sequential partition of DAGs in Figure 13 with sequential constraints
E(v1), E(v2), E(v3), E(v4). Here E(vi) denotes the configuration of undirected edges
adjacent to vi.

E(v1) E(v2) E(v3) E(v4) DAG in Figure 13
v2 → v1 → v3 * * * (3)
v2 ← v1 ← v3 * * * (6)

v2 ← v1 → v3
v2 ← v3 * * (1)
v2 → v3 * * (2)

v2 → v1 ← v3

v3 → v2 → v4 * * (7)

v3 ← v2 → v4
v3 → v4 * (4)
v3 ← v4 * (5)

v3 → v2 ← v4

v3 → v4 * (8)

v3 ← v4
v4 → v5 (9)
v4 ← v5 (11)

v3 ← v2 ← v4 *
v4 → v5 (10)
v4 ← v5 (12)

Table 4. Independent relations of v1, v2, and v3 according to distribution of random-
ization experiments on v1

independent relations of v1, v2 , and v3 No of subset
v1/ v2 and v1/ v3 (i)
v1 v2 and v1/ v3 (ii)
v1 v2 and v1 v3 (iii)
v1/ v2 and v1 v3 (iv)

Table 5. The dependent relations of variables according to distributions of random-
ization experiments on the variable in the first row. Here vi in first row denotes the
experimental variable. ∗ shows there is no experiments done on corresponding variable.

v1 v2 v3 v4 DAG in Figure 13
v1 v2 and v1 / v3 * * * (3)
v1 / v2 and v1 v3 * * * (6)

v1 / v2 and v1 / v3
v2 v3 * * (1)
v2 / v3 * * (2)

v1 v2 and v1 v3

v2 v3 and v2 / v4 * * (7)

v2 / v3 and v2 / v4
v3 / v4 * (4)
v3 v4 * (5)

v2 v3 and v2 v4

v3 / v4 * (8)

v3 v4
v4 / v5 (9)
v4 v5 (11)

v2 / v3 and v2 v4 *
v4 / v5 (10)
v4 v5 (12)

Learning Causal Structures Based on Markov Equivalence Class 105

in Figure 13. Then random experiments on v2 generate data satisfying v2 / v3

and v2 v4, so we have v4 → v2 → v3 and further we can get v3 ← v4 from
Algorithm 1. The hypotheses causal structure space now contains two DAGs,
(10) and (12) in Figure 13. Finally, experiments on v4 could determine the exact
causal structure. If we get v4 v5 from the dependent test using experimental
data on v4, we have v4 ← v5. So, the underlying causal structure is directed
acyclic graph (12) in Figure 13.

5 Conclusion

In this paper, we have proposed an approach to learn causal structures based on
Markov equivalence class with data generated by randomization experiments. We
discussed the framework to learn causal structure with addition causal knowl-
edge from a given Markov equivalence that can be represented by an essential
graph. We discussed the partition problem of Markov equivalence class of di-
rected acyclic graphs. We also showed that the Markov equivalence class of
DAGs can be partitioned into constrained equivalence subclasses that can be
represented by a chain graph and an iterative procedure can be used to get
smaller and smaller constrained equivalence subclasses until the class contains
only one causal structure. Then, we showed that randomization experiments can
provide the necessary causal knowledge to distinguish the underlying structure
from other structure in the same equivalence class. Those results provide us a
more deeper understand about the Markov equivalence and also provide us an
approach to discover the underlying causal structure.

Acknowledgements. The authors would like to thank the Editor and referees
for their helpful comments. This research was supported by the 36th postdoctoral
science fund 2004036180, NSFC and NBRP 2003CB715900.

References

[1] Andersson, S.A., Madigan, D., and Perlman, M.D., A characterization of Markov
equivalance classes for acyclic digraphs, Annals of Statistics, 25, 505-541, 1998

[2] Cooper G.F. and Yoo, C., Causal discovery from a mixture of experimental and
observational data. In Uncertainty in artificial intelligence: proceedings of the
fifteenth conference, 1999

[3] Friedman, N., Inferring cellular networks using probabilistic graphical models.
Science 303 (5659) (2004) 799-805

[4] Heckerman, D. Geiger, D. and Chickering D.M., Learning Bayesian networks: The
Combination of knowledge and statistical data. Machine Learning, 20,1995,197-
243

[5] Jansen R., Yu H. Y., Greenbaum, D.: A Bayesian networks approach for predicting
protein-protein interactions from genomic data. Science 302(5644) (2003) 449-453

[6] Pearl, J., Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann, 1988
[7] Pearl, J. Causality: Models, Reasoning, and Inference. Cambridge University

Press, 2000

106 Y.-B. He, Z. Geng, and X. Liang

[8] Spirtes, P., Glymour, C., Scheines, R., Causation, Prediction, and Search,
Springer-Verlag New York, Inc. 1993

[9] Tian J. and Pearl J., Causal Discovery from Changes, in Proceedings of the Con-
ference on Uncertainty in Artificial Intelligence (UAI), 2001

[10] Tian J. and Pearl J., Causal Discovery from Changes: a Bayesian Approach,
UCLA Cognitive Systems Laboratory, Technical Report (R-285), February 2001

[11] Volf, M. and Studeny, M., A graphical characterization of the largest chain graphs,
International Journal of Approximate Reasoning, 20,1999,209-236

[12] Verma, T. and Pearl, J. Equivalence and synthesis of causal models. In Uncertainty
in artificial intelligence: proceedings of the sixth conference, 1990, 220-227

Stochastic Complexity for Mixture of
Exponential Families in Variational Bayes

Kazuho Watanabe1 and Sumio Watanabe2

1 Department of Computational Intelligence and Systems Science,
Tokyo Institute of Technology, Mail Box:R2-5,

4259 Nagatsuta, Midori-ku, Yokohama, 226–8503 Japan
kazuho23@pi.titech.ac.jp

2 P&I Lab, Tokyo Institute of Technology, Mail Box:R2-5,
4259 Nagatsuta, Midori-ku, Yokohama, 226–8503 Japan

swatanab@pi.titech.ac.jp

Abstract. The Variational Bayesian learning, proposed as an approxi-
mation of the Bayesian learning, has provided computational tractability
and good generalization performance in many applications. However, lit-
tle has been done to investigate its theoretical properties.

In this paper, we discuss the Variational Bayesian learning of the
mixture of exponential families and derive the asymptotic form of the
stochastic complexities. We show that the stochastic complexities become
smaller than those of regular statistical models, which implies the advan-
tage of the Bayesian learning still remains in the Variational Bayesian
learning. Stochastic complexity, which is called the marginal likelihood
or the free energy, not only becomes important in addressing the model
selection problem but also enables us to discuss the accuracy of the
Variational Bayesian approach as an approximation of the true Bayesian
learning.

1 Introduction

The Variational Bayesian (VB) framework was proposed as an approximation
of the Bayesian learning in the models with hidden variables[3][6]. This frame-
work provides computationally tractable posterior distributions over the hidden
variables and parameters with an iterative algorithm. The Variational Bayesian
learning has been applied to various learning machines and it has performed
good generalization with only modest computational costs compared to Markov
chain Monte Carlo (MCMC) methods that are the major schemes of the Bayesian
learning.

In spite of its tractability and its wide range of applications, little has been
done to investigate the theoretical properties of the Variational Bayesian learning
itself. Although the Variational Bayesian framework is an approximation, ques-
tions like how accurately it approximates the true one remained unanswered un-
til quite recently. To address these issues, the asymptotic form of the stochastic
complexity in the Variational Bayesian learning of gaussian mixture models was
clarified and the accuracy of the Variational Bayesian learning was discussed[12].

S. Jain, H.U. Simon, and E. Tomita (Eds.): ALT 2005, LNAI 3734, pp. 107–121, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

108 K. Watanabe and S. Watanabe

In this paper, we focus on the Variational Bayesian learning of more gen-
eral mixture models, namely the mixtures of exponential families which in-
clude mixtures of distributions such as gaussian, binomial and gamma. Mixture
models are known to be non-regular statistical models since they have non-
identifiability of the parameter caused by their hidden variables. In some recent
studies, the Bayesian stochastic complexities of non-regular models have been
clarified and it has been proven that they become smaller than those of regular
models[13][14][15]. This indicates an advantage of the Bayesian learning when it
is applied to non-regular models.

In this paper, we derive the upper and lower bounds of the stochastic com-
plexity in the Variational Bayesian learning of the mixture of exponential fam-
ilies and show that the stochastic complexity becomes smaller than those of
regular models. Since the derived bounds show us the accuracy of the Varia-
tional Bayesian learning as an approximation method, our result implies that
the advantage of the Bayesian learning still remains in the Variational Bayesian
learning. In addition, the derived bounds give us an indication of how the hy-
perparameter in the prior distribution influences the process of the learning.
We consider the case in which the true distribution is contained in the learner
model. Analyzing the stochastic complexity in this case is most valuable for
comparing the Variational Bayesian learning with the true Bayesian learning.
This is because the advantage of the Bayesian learning is typical in this case[13].
Furthermore, this analysis is necessary and essential for addressing the model
selection and hypothesis testing problems.

The paper is organized as follows. In Section 2, we introduce the mixture of
exponential family model. In Section 3, we describe the Bayesian learning. In
Section 4, the Variational Bayesian framework is described and the variational
posterior distribution for the mixture of exponential family model is derived. In
Section 5, we present our main result. The main theorem is proved in Appendix.
Discussion and conclusion follow in Section 6 and Section 7.

2 Mixture of Exponential Family

Denote by c(x|b) a probability density function of the input x ∈ IRN given an
M -dimensional parameter vector b = (b(1), b(2), · · · , b(M))T ∈ B where B is a
subset of IRM . The general mixture model p(x|θ) with a parameter vector θ is
defined by

p(x|θ) =
K∑

k=1

akc(x|bk),

where K is the number of components and {ak|ak ≥ 0,
∑K

k=1 ak = 1} is the set
of mixing proportions. The parameter θ of the model is θ = {ak, bk}Kk=1.

A model p(x|θ) is called a mixture of exponential family (MEF) model or
exponential family mixture model if the probability distribution c(x|b) is given
by the following form,

c(x|b) = exp{b · f(x) + f0(x)− g(b)}, (1)

Stochastic Complexity for Mixture of Exponential Families 109

where b ∈ B is called the natural parameter, b·f(x) is the inner product with the
vector f(x) = (f1(x), · · · , fM (x))T , f0(x) and g(b) are real-valued functions of
the input x and the parameter b, respectively[5]. Suppose functions f1, · · · , fM

and a constant function are linearly independent and the effective number of
parameters in a single component distribution c(x|b) is M .

The conjugate prior distribution ϕ(θ) for the mixture of exponential family
model is defined by the product of the following two distributions on a = {ak}Kk=1

and b = {bk}Kk=1

ϕ(a) =
Γ (Kφ0)
Γ (φ0)k

K∏
k=1

aφ0−1
k , (2)

ϕ(b) =
K∏

k=1

ϕ(bk) =
K∏

k=1

1
C(ξ0, ν0)

exp{ξ0(bk · ν0 − g(bk))}, (3)

where the function C(ξ, μ) of ξ ∈ R and μ ∈ IRM is defined by

C(ξ, μ) =
∫

exp{ξ(μ · b− g(b))}db. (4)

Here ξ0 > 0, ν0 ∈ IRM and φ0 > 0 are constants called hyperparameters.
The mixture model can be rewritten as follows by using a hidden variable

y = (y1, · · · , yK) ∈ {(1, 0, · · · , 0), (0, 1, · · · , 0), · · · , (0, 0, · · · , 1)},

p(x, y|θ) =
K∏

k=1

[
akc(x|bk)

]yk

.

The hidden variable y is not observed and is representing a component from
which the datum x is generated. If and only if the datum x is from the kth
component, then yk = 1.

The mixture model is a non-regular statistical model, since it has non-
identifiability of the parameter. More specifically, if the true distribution is real-
ized by a model with the smaller number of components, the true parameter is
not a point but an analytic set with singularities. If a model parameter is non-
identifiable, the usual asymptotic theory of regular statistical models cannot be
applied. Some studies have revealed that the mixture model has quite different
properties from those of regular statistical models[7][14].

3 The Bayesian Learning

Suppose n training samples Xn = {x1, · · · , xn} are independently and identically
taken from the true distribution p0(x). In the Bayesian learning of a model p(x|θ)
whose parameter is θ, first, the prior distribution ϕ(θ) on the parameter θ is set.
Then the posterior distribution p(θ|Xn) is computed from the given dataset and
the prior by

p(θ|Xn) =
1

Z(Xn)
ϕ(θ)

n∏
i=1

p(xi|θ),

110 K. Watanabe and S. Watanabe

where Z(Xn) is the normalization constant that is also known as the marginal
likelihood or the evidence of the dataset Xn[8].

The Bayesian predictive distribution p(x|Xn) is given by averaging the model
over the posterior distribution as follows,

p(x|Xn) =
∫

p(x|θ)p(θ|Xn)dθ. (5)

The stochastic complexity F (Xn) is defined by

F (Xn) = − logZ(Xn), (6)

which is also called the free energy and is important in most data modelling
problems. Practically, it is used as a criterion by which the learner model is
selected and the hyperparameters in the prior are optimized[1][11].

The Bayesian posterior can be rewritten as

p(θ|Xn) =
1

Z0(Xn)
exp(−nHn(θ))ϕ(θ), (7)

where Hn(θ) is the empirical Kullback information,

Hn(θ) =
1
n

n∑
i=1

log
p0(xi)
p(xi|θ) , (8)

and Z0(Xn) is the normalization constant. Putting S(Xn) = −∑n
i=1 log p0(xi),

we define the normalized stochastic complexity F0(Xn) by

F0(Xn) = F (Xn)− S(Xn). (9)

It is noted that the empirical entropy S(Xn) does not depend on the model
p(x|θ) and its expectation value over all sets of training samples is equal to
nS where S = − ∫ p0(x) log p0(x)dx is the entropy. Therefore minimization of
F (Xn) is equivalent to that of F0(Xn).

We define the average normalized stochastic complexity F0(n) by

F0(n) = EXn

[
F0(Xn)

]
, (10)

where EXn [·] denotes the expectation value over all sets of training samples.
Recently, it was proved that the average normalized stochastic complexity

F0(n) has the following asymptotic form[13],

F0(n) " λ log n− (m− 1) log logn + O(1), (11)

where λ and m are the rational number and the natural number respectively
which are determined by the singularities of the set of true parameters. In regular
statistical models, 2λ is equal to the number of parameters and m = 1, whereas in
non-regular models such as the mixture model, 2λ is not larger than the number

Stochastic Complexity for Mixture of Exponential Families 111

of parameters and m ≥ 1. This means an advantage of non-regular models in
the case when the Bayesian learning is applied to them.

However, in order to carry out the Bayesian learning practically, one com-
putes the stochastic complexity or the predictive distribution by integrating over
the posterior distribution, which typically cannot be performed analytically. As
an approximation, the Variational Bayesian framework was proposed[3][4][6].

4 The Variational Bayesian Learning

4.1 The Variational Bayesian Framework

Using the likelihood on the complete data {Xn, Y n} added the corresponding
hidden variables Y n = {y1, · · · , yn}, we can rewrite the stochastic complexity
eq.(6) as

F (Xn) = − log
∫ ∑

Y n

p(Xn, Y n, θ)dθ,

where p(Xn, Y n, θ) = ϕ(θ)
∏n

i=1 p(xi, yi|θ) and the sum over Y n ranges over all
possible values of all hidden variables.

In the Variational Bayesian framework, the Bayesian posterior distribution
p(Y n, θ|Xn) of the hidden variables and the parameters is approximated by the
variational posterior distribution q(Y n, θ|Xn), which factorizes as

q(Y n, θ|Xn) = Q(Y n|Xn)r(θ|Xn), (12)

where Q(Y n|Xn) and r(θ|Xn) are probability distributions on the hidden vari-
ables and the parameters respectively. The variational posterior q(Y n, θ|Xn) is
chosen so that it minimizes the functional F [q] defined by

F [q] =
∑
Y n

∫
q(Y n, θ|Xn) log

q(Y n, θ|Xn)
p(Xn, Y n, θ)

dθ, (13)

= F (Xn) + K(q(Y n, θ|Xn)||p(Y n, θ|Xn)), (14)

where K(q(Y n, θ|Xn)||p(Y n, θ|Xn)) is the Kullback information between the
true Bayesian posterior p(Y n, θ|Xn) and the variational posterior q(Y n, θ|Xn)1.
This leads to the following theorem. The proof is well-known[4][10].

Theorem 1. If the functional F [q] is minimized under the constraint eq.(12)
then the variational posteriors, r(θ|Xn) and Q(Y n|Xn), satisfy

r(θ|Xn) =
1
Cr

ϕ(θ) exp
〈
log p(Xn, Y n|θ)〉

Q(Y n|Xn)
, (15)

and
1 Throughout this paper, we use the notation K(q(x)||p(x)) for the Kullback informa-

tion from a distribution q(x) to a distribution p(x), that is,

K(q(x)||p(x)) =
∫

q(x) log
q(x)
p(x)

dx.

112 K. Watanabe and S. Watanabe

Q(Y n|Xn) =
1

CQ
exp
〈
log p(Xn, Y n|θ)〉

r(θ|Xn)
, (16)

where Cr and CQ are the normalization constants2.

Hereafter, we omit the condition Xn of the variational posteriors and abbreviate
them to q(Y n, θ), Q(Y n) and r(θ).

Note that eq.(15) and eq.(16) give only a necessary condition that r(θ)
and Q(Y n) minimize the functional F [q]. The variational posteriors that sat-
isfy eq.(15) and eq.(16) are searched by an iterative algorithm.

We define the stochastic complexity in the Variational Bayesian learning
F (Xn) by the minimum value of the functional F [q] attained by the above
optimal variational posteriors, that is ,

F (Xn) = min
r,Q

F [q].

Since F (Xn), the stochastic complexity in the Variational Bayesian learning,
gives the upper bound of the true stochastic complexity F (Xn), F (Xn) itself
is an estimate of F (Xn) and is used for the model selection in the Variational
Bayesian learning. Moreover, from eq.(14), it is noted that the difference between
F (Xn) and the original stochastic complexity F (Xn) is the Kullback information
from the variational posterior to the true posterior, which shows us the accuracy
of the Variational Bayesian approach as an approximation of the true Bayesian
learning.

We define the normalized stochastic complexity F 0(Xn) in the Variational
Bayesian learning by

F 0(Xn) = F (Xn)− S(Xn). (17)

Putting eq.(16) into eq.(13) gives the following lemma.

Lemma 1.

F 0(Xn) = min
r(θ)
{K(r(θ)||ϕ(θ)) − (logCQ + S(Xn))}, (18)

where CQ =
∑

Y n exp
〈
log p(Xn, Y n|θ)〉

r(θ)
.

4.2 Variational Posterior for Mixture of Exponential Family Model

In this subsection, we derive the variational posterior r(θ) for the mixture of
exponential family model based on eq.(15) and then define the variational pa-
rameter and the variational estimator for this model.

Using the complete data {Xn, Y n} = {(x1, y1), · · · , (xn, yn)}, we put

yk
i = 〈yk

i 〉Q(Y n), nk =
n∑

i=1

yk
i , and νk =

1
nk

n∑
i=1

yk
i f(xi),

2 For an arbitrary distribution p(x), 〈·〉p(x) denotes the expectation over p(x).

Stochastic Complexity for Mixture of Exponential Families 113

where yk
i = 1 if the ith datum xi is from the kth component, if otherwise, yk

i = 0.
The variable nk is the expected number of the data that are estimated to be from
the kth component. From eq.(15) and the respective prior eq.(2) and eq.(3), the
variational posterior r(θ) = r(a)r(b) is obtained as the product of the following
two distributions,

r(a) =
Γ (n + Kφ0)∏K
k=1 Γ (nk + φ0)

K∏
k=1

ank+φ0−1
k , (19)

r(b) =
K∏

k=1

r(bk) =
K∏

k=1

1
C(γk, μk)

exp{γk(μk · bk − g(bk))}, (20)

where μk = nkνk+ξ0ν0
nk+ξ0

, and γk = nk + ξ0.
Let

ak = 〈ak〉r(a) =
nk + φ0

n + Kφ0

(φ0

n + Kφ0
≤ ak ≤ 1− (K − 1)φ0

n + Kφ0

)
, (21)

bk = 〈bk〉r(bk) =
1
γk

∂ logC(γk, μk)
∂μk

, (22)

and define the variational parameter θ by

θ = 〈θ〉r(θ) = {ak, bk}Kk=1. (23)

It is noted that bk is the expectation parameter of bk with the variational poste-
rior r(bk). It is also noted that the variational posterior r(θ) and CQ in eq.(16)
are parameterized by the variational parameter θ. Therefore, we denote them as
r(θ|θ) and CQ(θ) henceforth. We define the variational estimator θvb by the vari-
ational parameter θ that attains the minimum value of the normalized stochastic
complexity F 0(Xn). Then, Lemma 1 claims that

θvb = argmin
θ

{K(r(θ|θ)||ϕ(θ)) − (logCQ(θ) + S(Xn))}. (24)

In the Variational Bayesian learning, the variational parameter θ is updated
iteratively to find the optimal solution θvb. Therefore, our aim is to evaluate the
minimum value of the right hand side of eq.(24) as a function of the variational
parameter θ.

5 Main Result

The average normalized stochastic complexity F 0(n) in the Variational Bayesian
learning is defined by

F 0(n) = EXn [F 0(Xn)]. (25)

We assume the following conditions.

114 K. Watanabe and S. Watanabe

(i) The true distribution p0(x) is represented by a mixture of exponential family
model p(x|θ0) which has K0 components and the parameter θ0 = {a∗k, b∗k}K0

k=1,

p(x|θ0) =
K0∑
k=1

a∗k exp{b∗k · f(x) + f0(x)− g(b∗k)},

where b∗k ∈ IRM and b∗k
= b∗j (k
= j). And suppose that the true distribution
can be realized by the model, that is, the model p(x|θ) has K components,

p(x|θ) =
K∑

k=1

ak exp{bk · f(x) + f0(x) − g(bk)},

and K ≥ K0 holds.
(ii) The prior distribution of the parameters is the conjugate prior ϕ(θ) =

ϕ(a)ϕ(b) where ϕ(a) and ϕ(b) are given by eq.(2) and eq.(3).
(iii) Regarding the distribution c(x|b) of each component, the Fisher information

matrix

I(b) =
∂2g(b)
∂b∂b

satisfies 0 < |I(b)| < +∞, for arbitrary b ∈ B 3. The function μ · b − g(b)
has a stationary point at b̂ in the interior of B for each μ ∈ IRM .

Under these conditions, we prove the following theorem. The proof is done
in Appendix.

Theorem 2. (Main Result) Assume the conditions (i),(ii) and (iii). Then the
average normalized stochastic complexity F 0(n) defined by eq.(25) satisfies

λ logn + EXn

[
nHn(θvb)

]
+ C1 ≤ F 0(n) ≤ λ logn + C2, (26)

for an arbitrary natural number n, where C1, C2 are constants independent of n
and

λ =
{

(K − 1)φ0 + M
2 (φ0 ≤ M+1

2),
MK+K−1

2 (φ0 > M+1
2),

(27)

λ =
{

(K −K0)φ0 + MK0+K0−1
2 (φ0 ≤ M+1

2),
MK+K−1

2 (φ0 > M+1
2).

(28)

This theorem shows the asymptotic form of the average stochastic complex-
ity in the Variational Bayesian learning. The coefficient λ and λ are identified by
K,K0, that are the numbers of components of the learner and the true distribu-
tion, the number of parameters M of each component and the hyperparameter
φ0 of the conjugate prior given by eq.(2).

In this theorem, nHn(θvb) is equal to −∑n
i=1 log p(xi|θvb) − S(Xn), and

the term − 1
n

∑n
i=1 log p(xi|θvb) is a training error which is computable during

3 ∂2g(b)
∂b∂b

denotes the matrix whose ijth entry is ∂2g(b)

∂b(i)∂b(j)
and | · | denotes the determi-

nant of a matrix.

Stochastic Complexity for Mixture of Exponential Families 115

the learning. If the term EXn

[
nHn(θvb)

]
is a bounded function of n, then it

immediately follows from this theorem that

λ logn + O(1) ≤ F 0(n) ≤ λ logn + O(1),

where O(1) is a bounded function of n. In certain cases, such as binomial mix-
tures, it is actually a bounded function of n. In the case of gaussian mixtures, if
B = IRN , it is conjectured that the minus likelihood ratio minθ nHn(θ), a lower
bound of nHn(θvb), is at most of the order of log logn[7]. Note that however,
even if EXn [minθ nHn(θ)] diverges to minus infinity, this does not necessarily
mean EXn [nHn(θvb)] diverges in the same order.

Since the dimension of the parameter θ is MK +K − 1, the average normal-
ized stochastic complexity of regular statistical models, which coincides with the
Bayesian information criterion (BIC)[11] and the minimum description length
(MDL)[9], is given by λBIC logn where

λBIC =
MK + K − 1

2
. (29)

Theorem 2 claims that the coefficient λ of logn is smaller than λBIC when
φ0 ≤ (M + 1)/2. This means that the stochastic complexity F 0(n) becomes
smaller than the BIC and implies that the advantage of non-regular models in
the Bayesian learning still remains in the Variational Bayesian learning.

6 Discussion

In this paper, we showed the upper and lower bounds of the stochastic complexity
for mixtures of exponential families in the Variational Bayesian learning.

Firstly let us discuss the lower bound. The lower bound in eq.(26) can be
improved to give

F 0(n) ≥ λ log n + EXn

[
nHn(θvb)

]
+ C1, (30)

if the consistency of the variational estimator θvb is proven. Note that the co-
efficient λ is the same as that of the upper bound given in Theorem 2. The
consistency means that the mixing coefficient ak does not tend to zero for at
least K0 components and they are always used to learn the K0 true components
when the sample size n is sufficiently large. We conjecture that the variational
estimator is consistent and the lower bound in eq.(30) is obtained for most mix-
ture components. However, little has been known so far about the behavior of the
variational estimator. Analyzing its behavior and investigating the consistency
is an important undertaking.

Secondly, we compare the stochastic complexity shown in Theorem 2 with
the one in the true Bayesian learning. The stochastic complexities in the true
Bayesian learning of several non-regular models have been clarified in some recent
studies. On the mixture models with M parameters in each component, the

116 K. Watanabe and S. Watanabe

following upper bound on the coefficient of the average normalized stochastic
complexity F0(n) in eq.(11) is known[14][15],

λ ≤
{

(K + K0 − 1)/2 (M = 1),
(K −K0) + (MK0 + K0 − 1)/2 (M ≥ 2), (31)

Under the same condition (i) about the true distribution and the model described
in Section 5 and certain conditions about the prior distribution. Since these
conditions about the prior are satisfied by putting φ0 = 1 in the condition (ii)
of Theorem 2, we can compare the stochastic complexity in this case. Putting
φ0 = 1 in eq.(28), we have

λ = K −K0 + (MK0 + K0 − 1)/2. (32)

Let us compare this λ of the Variational Bayesian learning to λ in eq.(31) of
the true Bayesian learning. When M = 1, that is, each component has one
parameter, λ ≥ λ holds since K0 ≤ K. This means that the more redundant
components the model has, the more the Variational Bayesian learning differs
from the true Bayesian learning. In this case, 2λ is equal to 2K − 1 that is
the number of the parameters of the model. Hence the BIC[11] and the MDL[9]
correspond to λ logn when M = 1. If M ≥ 2, the upper bound of λ is equal to λ.
This implies that the variational posterior is close to the true Bayesian posterior
when M ≥ 2. More precise discussion about the accuracy of the approximation
can be done for models on which tighter bounds or exact values of the coefficient
λ in eq.(11) are given[12][16].

Thirdly, we point out that Theorem 2 shows how the hyperparameter φ0

influences the process of the Variational Bayesian learning. The coefficient λ in
eq.(28) is divided into two cases , φ0 ≤ (M + 1)/2 or otherwise, indicating that
the influence of the hyperparameter φ0 in the prior ϕ(a) appears depending
on the dimension M of the parameter in each component. More specifically,
only when φ0 ≤ (M +1)/2, the prior distribution works to reduce the redundant
components that the model has and otherwise it works to use all the components.

And lastly, let us give examples to show how to use the theoretical bounds
in eq.(26). One can examine experimentally whether the actual iterative algo-
rithm converges to the optimal variational posterior instead of local minima by
comparing the stochastic complexity with the theoretical bounds. The theoretical
bounds would also enable us to compare the accuracy of the Variational Bayesian
learning with that of the Laplace approximation or the MCMC method. Further-
more, as mentioned in Section 4, the stochastic complexity F (Xn) is used as a
criterion for the model selection in the Variational Bayesian learning. Our result
is important for developing effective model selection methods using F (Xn).

7 Conclusion

In this paper, we mathematically proved the lower and upper bounds of the
stochastic complexity of the Variational Bayesian learning in mixtures of general
exponential families. These bounds will be used for evaluation and optimization
of variational learning systems.

Stochastic Complexity for Mixture of Exponential Families 117

Acknowledgements

This work was partially supported by the Ministry of Education, Science, Sports
and Culture, Grant-in-Aid for JSPS Fellows 4637 and for Scientific Research
15500130, 2005.

References

[1] H.Akaike, “Likelihood and Bayes procedure,” Bayesian Statistics, (Bernald J.M.
eds.) University Press, Valencia, Spain, pp.143-166, 1980.

[2] H.Alzer, “On some inequalities for the Gamma and Psi functions,” Mathematics
of computation, Vol.66, No.217, pp.373-389, 1997.

[3] H.Attias, ”Inferring parameters and structure of latent variable models by varia-
tional bayes,” Proc. of Uncertainty in Artificial Intelligence(UAI’99), 1999.

[4] M.J.Beal, “Variational algorithms for approximate bayesian inference,” Ph.D.
Thesis, University College London, 2003.

[5] L.D.Brown, “Fundamentals of statistical exponential families,” IMS Lecture
Notes-Monograph Series 9, 1986.

[6] Z.Ghahramani, M.J.Beal, “Graphical models and variational methods,” Advanced
Mean Field Methods – Theory and Practice, eds. D. Saad and M. Opper, MIT
Press, 2000.

[7] J.A.Hartigan, “A Failure of likelihood asymptotics for normal mixtures,” Pro-
ceedings of the Berkeley Conference in Honor of J.Neyman and J.Kiefer, Vol.2,
807-810, 1985.

[8] D.J. Mackay, “Bayesian interpolation,” Neural Computation, Vol.4, No.2, pp.415-
447, 1992.

[9] J.Rissanen, “Stochastic complexity and modeling” Annals of Statistics, Vol.14,
No.3, pp.1080-1100, 1986.

[10] M.Sato, “Online model selection based on the variational bayes,” Neural Compu-
tation, Vol.13, No.7, pp.1649 – 1681, 2004.

[11] G.Schwarz, “Estimating the dimension of a model,” Annals of Statistics, Vol.6,
No.2, pp.461-464, 1978.

[12] K.Watanabe, S.Watanabe, ”Lower bounds of stochastic complexities in variational
bayes learning of gaussian mixture models,” Proceedings of IEEE conference on
Cybernetics and Intelligent Systems (CIS04), pp.99-104, 2004.

[13] S.Watanabe,“Algebraic analysis for non-identifiable learning machines,” Neural
Computation, Vol.13, No.4, pp.899-933, 2001.

[14] K.Yamazaki, S.Watanabe, ”Singularities in mixture models and upper bounds of
stochastic complexity,” International Journal of Neural Networks, 16, pp.1029-
1038, 2003.

[15] K.Yamazaki, S.Watanabe ”Stochastic complexity of bayesian networks,” Proc. of
Uncertainty in Artificial Intelligence(UAI’03), 2003.

[16] K.Yamazaki, S.Watanabe “Newton diagram and stochastic complexity in mix-
ture of binomial distributions,” Proc. of Algorithmic Learning Theory(ALT2004),
pp.350-364, 2004.

Appendix: Proof of Theorem 2

From Lemma 1, it is noted that we can evaluate the normalized stochastic com-
plexity F 0(Xn) by analyzing two terms K(r(θ|θ)||ϕ(θ)) and (logCQ(θ)+S(Xn))

118 K. Watanabe and S. Watanabe

respectively. First, we evaluate the first one. Since the variational posterior sat-
isfies r(θ|θ) = r(a|a)r(b|b), we have

K(r(θ|θ)||ϕ(θ)) = K(r(a|a)||ϕ(a)) +
K∑

k=1

K(r(bk|bk)||ϕ(bk)). (33)

K(r(bk|bk)||ϕ(bk)) is evaluated as follows 4.

Lemma 2.

K(r(bk|bk)||ϕ(bk)) =
M

2
log(nk + ξ0)− logϕ(bk) + Op(1).

Proof. Using the variational posterior, eq.(20), we obtain

K(r(bk|bk)||ϕ(bk)) = − log
C(γk, μk)
C(ξ0, ν0)

+nk{νk〈bk〉r(bk|bk)−〈g(bk)〉r(bk|bk)}, (34)

where we put γk = nk + ξ0. Also it follows from eq.(4) and eq.(22) that

〈g(bk)〉r(bk|bk) = bk · μk −
∂ logC(γk, μk)

∂γk
. (35)

Now let us evaluate the value of C(γk, μk) when γk is sufficiently large. From
the condition (iii), using the saddle point approximation, we obtain

C(γk, μk) = exp
[
γk{μk·b̂k−g(b̂k)}

]√2π
γk

M√
|I(b̂k)|

−1{
1+

C′

γk
+Op

(1
γ2

k

)}
, (36)

where C′ is a constant and b̂k is the maximizer of the function μ · bk − g(bk),
that is,

∂g(b̂k)
∂bk

= μk.

Therefore, − logC(γk, μk) is evaluated as follows,

− logC(γk, μk) =
M

2
log

γk

2π
+

1
2

log |I(b̂k)| − γk(μk · b̂k − g(b̂k)) +
C′

γk
+Op

(1
γ2

k

)
.

(37)
Consequently, we obtain

∂ logC(γk, μk)
∂μk

= γk · b̂k, (38)

∂ logC(γk, μk)
∂γk

= (μk · b̂k − g(b̂k)) +
M

2
1
γk

+ Op

(1
γ2

k

)
. (39)

It follows from eq.(22) and eq.(38),
4 In this proof, Op(1) denotes a random variable bounded in probability.

Stochastic Complexity for Mixture of Exponential Families 119

b̂k = bk, (40)

and from eq.(35) and eq.(39),

〈g(bk)〉r(bk|bk) = g(bk) +
M

2
1
γk

+ Op

(1
γ2

k

)
. (41)

Thus from eqs.(34),(22),(41) and (37), we obtain the lemma. ��

Then, the first term on the right-hand side of eq.(18) is given in the following.

Lemma 3.

K(r(θ|θ)||ϕ(θ)) = G(a)−
K∑

k=1

logϕ(bk) + Op(1) (42)

holds where we define the function G(a) of a = {ak}Kk=1 by

G(a) =
MK + K − 1

2
logn + {M

2
− (φ0 − 1

2
)}

K∑
k=1

log ak. (43)

Proof. From eq.(19) and eq.(2), we obtain

K(r(a|a)||ϕ(a)) =
K∑

k=1

h(nk)− nΨ(n + Kφ0) + logΓ (n + Kφ0) + log
Γ (φ0)K

Γ (Kφ0)
,

(44)
where Ψ(x) = Γ ′(x)/Γ (x) is the di-gamma(psi) function and we used

〈log ak〉r(a|a) = Ψ(nk + φ0)− Ψ(n + Kφ0)

and the notation h(x) = xΨ(x + φ0)− logΓ (x + φ0).
By using inequalities for the di-gamma function Ψ(x) and the log-gamma

function logΓ (x), for x > 0 and for a positive constant C,

1
2x

< log x− Ψ(x) <
1
x
, (45)

0 ≤ logΓ (x)− (x− 1
2
) log x + x− 1

2
log 2π ≤ C

x
, (46)

we obtain

h(x) = −(φ0 − 1
2
)
log(x + φ0) + x + O(1),

and from eqs.(33),(44) and Lemma 2, we complete the proof. ��

Let us now turn to the second term, logCQ(θ), on the right-hand side of
eq.(18). It is evaluated as follows.

120 K. Watanabe and S. Watanabe

Lemma 4.

nHn(θ) + Op(1) ≤ −(logCQ(θ) + S(Xn)) ≤ nHn(θ) + Op(1) (47)

holds where the function Hn(θ) is defined in eq.(8) and

Hn(θ) =
1
n

n∑
i=1

log
p(xi|θ0)∑K

k=1 akc(xi|b̄k) exp
{− M+2

2(nk+min{φ0,ξ0}) + Op

(
1

n2
k

)} .
Proof.

CQ(θ) =
n∏

i=1

K∑
k=1

exp
〈
log akc(xi|bk)

〉
r(θ|θ)

=
n∏

i=1

K∑
k=1

exp{Ψ(nk + φ0) − Ψ(n + Kφ0) + bk · f(xi) − 〈g(bk)〉r(θ|θ) + f0(xi)}.

Using again the inequalities (45) and eq.(41), we obtain

log CQ(θ) ≥
n∑

i=1

log
[K∑
k=1

akc(xi|bk) exp
{− M + 2

2(nk + min{φ0, ξ0}) + Op

(1
n2

k

)}]
+ Op(1),

log CQ(θ) ≤
n∑

i=1

log
[K∑
k=1

akc(xi|bk)
]
+ Op(1),

which give the upper and lower bounds in eq.(47) respectively. ��
From above lemmas, we show the following theorem on the upper bound in
eq.(26).

Theorem 3. The normalized stochastic complexity F 0(Xn) in eq.(17) satisfies
the following inequality.

F 0(Xn) ≤ λ logn + Op(1),

where λ is given by eq.(28).

Proof. From Lemma 1,Lemma 3 and Lemma 4, it follows that

F 0(Xn) ≤ min
θ

[
G(a)−

K∑
k=1

logϕ(bk) + nHn(θ)
]
+Op(1)

≡ min
θ

[Tn(θ)] + Op(1). (48)

From eq.(48), it is noted that the function values of Tn(θ) at specific points
of the variational parameter θ give upper bounds of the normalized stochastic
complexity F 0(Xn). Hence, let us consider the following two cases where R1

and R2 are random variables of the order of 1√
n
. Hn(θ) = Op(1

n) holds in both
cases.

Stochastic Complexity for Mixture of Exponential Families 121

(I) :When

ak = a∗k (1 ≤ k ≤ K0 − 1), ak = a∗K0
/(K −K0 + 1) (K0 ≤ k ≤ K),

b1 = b∗1 + R1, bk = b∗k (2 ≤ k ≤ K0 − 1), bk = b∗K0
(K0 ≤ k ≤ K),

then
Tn(θ) =

MK + K − 1
2

logn + Op(1).

(II) :When

ak = a∗k
n + K0φ0

n + Kφ0
(1 ≤ k ≤ K0), ak =

φ0

n + Kφ0
(K0 + 1 ≤ k ≤ K),

b1 = b∗1 + R2, bk = b∗k (2 ≤ k ≤ K0), bk = ν0 (K0 + 1 ≤ k ≤ K),
then

Tn(θ) =
{
(K −K0)φ0 +

MK0 + K0 − 1
2

}
logn + Op(1).

From eq.(48), we prove the theorem. ��
Next we show the following theorem on the lower bound in eq.(26).

Theorem 4. The normalized stochastic complexity F 0(Xn) in eq.(17) satisfies
the following inequality.

F 0(Xn) ≥ λ logn + nHn(θvb) + Op(1), (49)

where λ is given by eq.(27).

Proof. Since logϕ(bk) is a bounded function of n, it follows from Lemma 1,
Lemma 3 and Lemma 4,

F 0(Xn) ≥ min
a
{G(a)}+ nHn(θvb) + Op(1). (50)

If φ0 > M+1
2 , then

G(a) ≥ MK + K − 1
2

logn− (M + 1
2
− φ0

)
K logK, (51)

since Jensen’s inequality yields that
∑K

k=1 log ak ≤ K log(1
K).

If φ0 ≤ M+1
2 , then

G(a) ≥ {(K − 1)φ0 +
M

2
} logn + Op(1), (52)

since ak ≥ φ0
n+Kφ0

holds for every k and the constraint
∑K

k=1 ak = 1 ensures that
log ak = Op(1) for at least one index k. From eqs.(50),(51) and (52), we obtain
the theorem.

Let us combine these theorems and complete the proof.
(Proof of Theorem 2)

Proof. From Theorem 3 and Theorem 4, we have

λ logn + nHn(θvb) + Op(1) ≤ F 0(Xn) ≤ λ logn + Op(1).

Taking the expectation over all sets of training samples gives Theorem 2. ��

ACME: An Associative Classifier Based on Maximum
Entropy Principle

Risi Thonangi and Vikram Pudi

Center for Data Engineering,
International Institute of Information Technology, Hyderabad

rishi@research.iiit.ac.in, vikram@iiit.ac.in

Abstract. Recent studies in classification have proposed ways of exploiting the
association rule mining paradigm. These studies have performed extensive ex-
periments to show their techniques to be both efficient and accurate. However,
existing studies in this paradigm either do not provide any theoretical justifica-
tion behind their approaches or assume independence between some parameters.
In this work, we propose a new classifier based on association rule mining. Our
classifier rests on the maximum entropy principle for its statistical basis and does
not assume any independence not inferred from the given dataset. We use the
classical generalized iterative scaling algorithm (GIS) to create our classification
model. We show that GIS fails in some cases when itemsets are used as features
and provide modifications to rectify this problem. We show that this modified
GIS runs much faster than the original GIS. We also describe techniques to make
GIS tractable for large feature spaces – we provide a new technique to divide a
feature space into independent clusters each of which can be handled separately.
Our experimental results show that our classifier is generally more accurate than
the existing classification methods.

1 Introduction

Classification has been an age old problem. It involves labeling a query with one among
a set of possible class labels by learning from available query-label pairs. Previous stud-
ies such as decision trees [20], rule learning [3], naive-bayes [8] and other statistical
approaches [15] have developed heuristic/greedy search techniques for building classi-
fiers. These techniques build a set of rules covering the given dataset and use them for
prediction. Machine learning approaches like SVMs [5] do classification by learning
boundaries between classes and checking on which side of the boundary the query lies.

Recent studies in classification have proposed ways to exploit the paradigm of asso-
ciation rule mining for the problem of classification. These methods mine high quality
association rules and build classifiers based on them [16] [7] [18]. We refer to these
approaches as associative classifiers and they have several advantages – (1) Frequent
itemsets capture all the dominant relationships between items in a dataset. (2) Efficient
itemset mining algorithms exist. (3) These classifiers naturally handle missing values
and outliers as they only deal with statistically significant associations. This property
translates well into the classification framework to make it robust. (4) Extensive per-
formance studies [14] [17] have shown such classifiers to be generally more accurate.

S. Jain, H.U. Simon, and E. Tomita (Eds.): ALT 2005, LNAI 3734, pp. 122–134, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

ACME: An Associative Classifier Based on Maximum Entropy Principle 123

However, existing studies in the associative classification paradigm either do not pro-
vide any theoretical justification behind their approaches [14] or assume independence
between some parameters in the domain [18] [8].

In this paper we propose ACME - a new Associative Classifier based on Maximum
Entropy. The maximum entropy principle is well-accepted in the statistics community.
It states that given a collection of known facts about a probability distribution, choose a
model for this distribution that is consistent with all the facts but otherwise is as uniform
as possible. Hence, the chosen model does not assume any independence between its
parameters that is not reflected in the given facts. In this paper, we use the Generalized
Iterative Scaling (GIS) algorithm to compute the maximum entropy model.

Our main contributions in this work are as follows:

1. We develop ACME, a new associative classifier.
2. We show that the classical GIS algorithm fails in some cases when itemsets are used

as features. In particular it fails in the presence of itemsets that are not closed1.
3. We provide a modification to GIS to work around the above-mentioned problem

when itemsets are used as features. The modified GIS is faster than the original
GIS.

4. We describe techniques to make GIS tractable for large feature spaces – we provide
a new technique to efficiently divide a feature space into independent clusters each
of which can be handled separately.

The rest of this paper is organized as follows: Section 2 formally introduces the classifi-
cation problem and in Section 3, we describe the overall design of the proposed ACME
classifier. In Section 3.1, we describe the classical GIS algorithm that computes the
max-entropy distribution. Section 4 describes the drawbacks of the classical Maximum
Entropy model and in Section 5, we present the new Maximum Entropy model. In Sec-
tion 5.1, we adapt the GIS algorithm to converge in the presence of itemsets that are
not closed. In Section 6, we describe techniques to make GIS tractable for large feature
spaces and describe related work in Section 7. In Section 8, we experimentally evaluate
the accuracy of ACME and finally conclude our study in Section 9.

2 Problem Definition

Let I = {i1, i2, . . . , in} be the set of items that can appear in a transaction and L =
{c1, c2, . . . , cl} be a set of l classes. A transaction containing items {ik1 , ik2 , . . . , ikj}
is denoted by xr where r is a whole number whose k1, k2, . . . , kj bits are set to 1 and
the remaining bits are set to 0. Hence the set X = {x0, x1, . . . , x2n−1} represents the
set of all possible transactions. The training dataset D is a set of transactions, each of
which is labeled with one of the m classes.

Given a transaction x to classify (i.e. x is a query), we label it with class ci for
which the posterior probability p(ci|x) is maximum. Bayes formula allows us to com-
pute this probability from the prior probability p(ci) and the class-conditioned proba-
bility p(x|ci) as follows

p(ci|x) =
p(x|ci) ∗ p(ci)

p(x)
1 An itemset is not closed iff it has the same frequency as one of its supersets.

124 R. Thonangi and V. Pudi

Since the denominator p(x) is common for all the classes, it is ignored. p(ci) is the
relative frequency of class ci in D, which is trivial to calculate. Hence, the classification
problem is translated to the correct estimation of p(x|ci), given the dataset D.

We can calculate p(x|ci) by directly measuring the frequency of x in the transac-
tions in D which belong to the class ci. But, because most training datasets are not
large enough, this method would not be accurate if x is infrequent or non-existent in the
dataset.

3 The ACME Classifier

The ACME classifier estimates p(x|ci) in the following way. Let S = {s1, s2, . . . , s|S|}
be the union of the frequent itemsets extracted from each class ci.

S = { sj | ∃ci s.t. P (sj |ci) ≥ σ } (1)

where P (sj |ci) =
∑

x∈X ∧ sj⊂x

p(x|ci)

P (sj |ci) denotes the support of sj in class ci and σ is the user given support threshold.
Each sj ∈ S is called an fset. We use the itemsets in set S as parameters to model
each class, such that each itemset sj together with its support P (sj |ci) in class ci forms
a constraint that needs to be satisfied by the statistical model for that particular class.
Thus, for each class ci we have a set of constraints Ci = {(sj, P (sj |ci))|sj ∈ S}.
The probability distribution that we build for class ci must satisfy these constraints.
However, there could be multiple distributions satisfying these constraints. We follow
the maximum entropy principle [10] and among these distributions select the one with
the highest entropy. This is referred to as the Maximum Entropy model. It is unique and
can be expressed in the following product form [22]:

p(x|ci) = π

|Ci|∏
j=1

μ
fj(x)
j (2)

where fj(x) = 1 if sj ⊆ x

= 0 otherwise

In Equation 2, π is a normalization constant which ensures
∑

x∈X p(x|ci) = 1. There
are well-defined iterative algorithms to compute μj’s. In this paper we use the General-
ized Iterative Scaling (GIS) algorithm [6] described in Section 3.1. The model given in
Equation 2 is referred to as the classical Maximum Entropy model.

Maximum entropy modeling does not differentiate between a class-variable and a
normal variable. Infact, the model given in Equation 2 is called as conditional maximum
entropy model as it models the domain for each class-variable. For brevity, we refer to
it as “maximum entropy model”. In the ensuing discussion we drop the conditional
in P (sj |ci) and write it as P (sj) and likewise wherever required. The conditional is
implicitly assumed.

ACME: An Associative Classifier Based on Maximum Entropy Principle 125

In ACME, the training phase would involve finding the set of constraints S and
computing μ values for all the classes. The computed μ values for each class are stored
and are used in the actual classification phase. The procedure to classify a given transac-
tion x is to first extract all the itemsets in S that are subsets of x. These are the features
of x. Then compute Equation 2 for each class and select that class which maximizes
this equation.

3.1 Computing Parameters of the Maximum Entropy Model

The μj’s in Equation 2 are estimated by a procedure called the Generalized Iterative
Scaling (GIS) [22]. This is an iterative method that improves the estimation of the pa-
rameters with each iteration. The algorithm stops when there is no significant change
in the μj values. This solution is globally optimal as it has been proved that the search
space of μj’s over which we are searching for the final solution is concave leading to
the conclusion that every locally optimal solution is globally optimal [6]. In this section,
we present the GIS algorithm and discuss some issues about it.

The GIS algorithm runs with the constraint set C on the domain X computing a
model which has the highest entropy and satisfies all the constraints. We call X and C,
the parameters of GIS. The GIS algorithm first initializes all the μj’s to 1, and executes
the following procedure until convergence:

μ
(n+1)
j = μ

(n)
j

[
P (sj)

P (n)(sj)

]
(3)

where
P (n)(sj) =

∑
x∈X

p(n)(x)fj(x)

p(n)(x) = π

|C|∏
j=1

(μ(n)
j)fj(x).

The variable n in the above system of equations denotes the iteration number. P (n)(sj)
is the expected support of sj in the n’th iteration while P (sj) is the actual support of
sj calculated from the training dataset. Convergence is achieved when the expected and
actual supports of every sj are nearly equal.

Note that for the GIS to converge, minor modifications to the above formalism (in
Equation 3) are required. Details of this are available in [21] and are not required for
the discussion in this paper.

Time Complexity. Every time Equation 3 needs to be executed, P (n)(sj) is to be
calculated from the distribution p(n). This step takes O(|X |), and to execute it for all
sj it takes O(|X | ∗ |C|). If the algorithm requires m iterations for the distribution p to
converge, the time complexity of GIS can be given as O(m∗ |X | ∗ |C|). Under practical
circumstances, the number of iterations m is hard-coded and the algorithm is made to
stop once it reaches those many iterations without waiting for the distribution to fully
converge2 [22].

2 In our experiments, the GIS was run for 100 iterations.

126 R. Thonangi and V. Pudi

One drawback in the above approach is that the probability model expressed in
Equation 2 fails in some cases [22]. In particular, it fails in the presence of itemsets that
are not closed. In Section 5.1 we discuss this drawback in detail, and in Section 5 we
propose a solution to this problem.

Another drawback in the above approach is that it is not tractable when the set of
items I is very large. This is because the complexity of the GIS algorithm is exponential
w.r.t. |I|. We describe a technique to overcome this drawback in Section 6. It involves
partitioning I into independent clusters of items so that GIS can be run on each cluster
separately.

4 Failure of Approach Due to Non-closed Itemsets

In this section, we explain why the classical Maximum Entropy model as given by the
product form in Equation 2 fails in some cases. An itemset is not closed iff it has the
same frequency as one of its supersets. The formal definition of a non-closed itemset
follows.

Definition 1. An itemset su ∈ S is non-closed iff

P (su)
= 0 and

∃sv ∈ S s.t. su ⊂ sv ∧ P (su) = P (sv)

The presence of su in a transaction x means that sv will also be present in x. We denote
such a pair by [su, sv], a fully-confident itemset pair. �

A major disadvantage with the Maximum Entropy model is that Equation 2 does not
have a solution when the system of constraints have non-closed itemsets in them. We
prove this formally in Theorem 1.

Theorem 1. Equation 2 does not have a solution when the system of constraints have
non-closed itemsets.

Proof. Let su ∈ S be a non-closed itemset. From Definition 1:

P (su) > 0 (4)

Since su is a non-closed itemset, ∃sv ∈ S s.t. su ⊂ sv ∧ P (su) = P (sv) which means
probability of any transaction that contains su but not sv is 0. Let x be a transaction s.t.
no other items except the ones in su are present in it. It means:

ik ∈ su ⇔ ik ∈ x

where ik is an item in I . Since sv is strictly a superset of su, sv
⊂ x. Hence p(x) = 0.
From Equation 2:

p(x) = π
∏

sw⊆su

μw = 0 ⇒ ∵ π
= 0, ∃sw ∈ S ∧ sw ⊆ su s.t. μw = 0

ACME: An Associative Classifier Based on Maximum Entropy Principle 127

This means ∀t ∈ X with su ⊆ t, p(t) = 0 as sw will be present in the product form of
p(t) since sw ⊆ su. From the above statement,

P (su) =
∑

su⊂x

p(x) = 0

which contradicts Equation 4. ∴ Equation 2 does not have a solution when the system
of constraints have non-closed itemsets. �

Hence, in cases when the system of constraints have non-closed constraints, the exact
solution does not exist in the form of the probability model given in Equation 2 and the
model parameters will not converge under the GIS algorithm. We propose a modifica-
tion to the maximum entropy model enabling it to accommodate non-closed itemsets in
its system of constraints and give a proof of convergence for this new model.

5 The Modified Maximum Entropy Model

The modified product form of the Maximum Entropy model is given as:

p(x) = 0 if ∃[su, sv] s.t su ⊆ x ∧ sv
⊂ x

= π

|C′|∏
i=1

μ
fi(x)
i otherwise (5)

C′ in the above equation is the set of closed constraints in C. The non-closed constraints
in C are only used to determine whether the probability of the transaction is 0 or not.
When we find that the transaction has positive probability, its value p(x) is calculated
using the closed constraints in C.

Let X ′ ⊂ X be the set of transactions for which p(x) > 0. We call such transac-
tions as closed transactions. Transactions in the set {X − X ′} are called non-closed
transactions.

Theorem 2. Equation 5 refers to the Maximum Entropy model satisfying the given con-
straints inclusive of the closed-itemsets.

Proof. Same as that of the classical GIS given in [22], except that the transaction set
would be X ′ instead of X and constraint set is C′ instead of C. �

5.1 Computing Parameters for the Modified Maximum Entropy Model

Instead of the usual parameters X and C, the GIS algorithm is run with C′ on the
domain X ′ to build the new Maximum Entropy model. It first initializes all the μj’s in
C′ to 1 and executes the GIS procedure until convergence:

μ
(n+1)
j = μ

(n)
j

[
P (sj)

P (n)(sj)

]
μj ∈ C′ (6)

where

128 R. Thonangi and V. Pudi

P (n)(sj) =
∑

x′∈X′
p(n)(x′)fj(x′)

p(n)(x′) = π

|C′|∏
j=1

(μ(n)
j)fj(x′) ∀x′ ∈ X ′ (7)

Theorem 3. The modified GIS as given in Equations 6 and 7 converges to the desired
Maximum Entropy model.

Proof. Same as that of the classical GIS given in [6], except that the transaction set
would be X ′ instead of X and constraint set is C′ instead of C. �

Time Complexity. The time complexity of the modified GIS algorithm is O(m∗|X ′|∗
|C′|). Notice that |C′| and |X ′|will be smaller than or equal to |C| and |X | respectively.
In cases where some non-closed itemsets are removed from C, the size of X ′ will be
significantly smaller than the decrease in the size of C. This is because of the reason that
for every non-closed itemset removed from C, an exponential number of transactions
are removed from X . Hence, this new modified GIS algorithm not only computes the
correct Maximum Entropy model but also has the advantage of running much faster
than the classical GIS algorithm.

6 Improving the Execution Time of GIS

The running time complexity of GIS is O(m ∗ |C| ∗ 2|I|), where m is the number of
iterations required by the GIS for convergence. |C| is typically exponential in |I| as
there is one constraint for every frequent itemset mined: The set of frequent itemsets
are generally exponential. Hence, the two important parameters which influence the
execution time of GIS are |C| and |I|.

In this section, we discuss methods to overcome the effects of these two parame-
ter values. In Section 6.1 we provide a technique to prune the constraint set C and in
Section 6.2 we describe a procedure to split I into smaller mutually-exclusive and col-
lectively exhaustive sub-parts, each of which can be handled separately to produce the
global distribution.

6.1 Pruning Constraints

Below, we define the term confidence of an itemset sj for a class ci.

Definition 2. We call P (ci|sj) as the confidence of seeing class ci in transactions con-
taining the itemset sj . P (ci|sj) (confidence of sj in ci) is computed as P (ci|sj) =
P (sj∪{ci})

P (sj) �

As discussed earlier, the set of constraints are exponential in |I| and pruning them to
a handful of interesting itemsets will improve the execution time of GIS. We give an
interestingness measure that can be employed for the purpose of pruning.

ACME: An Associative Classifier Based on Maximum Entropy Principle 129

– The confidence, defined in Definition 2, is considered a measure of interestingness
as the higher the confidence value the more the association between sj and ci. We
denote this interestingness measure by I(sj).

I(sj) = max
ci

P (ci|sj) (8)

An itemset sj is included in the set of constraints of all the classes, if there exists
atleast one class ci such that sj has high confidence in ci (i.e. P (ci|sj) > minconf , for
a given minimum confidence threshold minconf). Notice that an itemset sj is either
included as a constraint in all the classes or is not included in any of the classes. Since∑

ci
P (ci|sj) = 1, a large value for a particular P (ci|sj) would imply that ∀ck
=

ci, P (ck|sj) will be very less. If P (ci|sj) > minconf , it means that sj is a good
distinguishing factor between the classes. By including sj in all the classes, we ensure
that this information remains in the system of constraints.

Note that an effect of this pruning is that the new distribution that will be computed
using the GIS is not the actual distribution of the data. However, it is a good repre-
sentative in that the distributions computed for all classes are equally affected by this
pruning. Hence, the outcome of the classifier is not changed.

6.2 Decomposing the Domain I

Using the interestingness measure I for pruning, the effects of large |C| values on the
running time of GIS can be decreased. However the algorithm still has to go through the
entire possible transaction set X for every iteration. The transaction set X is the power-
set of I , and hence it’s size can be quite large for even modest values of |I|. To decrease
the effects of |I| on the running time of GIS, we divide it into clusters {I1, I2, . . . , Ik}
which are mutually exclusive and collectively exhaustive so that the GIS algorithm can
be applied to each cluster and the final global distribution can be built by combining the
outputs of GIS for these clusters.

Let C′′
i denote the final set of constraints for class ci obtained after pruning Ci. The

division of the set of items I into {I1, I2, . . . , Ik} is in such a way that a constraint
in C′′

i with itemset sj is fully contained in only one Ii. Such a division of I ensures
that Ii and Ij , where i
= j, will not have any item in common and

⋃
i Ii = I . The

items of Ii are said to be independent of items in Ij , for every i and j, since there exist
no constraints which overlap with both Ii and Ij . If there were items in Ii which had
dependency relationships with items in Ij , then there should be atleast one constraint
containing these items which would have stayed through the pruning process to remain
in the final set of constraints. The final global distribution over I can be obtained by
combining the local distributions of {I1, I2, . . . , Ik} in a naive-bayes fashion.

In the above discussion, Ii and Ij will be independent of each other if there is no
constraint which has an overlap with both Ii and Ij . Two cases can exist for such a
constraint’s absence:

1. The constraint was pruned away based on the interestingness measure I.
2. The constraint was not frequent enough in any of the classes to enter the system of

constraints.

130 R. Thonangi and V. Pudi

If a constraint was not frequent enough, the statistical relationships it encodes are
not strongly represented in the dataset. In such a case, we assume that these relation-
ships are not important and the classifier will not lose much by pruning them away
and using only those relationships which are strongly represented in the dataset. On
the other hand, if the constraint was removed based on the interestingness measure I,
it means that the constraint was not distinguishing enough between the classes. This
means, although the itemset was frequent enough in atleast one of the classes, it is not
important for the task of classification.

7 Related Work

The surprising ability of naive-bayes (NB) at classification has spawned many exten-
sions to it, most of which try to decrease the assumptions they make about the sta-
tistical characteristics of the features. TAN (Tree Augmented Naive Bayesian classi-
fier) [4] learns a restricted tree-structured bayesian network taking into account only the
most important correlations between pairs of attributes. The Selective Bayesian Clas-
sifier [12] deals with highly correlated features by incorporating only some attributes
into the final decision process. The Semi-Naive Bayesian Classifier[11] iteratively joins
pairs of attributes to relax the strongest independence assumptions.

The above methods try to decrease the strong independence assumptions made by
NB. Two variables x, y are conditionally independent given z if for all values of x,y and
z, p(x|y, z) = p(x|z). The conditional independence fails, even if a few instantiations
of x,y and z don’t satisfy this condition. If such a case occurs, the above algorithms
would consider storing all elements of the joint probability distribution p(x, y, z) to
obtain more accurate estimations. This method is error prone as enough data might
not exist to provide reliable probability estimations for each p(x, y, z). [2] introduced
context-specific independence, which describes independence relations among variables
that hold in certain contexts only. Large Bayes [18] considers only relationships be-
tween variable instantiations. Classification in Large Bayes is done by incrementally
building a product approximation of p(x|ci) with the available subsets of x. The ap-
proximation strategy judiciously uses subsets of x available at hand to decrease the
independence assumptions it is making. However, all the above methods still assume in-
dependence between some pairs of attributes eventhough they are much lesser than NB.
Our classifier, does not assume any relationships between items and uses the well ac-
cepted Maximum Entropy framework to effectively handle the independences inferred
from sets of features. By representing relationships with itemsets, this classifier consid-
ers only independences between variable instantiations without trying to generalize.

Our work is somewhat similar to [16] [14] in that they use association rules to
capture relationships. CBA [16] picks out the most confident rule from the mined rules
for classification. Such single rule based classifiers are prone to unreliable estimates.
CMAR [14] overcomes this problem by considering multiple rules at the time of classi-
fication. This method gives a formula to compare between groups of rules of each class,
but a statistical justification for this formula is not provided.

The principle of Maximum Entropy has been widely used for a variety of natural
language tasks including language modeling [23], text segmentation [1], part-of-speech

ACME: An Associative Classifier Based on Maximum Entropy Principle 131

tagging [22] and prepositional phrase attachment [22]. Ours is the first approach, to
our knowledge, which uses it for categorical data classification with mined frequent
itemsets as constraints.

The paper [13] discussed the Maximum Entropy model’s failure to accommodate
non-closed constraints and proposed solutions to this problem. It applied Good-Turing
discounting to the observed constraint frequencies and ran the classical GIS algorithm
on these constraints. For example, a constraint’s frequency will be changed to fj − ε,
instead of its usual observed frequency fj before including it for GIS algorithm. In
this approach there is no guarantee that the constraints would remain consistent with
each other after they have been changed. It also reports results on a fuzzy maximum
entropy framework in which the objective is to maximize the sum of the entropy func-
tion and a penalty function which is heuristically selected to penalize deviations from
unreliable(less frequent) constraints. Our solution to this problem, fixes the Maximum
Entropy model in a simple fashion, without adding any additional complexity, such that
the GIS algorithm will converge and will generate the correct maximum entropy distri-
bution. Further, this new solution runs much faster than the classical GIS algorithm(see
the Section 8).

8 Experiments

In this section, we show the evaluation of ACME classifier on 11 datasets chosen from
the UCI Machine-Learning Repository [19]. We compare ACME with four other state-
of-the-art classifiers: (1) the widely known and used decision tree classifier C4.5 [20]
(2) a recently proposed associative classifier CBA [16] (3) the naive-bayes classifier and
(4) the Tree-Augmented naive-bayes(TAN) classifier [4].

Continuous variables in the dataset were first discretized to interval attributes using
entropy based discretization as given in [9]. The same discretized datasets were used
for all the classification methods, except for C4.5 which accepts continuous valued
variables directly. In all the experiments, accuracy is measured using the 10-fold cross
validation. We implemented the classification methods naive-bayes and ACME in C++
and the classifiers TAN and C4.5 were borrowed from the weka machine learning soft-
ware [24]. The results for the CBA classifier were borrowed from [14]. Experiments
were run on an Intel Celeron dual-processor machine with two 3.0GHz processors and
running RedHat Linux 9.0.

Figure 1 gives the characteristics of the ten datasets used in the evaluation of ACME.
The column fsets in this figure, gives the size of the union of all the frequent itemsets
extracted from every class. As given in Equation 1, this set is denoted as S. The next
column “largest cluster(Ic)” gives the size of the largest cluster in all the classes. Col-
umn “closed trans.” gives the percentage of transactions in the cluster Ic which had
non-zero probability (see Section 5). Only these transactions were used in the learn-
ing phase, instead of the entire domain X . Apart from the transactions which are not
closed, we also removed transactions which satisfy a constraint whose support was 0.
The μ values of such constraints were set to 0 and they were removed from the learning
phase. The last column gives the number of constraints in the largest cluster (Ic) among
all the classes. If a dataset has multiple classes which contain the largest cluster, it is

132 R. Thonangi and V. Pudi

Dataset Attrs. Classes size fsets largest cluster(Ic) closed trans. Cons. in Ic

Australian 14 2 690 354 17 10.1% 263
Breast 10 2 699 189 17 8.89% 180
Cleve* 13 2 303 246 15 9.96% 204

Diabetes 8 2 768 85 15 7.42% 61
German 20 2 1000 54 20 9.66% 44
Heart* 13 2 270 115 9 55.1% 95

Hepatitis 19 2 155 32.1k 17 1.3% 153
Lymph* 18 4 148 29 9 12.1% 14

Pima 8 2 768 87 15 8.6% 55
Waveform 21 3 300 99 18 1.3% 24

Fig. 1. Characteristics of the Datasets

marked with a ‘*’. For these datasets, the last two columns give the average calculated
over these clusters.

Looking at Figure 1 we can see that even if the decrease in the size of the set of
constraints C is modest, the decrease in the size of X is significant. The decrease in the
size of X is nearly 99% for datasets Waveform and Hepatitis as the decrease in the
size of their constraint set C is very large. Since the complexity of GIS is proportional
to |X | (calculated in Section 3.1), the new GIS algorithm will run much faster than the
classical GIS algorithm in the presence of non-closed constraints.

If an attribute a is discretized into {a1, a2, . . . , az} binary variables, utmost one
of these binary variables can be present in any transaction. This fact is not repre-
sented in the set of constraints for any class. We explicitly add constraints of the form
({ai, aj}, 0), for every ai and aj , to the set of constraints for every class to ensure the
presence of this information. Each constraint means that the probability of seeing ai and
aj together in a transaction is 0. We call these constraints as zero-constraints. This im-
plementation detail improved ACME’s accuracy. None of the classifiers that we know,
including the ones with which ACME is compared in this section, had the provision to
improve their accuracy by using the zero-constraints.

In our experiments, the parameters for all the classifiers were set to the standard
values as reported in the literature. For CBA the minimum support was set to 0.01 (i.e.
1%) and the minimum confidence is set to 50% with the pruning option enabled. The
minimum support threshold for ACME was set to 0.1 and the threshold confidence is
set to 0.8. TAN classifier is run with default settings as used in the weka toolkit.

Figure 2 gives a detailed description of the datasets employed in the experiments
and the accuracies of various classifiers. The winners for each dataset are highlighted in
bold font. As can be seen from this table, ACME outperforms all the other classifiers.
Out of the ten datasets employed for the testing, ACME wins in five cases. NB wins in
3 datasets and the remaining algorithms perform the best on one dataset each. However,
ACME has an additional advantage of handling missing values. Even for other datasets
in which ACME does not win, it comes close to the winner.

An important point that needs to be noted is, for the Hepatitis and Waveform
datasets, eventhough the new modified GIS algorithm is made to run on only 1.3% of
the entire possible domain, it is achieving significant results. ACME was the winner for

ACME: An Associative Classifier Based on Maximum Entropy Principle 133

Dataset NB C4.5 CBA TAN ACME
Australian 84.34 85.50 84.9 84.9 85.36

Breast 97.28 95.13 96.3 96.56 96.49
Cleve 83.82 76.23 82.8 82.5 83.82

Diabetes 75.78 72.39 74.5 76.30 77.86
German 70.0 70.9 73.4 73.0 71.3

Heart 83.70 80.0 81.87 81.85 82.96
Hepatitis 80.22 81.93 81.8 81.29 82.58
Lymph 83.10 77.0 77.8 84.45 78.4
Pima 76.17 74.34 72.9 76.30 77.89

Waveform 80.82 76.44 80.0 81.52 83.08

Fig. 2. Accuracies of various Classifiers on UCI ML Datasets

these two datasets. The reason behind this is that the eliminated portion of the domain
is actually set to the correct probability 0. This substantiates our earlier argument that
not only ACME runs faster, but also that the distribution it generates will be more closer
to the distribution we are trying to mimic. Another important point to note is that the
naive-bayes classifier is performing better than the remaining classifiers.

9 Conclusions

In this paper we proposed a new classifier based on the paradigm of association rules.
Though recent classifiers involving this paradigm have shown their techniques to be
accurate, their approaches to build a classifier either assume not-observed statistical
relationships in the dataset or have no statistical basis. Our classifier ACME uses the
well-known Maximum Entropy principle to build a statistical model for the purpose
of classification. We show that the classical Maximum Entropy model cannot have a
solution for some input cases and propose a new Maximum Entropy model which can
fit in all the input cases. We gave a modification to GIS, an algorithm to compute the
classical Maximum Entropy model, to compute the new model. The modified GIS,
apart from computing the correct Maximum Entropy model, also runs atleast as fast as
the original GIS. We also described techniques to make GIS tractable for large feature
spaces – we provided a new technique to divide a feature space into independent clusters
each of which can be handled separately. Finally, our experimental results show that our
classifier is generally more accurate than the existing classification methods.

References

[1] D. Beeferman, A. Berger, and J. Lafferty. Statistical models for text segmentation. Machine
Learning, 34(1-3):177–210, 1999.

[2] C. Boutilier, N. Friedman, M. Goldszmidt, and D. Koller. Context-specific independence
in bayesian-networks. In Uncertainty in Artificial Intelligence(UAI), 1996.

[3] P. Clark and T.Niblett. The cn2 induction algorithm. Machine Learning, 2:261–283, 1989.
[4] P. Clark and T.Niblett. Bayesian network classifiers. Machine Learning, 29:131–163, 1997.

134 R. Thonangi and V. Pudi

[5] N. Cristianini and J. Shawe-Taylor. An Introduction to Support Vector Machines. Cam-
bridge University Press, 2000.

[6] J. Darroch and D. Ratcliff. Generalized iterative scaling for log-linear models. Annals of
Mathematical Statistics, 43:1470–1480, 1972.

[7] G. Dong, X. Zhang, L. Wong, and J. Li. Classification by aggregating emerging patterns.
In Discovery Science, Dec. 1999.

[8] R. Duda and P. Hart. Pattern Classification and Scene Analysis. John Wiley & Sons, 1973.
[9] U. M. Fayyad and K. B. Irani. Multi-interval discretization of continuous-valued attributes

for classification learning. In Intl. Joint Conf. on Artificial Intelligence(IJCAI), pages 1022–
1029, 1993.

[10] I. Good. Maximum entropy for hypothesis formulation, especially for multidimensional
contingency tables. Annals of Mathematical Statistics, 34:911–934, 1963.

[11] I. Kononenko. Semi-naive bayesian classifier. In European Working Session on Learnign,
pages 206–219, 1991.

[12] P. Langley and S. Sage. Induction of selective-bayesian classifiers. In Uncertainty in
Artificial Intelligence(UAI), pages 399–406, 1994.

[13] R. Lau. Adaptive statistical language modeling. Master’s thesis, Massachusetts Institute of
Technology, Cambridge, MA, 1994.

[14] W. Li, J. Han, and J. Pei. CMAR: Accurate and efficient classification based on multiple
class-association rules. In ICDM, 2001.

[15] T.-S. Lim, W.-Y. Loh, and Y.-S. Shih. A comparison of prediction accuracy, complexity,
and training time of thirty-three old and new classification algorithms. Machine Learning,
40(3):203–228, Sept. 2000.

[16] B. Liu, W. Hsu, and Y. Ma. Integrating classification and association rule mining. In Proc.
of 4th Intl. Conf. on Knowledge Discovery and Data Mining (KDD), Aug. 1998.

[17] D. Meretakis, H. Lu, and B. Wuthrich. A study on the performance of large bayes classifier.
In ECML, pages 271–279. LNAI, 2000.

[18] D. Meretakis and B. Wuthrich. Extending naive-bayes classifiers using long itemsets. In
KDD, pages 165–174, 1999.

[19] C. Merz and P. Murphy. UCI repository of machine learning databases, 1996.
http://cs.uci.edu/ mlearn/MLRepository.html.

[20] J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, 1993.
[21] A. Ratnaparkhi. A simple introduction to maximum entropy models for natural language

processing. Technical Report IRCS Report 97-98, Institute for Research in Cognitive Sci-
ence, University of Pennsylvania, May 1997.

[22] A. Ratnaparkhi. Maximum Entropy Models for Natural Language Ambiguity Resolution.
PhD thesis, Institute for Research in Cognitive Science, University of Pennsylvania, 1998.

[23] R. Rosenfeld. Adaptive Statistical Language Modeling: A Maximum Entropy Approach.
PhD thesis, Carnegie Mellon University, 1994.

[24] I. H. Witten and E. Frank. Data Mining: Practical machine learning tools and techniques.
Morgan Kaufmann, 2 edition, 2005.

Constructing Multiclass Learners from Binary
Learners: A Simple Black-Box Analysis of the

Generalization Errors

Jittat Fakcharoenphol1 and Boonserm Kijsirikul2

1 Department of Computer Engineering,
Kasetsart University, Bangkok, Thailand

jtf@ku.ac.th
2 Department of Computer Engineering,

Chulalongkorn University, Bangkok, Thailand
Boonserm.K@chula.ac.th

Abstract. Multiclass learning is widely solved by reducing to a set
of binary problems. By considering base binary classifiers as black
boxes, we analyze generalization errors of various constructions, in-
cluding Max-Win, Decision Directed Acyclic Graphs, Adaptive Directed
Acyclic Graphs, and the unifying approach based on coding matrix with
Hamming decoding of Allwein, Schapire, and Singer, using only elemen-
tary probabilistic tools. Many of these bounds are new, some are much
simpler than previously known. This technique also yields a simple proof
of the equivalences of the learnability and polynomial-learnability of the
multiclass problem and the induced pairwise problems.

1 Introduction

In many supervised machine learning problems, we want to classify a given
data point into one of the possible classes, usually more than two classes. How-
ever, powerful algorithms available usually work only with two classes, e.g.,
AdaBoost [1], support-vector machine [2, 3].

There are quite a few techniques invented to remedy this problem. For prob-
lems with k classes, the first approach, called One-vs-All, trains k binary classi-
fiers each distinguishing one of the classes from the others. On the other hand,
in the One-vs-One approach,

(
k
2

)
classifiers are trained to distinguish one class

from another. By making all-pair comparisons, a simple technique based on ma-
jority vote [4, 5] (denoted as Max-Win), in practice, gives a very reliable answer.
It, however, needs O(k2) applications of binary classifiers for the problem with
k classes. The popular Decision Directed Acyclic Graphs [6] or the elimina-
tion method [7] reduces the number of comparisons down to O(k). By reducing
the depth of the path to O(log k),1 a recent approach called Adaptive Directed
Acyclic Graphs [8] tries to improve the success probability while retaining a lin-
ear number of applications of the binary classifiers. Among these methods, only
1 If not specified otherwise, all logarithms in this paper are base 2.

S. Jain, H.U. Simon, and E. Tomita (Eds.): ALT 2005, LNAI 3734, pp. 135–147, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

136 J. Fakcharoenphol and B. Kijsirikul

DDAG has a proof of the generalization error bound, based on perceptron deci-
sion trees. However, the proof is very involved, and works only for the specific
class of base binary classifiers.

Another approach based on error-correcting codes was introduced by Diet-
terich and Bakiri [9]. In this framework, the classes are partitioned into opposing
subsets using error-correcting codes. Specifically, a codeword of length l from the
set {+1,−1}l is assigned to each class, and l binary classifiers, each classifier for
each bit of the codes, are trained. The classifier for the s-th bit has to distin-
guish between classes whose s-th bit of the codeword is +1 and those whose bit
is −1. The framework is further analyzed by Guruswami and Sahai [10]. Allwein,
Schapire, and Singer [11] gave a generalized form of this coding method, where
“don’t care bits” can be used, i.e., codewords are from {+1, 0,−1}l. Their frame-
work unifies the coding approach, the One-vs-All, and the One-vs-One methods.
They analyzed the training errors and for classifiers that use AdaBoost as the
binary learner, generalization errors. However, for the general case of the base
binary learners, the generalization performance of the construction is unknown
and is left as an open problem.

In this paper, we present a novel combinatorial proof technique that relies
mainly on the structure of the constructions, not the base classifiers. The main
observation is that in all aforementioned construction, each base binary classifier
has a specific goal, i.e., to distinguish one set of classes from another, so its
generalization error can be analyzed using well-known techniques for the family
of classifiers. Then, we look at base classifiers as black-boxes, and use their
performance guarantees to analyze the multiclass constructions.

With this view of the problem, we are able to derive generalization errors
of various contructions, including Max-Win, Decision Directed Acyclic Graphs,
Adaptive Directed Acyclic Graphs, and the unifying approach based on cod-
ing matrix with Hamming decoding of Alwein et al. Many of these bounds are
new, some are much simpler than previously known, and the proofs use only
elementary probabilistic tools. This technique also yields a simple proof of the
equivalences of the learnability and polynomial-time learnability of the multi-
class problem and the induced pairwise problems.

Later in this section, we review various multiclass learning algorithms. In
Section 2, we describe the models of the learning problem, and give the definition
of the induced binary concepts. We analyze learning algorithms in the later two
sections: Section 3 gives the proofs for constructions based on pairwise learners;
and Section 4 presents the analysis of the generalization errors for algorithms
that use coding matrix. We discuss the equivalence of the pairwise (polynomial-
time) learnability and multiclass (polynomial-time) learnability in Section 5. We
conclude with open problems in Section 6.

1.1 Review of Multiclass Learning Algorithms

There are many methods for solving the multiclass learning problem. In this
paper we focus on methods that construct multiclass classifiers using a set of
binary classifiers, each of which distinguishes between classes. We start with

Constructing Multiclass Learners from Binary Learners 137

pairwise constructions, i.e., constructions that use a set of binary classifiers,
each distinguishing one class from another class. Then, we review the error-
correcting approach together with the coding matrix approach. There are other
approaches, some also uses binary classifiers, (e.g., learning with constraints
classification [12], and learning with equivalence constraints[13]), but they do
not fit into our framework.

Pairwise Constructions. Base binary classifiers for this type of constructions
are those that distinguish one class from another class. Formally, for each pair
{i, j} ∈ [k]× [k], where i
= j, we have a binary classifier Ai,j : X → {i, j} that
answers whether data point x ∈ X belongs to i or j. Ideally, if x belongs to class
i, Ai,j(x) should return i. We do not consider what Ai,j(x) would return when
x does not belong in either i or j.

The algorithm Max-Win or One-vs-One performs all
(
k
2

)
one-against-one clas-

sifications. For each class i, it picks all other k−1 classes, runs binary classifiers,
and keeps track of the score si that i wins. It then outputs that x belongs to the
highest score class. To classify a given data point, O(k2) calls to base classifiers
are needed.

Platt, Cristianini, and Shawe-Taylor [6] introduced a new learning architec-
ture, called the Decision Directed Acyclic Graphs (or DDAG), which reduces the
number of calls to binary classifiers down to O(k). It starts with a set of candi-
date classes C = {1, 2, . . . , k}; then, it proceeds in rounds, each eliminating one
of the classes. For each round, let cl = min{i : i ∈ C} and cr = max{i : i ∈ C}.
DDAG then calls Acl, cr and eliminates the loosing class from C. Therefore,
to get the classification result, one needs k − 1 rounds. DDAG is illustrated in
Figure 1 (a). Fakcharoenphol [14] considered a randomized version of DDAG,
where two candidate classes are chosen randomly for each round, and analyzed
the performance using a simple model where errors occur independently.

Kijsirikul, Ussivakul, and Meknavin [8] observed that the structure of the
elimination in DDAG introduces a long path of cascading calls to binary classi-
fiers. They proposed a new structure called the Adaptive Directed Acyclic Graph
(or ADAG), whose number of cascading calls is reduced to only logarithmic.
The algorithm works in �log k� rounds, each eliminating half of the candidate
classes. It starts with the same initial candidate set C = {1, . . . , k}. For each
round, the algorithm pairs up |C| classes, and calls %|C|/2& binary classifiers to
eliminate loosing classes. Kijsirikul et al. conducted experiments that show that
ADAG performs better than DDAG. They also gave an analysis using a simple
probabilistic model. Figure 1 (b) shows one possible execution of ADAG.

Algorithms That Use Coding Matrix. In this framework introduced by
Dietterich and Bakiri[9], the classes are partitioned into opposing subsets using
error-correcting codes. We discuss the more general version by Allwein, Schapire,
and Singer [11]. Let l denote the length of the codeword. Each class i is assigned
a codeword wi from {+1, 0,−1}l. The list of all of codewords forms the coding
matrix M ∈ {+1, 0,−1}k×l, with k rows and l columns. Let M(i, s) denote the
s-th column of the i-th row, the s-th bit of the codeword for class i. For each

138 J. Fakcharoenphol and B. Kijsirikul

1,2,3,4

1 ? 4

1,2,3 2,3,4

1 ? 3 2 ? 4

1,2

1 ? 2

2,3

2 ? 3

3,4

3 ? 4

1 2 3 4

1 ? 2 3 ? 4

2 ? 4

2 4

2

2

(a) (b)

Fig. 1. DDAG and ADAG: (a) DDAG for 4 classes; bold arrows show one possible
execution that predicts class 2; (b) One possible execution of ADAG that predicts
class 2

column s, a binary classifier As is trained to distinguish classes whose s-th bit
are +1 and classes whose s-th bit are −1. Other classes where s-th bit are 0 are
ignored. The trained classifier As outputs +1 or −1.

Given a data point x, it is evaluated by As for each column s, producing an
l-bit word w′ in {+1,−1}l. To determine which class x belongs to, a distance
measure between w′ and each codeword is used. The simplest one counts the
number of different bits, but treating 0 as half the bit. Allwein et al. call this
decoding Hamming decoding. Another, more refined, decoding method, called
loss-based decoding, uses the confidence level returned by the classifiers. We focus
only the Hamming decoding.

2 Learning Model

Given a set X of possible objects and a finite set Y = {1, 2, . . . , k} of labels,
the multiclass learning problem can be defined as follows. Given a set S of m
examples drawn independently from an unknown distribution D over X × Y ,
find a hypothesis h : X → Y from the hypothesis space H that predicts the
label for an unknown data x, drawn from the same distribution. There are two
types of errors, a training error and a generalization error. The training error
can be calculated as

1
m
|{(x, y) ∈ S : h(x)
= y}|,

while the generalization error is defined as

Pr
(x,y)∼D

[h(x)
= y].

Note that the unknown distribution D can be seen as an unknown multiclass
concept; the marginal distribution of labels conditioned on the object x forms
the labels of x in the concept.

Constructing Multiclass Learners from Binary Learners 139

2.1 Pairwise Concepts

Given the multiclass learning problem with k classes, one can define an induced
pairwise learning problem for classes i and j as follows. Given a set S of m
examples drawn independently from D satisfying the condition that all the labels
are either i or j, find a binary hypothesis hij : X → i, j that distiguishes between
objects from class i and class j. We want hij(x) to output i if it predicts that x
is from class i and j if the data is from class j. The generalization error εij for
hij is thus,

Pr
(x,y)∼D

[hij(x)
= y | y ∈ {i, j}]

Again, one can see that, given an unknown multiclass concept D, one can define
induced pairwise concepts.

We call a set of
(
k
2

)
induced pairwise concepts the all-pair concept. We say

that the all-pair concept is learnable (or, efficiently learnable), iff each of the
(
k
2

)
binary concept is learnable (or, efficiently learnable).

2.2 Binary Concepts from Coding Matrix

In the same way as for the induced pairwise concepts, given the multiclass learn-
ing problem with k classes and a coding matrix M, with k rows and l columns,
one can define an induced binary learning problem for column s as follows. Let
C+(s) be a set of classes i where M(i, s) = +1, and C−(s) be a set of classes
i where M(i, s) = −1. We call classes in C+(s) positive classes, and classes in
C−(s) negative classes. Given a set S of m examples drawn independently from
D satisfying the condition that all the labels are either in C+(s) or C−(s), find
a binary hypothesis hs : X → {+1,−1} that distiguishes between objects from
positive classes and negative classes. The generalization error εs for hs is thus,

Pr
(x,y)∼D

[hs(x)
= M(y, s) | y ∈ C+(s) ∪ C−(s)].

3 Generalization Errors for Pair-Wise Constructions

All constructions we consider here give correct classification if all binary classi-
fiers invoked during the process return correct predictions. We note one simple
fact here. Since we know the generalization performance of each hypothesis, we
can find the upperbound of the probablity that none of the hypotheses make
wrong predictions, i.e., it is at most the sum of the generalization errors of the
hypotheses. This is clearly an application of union bound, which works for any
set of random events.

Assume that we are given a set of hypotheses hij for i, j ∈ [k], with gen-
eralization errors εij . In the following sections, we analyze the generalization
error of the constructions which use pair-wise binary classifiers. To help under-
standing the bounds, we also consider the uniform error case where every binary
hypothesis has generalization error of ε̄.

140 J. Fakcharoenphol and B. Kijsirikul

In what follows, for each algorithm, we mainly analyze the error δi when the
query point is from class i; the generalization error is thus the error of the worst
i. Frequently, we consider the other classes in order of their generalization errors.
We shall use the following notation. For each i ∈ Y and 1 ≤ j < k, let ri(j)
denote the class having the j-th largest generalization error when compared with
class i, i.e., εi,ri(1) ≥ εi,ri(2) ≥ · · · εi,ri(k−1). We break ties arbitary.

3.1 Max-Win

Using the black-box approach, the worst-case bound on the generalization error
of Max-Win can be proved using union bound.

Theorem 1. If the query point is from class i, Max-Win gives wrong prediction
with probability at most

∑
j
=i εi,j. Thus, the generalization error of Max-Win is

at most maxi∈[k]

∑
j
=i εi,j. In uniform case, this is (k − 1)ε̄.

Proof. Suppose that the input x is from class i. If all classifiers hij(x), for all
possible j, answer i, Max-Win would definitely return i as a prediction, because
i would get k − 1 votes while all other classes would get at most k − 2 votes.
The probability that hij(x) for a fixed j returns a wrong prediction is at most
εij . Therefore, using union bound, the probability that some hij makes a wrong
prediction is at most

∑
j:j
=i εij . The theorem follows because we consider the

worst case i.

We note that this bound is very loose. However, we believe that given only
black-box information of the generalization error of the base classifiers, this
bound is best possible. In practice, Max-Win performs very well. The reason
might be from the gap between the score of the winning class and the second
runner up. We note that if one looks into each binary classifier, thus ignoring the
black-box approach, the margin analysis of the voting method in Schapire, Fre-
und, Barlett, and Lee [15] directly applies to Max-Win. Also, following the same
research direction, the result of Paugam-Moisy, Elisseeff, and Guermeur [16] uses
the margin analysis to show the generalization error of the One-vs-All approach.

3.2 DDAG

For DDAG, we have
(
k
2

)
binary classifiers. If they all give correct predictions,

the final prediction must be correct. This gives a bound of
∑

j
=i εi,j for the
generalization error. However, we can do a lot better by noting that if the query
is of class i, relevant classifiers are those concerning class i. Furthermore, these
classifiers will not be called unless i is the candidate with minimum class id or
the maximum id, i.e., when all the smaller-id classes or the larger-id classes get
eliminated. In the worst case, this happens when either only larger-id classes are
eliminated, or only smaller ones. Therefore, we get the following theorem.

Theorem 2. If the query point is from class i, DDAG gives wrong prediction
with probability at most δi

def
= max{∑j<i εi,j ,

∑
j>i εi,j}. Therefore, the general-

ization error of DDAG is at most maxi∈[k] δi. In uniform case, this is (k − 1)ε̄.

Constructing Multiclass Learners from Binary Learners 141

Comparison to Previous Bounds. Platt, Cristianini, and Shawe-Taylor [6]
consider the Proceptron DDAG, i.e., DDAG with a perceptron at each node.
Let γi denote the margin observed at node i. Using the technique of Bennett,
Cristianini, Shawe-Taylor, and Wu [17], which is also based on that of [18], they
show that with probability at least 1− δ the generalization error of DDAG is at
most

130R2

m

(
D′ log(4em) log(4m) + log

2(2m)K

δ

)
,

where K is the number of nodes in DDAG, D′ =
∑K

i=1
1
γ2

i
, m is the number of

samples used for training, and R is radius of the ball containing the distribution’s
support, for DDAG that correctly classifies m examples. They also consider the
generalization error for class j. Let j-nodes denote the set of perceptron nodes
involving class j. They get the bound of

130R2

m

(
D′ log(4em) log(4m) + log

2(2m)k−1

δ

)
,

where D′ =
∑

i∈j−nodes
1
γ2

i
.

With previous analysis, we also get the same bound. For a perceptron which
correctly classifies m examples with margin γ on the distribution whose support
contains in a ball in Rn centered at the origin of radius R, Shawe-Taylor, Barlett,
Williamson, and Anthony [18] gives a bound of

2
m

(
l log

(
8em
l

)
log(32m) + log

8m
δ

)
,

where l = %577R2/γ2&. We plug this into Theorem 2. Recall that the bound in
Theorem 2 uses only subsets of j-nodes; thus, it is at most

∑
i∈j−nodes

[
2
m

((
577R2

γ2
i

)
log
(

8em

(557R2)/γ2
i

)
log(32m) + log

8m

δ

)]

≤
(

1154R2

m

)⎛⎝ ∑
i∈j−nodes

(
1
γ2

i

)⎞⎠ log(8em) log(32m) +
2
m

⎛⎝ ∑
i∈j−nodes

log
8m

δ

⎞⎠ ,

≤
(

1154R2

m

) [
D′ log(8em) log(32m)

]
+
(

2
m

)
(k − 1) log

8m

δ
,

=
(

1154R2

m

) [
D′ log(8em) log(32m)

]
+
(

2
m

)
log

(8m)k−1

δ
,

if 1154R2 ≥ 2, and R ≥ γi for all i. This bound is similar to the bound in [6]
up to a small constant factor.

Our analysis can also be extended to include the case where there are training
errors for perceptrons as well.

142 J. Fakcharoenphol and B. Kijsirikul

3.3 Improvements to DDAG: ADAG, Randomized-DDAG

ADAG. The solution of ADAG depends crucially on the order of elimination.
However, since the path is short, we need only l = �log k� applications of the
binary classfiers. For query point in class i, we can assume that these l classifi-
cations are done with the worst l classes.

Theorem 3. If the query point is from class i, ADAG gives wrong prediction
with probability at most δi

def
=
∑l

j=1 εi, ri(j). Therefore, the generalization error
of ADAG is at most maxi δi. In uniform case, this is O(log k)ε̄.

We note that the generalization error of ADAG seems to depend on the
order of elimination. However, we are not sure if the worst-case behavior can be
improved with randomization.

Randomized-DDAG. For DDAG, the following theorem shows that random-
ization does help.

Theorem 4. If the correct class is class i, Randomized-DDAG gives wrong pre-
diction with probability at most

δi
def
=

k−1∑
l=1

(
2εi, ri(k−l)

k − l + 1

)
.

Thus, the generalization error of Randomized-DDAG is at most maxi δi. In uni-
form case, this is O(log k)ε̄.

Proof. We consider the process of the randomized DDAG in rounds; there are
n − 1 rounds. In each round, two candidate classes are chosen and a binary
classifier that distinguishes between such classes is called. The winner stays on to
the next round; the loser are eliminated. The first round is round 1. We analyze
the probability that the correct class, say class i, gets eliminated during the
process. Suppose that i survives after l rounds. On the one hand, if i is not chosen,
it remains to round l+1 automatically; this happens with probability 1− 2

k−l . On
the other hand, if it is chosen, it remains in the next round only if the classifier
predicts correctly. Let Dl denote the event that class i gets eliminated in round l,
given that it survives up to round l−1. Randomized-DDAG predicts incorrectly if
one of these events occurs; thus, the probability that it gives incorrect prediction
is Pr[

⋃k−1
l=1 Dl].

For the analysis, we consider a different procedure. Suppose that i is known.
In round l, we describe an equlivalent procedure for choosing a pair of classes. If i
has been eliminated in previous rounds, we pick a pair of classes randomly. Now
if i remains one of the candidates, we decide whether class i will be evaluated
by fliping a coin with 2/(k − l + 1) head probability. If the coin comes up tail,
we pick a pair of classes beside i, and in this case i remains to the next round
with probability 1, and some class j get eliminated. If the coin comes up head,
we choose another class randomly. Suppose that j is picked, the probability that

Constructing Multiclass Learners from Binary Learners 143

the classifier gives wrong answer is thus εij . For both cases, we call class j the
pairing class. The notion of pairing class is important to our analysis, and note
that, by definition, i cannot be a pairing class.

To finish the analysis, we consider the choices for the pairing class to be the
worst case. Suppose that the sequence S of pairing classes over the execution of
the algorithm is c1, c2, . . . , ck−1. Thus, the probability that i gets eliminated in
round l is Pr[Dl|S] = 2εi, cl

k−l+1 . Using the union bound, we have that the probability
that randomized DDAG fails, given S, is at most

k−1∑
l=1

2εi, cl

k − l + 1
=
(

2εi, c1

k
+

2εi, c2

k − 1
+ · · ·+ 2εi, ck−2

2
+

2εi, ck−1

1

)
This value is maximum when classes j in S are in increasing order of εij . Thus,
the randomized DDAG gives wrong prediction with probability at most

δi =
k−1∑
l=1

2εi, ri(k−l)

k − l + 1
.

The theorem follows.

4 Generalization Errors for the Output Coding
Approaches

We use the black-box approach to analyze the generalization error of the output
coding method. The proof is very similar to that of [10], but instead of training
error, we use generalization of the base classifier. In Subsection 4.1, we consider
the simpler case where the coding matrix M contains only +1 and −1. In the
next subsection, we prove the theorem for the general matrix as in Allwein et al.

4.1 Coding Matrix Without Don’t Care Bits

We note that the argument of Guruswami and Sahai [10], that bounds the train-
ing error, applies to the generalization error as well if we replace the averaging
argument with Markov’s inequality. We state and reprove their result here for
completeness.

Theorem 5 ([10]). Suppose that the coding matrix M ∈ {+1,−1}k×l with l
columns has minimum Hamming distance Δ. Also, let εs be the generalization
error of the binary classifier for column s. Then, the generalization error of the
multiclass classifier is at most 2

Δ (
∑l

s=1 εs).

Proof. For each column s, let a random variable Ss be 1 if the hypothesis for
that column makes a wrong prediction, and 0 otherwise. Clearly E[Ss] = εs.
Let random variable S be the number of columns having wrong predictions. By
linearity of expectation, E[S] = E[

∑l
s=1 Ss] =

∑l
s=1 E[Ss] =

∑l
s=1 εs. Since

144 J. Fakcharoenphol and B. Kijsirikul

the coding matrix with Hamming distance Δ can correct up to d
def
= %(Δ− 1)/2&

errors, if S ≤ d, the algorithm would return the correct class. The case where the
algorithm makes a wrong mistake is when S > d, which occurs with probability
Pr[S > d] ≤ Pr[S ≥ Δ/2] ≤ E[S]/(Δ/2) = 2

Δ

∑l
s=1 εs, by Markov’s Inequality,

as claimed.

4.2 General Matrix

We now consider the general matrix. As in Allwein et al., we assign each class r ∈
Y a row in the coding matrix M ∈ {−1, 0,+1}k×l. However, the proof from the
previous section does not follow unless we change the distance function Δ(u, v)
between two rows u, v of M. Previously, the distance between any bit with “don’t
care” bit is 1/2. This is too optimistic, when dealing with generalization error.
Therefore, we ignore that “distance,” i.e., we define Δ(u, v) to be

Δ(u, v) =
l∑

s=1

{
1 if us
= vs, us
= 0, and vs
= 0.
0 otherwise

We let Δ
def
= Δ(M) be minu,v∈M Δ(u, v), the minimum distance between any

pair of rows in M . Also, let Ii denote the set of indices s such that M(i, s)
= 0.
The following theorem states the generalization error bound for the combined
classifier.

Theorem 6. Given the coding matrix M , if the generalization error of the clas-
sifier for the s-th column is εs, the probability that given an instance x of class
i, the multiclass classifier using Hamming decoding predicts x’s class incor-
rectly is at most 2(

∑
s∈Ii

εs)/Δ. Therefore, the generalization error is at most
(2

Δ)maxi

∑
s∈Ii

εs.

Proof. For each s ∈ I, let an indicator random variable Es be one if Cs(x)
=
M(i, s), and zero otherwise. Therefore, Pr[Es = 1] = εs, by the definition of εs.
Let E be the number of error bits, i.e., E =

∑
s∈I Es. By linearity of expectation,

we have E[E] =
∑

s∈I εs. Since the minimum hamming distance between any
two rows is Δ, if E < Δ/2, the classifier would always predict class i, i.e., it
makes no mistake. Using Markov’s Inequality, we have

Pr[predict incorrectly] ≤ Pr[E ≥ Δ/2] ≤ E[E]/(Δ/2) =
2
Δ

∑
s∈I

εs;

thus, the theorem is proved.

We note that the generalization error of Max-Win (Section 3.1) also follows
from this theorem, since in that case Δ = 1.

5 Learnability

In this section, we discuss the equivalence of the learnability, and efficient learn-
ability of the muliclass concepts and the induced all-pair concepts. One direction

Constructing Multiclass Learners from Binary Learners 145

of the equivalence, from multiclass to pair-wise, is simple. We focus on the other
direction.

The equivalence of the learnability is implicit in the work of Ben-David,
Cesa-Bianchi, Haussler, and Long [19], which proves various relation between
many notions of dimensions, including the Natarajan dimension [20]. Consider a
particular pairwise concept Cij induced by any classes i and j. If this concept is
learnable, the VC-dimension [21] of Cij is finite [22]. Since this is true for any i
and j, this means that the uniform Natarajan dimension of the concept class is
finite; hence the Natarajan dimension is also finite, by Theorem 5 in [19]. This
shows that the multiclass concept is learnable.

For efficient learnability, we note that if an all-pair concept is efficiently learn-
able, one can use Max-Win (or any other constructions discussed in this paper)
to construct a polynomial-time learner for the multiclass concept. Specifically,
if one needs a multiclass classifier with error probability ε. We first find a bi-
nary classifier for each pair of classes with generalization error ε/k2. Theorem 1
ensures that the combined classifier has the generalization within the required
bound. The running time for constructing hypothesis only increases by a poly-
nomial factor of k. Thus, we get the desired reduction.

6 Discussions and Open Problems

By considering the base binary classifiers as black-boxes, we are able to ana-
lyze various algorithms for the multiclass classification problem. The analysis
focuses mainly on the combinatorial structures of the constructions. The result
in this paper contradicts previous beliefs that the order of the class evaluation
in DDAG has no significant effect, and also it gives supportive argument for a
new algorithm such as ADAG.

We list a few interesting open problems here.

1. Our analysis of the generalization error of Max-Win is very loose. We believe
that the observed gap between the winning class and the second runner-up
(as in [15]) can be used to give better bounds. However, the margin seems
to be a property of the construction; therefore, we do not know how to put
it into our framework. This might give an evidence of the limitation of the
black-box analysis.

2. There are a few other algorithms which perform well in practice, but have no
proof of the generalization performance, notably, an improvement to ADAG,
called Reordering-ADAG by Phetkaew, Kijsirikul, and Rivepiboon [23], that
uses the error information to minimize the overall prediction error.

3. For the coding approach, we consider only Hamming decoding. It might be
possible to extend our approach for the loss-based decoding.

4. It is interesting to see if one can combine an improvement to the proof of
Allwein et al. by Klautau, Jevtić, and Orlitsky [24] with our technique.

5. One of the biggest open problems in multiclass learning is the question that
asks if these new techniques devised to improve the simplest One-vs-All do
really help [25]. The technique in this paper, however, offers no insight into
this problem.

146 J. Fakcharoenphol and B. Kijsirikul

Acknowledgement

We would like to thank Aharon Bar-Hillel and Danupon Nanongkai for thought-
ful discussions. We also thank the anonymous referees for helpful comments.

References

[1] Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning
and an application to boosting. J. Comput. Syst. Sci. 55 (1997) 119–139

[2] Vapnik, V.: Statistical Learning Theory. Wiley (1998)
[3] Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20 (1995) 273–297
[4] Friedman, J.H.: Another approach to polychotomous classification. Technical

report, Department of Statistics, Stanford University (1996)
[5] Hastie, T., Tibshirani, R.: Classification by pairwise coupling. In: NIPS ’97:

Proceedings of the 1997 conference on Advances in neural information processing
systems 10, Cambridge, MA, USA, MIT Press (1998) 507–513

[6] Platt, J., Cristianini, N., Shawe-Taylor, J.: Large margin DAGs for multiclass
classification. In: Advance in Neural Information Processing System. Volume 12.,
MIT Press (2000)

[7] Kreßel, U.H.G.: Pairwise classification and support vector machines. In: Advances
in kernel methods: support vector learning. MIT Press, Cambridge, MA, USA
(1999) 255–268

[8] Kijsirikul, B., Ussivakul, N., Meknavin, S.: Adaptive directed acyclic graphs for
multiclass classification. In: PRICAI 2002. (2002) 158–168

[9] Dietterich, T.G., Bakiri, G.: Error-correcting output codes: a general method for
improving multiclass inductive learning programs. In Dean, T.L., McKeown, K.,
eds.: Proceedings of the Ninth AAAI National Conference on Artificial Intelli-
gence, Menlo Park, CA, AAAI Press (1991) 572–577

[10] Guruswami, V., Sahai, A.: Multiclass learning, boosting, and error-correcting
codes. In: Computational Learning Theory. (1999) 145–155

[11] Allwein, E.L., Schapire, R.E., Singer, Y.: Reducing multiclass to binary: a unifying
approach for margin classifiers. J. Mach. Learn. Res. 1 (2001) 113–141

[12] Har-Peled, S., Roth, D., Zimak, D.: Constraint classification: A new approach to
multiclass classification and ranking. In: NIPS. (2003)

[13] Bar-Hillel, A., Weinshall, D.: Learning with equivalence constraints, and the
relation to multiclass learning. In: COLT. (2003)

[14] Fakcharoenphol, J.: A note on random DDAG. Manuscript (2003)
[15] Schapire, R.E., Freund, Y., Bartlett, P.L., Lee, W.S.: Boosting the margin: a new

explanation for the effectiveness of voting methods. Annals of Statistics 26 (1998)
1651–1686

[16] Paugam-Moisy, H., Elisseeff, A., Guermeur, Y.: Generalization performance of
multiclass discriminant models. In: Proceedings of the IEEE-INNS-ENNS Inter-
national Joint Conference on Neural Networks, IJCNN 2000, Neural Computing:
New Challenges and Perspectives for the New Millennium, Como, Italy, July 24-
27, 2000, Volume 4, IEEE (2000)

[17] Bennett, K.P., Cristianini, N., Shawe-Taylor, J., Wu, D.: Enlarging the margins
in perceptron decision trees. Mach. Learn. 41 (2000) 295–313

[18] Shawe-Taylor, J., Bartlett, P.L., Williamson, R.C., Anthony, M.: A framework
for structural risk minimisation. In: COLT ’96: Proceedings of the ninth annual
conference on Computational learning theory, ACM Press (1996) 68–76

Constructing Multiclass Learners from Binary Learners 147

[19] Ben-David, S., Cesa-Bianchi, N., Haussler, D., Long, P.M.: Characterizations of
learnability for classes of {0, .̇., n}-valued functions. J. Comput. Syst. Sci. 50
(1995) 74–86

[20] Natarajan, B.K.: On learning sets and functions. Mach. Learn. 4 (1989) 67–97
[21] Vapnik, V.N., Chervonenkis, A.Y.: On the uniform convergence of relative fre-

quencies of events to their probabilities. Theoret. Probi. and its Appl. 16 (1971)
264–280

[22] Blumer, A., Ehrenfeucht, A., Haussler, D., Warmuth, M.K.: Learnability and the
vapnik-chervonenkis dimension. J. ACM 36 (1989) 929–965

[23] Phetkaew, T., Kijsirikul, B., Rivepiboon, W.: Reordering adaptive directed acyclic
graphs for multiclass support vector machines. In: Proceedings of the Third In-
ternational Conference on Intelligent Technologies (InTech 2002). (2002)

[24] Klautau, A., Jevtić;, N., Orlitsky, A.: On nearest-neighbor error-correcting output
codes with application to all-pairs multiclass support vector machines. J. Mach.
Learn. Res. 4 (2003) 1–15

[25] Rifkin, R., Klautau, A.: In defense of one-vs-all classification. J. Mach. Learn.
Res. 5 (2004) 101–141

On Computability of Pattern
Recognition Problems�

Daniil Ryabko

IDSIA, Galleria 2, CH-6928 Manno-Lugano, Switzerland
daniil@ryabko.net

Abstract. In statistical setting of the pattern recognition problem the
number of examples required to approximate an unknown labelling func-
tion is linear in the VC dimension of the target learning class. In this
work we consider the question whether such bounds exist if consider
only computable pattern recognition methods, assuming that the un-
known labelling function is also computable. We find that in this case
the number of examples required for a computable method to approxi-
mate the labelling function not only is not linear, but grows faster (in
the VC dimension of the class) than any computable function. No time
or space constraints are put on the predictors or target functions; the
only resource we consider is the training examples.

The task of pattern recognition is considered in conjunction with an-
other learning problem — data compression. An impossibility result for
the task of data compression allows us to estimate the sample complexity
for pattern recognition.

1 Introduction

The task of pattern recognition consists in predicting an unknown label of some
observation (or object). For instance, the object can be an image of a hand-
written letter, in which case the label is the actual letter represented by this
image. Other examples include DNA sequence identification, recognition of an
illness based on a set of symptoms, speech recognition, and many others.

More formally, the objects are drawn independently from the object space
X (usually X = [0, 1]d or Rd) according to some unknown but fixed probability
distribution P on X , and labels are defined according to some function η : X →
Y , where Y is a finite set (often Y = {0, 1}). The task is to construct a function
ϕ : {0, 1}∗ → Y which approximates η, i.e. for which P{x : η(x)
= ϕ(x)} is
small, where P and η are unknown but examples x1, y1, . . . , xn, yn are given;
yi := η(xi). In the framework of statistical learning theory [7],[8] it is assumed
that the function η belongs to some known class of functions C. Good error
estimated can be obtained if the class C is small enough. More formally, the
number of examples required to obtain a certain level of accuracy (or the sample
complexity of C) is linear in the VC-dimension of C.
� This work was supported by SNF grant 200020-107616.

S. Jain, H.U. Simon, and E. Tomita (Eds.): ALT 2005, LNAI 3734, pp. 148–156, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

On Computability of Pattern Recognition Problems 149

In this work we investigate the question whether such bounds can be obtained
if we consider only computable (on some Turing machine) pattern recognition
methods. To make the problem more realistic, we also assume that the target
function η is also computable. Both the predictors and the target functions are
of the form {0, 1}∞→ {0, 1}.

We show that there are classes Ck of functions for which the number of
examples needed to approximate the pattern recognition problem to a certain
accuracy grows faster in the VC dimension of the class than any computable
function (rather than being linear as in the statistical setting). In particular this
holds if Ck is the class of all computable functions of length not greater than k.

Importantly, the same negative result holds even if we allow the data to be
generated “actively”, e.g. by some algorithm, rather than just by some fixed
probability distribution.

To obtain this negative result we consider the task of data compression: an
impossibility result for the task of data compression allows us to estimate the
sample complexity for pattern recognition. We also analyze how tight is the
negative result, and show that for some simple computable rule (based on the
nearest neighbour estimate) the sample complexity is finite in k, under different
definitions of computational patterning recognition task.

In comparison to the vast literature on pattern recognition and related learn-
ing problems relatively little attention had been paid to the “computable” ver-
sion of the task; at least this concerns the task of approximating any computable
function. There is a track of research in which different concepts of computable
learnability of functions on countable domains are studied, see [2]. A link be-
tween this framework and statistical learning theory is proposed in [5], where it
is argued that for a uniform learnability finite VC dimension is required.

Another approach is to consider pattern recognition methods as functions
computable in polynomial time, or under other resource constraints. This ap-
proach leads to many interesting results, but it usually considers more specified
settings of a learning problem, such as learning DNFs, finite automata, etc. See
[3] for an introduction to this theory and for references.

2 Preliminaries

A (binary) string is a member of the set {0, 1}∗ = ∪∞i=0{0, 1}n. The length of
a string x will be denoted by |x|, while xi is the ith element of x, 1 ≤ i ≤ |x|.
For a set A the symbol |A| is used for the number of elements in A. We will
assume the lexicographical order on the set of strings, and when necessary will
identify {0, 1}∗ and N via this ordering. Let N be the sets of natural numbers.
The symbol log is used for log2. For a real number α the symbol �α� is the least
natural number not smaller than α.

In pattern recognition a labelling function is usually a function from the
interval [0, 1] or [0, 1]d (sometimes more general spaces are considered) to a finite
space Y := {0, 1}. As we are interested in computable functions, we consider
instead the functions of the form {0, 1}∞ → {0, 1}. Moreover, we call a partial

150 D. Ryabko

recursive function (or program) η a labelling function if there exists such t =:
t(η) ∈ N that η accepts all strings from Xt := {0, 1}t and only such strings 1.
For an introduction to the computability theory see for example [6].

It can be argued that this definition of a labelling function is too restrictive
to approximate well the notion of a real function. However, as we are after
negative results (for the class of all labelling functions), it is not a disadvantage.
Other possible definitions are discussed in Section 4, where we are concerned
with tightness of our negative results.

All computable function can be encoded (in a canonical way) and thus the
set of computable functions can be effectively enumerated. Define the length of
η as l(η) := |n| where n is the number of η in such enumeration.

Define the task of computational pattern recognition as follows. An (un-
known) labelling function η is fixed. The objects x1, . . . , xn ∈ X are drawn
according to some distribution P on Xt(η). The labels yi are defined according
to η, that is yi := η(xi).

A predictor is a family of functions (indexed by n)

ϕn(x1, y1, . . . , xn, yn, x),

taking values in Y , such that for any n and any t ∈ N, if xi ∈ Xt for each i,
1 ≤ i ≤ n, then the marginal ϕ(x) is a total recursive function on Xt (that is,
ϕn(x) accepts any x ∈ Xt). We will often identify ϕn with its marginal ϕn(x)
when the values of other variables are clear.

Thus, given a sample x1, y1, . . . , xn, yn of labelled objects of the same size
t, a predictor produces a computable function; this function is supposed to ap-
proximate the labelling function η on Xt.

A computable predictor is a predictor which for any t ∈ N and any n ∈ N is
a total recursive function on Xt × Y × · · · ×Xt × Y ×Xt

3 Main Results

We are interested in what size sample is required to approximate a labelling
function η. Moreover, for a (computable) predictor ϕ, a labelling function η and
0 < ε ∈ R define

δn(ϕ, η, ε) := sup
Pt

Pt

{
x1, . . . , xn ∈ Xt :

Pt

{
x ∈ Xt : ϕn(x1, y1, . . . , xn, yn, x)
= η(x)

}
> ε
}
,

where t = t(η) and Pt ranges over all distributions on Xt. For δ ∈ R, δ > 0
define the sample complexity of η with respect to ϕ as

N(ϕ, η, δ, ε) := min{n ∈ N : δn(ϕ, η, ε) ≤ δ}.
1 It is not essential for this definition that η is not a total function. An equivalent

(for our purposes) definition would be as follows. A labelling function is any total
function which outputs the string 00 on all inputs except on the strings of some
length t =: t(η), on each of which it outputs either 0 or 1.

On Computability of Pattern Recognition Problems 151

The number N(ϕ, η, δ, ε) is the minimal sample size required for a predictor ϕ to
achieve ε-accuracy with probability 1−δ when the (unknown) labelling function
is η.

We can use statistical learning theory [7] to derive the following statement

Proposition 1. There exists a predictor ϕ such that

N(ϕ, η, δ, ε) ≤ max
(
l(η)

8
ε

log
13
ε

,
4
ε

log
2
δ

)
for any labelling function η and any ε, δ > 0.

Observe that the bound is linear in the length of η.
In what follows the proof of this simple statement, we investigate the question

of whether any such bounds exist if we restrict our attention to computable
predictors.

Proof. The predictor ϕ is defined as follows. For each sample x1, y1, . . . , xn, yn it
finds a shortest program η̄ such that η̄(xi) = yi for all i ≤ n. Clearly, l(η̄) ≤ l(η).
Observe that the VC-dimension of the class of all functions of length not greater
than l(η) is bounded from above by l(η), as there are not more than 2l(η) such
functions. Moreover, ϕ minimises empirical risk over this class of functions. It
remains to use the following bound (see e.g. [1], Corollary 12.4)

sup
η∈C

N(ϕ, η, δ, ε) ≤ max
(
V (C)8

ε
log

13
ε

,
4
ε

log
2
δ

)
where V (C) is the VC-dimension of the class C.

The main result of this work is that for any computable predictor ϕ there is
no computable upper bound in terms of l(η) on the sample complexity of the
function η with respect to ϕ:

Theorem 1. For any computable predictor ϕ and any total recursive function
β : N→ N there exist a labelling function η, and some n > β(l(η)) such that

P{x ∈ Xt(η) : ϕ(x1, y1, . . . , xn, yn, x)
= η(x)} > 0.05,

for any x1, . . . , xn ∈ Xt(η), where yi = η(xi) and P is the uniform distribution
on Xt(η).

For example, we can take β(n) = 2n, or 22n

.

Corollary 1. For any computable predictor ϕ, any total recursive function β :
N→ N and any δ < 1

sup
η:l(η)≤k

N(ϕ, η, δ, 0.05) > β(k)

from some k on.

152 D. Ryabko

Observe that there is no δ in the formulation of Theorem 1. Moreover, it
is not important how the objects (x1, . . . , xn) are generated — it can be any
individual sample. In fact, we can assume that the sample is chosen in any
manner, for example by some algorithm. This means that no computable upper
bound on sample complexity exists even for active learning algorithms.

It appears that the task of pattern recognition is closely related to another
learning task — data compression. Moreover, to prove Theorem 1 we need a
similar negative result for this task. Thus before proceeding with the proof of
the theorem, we introduce the task of data compression and derive some negative
results for it. We call a total recursive function ψ : {0, 1}∗ → {0, 1}∗ an data
compressor if it is an injection (i.e. x1
= x2 implies ψ(x1)
= ψ(x2)). We say
that an data compressor compresses the string x if |ψ(x)| < |x|. Clearly, for any
natural n any data compressor compresses not more than a half of strings of size
not greater than n.

We will now present a definition of Kolmogorov complexity; for fine details
see [4], [9]. A machine is any total computable function. The complexity of a
string x ∈ {0, 1}∗ with respect to a machine ζ is defined as

Cζ(x) = min
p
{l(p) : ζ(p) = x},

where p ranges over all partial functions (minimum over empty set is defined as
∞). There exists such a machine ζ that Cζ(x) ≤ Cζ′(x) + cζ′ for any x and any
machine ζ′ (the constant cζ′ depends on ζ′ but not on x). Fix any such ζ and
define the Kolmogorov complexity of a string x ∈ {0, 1}∗ as

C(x) := Cζ(x).

Clearly, C(x) ≤ |x| + b for any x and for some b depending only on ζ. A string
is called c-incompressible if C(x) ≥ |x| − c. Obviously, any data compressor
can not compresses many c-incompressible strings, for any c. However, highly
compressible strings (that is, strings with Kolmogorov complexity low relatively
to their length) might be expected to be compressed well by some sensible data
compressor. The following lemma shows that it can not be always the case, no
matter what we mean by “relatively low”.

The proof of this lemma is followed by the proof of Theorem 1.

Lemma 1. For any data compressor ψ and any total recursive function γ : N→
N such that γ goes monotonically to infinity there exists a binary string x such
that C(x) ≤ γ(|x|) and |ψ(x)| ≥ |x|.
Proof. Suppose the contrary, i.e. that there exist an data compressor ψ and some
function γ : N→ N monotonically increasing to infinity such that for any string
x if C(x) ≤ γ(|x|) then ψ(x) < |x|. Let T be the set of all strings which are not
compressed by ψ

T := {x : |ψ(x)| ≥ |x|}.
Define the function τ on the set T as follows: τ(x) is the number of the

element x in T
τ(x) := #{x′ ∈ T : x′ ≤ x}

On Computability of Pattern Recognition Problems 153

for each x ∈ T . Obviously, the set T is infinite. Moreover, τ(x) ≤ x for any x ∈ T
(recall that we identify {0, 1}∗ and N via lexicographical ordering). Observe that
τ is a total recursive function on T and onto N. Thus τ−1 : N → {0, 1}∗ is a
total recursive function on N. Thus, for any x ∈ T ,

C(τ(x)) ≥ C(τ−1(τ(x)) − c = C(x)− c > γ(|x|)− c, (1)

for constant c depending only on τ , where the first inequality follows from com-
putability of τ−1 and the last from the definition of T .

It is a well-known result (see e.g. [4], Theorem 2.3.1) that for any partial
function δ that goes monotonically to infinity there is x ∈ {0, 1}∗ such that
C(x) ≤ δ(|x|). In particular, allowing δ(|x|) = γ(|x|) − 2c, we conclude that
there exist such x ∈ T that

C(τ(x)) ≤ γ(|τ(x)|) − 2c ≤ γ(|x|)− 2c,

which contradicts (1).

Proof of Theorem 1. Suppose the contrary, that is that there exists such a com-
putable predictor ϕ and a total function β : N → N such that for any labelling
function η, and any n > β(l(η)) we have

P{x : ϕ(x1, y1, . . . , xn, yn, x)
= η(x)} ≤ 0.05,

for some xi ∈ Xt(η), yi = η(xi), i ∈ N, where P is the uniform distribution on
Xt(η).

Not restricting generality we can assume that β is strictly increasing. Define
the (total) function β−1(n) := max{m ∈ N : β(m) ≤ n}. Define ε := 0.05.
Construct the data compressor ψ as follows. For each y ∈ {0, 1}∗ define m := |y|,
t := �logm�. Generate (lexicographically) first m strings of length t and denote
them by xi, 1 ≤ i ≤ m. Define the labelling function ηy as follows: t(ηy) = t and
ηy(xi) = yi, 1 ≤ i ≤ m. Clearly, C(ηy) ≤ C(y) + c, where c is some universal
constant capturing the above description.

Let n :=
√
m. Next we run the predictor ϕ on all possible tuples x =

(x1, . . . , xn) ∈ X n
t and each time count errors that ϕ makes on all elements

of Xt:
E(x) := {x ∈ Xt : ϕ(x1, y

1, . . . , xn, y
n, x)
= ηy(x)}.

If |E(x)| > εm for each x ∈ Xt then ψ(y) := 0y.
Otherwise proceed as follows. Fix some tuple x = (x′

1, . . . , x
′
n) such that

|E(x)| ≤ εm, and let H := {x′
1, . . . , x

′
n} be the unordered tuple x. Define

κi :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
e0 xi ∈ E(x)\H, yi = 0
e1 xi ∈ E(x)\H, yi = 1
c0 xi ∈ H, yi = 0
c1 xi ∈ H, yi = 1
∗ otherwise

for 1 ≤ i ≤ m. Thus, each κi is a member of a five-letter alphabet (a five-element
set) {e0, e1, c0, c1, ∗}. Denote the string κ1 . . . κm by K.

154 D. Ryabko

Observe that the string K, the predictor ϕ and the order of (x′
1, . . . , x

′
n)

(which is not contained in K) are sufficient to restore the string y. Furthermore,
the n-tuple (x′

1, . . . , x
′
n) can be obtained from H (the un-ordered tuple) by the

appropriate permutation; let r be the number of this permutation in some fixed
ordering of all n! such permutations. Using Stirling’s formula, we have |r| ≤
2n logn; moreover, to encode r with some self-delimiting code we need not more
than 4n logn symbols (for n > 3). Denote such encoding of r by ρ.

Next, as there are (1 − ε − 1√
m

)m symbols ∗ in the m-element string K, it
can be encoded by some simple binary code σ in such a way that

|σ(K)| ≤ 1
2
m + 7(εm + n). (2)

Indeed, construct σ as follows. First replace all occurrences of the string ∗∗ with
0. Encode the rest of the symbols with any fixed 4-bit encoding such that the
code of each letter starts with 1. Clearly, σ(K) is uniquely decodable. Moreover,
it is easy to check that (2) is satisfied, as there are not less than 1

2 (m−2(εm+n))
occurrences of the string ∗∗. We also need to write m in a self-delimiting way
(denote it by s); clearly, |s| ≤ 2 logm.

Finally, ψ(ȳ) = 1ρsσ(K) and |ψ(y)| ≤ |ȳ|, for m > 210. Thus, ψ compresses
any ȳ such that n > β(C(ηy)); i.e. such that

√
m > β(C(ηy)) ≥ β(C(y) + c).

This contradicts Lemma 1 with γ(k) := β−1(
√
k − c). ��

4 On Tightness of the Negative Results

In this section we discuss how tight are the conditions of the statements and to
what extend they depend on the definitions.

Let us consider a question whether there exist any (not necessarily com-
putable) sample-complexity function

Nϕ(k, δ, ε) := sup
η:l(η)≤k

N(ϕ, η, δ, ε),

at least for some predictor ϕ, or it is always infinity from some k on.

Proposition 2. There exist a predictor ϕ such that Nϕ(k, δ, ε) < ∞ for any
ε, δ > 0 and any k ∈ N.

Proof. Clearly, C(η) ≥ C(tη). Moreover, lim inft→∞ C(t) =∞ so that

max{tη : l(η) ≤ k} <∞

for any k. It follows that the “pointwise” predictor

ϕ(x1, y1, . . . , xn, yn, x) =
{

yi if x = xi, 1 ≤ i ≤ n
0 x /∈ {x1, . . . , xn} (3)

satisfies the conditions of the proposition.

On Computability of Pattern Recognition Problems 155

It can be argued that probably this statement is due to our definition of a
labelling function. Next we will discuss some other variants of this definition.

First, observe that if we define a labelling function as any total function on
{0, 1}∗ then some labelling functions will not approximate any real function; for
example such is the function η+ which counts bitwise sum of its input: η+(x) :=∑|x|

i=1 xi mod 2. That is why we require a labelling function to be defined only
on Xt for some t.

Another way to define a labelling function (which perhaps makes labelling
functions most close to real functions) is as a function which accepts any infinite
binary string. Let us call an i-labelling function any total recursive function
η : {0, 1}∞ → {0, 1}. That is, η is computable on a Turing machine with an
input tape on which one way infinite input is written, an output tape and possibly
some working tapes. The program η is required to halt on any input. The next
proposition shows that even if we consider such definition the situation does not
change. The definition of a labelling function η in which it accepts only finite
strings is chosen in order to stay within conventional computability theory.
Lemma 2. For any i-labelling function η there exist nη ∈ N such that η does
not scan its input tape further position nη. In particular, η(x) = η(x′) as soon
as xi = x′

i for any i ≤ nη.

Proof. For any x ∈ {0, 1}∗ the program η does not scan its tape further some
position n(x) (otherwise η does not halt on x). For any χ ∈ {0, 1}∞ denote by
nη(χ) the maximal n ∈ N such that η scans the input tape up to the position n
on the input χ.

Suppose that supχ∈{0,1}∞ nη(χ) =∞, i.e. that the proposition is false. Define
x0 to be the empty string. Furthermore, let

xi =
{

0 supχ∈{0,1}∞ nη(x1, . . . , xi−1χ) =∞
1 otherwise

By our assumption, xi is defined for each i ∈ N. Moreover, it easy to check that
η never stops on the input string x1x2

Besides, it is easy to check that the number nη is computable.
Finally, it can be easily verified that Proposition 2 holds true if we consider

i-labelling functions instead of labelling functions, constructing the required pre-
dictor based on the nearest neighbour predictor.
Proposition 3. There exist a predictor ϕ such that iNϕ(k, δ, ε) < ∞ for any
ε, δ > 0 and any k ∈ N, where iN is defined as N with labelling functions
replaced by i-labelling functions.

Proof. Indeed, it suffices to replace the “pointwise” predictor in the proof of
Proposition 2 by the following predictor ϕ, which assigns to the object x the
label of that object among x1, . . . , xn with whom x has longest mutual prefix:
ϕ(x1, y1, . . . , xn, yn, x) := yk, where

k := argmax1≤m≤n{max{i ∈ N : x1 . . . xi = x1
m . . . xi

m}};
to avoid infinite run in case of ties, ϕ considers only first (say) n digits of xi and
break ties in favour of the lowest index.

156 D. Ryabko

References

[1] L. Devroye, L. Györfi, G. Lugosi, A probabilistic theory of pattern recognition.
New York: Springer, 1996.

[2] S. Jain, D. Osherson, J. Royer, and A. Sharma. Systems That Learn: An Introduc-
tion to Learning Theory, 2nd edition. The MIT Press, Cambridge, MA, 1999.

[3] M. Kearns and U. Vazirani An Introduction to Computational Learning Theory
The MIT Press, Cambridge, Massachusetts, 1994.

[4] M. Li, P. Vitányi. An introduction to Kolmogorov complexity and its applications.
Second edition, Springer, 1997.

[5] W. Menzel, F. Stephan. Inductive versus approximative learning. In: Perspectives
of Adaptivity and learning, edited by R. Kuehn et al., pp. 187–209, Springer, 2003.

[6] H. Rogers. Theory of recursive functions and effective computability, McGraw-Hill
Book Company, 1967.

[7] V. Vapnik, and A. Chervonenkis. Theory of Pattern Recognition. Nauka, Moscow,
1974

[8] V. Vapnik, Statistical Learning Theory: New York etc.: John Wiley & Sons, Inc.
1998

[9] A.K. Zvonkin and L.A. Levin. The complexity of finite objects and the develop-
ment of the concepts of information and randomness by means of the theory of
algorithms. Russian Math. Surveys, 25(6), pp 83–124, 1970.

PAC-Learnability of Probabilistic Deterministic
Finite State Automata in Terms of Variation

Distance�

Nick Palmer and Paul W. Goldberg

Dept. of Computer Science, University of Warwick,
Coventry CV4 7AL, U.K.

{npalmer, pwg}@dcs.warwick.ac.uk
http://www.dcs.warwick.ac.uk/research/acrg

Abstract. We consider the problem of PAC-learning distributions
over strings, represented by probabilistic deterministic finite automata
(PDFAs). PDFAs are a probabilistic model for the generation of strings of
symbols, that have been used in the context of speech and handwriting
recognition, and bioinformatics. Recent work on learning PDFAs from
random examples has used the KL-divergence as the error measure; here
we use the variation distance. We build on recent work by Clark and
Thollard, and show that the use of the variation distance allows simpli-
fications to be made to the algorithms, and also a strengthening of the
results; in particular that using the variation distance, we obtain poly-
nomial sample size bounds that are independent of the expected length
of strings.

1 Introduction

A probabilistic deterministic finite automaton (PDFA) is a deterministic finite
automaton that has, for each state, a probability distribution over the transitions
going out from that state. Thus, a PDFA defines a probability distribution over
the set of strings over its alphabet. The topic of PAC-learning of PDFAs was
introduced by Ron et al. [10], where they show how to PAC-learn acyclic PDFAs,
and apply the algorithm to speech and handwriting recognition. Recently Clark
and Thollard [3] presented an algorithm that PAC-learns general PDFAs, using
the Kullback-Leibler divergence (see Cover and Thomas [4]) as the error measure
(the distance between the true distribution defined by the target PDFA, and the
hypothesis returned by the algorithm). The algorithm is polynomial in three
parameters: the number of states, the “distinguishability” of states, and the
expected length of strings generated from any state of the target PDFA.

� This work was supported by EPSRC Grant GR/R86188/01. This work was sup-
ported in part by the IST Programme of the European Community, under the PAS-
CAL Network of Excellence, IST-2002-506778. This publication only reflects the
authors’ views.

S. Jain, H.U. Simon, and E. Tomita (Eds.): ALT 2005, LNAI 3734, pp. 157–170, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

158 N. Palmer and P.W. Goldberg

In this paper we study the same problem, using variation distance instead
of Kullback-Leibler divergence. The general message of this paper is that this
modification allows some strengthening and simplifications of the resulting al-
gorithms. The main one is that – as conjectured in [3] – a polynomial bound on
the sample-size requirement is obtained that does not depend on the length of
strings generated by the automaton. We also have no need for a distinguished
“final symbol” that must terminate all data strings, or a “ground state” in the
automaton constructed by the algorithm.

The variation distance between probability distributions D and D′ is the
L1 distance; for a discrete domain X , it is L1(D,D′) =

∑
x∈X |D(x) −D′(x)|.

KL divergence is in a strong sense a more “sensitive” measure than variation
distance; this was pointed out in Kearns et al. [8], which introduced the general
topic of PAC-learning probability distributions. In Cryan et al. [5] a smoothing
technique is given for distributions over the boolean domain — an algorithm
that PAC learns distributions using the variation distance can be converted to
an algorithm that PAC learns using the KL-divergence. (Abe et al. [1] give a
similar result in the context of learning p-concepts.) Over the domain Σ∗ (strings
of unrestricted length over alphabet Σ) that technique does not apply, which is
why we might expect stronger results as a result of switching to the variation
distance.

In the context of pattern classification, the variation distance is useful in
the following sense. Suppose that we seek to classify labelled data by fitting
distributions to each label class, and using the Bayes classifier on the hypoth-
esis distributions. (See [6] for a discussion of the motivation for this general
approach.) We show in [9] that PAC learnability using the variation distance
implies agnostic PAC classification. The corresponding result for KL-divergence
is that the expected negative log-likelihood cost is close to optimum.

Our approach follows [3], in that we divide the algorithm into two parts.
The first (Algorithm 1 of Figure 1) finds a DFA that represents the determinis-
tic structure of the hypothesis, and the second (Algorithm 2 of Figure 2) finds
estimates of the transition probabilities. Algorithm 1 constructs (with high prob-
ability) a DFA whose states and transitions are a subset of those of the target.
Algorithm 2 learns the transition probabilities by following the paths of random
strings through the DFA constructed by Algorithm 1. We take advantage of the
fact that commonly-used transitions can be estimated more precisely.

2 Terms and Definitions

A probabilistic deterministic finite state automaton (PDFA) stochastically gen-
erates strings of symbols. The automaton has a finite set of states - one of which
is denoted as the initial state. The automaton generates a string by making
transitions between states (starting at the initial state), each occurring with a
constant probability specifically associated with that transition, and a symbol is
output as a function of the transition. The automaton halts when the final state
is reached.

PAC-Learnability of Probabilistic Deterministic Finite State Automata 159

Definition 1. A PDFA A is a sextuple (Q,Σ, q0, qf , τ, γ), where

• Q is a finite set of states,
• Σ is a finite set of symbols (the alphabet),
• q0 ∈ Q is the initial state,
• qf /∈ Q is the final state,
• τ : Q×Σ → Q ∪ {qf} is the (partial) transition function,
• γ : Q×Σ → [0, 1] is the function giving the probability of a symbol occurring

from any state.

Where appropriate, we extend the use of τ and γ to strings:

τ(q, σ1σ2...σk) = τ(τ(q, σ1), σ2...σk)
γ(q, σ1σ2...σk) = γ(q, σ1).γ(τ(q, σ1), σ2...σk)

We use the pair (q, σ) to denote the transition from state q ∈ Q labeled with
character σ ∈ Σ. Note that γ(q, σ) = 0 when τ(q, σ) is undefined. It should also
be noted that the output probabilities from each state sum to one:

∀q ∈ Q :
∑
σ∈Σ

γ(q, σ) = 1.

We assume that the final state can be reached from any state of the au-
tomaton, that is, ∀q ∈ Q,∃s ∈ Σ∗ : τ(q, s) = qf ∧ γ(q, s) > 0. It follows that
the PDFA A defines a probability distribution over all strings in Σ∗. Let DA(s)
denote the probability that A generates s ∈ Σ∗, so we have

DA(s) = γ(q0, s) for s such that τA(q0, s) = qf .

We define DA(q) to be the probability that a random string generated by A
uses state q ∈ Q. Thus DA(q) is the probability that s ∼ DA (i.e. s sampled
from distribution DA) has a prefix p with τ(q0, p) = q. In a similar way, DA(q, σ)
is the probability that a random string generated by A uses transition (q, σ) —
the probability that a random string s ∼ DA has a prefix pσ with τ(q0, p) = q.

Suppose D and D′ are probability distributions over Σ∗. The variation (L1)
distance between D and D′ is L1(D,D′) =

∑
s∈Σ∗ |D(s) − D′(s)|. A class C

of probability distributions is PAC-learnable by algorithm A with respect to
the variation distance if the following holds. Given parameters ε > 0, δ > 0,
and access to samples from DA ∈ C, using runtime and sample size polynomial
in ε−1 and δ−1, A should, with probability 1 − δ, output a distribution DH

with L1(DA, DH) < ε. If C is described in terms of additional parameters that
represent the complexity of DA, then we require A to be polynomial in these
parameters as well as ε−1 and δ−1.

3 Constructing the PDFA

The algorithm is shown in Figure 1. We have the following parameters (in addi-
tion to the PAC parameters ε and δ):

160 N. Palmer and P.W. Goldberg

• |Σ|: the alphabet size,
• n: an upper bound on the number of states of the target automaton,
• μ: a lower bound on distinguishability, defined below.

In the context of learning using the KL-divergence, a simple class of PDFAs
(see [3]) can be constructed to show that the parameters above are insufficient
for PAC learnability in terms of just those parameters. In [3], parameter L is
also used, denoting the expected length of strings.

We construct a digraph G = 〈V,E〉 with labelled edges (V is a set of vertices
and E ⊆ V ×Σ×V is a set of edges). Each edge is labelled with a letter σ ∈ Σ.
Note that due to the deterministic nature of the automaton, there can be at
most one vertex vq such that (vp, σ, vq) ∈ E for any vp ∈ V and σ ∈ Σ.

From the target automaton A we generate a hypothesis automaton H using a
variation on the method described by Clark and Thollard [3] utilising candidate
nodes, where the L∞ norm between the suffix distributions of states is used to
distinguish between them (as studied also in [7, 10]). We define a Candidate
Node in the same way as [3]. Suppose G is a graph whose vertices correspond to
a subset of the states of A. Initially G will have a single vertex corresponding to
the initial state; G is then constructed in a greedy incremental fashion.

Definition 2. A candidate node in hypothesis graph G is a pair (u, σ) (also
denoted q̂u,σ), where u is a node in the graph and σ ∈ Σ where τG(u, σ) is
undefined. It will have an associated multiset Su,σ.

The L∞-norm is a measure of distance between a pair of distributions, defined
as follows.

Definition 3. L∞(D,D′) = maxs∈Σ∗ |D(s)−D′(s)|.
Let Dq(s) denote the distribution over strings generated using state q as the

initial state, so that

Dq(s) = γ(q, s) for s such that τ(q, s) = qf .

As in [10, 3], we say that a pair of nodes (q1, q2) are distinguishable if
L∞(Dq1 , Dq2) = maxs∈Σ∗ |Dq1(s) −Dq2(s)| ≥ μ. We define as follows the L̂∞-
norm (an empirical version of the L∞-norm) with respect to multisets of strings
Sq1 and Sq2 , where Sq1 and Sq2 have been respectively sampled from Dq1 and
Dq2 .

Definition 4. For nodes q1 and q2, with associated multisets Sq1 and Sq2 ,

L̂∞ (Dq1 , Dq2) = max
s∈Σ∗

(∣∣∣∣ |s ∈ Sq1 |
|Sq1 |

− |s ∈ Sq2 |
|Sq2 |

∣∣∣∣)
where Dq is the empirical distribution over the strings in the multiset Sq asso-
ciated with q, and where |s ∈ Sq| is the number of occurrences of string s in
multiset S.

PAC-Learnability of Probabilistic Deterministic Finite State Automata 161

Algorithm 1 Construct Automaton.

Hypothesis Graph G = 〈V, E〉 = 〈{q0}, ∅〉
m0 = n|Σ|

μ2δ′

N = max
(

8n2|Σ|2
ε2

ln
(

2n2|Σ|2
δ′

)
, 4m0n|Σ|

ε

)
complete = false

repeat

% create candidate node for each undefined transition from each vertex in G
for each vertex v ∈ V

for each symbol σ ∈ Σ, where τG(v, σ) is undefined

create a candidate node q̂v,σ with associated multiset Sv,σ = ∅
generate a sample S of N strings iid from DA

for each string s ∈ S, where s = rσ′t and q̂τG(q0,r),σ′ is a candidate node

Sτ(q0,r),σ′ ← Sτ(q0,r),σ′ ∪ {t}
identify candidate node q̂u,σ′′ with the largest multiset, Su,σ′′

if (|Su,σ′′ | ≥ m0)
replace multiset Su,σ′′ with m0 suffixes chosen iid from Su,σ′′

if
(
∃v ∈ V : L̂∞

(
Dq̂u,σ′′ , Dv

)
≤ μ

2

)
% candidate “looks like” existing node

add edge (u, σ′′, v) to E
else

add node q̂u,σ′′ to V , with multiset Su,σ′′

add edge (u, σ′′, q̂u,σ′′) to E
else

complete = true

delete all candidate nodes q /∈ V
until(complete)

return G

Fig. 1. Constructing the underlying graph

The algorithm uses two quantities, m0 and N . m0 is the number of suffixes
required in the multiset of a candidate node for the node to be added as a state
(or as a transition) to the hypothesis. It will be shown that m0 is a sufficiently
large number to allow us to establish that the distribution over suffixes in the
multiset that begin at state q is likely to approximate the true distribution Dq

over suffixes at that state. N is the number of strings generated iid during each
iteration of the algorithm. Polynomial expressions for m0 and N are given in
Algorithm 1.

We show that the probability of Algorithm 1 failing to adequately learn the
structure of the automaton is upper bounded by δ′. In Section 5 we show that
the transition probabilities are learnt by Algorithm 2 with a failure probability of
at most δ′′. Overall, the probability of the algorithms failing to learn the target
PDFA within a variation distance of ε is at most δ, for δ = δ′ + δ′′.

162 N. Palmer and P.W. Goldberg

Algorithm 1 differs from [3] as follows. We do not introduce a ground node -
a node to catch any undefined transitions in the hypothesis graph so as to give a
probability greater than zero to the generation of any string. Instead, any state q,
for which DA(q) < ε

2n|Σ| can be discarded - no corresponding node is formed in
our hypothesis graph. There is only a small probability that a string is generated
such that our hypothesis automaton rejects it (there is no corresponding path
through the graph), which means that the contribution to the overall variation
distance is very small.

4 Analysis of PDFA Construction Algorithm

Theorem 1. Given that for each pair (q1, q2) of distinct states in A, L∞(Dq1 ,
Dq2) > μ, the corresponding1 states (q̂1, q̂2) in hypothesis automaton H are dis-
tinguished (L̂∞(Dq̂1 , Dq̂2) > μ

2) with probability at least 1− δ′
2 , if m0 ≥ n|Σ|

μ2δ′ .

Proof. States q1 and q2 are distinguished if there exists a string s′ such that:∣∣∣∣ |s′ ∈ Sq1 |
|Sq1 |

− |s
′ ∈ Sq2 |
|Sq2 |

∣∣∣∣ ≥ μ

2

Due to the assumption that L∞(Dq1 , Dq2) > μ, a string s′′ exists such that:

|Dq1(s
′′)−Dq2(s

′′)| > μ

We give a sufficient sample size, such that the proportion of each string
occurring in the sample is within μ

4 of the expected proportion (with probability
at least 1 − δ′

2n2|Σ|2m0
). From Hoeffding’s Inequality (see for example [2]) we

obtain that, for state q and string s:

Pr

(∣∣∣∣∣
(
|s ∈ Ŝq|
|Ŝq|

)
−Dq(s)

∣∣∣∣∣ ≥ μ

4

)
≤ e−2m0(μ

4)2

(1)

A value of m0 is chosen such that for sufficiently large n:

e−
m0μ2

8 ≤ δ′

2n2|Σ|2m0
(2)

It can be verified that this is satisfied if we choose m0 ≥ n2|Σ|2
μ2δ′ .

From Equation 2 it can be seen that (for some string s and some state q):

Pr

(∣∣∣∣∣
(
|s ∈ Ŝq|
|Ŝq|

)
−Dq(s)

∣∣∣∣∣ ≥ μ

4

)
≤ e−2m0(μ

4)2 ≤ δ′

2n2|Σ|2m0
(3)

1 At every interation of the algorithm, a bijection Φ exists between the states of H
and candidate states, and a subset of the states of A, such that τA(u, σ) = v ⇔
τH(Φ(u), σ) = Φ(v).

PAC-Learnability of Probabilistic Deterministic Finite State Automata 163

For state q, a multiset Sq is said to be representative of the true distribution

with respect to q, if ∀s ∈ Sq :
∣∣∣(|s∈Sq|

|Sq|
)
−Dq(s)

∣∣∣ ≤ μ
4 . If two states q1 and q2

have representative multisets, then given that L∞(Dq1 , Dq2) > μ, it must be the
case that for some string s′′:∣∣∣∣ |s′′ ∈ Sq1 |

|Sq1 |
− |s

′′ ∈ Sq2 |
|Sq2 |

∣∣∣∣ ≥ μ

2

Each multiset is representative (given that it contains m0 suffixes) with prob-
ability at least 1− δ′

2n2|Σ|2 , due to a union bound. There are at most n|Σ| candi-
date nodes in total and candidate nodes are re-generated (as are their multisets)
in each iteration of the algorithm (of which there are at most n|Σ|). Therefore,
the probability that a candidate node has a representative multiset at the point
when it is converted to a node in the hypothesis graph (or found to be indistinct
from another node in the graph) is at least 1−

(
δ′

2n2|Σ|2 .n
2|Σ|2

)
= 1− δ′

2 . ��

Proposition 1. Let A′ be a PDFA whose states and transitions are a subset of
those of A. Assume q0 is a state of A′. Suppose q is a state of A′ but τ(q, σ) is
not a state of A′. Let S be a sample from DA, |S| ≥ 8n2|Σ|2

ε2 ln
(

2n2|Σ|2
δ′

)
. Let

Sq,σ(A′) be the number of elements of S of the form s1σs2 where τ(q0, s1) = q
and for all prefixes s′1 of s1, τ(q0, s

′
1) ∈ A. Then

Pr
(∣∣∣∣(Sq,σ(A′)

|S|
)
− E

[
Sq,σ(A′)
|S|

]∣∣∣∣ ≥ ε

8n|Σ|
)
≤ δ′

2n2|Σ|2 .

Proof. From Hoeffding’s Inequality it can be seen that

Pr
(∣∣∣∣(Sq,σ(A′)

|S|
)
− E

[
Sq,σ(A′)
|S|

]∣∣∣∣ ≥ ε

8n|Σ|
)
≤ e−2|S|(ε

4n|Σ|)
2

(4)

We need |S| to satisfy e
− |S|ε2

8n2|Σ|2 ≤ δ′
2n2|Σ|2 . Equivalently,

8n2|Σ|2
ε2

ln
(

2n2|Σ|2
δ′

)
≤ |S|.

So the sample size identified in the statement is indeed sufficiently large.

Theorem 2. There exists T ′ a subset of the transitions of A, and Q′ a subset
of the states of A, such that

∑
(q,σ)∈T ′ DA(q, σ) +

∑
q∈Q′ DA(q) ≤ ε

2 , and with
probability at least 1− δ′, every transition (q, σ) /∈ T ′ in target automaton A for
which DA(q, σ) ≥ ε

4n|Σ| , has a corresponding transition in hypothesis automaton
H, and every state q /∈ Q′ in target automaton A for which DA(q) ≥ ε

4n|Σ| , has
a corresponding state in hypothesis automaton H.

Proof. Theorem 1 shows that if a candidate node has a multiset containing
at least m0 suffixes, then there is a probability of at least 1 − δ′

2n2|Σ|2 that the

164 N. Palmer and P.W. Goldberg

multiset is representative (as defined in the proof of Theorem 1). Furthermore, it
shows that the probability of all candidate nodes having representative multisets
(if the multisets contain at least m0 suffixes) is at least 1− δ′

2 , from which we can
deduce that all candidate nodes can be correctly distinguished from any nodes2

in the hypothesis automaton.
Proposition 1 shows that with a probability of at least 1 − δ′

2n2|Σ|2 , the
proportion of strings in a sample S (generated iid over DA, and for |S| ≥
8n2|Σ|2

ε2 ln
(

2n2|Σ|2
δ′

)
) reaching candidate node q̂ is within ε

8n|Σ| of the expected
proportion DA(q̂). This holds for each of the candidate nodes (of which there
are at most n|Σ|), in each iteration of the algorithm (of which there are at most
n|Σ|), with a probability of at least 1− δ′

2 .
If a candidate node (or a potential candidate node3) q̂, for which DA(q̂) ≥

ε
2n|Σ| , is not included in H , then from the facts above it follows that at least

εN
4n|Σ| strings in the sample are not accepted by the hypothesis graph. For each
string not accepted by H , a suffix is added to the multiset of a candidate node,
and there are at most n|Σ| such candidate nodes. From this it can be seen
that some candidate node has a multiset containing at least εN

4 suffixes. From
the definition of N , N ≥ 4m0n|Σ|

ε . Therefore, some multiset contains at least
m0n|Σ| suffixes, which must be at least as great as m0. This means that as long
as there exists some significant transition or state that has not been added to the
hypothesis, some multiset must contain at least m0 suffixes, so the associated
candidate node will be added to H , and the algorithm will not halt.

Therefore it has been shown that all candidate nodes which are significant
enough to be required in the hypothesis automaton (at least a fraction ε

2n|Σ|
of the strings generated reach the node) are present with a probability of at
least 1− δ′

2 , and that since all multisets contain m0 suffixes, the candidate nodes
and hypothesis graph nodes are all correctly distinguished from each other (or
combined as appropriate) with a probability of at least 1 − δ′

2 . We conclude
that with a probability of at least 1 − δ′, every transition (q, σ) /∈ T ′ in target
automaton A for which DA(q, σ) ≥ ε

2n|Σ| and every state q /∈ Q′ in target
automaton A for which DA(q) ≥ ε

2n|Σ| , has a corresponding transition or state
in hypothesis automaton H . ��

5 Finding Transition Probabilities

The algorithm is shown in Figure 2. We can assume that we have at this stage
found DFA H , whose graph is a subgraph of the graph of target PDFA A.
Algorithm 2 finds estimates of the probabilities γ(q, σ) for each state q in H ,
σ ∈ Σ.
2 Note that due to the deterministic nature of the automaton, distinguishability of

transitions is not an issue.
3 A potential candidate node is any state or transition in the target automaton which

has not yet been added to H , and is not currently represented by a candidate node.

PAC-Learnability of Probabilistic Deterministic Finite State Automata 165

If we generate a sample S from DA, we can trace each s ∈ S through H , and
each visit to a state qH ∈ H provides an observation of the distribution over the
transitions that leave the corresponding state qA in A. For string s = σ1σ2 . . . σ�,
let qi be the state reached by the prefix σ1 . . . σi−1. The probability of s is
DA(s) =

∏�−1
i=0 γ(qi, σi+1). Let nq,σ(s) denote the number of times that string s

uses transition (q, σ), then

DA(s) =
∏
q,σ

γ(q, σ)nq,σ(s) (5)

Let γ̂(q, σ) denote the estimated probability that is given to transition (q, σ) in
H . Provided H accepts s, the estimated probability of string s is given by

DH(s) =
∏
q,σ

γ̂(q, σ)nq,σ(s) (6)

We aim to ensure that with high probability, for s ∼ DA, if H accepts s then
the ratio DH(s)/DA(s) is close to 1. This is motivated by the following.

Observation 3. Suppose that with probability 1− 1
4ε, for s ∼ DA, DH(s)/DA(s)

∈ [1− 1
4ε, 1 + 1

4ε]. Then L1(DA, DH) ≤ 1
2ε.

Proof.

L1(DA, DH) =
∑

s∈Σ∗
|DA(s)−DH(s)|

Let X = {s ∈ Σ∗ : DH(s)/DA(s) ∈ [1− 1
4ε, 1 + 1

4ε]}. Then

L1(DA, DH) =
∑
s∈X

|DA(s)−DH(s)|+
∑

s∈Σ∗\X

|DA(s)−DH(s)|

The first term of the right-hand side is
∑

s∈X DA(s)(1 − DH(s)/DA(s)) ≤∑
s∈X DA(s).(1

4ε) ≤ 1
4ε.

DA(X) ≥ 1 − 1
4ε and DH(X) ≥ DA(X) − 1

4ε, hence the second term in the
right-hand side is at most 1

4ε. ��
We have so far allowed the possibility that H may fail to accept up to a

fraction 1
4ε of strings generated by DA. Of the strings s that are accepted by

H , we want to ensure that with high probability DH(s)/DA(s) is close to 1, to
allow Observation 3 to be used.

Suppose that nq,σ(s) is large, so that s uses transition (q, σ) a large number
of times. In that case, errors in the estimate of transition probability γ(q, σ) can
have a disproportionately large influence on the ratio DH(s)/DA(s). What we
show is that with high probability for random s ∼ DA, regardless of how many
times transition (q, σ) typically gets used, the training sample contains a large
enough subset of strings that use that transition more times than s does, so that
γ(q, σ) is nevertheless known to a sufficiently high precision.

166 N. Palmer and P.W. Goldberg

We say that s ∈ Σ∗ is (q, σ)-good for some transition (q, σ), if s satisfies:

Pr
s′∼DA

(nq,σ(s′) > nq,σ(s)) ≤ ε

4n|Σ|
A (q, σ)-good string is one that is more useful than most in providing an estimate
of γ(q, σ).

Observation 4. Let m ≥ 1. Let S be a sample from DA,
|S| ≥ m

(
32n|Σ|

ε

)
ln
(

2n|Σ|
δ′′

)
. With probability 1− δ′′

2n|Σ| , for transition (q, σ) there
exist at least ε

8n|Σ| |S| (q, σ)-good strings in S.

Proof. From the definition of (q, σ)-good, the probability that a string generated
at random over DA is (q, σ)-good for transition (q, σ), is at least ε

4n|Σ| .
Applying a standard Chernoff Bound (see e.g. [2], p360), for any transition

(q, σ), given sample S, with high probability the observed number of (q, σ)-good
strings in S is at least half the expected number:

Pr
(
|{s ∈ S : s is (q, σ)−good}| < 1

2
.

ε

4n|Σ| |S|
)
≤ exp

⎛⎝− 1
4

(
ε

4n|Σ|
)
|S|

2

⎞⎠
(7)

We wish to bound this probability to be at most δ′′
2n|Σ| , so from Equation (7),

exp

⎛⎝− 1
4

(
ε

4n|Σ|
)
|S|

2

⎞⎠ ≤ δ′′

2n|Σ|

|S| ≥
(

32n|Σ|
ε

)
ln
(

2n|Σ|
δ′′

)
��

Notation. Suppose Sq,σ is as defined in Algorithm 2. Let Mq,σ be the largest
number with the property that at least a fraction ε

8n|Σ| of strings in Sq,σ use
(q, σ) at least Mq,σ times.

Observation 5. From Observation 4 (plugging in m = (2n|Σ|
δ′′)(32n|Σ|2

ε)2) it
follows that with probability 1− δ′′

2n|Σ| (over random samples Sq,σ),

Pr
s∼DA

(nq,σ(s) > Mq,σ) ≤ ε

4n|Σ| (8)

Theorem 6. Suppose that H is a DFA that differs from A by the removal of
a set of transitions that have probability at most 1

2ε of being used by s ∼ DA.
Then Algorithm 2 assigns probabilities γ̂(q, σ) to the transitions of H such the
resulting distribution DH satisfies L1(DA, DH) < ε, with probability 1− δ′′.

PAC-Learnability of Probabilistic Deterministic Finite State Automata 167

Algorithm 2 Finding Transition Probabilities.

Input: DFA H, a subgraph of A.

For each state q ∈ H, σ ∈ Σ:

generate sample Sq,σ from DA; |Sq,σ| = (2n|Σ|
δ′′)(32n|Σ|2

ε
)2(32n|Σ|

ε
) ln(2n|Σ|

δ′′);
repeat

for strings s ∈ Sq,σ, trace paths through H;

Let Nq,−σ be random variable: number of observations of state q
before we observe transition (q, σ) (include observations of q and

(q, σ) in rejected strings).

until(all strings in Sq,σ have been traced)

Let N̂q,−σ be the mean of the observations of Nq,−σ;

Let γ̂(q, σ) = 1/N̂q,σ.

Let nq,σ be number of observations of (q, σ);
for all q let σmin(q) = arg minσ(nq,σ).
Adjust γ̂(q, σmin(q)) such that

∑
σ γ̂(q, σ) = 1.

Fig. 2. Finding Transition Probabilities

Comment. It can be seen that the sample size used by Algorithm 2 is poly-
nomial in the parameters of the problem. It is linear in 1

δ′′ ; we believe that a
more refined analysis would yield a logarithmic bound, alternatively one could
modify the algorithm to obtain a logarithmic bound. The general idea would
be to make O(log(1

δ′′)) independent empirical estimates of each Nq,−σ, and take
their median.

Proof. Recall Observation 5, that with probability 1− δ′′
2n|Σ| ,

Pr
s∼DA

(nq,σ(s) > Mq,σ) ≤ ε

4n|Σ|
Using Observation 4, the sets Sq,σ are large enough to ensure that with

probability 1 − δ′′
2n|Σ| , there are Mq,σ(2n|Σ|

δ′′)(32n|Σ|2
ε)2 uses of transition (q, σ).

This is because at least (2n|Σ|
δ′′)(32n|Σ|2

ε)2 members of Sq,σ use (q, σ) at least
Mq,σ times.

Consequently, (again with probability 1− δ′′
2n|Σ| over random choice of Sq,σ)

the set Sq,σ generates a sequence of independent observations of state q, which
continues until Mq,σ(2n|Σ|

δ′′)(32n|Σ|2
ε)2 of them resulted in transition (q, σ).

Let Nq,−σ denote the random variable which is the number of times q is ob-
served before transition (q, σ) is taken. Each time state q is visited, the selection
of the next transition is independent of previous history, so we obtain a sequence
of independent observations of Nq,−σ. So, with probability 1− δ′′

2n|Σ| , the number

of observations of Nq,−σ is at least Mq,σ(2n|Σ|
δ′′)(32n|Σ|2

ε)2.

168 N. Palmer and P.W. Goldberg

Recall Chebyshev’s inequality, that for random variable X with mean μ and
variance σ2, for positive k,

Pr(|X − μ| > k) ≤ σ2

k2
.

Nq,−σ has a discrete exponential distribution with mean γ(q, σ)−1 and variance
≤ γ(q, σ)−2. Hence the empirical mean N̂q,−σ is a random variable with mean
γ(q, σ)−1 and variance at most γ(q, σ)−2(Mq,σ)−1(2n|Σ|

δ′′)−1(32n|Σ|2
ε)−2. Apply-

ing Chebyshev’s inequality with N̂q,−σ for X , and
k = γ(q, σ)−1(ε

32n|Σ|2
√

Mq,σ

), we have

Pr
(
|N̂q,−σ − γ(q, σ)−1| > γ(q, σ)−1(

ε

32n|Σ|2√Mq,σ

)
)
≤ δ′′

2n|Σ| .

Since γ(q, σ) = 1/E[Nq,−σ] and γ̂(q, σ) = 1/N̂q,−σ,

Pr
(
|γ̂(q, σ)− γ(q, σ)| > 2γ(q, σ)(

ε

32n|Σ|2√Mq,σ

)
)
≤ δ′′

2n|Σ| .

The rescaling at the end of Algorithm 2 loses a factor of |Σ| from the upper
bound on |γ(q, σ)− γ̂(q, σ)|. Overall, with high probability 1− δ′′

2n|Σ| ,

|γ̂(q, σ)− γ(q, σ)| ≤
(εγ(q, σ)

16n|Σ|√Mq,σ

)
(9)

For s ∈ Σ∗ let nq(s) denote the number of times the path of s passes through
state q. By definition of Mq,σ, with high probability 1− ε

4n|Σ| for s ∼ DA,

Mq,σ > nq(s).γ(q, σ). (10)

For s ∼ DA we upper bound the expected log-likelihood ratio,

log
(DH(s)
DA(s)

)
=

|s|∑
i=1

γ̂(qi, σi)
γ(qi, σi)

where σi is the i-th character of s and qi is the state reached by the prefix of
length i− 1.

Suppose A generates a prefix of s and reaches state q. Let random variable
Xq be the contribution to log(DH (s)

DA(s)) when A generates the next character.

E[Xq] =
∑

σ

γ(q, σ) log
(γ̂(q, σ)
γ(q, σ)

)
=
∑

σ

γ(q, σ)[log(γ̂(q, σ)) − log(γ(q, σ))]

PAC-Learnability of Probabilistic Deterministic Finite State Automata 169

We claim that (with high probability 1− δ′′
2n|Σ|)

log(γ̂(q, σ)) − log(γ(q, σ)) ≤ |γ̂(q, σ)− γ(q, σ)| 1
γ(q, σ)

.Aq,σ (11)

for some Aq,σ ∈ [1 − ε

8n|Σ|
√

Mq,σ

, 1 + ε

8n|Σ|
√

Mq,σ

]. The claim follows from (9)

and the inequality, for |ξ| < x, that log(x + ξ) − log(x) ≤ ξ. 1x (1 + 2ξ
x) (plug in

γ(q, σ) for x). Consequently,

E[Xq] ≤
∑

σ

γ(q, σ)
(1
γ(q, σ)

)
Aq,σ[γ̂(q, σ)− γ(q, σ)]

=
∑

σ

Aq,σ[γ̂(q, σ)− γ(q, σ)]

=
∑

σ

[γ̂(q, σ)− γ(q, σ)] +
∑

σ

Bq,σ[γ̂(q, σ) − γ(q, σ)]

for some Bq,σ ∈ [− ε

8n|Σ|
√

Mq,σ

, ε

8n|Σ|
√

Mq,σ

]. The first term vanishes, so we have

E[Xq] ≤
∑

σ

Bq,σ[γ̂(q, σ) − γ(q, σ)]

=
ε

8n|Σ|
∑

σ

(
1√
Mq,σ

)[γ̂(q, σ) − γ(q, σ)]

≤ ε

8n|Σ|
∑

σ

γ(q, σ)
Mq,σ

using (9). For s ∼ DA, given values nq(s), the expected contribution to log(DA(s)
DA(s))

from all nq(s) usages of state q is, using (10), at most

nq(s)
ε

8n|Σ|
∑

σ

1
nq(s)

=
εnq(s)
8n|Σ| |Σ|

1
nq(s)

=
ε

8n

The total contribution from all n states q, each being used nq(s) times is∑
q

ε

8n
=

ε

8
. (12)

So the expected difference between the likelihood of string s using the γ̂(q, σ)
values in place of the γ(q, σ) values, is small. Using (11),

V ar[Xq] ≤
∑

σ

A2
q,σ

γ(q, σ)
[γ̂(q, σ)− γ(q, σ)]2

≤
∑

σ

A2
q,σ

γ(q, σ)
γ(q, σ)2

Mq,σ

(ε

8n|Σ|
)2

170 N. Palmer and P.W. Goldberg

≤
(ε

8n|Σ|
)2∑

σ

A2
q,σγ(q, σ)
Mq,σ

≤
(ε

8n|Σ|
)2∑

σ

2
nq(s)

Hence the variance of the total contribution to the error log(DH (s)
DA(s)) from all

nq(s) uses of state q, is at most (ε
8n|Σ|)

2. Using (12), with high probability for

s ∼ DA, all the states contribute at most 1
8ε to log(DH (s)

DA(s)).

Finally, to use Observation 3, note that DH (s)
DA(s) ∈ [1− 1

4ε, 1 + 1
4ε] follows from

log(DH (s)
DA(s)) ∈ [− 1

8ε,
1
8ε]. ��

References

[1] N. Abe, J. Takeuchi and M. Warmuth. Polynomial Learnability of Stochastic
Rules with respect to the KL-divergence and Quadratic Distance. IEICE Trans.
Inf. and Syst., Vol E84-D(3) pp. 299-315 (2001).

[2] M. Anthony and P. L. Bartlett. Neural Network Learning: Theoretical Founda-
tions. Cambridge University Press (1999)

[3] A. Clark and F. Thollard. PAC-learnability of Probabilistic Deterministic Finite
State Automata. Journal of Machine Learning Research 5 pp. 473-497 (2004)

[4] T.M. Cover and J.A. Thomas. Elements of Information Theory Wiley Series in
Telecommunications. John Wiley & Sons (1991).

[5] M. Cryan and L. A. Goldberg and P. W. Goldberg. Evolutionary Trees can be
Learnt in Polynomial Time in the Two-State General Markov Model. SIAM Jour-
nal on Computing 31(2) pp. 375-397 (2001)

[6] P.W. Goldberg When Can Two Unsupervised Learners Achieve PAC Separation?
Procs. of COLT/EUROCOLT, LNAI 2111, pp. 303-319 (2001)

[7] C. de la Higuera and J. Oncina. Learning Probabilistic Finite Automata. tech.
rept. EURISE, Université de Saint-Etienne and Departamento de Lenguajes y
Sistemas Informaticos (2002)

[8] M. Kearns, Y. Mansour, D. Ron, R. Rubinfeld, R.E. Schapire and L. Sellie. On
the Learnability of Discrete Distributions. Procs. of STOC, pp. 273-282 (1994).

[9] Nick Palmer and Paul. W. Goldberg. PAC Classification via PAC Estimates of
Label Class Distributions. Tech rept. 411, Dept. of Computer Science, University
of Warwick (2004)

[10] D. Ron, Y. Singer and N. Tishby. On the Learnability and Usage of Acyclic
Probabilistic Finite Automata. Journal of Computer and System Sciences, 56(2),
pp. 133-152 (1998).

Learnability of Probabilistic Automata
via Oracles

Omri Guttman, S.V.N. Vishwanathan, and Robert C. Williamson

Statistical Machine Learning Program,
National ICT Australia, RSISE, Australian National University,

Canberra, ACT, Australia
{Omri.Guttman, SVN.Vishwanathan, Bob.Williamson}@nicta.com.au

Abstract. Efficient learnability using the state merging algorithm is
known for a subclass of probabilistic automata termed μ-distinguishable.
In this paper, we prove that state merging algorithms can be extended
to efficiently learn a larger class of automata. In particular, we show
learnability of a subclass which we call μ2-distinguishable. Using an ana-
log of the Myhill-Nerode theorem for probabilistic automata, we analyze
μ-distinguishability and generalize it to μp-distinguishability. By combin-
ing new results from property testing with the state merging algorithm
we obtain KL-PAC learnability of the new automata class.

1 Introduction

In this paper we investigate the following question: given a finite set of samples
drawn from a target distribution1 generated by a probabilistic automaton such
that the suffix distribution from any two states of the automata can be distin-
guished efficiently by an oracle; can we learn this distribution efficiently? The
definition of an oracle as well as our notion of efficiency is defined rigorously in
the following sections.

Probabilistic deterministic finite automata (or PDFA) are stochastic exten-
sions of deterministic finite automata (DFA), a well studied class of formal mod-
els (see e.g. Hopcroft and Ullman, 1979). The PDFA class finds uses in a variety
of areas in pattern recognition and machine learning including computational
linguistics, time series analysis, computational biology, speech recognition, and
network intrusion detection (see e.g. Vidal et al., 2005a,b). The problem of learn-
ing PDFA efficiently from sample data is therefore of significant practical im-
portance.

Many researchers have investigated the KL-PAC learnability of PDFA. There
are indications that the general problem of PDFA learning is hard. For instance,
Kearns et al. (1994) showed that KL-PAC learnability of PDFA implies the com-
putability of the noisy parity function, thus violating the noisy parity assump-
tion, widely believed to be true in the cryptography community (see e.g. Kearns,

1 Note that we assume the samples are drawn from the target distribution, and there-
fore our framework differs from the distribution-free setting.

S. Jain, H.U. Simon, and E. Tomita (Eds.): ALT 2005, LNAI 3734, pp. 171–182, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

172 O. Guttman, S.V.N. Vishwanathan, and R.C. Williamson

1993). This is demonstrated by showing how by KL-PAC learning a specific fam-
ily of (acyclic) PDFA, one can evaluate the noisy parity function2.

On the other hand, Ron et al. (1995) showed that a subclass of acyclic PDFA,
which they call μ-distinguishable, can be efficiently learned using the state merg-
ing algorithm. Clark and Thollard (2004) extended this result to PDFA with
bounded expected suffix length from every state. Roughly speaking, for an au-
tomaton in this subclass, given any two states there exists at least one string
whose suffix probability from the two states differs by at least μ. In other words,
the suffix distribution of any two states of the PDFA are at least μ apart in the
L∞ distance. The state merging algorithm uses an efficient test to distinguish
between suffix distributions.

However, the L∞ distance between two distributions can often be misleading.
Consider two extreme cases: let, D1 and D2 be distributions over {1, . . . , 2n}.
Furthermore, let D1(i) = 1/n for i = 1 . . . n and 0 otherwise, while D2(i) = 1/n
for i = n + 1 . . . 2n and 0 otherwise. Clearly, D1 and D2 have disjoint support,
but ||D1 −D2||∞ is only 1/n. On the other hand, even if D1 and D2 agree on
all but two elements, ||D1 − D2||∞ could potentially be large. The class of μ-
distinguishable automata may therefore be unsatisfactory, and we would like to
guarantee learnability of a more general family.

In Carrasco and Oncina (1999) it was shown that corresponding to every dis-
tribution induced by a PDFA there exists a canonical PDFA with the minimal
number of states which induces the same distribution. Furthermore, the suffix
distributions of the states of the canonical PDFA are unique. Therefore, if we
are given an oracle which can distinguish between two suffix distributions, we
can learn the PDFA. In this paper we show how the state merging algorithm
can use an oracle to learn μp-distinguishable PDFA. Our definition of μp distin-
guishability is a generalization of μ-distinguishability. The suffix distributions
of any two states of a μp-distinguishable PDFA are at least μ apart in the Lp

distance for some 1 ≤ p ≤ ∞.
In order to distinguish between suffix distributions we use property testing

algorithms. Given the ability to perform local queries, property testing algo-
rithms aim to determine if an object satisfies a particular property or is far from
satisfying it. These algorithms are typically sub-linear because they perform the
task by inspecting only a fraction of samples drawn from the global object, and
typically provide bounds on the probability of failure (see e.g. Ron, 2001).

For our purposes, property testing algorithms act as an oracle in the following
sense: Given a norm ||·|| and two distributions D1 and D2 over Σ∗, the algorithm
outputs ACCEPT with probability at least 1− δ whenever ||D1 −D2|| < ε and
it outputs REJECT with probability at least 1 − δ whenever ||D1 − D2|| >
ε′, (ε′ > ε). In particular, using a property testing algorithm described in

2 We mention in passing that even in the weaker, L1-PAC learning model, we have
shown, and will publish elsewhere, that general PDFA learnability still violates the
noisy parity assumption. This implies that the difficulty is inherent to PDFA learn-
ing, and not merely an artifact of the KL-divergence.

Learnability of Probabilistic Automata via Oracles 173

Batu et al. (2000) we present a modified state merging algorithm for learning
μ2-distinguishable PDFA efficiently.

Characterization of the family of PDFA which can be learned efficiently is a
deep question for which only partial answers are known so far. For instance, it is
well known that the noisy parity counterexample construction of Kearns et al.
(1994) is not μ-distinguishable. In fact, for every p > 1, the automaton’s μp-
distinguishability decays exponentially with the number of states. Yet it is readily
shown (Murphy, 1996) that this family of automata is μ1-distinguishable whilst
remaining hard to learn. The lower bounds for L1 distance testing proven by
Batu et al. (2000) also imply that learning μ1-distinguishable PDFA (using state
merging) is hard. We seek to understand the criterion which implies efficient
PDFA learning and this paper is a step in that direction.

We begin by formalizing our notation in Sect. 2 and review the Myhill-Nerode
theorem and its analog for PDFA in Sect. 3. Section 4 is devoted to a descrip-
tion of μp-distinguishability. In Sect. 5 we describe our modified state merging
algorithm. In Sect. 5.1 we demonstrate a particular instance of our algorithm for
learning μ2-distinguishable automata, and establish its polynomial sample and
computational complexity. We conclude with a discussion of possible extensions
and interesting research directions.

2 Notation

For concepts related to PDFA learning, we adopt the notation of
Clark and Thollard (2004) where applicable. We also use the notation of
Batu et al. (2000) when we discuss property testing over distributions.

We use Σ to denote a discrete alphabet consisting of |Σ| elements, and by Σ∗

we denote the set of finite (but unbounded) length sequences over Σ. A subset
L ⊆ Σ∗ is called a formal language. A distribution D over Σ∗ is a function which
assigns a probability D(s) to all sequences s ∈ Σ∗, such that 0 ≤ D(s) ≤ 1, and∑

s∈Σ∗ D(s) = 1. The distribution D is also called a stochastic language.
A PDFA, denoted by A, is a tuple (Q,Σ, q0, qf , ζ, τ, γ), where Q is a finite

set of states, q0 ∈ Q is the initial state, qf /∈ Q is the final state, ζ /∈ Σ is the
termination symbol, τ : Q×Σ ∪ {ζ} → Q ∪ {qf} is the transition function, and
γ : Q × Σ ∪ {ζ} → [0, 1] is the next symbol probability function. γ(q, σ) = 0
for any σ ∈ Σ when τ(q, σ) is not defined. From each state q ∈ Q, the sum of
output probabilities must be one:

∑
σ∈Σ∪{ζ} = 1.

A labelled graph G = (V,E) is defined by a set of nodes V and a set of labelled
edges E ⊆ V × Σ × V . Every PDFA A has an associated underlying labelled
graph GA. When it is clear from context we will use G and GA interchangeably.

All transitions which emit the ζ symbol point to the final state. The functions
γ and τ can be recursively extended to strings: γ(q, σ1σ2 . . . σk) = γ(q, σ1) ·
γ(τ(q, σ1), σ2 . . . σk), and when γ(q, σ1σ2 . . . σk) > 0, we have τ(q, σ1σ2 . . . σk) =
τ(τ(q, σ1), σ2 . . . σk).

A PDFA thus induces a distribution, or in other words, a stochastic regular
language over Σ∗, with PA(s) = γ(q0, sζ), the probability of generating the
string s. We define PA

q (s) = γ(q, sζ) to be the suffix distribution of the state q.

174 O. Guttman, S.V.N. Vishwanathan, and R.C. Williamson

Given two distributions D1 and D2 over Σ∗, we will use the following notions
of distance:

– For 1 ≤ p <∞, the Lp distance between D1 and D2 is defined as:

‖D1 −D2‖p =
∑

s∈Σ∗

[
|D1(s)−D2(s)|p

]1/p

.

– In the p→∞ limit, the resulting L∞ distance, is defined as:

‖D1 −D2‖∞ = max
s∈Σ∗

|D1(s)−D2(s)| .
– The KL-divergence between D1 and D2 is defined as:

KL(D1‖D2) =
∑

s∈Σ∗
D1(s) log

(
D1(s)
D2(s)

)
.

Note that the KL divergence is not a metric. As shown in Cover and Thomas
(1991), for any pair of distributions D1 and D2, it holds that KL(D1‖D2) ≥

1
2 ln 2‖D1 − D2‖21, which in turn upper-bounds all Lp-distances. Where ap-
propriate, we will use the notation KL(A||Â) to denote KL(PA||P Â).

We will use the following notion of learnability, due to Clark and Thollard
(2004):

Definition 1 (KL-PAC). Given a class of distributions D over Σ∗, an algo-
rithm KL-PAC learns D if there is a polynomial q(·) such that for all D ∈ D,
ε > 0 and δ > 0, the algorithm is given a sample S of size m and produces a
hypothesis D̂, such that Pr

[
KL(D ‖ D̂) > ε

]
< δ whenever m > q(1/ε, 1/δ, |D|).

By |D| we denote some measure of the complexity of the target. The algorithm’s
running time is bounded by a polynomial in m plus the total length of the strings
in S.

The definition of Lp-PAC learnability is analogous, with the corresponding
change in distance measure.

3 Characterization Theorem for Suffix Distributions

In the theory of formal languages, the well known Myhill-Nerode theorem pro-
vides a necessary and sufficient condition for a language to be regular, and thus
accepted by a DFA (see e.g. Hopcroft and Ullman, 1979). The theorem states
that a language is regular if and only if it is the union of some equivalence
classes of a right invariant equivalence relation of finite index. Definitions of the
key concepts in the theorem are:

– For a given pair of strings x, y ∈ Σ∗ and a formal language L, a right
invariant equivalence relation ”∼” is defined by:

x ∼ y ⇐⇒ (xz ∈ L ⇐⇒ yz ∈ L) ∀z ∈ Σ∗.

– The index of a language is defined as the number of its equivalence classes.

Learnability of Probabilistic Automata via Oracles 175

A analogous theorem for PDFA is due to Carrasco and Oncina (1999). The
concept of a right equivalence relation for a stochastic language is as follows:

– For a given pair of strings x, y ∈ Σ∗, and a stochastic language L generated
by a PDFA A, a stochastic right invariant equivalence relation ”∼” is defined
by:

x ∼ y ⇐⇒ PA(xz) = PA(yz) ∀z ∈ Σ∗.

The modified theorem now states that a stochastic language is generated by
a PDFA if and only if it is the union of some equivalence classes of a stochastic
right invariant equivalence relation of finite index.

A canonical generator is defined to be the PDFA with the minimal number of
states generating a given stochastic regular language L (Carrasco and Oncina,
1999). Using the definition of the right invariant equivalence relation and the
minimality of the canonical generator, it can be shown that the suffix distribution
of every state q of the canonical generator is distinct. In other words, given
an oracle which can distinguish between suffix distributions, we can learn the
distribution induced by a PDFA by identifying the right invariant equivalence
classes. In Sect. 4 we show that the state merging algorithm for learning μ-
distinguishable automata implicitly uses such an oracle which exploits the L∞
distance between suffix distributions. We then extend the algorithm to use other
oracles, guaranteeing learnability of a larger class of PDFA.

4 μp-Distinguishability

The general PDFA learning problem is hard, and therefore additional conditions
are required before attempting to provide an efficient learning algorithm. The
concept of μ-distinguishability was first introduced by Ron et al. (1995), where
it was shown to be sufficient for KL-PAC learning of acyclic PDFA.

Definition 2 (μ-distinguishability). Given a PDFA A = (Q,Σ, q0, qf , ζ, τ,
γ), two states q, q′ ∈ Q are μ-distinguishable if there exists a string s ∈ Σ∗ such
that |γ(q, sζ) − γ(q′, sζ)| ≥ μ. A PDFA A is μ-distinguishable if every pair of
states in it are μ-distinguishable.

Recently, Clark and Thollard (2004) extended the result to general PDFA learn-
ing, while imposing an additional condition, namely an upper bound on the
expected suffix length from all states.

We seek to understand which criteria will in fact enable efficient testing for
discrimination between distributions. For instance, μ-distinguishability is equiv-
alent to demanding that ||PA

q − PA
q′ ||∞ ≥ μ for every q, q′ ∈ Q. This provides

for an efficient and accurate test for deciding whether or not two distributions
over strings are similar (i.e. drawn from the same suffix distribution). We argue
in Sect. 5 that such efficient and accurate testing can in fact be achieved using
relaxed conditions, which in turn also guarantee KL-PAC learnability.

176 O. Guttman, S.V.N. Vishwanathan, and R.C. Williamson

4.1 Definition of μp-Distinguishability

Definition 3 (μp-distinguishability). Given a PDFA A = (Q,Σ, q0, qf , ζ, τ,
γ), two states q, q′ ∈ Q are termed μp-distinguishable if the Lp distance between
their respective suffix distributions is at least μ. Written out in terms of the
individual suffix probabilities, the condition becomes:

‖PA
q − PA

q′ ‖p ≥ μ.

A PDFA is μp-distinguishable if every pair of states in it are μp-distinguishable.

Note that for p = ∞ we recover the original μ-distinguishability condition.
Moreover, for any distribution D over Σ∗, if 1 ≤ p1 < p2 ≤ ∞ then we have
‖D‖p1 ≥ ‖D‖p2 ; hence the μp1 -distinguishable class properly contains the μp2 -
distinguishable class.

5 State Merging with Oracles

In order to describe how state merging algorithms can use oracles to learn
PDFA distributions, we first provide a modular analysis of the proof due to
Clark and Thollard (2004), and then extend it to deal with oracles. In particu-
lar, we show that the state merging algorithm may be decoupled into two parts:

– A construction algorithm which iteratively builds the PDFA graph and sets
the transition probabilities.

– An oracle, which enables efficient and accurate testing for whether or not
two sample sets were drawn from two distinct suffix distributions.

Given such an oracle, the state merging algorithm will induce a PDFA such
that with high probability, the KL-divergence between target and induced dis-
tributions can be made arbitrarily small.

The learning algorithm is given the following parameters as input: an alpha-
bet Σ, an upper bound on the expected length of strings generated from any
state of the target L, an upper bound on the number of states of the target n,
a confidence parameter δ and a precision parameter ε. Pseudocode for the state
merging algorithm is given in Algorithm A (Appendix A), while a full description
can be found in Sect. 3 of Clark and Thollard (2004).

For our purposes, an oracle is a black-box which can distinguish between
suffix distributions. More formally:

Definition 4 (Oracle). Given a class H of PDFA, an oracle OH is said to
(δ,m)-match the class H if for any PDFA A ∈ H and for any pair of states q, q′

in A, given sample sets of at least m samples drawn as suffixes from q and q′,
the oracle can determine with probability at least 1 − δ whether or not the two
sets were drawn from suffix distributions of the same state.

The learning algorithm we use is analogous to the state merging algorithm
described in Clark and Thollard (2004), with the oracle OH testing whether to
merge a hypothesized candidate state (see Definition 5) with an existing one, or
to construct a new state. This leads to our main result:

Learnability of Probabilistic Automata via Oracles 177

Theorem 1. Let H be a class of PDFAs over the alphabet Σ, ε > 0, δ > 0, L
and n positive integers, and δ1, δ2, ε1,m2 as defined in (1) and (2) (Appendix B).

Suppose OH is a (δ1,m1)-matching oracle for H. For every n-state PDFA
A ∈ H such that the expected length of the string generated from every state is
less than L, with probability 1− δ over a random draw of max(m1,m2) samples
generated by A, Algorithm 1 produces an hypothesis PDFA Â such that KL(A ‖
Â) < ε.

Our proof closely follows Clark and Thollard (2004), with a number of key
changes:

– In the original proof, distinguishability between two states’ suffix distribu-
tions (with high probability) is inherent to the sample size bounds. In our
case, the oracle provides the distinguishing test, so the size of the multiset
drawn at each step of the algorithm is reformulated to reflect this (see (1),
Appendix A).

– In our case, two sources of randomness are present: the randomly drawn
sample sets and the oracle. To bound the probability of error, both sources
need to be accounted for.

With the exceptions noted above, the original proof is directly transferable
to our setting. The proof sketch can be found in Appendix B.

5.1 Learning μ2 Efficiently

We use a result on testing distribution proximity in L2 due to Batu et al. (2000)
to show learnability of the μ2-distinguishable class. The result applies to distri-
butions over discrete sets, and the computational complexity does not depend
on the size of the set. Specifically, for Algorithm L2-Distance-Test described in
Appendix C the following is proven:

Theorem 2 (Batu et al. (2000)). Given a parameter δ and m = O(1
ε4) sam-

ples drawn from distributions D1 and D2 over a set of n elements, if ‖D1 −
D2‖2 ≤ ε/2, Algorithm L2-Distance-Test will output ACCEPT with probability
at least (1 − δ). If ‖D1 − D2‖2 ≥ ε then the algorithm outputs REJECT with
probability at least 1− δ. The running time of the algorithm is O

(
ε−4 log 1

δ

)
.

Note that the running time of the test is independent of n. As a consequence
of Theorem 2, the L2-Distance-Test algorithm can serve as a

(
δ, C2

ε4

)
-matching

oracle for the μ2-distinguishable PDFA class, where C2 is a constant hidden in
the asymptotic notation. Thus, as a direct consequence of Theorem 1 and the
L2 matching oracle, we have the following lemma:

Lemma 1. The μ2-distinguishable class is efficiently learnable.

6 Discussion and Conclusion

We introduced μp-distinguishable automata, which generalize the concept of μ-
distinguishable automata. Using a new modularized analysis we extended the

178 O. Guttman, S.V.N. Vishwanathan, and R.C. Williamson

proof of KL-PAC learnability of μ-distinguishable automata via the state merg-
ing algorithm. This new insight allows us to extend state merging to use oracles.
We use an existing L2 property testing algorithm to learn μ2-distinguishable
automata efficiently via state merging.

In the noisy parity PDFA family, the μ1-distinguishability is a constant, while
the μ2-distinguishability is O(2−n/2) and the μ∞-distinguishability is O(2−n)
(where n denotes the number of states). By setting n = α log t we obtain for
this family a μ2-distinguishability of O(t−α/2), and a μ∞-distinguishability of
O(t−α). Thus, we have exhibited a class for which our modified state merging
algorithm outperforms the original by an arbitrary polynomial factor.

A natural problem for further research regards the efficient learnability of
μp-distinguishable PDFA classes for the different values of p. We conjecture that
for p > 1, these classes are indeed efficiently learnable.

Acknowledgements

We thank Alex Smola for insightful discussions. National ICT Australia is funded
by the Australian Government’s Department of Communications, Information
Technology and the Arts and the Australian Research Council through Backing
Australia’s Ability and the ICT Center of Excellence program.

References

T. Batu, L. Fortnow, R. Rubinfeld, W. D. Smith, and P. White. Testing that
distributions are close. In Proc. 41st Annu. IEEE Sympos. Found. Comput.
Sci. (FOCS), pages 259–269. IEEE Computer Society, 2000.

R. C. Carrasco and J. Oncina. Learning deterministic regular grammars from
stochastic samples in polynomial time. Theoret. Inform. and Appl., 33(1):
1–20, 1999.

A. Clark and F. Thollard. PAC-learnability of probabilistic deterministic finite
state automata. Journal of Machine Learning Research, 5:473–497, 2004.

T. Cover and J. Thomas. Elements of Information Theory. Wiley, 1991.
J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages

and Computation. Addison-Wesley, Reading, Massachusetts, first edition,
1979.

M. Kearns. Efficient noise-tolerant learning from statistical queries. In Proc.
25th Annu. ACM Sympos. Theory Comput. (STOC), pages 392–401. ACM
Press, New York, NY, 1993.

M. Kearns, Y. Mansour, D. Ron, R. Rubinfeld, R. Schapire, and L. Sellie. On
the learnability of discrete distributions. In Proc. 26th Annu. ACM Sympos.
Theory Comput. (STOC), pages 273–282, 1994.

K. Murphy. Passively learning finite automata. Technical report, Santa Fe
Institute, 1996.

D. Ron. Property testing. In S. Rajasekaran, P. Pardalos, J. Reif, and
J. Rolim, editors, Handbook of Randomized Computing, volume II, pages 597–
649. Kluwer Academic, 2001.

Learnability of Probabilistic Automata via Oracles 179

D. Ron, Y. Singer, and N. Tishby. On the learnability and usage of acyclic
probabilistic finite automata. In Proc. 8th Annu. Conf. on Comput. Learning
Theory, pages 31–40. ACM Press, New York, NY, 1995.

E. Vidal, F. Thollard, C. de la Higuera, F. Casacuberta, and R. C. Carrasco.
Probabilistic finite-state machines – Part I. IEEE Trans. Pattern Anal. Mach.
Intell., 2005a. to appear.

E. Vidal, F. Thollard, C. de la Higuera, F. Casacuberta, and R. C. Carrasco.
Probabilistic finite-state machines – Part II. IEEE Trans. Pattern Anal. Mach.
Intell., 2005b. to appear.

A Pseudocode for the State Merging Algorithm

Pseudocode for the state merging algorithm is provided in Algorithm A below.
The algorithm is guaranteed to learn (with high probability) a PDFA class H,
for which a matching oracle is provided.

The number of oracle queries performed at each step of the state merging
algorithm is upper bounded by n2|Σ|, as there are at most n nodes in the graph at
any time and at most n|Σ| candidate nodes. When the algorithm runs correctly
there are at most n|Σ|+2 steps. Therefore, over a complete run of the algorithm
the number of oracle calls is at most n2|Σ|(n|Σ|+ 2).

B Proof Sketch of Theorem 1

We present a proof sketch using the notation of Clark and Thollard (2004), and
provide exact references to the original proof where appropriate. We begin by
decomposing our proof into the following modules:

(i) Given sufficiently many samples, a sample set is likely to be ”good”. Namely,
every string will appear with an empirical probability that is close to its
actual probability.

(ii) Assuming an oracle which matches the PDFA family under consideration,
at each step the hypothesis graph will be isomorphic to a subgraph of the
target with high probability.

(iii) With high probability, when the algorithm stops drawing samples, there will
be in the hypothesis graph a state representing each frequent state in the
target. In addition, all frequent transitions will also have a representative
edge in the graph.

(iv) After the algorithm terminates, (again with high probability) all transition
probability estimates will be close to their correct target values.

(v) A KL-PAC result between target and hypothesis is derived using the previous
modules.

The following definitions in Clark and Thollard (2004) are redefined for the
purpose of our proof:

The definition of a candidate node is replaced (or rather generalized) by the
following:

180 O. Guttman, S.V.N. Vishwanathan, and R.C. Williamson

Algorithm 1. State merging with oracle
Input: Σ (input alphabet), L (upper bound on the expected length of strings

generated from any state), n (upper bound on the number of states),
OH (a (δ1, m1)-matching oracle for H), δ (confidence parameter), ε
(precision parameter). The algorithm is also supplied with a random
source of strings generated independently by A, the target PDFA.

Output: Â, a hypothesis PDFA such that KL(A||Â) < ε with probability at
least 1 − δ.

Data: The algorithm maintains a graph G = (V, E) with labelled edges (i.e.
E ⊆ V ×Σ×V), which holds the current hypothesis about the structure
of the target automaton.

repeat
Draw N strings from A
foreach u ∈ V and σ ∈ Σ which does not yet label an edge out of u do

Hypothesize a candidate node, referred to as (u, σ)
Compute Su (multiset of suffixes of this node)
if |Su| ≥ m0 then

foreach v ∈ V do
Query OH to compare Su,σ with Sv

if OH returns ACCEPT then
Add arc labelled with σ from u to v.

end
end
if OH returns REJECT on all comparisons then

Create new node to graph G
Add an edge labelled with σ from u to the new node

end
end

end
until no candidate node has a sufficiently large suffix multiset
Complete G by adding a ground node which represents low frequency states
Add a final state q̂f and transitions labelled with ζ from each state to q̂f

Definition 5 (Candidate node). A candidate node is a pair (u, σ) where u is
a node in the graph G underlying the current hypothesis PDFA, and σ ∈ Σ where
τ(u, σ) is undefined. It will have an associated suffix multiset Su,σ. A candidate
node (u, σ) and a node v in a hypothesis graph G are similar if and only if the
matching oracle OH returns ACCEPT when queried with Ŝu,σ and Ŝv, where Ŝ
denotes the empirical distribution induced by a multiset S.

Definition 7 of a good multiset is now relaxed, and the original condition
L∞(Ŝ, PA

q) < μ/4 (which guaranteed distinguishability) is now dropped:

Definition 6 (good multiset). A multiset S is ε1-good for a state q iff for
every σ ∈ Σ ∪ {ζ}, | (S(σ)/|S|)− γ(q, σ)| < ε1.

The threshold m0 on the minimal multiset size for testing distribution prox-
imity now becomes m0 = max(m1,m2), where m1 is the number of samples
required by the matching oracle OH to guarantee an error probability of at most

Learnability of Probabilistic Automata via Oracles 181

δ1, and m2 is the multiset size shown in Clark and Thollard (2004) to guarantee
a good sample (according to Definition 6 above) with probability at least 1− δ2:

m2 =
1

2ε2
1

log
(

24n|Σ|(|Σ|+ 1)(n|Σ|+ 2)
δ2

)
, with (1)

ε1 =
ε2

16(|Σ|+ 1)(L + 1)2
.

The number of samples drawn at each iteration of the algorithm now be-
comes:

N =
4n|Σ|L2(L + 1)3

ε2
3

max
(

2n|Σ|m0, 4 log
2(n|Σ|+ 2)

δ

)
, with

ε3 =
ε

2(n + 1) log (4(L + 1)(|Σ|+ 1)/ε)
.

Rigorous statements and proofs of modules (i), (iii) and (iv) are given in
Clark and Thollard (2004). References to the relevant sections follow.

The “good sample” concept of module (i) is defined in Definitions 7, 8, 10
and 11 of Sect. 4.2. Note that the original definition of a good multiset is now
relaxed to Definition 6 above. The probability of obtaining a good sample is
lower-bounded in Sect(s). 6.1 and 6.2. Specifically, using Chernoff bounds it is
shown that for a sample size of m2 the condition of Definition 6 is assured with
probability of error less than e−2m2ε2

1 , which equals δ2
24n|Σ|(|Σ|+1)(n|Σ|+2) .

Module (iii) is proven in Lemmas 12 and 13 of Sect(s). 4.2 and 4.4 respec-
tively, and our proof requires no changes. Module (iv) is discussed in Sect. 4.3,
where again no changes are necessary. The modifications to module (ii) are ad-
dressed in the following lemma:

Lemma 2. Given a PDFA class H and a (δ1,m1)-matching oracle OH, with
probability at least 1 − δ1n

2|Σ|, at each step of the algorithm the hypothesis
graph will be isomorphic to a subgraph of the target PDFA.

Proof. The algorithm queries OH at most n2|Σ| times at each step. By applying
the union bound and using the definition of a matching oracle we obtain the
lemma. ��

Finally, we prove module (v) and derive a KL-PAC bound. For the original μ-
distinguishable class, a KL-PAC bound is proved by Clark and Thollard (2004).
The authors show that assuming a good sample had been drawn, the KL-PAC
bound follows. In our framework, an additional degree of randomness is present
due to the probabilistic nature of the oracle. However, if this probability of
error is managed, the same KL-divergence bound between target and hypothesis
PDFA (namely ε) follows.

By setting

δ1 =
δ

2n2|Σ|(n|Σ|+ 2)
, (2a)

δ2 = δ/2, (2b)

182 O. Guttman, S.V.N. Vishwanathan, and R.C. Williamson

using multisets of size m0 = max(m1,m2), and applying the union bound, the
probability of error obtained is not greater than δ, and we retain the ε accuracy.
The proof of Theorem 1 follows.

C Pseudocode for the L2 Distance Test

Pseudocode for the L2 distance test is provided in Algorithm C below. rD denotes
the number of self-collisions in the set FD, namely the count of i < j such that
the ith sample in FD is same as the jth sample in FD. Similarly, cD1D2 , the
number of collisions between D1 and D2 is the count of (i, j) such that the ith

sample in D1 is same as the jth sample in D2.

Algorithm 2. L2-Distance-Test
Input: D1, D2, m, ε, δ

Result: ACCEPT or REJECT
repeat

Let FD1 = a set of m samples from D1

Let FD2 = a set of m samples from D2

Let rD1 = |FD1 ∩ FD1 | (the number of self-collisions in FD1)
Let rD2 = |FD2 ∩ FD2 |
Let QD1 = a set of m samples from D1

Let QD2 = a set of m samples from D2

Let cD1D2 = |QD1 ∩ QD2 |
Let r = 2m

m−1
(rD1 + rD2)

Let s = 2cD1D2

if r − s > m2ε2/2 then REJECT else ACCEPT
until O

(
log
(

1
δ

))
iterations

REJECT if the majority of iterations reject
ACCEPT otherwise

Learning Attribute-Efficiently with
Corrupt Oracles

Rotem Bennet and Nader H. Bshouty

Department of Computer Science, Technion, Haifa, Israel
{rotemt, bshouty}@cs.technion.ac.il

Abstract. We study learning in a modified EXACT model, where the
oracles are corrupt and only few of the presented attributes are rele-
vant. Both modifications were already studied in the literature, and ef-
ficient solutions were found to most of their variants. Nonetheless, their
reasonable combination is yet to be studied, and combining the exist-
ing solutions either fails or works with complexity that can be signifi-
cantly improved. In this paper we prove equivalence of EXACT learning
attribute-efficiently with and without corrupt oracles. For each of the
possible scenarios we describe a generic scheme that enables learning in
these cases using modifications of the standard learning algorithms. We
also generalize and improve previous non attribute-efficient algorithms
for learning with corrupt oracles.

1 Introduction

In this paper we prove the equivalence of learning attribute-efficiently with and
without corrupt oracles (limited or malicious). A membership oracle is “lim-
ited” if it might answer “I don’t know” on some chosen subset of the instance
space, and an oracle is “malicious” if it flips the classifications of the target
function, for some chosen subset of the instance space, and answers accordingly.
An “attribute-efficient” algorithm is defined to be one whose query complexity
has only sub-linear dependency on the total number of attributes (variables).
Angluin et al. [4] have presented, for several concept classes, learning algorithms
which are efficient despite the use of corrupt oracles. However, the more general
question, of whether EXACT learning with corruptions is reducible to standard
EXACT learning, remained an open question at that time. Only recently, have
Bisht, Bshouty and Khoury [8] resolved this open question, by presenting effi-
cient reductions from standard EXACT learning to learning with various types
of corruptions. Nonetheless, their algorithms, which transform standard learning
algorithms to ones for learning with corrupt oracles, multiply the complexity of
the standard algorithms by the total number of variables (and the number of
corruptions), and thus the resulting algorithms are non-attribute-efficient, re-
gardless of the possible attribute-efficiency of the original algorithms. This has
motivated us to study the question of attribute-efficient learning with corrupt
oracles. We prove the attribute-efficient (with corruptions) analogs of the results

S. Jain, H.U. Simon, and E. Tomita (Eds.): ALT 2005, LNAI 3734, pp. 183–197, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

184 R. Bennet and N.H. Bshouty

of Bisht, Bshouty and Khoury [8], and improve some of their algorithms also for
the non-attribute-efficient case.

In the full paper we also present an example of utilizing the properties of a
specific concept class, CDNF (which contains DT), for a drastically improved
learning of it with corrupt oracles (improved relative to our more generic algo-
rithms).

Our discussed learning models require the learner to learn the target function
“strictly” as presented to him by the most accurate oracle he has, meaning that
if he has access to only malicious oracles, then he should learn the target function
along with its corruptions. In the case of a limited membership oracle, we also
discuss “non-strict” learning of the target function without the instances on
which the oracle answers “I don’t know” (i.e. on these instances the learner is
not obliged to be accurate). Angluin et al. [4] have already proved that efficient
non-strict learnability implies efficient strict learnability. In the full paper we
notably improve their transformation scheme between the two models, and show
that our scheme is optimal.

1.1 Preliminaries

Boolean Concept Classes and Functions. We define a Representation Class
F to be {Fn}n>0, where each Fn is a set of boolean formulae defined over a set of
boolean variables Vn = {x1, . . . , xn}. We define the corresponding Concept Class
C to be {Cn}n>0, where each Cn is the set of boolean functions f : {0, 1}n →
{0, 1} defined by their representations in Fn. The size of a function f ∈ Cn,
denoted by sizeF (f), is the size (number of bits) of its minimal representation
in Fn (we may write just size(f), when F is understood from the context). We
will sometimes refer to the boolean function f as the subset of {0, 1}n which
satisfies the function, i.e. {x ∈ {0, 1}n | f(x) = 1}. For a set S, we denote by
P (S) the power-set (set of all possible subsets) of S. For a boolean assignment
a ∈ {0, 1}n, we denote by ai ∈ {0, 1} (i ∈ {1, . . . , n}) the i’th bit of a. For a
boolean assignment a ∈ {0, 1}n and a bit value σ ∈ {0, 1}, we denote by a|ai←σ

the assignment b ∈ {0, 1}n for which bj = aj for all j
= i and bi = σ.
For a given boolean function f ∈ Cn, a variable xi ∈ Vn is relevant if there

exists an assignment a ∈ {0, 1}n for which f(a|ai←0)
= f(a|ai←1). We denote by
Cr

n the class of boolean functions f ∈ Cn with at most r relevant variables. We
say that two instances a, b ∈ {0, 1}n are conceptually equivalent, with respect to
a boolean function f , if a and b have equal values in all the relevant variables.
Two instances from different equivalence classes would be called conceptually
different.

A restriction of a set S ⊆ {0, 1}n to a boolean function ρ, is the set of
all instances in S which satisfy ρ; that is, {a ∈ S | ρ(a) = 1}. For a boolean
function f , the restriction of f to ρ is defined by the function f∧ρ.A partial
assignment is π = (π1, . . . , πn), where πi ∈ {0, 1, xi}. Its corresponding term
T π is the conjunction of all the variables xi for which πi ∈ {0, 1}, where xi is
negated if πi = 0 (it can also be thought of as the maximal-size term which is
satisfied by π). The defined set of π is the set {xi | πi ∈ {0, 1}} ⊆ Vn, of the

Learning Attribute-Efficiently with Corrupt Oracles 185

variables whose value is defined, i.e. 0 or 1. We will sometimes refer to a variable
that is not in the defined set, as a free or undefined variable. The projection of
an assignment a ∈ {0, 1}n to a partial assignment π, denoted by π(a), is the
assignment b ∈ {0, 1}n for which bi = pi if pi ∈ {0, 1} and bi = ai otherwise.

The projection of a set A ⊆ {0, 1}n to π is naturally defined as π(A) def=⋃
a∈A π(a). The projection of a boolean function f(a) to π is the function

π(f)(a) def= f(π(a)). Equivalently, if f is represented by a formula φ over the
set of variables Vn = {x1, . . . , xn}, then π(f) is represented by the formula π(φ)
generated from φ by replacing each xi with πi. We will denote the projected con-
cept class {π(f) | f ∈ C} by π(C). A concept class C is closed under projection
if for any partial assignment π, π(C) ⊆ C. Note that Valiant [17] uses the terms
“restriction” and “projection” interchangeably, whereas we reserve the later for
our above distinctive definition.

Let f be a boolean function, and let E be a set of labelled examples {(x, σ) ∈
{0, 1}n × {0, 1}}. The function which is equivalent to f but has E as a set of
“hard coded” values, is denoted by [f,E], and defined for all x ∈ {0, 1}n as:

[f,E](x) def=

{
σ (x, σ) ∈ E

f(x) otherwise

We will sometimes describe [f,E] as the attachment of E to f . Note that some
of the labelled instances in E might actually agree with their classification by f ,
and thus E should not necessarily be considered as a set of “exceptions” to f .

Attribute Efficient Learning. Let I : N → N, be such that I(n) = o(n). A
learning algorithm is I(n)-attribute-efficient (or A.E.) if its query complexity
is bounded by O(I(n)p(r, size(f))), for some polynomial p. We will sometimes
discuss attribute-efficient learning without mentioning the exact I(n) depen-
dency on n, which means that our statements in these cases are true for all
I(n) = o(n). Note that the time complexity must be at least Ω(n), as the
algorithm must eventually see all the n bits in the given examples in order to
get some information about the identity of the relevant variables.

Malicious and Limited Oracles. Sometimes the given membership or equiv-
alence oracle errs on some (adversarialy) chosen subset of the instance space
{0, 1}n. In this case the oracle is called malicious and denoted by MMQf and
MEQf respectively. In a weaker version, the membership oracle is never mis-
taken, yet might answer “I don’t know” (denoted by ⊥) on some subset of the
instance space. In this case the oracle is called limited and denoted by LMQf .
We shall use the common name corrupt to anything (e.g. oracles, labelled in-
stances) that behaves inconsistently with the true target function, and the name
standard to anything that is not corrupt. We denote by CMQ (resp. CEQ) any
type of corrupt membership (resp. equivalence) oracle (results in terms of this
oracle obviously imply also results for a standard, non-corrupt, oracle). Note
that in our study the corrupt oracles are required to be persistent; that is, each

186 R. Bennet and N.H. Bshouty

oracle answers the same answer when asked the same queries (in other models
it is not necessarily so, e.g. Sakakibara [14]). We denote the corrupt set, of ma-
liciously or limitedly classified instances by E ⊆ {0, 1}n × {0, 1,⊥}, and denote
L

def= |E|. This means that for all (x, σ) ∈ E, we have f(x)
= [f,E](x) = σ, where
σ ∈ {0, 1,⊥} (the definition of [f,E] is slightly generalized for this purpose).
In accordance with the above definitions of the oracles, any corrupt membership
oracle classifies queried instances x ∈ {0, 1}n according to [f,E](x), and the ma-
licious equivalence oracle MEQf might return counterexamples (x, σ) ∈ E for
which the learner’s hypothesis actually satisfies f(x) = h(x)
= σ.

The definition of I(n)-attribute-efficient learnability is modified when the
oracles are corrupt. It requires query complexities of O(I(n)poly(r, size(f), L)).
That is, we allow the learner to use additional computational resources, which
are polynomial in the size of the corrupt set, in order to overcome the oracle’s
inconsistencies with the target function.

Note that, when discussing I(n)-attribute-efficiency (for some I(n) = o(n)),
the number of corrupt examples L is bounded by o(I(n)poly(r, size(f))), since
otherwise, any I(n)-attribute-efficient algorithm might get only random or ⊥
answers (chosen maliciously so), and hence receive no information about the
learned target function.

Strict and Non-strict Learning. In the non-strict model of learning, we
require the learner to output a hypothesis h for which [h,E] ≡ [f,E], meaning
that the hypothesis h is obliged to be consistent only with the non-corrupt
classifications of the oracles. This relaxed model is used only when learning with
a limited membership oracle, either with or without an additional equivalence
oracle (without an equivalence oracle this is the only possible model). Thus, when
learning non-strictly, the standard equivalence oracle would answer accordingly
’Yes’ for all queries on such a hypothesis h, without the ability to return any
counterexample from the limited set E.

In the model of strict learning, the learner should output a hypothesis h
equivalent to the target function as presented to him by the oracles. When at-
least one of the oracles is standard, then we require the learner to output h
such that h ≡ f , since the learner has some source of information about the
true (non-corrupt) f . The requirements from the learner in each scenario are
summarized in Table 1.

Table 1. The requirements from the output hypothesis in each combination of available
membership and equivalence oracles

Query Type MQ MMQ LMQ Without MQ
EQ h ≡ f h ≡ f h ≡ f or [h, E] ≡ [f, E] h ≡ f

MEQ h ≡ f h ≡ [f, E] h ≡ [f, E] h ≡ [f, E]
Without EQ h ≡ f h ≡ [f, E] [h, E] ≡ [f, E] −

Learning Attribute-Efficiently with Corrupt Oracles 187

2 Learning with Corrupt Oracles

We shall now present the main theorem, which states an equivalence between
attribute-efficient learning with and without corruptions. Bisht, Bshouty and
Khoury [8] have already shown how to overcome errors in queries, when there
is no attribute efficiency requirement, and here we generalize this result. The
theorem would then be proved by a sequence of algorithms, each handles another
type of an error.

Theorem 1. For all concept classes closed under projection, EXACT (EXACT
(MQ)) attribute-efficient learnability implies EXACT (EXACT(MQ)) attribute-
efficient learnability with corrupt oracles.

2.1 Learning with MEQ

We study the case of learning a concept class Cr
n attribute-efficiently in the

EXACT model (equivalence queries only), where at most L examples are mali-
ciously corrupt. First we present a brute-force solution which uses few queries
but each with a relatively large hypothesis, and then we improve our solution
using a ”divide & conquer” algorithm which uses more queries (though still
attribute-efficient) yet each of the queries and the output hypothesis are fairly
small. These algorithms may be used also in order to overcome corrupt oracles for
classes that are not attribute-efficiently learnable (and then the learning remains
not attribute-efficient). Thus, the algorithms in this subsection are described as
using any basic learning algorithm. Let ALGEQ be such an EXACT learning
algorithm for the concept class Cr

n (possibly r = n), with time, equivalence query
and hypotheses-size complexities of ψt(n, r), ψe(n, r) and ψs(n, r), respectively,
for some functions ψt, ψe, ψs : N× N→ N.

Deterministic Brute-Force Algorithm. When letting ALGEQ run with
access to a malicious equivalence oracle, we can be certain that if the algorithm
runs more than ψt(n, r) steps, or asks more than ψe(n, r) queries (or gets stuck),
then it was misled by the oracle in at least one of the received counterexamples
along the run. If we could have discriminated between the corrupt and non-
corrupt counterexamples, then we would run the same algorithm again, but this
time add to any hypothesis on which we ask an equivalence query, a “table”
with all the corrupt counterexamples from the previous run as “exceptions” to
the hypothesis, thus preventing the oracle from lying again on these examples.
After repeating this procedure at most L times, the oracle cannot lie any more,
since all the corrupt counterexamples are classified by all the hypotheses during
the L + 1 run according to their corrupt value in E, and thus we succeed to
obtain the correct hypothesis. Since we do not have a way to locate the erroneous
examples among all the seen examples, then we attach to our queried hypotheses
a table with all the past examples. In this way, any additional counterexample
is inevitably a new counterexample. The algorithm BruteForceMEQ is detailed
in Algorithm 1.

188 R. Bennet and N.H. Bshouty

Algorithm 1. Algorithm BruteForceMEQ - Deterministic learning with ma-
licious equivalence queries
1: T ← ∅ // The set of all past counterexamples.
2: For i = 1, . . . , L + 1 do
3: Run ALGEQ, and whenever it asks EQf (h) ask MEQf ([h, T]) instead.
4: If ALGEQ has found a hypothesis h for which MEQf ([h, T]) = “Y es” then
5: Return [h, T].
6: else
7: Let T ′ ⊆ {0, 1}n × {0, 1} be the set of all received counterexamples.
8: T ← T ∪ T ′

9: end If
10: end For

Lemma 1. Algorithm BruteForceMEQ learns Cr
n with O(ψt(n, r)L) time steps

and O(ψe(n, r)L) malicious equivalence queries of size O(ψs(n, r) + ψe(n, r)L).

Corollary 1. (I(n)-attribute-efficient) learnability of Cr
n, with O(ψt(n, r)) time

steps and O(ψe(n, r)) equivalence queries of size O(ψs(n, r)), implies (O(I(n)L)-
attribute-efficient) learnability of Cr

n, with O(ψt(n, r)L) time steps and O(ψe

(n, r)L) malicious equivalence queries of size O(ψs(n, r) + ψe(n, r)L).

Probabilistic Divide & Conquer Algorithm. The algorithm consists of two
nested algorithms: DivideMEQ and ConquerMEQ. It partitions the instance
space to several disjoint subsets (“Divide”), defined by a set of boolean restric-
tions ρ1, ρ2, . . . ρm, and learns the target function f by learning separately each
of f ’s restrictions f1, f2, . . . , fm to the subsets (“Conquer”). The final hypothe-
sis classifies each instance using the restriction to which it belongs, and thus is
defined as h

def= (ρ1∧f1)∨(ρ2∧f2)∨ . . .∨(ρm∧fm) (a “conditioned” disjunction).
This method proves particularly useful when it is easier to learn each of the
separate restrictions of f than to learn the complete f . In our case, we would
partition the instance space in a way that, with high probability, each subset
would include no more than a single corrupt instance, and then learn the sep-
arate restrictions of f to each of these subsets, using a simpler algorithm for
learning with at most one corrupt example (i.e. L = 1).

Learning with L = 1: ConquerMEQ. When the number of corrupt examples
is at most one, we may run ALGEQ until it gets the answer “Yes” or until it
exceeds its complexity, which then implies that necessarily one of the oracle’s
counterexamples was maliciously incorrect. In the later case we rerun the algo-
rithm, but this time assume that the first counterexample was corrupt and ask
all the equivalence queries on the same hypotheses as ALGEQ would ask, but
with this counterexample attached, which prevents the oracle from repeating
this lie again. In this way, the rest of the algorithm’s run is assumed to be cor-
ruptions free, and thus if the first example was indeed the corrupt one, then the
algorithm would find the target function in this run with at most O(ψe(n, r))
queries and O(ψt(n, r)) time. If also this run exceeds its supposed complexities,

Learning Attribute-Efficiently with Corrupt Oracles 189

then we know that it wasn’t the first example that was corrupt, and we con-
tinue searching for the false counterexample until ALGEQ finally succeeds. The
conquering algorithm is detailed in Algorithm 2.

Algorithm 2. Algorithm ConquerMEQ - Learning with malicious equiva-
lence queries, when at most one counterexample is malicious
1: Run ALGEQ.
2: If ALGEQ has found a hypothesis h for which MEQf (h) = “Y es” then
3: Return h.
4: else
5: Let {e1

def= (x1, f(x1)), . . . , eq
def= (xq, f(xq))} be the set of all received counterex-

amples.
6: For i = 1, . . . , q do
7: Run ALGEQ, and whenever it asks EQf (h) ask MEQf ([h, {ei}]) instead.
8: If ALGEQ has found a hypothesis h for which MEQf ([h, {ei}]) = “Y es”

then
9: Return [h, {ei}]

10: end If
11: end For
12: end If

Lemma 2. If L ≤ 1, algorithm ConquerMEQ learns Cr
n with O(ψt(n, r)ψe

(n, r)) time steps and O(ψe(n, r)2) malicious equivalence queries of size O(ψs

(n, r)).

Learning with L > 1: DivideMEQ. When running ConquerMEQ, if we finish
tracing all the branches of the tree and in each branch we exceeded the (time or
query) complexity bound, then we may deduce that the oracle has lied at least
twice in at least one branch: the branch for which we “corrected” a truly corrupt
counterexample and nevertheless haven’t got a good hypothesis. Thus we would
like to divide the instance space arbitrarily to two equal-sized subsets, such that
with high probability, the (at least) two corrupt examples would be separated
by this division, and as a consequence, the bound on the allowed number of
corruptions in each of f ’s restrictions would be reduced. The division is done
by defining a boolean function ρ, and using it to partition the instance space
to two complementary sets: {a ∈ {0, 1}n|ρ(a) = 1}, {a ∈ {0, 1}n|ρ(a) = 1}.
Following this division we rerun ConquerMEQ on each of the two complemen-
tary restrictions in parallel, ask equivalence queries that are the conditioned
disjunctions of the two restrictions’ hypotheses, i.e. MEQ((ρ∧hρ)∨(ρ∧hρ)), and
return the counterexample of each such query to one of the two parallel runs
of ConquerMEQ, according to the restriction to which the counterexample be-
longs. Any restriction in which we fail is redivided, and ConquerMEQ is rerun
in each of the subdivisions, until we get disjoint restrictions with no more than
one corrupt example in each.

How do we partition each restriction to two such subsets? We would like
it to be partitioned in a way that no adversary would be able to put all the

190 R. Bennet and N.H. Bshouty

corrupt examples in only one of the partitions. In order to avoid an adversarial
behavior which maliciously fits the choice of corrupt examples to the algorithm’s
partitioning method, we should partition the set randomly. The simplest way to
arbitrarily bisect any instance set is to define the partitioning function as the
parity of some randomly chosen subset of the instances’ bits. The division policy
of the algorithm (detailed in Algorithm 3) leads to an expected number of O(L)
divisions, which implies the following lemma (proved in the full paper):

Algorithm 3. Algorithm DivideMEQ - Probabilistic “Divide & Conquer”
learning with malicious equivalence queries
1: ρ0 ← 1, Γ ← {ρ0}
2: Run Conquerρ0

MEQ until it asks MEQf (hρ0)
3: Let a ∈ {0, 1}n ∪ {“Y es”} be the received answer.
4: while a �= “Y es” do
5: Let ρ ∈ Γ be the one for which ρ(a) = 1.
6: Return a as a counterexample to Conquerρ

MEQ, and continue running until it
asks MEQf (hρi).

7: If Conquerρ
MEQ failed then

8: – Choose randomly S ⊆ {1, . . . , n}
– Define a new restriction: ρ∗ ←⊕

i∈S xi

– ρ1 ← ρ∧ρ∗, ρ2 ← ρ∧ρ∗

– Γ ← Γ \ {ρ} ∪ {ρ1, ρ2}
– Run algorithms: Conquerρ1

MEQ and Conquerρ2
MEQ, until

they ask MEQf (hρ1) and MEQf (hρ2) respectively.
9: end If

10: Ask MEQf (
∨

ρ∈Γ (ρ∧hρ)); Let a ∈ {0, 1}n ∪ {“Y es”} be the received answer.
11: end while
12: Return

∨
ρ∈Γ (ρ∧hρ)

Lemma 3. Algorithm DivideMEQ learns Cr
n with expected time complexity

of O(ψt(n, r)ψe(n, r)L), expected malicious equivalence query complexity of
O(ψe(n, r)2L), and hypotheses of O(ψs(n, r)L) expected size.

The decision as to which of the above two algorithms to use is implied
from the following lower bound on the queries’ size complexity, when learning
attribute-efficiently with equivalence queries only:

Theorem 2. The hypotheses size complexity of any I(n)-attribute-efficient algo-
rithm that learns with an equivalence oracle only, is at least Ω(n

I(n)poly(r,size(f)))

Proof. Let ÃEQ be some I(n)-attribute-efficient algorithm, and let ϕ̃s(n, r) be
its size complexity. First observe that each of the n variables must appear in
some of the queried hypotheses, since otherwise the algorithm might not include
in its hypotheses some relevant variable, which implies that it cannot succeed.
Since the query complexity, for any I(n)-attribute-efficient algorithm, is bounded
by O(I(n)poly(r, size(f))), then we have

Learning Attribute-Efficiently with Corrupt Oracles 191

O(I(n)poly(r, size(f))) · ϕ̃s(n, r) ≥ n

which implies the required lower-bound for ϕ̃s(n, r).

Corollary 2. Let some O(
√

(n))-attribute-efficient algorithm have size com-
plexity of ϕ̃s(n, r) and query complexity of ϕ̃e(n, r). Then ϕ̃s(n, r) ≥ ϕ̃e(n, r)

Which means that for learning classes, which are O(
√

(n))-attribute-efficient
learnable, we shall prefer the BruteForceMEQ algorithm. For other classes,
our decision depends on the priority we give to each of the relevant complexity
parameters.

2.2 Learning with CMQ

Note that there is an easy way to overcome the problem of the corrupt or-
acles as defined above, when having access to a membership oracle over an
n-dimensional instance space with few relevant variables (o(n)). For any two
conceptually equivalent instances x ≡f y, we have f(x) = f(y), and since the
size of each equivalence class is as large as 2n−r, this gives us a huge amount
of redundancy in the instance space, and we may use this redundancy to find
the true value of f on any instance. If the learner asks a membership query
MMQf (x) (or LMQf (x)), then in order to know the true value f(x), he may
ask additional 2r+ 2L membership queries on instances which differ from x in a
single bit each, and take the majority of all the 2r + 2L + 1 answers. That is, if
we denote by xi, the instance x with its i’th bit flipped, then the set of addition-
ally queried instances consists of the xi’s, for each index i from an arbitrarily
chosen subset of {1, . . . , n}, of size 2r + 2L. Since the oracle may return only L
maliciously incorrect answers, and the true value of the answer may differ from
f(x) in at most r queries (where we accidentally flipped a relevant bit), then
necessarily at least r + L + 1 answers will be equal to f(x) and thus the major-
ity of the answers equals f(x), as desired. The correctness of counterexamples
received from a MEQ oracle can also be verified using membership queries in a
similar way, and if some counterexample is found to be incorrect then we simply
attach it to all subsequent equivalence queries.

Using this simple technique we get the following corollaries:

Corollary 3. I(n)-attribute-efficient learnability of Cr
n, with O(ϕ̃t(n, r)) time

steps, O(ϕ̃m(n, r)) membership queries and O(ϕ̃e(n, r)) equivalence queries of
size O(ϕ̃s(n, r)), implies O(I(n)L)-attribute-efficient strict learnability of Cr

n,
with O(ϕ̃t(n, r) + (r + L)ϕ̃m(n, r)) time steps, O((r + L)ϕ̃m(n, r)) corrupt
membership queries and O(ϕ̃e(n, r)) standard equivalence queries of size
O(ϕ̃s(n, r)).

Corollary 4. I(n)-attribute-efficient learnability of Cr
n, with O(ϕ̃t(n, r)) time

steps, O(ϕ̃m(n, r)) membership queries and O(ϕ̃e(n, r)) equivalence queries of
size O(ϕ̃s(n, r)), implies O(I(n)L)-attribute-efficient strict learnability of Cr

n,
with O(ϕ̃t(n, r)+ (r +L)(ϕ̃m(n, r)+ ϕ̃e(n, r))) time steps, O((r +L)(ϕ̃m(n, r)+
ϕ̃e(n, r))) corrupt membership queries and O(ϕ̃e(n, r)) corrupt equivalence
queries of size O(ϕ̃s(n, r) + L).

192 R. Bennet and N.H. Bshouty

3 Learning with Conceptually Corrupt Oracles

As we defined the corrupt oracles thus far, an oracle might be inconsistent on in-
stances that are actually conceptually equivalent. Such an oracle can be thought
of as one that is carelessly mistaken, rather than one that does not know the
concept well enough. As we have seen, such an oracle can be used for learning by
simply asking enough queries to reveal his true knowledge about the concept. We
would like to define oracles that are corrupt in the same sense that was studied
in the literature for the case where all the variables are relevant (without redun-
dancy); that is, oracles that are “conceptually wrong” by actually not knowing
how the learned concept classifies some instances. Thus we define a conceptually
corrupt (conceptually limited or conceptually malicious) oracle to be such that
is necessarily consistent on all conceptually equivalent instances.

In our new definition, for a given conceptually corrupt oracle, we would de-
note the number of conceptually different corrupt instances by l, and an I(n)-
attribute-efficient learning algorithm is bounded to using query complexity of
O(I(n)poly(r, size(f), l)) (L is replaced by l). Note that now the total number
of corrupt instances is L = l · 2n−r, which is by far more than the number of
corruptions that we can efficiently handle using the previously described “redun-
dancy technique”. In fact, in this new setting, the technique cannot be practically
used, even if we disregard computational issues, since the oracles are conceptu-
ally consistent, meaning there is no redundancy in the instance space.

We shall denote the conceptually limited and conceptually malicious member-
ship oracles by CLMQ and CMMQ respectively. Consistent with the notations
of CEQ and CMQ, where the ’C’ stood for “Corrupt”, we denote the concep-
tually corrupt oracles by CCEQ and CCMQ, respectively. With the above new
definition of the problem, we may now state a stronger theorem for the case of
having access to a membership oracle as well:

Theorem 3. For all concept classes closed under projection, EXACT(MQ)
learnability implies EXACT(MQ) O(log n)-attribute-efficient learnability with
conceptually corrupt oracles.

We will first show how this theorem can be proved with a simple combination
of known algorithms, and then we present a novel algorithm which improves
the complexity for the case of learning with a conceptually limited membership
oracle (and a standard equivalence oracle). Note that the results in this paper
that handle learning with membership queries are constrained to classes that
are closed under projection. Nonetheless, almost all the classes considered in the
literature are actually closed under projection, and thus the constraint can be
practically disregarded.

3.1 Learning with CCEQ and CCMQ

Two known algorithms would be combined (nested) to achieve attribute-efficient
learning with conceptually corrupt oracles. The main algorithm we shall use
is FindRelevantEQ+MQ, described below, to find the relevant variables. As

Learning Attribute-Efficiently with Corrupt Oracles 193

its sub-algorithm, it uses a “divide & conquer” learning algorithm, originally
presented in [8], for non-attribute-efficient learning with corrupt oracles (denoted
here by D&CCEQ+CMQ).

An algorithm quite similar to FindRelevantEQ+MQ was initially presented
by Angluin, Hellerstein and Karpinski [2] for finding the signs of variables in a
read-once formula. It would be used here for finding the r relevant variables, with
respect to some unknown function f , among the total of n variables. This paves
the way to using a non-attribute-efficient algorithm for learning the projec-
tion of the concept class to a partial assignment whose defined set consists of the
irrelevant variables, and by this learning with an attribute-efficient complexity.
This modification of the technique was already done by Blum, Hellerstein and
Littlestone [9] for ONLINE learning, and similar principles are used here for the
EXACT model.

The algorithm uses an existing non-attribute-efficient algorithm AEQ+MQ

(received as its parameter), to iteratively learn the class Cr
n, which is projected

in each iteration on a partial assignment π with a decreasing defined set (since
each newly found relevant variable is “freed” from the projection). Whenever
algorithm AEQ+MQ asks a membership query MQf (y), FindRelevantEQ+MQ

asks MQf (π(y)) instead. For each asked equivalence query EQf (h), if the re-
ceived counterexample is a, then FindRelevantEQ+MQ first asks a member-
ship query MQf (π(a)). If f(π(a))
= h(a), then since π(f)(a) = f(π(a)), a is
returned as a counterexample to AEQ+MQ. Otherwise, f(π(a)) = h(a)
= f(a),
and we have found the desired two instances a and π(a), which differ on some
relevant variables from the defined set of π, and whose classifications by f are
opposite. At this point FindRelevantEQ+MQ performs a simple binary-search
(with membership queries), in order to find a single variable whose flipping also
flips the received classification. The found variable is added to the set of relevant
variables, removed from the defined set of π, and the learning restarts, only now
the learned class is projected on the modified partial assignment π.

The algorithm is detailed in Algorithm 4, and has the following property [9]:

Lemma 4. Let AEQ+MQ be an algorithm that learns Cn (non attribute-
efficiently), with complexities ϕt(n), ϕe(n), ϕm(n) and ϕs(n), for some functions
ϕt, ϕe, ϕm, ϕs : N→ N. Algorithm FindRelevantEQ+MQ(AEQ+MQ) learns Cr

n

and finds the r relevant variables, with O(rϕt(r)) time steps, O(rϕm(r)+r logn)
membership queries, and O(rϕe(r)) equivalence queries of size O(ϕs(r)).

The algorithm works also when its iterated algorithm learns using corrupt
oracles. It should only be noted that when using CMMQ (or MMQ), the iterated
algorithm should be able to handle also MEQ, since some of its counterexamples
are from FindRelevantEQ+CMMQ and rely on (possibly malicious) answers
received from CMMQ (which might cause erroneous counterexamples).

Bisht, Bshouty and Khoury [8] have proved that EXACT(MQ) learnability
implies EXACT(MQ) learnability with corrupt oracles. Their algorithms (de-
noted here by D&CCEQ+CMQ) achieve the result in the following Theorem (In
their paper they actually need an additional assumption, regarding the knowl-

194 R. Bennet and N.H. Bshouty

Algorithm 4. Algorithm FindRelevantEQ+MQ(AEQ+MQ) (based on [2]
and [9]) - Learning attribute-efficiently while finding the relevant variables of
the target function
1: R ← ∅
2: Arbitrarily choose an assignment π ∈ {0, 1}n.
3: loop
4: Run AEQ+MQ on the projected class π(Cr

n), with the following changes:

– If it asks MQf (y), ask MQf (π(y)) instead.
– If it asks EQf (h), let a ∈ {0, 1}n ∪ {“Y es”} be the received answer:

• If a = “Y es”, return h.
• Otherwise, ask MQf (π(a)) and let σ be the received answer:

∗ If σ = h(a), return a as a counterexample to AEQ+MQ.
∗ Otherwise, call BinarySearchMQ((a, h(a)), (π(a), σ)), and let {xr}

be the returned variable. R ← R ∪ {xr}, πr = xr.

5: end loop

edge of some parameter’s value, in order to achieve this result, but in the full
paper we show how to derive the same result without this extra assumption):

Theorem 4. For all concept classes closed under projection, learnability of Cn,
with O(ϕt(n)) time steps, O(ϕm(n)) membership queries and O(ϕe(n)) equiva-
lence queries of size O(ϕs(n)), implies strict learnability of Cn, with O(nlϕt(n))
time steps, O(nlϕm(n)) corrupt membership queries and O(nlϕe(n)) corrupt
equivalence queries of size O(lϕs(n)).

And thus, using FindRelevantCEQ+CCMQ(D&CCEQ+CMQ), we get an im-
mediate corollary from the above theorem and Lemma 4, which proves our main
statement (Theorem 3):

Corollary 5. For all concept classes closed under projection, learnability of Cn,
with O(ϕt(n)) time steps, O(ϕm(n)) membership queries and O(ϕe(n)) equiva-
lence queries of size O(ϕs(n)), implies O(log n)-attribute-efficient strict learn-
ability of Cr

n, with O(r2lϕt(r)) time steps, O(r2lϕm(r) + r logn) conceptually
corrupt membership queries and O(r2lϕe(r)) conceptually corrupt equiv-
alence queries of size O(lϕs(r)).

3.2 Improved Learning with CLMQ

We shall now see how to improve the above general complexity for the specific
case of learning with a conceptually limited membership oracle (and a stan-
dard equivalence oracle). First we present an algorithm for handling LMQ when
all the bits are relevant, and then we run it “inside” FindRelevantEQ+CLMQ

in order to achieve an attribute-efficient learning with CLMQ. Let AEQ+MQ

be an algorithm that learns Cn (non attribute-efficiently), with complexities
ϕt(n), ϕe(n), ϕm(n) and ϕs(n), for some functions ϕt, ϕe, ϕm, ϕs : N→ N.

Learning Attribute-Efficiently with Corrupt Oracles 195

Deterministic Divide & Conquer LMQ Algorithm

Learning with L = 1: ConquerEQ+LMQ. The algorithm runs AEQ+MQ until it
gets ⊥ as the answer of some membership query CLMQf (y), and then it splits
to two parallel runs A0

EQ+MQ and A1
EQ+MQ. Each of the algorithm’s copies

Aσ
EQ+MQ assumes that the answer to CLMQf (y) is σ. Since we assume that

l = 1 (and that there are no irrelevant variables, which means that also L = 1),
from that point, all the membership queries other than CLMQf (y) will return
a definite answer - either 0 or 1 . This means that at least one of the two runs
must succeed. Note that, when learning in the strict setting, either one of the
algorithms would fail, or both algorithms would output equivalent hypotheses,
since the final hypothesis must satisfy h ≡ f .

Lemma 5. If L ≤ 1, algorithm ConquerEQ+LMQ strictly learns Cn with
O(ϕt(n)) time steps, O(ϕm(n)) conceptually limited membership queries and
O(ϕe(n)) standard equivalence queries of size O(ϕs(n)).

Learning with L > 1: DivideEQ+LMQ. The algorithm begins by trying to run
ConquerEQ+LMQ on the given concept class Cr

n. If it receives two ⊥ answers,
say for CLMQf (y) and CLMQf (z), then let xi ∈ Vn be any variable such that
yi
= zi. DivideEQ+LMQ divides the instance space according to the value of
this i’th bit, and reruns two parallel copies of ConquerEQ+LMQ on each of the
corresponding projections of Cr

n. The division of the instance space is done by
projecting it on xi = 0 and xi = 1. If any of these runs receives two ⊥ answers,
then we halt it, and split the corresponding projection again in the same manner.
Note that by partitioning the instance space according to a relevant variable that
separates two ⊥ answers, we can be sure that each of the partitions contains at
least one corruption less than before the partition.

If some copy of algorithm Conquerλ
EQ+LMQ, which learns over a partition

of {0, 1}n defined by the partial assignment λ, asks CLMQf (y), then we ask
CLMQf (λ(y)) instead. If it asks EQf (hλ), we wait until all the copies of the
algorithm ask their equivalence queries EQf (hλ1), . . . ,EQf (hλm), and then we
ask EQf ((T λ1∧hλ1)∨ . . .∨(T λm∧hλm)) and return the received counterexample
a to Conquerλi

EQ+LMQ for which T λi(a) = 1 (similar to the way it was done in
the divide & conquer algorithm for MEQ).

Lemma 6. Algorithm DivideEQ+LMQ strictly learns Cn with O(Lϕt(n)) time
steps, O(Lϕm(n)) limited membership queries and O(Lϕe(n)) standard equiva-
lence queries of size O(Lϕs(n)).

Corollary 6. For all concept classes closed under projection, learnability of Cn,
with O(ϕt(n)) time steps, O(ϕm(n)) membership queries and O(ϕe(n)) equiva-
lence queries of size O(ϕs(n)), implies strict learnability of Cn, with O(Lϕt(n))
time steps, O(Lϕm(n)) limited membership queries and O(Lϕe(n)) standard
equivalence queries of size O(Lϕs(n)).

196 R. Bennet and N.H. Bshouty

In the full paper we improve this result dramatically (to only an additive
factor of nL membership queries) for the specific case of learning CDNF functions
(which contains also the concept class of decision trees), using a modification of
the ”monotone theory” of Bshouty [10].

Observe that using FindRelevantEQ+CLMQ with DivideEQ+LMQ as its
iterated learning algorithm, we get an improved attribute-efficient learning algo-
rithm with a conceptually limited membership oracle. From Lemmas 4 and 6
we get the complexity of the combined algorithm and then a general corollary
(which significantly improves the more generic result of Corollary 5):

Lemma 7. Algorithm FindRelevantEQ+CLMQ(DivideEQ+LMQ) strictly learns
Cr

n with O(rlϕt(r)) time steps, O(rlϕm(r) + r logn) conceptually limited mem-
bership queries and O(rlϕe(r)) equivalence queries of size O(lϕs(r)).

Corollary 7. For all concept classes closed under projection, learnability of Cn,
with O(ϕt(n)) time steps, O(ϕm(n)) membership queries and O(ϕe(n)) equiva-
lence queries of size O(ϕs(n)), implies O(log n)-attribute-efficient strict learn-
ability of Cr

n, with O(rlϕt(r)) time steps, O(rlϕm(r) + r logn) conceptually
limited membership queries and O(rlϕe(r)) standard equivalence queries of
size O(lϕs(r)).

4 Conclusions

The major contribution of this paper is the presentation of a completely generic
adaptation of attribute-efficient algorithms to learning with corrupt oracles as
well. The main question that has still remained open is related to the case of
proper learning; that is, learning with hypotheses that are constrained to be from
the learned concept class. Our study uses “improperness” extensively, both in the
“attachment technique”, where we attach a table of previous counterexamples
to the asked hypothesis, and both in the “divide & conquer” technique, by using
hypotheses that are disjunctions of distinct hypotheses for the divided instance
space. In both of these methods we allow ourselves to use hypotheses that are
not necessarily from the learned concept class, which arises the question whether
our results could also be achieved for the proper case.

References

[1] Dana Angluin. Queries and Concept Learning. Machine Learning, 2(4):319–342,
1987.

[2] Dana Angluin, Lisa Hellerstein, and Marek Karpinski. Learning read-once formulas
with queries. J. ACM, 40(1):185–210, 1993.

[3] Dana Angluin and Mārtiņš Krikis. Learning with malicious membership queries
and exceptions (extended abstract). In COLT ’94: Proceedings of the seventh an-
nual conference on Computational learning theory, pages 57–56. ACM Press, 1994.

[4] Dana Angluin, Mārtiņš Krikis, Robert H. Sloan, and György Turán”. Malicious
omissions and errors in answers to membership queries. Machine Learning, 28:211–
255, 1997.

Learning Attribute-Efficiently with Corrupt Oracles 197

[5] Dana Angluin and Philip Laird. Learning From Noisy Examples. Machine Learn-
ing, 2(4):343–370, 1988.

[6] Peter Auer and Nicolò Cesa-Bianchi. On-Line Learning with Malicious Noise and
the Closure Algorithm. Ann. Math. Artif. Intell., 23(1-2):83–99, 1998.

[7] Peter Auer and Philip M. Long. Simulating Access to Hidden Information while
Learning. Electronic Colloquium on Computational Complexity (ECCC), 7(67),
2000.

[8] Laurence Bisht, Nader H. Bshouty, and Lawrance Khoury. Learning with Errors
in Answers to Membership Queries (Extracted Abstract). In FOCS ’04: Proceed-
ings of the 45th Annual IEEE Symposium on Foundations of Computer Science
(FOCS’04), pages 611–620. IEEE Computer Society, 2004.

[9] Blum, Hellerstein, and Littlestone. Learning in the Presence of Finitely or In-
finitely Many Irrelevant Attributes (Extended Abstract). In COLT: Proceedings of
the Workshop on Computational Learning Theory, Morgan Kaufmann Publishers,
1991.

[10] Nader H. Bshouty. Exact learning Boolean functions via the monotone theory. Inf.
Comput., 123(1):146–153, 1995.

[11] Nader H. Bshouty. Simple learning algorithms using divide and conquer. In Pro-
ceedings of the eighth annual conference on Computational learning theory, pages
447–453. ACM Press, 1995.

[12] Nader H. Bshouty and Lisa Hellerstein. Attribute-Efficient Learning in Query and
Mistake-Bound Models. journal = ”Journal of Computer and System Sciences,
56(3):310–319, 1998.

[13] Nick Littlestone. Learning Quickly When Irrelevant Attributes Abound: A New
Linear-Threshold Algorithm. Machine Learning, 2(4):285–318, 1988.

[14] Yasubumi Sakakibara. On learning from queries and counterexamples in the pres-
ence of noise. Inf. Process. Lett., 37(5):279–284, 1991.

[15] Robert H. Sloan and Gyorgy Turan. Learning with Queries but Incomplete Infor-
mation (Extended Abstract). In Computational Learing Theory, pages 237–245,
1994.

[16] Leslie G. Valiant. A Theory of the Learnable. Commun. ACM, 27(11):1134–1142,
1984.

[17] Leslie G. Valiant. Projection learning. In Proceedings of the eleventh annual con-
ference on Computational learning theory, pages 278–293. ACM Press, 1998.

Learning DNF by Statistical and Proper
Distance Queries Under the Uniform

Distribution

Wolfgang Lindner

Fakultät für Informatik, Universität Ulm

Abstract. We show that s-term DNF formulas can be learned under
the uniform distribution in quasi-polynomial time with statistical queries
of tolerance Ω(ε/s). The tolerance improves on the known tolerance
Ω(ε2/s) and is optimal with respect to its dependence on the error pa-
rameter ε. We further consider the related model of learning with proper
distance queries and show that DNF formulas can be learned under the
uniform distribution with quasi-polynomial queries, where the hypothe-
ses are DNF formulas of polynomial size. Finally we consider the class of
majorities over DNF formulas and provide polynomially related upper
and lower bounds for the number of distance queries required to learn
this class.

1 Introduction

The learnability of DNF formulas in Valiant’s PAC learning model [17] is one
of the main open questions in algorithmic learning theory. There are, however,
various algorithms for learning DNF formulas, including Jackson’s Harmonic
Sieve [10] for learning DNF formulas in polynomial time, which, however, works
only with respect to the uniform distribution and with the additional help of
membership queries, and the recent algorithm of Klivans and Servedio [13], which
is an algorithm in Angluin’s model of exact learning with equivalence queries [1],
but requires sub-exponential time.

In the original PAC model, it is assumed that the classification of the random
samples are correctly delivered to the learning algorithm. In practice, however,
this might be difficult to achieve, and therefore one can find several learning
models in the literature for learning with noise. A particularly attractive model
in this setting is the model of learning by statistical queries [12]. Here, the
learning algorithm may ask for the values of statistics on the distribution of
labeled examples, and receives the requested statistics to within an additive
error specified by the algorithm. The additive error is also called the tolerance
of the algorithm.

Concerning the learnability of DNF formulas, it is known that s-term DNF
formulas can be learned by statistical queries in time nO(log(s/ε)) with tolerance
Ω(ε2/s) [14]. The algorithm is based on a well-known fact concerning the Fourier
spectrum of DNF formulas [5], which immediately leads to a simple weak learning

S. Jain, H.U. Simon, and E. Tomita (Eds.): ALT 2005, LNAI 3734, pp. 198–210, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Learning DNF by Statistical and Proper Distance Queries 199

algorithm for DNF. Applying Freund’s F1 boosting algorithm [7], which has been
analysed in the model of learning by statistical queries by Aslam and Decatur [2],
yields a learning algorithm for arbitrary error bounds ε. As pointed out in [14],
the query complexity of the algorithm is close to the lower bound nΩ(log(s)),
which holds whenever the tolerance is at least 1/nΩ(log(s)), and s ≤ 2

√
n.

In this paper we show that the tolerance can be improved to Ω(ε/s). It is not
hard to see that any algorithm for learning the class of s-term DNF formulas
requires tolerance O(ε), even when the number of terms s is constant. Thus,
the tolerance Ω(ε/s) is optimal with respect to its dependence on ε. To achieve
this improvement we give a detailed analysis of a simplified variant of Servedio’s
smooth boosting algorithm [16] in the model of learning by statistical queries.

Learning by statistical queries is closely related to the model of learning
by distances [4]. In fact, when restricted to distances of the form d(f, g) =
PrD[f(x)
= g(x)], for a distribution D, then both models are (essentially) equiv-
alent. Thus, DNF formulas are learnable by nO(log(s/ε)) distance queries with
tolerance Ω(ε/s). In the context of exact learning by queries, it is an open ques-
tion whether DNF formulas can be learned by a polynomial number of proper
equivalence and membership queries, even when there is no restriction on the
computational resources of the algorithm. It is therefore an interesting question
whether DNF formulas can be learned by proper distance queries, i.e., distance
queries with DNF formulas of related size as hypotheses.

Unfortunately, we are not able to transform the queries used by the algorithm
above into proper distance queries. While it is easy to see that the weak learning
step requires only distance queries with DNF formulas with polynomial terms,
this property is destroyed by the subsequent boosting step. Here we show that
we can avoid the boosting step so that s-term DNF formulas can be learned by
proper distance queries, where the number of queries is still nO(log(s/ε)). When
the error ε is set to a constant, the hypotheses of the queries are DNF formulas
with polynomial in s terms. Unfortunately, the required tolerance is no longer
polynomial in ε/s. It is, however, still large enough so that the lower bound
nΩ(log(s)) on the number of queries applies. The algorithm is based on known
bounds on the Fourier spectrum of DNF formulas with terms of bounded size
due to Mansour [15]. This enables us to achieve strong learning without the
subsequent boosting step.

We also consider the setting when the learning algorithm may ask queries of
tolerance zero. In this setting, we can show that DNF can be exactly learned by
a polynomial number of proper distance queries of polynomial size. For this we
use an algorithm for learning DNF with projective equivalence queries due to
Balcázar et al. [3].

Finally we consider majorities over DNF formulas with terms of bounded
size. We show that boosting can be used to learn this class with proper distance
queries. If ε is constant, the number of DNF formulas of the majority is polyno-
mial in n, and the size of the terms is logarithmic in n, then both the number
of queries and the tolerance is quasi-polynomial and inverse quasi-polynomial
in n, respectively. The hypotheses are majorities over a quasi-polynomial num-

200 W. Lindner

ber of DNF formulas with terms of poly-logarithmic size. We also provide a
corresponding lower bound on the number of queries required to learn this class.

2 Preliminaries

In this paper we consider only boolean concept classes C. Throughout this paper,
we think of boolean functions as mappings from {0, 1}n to {−1, 1}.

In the statistical query model [12] the learning may ask queries of the form
(χ, τ), where χ is a mapping from {0, 1}n×{−1, 1} to {−1, 1}, and τ is a tolerance
parameter of the query with 0 ≤ τ ≤ 1. The answer provided by the learning
oracle to the query (χ, τ) is an estimate of the probability PrD[χ(x, f(x)) = 1]
within additive error τ , where f is the target and x is randomly chosen according
to the distribution D.

A set of boolean functions C is learnable by d statistical queries of tolerance
τ with respect to a distribution D if there is an learning algorithm A such
that for all f ∈ C and for any error parameter ε, 0 ≤ ε ≤ 1, after at most d
statistical queries (χ, τ ′) with τ ′ ≥ τ , which are answered by the learning oracle
with respect to f and D, the learning algorithm A outputs a hypothesis h with
error rate at most ε, i.e., h satisfies PrD[h(x)
= f(x)] ≤ ε. If the hypothesis
h produced by A only satisfies PrD[h(x)
= f(x)] ≤ 1/2 − γ, for some γ with
0 ≤ γ ≤ 1/2, then we say that C is weakly learnable with advantage γ.

In the learning by distances model [4], we think of concepts as points in a
metric space (H, d). Then a distance query is a pair (h, τ), where h is some
function from H which we refer to as the hypothesis of the query, and τ is a
tolerance parameter as above. As the response to this query the learning oracle
provides an estimate of the distance d(h, f) within additive error τ , where f is
a target from a concept class C ⊆ H . In this paper, we consider only boolean
functions as concepts, and distances of the form d(f, g) = PrD[f(x)
= g(x)],
where x is randomly chosen according to some distribution D. Learnability and
weak learnability by distance queries are defined as above for learning with
statistical queries.

Obviously, in our particular setting, a distance query with hypothesis h is
equivalent to a statistical query with χ defined by χ(x, b) = 1 if and only if
h(x)
= b. On the other hand, any statistical query can be decomposed into two
distance queries [5, 6]. In particular, it can be shown that for every statistical
query χ and target function f it holds that

Pr
D

[χ(x, f(x)) = 1] = 1
2

(
Pr
D

[χ(x,−1)
= f(x)]− Pr
D

[χ(x, 1)
= f(x)]

+ Pr
D

[χ(x,−1) = 1] + Pr
D

[χ(x, 1) = 1]
)

.

This means that any statistical query can be simulated by two distance queries
with hypotheses of the form χ(x,−1) and χ(x, 1). The probabilities PrD[χ(x,−1)
= 1] and PrD[χ(x, 1) = 1] do not depend on the target and can either be de-
termined exactly, in which case it is sufficient to use the same tolerance for the
distance queries as for the simulated statistical query. More efficiently, however,

Learning DNF by Statistical and Proper Distance Queries 201

is to estimate the latter two probabilities by random sampling, in which case
we need to ask the two distance queries with a slightly better tolerance. The
analysis for this case is standard, and therefore we ignore this issue through-
out the paper. Note, however, that for this reason we use probabilistic learning
algorithms rather than deterministic ones in the learning by distances model.

In order to describe the Fourier transform of a boolean function f we write
[n] to denote the set {1, . . . , n}. Then, for any set A ⊆ [n], the parity function
χA is defined as χA(x) = (−1)

∑
i∈A xi . Every real-valued function f over {0, 1}n

can be uniquely expressed as a linear combination f(x) =
∑

A⊆[n] f̂(A)χA(x),

where f̂(A) = E[f(x)χA(x)] for a uniformly distributed x. The coefficients f̂(A)
are also known as the Fourier spectrum of f .

The L∞-norm of a real-valued function f over {0, 1}n is defined by L∞(f) =
maxx∈{0,1} |f(x)|.

3 Learning DNF by Statistical Queries via Hypotheses
Boosting

In this section we show how to learn DNF by statistical queries with tolerance
Ω(ε/s). For this we analyse a simplified variant of Servedio’s smooth boosting al-
gorithm [16] in the model of learning by statistical queries. We start by providing
some background on boosting.

Let A be a weak learning algorithm with advantage γ, query complexity N ,
and required tolerance τ with 0 < τ < 1. Furthermore, let D be some fixed
distribution, f be the target, and ε be some error bound with 0 < ε < 1. A
canonical boosting algorithm [11] is a boosting algorithm B which proceeds in
stages. In the first stage, B runs the weak learning algorithm A to produce a
hypothesis h1 with error rate at most 1/2−γ with respect to the fixed distribution
D. In each proceeding stage i + 1, B runs A to produce a hypothesis hi+1

with error rate at most 1/2− γ with respect to some distribution Di+1, where
Di+1 depends in some way on the hypotheses h1, . . . , hi produced before stage
i + 1. The boosting algorithm B has only access to the learning oracle with
respect to the fixed distribution D. Hence, to run A with respect to the modified
distribution Di+1 amounts to simulate the learning oracle with respect to Di+1

by queries to the learning oracle with respect to D. After B meets a certain
abort condition in some stage i + 1, B combines the hypotheses h1, . . . , hi in
some way to obtain a final hypothesis h of error rate at most ε with respect to
the target distribution D. In this paper we consider only boosting algorithms
whose final hypothesis is the majority over the hypotheses h1, . . . , hi produced
thus far.

Here we consider distributions Di+1 which are based on weighting schemes
Mi defined as follows. Let Ni(x) =

∑i
j=1 hj(x)f(x). Then Mi is defined as

Mi(x) =

{
1 if Ni(x) < 0
(1− γ)Ni(x) if Ni(x) ≥ 0 ,

and the distribution Di+1 induced by Mi is

202 W. Lindner

Di+1(x) =
Mi(x)D(x)∑
y Mi(y)D(y)

.

In the following we will refer to the denominator μi =
∑

y Mi(y)D(y) as the
relative size of Mi. For the first stage we let N0(x) = 0 and, consequently,
M0(x) = 1 and D1 = D.

Before B runs the weak learning algorithm A in stage i+1, B uses the learning
oracle to estimate the relative size μi within the additive error η = ετ/(3 + 2τ).
Note that η = Ω(ετ). If for the obtained estimate it holds that μ̃i ≤ ε− η, then
μi ≤ ε, and in this case the algorithm B stops and outputs its final hypothesis
h = maj(h1, . . . , hi). Otherwise, B proceeds with the simulation of A.

The final hypothesis h = maj(h1, . . . , hi) errs on x only if Ni(x) < 0, and
by the definition of Mi, this implies Mi(x) = 1. It follows that the error of h
with respect to D is bounded by

∑
Mi(x)=1 D(x) ≤ ∑x Mi(x)D(x) = μi. Since

the algorithm stops only when μi ≤ ε, it follows that the final hypothesis h has
error rate at most ε, as desired.

Concerning the L∞-norm of the distributions Di+1, note that since τ < 1 it
holds that η < ε/3. Thus, B simulates the weak learning algorithm A only when
μi > ε− 2η > ε/3. This implies that A is only run with respect to distributions
Di+1 satisfying L∞(Di+1) = O(L∞(D)/ε).

Now we bound the number of stages required by the boosting algorithm.
The analysis is based on the “elevator” argument of [9] and can be found in the
appendix.

Lemma 1. The number of stages required by B is bounded by O(1/γ2ε).

Next we show how to estimate the relative size μi by using statistical queries
with respect to the fixed distribution D. Note that since Ni(y) ≤ i we have

μi =
∑

y

Mi(y)D(y)

=
∑

Ni(y)<0

Mi(y)D(y) +
i∑

k=1

∑
Ni(y)=k

Mi(y)D(y)

=
∑

Ni(y)<0

D(y) +
i∑

k=1

(1 − γ)k
∑

Ni(y)=k

D(y)

=
i∑

k=0

(1 − γ)kpi
k ,

where pi
0 = PrD[Ni(x) < 0] and pi

k = PrD[Ni(x) = k] for k > 0. Now sup-
pose that we are given estimates p̃i

k of pi
k, each within additive error γη. Since∑i

k=0(1 − γ)k ≤ 1/γ it holds that

i∑
k=0

(1− γ)kp̃i
k ≤

i∑
k=0

(1− γ)kpi
k + γη

i∑
k=0

(1 − γ)k ≤ μi + η

Learning DNF by Statistical and Proper Distance Queries 203

and, similarly,
∑i

k=0(1 − γ)kp̃i
k ≥ μi − η. This means that for an estimate of

μi within additive error η it is sufficient to obtain estimates of each pi
k within

additive error γη. The latter can be obtained by using i + 1 statistical queries
with respect to D. Thus, μi can be estimated within additive error η by using
O(i) statistical queries with respect to D, each of tolerance γη = Ω(εγτ).

It remains to show how to simulate the queries of A with respect to Di+1

by queries with respect to D. For this we may assume that we are given an
estimate μ̃i of μi within additive error η. Since that weak learning algorithm is
only run when μ̃i ≥ ε − η, we may further assume that μ̃i satisfies μ̃i ≥ ε − η.
A statistical query with hypothesis χ and tolerance τ with respect to Di+1 is
a request for an estimate of the probability p = PrDi+1 [χ(x, f(x)) = 1] within
additive error τ . Is not hard to verify that the probability p can be expressed
as the fraction

∑i
k=0(1− γ)kqi

k/μi, where qi
0 = PrD[χ(x, f(x)) = 1∧Ni(x) < 0]

and qi
k = PrD[χ(x, f(x)) = 1 ∧ Ni(x) = k], for k > 0. We use the following

lemma.

Lemma 2 ([2]). If 0 ≤ a, b, c, τ ≤ 1 and a = b/c, then to obtain an estimate
of a within additive error τ it is sufficient to obtain estimates of b and c within
additive error cτ/3.

By Lemma 2, for an estimate of p within additive error τ it is sufficient to
obtain estimates of the sum

∑i
k=0(1 − γ)kqi

k and μi both within additive error
μiτ/3. By assumption, μi ≥ ε−2η, and by the choice of η = ετ/(3+2τ) it holds
that η = (ε−2η)τ/3 ≤ μiτ/3. Hence, the given estimate μ̃i is already sufficiently
accurate, and for the estimate of the sum

∑i
k=0(1 − γ)kqi

k it is sufficient to be
within additive error η. Since

∑i
k=0(1 − γ)k ≤ 1/γ, it is sufficient to obtain

estimates of each qi
k within additive error γη. Hence, the desired estimate of the

probability p can be obtained by using O(i) queries of tolerance Ω(εγτ) with
respect to D. Thus, we have shown the following theorem.

Theorem 1. There exists a canonical boosting algorithm B in the model of
learning by statistical queries which, when given inputs 0 < ε, τ < 1 and 0 <
γ < 1/2, access to the learning oracle with respect to D, and a weak learning
algorithm A with advantage γ, query complexity N and tolerance τ , has the
following properties: The weak learning algorithm A is only run with respect to
distributions Di satisfying L∞(Di) = O(L∞(D)/ε), the number of queries used
by B is O(N/γ4ε2), and the tolerance of each query is Ω(εγτ).

In the model of learning by statistical queries, Freund’s F1 boosting algo-
rithm runs for O((1/γ2) log(1/ε)) stages, simulates the weak learning algorithm
only on distributions Di with L∞(Di) = O(L∞(D′)/ε2), and in each stage it
uses at most O((1/γ2) log(1/ε)N) queries of tolerance Ω(ε2τ) [2]. By using this
boosting algorithm to boost from an arbitrary advantage γ to some constant ad-
vantage, say 1/4, and then using the boosting algorithm of Theorem 1 to boost
from the advantage 1/4 to ε we can further increase the tolerance from Ω(εγτ)
to Ω(ετ).

204 W. Lindner

Corollary 1. There exists a canonical boosting algorithm B in the model of
learning by statistical queries which, when given inputs 0 < ε, τ < 1 and 0 <
γ < 1/2, access to the learning oracle with respect to D, and a weak learning
algorithm A with advantage γ, query complexity N and tolerance τ , has the
following properties: The weak learning algorithm A is only run with respect to
distributions Di satisfying L∞(Di) = O(L∞(D)/ε), The number of queries used
by B is O(N/γ4ε2), and the tolerance of each query is Ω(ετ).

The algorithm for DNF formulas in [14] is based on a weak learning al-
gorithm A which, for arbitrary distributions D, runs in time nO(k) where k =
log(s2nL∞(D)), and both the advantage and the tolerance is Ω(1/s). If we apply
the boosting algorithm of Corollary 1 with respect to the uniform distribution,
then A is only run with distributions Di satisfying 2nL∞(Di) = O(1/ε). Hence,
the number of queries used by A in each stage is N = nO(log(s/ε)) and thus the
total number of queries is O(s4(1/ε2)nO(log(s/ε))) = nO(log(s/ε)).

Corollary 2. The class of s-term DNF formulas over n variables is learnable
by statistical queries with respect to the uniform distribution in time nO(log(s/ε))

and with tolerance Ω(ε/s).

It is not hard to see that any statistical query learning algorithm for the
class of monomials requires tolerance O(ε). Thus, the tolerance of Corollary 2 is
optimal with respect to its dependence on ε.

4 Learning DNF by Proper Distance Queries

In this section we consider the learnability of DNF formulas by proper distance
queries. For this we first provide an algorithm for DNF formulas with terms
of bounded size. The learning algorithm is then applied to the class of s-term
DNF where we ignore the terms of size larger than Ω(log(s/ε)). The algorithm is
based on the following known bounds on the Fourier spectrum of these formulas
due to Mansour [15].

Lemma 3 ([15]). Let f be a DNF with terms of size d. Then∑
|A|>k

f̂2(A) ≤ 2 · 2−k/20d .

Lemma 4 ([15]). Let f be a DNF with terms of size d. Then∑
|A|≤k

|f̂(A)| ≤ 4(20d)k .

Theorem 2. The class of DNF formulas with terms of size d is learnable with
respect to the uniform distribution by nO(d log(1/ε)) distance queries with tolerance
1/dO(d log(1/ε)) and DNF formulas with terms of size O(d log(1/ε)) as hypotheses.

Learning DNF by Statistical and Proper Distance Queries 205

Proof. Let f be the target, let k = 20d log(2/ε), and let L = 4(20d)k. Consider
the real-valued approximation g =

∑
A∈G aAχA of f where each aA is an esti-

mate of f̂(A) within additive error τ = ε3/2/L and G = {A | |A| ≤ k and |aA| ≥
ε/L+τ}. Clearly, g can be obtained by asking

(
n
k

)
= nO(d log(1/ε)) distance queries

with tolerance τ = ε3/2/dO(d log(1/ε)) = 1/dO(d log(1/ε)). The hypothesis used in
each query is a parity χA which depends on at most k variables and hence can
be represented as a DNF formula with terms of size k = O(d log(1/ε)).

To bound the error of the approximation g, first note that ĝ(A) = 0 for all
A
∈ G. By Parseval’s identity, the expected error square is therefore

E[(f − g)2] =
∑
|A|>k

f̂2(A) +
∑

A∈G′
f̂2(A) +

∑
A∈G

(f̂(A)− ĝ(A))2

where G′ = {A | |A| ≤ k and |aA| < ε/L + τ}. By Lemma 3, the first sum is at
most ε. For the second sum note that A ∈ G′ implies |f̂(A)| < ε/L+2τ ≤ 3ε/L.
Together with Lemma 4 we get

∑
A∈G′ f̂2(A) ≤ maxA∈G′ |f̂(A)|∑|A|≤k |f̂(A)| ≤

3ε. For the last sum we note that A ∈ G implies |f̂(A)| ≥ ε/L. Since f is ±1-
valued, the number of coefficients f̂(A) with |f̂(A)| ≥ θ is at most 1/θ2. Hence,
|G| ≤ (L/ε)2, and by the choice of τ we get

∑
A∈G(f̂(A)−ĝ(A))2 ≤ (L/ε)2τ2 = ε.

Thus, the expected error square is at most 5ε.
The error bound of the sign of g is at most the expected error square of g and

hence at most 5ε. The only obstacle which prevents us to use sign(g) as our final
hypothesis is that sign(g) might not be representable by a DNF formula with
terms of the required size. For this reason, we finally search for a DNF formula
h with terms of size d whose distance from sign(g) is at most 5ε. Since the
distance between sign(g) and the target f is 5ε, and since f is a DNF formula
with terms of size d, we are guaranteed to find such a DNF formula h, and by
the triangle inequality, the distance of h from the target f is at most 10ε. The
search for h does not require any further queries. Replacing ε by ε/10 proves the
theorem. ��

In Theorem 2, the size of the terms used in the hypotheses is only increased
by a factor of O(log(1/ε)). An interesting setting is when ε is constant and
d = O(log n/ log logn). Then the tolerance is inverse polynomial in n.

It is possible to show that the number of distance queries necessary to learn
the class of DNF formulas with terms of size d is at least nΩ(d) if the tolerance τ
is 1/nΩ(d) and d ≤ √n (see also Theorem 5 below). Hence, for constant error ε,
the number of distance queries both necessary and sufficient to learn the class of
DNF formulas with terms of size d is nΘ(d), as long as d ≤ √n and the tolerance
is in the range between 1/nΩ(d) and 1/dΩ(d).

When applying the algorithm of Theorem 2 to the class of s-term DNF
formulas, we can ignore terms of size larger than Ω(log(s/ε)). This increases the
expected error square by at most O(ε), and the corresponding Fourier coefficients
remain within an additive error O(ε). The queries, however, are still parities
which depend on at most k = O(log(s/ε) log(1/ε)) variables and hence can be

206 W. Lindner

represented as DNF formulas with at most 2k = (s/ε)O(log(1/ε)) terms. This
yields the following corollary.

Corollary 3. The class of s-term DNF formulas is learnable with respect to
the uniform distribution by nO(log(s/ε) log(1/ε)) distance queries with tolerance
(ε/s)O(log log(s/ε) log(1/ε)) and DNF formulas with at most (s/ε)O(log(1/ε)) terms
as hypotheses.

Note that for constant error bound ε, the number of terms of hypotheses
used by the algorithm of Corollary 3 is polynomial in the number of terms of
the target. If, furthermore, s is polynomial in n, then the number of queries is
nO(log n) and the tolerance is 1/nO(log log n). Hence, in this setting, the number
of queries is polynomial in the lower bound nΩ(log n), which holds whenever the
tolerance is 1/nΩ(log n).

We conclude this section by considering the setting when the algorithm may
ask queries with tolerance zero. In [3] it is shown that the class of s-term DNF
formulas is exactly learnable by O(sn) projective equivalence queries with 2s-
term DNF formulas as hypotheses. By simulating the projective equivalence
queries with distance queries of tolerance zero, we are able to prove the following
theorem.

Theorem 3. The class of s-term DNF formulas is exactly learnable by distance
queries with respect to the uniform distribution with at most O(sn2) queries with
tolerance τ = 0 and DNF formulas with at most O(sn) terms as hypotheses.

5 Learning Majorities of DNF by Proper Distance
Queries

In this final section we consider the class of majorities over DNF formulas with
terms of bounded size. Our learning algorithm is based on the following lemma.

Lemma 5. Let D be a distribution, and let f be a majority of s DNF formulas
with terms of size d. Then there is a subset A ⊆ [n] with |A| ≤ k such that
|ED[fχA]| ≥ 1/8s(20d)k where k = 20d log(8s22nL∞(D)).

Proof. Without loss of generality we assume that s is odd, and hence h1(x)+· · ·+
hs(x)
= 0 for all x. Then, by the Discriminator Lemma of Hajnal et al. [8], one of
the DNF formulas h = hi satisfies |ED[fh]| ≥ 1/s. Consider g =

∑
|A|≤k ĥ(A)χA.

By Parseval’s identity and Lemma 3 we get

E[(g − h)2] =
∑
|A|>k

ĥ2(A) ≤ 1
4s22nL∞(D)

.

Since D(x) ≤ L∞(D) for all x, it follows that ED[(g − h)2] ≤ 2nL∞(D)E[(g −
h)2] ≤ 1/4s2. For any ±1-valued function f , real-valued functions h and g and

Learning DNF by Statistical and Proper Distance Queries 207

for any distribution D it holds that |ED[fg]| ≥ |ED[fh]| − (ED[(g − h)2])1/2

(cf. [11]). Hence, |ED[fg]| ≥ 1/s− 1/2s = 1/2s. On the other hand, ED[fg] =∑
|A|≤k ĥ(A)ED [fχA]. By Lemma 4, it follows that

|ED[fg]| ≤ max
|A|≤k

|ED[fχA]|
∑
|A|≤k

|ĥ(A)| ≤ max
|A|≤k

|ED[fχA]| · 4(20d)k.

Thus, we get max|A|≤k |ED[fχA]| ≥ 1/8s(20d)k. ��
Theorem 4. The set of majorities over s DNF formulas with terms of size d
is learnable by distance queries with respect to the uniform distribution proba-
bilistically in time nO(d log(s/ε)). The required tolerance is 1/dO(d log(s/ε)), and the
hypotheses used by the algorithm are majorities over (s/ε)O(d log d) DNF formulas
with terms of size O(d log(s/ε)).

Proof. Let D be some distribution and let k = 20d log(8s22nL∞(D)). Lemma 5
immediately leads to a simple weak learning algorithm W which searches for a
parity χA with |A| ≤ k such that |ED[fχA]| is close to 1/8s(20d)k or above. The
output is either χA or its negation, depending on whether ED[fχA] is positive
or negative. If L∞(D) = O(2−n/ε), then k = O(d log(s/ε)), the number of
queries is N =

(
n
k

)
= nO(k) and both the advantage γ and the tolerance τ is

1/sdO(k) = 1/dO(k).
We combine the weak learning algorithm W with the boosting algorithm of

Theorem 1 with respect to the uniform distribution. Then W is only run with
distributions Di satisfying L∞(Di) = O(2−n/ε). Hence the number of queries
is O(N/γ4ε2) = nO(d log(s/ε)) and the tolerance is Ω(εγτ) = 1/dO(d log(s/ε)).
Further note that the number of stages is O(1/γ2ε) = dO(d log(s/ε)). It remains
to show how to simulate the statistical queries used by the boosting algorithm
by distance queries of the required form.

Recall from section 3, that for an estimate of the relative size μi in stage i+1,
the boosting algorithm asks for estimates of the probabilities pi

0 = Pr[Ni(x) < 0]
and pi

r = Pr[Ni(x) = r], where Ni(x) =
∑i

j=1 hj(x)f(x) and hj is the output
of W in stage j ≤ i. Obviously, these estimates can be obtained by asking
statistical queries of the form χi

r(x, b) = [[
∑i

j=1 hj(x)b ≤ r]], where we have to
decrease the tolerance only by a factor of 2. Each statistical query χi

r(x, b) can be
simulated by two distance queries with hypotheses χi

r(x, 1) and χi
r(x,−1). Since

χi
r(x, 1) = [[

∑i
j=1 hj(x) ≤ r]] and χi

r(x,−1) = [[
∑i

j=1−hj(x) ≤ r]], and since
each hj is a parity which depends on at most O(d log(s/ε)) variables, it follows
that each statistical query χi

r(x, b) can be simulated by two distance queries
with majorities over DNF formulas with terms of size O(d log(s/ε)), where the
number of DNF formulas is bounded by the number of stages dO(d log(s/ε)) =
(s/ε)O(d log d).

Similarly, to simulate the distance queries used by W with respect to Di,
it is sufficient to ask statistical queries of the form χi

r(x, b) = [[h(x)
= f(x) ∧∑i
j=1 hj(x)b ≤ r]], where h is the hypotheses of a distance query of W . The

208 W. Lindner

statistical query χi
r(x, b) can be simulated by the two distance queries with

hypotheses χi
r(x, 1) = [[h(x) = −1 ∧∑i

j=1 hj(x) ≤ r]] and χi
r(x,−1) = [[h(x) =

1 ∧ ∑i
j=1−hj(x) ≤ r]]. For the hypothesis χi

r(x, 1) we observe that h(x) =
1∧∑i

j=1 hj(x) ≤ r is true if and only if
∑i

j=0 max(h, hj(x)) ≤ r−1 is true, where
we use the additional constant h0 = 0 to account for the possibility r = i. Since
both h and the hj ’s are parities which depend on at most O(d log(s/ε)) variables,
and since the maximum corresponds to a disjunction, it follows that χi

r(x, 1)
can again be expressed as a majority over (s/ε)O(d log d) DNF-formulas with
terms of size O(d log(s/ε)). A similar argument can be applied to the hypothesis
χi

r(x,−1) = [[h(x) = 1 ∧∑i
j=1−hj(x) ≤ r]]. This proves the theorem. ��

If ε is constant, s = nO(1) and d = O(logn), then the running time of the
algorithm is nO(log2 n), the tolerance is 1/nO(log n log log n), and the hypotheses are
majorities over nO(log n log log n) DNF formulas with terms of size O(log2 n).

We now show the following lower bound.

Theorem 5. Let C be the class of majorities over s DNF formulas with terms
of size d where d log s ≤ √n, and let 0 < ε < 1/2 be any error bound. Then
the number of distance queries required to learn C is at least n(d log s)/4, provided
that τ is at least 1/n(d log s)/8.

Proof. For every error bound 0 < ε < 1/2, the number of distance queries
required to learn a class C is at least kτ2, where k is the number of parities χA

with A ⊆ [n] in C [6].
Suppose we want to compute the parity of d log s input bits. Think of the

input bits as divided into log s blocks of length d, and let ⊕i denote the parity
of each block. Then the desired result is the parity of the parities ⊕1, . . . ,⊕log s.
Each boolean function of r input bits can be computed by a CNF formula with 2r

clauses or a DNF formula with terms of size r. Hence, the desired parity can be
computed by a conjunction of s clauses, where each clause consists of log s DNF
formulas with terms of size d, and where each DNF formula computes one of the
parities ⊕i or its negation. It follows that the resulting formula is a conjunction
over s DNF formulas with terms of size d. By replacing the conjunction with
a majority (and ignoring the additional constant input bits), we get that any
parity of d log s input bits can be computed by a majority of s DNF formulas
with terms of size d.

Thus, the number of parities in C is at least
(

n
d log s

) ≥ (n
d log s)d log s, and

since d log s ≤ √n, this number is at least n(d log s)/2. It follows that if τ ≥
1/n(d log s)/8, then the number of distance queries required to learn C is at least
n(d log s)/2τ2 ≥ n(d log s)/4. ��

It follows that for constant error ε, the number of distance queries both
neccessary and sufficient to learn the class of majorities over s DNF formulas
with terms of size d is nΘ(d log s), as long as d log s ≤ √n and the tolerance is in
the range between 1/nΩ(d log s) and 1/dO(d log s).

Learning DNF by Statistical and Proper Distance Queries 209

References

[1] D. Angluin. Queries and concept learning. Machine Learning, 2:319–342, 1988.
[2] J. Aslam and S. Decatur. General bounds on statistical query learning and

PAC learning with noise via hypothesis boosting. Information and Computation,
141(2):85–118, 1998.

[3] Jose Luis Balcázar, Jorge Castro, and David Guijarro. A new abstract combina-
torial dimension for exact learning via queries. Journal of Computer and System
Sciences, 64:2–21, 2002.

[4] Shai Ben-David, Alon Itai, and Eyal Kushilevitz. Learning by distances. Informa-
tion and Computation, 117(2):240–250, 1995.

[5] A. Blum, M. Furst, J. Jackson, M. Kearns, Y. Mansour, and S. Rudich. Weakly
learning DNF and characterizing statistical query learning using Fourier analysis.
In Proc. 26th ACM Symposium on Theory of Computing, pages 253–262. ACM
Press, 1994.

[6] J. H. Bshouty and V. Feldman. On using extended statistical queries to avoid
membership queries. Journal of Machine Learning Research, 2:359–395, 2002.

[7] Y. Freund. Boosting a weak learning algorithm by majority. Information and
Computation, 121(2):256–285, September 1995.

[8] A. Hajnal, W. Maass, P. Pudlak, M. Szegedy, and G. Turan. Threshold circuits
of bounded depth. Journal of Computer and System Sciences, 46:129–154, 1993.

[9] Russell Impagliazzo. Hard-core distributions for somewhat hard problems. In
Proc. 36th IEEE Symposium on the Foundations of Computer Science, pages 538–
545, 1995.

[10] J. C. Jackson. An efficient membership-query algorithm for learning DNF with
respect to the uniform distribution. Journal of Computer and System Sciences,
55(3):414–440, 1997.

[11] Jeffrey C. Jackson, Adam R. Klivans, and R.A. Servedio. Learnability beyond
AC0. In Proc. 34th ACM Symposium on Theory of Computing, pages 776–784,
2002.

[12] Michael Kearns. Efficient noise-tolerant learning from statistical queries. Journal
of the ACM, 45(6):983–1006, 1998.

[13] A.R. Klivans and R.A. Servedio. Learning DNF in time 2Õ(n1/3). Journal of Com-
puter and System Sciences, 68(2):303–318, 2004.

[14] Johannes Köbler and Wolfgang Lindner. A general dimension for approximately
learning boolean functions. In Algorithmic Learning Theory, 13th International
Conference, ALT 2002, Lübeck, Germany November 2002, Proceedings, pages 139–
148, 2002.

[15] Y. Mansour. An O(nlog log n) learning algorithm for DNF under the uniform distri-
bution. In Proc. 5th Annual ACM Conference on Computational Learning Theory,
pages 53–61, 1992.

[16] Rocco A. Servedio. Smooth boosting and learning with malicious noise. The Jour-
nal of Machine Learning Research, 4:633–648, 2003.

[17] L. G. Valiant. A theory of the learnable. Communications of the ACM,
27(11):1134–1142, 1984.

A Proof of Lemma 1

We consider the sum Ai(x) =
∑i

j=1 Mj−1(x)hj(x)f(x). First, we give an upper
bound on Ai by using the “elevator” argument of [9].

210 W. Lindner

Lemma 6. Ai(x) ≤ 1/γ + γ
∑i

j=1 Mj−1(x).

Proof. For each k > 0, we match all stages a where Na−1(x) = k − 1 rises to
Na(x) = k with those stages b where Nb−1(x) = k drops to Nb(x) = k − 1, with
possibly one stage c left out where Nc−1(x) = k−1 rises to Nc(x) = k. By defini-
tion, Na(x) = Na−1(x)+ha(x)f(x) and, hence, ha(x)f(x) = 1. Similarly, we get
that hb(x)f(x) = −1. Since both Na−1(x) and Nb−1(x) are nonnegative, we fur-
ther get Ma−1(x) = (1−γ)Na−1(x) = (1−γ)k−1 and Mb−1(x) = (1−γ)Nb−1(x) =
(1 − γ)k. Thus, Mb−1(x) = (1 − γ)Ma−1(x). The contribution of each matched
pair to the sum Ai(x) is therefore Ma−1(x)ha(x)f(x) + Mb−1(x)hb(x)f(x) =
Ma−1(x) − (1 − γ)Ma−1(x) = γMa−1(x). It follows that the contribution of all
matches pairs is at most γ

∑i
j=1 Mj(x).

For each unmatched stage c with Nc−1(x) = k − 1 and Nc(x) = k we have
hc(x)f(x) = 1, and hence Mc−1(x)hc(x)f(x) = Mc−1(x) = (1 − γ)k−1. The
contribution of all unmatched stages is therefore at most

i∑
k=1

(1 − γ)k−1 =
1− (1− γ)i

γ
≤ 1/γ.

For each k≤ 0, we do the analogues matching for all stages a where Na−1(x)=
k drops to Na(x) = k − 1 with those stages b where Nb−1(x) = k − 1 rises to
Nb(x) = k, with possibly one stage c left out where Nc−1(x) = k − 1 drops
to Nc(x) = k. Here we have ha(x)f(x) = −1, hb(x)f(x) = 1 and Ma−1(x) =
Mb−1(x) = 1 for the matched pairs of stages, so the contribution of each pair is
Ma−1(x)ha(x)f(x) + Mb−1(x)hb(x)f(x) = 0. For each unmatched stage c with
Nc−1(x) = k − 1 and Nc(x) = k we have hc(x)f(x) = −1 and Mc−1(x) = 1, so
the contribution Mc−1(x)hc(x)f(x) = −1 can be ignored as well. ��

By Lemma 6 we have the following upper on the expectation of Ai(x), for a
randomly chosen x according to D,∑

x

D(x)Ai(x) ≤ 1/γ + γ
i∑

j=1

μj−1 .

For a lower bound first recall that Dj(x) = Mj−1D(x)/μj−1. It follows that∑
x

D(x)Ai(x) =
i∑

j=1

μj−1

∑
x

Dj(x)hj(x)f(x).

The hypothesis hj produced in stage j has error rate at most 1/2−γ with respect
to Dj . It follows that the inner sum

∑
x Dj(x)hj(x)f(x) is at least 2γ. Hence,∑

x

D(x)Ai(x) ≥ 2γ
i∑

j=1

μj−1.

Combining the upper and lower bound we get that
∑i

j=1 μj−1 ≤ 1/γ2. In each
stage i except for the last stage it holds that μj−1 > ε/3 in all preceding stages
j ≤ i. Therefore,

∑i
j=1 μj−1 > iε/3, and it follows that i < 3/(γ2ε). Thus, the

boosting algorithm runs for at most 3/(γ2ε) stages. This proves Lemma 1.

Learning of Elementary Formal Systems with
Two Clauses Using Queries

Hirotaka Kato1, Satoshi Matsumoto1, and Tetsuhiro Miyahara2

1 Department of Mathematical Sciences, Tokai University, Hiratsuka 259-1292, Japan
{hirotaka, matumoto}@ss.u-tokai.ac.jp

2 Faculty of Information Sciences, Hiroshima City University,
Hiroshima 731-3194, Japan

miyahara@its.hiroshima-cu.ac.jp

Abstract. An elementary formal system, EFS for short, is a kind of
logic program over strings, and regarded as a set of rules to generate a
language. For an EFS Γ , the language L(Γ) denotes the set of all strings
generated by Γ . Many researchers studied the learnability of EFSs in
various learning models. In this paper, we introduce a subclass of EFSs,
denoted by rEFS , and study the learnability of rEFS in the exact learning
model. The class rEFS contains the class of regular patterns, which is
extensively studied in Learning Theory.

Let Γ∗ be a target EFS of learning in rEFS . In the exact learning
model, an oracle for superset queries answers “yes” for an input EFS Γ in
rEFS if L(Γ) is a superset of L(Γ∗), and outputs a string in L(Γ∗)−L(Γ),
otherwise. An oracle for membership queries answers “yes” for an input
string w if w is included in L(Γ∗), and answers “no”, otherwise.

We show that any EFS in rEFS is exactly identifiable in polynomial
time using membership and superset queries. Moreover, for other types
of queries, we show that there exists no polynomial time learning algo-
rithm for rEFS by using the queries. This result indicates the hardness
of learning the class rEFS in the exact learning model, in general.

1 Introduction

An elementary formal system, EFS for short, is a kind of logic program which
directly manipulates strings, and is regarded as a set of rules to generate a
language. A pattern is a nonempty finite string of constant symbols and variables.
In EFSs, patterns are used as terms in a logic program. A rule (or definite clause)
in EFSs is a clause of the form A← B1, · · · , Bm (m ≥ 0), where A, B1, · · · , Bm

are atoms. Learning of rules from string data is important in machine learning
[1] and it can be applied to learning of rules from HTML files since HTML files
are considered to be string data. Learning of EFSs has been long studied in
Algorithmic/Computational Learning Theory [4, 8, 10, 11]. The purpose of this
work is to give a new learnability of EFSs.

Consider examples of EFSs defined as follows. Let p be a unary predicate
symbol, a and b constant symbols, x and y variables. p(ab)← and p(axb)← p(x)

S. Jain, H.U. Simon, and E. Tomita (Eds.): ALT 2005, LNAI 3734, pp. 211–225, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

212 H. Kato, S. Matsumoto, and T. Miyahara

are examples of rules. Γ1 = {p(ab) ←, p(axb) ← p(x)} is an example of
EFS consisting of the above two rules. EFSs Γ2 = {p(axb) ←, p(ayb) ←
p(y)} and Γ3 = {p(axb) ←, p(aybzc) ← p(y), p(z)} are defined similarly. The
language L(Γ) generated by an EFS Γ is the set of all constant strings by
substituting non-empty constant symbols for variables and applying Modus
Ponens to rules in Γ . Let Σ = {a, b, c} be a finite alphabet. In the above ex-
amples, L(Γ1) = {anbn | n ≥ 1}, L(Γ2) = {anwbn | w ∈ Σ+, n ≥ 1}, and
L(Γ3) = {aab, abb, acb, aaabbaabc, aabbbaabc, . . .}.

In this paper, we give a polynomial time learning algorithm for a subclass of
EFSs in the exact learning model. The framework of EFSs for studying formal
language theory was established by [3] and the unifying framework of language
learning using EFSs was originated by [4]. A pattern is regular if each variable
appears in the pattern at most once. The target class of learning rEFS in this
paper is defined as the set of EFSs Γ which satisfy the following two conditions.
(1) All patterns in the heads of all definite clauses in Γ are regular. (2) Γ consists
of one or two definite clauses of the form p(π)←, or exactly two definite clauses
of the forms p(π′)← and p(τ)← p(x1), · · · , p(xn), where p is a unary predicate
symbol, x1, · · · , xn (n ≥ 1) are all of the variables appearing in τ , and π′ contains
at least one variable. By the definition, the classes of regular patterns and unions
of two regular patterns are included in rEFS. In the above examples, Γ1 is not
in rEFS since the pattern ab contains no variable. Γ2 and Γ3 are in rEFS.

Let Γ∗ be an EFS in rEFS to be identified by a learning algorithm, and we say
that the EFS Γ∗ is a target. We introduce the exact learning model via queries
due to Angluin [2]. In this model, learning algorithms can access to oracles that
answer specific kinds of queries about the unknown language L(Γ∗). We mainly
consider the following two oracles in this paper. (1) Superset oracle: The input
is an EFS Γ in rEFS. If L(Γ) ⊇ L(Γ∗), then the output is ”yes”. Otherwise,
it returns a counterexample t ∈ L(Γ∗) − L(Γ). The query is called a superset
query. (2) Membership oracle: The input is a string t in Σ+. The output is
”yes” if t ∈ L(Γ∗), and ”no” otherwise. The query is called a membership query.
A learning algorithm A collects information about L(Γ∗) by using queries and
outputs an EFS Γ in rEFS. We say that a learning algorithm A exactly identifies
a target Γ∗ in polynomial time using a certain type of queries if A halts in
polynomial time and outputs an EFS Γ ∈ rEFS such that L(Γ) = L(Γ∗) using
queries of the specified type.

We discuss the related works of this work. A pattern π is regarded as a very
restricted form of EFS {p(π) ←} in rEFS. Angluin [1] originated the research of
pattern learning under another learning model of inductive inference, which is an
infinite process of learning. Angluin also showed that patterns are exactly learn-
able in polynomial time using restricted superset queries [2]. We showed that reg-
ular patterns are exactly learnable in polynomial time using membership queries
and a positive example [5]. We showed that finite unions of subsequences are ex-
actly learnable in polynomial time using membership and equivalence queries [6].
Moreover, we showed that finite unions of tree patterns are exactly learnable in
polynomial time using restricted subset and equivalence queries [7].

Learning of Elementary Formal Systems with Two Clauses Using Queries 213

The paper [10] deals with a class of restricted EFSs (called primitive EFSs),
which is similar but incomparable to rEFS, under the learning model of inductive
inference of positive examples without allowing empty string to be substituted
for variables. The paper [11] extended this learnability by allowing empty string
to be substituted for variables. The work [8] deals with a class of EFSs under the
exact learning model using equivalence and extensions of membership queries.
The work [8] is known so far about the learnability of EFSs under exact learning
model.

This paper is organized as follows. In Section 2, we explain EFSs and their
languages and give rEFS which is our target class of learning. In Section 3, we
give our exact learning model. In Section 4, we show that the class rEFS is
exactly identifiable in polynomial time using membership and superset queries.
In Section 5, we give the hardness of learning rEFS in the exact learning model.

2 Preliminaries

Let S be a finite set. We denote by |S| the number of elements in S. Let Σ be a
finite alphabet, X a countable set of variables, and Π a set of predicate symbols.
We assume that |Σ| ≥ 2 and these sets Σ, X and Π are mutually distinct. Each
predicate symbol is associated with a positive integer called arity. Let w be a
string. We denote by |w| the length of w. We denote by w[i] the i-th symbol in
string w, and by w[i : j] the substring w[i] · · ·w[j] of w. We define w[i : j] = ε
(empty string) if i > j. For convenience, a prefix w[1 : i] is abbreviated as w[: i],
and a suffix w[i : |w|] as w[i :], where 1 ≤ i ≤ |w|. For a nonempty set Δ, let Δ+

denote the set of all nonempty strings.
A pattern is a nonempty string over Σ ∪ X . In particular, we say that a

pattern π is regular if each variable in π appears at most once. An atom is
an expression of the form p(π1, · · · , πn), where p is a predicate symbol with
arity n and π1, · · · , πn are patterns. A definite clause is a clause of the form
A← B1, · · · , Bm (m ≥ 0), where A, B1, · · · , Bm are atoms. The atom A is called
the head and the part B1, · · · , Bm the body of the definite clause.

Definition 1. An elementary formal system, EFS for short, is a finite set of
definite clauses. For an EFS Γ , each definite clause in Γ is called an axiom of Γ .

A substitution θ is a homomorphism from patterns to patterns such that
θ(a) = a for each a ∈ Σ and each variable is replaced with any patterns. By
πθ, we denote the image of a pattern π by a substitution θ. For an atom A =
p(π1, · · · , πn) and a clause C = A← B1, · · · , Bm, we define Aθ = p(π1θ, · · · , πnθ)
and Cθ = Aθ ← B1θ, · · · , Bmθ.

For patterns π and τ , we introduce binary relations + and ≡ as follows: π + τ
if π = τθ for some substitution θ, and π ≡ τ if π + τ and τ + π. If τ + π and
τ
, π, then we write τ ≺ π.

Let π be a pattern, i (1 ≤ i ≤ |π|) a positive integer, and α a symbol in Σ.
We denote by πi,α the string obtained from π by replacing π[i] with α, that is,
πi,α = π[: i− 1]απ[i + 1 :].

214 H. Kato, S. Matsumoto, and T. Miyahara

For a pattern π, we denote by S1(π) the set of all strings which are obtained
from π by replacing all variables with a string of length 1. For a nonempty set
P of patterns, we define S1(P) = ∪π∈PS1(π). Let T, T ′ be nonempty sets of
patterns. We write T . T ′ if for any pattern π ∈ T , there is a pattern π′ ∈ T ′

such that π + π′. If T . T ′ and T
/ T ′, then we write T � T ′.

Example 1. Let Σ = {a, b} be a finite alphabet, π = axbya a regular pattern.
Then π1,b = bxbya, π3,a = axaya and S1(π) = {aabaa, aabba, abbaa, abbba}.

A definite clause C is provable from an EFS Γ , denoted by Γ 0 C, if C is
obtained by finitely many applications of substitutions and Modus Ponens as
in the way of usual logic programming. We define the language L(Γ, p) = {w ∈
Σ+ | Γ 0 p(w)}, where p is a unary predicate symbol.

Definition 2. We denote by rEFS the set of EFSs Γ which satisfy the following
conditions:

1. All patterns in the heads of all clauses in Γ are regular.
2. Γ consists of one or two clauses of the form p(π)←, or exactly two clauses of

the forms p(π′)← and p(τ)← p(x1), · · · , p(xn), where p is a unary predicate
symbol, x1, · · · , xn (n ≥ 1) are all of the variables appearing in τ , and π′

contains at least one variable.

By the definition, the class of regular patterns and unions of two regular
patterns are included in rEFS. We define the size of Γ , denoted by |Γ |, as follows:
(1). |Γ | = |π| if Γ = {p(π)←}, (2). |Γ | = |π1|+ |π2| if Γ = {p(π1)←, p(π2)←},
(3). |Γ | = |π|+ |τ | if Γ = {p(π)←, p(τ)← p(x1), . . . , p(xn)}.

A language L is an EFS language if L = L(Γ, p) for some EFS Γ and some
unary predicate symbol p. In particular, a language L is a regular pattern lan-
guage if L = L(Γ, p) for some EFS Γ = {p(π)←}, where π is a regular pattern.

Example 2. LetΣ = {a, b, c} andX = {x, y, z, . . .}. LetΓ1 = {p(ab)←, p(axb)←
p(x)}, Γ2 = {p(axb) ←, p(ayb) ← p(y)}, Γ3 = {p(axb) ←, p(aybzc) ← p(y),
p(z)}, Γ4 = {p(axb) ←} and Γ5 = {p(axy) ←, p(aza) ←} be EFSs. Since ab has
no variable, Γ1 is not in rEFS. Γ2, Γ3, Γ4 and Γ5 are EFSs in rEFS.

Languages generated by Γ2, Γ3, Γ4 and Γ5 are as follows: L(Γ2, p) = {anwbn |
w ∈ Σ+, n ≥ 1}, L(Γ3, p) = {aab, abb, acb, aaabbaabc, aabbbaabc, . . .}, L(Γ4, p) =
{awb | w ∈ Σ+} and L(Γ5, p) = {aw1w2 | w1, w2 ∈ Σ+} ∪ {awa | w ∈ Σ+}. In
particular, L(Γ4, p) is a regular pattern language.

Definition 3. Let Γ be an EFS in rEFS and p a unary predicate symbol ap-
pearing in Γ . Γ is reduced if L(Γ ′, p) � L(Γ, p) for any Γ ′ � Γ .

Example 3. Let Σ = {a, b, c} and X = {x, y, z, . . .}. Let Γ6 = {p(axa)←, p(aya)
← p(y)}, Γ7 = {p(axb)←, p(byb)← p(y)}, Γ8 = {p(bxya)←, p(bazba)← p(z)}
and Γ9 = {p(bxya) ←, p(bazbb) ← p(z)} be EFSs in rEFS. Since bacbb ∈
L(Γ7, p) and bacbb
∈ L(Γ7−{p(byb)← p(y)}, p), Γ7 is reduced. Since babccabb ∈
L(Γ9, p) and babccabb
∈ L(Γ9 − {p(bazbb) ← p(z)}, p), Γ9 is reduced. Since
L(Γ6 − {p(aya) ← p(y)}, p) = L(Γ6, p) and L(Γ8 − {p(bazba) ← p(z)}, p) =
L(Γ8, p), Γ6 and Γ8 are not reduced.

Learning of Elementary Formal Systems with Two Clauses Using Queries 215

In this paper, since we deal with the class rEFS, we fix a unary predicate
symbol, say p, and denote L(Γ, p) by L(Γ) simply. We denote by Γ = (π, τ)
(resp., Γ = {π}, Γ = {π, τ}) an EFS Γ = {p(π) ←, p(τ) ← p(x1), · · · , p(xn)}
(resp., Γ = {p(π) ←}, Γ = {p(π) ←, p(τ) ←}). Moreover, by L((π, τ)) (resp.,
L({π}), L({π, τ})) we denote L({p(π) ←, p(τ) ← p(x1), · · · , p(xn)}) (resp.,
L({p(π)←}), L({p(π)←, p(τ)←})).
Example 4. For EFSs Γ2 = {p(axb) ←, p(ayb) ← p(y)}, Γ3 = {p(axb) ←,
p(aybzc) ← p(y), p(z)}, Γ4 = {p(axb) ←} and Γ5 = {p(axy) ←, p(aza) ←},
we write Γ2 = (axb, ayb), Γ3 = (axb, aybzc), Γ4 = {axb} and Γ5 = {axy, aza}
simply.

For Γ = (π, τ), we define the following particular pattern τπ = τ{x := π |
x appears in τ}, where all variables substituted to the variables in τ are taken
to be distinct, so τπ is always regular. It is clear that |π| ≤ |τπ | ≤ |π||τ |. ττπ is
defined in a similar way.

Example 5. Let Γ10 = (abxb, aybzc) be an EFS in rEFS, π = abxb and τ = aybzc.
We have τπ = aabx1bbabx2bc. Note that τπ is a regular pattern.

Let Γ = (π, τ) be an EFS in rEFS, x1, · · · , xn all of the variables appearing
in τ . Γ[t] is recursively defined as follows: Γ[1] = {τπ} and for any positive integer
t ≥ 2, Γ[t] = Γ[t−1] ∪ {τ{x1 := ζ1, · · · , xn := ζn} | ζi ∈ Γ[t−1] ∪ {π}, i = 1, · · · , n}.
We define Γτ = ∪t≥1Γ[t]. Note that π is not included in Γτ . Thus, L(Γτ) �
L((π, τ)).

A primitive EFS Γ , a PFS for short, is defined in [11] as follows:

1. All patterns in heads of all clauses in Γ are regular.
2. Γ consists of exactly two clauses of the forms p(π)← and p(τ)← p(x1), · · · ,

p(xn), where p is a unary predicate symbol, and x1, · · · , xn are all of the
variables appearing in τ .

An EFS in rEFS is different from a PFS. In case of erasing patterns, Uemura
et al. showed the following theorem in [11]. The theorem holds for any EFS
Γ = (π, τ) in rEFS in case of nonerasing patterns.

Theorem 1. [11] Let Γ = (π, τ) be a PFS. The following statements are equiv-
alent: (i) Γ is reduced. (ii) L(π) ∩ L(Γτ) = ∅, where L(Γτ) = ∪ζ∈Γτ L(ζ).

3 Learning Model

In this paper, let Γ∗ be an EFS in rEFS to be identified, and we say that the EFS
Γ∗ is a target. Non-reduced EFSs have redundant axioms. Even if we consider
only reduced EFSs, the expressive power of EFSs is same. So we assume that
target EFSs are reduced.

We introduce the exact learning model via queries due to Angluin [2]. In this
model, learning algorithms can access to oracles that answer specific kinds of

216 H. Kato, S. Matsumoto, and T. Miyahara

queries about the unknown language L(Γ∗). We consider the following oracles.
(1). Superset oracle SupΓ∗ : The input is an EFS Γ in rEFS. If L(Γ) ⊇ L(Γ∗), then
the output is ”yes”. Otherwise, it returns a counterexample t ∈ L(Γ∗) − L(Γ).
The query is called a superset query. (2). Subset oracle SubΓ∗ : The input is
an EFS Γ in rEFS. If L(Γ) ⊆ L(Γ∗), then the output is ”yes”. Otherwise, it
returns a counterexample t ∈ L(Γ)− L(Γ∗). The query is called a subset query.
(3). Membership oracle MemΓ∗ : The input is a string t in Σ+. The output
is ”yes” if t ∈ L(Γ∗), and ”no” otherwise. The query is called a membership
query. (4). Equivalence oracle EquivΓ∗ : The input is an EFS Γ in rEFS. The
output is ”yes” if L(Γ) = L(Γ∗). Otherwise, it returns a counterexample t ∈
(L(Γ)− L(Γ∗)) ∪ (L(Γ∗)− L(Γ)). The query is called an equivalence query.

A learning algorithm A collects information about L(Γ∗) by using queries
and output an EFS Γ in rEFS. We say that a learning algorithm A exactly
identifies a target Γ∗ in polynomial time using a certain type of queries if A
halts in polynomial time with respect to |Γ∗|. and outputs an EFS Γ ∈ rEFS
such that L(Γ) = L(Γ∗) using queries of the specified type.

4 Learning of Restricted EFSs Using Queries

Let Γ∗ be a target EFS in rEFS. Then we consider the following cases: (i).
Γ∗ = {π∗}. (ii). Γ∗ = {π∗, τ∗} and the length of π∗ is the same as τ∗, that is,
|π∗| = |τ∗|. (iii). Γ∗ = {π∗, τ∗} and the length of π∗ is not the same as τ∗, that is,
|π∗|
= |τ∗|. Without loss of generality, we assume |π∗| < |τ∗|. (iv). Γ∗ = (π∗, τ∗).

When Γ∗ is in the cases (i), (ii) or (iii), we can regard Γ∗ as a set of at most
two regular patterns. Since we use Theorem 2 for some lemmas and theorems,
we assume |Σ| ≥ 5 in this paper.

Theorem 2. [9] Suppose |Σ| ≥ 2k + 1. Let P be a nonempty finite set of
regular patterns, Q a set of at most k regular patterns. Then the following three
statements are equivalent: (1) P . Q, (2) L(P) ⊆ L(Q), (3) S1(P) ⊆ L(Q).

Let π be a regular pattern. We define the following condition, called Condition
A, as follows:

A-1 π satisfies |π| = |π∗| and L(Γ∗) ⊆ L({π, x1x2 · · ·x|π|+1}), and
A-2 There is no regular pattern π′ such that |π′| = |π|, π′ ≺ π and L(Γ∗) ⊆

L({π′, x1x2 · · ·x|π|+1}) for π.

Lemma 1. Let π be a regular pattern satisfying Condition A. If Γ∗ is not in
the case (ii), then π ≡ π∗.

Lemma 2. Let π be a regular pattern satisfying Condition A. Then, the fol-
lowing statements hold. (1) If L(Γ∗) ⊆ L({π}), then Γ∗ is in the case (i) or (ii).
(2) If L(Γ∗)
⊆ L({π}), then Γ∗ is in the case (iii) or (iv).

For a regular pattern π, we define the following condition, called Condition
B, as follows:

Learning of Elementary Formal Systems with Two Clauses Using Queries 217

B-1 π satisfies Condition A and L(Γ∗) ⊆ L({π}), and
B-2 There are regular patterns π′ and τ ′ such that |π′| = |τ ′| = |π|, π′ ≺ π,

τ ′ ≺ π and L(Γ∗) ⊆ L({π′, τ ′}) for π.

Lemma 3. Let π be a regular pattern satisfying Condition A and L(Γ∗) ⊆
L({π}). Then, the following statements hold. (1) If there are no regular patterns
satisfying Condition B-2 for π, then Γ∗ is in the case (i). (2) If there are regular
patterns satisfying Condition B-2 for π, then Γ∗ is in the case (ii).

Proof. By Lemma 2, Γ∗ is in the case (i) or (ii). We show each case.

1. We assume that Γ∗ is in the case (ii). By Condition A, we have |π∗| = |τ∗| =
|π|. By Theorem 2, since L(Γ∗) ⊆ L({π}), π∗ + π and τ∗ + π. We assume
π∗ ≡ π. It implies L(Γ∗) ⊆ L({π∗}). This contradicts that Γ∗ is reduced.
Thus, we have π∗ ≺ π. We can get τ∗ ≺ π in a similar way. π∗ and τ∗ satisfy
Condition B-2 for π. This is a contradiction. Therefore, Γ∗ is in the case (i).

2. We assume that Γ∗ is in the case (i). By Condition B-2, there are regular
patterns π′ and τ ′ such that |π′| = |τ ′| = |π|, π′ ≺ π, τ ′ ≺ π and L(Γ∗) ⊆
L({π′, τ ′}) for π. By Theorem 2, we have π∗ + π′ or π∗ + τ ′. We assume
π∗ + π′. π′ satisfies |π′| = |π|, π∗ + π′ ≺ π and L({π∗}) = L(Γ∗) ⊆
L({π′, x1x2 · · ·x|π|+1}). This contradicts with Condition A-2 for π. Thus,
we have π∗
+ π′. We can show π∗
+ τ ′ in a similar way. Therefore, Γ∗ is in
the case (ii). �

Lemma 4. Let π be a regular pattern satisfying Condition B, and π′, τ ′ regular
patterns satisfying Condition B-2 for π. If there are no regular patterns π′′ and
τ ′′ satisfying the following two statements, then π′ ≡ π∗ and τ ′ ≡ τ∗, or π′ ≡ τ∗
and τ ′ ≡ π∗. (1) π′′ satisfies |π′′| = |π′|, π′′ ≺ π′ and L(Γ∗) ⊆ L({π′′, τ ′}). (2)
τ ′′ satisfies |τ ′′| = |τ ′|, τ ′′ ≺ τ ′ and L(Γ∗) ⊆ L({π′, τ ′′}).

For a regular pattern π, we define the following condition, called Condition
C, as follows:

C-1 π satisfies Condition A and L(Γ∗)
⊆ L({π}), and
C-2 There is a regular pattern τ satisfying the following conditions for π:

C-2-1 There is a shortest string w ∈ L(Γ∗) − L({π}) such that |w| = |τ |
and w + τ .

C-2-2 L({τ}) ⊆ L(Γ∗).
C-2-3 There is no regular pattern τ ′ such that |τ ′| = |τ |, τ ≺ τ ′ and

L({τ ′}) ⊆ L(Γ∗).

Lemma 5. Let π be a regular pattern satisfying Condition A and L(Γ∗)
⊆
L({π}). Let w be a shortest string in L(Γ∗)−L({π}). Then, the following state-
ments hold. (1) If Γ∗ is in the case (iii), then |w| = |τ∗|. (2) If Γ∗ is in the case
(iv), then |w| = |τ∗π∗ |.
Proof. By Lemma 2, Γ∗ is in the case (iii) or (iv). By Lemma 1, π ≡ π∗. We
show each case.

218 H. Kato, S. Matsumoto, and T. Miyahara

1. For a shortest string w ∈ L(Γ∗)− L({π}), |τ∗| ≤ |w|. We assume |τ∗| < |w|.
It implies S1(τ∗) ⊆ L(π). By Theorem 2, τ∗ + π. Since π ≡ π∗, we have
τ∗ + π∗. This contradicts that Γ∗ is reduced. Thus, we have |τ∗| = |w|.

2. By Theorem 1, since Γ∗ is reduced, L(π∗) ∩ L(Γ∗τ∗) = ∅. Since L(π∗) ∩
L(Γ∗τ∗) = ∅ and π ≡ π∗, the length of shortest strings in L(Γ∗)− L({π}) is
|τ∗π∗ |. �

By using the above lemma, we can show Lemma 6.

Lemma 6. Let π be a regular pattern satisfying Condition C, and τ a regular
pattern satisfying Condition C-2 for π. Then, the following statements hold. (1)
If Γ∗ is in the case (iii), then τ ≡ τ∗. (2) If Γ∗ is in the case (iv), then τ ≡ τ∗π∗ .

Proof. By Lemma 2, Γ∗ is in the case (iii) or (iv). Moreover, by Lemma 1, π ≡ π∗.
We show each case.

1. We assume τ
≡ τ∗. By Condition C-2-1 and Lemma 5, |τ | = |τ∗| = |w|. From
Condition C-2-2 and Theorem 2, τ + π∗ or τ + τ∗. We assume τ + π∗. Since
π ≡ π∗, we have τ + π. Let w be a shortest string in L(Γ∗)−L({π}) satisfying
Condition C-2-1 for τ . It implies w ∈ L({τ}) ⊆ L({π}). This contradicts with
w
∈ L({π}). Thus, we have τ + τ∗. Since τ
≡ τ∗ and τ + τ∗, we have τ ≺ τ∗.
Then, τ∗ satisfies |τ | = |τ∗|, τ ≺ τ∗ and L({τ∗}) ⊆ L(Γ∗). This contradicts
with Condition C-2-3. Therefore, we have τ ≡ τ∗.

2. We assume τ
≡ τ∗π∗ . By Condition C-2-1 and Lemma 5, |τ | = |τ∗π∗ | = |w|.
From Condition C-2-2 and |τ | = |τ∗π∗ |, S1(τ) ⊆ L({π∗, τ∗π∗}). By The-
orem 2, τ + π∗ or τ + τ∗π∗ . We assume τ + π∗. Let w be a short-
est string in L(Γ∗) − L({π}) satisfying Condition C-2-1 for τ . It implies
w ∈ L(τ) ⊆ L(π∗). This contradicts with w
∈ L(π∗). Thus, we have τ + τ∗π∗ .
Since τ + τ∗π∗ and τ
≡ τ∗π∗ , τ ≺ τ∗π∗ . Then, τ∗π∗ satisfies |τ | = |τ∗π∗ |,
τ ≺ τ∗π∗ and L({τ∗π∗}) ⊆ L(Γ∗). This contradict with Condition C-2-3.
Therefore, τ ≡ τ∗π∗ . �

Lemma 7. Let π be a regular pattern satisfying Condition C, and τ a regular
pattern satisfying Condition C-2 for π. Then, the following statements hold. (1)
If L(Γ∗) ⊆ L({π, τ}), then Γ∗ is in the case (iii). (2) If L(Γ∗)
⊆ L({π, τ}), then
Γ∗ is in the case (iv).

Proof. By Lemma 2, Γ∗ is the case (iii) or (iv). Moreover, by Lemma 1, π ≡ π∗.
We show each case.

1. We assume that Γ∗ is in the case (iv). By Lemma 6, τ ≡ τ∗π∗ . From
π ≡ π∗ and τ ≡ τ∗π∗ , L(Γ∗) ⊆ L({π∗, τ∗π∗}). Since Γ∗ is reduced, we have
L(π∗)∩L(Γ∗τ∗) = φ. Thus, we have L(Γ∗τ∗) ⊆ L(τ∗π∗). Otherwise, since Γ∗ is
reduced, L(τ∗τ∗π∗)
⊆ L(τ∗π∗). This contradicts with L(τ∗τ∗π∗) ⊆ L(Γ∗τ∗) ⊆
L(τ∗π∗).

2. We assume that Γ∗ is in the case (iii). By Lemma 6, τ ≡ τ∗. Since π ≡ π∗
and τ ≡ τ∗, L(Γ∗) ⊆ L({π, τ}). This is a contradiction. �

Learning of Elementary Formal Systems with Two Clauses Using Queries 219

Procedure LENGTH1
Given: An oracle SupΓ∗ for the target Γ∗;
begin
� := 1;
// x1 · · ·x�+1 is a regular pattern
while SupΓ∗({x1 · · ·x�+1}) = ”yes” do
� := � + 1;

output �;
end.

Procedure LEARN PI(�)
Input : A positive integer � with � = |π∗|;
Given: An oracle SupΓ∗ for the target Γ∗;
begin
// x1x2 · · ·x� is a regular pattern
π := x1x2 · · ·x�;
for i := 1 to � do begin
foreach α ∈ Σ do begin
π′ := πi,α;
if SupΓ∗({π′, x1 · · · x�+1}) = ”yes”
then begin
π := π′; break;

end;
end;

end;
output π;

end.

Procedure LEARN PI TAU1(π)
Input : A regular pattern π satisfying

Condition A and L(Γ∗) ⊆ L({π});
Given: An oracle SupΓ∗ for the target Γ∗;
begin
iπ := 1;
while ((iπ ≤ |π|) and (π[iπ] ∈ Σ)) do
iπ := iπ + 1;

while iπ ≤ |π| do begin
foreach α ∈ Σ do begin
iτ := iπ;
while iτ ≤ |π| do begin
foreach β ∈ Σ do begin
π′ := πiπ ,α;
π′′ := πiτ ,β;
if SupΓ∗({π′, π′′}) = ”yes” then
begin
output π′, π′′; halt;

end;
end;
iτ := iτ + 1;
while ((iτ ≤ |π|) and (π[iτ] ∈ Σ))do
iτ := iτ + 1;

end;
end;
iπ := iπ + 1;
while ((iπ ≤ |π|) and (π[iπ] ∈ Σ)) do
iπ := iπ + 1;

end;
output ”no”;

end.

Fig. 1. Procedure LENGTH1, LEARN PI and LEARN PI TAU1

The procedure LENGTH1 of Fig. 1 outputs a positive integer with =
min{|w| | w ∈ L(Γ∗)}, that is, = |π∗|. The procedure uses O(|π∗|) superset
queries, and runs in O(|π∗|2) time.

The procedure LEARN PI of Fig. 1 takes a positive integer with = |π∗|
as input, and outputs a regular pattern π such that |π| = |π∗| = and L(Γ∗) ⊆
L({π, x1x2 · · ·x�+1}).
Lemma 8. Let be an input positive integer and π an output regular pattern
by the procedure LEARN PI. Then, there is no regular pattern π′ such that
|π′| = |π|, π′ ≺ π and L(Γ∗) ⊆ L({π′, x1x2 · · ·x�+1}).

By Lemma 8, the procedure LEARN PI outputs a regular pattern π sat-
isfying Condition A. The procedure uses O(|π∗|) superset queries, and runs in
O(|π∗|2) time.

220 H. Kato, S. Matsumoto, and T. Miyahara

The procedure LEARN PI TAU1 of Fig. 1 takes a regular pattern π satis-
fying Condition A and L(Γ∗) ⊆ L({π}). If there are regular patterns π′ and
τ ′ satisfying Condition B-2 for π, the procedure outputs such regular patterns.
Otherwise, the procedure outputs ”no”. The procedure uses O(|π∗|2) superset
queries, and runs in O(|π∗|3) time.

The procedure LEARN PI TAU2 of Fig. 2 takes regular patterns π′ and
τ ′ satisfying Condition B-2 for π as input, where π satisfies Condition B. The
procedure outputs regular patterns π′′ and τ ′′ with π′′ + π′ and τ ′′ + τ ′.

Lemma 9. Let π′′ and τ ′′ be regular patterns output by LEARN PI TAU2.
There are no regular patterns π′′′ and τ ′′′ such that |π′′′| = |π′′|, π′′′ ≺ π′′,
L(Γ∗) ⊆ L({π′′′, τ ′′}), |τ ′′′| = |τ ′′|, τ ′′′ ≺ τ ′′ and L(Γ∗) ⊆ L(π′′, τ ′′′).

By Lemma 4 and Lemma 9, regular patterns π′′ and τ ′′ output by the pro-
cedure LEARN PI TAU2 satisfy π∗ ≡ π′′ and τ∗ ≡ τ ′′, or π∗ ≡ τ ′′ and τ∗ ≡ π′′.
The procedure uses O(|π∗|+ |τ∗|) superset queries, and runs in O(|π∗|2 + |τ∗|2)
time. Since |π∗| = |τ∗|, it uses O(|π∗|) superset queries, and runs in O(|π∗|2)
time.

The procedure LENGTH2 of Fig. 2 takes a regular pattern π satisfying Con-
dition A and L(Γ∗)
⊆ L({π}) as input, and outputs a shortest string w ∈
L(Γ∗)−L({π}), where w is a counterexample output by SupΓ∗ . In the case (iv),
|w| = |τ∗π∗ | ≤ |π∗||τ∗|. Thus, the procedure uses O(|π∗||τ∗|) superset queries,
and runs in O(|π∗|2|τ∗|2) time.

The procedure LEARN TAU1 of Fig. 2 takes a regular pattern π satisfying
Condition A and L(Γ∗)
⊆ L({π}), and a shortest string w ∈ L(Γ∗)− L({π}) as
input. The procedure outputs a regular pattern τ with |τ | = |w| and w ≺ τ .

Lemma 10. Let Γ∗ = (π∗, τ∗) be a reduced EFS in rEFS and w a shortest string
in L(Γ∗) − L({π∗}). Then, for a positive integer i (1 ≤ i ≤ |w|), the following
statements are equivalent: (1) There is a symbol α ∈ Σ such that α
= w[i] and
wi,α ∈ L(Γ∗)− L({π∗}). (2) τ∗π∗ [i] ∈ X .

Proof. Since w is a shortest string in L(Γ∗)− L({π∗}), |w| ≥ |τ∗π∗ |. We assume
|w| > |τ∗π∗ |. It implies S1(τ∗π∗) ⊆ L({π∗}). Thus, L(π∗) ∩ L(Γ∗τ∗)
= ∅. This
contradicts that Γ∗ is reduced. Therefore, |w| = |τ∗π∗ |.
((1) ⇒ (2)) From w ∈ L(Γ∗) − L({π∗}), w ∈ L(Γ∗τ∗). Since w ∈ L(Γ∗τ∗) and
|w| = |τ∗π∗ |, w + τ∗π∗ . We can show wi,α + τ∗π∗ in a similar way. Since |w| =
|τ∗π∗ |, w + τ∗π∗ and wi,α + τ∗π∗ , we have τ∗π∗ [i] ∈ X .
((2) ⇒ (1)) From τ∗π∗ [i] ∈ X , wi,α ∈ L(Γ∗τ∗) for any symbol α ∈ Σ. It implies
that wi,α ∈ L(Γ∗). Since Γ∗ is reduced, we have L(π∗) ∩ L(Γ∗τ∗) = φ. Thus,
there is a string wi,α ∈ L(Γ∗)− L({π∗}). �

To show Lemma 12, we need the following lemma. Note that we assume
|Σ| ≥ 5 in this paper.

Lemma 11. [9] Let |Σ| ≥ 3, π and τ regular patterns, and x a variable in π. If
π{x := a} + τ , π{x := b} + τ and π{x := c} + τ for symbols a, b and c in Σ
which are mutually distinct, then π + τ .

Learning of Elementary Formal Systems with Two Clauses Using Queries 221

Procedure LEARN PI TAU2(π′, τ ′)
Input : Regular patterns π′ and τ ′

satisfying Condition B-2 for π,
where π satisfies Condition B;

Given: An oracle SupΓ∗ for the target Γ∗;
begin
π′′ := π′; i := 1;
while (i ≤ |π′′|) and (π′′[i] ∈ Σ) do
i := i + 1;

while i ≤ |π′′| do begin
foreach α ∈ Σ do begin
if SupΓ∗({π′′

i,α, τ ′}) = ”yes” then
begin
π′′ := π′′

i,α; break;
end;

end;
i := i + 1;
while (i ≤ |π′′|) and (π′′[i] ∈ Σ) do
i := i + 1;

end;
τ ′′ := τ ′; i := 1;
while (i ≤ |τ ′′|) and (τ ′′[i] ∈ Σ) do
i := i + 1;

while i ≤ |τ ′′| do begin
foreach α ∈ Σ do begin
if SupΓ∗({π′, τ ′′

i,α}) =”yes” then
begin
τ ′′ := τ ′′

i,α; break;
end;

end;
i := i + 1;
while (i ≤ |τ ′′|) and (τ ′′[i] ∈ Σ) do
i := i + 1;

end;
output π′′, τ ′′;

end.

Procedure LENGTH2(π)
Input : A regular pattern π satisfying

Condition A and L(Γ∗) �⊆ L(π);
Given: An oracle SupΓ∗ for the target Γ∗
begin
� := |π| + 1;
// x1 · · ·x�+1 is a regular pattern.
while SupΓ∗({π, x1 · · ·x�+1}) =”yes” do
� := � + 1;

Let w be a counterexample obtained
by the oracle SupΓ∗ ;

output w;
end.

Procedure LEARN TAU1(π,w)
Input : A regular pattern π satisfying

Condition A and L(Γ∗) �⊆ L({π}), and
a shortest string w ∈ L(Γ∗) − L({π});

Given: An oracle MemΓ∗ for the target Γ∗;
begin
τ := w;
for i := 1 to |w| do
foreach α ∈ Σ do
if w[i] �= α then
if MemΓ∗(wi,α) = ”yes” then
if wi,α �∈ L(π) then begin
τ [i] := xi; break;

end;
output τ ;

end.

Fig. 2. Procedure LEARN PI TAU2, LENGTH2 and LEARN TAU1

Lemma 12. Let Γ∗ = {π∗, τ∗} be a reduced EFS in rEFS with |π∗| < |τ∗|, and w
a shortest string in L(Γ∗)−L({π∗}). Then, for a positive integer i (1 ≤ i ≤ |w|),
the following statements are equivalent: (1) There is a symbol α ∈ Σ with
α
= w[i] and wi,α ∈ L(Γ∗)− L({π∗}). (2) τ∗[i] ∈ X .

Proof. Since w ∈ L(Γ∗) − L({π∗}), |w| ≥ |τ∗|. We assume |w| > |τ∗|. It implies
S1(τ∗) ⊆ L({π∗}). By Lemma 2, τ∗ + π∗. This contradicts that Γ∗ is reduced.
Thus, |w| = |τ∗|.
((1) ⇒ (2)) We can show in a similar way as Lemma 10.

222 H. Kato, S. Matsumoto, and T. Miyahara

((2) ⇒ (1)) From τ∗[i] ∈ X , wi,α ∈ L(τ∗) for any symbol α ∈ Σ. It implies
wi,α ∈ L(Γ∗). We assume wi,α ∈ L(π∗) for any symbol α ∈ Σ with α
= w[i].
Let π′ = w[: i − 1]xw[i + 1 :]. It is clear that w + π′. Since |Σ| ≥ 5, there
are symbols a, b and c in Σ such that a, b, c and w[i] are mutually distinct.
By Lemma 11, since wi,a = π′{x := a} + π∗, wi,b = π′{x := b} + π∗ and
wi,c = π′{x := c} + π∗, we have π′ + π∗. From w + π′ and π′ + π∗, w ∈ L(π∗).
This contradicts with w
∈ L({π∗}). Therefore, there is a symbol α ∈ Σ with
wi,α ∈ L(Γ∗)− L({π∗}). �

By using Lemma 10 and Lemma 12, we can show Lemma 13.

Lemma 13. Let τ be a regular pattern output by the procedure LEARN TAU1.
There is no regular pattern τ ′ such that |τ ′| = |τ |, τ ≺ τ ′ and L({τ ′}) ⊆ L(Γ∗).

Proof. It is clear that |w| = |τ |. We assume that there is a regular pattern τ ′ such
that |τ ′| = |τ |, τ ≺ τ ′ and L({τ ′}) ⊆ L(Γ∗). By Lemma 1 and Lemma 2, Γ∗ is in
the case (iii) or (iv), and π ≡ π∗. At First, we assume that Γ∗ is in the case (iii).
If τ ′ + π, then w + π. This contradicts with w
∈ L({π}). It implies that τ ′
+ π.
Since τ ′
+ π and L({τ ′}) ⊆ L(Γ∗), we have τ ′ + τ∗. By Lemma 5, |τ | = |τ∗|. Since
|τ ′| = |τ | and τ ≺ τ ′, there is a positive integer i ∈ {1, · · · , |τ |} such that τ [i] ∈ Σ
and τ ′[i] ∈ X . From τ ′ + τ∗ and |τ | = |τ ′| = |τ∗|, τ∗[i] ∈ X . By Lemma 12, there
is a symbol α ∈ Σ such that α
= w[i] and wi,α ∈ L(Γ∗)−L({π}). This contradicts
with τ [i] ∈ Σ. Therefore, Γ∗ is not in the case (iii).

In case that Γ∗ is in the case (iv), we can show in a similar way. Thus, there
is no regular pattern τ ′ such that |τ ′| = |τ |, τ ≺ τ ′ and L({τ ′}) ⊆ L(Γ∗). �

By Lemma 13, the procedure LEARN TAU1 outputs a regular pattern τ sat-
isfying Condition C-2 for π. Since |w| ≤ |π∗||τ∗|, it uses O(|π∗||τ∗|) membership
queries, and runs in O(|π∗|2|τ∗|2) time.

The procedure LEARN TAU2 of Fig. 3 takes regular patterns π and τ such
that π satisfies Condition C, τ satisfies Condition C-2 for π, and L(Γ∗)
⊆
L({π, τ}) as input. The procedure outputs a regular pattern τ ′ with τ ′ ≡ τ∗.

Theorem 3. The algorithm LEARN REFS of Fig. 3 identifies any EFS Γ ∈
rEFS in polynomial time using O(|Γ∗|2) membership queries and O(|Γ∗|2) su-
perset queries, where |Σ| ≥ 5.

Proof. By Lemma 8, the procedure LEARN PI outputs a regular pattern π
satisfying Condition A. For π, we consider the following cases:

1. In case that L(Γ∗) ⊆ L({π}). If the procedure LEARN PI TAU1 outputs
”no”, then there are no regular patterns π′ and τ ′ satisfying Condition B-2
for π. By Lemma 1 and Lemma 3, Γ∗ is in the case (i) and π ≡ π∗. Thus,
L(Γ∗) = L({π}). By Lemma 3, if the procedure LEARN PI TAU1 outputs
regular patterns, then Γ∗ is in the case (ii). By Lemma 4 and Lemma 9,
the procedure LEARN PI TAU2 outputs regular patterns π′′ and τ ′′ with
π′′ ≡ π∗ and τ ′′ ≡ τ∗, or π′′ ≡ τ∗ and τ ′′ ≡ π∗. Thus, L(Γ∗) = L({π′′, τ ′′}).

Learning of Elementary Formal Systems with Two Clauses Using Queries 223

Procedure LEARN TAU2(π, τ)
Input : Regular patterns π and τ

such that π satisfies Condition C,
τ satisfies Condition C-2 for π,
and L(Γ∗) �⊆ L({π, τ});

begin
τ ′ := ε; i := 1; j := 1;
while j ≤ |τ | − |π| + 1 do begin
π′ := τ [j : j + |π| − 1];
if π ≡ π′ then begin
τ ′ := τ ′τ [i : j − 1]xj ;
i := j + |π|;
j := j + |π|;

end else begin
j := j + 1;

end;
end;
τ ′ := τ ′τ [j :];
output τ ′;

end.

Algorithm LEARN REFS
Given: An oracle SupΓ∗ for the target Γ∗;
begin
� := LENGTH1 ;
π := LEARN PI(�);
if SupΓ∗({π}) = ”yes” then begin
if LEARN PI TAU1(π) = ”no” then
H := {π}

else begin
Let π′ and τ ′ be regular patterns

output by LEARN PI TAU1(π);
{π′′, τ ′′} := LEARN PI TAU2(π′, τ ′);
H := {π′′, τ ′′};

end;
end else begin
w := LENGTH2(π);
τ := LEARN TAU1(π, w);
if SupΓ∗({π, τ}) = ”yes” then
H := {π, τ}

else begin
τ ′ := LEARN TAU2(π, τ);
H := (π, τ ′);

end;
end;
output H ;

end.

Fig. 3. Procedure LEARN TAU2 and Algorithm LEARN REFS

2. In case that L(Γ∗)
⊆ L({π}). By Lemma 2, Γ∗ is in the case (iii) or (iv). By
Lemma 1, π ≡ π∗. By Lemma 13, the procedure LEARN TAU1 outputs a
regular pattern τ satisfying Condition C-2 for π. By Lemma 6 and Lemma 7,
if L(Γ∗) ⊆ L({π, τ}), then Γ∗ is in the case (iii) and τ ≡ τ∗. Thus, L(Γ∗) =
L({π, τ}). By Lemma 6 and Lemma 7, if L(Γ∗)
⊆ L({π, τ}), then Γ∗ is in
the case (iv) and τ ≡ τ∗π∗ . Then the procedure LEARN TAU2 outputs a
regular pattern τ ′ with τ ′ ≡ τ∗. Thus, L(Γ∗) = L((π, τ ′)).

Therefore, the algorithm outputs an EFS H ∈ rEFS with L(Γ∗) = L(H).
In case that Γ∗ is in the case (i) or (ii), the algorithm runs in O(|π∗|3)

time and uses O(|π∗|2) superset queries. In case that Γ∗ is in the case (iii)
or (iv), it runs in O(|π∗|2|τ∗|2) time and uses O(|π∗||τ∗|) superset queries and
O(|π∗||τ∗|) membership queries. Thus, it runs in O(|π∗|2(|π∗|+ |τ∗|2)) time, and
uses O(|π∗||τ∗|) membership queries and O(|π∗|(|π∗| + |τ∗|)) superset queries.
Since |π∗| ≤ |Γ∗| and |τ∗| ≤ |Γ∗|, it runs in O(|Γ∗|4) time and uses O(|Γ∗|2)
membership queries and O(|Γ∗|2) superset queries. �

224 H. Kato, S. Matsumoto, and T. Miyahara

Table 1. Our results and future works

Exact Learning
Inductive Inference
from Positive Data

sufficiency [This work] insufficiency [This work]

rEFS superset query &
membership query

membership query
equivalence query

subset query

Open

PL restricted superset query [2] Yes [1]
RPL membership query & one positive example [5] polynomial time [10]

5 Hardness Results on Learnability

In this section, we show the insufficiency of learning rEFS in the query learning
model. By Lemma 14, we have Theorem 4. We omit the proof of Theorem 4.

Lemma 14. [2] Suppose the hypothesis space contains a class of distinct sets
L1, . . . , LN , and there exists a set L∩ which is not a hypothesis, such that for
any pair of distinct indices i and j, L∩ = Li ∩ Lj. Then any algorithm that
exactly identifies each of the hypotheses Li using equivalence, membership, and
subset queries must at least N − 1 queries in the worst case.

Theorem 4. Any learning algorithm that exactly identifies all strings of length
n using equivalence, membership and subset queries must make at least 5n − 1
queries in the worst case.

6 Conclusions

In this paper, we have investigated exact identification of an EFS in rEFS using
queries. We have shown that any EFS in rEFS is exactly identifiable in O(|Γ∗|4)
time using O(|Γ∗|2) membership queries and O(|Γ∗|2) superset queries, where
|Σ| ≥ 5. Moreover, we showed that there exists no polynomial time learning
algorithm which identifies any EFS in rEFS using membership, equivalence and
subset queries. As future works, we will consider the learnability of rEFS in the
framework of inductive inference from positive data. We summarize our results
and future works in Table 1. We denote by PL (resp.,RPL) the set of all patterns
(resp., regular patterns).

References

[1] D. Angluin. Finding patterns common to a set of strings. Journal of Computer
and System Science, 21:46–62, 1980.

[2] D. Angluin. Queries and concept learning. Machine Learning, 2:319–342, 1988.
[3] S. Arikawa. Elementary formal systems and formal languages - simple formal sys-

tems. Memoirs of Faculty of Science, Kyushu University, Series A, Mathematics,
24:47–75, 1970.

Learning of Elementary Formal Systems with Two Clauses Using Queries 225

[4] S. Arikawa, T. Shinohara, and A. Yamamoto. Learning elementary formal sys-
tems. Theoretical Computer Science, 95:97–113, 1992.

[5] S. Matsumoto and A. Shinohara. Learning pattern languages using queries. Proc.
EuroCOLT-97, Springer-Verlag, LNAI 1208, pages 185–197, 1997.

[6] S. Matsumoto, A. Shinohara, H. Arimura, and T. Shinohara. Learning subse-
quence languages. In Information Modelling and Knowledge Bases VIII, pages
335–344. IOS Press, 1997.

[7] S. Matsumoto, T. Shoudai, T. Miyahara, and T. Uchida. Learning of finite unions
of tree patterns with internal structured variables from queries. Proc. AI-2002,
Springer LNAI 2557, pages 523–534, 2002.

[8] H. Sakamoto, K. Hirata, and H. Arimura. Learning elementary formal systems
with queries. Theoretical Computer Science, 298:21–50, 2003.

[9] M. Sato, Y. Mukouchi, and D. Zheng. Characteristic sets for unions of regular
pattern languages and compactness. In Proc. ALT-98, Springer-Verlag, LNAI
1501, pages 220–233. Springer, 1998.

[10] T. Shinohara. Inductive inference of formal systems from positive data. Bulletin
of Informatics and Cybernetics, 22:9–18, 1986.

[11] J. Uemura and M. Sato. Learning of erasing primitive formal systems from pos-
itive examples. In Proc. ALT-2003, Springer-Verlag, LNAI 2842, pages 69–83.
Springer-Verlag, 2003.

Gold-Style and Query Learning Under Various
Constraints on the Target Class

Sanjay Jain,1,� Steffen Lange,2 and Sandra Zilles3

1 School of Computing, National University of Singapore, Singapore 117543
sanjay@comp.nus.edu.sg

2 Fachhochschule Darmstadt, FB Informatik, Haardtring 100,
64295 Darmstadt, Germany

s.lange@fbi.fh-darmstadt.de
3 DFKI GmbH, Erwin-Schrödinger-Straße, 67663 Kaiserslautern, Germany

sandra.zilles@dfki.de

Abstract. In language learning, strong relationships between Gold-style
models and query models have recently been observed: in some quite
general setting Gold-style learners can be replaced by query learners and
vice versa, without loss of learning capabilities. These ‘equalities’ hold
in the context of learning indexable classes of recursive languages.

Former studies on Gold-style learning of such indexable classes have
shown that, in many settings, the enumerability of the target class and
the recursiveness of its languages are crucial for learnability. Moreover,
studying query learning, non-indexable classes have been mainly ne-
glected up to now. So it is conceivable that the recently observed relations
between Gold-style and query learning are not due to common structures
in the learning processes in both models, but rather to the enumerability
of the target classes or the recursiveness of their languages.

In this paper, the analysis is lifted onto the context of learning ar-
bitrary classes of r.e. languages. Still, strong relationships between the
approaches of Gold-style and query learning are proven, but there are
significant changes to the former results. Though in many cases learners
of one type can still be replaced by learners of the other type, in general
this does not remain valid vice versa. All results hold even for learning
classes of recursive languages, which indicates that the recursiveness of
the languages is not crucial for the former ‘equality’ results. Thus we
analyse how constraints on the algorithmic structure of the target class
affect the relations between two approaches to language learning.

1 Introduction

In order to model different aspects of human learning and machine learning, dif-
ferent abstract approaches have to be considered. Each model analysed within
the scope of learning theory addresses only special facets of learning. For exam-
ple, in Gold’s [9] model of identification in the limit learning is interpreted as

� Sanjay Jain was supported in part by NUS grant number R252-000-127-112.

S. Jain, H.U. Simon, and E. Tomita (Eds.): ALT 2005, LNAI 3734, pp. 226–240, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Gold-Style and Query Learning Under Various Constraints 227

a limiting process of generating and improving hypotheses about a target con-
cept. These hypotheses are built upon instances of the target concept offered to
the learner. In the limit, the output of the learner is supposed to stabilize on a
correct guess, but during the learning process one never knows whether or not
the current hypothesis is already correct. The potential of changing its mind is
a crucial quality of the learner.

In contrast to that, Angluin’s [3, 4] model of query learning is concerned with
learning as a finite process in which a learner and a teacher interact. The learner
asks questions of a specified type about the target concept and the teacher
answers these reliably. After finitely many steps the learner is required to return
a single hypothesis, which then correctly describes the target concept. Here the
crucial characteristics of the learner are its access to special information on the
target concept and its confinements in terms of mind changes. Since a query
learner identifies the target concept with just a single hypothesis, we allude to
this scheme as one-shot learning.1

Recently, the combination of these two approaches [11, 12] as well as the
common features of learners in either model [14, 15] have gained interest in the
learning theory community. [14, 15] contributes a systematic analysis of common
features of both approaches, thereby focussing on the identification of formal lan-
guages, ranging over indexable classes of recursive languages, as target concepts,
see [2, 13, 19]. Characterising different types of Gold-style language learning in
terms of query learning has pointed out correspondences between the two mod-
els. In particular, [14, 15] demonstrate how learners identifying languages in the
limit can be replaced by one-shot learners without loss of learning power—and
vice versa. That means, under certain circumstances the capabilities of limit
learners are equal to those of one-shot learners using queries. An important pa-
rameter in this context is the range of possible hypothesis spaces/query spaces
used during the learning process. Despite the fundamental differences in the def-
initions of the two learning paradigms, there are strong relations—at least in the
case of learning indexable families of recursive languages.

The latter restriction had initially been made, since many natural language
classes are indexable. Former studies [19] on Gold-style learning of indexable
classes of languages have shown that, in many settings, the enumerability of the
target class may be the crucial reason for positive learnability results. Moreover,
when studying query learning, non-indexable classes have been mainly neglected
up to now. So it is conceivable that the strong relationships between Gold-style
and query learning observed in [14, 15] are not caused by common structures
in the learning processes in both models, but rather by the enumerability of
the target classes or maybe at least by the recursiveness of the target languages
themselves. In order to determine the actual cause for the relationships observed
before, we now lift the analysis thereof onto more complex classes of languages.

Therefore the current paper concerns the relationships of Gold-style learning
and query learning for the case that arbitrary classes of r.e. languages form the

1 Most studies on query learning mainly deal with the efficiency of query learners,
whereas, in what follows, we are only interested in qualitative learnability results.

228 S. Jain, S. Lange, and S. Zilles

target. This is additionally based on the following observation: when trying to
learn a class of recursive languages, a certain type of learner may sometimes be
successful only in case the learner uses a hypothesis space comprising more than
the languages to be learned—such as for instance a hypothesis space given by an
r.e. indexing of r.e. languages. Then a natural question might be whether it is
possible to learn not only the initial target class, but additionally the languages
represented by further queries a learner asks or further hypotheses a learner
states during learning the initial target languages. This again leads to the prob-
lem of learning r.e. languages. Literature, see e.g. [7], knows more examples of
lifting results on learning recursive languages, as in [2], to learning r.e. languages.

From now on assume that arbitrary classes of r.e. languages form the target
classes. Below we prove that in almost all cases, where equivalences between two
learning models A and B had been witnessed for learning indexable classes of
recursive languages, learners of type A can be replaced by learners of type B
without loss of learning power—but no longer vice versa. So, although most of the
equivalences between Gold-style models and query models no longer hold, at least
some of the inclusions hold, thereby forming a hierarchy of inference types. This
shows that huge parts of the relationships shown for learning indexable classes
of recursive languages are maintained; the cause must be common structures of
learning processes in Gold-style and query learning! An important parameter in
the final hierarchy is again the underlying hypothesis space/query space.

Interestingly, all separations of inference types in the final hierarchy can be
witnessed even by (non-indexable) classes of recursive languages. This raises the
question whether the main reason for the equivalence results in [14, 15] is the fact
that the classes considered are enumerable and not that the languages themselves
are recursive. So we analysed whether the results in [14, 15] can be lifted to the
case of learning enumerable classes of r.e. languages. The relationships observed
are somewhat dismal: several of the equivalence results do not hold for learning
enumerable classes of r.e. languages, but at least one of them does. That means
that in most but not in all cases, the main reason for the equivalence results in
[14, 15] lies not only in the enumerability of the target classes.

2 Preliminaries

Familiarity with standard recursion theoretic notions is assumed, see [17, 10].
From now on, a fixed finite alphabet Σ with {a, b} ⊆ Σ is given. A word is
any element from Σ∗ and a language any subset of Σ∗. The complement of a
language L, denoted L, is the set Σ∗ \ L. Any total function t : N → Σ∗ with
{t(i) | i ∈ N} = L is called a text for L. A text t is often identified with an infinite
sequence (t(i))i∈N. Then, given n ∈ N, tn is the initial segment (t(0), . . . , t(n))
and content(tn) denotes the set {t(0), . . . , t(n)}.

In the sequel, ϕ is a Gödel numbering of all partial recursive functions and
K = {i ∈ N | ϕi(i) is defined}. The language family (Wi)i∈N is given by Wi =
{wj | ϕi(j) is defined} for all i ∈ N, where (wj)j∈N is a repetition-free effective
enumeration of Σ∗. Then Wi,s, s ∈ N, is the set of all words wj , such that j < s

Gold-Style and Query Learning Under Various Constraints 229

and ϕi(j) terminates within s steps. Given A ⊆ N, an A-recursive function is a
function recursive using an oracle for the set A.

A family (Ai)i∈N of languages is uniformly recursive (uniformly r.e.) if there
is a recursive (partial recursive) function f such that Ai = {w ∈ Σ∗ | f(i, w) = 1}
for all i ∈ N. For uniformly recursive families membership is uniformly decid-
able. A family (Ai)i∈N is uniformly K-r.e., if there is a recursive function g such
that Ai = {w ∈ Σ∗ | g(i, w, n) = 1 for all but finitely many n} for all i ∈ N. A
class C of recursive languages over Σ∗ is called an indexable class of recursive
languages (or indexable class for short), if there is a uniformly recursive family
(Li)i∈N of all and only the languages in C.

2.1 Gold-Style Language Learning

Let C be a class of r.e. languages, H = (Ai)i∈N a language family (a hypothesis
space). An inductive inference machine (IIM for short) M is an algorithmic
device that reads longer and longer initial segments σ of a text and outputs
numbers M(σ). Returning i, M is construed to hypothesize the language Ai.

The following definition of learning in the limit is based on [9]. Given a text
t for L ∈ C, M identifies L from t with respect to H = (Ai)i∈N in the limit, if
the sequence of hypotheses output by M , when fed t, stabilizes on a number
i (i.e., past some point M always outputs the hypothesis i) with Ai = L. M
identifies C in the limit from text with respect to H, if it identifies every L′ ∈ C
from every text for L′. In what follows, we focus our studies on uniformly r.e.
families as hypothesis spaces. LimTxtr.e. denotes the collection of all classes C′
for which there is a uniformly r.e. hypothesis space H and an IIM M ′ identifying
C′ in the limit from text with respect to H. A quite natural and often studied
modification of LimTxt r.e. is defined by the model of conservative inference, see
[2, 13] for this concept in the context of learning recursive languages. M is a
conservative IIM for C with respect to H = (Ai)i∈N, if M performs only justified
mind changes, i.e., if M , on some text t for some L ∈ C, outputs hypotheses i
and later j, then M must have seen some element w /∈ Ai before returning j.
The collection of all classes identifiable from text by a conservative IIM with
respect to some uniformly r.e. hypothesis space is denoted by ConsvTxt r.e.. Note
that ConsvTxt r.e. ⊂ LimTxt r.e., as witnessed by the indexable class used in
[19] to separate LimTxt-learnable indexable classes from ConsvTxt-learnable
indexable classes. Another often studied version of Gold-style language learning
is behaviourally correct learning [6]: If C is a class of r.e. languages, H = (Ai)i∈N

any hypothesis space, M an IIM, then M is a behaviourally correct learner for
C from text with respect to H, if for each L ∈ C and each text t for L, for all
but finitely many n, AM(tn) = L is fulfilled. Here M may alternate different
correct hypotheses arbitrarily often instead of converging to a single hypothesis.
Defining the notion BcTxt r.e. as usual yields BcTxt r.e. ⊃ LimTxt r.e. [6].

Since we analyse learning from text, we assume in the sequel that all target
languages are non-empty. One main aspect of human learning is modelled in the
approach of learning in the limit: the ability to change one’s mind. Thus learning
is a process in which the learner may change its hypothesis arbitrarily often until

230 S. Jain, S. Lange, and S. Zilles

reaching its final correct guess. In particular, it is in general impossible to find
out when the final hypothesis has been reached, i.e., when a success in learning
has eventuated. The main concern of our analysis will be comparisons of such
inference types to query learning models resulting in a hierarchy reflecting the
capabilities of the corresponding learners.

Finally, note that each class in LimTxtr.e., ConsvTxt r.e., BcTxt r.e. can be
learned using the hypothesis space (Wi)i∈N. We will use this property in our
proofs below. These notions of learning are closely related to the notion of sta-
bilizing sequences [8]. If H = (Ai)i∈N is a hypothesis space, M an IIM, and L
a language, then any finite text segment σ of L is called a LimTxt-stabilizing
sequence (a BcTxt -stabilizing sequence) for M , L, and H, if M(σ) = M(σσ′)
(AM(σ) = AM(σσ′)) for all finite text segments σ′ of L. If L is LimTxt-learned by
M (BcTxt -learned by M) respecting H, then there exists a LimTxt-stabilizing
sequence (a BcTxt -stabilizing sequence) for M , L, and H.

2.2 Language Learning via Queries

In the query learning model, a learner has access to a teacher that truthfully
answers queries of a specified kind. A query learner M is an algorithmic de-
vice that, depending on the reply on the previous queries, either computes a
new query or returns a hypothesis and halts [3]. Its queries and hypotheses are
coded as natural numbers; both will be interpreted with respect to an under-
lying hypothesis space. We adapt Angluin’s original definition here for learning
r.e. languages as follows: when learning a class C of r.e. languages, any family
(Ai)i∈N of languages may form a hypothesis space.

More formally, let C be a class of r.e. languages, let L ∈ C, let H = (Ai)i∈N

be a hypothesis space, let M be a query learner. M learns L with respect to H
using some type of queries if it eventually halts and its only hypothesis, say i,
represents L, i.e., Ai = L. So M returns its unique and correct guess i after
finitely many queries. Moreover, M learns C with respect to H using some type
of queries, if it learns every L′ ∈ C with respect toH using queries of the specified
type. If L is a target language, a query learner M may ask:

Restricted superset queries. The input is an index of a language L′ ∈ C. The
answer is ‘yes’ or ‘no’, depending on whether or not L′ is a superset of L.

Restricted disjointness queries. The input is an index of a language L′ ∈ C. The
answer is ‘yes’ or ‘no’, depending on whether or not L′ and L are disjoint.

The term ‘restricted’ is used to distinguish these inference types from learning
with superset (disjointness) queries, where, with each negative reply to a query
j the learner is provided a counterexample, i.e., a word in L \Aj (in L ∩Aj).

SupQ r.e. and DisQr.e. denote the collections of all classes C′ for which there
is a uniformly r.e. hypothesis space H and a query learner M ′ learning C′ with
respect to H using restricted superset and restricted disjointness queries, re-
spectively. In the sequel we will omit the term ‘restricted’ for convenience and
will again without loss of generality assume that SupQ r.e.-learners and DisQ r.e.-
learners always use the hypothesis space H = (Wi)i∈N. In the literature, see An-
gluin [3, 4], more types of queries, such as (restricted) subset queries, membership

Gold-Style and Query Learning Under Various Constraints 231

queries, and equivalence queries have been analysed, but in what follows we con-
centrate on the two types explained above. Obviously, superset and disjointness
queries are in general not decidable, i.e., the teacher may be non-computable.

Note that, in contrast to the models of Gold-style language learning intro-
duced above, learning via queries focusses the aspect of one-shot learning, i.e., it
is concerned with scenarios in which learning eventuates without mind changes.

3 Learning Indexable Classes of Recursive Languages

Numerous studies on language learning restrict their focus on indexable classes,
since, first, these include many natural classes of languages, and second, many
conceptions can be simplified in this context. In particular, uniformly recursive
families may be considered as hypothesis spaces in the approaches of both Gold-
style and query learning (indicated by a subscript rec instead of r.e.). In this sec-
tion, all results referred to hold for indexable classes only. Recent studies [14, 15]
have shown astonishing relations between the two approaches witnessed by equiv-
alences of pairs of inference types, such as SupQrec = DisQrec = ConsvTxt r.e.

(= ConsvTxt rec, see a result by Jain in [16]) and DisQr.e. = LimTxt r.e.. In these
equalities, all inference types are considered restricted to indexable classes.

Concerning characterisations of SupQr.e. and BcTxt rec by similar means,
oracle-IIMs as well as more general hypothesis spaces have been useful. Firstly,
an oracle-IIM is an IIM which is recursive relative to an arbitrary oracle, i.e. its
computation depends on according to which oracle it currently accesses, see e.g.
[18]. For instance, using a K-oracle, such an IIM M becomes a K-recursive IIM
MK . Thus, e.g., ConsvTxt r.e.[K] denotes the collection of classes ConsvTxt r.e.-
learnable with the help of a K-oracle. Restricting such inference types to index-
able classes, one obtains for instance ConsvTxt r.e.[K] = SupQr.e..

Secondly, in order to characterise BcTxt r.e., uniformly K-r.e. hypothesis
spaces have been introduced for query learning, indicated by a subscript K-r.e. as
in SupQK-r.e.. This has lead to the result SupQK-r.e. = DisQK-r.e. = BcTxt r.e..

ConsvTxtr.e. = SupQrec = DisQrec

LimTxtr.e. = LimTxtrec = ConsvTxtrec[K] = DisQr.e.

ConsvTxtr.e.[K] = SupQr.e.

BcTxtr.e. = LimTxtrec[K] = LimTxtr.e.[K] =
SupQK-r.e. = DisQK-r.e.

�

�

�
Figure 1. This graph illustrates
the relations between different
inference types restricted to in-
dexable classes as studied in [14,
15]. Arrows indicate proper in-
clusions of inference types.

4 Learning Classes of r.e. Languages

In the sequel, a hierarchy as in Figure 1 is established for arbitrary classes of
r.e. languages. A section on query learning with uniformly r.e. hypothesis spaces
is followed by a section dealing with uniformly K-r.e. hypothesis spaces. Note
that indexable hypothesis spaces in general are obsolete here.

232 S. Jain, S. Lange, and S. Zilles

4.1 Results for Uniformly r.e. Hypothesis Spaces

Our first comparison already yields a change to the former hierarchy: when
learning arbitrary classes of r.e. languages, ConsvTxt r.e.-learners can in general
no longer be replaced by DisQ r.e.-learners.

Theorem 1. DisQ r.e.#ConsvTxt r.e..

Proof. DisQ r.e. \ ConsvTxt r.e.
= ∅ follows from Figure 1. For ConsvTxt r.e. \
DisQr.e.
= ∅, consider the following class C.

Let Li = {aibx | x ∈ N}. Let LS
i = {aibx | x ∈ S} for any set S ⊆ N.

Let C1 = {LS
i | i ∈ N, card(S) <∞, ∃e [card(S ∩ {x | x ≤ 2e}) > e + 1]}.

Below, we will define a recursive function f such that, for all i, the following
two properties hold:

(a) Wf(i) ⊆ Li and Wf(i) is recursive (although an index for the characteristic
function of Wf(i) in general cannot be obtained from i);

(b) For all e, card(Wf(i) ∩ {aibx | x ≤ 2e}) ≤ e + 1.
Let C2 = {Wf(i) | i ∈ N}. Let C = C1 ∪ C2. Thus, C is uniformly r.e. and

consists only of recursive languages (however, C is not an indexed family).
C ∈ ConsvTxt r.e. is witnessed by an IIM M which, on target L, first acquires

an i with L ⊆ Li. M outputs f(i), until an e with card({x | aibx ∈ L, x ≤ 2e}) >
e + 1 is found. In the latter case M runs the learning procedure for finite sets.

Let (Mi)i∈N be an enumeration of all DisQ r.e.-learners. We now define f ,
such that (a) and (b) above are fulfilled and for each i, Mi either does not
DisQr.e.-identify Wf(i), or it does not DisQr.e.-identify C1.

For any i, s ∈ N, let W s
f(i) denote the subset of Wf(i) enumerated before

stage s. Let W 0
f(i) = {ai}, i.e., the word ai is enumerated in Wf(i) before stage 0.

Go to stage 0. In general, stage s reads as follows.

- Step 1: Run Mi for s steps, where each disjointness query j (representing
Wj) of Mi is answered ‘yes’, if Wj,s ∩W s

f(i) = ∅; ‘no’ otherwise.
- Step 2: If Mi does not output a hypothesis within s steps, go to stage s+ 1.

Else dovetail steps 2.1 and 2.2 until one of them succeeds. If 2.1 succeeds
before 2.2, then go to stage s + 1, else if 2.2 succeeds, then go to step 3.
(2.1) Find a query j from step 1 which was answered ‘yes’, but Wj∩W s

f(i)
= ∅.
(2.2) Find a query j from step 1 which was answered ‘yes’, and aiby ∈ Wj

for some y > 2s.
- Step 3: Let j, y be as found in step 2.2. Enumerate aiby in Wf(i) and go to

stage s + 1 (otherwise stage s never ends).

Fix i. By construction, Wf(i) fulfils the conditions (a) (as either Wf(i) is finite,
or aibs ∈Wf(i), iff it is enumerated in Wf(i) before stage s) and (b) (as at most
s + 1 elements are enumerated before stage s, and every element enumerated at
or after stage s is of form aiby for some y > 2s). We consider two cases.

Case 1: Stage s starts but does not finish. In this case clearly Wf(i) is finite.
Now, since step 2.1 did not succeed, all questions of Mi in step 1 above for the
input being Wf(i) = W s

f(i), are answered correctly at stage s, and Mi outputs

Gold-Style and Query Learning Under Various Constraints 233

a hypothesis on Wf(i). Furthermore, all questions j of Mi on Wf(i) which are
answered ‘yes’, have the property that Wj ∩ Li is finite (since step 2.2 did not
succeed). Thus, there exists a finite set S with LS

i ∈ C1 such that Mi behaves the
same way on LS

i as it does on Wf(i). To see this, let S = {x | aibx ∈ Wf(i)}∪{z |
e ≤ z ≤ 2e}, where e = 1 + max({y | aiby ∈ Wj for some query j asked by
Mi on input Wf(i), and answered ‘yes’}) (* note that for each question j asked
by Mi on input Wf(i) and answered ‘yes’, Wj ∩ Li is finite *). Now, Mi can
DisQr.e.-identify at most one of Wf(i) and LS

i , both of which are in C.
Case 2: Every stage s ends. Consider the following subcases:
Case 2.1: Mi on Wf(i) asks infinitely many questions or never outputs a

hypothesis. In this case clearly, Mi does not DisQr.e.-identify Wf(i) ∈ C.
Case 2.2: Not case 2.1. In this case let stage s be large enough so that,

if j is a question asked by Mi on Wf(i) (when all the questions are answered
correctly), and Wj ∩Wf(i)
= ∅, then Wj,s ∩W s

f(i)
= ∅. Note that then beyond
stage s all questions of Mi are answered correctly in step 1. Now step 2.1 and
2.2 cannot succeed. Thus the only way infinitely many stages can exist is by Mi

not returning any hypothesis. A contradiction.
From the above cases it follows that Mi does not DisQ r.e.-identify C.
Thus we obtain DisQ r.e.#ConsvTxt r.e.. �

This incoherency holds since presently DisQr.e. no longer equals LimTxtr.e..
However, an inclusion as in Thm. 2 still indicates a relation between Gold-style
and query learning, albeit weaker than when restricted to indexable classes.

Theorem 2. DisQ r.e. ⊂ LimTxtr.e..

Proof. For the inclusion the congruent proof for indexable classes in [14] can be
adopted. The inequality follows from Thm. 1 and ConsvTxt r.e. ⊆ LimTxt r.e.. �

The relationship between LimTxtr.e. and SupQ r.e. remains unchanged from
the former hierarchy, as Thm. 3 shows.

Theorem 3. LimTxt r.e. ⊂ SupQr.e..

Proof. The proof of LimTxt r.e. ⊆ SupQr.e. is omitted. The underlying idea is sim-
ilar to that in the proof of LimTxtr.e. ⊆ DisQ r.e. in [14]. SupQ r.e.\LimTxtr.e.
= ∅
is even witnessed by a uniformly recursive family of languages, see [14]. �

Interestingly, the characterisation SupQr.e. = ConsvTxt r.e.[K] persists when
learning classes of r.e. languages. Here the proof for indexable classes [15] applies.

Theorem 4. SupQr.e. = ConsvTxt r.e.[K].

Though SupQr.e. ⊂ LimTxt r.e.[K] persists (Thm. 5), the relation between
SupQr.e. and BcTxt r.e. changes significantly for arbitrary classes of r.e. languages,
see Thm. 7. The reason is that LimTxt r.e.[K] no longer equals BcTxt r.e. (Thm. 6).

Theorem 5. SupQr.e. ⊂ LimTxt r.e.[K].

Proof. SupQr.e. ⊆ LimTxt r.e.[K] follows from Thm. 4, since LimTxt r.e.[K] com-
prises ConsvTxt r.e.[K]. As BcTxt r.e. \ ConsvTxt r.e.[K]
= ∅ [15], Thm. 4 yields
BcTxt r.e. \ SupQ r.e.
= ∅. Thm. 6 then implies LimTxt r.e.[K] \ SupQr.e.
= ∅. �

234 S. Jain, S. Lange, and S. Zilles

Theorem 6. BcTxt r.e. ⊂ LimTxt r.e.[K].

Proof. To show BcTxt r.e. ⊆ LimTxt r.e.[K] suppose C is a class of r.e. languages
in BcTxt r.e.. Let M be an IIM identifying C behaviourally correctly in (Wi)i∈N.

The following oracle-IIM M ′ LimTxt-identifies C with respect to (Wi)i∈N

using an oracle for K. Given a text segment tn of length n+1, M ′ first computes
M(tn). If n = 0, then M ′(tn) = M(tn). If n > 0, then M ′ uses the K-oracle
to determine whether or not there is a word wx for some x ≤ n, such that
wx ∈ WM(tn)ΔWM ′(tn−1). If no such word exists, then M ′(tn) = M ′(tn−1). Else
M ′(tn) = M(tn). It is not hard to prove that M ′ learns all languages in C in the
limit respecting (Wi)i∈N. Thus BcTxt r.e. ⊆ LimTxt r.e.[K].

LimTxt r.e.[K] \ BcTxt r.e.
= ∅ is witnessed by the class CR = {Lf | f is a
recursive function}, where for each partial recursive function f we define Lf =
{axbf(x) | x ∈ N}. (* CR consists only of recursive languages. *) If CR was
BcTxt -learnable, then the class of all recursive functions would be Bc-learnable
as defined in [5]. The latter contradicts a result in [5]. On the other hand, CR is
SupQr.e.-learnable: if L ∈ CR is the target language, a learner can find the least i
with Lϕi ⊇ L. Then Lϕi must equal L. By Thm. 4, then CR ∈ ConsvTxt r.e.[K] ⊆
LimTxt r.e.[K].2 This establishes BcTxt r.e. ⊂ LimTxt r.e.[K]. �

Theorem 7. BcTxt r.e. # SupQr.e..

Proof. For BcTxt r.e. \ SupQr.e.
= ∅ see [15]. The class CR used to prove Thm. 6
witnesses SupQr.e. \ BcTxt r.e.
= ∅. �

4.2 Results for Uniformly K-r.e. Hypothesis Spaces

Finally, we consider K-r.e. hypothesis spaces for query learning as in [14, 15].
A family (Ai)i∈N is uniformly K-r.e., if there is a recursive function g with
Ai = {w ∈ Σ∗ | g(i, w, n) = 1 for all but finitely many n} for all i ∈ N. As it
turns out, all the equality results from former studies, as illustrated in Figure 1,
now turn into proper inclusions. So, though there are strong relations between
the corresponding inference types, these are not as strong as in the context of
learning indexable classes. Thms. 8 and 9 state this formally.

Theorem 8. LimTxt r.e.[K] ⊂ DisQK-r.e..

Proof. First, we prove LimTxt r.e.[K] ⊆ DisQK-r.e.. For that purpose, suppose
that C is a class of r.e. languages in LimTxtr.e.[K]. Let M be an oracle-IIM
identifying C in the limit with respect to (Wi)i∈N, using a K-oracle.

Suppose L ∈ C is the target language. Let (Vi)i∈N be a uniformly K-r.e.
family, in which grammars for all queries as posed in the instructions below can
be computed (* such a family exists *). A DisQ-learner M ′ for L with respect
to (Vi)i∈N is defined to act on the following instructions, starting in stage 0.
Stage n reads as follows:
2 CR ∈ LimTxtr.e.[K] also follows from a result in [1], which proves that the access to

an oracle for K permits to learn the class of all recursive functions in the limit, as
defined in [9]. This finally yields LimTxtr.e.[K]-learnability of CR.

Gold-Style and Query Learning Under Various Constraints 235

- Ask disjointness queries for {w0}, . . . , {wn}. Let L[n] be the set of words
wx, x ≤ n, for which the corresponding query is answered with ‘no’.
(* Note that L[n] = L ∩ {wx | x ≤ n}. *)

- Let (σn
x)x∈N be an effective enumeration of all finite text segments for L[n].

For all x, y ≤ n compute M(σy
x) (* note that for these computations a

K-oracle must be simulated *) as follows: whenever M wants to access a
K-oracle in order to determine whether k ∈ K for some k ∈ N, then pose a
disjointness query for the language

V ′
k =

{
Σ∗ , if k ∈ K ,

∅ , otherwise .

If the answer is ‘yes’, then transmit the answer ‘no’ to M and vice versa.
- For each x, y ≤ n, pose a disjointness query for the K-r.e. language WM(σy

x).
Let Candn = {σy

x | x, y ≤ n and WM(σy
x) ∩ L = ∅} be the set of those

segments, for which the query has been answered with ‘yes’.
(* Note that Candn = {σy

x | x, y ≤ n and L ⊆WM(σy
x))}. *)

- For all σ ∈ Candn, pose a disjointness query for the K-r.e. language

V ′
σ =

⎧⎪⎨⎪⎩
Σ∗ , if, given access to a K-oracle as requested,

M(σσ′)
= M(σ) for some text segment σ′ of WM(σ) ,

∅ , otherwise .

(* V ′
σ ∩ L = ∅ iff σ is a LimTxt-stabilizing sequence for M and WM(σ). *)

If all these queries are answered ‘no’, then go to stage n+1. Else, if σ ∈ Candn

is minimal with V ′
σ∩L = ∅, then hypothesize a j with Vj = WM(σ) and stop.

M ′ identifies L with disjointness queries in (Vi)i∈N; the proof is omitted. So
C ∈ DisQK-r.e. and LimTxt r.e.[K] ⊆ DisQK-r.e..

LimTxt r.e.[K]
= DisQK-r.e. can be verified as follows:
We say that an oracle-IIM M is nice, if for all oracles A and all languages L, [if

MA has a stabilizing sequence on L, then every text for L starts with a stabilizing
sequence for MA on L]. Note that from any oracle-IIM M , one can effectively
find an oracle-IIM M ′ such that M ′ is nice, and for all A, LimTxtr.e.[A]-identifies
at least as much as M (a construction in [8] can be seen to easily relativize).

Thus, let M0,M1, . . . be a recursive sequence of nice oracle-IIMs, such that
any class in LimTxt r.e.[K] is LimTxt r.e.[K]-identified by some Mi.

Let Xi = {aibx | x ∈ N}. Let ti be the canonical text aib0, aib1, aib2, . . . for
Xi. Let Xn

i = content(tin) = {aibx | x ≤ n}.
Define Li as follows. If there is no stabilizing sequence for MK

i on Xi, then
let Li = Xi. Else, let tin be a stabilizing sequence for MK

i on Xi (where n is
the least non-zero number such that tin is a stabilizing sequence for MK

i on Xi).
Then if WMK

i (ti
n) ⊃ Xn

i , then let Li = Xn
i ; else let Li = Xn+1

i .
Let C = {Li | i ∈ N}. (* Note that C consists only of recursive languages. *)
Note that MK

i does not LimTxt r.e.[K]-identify Li. Thus C /∈ LimTxtr.e.[K].
We now show how to get a K-r.e. grammar for Li from i. This is clearly

enough to verify C ∈ DisQK-r.e. (as i can be obtained by asking disjointness
queries for L0, L1, . . . , until the unique i to cause a ‘no’-reply is found).

236 S. Jain, S. Lange, and S. Zilles

Now aibn ∈ Li iff: (i) n = 0 or
(ii) ∀y ≤ n [tiy is not a stabilizing sequence for MK

i on Xi] or
(iii) ∀y < n [[tiy is not a stabilizing sequence for MK

i on Xi] and WMK
i (ti

n)
⊃ Xn
i].

This is a K-r.e. predicate, hence one can obtain a K-r.e. grammar for Li.

Theorem 9. DisQK-r.e. ⊂ SupQK-r.e..

Proof. First we show DisQK-r.e.⊆SupQK-r.e.. Let C be a class of r.e. languages
DisQ-learnable by some M in a uniformly K-r.e. hypothesis space (Vi)i∈N. Let
(V ′

i)i∈N be a uniformly K-r.e. family, in which grammars for all superset queries
needed below can be computed (* such a family exists *). For a target language
L, an IIM M ′ is defined to execute stage 0.

Stage n: Simulate M . If M poses a disjointness query for Vj , determine the
set Candn of all w ∈ {w0, . . . , wn}, for which a superset query concerning

V ′
w =

{
Σ∗ , if w ∈ Vj ,

∅ , if w /∈ Vj ,

is answered with ‘yes’. (* Candn = {w0, . . . , wn} ∩ Vj . *)
Then pose a superset query for all languages Σ∗ \ {w} with w ∈ Candn. If

all the answers are ‘yes’ (* Candn ∩L = ∅ *), then transmit the answer ‘yes’ to
M , else transmit the answer ‘no’ to M . (* ‘no’-answers are always correct. *)

If M has not returned a hypothesis within n steps, then go to stage n + 1,
else, if M has guessed the language Vi, pose a superset query representing Vi in
(V ′

s)s∈N. If the answer is ‘no’, then go to stage n + 1. If the answer is ‘yes’, then
let J be the set of indices of queries of M , which have been answered with ‘yes’.
For all j ∈ J pose a superset query for

V ′ =

{
Σ∗ , if Vj ∩ Vi
= ∅ ,
∅ , if Vj ∩ Vi = ∅ .

If all these queries are answered ‘no’, then return a grammar for Vi in (V ′
k)k∈N

(* because all queries are then answered correctly for the language Vi ⊇ L and
for L—so the hypothesis Vi of M must be correct for L *). Else go to stage n+1.

It is not hard to show that M ′ learns L respecting (V ′
i)i∈N. So C ∈ SupQK-r.e..

Second, a class in SupQK-r.e. \DisQK-r.e. can be defined as follows.
Let A be a Π3-complete set. Let Li = {aibj+1ax+1 | j, x ∈ N} and Ls

i =
{aibj+1ax+1 | j ∈ N, x ≤ s} for all i, s ∈ N. Finally, let C = {Li | i ∈ A} ∪ {Ls

i |
i /∈ A, s ∈ N}. (* Note that C consists only of recursive languages. *)

We first show C /∈ DisQK-r.e.. Suppose by way of contradiction that M wit-
nesses C ∈ DisQK-r.e. in some uniformly K-r.e. family (Vi)i∈N. We establish a
contradiction by concluding A ∈ Σ3, though A is Π3-complete. For that pur-
pose, fix recursive sets Q,R with i ∈ A iff ∀x ∃y ∀z [Q(i, x, y, z)]; w ∈ Vi iff
∃y ∀z [R(i, w, y, z)]. Define a Σ3-procedure P on input i ∈ N to begin in stage 0.

Stage n: a) Test whether or not ∃y ∀z [Q(i, n, y, z)] is true. If not, then stop
with the output ‘i /∈ A’. Else go to b).

b) Simulate M for n + 1 steps. Thereby, whenever M poses a disjointness
query k, transmit the answer ‘yes’ to M in case ∃j, x ∃y ∀z [R(k, aibj+1ax+1, y, z)]

Gold-Style and Query Learning Under Various Constraints 237

is not true (* i.e., if Li∩Vk = ∅ *); the answer ‘no’, otherwise. In case M does not
return any hypothesis within n+ 1 steps of computation, go to stage n+ 1. Else
stop with the output ‘i ∈ A’. (* If i /∈ A, then there would be some s, such that,
in the scenario above, all answers transmitted to M would be correct for the
languages Ls

i , Ls
i+1, Ls

i+2, . . ., which would all belong to C. Since M returns a
hypothesis, M would fail for infinitely many languages in C—a contradiction. *)

P decides A in Σ3. This contradiction implies that C /∈ DisQK-r.e..
We now show that C ∈ SupQK-r.e..
Let qi

x(t) = min({t} ∪ {r ≤ t | ∀z ≤ t [Q(i, x, r, z)]}). Note that qi
x(t) is

recursive, and limt→∞ qi
x(t) exists iff ∃y ∀z [Q(i, x, y, z)] is true. Let

fi(u, t) =

{
1 , if ∀x ≤ u [qi

x(t) = qi
x(t + 1)] ,

0 , otherwise .

It is easy to verify that Xi = {wu | limt→∞ fi(u, t) = 1}, is finite if i /∈ A, and
equal to Σ∗, if i ∈ A. Moreover, fi is a K-r.e. function for Xi. Thus, a K-r.e.
grammar for Xi can be obtained effectively from i.

Now define M as follows. For a target language L, query Σ∗ \ {aibj+1ax+1},
for various values of i, j, x, until i, j, x are found such that Σ∗\{aibj+1ax+1}
⊇ L.
By definition of C, this implies that L is of the form Li or Ls

i for some s ∈ N.
Now, pose a superset query for Xi. Note that if i ∈ A, then Xi = Σ∗ ⊇ L, and if
i /∈ A, then Xi
⊇ L (as Xi would then be finite, while L is infinite). Thus M can
determine whether or not i ∈ A. If i ∈ A, then M outputs a grammar for Li.
If not, then M searches for the minimal s ∈ N such that Ls

i ⊇ L. Now L = Ls
i ,

and M can output a grammar for Ls
i . Thus C ∈ SupQK-r.e. \DisQK-r.e.. �

ConsvTxtr.e. DisQr.e.

LimTxtr.e.

ConsvTxtr.e.[K]

= SupQr.e.

BcTxtr.e.

LimTxtr.e.[K]

DisQK-r.e.

SupQK-r.e.

� ���

����

� ���

�

� Fig. 2. This graph illustrates
the relations between different
inference types studied above.
Arrows indicate proper inclu-
sions of inference types. Two in-
ference types which are not con-
nected by a path of arrows are
incomparable.

5 Discussion

Above we have seen that many of the equivalences of Gold-style and query
inference types in the context of learning indexable classes no longer hold, if
arbitrary target classes of r.e. languages are considered. Nevertheless, these two
approaches of learning reveal strong relations, expressed in an inclusion hierarchy

238 S. Jain, S. Lange, and S. Zilles

of inference types. Altogether, this shows that in many cases all learners of the
one kind of inference types can be transformed into learners of the other kind
without loss of learning power, though in general not vice versa. Interestingly,
our proofs for the inclusions are constructive, i.e. the transformations of learners
can be done uniformly and indicate the essential reasons for the strong relations.

Another outcome is that all our separation results are witnessed by classes
of recursive languages: SupQr.e. \ LimTxt r.e.
= ∅, BcTxt r.e. \ SupQr.e.
= ∅, and
LimTxt r.e.[K] \ SupQr.e.
= ∅ are obtained in [14, 15] using indexable classes
of recursive languages; the other separations displayed in Figure 2 have been
verified with non-indexable classes of recursive languages. For the latter, note
that all classes used in our proofs above consist only of recursive languages. Of
course these proofs would not have worked with indexable classes of recursive
languages, since the corresponding separations do not hold for indexable classes,
see Figure 1. So the equalities are not due to the recursiveness of the target lan-
guages alone. The fact that the target classes are indexable is crucial. This raises
the question whether the new inequalities obtained above hold for uniformly r.e.
classes. As it turns out, at least one of them does not, while some of them do.

When restricting the focus to learning indexable classes, [14] has shown
that the capabilities of DisQK-r.e.-learners and LimTxt r.e.[K]-learners are equal,
which does not hold for general classes of recursive languages, as witnessed in
the proof of Thm. 8. Interestingly, the enumerability of the target class is the
crucial reason for the equality result in [14], as the following theorem illustrates.

Theorem 10. Let C be uniformly r.e. Then C ∈DisQK-r.e. iff C ∈LimTxt r.e.[K].

Proof. LimTxt r.e.[K] ⊆ DisQK-r.e. by Thm. 8. So suppose C ∈ DisQK-r.e. is
uniformly r.e. Let f be a recursive function such that C = {Wf(i) | i ∈ N}. Let
M be a DisQK-r.e.-learner for C in a K-r.e. hypothesis space (Vi)i∈N. Let g be a
recursive function such that w ∈ Vi iff limt→∞ g(i, w, t) = 1.

The idea is to construct a LimTxt r.e.[K]-learner M ′ for C by simulating M .
Given a text segment tn, M ′ searches for a language in C, which is consistent
with tn and for which the behaviour of the known learner M seems reasonable,
at least when taking tn into consideration. The length of the given text segment
serves as a bound for M ′ when trying to analyse whether the behaviour of M is
reasonable. Define M ′(tn) (using an oracle for K) as follows:

– If there exists a j ≤ n such that the following three conditions are satisfied:
1. content(tn) ⊆Wf(j).
2. M outputs a hypothesis if the questions k of M are answered as follows:

– ‘no’, if there exists a w ∈ content(tn) with g(k, w, n′) = 1 for all n′ ≥ n.
– ‘yes’, otherwise.

3. For any query k made by M in the simulation in 2 above:
if there exists a w ∈ Wf(j),n with g(k, w, n′) = 1 for all n′ ≥ n, then
there also exists a w ∈ content(tn) with g(k, w, n′) = 1 for all n′ ≥ n.
(* i.e., the seeming ‘yes’-answers for content(tn) as a target language
also seem to be ‘yes’-answers for Wf(j) as a target language *).

then output f(j) for the least such j. Else output 0.

Gold-Style and Query Learning Under Various Constraints 239

Note that these simulations can be done using an oracle for K. We now claim
that M ′ LimTxt r.e.-identifies C using a K-oracle. To see this, suppose L ∈ C and
t is a text for L. Let j be minimal with Wf(j) = L. Fix n large enough such that:

A. If all the questions of M are answered correctly in the simulation made
by M ′(tn), then M outputs a hypothesis.

B. j ≤ n.
C. Let Q denote the set of questions asked as in A above. Then, for all k ∈ Q,

if Vk∩L
= ∅, then for some w ∈ content(tn), for all n′ ≥ n, g(k, w, n′) = 1 (* i.e.,
answers can be given correctly based on tn *).

D. For all j′ < j, if Wf(j′)
⊇ L, then Wf(j′)
⊇ content(tn).
E. For all j′ < j, if Wf(j′) ⊃ L, then for some k ∈ Q with Vk ∩ L = ∅ and

x ∈ Wf(j′),n, for all n′ ≥ n, g(k, x, n′) = 1.
Such an n exists (for (A–D), clearly; for (E), if for j′ < j no such n existed,

then tn could be extended to a text segment for Wf(j) and Wf(j′), with answers
as in (A) being correct for both Wf(j) and Wf(j′). So M would fail to DisQ r.e.-
learn at least one of them). Now, M ′(tn′) = f(j) follows for all n′ ≥ n. �

For the other separations, except for SupQK-r.e. \DisQK-r.e.
= ∅, we will now
prove that even enumerability of the target class is not sufficient for achieving
the equality results from [14, 15]. Whether or not a similar result holds for the
separation of SupQK-r.e. and DisQK-r.e., remains an open question.

Theorem 11. 1. There exists a uniformly r.e. class in LimTxtr.e. \DisQ r.e..
2. There exists a uniformly r.e. class in SupQr.e. \ BcTxt r.e..
3. There exists a uniformly r.e. class in LimTxtr.e.[K] \ BcTxt r.e..

Proof. ad 1. This is already witnessed by the proof of Thm. 2, where a uniformly
r.e. class of recursive languages is used for the separation.

ad 2 and 3. The idea is to use a class comprising the class CR used in the
proof of Thm. 6. For that purpose, choose a uniformly r.e. family (Li)i∈N of
recursive languages satisfying the following demands:

– for all i ∈ N, Li is either finite or Li ∈ CR,
– for all L ∈ CR there is some i ∈ N such that L = Li,
– L0 = ∅,
– for all i, j ∈ N with Li
= ∅, if Li ⊂ Lj , then i < j.

Such a family can be constructed with standard methods. Now, if C = {Li | i ∈
N}, then C obviously comprises CR and thus C /∈ BcTxt r.e.. In contrast to that,
C ∈ SupQr.e.: for identifying some L ∈ C a query learner can find the least i such
that Li ⊇ L. The properties of C then imply Li = L.

Thus, C ∈ SupQr.e. and, by Thm. 5, also C ∈ LimTxt r.e.[K]. �

Thus we have seen that in several cases the equivalence results for index-
able classes from previous work are diminished to strict inclusions, regardless of
whether or not the target class (i) consists of recursive languages only, or (ii)
is enumerable (the latter with one exception, see Thm. 10). This shows that

240 S. Jain, S. Lange, and S. Zilles

indexable target classes yield a specific situation for Gold-style and query learn-
ing. Strong relationships between the two models are already witnessed in the
general case of learning arbitrary classes of r.e. languages, but only a restriction
to even indexable target classes further intensifies these relationships.

Acknowledgement. Many thanks are due to the anonymous referees for their
helpful comments, especially, for a simplified proof of Theorem 11–(2).

References

[1] L. Adleman, M. Blum. Inductive inference and unsolvability. J. Symbolic Logic,
56:891–900, 1991.

[2] D. Angluin. Inductive inference of formal languages from positive data. Inform.
Control, 45:117–135, 1980.

[3] D. Angluin. Queries and concept learning. Machine Learning, 2:319–342, 1988.
[4] D. Angluin. Queries revisited. Theoret. Comput. Sci., 313:175–194, 2004.
[5] J. Barzdins. Two theorems on the limiting synthesis of functions. Theory of

Algorithms and Programs, Latvian State University, Riga 210:82–88, 1974.
[6] J. Case, C. Lynes. Machine inductive inference and language identification. In:

Proc. ICALP 1982, LNCS 140, pp. 107–115, Springer, 1982.
[7] D. De Jongh, M. Kanazawa. Angluin’s theorem for indexed families of r.e. sets

and applications. In: Proc. COLT 1996, pp. 193–204, ACM Press, 1996.
[8] M. Fulk. Prudence and other conditions for formal language learning. Inform.

Comput., 85:1–11, 1990.
[9] E.M. Gold. Language identification in the limit. Inform. Control, 10:447–474,

1967.
[10] J. E. Hopcroft, J.D. Ullman. Introduction to Automata Theory, Languages, and

Computation. Addison-Wesley Publishing Company, 1979.
[11] S. Jain, E. Kinber. Learning languages from positive data and negative coun-

terexamples. In: Proc. ALT 2004, LNAI 3244, pp. 54–68, Springer, 2004.
[12] S. Jain, E. Kinber. Learning languages from positive data and a finite number of

queries. In: Proc. FST&TCS 2004, LNAI 3328, pp. 360–371, Springer, 2004.
[13] S. Lange, T. Zeugmann. Language learning in dependence on the space of hy-

potheses. In: Proc. COLT 1993, pp. 127–136, ACM Press, 1993.
[14] S. Lange, S. Zilles. Replacing limit learners with equally powerful one-shot query

learners. In: Proc. COLT 2004, LNAI 3120, pp. 129–143, Springer, 2004.
[15] S. Lange, S. Zilles. Comparison of query learning and Gold-style learning in

dependence of the hypothesis space. In: Proc. ALT 2004, LNAI 3244, pp. 99–113,
Springer, 2004.

[16] S. Lange, S. Zilles. Relations between Gold-style learning and query learning.
Submitted to Inform. Comput.

[17] H. Rogers, Jr. Theory of Recursive Functions and Effective Computability, MIT
Press, 1987.

[18] F. Stephan. Degrees of Computing and Learning. Habilitationsschrift, Ruprecht-
Karls-Univ., Heidelberg, 1999.

[19] T. Zeugmann, S. Lange. A guided tour across the boundaries of learning recursive
languages. In: Algorithmic Learning for Knowledge-Based Systems, LNAI 961,
pp. 190–258, Springer, 1995.

Non U-Shaped Vacillatory and Team Learning

1 Department of Computer and Information Sciences, University of Delaware,
Newark, DE 19716-2586,USA and Dipartimento di Matematica, Università di Siena,

Pian dei Mantellini 44, Siena, Italy
carlucci5@unisi.it

2 Department of Computer and Information Sciences, University of Delaware,
Newark, DE 19716-2586,USA

case@cis.udel.edu
3 School of Computing, 3 Science Drive 2, National University of Singapore,

Singapore 117543
sanjay@comp.nus.edu.sg

4 School of Computing and Department of Mathematics, National University of
Singapore, 3 Science Drive 2, Singapore 117543

fstephan@comp.nus.edu.sg

Abstract. U-shaped learning behaviour in cognitive development in-
volves learning, unlearning and relearning. It occurs, for example, in
learning irregular verbs. The prior cognitive science literature is occu-
pied with how humans do it, for example, general rules versus tables of
exceptions. This paper is mostly concerned with whether U-shaped learn-
ing behaviour may be necessary in the abstract mathematical setting of
inductive inference, that is, in the computational learning theory follow-
ing the framework of Gold. All notions considered are learning from text,
that is, from positive data. Previous work showed that U-shaped learn-
ing behaviour is necessary for behaviourally correct learning but not for
syntactically convergent, learning in the limit (= explanatory learning).
The present paper establishes the necessity for the whole hierarchy of
classes of vacillatory learning where a behaviourally correct learner has
to satisfy the additional constraint that it vacillates in the limit between
at most k grammars, where k ≥ 1. Non U-shaped vacillatory learning is
shown to be restrictive: Every non U-shaped vacillatorily learnable class
is already learnable in the limit. Furthermore, if vacillatory learning with
the parameter k = 2 is possible then non U-shaped behaviourally cor-
rect learning is also possible. But for k = 3, surprisingly, there is a class
witnessing that this implication fails.

1 Introduction and Motivation

U-shaped learning is a learning behaviour in which the learner first learns the
correct behaviour, then abandons the correct behaviour and finally returns to

� Supported in part by NSF grant number NSF CCR-0208616.
�� Supported in part by NSF grant number NSF CCR-0208616.

� � � Supported in part by NUS grant number R252–000–127–112.
† Supported in part by NUS grant number R252–000–212–112.

Lorenzo Carlucci1,�, John Case2,��, Sanjay Jain3,� � �, and Frank Stephan4,†

S. Jain, H.U. Simon, and E. Tomita (Eds.): ALT 2005, LNAI 3734, pp. 241–255, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

the correct behaviour once again. This pattern of learning behaviour has been
observed by cognitive and developmental psychologists in a variety of child de-
velopment phenomena, such as language learning [6, 15, 22], understanding of
temperature [22], understanding of weight conservation [5, 22], object perma-
nence [5, 22] and face recognition [7].

The case of language acquisition is paradigmatic. In the case of the past tense
of english verbs, it has been observed that children learn correct syntactic forms
(call/called, go/went), then undergo a period of overregularization in which they
attach regular verb endings such as ‘ed’ to the present tense forms even in the
case of irregular verbs (break/breaked, speak/speaked) and finally reach a final
phase in which they correctly handle both regular and irregular verbs. The irreg-
ular verb examples of U-shaped learning behaviour has figured so prominently
in the so-called “Past Tense Debate” in cognitive science that competing models
of human learning are often judged on their capacity for modeling the U-shaped
learning phenomenon [15, 19, 23].

The prior literature is typically concerned with modeling how humans achieve
U-shaped behaviour. Recently, Baliga, Case, Merkle, Stephan and Wiehagen [1]
looked at abstract mathematical models which give some indication why humans
exhibit this seemingly inefficient behaviour. Is it a mere harmless evolutionary
accident or is it necessary for full human learning power? Specifically, are there
some learning tasks for which U-shaped behaviour is logically necessary? In the
present paper we continue this line of work.

In order to explain our results, we have to be a bit more formal. Although
we refer to Section 2 below for an explanation of the mathematical terms used,
we summarize for the reader’s convenience the basics of inductive inference, that
is, Gold’s formal model of language learning from positive data [13].

The learning task is given by a subclass C of the class of all recursively
enumerable (r.e.) subsets of the natural numbers which are indexed by natural
numbers in an acceptable way [16, Section II.5]. The learner is then required to
learn all the languages in the class C. Here, a learner M learns a language L if it
produces, in parallel to reading a text for L (that is, an infinite sequence of all
elements of L in arbitrary order), a sequence e0, e1, . . . of hypotheses such that
almost all of these hypotheses are the same index/grammar of the set L. This
criterion is called TxtEx and stands for “explanatory learning from text” (see
[13]).

The above criterion has been relaxed to TxtBc [9, 17] where it is only re-
quired that almost all en are grammars for L, but each en can be different from
all previous ones. This criterion TxtBc is more general than TxtEx since lan-
guages have infinitely many grammars and the equality problem of the grammars
is undecidable.

TxtFexb [8] is the intermediate criterion where the learner succeeds iff there
is an n such that {en, en+1, . . .} is actually a finite set of up to b correct gram-
mars; the learner is then said to vacillate between these grammars. The criteria
TxtFex1,TxtFex2, . . . ,TxtFex∗ form a proper hierarchy between TxtEx and
TxtBc.

242 L. Carlucci et al.

Within this paper we continue the investigation of these standard criteria
with the requirement that the learner is non U-shaped (which would require
that en+1 generates the language to be learnt whenever en does).

Baliga, Case, Merkle, Stephan and Wiehagen [1] initiated the Gold style
learning theoretic study of U-shaped learning behaviour and showed that it is
circumventable for TxtEx-learning, see Theorem 5. In contrast to this, Fulk,
Jain and Osherson’s proof of [12, Theorem 4] shows that U-shaped learning
behaviour is necessary for the full learning power of TxtBc-learning. We show
in Theorem 7 below that U-shaped learning behaviour is also necessary for full
learning power for the whole hierarchy of the learning criteria TxtFexb strictly
between TxtEx and TxtBc. While Case [8] proved that the TxtFexb criteria
form a hierarchy of more and more powerful learning criteria, Theorem 7 of the
present paper shows that non U-shaped TxtFexb-learners are not more powerful
than TxtEx-learners. In other words, there are classes of languages that can be
TxtFexn-identified, for n > 1, but these learners must be U-shaped on some
texts.

What if we consider the more liberal criterion TxtBc? Our Theorem 18
strengthens the collapse result of Theorem 7 considerably by showing that there
are classes in TxtFex3 that cannot be TxtBc-learned by a non U-shaped
learner. This means that U-shaped learning behaviour cannot be dispensed with
for learning such classes, even if we only require behavioural convergence and
permit convergence to possibly infinitely many syntactically different correct hy-
potheses. By contrast, one of our main results, Theorem 17, shows that every
class of languages that can be TxtFex2-identified can be TxtBc-identified by a
non U-shaped learner. Hence, for only this early stage of the hierarchy, the cases
in which TxtFex2-identification necessitates U-shaped learning behaviour can
be circumvented by shifting to TxtBc-identification.

A further interesting aspect is that this paper gives a close relation between
vacillatory learning and team learning. Theorem 2 gives the basic connection:
A class is TxtFexb-learnable iff there is a team of b learners where all team-
members converge on every text of a language to be learned and at least one
of the team-members has to be correct. Furthermore, in Sections 3 and 5 some
general inclusions for non U-shaped team learning are established.

We note that the relevance of Gold style learning to cognitive science has
been supported in the cognitive science literature, for example, in [14, 18]. The
publications [8, 24] critically discuss the relevance of the well studied criterion
TxtBc to human learning; in order to avoid a mere interpolation of the data,
one might want that a learner does not generate larger and larger hypotheses
but tries to concentrate on finding a few correct ones. When TxtEx-learning is
impossible, this can only be done by vacillating between some few hypotheses.
Case [8] formalized this approach by introducing the criteria TxtFexb for small,
feasibly sized b > 1. Case also argues that these criteria may better fit the human
case than the TxtEx criterion. Certainly, then, the new results of the present
paper, regarding, for example, the TxtFex3 criterion are of interest for cognitive
science, and may inform regarding the human case.

Non U-Shaped Vacillatory and Team Learning 243

2 Preliminaries

N denotes the set of natural numbers, {0,1,2,. . . }. card(D) denotes the cardi-
nality of a set D. card(D) ≤ ∗ means that card(D) is finite. The symbol ∗ is
used to denote the “finite with no preassigned bound”. The symbols ⊆,⊂,⊇,⊃
respectively denote the subset, poper subset, superset and proper superset rela-
tion between sets. The quantifiers ∀∞ and ∃∞ mean “for all but finitely many”
and “there exists infinitely many”, respectively.

A pair 〈·, ·〉 stands for an arbitrary, computable one-to-one encoding of all
pairs of natural numbers onto N [20]. Similarly we can define 〈·, . . . , ·〉 for en-
coding n-tuples of natural numbers, for n > 1, onto N.

ϕ denotes a fixed acceptable programming system for the partial-recursive
functions [20]. ϕe denotes the partial-recursive function computed by the pro-
gram with code number e in the ϕ-system. We will unambiguously refer to pro-
grams using their code number in the ϕ-system. We denotes domain of ϕe. We,s

denotes We enumerated within s computation stages [4]. For our purposes, we
need We,s to satisfy the following additional constraints, which can be easily en-
sured using standard techniques: (a) We,s ⊆ {0, . . . , s−1}, (b) {(x, s) : x ∈We,s}
is primitive recursive for all e and (c) for every primitive-recursive enumeration
As of some set A with A0 = ∅ ∧ (∀s) [As ⊆ As+1 ⊆ {0, . . . , s}] there is an in-
dex e with (∀s) [We,s = As]; furthermore, e can be computed from an index of
the enumeration for As. Any unexplained recursion-theoretic notions are from
[16, 20].

We now introduce the basic definitions of Gold-style computational learning
theory.

A sequence σ is a mapping from an initial segment of N into N ∪ {#}. An
infinite sequence is a mapping from N into N ∪ {#}. The content of a finite or
infinite sequence σ is the set of natural numbers occurring in σ and is denoted
by content(σ). The length of a sequence σ is the number of elements in the
domain of σ and is denoted by |σ|. For a subset L of N, seg(L) denotes the set
of sequences σ with content(σ) ⊆ L. An infinite sequence T is a text for L iff
L = content(T).

Intuitively, a text for a language L is an infinite stream or sequential presenta-
tion of all the elements of the language L in any order with the #’s representing
pauses in the presentation of the data. For example, the only text for the empty
language is an infinite sequence of #’s. Furthermore, T [n] denotes the first n
elements of a text T : N→ N ∪ {#}.

A learner will map sequences from (N ∪ {#})∗ to hypotheses. These are
represented by natural numbers and interpreted as codes for programs in the ϕ-
system. M, with possible superscripts and subscripts, is intended to range over
language learning machines.

Definition 1. [1, 2, 8, 9, 10, 13, 17] A language learning machine M is a com-
putable mapping from seg(N) into N. M TxtBc-learns a class L of r.e. languages
iff for every L ∈ L and every text T for L, almost all hypotheses M(T [n]) are
indices for the language L to be learned.

244 L. Carlucci et al.

A TxtBc-learner M for L is a TxtFex∗-learner iff for every L ∈ L and every
text T for L the set {M(T [n]) : n ∈ N} is finite.

A TxtFex∗-learner M for L is a TxtFexb-learner for a b ∈ {1, 2, . . .} iff
there are for every L ∈ L and every text T for L at most b indices which M
outputs infinitely often, that is, |{e : (∃∞n) [e = M(T [n])]}| ≤ b.

A TxtBc-learner M for L is a TxtEx-learner iff for every L ∈ L and every
text T for L almost all hypotheses M(T [n]) are the same grammar for L.

A TxtBc-learner M for L is non U-shaped iff for every L ∈ L and every
text T for L there are no three numbers k,m, n such that k < m < n and
WM(T [k]) = L, WM(T [m]) �= L and WM(T [n]) = L. Furthermore, NUShTxtBc-
learners, NUShTxtFexb-learners and NUShTxtEx-learners (for a class L) are
those learners which are non U-shaped and at the same time a TxtBc-learner,
TxtFexb-learner and TxtEx-learner, respectively (for L).

The criteria TxtBc, TxtFexb, TxtEx, NUShTxtBc, NUShTxtFexb,
NUShTxtEx are the sets consisting of all those classes which are learnable
by a learner satisfying the respective above defined requirements.

The historically most important learning criterion is TxtEx where the learner
has to converge syntactically to a single index of the language to be learned
[13]. TxtEx stands for “explanatory identification from text”. Intuitively, the
notion TxtBc captures what could be called learning in the most general sense,
where “Bc” stands for “behaviourally correct” identification. In this, the learner
outputs correct grammars almost always. A class L of r.e. languages is TxtFexb

identified by a machine M iff when M is given as input any listing T of any
L ∈ L, it outputs a sequence of grammars such that, past some point in this
sequence, no more than b syntactically different grammars occur and each of
them is a grammar for L. TxtFex stands for ‘finite explanatory identification
from text’. TxtFex1 is equivalent to TxtEx. Osherson and Weinstein [17] first
studied the case with b = ∗, later Case [8] studied the whole hierarchy with
b ∈ N+.

We say σ is a TxtEx-stabilizing-sequence [11] for a learner M on a set L
iff σ ∈ seg(L) and M(στ) = M(σ) for all τ ∈ seg(L). Furthermore a TxtEx-
stabilizing-sequence σ is called a TxtEx-locking-sequence [3] for M on L iff
WM(σ) = L. Note that stabilizing and locking sequence definitions can be
generalized to other learning criteria such as TxtFex and TxtBc; we often
drop “TxtEx” (respectively, “TxtBc”, “TxtFex”) from “TxtEx-stabilizing-
sequence” and “TxtEx-locking-sequence”, when it is clear from context.

Smith [21] studied learning by teams of machines, and, we can show vacilla-
tory learning can be characterized by teams as follows.

Theorem 2. A class L has a TxtFexb-learner iff there is a team of b machines
N1, . . . ,Nb such that for every L ∈ L and for every text T for L, each machine
Na converges to a single index ea and at least one of these indices ea is an index
for L.

Case [8] showed TxtFex1 ⊂ TxtFex2 ⊂ . . . ⊂ TxtFex∗, as stated in the
following Theorem.

Non U-Shaped Vacillatory and Team Learning 245

Theorem 3. [8] For b ∈ {1, 2, . . .}, Hb = {We : e ∈ We ∧ |We ∩ {0, . . . , e}| ≤
b+ 1} is in TxtFexb+1−TxtFexb and H∗ = {We : We �=∅ ∧ e≤min(We)} is in
TxtFex∗−

⋃
b∈{1,2,...}TxtFexb.

Proposition 4. NUShTxtBc �⊆ TxtFex∗.

The next theorem is from [1] and states that being non U-shaped is not restrictive
for TxtEx-learning. Its proof can also be obtained by letting b = 1 in Theorem 12
below. Its fundamental equality will be extended to all classes NUShTxtFexb

in Theorem 7.

Theorem 5. [1] NUShTxtEx = TxtEx.

Hence, for TxtEx, U-shaped behaviour is not necessary for full learning power.
By contrast, an easy adaptation of the proof of Theorem 4 in [12] shows that,
for TxtBc, U-shaped behaviour is necessary for full learning power.

Theorem 6. [1, 12] NUShTxtBc ⊂ TxtBc.

We show that the TxtFexb-hierarchy collapses if U-shaped behaviour is forbid-
den.

Theorem 7. NUShTxtFex∗ ⊆ TxtFex1.

Proof. Let L ∈ NUShTxtFex∗ and let M be a learner witnessing this fact.
We define a new learner N witnessing that L ∈ TxtFex1 as follows.

On a text T , N keeps a list of all of M’s conjectures in order of appearance
and without repetitions and outputs the most recent entry in the list.

If T is a text for a language L ∈ L, then M outputs on T only finitely many
different hypotheses and at least one of them, say e, infinitely often, and We = L.
Furthermore, N converges to that hypothesis e′ which goes into the list last. If
e = e′ then N is correct on T . If e �= e′ then M has output e′ the first time after
having already output e at least once. Since M is not U-shaped and e is correct,
so is e′. Thus N is correct on T again.

Theorems 5 and 7 give NUShTxtFex1 = TxtFex1 and NUShTxtFex∗ ⊆
NUShTxtFex1. Furthermore, the definition of NUShTxtFexb immediately
gives NUShTxtFex1 ⊆ NUShTxtFexb ⊆ NUShTxtFex∗. Thus all these
criteria coincide.

Corollary 8. (∀b ∈ {1, 2, . . . , ∗}) [NUShTxtFexb = TxtFex1].

The result NUShTxtFex1 = TxtFex1 stands in contrast to the fact that
TxtFex1 ⊂ TxtFex2 ⊂ . . . ⊂ TxtFex∗. Thus we have that the following
inclusions are proper.

Corollary 9. (∀b ∈ {2, 3, . . . , ∗}) [NUShTxtFexb ⊂ TxtFexb].

3 Non U-Shaped Vacillatory Learning

246 L. Carlucci et al.

Corollaries 8 and 9 show that U-shaped learning behaviour is necessary for the
full learning power of TxtFexb-identification for b > 1 in a strong sense: if
U-shaped learning behaviour is forbidden, the hierarchy collapses to TxtFex1.
Hence, TxtFex∗-learnability of any class in (TxtFex∗ −TxtFex1) requires U-
shaped learning behaviour.

Corollary 10. Let b ∈ {1, 2, . . . , ∗} and Hb be the class from Theorem 3. Then
any machine witnessing Hb ∈ TxtFexb+1 necessarily employs U-shaped learning
behaviour on Hb.

A non U-shaped learner does not make a mind change from a correct to an
incorrect hypothesis since it cannot learn the set otherwise. This property is
enforced on all machines for the case of team learning.

Definition 11. A team learning a class L is non U-shaped iff no machine in
the team on any text for any language L ∈ L ever makes a mind change from
an index for L to an index for a different language. In particular, the class L
is in [a, b]NUShTxtEx iff there are b machines such that on any text for any
language in L at least a machines converge to an index for that language and no
machine makes a mind change from a correct to an incorrect hypothesis. For any
learning criterion I, [a, b]I is the corresponding team variant of this criterion.

The next result shows that Theorem 2 can be extended such that every
class in TxtFexb is learnable by a non U-shaped team. So the restriction
NUShTxtFexb = TxtFex1 is caused by the fact that the hypothesis of the
learner have to be brought into an ordering and cannot be done in parallel as
in the case of the team below. Actually Theorem 12 enables us to achieve more
properties of the team than that it is just non U-shaped.

Theorem 12. Let b ∈ N+ and L ∈ TxtFexb. Then there is a team of b learners
M1, . . . ,Mb such that for all L ∈ L and all texts T for L there is an n ∈ N such
that,

(1) T [n] is a stabilizing sequence of all members of the team on L, in
particular, Ma(T [m]) = Ma(T [n]) for all m ≥ n;

(2) there is an a ∈ {1, . . . , b} such that Ma(T [n]) is an index for L;
(3) if a ∈ {1, . . . , b} and Ma(T [m]) is an index for L then m ≥ n.

In particular, M1, . . . ,Mb [1, b]NUShTxtEx-learns L.

Proof. By Theorem 2 there is a team N1, . . . ,Nb of TxtEx-learners for L such
that for every L ∈ L and every text T for L, every machine converges on T to
some hypothesis and at least one of these hypotheses is an index for L.

The basic idea of the proof is to search for a σ ∈ seg(L), which is a TxtEx-
stabilizing-sequence for each member of the team N1, . . . ,Nb on L. Additionally,
we will also find a maximal set D ⊆ {1, . . . , b} such that σ is a stabilizing
sequence for each Ni, i ∈ {1, . . . , b} on WNj(σ), j ∈ D. Before such σ,D, is
obtained, we will make sure that the output of Ma below is not a grammar for

Non U-Shaped Vacillatory and Team Learning 247

L. Once such σ,D is obtained, we will have that the learners Ma do not change
their hypothesis and one of them correctly outputs a grammar for L. We now
proceed formally.

Let E to be an infinite recursive set such that E ∪ Ẽ /∈ L for all finite sets
Ẽ. Such an E can be defined as follows. Let M be a TxtFexb-learner for L. If
N /∈ L, then let E = N. If N ∈ L, then there exists a TxtFexb-locking sequence
σ′ for M on N. Now we can take E to be any infinite and coinfinite recursive set
such that content(σ′) ⊆ E.

Let σ � τ denote that content(σ) ⊆ content(τ) and |σ| ≤ |τ |. Furthermore,
let Te be the canonical text for We, that is, Te is the text generated by some
standard enumeration of We.

As long as the content of the input is ∅ or no σ is found in the algorithm
below, all machines M1, . . . ,Mb output the least index of ∅. The σ searched for
on input τ = T [t] has to satisfy the following conditions:

(a) σ � T [t] and content(σ) �= ∅;
(b) Na(ση) = Na(σ) for all a ∈ {1, . . . , b} and η � T [t].

Once having σ, this is only replaced by a σ′ on a future input T [t′] iff σ′ but not
σ satisfies (a) and (b) with respect to T [t′] (if there are several choices to replace
σ, the first one with respect to some fixed recursive enumeration of seg(N) is
taken). Having σ, define D as follows.

(c) D = {a ∈ {1, ..., b} : (∀η � TNa(σ)[t]) (∀c ∈ {1, ..., b}) [Nc(ση) =
Nc(σ)]}.

Having σ and D, Ma(τ) = F (σ,D, a) where WF (σ,D,a) is the set of all x for
which there is an s such that the conditions (d) and either (e) or (f) below hold.

(d) a ∈ D and σ � content(TNa(σ)[s]);
(e) x ∈ content(TNa(σ)[s]) and Nc(ση) = Nc(σ) for all c ∈ {1, . . . , b},

d ∈ D and η � TNd(σ)[s];
(f) x ∈ E and Nc(ση) �= Nc(σ) for some c ∈ {1, . . . , b}, d ∈ D and

η � TNd(σ)[s].

It is easy to see that the sets WF (σ,D,a) are uniformly recursively enumerable
and thus the specified function F can be taken to be recursive. Thus also the
learners M1, . . . ,Mb are recursive. Verification of properties (1), (2) and (3) is
omitted.

The next result gives a further inclusion between vacillatory learning and team-
learning.

Theorem 13. TxtFexb ⊆ [2, b + 1]NUShTxtEx for all b ∈ {1, 2, 3, . . .}.
TxtFexb ⊂ [1, b]NUShTxtEx for all b ∈ {2, 3, . . .}.
As TxtFex2-learning is more general than TxtEx-learning, one gets the follow-
ing corollary.

Corollary 14. [2, 3]NUShTxtEx �⊆ NUShTxtEx.

248 L. Carlucci et al.

As every NUShTxtFexb-learner can be turned into a NUShTxtEx-learner
identifying the same class, the restriction to non U-shaped learning without loss
of learning power is only possible in the least class TxtFex1 of the TxtFexb hi-
erarchy. But, the next, quite surprising result shows that in the case of TxtFex2

one can avoid U-shaped learning behaviour if one gives up the constraint that
the learner has to vacillate between finitely many indices. That is, TxtFex2 ⊆
NUShTxtBc. In Theorem 16 it is shown that there is a uniform learner U which
is given a set E of up to 2 indices and NUShTxtBc-identifies every {We : e ∈ E}
such that every hypothesis is a subset of an We with e ∈ E. Then this result
is combined with Theorem 12 to show the inclusion TxtFex2 ⊆ NUShTxtBc.
But before turning to Theorem 16, the following auxiliary proposition gives a
method to enforce that the sets Wi′ ,Wj′ mentioned there are represented by cor-
responding approximations Wi,Wj which differ from one another at all relevant
stages of their enumerations.

Proposition 15. Given a set F = {i′, j′} one can compute a set G(F) = {i, j}
such that

- For all s, either Wi,s ∪Wj,s = ∅ or Wi,s �= Wj,s;
- Wi ⊆Wi′ and if Wi′ is infinite then Wi = Wi′ ;
- Wj ⊆Wj′ and if Wj′ is infinite then Wj = Wj′ ;
- {Wi′ ,Wj′} ⊆ {Wi,Wj}.

This also holds with j′ = i′ for the case that F = {i′}.
Theorem 16. There is a learner U such that for all r.e. sets L,H and every
set F of indices for L,H with |F | ≤ 2, U NUShTxtBc-identifies {L,H} using
the additional information F . Furthermore, for every σ ∈ seg(N),

(1) WU(F,σ) ⊆ L or WU(F,σ) ⊆ H;
(2) if L = H and L is infinite then WU(F,σ) ∈ {∅, L}.

Note that L = H is explicitly permitted.

Given F , let G(F) be as in Proposition 15. Figure 1 gives the algorithm witness-
ing this inclusion. We omit the proof that it works.

Theorem 17. Every TxtFex2-learnable class is NUShTxtBc-learnable.

Proof. Given a TxtFex2-learnable class L, there is by Theorem 2 a pair of
two learners N1,N2 which converge on every language from L and [1, 2]TxtEx-
identify L. Obtain from these two learners the team M1,M2 as done in the proof
of Theorem 12. Let F be as defined in the proof of Theorem 12. Let στ , Dτ be the
values of σ,D computed on input τ by the algorithm for M1,M2 in the proof
of Theorem 12. Note that one can, for each input στ , Dτ , check in the limit
whether WF (στ ,Dτ ,a) enumerates some elements using part (f) of the algorithm
in the proof of Theorem 12. Let U be as in Theorem 16.

4 Vacillatory Versus Behaviourally Correct Learning

Non U-Shaped Vacillatory and Team Learning 249

Uniform non U-shaped Behaviourally Correct Learner U
Parameter: F . Input: σ. Output: k, specified implicitly.
Algorithm to enumerate Wk =

S
r Wk,r.

(Start) Let u = |σ|, C = content(σ) and s = 0.
Let Wk,t = ∅ for all t < |σ|.
If C = ∅ or We,u = ∅ for all e ∈ G(F), Then go to (Empty).
Let τ = σ[|σ| − 1].
Select i, j, x such that

(a) {i, j} = G(F);
(b) x = min((Wi,u − Wj,u) ∪ (Wj,u − Wi,u));
(c) x ∈ Wi,u ⇔ x ∈ C.

Go to (Branch).
(Branch) If C ∪ Wi,s ⊆ WU(F,τ),u and (Wi,u − Wi,|σ|) ∪ (Wj,u − Wj,|σ|) �= ∅ Then go

to (Copy) Else go to (Enum).
(Enum) Let t be the maximal element of {s, . . . , u} such that one of the following

conditions holds:
(Min) t = s;
(Equal) C ⊆ Wi,t ∪ Wj,t ⊂ Wi,u ∩ Wj,u;
(Inf) C ⊆ Wi,t ⊂ Wi,u ∧ (∀y ≤ x) [y /∈ (Wi,u − Wi,|σ|) ∪ (Wj,u − Wj,|σ|)];
(Diff) C ⊆ Wi,t ⊂ Wi,u and Wj,u = Wi,s;
(Sub) C ⊆ Wi,t ⊆ WU(F,τ),u;
(Exact) C = Wi,t and t = |σ|.

Let Wk,u = Wi,t, update s = t, u = u + 1 and go to (Branch).
(Copy) Let Wk,u = WU(F,τ),u, update u = u + 1 and go to (Copy).
(Empty) Let Wk,u = ∅, update u = u + 1 and go to (Empty).

Fig. 1. Algorithm to enumerate WU(F,σ) from Theorem 16

Now one builds the following new learner U′(τ) which outputs the least index
of ∅ if content(τ) = ∅ or, in the definition of M1,M2 on input τ , the search for
σ satisfying (a), (b) (as in proof of Theorem 12) fails. Otherwise U ′(τ) is defined
as follows.

WU′(τ) = WU({e1,e2},τ) where, for a = 1, 2,

Wea =

⎧⎪⎪⎨⎪⎪⎩
WF (στ ,Dτ ,a) if (f) is not used for

WF (στ ,Dτ ,1) or WF (στ ,Dτ ,2);
WF (στ ,Dτ ,1) ∪WF (στ ,Dτ ,2) if (f) is used for

WF (στ ,Dτ ,1) or WF (στ ,Dτ ,2).

Let L ∈ L and T be a text for L. Let n be the first number where L ∈
{WM1(T [n]),WM2(T [n])}. Then, for any m ≥ n and any a ∈ {1, 2}, WMa(T [m]) =
WMa(T [n]) and WMa(T [m]) is not of the form E ∪ Ẽ, where E is as introduced
in the proof of Theorem 12 and Ẽ is finite. Then U is fed with the same pa-
rameter set {e1, e2} for all m ≥ n and one of the e1, e2 enumerates L. Thus U′

TxtBc-learns L on T .

250 L. Carlucci et al.

It remains to show that U′ is non U-shaped on T . This is clearly true if L is
the empty set. So assume L �= ∅. Consider any m with WU′(T [m]) = L. If case
(f) of the algorithm for F (σT [m], DT [m], 1) or F (σT [m], DT [m], 2) applies, then
We1 and We2 are the same infinite set E ∪ Ẽ for some finite set Ẽ. It follows by
the additional property (2) of U in Theorem 16 that U′(T [m]) either outputs
an index for the empty set or for E ∪ Ẽ; both sets are different from L, thus
case (f) does not apply. Hence, T [m] is a stabilizing sequence for both M1,M2

on those sets WM1(T [m]),WM2(T [m]) which are not empty. Since one of these is
a superset of L by the additional property (1) of U in Theorem 16, it follows
that M1,M2 do not change mind on T beyond T [m]. For a = 1, 2 the parameter
ea is defined as above for τ = T [m] and it holds that Wea = WMa(T [m]). Thus
U′(T [o]) coincides with U({e1, e2}, T [o]) for all o ≥ m and U with the parameter
set {e1, e2} is non U-shaped on the text T for L. The same holds for U′. Thus
U′ NUShTxtBc-learns L.

From Theorem 7 it is already known that, for all b > 1, U-shaped learning
behaviour is necessary for TxtFexb identification of any class in TxtFexb −
TxtFex1. Theorem 18 strengthens this result by showing that, for some classes
of languages in TxtFexb for b > 2, the necessity of U-shaped behaviour cannot
be circumvented by allowing infinitely many correct grammars in the limit, that
is, by shifting to the more liberal criterion of TxtBc-identification. This is one
of the rare cases in inductive inference where the containment in a class defined
without numerical parameters holds for level 2 but not for level 3 and above
of a hierarchy. The proof is a diagonalization proof reminiscent of the proof of
Theorem 4 in [12].

Theorem 18. TxtFex3 �⊆ NUShTxtBc.

Proof. Let Li,j = {〈i, j, k〉 : k ∈ N}, Ii,j = Wi ∩ Li,j and Ji,j = Wj ∩ Li,j for
i, j ∈ N. The class L = {Li,j : i, j ∈ N}∪{Ii,j , Ji,j : i, j ∈ N∧ Ii,j ⊂ Ji,j ∧ |Ii,j | <
∞} witnesses the separation.

To see that L is in TxtFex3, consider the following machines NI ,NJ ,NL

which initially output indices of the empty set. Each of them waits for the first
tuple of the form 〈i, j, k〉 for some k to come up in the input. From then on,
NI outputs an index for Ii,j forever, NJ an index for Ji,j forever and NL an
index for Li,j forever. So, for every i, j ∈ N, NI learns the set Ii,j , NJ the set
Ii,j and NL the set Li,j . The class L is learnable by a team of three machines
which converge on every text for every language in L to some index. It follows
from Theorem 2 that L is in TxtFex3.

So it remains to show that L is not in NUShTxtBc, that is, to show that
any given TxtBc-learner for L is U-shaped on some text for some language in L.
Given the learner M, one defines the following function F by an approximation
from below.

Non U-Shaped Vacillatory and Team Learning 251

Fs(i, j) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Fs−1(i, j) if s > 0 and

WM(〈i,j,0〉 〈i,j,1〉 ... 〈i,j,Fs−1(i,j)〉),s ⊆ Li,j ;
k otherwise where k is the first number

found with k > Ft(i + j) + s, for all t < s, and
{〈i, j, 0〉, 〈i, j, 1〉, ..., 〈i, j, k〉} ⊂ WM(〈i,j,0〉 〈i,j,1〉 ... 〈i,j,k〉).

Since 〈i, j, 0〉, 〈i, j, 1〉, . . . is a text for Li,j and M TxtBc-learns Li,j , almost
all hypotheses M(〈i, j, 0〉 〈i, j, 1〉 . . . 〈i, j, k〉) are indices for Li,j . Thus the k is
always found in the second part of the definition of Fs and Fs is well-defined.
Furthermore, if Fs−1(i, j) is sufficiently large, the condition

WM(〈i,j,0〉 〈i,j,1〉 ... 〈i,j,Fs−1(i,j)〉),s ⊆ Li,j

holds for all s and thus Fs(i, j) = Fs−1(i, j). So the limit F (i, j) of all Fs(i, j)
exists and is approximated from below. By considering the first s where F (i, j) =
Fs(i, j) and the fact that it is then no longer updated, one has

{〈i, j, 0〉, 〈i, j, 1〉, . . . , 〈i, j, F (i, j)〉} ⊂WM(〈i,j,0〉 〈i,j,1〉 ... 〈i,j,F (i,j)〉) ⊆ Li,j .

Now there are r.e. sets Wa,Wb such that

Wa = {〈i, j, l〉 : i, j ∈ N ∧ l ∈ {0, 1, . . . , F (i, j)} },
Wb = {〈i, j, l〉 : i, j ∈ N ∧ (∃t > l) [〈i, j, l〉 ∈WM(〈i,j,0〉 〈i,j,1〉 ... 〈i,j,Ft(i,j)〉),t]}.

Now fix the parameters i, j such that i = a and j = b; the cases where i �= a or
j �= b are not important in the considerations below.

Assume that 〈i, j, l〉 ∈ Wb using a parameter t with Ft(i, j) �= F (i, j). Let s
be the first stage with Fs(i, j) = F (i, j); note that s > t. Then by the defini-
tion of Fs, F (i, j) = Fs(i, j) > s > t and {〈i, j, 0〉, 〈i, j, 1〉, . . . , 〈i, j, Fs(i, j)〉} ⊂
WM(〈i,j,0〉 〈i,j,1〉 ... 〈i,j,Fs(i,j)〉). So 〈i, j, l〉 is in WM(〈i,j,0〉 〈i,j,1〉 ... 〈i,j,F (i,j)〉) as well.
Thus {〈i, j, 0〉, 〈i, j, 1〉, . . . , 〈i, j, F (i, j)〉} = Wi ∩ Li,j = Ii,j ⊂ Ji,j = Wj ∩ Li,j =
WM(〈i,j,0〉 〈i,j,1〉 ... 〈i,j,F (i,j)〉) and Ii,j is finite. Hence Ii,j , Ji,j ∈ L.

Now consider a text T for Ji,j formed as follows. Let σ be the sequence
〈i, j, 0〉 〈i, j, 1〉 . . . 〈i, j, F (i, j)〉. Note that M(σ) outputs an index for Ji,j . Let
τ = σ#r, for some r, be such that M(τ) is an index for Ii,j . Note that there
exists such τ since M TxtBc-identifies Ii,j . Let T be a text for Ji,j starting with
τ . Now M on T has to output an index Ji,j beyond τ . Hence, M is U-shaped on
text T , and thus M is not a NUShTxtBc-learner for L. Since M was chosen
arbitrarily, L is not NUShTxtBc-learnable.

Since TxtFex3 ⊂ TxtFex4 ⊂ . . . ⊂ TxtFex∗, one immediately gets the follow-
ing corollary.

Corollary 19. (∀b ∈ {3, 4, . . . , ∗}) [TxtFexb �⊆ NUShTxtBc].

A further corollary is that the counterpart of Theorem 16 does not hold for
sets of three indices. Indeed, if such an algorithm would exist, then one could

252 L. Carlucci et al.

NUShTxtBc-learn L from Theorem 18 by conjecturing ∅ until the first triple
〈i, j, k〉 comes up and then simulating the uniform learner with a set of three
indices for the sets Ii,j , Ji,j , Li,j from then on without changing this parameter
set anymore. But Theorem 18 clearly showed that such a learner does not exist.

Corollary 20. No machine uniformly NUShTxtBc-learns {We : e ∈ F} with
F as additional information where F is a set of 3 indices.

5 Teams Revisited

Classes in TxtFex2 are in TxtBc and in [1, 2]NUShTxtEx. The next propo-
sition shows that one cannot weaken the condition of being in TxtFex2 to the
combination of the two consequences in Theorem 17. Furthermore the condition
that the team members converge on every text for a language in L is essential
in Theorem 2.

Proposition 21. The class L from Theorem 18 is [1, 2]NUShTxtEx-learnable
and TxtFex3-learnable but it is not NUShTxtBc-learnable.

Remark 22. TxtFex∗ �⊆ [1, b]TxtEx for all b ∈ N+, as witnessed by H∗. Note
that by Proposition 21 it can be that a class in TxtFexb+1−TxtFexb is already
[1, b]TxtEx-learnable.

A further interesting question is whether one can at least obtain non U-shaped
team learning for arbitrary team learnable classes. This is true for [1, 1]TxtEx
by Theorem 12 but it fails for [1, 2]TxtEx-learning.

Theorem 23. For all b ∈ {2, 3, . . .}, [1, b]NUShTxtEx ⊂ [1, b]TxtEx.
For all a, b with 1 ≤ a ≤ b, [a, b]TxtEx ⊆ [a, a + b]NUShTxtEx.

6 Conclusion

The following results were obtained.

- TxtFexb ⊂ [1, b]NUShTxtEx for all b ∈ {2, 3, . . .}.
- TxtFex1 = TxtEx = NUShTxtEx = [1, 1]NUShTxtEx, see also [1].
- [1, b]NUShTxtEx ⊂ [1, b]TxtEx, for all b ∈ {2, 3, . . .}.
- NUShTxtFexb = NUShTxtEx for all b ∈ {1, 2, . . . , ∗}.
- TxtFex2 ⊆ NUShTxtBc.
- TxtFex3 �⊆ NUShTxtBc.

These results and the facts known from previous work [1, 8] are summarized in
Figure 2. Single-headed arrows in the diagram denote proper inclusions. Double-
headed arrows denote equality. All transitive closures of the inclusions displayed
are valid and no other inclusions hold between language learning criteria in the
diagram.

Non U-Shaped Vacillatory and Team Learning 253

NUShTxtFexb ↔ TxtFex1 ↔ [1, 1]NUShTxtEx ↔ [1, 1]TxtEx

� � � ���

NUShTxtBc � TxtFex2 → [1, 2]NUShTxtEx → [1, 2]TxtEx

�

� � ���

TxtFex3 → [1, 3]NUShTxtEx → [1, 3]TxtEx

� � ���

TxtFex4 → [1, 4]NUShTxtEx → [1, 4]TxtEx

� � ���

TxtFex5 → [1, 5]NUShTxtEx → [1, 5]TxtEx

�
...

...
...

TxtBc � TxtFex∗

Fig. 2. Summary of the results for b ∈ {1, 2, 3, 4, 5, ∗}

We note that our proof that TxtFex3 �⊆ NUShTxtBc intriguingly features
learning finite tables versus general rules, but does not, as might be expected
from some models of the human case of U-shaped learning, feature, among other
things, learning an incorrect general rule followed by learning a general rule
augmented by a correcting finite table. This difference may be significant or,
more likely, nothing more than an artifact of our particular proof. Not explored
herein, but very interesting to investigate in the future, are complexity-issues of
U-shaped learning.

References

[1] Ganesh Baliga, John Case, Wolfgang Merkle, Frank Stephan and Rolf Wieha-
gen. When unlearning helps. http://www.cis.udel.edu/˜case/papers/decisive.ps,
Manuscript, 2005. Preliminary version of the paper appeared at ICALP, Springer
LNCS 1853:844–855, 2000.

[2] Janis Bārzdiņš. Two theorems on the limiting synthesis of functions. In Theory
of Algorithms and Programs, vol. 1, pages 82–88. Latvian State University, 1974.
In Russian.

[3] Lenore Blum and Manuel Blum. Towards a mathematical theory of inductive
inference. Information and Control, 28:125–155, 1975.

[4] Manuel Blum. A machine independent theory of the complexity of the recursive
functions. Journal of the Association for Computing Machinery 14:322–336, 1967.

254 L. Carlucci et al.

[5] T. G. R. Bower. Concepts of development. In Proceedings of the 21st International
Congress of Psychology. Presses Universitaires de France, pages 79–97, 1978.

[6] Melissa Bowerman. Starting to talk worse: Clues to language acquisition from
children’s late speech errors. In S. Strauss and R. Stavy, editors, U-Shaped Be-
havioral Growth. Academic Press, New York, 1982.

[7] Susan Carey. Face perception: Anomalies of development. In S. Strauss and
R. Stavy, editors, U-Shaped Behavioral Growth, Developmental Psychology Series.
Academic Press, pages 169–190, 1982.

[8] John Case. The power of vacillation in language learning. SIAM Journal on
Computing, 28(6):1941–1969, 1999.

[9] John Case and Chris Lynes. Machine inductive inference and language identifi-
cation. In M. Nielsen and E. M. Schmidt, editors, Proceedings of the 9th Interna-
tional Colloquium on Automata, Languages and Programming, Lecture Notes in
Computer Science 140, pages 107–115. Springer-Verlag, 1982.

[10] John Case and Carl H. Smith. Comparison of identification criteria for machine
inductive inference. Theoretical Computer Science, 25:193–220, 1983.

[11] Mark Fulk. Prudence and other conditions on formal language learning. Informa-
tion and Computation, 85:1–11, 1990.

[12] Mark Fulk, Sanjay Jain and Daniel Osherson. Open problems in “Systems That
Learn”. Journal of Computer and System Sciences, 49:589–604, 1994.

[13] E. Mark Gold. Language identification in the limit. Information and Control,
10:447–474, 1967.

[14] David Kirsh. PDP learnability and innate knowledge of language. In S. Davis,
editor, Connectionism: Theory and Practice, pages 297–322. Oxford University
Press, 1992.

[15] Gary Marcus, Steven Pinker, Michael Ullman, Michelle Hollander, T. John Rosen
and Fei Xu. Overregularization in Language Acquisition. Monographs of the
Society for Research in Child Development, vol. 57, no. 4. University of Chicago
Press, 1992. Includes commentary by Harold Clahsen.

[16] Piergiorgio Odifreddi. Classical Recursion Theory. North Holland, Amsterdam,
1989.

[17] Daniel Osherson and Scott Weinstein. Criteria of language learning. Information
and Control, 52:123–138, 1982.

[18] Steven Pinker. Formal models of language learning. Cognition, 7:217–283, 1979.
[19] Kim Plunkett and Virginia Marchman. U-shaped learning and frequency effects in

a multi-layered perceptron: implications for child language acquisition. Cognition,
38(1):43–102, 1991.

[20] Hartley Rogers. Theory of Recursive Functions and Effective Computability.
McGraw-Hill, New York, 1967. Reprinted, MIT Press, 1987.

[21] Carl H. Smith. The power of pluralism for automatic program synthesis. Journal
of the Association of Computing Machinery, 29:1144–1165, 1982.

[22] Sidney Strauss and Ruth Stavy, editors. U-Shaped Behavioral Growth. Develop-
mental Psychology Series. Academic Press, 1982.

[23] Niels A. Taatgen and John R. Anderson. Why do children learn to say broke?
A model of learning the past tense without feedback. Cognition, 86(2):123–155,
2002.

[24] Kenneth Wexler. On extensional learnability. Cognition, 11:89–95, 1982.

Non U-Shaped Vacillatory and Team Learning 255

Learning Multiple Languages in Groups

Sanjay Jain1,� and Efim Kinber2

1 School of Computing, National University of Singapore, Singapore 117543
sanjay@comp.nus.edu.sg

2 Department of Computer Science, Sacred Heart University, Fairfield, CT
06432-1000, U.S.A.

kinbere@sacredheart.edu

Abstract. We consider a variant of Gold’s learning paradigm where a
learner receives as input n different languages (in form of one text where
all input languages are interleaved). Our goal is to explore the situa-
tion when a more “coarse” classification of input languages is possible,
whereas more refined classification is not. More specifically, we answer
the following question: under which conditions, a learner, being fed n
different languages, can produce m grammars covering all input lan-
guages, but cannot produce k grammars covering input languages for
any k > m. We also consider a variant of this task, where each of the
output grammars may not cover more than r input languages. Our main
results indicate that the major factor affecting classification capabilities
is the difference n − m between the number n of input languages and
the number m of output grammars. We also explore relationship be-
tween classification capabilities for smaller and larger groups of input
languages. For the variant of our model with the upper bound on the
number of languages allowed to be represented by one output grammar,
for classes consisting of disjoint languages, we found complete picture of
relationship between classification capabilities for different parameters
n (the number of input languages), m (number of output grammars),
and r (bound on the number of languages represented by each output
grammar). This picture includes a combinatorial characterization of clas-
sification capabilities for the parameters n, m, r of certain types.

1 Introduction

In this paper, we continue a line of research where the learner is required to
learn unions of different concepts [JNT05]. This situation occurs, for example,
when children living in a multilingual environment learn several languages si-
multaneously. In this case, in ideal, children are able to learn each individual
language. A more complex case is the problem of multilayered classification,
where descriptions of families of objects on a higher level are rather “coarse”,
while descriptions on a lower level are much more specific/refined. An example of
this type of classification is the theory of species: as a result of learning process
(inductive synthesis of concepts from examples), life can be classified as just an-
imals and plants, or, more specifically, as families - fishes, birds, mammals, etc.,
� Supported in part by NUS grant number R252-000-127-112.

S. Jain, H.U. Simon, and E. Tomita (Eds.): ALT 2005, LNAI 3734, pp. 256–268, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Learning Multiple Languages in Groups 257

or, even more specifically as different species, etc. An important issue here is that
a more coarse classification is typically easier to achieve than a more refined one.
For example, an alien civilization, learning life on Earth (from examples), most
likely, will have much more difficulty describing different birds, than making dis-
tinction between birds and fishes. A child, learning classical music, has much
easier time determining if a piece uses 3/4 or 4/4 time signature, than telling
apart waltz, mazurka, or polonaise (each of them uses time signature 3/4).

Our goal in this paper is to determine if, and under which circumstances,
a more coarse classification, as a result of learning process, is possible, whereas
a more refined classification is not. More specifically, we explore the following
general situation: under which circumstances, a learner, facing a union of n
languages on the input, is able to learn descriptions of m (larger) groups of
languages from the union, but is not able to learn descriptions of k (smaller)
groups of input languages for k > m. For example, we would like to find out when
a learner, facing a union of 6 languages on the input, can learn descriptions of 3
groups of languages, but cannot learn descriptions for each individual language.
We are also interested in situations when learning larger groups of languages can
be easier than smaller ones.

To model the process of learning, we employ the well-known Gold’s learning
paradigm [Gol67]: the learner receives all members of the union of languages in
some random order and produces a sequence of descriptions (grammars) that
stabilizes to a correct description. This model is known in literature as TxtEx
(where Ex stands for “explanatory learning”). Exploration of this model provided
a robust advice to cognition theory (see, for example, [WC80]). We consider also
a popular variant of this model, TxtBc, (introduced in [CL82, OW82]) where
a learner produces a sequence of conjectures, almost all of which are correct
descriptions of the target language (but not necessarily the same - BC stands
here for “behaviourally correct learning”).

Among several papers in this line of research, the closest to our inquiry is
the paper [JNT05], where the authors primarily explore the issues of learnability
of larger unions of languages versus smaller unions of languages from the same
families. In particular, they define the concept of discerning learnability, when a
learner is required to learn each of the members of the union, and compare this
notion with the situation when the learner may provide one description for the
whole union. Relevant results from [JNT05] can be viewed as the first step in
our line of research.

Our main results can be summarized as follows. On one hand, if n −m >
n′ − m′ then there exists a class of languages such that it is possible to learn
unions of n languages from this class in m groups, but it is not possible to learn
unions of n′ languages from this class in m′ groups (Theorem 7). That is, the
difference between the number of input languages in the union and the number
of conjectures ultimately produced by the learner is the major factor affecting
learning capabilities. On the other hand, if a family consists of only disjoint
languages, then, if it is possible to learn unions of n languages in m groups, then
it is possible to learn unions of n− 1 languages in m− 1 groups. For example,

258 S. Jain and E. Kinber

learnability of unions of any 6 disjoint languages in 3 groups implies learnability
of any union of 5 languages in 2 groups (Theorem 9). We also extend our results
to the case when the number of languages in learned groups is bounded (in
the general case, the learner, when required to produce at least 3 groups for
the union of 6 input languages, can include 4 languages into one group and
only one language into each of the remaining two groups); the corresponding
results are presented in Corollaries 14 and 15, and Theorem 16. The last result
of this paper, Theorem 18, presents a combinatorial characterization (when the
language classes consist of disjoint languages) for the remaining cases not solved
by Corollaries 14 and 15, and Theorem 16 (i.e., the circumstances under which
learnability of unions of n languages in m groups describing at most r languages
in each of the groups implies learnability for other corresponding parameters
n′,m′, r′, where n′ ≤ n, r ≤ r′ and n′ −m′ ≤ n−m).

2 Notation and Preliminaries

Any unexplained recursion theoretic notation is from [Rog67]. N denotes the set
of natural numbers, {0, 1, 2, 3, . . .}. ∅ denotes the empty set. ⊆, ⊂, ⊇, ⊃ respec-
tively denote subset, proper subset, superset and proper superset. Dx denotes
the finite set with (canonical) index x [Rog67]. We sometimes identify finite sets
with their canonical indices. The quantifier ‘∀∞’ essentially from [Blu67], means
‘for all but finitely many’.
↑ denotes undefined. max(·) denotes the maximum of a set, where max(∅) =

0. 〈·, ·〉 stands for an arbitrary, computable, one-to-one encoding of all pairs of
natural numbers onto N [Rog67]. Similarly we can define 〈·, . . . , ·〉 for encoding
tuples of natural numbers onto N .

ϕ denotes a fixed acceptable programming system for the partial computable
functions: N → N [Rog58, Rog67, MY78]. ϕi denotes the partial computable
function computed by program i in the ϕ-system. Wi denotes domain(ϕi). Wi

is, then, the r.e. set/language (⊆ N) accepted (or equivalently, generated) by
the ϕ-program i. E will denote the set of all r.e. languages. L, with or without
decorations, ranges over E . DisjClass = {L | (∀L,L′ ∈ L)[L = L′ or L ∩ L′ =
∅]}, i.e, DisjClass is the collection of language classes which consist of disjoint
languages. L, with or without decorations, ranges over subsets of E .

We now consider some basic notions in language learning. We first introduce
the concept of data that is presented to a learner. A text T is a mapping from N
into (N ∪{#}) (see [Gol67]). The content of a text T , denoted content(T), is the
set of natural numbers in the range of T . T is a text for L iff content(T) = L.
T [n] denotes the initial segment of T of length n. We let T , with or without
superscripts, range over texts. Intuitively, #’s in the texts denote pauses in the
presentation of data. For example, the only text for the empty language is just
an infinite sequence of #’s.

A finite sequence σ is an initial segment of a text. content(σ), is the set of
natural numbers in the range of σ. |σ| denotes the length of σ, and if n ≤ |σ|, then
σ[n] denotes the initial segment of σ of length n. σ�τ denotes the concatenation
of initial segments.

Learning Multiple Languages in Groups 259

A language learning machine is an algorithmic device which computes a
mapping from finite initial segments of texts into N . We let M, with or with-
out decorations, range over learning machines. We say that M(T)↓ = i ⇔
(∀∞n)[M(T [n]) = i].

We now introduce criteria for a learning machine to be considered successful
on languages. Our first criteria is based on learner, given a text for the language,
converging to a grammar for the language.

Definition 1. [Gol67] (a) M TxtEx-identifies L (written: L ∈ TxtEx(M))⇔
(∀ texts T for L)(∃i |Wi = L)[M(T)↓ = i].

(b) TxtEx = {L | (∃M)[L ⊆ TxtEx(M)]}.
The influence of Gold’s paradigm [Gol67] to human language learning is

discussed by various authors, for example [Pin79, WC80, OSW86].
The following definition is based on learner semantically rather than syntacti-

cally converging to the grammar(s) for the language. Here note that equivalence
of grammars is non-computable. The corresponding notion for learning functions
was introduced by [Bār74, CS83].

Definition 2. [CL82, OW82]. (a) M TxtBc-identifies L (written: L ∈
TxtBc(M)) ⇔ (∀ texts T for L)(∀∞n)[WM(T [n]) = L].

(b) TxtBc = {L | (∃M)[L ⊆ TxtBc(M)]}.
It can be shown that TxtEx ⊂ TxtBc (for example, see [CL82, OW82]).

3 Learning Languages in Groups

Now we give formal definition of our main learning model - under which a learner,
being fed the union of n different languages, outputs in the limit at least m
grammars, each representing a number of input languages, so that the union of
all m grammars covers the union of all input languages.

Definition 3. (a) We say that M [m,n]MultEx-identifies L, iff for all distinct
languages L1, . . . , Ln in L, for all texts T for L1 ∪ . . .∪Ln, there exist i1, . . . , ik,
(where k ≥ m) such that M(T) converges on T to the canonical index for the
set {i1, . . . , ik} and there exists a partition G1, . . . , Gk of {1, 2, . . . , n} such that

(i) each Gi is non-empty,
(ii) for 1 ≤ j ≤ k, ij is a grammar for

⋃
r∈Gj

Lr.
(b) [m,n]MultEx = {L | (∃M)[M [m,n]MultEx-identifies L]}.
Note that requiring k = m in the above does not change the class of languages

which can be [m,n]MultEx-identified, as one can just combine k − m + 1 of
the language groups into one. However, this may make a difference in some
modifications we consider later. Our next definition is a modification of our
model for behaviorally correct type of learning.

Definition 4. (a) We say that M [m,n]MultBc-identifies L, iff for all distinct
languages L1, . . . , Ln in L, for all texts T for L1 ∪ . . . ∪ Ln, for all but finitely

260 S. Jain and E. Kinber

many t, there exist i1, . . . , ik, (where k ≥ m) such that M(T [t]) = the index for
{i1, . . . , ik} and there exists a partition G1, . . . , Gk of {1, 2, . . . , n} such that

(i) each Gi is non-empty,
(ii) for 1 ≤ j ≤ k, ij is a grammar for

⋃
r∈Gj

Lr.
(b) [m,n]MultBc = {L | (∃M)[M [m,n]MultBc-identifies L]}.
Our first result demonstrates that, for some families of languages, one can

Bc-learn each individual language from the input union of n languages, while
no Ex-learner can converge to a correct single grammar representing the whole
union.

Theorem 5. For 1 ≤ m and 1 ≤ n, [n, n]MultBc− [1,m]MultEx �= ∅.
Moreover, this separation can be witnessed by a class in DisjClass.

Proof. Let L be a class of languages in TxtBc − TxtEx (such a class exists
by results from [CS83, CL82]). Let cyliL = {〈i, x〉 | x ∈ L}. It is easy to verify
that for all i, one can find an Li ∈ C such that Mi does not TxtEx identify⋃

i∗m≤j<(i+1)∗m cyljLi
(otherwise, one can easily show that L ∈ TxtEx). Let

L = {cyljLi
| i ∈ N, i∗m ≤ j < (i+1)∗m}. It now follows that L �∈ [1,m]MultEx.

On the other hand, L ∈ [n, n]MultBc easily follows as for any S1, . . . , Sn in the
class L, from a text for S1 ∪ . . . ∪ Sn, one can easily obtain texts for S1, . . . , Sn

and then use TxtBc learning procedure for each of them.

Now we show that, if the number of the languages in the union given to
an Ex-learner is smaller than the number of languages given to a Bc-leaner,
then the reverse of above result also holds: for some family of languages, an
Ex-learner can correctly infer grammars for each individual language from a
smaller input union, while Bc-learnability of even one grammar covering the
whole larger union of languages is impossible.

Theorem 6. Suppose 1 ≤ n. [n, n]MultEx− [1, n + 1]MultBc �= ∅.
Moreover, this separation can be witnessed by a class in DisjClass.

Proof. [JNT05] (Theorem 21) constructed a class L ∈ DUnTxtEx −
Un+1TxtEx (see [JNT05] for definitions of DUnTxtEx and Un+1TxtEx —
informally, Un+1TxtEx is similar to [1, n+1]MultEx and DUnTxtEx is sim-
ilar to [n, n]MultEx). It is easy to verify that DUnTxtEx ⊆ [n, n]MultEx.
Furthermore, the diagonalization proof in [JNT05] also shows that L �∈ [1, n +
1]MultEx. This diagonalization can be easily generalized to show that L �∈
[1, n + 1]MultBc and L �∈ Un+1TxtBc. We omit the details.

Yet another type of situation when Ex-learnability of unions in groups may
be possible but Bc-learnability might be not is presented in the following result:
for some class of languages, if the difference n−m between the size n of the union
of languages and the number of learned groups m is greater than n′−m′ (where
m′ ≥ 2), then an Ex-learner can infer grammars for m groups representing an
input union of n languages, while Bc-learning of any union n′ input languages
in m′ groups is not possible.

Learning Multiple Languages in Groups 261

Theorem 7. Suppose 1 ≤ m ≤ n, 2 ≤ m′ ≤ n′, and n −m > n′ −m′ Then,
[m,n]MultEx− [m′, n′]MultBc �= ∅.

Moreover, this separation can be witnessed by a class in DisjClass.

Proof. For i ∈ N , define
(i) for x ≤ n−m, let

Xx
i,s0,s1,...,si−1

= {〈i, 〈s0, s1, . . . , si−1〉, 2x〉, 〈i, 〈s0, s1, . . . , si−1〉, 2x+ 1〉}.
(ii) for x < n−m, i ∈ N , let

Y x
i,s0,s1,...,si−1

= {〈i, 〈s0, s1, . . . , si−1〉, 2x+ 1〉, 〈i, 〈s0, s1, . . . , si−1〉, 2x + 2〉};
Y n−m

i,s0,s1,...,si−1
= {〈i, 〈s0, s1, . . . , si−1〉, 2(n−m) + 1〉, 〈i, 〈s0, s1, . . . , si−1〉, 0〉}.

(iii) for x < n′−(n−m+1), let Zx
i,s0,s1,...,si−1

= {〈i, 〈s0, s1, . . . , si−1〉, 2n+x〉}.
Note that

⋃
x≤n−m Xx

i,s0,s1,...,si−1
=
⋃

x≤n−m Y x
i,s0,s1,...,si−1

(this will be uti-
lized for diagonalization against Mi).

For any binary sequence of si’s, let Ls0,s1,..., = {Xx
i,s0,s1,...,si−1

| i ∈ N, x ≤
n−m, si = 0}∪ {Y x

i,s0,s1,...,si−1
| i ∈ N, x ≤ n−m, si = 1} ∪ {Zx

i,s0,s1,...,si−1
| i ∈

N, x < n′ − (n−m + 1)}.
Claim. Ls0,s1,... ∈ [m,n]MultEx, for any fixed binary values of si’s.

Proof. Fix s0, s1, Consider any text T for L1 ∪ . . .∪Ln being given as input.
Let i = max({i′ | (∃x, y)〈i′, x, y〉 ∈ content(T)}). Let s′0, . . . , s

′
i−1 be such that,

for some y, 〈i, 〈s′0, s′1, . . . , s′i−1〉, y〉 ∈ content(T). Note that it must be that s′w =
sw. Thus, i and s0, . . . , si−1 can be determined in the limit.

Now the learner (in the limit) outputs the index for set S defined as follows:
(A) For j < i, x ≤ n −m, if sj = 0 and Xx

j,s0,...,sj−1
⊆ content(T), then S

contains a grammar for Xx
j,s0,...,sj−1

.
(B) For j < i, x ≤ n −m, if sj = 1 and Y x

j,s0,...,sj−1
⊆ content(T), then S

contains a grammar for Y x
j,s0,...,sj−1

.
(C) For j ≤ i, x < n′ − (n − m + 1), if Zx

j,s0,...,sj−1
⊆ content(T), then S

contains a grammar for Zx
j,s0,...,sj−1

.
(D) S contains a grammar for

⋃
x≤n−m Xx

i,s0,s1,...,si−1
∩content(T) (assuming

this set is non-empty).
It is easy to verify that above method outputs a set of at least m grammars

which partition the input languages (the only case of more than one language
in the input being combined to form a single grammar is via case (D) above).
Claim follows. �

Claim. There exist values of s0, s1, . . . such that Ls0,s1,... �∈ [m′, n′]TxtBc.

Proof. For each i ∈ N , define si inductively as follows.
Let T be a text for

⋃
x≤n−m Xx

i,s0,...,si−1
∪⋃x<n′−(n−m+1) Z

x
i,s0,...,si−1

.
Note that if Mi, on text T , infinitely often outputs an index for a set which

contains a grammar enumerating all of
⋃

x≤n−m Xx
i,s0,...,si−1

, then Mi does not
[m′, n′]MultBc-identifies the input (since it combines n −m + 1 languages in
the same group). In this case one can choose si arbitrarily.

On the other hand, suppose for all but finitely many t, Mi(T [t]) is an
index for a set which contains at least two grammars which enumerate part

262 S. Jain and E. Kinber

of
⋃

x≤n−m Xx
i,s0,...,si−1

. Then, there must exists a w ≤ 2(n − m), such that
〈i, 〈s0, s1, . . . , si−1〉, w〉 and 〈i, 〈s0, s1, . . . , si−1〉, w+1〉 end up being enumerated
by different grammars in the index set output by Mi(T [t]), for infinitely many
t. Now consider the following cases.

Case 1: w is even. Let si = 0. In this case one can easily verify that Mi

does not [m′, n′]MultBc-identify {Xx
i,s0,...,si−1

| x ≤ m−n}∪{Zx
i,s0,...,si−1

| x <
n′ − (n−m + 1)}.

Case 2: w is odd. Let si = 1. In this case one can easily verify that Mi

does not [m′, n′]MultBc-identify {Y x
i,s0,...,si−1

| x ≤ m− n} ∪ {Zx
i,s0,...,si−1

| x <
n′ − (n−m + 1)}. �

Theorem follows from above claims.

Following technical proposition is helpful for our results.

Proposition 8. Fix 1 ≤ n. Suppose L is an infinite class in DisjClass such
that L ∈ [1, n]MultEx. Let 1 ≤ m ≤ n.

Then, from any distinct L1, . . . , Lm ∈ L, from a text T for L1 ∪ . . . ∪ Lm,
one can effectively find in the limit

(a) grammars g1, . . . , gn−m such that Wgi are distinct languages in L −
{L1, . . . , Lm},

(b) a grammar g for L1 ∪ . . . ∪ Lm.
Note that part (b) above implies L ∈ [1,m]MultEx.

Proof. Let e1, . . . , e2n−m be such that We1 , . . . ,We2n−m are distinct languages
in L. Let M be [1, n]MultEx learner for L.

Now given any text T as in the hypothesis, one can effectively search for
distinct g1, . . . , gn−m, g′1, . . . , g

′
n−m ∈ {e1, . . . , e2n−m} such that

[
⋃

1≤r≤n−m(Wgr ∪W ′
gr

)] ∩ content(T) = ∅.
Let i be the grammar to which M converges on a text for content(T) ∪⋃

1≤r≤n−m Wgr and i′ be the grammar to which M converges on a text for
content(T) ∪⋃1≤r≤n−m W ′

gr
.

It is now easy to verify that, g1, . . . , gn−m satisfy part (a) of the Proposition,
and L1 ∪ . . . ∪ Lm = Wi ∩Wi′ (which allows us to find g as required for part
(b)).

Our next result shows that, for classes in DisjClass, reducing the number
of languages in the input union and the number of learned groups by the same
parameter does not affect MultEx and MultBc-learnability.

Theorem 9. Suppose L ∈ DisjClass. Assume 1 ≤ m ≤ n and 1 ≤ s ≤ n.
Then, (a) to (d) hold.

(a) For m ≥ 2, L ∈ [m,n]MultEx implies L ∈ [m− 1, n− 1]MultEx.
(b) For m ≥ 2, L ∈ [m,n]MultBc implies L ∈ [m− 1, n− 1]MultBc.
(c) L ∈ [m,n]MultEx implies L ∈ [1, s]MultEx.
(d) L ∈ [m,n]MultBc implies L ∈ [1, s]MultBc.

Proof. We show part (a). Part (b) can be shown similarly. Part (c) follows from
Proposition 8(b), and part (d) can be proved similarly.

Learning Multiple Languages in Groups 263

(a) Without loss of generality assumeL is infinite. Suppose M [m,n]MultEx-
identifies L. Define M′ as follows.

Suppose a text T for L1 ∪ . . . Ln−1 is given as input. Let g1 be a grammar
such that Wg1∩content(T) = ∅ and Wg1 ∈ L. Let g be a grammar for content(T)
(Note that by Proposition 8, one can find such a g, g1 in the limit).

Let T ′ be a text for content(T)∪Wg1 . Suppose M(T ′) converges to the index
for {i1, . . . , im}. For 1 ≤ r ≤ m, let i′r be a grammar for Wir ∩Wg. Then, M′(T)
converges to the index for {i′r | 1 ≤ r ≤ m and Wi′r �= ∅}. It is easy to verify
that M′ [m− 1, n− 1]MultEx-identifies L (as at most one of Wi′r is empty).

Corollary 10. Suppose L ∈ DisjClass. Suppose 1 ≤ m ≤ n, 1 ≤ m′ ≤ n′,
n′ ≤ n and n−m ≤ n′ −m′. Then,

(a) L ∈ [m,n]MultEx implies L ∈ [m′, n′]MultEx.
(b) L ∈ [m,n]MultBc implies L ∈ [m′, n′]MultBc.

Now we will demonstrate complexity advantages of [1,m]MultEx-
learnability over [m,m]MultEx-learnability (for classes of languages which are
learnable under both criteria). First we need a technical proposition.

Proposition 11. Let S = {e | card(We) ≤ e, and card(We) is odd }. Then,
there does not exist an n ∈ N and a recursive function h such that:

(a) for all e, card({t | h(e, t) �= h(e, t + 1)}) ≤ n, and
(b) limt→∞ h(e, t) = 1, if e ∈ S; limt→∞ h(e, t) = 0, otherwise.

Above proposition can be easily proved using Kleene’s recursion theorem [Rog67].
We omit the details.

If M(T [r]) �= M(T [r + 1]), then we say that M made a mind change at
T [r + 1].

Theorem 12. Suppose 2 ≤ m. There exists a class L in [m,m]MultEx, such
that

(a) For any n ∈ N , for any M which [m,m]MultEx-identifies L, M makes
≥ n mind changes on a text for L1 ∪ . . .∪Lm, for some L1, . . . , Lm in the class.

(b) Some M [1,m]MultEx-identifies L using no mind changes.

Proof. Let L1
e = {{〈e, 2x〉, 〈e, 2x+ 1〉} | x < m}.

Let L2
e = {{〈e, 2x+ 1〉, 〈e, 2x+ 2〉} | x < m− 1} ∪ {{〈e, 2m− 1〉, 〈e, 0〉}}.

Note that
⋃L1

e =
⋃L2

e, for all e.
Let S = {e | card(We) ≤ e, and card(We) is odd }.
Let L =

⋃
e∈S L1

e ∪
⋃

e�∈S L2
e.

It is easy to verify that L ∈ [m,m]MultEx (one determines in the limit the
2m elements that constitute the m input languages, and whether e ∈ S or not,
for each e such that, for some y, 〈e, y〉 belongs to the input text. This information
is enough to determine the individual languages which constitute the input).

Furthermore, L ∈ [1,m]MultEx via a learner which makes no mind changes
(one just needs to wait until at least 2m elements appear in the input. At which
point the learner can output the grammar which enumerates these 2m elements).

264 S. Jain and E. Kinber

However, a learner which [m,m]MultEx-identifies L using at most n mind
changes, also gives us a method to decide S limit effectively using at most n
mind changes. An impossible task by Proposition 11.

4 Some Extensions

In this section we consider learnability of unions in groups under additional
constraint: the number of languages in learned groups may be limited.

Definition 13. (a) We say that M [m, s, n]MultEx-identifies L, iff for all dis-
tinct languages L1, . . . , Ln in L, for all texts T for L1 ∪ . . . ∪ Ln, there exist
i1, . . . , ik, (k ≥ m) such that M(T) converges on T to the index for the set
{i1, . . . , ik} and there exists a partition G1, . . . , Gk of {1, 2, . . . , n} such that

(i) each Gi is non-empty and of size at most s,
(ii) for 1 ≤ j ≤ k, ij is a grammar for

⋃
r∈Gj

Lr.
(b) [m, s, n]MultEx = {L | (∃M)[M [m, s, n]MultEx-identifies L]}.
One can similarly define [m, s, n]MultBc. Note that [m,n]MultEx is same

as [m, s, n]MultEx, for any s ≥ n −m + 1. Thus, often when s ≥ n −m + 1,
we just use [m,∞, n]MultEx to show that there is no restriction on individual
groups except the one forced by values of m,n.

We first consider some results which follow from the results/proofs of Theo-
rems in the previous section. As a corollary to Theorem 6, we get

Corollary 14. Suppose 1 ≤ n < n′ and 1 ≤ m′ ≤ n′. Then [n, 1, n]MultEx−
[m′,∞, n′]MultBc �= ∅.
Corollary 15. Suppose 1 ≤ r′ < r, 1 ≤ m ≤ n − r + 1, 1 ≤ m′ ≤ n′ − r′ + 1.
Then, [m, r, n]MultEx− [m′, r′, n′]MultBc �= ∅.
Proof. By Proof of Theorem 7, we have that [n − r + 1, r, n]MultEx −
[m′, r′, n′]MultBc �= ∅. Corollary follows.

Proof of Theorem 9 essentially shows the following theorem also.

Theorem 16. Suppose n − m ≤ n′ − m′, r ≤ r′ and n′ ≤ n. Suppose L ∈
DisjClass. Then,

(a) [m, r, n]MultEx ⊆ [m′, r′, n′]MultEx.
(b) For n′ ≤ n, [m, r, n]MultEx ⊆ [1, n′, n′]MultEx.

We now give a result which solves the remaining cases for the relationship
between different [m, r, n]MultEx-learnability for classes in DisjClass. Suppose
n′ ≤ n, r ≤ r′ and n′ −m′ < n−m: since the other cases have been handled in
corollaries and theorem above. For classes in DisjClass, the next result, The-
orem 18, shows when [m, r, n]MultEx can be simulated by [m′, r′, n′]MultEx.
This depends on a complex relationship between m, r, n and m′, r′, n′, which we
express as the following property.

Intuitively, the property says that if we distribute n balls in at least k ≥ m
non-empty boxes, such that each box has at most r balls, and then take out
n− n′ balls, then at least m′ boxes will remain non-empty.

Learning Multiple Languages in Groups 265

Definition 17. Suppose 1 ≤ m′ ≤ n′, 1 ≤ m ≤ n, 1 ≤ n′ ≤ n, 1 ≤ r ≤ r′ and
n′ −m′ ≤ n−m.

We say that Prop(m, r, n,m′, r′, n′) holds iff for any k ≥ m,
a1, . . . , ak, b1, . . . , bk, if (A) to (D) hold, then (E) also holds.

(A)
∑

1≤i≤k bi = n− n′

(B)
∑

1≤i≤k ai = n,
(C) for 1 ≤ i ≤ k, bi ≤ ai ≤ r,
(D) for 1 ≤ i ≤ k, 1 ≤ ai ≤ r,
(E) card({i | 1 ≤ i ≤ k, ai > bi}) ≥ m′.

Theorem 18. Suppose n′ ≤ n, r ≤ r′ and n′ −m′ < n−m.
(a) If Prop(m, r, n,m′, r′, n′) holds then for any class L ∈ DisjClass,
L ∈ [m, r, n]MultEx implies L ∈ [m′, r′, n′]MultEx.
(b) If Prop(m, r, n,m′, r′, n′) does not hold then [m, r, n]MultEx −

[m′, r′, n′]MultEx �= ∅. Moreover, this separation can be witnessed by a class
in DisjClass.

Proof. (a) Suppose Prop(m, r, n,m′, r′, n′) holds. Let M be [m, r, n]MultEx
learner for L ∈ DisjClass.

If L is finite, then the simulation is trivial. So assume L is infinite. M′ behaves
as follows.

Given any text T , M′ finds (i) g1, . . . , gn−n′ such that Wg1 ,Wg2 , . . . ,Wgn−n′ ∈
L and input text T does not contain any element of

⋃
1≤i≤n−n′ Wgi , and (ii) a

grammar g for content(T) (note that by Proposition 8 this can be done in the
limit). M′ runs M on a text T ′ for content(T) ∪⋃1≤i≤n−n′ Wgi .

Suppose M converges on T ′ to the index for set {i1, . . . , ik}. Then, M′ forms
grammars {i′1, . . . , i′k}, such that for 1 ≤ w ≤ k, Wi′w = Wiw ∩Wg. Then, M′

outputs the index for the set {i′w | 1 ≤ w ≤ k,Wi′w �= ∅}.
It is straightforward to verify, using the definition of Prop, that M′

[m′, r′, n′]MultEx-identifies L.
(b) Suppose Prop(m, r, n,m′, r′, n′) does not hold. Let a1, . . . , ak, b1, . . . , bk,

be such that (A) to (D) are satisfied but (E) does not hold in Definition 17.
The diagonalizing class L will consist of Lj,i,w, for w < ai, j ∈ N , 1 ≤ i ≤ k.
Lj,i,w will satisfy the following properties. For the following, let codej be the

index for a set of grammars for the languages in {Lj′,i,w | j′ < j, 1 ≤ i ≤ k, w <
ai}.

(P1) Lj,i,w ⊆ {〈j, codej , i, x〉 | x < 2r}.
(P2) card(Lj,i,w) ≥ 2.
(P3) Lj,i,w are disjoint for different values of w.
We first claim that L is in [m, r, n]MultEx, irrespective of what the exact

chosen Lj,i,w are as long as above properties are satisfied.
On any input text, a learner can first determine the largest j and correspond-

ing codej such that, 〈j, codej , i, x〉 belongs to the input text, for some i, x. Now
the learner can determine (in the limit) grammars for:

(i) any language from L which is of form Lj′,i′,w′ , for some j′ < j, and
Lj′,i′,w′ ⊆ content(T) (this can be done using codej).

266 S. Jain and E. Kinber

(ii) content(T) ∩ {〈j, codej , i, x〉 | x < 2r}, for each i ∈ N , such that
content(T) ∩ {〈j, codej , i, x〉 | x < 2r} �= ∅.

The learner can then, in the limit, converge to the index for set of grammars
obtained in (i) and (ii). It immediately follows that the learner [m, r, n]MultEx-
identifies L.

We now show that for appropriate choice of Lj,i,w, L �∈ [m′, r′, n′]MultEx.
Suppose by way of contradiction that, for some j, one cannot choose appro-

priate Lj,i,w, 1 ≤ i ≤ k, w < ai such that Mj fails to [m′, r′, n′]MultEx-identify
{Lj,i,w | 1 ≤ i ≤ k, w < ai}. Let j be least such number.

Define Lj,i,w for 1 ≤ i ≤ k, w < bi, as {〈j, codej , i, 2w〉, 〈j, codej , i, 2w + 1〉}.
Give as input a text T to Mj , where content(T) = {〈j, codej , i, x〉 | ai > bi and
2bi ≤ x < 2r}. (Note that codej is determined by languages chosen for Lj′,i,w
for j′ < j.)

Suppose Mj on T converges to the index set {s1, . . . , sk′}. Now Wsw , 1 ≤
w ≤ k′ must be non-empty, and k′ ≥ m′ (otherwise clearly, one can choose
appropriate Lj,i,w such that Mj fails to [m′, r′, n′]MultEx-identify {Lj,i,w |
1 ≤ i ≤ k, w < ai}). Furthermore note that there cannot be an i, 1 ≤ i ≤
k, ai > bi, such that for two distinct w and w′, Wsw ,Wsw′ intersect with
{〈j, codej , i, x〉 | 2bi ≤ x < 2r} (since otherwise, one may take Lj,i,bi to contain
one element from both Wsw ,Wsw′ , and other Lj,i,w appropriately, to contradict
Mj [m′, r′, n′]MultEx-identifying L). Now for i, 1 ≤ i ≤ k, such that ai > bi,
for bi ≤ w < ai, define Lj,i,w such that each Lj,i,w contains at least 2 elements
and
⋃

bi≤w<ai
Lj,i,w = {〈j, codej , i, x〉 | 2bi ≤ x < 2r}.

Now each i in {i | ai > bi} can be mapped to a w, 1 ≤ w ≤ k′ such that
Wsw contains {〈j, codej , i, x〉 | 2bi ≤ x < 2r}. Thus, {i | ai > bi} ≥ k′ ≥ m′. A
contradiction.

This completes the proof of the theorem.

Corollary 19. Suppose n − m > n′ − m′, and n′ ≥ n − m + �n−m
r−1 �. Then,

[m, r, n]MultEx− [m′,∞, n′]MultEx �= ∅.
Proof. Let a1, a2, . . . , am, b1, . . . , bm, be defined as follows.

ai = r, bi = 0, for 1 ≤ i ≤ �n−m
r−1 �.

ai = bi = 1, for �n−m
r−1 � < i ≤ m.

If n−m
r−1 is not an integer, then

let a�n−m
r−1 = 1 + (n−m)− [�n−m

r−1 � ∗ (r − 1)], b�n−m
r−1 = 0.

Now, as m −m′ < n − n′, and n′ ≥ n −m + �n−m
r−1 �, we immediately have

that Prop(m, r, n,m′, r′, n′) cannot hold (as there are < m′ w’s in {1, . . . ,m}
such that aw − bw > 0). Corollary follows.

5 Conclusions

In this paper we explored relationships between a more coarsed and a more
refined classification from the standpoint of computability. Some of our main

Learning Multiple Languages in Groups 267

results (for example, Theorems 9, 16, and 18(a)) worked on the assumption
that underlying targets of classification were pairwise distinct. While it is true
for many cognitive classification tasks, there are classification problems where
such an assumption cannot be made. For example, when one wants to classify
all classical music pieces as being in major or minor, this can probably be done,
relatively easily, for everything written within Western musical tradition before
the 20th century. However, this has changed by impressionism, introduction of
the atonal scale, etc. in the 20th century. Many pieces written by contemporary
composers often alternate between major and minor several times, which makes
the task of classifying such pieces much harder. To model a situation of this kind,
one has to lift the requirement of classification targets being pairwise distinct,
or, at least, replace it by a much weaker requirement allowing intersections of
classification targets being finite. It would be interesting to explore the issues
discussed in the paper in such a setting. We leave it for a future research.

Acknowledgements. We thank the anonymous referees of ALT for several
helpful comments.

References

[Bār74] J. Bārzdiņš. Two theorems on the limiting synthesis of functions. In Theory
of Algorithms and Programs, vol. 1, pages 82–88. Latvian State University,
1974. In Russian.

[BB75] L. Blum and M. Blum. Toward a mathematical theory of inductive inference.
Information and Control, 28:125–155, 1975.

[Blu67] M. Blum. A machine-independent theory of the complexity of recursive
functions. Journal of the ACM, 14:322–336, 1967.

[CL82] J. Case and C. Lynes. Machine inductive inference and language identifica-
tion. In M. Nielsen and E. M. Schmidt, editors, Proceedings of the 9th In-
ternational Colloquium on Automata, Languages and Programming, volume
140 of Lecture Notes in Computer Science, pages 107–115. Springer-Verlag,
1982.

[CS83] J. Case and C. Smith. Comparison of identification criteria for machine
inductive inference. Theoretical Computer Science, 25:193–220, 1983.

[Gol67] E. M. Gold. Language identification in the limit. Information and Control,
10:447–474, 1967.

[JNT05] Sanjay Jain, Yen Kaow Ng, and Tiong Seng Tay. Learning languages in a
union. 2005. Preliminary version appeared in ALT 2001.

[MY78] M. Machtey and P. Young. An Introduction to the General Theory of Algo-
rithms. North Holland, New York, 1978.

[OSW86] D. Osherson, M. Stob, and S. Weinstein. Systems that Learn: An Introduc-
tion to Learning Theory for Cognitive and Computer Scientists. MIT Press,
1986.

[OW82] D. Osherson and S. Weinstein. Criteria of language learning. Information
and Control, 52:123–138, 1982.

[Pin79] S. Pinker. Formal models of language learning. Cognition, 7:217–283, 1979.
[Rog58] H. Rogers. Gödel numberings of partial recursive functions. Journal of

Symbolic Logic, 23:331–341, 1958.

268 S. Jain and E. Kinber

[Rog67] H. Rogers. Theory of Recursive Functions and Effective Computability.
McGraw-Hill, 1967. Reprinted by MIT Press in 1987.

[WC80] K. Wexler and P. Culicover. Formal Principles of Language Acquisition.
MIT Press, 1980.

Inferring Unions of the Pattern Languages
by the Most Fitting Covers

Yen Kaow Ng1 and Takeshi Shinohara2

1 Kyushu Institute of Technology,
Graduate School of Computer Science and Systems, Iizuka, 820, Japan

kalngyk@daisy.ai.kyutech.ac.jp
2 Kyushu Institute of Technology,

Department of Artificial Intelligence, Iizuka, 820, Japan
shino@ai.kyutech.ac.jp

Abstract. We are interested in learning unions of the pattern languages
in the limit from positive data using strategies that guarantee some form
of minimality during the learning process. It is known that for any class of
languages with so-called finite elasticity, any learning strategy that finds
a language that is minimal with respect to inclusion (MINL) ensures
identification in the limit. We consider a learning strategy via another
form of minimality — the minimality in the number of elements that
are shorter than a specified length. A search for languages with this
minimality is possible in many cases, and the search can be adapted to
identify any class where every language in the class has a characteristic
set within the class. We compare solutions using this strategy to those
from MINL to illustrate how we may obtain solutions that fulfill both
notions of minimality. Finally, we show how the results are relevant using
some subclasses of the pattern languages.

1 Introduction

In this paper we study some strategies for learning from positive data [4] the
unions of the pattern languages [1] and its subclasses. We are interested in getting
hypotheses that not only converge to the presented languages in the limit, but
also guarantee other desirable properties, such as some form of minimality.

One such minimality is that with respect to set inclusion. Given a class
of languages where the membership is uniformly decidable (called an indexed
family of recursive languages [1]), and a property known as finite elasticity [17]
is fulfilled, every language in the class can be identified in the limit by finding, for
any sample received at each stage, a language which (1) includes all the samples,
and (2) is minimal with respect to set inclusion among the other languages in
the class that contain all the samples. An algorithm that computes (1) and (2)
is known as MINL in the literature [1, 14].

The unions of up to a bounded number of the non-erasing pattern languages
is particularly interesting in this case because the class has finite elasticity. That
is, the ability to compute MINL is sufficient for identifying languages in the
class. Arimura et. al. devised an efficient algorithm (MMG) that computes MINL

S. Jain, H.U. Simon, and E. Tomita (Eds.): ALT 2005, LNAI 3734, pp. 269–282, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

270 Y.K. Ng and T. Shinohara

for the bounded unions of languages where a condition known as compactness
with respect to containment can be fulfilled [3]. Sato et. al. showed that for the
regular patterns (that is, patterns where each variable appears at most once),
the property can be fulfilled when the number of pattern languages allowed in a
union is less than a bound that depends on the alphabet size [13]. In general, the
MINL problem is difficult to compute, partly due to the difficulty in deciding
inclusion between infinite languages [6, 7].

On the other hand, it may be desirable to achieve another form of minimality
that is not guaranteed by MINL. We illustrate this with an example using the
regular pattern languages. Let S = {“cabcc”, “cbcac”}, and consider the language
generated by the pattern “∗a∗” (that is, the set of strings obtained by replacing
the variables “∗”s with any non-empty string over a, b, and c). Since no other
language that includes S is a proper subset of it, “∗a∗” is minimal with respect
to inclusion and hence is a potential output of MINL. However, another possible
solution of MINL, “∗bc∗” generates less number of strings of any given length
than “∗a∗”, and may be preferred in some applications [10].

Based on this we propose another approach to minimality. We propose to find,
among the hypotheses that are consistent with the given sample, for one that
contains the least number of elements of up to a specified length. More precisely,
an instance of the problem would ask for a set of languages by specifying the
following: (1) a class L of languages from which the output is drawn, (2) k,
the number of languages allowed in the output, (3) a set S of samples that the
output languages must together contain, and (4) a length �, where the output
must contain the least number of elements of up to length �, among all the sets
of languages that fulfill (1)–(3). We denote an instance of the problem specified
in such a way FCP(L, S, k, �). (The efficient computability of such a problem
for some subclasses of the pattern languages has been studied in [11].)

Now let us look at how we may use an algorithm that computes FCP(L, S, k,
�) for learning. First of all, we do not want the learning strategy to favor any
particular indexing of the languages, that is, we want to base our conjectures
solely upon the output from an algorithm that computes FCP(L, S, k, �). When
there are more than one solutions for FCP(L, S, k, �), we want to treat them
as equals. We then consider if it is possible to bound � to some value. We can,
perhaps, set � to the length of the longest element in S. Now suppose there are
two languages L, L′ ∈ L where L is finite, L ⊆ L′, and the two languages contains
exactly the same elements of within the length (m say) of the longest element
in L. In this case, given a text for L where all its elements are represented, both
L and L′ will be in FCP(L, L, k,m), and hence the output of FCP(L, L, k,m)
alone is insufficient for us to decide on the conjecture L. However, since this
problem does not arise for a class that consists only of infinite languages (where
there is no bound to the sample length), in this paper we consider the following
two cases separately: (Case 1) allow only infinite languages in the class, and
compute FCP(L, S, k,m) where m is the length of the longest element in S;
and (Case 2) allow both finite and infinite languages in the class, but allow � to
extend indefinitely beyond the lengths of the samples.

Inferring Unions of the Pattern Languages by the Most Fitting Covers 271

We found similar results in both cases: such a learner learns a class of lan-
guages if and only if for every language L in the class, there exists a finite set
S ⊆ L that in some way, witnesses the minimality of L in the FCP sense. While
this may seem exceedingly restrictive, it turns out that any class of languages
where each language in it has a characteristic set within the class [13] fulfills this
requirement. This includes any class with finite elasticity [12, 8], e.g. the class
of bounded unions of non-erasing pattern languages [17]. Also, even though the
full class of the erasing pattern languages does not have finite elasticity, many
of its interesting subclasses do, e.g. the erasing regular patterns [14].

We then turn to the question of obtaining unions of the pattern languages that
are at the same time minimal with respect to MINL and FCP. We observe that
for any S, if there is a way to decide a length n for which every union of up to k
languages in {L ∈ L | S ∩L �= ∅} has a characteristic set consisting of elements of
no longer thann, then every solution in FCP(L, S, k, n) also fulfills the minimality
of MINL. This allows us to use previous results by Sato et. al. [13] to show that
for the non-erasing regular pattern languages, if the number k of unions allowed is
less than (card(Σ)− 1)/2 where card(Σ) is the alphabet size, then for any L and
S, any output from FCP(L, S, k, �) also fulfills the minimality required by MINL,
if � is at least as long as the longest element in S.

Through the same method we also show how solutions that fulfill both MINL
and FCP can be obtained for unions of the languages generated respectively by
the substring [15] and subsequence patterns [5]. Finally, we show that for the
class L of languages generated by patterns where only one variable occurrence
is allowed, any solution for FCP(L, S, k, �), where � is at least 2� k−1

card(Σ)−1�+ 1
plus the length of the longest string in S, also fulfills the minimality required by
MINL.

2 Preliminaries

The symbol N denotes the set of natural numbers. The symbol N+ denotes the
set of positive natural numbers. Cardinality of a set S is written card(S). A
word over a non-empty alphabet A is a finite string of symbols taken from A.
The empty word is a null string and denoted by ε. A∗, A+, and A≤n denote the
sets of all the words, non-empty words, and words of length n or less over A,
respectively.

Let Σ be a finite alphabet with card(Σ) ≥ 2, and V = {x1, x2, . . .} be a
countable alphabet disjoint from Σ. Elements in Σ are called constants and
elements in V are called variables. A non-empty word over V ∪ Σ is called a
pattern, and the length of a pattern p is denoted |p|. Each constant or variable
has unit length. For a set of patterns P , the length of the longest word in it is
denoted �P � while the length of the shortest word in it is denoted �P �.

A substitution is a homomorphism from patterns to patterns that maps every
constant to itself. The image of a pattern p under a substitution θ is written pθ.
A substitution is erasing if it maps some or all variables to the empty word,
and it is non-erasing otherwise. Unless stated otherwise, substitutions are non-
erasing in this paper. We write p � q iff p = qθ for some substitution θ. We

272 Y.K. Ng and T. Shinohara

write p ≺ q just in case p � q but not q � p. Given two sets of patterns P and
Q, we write P � Q iff for each p ∈ P , p � q for some q ∈ Q. P � Q just in case
P � Q but not Q � P .

A regular pattern is a pattern where each variable appears at most once [14].
A pattern is a substring pattern just in case it is of the form “x1sx2” and s ∈ Σ+.
A pattern is a subsequence pattern just in case it is of the form “x1a1x2a2 . . .
xnanxn+1” where the subscripted “a”s are elements of Σ [5]. We denote the
sets of all regular patterns, substring patterns and subsequence patterns by RP,
Psub, and Psubseq, respectively.

A language is a set of words over Σ. The pattern language of a pattern p,
written L(p), is the set {w ∈ Σ∗ | w � p}. For a set P of patterns, L(P) denotes
the language

⋃
p∈P L(p) and L(P) denotes the class of languages {L(p) | p ∈ P}.

2.1 Inductive Inference

We present the concepts in inductive inference [4] in this section. A sequence
is an ordered presentation of elements in Σ∗ where repetitions are allowed. For
each sequence σ, content(σ) denotes the set of elements that appeared in σ.
SEQ denotes the set of all finite sequences. A text of a language L is an infinite
sequence w1, w2, . . . such that {wi | i ∈ N} = L. The initial segment of length
n of a text T is denoted T [n]. An inductive inference machine (IIM) is an
algorithmic device which computes a mapping from SEQ into N . We say that
an IIM M converges on a text T to i just in case there exists n ∈ N+ such that
for all n′ ≥ n, M outputs i on input T [n′].

A collection of non-empty languages L = {Li | i ∈ N} is an indexed family
of recursive languages just in case there exists a computable function f such
that for each i ∈ N and for each w ∈ Σ∗, f(i, w) = 1 if w ∈ Li and f(i, w) = 0
otherwise. The family L1, L2, . . . is said to be TxtEx-identified by an IIM M
just in case for each Li, and for each text T for Li, M converges on T to j, and
Lj = Li. L is learnable just in case some IIM M TxtEx-identifies it. A finite
tell-tale for a language L within a class L is a finite set S ⊆ L such that there
exists no language L′ ∈ L where S ⊆ L′ ⊂ L. An indexed family of recursive
languages {Li | i ∈ N} is learnable just in case there exists a procedure, effective
in each i, that enumerates a finite tell-tale for Li within the class [2].

A collection of languages L has finite thickness just in case for each w ∈ Σ∗,
{L ∈ L | w ∈ L} is finite. A collection of languages L has infinite elasticity just
in case there exists an infinite sequence of pairwise distinct words, w0, w1, w2 . . .
from Σ∗, and an infinite sequence of pairwise distinct languages, A1, A2, . . ., such
that for each k ∈ N+, {wi | i < k} ⊆ Ak, but wk �∈ Ak. L is said to have finite
elasticity just in case L does not have infinite elasticity [17, 9]. A characteristic
set for a language L within a class L is a finite set SL such that for each L′ ∈ L,
SL ⊆ L′ ⇒ L ⊆ L′. Sato [12] and Kobayashi et. al. [8] independently showed
that a class of languages L has finite elasticity if and only if every language
L ⊆ Σ∗ has a characteristic set within L.1

1 Note that for a class with finite elasticity, every language (that is, including languages
outside of L) has a characteristic set within L.

Inferring Unions of the Pattern Languages by the Most Fitting Covers 273

3 Fittest Cover Problem

We now formalize our notion of minimality.

Definition 1. Given a class L of languages, k, � ∈ N+, and a finite, non-empty
set of examples S ⊆ ⋃L∈L L, the Fittest Cover Problem (written FCP(L, S, k, �))
is to find, among every set L′ of up to k languages in {L ∈ L | L ∩ S �= ∅} where
S ⊆ ⋃L∈L′ L, for one that minimizes card(

⋃
L∈L′ L≤�).

As an example consider the sample S = {“cabcc”, “cbcac”}. It is easy to verify
that L(“x1bcx2”) is a solution for FCP(L(RP), S, 1, �S�), but L(“x1ax2”) is not.
Note that both are solutions for MINL.

For a given class of patterns P , we say that a set of patterns P ⊆ P is a solu-
tion for FCP(L(P), S, k, �) just in case L(P) is a solution for FCP(L(P), S, k, �).
That is, we identify a pattern set P with the language it generates whenever the
context is clear.

Definition 2. Given a class P of patterns, k, � ∈ N+ and S ⊆ Σ∗, FCP(L(P),
S, k, �) = {P ⊆ P | P is a solution for FCP(L(P), S, k, �)}.

3.1 FCP as a Strategy for Inductive Inference

An immediate concern regarding the use of such a strategy is that its minimality
is partial. That is, while the minimality in MINL is with respect to Σ∗, an FCP
solution is only minimal for up to a specified length. In this section we show
how the requirement of such a minimality restricts learning. To simplify the
discussion in this section we use only FCP(L, S, 1, �), that is, the case without
union. This does not make the discussion any less relevant to the study of unions
since the finite unions of an indexed family is also an indexed family.

Given an indexed family of recursive languages L = {Li | i ∈ N}, and
λ ∈ N , we let InferByFCP(� = λ) be a computation that, upon given each
initial segment T [n] of a text T , conjectures the language with the smallest
index among the solutions for FCP(L, content(T [n]), 1, λ). In this paper we
study the two cases: (1) InferByFCP(� = �S�), which uses the solutions for
FCP(L, content(T [n]), 1, �content(T [n])�), and (2) InferByFCP(� = n), which
uses the solutions for FCP(L, content(T [n]), 1, n). We refer to the learner of (1)
by FCPLearner1 , and that of (2) by FCPLearner2 .

Note that the least index is used in InferByFCP(� = λ) to simplify conver-
gence and its use does not add a dependency on the numberings for the cases we
consider (where � extends indefinitely), as the results will show. In the case that
FCP(L, content(T [n]), 1, λ) is not computable due to that L is infinite, we may
alternatively compute for FCP({L1, L2, . . . , Ln}, content(T [n]), 1, λ). Since the
correct language is included in the hypothesis space in the limit, this does not
weaken the strength of the learner in terms of TxtEx-identification.

Definition 3. Given a class L of languages and language L, we say that a finite
set S ⊆ L is a

274 Y.K. Ng and T. Shinohara

(1) witness of minimality for L within L just in case there exists � ∈ N such
that for all L′ ∈ L, S ⊆ L′ ⇒ for all �′ ≥ �, card(L≤�′) ≤ card(L′≤�′),

(2) witness of neighborhood minimality for L within L just in case for every
S′ where S ⊆ S′ ⊆ L, for every L′ ∈ L, S′ ⊆ L′ ⇒ card(L≤�S′) ≤
card(L′≤�S′).

Theorem 1. FCPLearner1 TxtEx-identifies an indexed family of infinite re-
cursive languages L = {Li | i ∈ N} if and only if for each i, there exists a
witness of neighborhood minimality for Li within L.

Proof. (⇐) For Li ∈ L, let T be any text for Li, and let Si be a witness of
neighborhood minimality for L within L. Let � ∈ N and finite Ai ⊆ Σ∗ be such
that for each language Lj �= Li where j < i, (1) if Li ⊂ Lj, then card(L≤�

i) <
card(L≤�

j), (2) otherwise Ai contains an element in Li−Lj. Let xi be an element
longer than � in Li. Let n ∈ N (where we furthermore require that n ≥ i if
FCPLearner1 is made to compute FCP from the class {L1, . . . , Ln} instead
of L) be such that Ai ∪ Si ∪ {xi} ⊆ content(T [n]). (Note that we do not
require such n to be recursively determined.) Then, for all T [n′] where n′ ≥ n,
in the case that j < i, either (1) Lj = Li, (2) content(T [n]) �⊆ Lj , or (3)
card(L≤n

i) < card(L≤n
j); and in the case that j > i, card(L≤n

i) ≤ card(L≤n
j).

¿From this it is not difficult to see that FCPLearner1 will converge to some
i′ ≤ i where Li′ = Li after reading T [n].

(⇒) Given a language Li where no such witness of neighborhood minimal-
ity exists, we show how to construct a text T for Li for which FCPLearner1
fails to converge on to an index for a language for Li. At each stage l of the
construction we look for a finite set Sl ⊆ Li and sequence σl where every Sl+1

includes L
≤�Sl
i and every sequence σl+1 begins with σl. At stage 0, let σ0 be

the empty word and let S0 = ∅. At every stage l+1, we find a language Lj �= Li

and Sl+1 where L
≤�Sl
i ⊆ Sl+1 ⊆ Lj ∩Li and card(L≤�Sl+1

i) > card(L≤�Sl+1
j).

This search will always succeed, because otherwise L
≤�Sl
i is a witness of neigh-

borhood minimality for Li within L. Let σl+1 be a sequence (of length ≥ j if
FCPLearner1 is made to compute FCP from the class {L1, . . . , Ln} instead of
L) extending σl where content(σl+1) = Sl+1. Let T be a text where each initial
portion begins with a sequence σl for some l. Since at every stage l + 1, σl+1

contains all the elements in Li of up to length �Sl�, T is a text for Li. However,
FCPLearner1 fails to converge on T to an index for Li.

Corollary 1. There exists a learnable indexed family L of infinite recursive lan-
guages not TxtEx-identified by FCPLearner1.

Proof. Let a ∈ Σ and let an denote the word in {a}∗ of length n. For each i,
j ∈ N+, j ≥ 2, let Lij = {an | n ≤ i ∨ n ≡ i (mod j)}. Let L = {Lij | i, j ∈
N+, j ≥ 2}. For each i, j ∈ N , let Sij be a finite set including {an | n ≤ i}
and {ai+j}. It is easy to verify that Sij is a finite tell-tale for Lij and hence L
is learnable. We now show that there is no witness of neighborhood minimality

Inferring Unions of the Pattern Languages by the Most Fitting Covers 275

for any language in the class. For any i, j, let S be any finite subset of Lij . Let
i′, j′ ∈ N be such that: (1) i′ ≥ max{i, �S�}, (2) i′ + j′ ≡ i (mod j), and (3)
i+ (i′ + j′ − i)/j > i′ + 1. Let S′ = S ∪ {ai′+j′}. By (1), S′ ⊆ Li′j′ ; and by (2),
S′ ⊆ Lij . However, there are at least i + (i′ + j′ − i)/j (> i′ + 1) elements in
L≤i′+j′

ij , but only i′ + 1 elements in L≤i′+j′
i′j′ .

Theorem 2. FCPLearner2 TxtEx-identifies an indexed family of recursive
languages L = {Li | i ∈ N} if and only if for each i, there exists a witness of
minimality for Li within L.

Theorem 2 can be shown using methods similar to that in proving Theorem 1.

Corollary 2. If each language in an indexed family L of recursive languages
has a characteristic set within L, FCPLearner2 TxtEx-identifies L.

Corollary 3. Given an indexed family L of recursive languages with finite elas-
ticity and k ∈ N , FCPLearner2 TxtEx-identifies the class of unions of up to
k languages in L.

For an example of a class learnable by FCPLearner2 where no language in
it has a characteristic set within the class, let w0, w1, . . . be an enumeration of
Σ∗ and consider the class L = {Σ∗−{wi} | i ∈ N}. Also, the class of unbounded
unions of the erasing languages of substring patterns has infinite elasticity, but
each language in it has a characteristic set within the class [15].

4 Comparing FCP to MINL and MMG

The problems MINL and MMG [3] have been introduced in the past as learning
strategies. MINL, as mentioned, aims to find languages that are minimal with
respect to set inclusion. MMG, on the other hand, looks for patterns that are
minimal with respect to the ‘�’ relation. In this section we see how the FCP
problem relates to these problem, being motivated by the possibility of obtain-
ing solutions that fulfill more than one of these notions of minimality. We first
formally state the MINL and MMG problems.

Definition 4. Given a class of patterns P, a finite, non-empty set S ⊂ Σ∗ and
k ∈ N+,
(1) The problem MINL(L(P), S, k) is to find a set of at most k patterns P ⊆ P
such that S ⊆ L(P) and there are no other set of up to k patterns P ′ ⊆ P where
S ⊆ L(P ′) such that L(P ′) ⊂ L(P).
(2) The problem MMG(L(P), S, k) is to find a set of at most k patterns P ⊆ P
such that S ⊆ L(P) and there are no other set of up to k patterns P ′ ⊆ P where
S ⊆ L(P ′) such that P ′ � P .
(3) MINL(L(P), S, k) = {P ⊆ P | P is a solution for MINL(L(P), S, k)}.
(4) MMG(L(P), S, k) = {P ⊆ P | P is a solution for MMG(L(P), S, k)}.

276 Y.K. Ng and T. Shinohara

Note that FCP andMINL are defined to be classes of patterns rather than
classes of languages solely to simplify the comparison with MMG. The results
in this section regarding FCP andMINL can be easily adapted to remove the
dependency on a pattern class P .

For any class P of patterns, since (from [1]) (∀P , Q ⊆ P) [P � Q ⇒ L(P) ⊆
L(Q)], a solution P for MINL(L(P), S, k) is either a solution for MMG(L(P),
S, k), or there exists some solution Q for MMG(L(P), S, k) where L(P) = L(Q).
On the other hand,MMG(L(P), S, k) ⊆MINL(L(P), S, k) if for all P, Q ∈ P ,
L(P) ⊆ L(Q) ⇒ P � Q, as noted in [3].

The following states necessary and sufficient conditions for the solutions of
FCP(L, S, k, �) to be solutions for MMG(L, S, k) and MINL(L, S, k).

Proposition 1. Given k, � ∈ N+, class P of patterns and a finite, non-empty
S ⊆ Σ∗,
1. FCP(L(P), S, k, �) ⊆ MMG(L(P), S, k) if and only if for each solution P ∈
FCP(L(P), S, k, �), every set of up to k patterns Q ⊆ P where S ⊆ L(Q) has
P � Q ⇒ L(Q)≤� − L(P)≤� �= ∅.
2. FCP(L(P), S, k, �) ⊆ MINL(L(P), S, k) if and only if for each solution P
∈ FCP(L(P), S, k, �), every set of up to k patterns Q ⊆ P where S ⊆ L(Q) has
L(P) ⊂ L(Q) ⇒ L(Q)≤� − L(P)≤� �= ∅.

The following result relates the classes FCP and MINL using the charac-
teristic sets.

Theorem 3. Given a class P of patterns, a finite, non-empty S ⊆ Σ∗ and
k ∈ N+. Let P ′ = {p ∈ P | L(p) ∩ S �= ∅} and let Lk = {L(P) | P ⊆
P ′ ∧ card(P) ≤ k}. If there exists � ∈ N such that every language L(P) ∈ Lk

has a characteristic set SP ⊆ L(P)≤� within Lk, then FCP(L(P), S, k, �) ⊆
MINL(L(P), S, k).

Proof. Let P ∈ FCP(L(P), S, k, �). Suppose there exists L(Q) ∈ Lk where
L(P) ⊂ L(Q) and L(Q)≤� − L(P)≤� = ∅. Let SQ ⊆ L(Q)≤� be a charac-
teristic set of L(Q) within Lk. Since L(Q)≤� − L(P)≤� = ∅, we would have
SQ ⊆ L(P) and hence L(Q) ⊆ L(P), a contradiction. Hence no such L(Q)
exists, and therefore by part 2 of Proposition 1, P ∈MINL(L(P), S, k).

Hence it suffices that we specify a sufficiently large �, depending only on the
maximum length of the elements in the characteristic sets, in the FCP problem to
obtain MINL solutions. A caveat here is that even though a characteristic set is
known to exist for every non-erasing pattern language within the class (since the
class has finite elasticity), such maximum length of the elements in a characteris-
tic set cannot be recursively determined for every non-erasing pattern language.
The reason is that, if such lengths can be decided, then inclusion for any two pat-
terns can be decided — by recursively generating their constituent elements of
up to that length. However, Jiang et. al. has shown that the problem of inclusion
between any two given non-erasing pattern languages is undecidable [7].

Nevertheless, the same problem does not arise for the regular patterns nor
its bounded unions. The following result by Sato et. al. gives a bound on the

Inferring Unions of the Pattern Languages by the Most Fitting Covers 277

length of such characteristic sets for the bounded unions of the regular pattern
languages, under specific conditions.

Definition 5 ([13]). For each pattern p, we denote by Sn(p) the set of all words
obtainable from p by substituting each variable in p with an element from Σ≤n.
For a set of patterns P , Sn(P) =

⋃
p∈P Sn(p).

Sato et. al. showed that it is possible to use Sn for some fixed n as the
characteristic sets for some unions of the regular pattern languages [13, 16]. For
example, every union of up to k regular pattern languages L(P) has S1(P) as
a characteristic set provided that card(Σ) ≥ 2k + 1 (Theorem 11 in [13]). This
gives us the following Corollary.

Corollary 4. For every finite, non-empty S ⊆ Σ∗ and k ∈ N+ where 2k+1 ≤
card(Σ), FCP(L(RP), S, k, �S�) ⊆ MINL(L(RP), S, k).

Proof. We first note that given any S, the set P = {p ∈ RP | L(p) ∩ S �= ∅}
consists only of patterns of length up to �S�. S1(P) where P ⊆ P hence contains
only elements of up to length �S�. Theorem 3 and Theorem 11 in [13] then give
us the result.

4.1 Substring Patterns and Subsequence Patterns

For some subclasses of the regular patterns, stronger results relating FCP to
MINL and MMG can be obtained.

Lemma 1. Suppose card(Σ) ≥ 2 and P ∈ {Psub,Psubseq}. For any p ∈ P,
there exists a word w ∈ L(p) of length �L(p)� such that for all q ∈ P where
p �� q, w is not in L(q).

Proof. We first show the case for Psub. Let p = x1ux2 where x1, x2 ∈ V and
u ∈ Σ+. We claim that any word w = aub for some (possibly equal) a, b ∈ Σ is
not in L(q) if p �� q. Towards a contradiction let q = y1vy2 where y1, y2 ∈ V ,
v ∈ Σ+, and suppose w ∈ L(q). Since w ∈ L(q), w = aw1vw2b for some w1,
w2 ∈ Σ∗. However, the substitution θ where y1θ = x1w1 and y2θ = w2x2 then
witnesses that p � q, a contradiction. We now show the case for Psubseq. Let
p = x1a1x2a2 . . . anxn+1 where x1, . . ., xn+1 ∈ V and a1, . . ., an ∈ Σ. Let
w = pθ where θ is a substitution transforming each xi to ai for 1 ≤ i ≤ n, and
transforming xn+1 to an. Now for any q ∈ Psubseq, if w � q, it is not difficult
to see that q must be of the form y1ai1y2ai2 . . . aik

yk+1 where 1 ≤ i1 < i2 < . . .
< ik ≤ n and y1, . . ., yk+1 ∈ V . However, then p � q.

Note that Lemma 1 implies L(P) ⊆ L(Q)⇒ P � Q. In the following Lemma,
for a set of patterns P , c(P) denotes the maximum of {�L(p)� | p ∈ P}.
Lemma 2. Suppose card(Σ) ≥ 2 and P ∈ {Psub,Psubseq}. For any two sets
of finite P , Q ⊆ P,
(a) P � Q ⇒ L(Q)≤c(Q) − L(P)≤c(Q) �= ∅,
(b) L(P) ⊂ L(Q) ⇒ L(Q)≤c(Q) − L(P)≤c(Q) �= ∅, and
(c) P � Q ⇔ L(P) ⊂ L(Q).

278 Y.K. Ng and T. Shinohara

Proof. We first proof Part (a). Suppose there exists P , Q ⊆ P where P � Q and
L(Q)≤c(Q) − L(P)≤c(Q) = ∅. Since L(Q)≤c(Q) − L(P)≤c(Q) = ∅, by Lemma 1,
q ∈ Q implies q � p for some p ∈ P , and hence Q � P , a contradiction. For
Part (c), that P � Q ⇒ L(P) ⊂ L(Q) is from Part (a) and the fact that
P � Q ⇒ L(P) ⊆ L(Q). We now show L(P) ⊂ L(Q) ⇒ P � Q. By Lemma 1,
L(P) ⊂ L(Q) implies that P � Q. If furthermore Q � P then L(P) = L(Q),
contradicting L(P) ⊂ L(Q). Hence we have P � Q. Part (b) follows from (a)
and (c).

Note also that L(P) ⊆ L(Q) ⇒ P � Q is sufficient to show Lemma 2(c).

Theorem 4. Suppose card(Σ) ≥ 2. Given P ∈ {Psub,Psubseq}, for every
finite, non-empty S ⊆ Σ∗ and k ∈ N+, FCP(L(P), S, k, �S�) ⊆ MMG(L(P),
S, k) = MINL(L(P), S, k).

Proof. We first note that given any S, every pattern in P ′ = {p ∈ P | L(p)∩S �=
∅} must have their shortest element not longer than �S�. Hence for any P , Q ⊆
P ′, P � Q or L(P) ⊂ L(Q) (by Lemma 2(a,b))⇒ L(Q)≤c(Q)−L(P)≤c(Q) �= ∅ ⇒
L(Q)≤�S − L(P)≤�S �= ∅. Proposition 1 then gives us FCP(L(P), S, k, �S�) ⊆
MMG(L(P), S, k) and FCP(L(P), S, k, �S�) ⊆MINL(L(P), S, k).

That MINL(L(P), S, k) =MMG(L(P), S, k) is from Lemma 2(c).

In general, MINL(L, S, k) − FCP(L, S, k, �S�) is non-empty. For example
we have the following cases.

Example 1. Let Σ = {a, b}. (For Psub) Let P = {“x1aaax2”, “x1bbbx2”}, Q =
{“x1abax2”, “x1bbax2”}, and S = L(P)∩L(Q)∩Σ≤9. It can be verified that both
P , Q ∈MINL(L(Psub), S, 2), but P �∈ FCP(L(Psub), S, 2, �S�).
(For Psubseq) LetP = {“x1ax2ax3ax4”, “x1bx2bx3bx4”},Q = {“x1ax2bx3ax4”,
“x1bx2bx3ax4”}, and S = L(P)∩L(Q)∩Σ≤8. It can be verified that both P , Q ∈
MINL(L(Psubseq), S, 2), but P �∈ FCP(L(Psubseq), S, 2, �S�).

Nevertheless, on some very specific samples, for Psub and Psubseq, the
FCP problem is no different from the MINL or MMG problem, as the following
result shows.

Proposition 2. Suppose card(Σ) ≥ 2 and P ∈ {Psub,Psubseq}. For each
finite P ⊆ P, there exists a finite, non-empty set SP ⊆ Σ∗ such that for all
k ≥ card(P) and all finite S′ where SP ⊆ S′ ⊆ L(P), FCP(L(P), S′, k) =
MINL(L(P), S′, k) =MMG(L(P), S′, k).

4.2 Patterns with at Most 1 Variable Occurrence

In the subclasses discussed so far, any FCP or MMG solution is at the same time
a solution for MINL. We now show a class of pattern languages where an FCP
solution is also a solution for MINL, but an MMG solution is not necessarily so.

Let P≤1 be the class of patterns where only one variable occurrence is allowed
in each pattern. It is easy to see that the condition (∀P, Q ∈ P≤1)[L(P) ⊆ L(Q)

Inferring Unions of the Pattern Languages by the Most Fitting Covers 279

⇒ P � Q] does not hold when k ≥ card(Σ). As an example, let Σ = {a, b},
then L(“x1aa”) ⊂ L(“ax1a”) ∪ L(“bx1a”), but neither “x1aa” � “ax1a” nor
“x1aa” � “bx1a” holds. Hence a solution of MMG is not necessarily a solution
for MINL. In the following, for any rational number r, �r� denotes the largest
natural number smaller than r.

Theorem 5. Let L(P≤1)k = {L(P) | P ⊆ P≤1 ∧ card(P) ≤ k}. For any finite
P ⊆ P≤1, St(P) where t = 2� k−1

card(Σ)−1� + 2 is a characteristic set for L(P)
within L(P≤1)k.

Proof. Let variables V = {x} and constants Σ = {a1, . . . , an}. We define two
sets of substitutions,

(1) Θ1 = {θ | xθ = aixaj , 1 ≤ i, j ≤ n}, and
(2) Θ2 = {θ | xθ ∈ Σ≤2}.

For any set of patterns P and for any set of substitutions Θ, we let Θ ·P denote
the set of patterns {pθ | p ∈ P ∧ θ ∈ Θ}. Furthermore, for l ∈ N , we let (Θ)l · P
denote the set of patterns obtainable from l applications of substitutions from
Θ on patterns in P , that is, for example, (Θ)2 = Θ · (Θ ·P). Note that S2l(P) =⋃

0≤i≤l−1 Θ2 · ((Θ1)i · P).

Claim. For any P ⊆ P≤1, and finite Q ⊆ P≤1, L(P) ⊆ L(Q) if and only if there
exists l ∈ N such that (I) (Θ1)l ·P � Q, and (II)

⋃
0≤i≤l−1 Θ2 ·((Θ1)i ·P) ⊆ L(Q).

Proof of Claim. (⇐) is not difficult to see. We show (⇒) part. We claim that (I)
must hold for some l ∈ N . Let Q = {uixvi | 1 ≤ i ≤ card(Q) ∧ ui, vi ∈ Σ∗} be,
and let m be the longest length of such ui and vi. Now consider P ′ = (Θ1)m+1 ·P .
Clearly, every pattern in P ′ is of the form uxv where u, v ∈ Σ∗, |u| > m and
|v| > m. Suppose P ′ �� Q, then there exists uxv ∈ P ′, u, v ∈ Σ∗ such that for
every uixvi ∈ Q, u does not begin with ui or v does not end in vi, and hence
ua1v �∈ L(Q) ⇒ L(P) �⊆ L(Q), a contradiction. Now note that if (II) fails for
any l ∈ N then L(P) �⊆ L(Q) also. Claim follows from these observations. $%

The following computation uses the principle in the Claim to decide, given p ∈
P≤1 and finite Q ⊆ P≤1, if L(p) ⊆ L(Q). At each stage l ∈ N , the computation
is as follows:

stage 0:
If p � q for some q ∈ Q, output true.
Otherwise let P1 = {p} and Q1 = Q.
Enter stage 1.

stage l:
If Θ2 · Pl �⊆ L(Ql), output false.
If Θ1 · Pl � Ql, output true.
Otherwise let

Pl+1 ⊆ Θ1 · Pl be the set of patterns not refinable from any q in Ql,
Ql+1 ⊆ Ql be the set of patterns q ∈ Q where either

1. q contains a variable, but refines to nothing in Θ1 · Pl, or

280 Y.K. Ng and T. Shinohara

2. q contains no variable, and |q| ≥ |p|+ 2l.
Enter stage l + 1.

Note that at any stage l, patterns in Ql − Ql+1 are excluded from further
evaluation because they do not refine to any pattern in Θ1 · Pl′ and Θ2 · Pl′ for
any l′ > l. ¿From the computation, we see that at any stage l, if Ql = ∅, then
either

1. Pl = ∅, in which case (Θ1)l−1 · {p} � Q and (by the earlier Claim)
L(p) ⊆ L(Q), or

2. Θ2 · Pl �⊆ L(Q), hence S2l(p) �⊆ L(Q).

Hence in the case that Ql = ∅, S2l(p) ⊆ L(Q) ⇔ L(p) ⊆ L(Q). We now show
that for any l > �(k − 1)/(n− 1)�, Ql �= ∅ implies that S2l(p) �⊆ L(Q). For each
stage l, let Q′

l = Ql−Ql+1, that is, Q′
l are the patterns removed from Ql at stage

l. Now without loss of generality we let each q ∈ Q which contains a variable
refine to some p′ ∈ Θ1 · Pm for some m ∈ N , since otherwise L(q) ∩ L(p) = ∅,
in which case q can be discarded from consideration. Hence each q ∈ Q, with or
without a variable occurrence, is in Q′

m for some m ∈ N .
Now note that for any l ∈ N , each q ∈ Q′

m refines to at most n2l−m words
of length �S2l(p)� in L(p) if m ≤ l and at most nl such words in L(p) if m > l.
However, there are n2l words in L(p) of length �S2l(p)�. Hence, for any p ∈ P≤1

and Q ⊆ P≤1, for S2l(p) ⊆ L(Q) to hold, it is necessary for the inequality⎛⎝card(Q)−
∑

1≤m≤l

card(Q′
m)

⎞⎠nl +
∑

1≤m≤l

card(Q′
m) ∗ n2l−m ≥ n2l (1)

to hold. However, given that∑
1≤m≤l

card(Q′
m) ≤ card(Q) ≤ k,

there are no solution for non-zero card(Q′
m) where m > �(k − 1)/(n− 1)� that

fulfills inequality (1) (via a simpler analysis involving only card(Θ1 · Pm) and
card(Q′

m)). That every q ∈ Q must be in Q′
m for some m implies that Qm = ∅

for m > �(k − 1)/(n− 1)�.
Let l′ = �(k − 1)/(n− 1)�+ 1. In the case that Ql′ = ∅, as argued, S2l′(p) ⊆

L(Q) ⇔ L(p) ⊆ L(Q); and in the case that Ql′ �= ∅, S2l′(p) �⊆ L(Q). It follows
that for any P ⊆ P≤1, St(P) where t = 2(�(k−1)/(n−1)�+1) is a characteristic
set for L(P) within L(P≤1)k.

Corollary 5. For every finite, non-empty S ⊆ Σ∗ and k ∈ N+, FCP(L(P≤1),
S, k, �S� + 2� k−1

card(Σ)−1�+ 1) ⊆ MINL(L(P≤1), S, k).

While for space reasons we have dealt only with non-erasing pattern lan-
guages, most of the results in this paper can be extended to the erasing case.

Inferring Unions of the Pattern Languages by the Most Fitting Covers 281

5 Conclusions

We gave learnability results for hypotheses with a form of minimality, and showed
how two notions of minimality can be related using the idea of characteristic sets.
We gave a result regarding such characteristic sets, namely, that for the bounded
unions of L(P≤1). We are interested in results which extend this.

Acknowledgement

We would like to thank the reviewers for corrections and helpful comments. Yen
Kaow Ng is supported by the Japanese Government Scholarship of the Ministry
of Education, Science, Sports, Culture and Technology of Japan.

References

[1] D. Angluin. Finding patterns common to a set of strings. Journal of Computer
and System Sciences, 21:46–62, 1980.

[2] D. Angluin. Inductive inference of formal languages from positive data. Informa-
tion and Control, 45:117–135, 1980.

[3] H. Arimura, T. Shinohara, and S. Otsuki. Finding minimal generalizations for
unions of pattern languages and its application to inductive inference from positive
data. In Proc. of the 11th Ann. Symp. on Theoretical Aspects of Comp. Sci.
(STACS’94), volume 775 of Lecture Notes in Computer Science, pages 649–660.
Springer-Verlag, 1994.

[4] E. M. Gold. Language identification in the limit. Information and Control, 10:447–
474, 1967.

[5] M. Hirao, H. Hoshino, A. Shinohara, M. Takeda, and S. Arikawa. A practical
algorithm to find the best subsequence patterns. In Proceedings of the Third
International Conference on Discovery Science, volume 1967 of Lecture Notes in
Artificial Intelligence, pages 141–154, 2000.

[6] T. Jiang, E. Kinber, A. Salomaa, K. Salomaa, and S. Yu. Pattern languages with
and without erasing. International Journal Of Computer Mathematics, 50:147–
163, 1994.

[7] T. Jiang, A. Salomaa, K. Salomaa, and S. Yu. Decision problems for patterns.
Journal of Computer and System Sciences, 50:53–63, 1995.

[8] S. Kobayashi and T. Yokomori. Identifiability of subspaces and homomorphic
images of zero-reversible languages. In Algorithmic Learning Theory: Eighth In-
ternational Workshop (ALT ’97), volume 1316 of Lecture Notes in Artificial In-
telligence, pages 48–61, 1997.

[9] T. Motoki, T. Shinohara, and K. Wright. The correct definition of finite elasticity:
Corrigendum to identification of unions. In L. Valiant and M. Warmuth, editors,
Proceedings of the Fourth Annual Workshop on Computational Learning Theory,
page 375. Morgan Kaufmann, 1991.

[10] Y. K. Ng, H. Ono, and T. Shinohara. Measuring over-generalization in the minimal
multiple generalizations of biosequences. In Proceedings of The Eighth Conference
on Discovery Science (DS’05). to appear.

282 Y.K. Ng and T. Shinohara

[11] H. Ono and Y. K. Ng. Best fitting fixed-length substring patterns for a set of
strings. In Proceedings of The Eleventh International Computing and Combina-
torics Conference (COCOON’05). to appear.

[12] M. Sato. Inductive inference of formal languages. Bulletin of Informatics and
Cybernetics, 27(1):85–106, 1995.

[13] M. Sato, Y. Mukouchi, and D. Zheng. Characteristic sets for unions of regu-
lar pattern languages and compactness. In Algorithmic Learning Theory: Ninth
International Conference (ALT’ 98), volume 1501 of Lecture Notes in Computer
Science, pages 220–233. Springer-Verlag, 1998.

[14] T. Shinohara. Polynomial time inference of extended regular pattern languages.
In RIMS Symposia on Software Science and Engineering, Kyoto, Japan, volume
147 of Lecture Notes in Computer Science, pages 115–127. Springer-Verlag, 1982.

[15] T. Shinohara and H. Arimura. Inductive inference of unbounded unions of pattern
languages from positive data. Theoretical Computer Science A, 241:191–209, 2000.

[16] J. Uemura and M. Sato. Compactness and learning of classes of unions of erasing
regular pattern languages. In Algorithmic Learning Theory: Thirteenth Interna-
tional Conference (ALT’ 02), vol. 2533, pages 293–307. Springer-Verlag, 2002.

[17] K. Wright. Identification of unions of languages drawn from an identifiable class.
In R. Rivest, D. Haussler, and M. Warmuth, editors, Proceedings of the Second
Annual Workshop on Computational Learning Theory, pages 328–333. Morgan
Kaufmann, 1989.

Identification in the Limit of Substitutable
Context-Free Languages

Alexander Clark1 and Rémi Eyraud2

1 Department of Computer Science,
Royal Holloway University of London,

Egham, Surrey, TW20 0EX, UK
alexc@cs.rhul.ac.uk

http://www.cs.rhul.ac.uk/home/alexc/
2 EURISE,

23, rue du Docteur Paul Michelon,
42023 Saint-Étienne Cedex 2, France
remi.eyraud@univ-st-etienne.fr

http://eurise.univ-st-etienne.fr/~eyraud/

Abstract. This paper formalisms the idea of substitutability introduced
by Zellig Harris in the 1950s and makes it the basis for a learning algo-
rithm from positive data only for a subclass of context-free grammars.
We show that there is a polynomial characteristic set, and thus prove
polynomial identification in the limit of this class. We discuss the rela-
tionship of this class of languages to other common classes discussed in
grammatical inference. We also discuss modifications to the algorithm
that produces a reduction system rather than a context-free grammar,
that will be much more compact. We discuss the relationship to Angluin’s
notion of reversibility for regular languages.

1 Introduction

Current techniques for grammatical inference have for a long time been focussed
to a great extent on learnable subclasses of regular languages. For many applica-
tion domains though, there are structural dependencies in the data that are more
naturally modelled by context-free grammars of various types. One of the oldest
ideas for a grammatical inference algorithm, and one geared towards context-free
inference, is Harris’s use of substitutability [4, 7]. Though this has formed the
intuitive motivation for a number of grammatical inference algorithms before,
it has never been adequately formalized. In this paper we present an explicit
mathematical formalization of this idea of substitutability and use it to define a
subclass of context-free languages that we call the substitutable languages, that
can be learned according to the polynomial identification in the limit paradigm
[5]. These languages are not comparable to the very simple languages, but seem
better suited to be the basis for algorithms that can learn natural languages.

In this paper we use a polynomial variant of Gold’s identification in the limit
paradigm, working from positive data only. We hope in the future to be able to

S. Jain, H.U. Simon, and E. Tomita (Eds.): ALT 2005, LNAI 3734, pp. 283–296, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

284 A. Clark and R. Eyraud

extend this to a more practical PAC-learning result, but in the meantime work in
this paradigm allows some foundational issues to be addressed. The contribution
of the work presented in this paper lies in two main directions: first we capture
the essential language theoretic property that a certain class of algorithms must
rely on, and show that this criterion is sufficient to guarantee identification in
the limit.

The key to the Harris approach for learning a language L, is to look at pairs
of strings u and v and to see whether they occur in the same contexts; that is
to say, to look for pairs of strings of the form lur and lvr that are both in L.
This can be taken as evidence that there is a nonterminal symbol that generates
both strings. In the informal descriptions of this, there is an ambiguity between
two ideas. The first is that they should appear in all the same contexts; and the
second is that they should appear in some of the same contexts. We can write
the first criterion as follows: (we define our notation more formally in the next
section, but we hope the reader will bear with us for the moment)

∀l, r lur ∈ L if and only if lvr ∈ L (1)

The second, weaker, criterion is

∃l, r lur ∈ L and lvr ∈ L (2)

The problem is then that to draw conclusions about the structure of the lan-
guage, one needs the former; but all one can hope for by observation of given
data is the latter. In general, the class of context-free grammars will be unlearn-
able: certainly according to the Gold style approach we take in this paper since
it is a superfinite class. Therefore to obtain learnability results we must define
subclasses of the languages that sufficiently restrict the class so that learning can
take place. The restriction we consider here is that whenever two strings have
one context in common, then they have all contexts in common: Equation 2
implies Equation 1. We call these the substitutable languages.

Our main result is that this simple, but powerful constraint on languages –
and note that it is expressed in purely language theoretic terms – sufficiently
restricts the class of context-free languages to the extent that it can be learned
using a simple polynomial algorithm. In this case, we can learn according to
the IIL criterion, and the algorithm will be polynomial in the amount of data it
needs (the characteristic set) and in computation.

2 Definitions

We start by defining some standard notation.
An alphabet Σ is a finite nonempty set of symbols called letters. A string w

over Σ is a finite sequence w = a1a2 . . . an of letters. Let |w| denote the length of
w. In the following, letters will be indicated by a, b, c, . . ., strings by u, v, . . . , z,
and the empty string by λ. Let Σ∗ be the set of all strings, the free monoid
generated by Σ. By a language we mean any subset L ⊆ Σ∗. The set of all

Identification in the Limit of Substitutable Context-Free Languages 285

substrings of a language L is denoted Sub(L) = {u ∈ Σ+ : ∃l, r, lur ∈ L} (notice
that the empty word does not belong to Sub(L)). We shall assume an order ≺
or � on Σ which we shall extend to Σ∗ in the normal way by saying that u ≺ v
if |u| < |v| or |u| = |v| and u is lexicographically before v.

Many classes of languages have been investigated in the literature. In general,
the definition of a class L relies on a class R of abstract machines, here called
representations, together with a function L from representations to languages,
that characterize all and only the languages of L: (1) ∀R ∈ R,L(R) ∈ L and
(2) ∀L ∈ L, ∃R ∈ R such that L(R) = L. Two representations R1 and R2 are
equivalent iff L(R1) = L(R2).

Definition 1 (grammar). A grammar is a quadruple G = 〈V,Σ, P, S〉 where
Σ is a finite alphabet of terminal symbols, V is a finite alphabet of variables or
non-terminals, P is a finite set of production rules, and S ∈ V is a start symbol.

If P ⊆ V × (Σ ∪ V)+ then the grammar is said to be context-free (CF), and
we will write the productions as T → w.

We will write uTv⇒ uwv when T → w ∈ P . ∗⇒ is the reflexive and transitive
closure of ⇒.

We denote by L(G) = {w ∈ Σ∗ : S ∗⇒G w} the language defined by the
grammar. Since we do not allow rules with an empty right hand side this language
cannot contain λ.

Definition 2 (syntactic congruence).
We say that two words u and v are syntactically congruent w.r.t. a language

L, written u ≡L v, if and only if ∀l, r ∈ Σ∗ lur ∈ L iff lvr ∈ L.

We can think of this syntactic congruence as the strong notion of substi-
tutability. Note two things: first this is clearly an equivalence relation, and sec-
ondly, it is a congruence of the monoid Σ∗ i.e.

u ≡L v implies ∀l, r lur ≡L lvr

The syntactic monoid of the languageL is just the quotient of Σ∗ by this relation.
It is a standard result that this will be finite if and only if L is regular.

Another way of looking at this relation is to define the set of contexts of a
string:

Definition 3. The set of contexts of a string u in a language L is written CL(u)
and defined as CL(u) = {(l, r)|lur ∈ L}.
Using this definition we can say that u ≡L v if and only if CL(u) = CL(v).

The weaker idea of substitutability that we will use is defined in the following
way.

Definition 4 (weak substitutability).
Given a language L, we say that two words u and v are weakly substitutable

w.r.t. L, written u
.=L v, if there exist l, r ∈ Σ∗ such that lur ∈ L and lvr ∈ L.

286 A. Clark and R. Eyraud

Note that this is in general not a congruence or even transitive. Normally we
will have a finite sample S of the language L: clearly u

.=S v implies u
.=L v.

We now can define the class of languages that we are concerned with:

Definition 5. A language L is substitutable if and only if for every pair of
strings u, v, u .=L v implies u ≡L v.

In terms of contexts we can say that a language is substitutable, if whenever
the set of contexts of two strings have non-empty intersection, they are identical.
The substitutable context-free languages are just those languages that are both
substitutable and context-free.

2.1 Learning

We now define our learning criterion. This is identification in the limit from
positive text [6], with polynomial bounds on data and computation, but not on
errors of prediction [5].

A learning algorithm A for a class of representations R, is an algorithm that
computes a function from a finite sequence of strings s1, . . . , sn to R. We define a
presentation of a language L to be an infinite sequence of elements of L such that
every element of L occurs at least once. Given a presentation, we can consider the
sequence of hypotheses that the algorithm produces, writing Rn = A(s1, . . . sn)
for the nth such hypothesis.

The algorithm A is said to identify the class R in the limit if for every R ∈ R,
for every presentation of L(R), there is an N such that for all n > N , Rn = RN

and L(R) = L(RN).
We further require that the algorithm needs only polynomially bounded

amounts of data and computation. We use the slightly weaker notion defined
by de la Higuera [5].

Definition 6. A representation class R is identifiable in the limit from positive
data with polynomial time and data iff there exist two polynomials p(), q() and
an algorithm A such that

1. Given a positive sample S of size m A returns a representation R ∈ R in
time p(m)

2. For each representation R of size n there exists a characteristic set CS of
size less than q(n) such that if CS ⊆ S, A returns a representation R′ such
that L(R) = L(R′).

3 Algorithm

We now define an algorithm SGL (substitution graph learner), that will learn a
context-free grammar from a sample of positive strings of a language.

The primary data structure of our algorithm can be conceived of as a graph,
where each node of the graph corresponds to a substring of a string in the sample,

Identification in the Limit of Substitutable Context-Free Languages 287

and where there is an arc between any two nodes corresponding to substrings
u,v if and only if u .=S v where S is the set of positive examples.

In the next section we will define a characteristic set of examples for a
context-free grammar, and show that whenever the context-free grammar is
substitutable, and the sample contains the characteristic set, then SGL will
produce a grammar weakly equivalent (ie. that generates the same language) to
the target.

Definition 7 (substitution graph).
Given a set of words S, we define the substitution graph SG(S) = (V,E) as

follow:
V = {u ∈ Σ+ : ∃l, r ∈ Σ∗, lur ∈ S}
E = {(u, v) ∈ Σ+ ×Σ+ : u .=S v} = {(u, v) ∈ Σ+ × Σ+ : ∃l, r ∈ Σ∗, lur ∈

S ∧ luv ∈ S}

This graph will consist of a number of components, in the usual graph the-
oretic sense. If the language is substitutable, then every member of the same
component will be syntactically congruent, and can thus be freely swapped with
each other without altering language membership. Of course in general, there
may be more than one component corresponding to the same congruence class,
since we are deriving the graph from a small finite sample.

First, note that since syntactic congruence is transitive, and we are interested
in substitutable languages, we can compute the transitive closure of the graph,
by adding any edges (u,w) when we have edges (u, v), (v, w). We will write ∼=S

for the transitive closure of .=S . If S is a subset of a subsitutable language L
then u ∼=S v implies u ≡L v.

We can write SG/ ∼=S for the set of components of the substitution graph
and [u]∼=S for each element. We will normally omit the subscript where there is
no risk of confusion.

3.1 Constructing the Grammar

Given the SG we now construct a grammar Ĝ = 〈Σ, V̂ , P̂ , Ŝ〉 .
We define the set of nonterminals to be the set of components of the substitu-

tion graph, V̂ = SG/ ∼=S . First note that there will be precisely one component
of the substitution graph that will contain all the strings in the sample S. This
is because they will all appear in the empty context (λ, λ). This component will
be Ŝ.

We now define the set of productions for the grammar. These consist of two
types. First for every letter in the alphabet, and we can assume without loss of
generality that they occur as substrings in the language, we have a production

[a]→ a

Note that if we have two letters such that a
.= b, then [a] = [b] and the same

nonterminal will have two productions rewriting it.

288 A. Clark and R. Eyraud

The second set of productions is defined for every substring of length greater
than 1. For every node in the substitution graph u, if |u| > 1, for every pair
of non-empty strings v, w such that u = vw add a production [u] → [v][w].
Again note that if the component has more than one node in it, then all of the
productions will have the same left hand side.

We can define the set of productions formally as:

P̂ = {[u]→ [v][w]|u = vw, u ∈ V of SG, |v| > 0, |w| > 0} ∪ {[a]→ a|a ∈ Σ}

To be explicit about the algorithm, we show it in Algorithm 1, rather than
relying on the characteristic set.

Algorithm 1: SGL algorithm
Data: A sequence of strings s1, s2 . . .
Result: A sequence of CFGs G1, G2 . . .
G = Grammar generating the empty language ;
while true do

read next string sn;
if sn �∈ L(G) then

set SG to be the substitution graph generated from {s1, . . . sn};
set G to be the grammar generated from SG;

end
output G;

end

3.2 Examples

Example 1: Suppose the sample consists of the two strings S = {a, aa}. Sub(S) =
{a, aa}. It is clear that a

.=S aa. Therefore there is only one component in the
substitution graph, associated with the nonterminal Ŝ. The grammar will thus
have productions [aa] → [a][a] which is Ŝ → ŜŜ and [a] → a which is Ŝ → a.
Thus the learned grammar will generate the language a+.

Example 2: Consider the language L = {ancbn|n ≥ 0}. Suppose we have a
large sample of strings from this language. The substitution graph will have
components Ci ⊂ {ancbn+i|n ≥ 0} for integer values of i, Ai = {ai} and Bi =
{bi}, for positive values of i, with Ŝ = C0 . The grammar generated from this
sample will then have rules of the form (for i ≥ 0)

Ci → CjBi−j

C−i → Ai−jCj

Ai+j → AiAj , A1 → a

Bi+j → BiBj , B1 → b

Identification in the Limit of Substitutable Context-Free Languages 289

Thus, the set of nonterminals can be substantially larger than that of the
original grammar.

3.3 Polynomial Time

We now show, rather crudely, that SGL runs in a time bounded by a polynomial
in the total length of the sample. Suppose the sample is S = {w1, . . . , wn}. We
can define N =

∑ |wi|, and L = max |wi|. Clearly L ≤ N , and n ≤ N . The
total number of substrings, and thus nodes in the graph, is less than N2. The
cost of computing, for a given pair of strings u,v, all of the substrings u′, v′

such that u′ .=S v′ can be done in time less than L2, and thus assuming a
constant time map from substrings to nodes in the graph, we can compute all
the edges in the graph in time less than L2n2. Computing the transitive closure
of .= or equivalently identifying the components of the substitution graph, can
be done in time linear in the sum of the number of nodes and edges which are
both polynomially bounded. When constructing the grammar, the number of
rules defined by each component/nonterminal is clearly bounded by the number
of different ways of splitting the strings in the component, and thus the total
number of rules must be bounded by LN2, and each rule can be constructed in
constant time.

There are much more efficient algorithms that could be used: hashing from
contexts to components and using a union-find algorithm to identify the com-
ponents, for example.

4 Proof

Theorem 1. SGL polynomially identifies in the limit the class of substitutable
(context-free) languages.

To prove this theorem, we first need to define a characteristic set, that is to
say a subset of a target language L∗ which will ensure the desired algorithm will
output a grammar G such that L(G) = L∗.

Construction of the characteristic sample. let G∗ = 〈V,Σ, P, S〉 be a
target grammar. We are going to define a set CS of words of L∗, such that the
algorithm SGL will identify L∗ from any superset of CS.

We define w(α) ∈ Σ∗ to be the smallest word, according to ≺, generated by
α ∈ (Σ ∪ V)+. For each nonterminal N ∈ V define c(N) to be the smallest pair
of terminal strings (l, r) (extending ≺ from Σ∗ to Σ∗ ×Σ∗, in some way), such
that S ∗⇒ lNr.

We can now define the characteristic set CS = {lwr|(N → α) ∈ P, (l, r) =
c(N), w = w(α)}. The cardinality of this set is at most |P | which is clearly
polynomially bounded.

Convergence. We now must show that for any substitutable context-free gram-
mar G, if CS(G) ⊆ S ⊆ L(G) then if Ĝ is the output SGL produces on thesample

290 A. Clark and R. Eyraud

S, L(Ĝ) = L(G). We will start by showing that the grammar derived from the
original substitution graph will define the right grammar.

To do this we will show first the following lemma:

Lemma 1. L(G) ⊆ L(Ĝ).

Proof. By the definition of the characteristic set, for each production N → α
in the original grammar, there is a substring w(N) and a substring w(α) in the
same component of the substitution graph. If α = a1 . . . an where ai ∈ Σ ∪ V ,
then w(α) = w(a1) . . . w(an)1. Therefore by the definition of P̂ , we will have a to-
tal of n−1 productions, one of the form [w(α)]→ [w(a1)][w(a2)w(an)] and
n − 2 of the form [w(ai) . . . w(an)] → [w(ai)][w(ai+1) . . . w(an)]. These produc-
tions suffice to show that [w(N)] ∗⇒Ĝ [w(a1)] . . . [w(an)]2. Given the definition of
the start symbols, and the definition of the non-terminal symbols of the form [u]
where u ∈ Σ (i.e. the pre-terminals), this suffices to show that if S ∗⇒G u then
[w(S)] ∗⇒Ĝ u. Intuitively this is because by the construction of the characteristic
set, the set of productions in the hypothesis is going to be a superset of the
set of productions in the target, and thus by an induction on the length of the
derivation, the defined language will be a superset of the target language. QED.

Next we show that the grammar does not define a language that is too
large. Recall that w(α) for some sequence of non terminals and terminals is the
smallest (w.r.t. ≺) string v such that α

∗⇒ v. The basic lemma here is that
derivation with respect to Ĝ maintains syntactic congruence. Note first that by
the construction of the grammar: [u] ∗⇒Ĝ u.

Lemma 2. For all v ∈ Σ∗, for all u ∈ Sub(S), [u] ∗⇒Ĝ v implies u ≡L v

Proof. By induction on the maximum length of both derivations k. Base
step: k = 1. This means the derivation must be a single production of the form
[u]→ v. This will only be the case if |v| = 1 and v is in the same component as
u; therefore u ≡L v.

Inductive step: suppose this is true for all derivations of length less than k.
Suppose we have a derivation of length k > 1. Suppose we have [u]⇒ [v][w] ∗⇒Ĝ

x. There must be strings l, r such that x = lr and [v] ∗⇒Ĝ l and [w] ∗⇒Ĝ r
with derivations of length less than k. Therefore by the inductive hypothesis,
v ≡L l and w ≡L r. Since we have a production [u] → [v][w] in P̂ , there must
be strings v′, w′ such that v′w′ is a string in the same component as u, and
v′ ≡L v and u′ ≡L u and u ≡L v′w′. Since ≡L is a monoid congruence, we have
u ≡L v′w′ ≡L vw′ ≡L vw ≡L lw ≡L lr = x. QED

This lemma suffices to establish that L(Ĝ) ⊆ L(G), since if v is in the sample
S, then if Ŝ = [v] ∗⇒Ĝ u, then u ≡L v implies u ∈ L. Therefore L(Ĝ) = L(G),
and Theorem 1 follows immediately.

1 This is clear by definition of the partial order ≺ above.
2 This is just the right binarization of the production. We have not made the assump-

tion that the grammar is in Chomsky Normal Form which would remove the need
for this step in the proof.

Identification in the Limit of Substitutable Context-Free Languages 291

5 Reduction System

As described here the algorithm is not practical, since the number of nontermi-
nals will often become very large. There are a number of algorithms for reducing
the number of nonterminals. Clearly one can recursively remove all nonterminals
that only have one production by replacing the nonterminal on the left hand side
of the production with the right hand side, wherever it occurs. Secondly, one can
remove nonterminals, one by one, and test whether the grammar continues to
accept all of the sample, and thus arrive at a minimal CFG.

In this section we describe a variant algorithm that is efficient and practical
for large data sets, but that produces a reduction system, rather than a grammar.

The key point here is to reduce the substitution graph, by removing strings
that are potentially redundant. In particular if we have one component that con-
tains the strings u and v, where u ≺ v and another that contains the strings lur
and lvr, we can reduce the graph by removing the string lvr. This is equivalent
to reducing the reduction system associated with the graph.

5.1 Definitions

We will briefly describe semi-Thue systems or reduction systems [3].

Definition 8 (Reduction system).
A reduction system T , over an alphabet Σ is a finite set of pairs of strings

T ⊂ Σ∗ × Σ∗, where each pair (u, v) is normally written u 'T v, is called a
reduction rule and satisfies v ≺ u. 3

By extension, we will denote lur ' lvr when u ' v ∈ T . '∗ is the reflexive
and transitive closure of '.
Definition 9 (Confluent and weakly confluent reduction system).

– A reduction system T is confluent if and only if for all w,w1, w2 such that
w ' w1 and w ' w2, there exists e such that w1 ' e and w2 ' e.

– It is weakly confluent on a set S if and only if for all w,w1, w2 ∈ S such
that w ' w1 and w ' w2, there exists e ∈ S such that w1 '∗ e and w2 '∗ e.

Finally a reduction system is Noetherian if there is no infinite sequence of
reductions. This defines a congruence relation where u and v are congruent if and
only if they can be reduced to the same element. Being confluent and Noetherian
means that there is a simple algorithm to determine this congruence: each string
belong to only one congruence class. If we have the strict requirement that the
reductions must be length reducing (|v| < |u|), then the maximum number of
reductions is the length of the string you start with. Since we have a looser
definition(v ≺ u), this number can be exponential.

Given a reduction system one can define a language as the union of finitely
many congruence classes. Thus given a set of irreducible strings A, and a reduc-
tion system T , we can define a language L(T,A) = {v : ∃a ∈ A∧ v '∗T a}. These
3 This differs slightly from the standard definition which requires |v| < |u|.

292 A. Clark and R. Eyraud

are the congruential languages. In some cases, this is a more natural way of
defining the structure of a language than systems from the traditional Chomsky
hierarchy.

For example consider the reduction system T = {(aca, c), (bcb, c)}, and the
axiom c (i.e. we are looking at the congruence class of c). The language defined
by L(T, {c}) is exactly the palindrome language over a, b with center marker c.

5.2 Reduction of a Substitution Graph

Given a substitution graph SG = 〈V,E〉, we say that SG reduces to SG′ =
〈V ′, E′〉 if and only if there exists (u, v) ∈ E : v ≺ u, and (l, r), |l| + |r| > 0,
such that lur ∈ V , V ′ = (V \ {lur}) ∪ {lvr}, E′ = {(x, y) ∈ V ′ × V ′ : (x, y) ∈
E ∨ ((lur, y) ∈ E ∧ x = lvr)}.

We say that a substitution graph SG is irreducible if there exists no other
substitution graph SG′ such that SG reduces to SG′.

Given this reduced graph, we define a reduction system directly from the
graph.

In this case we will define the set of reductions to be exactly the set of all
pairs v ' u , where u ≺ v and u, v are nodes in the same component of the
substitution graph. We can also limit u to be the unique least node (w.r.t. ≺)
in each component.

Assuming that we have a set of examples generated from a substitutable CFG
that contains the characteristic set, it is easy to prove the following lemmas.

Lemma 3. If N ∈ V and N
∗⇒ u for u ∈ Σ∗, then u '∗ w(N).

Proof. Suppose N = α0 ⇒ α1 ⇒ · · · ⇒ αn = u is a derivation of u. Map
this to a sequence (w(N), w(α1), . . . , w(αn), u) of strings from Σ∗. Consider a
single step αi = lMr and αi+1 = lβr and there is a production M → β in
P . w(αi) = w(l)w(M)w(r) and w(αi+1) = w(l)w(β)w(r) Therefore w(αi) '∗T
w(αi+1). QED.

Lemma 4. If v ' u then v ∈ L iff u ∈ L

Proof. v ' u implies ∃(x, y) ∈ P and l, r ∈ Σ∗ such that v = lxr and u = lyr.
x

.=S y implies x
.=L y implies x ≡L y implies lxr ∈ L iff lyr ∈ L. QED.

The reduction system will be weakly confluent on L, and it is Noetherian,
since the number of strings smaller (w.r.t. ≺) than a given string is clearly
finite. Unfortunately in general we will not be able to compute an irreducible
string for any given word u in a polynomial (in the size of u) number of reduc-
tions. Thus though the reduction system itself may be much smaller, in some
cases the “parsing” algorithm, determining whether a word is in the language,
may be exponential. Subject to this caveat, we can define an efficient, small re-
duction system that represents the same language, namely the set of all strings
that reduces to the least string w(S) (w.r.t ≺) in the language.

Identification in the Limit of Substitutable Context-Free Languages 293

6 Substitutable Languages

We now give some examples of substitutable CFLs, as well as some simple CFLs
that are not substitutable, and discuss the relationship of this class of languages
to other standard classes. This is without a doubt a restricted class of languages
but contains some interesting examples. They are not closed under any standard
operation except reversal.

Since we are learning under a Gold style paradigm, we cannot hope to learn
all finite languages [6]. Indeed, the more complex the languages we hope to learn,
the smaller the set of finite languages we will we able to learn.

6.1 Examples

– Σ∗ is substitutable
– Any language consisting of only one string is substitutable.
– The finite language {a, aa} is not substitutable. The algorithm presented

here would return the hypothesis {an|n > 0}
– {an|n > 0} is substitutable.
– {anbn|n > 0} is not substitutable. This is because a

.= aab, but they are
clearly not syntactically congruent.

– {ancbn|n > 0} is substitutable. Here the addition of a center marker removes
the problem.

– {wcwR|w ∈ (a, b)∗} (the palindrome with center marker) is substitutable.
– Strictly deterministic regular languages [13] are substitutable. Since the au-

tomaton is forward and backwards deterministic, and any given string can
only be generated by a unique sequence of states, we can see easily that if
u

.= v then the sequence of states that generates u must start and stop in
exactly the same state that v starts and stops in.

Recall that very simple grammars [14] consist of CFGs in Greibach normal
form such that no terminal symbol is used in more than one production. Some
very simple grammars are not substitutable: an example is the grammar with
productions S → bN, S → aNP,N → xM,N → n, P → rMP, P → p,M → m.
This generates the language bn, bxm, anp, axmp, anrmp, . . . We can see that
x

.= nr but it is not the case that x ≡ nr, since bxm is in the language but bnrm
is not. Nonetheless we note that the three grammars in [14] Example 2 are all
substitutable languages.

We also note the relationship to NTS grammars[11]; which can be seen to be
relevant in the next section. NTS grammars have the property that if N ∗⇒ v
and M

∗⇒ uvw then M
∗⇒ uNw. We conjecture that all substitutable languages

are NTS languages.

6.2 Relation to Other Language Classes

Substitutable context-free languages are properly included within the class of
congruential languages [3]. They are incomparable with the classes of finite lan-
guages, regular languages, and very simple languages. It properly includes the
class of strictly deterministic regular languages.

294 A. Clark and R. Eyraud

7 Discussion

This work is related to two other strands of work. First work that proves polyno-
mial IIL of other subclasses of context-free grammars. In [14] , Yokomori shows
that the class of very simple languages can be polynomially identified in the
limit. Unfortunately the complexity is N |Σ|+1 and the alphabet size is equal
to the number of productions in a very simple grammar, so this algorithm is
not practical for large scale problems. Secondly, we can relate it to the work of
Adriaans [1], who uses a similar heuristic to identify languages. Finally, we can
mention the similar work of [12] who shows an identification in the limit result of
a class of grammars called “left-aligned R grammars”. This work defines a rather
complicated family of grammars, and shows how constituents can be identified.
We also note [8] who show a learnable subclass of CFGs.

We can compare substitutability with reversibility [2, 9]. Recall that a lan-
guage is reversible if whenever uw and vw are in the language then ux is in
the language if and only if vx is in the language. Thus reversibility is the exact
analogue of substitutability for regular languages. Note that reversibility is a
weaker criterion than substitutability. Substitutability implies reversibility, but
not vice versa, as can be seen from the language {ab, bb} which is reversible but
not substitutable.

We can also compare the substitutability to μ-distinguishability for inference
of regular languages [10]. Ron uses a measure of similarity of residual languages,
rather than of contexts as we use here. Considered in this way, our measure is
very crude, and brittle – contexts are equal if they have non empty intersection.
Nonetheless the techniques of Ron et al., suggest a way that this technique could
be extended to a PAC-learning result, using a bound on a statistical property of
the distribution. There are some technical problems to be overcome, since the
number of syntactic congruence classes will be infinite for non regular languages,
and thus the distinguishability will not in general be bounded from below. A
more serious problem is that the worst case sample complexity, if the data is
drawn randomly, is clearly exponential, since the chance of getting two strings
that differ only in a single point is in general exponential in the derivational
entropy of the grammar.

Algorithms for learning regular languages focus on identifying the states of
a deterministic automaton. When trying to move to learning context-free lan-
guages, the obvious way is to try to identify configurations (i.e. pairs of states
and strings of stack symbols) of a deterministic push down automaton. A prob-
lem here is that the structure of this set depends on the representation, the
automaton. One way of viewing the work presented in this paper, is to say that
a better way is to try to identify the elements of the syntactic monoid. This
monoid represents in the barest form the combinatorial structure of the lan-
guage. From a learnability point of view this is interesting because it is purely
syntactic – it is not semantic as it does not depend on the representation of
the language but only on the language itself. Since we are interested in algo-
rithms that learn from unstructured data – strings from the language that are
not annotated with structural information – this seems a more natural approach.

Identification in the Limit of Substitutable Context-Free Languages 295

Importantly, our algorithm does not rely on identifying constituents: that is to
say on identifying which substrings have been generated by the non terminals
of the target grammar. This has up to now been considered the central problem
in context-free grammatical inference, though it is in some sense an ill-posed
problem since there may be many different grammars with different constituent
structure that are nonetheless weakly equivalent, that is to say, define the same
language.

One of the weaknesses in the work is the fact that we do not yet have a
grammatical characterisation of substitutability, nor an algorithm for determin-
ing whether a grammar defines a substitutable language. It is clear from standard
results in the field that this property will be undecidable in general, but it might
be possible to decide it for NTS grammars [11].

Looking at our approach more generally, it is based on identifying syntacti-
cally congruent substrings. Substitutable languages have a property that allows
a trivial procedure for determining when two substrings are congruent, but is
is easy to think of much more robust methods of determining this that rely on
more complex properties of the context distributions. Thus in principle we can
use any property of the sample from the context distribution: average length,
substring counts, marginal distributions at certain offsets and so on.

To conclude, we have shown how a simple formalization of Harris’s substi-
tutability criterion can be used to polynomially learn an interesting subclass of
context-free languages.

Acknowledgements

This work has benefitted from the support of the EU funded PASCAL Network of
Excellence on Pattern Analysis, Statistical Modelling and Computational Learn-
ing. We would like to thank Colin de la Higuera, Jean-Christophe Janodet and
Brad Starkie for helpful comments and discussions.

References

[1] P. Adriaans, M. Trautwein, and M. Vervoort. Towards high speed grammar in-
duction on large text corpora. In SOFSEM 2000, pages 173–186. Springer Verlag,
2000.

[2] D. Angluin. Inference of reversible languages. Communications of the ACM,
29:741–765, 1982.

[3] R. Book and F. Otto. String rewriting systems. Springer Verlag, 1993.
[4] N. Chomsky. Systems of syntactic analysis. Journal of Symbolic Logic, 18(3),

1953.
[5] C. de la Higuera. Characteristic sets for polynomial grammatical inference. Ma-

chine Learning, 27(2):125–138, 1997.
[6] E. M. Gold. Language indentification in the limit. Information and Control,

10(5):447 – 474, 1967.
[7] Z. Harris. Distributional structure. Word, 10(2-3):146–62, 1954.

296 A. Clark and R. Eyraud

[8] J. A. Laxminarayana and G. Nagaraja. Inference of a subclass of context free
grammars using positive samples. In Proceedings of the Workshop on Learning
Context-Free Grammars at ECML/PKDD 2003, 2003.

[9] E. Mäkinen. On inferring zero-reversible languages. Technical Report A-1998-7,
University of Tampere, 1998.

[10] D. Ron, Y. Singer, and N. Tishby. On the learnability and usage of acyclic
probabilistic finite automata. Journal of Computer and System Sciences (JCSS),
56(2):133–152, 1998.

[11] G. Senizergues. The equivalence and inclusion problems for NTS languages. J.
Comput. Syst. Sci., 31(3):303–331, 1985.

[12] B. Starkie. Identifying Languages in the Limit using Alignment Based Learning.
PhD thesis, University of Newcastle, Australia, 2004.

[13] T. Yokomori. On polynomial-time learnability in the limit of strictly deterministic
automata. Machine Learning, 19(2):153–179, 1995.

[14] T. Yokomori. Polynomial-time identification of very simple grammars from posi-
tive data. Theoretical Computer Science, 298(1):179–206, 2003.

Algorithms for Learning Regular Expressions
(Extended Abstract)

Henning Fernau1,2,�

1 University of Hertfordshire, College Lane, Hatfield, Herts AL10 9AB, UK
2 Wilhelm-Schickard-Institut für Informatik, Universität Tübingen,

Sand 13, D-72076 Tübingen, Germany
henningfernau@yahoo.de

Abstract. We describe algorithms that directly infer regular expressions
from positive data and characterize the regular language classes that can
be learned this way.

1 Introduction

Over the last about forty years, many algorithms have been proposed and imple-
mented that are capable to infer a regular language, given only a finite number
of samples of the language. Probably most of them, especially the ones in ac-
tual use, are mere heuristics in the sense that there does not exist any concise
characterization of the class of languages that can be learned in this way.

In more mathematical terms, the “generalization capability” sketched in the
preceding paragraph is best captured by Gold’s learning paradigm of learning
(identification) in the limit from positive samples as proposed by Gold [10]. In
this well-established model, a language class L (defined via a class of language
describing devices D as, e.g., grammars or automata) is said to be identifi-
able if there is a so-called inference machine I to which as input an arbitrary
language L ∈ L may be enumerated (possibly with repetitions) in an arbi-
trary order, i.e., I receives an infinite input stream of words E(1), E(2), . . . ,
where E : N→ L is an enumeration of L, i.e., a surjection, and I reacts with
an output device stream Di ∈ D such that there is an N(E) so that, for all
n ≥ N(E), we have Dn = DN(E) and, moreover, the language defined by DN(E)

equals L.
In practical applications of this learning scenario, learning regular languages

often means to infer regular expressions (REs), because REs are arguably the
more suitable model to specify regular languages, especially for human beings.
Therefore they (or variants thereof) are probably used in well-known tools as
� Most of the work on this project has been done while the author was with The

University of Newcastle, School of Electrical Engineering and Computer Science,
University Drive, NSW 2308 Callaghan, Australia; the assistance by a New Staff
grant from the University of Newcastle that made possible to employ Linda Buisman,
aka Postniece, to implement the algorithms described in this paper, is gratefully
acknowledged.

S. Jain, H.U. Simon, and E. Tomita (Eds.): ALT 2005, LNAI 3734, pp. 297–311, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

298 H. Fernau

grep in UNIX. Unfortunately, to our knowledge all learning algorithms with
known characterizations of the learned language class are based on grammars
and/or automata.1 The disadvantage is that when you finally turn your results
into REs (as the “target structure” towards human beings) by standard algo-
rithms as contained in any introductory book to automata theory (e.g., [11]),
these are often quite clumsy and lengthy, containing lots of “nested loops” and
seeming repetitions of subsequences. Quite easily a human who wants to some-
how check the outcome of the automatic learning procedure is simply abhorred
by such output. We made some computer experiments in the context of infer-
ring DTDs for XML documents with the aid of known DFA learners that verified
these considerations [8]. Hence, although the (syntactic) task of DTD inference
basically boils down to learning regular expressions, most systems that are ac-
tually used for this purpose rely on heuristics, see [9] for the description of one
such system, as well as further references.

In order to improve on the readability of the resulting REs and probably also
giving a better intuitive “explanation” of the observed data (sample strings), we
are going to propose a learning procedure which is only generating REs of star
height one, i.e., starred expressions get never nested. Although the correspond-
ing class of languages is that restricted, many cases that occur in practice are
covered.

2 Blockwise Grouping and Alignment

The basic technique we are using can be best described as blockwise grouping
and alignment. This means the following: Given some sample strings, say

ababb, aabb, ababa, abc,

we would first transform them into

[a][b][a][bb], [aa][bb], [a][b][a][b][a], [a][b][c],

where we use square brackets to denote the “block letters.” Actually, and more
technically, we will call any [xn] a block letter whenever x is a character in the
alphabet over which the input words are formed. x is called the basic letter of
[xn]. When we only use block letters [x] representing xn for any n ≥ 1, we also
say that we ignore multiplicities. In our transformation, we also require that
the basic letters of neighboring block letters are different. At first glance, this
appears to mean that we are dealing with infinite alphabets. But since we will
only use block letters as derived from input samples, there are at any moment
only finitely many of them, so that they can be conveniently handled.

In a second step, we try to align the blocks from left to right:

1 There are even only few learning algorithms that directly deal with regular expres-
sions, see [4, 5, 12] and the literature quoted therein, but they are not addressing
the text learning model we are using here.

Algorithms for Learning Regular Expressions 299

[a] [b] [a] [bb]
[aa] [bb]
[a] [b] [a] [b] [a]
[a] [b] [c]

As an aside, let us mention that committing and restricting ourselves to leftmost
alignments seems to be quite suited to what humans are doing in such a case, as
well. Namely, when given the task of describing the common nature of the given
four strings, most people I dare to claim would describe this nature along the
following lines: “each string starts with one or two a, then there are one or two
b, possibly followed by. . . ” But there other obvious alternatives, as well, e.g.:
“each string possibly starts with ab, followed by one or two a, then one or two b,
and finally (optionally) one a or one c.” Observe that in this second description,
the second and fourth sample was aligned starting with the third block of the
other two samples, i.e.:

[a] [b] [a] [bb]
[aa] [bb]

[a] [b] [a] [b] [a]
[a] [b] [c]

Due to the above “psychologic” argument and because the general problem of
finding “best alignments” is NP hard (corresponding to the multiple sequence
alignment problem), we will restrict our attention to leftmost alignments in what
follows.

So, sticking to our first “generalization” we would end up with the language
describable with the following RE:

(a|aa)(b|bb)(λ|a(b|bb)(λ|a)|c).
Since this is still denoting a finite language, we might wish to further generalize.
Then, it is quite natural to consider “one or two repetitions” as a (very) special
case of “one or more repetitions”. Having this in mind, we might then arrive at:

a+b+(λ|ab+(λ|a)|c),
which, moreover, gives a shorter “explanation” of the given “observations” and is
hence preferable by the “minimum description length” principle, likewise known
as “Occam’s razor,” see [9, 13, 14] for a discussion with respect to Grammatical
Inference.

Note that we were writing down Kleene plus rather than Kleene star opera-
tions to be sure not to destroy the “blockwise readings” we originally provided.

There is still one issue we did not discuss up to now: how should we, in
general terms, arrive at a suitable “explanation” when facing the block letters
[xk1], . . . , [xkj] within one block (e.g., assuming that {xk1 , . . . , xkj} was the given
input sample)? Without loss of generality, assume that 0 < k1 < k2 < · · · < kj .
Of course, we could generalize every time directly to x+, but this might override
to quickly the “multiplicity information” contained in the sample. We will instead
choose integer numbers � ≥ 0 and r ≥ 1 such that, for each 1 ≤ i ≤ j, r divides

300 H. Fernau

ki − �, and such that r is maximal with this property. So, r = 1 and � = 0 will
always satisfy the first part of the property (and this would correspond to the
generalization x+ mentioned above), but larger r will reveal more information
within the loop. More concretely, if ki = 2i + 1, i.e., given x3, x5, x7, . . . , the
“explanation” x(xx)+ might look better than simply guessing at x+. In other
words, we would have taken � = 1 and r = 2 in that case.

On the downside, let us mention that this way only so-called strictly bounded
languages can be derived, i.e., subsets of x∗1x∗2 . . . x∗k, where the xi are characters
of the original alphabet. Especially, this means that the universal language Σ∗

cannot be derived for any input alphabet Σ with more than one letter. We will
therefore also discuss strategies how to overcome this sort of dilemma, see Sec. 4.

3 Working out Details of RE Learning Strategies

We start analyzing a simplified version of our learning strategy.

3.1 Creating the Start Tree

This algorithm can be explained as follows for a basic alphabet Σ and an in-
put sample I+ ⊂ Σ+, yielding the recursive procedure create-tree(I), which
initially takes as input I the sample I+.

Algorithm 1 (create-tree(I)).

1. Left-align the input words.
Due to the recursion within this procedure, aligning according to the first
symbols is sufficient, so that this step can be very efficiently implemented.

2. This gives, for each symbol a ∈ Σ, the set

I(a) = {w ∈ I | w starts with a }.
This yields a partition of I into the different sets I(a).

3. For each I(a), form the set

Ia = {v ∈ bΣ∗ | b �= a ∧ ∃n > 0(anv ∈ I(a))}.
4. Recursively call, for all a ∈ Σ, create-tree(Ia).

Let us introduce some further notations: Given a set I ⊂ Σ+, consider

I(a) = {an1v1, a
n2v2, . . . , a

nmvm}
with vi ∈ (Σ\{a})Σ∗∪{λ} and nj ≤ nj+1; then, the m = |I(a)|-tuple S(I(a)) =
(n1, n2, . . . , nm) is also called the a-spectrum of I.

Further denotations are: α(S(I(a))) = n1, ω(S(I(a))) = nm.
The set Jb with J = Ia is also denoted Iab. In accordance, Iλ = I.
It is obvious that we can associate to I+ a rooted labeled directed tree,

the root being labeled I+ = Iλ
+, and the children of a node labeled Ix

+ being

Algorithms for Learning Regular Expressions 301

labeled with the Ixa
+ for a ∈ Σ if Ix

+(a) is non-empty. The arc from Ix
+ to Ixa

+

is then labeled a. This tree is in direct correspondence with the recursion tree
of create-tree(I+) and will be also called the start tree for I+. Sometimes, it
is more convenient to label non-root vertices of this tree Ix(a) instead of Ixa.
Then, the root will be labeled r.

Getting back to our start example, we illustrate these notions.

Example 1. We take

I+ = {ababb, aabb, ababa, abc} ⊂ Σ+ = {a, b, c}+

Hence, I+(a) = I+, and moreover,

Ia
+ = {babb, bb, baba, bc}.

Since Ia
+(b) = Ia

+, we get
Iab
+ = {abb, aba, c}.

Note that bb ∈ Ia
+(b) did not leave any trace in Iab

+ . Now, Iab
+ (a) = {abb, aba}

and Iab
+ (c) = {c}. Since Iabc

+ = ∅, we continue with aligning Iaba
+ = {bb, ba},

finally giving Iabab
+ = {a}.

I+ = {ababb, aabb, ababa, abc}

Ia
+ = {babb, bb, baba, bc}

Iab
+ = {abb, aba, c}

Iaba
+ = {bb, ba}

Iabab
+ = {a}

b

a

a

a

b

c

Fig. 1. A simple prefix block tree

In our example, the nodes of the start tree are labeled I+, Ia
+, Iab

+ , Iaba
+ , Iabc

+ ,
Iabab
+ , and Iababa

+ . Leaves in this tree are always labeled with the empty set. This
gives the picture of Fig. 1. The alternative node labeling convention is displayed
in Fig. 2.

302 H. Fernau

3.2 Constructing NFAs by Alignment

Recall now the notion of a generalized nondeterministic finite automaton (NFA):
arcs of such an NFA may be labeled with whole words (or even finite set of
words), not just single symbols. By way of contrast, a generalized deterministic
finite automaton (DFA) is a generalized NFA which maintains the “determinism”
property; therefore, we require that the labels of the arcs emanating from an
arbitrary node form a prefix code.

I+ = {ababb, aabb, ababa, abc}

Ia
+ = {babb, bb, baba, bc}

Iab
+ = {abb, aba, c}

Iaba
+ = {bb, ba}

Iabab
+ = {a}

b

a

a

a

b

c

Fig. 2. The resulting NFA

It is now easy to turn the start tree into a (generalized) NFA: If a node is
carrying the label Ix(a), then label the arc ending in Ix(a) with the finite set
{aj | j ∈ S(Ix(a))}. The resulting NFA in our example is displayed in Fig. 2. The
root obviously becomes the start state, and the terminal states are (as usual)
indicated by double-circles. Observe that this leads to some generalization (e.g.,
now the word ab /∈ I+ will be accepted), according to the following principle
which is a common characteristics of alignment-based learning algorithms [15]:

Aligned pieces of words are considered to be interchangeable.

However, this kind of generalization is very cautious, since it will always cre-
ate only finite languages, given a finite sample. In order to arrive at infinite
languages, loops must be introduced.

Algorithms for Learning Regular Expressions 303

a

b

b

c

a

b

a

a

b

(a) The resulting DFA in SL

a

b

b

a, c

b

a

a

b

(b) Another DFA proposal

Fig. 3. Two ways to generalize

3.3 Introducing Loops by Determinization

We will introduce loops by turning the (generalized) NFA we obtained so far into
a (generalized) DFA. To this end, if an arc A in the NFA is labeled with a finite
set of words, say {an1 , . . . , aam} containing more than one word, (i.e., m > 1)
then only keep the shortest among these words as a label of A and enable the
generation of the longer words by introducing a loop labeled a at the node A
points to. The resulting generalized automaton is indeed deterministic, since in
the situation sketched above, in the original generalized NFA there was no arc
labeled a starting at the node A points to due to the alignment we performed in
the very beginning. The resulting DFA for our example is depicted in Fig. 3(a).
We can also summarize both generalization steps into one algorithm as follows:

Algorithm 2 (generalize-simple(start tree)).
If a node is carrying the label J(a), then

– (re)label the arc ending in J(a) with aα(S(J(a)));
– moreover, if ω(S(J(a))) > α(S(J(a))), then introduce a loop on the node

labeled J(a); this loop arc is labeled a.

Let us have a look at another example where we actually obtain generalized
automata.

Example 2. Let I+ = {aaa, aab}. The generalized NFA resulting from the start
tree has three states (labeled r, I+(a) and Ia

+(b), the first being the start state

304 H. Fernau

and the latter two being final states). The arc from r to I+(a) is labeled {aa, aaa}
and the arc from I+(a) to Ia

+(b) is labeled b. This yields a generalized DFA with
the same states and the following three arcs:

– One arc labeled aa = aα(S(I+(a))) from r to I+(a).
– One loop arc at I+(a) labeled a.
– One arc labeled b from I+(a) to Ia

+(b).

Obviously, it is the label of the arc from the root r to I+(a) which makes the
automata “truely generalized.”

3.4 The Language Class SL
Which language class can we learn this way? In fact, this is an interesting question
which can be posed for many “heuristics” which have been proposed in the litera-
ture (or merely presented as programs, nowadays on the web) for learning regular
expressions (or more generally, certain classes of [descriptions of] languages). We
now give two definitions, restricting the usual notion of a regular expressions and
the usual notion of a DFA, which turn out to be two characterizations of the lan-
guages which can be learned by the algorithm generalize-simple.

Definition 1 (simple looping expressions). Let us call two union-free reg-
ular expressions

by1
1 by2

2 . . . byi

i

and
cz1
1 cz2

2 . . . c
zj

j

(where b� and c� are elements of the basic alphabet Σ and y� and z� equal either
1 or ∗; this should also cover the boundary case i = 0, i.e., β = λ [the empty
word]) left-aligned if yk = zk for 1 ≤ k ≤ K, where K ≤ min(i, j) is defined
as the largest non-negative integer obeying bk = ck for all 1 ≤ k ≤ K and
bK+1 �= cK+1; here by convention let bi+1 = cj+1 = $ be a special symbol not
contained in the basic alphabet Σ. Observe the special case that two identical
union-free regular expressions are not left-aligned according to our definition.

We call a regular expression simple looping if it is either empty (denoting
the empty language), or a single union-free RE, or the finite union of pairwisely
left-aligned expressions α such that either α = λ or they can be written in the
following normal form:

α = ak1
1 ax1

1 ak2
2 ax2

2 . . . akK

K axK

k

where

– all ai are single symbols from the basic alphabet Σ,
– each of the ai are different from its (at most two) “neighbors” (i.e., ai−1 if

i > 1, and ai+1 if i < K),
– each ki is some positive integer, and

Algorithms for Learning Regular Expressions 305

– each xi equals either 0 or ∗ (if xi = 0, the part a0
i of the expression will not

be written down, since it denotes the empty word).

Call a language L simple looping if there is a simple looping regular expres-
sion describing L. The corresponding language class is denoted by SL.

Definition 2 (simple looping automata). A deterministic finite automaton
is called simple looping if

– when deleting all the loops in the automaton graph, the resulting (arc-labeled)
so-called skeleton graph would be a directed tree without multiple arcs such
that any node of outdegree larger than one in that tree has the property that
all emanating arcs carry pairwisely different labels, and if

– the label a carried by some loop arc (at some state s) in the automaton graph
is likewise carried by the necessarily existing other arc pointing to s.

Observe that the first property of the previous definition ensures that the
only cycles in the automaton graph are loops.

Lemma 1. A simple looping DFA is not necessarily minimal. Conversely, if L
is simple looping, then the minimal automaton A(L) is not necessarily simple
looping.

Proof. If a �= b are two letters, then A({a, b}) has two states, while this au-
tomaton is not simple looping, since it contains multiple arcs, namely two arcs
(labeled a and b, respectively) from the start state to the final state. The corre-
sponding simple looping DFA has three states (and is hence not minimal): one
of its final states is reached via an a-transition from the start state, while the
other final state is reached by a b-transition from the start state.

Theorem 1 (Characterization Theorem). The following conditions are equiv-
alent for a given language L ⊆ Σ∗:

– L is simple looping.
– L is generatable by a simple looping DFA.

Proof. If L is simple looping, then there is a simple looping regular expression
E describing L, consisting of pairwisely left-aligned union-free subexpressions
Ei, 1 ≤ i ≤ m. Each Ei can be straightforwardly turned into a DFA Ai which
is simple looping. A part ak of Ei is thereby turned into a path of length k
within the automaton graph of Ai where each arc is labeled a; if a∗ follows ak

in Ei, then the endpoint of the mentioned part will carry a loop labeled a. Since
the expressions Ei are left-aligned, we can “overlay” the different Ai graphs to
produce a DFA A which is simple looping.

Conversely, if L is generated by a simple looping DFA A, we can decompose
A (due to the underlying “tree structure”) into a collection of paths Ai (which
may contain loops), such that each Ai contains only one final state, namely
the last one on the path. (This means that “intermediate” final states are not
considered to be final in “larger paths.”) Each such Ai can be turned into a
regular expression Ei whose collection yields the required simple looping regular
expression E.

306 H. Fernau

Since (as remarked upon introducing simple looping regular expressions)
union-free “subexpressions” only turn up once, we can conclude:

Corollary 1. Every simple looping language has a only one representation as a
simple looping regular expression if we disregard the order in which the union-free
components of the expression are listed.

The following lemma relates SL with our learning algorithm. Recall that a
generalized DFA can be turned into a “usual” DFA by possibly introducing “in-
termediate states” used for spelling the words labeling arcs. If A is a generalized
DFA, let DFA(A) denote the DFA obtained in this way. The following lemma is
immediate from the definition, yet crucial.

Lemma 2. If A is the generalized DFA obtained as output of the learning algo-
rithm generalize-simple, then DFA(A) is a simple looping DFA.

3.5 SL Can be Learned from Positive Data

Let us now discuss the identifiability of SL. To this end, let us first describe how
to obtain a characteristic sample for a simple looping DFA A.

For every final state s, there is a unique path from the initial state s0 of A
to s in the skeleton graph (tree) associated to A: upon reading the labels of the
arcs, this yields a unique word ws ∈ L(A). In fact, ws is the shortest word in
L(A) that is accepted via state s. Observe that the collection LF of all those ws

pass through all states of A, since A has no useless states. Therefore, we may
extend our notation, so that for each state s (not only for final ones), ws refers
to some word from LF such that ws passes through s. Then, let us be the initial
part of ws that describes how to get from the initial state s0 into s. Let vs refer
to the remaining part of ws, i.e., ws = usvs. Now, if A has a loop labeled a at
state s, let w◦

s = usavs. Let L◦ collect all such loop indicating words w◦
s . Then,

χ(L) = LF ∪ L◦ is a characteristic sample of L.
Namely, upon getting the sample χ(L), LF will provide the information to

construct the skeleton graph (which corresponds to the prefix block tree dis-
cussed above, except that block words are spelled out). Then, the loops are
reconstructed using the words from L◦.

In our example from Fig. 3(a), the characteristic sample would be

χ = {ab, abc, abab, ababa, aab, abb, ababb}.
Notice that this is larger than the input sample I+ in Ex. 1 due to the following
reasons: (i) ab and abab are prefixes of other words in LF and could hence be
omitted; (ii) we introduce one loop-generating word per loop in our systematic
construction of L◦, ignoring the possibility of describing more than one loop in
a (longer) word.

Finally notice that the algorithm we presented so far for learning SL lan-
guages is a “bulk algorithm” in the sense that it expects the whole sample at
one gulp. From the point of view of practice, also incremental algorithms are

Algorithms for Learning Regular Expressions 307

interesting. It is not too hard to convert the given algorithm into an incremental
one. Firstly, we would scan a new word w with the automaton derived so far. If
w is accepted, we continue with the next input word. If not, this can have two
reasons: (i) either, we have reached a state that has not been marked final; then,
marking this state final will cope with the situation; or (ii) we would have to use
a yet non-existing transition in a certain state. In that case, we might (a) either
introduce a loop in the state we are just dealing with, or (b) we will leave the
state via a new arc to a new state, and the remainder of the word will create
more new states. Notice that also the case (a) might in continuation lead to cases
(i) or (ii)(b) upon further reading of w by means of the (modified) automaton.

We summarize our findings:

Theorem 2. SL is identifiable in the limit (also with polynomial update time).

4 Extensions of Our Approach

4.1 Dealing with Multiplicities

In Sec. 2, we described another way of dealing with loops: namely, we described
how to actually count multiple occurrences of a letter upon looping. It is not
hard to see how this can be actually incorporated into the framework developed
in the preceding section.

More precisely, we would now allow looping regular expressions that contain
loops of the form (an)∗, or an∗ for short. This would have to be incorporated
into the left-alignment definition (allowing y�/z� to be 1 or n∗, not only 1 or
∗, in the notation of that definition). This way, we can describe a superclass
SL′ of SL. This would naturally also entail that the corresponding looping DFA
may contain “larger loops.” The inference algorithm itself is again very similar,
except that when it observes, e.g., {b, bbb} as arc label of a resulting NFA, it
would create a loop with arc label bb in the resulting (general) DFA. Keeping
in mind the intention of the characteristic sample definition (to exercise each
transition at least once), also that definition can be extended.

This reasoning allows us to conclude:

Theorem 3. SL′ is identifiable in the limit.

4.2 Introducing Wildcards

There is another type of generalization that one easily comes up with when
thinking of easy regular expressions: the use of wildcards, maybe in the slightly
general form of introducing character groups. It is exactly the generalizing ca-
pacity formalized in SL together with the ability of forming character groups
that has been realized in the SWYN system of Blackwell [4].

Introducing wildcards (for simplicity) on top of the SL-mechanism means
that we are finally arriving at an identifiable language class different from SL
(so not generalizing SL as we did in the preceding section). How can we find

308 H. Fernau

places where we might wish to insert wildcards (denoted by the letter ′?′ in what
follows, assuming that this is not part of the usual alphabet we are dealing with)?
The easiest way to find such places is to look at it in terms of preprocessing,
given an input sample I+:

Algorithm 3 (preprocess-wildcards(I+)).

1. Form the set of blocks [I+] consisting of all sequences of block letters of all
words from I+ while ignoring multiplicity information.

2. Pairwisely left-align the blocks in [I+]; whenever we find a pair (x, y) with
– x = [a1] . . . [am][a][am+2] . . . [an] and
– y = [b1] . . . [bm][b][bm+2] . . . [b�]

such that, for all i = 1, . . . ,m,m + 2, . . . ,min(n, �), either ai =? or bi =? or
ai = bi; then we can replace both a and b by ′?′. Moreover, we would replace
ai by ′?′ if bi =? and (conversely) bi by ′?′ if ai =?. Notice that in accordance
with our usage of block letters, the actual interpretation of ′?′ depends on
its context: so, if we result in [?][?], then this refers to two different basic
letters upon unfolding into the usual alphabet.

3. If the second step permits no further changes, we go back to the original
input I+ and replace letters by ′?′ whenever such a change was indicated by
the second step (working on block letters), yielding a new instance I?

+.

Then, we run the procedure for SL-learning (or say for SL′-learning) on I?
+.

Let us explain the wildcard usage by means of a little example. Consider I+ =
{ab, ac, bc}. Hence, [I+] = {[a][b], [a][c], [b][c]}. Matching [a][b], [a][c] gives [a][?].
Alternatively, we can match [a][?], [b][c] yielding [?][?]. Since this last expression
matches (subsumes) all original ones, we arrive at I?

+ = {??}.
Starting with the less pathological sample I+ = {ababb, aabb, ababa, abc} from

Ex. 1, we get

[I+] = {[a][b][a][b], [a][b], [a][b][a][b][a], [a][b][c]}.
Matching [a][b][a][b] against [a][b][c] yields [a][b][?][b] and [a][b][?]. Similarly, we
might match [a][b][a][b][a] against [a][b][c]. Hence, I?

+ = {ab?bb, aabb, ab?ba, ab?}.
The (finally) resulting DFA is depicted in Fig. 3(b).

How can we characterize the class of languages that is identifiable in this way?
This can be easiest explained using simple looping expressions that may contain
the special letter ′?′. We can define a compatibility relation of two left-aligned,
union-free expressions if we consider the “mergibility” of the corresponding block
letter words as described above. Then, we would only allow looping expressions
(that may contain ′?′) that are decomposed as finite union of expressions which
are incompatible in the sense sketched above. For reasons of space, we omit the
corresponding technical details. These details become even more cumbersome if
we aim to generalize SL′ or if try to introduce character groups (as “lowercase
letters”, “alphanumerical symbols”, etc., as known from certain application ar-
eas), thus enabling to have different sorts of wildcards. However, let us state that
all these ways of introducing wildcards lead to identifiable language classes that
can be syntactically characterized by certain forms of regular expressions.

Algorithms for Learning Regular Expressions 309

5 A Possible Application: Learning DTDs

XML. The expectations surrounding XML (eXtendible Markup Language) as
universal syntax for data representation and exchange are huge, as underlined by
the amount of effort being committed to XML by the World Wide Web Consor-
tium (W3C) (see www.w3.org/TR/REC-XML), by the huge number of academics
involved in the research of the backgrounds of XML, as well as by numerous
private companies. Moreover, many applications arise which make use of XML,
although they are not directly related to the world wide web. For example, nowa-
days XML plays an important role in the integration of manufacturing and man-
agement in highly automated fabrication processes such as in car companies [7].
For further information, refer to www.oasis-open.org/cover/xmlIntro.html.

XML grammars. The syntactic part of the XML language describes the relative
position of pairs of corresponding tags. This description is done by means of a
document type definition (DTD). Ignoring attributes of tags, a DTD is a spe-
cial form of a context-free grammar. This sort of grammar formalism has been
formalized and studied by Berstel and Boasson [3], defining XML grammars.

Three applications of grammatical inference. As already worked out by Aho-
nen, grammatical inference (GI) techniques can be very useful for automatic
document processing, see [1, 2]. Building upon her work, we described [8] three
possible applications of grammatical inference in the context of DTD inference:

– to assist designing grammars for (semi-) structured documents;
– to create views and sub-documents; and
– to optimize the performance of database queries based on XML by the help

of adequate DTDs.

To underline the first of these applications, let us quote Tim Bray, one of the
“fathers” of XML, who wrote (see www.xml.com/axml/notes/Any1.html):

Suppose you’re given an existing well-formed XML document and you want to build
a DTD for it. One way to do this is as follows:

1. Make a list of all the element types that actually appear in the document, and
build a simple DTD which declares each and every one of them as ANY. Now
you’ve got a DTD (not a very useful one) and a valid document.

2. Pick one of the elements, and work out how it’s actually used in the document.
Design a rule, and replace the ANY declaration with a . . . content declaration.
This, of course, is the tricky part, particularly in a large document.

3. Repeat step 2, working through the elements . . . , until you have a useful DTD.

Instead of explaining these notions formally (as done in [8]), let us rather
discuss a small but realistic example.

Fig. 4 shows the first lines of a short novel in somewhat simplified XML
format. Disregarding the actual contents (i.e., the novel itself), we obtain the
following possible samples of what a paragraph could be: it could consist in
one sentence (see the headline etc.), of three sentences (first paragraph of the

310 H. Fernau

<book>

<part>

<chapter>

<paragraph>

<sentence>Die Verwandlung</sentence>

</paragraph>

<paragraph>

<sentence>von Franz Kafka</sentence>

</paragraph>

</chapter>

<chapter>

<paragraph>

<sentence>I</sentence>

</paragraph>

<paragraph>

<sentence>Als Gregor Samsa eines Morgens aus unruhigen Träumen erwachte,

fand er sich in seinem Bett zu einem ungeheueren Ungeziefer verwandelt.

</sentence>

<sentence>Er lag auf seinem panzerartig harten Rücken und sah, wenn er den Kopf ein wenig hob, seinen gewölbten,

braunen, von bogenförmigen Versteifungen geteilten Bauch, auf dessen Höhe sich die Bettdecke,

zum gänzlichen Niedergleiten bereit, kaum noch erhalten konnte.

</sentence>

<sentence>Seine vielen, im Vergleich zu seinem sonstigen Umfang kläglich dünnen Beine

flimmerten ihm hilflos vor den Augen.

</sentence>

</paragraph>

<paragraph>

<sentence>"Was ist mit mir geschehen?", dachte er. </sentence>

<sentence>Es war kein Traum. </sentence>

</paragraph>

</chapter>

</part>

</book>

Fig. 4. The first lines of Kafka’s short novel “Verwandlung” in XML format

novel itself) or two (due to cutting short the novel after the introductory part).
Hence, our learner would generalize these examples to express that a paragraph
could consist of one or more sentences. However, all learning algorithms that we
proposed would insist in a chapter consisting of at least two paragraphs according
to the examples seen up to now. Both ways of generalization are according to
common sense: chapters with one paragraph are rarely observed.

6 Conclusions

We are aware of the fact that our proposed learners can only generate very
simple kinds of regular expressions. However, first of all this is intrinsic to the
learning model we used, since text learning (identification in the limit from
positive samples) does not allow to learn all regular languages (be them encoded
by automata or expressions); even the class of languages that definable by all
REs (based on the operations union, catenation and star) without nested stars is
not identifiable from positive data: ponder the sample wn = (ab)n versus (ab)∗.

Secondly, there do exist applications for at least similarly simplistic versions
of regular expressions. For example, the path expressions as discussed in [6] in
the context of XML path queries are of a similar simplicity.

Moreover, many web browsers do only admit a limited form of regular expres-
sions which pretty much resemble the subset we propose. We already mentioned
the SWYN system [4] that employs practically the same sorts of expressions.2

However, it would be nice to extend the results of this paper in a direction that
2 From the system description, it is not quite clear how the alignment is actually

performed, so there might be some technical differences.

Algorithms for Learning Regular Expressions 311

allows longer strings (containing different sorts of letters) to be starred. Finding
a reasonable subclass of regular languages that can be inferred in this way re-
mains a topic of future study, obviously limited by the observed sample in the
first paragraph.

We have also considered the (non-)closure properties of SL (all standard
operations but intersection show non-closure behavior) and have derived an al-
ternative, more compact characterization of SL in terms of REs. We skipped
details here for reasons of space.

References

[1] H. Ahonen. Disambiguation of SGML content models. In C. Nicholas and
D. Wood, eds., Principles of Document Processing PODP’96, volume 1293 of
LNCS, pp. 27–37. Springer, 1997.

[2] H. Ahonen, H. Mannila, and E. Nikunen. Forming grammars for structured docu-
ments: an application of grammatical inference. In R. C. Carrasco and J. Oncina,
eds., International Colloquium on Grammatical Inference ICGI’94, volume 862 of
LNCS/LNAI, pp. 153–167. Springer, 1994.

[3] J. Berstel and L. Boasson. Formal properties of XML grammars and languages.
Acta Informatica, 38(9):649–671, August 2002.

[4] A.F. Blackwell. SWYN: A visual representation for regular expressions. In
H. Lieberman, ed., Your wish is my command: Giving users the power to instruct
their software, pp. 245–270. Morgan Kaufmann, 2001.

[5] A. Brazma. Efficient learning of regular expressions from approximate examples.
In R. Greiner, T. Petsche, and S. J. Hanson, eds., Computational Learning The-
ory and Natural Learning Systems, Vol. IV: Making Learning Systems Practical,
chapter 19, pp. 337–352. Cambridge (MA) USA: MIT Press, 1997.

[6] Y. D. Chung, J. W. Kim, and M. H. Kim. Efficient preprocessing of XML queries
using structured signatures. Information Processing Letters, 87:257–264, 2003.

[7] CZ-Redaktion. Maschinenmenschen plaudern per XML mit der Unternehmens-
IT. Computer Zeitung, (50):30, December 2000.

[8] H. Fernau. Learning XML grammars. In P. Perner, ed., Machine Learning and
Data Mining in Pattern Recognition MLDM’01, volume 2123 of LNCS/LNAI, pp.
73–87. Springer, 2001.

[9] M. Garofalakis, A. Gionis, R. Rastogi, S. Seshadri, and K. Shim. XTRACT:
learning document type descriptors from XML document collections. Data Mining
and Knowledge Discovery, 7:23–56, 2003.

[10] E. M. Gold. Language identification in the limit. Information and Control (now
Information and Computation), 10:447–474, 1967.

[11] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages,
and Computation. Reading (MA) USA: Addison-Wesley, 1979.

[12] Ph. D. Laird. Learning from Good and Bad Data. Norwell (MA) USA: Kluwer
Academic Publishers, 1988.

[13] C. G. Nevill-Manning and I. H. Witten. Online and offline heuristics for inferring
hierarchies of repetitions in sequences. Proc. IEEE, 88:1745–1755, 2000.

[14] T. C. Smith, I. H. Witten, J. G. Cleary, and S. Legg. Objective evaluation of
inferred context-free grammars. In Proc. Australian and New Zealand Conference
on Intelligent Information Systems, Brisbane, Australia, November 1994.

[15] M. van Zaanen. Bootstrapping Structure into Language: Alignment-Based Learn-
ing. PhD, School of Computing, University of Leeds, UK, September 2001.

A Class of Prolog Programs with Non-linear
Outputs Inferable from Positive Data

M. R. K. Krishna Rao

Information and Computer Science Department,
King Fahd University of Petroleum and Minerals,

Dhahran 31261, Saudi Arabia
krishna@ccse.kfupm.edu.sa

Abstract. In this paper, we study inferability of Prolog programs from
positive examples alone. We define a class of Prolog programs called
recursion bounded programs that can capture non-linear relationships
between inputs and outputs and yet inferable from positive examples.
This class is rich enough to include many programs like append, delete,
insert, reverse, permute, count, listsum, listproduct, insertion-sort, quick-
sort on lists, various tree traversal programs and addition, multiplication,
factorial, power on natural numbers. The relation between our results and
the known results is also discussed. In particular, the class of recursion
bounded programs contains all the known terminating linearly-moded
Prolog programs of Krishna Rao [7] and additional programs like power
on natural numbers which do not belong to the class of linearly-moded
programs and the class of safe programs of Martin and Sharma [12].

1 Introduction

Many problems in Machine Learning are concerned with investigating and for-
malizing human learning processes in order to utilize the results in designing
computer programs. In particular, children’s’ ability to learn their mother tongue
on the basis of incomplete and ambiguous information motivated various abstract
learning models which try to reflect the special quality of language acquisition. A
well studied approach in this field is the theory of formal language learning intro-
duced by Gold [6] and Blum and Blum [5]. The general situation investigated in
language learning in the limit can be described as follows. An inductive inference
machine is an algorithmic device that is fed more and more information about
a language to be inferred. This information can consist of positive and negative
examples or only positive ones. When fed a presentation for a concept C, the
inductive inference machine has to produce hypotheses about C. The hypotheses
the learner produces have to be members of an admissible set of hypotheses (a
hypothesis space) and the sequence of hypotheses has to converge to a hypothe-
sis correctly describing the concept C to be learned. If the learner converges for
every presentation of C to a correct description of C, then it is said to identify
the concept C in the limit. A learner identifies a collection of concepts in the
limit if and only if it identifies each member of this collection in the limit. In this

S. Jain, H.U. Simon, and E. Tomita (Eds.): ALT 2005, LNAI 3734, pp. 312–326, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

A Class of Prolog Programs with Non-linear Outputs 313

paper we consider the case, where the learner is fed all positive examples of con-
cept C to be inferred but no negative examples, i.e., positive presentation. If the
learner converges for every positive presentation for C to a correct description
of C, then it is said to identify the concept C in the limit from positive data.
A learner identifies a collection of concepts in the limit from positive data if
and only if it identifies each member of this collection in the limit from positive
data. The study of inferability from positive data alone is important because
negative information is hard to obtain in practice –positive examples are much
easier to obtain from collections like bookmarks and to generate by conducting
experiments than the negative examples in general.

In his seminal paper [6] on inductive inference, Gold proved that even simple
classes of concepts like the class of regular languages cannot be infered from
positive examples alone. This strong negative result disappointed the scientists
in the field until Angluin [1] has given a characterization of the classes of concepts
that can be infered from positive data alone and exhibited a few nontrivial classes
of concepts inferable from positive data. This influential paper inspired further
research on the inductive inference from positive data. Since then many positive
results are published about inductive inference of logic programs and pattern
languages from positive data (see a.o., [15, 3, 4, 16, 7, 12, 8]).

Logic programs with elegant and simple declarative semantics can be used
as representations of the concepts to be learned. Continuing Angluin’s line of
research, Shinohara [15] presented a few classes of concepts inferable from posi-
tive data. The class of linear Prolog programs of Shapiro [14] is notable among
them. Unfortunately, the class of linear programs is very restrictive from the
programming point of view as they do not allow local variables, which play the
fundamental role of sideways information passing in the paradigm of logic pro-
gramming. Using moding annotations on predicates, Arimura and Shinohara [4]
introduced a class of linearly covering programs which have local variables and
yet inferable from positive data. Though they allow local variables, the class of
linearly covering programs is still restrictive as they view the logical variable
as a point-to-point communication channel. Krishna Rao [7] proposed the class
of linearly-moded programs, which includes all the above mentioned programs
and established inferability of linearly-moded programs from positive data. The
class of linearly-moded programs is rich enough to contain many programs from
Sterling and Shapiro’s book [17] including append, merge, split, insert,
insertion-sort, preorder and inorder traversal of binary trees, polynomial
recognition, derivatives, sum of a list of natural numbers.

The main shortcoming of the class of linearly-moded programs is that the
programs in this class can only capture linear relationships between input and
output. In fact, the size of output is bounded by the size of input. This means
that programs for multiplication and exponentiation are beyond the class of
linearly-moded programs. In this paper, we propose a class of Prolog programs
inferable from positive examples and yet include programs with nonlinear re-
lationships between input and output. The programs in this class are called

314 M.R.K.K. Rao

recursion bounded programs and this class includes all the known linear-moded
programs that are terminating.

The rest of the paper is organized as follows. The next section gives prelim-
inary definitions and results needed about inductive inference. In section 3, we
define the class of recursion bounded programs and present a few examples. In
Section 4, we establish a few properties of these programs. We then prove infer-
ability of recursion bounded programs from positive data in Section 5. The class
of recursion bounded programs is compared with the classes of linear-moded and
safe programs in Section 6.

2 Preliminaries

We assume that the reader is familiar with the basic terminology of logic pro-
gramming and inductive inference and use the standard terminology from [6, 10].
In the following, we recall some definitions and results needed in the sequel.

2.1 Inductive Inference from Positive Data

Definition 1. Let U and E be two recursively enumerable sets, whose elements
are called objects and expressions respectively.

– A concept is a subset Γ ⊆ U .
– An example is a tuple 〈A, a〉 where A ∈ U and a = true or false. Example
〈A, a〉 is positive if a = true and negative otherwise.

– A concept Γ is consistent with a sequence of examples 〈A1, a1〉, . . ., 〈Am, am〉
when Ai ∈ Γ if and only if ai = true, for each i ∈ [1,m].

– A formal system is a finite subset R ⊆ E.
– A semantic mapping is a mapping Φ from formal systems to concepts.
– We say that a formal system R defines a concept Γ if Φ(R) = Γ .

Definition 2. A concept defining framework is a triple 〈U,E, Φ〉 of a universe
U of objects, a universe E of expressions and a semantic mapping Φ.

Definition 3. A class of concepts C = {R1, R2, . . .} is an indexed family of
recursive concepts if there exists an algorithm that decides whether w ∈ Ri for
any object w and natural number i.

Here onwards, we fix a concept defining framework 〈U,E, Φ〉 arbitrarily and
only consider indexed families of recursive concepts.

Definition 4. A positive presentation of a nonempty concept R ⊆ U is an
infinite sequence w1, w2, . . . of objects such that {wi | i ≥ 1} = R.

An inference machine is an effective procedure that requests an object as an
example from time to time and produces a concept (or a formal system defining
a concept) as a conjecture from time to time. Given a positive presentation
σ = w1, w2, . . ., an inference machine IM generates a sequence of conjectures
g1, g2, We say that IM converges to g on input σ if the sequence of conjectures
g1, g2, . . . is finite and ends in g or there exists a positive integer k0 such that
gk = g for all k ≥ k0.

A Class of Prolog Programs with Non-linear Outputs 315

Definition 5. A class C of concepts is inferable from positive data if there exists
an inference machine IM such that for any R ∈ C and any positive presentation
σ of R, IM converges to a formal system g such that Φ(g) = R.

We need the following result of Shinohara [15] in proving our results.

Definition 6. A semantic mapping Φ is monotonic if Γ ⊆ Γ ′ implies Φ(Γ) ⊆
Φ(Γ ′). A formal system Γ is reduced w.r.t. S ⊆ U if S ⊆ Φ(Γ) and S �⊆ Φ(Γ ′)
for any proper subset Γ ′ ⊂ Γ .

Definition 7. A concept defining framework C = 〈U,E, Φ〉 has bounded finite
thickness if Φ is monotonic and for any finite set S ⊆ U and any m ≥ 0, the
set {Φ(Γ) | Γ ⊆ E, Γ is reduced w.r.t. S and |Γ | ≤ m} is finite.

Theorem 1. (Shinohara [15])
If a concept defining framework C = 〈U,E, Φ〉 has bounded finite thickness, then
the class

Cm = {Φ(Γ) | Γ ⊆ E, |Γ | ≤ m}
of concepts is inferable from positive data for every m ≥ 1.

2.2 Basic Concepts from Logic Programming

The alphabet of a first order language L is a triple 〈Π,Σ,X〉 of mutually dis-
joint sets such that Π and Σ are finite. The elements of Π,Σ and X are called
predicate symbols, function symbols and variables. We denote arity of a predi-
cate/function symbol f by arity(f). In the following, T (Σ,X) denotes the set
of terms constructed from the function symbols in Σ and the variables in X .
A(Π,Σ,X) denotes the set of atoms constructed from these terms and the pred-
icate symbols in Π . Terms (atoms) which do not contain any variable are called
ground terms (atoms). For a predicate p, the set of ground atoms A({p}, Σ, φ)
is denoted by B(p). The sets T (Σ,φ) and A(Π,Σ, φ) are also called Herbrand
universe UL and Herbrand base BL respectively of L. In the following, we some
times denote the sequence of terms t1, · · · , tn by t. The size of a term t, denoted
by |t|, is defined as the number of symbols (except the punctuation symbols)
occurring in it. The size of an atom p(t1, · · · , tn), denoted by |p(t1, · · · , tn)|, is
defined as the sum 1 + |t1|+ · · ·+ |tn|.
Definition 8. A logic program P is a finite set of definite clauses of the form
H ← B1, . . . , Bn, where H,B1, . . . , Bn are atoms. The atom H is the head and
B1, . . . , Bn is the body and n is the body-length of this clause. The size of a
clause H ← B1, . . . , Bn, denoted by Size(H ← B1, . . . , Bn), is defined as the
sum |H |+ |B1|+ · · ·+ |Bn| of the sizes of atoms in it.

The declarative semantics of a logic program P is usually given by its least
Herbrand model, i.e., the smallest set that contains all the ground atoms which
are entailed by the clauses in P . The least Herbrand model of P is denoted
by M(P). The least Herbrand model semantics of logic programs serves as a

316 M.R.K.K. Rao

monotonic semantic mapping. We use a special predicate symbol c to denote
the target predicate to be learned. Our concept defining frameworks are of the
form 〈B(c), L,Mc〉, where L is the class of Prolog clauses under consideration
and Mc is a semantic mapping such that Mc(P) is the set of all atoms of the
target predicate c in the least Herbrand model of P .

The procedural semantics of logic programs is given by the SLD-resolution
(see Lloyd [10] for more details). It is well known that the declarative semantics
and the procedural semantics of definite logic programs coincide. In the follow-
ing, we are concerned with Prolog programs, where the selection rule is fixed
as leftmost selection rule. Following [2], we call the SLD-derivations and SLD-
refutations under Prolog’s selection rule, LD-derivations and LD-refutations re-
spectively.

The class of recursion bounded programs is defined using the concept of
modes and linear inequalities.

Definition 9. A mode m of an n-ary predicate p is a function from {1, · · · , n}
to the set {in, out}. The set in(p) = {i ≤ n | m(i) = in} is the set of input
positions of p and out(p) = {o ≤ n | m(o) = out} is the set of output positions
of p.

A moded program is a logic program with each predicate having a unique
mode associated with it.

Notation: In the following, p(s; t) denotes an atom with a sequence s of input
terms and a sequence t of output terms. Without loss of generality, we assume
that input positions of a predicate precede its output positions. The expressions
invar(A) and outvar(A) denote the sets of variables occurring in the input and
output positions respectively of the atom A.

Definition 10. A Prolog clause H ← B1, · · · , Bk (k ≥ 0) is well-moded if
(a) outvar(H) ⊆ invar(H) ∪ outvar(B1) ∪ · · · ∪ outvar(Bk) and
(b) for every i ∈ [1, k], invar(Bi) ⊆ invar(H)∪outvar(B1)∪· · ·∪outvar(Bi−1).
A Prolog program P is well-moded if every clause in it is well-moded. A well-
moded query is a well-moded clause without head.

In this paper, we only consider well-moded programs. The following results
for well-moded programs are well-known [9].

Lemma 1. If ← B1, · · · , Bn is a well-moded Prolog query then invar(B1) = φ.

Lemma 2. If P is a well-moded Prolog program and G is a well-moded goal
then every goal in any LD-derivation (SLD-derivation under Prolog’s selection
rule) of P ∪ {G} is well-moded.

3 Recursion Bounded Programs

In this section, we define the class of recursion bounded programs and illustrate
the concept with a few examples. The definition is based on the concept of modes
and linear predicate inequalities.

A Class of Prolog Programs with Non-linear Outputs 317

Definition 11. For a term t, the parametric size [t] of t is defined recursively
as follows:

– if t is a variable x then [t] is a linear expression x,
– if t is a constant then [t] is zero,
– if t = f(t1, . . . , tn) then [t] is a linear expression 1 + [t1] + · · ·+ [tn].

The parametric size of a sequence t of terms t1, · · · , tn is the sum [t1]+ · · ·+[tn].

Example 1. The parametric sizes of terms a, [], [X], [a], [a, b, c], [[], [], []],
[[a], [b], [c]] are 0, 0, X + 1, 1, 3, 3, 6 respectively. �

Remark 1. The above notion of parametric size is an improvement of the notion
defined in [7]. In particular, all constants are treated uniformly by the above
definition, while constants zero, the empty list [] and the empty tree void are
treated as special constants in [7].

The following definition introduces the notation LI(A, I,O), which is central
to our results. It captures the relation between the sizes of input and output
terms of an atom.

Definition 12. Let P be a moded program and I and O be mappings from the
set of predicates occurring in P to sets of input positions and output positions
satisfying I(p) ⊆ in(p) and O(p) ⊆ out(p) for each predicate p in P . For an atom
A = p(s; t), we denote the linear inequality∑

i∈I(p)

[si] ≥
∑

j∈O(p)

[tj] (1)

by LI(A, I,O).

Remark 2. The validity of (linear) inequalities is traditionally defined as the
follows: the inequality expression1 ≥ expression2 is valid if and only if it
is valid for all possible assignments of values to variables in it. In the sequel,
we only talk of sizes which are obviously non-negative and hence the inequality
expression1 ≥ expression2 is valid if and only if it is valid for all possible
assignments of non-negative values to variables in it. According to this, X +1 >
X is valid but X + Y > X is not valid because Y can take a zero value and
X + 0 is not greater than X . Similarly, 2X > X is not valid because X can take
a zero value. However, both X + Y ≥ X and 2X ≥ X are valid.

The following lemma is a simple consequence of this notion of validity.

Lemma 3. The following holds for any inequality exp1 ≥ exp2.

1. exp1 ≥ exp2 is valid if and only if exp1θ ≥ exp2θ is valid for every substitu-
tion θ, and

2. exp1 ≥ exp2 is valid if and only if the constant in exp2 is less than or equal
to the constant in exp1 and the coefficient of each variable in exp2 is less
than or equal to its coefficient in exp1.

318 M.R.K.K. Rao

The following definition captures the call dependencies (and mutual recur-
sion, if any) between predicates in a program.

Definition 13. Let P be a program, p and q be predicates. We say that pred-
icate p refers to predicate q in P if there is a clause in P with p in the head and
q in the body. We say that p depends on q and write p)P q if (p, q) is in the
reflexive and transitive closure of the relation refers to.

Now, we are in a position to define the class of recursion bounded programs.
Intuitively, any atom p(s; t) in the least Herbrand model of a recursion bounded
program (w.r.t. I and O) satisfies the property that the total size of output
terms in positions O(p) is bounded by the total size of input terms in positions
I(p).

Definition 14. Let P be a well-moded program and I and O be mappings
from the set of predicates occurring in P to sets of input positions and output
positions satisfying I(p) ⊆ in(p) and O(p) ⊆ out(p) for each predicate p in P .
We say P is recursion bounded w.r.t. I and O if each clause

p0(s0; t0)← p1(s1; t1), · · · , pk(sk; tk)

k ≥ 0, in P satisfies the following:

1. LI(A1, I, O), . . . , LI(Aj−1, I, O) together imply

[Iterms(A0, I)] > [Iterms(Aj , I)]

for each j ≥ 1 such that pj)P p0, and
2. LI(A1, I, O), . . . , LI(Ak, I, O) together imply LI(A0, I, O).

where Aj is the atom pj(sj; tj) for each j ≥ 0 and Iterms(A, I) is the sequence
of terms occurring in atom A in positions specified by I.
A program P is recursion bounded if it is recursion bounded w.r.t. some map-
pings I and O.

The main differences between the above definition and that of linear-moded
programs in [7] are the following:

– In Definition 14, condition 1 is only applicable to the (mutually) recursive
atoms in the body, while condition 1 of linear-moded programs in [7] is
applicable to all the atoms in the body, and

– In Definition 14, condition 1 requires a strict inequality [Iterms(A0, I)] >
[Iterms(Aj , I)], while condition 1 of linear-moded programs in [7] only re-
quires [s0] ≥ [sj]. The strict inequality ensures termination of recursion
bounded programs, as shown by Theorem 6 below.

We illustrate different aspects of our definition through a sequence of examples.

Example 2. Consider the following quick-sort program.

A Class of Prolog Programs with Non-linear Outputs 319

moding: app (in, in, out); part (in, in, out, out) and
qs (in, out)

app([], Ys, Ys)←
app([X|Xs], Ys, [X|Zs])← app(Xs, Ys, Zs)

part([], H, [], [])←
part([X|Xs], H, [X|Ls], Bs)← X ≤ H, part(Xs, H, Ls, Bs)
part([X|Xs], H, Ls, [X|Bs])← X > H, part(Xs, H, Ls, Bs)

qs([], [])←
qs([H|L], S)← part(L, H, A, B), qs(A, A1), qs(B, B1), app(A1, [H|B1], S)

This program is recursion bounded w.r.t. the mappings such that I(p) =
in(p) and O(p) = out(p) for each predicate except that I(part) = {1}. The first
clause satisfies the requirements of Definition 14 as LI(app([], Ys, Ys), I, O) is
Y s ≥ Y s, which obviously holds. Now consider the second clause.

LI(app(Xs, Ys, Zs), I, O) := Xs+ Y s ≥ Zs (2)

LI(app([X|Xs], Ys, [X|Zs]), I, O) := 1 + X + Xs+ Y s ≥ 1 + X + Zs. (3)

It is easy to see that inequality 2 implies inequality 3 satisfying the requirement
2 of Definition 14. The requirement 1 of Definition 14 obviously holds as 1+X+
Xs + Y s > Xs+ Y s.

It is easy to see that the third and the sixth clauses satisfy the requirements
of Definition 14 (like the first clause). Let us now consider the fourth clause. For
the recursive atom part(Xs, H, Ls, Bs), the requirement 1 of Definition 14 holds
as 1+X+Xs > Xs. We now prove that requirement 2 also holds for this clause.

LI(X ≤ H, I, O) := X + H ≥ 0, (4)

LI(part(Xs, H, Ls, Bs), I, O) := Xs ≥ Ls + Bs (5)

LI(part([X|Xs], H, [X|Ls], Bs), I, O) := 1 + X + Xs ≥ 1 + X + Ls + Bs. (6)

It is easy to see that inequality 5 implies inequality 6 satisfying the requirement
2 of Definition. 14. It can be similarly proved that the fifth clause satisfies the
requirements.

Now consider the last clause.

LI(part(L, H, A, B), I, O) := L ≥ A + B, (7)

LI(qs(A, A1), I, O) := A ≥ A1, (8)

LI(qs(B, B1), I, O) := B ≥ B1, (9)

LI(app(A1, [H|B1], S), I, O) := A1 + 1 + H + B1 ≥ S (10)

320 M.R.K.K. Rao

and for the head qs([H|L],S) of the clause, LI(qs([H|L], S), I, O) is

1 + H + L ≥ S. (11)

It is easy to see that inequalities 7, 8, 9 and 10 together imply inequality 11
satisfying requirement 2 of Definition 14. The requirement 1 of Definition 14
holds for recursive atoms qs(A, A1) and qs(B, B1) as inequality 7 implies 1+H +
L > A and 1 + H + L > B. Therefore, quick-sort is a recursion bounded
program. �

The above proof is very similar to the proof given in [7] that quick-sort is
a linear-moded program. We presented it for pedagogical reasons — for the sake
of completeness and to illustrate later that every proof of linear-modedness does
not go as a proof of recursion boundedness.

The following example shows that the class of recursion bounded programs is
rich enough to include programs with non-linear relationships between the input
and output.

Example 3. Consider the following nthpower program.

moding: add(in,in, out); mult(in,in, out) and nthpower(in,in, out)

add(0, Y, Y)←
add(s(X), Y, s(Z))← add(X, Y, Z)

mult(0, Y, 0)←
mult(s(X), Y, Z)← mult(X, Y, Z1), add(Y, Z1, Z)

nthpower(0, Y, 1)←
nthpower(s(X), Y, Z)← nthpower(X, Y, Z1), mult(Y, Z1, Z)

To prove that this program is recursion bounded, take I and O as the mappings
I(p) = in(p) for each predicate p ∈ {add, mult, nthpower}, O(add) = out(add)
and O(mult) = O(nthpower) = ∅. It is easy to verify that the first, third and
fifth clauses satisfy the requirements of Definition 14.

Let us now consider the second clause.

LI(add(X, Y, Z), I, O) := X + Y ≥ Z (12)

LI(add(s(X), Y, s(Z)), I, O) := 1 + X + Y ≥ 1 + Z. (13)

It is easy to see that inequality 12 implies inequality 13 satisfying the require-
ment 2 of Definition 14. The requirement 1 of Definition 14 obviously holds as
1 + X + Y > X + Y .

Let us now consider the fourth clause.

LI(mult(X, Y, Z1), I, O) := X + Y ≥ 0 (14)

LI(add(Y, Z1, Z), I, O) := Y + Z1 ≥ Z. (15)

A Class of Prolog Programs with Non-linear Outputs 321

and for the head mult(s(X), Y, Z) of the clause,

LI(mult(s(X), Y, Z), I, O) := 1 + X + Y ≥ 0. (16)

It is easy to see that inequalities 14 and 15 together imply inequality 16 satisfying
the requirement 2 of Definition 14 (in fact, inequality 16 is vacuously true, no
need to use inequalities 14 and 15). The requirement 1 of Definition 14 obviously
holds as 1 + X + Y > X + Y .

Proving that the sixth clause satisfies the requirements of Definition 14 is
very similar. Therefore, nthpower is a recursion bounded program. �

The above two examples may give an impression that the class of recursion
bounded programs properly includes the class of linear-moded programs. The
following example shows that it is not the case.

Example 4. Consider the following merge-sort program.

moding: split (in, out, out); merge (in, in, out) and
ms (in, out)

split([], [], [])←
split([X|Xs], [X|As], Bs)← split(Xs, Bs, As)

merge([], Ys, Ys)←
merge(Xs, [], Xs)←
merge([X|Xs], [Y|Ys], [X|Zs])← X ≤ Y, merge(Xs, [Y|Ys], Zs)
merge([X|Xs], [Y|Ys], [Y|Zs])← X > Y, merge([X|Xs], Ys, Zs)

ms([], [])←
ms([H|L], S)← split([H|L], A, B), ms(A, A1), ms(B, B1),

merge(A1, B1, S)

This program is shown in [7] to be linearly-moded w.r.t. a mapping I such that
I(p) = in(p) for each predicate. However, we cannot prove that ms is recursion
bounded w.r.t. I and O such that I(p) = in(p) and O(p) = out(p) for each
predicate, because 1 + H + L ≥ A + B does not imply 1 + H + L > A and
1 + H + L > B for recursive atoms ms(A,A1), ms(B,B1). �

It may be noted that the above Prolog program merge-sort does not termi-
nate for the well-moded query ← ms([1], S). On the other hand, every recursion
bounded program terminates for all well-moded queries, as shown in the next
section. The main reason for the non-termination of the above merge-sort pro-
gram is the instantiation of variable A in the last clause to [1] for the well-moded
query ← ms([1], S), as split([1], A, B) binds A to [1]. This is also the reason why
the above merge-sort program is not recursion bounded.

The following terminating Prolog program formerge-sort is recursion bounded.

Example 5. Consider the program obtained by replacing the last clause in the
above program with the following two clauses.

322 M.R.K.K. Rao

ms([X], [X])←
ms([X1, X2|L], S)← split(L, A, B), ms([X1|A], A1), ms([X2|B], B1),

merge(A1, B1, S)

This program is recursion bounded as the inequality LI(split(L, A, B), I, O),
i.e., L ≥ A+B implies 2 +X1 +X2 +L > 1 +X1 +A and 2 +X1 +X2 +L >
1 +X2 +B for the two recursive atoms ms(A,A1), ms(B,B1) —it is easy to see
that the other clauses are recursion bounded. �

4 Some Properties of Recursion Bounded Programs

In this section, we prove some properties of recursion bounded programs.
A nice property of the class of recursion bounded programs is that it is

decidable whether a given well-moded program P is recursion bounded. We
prove this result by first proving that it is decidable whether a given moded
program P is recursion bounded w.r.t. a given pair of mappings I and O.

Theorem 2. It is decidable whether a well-moded program P is recursion
bounded w.r.t. a given pair of mappings I and O satisfying I(p) ⊆ in(p) and
O(p) ⊆ out(p) for each predicate p in P .

Proof : Follows from the fact that this problem can be reduced to the satisfiability
problem of linear inequalities. �

Theorem 3. It is decidable whether a well-moded program P is recursion
bounded or not.

Proof : Since only finitely many choices are possible for I and O, we can check
if P is recursion bounded w.r.t. at least one such pair of mappings I and O. �

The following theorem states the central idea behind the concept of recursion
bounded programs.

Theorem 4. Let P be a recursion bounded program w.r.t. a pair of mappings
I and O, and ← A be a well-moded query. If there is an LD-refutation G of
P ∪ {← A} with computed answer substitution σ, then LI(Aσ, I,O) is valid.

Proof : See full paper.

The following theorem shows that the recursive calls get smaller and smaller
in LD-derivations of recursion bounded programs.

Theorem 5. Let P be a recursion bounded program w.r.t. a pair of mappings
I and O, and ← A be a well-moded query. If G = Q0, Q1, · · · , Qn is an LD-
derivation of P ∪{← A} with partial computed answer substitution σ such that
Qn =← A′, · · · and A′ is the first selected atom in G satisfying rel(A′))P rel(A),
then [Iterms(A, I)] > [Iterms(A′, I)].

A Class of Prolog Programs with Non-linear Outputs 323

Proof : See full paper.

Termination of recursion bounded programs follows from this theorem.

Theorem 6. If P is a recursion bounded program and ← A is a well-moded
query, every LD-derivation of P ∪ {← A} is of finite length.

Proof : Follows from the above theorem by noetherian induction. �

Decidability of A ∈M(P) for recursion bounded programs follows from this
theorem.

Theorem 7. For any recursion bounded program P and ground atom A, it is
decidable whether A ∈M(P) or not.

Proof : Follows from the termination of recursion bounded programs. �

Remark 3. The main reason for using the strict inequality [Iterms(A0, I)] >
[Iterms(Aj , I)] in condition 1 of Definition 14 is to ensure termination and hence
decidability of A ∈M(P).
Since the size of input terms in non-recursive atoms in LD-derivations is not
bounded by the size of input terms of the initial query for recursion bounded
programs (unlike the case with linear-moded programs), the proof techniques
used in [7] do not work here.

5 Inferability of Recursion Bounded Programs from
Positive Data

In this section, we establish inductive inferability of recursion bounded programs
from positive data.

Definition 15. Let RBk be the set of all recursion bounded clauses of size at
most k and Mc be a semantic mapping such that Mc(P) is the set of all atoms
of the target predicate c in the least Herbrand model of P . The concept defining
framework 〈B(c), RBk,Mc〉 is denoted by RBk.

Lemma 4. For every k ≥ 1, the class of least Herbrand models of programs in
RBk is an indexed family of recursive concepts.

Proof : By Theorem 7, it is decidable whether a ground atom A ∈M(P) for any
recursion bounded program P . For a given alphabet, there are at most finitely
many choices of mode declarations and the mappings I and O. Hence, by Theo-
rem 3, we can effectively enumerate all the recursion bounded programs in RBk.
This completes the proof. �

The following theorem plays the predominant role in proving our main result.

Theorem 8. For every k ≥ 1, the concept defining framework RBk has bounded
finite thickness.

324 M.R.K.K. Rao

Proof : Consider a finite set S ⊆ B(c) and a program P ⊆ RBk be a recursion
bounded program w.r.t. some I and O containing at most m ≥ 1 clauses such
that P is reduced w.r.t. S. Let n be an integer such that n ≥ [Iterms(c(u;v), I)]
for every atom c(u;v) ∈ S. Let S′ = {c(w1;w2) | c(w1;w2) is a selected atom
of the (target) predicate c in an LD-refutation of an atom A in S}. By Theorem
5, n ≥ [Iterms(c(w1;w2), I)] for every atom c(w1;w2) ∈ S′. Since P is reduced
w.r.t. S, every clause in P is used in LD-refutations of atoms in S. Hence,
n ≥ [Iterms(c(s; t), I)] for every atom c(s; t) in any clause in P .

Since Π and Σ are finite, there are only finitely many recursion bounded pro-
grams containing at most m clauses of size at most k with n ≥ [Iterms(c(s; t), I)]
for every atom c(s; t) of the target predicate c in them (except for the renaming
of variables). Therefore, the set {Mc(P) | P ⊆ RBk, P is reduced w.r.t. S and
contains at most m clauses} is finite. It is obvious that Mc is monotonic. Hence,
RBk has bounded finite thickness. �

From this Theorem, Lemma 4 and Theorem 1, we obtain our main result.

Theorem 9. For every m ≥ 1, the class RBm
k = {Mc(P) | P ⊆ RBk, |P | ≤ m}

of concepts is inferable from positive presentations of the target predicate c.

Remark 4. Note that the restriction that the size of each clause in RBk is less
than or equal to k is crucial for the above two theorems. The restriction on body-
length used in [4, 7] for linear covering and linear-moded programs is not enough
for recursion bounded programs as condition 1 of Definition 14 do not place any
restriction on non-recursive atoms in a clause. The size of non-recursive atoms
in recursion bounded clauses is indirectly restricted by the size of the clause (k
in RBk). Essentially, bounded finite thickness will be violated if no upper bound
is placed on the size of recursion bounded clauses.

Example 6. By the above Theorem, the concepts of quick-sort, merge-sort
and nthpower are inferable from their positive presentations as (1) quick-sort
∈ RB7

22, (2) merge-sort ∈ RB9
25 and (3) nthpower ∈ RB6

13. �

6 Comparison with Related Works

In this section, we compare the class of recursion bounded programs with other
classes known to be inferable from positive data, namely, linear [14, 15], linear-
covering [4], linear-moded [7] and safe programs [12].

1. Krishna Rao [7] proved that the class of linear-moded programs includes both
the classes of linear and linear-covering programs. The program nthpower is
recursion bounded but not linear-moded (because of nonlinear output), while
program merge-sort given in Example 4 is linear-moded but not recursion
bounded. Therefore, the classes of linear-moded and recursion bounded pro-
grams are incomparable. However, all the known terminating linear-moded
programs are recursion bounded.

A Class of Prolog Programs with Non-linear Outputs 325

2. Martin and Sharma [12] studied inferability of Prolog programs from positive
data using very different concepts –bound kits rather than modes. The class
of safe programs is the largest syntactic class given in [12]. The program
nthpower given above is recursion bounded but not safe1 [11], while program
merge-sort given in Example 4 is safe but not recursion bounded. Therefore,
the classes of safe and recursion bounded programs are incomparable.

7 Conclusion

In this paper, we study inductive inference of Prolog programs from positive data
and present a class of Prolog programs that can capture nonlinear relationships
between inputs and outputs, and yet inferable from positive data. This class of
Prolog programs is rich enough to contain many programs from Sterling and
Shapiro’s book [17] including append, reverse, permute, delete, insert,
merge, split, count, listsum, listproduct, merge-sort, quick-sort,
insertion-sort on lists, preorder and inorder traversal of binary trees, poly-
nomial recognition, derivatives and addition, multiplication, factorial,
power on natural numbers.

Acknowledgements. The author would like to thank Eric Martin for his clari-
fications on safe programs, and King Fahd University of Petroleum and Minerals
for the generous support provided by it in conducting this research.

References

[1] D. Angluin (1980), Inductive inference of formal languages from positive data,
Information and Control 45, pp. 117-135.

[2] K.R. Apt and D. Pedreschi (1993), Reasoning about termination of pure Prolog
programs, Information and Computation 106, pp. 109-157.

[3] H. Arimura, T. Shinohara and S. Otsuki (1994), Finding Minimal Generalizations
for Unions of Pattern Languages and Its Application to Inductive Inference from
Positive Data, Proc. of STACS’94, LNCS 775, pp. 649-660.

[4] H. Arimura and T. Shinohara (1994), Inductive inference of Prolog programs
with linear data dependency from positive data, Proc. Information Modelling and
Knowledge Bases V, pp. 365-375, IOS press.

[5] L. Blum and M. Blum (1975), Towards a mathematical theory of inductive infer-
ence, Information and Control 28, pp. 125-155.

[6] E.M. Gold (1967), Language identification in the limit, Information and Control
10, pp. 447-474.

[7] M. R. K. Krishna Rao (2000), Some classes of Prolog programs inferable from
positive data, Theor. Comput. Sci. 241, pp. 211-234.

[8] M.R.K. Krishna Rao (2004), Inductive inference of term rewriting systems from
positive data, Proc. of Algorithmic Learning Theory, ALT’2004, Lecture Notes in
Artificial Intelligence 3244, pp. 69-82.

1 A slightly different program for nthpower given in [12] is safe. It uses addminus1

predicate (with semantics Z=X+Y-1 whenever addminus1(X, Y, Z) is true) instead
of the natural addition predicate.

326 M.R.K.K. Rao

[9] M.R.K. Krishna Rao and R. K. Shyamasundar (1995), Unification-free execution
of well-moded Prolog programs, Proc. of International Static Analysis Symposium,
SAS’95, Lecture Notes in Computer Science 983, pp. 243-260, Springer-Verlag.

[10] J. W. Lloyd (1987), Foundations of Logic Programming, Springer-Verlag.
[11] E. Martin (2005), Personal communication.
[12] E. Martin and A. Sharma (1999), On Sufficient Conditions for Learnability

of Logic Programs from Positive Data, Proc. of Inductive Logic Programming,
ILP’1999, Lecture Notes in Computer Science 1634, pp. 198-209.

[13] E. Shapiro (1981), Inductive inference of theories from facts, Tech. Rep., Yale
Univ.

[14] E. Shapiro (1983), Algorithmic Program Debugging, MIT Press.
[15] T. Shinohara (1991), Inductive inference of monotonic formal systems from posi-

tive data, New Generation Computing 8, pp. 371-384.
[16] T. Shinohara, H. Arimura (2000), Inductive inference of unbounded unions of

pattern languages from positive data, Theor. Comput. Sci. 241, pp. 191-209.
[17] L. Sterling and E. Shapiro (1994), The Art of Prolog, MIT Press.

Absolute Versus Probabilistic Classification
in a Logical Setting

Sanjay Jain1,�, Eric Martin2,3,��, and Frank Stephan4,�

1 School of Computing, National University of Singapore,
Singapore 117543, Republic of Singapore

sanjay@comp.nus.edu.sg
2 School of Computer Science and Engineering, The University of New South Wales,

UNSW Sydney NSW 2052, Australia
emartin@cse.unsw.edu.au

3 National ICT Australia, UNSW Sydney NSW 2052, Australia
4 School of Computing and Department of Mathematics,

National University of Singapore, Singapore 117543, Republic of Singapore
fstephan@comp.nus.edu.sg

Abstract. Given a set W of logical structures, or possible worlds, a
set D of logical formulas, or possible data, and a logical formula ϕ, we
consider the classification problem of determining in the limit and almost
always correctly whether a possible world M satisfies ϕ, from a complete
enumeration of the possible data that are true in M. One interpretation
of almost always correctly is that the classification might be wrong on
a set of possible worlds of measure 0, w.r.t. some natural probability
distribution over the set of possible worlds. Another interpretation is that
the classifier is only required to classify a set W′ of possible worlds of
measure 1, without having to produce any claim in the limit on the truth
of ϕ in the members of the complement of W′ in W. We compare these
notions with absolute classification of W w.r.t. a formula that is almost
always equivalent to ϕ in W, hence investigate whether the set of possible
worlds on which the classification is correct is definable. Finally, in the
spirit of the kind of computations considered in Logic programming, we
address the issue of computing almost correctly in the limit witnesses to
leading existentially quantified variables in existential formulas.

1 Introduction

Paradigms of inductive inference are often highly idealized, even for those that
impose very tight restrictions on the learning scenario. One of the reasons for the
� Sanjay Jain is supported by the NUS research grant R252–000–127–112; Frank

Stephan is supported by the NUS research grant R252–000–212–112.
�� National ICT Australia is funded by the Australian Government’s Department of

Communications, Information Technology and the Arts and the Australian Research
Council through Backing Australia’s Ability and the ICT Centre of Excellence Pro-
gram.

S. Jain, H.U. Simon, and E. Tomita (Eds.): ALT 2005, LNAI 3734, pp. 327–342, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

328 S. Jain, E. Martin, and F. Stephan

idealization is that learners have to be correct w.r.t. all possible realities (lan-
guages in the numerical setting, structures in the logical setting) of the paradigm.
Allowing the learning process to succeed w.r.t. almost all realities—intuitively,
successfully learning with probability 1—appears as a requirement that deserves
to be investigated.

Probabilistic elements have already been considered in inductive inference,
but they relate more to the learning process than to the class of languages learnt
by a machine (sample references are [6, 7, 11, 12, 14]). For example, learning
functions in the limit with probability 1/n turns out to be equivalent to having
n nonprobabilistic learners such that at least one of them succeeds [12, 14].
Furthermore, most concepts have a break-even point at some probability c < 1
in the sense that whenever such concepts are learnable with probability c, they
are already learnable by a deterministic machine [1]. Meyer [10] showed that
exact monotonic and exact conservative learning with any probability c < 1 is
more powerful than deterministic learning; still in case c = 1, the probabilistic
and deterministic variants are again the same.

An example for a setting in inductive inference where learning with prob-
ability 1 is more powerful than deterministic learning is the following. Assign
to each set A to be learnt the distribution pA with pA(x) = 2−1−x for x ∈ A,
pA(x) = 0 for x /∈ A and pA(#) =

∑
x/∈A 2−1−x. Then any class of sets that is

learnable from informant is also learnable from text with probability 1, provided
that for every member A of the class, the elements of a text for A are drawn
with probability pA. As some classes are learnable from informant but not from
text, these classes witness that learning from almost all texts is more powerful
than learning from all texts.

The main reason why probabilistic elements are restricted to the learning
process and not to the class of realities being considered is that in a countable
domain, ‘almost all objects’ would normally mean ‘cofinitely many objects’ and
finite exceptions can often be handled by suitably patching the machine. There-
fore it is much more appropriate to consider classification where one deals with
a continuum of possible realities which can be identified with the Cantor-Space.
Then ‘almost all’ can be interpreted in two major ways: ‘of second category’ as
defined in topology, or ‘of measure 1’ as defined in measure theory.

Classification was already implicitly considered by recursion theorists when
they investigated computation in the limit relative to an oracle, which sub-
sumes classification [13]. Ben-David [3] characterized classification in the limit
in topological terms. Subsequent work then established a connection between
classification on one side and logic on the other side [2, 8]. In [9] the relationship
between classification and topology was brought one step further, by casting the
classification in a logical setting that considered arbitrary sets of data, each set
determining a particular topology, and arbitrary sets of structures. Of particu-
lar importance in [9] are (usually axiomatized) classes of structures consisting
of Henkin structures only, where every individual of the domain is denoted by a
term in the underlying language. The set of atomic sentences (i.e., closed atomic
formulas) true in such structures uniquely determines the structure, and can be

Absolute Versus Probabilistic Classification in a Logical Setting 329

identified with a point in the Cantor space. A probability distribution can then
be defined on the set of structures which represent the possible realities, that
generalizes the classical probability distribution on the Cantor space.

The setting chosen for this paper is a particular instance of the logical frame-
work investigated in [9]. It conceives of a logical paradigm as a vocabulary V, a
set W of V-structures, or possible worlds, and a set D of closed V-formulas, or
possible data. Important cases of possible data are obtained by taking for D the
set of atomic sentences or the set of basic sentences (atomic sentences or their
negations). Both choices determine counterparts to the numerical notions of text
and informant, in the form of enumerations of all possible data that are true in
an underlying possible world M, yielding an environment for M. Given a formula
ϕ, we consider the task of determining in the limit, from an environment for a
possible world M, whether M satisfies ϕ. In other words, the task is to classify
a possible world as a member of one of two classes: the class of structures that
satisfy ϕ, and the class of structures that don’t. But we allow the classification
to fail on a set of environments for a small set of possible worlds—either of first
category or of measure 0.

It is important to distinguish between failing to converge to some answer and
misclassifying. In the case of misclassification w.r.t ϕ, an interesting question is
whether perfect classification of W is achieved on the basis of another formula ψ,
whose set of models in W is of course equal to the set of models of ϕ up to a set
of measure 0. Whether the failure to classify correctly is due to nonconvergence
or to genuine misclassification, we only measure on which class of possible worlds
M a correct classification is achieved from all environments for M. We do not
assume that the possible data are generated following some underlying proba-
bility distribution, nor do we impose any condition on the speed of convergence.
In other words, we remain in the realm of inductive inference and our use of
probabilities is essentially different to its use in the PAC framework.

We now proceed as follows. In Section 2 we introduce the basic notions,
that we apply to the classification task in Sections 3 to 5. In Section 6 we
particularize the framework to ϕ being of the form ∃xψ(x), with the aim of not
only classifying ϕ, but of computing in the limit a witness to the existentially
quantified variable x. Provided that W is axiomatizable by a logic program, this
correspond to ‘error tolerant’ computations in Logic programming, where ψ is
assumed to be quantifier free or to only contain bounded quantifiers [16]. When
ψ is universal, and also with some assumptions on W, this corresponds to ‘error
tolerant’ computations in Limiting resolution [5]. We conclude in Section 7.

2 Absolute and Probabilistic Classification

Let a class X be given. The class of finite sequences of members of X , including
the empty sequence (), is represented by X�. The length of σ ∈ X� is denoted
lt(σ). The class of sequences of members of X of length ω is represented by Xω.

Given a nonempty vocabulary V , i.e., a set of (possibly nullary) predicate
and function symbols, we shall consider both first-order formulas over V and

330 S. Jain, E. Martin, and F. Stephan

monadic second-order formulas over V , built from the symbols in V , equality,
the usual Boolean operators, first-order variables and quantifiers over those, and
in the case of monadic second-order formulas, unary predicate variables and
quantifiers over those. A (first-order or monadic second-order) sentence over V
refers to a closed (first-order or monadic second-order) formula over V . We fix:
– a vocabulary V containing at least a constant 0, a unary function symbol s

and a unary predicate symbol P ;
– a language L equal either to the set of first-order sentences over V or to the

set of monadic second-order sentences over V;
– a set D of first-order sentences over V, referred to as possible data.

Given n ∈ N, we denote by n the term obtained from 0 by n applications of s
(hence n + 1 = s(n) for all n ∈ N). We say structure for V-structure, term for
term over V, and sentence for member of L. A structure M is said to be Henkin
iff M’s individuals are the nonempty sets of closed terms that they interpret.
Given T ⊆ L, ModW(T) represents the set of models of T in W. Given ϕ ∈ L,
we write ModW(ϕ) for ModW({ϕ}).

Definition 1. Given X ⊆ L and a structure M, we define the X-diagram of
M, denoted DiagX(M), as the set of all members of X that are true in M.

We fix a class W of structures, referred to as possible worlds, with the follow-
ing property. Put X = {P (n) : n ∈ N}. Then every subset of X is the X-diagram
of some member of W.

We use environment to refer to an enumeration of a member of W:

Definition 2. Given a possible world M, an environment for M is any member
e of (D ∪ {�})ω such that for all ϕ ∈ D, ϕ occurs in e iff ϕ belongs to DiagD(M).

Put X = {P (n) : n ∈ N}. The X-diagram of a possible world can be identified
with a point in the Cantor space. The next definition makes the relationship
explicit and maps the natural measure on the Cantor space to a measure on W.

Definition 3. Given a possible world M, the standard informant for M is the
(unique) member e of {0, 1}ω such that for all n ∈ N, e(n) = 1 iff M |= P (n).

Let a set W of possible worlds be given, and let X be the set of standard
informants of the members of W .
– If X is Lebesgue measurable in the Cantor space and of measure m then we

put μ(W) = m.
– If X is of first, respect., second, category in the Cantor space then we say

that W is of first, respect., second, category.

Note that in case D = {P (n),¬P (n) : n ∈ N}, the standard informant for M
can be identified with an environment for M.

Definition 4. Two sentences ϕ and ψ are said to be almost equivalent iff
μ(ModW(ϕ↔ ¬ψ)) is defined and null.

Absolute Versus Probabilistic Classification in a Logical Setting 331

Given σ ∈ (D ∪ {�})�, cnt(σ) denotes the set of members of D that occur in
σ. The proofs of many propositions will make use of the next technical definition.

Definition 5. We say that a member σ of (L ∪ {�})� is consistent in W just in
case there exists a member M of W such that M |= cnt(σ).

The classification task will be performed by a classifier, defined next.

Definition 6. Given a set X of sentences, an X-classifier is a partial function
from (X ∪ {�})� into {0, 1}. We say classifier for D-classifier.

The following pair of definitions capture the absolute notion of classification.

Definition 7. Let a classifier f and a subset W′ of W be given.
Given a subset X of W, we say that f classifies W′ in the limit following X

just in case for all M ∈W′ and environments e for M:
– M ∈ X iff {σ ∈ (D ∪ {�})� : σ ⊂ e and f(σ) = 1} is cofinite;
– M /∈ X iff {σ ∈ (D ∪ {�})� : σ ⊂ e and f(σ) = 0} is cofinite.

Given a sentence ϕ, we say that f classifies W′ in the limit following ϕ iff f
classifies W′ in the limit following ModW(ϕ).

Definition 8. Given ϕ ∈ L and W′ ⊆W, we say that W′ is classifiable, respect.,
computably classifiable, in the limit following ϕ iff some classifier, respect., com-
putable classifier, classifies W′ in the limit following ϕ.

We are interested in classifiers that classify all possible worlds, but misclassify
a subset of W of measure 0, as captured in the next pair of definitions.

Definition 9. Let a classifier f and a sentence ϕ be given. We say that f
classifies W in the limit following ϕ almost everywhere iff there exists a subset
X of W such that:
– μ(ModW(ϕ)+X) is defined and null;
– f classifies W in the limit following X .

Definition 10. Given ϕ ∈ L, we say that W is classifiable, respect., computably
classifiable, in the limit following ϕ almost everywhere iff some classifier, respect.,
computable classifier, classifies W in the limit following ϕ almost everywhere.

3 Failing to Classify Versus Misclassifying

We start with the simple observation that in measure-theoretic terms, misclassi-
fication of a small set of possible worlds implies absolute classification of almost
all possible worlds:

Property 11. Let a sentence ϕ be such that W is classifiable in the limit fol-
lowing ϕ almost everywhere. Then there exists a subset W′ of W with μ(W′) = 1
that is classifiable in the limit following ϕ.

332 S. Jain, E. Martin, and F. Stephan

Still the converse of Property 11 does not necessarily hold. Indeed, a clas-
sifier that correctly classifies a subset W′ of W of measure 1 might be forced
not to converge on some environments for some members of W \W′. The next
proposition shows that this might indeed happen.

Proposition 12. Suppose that V contains, besides 0, s and P , a binary function
symbol +, W is the set of Henkin models of Presburger arithmetics, L is the set
of first-order sentences, and D = {P (n),¬P (n) : n ∈ N}. Then there exists a
sentence ϕ with the following properties.
– There exists a subset W′ of W with μ(W′) = 1 such that W′ is computably

classifiable in the limit following ϕ.
– W is not classifiable in the limit following ϕ almost everywhere.

Proof. Write x ≤ y for ∃z(x + z = y) and x < y for x ≤ y ∧ x �= y, and define
– a formula ψ(x) whose meaning is that P (y) holds for all y ∈ (x

2 , x);
– a sentence ϕ whose meaning is that ψ(x) holds for finitely many x’s only,

and the maximum x such that ψ(x) holds is even. Formally:

ψ(x) ≡ ∀y((x < y + y ∧ y < x)→ P (y))
ϕ ≡ ∃x(ψ(x + x) ∧ ∀y(ψ(y)→ y ≤ x + x))

Note that for all Henkin models M of Presburger arithmetics, the reduct of
M to {0, s,+, <} is isomorphic to N with the standard interpretation of 0, s,
+ and <. Also note that for all M ∈ W, M |= ϕ iff for all N ∈ W with
DiagD(N) = DiagD(M), N |= ϕ iff M |= ϕ. Let a computable classifier f be
defined as follows. Let a member σ of (D ∪ {�})� be given. Let n ∈ N be maximal
such that for all m < n, either P (m) or ¬P (m) occurs in σ, and all models of
cnt(σ) ∩ {P (m),¬P (m) : m < n} in W are models of ψ(n). Put f(σ) = 1 if n
is even, and put f(σ) = 0 otherwise. Let X be the set of all M ∈ W for which
there exists infinitely many n ∈ N with M |= ψ(n). It is immediately verified
that μ(X) = 0 and:
– for all M ∈ModW(ϕ) and environments e for M, f outputs 1 in response to

cofinitely many initial segments of e;
– for all M ∈ ModW(¬ϕ) \ X and environments e for M, f outputs 0 in

response to cofinitely many initial segments of e.
This shows that W \X is computably classifiable in the limit following ϕ.

Let a classifier g be given. Suppose for a contradiction that g classifies W in
the limit following some subset Y of W with μ(ModW(ϕ)+Y) = 0. Note that
for all σ ∈ D� that are consistent in W, neither μ(ModW(cnt(σ) ∪ {ϕ})) nor
μ(ModW(cnt(σ)∪{¬ϕ})) is equal to 0, hence that g has to output 1 in response
to some extension σ1 of σ in D�, and 0 in response to another extension σ2 of σ
in D�, with both cnt(σ1) and cnt(σ2) being consistent in W. Also note that for
all σ ∈ D� such that cnt(σ) is consistent in W and for all m ∈ N, there exists
n > m such that cnt(σ) ∪ {ψ(n)} is consistent in W. Using these observations,
it is easy to construct an environment e for a member of X such that g(σ) is

Absolute Versus Probabilistic Classification in a Logical Setting 333

equal to 1 for infinitely many initial segments σ of e, and equal to 0 for infinitely
many initial segments σ of e. Contradiction.

Considering only computable classification, as opposed to noncomputable
classification, a similar result to Proposition 12 can be established using Peano
arithmetics instead of Presburger arithmetics:

Proposition 13. Suppose that V contains, besides 0, s and P , two binary func-
tion symbols + and ∗, W is the set of Henkin models of Peano arithmetics, L

is the set of first-order sentences, and D = {P (n),¬P (n) : n ∈ N}. Then there
exists a sentence ϕ with the following properties.
– There exists a subset W′ of W with μ(W′) = 1 that is computably classifiable

in the limit following ϕ.
– W is not computably classifiable in the limit following ϕ almost everywhere.
– W is classifiable in the limit following ϕ almost everywhere.

Proof. Let (φe)e∈N denote an acceptable indexing of the unary partial recursive
functions from N into {0, 1}. Given e ∈ N, let ψ(e) be a formula expressing that
for all y ∈ N, if φe(y) is defined then φe(y) = 1 iff P (y) holds. Given e, x ∈ N,
let χ(e, x) be a formula which expresses that φe(x) is undefined. Define ϕ as

∃e∃x(P (x) ∧ P (e) ∧ χ(e, x) ∧ ψ(e) ∧ ∀y(y < e→ ¬P (y))).

Let a classifier f have the following properties. For all σ ∈ (D ∪ {�})�, if σ
contains no possible datum of the form P (n) then f(σ) = 0. Let σ ∈ (D ∪ {�})�

and n ∈ N be such that P (n) occurs in σ and for all m < n, ¬P (m) occurs in σ. If
{ϕ}∪ cnt(σ) is consistent in W and there exists m ∈ N such that P (m) ∈ cnt(σ)
and φn(m) is undefined then f(σ) = 1; otherwise f(σ) = 0. It is immediately
verified that f classifies W in the limit following ϕ.

Let W′ be the class of all M ∈W such that:
– M |= P (n) for some n ∈ N;
– if e is the least n ∈ N with M |= P (n) then either M |= ϕ or M �|= ψ(e).

Note that W′ is cocountable, since its complement consists only of possible worlds
M where the interpretation of P in M is recursively enumerable. Moreover, it is
easy to exhibit a computable classifier that classifies W′ in the limit following ϕ.

Now, suppose for a contradiction that a (partial) computable function f
classifies W following ϕ almost everywhere. Then, by the recursion theorem,
there exists e ∈ N such that φe can be defined as follows. Given a member σ
of {0, 1}�, let σ̂ be the sequence obtained from σ by replacing σ(n) by P (n) if
σ(n) = 1, and by ¬P (n) otherwise, for all natural numbers n smaller than the
length of σ. We will define φe in stages. Before stage 0, σ0 is defined to be the
sequence of e 0’s followed by a 1. and φe is defined to be 0 on x < e, and 1 on
e. Let xs = e + 1. Intuitively, xs is the least input on which φe is not defined
before stage s. Stage s consists of the following steps.

1. Dovetail steps 2 and 3, until step 2 succeeds, if ever. If and when step 2
succeeds, then stop step 3 also and go to step 4.

334 S. Jain, E. Martin, and F. Stephan

2. Search for a τ ⊆ σs00∞ or τ ⊆ σs10∞ such that f(σ̂s) �= f(τ̂).
3. Let x = xs + 1. Loop Let φe(x) = 0. Let x = x + 1. EndLoop
4. Let y be the largest element in domain of φe defined up to now, or the domain

of τ as found in step 2. Let φe(xs) = τ(xs), and φe(x) = 0, for xs < x ≤ y.
Let σs+1 = (φe(0) . . . φe(y)). Go to stage s + 1.

Now if there exist infinitely many stages, then f makes infinitely many mind
changes on some possible world. On the other hand, if some stage s does not
end then φe is defined on all inputs except xs, and for any P consistent with
φe, f converges to f(σ̂s). However, the possible worlds which satisfy ϕ and are
consistent with φe, have measure exactly half (when P (xs) = 1). Thus W is not
classifiable in the limit following ϕ almost everywhere.

4 Definability Versus Nondefinability of Misclassified
Sets

The next fundamental result shows that a classifier who uses ϕ to partition the
set of possible worlds might have to misclassify a subset of W that is not only
of measure 0, but also necessarily not definable. Hence almost correct classifica-
tion is not equivalent to absolute classification w.r.t. a partition of the possible
worlds given by another formula than ϕ (that formula would of course be almost
equivalent to ϕ). It is worth noting that the next proposition uses a set of pos-
sible data that is neither {P (n) : n ∈ N} nor {P (n),¬P (n) : n ∈ N}, henceforth
exploiting the generality and flexibility allowed by the parameter D.

Proposition 14. Assume that V only contains 0, s and P , W is the set of
Henkin structures, and L is the set of first-order sentences. For some choice of
D, there exists ϕ ∈ L such that:
– W is computably classifiable in the limit following ϕ almost everywhere;
– W is not classifiable in the limit following any sentence that is almost equiv-

alent to ϕ.

Proof. Let ϕ be a sentence which expresses that the characteristic function of P
is lexicographically greater than the characteristic function of 2N = {0, 2, 4, ...}.
Formally: ϕ ≡ P (0) ∧ ∃x(P (x) ∧ P (s(x)) ∧ ∀y < x (P (y)↔ ¬P (s(y)))). Let B
be the set whose characteristic function is the concatenation of all strings of even
length, in lexicographic order and in increasing length. Hence the characteristic
function of B can be represented by the ω-sequence:

00 01 10 11 0000 0001 0010 . . . 1111 000000 000001 000010 . . .

Put D = {P (n) : n ∈ B} ∪ {¬P (n) : n /∈ B}. Note that B is not definable by
a member of L (this property is key to the proof of the proposition). Another
essential property of B used in the proof is that

(†) for every τ ∈ {0, 1}� there are infinitely many even numbers x such
that for all y < lt(τ), τ(y) = B(x + y).

Absolute Versus Probabilistic Classification in a Logical Setting 335

We first define a computable classifier f which classifies W following ϕ almost
everywhere; in other words, f converges on all environments for all members of
W, but f ’s conjectures can be false in the limit on some environments for a set of
possible worlds of measure 0. The classifier f outputs 0 until it is presented with a
datum of the form P (n) for an odd n ∈ N, or of the form ¬P (n) for an even n ∈ N.
Then f takes this n as a parameter and computes from now on for any stage s
the set Rs consisting of all m ∈ {0, 1, . . . , n}∩B such that P (m) has appeared in
the first s elements of the input, and all members m of {0, 1, . . . , n}\B such that
¬P (m) has not appeared in the first s elements of the input. Note that when s is
large enough, the restriction of the characteristic function of Rs to {0, 1, . . . , n}
is equal to the restriction of the characteristic function of the interpretation of
P in the possible world one of whose environments is fed to f . Let f conjecture
in the limit the value 0 if the characteristic function of Rs is lexicographically
smaller than the characteristic function of 2N, and 1 if the characteristic function
of 2N is lexicographically smaller than the characteristic function of Rs. Clearly,
f has the desired properties.

Now let ψ be a member of L (i.e., a first-order sentence over V), and assume
for a contradiction that a classifier g classifies W in the limit following ψ. Let
M be the (unique) possible world such that the characteristic function of the
interpretation of P in M is isomorphic to the characteristic function of 2N. Then
there is an initial segment σ of D� such that M is a model of cnt(σ) and for
all τ ∈ D�, if τ extends σ and M |= cnt(τ) then g(τ) is defined and equal to
g(σ). Since ψ contains only finitely many occurrences of 0, s and variables, there
exists k ∈ N such that:
– for all n ∈ N, if either P (n) or ¬P (n) occurs in σ then n < 2k;
– for all members τ0, τ1, . . . of {0, 1}� of even length and for all possible worlds

N,N′, if the characteristic functions of P in N and N′ are both of the form
(01)k(01)∗τ0(01)k(01)∗τ1(01)k(01)∗τ2 . . . then N |= ψ iff N′ |= ψ.

It is known from the theory of randomness that the characteristic function of
any random set coincides with the characteristic function of 2N on infinitely
many even places for at least 2k bits. Furthermore, the measure of all random
sets starting with (01)k equals 2−2k. Fix a random set R whose characteristic
function extends (01)k. Thus we can choose some members τ0, τ1, . . . of {0, 1}�
of even length such that the characteristic function of R is of the form

(01)kτ0(01)kτ1(01)kτ2 . . .

Using (†) above, there exists a0, a1, . . . ∈ N such that the set R′ whose char-
acteristic function is (01)k+a0τ0(01)k+a1τ1(01)k+a2τ2 . . . satisfies the following
property. Given n ∈ N, put xn =

∑
i≤n(2k + ai) +

∑
i<n lt(τi). For all n ∈ N

and y < lt(τn), if y is odd and τn(y) = 1 then B(xn + y) = 0, whereas if y is
even and τn(y) = 0 then B(xn + y) = 1. Let N, respect. N′, be the (unique)
possible world such that the characteristic function of the interpretation of P
in N, respect. N′, is isomorphic to the characteristic function of R, respect. R′.
Note that DiagD(N′) ⊂ DiagD(M). Moreover, σ is an initial segment of some
environment for N′. As a consequence, g converges in the limit to g(σ) on all

336 S. Jain, E. Martin, and F. Stephan

environments for N′ that extend σ. But since both N and N′ agree on ψ and g is
assumed to classify W in the limit following ψ, g converges in the limit to g(σ)
on all environments for N that extend σ. It follows that all random sequences
extending (01)k are classified as g(σ), and the measure of all extensions of (01)k

which are classified as g(σ) is 2−2k. On the other hand, those extensions of (01)k

which are identified with models of ϕ in W have measure 2−2k/3. Therefore ϕ
and ψ differ on a class of possible worlds of positive measure. Contradiction.

Proposition 14 cannot be generalized to arbitrary paradigms. This can be
proved by using results from automata theory. Remember that a subset of {0, 1}ω
(or ω-language) is Büchi recognizable if there exists a finite automaton A with a
set F of accepting states such that for all w ∈ {0, 1}ω, e belongs to S iff there is
run of A on w which goes infinitely often through an accepting state. The next
result plays a crucial role in the proof of Proposition 17 below.

Lemma 15. [4–Theorem 3.1] S ⊆ {0, 1}ω is Büchi recognizable iff it is the
disjoint union of:
– a sparse set (of measure 0);
– finitely many sets of the form R�Y where R is a prefix free regular language

and Y is an ω-language of measure 0;
– finitely many sets R0 � Y0, . . . , Rn � Yn where for all i ≤ n, Ri is a regular

language and Yi is an ω-language of measure 1.

Corollary 16. If a subset S of {0, 1}ω is Büchi recognizable then there are reg-
ular and prefix free subsets R,R′ of {0, 1}ω such that:
– μ(R � {0, 1}ω ∪R′ � {0, 1}ω) = 1;
– R � {0, 1}ω and R′ � {0, 1}ω are disjoint;
– μ(R � {0, 1}ω+ S) = 0.

Proposition 17. Suppose that V only contains 0, s and P , W is the set of
Henkin structures, L is the set of monadic second-order sentences, and D equals
{P (n),¬P (n) : n ∈ N}. For all ϕ ∈ L, W is computably classifiable in the limit
following some sentence that is almost equivalent to ϕ.

Proof. Let a sentence ϕ be given. Let S be the set of standard informants for
the Henkin models of ϕ. By the choice of L, S is Büchi recognizable. Let R be
defined from S as in Corollary 16. Write Ŝ for R�{0, 1}ω. Since R is regular and
prefix free, it is immediately verified that there exists a computable classifier f
such that for all standard informants (identified with environments) for some
possible world, if e ∈ Ŝ then f outputs 1 in response to cofinitely many finite
initial segments of e, and if e /∈ Ŝ then f outputs 0 in response to cofinitely
many finite initial segments of e. Let W be the set of all possible worlds whose
standard informants belong to Ŝ. Using [4–Theorem 3.1] again, we infer that W
is the set of models of some member ψ of L. Moreover, it follows immediately
from the definition of Ŝ that μ(ModW(ϕ)+W) = 0, hence ψ is almost equivalent
to ϕ. Since W is classifiable in the limit following ψ, we are done.

Absolute Versus Probabilistic Classification in a Logical Setting 337

Corollary 16 has other applications. For instance, considering classification
from positive data only, and using a different language and set of possible worlds
than in Proposition 12, one can strengthen the first statement of Proposition 12:

Proposition 18. Suppose that V = {0, s, P}, W is the set of Henkin structures,
L is the set of monadic second-order sentences, and D = {P (n) : n ∈ N}.
– There exists a subset W′ of W with μ(W′) = 1 such that for all sentences ψ,

W′ is computably classifiable in the limit following ψ.
– There is a sentence ϕ such that W is not classifiable almost everywhere in

the limit following ϕ.

Proof. Let a sentence ψ be given. Let S+ be the set of standard informants
for the models of ψ in W, and let S− be the set of standard informants for
the models of ¬ψ in W. Let R+ be defined from S+ as R is defined from S
in Corollary 16, and let R− be defined from S− as R is defined from S in
Corollary 16. Put Ŝ+ = R+ � {0, 1}ω and Ŝ− = R− � {0, 1}ω. Note that the
intersection of Ŝ+ with Ŝ− is of measure 0. Since both Ŝ+ and Ŝ− are open sets
(w.r.t. the usual topology over the Cantor space), the intersection of Ŝ+ with
Ŝ− is actually empty. Hence R+ ∪R− is prefix free, which implies immediately
that there exists a computable {P (n),¬P (n) : n ∈ N}-classifier such that for
all standard informants e for some possible world, if e ∈ Ŝ+ then f outputs 1
in response to cofinitely many finite initial segments of e, and if e ∈ Ŝ− then
f outputs 0 in response to cofinitely many finite initial segments of e. Let W+,
respect., W−, be the set of all possible worlds M whose standard informants
belong to Ŝ+, respect., Ŝ−. It follows immediately from the definition of Ŝ+

and Ŝ− that both μ(ModW(ψ)+W+) and μ(ModW(¬ψ)+W−) are null. Hence
μ(W+ ∪W−) = 1 and W+ ∪W− is classifiable in the limit following ψ almost
everywhere. Since the number of sentences is countable, the first part of the
proposition follows immediately.

For the second part, define ϕ as ∃x∀y(y < s(s(x)) → (P (y) ↔ x �= y)).
Suppose for a contradiction that a classifier f classifies W almost everywhere in
the limit following ϕ. Since f converges (possibly to 1) on all environments for
the possible world whose D-diagram is {P (n) : n ∈ N}, we can choose a member
σ of D� such that for all τ ∈ D� that extend σ, f(τ) = f(σ). Let a ∈ N be
greater than all members of cnt(σ). Put

W1 = ModW(P (0) ∧ . . . ∧ P (a) ∧ ¬P (a + 1) ∧ P (a + 2))
W2 = ModW(P (0) ∧ . . . ∧ P (a) ∧ ¬P (a + 1) ∧ ¬P (a + 2))

Note that W1 ⊆ ModW(ϕ) and W2 ⊆ ModW(¬ϕ), and that both μ(W1) and
μ(W2) are nonnull. But by the choice of σ, for all M ∈ W1 ∪ W2 and for all
environments e for M that extend σ, f outputs f(σ) in response to every initial
segment of e that extends σ. Contradiction.

338 S. Jain, E. Martin, and F. Stephan

5 Positive Only Versus Positive and Negative Data

Being allowed to misclassify a set of possible worlds of measure 0 when classifying
from positive data does not always make up for non-access to negative data:

Proposition 19. Suppose that V contains, besides 0, s and P , a binary function
symbol +, W is the set of Henkin models of Presburger arithmetics, and L is the
set of first-order sentences. Then there exists ϕ ∈ L with the following properties.

– If D = {P (n),¬P (n) : n ∈ N} then W is computably classifiable in the limit
following ϕ.

– If D = {P (n) : n ∈ N} then W is not classifiable in the limit following ϕ
almost everywhere.

Proof. Define ϕ as ∃x∀y((x < y ∧ y < x + x + 3)→ ¬P (y)). It is immediately
verified that if D = {P (n),¬P (n) : n ∈ N} then W is computably classifiable in
the limit following ϕ (with at most one mind change).

Now suppose that D = {P (n) : n ∈ N}. Trivially, μ(ModW(ϕ)) > 0. More-
over, μ(ModW(ϕ)) ≤ Σn∈N2−n−2 = 2−1. For a contradiction, let a classifier f
be such that f classifies W in the limit following ϕ almost everywhere. For all
σ ∈ D�, define Uσ as the set of all M ∈ ModW(¬ϕ) such that for all τ ∈ D�, if
τ extends σ and M |= cnt(τ) then f(τ) = 0. Choose σ ∈ D� with μ(Uσ) > 0.
Denote by a the maximal number in cnt(σ). Let U be the set of all M ∈W with:

– M |= ¬P (a + 1) ∧ . . . ∧ ¬P (a + a + 2);
– the D-diagram of M agrees with the D-diagram of some member of Uσ,

except perhaps on {P (a), . . . , P (a + a + 2)}.
Note that all members of ModW(U) are models of ϕ. Since μ(ModW(U)) is at
least equal to 2−a−2μ(Uσ), μ(ModW(U)) is nonnull. Let M ∈ U be given. Since
the D-diagram of M is included in the D-diagram of some member of Uσ, we
infer that for all environments e for DiagD(M) that extend σ, f outputs 0 in
response to all finite initial segments of e that extend σ. Contradiction.

Considering failing to classify a set of first category rather than misclassifying
a set of measure 0, one can contrast Proposition 19 with the following.

Proposition 20. Let ϕ ∈ L be such that if D = {P (n),¬P (n) : n ∈ N} then W

is classifiable, respect., computably classifiable, in the limit following ϕ. Assume
that D = {P (n) : n ∈ N}. Then there exists a subset W′ of W such that:
– W \W′ is of first category;
– W′ is classifiable, respect., computably classifiable, in the limit following ϕ.

Proof. Put D = {P (n),¬P (n) : n ∈ N}. Consider a D-classifier f such that if
D = D then f classifies W in the limit following ϕ. Without loss of generality we
can assume that f is total and f depends only on the content of the input and
not on the order and number of repetitions of symbols. Let S be the set of all

Absolute Versus Probabilistic Classification in a Logical Setting 339

members σ of D� such that f(τ) = f(σ) for all consistent τ ∈ D� that extend σ.
Note that if f is computable then S is co-r.e. Let W′ be the set of possible worlds
that are models of cnt(σ) for some σ ∈ S. By the choice of f , for all σ ∈ D�,
some member of S extends σ. This implies immediately that W \W′ is of first
category. Fix an enumeration (τi)i∈N of D� \ S that in case f is computable,
is itself computable. Assume that D = {P (n) : n ∈ N}. Define a classifier g as
follows. Let σ ∈ (D ∪ {�})� be given, and let p denote the length of σ. Then g(σ)
is equal to f(τ) for the shortest τ ∈ D�\{τ0, . . . , τp} such that for all n ≤ p, P (n)
occurs in τ iff P (n) occurs in σ. Obviously, g is computable if f is computable.
Moreover, for all M ∈ W′ and environments e for M (w.r.t. the choice of D),
some member τ of S satisfies {n ∈ N : P (n) ∈ cnt(τ)} ⊆ {n ∈ N : P (n) ∈ cnt(e)}
and {n ∈ N : ¬P (n) ∈ cnt(τ)} ∩ {n ∈ N : P (n) ∈ cnt(e)} = ∅; hence g converges
on e to f(τ). This shows that g classifies W′ in the limit following ϕ.

6 Learning Witnesses

In this section we focus on classifiability of existential sentences. When the class
of possible worlds consists of Henkin structures only, such a sentence, of the
form ∃xψ(x), is true in a member M of W iff ψ(t) is true for some closed term
t. It is then natural not only to determine that ∃xψ(x) is true, but also to learn
in the limit such a witness t. This amounts to a computation in the limit that
generalizes the kind of computations done by Prolog systems. We now formalize
the concepts that have just been introduced.

Definition 21. A learner is a partial function from (D ∪ {�})� into the union
of {0} with the set of closed terms.

Definition 22. We say that a classifier g is associated with a learner f iff for
all σ ∈ (D ∪ {�})�, g(σ) is defined iff f(σ) is defined and g(σ) = 0 iff f(σ) = 0.

Definition 23. Let a learner f , a sentence of the form ∃xψ(x), and a subset
W′ of W be given.

We say that f learns ∃xψ(x) in the limit in W′ just in case for all M ∈ W′

and environments e for M, the following holds.
– If M |= ∃xψ(x) then there exists a closed term t such that M |= ψ(t) and
{σ ∈ (D ∪ {�})� : σ ⊂ e and f(σ) = t} is cofinite.

– If M �|= ∃xψ(x) then {σ ∈ (D ∪ {�})� : σ ⊂ e and f(σ) = 0} is cofinite.

Definition 24. Let a learner f and an existential sentence ϕ be given. We say
that f learns ϕ in the limit in W almost correctly just in case:
– the classifier associated with f classifies W in the limit following ϕ almost

everywhere;
– there exists W′ ⊆W with μ(W′) = 1 such that f learns ϕ in the limit in W′.

Definition 25. We say that an existential sentence ϕ is learnable, respect., com-
putably learnable, in the limit in W almost correctly iff some learner, respect.,
computable learner, learns ϕ in the limit in W almost correctly.

340 S. Jain, E. Martin, and F. Stephan

Adapting the proof of Proposition 17, we obtain an important particular case
where limiting computation of witnesses for existentially quantified sentences is
always possible:

Proposition 26. Suppose that V only contains 0, s and P , W is the set of
Henkin structures, L is the set of monadic second-order sentences, and D is equal
to {P (n),¬P (n) : n ∈ N}. Then for all existential sentences ϕ, ϕ is computably
learnable in the limit in W almost correctly.

Proof. Let a sentence of the form ∃xψ(x) be given. For all n ∈ N, define ψn as
¬ψ(0) ∧ . . . ∧ ¬ψ(n− 1) ∧ ψ(n). For all n ∈ N, denote by Sn and Ŝn the sets
S and Ŝ defined from ϕ in the proof of Proposition 17, taking ϕ = ψn. Denote
by S− and Ŝ− the sets S and Ŝ defined from ϕ in the proof of Proposition 17,
taking ϕ = ¬∃xψ(x). A variation on the argument used in Proposition 18 proves
the claim of the proposition.

When investigating the connections between classifiability and learnability of
sentences of the form ∃xψ(x), it is reasonable to assume that W is classifiable in
the limit following any of the sentences ψ(n); otherwise one could obtain a sep-
aration by taking a sentence ξ such that W is not almost everywhere classifiable
in the limit following ξ and then consider ∃x ((x = 0 ∧ ¬ξ) ∨ (x = 1 ∧ ξ)). Fur-
thermore, if W is classifiable in the limit following ∃xψ(x) as well as any of the
sentences ψ(n), the parameter x is also learnable, though computability might be
lost, for example with ∃x (φx is total ∧φx(0) = min{z : Pz}∧∀y < x (φy �= φx)).
This example can be formalized in full arithmetic. So it is natural to ask what
happens if one only postulates that W is almost everywhere classifiable in the
limit following ∃xψ(x) and the other conditions are kept as such. The next result
shows that learnability is then lost.

Proposition 27. Suppose that V contains, besides 0, s and P , a binary function
symbol +, W is the set of Henkin models of Presburger arithmetics, L is the set of
first-order sentences, and D = {P (n),¬P (n) : n ∈ N}. Let ψ(x) be the formula
∀y∃u∃v∃w (x + y + v = u ∧ u + w = x+ x + y + y ∧ P (u)). Then:

– the set of models of ∃xψ(x) in W is of measure 1;
– for all n ∈ N, W is classifiable in the limit (with at most 2 mind changes)

following ψ(n);
– ∃xψ(x) is not almost correctly learnable in the limit in W.

A further question would be whether classification can be parametrized. That
is, given a sentence ϕ such that W can be classified in the limit following ϕ, is
ϕ equivalent to a sentence of the form ∃xψ(x) such that W is classifiable with a
constant number of mind changes, following any sentence ψ(n)? The answer is
yes for computable classification in full arithmetic since one can transform every
learner into a formula monitoring its behaviour and then quantify over the last
time where the classifier makes a wrong conjecture.

Absolute Versus Probabilistic Classification in a Logical Setting 341

7 Conclusion

In this paper the relationship between classifying all possible worlds and classi-
fying almost all possible worlds has been investigated. The main results include
the following. In the case of monadic second order logic with one successor, which
is well known to be decidable thanks to its connections with Büchi automata,
one can classify W following a formula ϕ almost everywhere from both positive
and negative data. But with positive data only, convergence might fail on a set
of measure 0. For other choices of possible data, W might even be classifiable
in the limit following a given sentence ϕ almost everywhere, though no sentence
differing from ϕ only on a null set of worlds allows for absolute classification.
With Presburger arithmetic, there is a sentence ϕ such that some set of worlds of
measure 1 can be classified in the limit following ϕ, though no classifier which is
correct on a set of measure 1 converges on all environments for all possible worlds.
Furthermore, some connections were made between classification and learning
of an essential parameter, namely, the value of the first quantified variable in an
existential sentence. It turns out that this can be achieved on a set of worlds of
measure 1 in monadic second order logic with one successor, demonstrating that
Prolog style inferences are almost everywhere possible in this case.

Acknowledgments. We would like to thank Wolfgang Merkle for very helpful
discussions. We also thank the referees for their comments.

References

[1] A. Ambainis: Probabilistic Inductive Inference: a Survey. Theoretical Computer
Science 264, pp. 155–167 (2001).

[2] J. Bārzdiņš, R. Freivalds, C. Smith: Learning formulae from elementary facts. Pro-
ceedings of the Third European Conference on Computational Learning Theory
(EuroCOLT 1997), LNCS 1208, pp. 272-285 (1997).

[3] Sh. Ben-David: Can Finite Samples Detect Singularities of Read-Valued Func-
tions? Proceedings of the 24th Annual ACM Symposium on the Theory of Com-
puter Science, Victoria, B.C., pp. 390–399 (1992).

[4] J. Büchi: On a decision method in restricted second order arithmetic. In Proc.
of the International Congress on Logic, Methodology and Philosophy of Science,
Stanford Univ. Press, pp. 1–11 (1960)

[5] P. Caldon, E. Martin: Limiting Resolution: from Foundations to Implementation.
In B. Demoen, V. Lifschitz: Proceedings of the 20th International Conference on
Logic Programming, Springer-Verlag, LNCS 3132, pp. 149–164 (2004)

[6] R. Daley: Inductive Inference Hierarchies: Probabilistic vs. Pluralistic. Mathemat-
ical Methods of Specification and Synthesis of Software Systems, LNCS 215, pp.
73–82 (1985).

[7] R. Freivalds: Finite Identification of General Recursive Functions by Probabilis-
tic Strategies. Proceedings of the Conference on Fundamentals of Computation
Theory, Akademie Verlag, Berlin, pp. 138–145 (1979).

[8] W. Gasarch, M. Pleszkoch, F. Stephan, M. Velauthapillai: Classification Using
Information. Annals of Math. and Artificial Intelligence 23, pp. 147–168 (1998).

342 S. Jain, E. Martin, and F. Stephan

[9] E. Martin, A. Sharma, F. Stephan: Logic, Learning, and Topology in a Common
Framework. In N. Cesa-Bianchi, M. Numao, R. Reischuk: Proc. of the 13th Intern.
Conf. on Alg. Learning Theory. Springer-Verlag, LNAI 2533 pp. 248-262 (2002)

[10] L. Meyer: Probabilistic language learning under monotonicity constraints. Theo-
retical Computer Science 185, pp. 81–128 (1997).

[11] L. Pitt: Probabilistic Inductive Inference. Journal of the Association for Comput-
ing Machinery 36, pp. 383–333 (1989).

[12] L. Pitt, C. Smith: Probability and plurality for aggregations of learning machines.
Information and Computation 77, pp. 77–92 (1988).

[13] H. Jr. Rogers: Theory of recursive functions and effective computability. McGraw-
Hill Book Company, New York (1967).

[14] C. Smith: The power of pluralism for automatic program synthesis. Journal of the
Association for Computing Machinery 29, pp. 1144–1165 (1982).

[15] I. Takeuti: The measure of an omega regular language is rational.
Available at http://www.sato.kuis.kyoto-u.ac.jp/~takeuti/art/regular.ps

[16] A. Voronkov: Logic programming with bounded quantifiers. In Proc. LPAR,
Springer-Verlag, LNCS 592, pp. 486–514 (1992)

Online Allocation with Risk Information

Shigeaki Harada, Eiji Takimoto�, and Akira Maruoka

Graduate School of Information Sciences,
Tohoku University,

Sendai 980-8579, Japan
{sig, t2, maruoka}@maruoka.ecei.tohoku.ac.jp

Abstract. We consider the problem of dynamically apportioning re-
sources among a set of options in a worst-case online framework. The
model we investigate is a generalization of the well studied online learn-
ing model. In particular, we allow the learner to see as additional infor-
mation how high the risk of each option is. This assumption is natural
in many applications like horse-race betting, where gamblers know odds
for all options before placing bets. We apply the Aggregating Algorithm
to this problem and give a tight performance bound. The results support
our intuition that we should bet more on low-risk options. Surprisingly,
however, the Hedge Algorithm without seeing risk information performs
nearly as well as the Aggregating Algorithm. So the risk information
does not help much. Moreover, the loss bound does not depend on the
values of relatively small risks.

1 Introduction

Consider the following classical online allocation problem. At each trial t =
1, 2, . . . T , the learner (an algorithm A) chooses a probability distribution vt =
(v1,t, . . . , vN,t) over the set {1, . . . , N} of experts and then the environment de-
termines experts’ losses lt = (l1,t, . . . , lN,t). In this trial, the learner A suffers
loss vt · lt =

∑N
i=1 vi,tli,t. This loss lt can be interpreted as the loss if the learner

apportions the wager among the experts according to the distribution vt and
let the experts actually make decisions against the environment on behalf of
the learner. Let LA,T =

∑T
t=1 vt · lt denote the total loss of the learner A and

Li,T =
∑T

t=1 li,t denote the total loss of expert i. The goal of the learner is to
minimize the regret LA,T −mini∈{1,...,N} Li,T .

This problem has been extensively studied in the case where the losses li,t are
uniformly bounded between a and b for some fixed real numbers a < b. (Note
that we may assume with out loss of generality that li,t ∈ [0, 1].) The Hedge
Algorithm [2] (which is a reformulation of the Weighted Majority Algorithm [6])
assigns vi,t proportional to β

∑ t−1
s=1 li,s and has the following loss bound

LHedge,T ≤ ln(1/β)
1− β

(
min

i
Li,T +

lnN
ln(1/β)

)
, (1)

� Supported by MEXT Grant-in-Aid for Scientific Research on Priority Area “New
Horizon in Computing.”

S. Jain, H.U. Simon, and E. Tomita (Eds.): ALT 2005, LNAI 3734, pp. 343–355, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

344 S. Harada, E. Takimoto, and A. Maruoka

where β ∈ (0, 1) is a fixed learning rate. Vovk’s Aggregating Algorithm (AA, for
short) produces a more sophisticated predictions [8] and gives a slightly better
bound

LAA,T ≤ c(β)
(

min
i

Li,T +
lnN

ln(1/β)

)
, (2)

where

c(β) =
ln(1/β)

N ln N
N+β−1

<
ln(1/β)
1− β

.

Cesa-Bianchi and Lugosi [1] give the following regret bound for the Hedge Al-
gorithm

LHedge,T − min
i∈{1,...,N}

Li,T ≤ lnN
ln(1/β)

+
T ln(1/β)

8
=
√

(T/2) lnN (3)

with an appropriate choice of β = 1 − O(
√

(lnN)/T). (For this choice, the
horizon T of the game needs to be known in advance). Kalai and Vempala [5]
propose a family of algorithms based on Hannan’s “Follow the Perturbed Leader”
approach [3] and its regret for this problem is shown to be of the same form as
(3) with an additional small constant factor [4]. For all these results, the experts’
losses are assumed to be uniformly bounded to [0, 1].

In this paper, we consider a more general setting in the following two ways.
Firstly, we allow the learner to see experts’ decisions to make its own decisions
about how to apportion the wager among the underlying options, rather than
among the experts. Note that in the model described above, the learner is only
allowed to interact with experts who actually make decisions against the en-
vironment, whereas the interactions between experts and the environment are
hidden and just summarized as the loss vectors lt. Secondly, we do not require
experts’ losses to be uniformly bounded but allow the learner to see upper and
lower bounds on the costs of the options before making its decisions. These as-
sumptions are natural in many applications such as horse-race betting, where
the learner knows odds for all horses (options) before placing bets. Clearly, odds
provide information about the maximum return for each option.

To be more specific, we assume that there are K options to be bet in every
trial and the environment determines costs for the options, by which the losses
for the learner and the experts are defined. At each trial t, the following happens.

1. Each expert i gives a K-dimensional probability vector xi,t that indicates
how to apportion the wager among options.

2. The learner observes the risk information aj,t and bj,t that are lower and
upper bounds on the costs for all options j, respectively.

3. The learner chooses a K-dimensional probability vector pt.
4. The costs yt = (y1,t, . . . , yK,t) for the options are revealed, where each cost

correctly falls in the given range, i.e., yj,t ∈ [aj,t, bj,t] for all j.
5. The learner suffers loss pt · yt and each expert i suffers loss li,t = xi,t · yt.

Online Allocation with Risk Information 345

Note that if the learner’s decision pt is given by pt =
∑N

i=1 vi,txi,t for a distri-
bution vt over the experts, then we have pt · yt = vt · lt, which coincides with
the learner’s loss in the previous model. Therefore, if we assume the uniform risk
(i.e., aj,t = 0 and bj,t = 1), then all the previous results remain to hold in the
new model, regardless of the number K of options.

Vovk [8] also considers this model with the uniform risk and shows that the
performance of the Aggregating Algorithm is again given by (2) but now the
leading factor is

c(β) =
ln(1/β)

K ln K
K+β−1

, (4)

which is monotonically increasing in K. So, if K < N , this gives an even
better bound. Unfortunately, however, it seems to be hard to estimate a loss
bound of the Aggregating Algorithm for the general case where the risk is not
fixed.

In this paper, we assume a fixed but non-uniform upper risk, namely, aj,t = 0
and bj,t = bj , where b = (b1, . . . , bK) is a fixed risk vector. In this setting, we
analyze the performance of the Aggregating Algorithm and give a leading factor
c(β) in the loss bound in terms of the risk vector b. Surprisingly, we show that the
Hedge Algorithm, which works without knowledge of risk information, performs
nearly as well as the Aggregating Algorithm. So, the risk information does not
help to improve the performance of algorithms in our model. We discuss some
interesting behaviors of the loss bound. In particular, the factor c(β) does not
depend on the bj ’s that are smaller than some threshold value.

2 Aggregating Algorithm

The Aggregating Algorithm is a very general strategy that works for various
games. In this section, we describe the algorithm with its performance bound in
a generic form. Vovk shows that under some mild assumptions, the bound cannot
be essentially improved and thus the Aggregating Algorithm is optimal [8].

First we describe a game that involves the learner, N experts, and the envi-
ronment. A game is specified by a triple (Γ,Ω, λ), where Γ is a fixed prediction
space, Ω is a fixed outcome space, and λ : Ω×Γ → [0,∞] is a fixed loss function.
At each trial t = 1, 2, . . ., the following happens.

1. Each expert i makes a prediction γi,t ∈ Γ .
2. The learner, who allowed to see all γi,t, makes his own prediction γt ∈ Γ .
3. The environment chooses some outcome ωt ∈ Ω.
4. Each expert i suffers loss λ(ωt, γi,t) and the learner suffers loss λ(ωt, γt).

Next we give the assumptions about the game that makes the Aggregating Al-
gorithm well-defined and perform optimally.

Assumption 1 We assume that the game (Γ,Ω, λ) satisfies the following con-
ditions.

346 S. Harada, E. Takimoto, and A. Maruoka

– Γ is a compact topological space.
– For each ω, the function γ ,→ λ(ω, γ) is continuous.
– There exists γ such that, for all ω, λ(ω, γ) <∞.
– There exists no γ such that, for all ω, λ(ω, γ) = 0.

It is known that lots of games considered in the literature satisfies the assump-
tions.

We define a simple probability distribution in Γ to be a function Q that
assigns to each element γ of its finite domain domQ ⊆ Γ a positive weight Q(γ)
so that

∑
γ Q(γ) = 1 (γ ranging over domQ). Let β ∈ (0, 1). A pseudoprediction

(with respect to Q) is a function from Ω to the set of real numbers given by

gQ(ω) = logβ

⎛⎝ ∑
γ∈dom Q

Q(γ)βλ(ω,γ)

⎞⎠ .

We will omit the superscript Q when it is clear from context. Let

c(β) = sup
Q

inf
γ∈Γ

sup
ω∈Ω

λ(ω, γ)
gQ(ω)

. (5)

Lemma 1 ([8]). Under the assumptions given in Assumption 1, there exists a
function Σβ called a substitution function that maps a pseudoprediction to a
prediction in Γ such that for any simple distribution Q and any ω ∈ Ω,

λ(ω, γ) ≤ c(β)gQ(ω),

where γ = Σβ(gQ). Moreover, the following minimax prediction is a substitution
function:

Σβ(gQ) = arg inf
γ∈Γ

sup
ω∈Ω

λ(ω, γ)
gQ(ω)

. (6)

Now we show how the Aggregating Algorithm behaves. It maintains a weight
vi,t for each expert i so that vt = (v1,t, . . . , vN,t) is a probability vector. When the
experts make predictions γi,t, we consider vt as a simple distribution Qt such that
Qt(γi,t) = vi,t. Then, the Aggregating Algorithm predicts with γt = Σβ(gQt)
with some substitution function Σβ. When an outcome ωt is given, the weights
are updated according to vi,t+1 = vi,tβ

λ(ωt,γi,t)/Z, where Z is for normalization.
We give a pseudocode in Figure 1.

The loss bound of the Aggregating Algorithm is represented by c(β).

Theorem 1 ([8]). Assume the assumptions given in Assumption 1. Then, for
any horizon T of the game and for any outcome sequence ω1, . . . , ωT ,

LAA(β),T ≤ c(β)
(

min
i

Li,T +
lnN

ln(1/β)

)
.

Moreover, for any pair (c, a) with c < c(β) and a < c(β)/ ln(1/β), no algorithm
A achieves LA,T ≤ cmini Li,T + a lnN for sufficiently large N .

Online Allocation with Risk Information 347

Algorithm AA(β)
begin

v1 = (1/N, . . . , 1/N);
for t = 1 to T do begin

receive experts’ predictions (γ1,t, . . . , γN,t);

let gt : ω �→ logβ

N∑
i=1

vi,tβ
λ(ω,γi,t);

output γt = Σβ(gt);
observe an outcome ωt and suffer loss λ(ωt, γt);
for i = 1 to N do

vi,t+1 =
vi,tβ

λ(ωt,γi,t)∑N
j=1 vj,tβλ(ωt,γj,t)

;

end
end

Fig. 1. Aggregating Algorithm

3 The Aggregating Algorithm for Our Game

It is easy to see that the following game (Γ,Ω, λ) corresponds to our online
allocation problem: The prediction space Γ is the K-dimensional probability
simplex, the outcome space is Ω = [0, 1]K , and the loss function is given by

λ(ω,p) =
K∑

j=1

bjωjpj ,

where b = (b1, . . . , bK) is a fixed risk vector. Note that the losses for options
at trial t are given by yj,t = bjωj,t for some ωt ∈ Ω so that yj,t ∈ [0, bj] and
λ(ωt,pt) = pt · yt.

We can show that the assumptions in Assumption 1 are satisfied for this
game. So the Aggregating Algorithm and the loss bound given in Theorem 1
apply. Vovk analyzes only the case where b = 1K = (1, . . . , 1) and show that
c(β) is given by (4). In what follows, we assume, without loss of generality, that
b1 ≤ · · · ≤ bK .

First we claim that it suffices to consider (5) for Q concentrated on the
extreme points ej (j = 1, . . . ,K) of the simplex Γ , where the m-th component
of ej is 1 if m = j and 0 otherwise.

Lemma 2. Let Q be any simple distribution and the weighted average with re-
spect to Q be denoted p̂. That is,

p̂ = (p̂1, . . . , p̂K) =
∑

x∈dom Q

Q(x)x.

Let Q′ be a simple distribution that assigns to each ej the weight Q′(ej) = p̂j.
Then, for any ω ∈ Ω,

gQ(ω) ≥ gQ′
(ω).

348 S. Harada, E. Takimoto, and A. Maruoka

Proof. Note that each x = (x1, . . . , xK) ∈ domQ is a probability vector. The
convexity of the function ζ ,→ βζ implies∑

x

Q(x)βλ(ω,x) =
∑
x

Q(x)β
∑

j bjωjxj ≤
∑
x

Q(x)
∑

j

xjβ
bjωj

=
∑

j

∑
x

xjQ(x)βλ(ω,ej) =
∑

j

p̂jβ
λ(ω,ei) =

∑
x

Q′(x)βλ(ω,x),

which completes the lemma. $%
Now we give a prediction pt of the learner of a closed form. Let gt be the

pseudoprediction defined at trial t in the Aggregating Algorithm. That is,

gt(ω) = logβ

N∑
i=1

vi,tβ
λ(ω,xi,t)

where xi,t is the suggested prediction from expert i. By Lemma 2, we have
another pseudoprediction

g′t(ω) = logβ

K∑
j=1

p̂j,tβ
λ(ω,ej)

such that gt(ω) ≥ g′t(ω), where p̂t = (p̂1,t, . . . , p̂K,t) =
∑N

i=1 vi,txi,t. So, we
compute pt = arg infp supω λ(ω,p)/g′t(ω) since Lemma 1 implies λ(ω,pt) ≤
c(β)g′t(ω) ≤ c(β)gt(ω) as desired.

Theorem 2. The vector pt given by

pj,t =
1
bj

logβ

(
1− (1− βbj)p̂j,t

)
∑K

j=1
1
bj

logβ (1− (1− βbj)p̂j,t)
(7)

attains the infimum of arg infp supω λ(ω,p)/g′t(ω).

Proof. Since g′t(ω) is concave, it suffices to consider only for ω that are extreme
points of the cube [0, 1]K . Using the notation of I = {j | ωj = 1, 1 ≤ j ≤ K},
we write

g′t(ω) = logβ

K∑
j=1

p̂j,tβ
bjωj

= logβ

⎛⎝∑
j∈I

βbj p̂j,t +
∑
j /∈I

p̂j,t

⎞⎠
= logβ

⎛⎝1−
∑
j∈I

(1− βbj)p̂j,t

⎞⎠ .

Online Allocation with Risk Information 349

So,

inf
p

sup
ω

λ(ω,p)
g′t(ω)

= inf
p

max
I

∑
j∈I bjpj

logβ

(
1−∑j∈I(1− βbj)p̂j,t

) . (8)

Using the inequality
∑

j logβ(1 − aj) = logβ

∏
j(1 − aj) ≤ logβ(1 −∑j aj) for

aj > 0, we have ∑
j∈I bjpj

logβ

(
1−∑j∈I(1− βbj)p̂j,t

) ≤ ∑
j∈I bjpj∑

j∈I logβ (1− (1− βbj)p̂j,t)

≤ max
j∈I

bjpj

logβ (1− (1− βbj)p̂j,t)
.

Hence
inf
p

sup
ω

λ(ω,p)
g′t(ω)

= inf
p

max
j∈{1,...,K}

pj

1
bj

logβ (1− (1 − βbj)p̂j,t)
. (9)

Note that for any p ∈ Γ , it must hold that

max
j∈{1,...,N}

pj

1
bj

logβ (1− (1− βbj)p̂j,t)
≥ 1∑K

j=1
1
bj

logβ (1− (1 − βbj)p̂j,t)

because otherwise we would have some p ∈ Γ such that

pj <

1
bj

logβ

(
1− (1 − βbj)p̂j,t

)
∑K

j=1
1
bj

logβ (1− (1− βbj)p̂j,t)

for all 1 ≤ j ≤ K, which implies
∑N

j=1 pj < 1, a contradiction. Therefore, our
choice of

pj,t =
1
bj

logβ

(
1− (1− βbj)p̂j,t

)
∑K

j=1
1
bj

logβ (1− (1− βbj)p̂j,t)

attains the infimum. $%
Next we estimate the value of c(β). Since c(β) depends on the risk vector b

as well, we write it as c(β, b) to explicitly specify b. By virtue of Lemma 2 we
can only consider a distribution Q on the extreme points. Let q = (q1, . . . , qK)
be the probability vector induced by Q, i.e., qj = Q(ej). From the proof above,
it follows that

c(β, b) = sup
Q

inf
p

sup
ω

λ(ω,p)
gQ(ω)

= sup
q

1∑K
j=1

1
bj

logβ (1− (1− βbj)qj)
. (10)

In other words, we need to solve the following optimization problem:

minimize −
K∑

j=1

1
bj

ln
(
1− (1− βbj)qj

)

350 S. Harada, E. Takimoto, and A. Maruoka

subject to
∑

j qj = 1 and qj ≥ 0 for all j. Since the objective function and the
domain are both convex, it is well known that q is an optimal point if and only
if the following Kursh-Kuhn-Tucker (KKT) conditions are satisfied:

1− βbj

bj (1− (1− βbj)qj)
− sj + t = 0, (j = 1, . . . ,K) (11)∑K

j=1 qj − 1 = 0, (12)
sj · (−qj) = 0, (j = 1, . . . ,K) (13)

−qj ≤ 0, (j = 1, . . . ,K) (14)
sj ≥ 0, (j = 1, . . . ,K) (15)

for some t and sj for j = 1, . . . ,K. Note that the first condition (11) is derived
from ∇qL(q, t, s) = 0 where L is the Lagrangian function.

Solving q that satisfies these conditions, we get c(β, b) which is given in the
next theorem.

Theorem 3. Assume that b1 ≤ · · · ≤ bK. Then,

c(β, b) =
ln(1/β)∑K

j=z∗
1
bj

ln
(

bj

1−βbj
s(z∗)

) (16)

where

s(z) =

∑K
j=z

1
bj∑K

j=z
1

1−βbj
− 1

(17)

and
z∗ = arg min

z∈{1,...,K}
s(z). (18)

We call z∗ satisfying (18) the threshold index.

Proof. Let q be a solution that satisfies the KKT conditions. By conditions (13)
and (14), if qj > 0 then sj = 0. So, conditions (11) and (15) imply that

qj > 0⇒ qj =
1

t(1− βbj)

(
t +

1− βbj

bj

)
, (19)

qj = 0⇒ sj = t +
1− βbj

bj
≥ 0. (20)

Plugging (19) into condition (12), we get

t = −
∑

j:qj>0
1
bj∑

j:qj>0
1

1−βbi
− 1

, (21)

which is negative. So, we have that qj > 0 ⇔ (1 − βbj)/bj < −t. Since the
function (1 − βζ)/ζ is monotonically decreasing and we assume b1 ≤ · · · ≤ bK ,

Online Allocation with Risk Information 351

it follows that there exists z∗ ∈ {1, . . . ,K} such that qj = 0 for all j < z∗ and
qj > 0 for all j ≥ z∗. Equivalently, z∗ must satisfy

1− βbz∗

bz∗
< −t ≤ 1− βbz∗−1

bz∗−1
,

where
t = −s(z∗). (22)

It is straightforward to confirm that z∗ = arg minz s(z) actually satisfies the
above inequalities. Now all the KKT conditions are satisfied. Plugging (19) with
(22) into (10) we get the theorem. $%

4 Risk Information does not Help Much

Recall that the prediction of the Aggregating Algorithm is given by

pj,t ∼ − 1
bj

ln
(
1− (1− βbj)p̂j,t

)
where p̂j,t =

∑N
i=1 vi,txi,t is the prediction of the Hedge Algorithm that does not

use the risk information. First, we observe that the prediction pj,t is shifted to
large values when the corresponding risk bj is small. This supports our intuition
that it would be safe to bet more on low-risk options. Figure 2 illustrates the
shift caused by non-uniform risk.

Nevertheless, we show in the next theorem that the Hedge prediction p̂j,t

approximates pj,t by a constant factor that does not depend on the risk vector b.
This means that the Hedge Algorithm performs nearly as well as the Aggregating
Algorithm without knowledge of risk information.

Theorem 4. Let p̂t and pt be the Hedge and the AA predictions, respectively.
Then for any 1 ≤ j ≤ N ,

p̂j,t ≤ ln(1/β)
1− β

pj,t.

This immediately implies

LHedge,T ≤ ln(1/β)
1− β

LAA,T .

Proof. Using the inequalities (1− c)x ≤ − ln(1− (1− c)x) ≤ (ln(1/c))x, we have

1− βbj

bj
p̂j,t ≤ − 1

bj
ln
(
1− (1− βbj)p̂j,t

) ≤ (ln(1/β)) p̂j,t.

Since the function (1− βx)/x is monotonically decreasing, the left hand side of
the above formula is lower bounded by (1−β)pj,t, which implies the theorem. $%

Note that the argument in the proof above shows that the smaller bj is, the
better p̂j,t approximates pj,t, since limbj→0(1− βb

j)/bj = ln(1/β). This suggests
that the gap of the losses of the both algorithms would be maximized when the
risk is uniform. Moreover, in many natural situations, the optimal value of β is
close to 1 and thus the approximation is tight.

352 S. Harada, E. Takimoto, and A. Maruoka

Fig. 2. The prediction p = (p, 1 − p) of the Aggregating Algorithm as the function of
Hedge prediction p̂ = (p̂, 1 − p̂) for K = 2, β = 0.1, and for various risk vectors of the
form of b = (b, 1) (i.e., the risk for the second option is fixed to be one). The curve for
b = 1 is the prediction of the normal Aggregating Algorithm that assumes the uniform
risk.

5 Behaviors of c(β, b)

Here we observe some interesting properties of c(β, b). First we confirm that
c(β, b) with the uniform risk vector b = 1K coincides with the classical value
(4). (In this case, the threshold index is z∗ = 1.) Second, it is easy to verify
that s(K − 1) < s(K) where the function s(z) is defined in (17) and by (18) the
threshold index z∗ must satisfy 1 ≤ z∗ ≤ K−1. This implies that c(β, b) > 1 for
all b. Moreover, since s(z) does not depend on b1, . . . , bz−1 and z∗ is the largest
index z that satisfies s(z − 1) > s(z), we can conclude that z∗ is determined
independently of the values b1, . . . , bz∗−2. Below we examine this insensitivity to
small risks in more detail.

Recall that c(β, b) given in (16) does not depend on small bj ’s for j < z∗.
In other words, c(β, b) is the same as c(β, b′) for b′ = (bz∗ , bz∗+1, . . . , bK) which
corresponds to a game with K − z∗ + 1 options. It is curious that the prediction
of the Aggregating Algorithm strongly depends on small risks but the loss bound
does not depend on them at all. Let us look at this more closely. Consider an
extreme case where bK−1 = bK = 1. Then, we can show that if

bK−2

1− βbK−2
≤ 1

1− β
− 1

2
,

then z∗ = K − 1 and hence c(β, b) = c(β, 12) regardless of the number K of
options. In Figure 3 we show the curve of c(β, b) for b = (b, b, b, 1, 1) (K = 5)

Online Allocation with Risk Information 353

Fig. 3. The curve of c(β, b) with b1 = · · · = bK−2 = b and bK−1 = bK = 1. The
threshold b∗ is given by the solution of b∗

1−βb∗ = 1
1−β

− 1
2
. Here we set K = 5 and

β = 0.1.

Fig. 4. Curves of b = (b1, b2) that satisfies c(β, b) = c(β, 12) for various β

as the function of b. From this we can confirm that c(β, b) decreases as b gets
smaller and converges to c(β, 12) when b < b∗ for some threshold b∗.

Next we investigate a condition that makes c(β, b) ≤ c(β, 1K). Note that
b ≤ 1K is a trivial condition. Interestingly, if some of the risks bj are much
larger than 1, c(β, b) can be smaller than c(β, 1K). Figure 4 describes the curves
of b = (b1, b2) such that c(β, b) = c(β, 1K) with K = 2 for various values of β. If
a point b lays in the lower left part of the curve for β, then c(β, b) < c(β, 1K).
Intuitively, the curves show that the algorithm performs better when faced with
options of various risks than when faced with options of the same risk.

354 S. Harada, E. Takimoto, and A. Maruoka

6 Concluding Remarks

We generalize the online allocation model so that the learner is allowed to see the
risk information about the options. We apply the Aggregating Algorithm and
give a tight loss bound. Although the results we give are only for a restricted
case where the risks are all lower bounded by zero and time invariant, the model
has a nice application, e.g., the online shortest path problem [7]: When given a
network, the learner tries to choose a routing path in every trial in an attempt
to minimize the total expected time delay. In this case, each path corresponds
to an option and the number of nodes in the path can be regarded as its risk.
(The more nodes it has, the more time is expected to take for sending a packet
through that path). Since the Hedge Algorithm combined with the technique
of the path kernel efficiently solves this problem, our results give a refined loss
bound.

We can view our results as a starting point to investigate the role of non-
uniform risks in prediction problems. For example, it is interesting to generalize
the portfolio game to the one with risk information, where the game has the
nonlinear loss function − lnp · y.

We remark that the conditions for which our results hold can be generalized
to some extent. First we can show that all the arguments developed in this paper
remain hold even if the risk vector is permuted in each trial, i.e., we allow the
risk vector bt to be a permutation on a fixed set {b1, . . . , bK}.

Moreover, we can treat a dual case where the risks are all upper bounded by
zero, i.e., the costs yj,t fall in the range [−aj , 0] where (a1, . . . , aK) is a fixed gain
vector (now aj is interpreted as the largest possible gain for the j-th option).
For this we develop the gain version of the Aggregating Algorithm in a similar
way and the dual arguments say that the prediction

pj,t =
1
aj

logα (1 + (αaj − 1)p̂j,t)∑K
j=1

1
aj

logα (1 + (αaj − 1)p̂j,t)

with some learning rate α > 1 guarantees

GAA,T ≥ c(α)
(

max
i

Gi,T − lnN
lnα

)
,

where GAA,T and Gi,T are the total gain of the AA and that of expert i, respec-
tively. The factor c(α) is now given by

c(α) =
lnα∑K

j=z∗
1
aj

ln
(

αaj−1
ajs(z∗)

) ,
where

z∗ = argmax
z

s(z), s(z) =

∑K
j=z

1
aj

1 +
∑K

j=1
1

αaj −1

.

Online Allocation with Risk Information 355

It also holds that the gain version of the Hedge Algorithm is a good approxima-
tion of the AA so that

GHedge,T ≥ lnα
α− 1

GAA,T .

So far we do not know when the risk information helps. Even in the restricted
case, we showed that there is a small but non-negligible gap between the Aggre-
gating and the Hedge Algorithms. But the gap already exists under the uniform
risk. So it is interesting to investigate whether the gap becomes large in a non-
uniform risk setting.

References

[1] N. Cesa-Bianchi and G. Lugosi. On prediction of individual sequences. Annals of
Statistics, 27(6):1865–1895, 1999.

[2] Y. Freund and R. E. Schapire:. A decision-theoretic generalization of on-line learn-
ing and an application to boosting. JCSS, 55(1):119–139, 1997.

[3] J. Hannan. Approximation to Bayes risk in repeated play, volume III. Princeton
University Press, 1957.

[4] M. Hutter and J. Poland. Prediction with expert advice by following the perturbed
leader for general weights. In Proc. ALT 2004, volume 3244 of LNAI, 279–293, 2004.

[5] A. Kalai and S. Vempala. Efficient algorithms for online decision problems. In
Proc. COLT 2003, volume 2777 of LNAI, 26–40, 2003.

[6] N. Littlestone and M. K. Warmuth. The weighted majority algorithm. Inform.
Comput., 108(2):212–261, 1994.

[7] E. Takimoto and M. K. Warmuth. Path kernels and multiplicative updates. Journal
of Machine Learning Research, 4:773–818, 2003.

[8] V. Vovk. A game of prediction with expert advice. JCSS, 56(2):153–173, 1998.

Defensive Universal Learning with Experts

Jan Poland1 and Marcus Hutter2

1 Grad. School of Inf. Sci. and Tech., Hokkaido University, Japan
jan@ist.hokudai.ac.jp

http://www-alg.ist.hokudai.ac.jp/~jan
2 IDSIA, Galleria 2, CH-6928 Manno (TI), Switzerland

marcus@idsia.ch

http://www.idsia.ch/~marcus

Abstract. This paper shows how universal learning can be achieved with
expert advice. To this aim, we specify an experts algorithm with the fol-
lowing characteristics: (a) it uses only feedback from the actions actually
chosen (bandit setup), (b) it can be applied with countably infinite ex-
pert classes, and (c) it copes with losses that may grow in time appropri-
ately slowly. We prove loss bounds against an adaptive adversary. From
this, we obtain a master algorithm for “reactive” experts problems, which
means that the master’s actions may influence the behavior of the adver-
sary. Our algorithm can significantly outperform standard experts algo-
rithms on such problems. Finally, we combine it with a universal expert
class. The resulting universal learner performs – in a certain sense – al-
most as well as any computable strategy, for any online decision problem.
We also specify the (worst-case) convergence speed, which is very slow.

1 Introduction

Expert advice has become a well-established paradigm of machine learning in the
last decade, in particular for prediction. It is very appealing from a theoretical
point of view, as performance guarantees usually hold in the worst case, without
any (statistical) assumption on the data. Such assumptions are generally required
for other statistical learning methods, often however not resulting in stronger
guarantees.

Using expert advice in the standard way seems a rather bad idea in some
cases where the decisions of the learner or master algorithm influence the be-
havior of the environment or adversary. One example is the repeated prisoner’s
dilemma when the opponent plays “tit for tat” (see Section 4). This was noted
and resolved by [1], who introduced a “strategic expert algorithm” for so-called
reactive environments. Their algorithm works with a finite class of experts and
attains asymptotically optimal behavior. No convergence speed is asserted, and
the analysis is quite different from that of standard experts algorithms.

In this paper, we show how the more general task with a countably infinite
expert class can be accomplished, building on standard experts algorithms, and
simultaneously also bounding the convergence rate (t−

1
10 , which can be actually

improved to t−
1
3+ε). To this aim, we will combine techniques from [2, 3, 4, 5]

and obtain a master algorithm which performs well on loss functions that may

S. Jain, H.U. Simon, and E. Tomita (Eds.): ALT 2005, LNAI 3734, pp. 356–370, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Defensive Universal Learning with Experts 357

increase in time. Then this is applied to (possibly) reactive problems by yielding
the control to the selected expert for an increasing period of time steps. Using a
universal expert class defined by the countable set of all programs on some fixed
universal Turing machine, we obtain an algorithm which is in a sense asymp-
totically optimal with respect to any computable strategy. An easy additional
construction guarantees that our algorithm is computable, in contrast to other
universal approaches which are non-computable [6]. To our knowledge, we also
propose the first algorithm for non-stochastic bandit problems with countably
many arms.

The paper is structured as follows. Section 2 introduces the problem setup,
the notation, and the algorithm. In Sections 3, we give the (worst-case) analysis
of the master algorithm. The implications to active experts problems and a
universal master algorithms are given in Section 4. We discuss our results in
Section 5.

2 The Master Algorithm

Setup. We are acting in an online decision problem. “We” is here an abbre-
viation for the master algorithm which is to be designed. An “online decision
problem” is to be understood in a very general sense, it is just a sequence of
decisions each of which results in some loss. This could be e.g. a prediction task,
a repeated game, etc. In each round, that is at each time step t, we have access to
the recommendations of countably infinitely many “experts” or strategies. (For
simplicity, we restrict our notation to a countably infinite expert class, all results
also hold for finite classes.) We do not specify what exactly a “recommendation”
is – we just follow the advice of one expert. Before we reveal our move, the
adversary has to assign losses �i

t ≥ 0 to all experts i. There is an upper bound
Bt ≥ ‖�t‖∞ on the maximum loss the adversary may use. This quantity may
depend on t and is not controlled by the adversary. After the move, only the loss
of the selected expert i is revealed. Our goal is to perform nearly as well as the
best available strategy (expert) in terms of cumulative loss, after any number
T of time steps which is not known in advance. The difference between our loss
and the loss of some expert is also termed regret. We consider the general case of
an adaptive adversary, which may assign losses depending on our past decisions.

If there are only finitely many experts or strategies, then it is common to give
no prior preferences to any of them. Formally, this is realized by defining uniform
prior weights wi = 1

n for each expert i. This is not possible for countably infinite
expert classes, as there is no uniform distribution on the natural numbers. In this
case, we need some non-uniform prior (wi)i∈N and require wi > 0 for all experts
i and

∑
i w

i ≤ 1. We also define the complexity of expert i as ki = − lnwi. This
quantity is important since in the full observation game (i.e. after our decision
we get to know the losses of all experts), the regret can usually be bounded by
some function of the best expert’s complexity.

Our algorithm “Follow or Explore” (FoE , specified in Fig. 1) builds on McMa-
han and Blum’s online geometric optimization algorithm [4]. It is a bandit version

358 J. Poland and M. Hutter

For t = 1, 2, 3, . . .
set
̂i

t = B̂t for i �∈ {t ≥ τ} (see (2))
sample rt ∈ {0, 1} independently s.t. P [rt = 1] = γt

If rt = 0 Then
invoke FPL(t) and play its decision
set
̂i

t = 0 for i ∈ {t ≥ τ}
Else

sample IFoE
t := ut “uniformly”, see (1), and play I := IFoE

t

set
̂I
t =
I

t /(uI
t γt) and
̂i

t = 0 for i ∈ {t ≥ τ} \ {I}

Fig. 1. The algorithm FoE . The exploration rate γt will be specified in Corollary 8.

Sample qi
t

d.∼ Exp (i.e. P(qi
t ≥ x) = e−x for x ≥ 0) indep. ∀i ∈ {t ≥ τ}

select and play IFPL
t = arg min

i:t≥τ
{ηt
̂

i
<t + ki − qi

t}

Fig. 2. The algorithm FPL. The learning rate ηt will be specified in Corollary 8.

of a “Follow the Perturbed Leader” experts algorithm. This approach to online
prediction and playing repeated games has been pioneered by Hannan [2]. For
the full observation game and uniform prior, [3] gave a very elegant analysis
which is clearly different from the standard analysis of exponential weighting
schemes. It has one advantage over other aggregating algorithms such as expo-
nential weighting schemes: the analysis is not complicated if the learning rate is
dynamic rather than fixed in advance. A dynamic learning rate is necessary if
there is no target time T known in advance. For non-uniform prior, an analysis
was given in [5]. The following issues are important for FoE ’s design.

Exploration. Since we are playing the bandit game (as opposed to the full
information game), we need to explore sufficiently [7, 4]. At each time step t,
we decide randomly according to some exploration rate γt ∈ (0, 1) whether to
explore or not. If so, we would like to choose an expert according to the prior
distribution. There is a caveat: In order to make the analysis go through, we
have to assure that we are working with unbiased estimates of the losses. This is
achieved by dividing the observed loss by the probability of choosing the expert.
But this quantity could become arbitrarily large if we admit arbitrarily small
weights. We address this problem by finitizing the expert pool at each time t.
For each expert i, we define an entering time τ i, that is, expert i is active only
for t ≥ τ i. We denote the set of active experts at time t by {t ≥ τ} = {i : t ≥ τ i}.
For exploration, the prior is then replaced by the finitized prior distribution ut,

P(ut = i) =
wi1It≥τ i∑
j w

j1It≥τ j

. (1)

Consequently, the maximum unbiasedly estimated instantaneous loss is (note
that the exploration probability also scales with the exploration rate γt)

Defensive Universal Learning with Experts 359

B̂t =
Bt

γt min{wi : t ≥ τ i} . (2)

It is convenient for the analysis to assign estimated loss of B̂t to all currently
inactive experts. Observe finally that in this way, our master algorithm FoE
always deals with a finite expert class and is thus computable.

Follow the Perturbed Leader. (FPL, specified in Fig. 2) is invoked if FoE does
not explore. Just following the “leader” (the best expert so far) may not be a
good strategy [3]. Instead we subtract an exponentially distributed perturbation
qt from the current score (the complexity penalized past loss) of the experts. An
important detail of the FPL subroutine is the learning rate ηt > 0, which should
be adaptive if the total number of steps T is not known in advance. Please see
e.g. [3, 5] for more details. Also the variant of FPL we use (specified in Fig. 2)
works on the finitized expert pool.

Note that each time randomness is used, it is assumed to be independent of
the past randomness. Performance is evaluated in terms of true or estimated
cumulative loss, this is specified in the notation. E.g. for the true loss of FPL up
to and including time T we write �FPL1:T , while the estimated loss of FoE and not
including time T is �̂FoE<T .

3 Analysis on the Master’s Time Scale

The following analysis uses McMahan and Blum’s trick [4] in order to prove
bounds against adaptive adversary. With a different argument, it is possible
to circumvent Lemma 6, thus achieving better bounds [8]. This will be briefly
discussed in the last section.

Let Bt ≥ 0 be some sequence of upper bounds on the instantaneous losses,
γt ∈ (0, 1) be a sequence of exploration rates, and ηt > 0 be a decreasing se-
quence of learning rates. The analysis proceeds according to the following di-
agram (where L is an informal abbreviation for the loss and always refers to
cumulative loss, but sometimes additionally to instantaneous loss).

LFoE <∼ ELFoE <∼ ELFPL <∼ EL̂FPL <∼ EL̂IFPL <∼ EL̂best <∼ Lbest (3)

Each “ <∼ ” means that we bound the quantity on the left by the quantity on the
right plus some additive term. The first and the last expressions are the losses of
the FoE algorithm and the best expert, respectively. The intermediate quantities
belong to different algorithms, namely FoE , FPL, and a third one called IFPL for
“infeasible” FPL [3]. IFPL, as specified in Fig. 3, is the same as FPL except that
it has access to an oracle providing the current estimated loss vector �̂t (hence
infeasible). Then it assigns scores of ηt�̂

i
1:t + ki − qi

t instead of ηt�̂
i
<t + ki − qi

t.
The randomization of FoE and FPL gives rise to two filtrations of σ-algebras.

By At we denote the σ-algebra generated by the FoE ’s randomness up to time
t, meaning only the random variables {u1:t, r1:t}. Then (At)t≥0 is a filtration
(A0 is the trivial σ-algebra). We may also write A =

⋃
t≥0At. Similarly, Bt is

360 J. Poland and M. Hutter

Sample qi
t

d.∼ Exp independently for all i ∈ {t ≥ τ}
select and play IFPL

t = arg min
i:t≥τ

{ηt
̂
i
1:t + ki − qi

t}

Fig. 3. The algorithm IFPL. The learning rate ηt will be specified in Corollary 8.

the σ-algebra generated by the FoE ’s and FPL’s randomness up to time t (i.e.
Bt=̂{u1:t, r1:t, q1:t}). Then clearly At ⊂ Bt for each t.

The reader should think of the expectations in (3) as of both ordinary and
conditional expectations. Conditional expectations are mostly with respect to
FoE ’s past randomness At−1. These conditional expectations of some random
variable X are abbreviated by

Et[X] := E[X |At−1].

Then Et[X] is an At−1-measurable random variable, meaning that its value is
determined for fixed past randomnessAt−1. Note in particular that the estimated
loss vectors �̂i

t are random vectors which depend on FoE ’s randomness At up to
time t. In this way, FoE ’s (and FPL’s and IFPL’s) actions depend on FoE ’s past
randomness. Note, however, that they do not depend on FPL’s randomness q1:t.

We now start with proving the diagram (3). In order to understand the
analysis, it is important to consider each intermediate algorithm as a stand-
alone procedure which is actually executed (with an oracle if necessary) on the
specified inputs (e.g. on the estimated losses) and has the asserted performance
guarantees (e.g. again on the estimated losses).

Lemma 1.
[
LFoE <∼ ELFoE

]
For each T ≥ 1 and δT ∈ (0, 1), with probability at

least 1− δT

2 we have

�FoE1:T ≤
t∑

t=1

Et�
FoE
t +

√
(2 ln 4

δT
)
∑T

t=1 B
2
t .

Proof. The sequence of random variables XT =
∑T

t=1

[
�FoEt −Et�

FoE
t

]
is a mar-

tingale with respect to the filtration Bt (not At!). In order to see this, observe
E[�FoET |BT−1] = E

(
E[�FoET |AT−1]

∣∣BT−1

)
and E[�FoEt |BT−1] = �FoEt for t < T ,

which implies

E[XT |BT−1] =
∑T

t=1

(
E[�FoEt |BT−1]−E

[
E[�FoEt |At−1]

∣∣BT−1

])
=
∑T−1

t=1

(
�FoEt −E[�FoEt |At−1]

)
= XT−1.

Its differences are bounded: |Xt −Xt−1| ≤ Bt. Hence, it follows from Azuma’s
inequality (see e.g. [9]) that the probability that XT exceeds some λ > 0 is
bounded by p = 2 exp

(− λ2

2
∑

t B2
t

)
. Requesting δT

2 = p and solving for λ gives
the assertion. �

Defensive Universal Learning with Experts 361

Lemma 2.
[
E�FoE <∼ E�FPL

]
Et�

FoE
t ≤ (1− γt)Et�

FPL
t + γtBt holds ∀t ≥ 1.

This follows immediately from the specification of FoE . Clearly, a correspond-
ing assertion for the ordinary expectations holds by just taking expectations on
both sides. This is the case for all subsequent lemmas, except for Lemma 6.

The next lemma relating ELFPL and EL̂FPL is technical but intuitively clear.
It states that in expectation, the real loss suffered by FPL is the same as the
estimated loss. This is simply because the loss estimate is unbiased. A combina-
tion of this and the previous lemma was shown in [4]. Note that �̂FPLt is the loss
�̂I
t estimated by FoE , but for the expert I = IFPL

t chosen by FPL.

Lemma 3.
[
ELFPL <∼ EL̂FPL

]
For each t ≥ 1, we have Et�

FPL
t = Et�̂

FPL
t .

Proof. Let f i
t = P[IFPL

t = i|At−1] be the probability distribution over actions i
which FPL uses at time t, depending on the past randomness At−1. Let ut be
the finitized prior distribution (1) at time t. Then

Et[�̂FPLt] = (1−γt)·0+γt

∞∑
i=1

f i
t [(1−ui

t)·0+ui
t�̂

i
t|rt=1∧IFoE

t =i] =
∞∑

i=1

f i
t �

i
t = Et[�FPLt],

where �̂i
t|rt=1∧IFoE

t =i = �i
t/(u

i
tγt) is the estimated loss under the condition that

FoE decided to explore (rt = 1) and chose action IFoE
t = i. �

The following lemma relates the losses of FPL and IFPL. It is proven in [3]
and [5]. We give the full proof, since it is the only step in the analysis where we
have to be careful with the upper loss bound Bt. Let B̂t be the upper bound on
the estimated loss (2). (We remark that also for weighted averaging forecasters,
losses which grow sufficiently slowly do not cause any problem in the analysis.
In this way, it is straightforward to modify the algorithm by Auer et al. [10] for
reactive tasks with a finite expert class.)

Lemma 4.
[
EL̂FPL <∼ EL̂IFPL

]
For all t ≥ 1, Et�̂

FPL
t ≤ Et�̂

IFPL
t + γtηtB̂

2
t holds.

Proof. If rt = 0, �̂t = 0 and thus �̂FPLt = �̂IFPLt holds. This happens with proba-
bility 1− γt. Otherwise we have

Et�̂
FPL
t =

∞∑
i=1

∫
1IIFPL

t =i�̂
i
tdμ(x), (4)

where μ denotes the (exponential) distribution of the perturbations, i.e. xi := qi
t

and density μ(x) := e−‖x‖∞ . The idea is now that if action i was selected by
FPL, it is – because of the exponentially distributed perturbation – with high
probability also selected by IFPL. Formally, we write u+ = max(u, 0) for u ∈ R,
abbreviate λ = �̂<t + k/ηt, and denote by

∫
. . . dμ(x�=i) the integration leaving

362 J. Poland and M. Hutter

out the ith action. Then, using ηtλi − xi ≤ ηtλj − xj ∀j if IFPL
t = i in the first

equation, and B̂t ≥ �̂i
t − �̂j

t in the last line, we get∫
1IIFPL

t =i�̂
i
tdμ(x) =

∫ ∫
xi≥max

j �=i
{ηt(λi−λj)+xj}

�̂i
tdμ(xi)dμ(x�=i) =

∫
�̂i
t e

−(max
j �=i

{ηt(λi−λj)+xj})+
dμ(x�=i)

≤
∫

�̂i
t eηtB̂te

−(max
j �=i

{ηt(λi−λj)+xj}+ηtB̂t)
+

dμ(x�=i)

≤ eηtB̂t

∫
�̂i
t e

−(max
j �=i

{ηt(λi+�̂i
t−λj−�̂j

t)+xj})+
dμ(x�=i)

= eηtB̂t

∫
1IIIFPL

t =i�̂
i
tdμ(x).

Summing over i and using the analog of (4) for IFPL, we see that if rt = 1, then
Et�̂

FPL
t ≤ eηtB̂tEt�̂

IFPL
t holds. Thus Et�̂

IFPL
t ≥ e−ηtB̂tEt�̂

FPL
t ≥ (1−ηtB̂t)Et�̂

FPL
t ≥

Et�̂
FPL
t − ηtB̂

2
t . The assertion now follows by taking expectations w.r.t. rt. �

The next lemma relates the losses of IFPL and the best action in hindsight.
For an oblivious adversary (which means that the adversary’s decisions do not
depend on our past actions), the proof is quite simple [3]. An additional step is
necessary for an adaptive adversary [11].

Lemma 5.
[
EL̂IFPL <∼ EL̂best

]
Assume that

∑
i e−ki ≤ 1 and τ i depends mono-

tonically on ki, i.e. τ i ≥ τ j if and only if ki ≥ kj. Assume decreasing learning
rate ηt. For all T ≥ 1 and all i ≥ 1,

T∑
t=1

Et�̂
IFPL
t ≤ �̂i

1:T + ki+1
ηT

.

Proof. This is a modification of the corresponding proofs in [3] and [5]. We may
fix the randomization A and suppress it in the notation. Then we only need to
show

E�̂IFPL1:T ≤ min
i≥1
{�̂i

1:T + ki+1
ηT
}, (5)

where the expectation is with respect to IFPL’s randomness q1:T .
Assume first that the adversary is oblivious. We define an algorithm A as a

variant of IFPL which samples only one perturbation vector q in the beginning
and uses this in each time step, i.e. qt ≡ q. Since the adversary is oblivious, A
is equivalent to IFPL in terms of expected performance. This is all we need to
show (5). Let η0 =∞ and λt = �̂t + (k − q)

(
1
ηt
− 1

ηt−1

)
, then λ1:t = �̂1:t + k−q

ηt
.

Recall {t ≥ τ} = {i : t ≥ τ i}. We argue by induction that for all T ≥ 1,

T∑
t=1

λA
t ≤ min

T≥τ
λi

1:T + max
T≥τ

{
qi−ki

ηT

}
. (6)

Defensive Universal Learning with Experts 363

This clearly holds for T = 0. For the induction step, we have to show

min
T≥τ

λi
1:T + max

T≥τ

{
qi−ki

ηT

}
+ λA

T+1 ≤ λ
IA

T+1
1:T + max

T+1≥τ

{
qi−ki

ηT+1

}
+ λ

IA
T +1

T+1 (7)

= min
T+1≥τ

λi
1:T+1 + max

T+1≥τ

{
qi−ki

ηT+1

}
.

The inequality is obvious if IA
T+1 ∈ {T ≥ τ}. Otherwise, let J = arg max

{
qi−ki :

i ∈ {T ≥ τ}}. Then

min
T≥τ

λi
1:T + max

T≥τ

{
qi−ki

ηT

} ≤ λJ
1:T + qJ−kJ

ηT
=

T∑
t=1

�̂J
t ≤

T∑
t=1

B̂t

=
∑T

t=1�̂
IA

T+1
t ≤ λ

IA
T +1

1:T + max
T+1≥τ

{
qi−ki

ηT+1

}
shows (7). Rearranging terms in (6), we see

T∑
t=1

�̂A
t ≤ min

T≥τ
λi

1:T +max
T≥τ i

{
qi−ki

ηT

}
+

T∑
t=1

(q−k)IA
t
(

1
ηt
− 1

ηt−1

)
The assertion (5) – still for oblivious adversary and qt ≡ q – then follows by
taking expectations and using

Emin
T≥τ

λi
1:T ≤ min

T≥τ
{�̂i

1:T + ki

ηT
−E qi

ηT
} ≤ min

i≥1
{�̂i

1:T + ki−1
ηT
} and (8)

E
T∑

t=1

(q − k)IA
t
(

1
ηt
− 1

ηt−1

) ≤ Emax
T≥τ

{
qi−ki

ηT

} ≤ 1
ηT

. (9)

The second inequality of (8) holds because τ i depends monotonically on ki, and
Eqi = 1, and maximality of �̂i

1:T for T < τi. The second inequality of (9) can be
proven by a simple application of the union bound, see e.g. [5–Lem.1].

Sampling the perturbations qt independently is equivalent under expectation
to sampling q only once. So assume that qt are sampled independently, i.e. that
IFPL is played against an oblivious adversary: (5) remains valid. In the last step,
we argue that then (5) also holds for an adaptive adversary. This is true because
the future actions of IFPL do not depend on its past actions, and therefore the
adversary cannot gain from deciding after having seen IFPL’s decisions. This
argument can be made formal, as shown in [11–Lemma 12]. (Note the subtlety
that the future actions of FoE would depend on its past actions.) �

Finally, we give a relation between the estimated and true losses (adapted
from [4]).

Lemma 6.
[
EL̂best <∼ Lbest

]
For each T ≥ 1, δT ∈ (0, 1), and i ≥ 1, we have

(i) �̂i
1:T ≤ �i

1:T +
√

(2 ln 4
δT

)
∑T

t=1 B̂
2
t +
∑τ i−1

t=1 B̂t w.p. 1− δT

2 and hence

(ii) E�̂i
1:T ≤ �i

1:T +
√

(2 ln 4
δT

)
∑T

t=1 B̂
2
t + δT

2

∑T
t=1 B̂t +

∑τ i−1
t=1 B̂t.

364 J. Poland and M. Hutter

Proof. For t ≥ τ i, Xt = �̂i
1:t − �i

1:t is a martingale, since

E[Xt|At−1] = E[�̂i
1:t|At−1]− �i

1:t = Xt−1 + E[�̂i
t|At−1]− �i

t = Xt−1.

It is clear that Xτ i−1 ≤
∑τ i−1

t=1 B̂t. Moreover, |Xt−Xt−1| ≤ B̂t for t ≥ τ i, i.e. we
have bounded differences. By Azuma’s inequality, the actual value XT −Xτ i−1

does not exceed
√

(2 ln 4
δT

)
∑T

t=1 B̂
2
t with probability 1− δT

2 . This proves (i). To
arrive at (ii), take expectations and observe that (i) fails with probability at
most δT

2 , in which case �̂i
1:T ≤

∑T
t=1 B̂t holds. �

We now combine the above results and derive an upper bound on the expected
regret of FoE against an adaptive adversary.

Theorem 7. [FoE against an adaptive adversary] Let
∑

i e−ki ≤ 1, τ i depend
monotonically on ki, and the learning rate ηt be decreasing. Let �t be some pos-
sibly adaptive assignment of (true) loss vectors satisfying ‖�t‖∞ ≤ Bt. Then for
all experts i, we have with probability at least 1− δT

�FoE1:T ≤ �i
1:T + ki+1

ηT
+

τ i−1∑
t=1

B̂t+
T∑

t=1

γtηtB̂
2
t +

T∑
t=1

γtBt+
√

(2 ln 4
δT

)

⎛⎝
√√√√ T∑

t=1

B̂t+

√√√√ T∑
t=1

B2
t

⎞⎠.
Consequently, in expectation, we have

E�FoE1:T ≤ �i
1:T +ki+1

ηT
+

τ i−1∑
t=1

B̂t+
T∑

t=1

γtηtB̂
2
t +

T∑
t=1

γtBt+

√√√√(2 ln 4
δT

)
T∑

t=1

B̂t+ δT

2

T∑
t=1

B̂t.

Proof. This follows by summing up all excess terms in the above lemmas. Recall
that we only need to take expectations on both sides of the assertions of Lemmas
2–5 in order to obtain the second bound on the expectation (and we don’t need
Lemma 1 there). �

Corollary 8. Assume the conditions of Theorem 7 and choose ηt = t−
3
4 and

γt = t−
1
4 . Then

(i) Bt ≡ 1, τ i =�(wi)−8� ⇒ E�FoE1:T ≤ �i
1:T + O

(
(1

wi)11 + kiT
7
8
√

lnT
)
,

(ii) Bt ≡ 1, τ i =�(wi)−8� ⇒ �FoE1:T ≤ �i
1:T + O

(
(1

wi)11+kiT
7
8
√

lnT
)

w.p. 1− 1
T 2 ,

(iii) Bt = t
1
16 , τ i =�(wi)−16�⇒ E�FoE1:T ≤ �i

1:T + O
(
(1

wi)22 + kiT
7
8
√

lnT
)
, and

(iv) Bt = t
1
16 , τ i =�(wi)−16�⇒ �FoE1:T ≤ �i

1:T + O
(
(1

wi)22+kiT
7
8
√

lnT
)

w.p. 1− 1
T 2 ,

for all i and T ≥ 1 (recall ki = − lnwi). Moreover, in both cases (bounded and
growing Bt) FoE is asymptotically optimal w.r.t. each expert, i.e. for all i,

lim sup
T→∞

�FoE1:T − �i
1:T

T
≤ 0 almost surely.

Defensive Universal Learning with Experts 365

The asymptotic optimality is sometimes termed Hannan-consistency, in par-
ticular if the limit equals zero. We only show the upper bound.

Proof. Assertions (i)-(iv) follow from the previous theorem: Set δT = T−2, ab-
breviate wmin

T = min{wi : t ≥ τ i}, and observe that for τ i = �(wi)−α� and
Bt = tβ , we have

wmin
T = min{wi : T ≥ �(wi)−α�} ≥ min{wi : T− 1

α ≤ wi�} ≥ T− 1
α and

τ i−1∑
t=1

B̂t ≤ (τ i − 1)B̂τ i−1 ≤ (wi)−αBτi−1

γτi−1wmin
τi−1

≤ (wi)−α(wi)−αβ

(wi)
α
4 wi

(note wmin
τ i−1 ≥ (τ i − 1)−

1
α ≥ (wi)(−α)(− 1

α)). Then (i) and (ii) follow from α = 8,
β = 0, and (iii) and (iv) follow from α = 16, β = 1

16 . The asymptotic optimality
finally follows from the Borel-Cantelli Lemma, since according to (ii) and (iv),

P
[
�FoE1:T −mini �

i
1:T

T
> CT− 1

8
√

lnT
]
≤ 1

T 2

for an appropriate C > 0. �

As mentioned in the first paragraph of this section, it is possible to avoid
Lemma 6, thus arriving at better bounds. E.g. in (i), choosing τ i =

⌈
(1

wi)8
⌉
,

γt = t−
1
4 , and ηt = t−

3
4 , a regret bound of O

(
(1

wi)11 + kiT
3
4
)

can be shown.
Of course, also a corresponding high probability bound like (ii) holds. Likewise,
for a similar statement as (iii), we may set τ i =

⌈
(1

wi)16
⌉
, Bt = t

1
8 , γt = t−

1
4 ,

and ηt = t−
3
4 , arriving at a regret bound of O

(
(1

wi)23 + kiT
3
4
)

Generally, in this
way any regret bound O

(
(1

wi)c + kiT
2
3+ε
)

is possible, at the cost of increasing c
where ε→ 0.

4 Reactive Environments and a Universal Master
Algorithm

Regret can become a quite subtle notion if we start considering reactive envi-
ronments, i.e. care for future consequences of a decision. An extreme case is the
“heaven-hell” example: We have two experts, one always playing 0 (“saying a
prayer”), the other one always playing 1 (“cursing”). If we always follow the first
expert, we stay in heaven and get no loss in each step. As soon as we “curse” only
once, we get into hell and receive maximum loss in all subsequent time steps.
Clearly, any algorithm without prior knowledge must “fail” in this situation.

One way to get around this problem is taking into account the actual (real-
ization of the) game we are playing. For instance, after “cursing” once, also the
praying expert goes to hell together with us and subsequently has maximum loss.
Hence, were are interested in a regret defined as E�1:T − �i

1:T as in the previous
section. So what is missing? This becomes clear in the following example.

366 J. Poland and M. Hutter

Consider the repeated “prisoner’s dilemma” against the tit-for-tat1 strategy
[1]. If we use two strategies as experts, namely “always cooperate” and “always
defect”, then it is clear that always cooperating will have the best long-term
reward. However standard expert advice or bandit master algorithm will not
discover this, since it compares only the losses in one step, which are always lower
for the defecting expert. To put it differently, minimizing short-term regret is
not at all a good idea here. E.g. always defecting has no regret, while for always
cooperating the regret grows linearly. But this is only the case for short-term
regret, i.e. if we restrict to time intervals of length one.

set t̃ = 1
For t = 1, 2, 3, . . .

invoke FoE(t) and play its decision for Bt basic time steps
set t̃ = t̃ + Bt

Fig. 4. The algorithm F̃oE , where Bt is specified in Corollary 9

We therefore give the control to a selected expert for periods of increasing
length. Precisely, we introduce a new time scale t̃ (the basic time scale) at which
we have single games with losses �̃t̃. The master’s time scale t does not coincide
with t̃. Instead, at each t, the master gives control to the selected expert i

for Bt ≥ 1 single games and receives loss �i
t =
∑t̃(t)+Bt−1

t̃=t̃(t)
�̃i
t̃
. (The points t̃(t) in

basic time are defined recursively, see Fig. 4.) Assume that the game has bounded
instantaneous losses �̃i

t̃
∈ [0, 1]. Then the master algorithm’s instantaneous losses

are bounded by Bt. We denote the algorithm, which is completely specified
in Fig. 4, by F̃oE . Then the following assertion is an easy consequence of the
previous results.

Corollary 9. Assume F̃oE plays a repeated game with bounded instantaneous
losses �̃i

t̃
∈ [0, 1]. Choose γt = t−

1
4 , ηt = t−

3
4 , Bt = �t 1

16 � and τ i = �(wi)−16�.
Then for all experts i and all T̃ ≥ 1,

�̃F̃oE
1:T̃
≤ �̃i

1:T̃
+ O
(
(1

wi)22 + kiT̃
9
10
)

w.p. 1− T̃− 32
17 and

E�̃F̃oE
1:T̃
≤ �̃i

1:T̃
+ O
(
(1

wi)22 + kiT̃
9
10
)
.

Consequently, lim supT→∞(�̃F̃oE
1:T̃
− �̃i

1:T̃
)/T̃ ≤ 0 a.s. The rate of convergence is at

least T̃− 1
10 , and it can be improved to T̃− 1

3+ε at the cost of a larger power of 1
wi .

1 In the prisoner’s dilemma, two players both decide independently if thy are cooper-
ating (C) or defecting (D). If both play C, they get both a small loss, if both play
D, they get a large loss. However, if one plays C and one D, the cooperating player
gets a very large loss and the defecting player no loss at all. Thus defecting is a dom-
inant strategy. Tit-for-tat plays C in the first move and afterwards the opponent’s
respective preceding move.

Defensive Universal Learning with Experts 367

Proof. This follows from changing the time scale from t to t̃ in Corollary 8: t̃
is of order t1+

1
16 . Consequently, the regret bound is O

(
(1

wi)22 + kiT̃
15
17

√
ln T̃
) ≤

O
(
(1

wi)22 + kiT̃
9
10
)
. �

Broadly spoken, this means that FoE T̃ performs asymptotically as well as
the best expert. Asymptotic performance guarantees for the Strategic Experts
Algorithm have been derived in [1]. Our results improve upon this by providing
a rate of convergence. One can give further corollaries, e.g. in terms of flexibility
as defined in [1].

Since we can handle countably infinite expert classes, we may specify a uni-
versal experts algorithm. To this aim, let expert i be derived from the ith (valid)
program pi of some fixed universal Turing machine. The ith program can be well-
defined, e.g. by representing programs as binary strings and lexicographically
ordering them [6]. Before the expert is consulted, the relevant input is written
to the input tape of the corresponding program. If the program halts, an appro-
priate part of the output is interpreted as the expert’s recommendation. E.g. if
the decision is binary, then the first bit suffices. (If the program does not halt,
we may for well-definedness just fill its output tape with zeros.) Each expert is
assigned a prior weight by wi = 2−length(pi), where length(pi) is the length of
the corresponding program and we assume the program tape to be binary. This
construction parallels the definition of Solomonoff’s universal prior [12].

Corollary 10. If F̃oE is used together with a universal expert class as speci-
fied above and the parameters ηt, γt, Bt, δT are chosen as in Corollary 9, then
it performs asymptotically at least as well as any computable expert i. The up-
per bound on the rate of convergence is exponential in the complexity ki and
proportional to t̃−

1
10 (improvable to t̃−

1
3+ε).

The universal prior has been used to define a universal agent AIXI in a quite
different way [13, 6]. Note that like the universal prior and the AIXI agent, our
universal experts algorithm is not computable, since we cannot check if a the
computation of an expert halts. On the other hand, if used with computable
experts, the algorithm is computationally feasible (at each time t we need to
consider only finitely many experts). Moreover, it is easy to impose an addi-
tional constraint on the computation time of each expert and abort the expert’s
computation after Ct operations on the Turing machine. We may choose some
(possibly rapidly) growing function Ct, e.g. Ct = 2t. The resulting master al-
gorithm is fully computable and has small regret with respect to all resource
bounded strategies.

It is important to keep in mind that Corollaries 9 and 10 give assertions
relative to the experts’ performance merely on the actual action-observation
sequence. In other words, if we wish to assess how well F̃oE does, we have to
evaluate the actual value of the best expert [14]. Note that the whole point of our
increasing time construction is to cause this actual value to coincide with the
value under ideal conditions. For passive tasks, this coincidence always holds
with any experts algorithm. With F̃oE , the actual and the ideal value of an

368 J. Poland and M. Hutter

expert coincide in many further situations, such as “finitely controllable tasks”.
By this we mean cases where the best expert can drive the environment into some
optimal state in a fixed finite number of time steps. An instance is the prisoner’s
dilemma with tit-for-tat being the opponent. The following is an example for a
formalization of this statement.

Proposition 11. Suppose F̃oE acts in a (fully or partially observable) Markov
Decision Process. Let there be a computable strategy which is able to reach an
ideal (that is optimal w.r.t. reward) state sequence in a fixed number of time
steps. Then F̃oE performs asymptotically optimal.

This statement may be generalized to cases where only a close to optimal
state sequence is reached with high probability. However, we need assumptions
on the closeness to optimality for a given target probability, which are compatible
with the sampling behavior of F̃oE .

Not all environments have this or similar nice properties. As mentioned above,
any version of FoE would not perform well in the “heaven-hell” example. The
following is a slightly more interesting variant of the heaven-hell task, where
we might wish to learn optimal behavior, however FoE will not. Consider the
heaven-hell example from the beginning of this section, but assume that if at
time t I am in hell and I “pray” for t consecutive time steps, I will get back into
heaven. Then it is not hard to see that FoE ’s exploration is so dominant that
almost surely, FoE will eventually stay in hell.

Simulations with some 2×2 matrix games show similar effects, depending on
the opponent. We briefly discuss the repeated game of “chicken”2. In this game,
it is desirable for the learner to become the “dominant defector”, i.e. to defect in
the majority of the cases while the opponent cooperates. Let’s call an opponent
“primitive” if he agrees to cooperate after a fixed number of consecutive defecting
moves of FoE , and let’s call him “stubborn” if this number is high. Then FoE
learns to be the dominant defector against any primitive opponent, however
stubborn. On the other hand, if the opponent is some learning strategy which also
tries to be the dominant defector and learns faster (we conducted the experiment
with AIXI [6]), then FoE settles for cooperating, and the opponent will be the
dominant defector. Interestingly however, AIXI would not learn to defect against
a stubborn primitive opponent. Under this point of view, it seems questionable
that there is something like a universally optimal balance of exploration vs.
exploitation in active learning at all.

2 This game, also known as “Hawk and Dove”, can be interpreted as follows. Two
coauthors write a paper, but each tries to spend as little effort as possible. If one
succeeds to let the other do the whole work, he has a high reward. On the other hand,
if no one does anything, there will be no paper and thus no reward. Finally, if both
decide to cooperate, both get some reward. We choose the loss matrix as

(
1 0

0.8 0.5

)
, the

learner is the column player, the opponent’s loss matrix is the transpose, choosing
the fist column means to defect, the second to cooperate. Hence, in the repeated
game, it is socially optimal to take turns cooperating and defecting.

Defensive Universal Learning with Experts 369

5 Discussion

An Alternative Argument for Adaptive Adversary. As mentioned in the
beginning of Section 3, the analysis we gave uses a trick from [4]. Such a trick
seems necessary, as the basic FPL analysis only works for oblivious adversary.
The simple argument from [11] which we used in the last paragraph of the proof
of Lemma 5 works only for full observation games (note that considering the
estimated losses, we were actually dealing with full observations there). In order
to obtain a similar result in the partial observation case, we may argue as fol-
lows. We let the game proceed for T time steps with independent randomization
against an adaptive adversary. Then we analyze FoE ’s performance in retro-
spective. In particular, we note that for the losses assigned by the adversary,
FoE ’s expected regret coincides with the regret of another, virtual algorithm,
which uses (in its FPL subroutine) identical perturbations qt ≡ q. Performing
the analysis for this virtual algorithm, we arrive at the desired assertion, however
without needing Lemma 6. This results in tighter bounds as stated above. The
argument is formally elaborated in [8].

Actual Learning Speed and Lower Bounds. In practice, the bounds we
have proven seem irrelevant except for small expert classes, although asserting
almost sure optimality and even a convergence rate. The exponential of the
complexity 1

wi may be huge. Imagine for instance a moderately complex task
and some good strategy, which can be coded with mere 500 bits. Then its prior
weight is 2−500, a constant which is not distinguishable from zero in all practical
situations. Thus, it seems that the bounds can be relevant at most for small
expert classes with uniform prior. This is a general shortcoming of bandit style
experts algorithms: For uniform prior a lower bound on the expected loss which
scales with

√
n (where n is the size of the expert class) has been proven [10].

In order to get a lower bound on FoE ’s regret in the time T , observe that
FoE is a label-efficient learner [15, 16]: According to the definition in [16], we
may assume that in each exploration step, we incur maximal loss Bt. It is im-
mediate that the same analysis then still holds. For label-efficient prediction,
Cesa-Bianchi et al. [16] have shown a lower regret bound of O(T

2
3). Since ac-

cording to the remark at the end of Section 3, we have an upper bound of
O
(
(1

wi)c + kiT
2
3+ε
)
, this is almost tight except for the additive (1

wi)c term. It is
an open problem to state a lower bound simultaneously tight in both 1

wi and T .
Even if the bounds, in particular 1

wi , seem not practical, maybe FoE would
learn sufficiently quickly in practice anyway? We believe that this is not so in
most cases: The design of FoE is too much tailored towards worst-case environ-
ments, FoE is too defensive. Assume that we have a “good” and a “bad” expert,
and FoE learns this fact after some time. Then it still would spend a relatively
huge fraction of γt = t−

1
4 to exploring the bad expert. Such defensive behavior

seems only acceptable if we are already starting with a class of good experts.

Acknowledgment. This work was supported by SNF grant 2100-67712.02 and
JSPS 21st century COE program C01.

370 J. Poland and M. Hutter

References

[1] de Farias, D.P., Megiddo, N.: How to combine expert (and novice) advice when
actions impact the environment? In: Advances in Neural Information Processing
Systems (NIPS) 16. MIT Press, Cambridge, MA (2004)

[2] Hannan, J.: Approximation to Bayes risk in repeated plays. In Dresher, M.,
Tucker, A.W., Wolfe, P., eds.: Contributions to the Theory of Games 3. Princeton
University Press (1957) 97–139

[3] Kalai, A., Vempala, S.: Efficient algorithms for online decision. In: Proc. 16th
Annual Conference on Learning Theory (COLT). Springer (2003) 506–521

[4] McMahan, H.B., Blum, A.: Online geometric optimization in the bandit setting
against an adaptive adversary. In: 17th Annual Conference on Learning Theory
(COLT). Volume 3120 of Lecture Notes in Computer Science., Springer (2004)
109–123

[5] Hutter, M., Poland, J.: Prediction with expert advice by following the perturbed
leader for general weights. In: International Conference on Algorithmic Learning
Theory (ALT). (2004) 279–293

[6] Hutter, M.: Universal Artificial Intelligence: Sequential Decisions based on Algo-
rithmic Probability. Springer, Berlin (2004)

[7] Auer, P., Cesa-Bianchi, N., Freund, Y., Schapire, R.E.: Gambling in a rigged
casino: The adversarial multi-armed bandit problem. In: Proc. 36th Annual Sym-
posium on Foundations of Computer Science (FOCS), IEEE (1995) 322–331

[8] Poland, J.: FPL analysis for adaptive bandits. 3rd Symposium on Stochastic
Algorithms, Foundations and Applications (SAGA), to appear (2005)

[9] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University
Press, Cambridge, England (1995)

[10] Auer, P., Cesa-Bianchi, N., Freund, Y., Schapire, R.E.: The nonstochastic multi-
armed bandit problem. SIAM Journal on Computing 32 (2002) 48–77

[11] Hutter, M., Poland, J.: Adaptive online prediction by following the perturbed
leader. Journal of Machine Learning Research 6 (2005) 639–660

[12] Solomonoff, R.J.: Complexity-based induction systems: comparisons and conver-
gence theorems. IEEE Trans. Inform. Theory 24 (1978) 422–432

[13] Hutter, M.: Towards a universal theory of artificial intelligence based on algo-
rithmic probability and sequential decisions. Proc. 12th European Conference on
Machine Learning (ECML-2001) (2001) 226–238

[14] de Farias, D.P., Megiddo, N.: Exploration-exploitation tradeoffs for experts algo-
rithms in reactive environments. In: Advances in Neural Information Processing
Systems 17. (2005)

[15] Cesa-Bianchi, N., Lugosi, G., Stoltz, G.: Minimizing regret with label efficient
prediction. In: 17th Annual Conference on Learning Theory (COLT). Volume
3120 of Lecture Notes in Computer Science., Springer (2004) 77–92

[16] Cesa-Bianchi, N., Lugosi, G., Stoltz, G.: Regret minimization under partial mon-
itoring. Technical report (2004)

On Following the Perturbed Leader
in the Bandit Setting

Jussi Kujala and Tapio Elomaa

Institute of Software Systems,
Tampere University of Technology,

P.O. Box 553, FI-33101 Tampere, Finland
jussi.kujala@tut.fi, elomaa@cs.tut.fi

Abstract. In an online decision problem an algorithm is at each time
step required to choose one of the feasible points without knowing the
cost associated with it. An adversary assigns the cost to possible deci-
sions either obliviously or adaptively. The online algorithm, naturally,
attempts to collect as little cost as possible. The cost difference of the
online algorithm and the best static decision in hindsight is called the
regret of the algorithm.

Kalai and Vempala [1] showed that it is possible to have efficient
solutions to some problems with a linear cost function by following the
perturbed leader. Their solution requires the costs of all decisions to be
known. Recently there has also been some progress in the bandit setting,
where only the cost of the selected decision is observed. A bound of
O(T 2/3) on T rounds was first shown by Awerbuch and Kleinberg [2]
for the regret against an oblivious adversary and later McMahan and
Blum [3] showed that a bound of O(

√
ln TT 3/4) is obtainable against an

adaptive adversary.
In this paper we study Kalai and Vempala’s model from the viewpoint

of bandit algorithms. We show that the algorithm of McMahan and Blum
attains a regret of O(T 2/3) against an oblivious adversary. Moreover, we
show a tighter O(

√
m ln m

√
T) bound for the expert setting using m

experts.

1 Introduction

An online algorithm performs a sequence of tasks without any information on
the future conditions, while an offline algorithm has the full information on them
at its disposal. Online algorithms are often analyzed against an adversary, which
gets to pick the next task (with the intention to hurt the algorithm as much as
possible) after observing the preceding actions of the algorithm. Moreover, their
performance is compared to that of offline algorithms. There are also differences
in how much information does the online algorithm receive. Typically a cost is
assigned to the decisions taken by the algorithm.

One method of ranking online algorithms is to compare their cost to the best
static object, i.e., to a situation where the offline algorithm consistently chooses

S. Jain, H.U. Simon, and E. Tomita (Eds.): ALT 2005, LNAI 3734, pp. 371–385, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

372 J. Kujala and T. Elomaa

a single static output. Of course, the applicability of this model depends on the
specific problem. For example, a binary search tree algorithm could compare its
cost to that of the best static tree for the access sequence [4]. It can be argued
that a static distribution models well some real world situations.

Kalai and Vempala [1] showed that many online decision problems have effi-
cient solutions, given an oracle for the offline version of the problem. The prob-
lems they consider are those where the decisions can be thought of as vectors
x ∈ Rn and the cost is a linear function on decision vectors. We will adopt their
model and notation, which are as follows.

Throughout this article we denote the dimension of the decision and cost
vector space by n. At each time step t ∈ {1, . . . , T} a decision vector xt is chosen
from a set SD ⊂ Rn. Then a cost vector ct from a set SC ⊂ Rn is revealed, and
the algorithm suffers a cost ct · xt. The cost is an Euclidean dot product of the
cost vector and the decision vector. Thus, the cost function captures redundancy
in problems where the costs for different decisions can be linearly related.

Kalai and Vempala [1] (re)introduced the Follow the Perturbed Leader (FPL)
algorithm, which selects a decision based on past cost vectors. Originally this
method was proposed by Hannan [5] already in 1957. In short, the FPL selects
the best decision for the past cost vectors which are perturbed by a random
vector (hence the name). Note that if the set of decisions is discrete then a ran-
domized algorithm must be used, because a deterministic algorithm can always
be misguided. For example, if there are two experts A and B that incur a cost
in sequential turns A, B, A, B, A, B, . . . then choosing the expert with the lower
cost results in a high regret. In a convex decision space deterministic algorithms
can be competitive. In deed, the algorithm of Zinkevich [6] deterministically
solves a convex optimization problem, where both the decision space and cost
function are convex.

A substantial amount of research has been devoted to expert algorithms [7],
where no assumption on the linear nature of the cost function is made. One can
rather assume the experts (and their costs) to be independent of each other. In
the expert setting one needs to have an explicit representation for the decision
vector space SD, while in online decision problems one only requires access to
an efficient oracle for choosing the best decision in hindsight. For example, the
weighted majority algorithm of Littlestone and Warmuth [8] can be used to solve
the same problems as FPL if the set of decision vectors is finite.

However, a more specialized algorithm has advantages for example in the
shortest online routing problem. In this problem there is a directed acyclic graph
with a start node and an end node. At each turn an algorithm selects a route
from the start node to the end node based on past observations of the costs on
edges. The weighted majority algorithm may be applied to the shortest online
routing by considering each route as an individual expert. However, in the worst
case the number of routes is exponential in the number of edges and, thus,
the computational complexity becomes intractable. Furthermore, one can expect
that the internal structure of the shortest online routing results in a lower regret,
because different routes may share edges and their costs are related. In deed, the

On Following the Perturbed Leader in the Bandit Setting 373

weighted majority algorithm can be applied in an efficient manner to a problem
that is very similar to the shortest online routing [9].

The shortest online routing problem can be solved by the FPL algorithm by
considering each edge as an element in a vector. An element is either zero or
one depending on whether the edge was used on the route or not. Thus, the cost
vector consists of the edge weights and only these need to be saved for future
use, in contrast to the weighted majority algorithm, which stores a weight for
each route.

Let us introduce some further notation. There is an oracle M : SC → SD

such that M(c) is the optimal decision for a cost vector c. We abbreviate the
sum of costs up to time step t as c1:t =

∑t
i=1 ci. Hence, if T is the total number

of rounds, then M(c1:T) is the best static decision and M(c1:T) · c1:T is its cost.
The regret of an algorithm is the cost difference between the best static decision
M(c1:T) and the algorithm. The sets of decision and cost vectors have to be
restricted, because otherwise it is possible to suffer an unbounded amount of
regret during a single turn. There is a bound on the diameter of the decision set
‖xt − x′

t‖1 ≤ D for all xt, x
′
t ∈ SD, the cost set ‖ct‖1 ≤ A for any ct ∈ SC , and

the maximum cost |ct · xt| ≤ R.
With the above restrictions the FPL algorithm achieves a cost of

(1 + ε)M(c1:T) · c1:T +
D lnn

ε

for a parameter ε. Thus, the regret of the FPL algorithm is O(
√

T) when a
suitable ε is plugged into the above formula. This means that the decisions
selected by the FPL algorithm are in the long run almost as good as the best
decision chosen consistently.

Recall that the FPL requires all past information to be known, i.e., all pre-
vious cost vectors. In a natural generalization of the problem the whole cost
vector is not observed. For example, in the shortest online routing with end-to-
end feedback [2] only the cost on the chosen route is given. Similar restrictions
have been studied in the expert setting, where one expert is selected at each turn
from a pool of experts and the cost 0 ≤ c ≤ 1 of the selected expert is suffered.
In a restricted setting only the cost of the selected expert is observed. In this
situation the algorithm of Auer et al. [10] obtains a regret of O(

√
Tm lnm) for m

experts. Note that we use m to indicate the number of the experts (or decision
vectors) and n to indicate the dimension of some particular problem as described
before. We are especially interested in the case where n0 m.

Awerbuch and Kleinberg [2] consider the online decision situation, where
only the cost ct ·xt is observed after a decision xt. Their algorithm uses the FPL
algorithm as a black-box and estimates the cost vector from independent sam-
ples. This setting can be split into two separate problems, first how to estimate
the cost vector, and second how to select and analyze the decision based on the
estimates of the cost vectors. This situation is the bandit FPL. The algorithm of
Awerbuch and Kleinberg has a regret of the order O(Rn5/3 ln1/3 n T 2/3) against
an oblivious adversary, which decides the cost vectors in advance without knowl-
edge of the decisions made by the algorithm. McMahan and Blum [3] obtained

374 J. Kujala and T. Elomaa

Table 1. Summary of earlier bounds for the regret in terms of the length of the
sequence T and our results

Paper Adversary Model Setting Regret Bound
Auer et al. [10] Adaptive Bandit, Expert O(

√
Tm ln m)

Kalai and Vempala [1] Adaptive Transparent O(
√

DRAT)
Awerbuch and Kleinberg [2] Oblivious Bandit O(Rn5/3 ln1/3 n T 2/3)

McMahan and Blum [3] Adaptive Bandit O(
√

ln T T 3/4) a

This paper Oblivious Bandit, Expert O(
√

Tm ln m)
Oblivious Bandit O(Rn(DA lnn)1/3T 2/3)

a Polynomial dependence on parameters is not shown

a regret of O(
√

lnT T 3/4) for the bandit FPL against an adaptive adversary,
which may use the past decisions x1, . . . , xt−1 of the algorithm when choosing
the cost vector ct.

Flaxman, Kalai, and McMahan [11] analyze a bandit algorithm for the Zinke-
vich’s [6] convex optimization algorithm, proving a regret of O(T 5/6) against an
oblivious adversary. Hutter and Poland [12] study an adaptive FPL, i.e., a version
of FPL in which the total number of rounds T is not known. Additionally, they
show that many of the results obtained in the expert setting can be elegantly
proved also in the FPL setting, albeit with worse constants.

Table 1 summarizes the relevant results from previous work and puts the
results derived in this paper into the map.

In this paper we analyze one way of implementing a bandit algorithm for
the FPL. Section 2 gives a general condition for unbiased estimates for the cost
vector ct when a decision xt has been made and the cost ct ·xt has been observed.
In Sections 3–4 we analyze this estimate. Our results apply against an oblivious
adversary. In particular, Section 3 shows how to use the framework of Kalai and
Vempala to derive an upper bound for the bandit FPL. In Section 3.1 we proceed
to derive a O(

√
Tm lnm) regret in the expert setting. This is to the best of our

knowledge the first time that a O(
√

T) regret has been demonstrated in a bandit
FPL. Finally, in Section 4 we show an upper bound O(T 2/3) that holds in the
general case. This upper bound can be applied to the algorithm analyzed by
McMahan and Blum [3], thus improving their bound O(

√
lnT T 3/4) against an

adaptive adversary to O(T 2/3) against an oblivious adversary (which, of course,
is not necessarily an improvement).

2 An Unbiased Estimate for a Cost Vector

Awerbuch and Kleinberg [2] as well as McMahan and Blum [3] mention one of
problems of the bandit FPL to be a lack of a good way of estimating the cost
vector. In this section we will study a one kind of unbiased estimate for the cost
vector in a restricted setting. We consider the case where the number of decision
vectors m is finite. Let x1, . . . , xm be the decision vectors of the problem and
define a matrix X = [x1, . . . , xm] to contain the decision vectors as columns.

On Following the Perturbed Leader in the Bandit Setting 375

At time t we choose a decision xt from a distribution given by probabilities
p(xt) > 0 (recall that randomization is necessary) and then observe the cost
ct ·xt. We limit ourselves to the situation in which the cost vector ct is estimated
independently at each turn with some unbiased ĉt and the cumulative estimate
is simply the additive ĉ1:t. Thus an estimate ĉt of ct can be based only on the
selected decision xt, the probability distribution on decisions, and the cost ct ·xt.
We assume that ĉ = (c · x/p(x)) vx, where vx ∈ Rn is the direction vector of the
estimate. Let the directions vx make up a matrix V = [v1, . . . , vm]. Then

E (ĉ) =
∑
x∈X

(c · x) vx =
∑
x∈X

vxxT c = V XT c. (1)

This implies that ideally we should choose V so that V XT = In×n. However,
the matrix X does not necessarily have a rank of n. Then

V XT = PR(XT), (2)

where PR(XT) is a projection matrix to the column space of X , is a sufficient
condition to obtain an unbiased ĉ. Such an estimate is unbiased in the sense
that the part of the cost vector c, which is in the null space of the matrix XT ,
does not matter when calculating the actual costs. Another possibility is to first
make the matrix X full rank by projecting it to a suitable subspace [3]. Both
approaches require R(XT) to be known.

Kalai and Vempala’s [1] approach resulted in an efficient solution given M(c).
To have an efficient procedure for estimation, we need to assume that the prob-
abilities p(xt) can be obtained, and that an solution for the matrix V is found.
Previous work [3, 2] has estimated the cost vector from independent samples on
a certain subset of decision vectors, so the probabilities have been uniform, and
hence there has not been a need for more complex estimation of the probabilities
on decisions. Our estimates may be applied similarly, or in any other way as long
as it is possible to obtain the values p(xt).

Choosing the matrix V is a separate problem from estimating the probabil-
ities. We show one method for selecting a matrix V efficiently in the routing
case. Although X ∈ Rn×m, it is possible to calculate the matrix XXT ∈ Rn×n

in time polynomial in n. This is because (XXT)ij is the number of routes that
share both edges i and j. Now if X has a rank of n then V = (XXT)−1X is one
possible solution to equation (2). In this case vx = (XXT)−1x. On the other
hand, if X is not full rank, we may select V =

(
XXT

)+
X , where (XXT)+ is

the Moore-Penrose matrix inverse of the matrix XXT , which can be calculated
efficiently using the singular value decomposition. The Moore-Penrose matrix
inverse [13, 14] for a n×m matrix A is a unique matrix pseudoinverse A+ such
that:

1. AA+A = A,
2. A+AA+ = A+,
3. (AA+)T = AA+, and
4. (A+A)T = A+A.

376 J. Kujala and T. Elomaa

Table 2. The bandit FPL algorithm considered in this paper

Set vx to be the column corresponding to the decision x in the matrix V satisfying a
formula V XT = PR(XT) (bounds will depend on the particular choice). For example,
vx = (XXT)+x or a choice based on barycentric spanner [2].
On time step t

1. Sampling step: With probability γ obtain a decision independent of ĉ1:t−1 such
that the probability of sampling a decision xt is proportional to ‖vxt‖1.

Exploitation step: With probability 1 − γ the decision M(ĉ1:t−1 + rt) is used.
2. Set

ĉt =
ct · xt

p(xt)
vxt

to be the estimate of the ct, where p(xt) is the probability of choosing the decision
xt (both sampling and exploitation steps could be taken into consideration).

It is well known that these conditions imply that AA+ is the projection matrix
to the column space of a matrix A. Thus, because the column spaces of X and
XXT are the same, and XXT is a symmetrix matrix,

V T X =
(
XXT

)+
XXT = XXT

(
XXT

)+
= PR(XT)

as was required. Actually, (XXT)−1 = (XXT)+ if X is full rank, so we would
not have needed to handle separately the case when X is full rank.

In general, equation (2) gives us some flexibility on choosing the estimate ĉt.
In the following chapters we give conditions when an estimate based on a matrix
V results in a low regret.

3 An Upper Bound for a Bandit FPL Algorithm

Let us first describe the algorithm that we use. At time t do a sampling step
with probability γ and an exploitation step with probability 1−γ. On a sampling
step an independent estimation of the cost vector should be obtained, in case
of independent experts this could be drawn from a uniform distribution. On an
exploitation step choose a decision M(ĉ1:t−1 + rt), where rt is a random per-
turbation vector. The probabilities for decisions must be such that the possible
decisions span the column space of X , otherwise it is not possible to estimate an
unbiased cost vector ct. Table 2 summarizes the algorithm that will be analyzed
in the following.

We derive an upper bound for the regret of the above algorithm against an
oblivious adversary. The bound holds under expected value. Recall that R is the
maximum cost. For the sampling steps the trivial γRT bound is enough. For the
exploitation steps we use the following two lemmas that Kalai and Vempala [1]
proved.

On Following the Perturbed Leader in the Bandit Setting 377

Lemma 1. For all c1, . . . , cT and for all p0 = 0, p1, . . . , pT it holds that

T∑
t=1

M(c1:t + pt) · ct ≤M(c1:T) · c1:T +
T∑

t=1

(M (c1:T)−M (c1:t + pt)) · (pt− pt−1).

Lemma 2. Recall A is the maximum one norm of any cost vector. The follow-
ing holds when items of a perturbation vector are distributed according to the
standard double exponential distribution ε/2 exp(−ε|x|):

T∑
t=1

M(c1:t−1 + pt) · ct ≤
T∑

t=1

M(c1:t + pt) · ct + εRAT .

The intuitive picture is that Lemma 1 can be used to estimate how much the
difference ĉ1:t− c1:t matters. Thus, by setting pt to be ĉ1:t−1− c1:t−1 + rt, which
is the estimation error plus the random perturbation, we obtain by Lemma 1
the following inequality.

T∑
t=1

M(ĉ1:t−1 + ct + rt) · ct

≤M(c1:T) · c1:T

+
T∑

t=1

(M (c1:T)−M (ĉ1:t−1 + ct + rt)) · (ĉt−1 − ct−1 + rt − rt−1) . (3)

There are random variables rt and ĉ1:t−1 in the equation. Note that ĉ1:t−1 de-
pends on the variables r1, . . . , rt−1. As we are going to take expected value over
the equation we can replace the variable rt with a variable st that is similarly dis-
tributed. We do not replace the variables r1, . . . , rt−1 within the variable ĉ1:t−1.
This is possible by linearity of expectation. We can now apply the trick used by
Kalai and Vempala [1]: as expected value is linear, we can correlate the values
st by setting st = s1 for all t, which eliminates some terms.

Now we proceed to the following chain of equations for the cost of the ex-
ploitation steps. Recall that D is the diameter of the decision space.

E

(
T∑

t=1

M (ĉ1:t−1 + st) · ct

)

≤ E

(
T∑

t=1

M (ĉ1:t−1 + ct + st) · ct

)
+ εRAT (4)

≤M(c1:T) · c1:T + εRAT

+ E

(
T∑

t=1

(M (c1:T)−M (ĉ1:t−1 + ct + st)) · (ĉt−1 − ct−1 + st − st−1)

)
(5)

378 J. Kujala and T. Elomaa

≤M(c1:T) · c1:T +
D(1 + lnn)

ε
+ εRAT

+ E

(
T∑

t=1

(M (c1:T)−M (ĉ1:t−1 + ct + st)) · (ĉt−1 − ct−1)

)
. (6)

Equation (4) follows from Lemma 2 and equation (5) follows by inequality (3).
Equation (6) again follows from the arguments of Kalai and Vempala [1]: as
st = s1, we only need to worry of the first term of the sum, which they upper
bounded by E (D‖s1‖∞) ≤ D(1 + lnn)/ε.

Now the problem has reduced to solving the expected value on the right-hand
side of equation (6). As we are using the oblivious adversary model, the vectors
ct are not random variables and thus we simply calculate

E (M (c1:T) · (ĉt−1 − ct−1)) = M(c1:T) · (E (ĉt−1)− ct−1) = 0.

We are finally left with

T∑
t=1

M(ĉ1:t−1 + ct + st) · (ct−1 − ĉt−1). (7)

This term cannot be bounded elementarily, because both sides of the dot product
are dependent random variables.

3.1 Restriction to the Experts Setting

The simplest application of the bandit FPL is the expert setting, where there
are m independent experts. Let us examine this framework for a while. Similar
techniques as applied here are subsequently used to prove the more general The-
orem 2. The expert situation can be described in the general setting by selecting
the possible decisions to be the standard basis, i.e., vectors ei which form the
identity matrix I. Naturally, the number of dimensions n equals the number of
experts m in this case. Thus, ĉt now reduces to (ct/p(xt))M (ĉ1:t−1 + st), as can
be expected if one is familiar with prior work [10].

Theorem 1. In the expert setting the estimation regret of the exploitation steps
is upper bounded by

E (M (ĉ1:t−1 + ct−1 + st) · (ct−1 − ĉt−1)) ≤ ε
(
2 (‖ct−1‖1 + 1) + ‖ct−1‖22

)
.

Proof. Let pt(i) be the probability that the ith expert is chosen at time t and let
pt(i | j) be the probability that it is chosen at time t given that the jth expert
was chosen at time t− 1. Let ci

t be the ith element of the cost vector ct. Under
expectation one term of the sum (7) simplifies in the expert setting to

E (M (ĉ1:t−1 + ct−1 + st) · (ct−1 − ĉt−1))

=
m∑

i=1

m∑
j=1

cj
t−1pt(i | j)pt−1(j)−

m∑
i=1

ci
t−1pt(i | i). (8)

On Following the Perturbed Leader in the Bandit Setting 379

In order to upper bound equation (8) we use a technique similar to the one
employed by Kalai and Vempala [1]. The probability of selecting expert i during
an exploitation step is the probability that the used cost vector plus random
perturbation vector will lie in the area of space where the ith coordinate is
smaller than other coordinates. Let us denote this area by Si ⊆ Rn. For example,
in case of two experts there are two areas S1 and S2 which are separated in R2

by the diagonal line x = y. The probability pt(i | j) in terms of the change
δ = ĉt−1 in the cost vector b = ĉ1:t−2 is

pt(i | j) =
γ

m
+ (1− γ)

∫
Si

(ε

2

)n

exp(−ε‖x− (b− δ)‖1)dx

≤ γ

m
+ (1− γ) exp(ε‖δ‖1)

∫
Si

(ε

2

)n

exp(−ε‖x− b‖1)dx

≤ exp(ε‖δ‖1)pt−1(i), (9)

where the inequality follows by the triangle inequality. Similarly pt(i | j) may
be lower bounded:

pt(i | j) ≥ exp(−ε‖δ‖1)pt−1(i).

We assume that εci/pi ≤ 1, which implies that the sampling probability γ should
be chosen such that εnci ≤ γ. Then

pt(i | j) ≤ exp
(

ε

(
ci
t−1

pt−1 (i)
+ ‖ct−1‖

))
pt−1 (i)

≤ 1 + 2ε

(
ci
t−1

pt−1 (i)
+ ‖ct−1‖

)
pt−1 (i) . (10)

Now, the left-hand term of equation (8) can be upper bounded as
m∑

i=1

m∑
j=1

ci
t−1pt(i | j)pt−1(j)

≤
m∑

i=1

m∑
j=1

ci
t−1 exp

(
εcj

t−1

(
1 +

1
pt−1(j)

))
pt−1(i)pt−1(j)

≤
m∑

i=1

ci
t−1pt−1(i)

⎛⎝ m∑
j=1

pt−1(j) + 2εcj
t−1 (1 + pt−1(j))

⎞⎠
=

m∑
i=1

ci
t−1pt−1(i) + 2ε (‖c‖t−1 + 1) .

Similarly, the right-hand term of equation (8) can be lower bounded as
n∑

i=1

ci
t−1pt(i | i) ≥

n∑
i=1

ci
t−1pt−1(i)− ε‖ct−1‖22.

Hence, the estimation regret obtained is ε
(
2 (‖ct−1‖1 + 1) + ‖ct−1‖22

)
as claimed,

thus, completing the proof.

380 J. Kujala and T. Elomaa

Theorem 1 can be interpreted to give the regret we suffer from not knowing
the true ct at each turn. All in all, the total regret in the expert setting can be
upper bounded by

D(1 + lnn)
ε

+ εRAT + γRT + ε

(
2 (‖ct‖1 + 1) +

T∑
t=1

‖ct‖22
)
.

We were analyzing the expert setting so A = m, R = 1, D = 2, ‖ct‖1 ≤ m,
and ‖ct‖22 ≤ m. Plugging in a good ε and γ we get an upper bound of

4
√

5
√

(1 + lnm)mT +
2
√

1 + lnm√
5mT

,

which is O(
√

T). As far as we know, this is the first time that a O(
√

T) bound
has been demonstrated in a bandit FPL. As a side note, we failed to analyze
the expert setting when the perturbation distribution was uniform, because if
the probabilities are in the order of

√
ε, a high regret occurs when this kind of

analysis is used.

4 The General Case

Now we assume that the decision vectors may be arbitrary and prove a weaker
bound for the regret than in the expert setting. Equation (2) gave a necessary
condition for an unbiased estimate for ct. However, an unbiased estimate as
such does not guarantee a low regret, because the obtained estimates may be far
from the true cost vector; i.e., the variance of the estimate is high. To analyze
the regret we set a bound for the column vectors vx of the matrix V that is∑

y∈X‖vy‖1 ≤ E. Intuitively, this restriction ensures that E (‖ĉt‖1) is at most
proportional to E. In the next paragraphs it is argued that we can assume E to
be polynomial in n (in fact linear, if we do a certain change in the basis).

Recall the definition of the matrix V : V XT = PR(XT). If vi is the ith row
of the matrix V , then Xvi = P i

R(XT), where P i
R(XT) is the ith column of the

symmetric projection matrix PR(XT). Now, if the vector P i
R(XT) belongs to the

convex closure spanned by the column vectors of X (which are the decision
vectors), then there are solutions in which ‖vi‖1 = 1. Of course, this does not
necessarily happen, but we can conclude that the norm ‖vi‖1 is a property of
the relative locations of the decision vectors, not a function on the number of
decisions m (if m is large relative to n). Even better, the decision vectors can be
transformed to a base where we can select E = n.

Recall that the barycentric spanner introduced by Awerbuch and Kleinberg
[2] demonstrates that any decision vector can be presented as a linear combina-
tion of n decision vectors, where the coefficients are in [−1, 1]. The n decision
vectors are called the barycentric spanner, and we choose columns of a matrix
XB to be these decision vectors. If the decision vectors are transformed to a base,
where ei corresponds to the ith decision vector in the barycentric spanner, then

On Following the Perturbed Leader in the Bandit Setting 381

we can choose vi so that ‖vi‖1 = 1, because we can choose vi to be one for the
ith decision in the barycentric spanner and zero otherwise. Thus, E = n in this
case. If we are forced to use this trick with the barycentric spanner to bound E,
then we estimate only using the vectors in the barycentric spanner. Additionally,
we need to be sure that the bounds D, A, and R do not change too much when
moving to the base formed with the barycentric spanner. If we denote by D′, R′

and A′ the new bounds when the decision vectors are transformed by XB, then
D′ ≤ 2n, R′ = R, and A′ = maxc′‖c′‖1 = maxc‖XBc‖1 ≤ DA.

Finally, note that even though the vectors are projected to a base spanned
by the barycentric spanner, the problem can be solved without projecting the
decision vectors to this space by transforming the perturbation vector rt to
X−1

B rt. Then the oracle M(c) selects always the same decisions and thus the
regret of both the projected and the original algorithm is the same. Thus, we
can analyze an algorithm in the barycentric spanner, but in practice we do not
need to project all decision vectors to the space spanned by the barycentric
spanner.

The bound in the following theorem depends on the fact that ε‖vx‖1 ≤ p(x),
because then exp(ε‖ĉt‖1) can be upper bounded additively. The assumption
ε‖vx‖1 ≤ p(x) can be satisfied by lower bounding p(x) by choosing our sampling
probability for a vector x to be γ‖vx‖1/

∑
y∈X‖vy‖1. The following theorem gives

the bound that results.

Theorem 2. If a decision M (ĉ1:t−1 + rt) is used on exploitation steps with an
estimation method ĉt(xt) = (ct · xt/p(xt)) vxt and sampling probability for a de-
cision x is γ‖vx‖1/

∑
y∈X‖vy‖1, then the estimation regret of an exploitation

step is upper bounded by:

E (M (ĉ1:t−1 + ct−1 + st) · (ct−1 − ĉt−1)) ≤ 2ε(R2E+RA)+
2ε

γ
(R2AE2 +RAE).

The proof of this theorem is given in Appendix A. The idea behind the proof
is similar to the one given for the expert setting. The total regret over T time
steps is:

D(1 + lnn)
ε

+ εRAT + γRT + 2εR2ET +
2ε

γ
R2AE2T .

Selecting
ε = 2−1/3(1 + lnn)2/3D2/3A−1/3R−1E−2/3T−2/3

and
γ = 21/3(1 + lnn)1/3D1/3A−1/3R−1E2/3T−1/3

leads to a regret in which the highest power of T is in the term

3 21/3R
(
D (1 + lnn)AE2

)1/3
T 2/3.

If the decision vectors are transformed to a basis spanned by a barycentric span-
ner, then the regret is

3 41/3R (D (1 + ln n)A)1/3
nT 2/3. (11)

382 J. Kujala and T. Elomaa

This bound can be applied to the algorithm of McMahan and Blum [3],
which they analyzed to have a regret of O(

√
lnT T 3/4) against an adaptive

adversary. However, some caution is required. Their estimation is based on sam-
pling the decisions in the barycentric spanner and setting the estimate ĉt to
n(loss occurred)/γX−1

B ei if the ith decision in the barycentric spanner was cho-
sen on a sampling step. On exploitation steps they set the estimate ĉt to zero.
Theorem 2 applies if the denominator in the estimate is the actual probability
p(xt) of choosing the decision in the barycentric spanner, not γ/n. Additionally,
the perturbation vector rt has to be transformed to X−1

B rt, as argued before.
Now, a closer investigation to the proof of Theorem 2 reveals that if the first
term 2ε(R2E + RA) in the bound is divided by γ/n, then the bound applies.
This modification to the bound has a small effect of increasing the constant in
bound (11). Hence, the regret is O(T 2/3) against an oblivious adversary.

5 Conclusions and Discussion

We have studied the performance of the bandit FPL algorithm, which can be
used to solve an interesting class of problems, for example the shortest online
routing with end-to-end feedback. Although this paper did not give a full solution
to this problem, we were able to make some progress. In the standard multi-
armed bandits problem O(

√
T) regret bounds are attainable, and they are also

asymptotically tight [10]. Our work implies that this is also true when the FPL
algorithm is applied to the expert setting, although this is not very surprising.
The general upper bound we proved implies that the algorithm of McMahan and
Blum [3] has a regret of the order O(T 2/3) against an oblivious adversary. These
results can be seen as progress towards better understanding of the relationship
between linear dependence of the cost function on decisions and the regret that
can be achieved using the bandit FPL algorithms.

Several questions remain to be solved in future work. First, can our work
be applied against an adaptive adversary? Second, what kinds of regrets are
actually achievable in the setting considered in this paper?

Acknowledgments

This work was supported by Academy of Finland project “INTENTS: Intelligent
Online Data Structures”. Moreover, the work of J. Kujala is financially supported
by Tampere Graduate School in Information Science and Engineering (TISE).

References

[1] Kalai, A., Vempala, S.: Efficient algorithms for online decision problems. In
Schölkopf, B., Warmuth, M.K., eds.: Proceeding of the Sixteenth Annual Con-
ference on Computational Learning Theory. Volume 2777 of Lecture Notes in
Computer Science., Berlin, Heidelberg, Springer (2003) 26–40

On Following the Perturbed Leader in the Bandit Setting 383

[2] Awerbuch, B., Kleinberg, R.D.: Adaptive routing with end-to-end feedback: Dis-
tributed learning and geometric approaches. In: Proceeding of the Thirty-Sixth
Annual ACM Symposium on Theory of Computing, New York, NY, ACM Press
(2004) 45–53

[3] McMahan, H.B., Blum, A.: Geometric optimization in the bandit setting against
an adaptive adversary. In Shawe-Taylor, J., Singer, Y., eds.: Proceeding of the
Seventeenth Annual Conference on Learning Theory. Volume 3120 of Lecture
Notes in Computer Science., Berlin, Heidelberg, Springer (2004) 109–123

[4] Sleator, D., Tarjan, R.: Self-adjusting binary search trees. Journal of the ACM
32 (1985) 652–686

[5] Hannan, J.: Approximation to Bayes risk in repeated plays. In Dresher, M.,
Tucker, A., Wolfe, P., eds.: Contributions to the Theory of Games. Volume 3.
Princeton University Press, Princeton, NJ (1957) 97–139

[6] Zinkevich, M.: Online convex programming and generalized infinitesimal gradient
ascent. In Fawcett, T., Mishra, N., eds.: Proceeding of the Twentieth International
Conference on Machine Learning, Menlo Park, CA, AAAI Press (2003) 928–936

[7] Cesa-Bianchi, N., Freund, Y., Haussler, D., Helmbold, D., Schapire, R.E., War-
muth, M.K.: How to use expert advice. Journal of the ACM 44 (1997) 427–485

[8] Littlestone, N., Warmuth, M.K.: The weighted majority algorithm. Information
and Computation 108 (1994) 212–261

[9] Takimoto, E., Warmuth, M.K.: Path kernels and multiplicative updates. Journal
of Machine Learning Research 4 (2003) 773–818

[10] Auer, P., Cesa-Bianchi, N., Freund, Y., Schapire, R.E.: The non-stochastic multi-
armed bandit problem. SIAM Journal on Computing 32 (2002) 48–77

[11] Flaxman, A.D., Kalai, A.T., McMahan, H.B.: Online convex optimization in
the bandit setting: Gradient descent without a gradient. In: Proceeding of the
Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms, New York,
NY, ACM Press (2005) 385–394

[12] Hutter, M., Poland, J.: Adaptive online prediction by following the perturbed
leader. Journal of Machine Learning Research 6 (2005) 639–660

[13] Moore, E.H.: On the reciprocal of the general algebraic matrix (abstract). Bulletin
of the American Mathematical Society 26 (1920) 394–395

[14] Penrose, R.A.: A generalized inverse for matrices. Proceedings of the Cambridge
Philosophical Society 51 (1955) 406–413

A Proof of Theorem 2

Proof. We proceed with a straightforward but technically complex evaluation of
the expected value.

Similarly as in the expert setting, the probability pt(xt | xt−1) can be upper
bounded by

exp (ε‖ĉt−1(xt−1) + ct−1‖1) pt−1(xt)

and, respectively, lower bounded by

exp (−ε‖ĉt−1(xt−1) + ct−1‖1) pt−1(xt).

384 J. Kujala and T. Elomaa

With the assumption that ε‖ĉt−1(xt−1)+ ct−1‖1 ≤ 1 and using the properties of
the function exp, the bounds above imply the following additive bounds:

pt−1(xt)(1− ε‖ĉt−1(xt−1) + ct−1‖1)
≤ pt(xt | xt−1)
≤ pt−1(xt)(1 + 2ε‖ĉt−1(xt−1) + ct−1‖1). (12)

Now we bound the estimation regret E (M (ĉ1:t−1 + ct−1 + st) · (ct−1 − ĉt−1)).
First we upper bound E (M(ĉ1:t−1 + ct−1 + st) · ct−1).

E (M (ĉ1:t−1 + ct−1 + st) · ct−1)

=
∑

xt−1∈X

E (M (ĉ1:t−2 + ĉt−1(xt−1) + ct−1 + st) · ct−1) pt−1(xt−1) (13)

=
∑

xt−1∈X

pt−1 (xt−1)
∑

xt∈X

((ct−1 · xt) pt (xt | xt−1)) (14)

≤
∑

xt−1∈X

pt−1 (xt−1)
∑

xt∈X

((xt · ct−1) pt−1 (xt))

+ 2ε
∑

xt−1∈X

pt−1 (xt−1) ‖ĉt−1(xt−1) + ct−1‖1
∑

xt∈X

(|ct−1 · xt|pt−1 (xt))(15)

≤ ct−1 · E (M (ĉ1:t−2 + st−1)) + 2ε
(
R2E + RA

)
. (16)

Equations (13) and (14) result from the definition of the expected value that
we are taking, inequality (15) follows from inequalities (12), and inequality (16)
follows from |ct−1 · xt| ≤ R, the definition of the bound E, and the triangle
inequality.

Then we lower bound E (M (ĉ1:t−1 + ct−1 + st) · ĉt−1).

E (M (ĉ1:t−1 + ct−1 + st) · ĉt−1)

=
∑

xt−1∈X

(
pt−1 (xt−1) ĉt−1 (xt−1) ·

(∑
xt∈X

xt pt (xt | xt−1)

))
(17)

≥
∑

xt−1∈X

(ct−1 · xt−1) vxt−1

·
∑

xt∈X

(xt (pt−1 (xt)± 2ε‖ĉt−1 (xt−1) + ct−1‖1 pt−1 (xt))) (18)

= ct−1 · E (M (ĉ1:t−1 + st−1))

− 2ε
∑

xt−1∈X

| (ct−1 · xt−1) vxt−1 · E (M(ĉ1:t−2 + st−1)) |

‖ĉt−1 (xt−1) + ct−1‖1 (19)

≥ ct−1 · E (M (ĉ1:t−2 + st−1))− 2ε

γ

(
R2 AE2 + RAE

)
. (20)

Equation (17) is a definition of the expected value taken, inequality (18) follows
from inequalities (12) if the ± is interpreted as always choosing the sign that

On Following the Perturbed Leader in the Bandit Setting 385

results in the worst regret. Equality (19) has its terms calculated open and ±
is transformed to a minus by taking an absolute value of the terms within the
sum. Finally, inequality (20) follows from the definitions of different bounds R,
A, E, and the fact that p(x) is lower bounded by a sampling probability.

Thus,

E (M(ĉ1:t−1 + ct−1 + st) · (ct−1 − ĉt−1))

≤ 2ε
(
R2E + RA

)
+

2ε

γ

(
R2AE2 + RAE

)
as claimed.

Mixture of Vector Experts

Matthew Henderson1, John Shawe-Taylor1, and Janez Žerovnik2

1 School of Electronics and Computer Science,
University of Southampton, Southampton SO17 1BJ, England

2 Institute of Mathematics, Physics and Mechanics,
Jadranska 19, Ljubljana 1111, Slovenia

Abstract. We describe and analyze an algorithm for predicting a se-
quence of n-dimensional binary vectors based on a set of experts making
vector predictions in [0, 1]n. We measure the loss of individual predictions
by the 2-norm between the actual outcome vector and the prediction. The
loss of an expert is then the sum of the losses experienced on individual
trials. We obtain bounds for the loss of our expert algorithm in terms of
the loss of the best expert analogous to the well-known results for scalar
experts making real-valued predictions of a binary outcome.

1 Introduction

The first paper to consider the problem of predicting from expert advice with
no assumptions made that the data is generated according to a probability dis-
tribution was Vovk’s [3]. The assumption is that nature can be adversarial in
its choice of outcomes forcing the learner to mix experts predictions in order to
hedge against the worst case. Remarkably one is able to bound the cumulative
loss experienced by the learner by the loss of the best expert plus an additional
regret term that involves the logarithm of the number of experts.

Perhaps the definitive paper analysing this scenario is Cesa-Bianchi et al. [1].
The outcomes considered are in all cases binary, but the predictions themselves
of both the experts and the learner can be real values in the interval [0, 1]. The
main loss considered is the �1 between the prediction and target. This can be
considered as the expected loss if a random prediction is made by viewing the
real value as a probability.

Cesa-Bianchi et al. are able to define very general conditions under which the
loss of the learner can be bounded. They also extend consideration to log loss.
Haussler et al. have undertaken an extensive study of different loss functions [2].

The aim of the current paper is to extend the analysis of Cesa-Bianchi et
al. to the case where the outcomes are binary vectors, the experts make real
vector predictions and the loss is the 2-norm between outcome and prediction.
We develop an algorithm and associated analysis that shows that as with the
scalar case the learner can approximate the loss of the best expert to within a
factor proportional to the logarithm of the number of experts.

It is natural to ask which norm should be used in the case of vector experts
since both 1- and 2-norms reduce to the standard absolute difference in the scalar
case. The 2-norm

S. Jain, H.U. Simon, and E. Tomita (Eds.): ALT 2005, LNAI 3734, pp. 386–398, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Mixture of Vector Experts 387

‖x‖ =

√√√√ 1
n

n∑
i=1

x2
i (1)

is a natural loss measure to use for vector estimation and we use that norm in
our analysis.

If, however, we were playing a 0-1 vector prediction game then the 1-norm
would correspond to 1/n times the expected Hamming distance when randomly
setting each coordinate independently to 1 with probability equal to its predic-
tion. The 2-norm of equation (1) provides an upper bound on the 1-norm since
using the Cauchy-Schwarz inequality we have

‖x‖1 =
1
n

n∑
i=1

xi =
n∑

i=1

xi(1/n) ≤
√√√√ n∑

i=1

x2
i

√
1
n

= ‖x‖.

Hence, our results also provide loss bounds for the 0-1 vector prediction game.
We leave open the question of whether tighter bounds could not be obtained by
working directly with the 1-norm loss.

A scenario where such a situation might arise is the labelling of images on
sets of web pages. When crawling the web the types of images encountered are
likely to behave in a manner that is unpredictable as different communities are
encountered. It therefore does not make sense to probabilistic assumptions about
the distributions of images that are encountered. Suppose now that we have a
set of algorithms that are able to deliver labellings of images in the form of a
vector indicating the probabilities of different words appearing in the caption.
These algorithms can be considered as experts with the binary vector of words
giving the true labelling as the outcome vector.

In the final section we describe a set of experiments for testing the per-
formance of the approach against the strategy of using scalar experts for each
component.

2 Mixture of Vector Experts Algorithm

We first define the mixture of vector experts algorithm.

Algorithm 1. Mixture of Vector Experts

– Input: An outcome sequence y = {y1, . . . ,yl}, where yi ∈ {0, 1}n for all
1 ≤ i ≤ l. A set Ξ = {ξ1, . . . , ξN} of N vector experts, where each expert i,
1 ≤ i ≤ N , makes a sequence of vector predictions ξi,j ∈ [0, 1]n based only
on previously observed values of yt for t < j, 1 ≤ j ≤ l.

– Output: A prediction sequence p = {p1, . . . ,pl}, where pi ∈ [0, 1]n for all
1 ≤ i ≤ l.

1. Initialise weight vector. Let

wi,1 = 1 for all 1 ≤ i ≤ N.

388 M. Henderson, J. Shawe-Taylor, and J. Žerovnik

2. While t ≤ l,
(a) Compute prediction vector.

pt = F̃β(rt) ∈ [0, 1]n

where rt =
∑N

i=1 ŵi,tξi,t and ŵi,t = wi,t/
∑N

i=1 wi,t.
(b) Update weight vector. Let

wi,t+1 = wi,tUβ(‖ξi,t − yt‖) for all 1 ≤ i ≤ n

where ‖x‖ =
√

1
n

∑N
i=1 x

2
i .

2.1 Definition of F̃β and Uβ

The function
F̃β : [0, 1]n → [0, 1]n

is defined by F̃β(v) = (Fβ(v1), Fβ(v2), . . . , Fβ(vn)), for some function Fβ :
[0, 1] → [0, 1]. There is some flexibility in the choice of Fβ . Any function which
satisfies

1 +
ln((1 − r)β + r)
2 ln(2/(1 + β))

≤ Fβ(r) ≤ − ln(1− r + rβ)
2 ln(2/(1 + β))

for all 0 ≤ q ≤ 1 suffices for the bound given in Theorem 2.
There is a similar flexibility in the choice of the update function Uβ . Any

function which satisfies

βq ≤ Uβ(q) ≤ 1− (1− β)q

for all 0 ≤ q ≤ 1 suffices for the bound in Theorem 2.

3 Performance of Algorithm 1

This section now considers bounding the performance of the mixture of vector
experts algorithm (Algorithm 1).

Theorem 2. For any 0 ≤ β < 1, for any set Ξ = {ξ1, . . . , ξN} of N vector
experts, and for any sequence y = {y1, . . .yl}, where yi ∈ {0, 1}n for all 1 ≤
i ≤ l , if p = {p1, . . . ,pl} is the output of Algorithm 1 with input Ξ and y and
L(y) =

∑l
t=1 ‖yt − pt‖ then

L(y) ≤ lnN −min1≤i≤N Li(y) ln β

2 ln(2/(1 + β))

where Li(y) =
∑l

t=1 ‖ξi,t − yt‖.
The proof of Theorem 2 is based on the following lemma.

Mixture of Vector Experts 389

Lemma 3. If everything is the same as in the statement of Theorem 2 and,
additionally wi,j for 1 ≤ i ≤ N and 1 ≤ j ≤ l + 1, are the weights which arise
during the execution of Algorithm 1, then

L(y) ≤ 1
2 ln(2/(1 + β))

ln

(∑N
i=1 wi,1∑N

i=1 wi,l+1

)

We prove Lemma 3 in the Appendix. In the next subsection we prove Theorem
2 based on Lemma 3

3.1 Proof of Theorem 2

Proof. Consider the jth expert ξj ∈ Ξ. By assumption Uβ(q) ≥ βq for all 0 ≤
q ≤1 therefore

N∑
i=1

wi,l+1 ≥ wj,l+1

= wj,1Π
l
t=1Uβ (‖ξj,t − yt‖)

≥ Π l
t=1β

‖ξj,t−yt‖

= β
∑ l

t=1 ‖ξj,t−yt‖

= βLj(y).

Now, from Lemma 3

L(y) ≤ 1
2 ln(2/(1 + β))

ln

(∑N
i=1 wi,1

βLj(y)

)

=
1

2 ln(2/(1 + β))
ln
(

N

βLj(y)

)
Therefore,

L(y) ≤ 1
2 ln(2/(1 + β))

ln
(

N

βLj(y)

)
and so

L(y) ≤ lnN + Lj(y) ln(1/β)
2 ln(2/(1 + β))

Since the choice of the jth expert was arbitrary, it follows that

L(y) ≤ lnN + min1≤j≤N Lj(y) ln(1/β)
2 ln(2/(1 + β))

which is precisely the statement of Theorem 2.

390 M. Henderson, J. Shawe-Taylor, and J. Žerovnik

4 Computer Simulations

4.1 Motivation and Simulation Details

Some might argue that Algorithm 1 is redundant because of the existence of
the mixture of scalar experts from [1]. After all, a perfectly feasible strategy for
predicting a vector outcome sequence y = {y1, . . . ,yl}, where yi ∈ {0, 1}n for all
1 ≤ i ≤ l, using the advice of a set Ξ of vector experts, is to take the prediction
sequence (ξi)j of each expert ξi ∈ Ξ on component j as the prediction sequence of
a set of scalar experts and then to apply the mixture of scalar experts algorithm
to this set of experts in order to predict the sequence {y1,j ,y2,j . . .yl,j}. This
sequence can be interpreted as the prediction sequence for component j and
the same strategy can then be applied to the remaining components. (We call
this strategy the componentwise scalar algorithm.) In this section we give some
evidence which points towards a definite advantage of Algorithm 1 over the
componentwise scalar algorithm.

Figure 1 is the result of a computer simulation in which Algorithm 1 is pitted
against the componentwise scalar algorithm. In this simulation a noisy version of
the outcome sequence is included as the prediction sequence of one of the vector
experts and the objective of both algorithms is to track this expert to the point
where the only loss suffered is just noise.

The zeroth data point of the middle line in Figure 1 is obtained in the fol-
lowing way. Both Algorithm 1 and the componentwise scalar algorithm are run
with the same outcome sequence y ∈ {0, 1}4 and the same set Ξ of 5 vector

0.5

1

1.5

2

2.5

3

3.5

0 200 400 600 800 1000 1200 1400

A
d
v
a
n
t
a
g
e

No. of pseudo experts

Mean difference between total loss of Algorithm 1
and the componentwise scalar algorithm

�
�
��

�

��
�
��
�

�

�
�
�
�
�
��
��
�
���
�
���

�

Standard deviation

Fig. 1. Plot showing the advantage of Algorithm 1 over the componentwise scalar
algorithm

Mixture of Vector Experts 391

experts (each ξ ∈ Ξ predicting a sequence from [0, 1]4) as input. Algorithm 1
optimises according to the two-norm while the componentwise scalar algorithm
optimises by the absolute difference and both algorithms use the same learning
rate of β = 0.9. Both algorithms use the suitable update function

Uβ(q) = 1− (1− β)q

and prediction function

Fβ(r) =

⎧⎨⎩
0 if r < 1/2− c
1/2− (1− 2r)/4c if 1/2− c ≤ r ≤ 1/2 + c
1 if r > 1/2 + c

where

c =
(1 + β) ln(2/(1 + β))

2(1− β)

both of which are suggested in [1].
Such an individual trial for the zeroth data point is repeated a further 9

times, with 9 different random outcome sequences and 9 different sets of 5 vector
experts. Then the mean difference between the total loss of the componentwise
scalar algorithm and the total loss of Algorithm 1 is plotted on the vertical axis
as the advantage of the componentwise scalar algorithm over Algorithm 1. The
result of a typical simulation for the zeroth data point is illustrated in Figure
2. This shows a plot averaged over 10 trials of the cumulative loss against time
of both Algorithm 1 and the componentwise scalar algorithm when given the
same sequence (in this case of length 15) of outcome vectors (in this case each
an element of {0, 1}4) and the same sequence of vector experts predictions (in
this case each a member of [0, 1]4). The point plotted of the middle line in Figure
1 is the difference in height between the two curves at time t = 14. The point
directly above and directly below show the standard deviation from the mean.

The simulation develops by introducing to the set of genuine experts an
expanding set of randomly selected pseudo-experts. If ξi ∈ Ξ is a typical genuine
vector expert whose prediction at time t on component j is (ξi,t)j ∈ [0, 1] then
a typical pseudo-expert is defined by a random n-tuple of the indices of the
genuine experts i = (i1, . . . , in) and predicts the sequence of vectors

{ξi,1, . . . ξi,l} where (ξi,t)j = (ξij ,t)j .

Introducing a pseudo-expert does not affect the componentwise scalar algorithm
since it only remixes the same scalar experts. A pseudo-expert can, however,
make tracking more difficult for Algorithm 1. Therefore, as the number of pseudo-
experts grows the componentwise scalar algorithm is likely to become more com-
petitive. This is illustrated by the plot in Figure 1. The point (x, y) on the mid-
dle plot is the mean, averaged over 10 trials, of the difference between the total
loss of the two algorithm when x pseudo-experts are involved. The other two
plots show the standard deviation. As the number of pseudo-experts increases
Figure 1 illustrates the improved competitiveness of the componentwise scalar
mixture algorithm.

392 M. Henderson, J. Shawe-Taylor, and J. Žerovnik

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 2 4 6 8 10 12 14

L
o
s
s

Time

Cumulative loss of Algorithm 1

×

×

× × × × × × × × × × × × ×

×
Cumulative loss of componentwise scalar algorithm

+

+

+

+

+
+

+

+ + + + + + + +

+

Fig. 2. Plot of the cumulative losses of both Algorithm 1 and the componentwise scalar
algorithm on the same set of experts and sequence of outcomes

4.2 Implementation Details

To produce Figure 1 both Algorithm 1 and the componentwise scalar algorithm
were implemented in Python using the Numeric extension module. The entire
simulation took approximately 28 minutes on a 1750 MHz Sempron.

4.3 Simulation Conclusions

In the case where a noisy version of the outcome sequence is included as the
predictions of one of the vector experts Figure 1 suggests that it is a better
strategy, albeit marginally so, in terms of minimizing total loss, to apply Al-
gorithm 1 than to consider the components of the output sequence separately
and run the algorithm from [1] on each component. This can be explained be-
cause Algorithm 1 has the ability to take less seriously the predictions for every
component made by those experts who predict badly on any single component.
This is a reasonable strategy under these circumstances because we know that
a noisy version outcome is the prediction sequence made by at least one expert
and so we expect the best expert to do well on all components. On the other
hand the componentwise scalar algorithm is not able to punish a vector expert
across all its component predictions and so if a vector expert does well on some
of its components the componentwise scalar algorithm will take that expert’s ad-
vice seriously despite the fact that it may be performing poorly elsewhere. This
advantage is negated by introducing pseudo-experts and, as Figure 1 shows, the
two algorithms become more competitive.

Mixture of Vector Experts 393

5 Conclusions

We have extended the experts algorithm and analysis to the case of predicting
binary vectors. Our analysis bounds the loss of the algorithm in terms of the
loss of the best vector expert. The loss used in the analysis is the 2-norm but
this provides an upper bound on the 1-norm loss that would correspond to the
expected Hamming distance if we performed a 0-1 vector prediction game.

Experimental evidence is given showing that the approach does outperform
applying individual scalar experts to each component for the case where one of
the experts is a good predictor.

We leave open the extension of these results to different norms, in particular
to tuning them to provide better bounds for the case of a 1-norm loss.

References

[1] Nicolò Cesa-Bianchi, Yaov Freund, David Haussler, David P. Helmbold, Robert E.
Schapire, and Manfred K. Warmuth. How to use expert advice. J. ACM, 44(3):427–
485, 1997.

[2] D. Haussler, J. Kivinen, and M. K. Warmuth. Sequential prediction of individ-
ual sequences under general loss functions. IEEE Trans. on Information Theory,
44(5):1906–1925, 1998.

[3] V. Vovk. Aggregating strategies. In Proceedings of the Third Annual Workshop on
Computational Learning Theory, pages 371–383. Morgan Kaufmann, 1990.

6 Appendix

6.1 Proof of Lemma 3

Proof. We will show that for 1 ≤ t ≤ l,

‖pt − yt‖ ≤ 1
2 ln(2/(1 + β))

(∑N
i=1 wi,t∑N

i=1 wi,t+1

)
(2)

The result then follows from summing (2) for t = 1, 2, . . . , l. To show that (2)
holds for 1 ≤ t ≤ l we show, eventually, that

ln

(∑N
i=1 wi,t∑N

i=1 wi,t+1

)
≥ − ln (1− (1− β)‖rt − yt‖) (3)

holds for all 1 ≤ t ≤ l. Before this we show that (2) follows from (3). Indeed,
suppose (3) holds. Then (2) follows immediately if

‖pt − yt‖ ≤ − ln(1− (1− β)‖rt − yt‖)
2 ln(2/(1 + β))

. (4)

394 M. Henderson, J. Shawe-Taylor, and J. Žerovnik

To show that (4) holds we first show that

|(pt)j − (yt)j | ≤ − ln(1− (1− β)|(rt)j − (yt)j |)
2 ln(2/(1 + β))

(5)

and then apply Jensen’s Inequality to a certain real-valued function on R to
show that (4) follows from (5).

To see that (5) holds we first observe that (yt)j ∈ {0, 1}. If (yt)j = 0 then
(5) holds if and only if

|(pt)j | ≤ − ln(1− (1− β)|(rt)j |)
2 ln(2/(1 + β))

(6)

and if (yt)j = 1 then (5) holds if and only if

|(pt)j − 1| ≤ − ln(1− (1− β)|(rt)j − 1|)
2 ln(2/(1 + β))

. (7)

As (pt)j ∈ [0, 1] and (rt)j ∈ [0, 1] the latter inequality (7) holds if and only
if

1− (pt)j ≤ − ln(1− (1 − β)(1 − (rt)j))
2 ln(2/(1 + β))

which in turn holds if and only if

1 +
ln(r + β(1 − r))
2 ln(2/(1 + β))

≤ (pt)j . (8)

Inequalities (6) and (8) hold because (pt)j = Fβ((rt)j) for some function Fβ

which, by choice, satisfies

1 +
ln(r + β(1− r))
2 ln(2/(1 + β))

≤ Fβ(r) ≤ − ln(1− r + rβ)
2 ln(2/(1 + β))

for all 0 ≤ r ≤ 1.
Now that we have proved (5) we prove that (4) follows. If we expand the left

hand side of (4) we see immediately that (4) holds if and only if√√√√ 1
n

n∑
j=1

((pt)j − (yt)j)2 ≤
− ln(1 − (1− β)

√
1
n

∑n
j=1((rt)j − (yt)j))

2 ln(2/(1 + β))

and from (5) we know that√√√√ 1
n

n∑
j=1

((pt)j − (yt)j)2 ≤
√√√√ 1

n

n∑
j=1

(− ln(1− (1 − β)|(rt)j − (yt)j |)
2 ln(2/(1 + β))

)2

.

Mixture of Vector Experts 395

Therefore, (4) holds if√√√√ 1
n

n∑
j=1

(− ln(1− (1 − β)|(rt)j − (yt)j |)
2 ln(2/(1 + β))

)2

≤

− ln(1 − (1− β)
√

1
n

∑n
j=1((rt)j − (yt)j))

2 ln(2/(1 + β))
. (9)

We prove (9) by defining the function h : R→ R given by the map

h : x ,→
(− ln(1− (1− β)

√
x)

2 ln(2/(1 + β))

)2

.

This function is concave and so if we let xj = ((rt)j − (yt)j)2 we conclude from
Jensen’s Inequality that

1
n

n∑
j=1

(− ln(1− (1− β)|(rt)j − (yt)j |)
2 ln(2/(1 + β))

)2

≤

⎛⎝− ln(1− (1− β)
√

1
n

∑n
j=1((rt)j − (yt)j))2

2 ln(2/(1 + β))

⎞⎠2

(10)

which implies (9) and, consequently, (4).
So now that we have proved (4) we can prove Lemma 3 by showing that (3)

holds. To show this we first observe that

ln

(∑N
i=1 wi,t∑N

i=1 wi,t+1

)
= − ln

(∑N
i=1 wi,t+1∑N

i=1 wi,t

)
(11)

= − ln

(∑N
i=1 wi,tUβ(‖ξi,t − yt‖)∑N

i=1 wi,t

)
(12)

≥ − ln

(∑N
i=1 wi,t(1− (1− β)‖ξi,t − yt‖)∑N

i=1 wi,t

)
(13)

where (13) follows directly from the assumption that βq ≤ Uβ(q) ≤ 1− (1−β)q.
Therefore, (3) holds if

− ln

(∑N
i=1 wi,t(1 − (1− β)‖ξi,t − yt‖)∑N

i=1 wi,t

)
≥ − ln(1− (1− β)‖rt − yt‖). (14)

To prove (14) it suffices to show that

N∑
i=1

ŵi,t‖ξi,t − yt‖ ≥ ‖rt − yt‖ (15)

396 M. Henderson, J. Shawe-Taylor, and J. Žerovnik

where ŵi,t = wi,t/(
∑N

i=1 wi,t). Indeed, suppose (15) holds. Then, because β ≤ 1
and so 1− β ≥ 0, it follows that

(1− β)
N∑

i=1

ŵi,t‖ξi,t − yt‖ ≥ (1− β)‖rt − yt‖. (16)

Now, because both sides are ≤ 1 it follows that

1− (1− β)
N∑

i=1

ŵi,t‖ξi,t − yt‖ ≤ 1− (1− β)‖rt − yt‖ (17)

and therefore, as
∑N

i=1 ŵi,t = 1, that

N∑
i=1

ŵi,t (1− (1− β)‖ξi,t − yt‖) ≤ 1− (1− β)‖rt − yt‖

from which, because ŵi,t = wi,t/(
∑N

i=1 wi,t), (14) follows immediately.
Now, to prove (15) we define a certain real-valued concave function on {0, 1}N

and apply Jensen’s Inequality. The function in question is given by the map

h : x ,→
(

N∑
i=1

ŵi,t
√
xi

)2

.

Because the set {0, 1}N is convex it is sufficient to show that the Hessian at x,

D2h(x) :=
(

∂2h

∂xi∂xj
(x)
)

1≤i,j≤N

is a negative semidefinite matrix for every x ∈ {0, 1}N . To prove this we first
write x2 = (x2

1, x
2
2, . . . , x

2
N) for all x ∈ {0, 1}N and then observe that

∂h(x2)
∂xi∂xj

=
∂

∂xj
hi(x2)2xi =

{
4hij(x2)xixj if i �= j
4hij(x2)x2

i + 2hi(x2) if i = j
(18)

where
hi =

∂h

∂xi
and hij =

∂h

∂xi∂xj
.

Now, because h(x2) =
(∑N

i=1 ŵi,txi

)2

it follows that

∂2h(x2)
∂xi∂xj

=
∂2

∂xi∂xj

(
N∑

k=1

ŵk,txk

)2

= 2ŵi,tŵj,t

and because
∂h

∂xi
(x2) = 2hi(x2)xi = 2

√
h(x2)ŵi,t

it follows that

Mixture of Vector Experts 397

hij(x2) =
{
ŵi,tŵj,t/2xixj if i �= j

ŵ2
i,t/2x

2
i − ŵi,t

√
h(x2)/2x3

i if i = j.
(19)

The Hessian at x, D2h(x) is negative semidefinite, by definition, if and only if
αTHα ≤ 0 for all α ∈ RNor equivalently,

N∑
i=1

N∑
j=1

αiαjhij(x2) ≤ 0 (20)

for all αi,αj ∈ R, where without loss of generality we can take the argument to
be x2.

¿From (19),

N∑
j=1

αiαjhij(x2) =
∑

j∈[N]\{i}
αiαjhij(x2) + αihii(x2)

=
∑

j∈[N]\{i}

αiαjŵi,tŵj,t

2xixj
+

α2
i ŵ

2
i,t

2x2
i

− α2
i ŵi,t

2x3
i

√
h(x2)

=
N∑

j=1

αiαjŵi,tŵj,t

2xixj
+

α2
i ŵi,t

2x3
i

√
h(x2) (21)

So (20) implies that D2h(x) is negative semidefinite if and only if

N∑
i=1

⎧⎨⎩
N∑

j=1

αiαjŵi,tŵj,t

2xixj
− α2

i ŵi,t

2x3
i

√
h(x2)

⎫⎬⎭ ≤ 0. (22)

To prove (22) we observe that the Cauchy-Schwarz inequality implies that(
N∑

i=1

αiŵi,t

xi

)2

≤
(

N∑
i=1

α2
i ŵi,t

x3
i

)(
N∑

i=1

ŵi,txi

)

and so, expanding the left-hand side and dividing throughout by 2, we get

N∑
i=1

N∑
j=1

αiαjŵi,tŵj,t

2xixj
≤
(

N∑
i=1

α2
i ŵi,t

2x3
i

)(
N∑

i=1

ŵi,txi

)

which, because
√
h(x2) =

∑N
i=1 wixi, is the same inequality as (22). Therefore

D2h is negative semidefinite and so the function h is concave.
Now we can apply the function h to a particular vector and use Jensen’s

Inequality to deduce (14). The vector in question is

xj =
(
((ξ1,t)j − (yt)j)

2
, ((ξ2,t)j − (yt)j)

2
, . . . , ((ξN,t)j − (yt)j)

2
)
.

398 M. Henderson, J. Shawe-Taylor, and J. Žerovnik

By Jensen’s Inequality,

h

⎛⎝ 1
n

n∑
j=1

xj

⎞⎠ ≥ 1
n

n∑
j=1

h(xj) (23)

which, as we show now, implies (14).
To see that (23) implies (14) suppose that

h(xj) = ((rt)j − (yt)j)
2 . (24)

Then, (23) implies that⎛⎝ N∑
i=1

ŵi,t

√√√√ 1
n

n∑
j=1

((ξi,t)j − (yt)j)
2

⎞⎠2

≥
√√√√ 1

n

n∑
j=1

((rt)j − (yt)j)
2

which, if we take square roots of both sides and observe that ‖x‖ =
√

1
n

∑N
i=1 x

2
i ,

in turn implies (14).
So to prove (14), which completes the proof of Lemma 3, it remains to show

that (24) holds. To show that (24) holds we first observe that, from the definition
of h(xj), (24) can be written as(

N∑
i=1

ŵi,t |(ξi,t)j − (yt)j |
)2

= ((rt)j − (yt)j)
2
. (25)

To show that (25) holds we observe that, by definition, (yt)j ∈ {0, 1}. If (yt)j = 0
then (25) holds if and only if

N∑
i=1

ŵi,t |(ξi,t)j | = (rt)j

which in this case follows directly from the definition of r. If, on the other
hand, (yt)j = 1 then we observe that (ξi,t)j ∈ {0, 1}. If (ξi,t)j = 0 then (25)

holds if and only if
(∑N

i=1 ŵi,t

)2

= ((rt)j − 1)2 which follows because, from

the definition of r, (rt)j =
∑N

i=1 ŵi,t(ξi,t)j and so in this case (rt)j = 0 and
because, by definition,

∑N
i=1 ŵi,t = 1. Finally, if (ξi,t)j = 1 then (25) holds if

and only if ((rt)j − 1)2 = 0. This follows because (rt)j =
∑N

i=1 ŵi,t(ξi,t)j by
definition and, in this case,

∑N
i=1 ŵi,t(ξi,t)j =

∑N
i=1 ŵi,t = 1.

On-line Learning with Delayed Label Feedback

Chris Mesterharm

Rutgers Computer Science Department,
110 Frelinghuysen Road, Piscataway, NJ 08854

mesterha@cs.rutgers.edu

Abstract. We generalize on-line learning to handle delays in receiving
labels for instances. After receiving an instance x, the algorithm may
need to make predictions on several new instances before the label for
x is returned by the environment. We give two simple techniques for
converting a traditional on-line algorithm into an algorithm for solving a
delayed on-line problem. One technique is for instances generated by an
adversary; the other is for instances generated by a distribution. We show
how these techniques effect the original on-line mistake bounds by giving
upper-bounds and restricted lower-bounds on the number of mistakes.

1 Introduction

In this paper, we consider the problem of label feedback in on-line learning. On-
line learning is composed of trials. Each trial t can be broken up into three steps.
First, the algorithm receives an instance from a set X . Second, the algorithm
predicts a label from a finite set Y . Last, the algorithm receives the correct label
from the environment. The goal of the algorithm is to minimize the number of
mistakes. [1] We are interested in the last step. For many practical problems,
the algorithm may not receive the label feedback in a timely matter.

Delayed labels are a realistic assumption for many potential on-line learning
problems. Consider spam email filtering. The filtering algorithm often allows the
user to train the algorithm using labeled emails. [2] In between training, many
emails may arrive that need to be classified. Anytime successive predictions
need to be made without receiving a label, it is a delayed learning problem.
Another example is webpage prefetching. This is useful for speeding up the
performance of low bandwidth Internet connections. Learning which links to
preload is a useful optimization[3], however, the label feedback might be delayed
until it is determined that a prefetched webpage will not be used. As a final
example, a doctor may want to predict health problems in a patient in order to
start treatment as soon as possible. A more definitive test may be prescribed to
confirm the diagnosis; this test provides delayed feedback.

To solve this problem, we propose the delayed model of on-line learning.
This model is identical to the traditional on-line learning except that the en-
vironment can return the label feedback any number of trials after the arrival
of the instance. This amounts to changing the last step of on-line learning to

S. Jain, H.U. Simon, and E. Tomita (Eds.): ALT 2005, LNAI 3734, pp. 399–413, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

400 C. Mesterharm

receive possibly multiple labels from the current or previous trials. For every on-
line learning problem, there are matching delayed learning problems that receive
delayed labels.

The main contribution of this paper is to give two ways to transform a
traditional on-line algorithm to an algorithm that works with delayed labels. We
give upper-bounds on the number of mistakes of these algorithms, where the
bounds are given as a function of the bounds for the original on-line algorithm.
We assume two different techniques for instance generation. First, we assume
the instances are generated by an adversary. This is a common assumption used
when analyzing many on-line algorithms. [1] Second, we assume the instances
are generated by a distribution. While this assumption is less common [4], it
can give tighter bounds for a large class of practical problems. In both cases,
the bounds are robust; the bounds allow noisy instances that do not correspond
to a target function [4], and the bounds allow tracking a target function that is
allowed to change over the trials. [5, 6] We also give lower-bounds on restricted
forms of these two instance generation techniques. We show these lower-bounds
are close to our upper-bounds for these restricted problems.

2 Notation

All of our transformations take an existing traditional on-line algorithm and
convert it to handle delayed instances. Let algorithm B be our traditional on-
line algorithm. The pseudo-code for algorithm B is given in Fig. 1. On trial t,
the algorithm accepts instance xt ∈ X and returns a distribution ŷt ∈ [0, 1]|Y |

over the possible output labels. The algorithm predicts by sampling from this
distribution. 1 The algorithm then receives feedback on the correct label in yt ∈
Y . It can use this information to update the current state of the algorithm to
improve performance on future instances.

Initialization
t ← 0 is the trial number.
Initialize algorithm state s ← s0.

Trials
t ← t + 1.
Instance: xt.
Prediction: ŷt ← Pred(s,xt).
Update: Let yt be the correct label.

s ← Update(s,xt, yt, ŷt).

Fig. 1. On-line algorithm B

The transformed algorithms use the same procedures as algorithm B for
updates and predictions. The prediction procedure of algorithm B accepts two
1 While it is common to just let ŷt be the predicted label, our notation is needed to

help describe one of the algorithm transformations.

On-line Learning with Delayed Label Feedback 401

parameters: the instance xt for prediction and the current state of the algorithm,
s. The state of the algorithm encodes the value of all the memory used by the
algorithm that can have an effect on future predictions. The initial state is
represented as s0. The prediction procedure returns a probability distribution
for the label. We use the notation ŷt[i] to determine the probability that the
predicted label is i on trial t. For a deterministic algorithm, a single label will
have value 1. The update procedure accepts four parameter: the state of the
algorithm, the instance, the label returned by the environment, and the predicted
label distribution. The update procedure returns two outputs: the new algorithm
state and boolean variable change that is TRUE if the algorithm state has changed
because of the update and FALSE otherwise. We ignore the change variable if it
is not used by a particular algorithm.

The only difference in delayed on-line learning is that the label for instance
xt may not be returned at the end of trial t. Therefore, we need notation to
represent when the label feedback is returned by the environment. We use ya,b

to refer to the label of an instance where the attributes arrive on trial a and the
label arrives right before the start of trial b. Each instance arrives at a unique
trial, but labels may arrive during the same trial. Therefore, when we want to
specify an instance, we will refer to the trial where the attributes arrive. We
define the delay of a particular instance, with label ya,b, as b − a. Let k be the
maximum delay over all instances. In traditional on-line learning, all instances
have a delay of 1 and have labels of the form yt,t+1. In delayed on-line learning,
each instance may have an arbitrary positive delay.

In the rest of the chapter, we use the following notation. Let E[Mist(B, s)]
be the expected number of mistakes B makes on s, a sequence of instances, and
let E[Change(B, s)] be the expected number of times B changes its state on
sequence s. The expectation is taken with respect to any randomization used
by the algorithm. Let E[Mist(B)] be the maximum expected mistakes made by
algorithm B over a set of instance sequences when instances are generated by
an adversary. Also let E[Mist(B)] be the expected number of mistakes when in-
stances are generated by a distribution. It should be clear from context whether
we are dealing with an adversary or a distribution. In the case of a distribu-
tion, the expectation is taken with respect to the generation of instances and
any randomization of the algorithm. Let Opt be the algorithm that minimizes
E[Mist(B)]. Since we are interested in taking existing on-line algorithms and
converting them to the delayed on-line model, the restrictions on instances will
come from the on-line algorithm. If the B algorithm is deterministic we can drop
the expectation from the notation in the adversarial case.

3 Instances Generated by an Adversary

In this section, we give algorithms and upper-bounds on mistakes when instances
are generated by an adversary. First, we need to define what we mean by an
adversary generating instances. Later we will allow the adversary to set delays
for these instances. Let A be a nonempty set of instances (x, y) where x ∈ X

402 C. Mesterharm

and y ∈ Y . These are the instances that an adversary can pick during a trial. We
also define a function η(x, y) that measures the amount of noise in an instance.
This is used to control what instances the adversary can pick but is not revealed
to the learning algorithm.

The adversary can pick any instance for the current trial that has zero noise.
These non-noisy instances correspond to the target function. The adversary must
have restrictions on the number of noisy instances it can generate otherwise
learning would be impossible. A common bound on the noisy instances is to
allow only a fixed total amount of noise, where the total noise is computed by
summing the η() amounts from the generated instances. However, our result
generalizes any traditional adversarial on-line algorithm to the delayed setting
and inherits whatever noise assumption is made by the original on-line algorithm
including the values for the η() function.

In this paper, we allow the adversary to track a moving target function. Let
Φ = [(A1, η1()), (A2, η2()), · · ·] be a sequence of instance sets and noise functions.
We continually allow the adversary two choices; the adversary can either generate
a trial by selecting an instance, or the adversary can increment the instance
selection to the next element of Φ. Instance generation starts at (A1, η1()), and
the adversary is not allowed to go backwards in the sequence. We are interested
in the worst-case performance of the algorithm over a set of possible Φ. This is a
general model of instance generation that includes fixed concepts [1], by having
only a single element in Φ, and concept tracking [5, 6], by using instance sets
and noise functions that correspond to different target functions.

For delayed on-line learning, we need to let the adversary delay the label
feedback. To make this as general as possible, we will let the adversary pick the
delay for an instance from a multi-set D of positive numbers. More formally let
di ∈ R ∪∞ be the maximum number of instances that have a delay of i trials;
D = ∪∞i=1

(
∪di

j=1i
)
. For example, D may only contain the number 5 an infinite

amount of times. In this case, the adversary must give each instance a delay of
5. Our bound will be based on values of the various di; this allows us to model a
wide range of problems. For example, in the medical problem explained earlier,
each patient may take a different amount of time to get the lab test needed for
the label; a few patients may never take the lab test and have an infinite delay.

Before we give our main bound, we need a lemma to help us work with the
delay multi-set D. We want to place as many elements from D into a list L with
the restriction that the first C numbers must be at least 1, the next C numbers
must be at least 2, and so on where the mth block of C numbers must be at
least m. We call this the ordered class selection problem. If one uses the greedy
algorithm of always placing the smallest number remaining in D into the next
position in the list then the total number of elements of value i that are in this
greedy list is ri = min

(
di, iC −

∑i−1
j=1 rj

)
.

Lemma 1. Let F (D, C) be the maximum number of elements that can be placed
from D in the ordered class selection problem. This maximum is obtained by the
greedy algorithm, and F (D, C) =

∑∞
j=1 rj .

On-line Learning with Delayed Label Feedback 403

Proof. We break the proof into two cases. First, assume that F (D, C) = ∞.
Based on the definition of the ordered class problem, there must be no upper-
bound on the elements in D. Therefore, the greedy algorithm will also generate
an infinite list.

Second, assume that F (D, C) is finite. Let lo be a list of elements that satisfy
the ordered class selection problem with the number of elements in lo equal to
F (D, C). Let lg be the list generated by the greedy algorithm. We will compare
each element of lg with lo and show that the lists must have the same length.

Start at the beginning of each list and compare elements. If lo(0) = lg(0)
then go to the next element. If lo(0) > lg(0) then find the next index, i, in list
lo such that lo(i) = lg(0). If index i exists then, in list lo, swap values lo(0) and
lo(i). This still gives a legal list. If there is no such index then the number of
elements with value lg(0) used in list lo must be less then dlg(0). Therefore we
can just assign lo(0) to value lg(0). The new lo list is still a valid list and still
has length F (D, C).

We can repeat this procedure for each pair of elements from list lo and lg.
Let ie be the last element in list lg. At this point both lists are identical up to
index ie. Any additional elements in lo must have a value of at least lg(ie) since
otherwise the lg list would not be greedy. However, if the additional elements
have values of at least lg(ie) then lg would not end at index ie. Therefore the
new lo list and lg list must be the same length. Since the length of the modified
lo has not changed from the original length, the length of lg is F (D, C). Based
on the greedy algorithm, the length of lg is also equal to

∑∞
j=1 rj . This proves

the lemma. $%

3.1 Algorithm

We call the first transformed algorithm OD1-B . This algorithm is similar to
algorithm B except that it potentially skips some of the updates. The pseudo-
code for OD1-B is in Fig. 2. We use a stack U to store the instances that are
ready for updates. We can store other instances in a hash table.

OD1-B keeps track of a last trial and only performs updates using instances
that are more recent than this trial. After the algorithm performs an update, if
the update either changes the state of the algorithm, or if the update is based
on an instance that could have caused a mistake, given the state used for the
update, then the algorithm increases last to the trial of the instance used for
the update. This ensures that the changes to the algorithm occur in the same
order as the instance arrival times. Changes occurring out of order can cause
problems when the concept is shifting.

The computational cost of the OD1-B algorithm is similar to the cost of the
B algorithm. The number of updates is at most the same as algorithm B and the
number of predictions is at most double. There is an extra cost based on sorting
the instances in U . This cost depends on the number of labels returned per trial.
Let γ be the maximum number of label returned during a trial. Using merge sort
gives an amortized cost of at most O(ln (γ)) per trial. Because F (D, 1) is the
maximum number of instances that have arrived but have not yet received labels,

404 C. Mesterharm

Initialization
t ← 0 is the trial number.
last ← 0 is the last instance used for an update.
U ← null is a stack that stores instances that are ready for updates.
Initialize algorithm to state s ← s0.

Trials
t ← t + 1.
Instance: Store xt using t as the key.
Prediction: ŷt ← Pred(s,xt).
Update:

For all returned labels ya,t

If a > last then
add instance (a, xa, ya,t) to U in sorted order based on a.

For i = 1 to |U |
(a, xa, ya,t) ← pop(U)
ŷ ← Pred(s, xa)
(s, change) ← Update(s, xa, ya,t, ŷ)
If change = 1 or ŷ[ya,t] �= 1 then

last ← a.
Remove xa.

Periodically remove all instances older than last.

Fig. 2. Delayed on-line algorithm OD1-B

we have that γ ≤ F (D, 1) ≤ k. The OD1-B algorithm needs extra storage for at
most F (D, 1) instances. By keeping space for 2F (D, 1) instances, the algorithm
can periodically remove any old instances that missed an update with only a
constant amortized increase in the cost per trial.

3.2 Upper-Bound on Mistakes

Here is our main result for learning against an adversary. Recall that we defined
Change(B, s) as the number of times algorithm B changes its state on instance
sequence s.

Theorem 1. Assume B is a traditional on-line algorithm, and assume s is a
sequence of instances generated by an adversary. The expected number of mis-
takes of the OD1-B algorithm is at most E[Mist(B)] +E[F (D,Change(B, s))]−
E[Change(B, s)] mistakes in the delayed on-line model.

Proof. Consider all the instances that change the variable last in algorithm
OD1-B. The updates on these instances are in trial order. Call this sequence of
instances u. If we pass these instances to algorithm B, giving each instance a
delay of 1, we can expect at most E[Mist(B)] mistakes on algorithm B, since
sequence u corresponds to a sequence that could be generated by the adversary.
Notice that the algorithm states for OD1-B on subsequence u of s is identical
to the states of algorithm B on u. For algorithm OD1-B, all the other trials in
s just copy the state from the previous trial.

On-line Learning with Delayed Label Feedback 405

Next, it is useful to partition the sequence s into two sets. Let Q1 be the set
of instances xt such that, when OD1-B updates the label yt,t+k, the state at trial
t+ k has not changed since trial t. Let Q2 be all other instances. We can divide
the instances from Q1 into two groups. Let g1 be the instances from Q1 that are
in u. Let g2 be all other instances in Q1. Assume that x is an instance from g1.
The probability of a mistake by OD1-B on x must equal the probability of a
mistake in the equivalent instance from u on B since the state when the label
arrived is the same as the state when the instance arrived. For the instances
in g2, the OD1-B algorithm must have a zero probability of making a mistake
otherwise the instance would be in u. Therefore the expected number of mistakes
by algorithm OD1-B for instances from Q1 must be at most E[Mist(B)].

Next consider Q2. There is a limit on the number of instances in Q2 based
on the number of times the state changes and the number of instances with
specific delay values. This number is primarily determined by the solution to
the multi-set problem in lemma 1. However, for each state change at least one
of the delayed instances from the multi-set solution must cause the update that
changes the state. Therefore the expected number of elements in Q2 is at most
E[F (D,Change(B, s))]−E[Change(B, s))]. Since each instance in Q2 can cause
at most one mistake, this proves the theorem. $%

At this point, the bound is not very intuitive because of the complexity
of the F function from Lemma 1. It is interesting to see how this function
varies for different D multi-sets. If all instances have delays of at most k then
E[F (D,Change(B, s))] ≤ kE[Change(B, s)]. In addition, if we add m delays to D
of any value then the value of E[F (D,Change(B, s))] can increase by at most m.
This give a rough idea of how the bound depends on the delays of the instances.
A more precise analysis will depend on a specific multi-set D. In the remainder
of the paper, we do not want to dwell on different choices for the D multi-set.
Therefore, we use the fact that E[F (D,Change(B, s))] ≤ kE[Change(B, s)] to
simply our results. However, it is possible to generalize using the F function.

Corollary 1. Assume B is a traditional on-line algorithm, and s is a sequence
of instances generated by an adversary. If the maximum delay of any instance
is k then the expected number of mistakes of the OD1-B algorithm is at most
E[Mist(B)] + (k − 1)E[Change(B, s)] in the delayed on-line model.

Proof. Combine E[F (D,Change(B, s))] ≤ kE[Change(B, s)] with Theorem 1. $%
In order to get a good bound, we need to use a B algorithm that makes

few mistakes and that changes its state few times. Fortunately, deterministic
mistake-driven algorithms fulfill these criteria. A mistake-driven algorithm is an
algorithm that only updates its state when it makes a mistake. [1] In Sect. 5, we
will show that that converting a deterministic algorithm B to a mistake-driven
form, MD-B , does not increase the mistake bound for a class of adversaries that
includes the adversary used in this section.

To handle randomized algorithms, we use the fact that any randomized learn-
ing algorithm can be converted to a deterministic learning algorithm with a

406 C. Mesterharm

similar mistake bound. On every trial, this new deterministic algorithm just
predicts the highest probability label from the randomized algorithm. The de-
terministic algorithm makes at most double the expected number of mistakes of
the randomized algorithm. [7] Given a learning algorithm B, we call DR-B the
derandomized learning algorithm.

Theorem 2. Assume B is an on-line algorithm. If the maximum delay of any
instance is k then the number of mistakes of the OD1-MD-DR-B algorithm is at
most 2kE[Mist(B)] in the delayed on-line model.

Proof. Assume E[Mist(B)] = M . Using the derandomized algorithm, we get
Mist(DR-B) ≤ 2M . Next, we make the algorithm mistake-driven. Theorem 5
shows that Mist(MD-DR-B) ≤ 2M . Last, we use Corollary 1, and the fact that
for any sequence of instances s, E[Change(B, s)] ≤ E[Mist(B)] for a mistake-
driven algorithm. $%
3.3 Lower-Bound on Mistakes

A natural question is whether a different transformations can make fewer mis-
takes. Assume that D has an infinite number of delays of value k or greater.
To help with the lower bound, we use another algorithm transformation. This
transformation converts a delayed on-line learning algorithm C into a traditional
on-line algorithm DO -C (k). We use the k notation because we have a different
transformation for each value of k.

The DO -C (k) algorithm solves a traditional on-line problem. The DO -C (k)
algorithm receives instance x1 and creates k copies of the instance, (x′

1 =
x1, . . . ,x′

k = x1). These k copies are used as the first k instances of algorithm
C. When the label y1 is received, it is copied to k labels. The labels are spaced
to give a delay of at least k to each instance. This continues for every trial of
DO -C (k) algorithm, creating k instances and labels for input into the C al-
gorithm. The prediction for xt by the DO -C (k) algorithm is just the random
majority prediction of the C algorithm over the k identical instances. By ran-
dom, we mean the algorithm predicts 1 with a probability equal to the ratio of
the k instances that predict 1.

Lemma 2. Assume you have a delayed on-line learning problem where D has an
infinite number of delays of value k or greater. Let C be a delayed on-line learning
algorithm. When running algorithm DO-C(k) on the same learning problem with
all the delays set to 1, E[Mist(DO-C(k))] ≤ E[Mist(C)]/k.

Proof. Consider of sequence of instances, s, for the on-line problem under con-
sideration, where each instance has a delay of 1. Copy each instance k times
and give each instance a delay of k or greater. Call this new sequence s′. Run-
ning algorithm DO -C (k) on s is related to running algorithm C on s′. Ev-
ery instance from s′ that is predicted incorrectly increases the probability that
DO -C (k) will make a mistake on that instance by 1/k because of the random
majority algorithm. Therefore, for all sequences s generated by the adversary,
E[Mist(DO -C (k), s)] = E[Mist(C, s′)]/k ≤ E[Mist(C)]/k. Since this is true for
all legal sequences s, E[Mist(DO -C (k))] ≤ E[Mist(C)]/k. $%

On-line Learning with Delayed Label Feedback 407

The previous lemma implies how the bound for a delayed on-line learning
algorithm must grow with k.

Theorem 3. Assume E[Mist(Opt)] = M for a traditional on-line learning prob-
lem. For any delayed learning algorithm C, on the same learning problem, when
D has an infinite number of delays of value k or greater, E[Mist(C)] ≥ kM .

Proof. If E[Mist(C)] < kM then we can use Lemma 2 to create a traditional
on-line algorithm, DO -C (k), where E[Mist(DO -C (k))] ≤ E[Mist(C)]/k < M .
This contradicts the definition of Opt . $%

There are learning problems that show this lower bound is tight. In addition,
we can also give forms of the lower-bound that work for general delay multi-sets.
This general form involves the F (D, C) function. Because of space constraints,
we will save these results for a later full version of this paper.

4 Instances Generated by a Distribution

In this section, we give an algorithm transformation for delayed on-line learn-
ing when the instances are generated by a shifting distribution. This shifting
includes both the target function and the probability of a particular instance.
A shifting distribution is a realistic model for many on-line learning problems.
Often the learning environment is not trying to maximize the number of mis-
takes, instead the instances are generated by a distribution that is infrequently
or slowly changing. For example, in our hypothetical medical learning problem,
the population may be slowly changing dietary habits which could effect the
target function.

Let Ψ = (W1, η1()), (W2, η2()), · · · be a sequence of distributions and noise
functions over X×Y . This model is similar to the adversary model in Sect. 3. The
noise function ηi() maps the instances to a measure of noise, and the function
may change for different algorithms. When using a shifting distribution for the
traditional on-line model, we repeatedly allow the environment to either pick
an instance from the current distribution or advance to the next distribution.
While this is still partly adversarial, it does not give the environment as much
freedom since the instance is picked from a distribution.

For the delayed on-line model, the environment selects the delays of the
instances from a multi-set D. We assume the environment must select a delay
before picking an instance from the distribution. Allowing the environment to
select the delays is a worst-case assumption, but it is possible to refine the
analysis to allow a distribution to generate the delays.

A key component of the bound is the total amount the distribution changes
over the trials. We use variational distance to measure the change between two
distributions. [8] Given discrete distributions W1 and W2 over sample space H ,
let the probability of an element x be p1(x) for W1 and p2(x) for W2. The vari-
ational distance is V (W1,W2) = 1

2

∑
x∈H |p1(x) − p2(x)|. The total variational

distance over all trials is Ψ =
∑∞

i=1 V (Wi+1,Wi). This definition generalizes to
arbitrary probability measures.

408 C. Mesterharm

4.1 Algorithm

In this section, we transform an on-line algorithm B to perform well in the
delayed on-line model when instances are generated by a shifting distribution.
We call the transformed algorithm OD3-B(k′). The OD3-B(k′) algorithm does
an update with every instance, and it does the updates in trial order, the same
order as B. In other words, OD3-B(k′) can only update the instance from trial
t + 1 after the update for trial t occurs. Also only a single update is allowed
per trial, so if multiple labels arrive at the start of the trial, only one can be
used for the update. The remaining labels must wait for another trial to perform
their update. Therefore, OD3-B(k′) computes the same hypotheses as algorithm
B, but it will use them in different trials. There is an exception to the above
scheme based on the single parameter k′. This parameter controls the maximum
delay OD3-B(k′) will allow for any instance. If an instance has not received
its label after k′ + 1 trials then the algorithm pretends the instance does not
exist for the purpose of updates. For some problems, this technique is important
since otherwise a single early instance with an infinite delay can prevent all later
updates. The pseudo-code for OD3-B(k′) is given in Fig. 3. We use a heap U to
store the instances that are ready for updates.

Initialization
t ← 0 is the trial number.
current ← 0 is the next instance for an update.
U ← null is a heap that stores instances that are ready for updates.
Initialize algorithm to state s ← s0.

Trials
t ← t + 1.
Instance: Store xt using t as the key.
Prediction: ŷt ← Pred(s,xt).
Update:

If t − current = k′ + 1 then
current ← current + 1.

For all returned labels ya,t

If a ≥ current then
add instance (a, xa, ya,t) to U .

a ← top(U).
If a = current

(a, xa, ya,t) ← extract-min(U)
ŷ ← Pred(s, xa)
s ← Update(s, xa, ya,t, ŷ)
current ← current + 1.
Remove xa.

Periodically remove all instances older than current.

Fig. 3. Delayed on-line algorithm OD3-B(k′)

The computational cost of the OD3-B(k′) algorithm is similar to the cost
of the B and OD1-B algorithms. The number of updates is at most the same

On-line Learning with Delayed Label Feedback 409

as algorithm B and the number of predictions is at most double. There is an
extra cost based on using the heap. The cost to insert and remove instances
from the heap adds an amortized cost of O(ln(k′)) per trial. The OD3-B(k′)
algorithm needs space for at most min(k′, k) instances. By keeping space for
2 min(k′, k) instances, it can periodically remove any old instances with only a
constant amortized increase in the cost per trial.

4.2 Upper-Bound on Mistakes

First, we prove a lemma that bounds the number of trials that do not perform
an update. We need the following notation; let μ be the maximum number of
instances with a delay greater than k′.

Lemma 3. When running the OD3-B(k′) algorithm, there are at most μ +
min(k′, k) trials that do not perform an update.

Proof. Assume that trial t is the min(k′, k) + μ + 1 trial that does not perform
an update. Therefore only t −min(k′, k) − μ − 1 labels have been used for up-
dates. Looking at instance x1 to instance xt−min(k′,k), all of the labels from these
instances that have a delay of at most min(k′, k) must have been returned by
trial t. Therefore the minimum number of labels from these instances that have
been received is t−min(k′, k)− μ. This means there must be at least one label
from this sequence of instances that has not been used for an update. By trial
t, this label has been placed on the heap for an update. This is a contradiction
since trial t does not perform an update. $%
Theorem 4. Assume the expected number of mistakes of on-line algorithm B
is at most M when instances are generated by Ψ . The expected number mistakes
made by the OD3-B(k′) algorithm is at most M + (μ+ min(k′, k)− 1)(Ψ + 1) in
the delayed distribution model.

Proof. Let u be the sequence of instances that cause updates in algorithm
OD3-B(k′). If we use sequence u on algorithm B with a delay of 1 given to
each instance then we expect to make at most M mistakes. This is because the
distribution of sequence u can be generated by Ψ .

For algorithm B on sequence u, let hi be the hypothesis that is used for
prediction in trial i, and let Xi be a random variable that is 1 if algorithm B
makes a mistake on trial i and 0 otherwise. Let Yi be a random variable that is
1 if algorithm OD3-B(k′) makes a mistake on trial i and 0 otherwise.

The hypotheses used by OD3-B(k′) are the same as the hypotheses used by
algorithm B. The only difference is that hypotheses are shifted a certain positive
number of trials since the instances have to wait for their labels. This will force
the OD3-B(k′) algorithm to occasionally use the same hypothesis for multiple
trials as the algorithm waits for a label. Based on Lemma 3, the maximum
number of trials that do not perform an update for algorithm OD3-B(k′) is
μ + min(k′, k). Since the first trial never performs an update, this means that
μ + min(k′, k) − 1 of the hypothesis from algorithm B are reused. Let r =
μ + min(k′, k)− 1.

410 C. Mesterharm

Consider the shifted hypothesis of algorithm OD3-B(k′). When the same
hypothesis is used on two related distributions, the accuracies will be similar.
The difference in accuracy comes from the amount the distribution changes
between the trials. Let vt = V (Dt+1, Dt). Based on this metric, the error-rate
of hypothesis ht may, in the worst case, increase by vt if used during trial t+ 1.
Since each hypothesis is shifted by at most r trials, the error-rate of hypothesis
ht can increase by at most

∑t+r−1
i=t vi. We can use this to bound the expected

number of mistakes.

E[Mist(OD3-B(k′))] =
∞∑

i=1

E[Yi] .

Assuming mistakes on repeated hypotheses and taking into account the number
of trials the hypothesis from B are shifted, the above is

≤ r +
∞∑

i=1

⎛⎝E[Xi] +
i+r−1∑

j=i

vj

⎞⎠ ≤ r + E

[∞∑
i=1

Xi

]
+ r

∞∑
i=i

vi ≤ r + M + rΨ .

This proves the result. $%
A possible modification to algorithm OD3-B(k′) is to predict with a random

coin flip on any repeated hypothesis. This will lower the upper-bound on mistakes
to M + (μ + min(k′, k) − 1)(Ψ + 1/2). In practice, one may want to restrict a
coin flip prediction to repeat hypothesis near the start of the trials, since later
repeated hypotheses may have a high accuracy.

4.3 Lower-Bound on Mistakes

For a shifting adversary, a trivial lower bound, for the delayed learning problem,
is the bound of the optimal algorithm on the traditional on-line learning problem.
This lower-bound bound is good when (μ + min(k′, k)− 1)(Ψ + 1) is small.

Take for example the case where Ψ = 0 forcing the distribution to be constant.
Here the bound for OD3-Opt(k′) is Mist(Opt) + μ + min(k′, k) − 1. The term
μ+min(k′, k)−1 comes from the assumption that OD3-Opt(k′) makes a mistake
on all the repeated hypotheses. In the worst-case, these repeated hypothesis can
be forced to be the beginning trials of the sequence. Since the algorithm will have
no information about the labels of these beginning trials, the probability of a
mistake will depend on the algorithm being able to select a initial hypothesis that
will guarantee good performance no matter what learning problem the adversary
selects. For many learning problems, this will not be possible. In the full version
of the paper, we give an algorithm for learning fixed distributions that slightly
improves the bound and removes the parameter k′. This new algorithm’s upper-
bound on mistakes does not depend on k but instead depends on q, the maximum
number of starting trials that do not receive a label. It has an expected bound
of Mist(Opt) + (q − 1)/2 which, as explained, for many problems is optimal.

We do not have a good lower bound when Ψ > 0, however notice that a shift-
ing distribution can duplicate an adversary by using distributions that place all

On-line Learning with Delayed Label Feedback 411

the weight on particular instances. Therefore, the bounds for shifting distribu-
tions also covers adversaries. Unfortunately, the distribution based bounds get
considerably weaker when the distribution changes frequently. Therefore, when
dealing with a problem that is more adversarial, this bound will be quite poor.
The distribution bound is most relevant for problems where Ψ is small.

5 Mistake-Driven Algorithms

In this section, we restrict ourselves to deterministic traditional on-line algo-
rithms. We prove that a simple transformation for converting any on-line algo-
rithm into a mistake-driven algorithm does not effect the mistake bound for a
wide range of adversaries. A mistake-driven algorithm is an algorithm that only
changes its internal state when it makes a prediction mistake on an instance.

In a paper by Littlestone [1], a transformation is given to convert an on-line
learning algorithm to a mistake-driven algorithm with the same mistake-bound.
However, this transformation only applies to learning fixed concepts without
noise. We consider a simpler transformation that skips any instances that are cor-
rectly classified. The only instances that can effect the state of the algorithm are
instances that cause mistakes. The technique was originally used for converting
Bayesian algorithms into algorithms that perform well against adversaries.[9, 10]
Notationally, we will add the prefix MD to any algorithm to show that it has
been converted into the mistake-driven form.

We prove that this simple transformation retains the existing mistake bound
for a specific type of adversary. We call these special adversaries subset adver-
saries.

Definition 1. An adversary is a subset adversary if, for every sequence s of
instances that the adversary can generate, the adversary can also generate every
subsequence of s.

The next theorem is used in Sect. 3 to help give a bound on algorithm OD1-B
when instances are generated by an adversary.

Theorem 5. For a traditional on-line learning problem with instances gen-
erated by a subset adversary, if B is a deterministic on-line algorithm then
Mist(MD-B) ≤ Mist(B).

Proof. Since the instances are generated by a subset adversary, there must exist
a sequence of instances s that maximizes the number of mistakes for algorithm
MD-B where all the mistakes occur at the beginning of the sequence. Up to
a certain trial m, both algorithm B and MD-B must make identical predic-
tions, updates, and mistakes on instances sequence s. Since MD-B makes no
further mistakes past trial m, Mist(MD-B) = Mist(MD-B , s) ≤ Mist(B, s) ≤
Mist(B). $%

To understand the limits of a subset adversary, we need a general definition
for an adversary. A definition used in many papers is to define an adversary with

412 C. Mesterharm

the set of sequences it is allowed to generate. [7] Call this set of sequences S.
Anytime S is not closed with respect to subsets then the adversary is not a subset
adversary. A non-subset adversary must generate correctly classified instances for
some algorithm/problem combinations in order to maximize the mistake bound.
If these instances contain new information about the target function, they can
help lower the mistake bound.

As an example of an non-subset adversary, consider a shifting concept where
the concept is forced to shift at specific trials. This is not a subset adversary
since all possible subsequences of instances are not allowed. This may force the
adversary to generate an instance that will be predicted correctly. However, if we
assume that there are default instances that the adversary can always generate
that will not give much information about the target concept2 then mistake-
driven algorithms will still give close to the best bounds.

It is an open question as to whether any types of non-subset adversaries are
useful for modeling learning problems. One purpose of an adversarial analysis is
to show that an algorithm performs well even given the worst-case assumption of
an adversary. Since an adversary can always be extended to a subset adversary by
adding instance sequences, a subset adversary extends this notion of worst-case.
In addition, being a subset adversary is only a sufficient condition for Theorem 5.
For many problems, Mist(MD-B) ≤ Mist(B) is true even if the adversary is not
a subset adversary.

We want to stress that many practical on-line problems will not have an
adversary generating the instances. In these cases, a more aggressive algorithm
that sometimes updates on correct predictions can improve performance. [11, 12]
Still the algorithm must be careful to avoid extra updates that increase the
number of mistakes.

6 Conclusion

In this paper, we give algorithms and mistake bounds for delayed on-line learning.
In general, when dealing with an adversary generating the instances, the new
bounds can be poor. If the instances all have a delay of k trials then the mistake
bound can grow by a factor of 2k over the normal on-line learning bounds. We
show this bound is within a factor of 2 from optimal. We also give a more general
analysis for problems where the adversary must select the delay of instances from
a multi-set D. This upper-bound depends on a particular combinatorial property
of D and gives insight to how the algorithm behaves with a range of instance
delays. Things are more hopeful when dealing with a distribution generating
the instances. In this case, if all the instances have a delay k then the expected
mistake bound only increases by k − 1. Slightly shifting the distribution also
performs well with a penalty based on the amount of shifting.

2 This instance could be a previously given instance or an instance that has a known
value based on the set of target functions, such as the instance of all zeros for
monotone disjunctions.

On-line Learning with Delayed Label Feedback 413

In the full version of the paper, we will include two additional algorithms and
experiments to show how the delayed algorithms perform on a shifting concept
using a form of the Winnow algorithm. [13] These additional algorithms fill in
the gaps with the numbering convention used in naming our delayed on-line
algorithm transformations.

References

[1] Littlestone, N.: Learning quickly when irrelevant attributes abound: A new linear-
threshold algorithm. Machine Learning 2 (1988) 285–318

[2] Androutsopoulos, I., Koutsias, J., Chandrinos, K., Paliouras, G., Spyropoulos, C.:
An evaluation of naive bayesian anti-spam filtering (2000)

[3] Padmanabhan, V.N., Mogul, J.C.: Using predictive prefetching to improve world
wide web latency. ACM SIGCOMM Computer Communication Review 26 (1996)
22–36

[4] Littlestone, N.: Redundant noisy attributes, attribute errors, and linear-threshold
learning using winnow. In: Proceedings of the Third Annual Conference on Com-
putational Learning Theory. (1991) 147–156

[5] Helmbold, D.P., Long, P.M.: Tracking drifting concepts using random examples.
In: Proceedings of the Third Annual Conference on Computational Learning The-
ory. (1991) 13–23

[6] Kuh, A., Petsche, T., Rivest, R.L.: Learning time-varying concepts. In: Neural
Information Processing Systems Three, Morgan Kaufmann Publishers, Inc. (1991)
183–189

[7] Auer, P., Warmuth, M.K.: Tracking the best disjunction. In: Proceedings of
the 36th annual symposium on foundations of computer science, IEEE Computer
Society Press (1995) 312–321

[8] Devroye, L., Györfi, L., Lugosi, G.: A Probabilistic Theory of Pattern Recognition.
Springer, New York (1991)

[9] Littlestone, N.: Comparing several linear-threshold learning algorithms on tasks
involving superfluous attributes. In: Proceeding of the Twelve International Con-
ference on Machine Learning. (1995) 353–361

[10] Littlestone, N., Mesterharm, C.: An apobayesian relative of winnow. In: Neural
Information Processing Systems Nine, MIT Press (1997) 204–210

[11] Minsky, M.L., Papert, S.A.: Perceptrons. MIT Press, Cambridge, MA (1969)
[12] Li, Y., Long, P.: The relaxed online maximum margin algorithm. In: Neural

Information Processing Systems Twelve, MIT Press (2000) 498–504
[13] Mesterharm, C.: Tracking linear-threshold concepts with winnow. Journal of

Machine Learning Research 4 (2003) 819–838

Monotone Conditional Complexity Bounds
on Future Prediction Errors�

Alexey Chernov and Marcus Hutter

IDSIA, Galleria 2, CH-6928 Manno-Lugano, Switzerland
{alexey, marcus}@idsia.ch

http://www.idsia.ch/∼{alexey,marcus}

Abstract. We bound the future loss when predicting any (computably)
stochastic sequence online. Solomonoff finitely bounded the total devi-
ation of his universal predictor M from the true distribution μ by the
algorithmic complexity of μ. Here we assume we are at a time t > 1
and already observed x = x1...xt. We bound the future prediction per-
formance on xt+1xt+2... by a new variant of algorithmic complexity of μ
given x, plus the complexity of the randomness deficiency of x. The new
complexity is monotone in its condition in the sense that this complexity
can only decrease if the condition is prolonged. We also briefly discuss
potential generalizations to Bayesian model classes and to classification
problems.

1 Introduction

We consider the problem of online=sequential predictions. We assume that
the sequences x = x1x2x3... are drawn from some “true” but unknown prob-
ability distribution μ. Bayesians proceed by considering a class M of mod-
els=hypotheses=distributions, sufficiently large such that μ ∈M, and a prior
overM. Solomonoff considered the truly large class that contains all computable
probability distributions [Sol64]. He showed that his universal distribution M
converges rapidly to μ [Sol78], i.e. predicts well in any environment as long as
it is computable or can be modeled by a computable probability distribution
(all physical theories are of this sort). M(x) is roughly 2−K(x), where K(x) is
the length of the shortest description of x, called Kolmogorov complexity of x.
Since K and M are incomputable, they have to be approximated in practice.
See e.g. [Sch02b, Hut04, LV97, CV05] and references therein. The universality
of M also precludes useful statements of the prediction quality at particular
time instances n [Hut04–p62], as opposed to simple classes like i.i.d. sequences
(data) of size n, where accuracy is typically O(n−1/2). Luckily, bounds on the
expected total=cumulative loss (e.g. number of prediction errors) for M can be
derived [Sol78, Hut03a, Hut03b], which is often sufficient in an online setting.
The bounds are in terms of the (Kolmogorov) complexity of μ. For instance, for

� This work was supported by SNF grants 200020-107590/1 (to Jürgen Schmidhuber),
2100-67712 and 200020-107616.

S. Jain, H.U. Simon, and E. Tomita (Eds.): ALT 2005, LNAI 3734, pp. 414–428, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Monotone Conditional Complexity Bounds on Future Prediction Errors 415

deterministic μ, the number of errors is (in a sense tightly) bounded by K(μ)
which measures in this case the information (in bits) in the observed infinite
sequence x.

What’s New. In this paper we assume we are at a time t>1 and already ob-
served x=x1...xt. Hence we are interested in the future prediction performance
on xt+1xt+2..., since typically we don’t care about past errors. If the total loss is
finite, the future loss must necessarily be small for large t. In a sense the paper
intends to quantify this apparent triviality. If the complexity of μ bounds the
total loss, a natural guess is that something like the conditional complexity of
μ given x bounds the future loss. (If x contains a lot of (or even all) informa-
tion about μ, we should make fewer (no) errors anymore.) Indeed, we prove two
bounds of this kind but with additional terms describing structural properties of
x. These additional terms appear since the total loss is bounded only in expecta-
tion, and hence the future loss is small only for “most” x1...xt. In the first bound
(Theorem 1), the additional term is the complexity of the length of x (a kind of
worst-case estimation). The second bound (Theorem 7) is finer: the additional
term is the complexity of the randomness deficiency of x. The advantage is that
the deficiency is small for “typical” x and bounded on average (in contrast to
the length). But in this case the conventional conditional complexity turned out
to be unsuitable. So we introduce a new natural modification of conditional Kol-
mogorov complexity, which is monotone as a function of condition. Informally
speaking, we require programs (=descriptions) to be consistent in the sense that
if a program generates some μ given x, then it must generate the same μ given
any prolongation of x. The new posterior bounds also significantly improve the
previous total bounds.

Contents. The paper is organized as follows. Some basic notation and definitions
are given in Sections 2 and 3. In Section 4 we prove and discuss the length-based
bound Theorem 1. In Section 5 we show why a new definition of complexity is
necessary and formulate the deficiency-based bound Theorem 7. We discuss the
definition and basic properties of the new complexity in Section 6, and prove
Theorem 7 in Section 7. We briefly discuss potential generalizations to general
model classesM and classification in the concluding Section 8.

2 Notation and Definitions

We essentially follow the notation of [LV97, Hut04].

Strings and Natural Numbers. We write X ∗ for the set of finite strings over
a finite alphabet X , and X∞ for the set of infinite sequences. The cardinality of
a set S is denoted by |S|. We use letters i,k,l,n,t for natural numbers, u,v,x,y,z
for finite strings, ε for the empty string, and α=α1:∞ etc. for infinite sequences.
For a string x of length �(x) = n we write x1x2...xn with xt ∈ X and further
abbreviate xk:n :=xkxk+1...xn−1xn and x<n :=x1...xn−1. For xt∈X , denote by
x̄t an arbitrary element from X such that x̄t �=xt. For binary alphabet X={0,1},
the x̄t is uniquely defined. We occasionally identify strings with natural numbers.

416 A. Chernov and M. Hutter

Prefix Sets. A string x is called a (proper) prefix of y if there is a z(�= ε) such
that xz=y; y is called a prolongation of x. We write x∗=y in this case, where
∗ is a wildcard for a string, and similarly for infinite sequences. A set of strings
is called prefix free if no element is a proper prefix of another. Any prefix set P
has the important property of satisfying Kraft’s inequality

∑
x∈P |X |−�(x)≤1.

Asymptotic Notation. We write f(x)×≤g(x) for f(x)=O(g(x)) and f(x)+≤g(x)
for f(x)≤ g(x)+O(1). Equalities ×=, += are defined similarly: they hold if the
corresponding inequalities hold in both directions.

(Semi)measures. We call ρ : X ∗ → [0,1] a (semi)measure iff
∑

xn∈X
ρ(x1:n)(<)

= ρ(x<n) and ρ(ε)(<)
= 1. ρ(x) is interpreted as the ρ-probability of sam-

pling a sequence which starts with x. The conditional probability (posterior)
ρ(y|x):= ρ(xy)

ρ(x) is the ρ-probability that a string x is followed by (continued with)
y. We call ρ deterministic if ∃α :ρ(α1:n)=1 ∀n. In this case we identify ρ with α.

Random Events and Expectations. We assume that sequence ω=ω1:∞ is
sampled from the “true” measure μ, i.e. P[ω1:n = x1:n] = μ(x1:n). We denote
expectations w.r.t. μ by E, i.e. for a function f :Xn→ IR, E[f] =E[f(ω1:n)] =∑

x1:n
μ(x1:n)f(x1:n). We abbreviate μt :=μ(xt|ω<t).

Enumerable Sets and Functions. A set of strings (or naturals, or other con-
structive objects) is called enumerable if it is the range of some computable
function. A function f : X ∗→ IR is called (co-)enumerable if the set of pairs
{〈x, k

n 〉 |f(x) (<)
>

k
n} is enumerable. A measure μ is called computable if it is enu-

merable and co-enumerable and the set {x|μ(x)=0} is decidable (i. e. enumerable
and co-enumerable).

Prefix Kolmogorov Complexity. The conditional prefix complexity
K(y|x) := min{�(p) : U(p,x) = y} is the length of the shortest binary (self-
delimiting) program p ∈ {0,1}∗ on a universal prefix Turing machine U with
output y ∈ X ∗ and input x ∈ X ∗ [LV97]. K(x) := K(x|ε). For non-string ob-
jects o we define K(o) :=K(〈o〉), where 〈o〉 ∈ X ∗ is some standard code for o.
In particular, if (fi)∞i=1 is an enumeration of all (co-)enumerable functions, we
define K(fi) := K(i). We need the following properties: The co-enumerability
of K, the upper bounds K(x|�(x)) +≤ �(x)log2|X | and K(n) +≤ 2log2n, Kraft’s
inequality

∑
x2−K(x) ≤ 1, the lower bound K(x) ≥ l(x) for “most” x (which

implies K(n)n→∞−→ ∞), extra information bounds K(x|y) +≤K(x) +≤K(x,y), sub-
additivity K(xy) +≤K(x,y) +≤K(y)+K(x|y), information non-increase K(f(x)) +≤
K(x)+K(f) for computable f : X ∗→X ∗, and coding relative to a probabil-
ity distribution (MDL): if P :X ∗→ [0,1] is enumerable and

∑
xP (x)≤ 1, then

K(x) +≤−log2P (x)+K(P).

Monotone and Solomonoff Complexity. The monotone complexity
Km(x):=min{�(p):U(p)=x∗} is the length of the shortest binary (possibly non-
halting) program p∈{0,1}∗ on a universal monotone Turing machine U which
outputs a string starting with x. Solomonoff’s prior M(x):=

∑
p:U(p)=x∗2

−�(p)=:
2−KM(x) is the probability that U outputs a string starting with x if provided

Monotone Conditional Complexity Bounds on Future Prediction Errors 417

with fair coin flips on the input tape. Most complexities coincide within an ad-
ditive term O(log�(x)), e.g. K(x|�(x)) +≤KM(x)≤Km(x)≤K(x), hence similar
relations as for K hold.

3 Setup

Convergent Predictors. We assume that μ is a “true”1 sequence generating
measure, also called environment. If we know the generating process μ, and given
past data x<t, we can predict the probability μ(xt|x<t) of the next data item
xt. Usually we do not know μ, but estimate it from x<t. Let ρ(xt|x<t) be an
estimated probability2 of xt, given x<t. Closeness of ρ(xt|x<t) to μ(xt|x<t) is
desirable as a goal in itself or when performing a Bayes decision yt that has
minimal ρ-expected loss lρt (x<t) :=minyt

∑
xt

Loss(xt,yt)ρ(xt|x<t). Consider, for
instance, a weather data sequence x1:n with xt = 1 meaning rain and xt = 0
meaning sun at day t. Given x<t the probability of rain tomorrow is μ(1|x<t).
A weather forecaster may announce the probability of rain to be yt :=ρ(1|x<t),
which should be close to the true probability μ(1|x<t). To aim for

ρ(x′t|x<t)− μ(x′t|x<t)
(fast)−→ 0 for t→∞

seems reasonable.

Convergence in Mean Sum. We can quantify the deviation of ρt from μt,
e.g. by the squared difference

st(ω<t) :=
∑

xt∈X
(ρ(xt|ω<t)− μ(xt|ω<t))2 ≡

∑
xt

(ρt − μt)2

Alternatively one may also use the squared absolute distance st := 1
2 (
∑

xt
|ρt−

μt|)2, the Hellinger distance st :=
∑

xt
(
√
ρt−√μt)2, the KL-divergence st :=∑

xt
μtlnμt

ρt
, or the squared Bayes regret st := 1

2 (lρt − lμt)2 for lt ∈ [0,1]. For all
these distances one can show [Hut03a, Hut04] that their cumulative expectation
from l to n is bounded as follows:

0 ≤ E[
n∑

t=l

st|ω<l] ≤ E[ln
μ(ωl:n|ω<l)
ρ(ωl:n|ω<l)

|ω<l] =: Dl:n(ω<l). (1)

Dl:n is increasing in n, hence Dl:∞∈ [0,∞] exists [Hut01, Hut04]. A sequence of
random variables like st is said to converge to zero with probability 1 if the set
{ω : st(ω) t→∞−→ 0} has measure 1. st is said to converge to zero in mean sum if∑∞

t=1E[|st|]≤c<∞, which implies convergence with probability 1 (rapid if c is
of reasonable size). Therefore a small finite bound on D1:∞ would imply rapid
convergence of the st defined above to zero, hence ρt→μt and lρt → lμt fast. So
the crucial quantities to consider and bound (in expectation) are lnμ(x)

ρ(x) if l=1
and lnμ(y|x)

ρ(y|x) for l>1. For illustration we will sometimes loosely interpret D1:∞
1 Also called objective or aleatory probability or chance.
2 Also called subjective or belief or epistemic probability.

418 A. Chernov and M. Hutter

and other quantities as the number of prediction errors, as for the error-loss they
are closely related to it [Hut01].

Bayes Mixtures. A Bayesian considers a class of distributionsM :={ν1,ν2,...},
large enough to contain μ, and uses the Bayes mixture

ξ(x) :=
∑

ν∈M
wν ·ν(x),

∑
ν∈M

wν = 1, wν > 0. (2)

for prediction, where wν can be interpreted as the prior of (or initial belief in)
ν. The dominance

ξ(x) ≥ wμ ·μ(x) ∀x ∈ X ∗ (3)

is its most important property. Using ρ= ξ for prediction, this implies D1:∞≤
lnw−1

μ <∞, hence ξt→μt. If M is chosen sufficiently large, then μ∈M is not a
serious constraint.

Solomonoff Prior. So we consider the largest (from a computational point of
view) relevant class, the class MU of all enumerable semimeasures (which in-
cludes all computable probability distributions) and choose wν =2−K(ν) which is
biased towards simple environments (Occam’s razor). This gives us Solomonoff-
Levin’s prior M [Sol64, ZL70] (this definition coincides within an irrelevant
multiplicative constant with the one in Section 2). In the following we assume
M=MU , ρ= ξ =M , wν = 2−K(ν) and μ ∈MU being a computable (proper)
measure, hence M(x)≥2−K(μ)μ(x) ∀x by (3).

Prediction of Deterministic Environments. Consider a computable se-
quence α=α1:∞ “sampled from μ∈M” with μ(α) = 1, i.e. μ is deterministic,
then from (3) we get

∞∑
t=1

|1−M(αt|α<t)| ≤ −
∞∑

t=1

lnM(αt|α<t) = − lnM(α1:∞) ≤ K(μ) ln 2 <∞,

(4)
which implies that M(αt|α<t) converges rapidly to 1 and hence M(ᾱt|α<t)→
0, i.e. asymptotically M correctly predicts the next symbol. The number of
prediction errors is of the order of the complexity K(μ) +=Km(α) of the sequence.

For binary alphabet this is the best we can expect, since at each time-step
only a single bit can be learned about the environment, and only after we “know”
the environment we can predict correctly. For non-binary alphabet, K(μ) still
measures the information in μ in bits, but feedback per step can now be log2|X |
bits, so we may expect a better bound K(μ)/log2|X |. But in the worst case all
αt ∈ {0,1}⊆X . So without structural assumptions on μ the bound cannot be
improved even if X is huge. We will see how our posterior bounds can help in
this situation.

Individual Randomness (Deficiency). Let us now consider a general (not
necessarily deterministic) computable measure μ∈M. The Shannon-Fano code of
x w.r.t. μ has code-length �−log2μ(x)�, which is “optimal” for “typical/random”
x sampled from μ. Further, −log2M(x)≈K(x) is the length of an “optimal” code

Monotone Conditional Complexity Bounds on Future Prediction Errors 419

for x. Hence −log2μ(x)≈−log2M(x) for “μ-typical/random” x. This motivates
the definition of μ-randomness deficiency

dμ(x) := log2

M(x)
μ(x)

which is small for “typical/random” x. Formally, a sequence α is called (Martin-
Löf) random iff dμ(α) := supndμ(α1:n) <∞, i.e. iff its Shannon-Fano code is
“optimal” (note that dμ(α)≥−K(μ)>−∞ for all sequences), i.e. iff

sup
n

∣∣∣ n∑
t=1

log
μ(αt|α<t)
M(αt|α<t)

∣∣∣ ≡ sup
n

∣∣∣ log
μ(α1:n)
M(α1:n)

∣∣∣ < ∞.

Unfortunately this does not imply Mt→μt on the μ-random α, since Mt may
oscillate around μt, which indeed can happen [HM04]. But if we take the expec-
tation, Solomonoff [Sol78, Hut01, Hut04] showed

0 ≤
∞∑

t=1

E
∑
xt

(Mt−μt)2 ≤ D1:∞ = lim
n→∞E[−dμ(ω1:n)] ln2 ≤ K(μ) ln2 < ∞

(5)
hence, Mt→μt with μ-probability 1. So in any case, dμ(x) is an important quan-
tity, since the smaller −dμ(x) (at least in expectation) the better M predicts.

4 Posterior Bounds

Posterior Bounds. Both bounds, (4) and (5) bound the total (cumulative)
discrepancy (error) between Mt and μt. Since the discrepancy sum D1:∞ is finite,
we know that after sufficiently long time t= l, we will make little further errors,
i.e. the future error sum Dl:∞ is small. The main goal of this paper is to quantify
this asymptotic statement. So we need bounds on log2

μ(y|x)
M(y|x) , where x are past

and y are future observations. Since log2
μ(y)
M(y) ≤K(μ) and μ(y|x)/M(y|x) are

conditional versions of true/universal distributions, it seems natural that the
unconditional bound K(μ) also simply conditionalizes to log2

μ(y|x)
M(y|x)

?≤K(μ|x).
The more information the past observation x contains about μ, the easier it is
to code μ i.e. the smaller is K(μ|x), and hence the less future predictions errors
Dl:∞ we should make. Once x contains all information about μ, i.e. K(μ|x) +=0,
we should make no errors anymore. More formally, optimally coding x then
μ|x and finally y|μ,x by Shannon-Fano, gives a code for xy, hence K(xy) 	
K(x)+K(μ|x)+log2μ(y|x)−1. Since K(z)≈−log2M(z) this implies log2

μ(y|x)
M(y|x) 	

K(μ|x), but with logarithmic fudge that tends to infinity for �(y)→∞, which
is unacceptable. The y-independent bound we need was first stated in [Hut04–
Prob.2.6(iii)]:

Theorem 1. For any computable measure μ and any x,y∈X ∗ it holds

log2

μ(y|x)
M(y|x)

+≤ K(μ|x) + K(�(x)).

420 A. Chernov and M. Hutter

Proof. For any fixed l we define the following function of z∈X ∗. For �(z)≥ l,

ψl(z) :=
∑

ν∈M
2−K(ν|z1:l)M(z1:l)ν(zl+1:�(z)) .

For �(z)<l we extend ψl by defining ψl(z) :=
∑

u:�(u)=l−�(z)ψ(zu). It is easy to
see that ψl is an enumerable semimeasure. By definition of M , we have M(z)≥
2−K(ψl)ψl(z) for any l and z. Now let l = �(x) and z = xy. Let us define a
semimeasure μx(y) :=μ(y|x). Then

M(xy) ≥ 2−K(ψl)ψl(xy) ≥ 2−K(ψl)2−K(μx|x)M(x)μx(y) .

Taking the logarithm, after trivial transformations, we get log2
μ(y|x)
M(y|x) ≤

K(μx|x)+K(ψl). To complete the proof, let us note that K(ψl)
+≤ K(l) and

K(μx|x) +≤K(μ|x). �

Corollary 2. The future and total deviations of Mt from μt are bounded by

i)
∑∞

t=l+1 E[st|ω1:l] ≤ Dl+1:∞(ω1:l)
+≤ (K(μ|ω1:l)+K(l)) ln 2

ii)
∑∞

t=1 E[st]
+≤ minl{E[K(μ|ω1:l)+K(l)] ln 2 + 2l}

Proof. (i) The first inequality is (1) and the second follows by taking the con-
ditional expectation E[·|ω1:l] in Theorem 1. (ii) follows from (i) by taking the
unconditional expectation and from

∑l
t=1E[st]≤2l, since st≤2. �

Examples and More Motivation. The bounds Theorem 1 and Corollary 2(i)
prove and quantify the intuition that the more we know about the environment,
the better our predictions. We show the usefulness of the new bounds for some
deterministic environments μ=̂α.

Assume all observations are identical, i.e. α=x1x1x1.... Further assume that
X is huge and K(x1)=log2|X |, i.e. x1 is a typical/random/complex element of X .
For instance if x1 is a 2563 color 512×512 pixel image, then |X |=2563×512×512.
Hence the standard bound (5) on the number of errors D1:∞/ln2 ≤ K(μ) +=
K(x1)=3·221 is huge. Of course, interesting pictures are not purely random, but
their complexity is often only a factor 10..100 less, so still large. On the other
hand, any reasonable prediction scheme observing a few (rather than several
thousands) identical images, should predict that the next image will be the same.
This is what our posterior bound gives, D2:∞(x1)

+≤K(μ|x1)+K(1) += 0, hence
indeed M makes only

∑∞
t=1E[st]=O(1) errors by Corollary 2(ii), significantly

improving upon Solomonoff’s bound K(μ)ln2.
More generally, assume α= xω, where the initial part x= x1:l contains all

information about the remainder, i.e. K(μ|x) +=K(ω|x) +=0. For instance, x may
be a binary program for π or e and ω be its |X |-ary expansion. Sure, given the
algorithm for some number sequence, it should be perfectly predictable. Indeed,
Theorem 1 implies Dl+1:∞

+≤ K(l), which can be exponentially smaller than
Solomonoff’s bound K(μ) (+= l if K(x) += �(x)). On the other hand, K(l)≥ log2l
for most l, i.e. is larger than O(1) what one might hope for.

Monotone Conditional Complexity Bounds on Future Prediction Errors 421

Logarithmic Versus Constant Accuracy. So there is one blemish in the
bound. There is an additive correction of logarithmic size in the length of x.
Many theorems in algorithmic information theory hold to within an additive
constant, sometimes this is easily reached, sometimes hard, sometimes one needs
a suitable complexity variant, and sometimes the logarithmic accuracy cannot
be improved [LV97]. The latter is the case with Theorem 1:

Lemma 3. For X = {0,1}, for any computable measure μ, there exists a com-
putable sequence α∈{0,1}∞ such that for any l∈IN

Dl:∞(α<l) ≥ Dl:l(α<l) ≡
∑

b∈{0,1}
μ(b|α<l) ln

μ(b|α<l)
M(b|α<l)

+≥ 1
3K(l) .

Proof. Let us construct a computable sequence α∈ {0,1}∞ by induction. As-
sume that α<l is constructed. Since μ is a measure, either μ(0|α<l) > c or
μ(1|α<l)>c for c :=[3ln2]−1< 1

2 . Since μ is computable, we can find (effectively)
b∈{0,1} such that μ(b|α<l)>c. Put αl = b̄.

Let us estimate M(ᾱl|α<l). Since α is computable, M(α<l)
×≥ 1. We claim

that M(α<lᾱl)
×≤ 2−K(l). Actually, consider the set {α<lᾱl | l > 0}. This set is

prefix free and decidable. Therefore P (l)=M(α<lᾱl) is an enumerable function
with

∑
lP (l)≤1, and the claim follows from the coding theorem. Thus, we have

M(ᾱl|α<l)
×≤2−K(l) for any l. Since μ(ᾱl|α<l)>c, we get∑

b∈{0,1}
μ(b|α<l) ln

μ(b|α<l)
M(b|α<l)

+≥ μ(ᾱl|α<l) ln
c

2−K(l)
+ min

p∈[0,1−c]
p ln

p

M(αl|α<l)
+≥ cK(l) ln 2

�

A constant fudge is generally preferable to a logarithmic one for quantitative
and aesthetical reasons. It also often leads to particular insight and/or interesting
new complexity variants (which will be the case here). Though most complexity
variants coincide within logarithmic accuracy (see [Sch00, Sch02a] for excep-
tions), they can have very different other properties. For instance, Solomonoff
complexity KM(x)=−log2M(x) is an excellent predictor, but monotone com-
plexity Km can be exponentially worse and prefix complexity K fails completely
[Hut03c].

Exponential Bounds. Bayes is often approximated by MAP or MDL. In our
context this means approximating KM by Km with exponentially worse bounds
(in deterministic environments) [Hut03c]. (Intuitively, since an error with Bayes
eliminates half of the environments, while MAP/MDL may eliminate only one.)
Also for more complex “reinforcement” learning problems, bounds can be 2K(μ)

rather than K(μ) due to sparser feedback. For instance, for a sequence x1x1x1...
if we do not observe x1 but only receive a reward if our prediction was correct,
then the only way a universal predictor can find x1 is by trying out all |X |
possibilities and making (in the worst case) |X |−1 ×=2K(μ) errors. Posterization
allows to boost such gross bounds to useful bounds 2K(μ|x1) = O(1). But in

422 A. Chernov and M. Hutter

general, additive logarithmic corrections as in Theorem 1 also exponentiate and
lead to bounds polynomial in l which may be quite sizeable. Here the advantage
of a constant correction becomes even more apparent [Hut04–Problems 2.6, 3.13,
6.3 and Section 5.3.3].

5 More Bounds and New Complexity Measure

Lemma 3 shows that the bound in Theorem 1 is attained for some binary strings.
But for other binary strings the bound may be very rough. (Similarly, K(x) is
greater than �(x) infinitely often, but K(x)0�(x) for many ‘interesting” x.) Let
us try to find a new bound, which does not depend on �(x).

First observe that, in contrast to the unconditional case (5), K(μ) is not an
upper bound (again by Lemma 3). Informally speaking, the reason is that M
can predict the future very badly if the past is not “typical” for the environment
(such past x have low μ-probability, therefore in the unconditional case their
contribution to the expected loss is small). So, it is natural to bound the loss
in terms of randomness deficiency dμ(x), which is a quantitative measure of
“typicalness”.

Theorem 4. For any computable measure μ and any x,y∈{0,1}∗ it holds

log2

μ(y|x)
M(y|x)

≡ dμ(x) − dμ(xy) +≤ K(μ) + K(�dμ(x)�) .

Theorem 4 is a variant of the “deficiency conservation theorem” from
[VSU05]. We do not know who was the first to discover this statement and
whether it was published (the special case where μ is the uniform measure was
proved by An. Muchnik as an auxiliary lemma for one of his unpublished results;
then A. Shen placed a generalized statement to the (unfinished) book [VSU05]).

Now, our goal is to replace K(μ) in the last bound by a conditional com-
plexity of μ. Unfortunately, the conventional conditional prefix complexity is not
suitable:

Lemma 5. Let X ={0,1}. There is a constant C0 such that for any l∈IN , there
are a computable measure μ and x∈{0,1}l such that

K(μ|x) ≤ C0, dμ(x) ≤ C0, and

Dl+1:l+1(x) ≡
∑

b∈{0,1}
μ(b|x) ln

μ(b|x)
M(b|x)

+≥ K(l) ln 2 .

Proof. For l∈ IN , define a deterministic measure μl such that μl is equal to 1
on the prefixes of 0l1∞ and is equal to 0 otherwise.

Let x=0l. Then μl(x)=1, μl(x0)=0, μl(x1)=1. Also 1≥M(x)≥M(x0)≥
M(0∞)×=1 and (as in the proof of Lemma 3) M(x1)×≤2−K(l). Trivially, dμl

(x)=
log2M(x) ×=1, and K(μl|x) +=K(μl|l) +=0. Thus, K(μl|x) and dμl

(x) are bounded
by a constant C0 independent of l. On the other hand,

∑
b∈{0,1}μ(b|x)ln μ(b|x)

M(b|x) =
ln 1

M(1|x)

+≥K(l)ln2. (One can obtain the same result also for non-deterministic
μ, for example, taking μl mixed with the uniform measure.) �

Monotone Conditional Complexity Bounds on Future Prediction Errors 423

Informally speaking, in Lemma 5 we exploit the fact that K(y|x) can use the
information about the length of the condition x. Hence K(y|x) can be small for
a certain x and is large for some (actually almost all) prolongations of x. But
in our case of sequence prediction, the length of x grows taking all intermediate
values and cannot contain any relevant information. Thus we need a new kind
of conditional complexity.

Consider a Turing machine T with two input tapes. Inputs are provided
without delimiters, so the size of input is defined by the machine itself. Let
us call such a machine twice prefix. We write that T (x,y) = z if machine T ,
given a sequence beginning with x on the first tape and a sequence beginning
with y on the second tape, halts after reading exactly x and y and prints z
to the output tape. (Obviously, if T (x,y) = z, then the computation does not
depend on the contents of the input tapes after x and y.) We define CT (y|x) :=
min{�(p) |∃k≤�(x) :T (p,x1:k)=y}. Clearly,CT (y|x) is an enumerable from above
function of T , x, and y. Using a standard argument [LV97], one can show that
there exists an optimal twice prefix machine U in the sense that for any twice
prefix machine T we have CU (y|x)

+≤CT (y|x).

Definition 6. Complexity monotone in conditions is defined for some fixed op-
timal twice prefix machine U as

K∗(y|x∗) := CU (y|x) = min{�(p) | ∃k ≤ �(x) : U(p, x1:k) = y} .
Here ∗ in x∗ is a syntactical part of the complexity notation, though one may
think of K∗(y|x∗) as of the minimal length of a program that produces y given
any z=x∗.
Theorem 7. For any computable measure μ and any x,y∈X ∗ it holds

log2

μ(y|x)
M(y|x)

+≤ K∗(μ|x∗) + K(�dμ(x)�) .

Note. One can get a slightly stronger variants of Theorems 1 and 7 by replacing
the complexity of a standard code of μ by more sophisticated values. First, in
any effective encoding there are many codes for every μ, and in all the upper
bounds (including Solomonoff’s one) one can take the minimum of the complex-
ities of all the codes for μ. Moreover, in Theorem 1 it is sufficient to take the
complexity of μx =μ(·|x) (and it is sufficient that μx is enumerable, while μ can
be incomputable). For Theorem 7 one can prove a similar strengthening: The
complexity of μ is replaced by the complexity of any computable function that
is equal to μ on all prefixes and prolongations of x.

To demonstrate the usefulness of the new bound, let us again consider some
deterministic environment μ=̂α. For X = {0,1} and α = x∞ with x = 0n1,
Theorem 1 gives the bound K(μ|n)+K(n) += K(n). Consider the new bound
K∗(μ|x∗)+K(�dμ(x)�). Since μ is deterministic, we have dμ(x) = log2M(x) +=
−K(n), and K(�dμ(x)�) +=K(K(n)). To estimate K∗(μ|x∗), let us consider a ma-
chine T that reads only its second tape and outputs the number of 0s before the
first 1. Clearly,CT (n|x)=0, hence K∗(μ|x∗)+=0. Finally, K∗(μ|x∗)+K(�dμ(x)�)+≤
K(K(n)), which is much smaller than K(n).

424 A. Chernov and M. Hutter

6 Properties of the New Complexity

The above definition of K∗ is based on computations of some Turing machine.
Such definitions are quite visual, but are often not convenient for formal proofs.
We will give an alternative definition in terms of enumerable sets (see [US96]
for definitions of unconditional complexities in this style), which summarizes the
properties we actually need for the proof of Theorem 7.

An enumerable set E of triples of strings is called K∗-correct if it satisfies
the following requirements:

1. if 〈p,x,y1〉∈E and 〈p,x,y2〉∈E, then y1 =y2;
2. if 〈p,x,y〉∈E, then 〈p′,x′,y〉∈E for all p′ being prolongations of p and all x′

being prolongations of x;
3. if 〈p,x′,y〉∈E and 〈p′,x,y〉∈E, and p is a prefix of p′ and x is a prefix of x′,

then 〈p,x,y〉∈E.

A complexity of y under a condition x w.r.t. a set E is CE(y|x) = min{�(p) |
〈p,x,y〉∈E}. A K∗-correct set E is called optimal if CE(y|x) +≥CE′(y|x) for any
K∗-correct set E′. One can easily construct an enumeration of all K∗-correct
sets, and an optimal set exists by the standard argument.

It is easy to see that a twice prefix Turing machine T can be transformed to a
set E such that CT (y|x)=CE(y|x). The set E is constructed as follows: T is run
on all possible inputs, and if T (p,x)=y, then pairs 〈p′,x′,y〉 are added to E for
all p′ being prolongations of p and all x′ being prolongations of x. Evidently, E is
enumerable, and the second requirement of K∗-correctness is satisfied. To verify
the other requirements, let us consider arbitrary 〈p′1,x′1,y1〉∈E and 〈p′2,x′2,y2〉∈E
such that p′1 and p′2, x

′
1 and x′2 are comparable (one is a prefix of the other). Then,

by construction of E, we have T (p1,x1)=y1 and T (p2,x2)=y2, and p1 and p2, x1

and x2 are comparable too. Since replacing the unused part of the inputs does
not affect the running of the machine T and comparable words have a common
prolongation, we get p1 =p2, x1 =x2, and y1 =y2. Thus E is a K∗-correct set.

The transformation in the other direction is impossible in some cases: the
set E={〈0h(n)p,0n1q,0〉 |n∈IN,p,q∈{0,1}∗}, where h(n) is 0 if the n-th Turing
machine halts and 1 otherwise, is K∗-correct, but does not have a corresponding
machine T : using such a machine one could solve the halting problem. However,
we conjecture that for every set E there exists a machine T such that CT (x|y) +=
CE(x|y).

Probably, the requirements on E can be even weaker, namely, the third re-
quirement can be superfluous. Let us notice that the first requirement of K∗-
correctness allows us to consider the set E as a partial computable function:
E(p,x)= y iff 〈p,x,y〉∈E. The second requirement says that E becomes a con-
tinuous function if we take the topology of prolongations (any neighborhood of
〈p,x〉 contains the cone {〈p∗,x∗〉}) on the arguments and the discrete topology
({y} is a neighborhood of y) on values. It is known (see [US96] for references)
that different complexities (plain, prefix, decision) can be naturally defined in
a similar “topological” fashion. We conjecture the same is true in our case: an
optimal enumerable set satisfying the requirements (1) and (2) (obviously, it

Monotone Conditional Complexity Bounds on Future Prediction Errors 425

exists) specifies the same complexity (up to an additive constant) as an optimal
twice prefix machine.

It follows immediately from the definition(s) that K∗(y|x∗) is monotone as
a function of x: K∗(y|xz∗)≤K∗(y|x∗) for all x, y, z.

The following lemma provides bounds for K∗(x|y∗) in terms of prefix com-
plexity K. The lemma holds for all our definitions of K∗(x|y∗).
Lemma 8. For any x,y∈X ∗ it holds

K(x|y) +≤ K∗(x|y∗) +≤ min
l≤�(y)

{K(x|y1:l) + K(l)} +≤ K(x) .

In general, none of the bounds is equal to K∗(x|y∗) even within o(K(x)) term,
but they are attained for certain y: For every x there is a y such that

K(x|y) += 0 and K∗(x|y∗) += K(x) += min
l≤�(y)

{K(x|y1:l) + K(l)} ,

and for every x there is a y such that

K(x|y) += K∗(x|y∗) += 0 and K(x) +≤ min
l≤�(y)

{K(x|y1:l) + K(l)} .

Corollary 9. The future deviation of Mt from μt is bounded by
∞∑

t=l+1

E[st|ω1:l]
+≤ [min

i≤l
{K(μ|ω1:i)+K(i)}+ K(dμ(ω1:l))] ln 2 .

Let us note that if ω is μ-random, then K(dμ(ω1:l))
+≤K(dμ(ω1:∞))+K(K(μ)),

and therefore we get the bound, which does not increase with l, in contrast to
the bound (i) in Corollary 2.

7 Proof of Theorem 7

The plan is to get a statement of the form 2dμ(y) ×≤M(y), where d≈ dμ(x) =
log2

M(x)
μ(x) . To this end, we define a new semimeasure ν: we take the set S =

{z|dμ(z) > d} and put ν to be 2dμ on prolongations of z ∈ S; this is possible
since S has μ-measure 2−d. Then we have ν(z)≤C ·M(z) by universality of M .
However, the constant C depends on μ and also on d. To make the dependence
explicit, we repeat the above construction for all numbers d and all semimea-
sures μT , obtaining semimeasures νd,T , and take ν=

∑
2−K(d) ·2−K(T)νd,T . This

construction would give us the term K(μ) in the right-hand side of Theorem
7. To get K∗(μ|x∗), we need a more complicated strategy: instead of a sum of
semimeasures νd,T , for every fixed d we sum “pieces” of νd,T at each point z,
with coefficients depending on z and T .

Now proceed with the formal proof. Let {μT }T∈IN be any (effective) enumer-
ation of all enumerable semimeasures. For any integer d and any T , put

Sd,T := {z |
∑

v∈X �(z)\{z}
μT (v) + 2−dM(z) > 1} .

The set Sd,T is enumerable given d and T .

426 A. Chernov and M. Hutter

Let E be the optimal K∗-correct set (satisfying all three requirements),
E(p,z) is the corresponding partial computable function. For any z ∈X ∗ and
T , put

λ(z, T) := max{2−�(p) | ∃k ≤ �(z) : z1:k ∈ Sd,T and E(p, z1:k) = T }
(if there is no such p, then λ(z,T)=0). Put

ν̃d(z) :=
∑
T

λ(z, T) · 2dμT (z) .

Obviously, this value is enumerable. It is not a semimeasure, but it has the
following property (we omit the proof).

Claim. For any prefix-free set A,∑
z∈A

ν̃d(z) ≤ 1 .

This implies that there exists an enumerable semimeasure νd such that νd(z)≥
ν̃d(z) for all z. Actually, to enumerate νd, one enumerates ν̃d(z) for all z and at
each step sets the current value of νd(z) to the maximum of the current values
of ν̃d(z) and

∑
u∈X νd(zu). Trivially, this provides νd(z)≥

∑
u∈X νd(zu). To show

that νd(ε)≤1, let us note that at any step of enumeration the current value of
νd(ε) is the sum of current values ν̃d(z) over some prefix-free set, and thus is
bounded by 1. Put

ν(z) :=
∑

d

2−K(d)νd(z) .

Clearly, ν is an enumerable semimeasure, thus ν(z) ×≤M(z). Let μ be an ar-
bitrary computable measure, and x,y ∈ X ∗. Let p ∈ {0,1}∗ be a string such
that K∗(μ|x∗) = �(p), E(p,x) = T , and μ = μT . Put d = �dμ(x)�− 1, i.e.,
dμ(x)−1≤ d < dμ(x). Hence μ(x) < 2−dM(x). Since μ = μT is a measure, we
have

∑
v∈X �(x)μT (v)=1, and therefore x∈Sd,T . By definition, λ(xy,T)≥2−�(p),

thus ν̃d(xy)≥2−�(p)2dμ(xy), and

2−K(d)2−�(p)2dμ(xy) ≤ ν(xy) ×≤ M(xy) .

After trivial transformations we get

log2

μ(y|x)
M(y|x)

+≤ K∗(μ|x∗) + K(d) ,

which completes the proof of Theorem 7.

8 Discussion

Conclusion. We evaluated the quality of predicting a stochastic sequence at
an intermediate time, when some beginning of the sequence has been already

Monotone Conditional Complexity Bounds on Future Prediction Errors 427

observed, estimating the future loss of the universal Solomonoff predictor M .
We proved general upper bounds for the discrepancy between conditional values
of the predictor M and the true environment μ, and demonstrated a kind of
tightness for these bounds. One of the bounds is based on a new variant of
conditional algorithmic complexity K∗, which has interesting properties in its
own. In contrast to standard prefix complexity K, K∗ is a monotone function of
conditions: K∗(y|xz∗)≤K∗(y|x∗).

General Bayesian Posterior Bounds. A natural question is whether poste-
rior bounds for general Bayes mixtures based on generalM2μ could also be de-
rived. From the (obvious) posterior representation ξ(y|x)=

∑
ν∈Mwν(x)ν(y|x)≥

wμ(x)μ(y|x), where wν(x) := wν
ν(x)
ξ(x) is the posterior belief in ν after observ-

ing x, the bound Dl:∞ ≤ lnwμ(ω<l)−1 immediately follows. Strangely enough,
for M=MU , log2w

−1
ν :=K(ν) does not imply log2wμ(x)−1 =K(μ|x), not even

within logarithmic accuracy, so it was essential to consider Dl:∞. It would be
interesting to derive bounds on Dl:∞ or lnwμ(x)−1 for generalM similar to the
ones derived here forM=MU .

Online Classification. All considered distributions ρ(x) (in particular ξ, M ,
and μ), may be replaced everywhere by distributions ρ(x|z) additionally con-
ditioned on some z. The z-conditions cause nowhere problems as they can es-
sentially be thought of as fixed (or as oracles or spectators). An (i.i.d.) clas-
sification problem is a typical example: At time t one arranges an experiment
zt (or observes data zt), then tries to make a prediction, and finally observes
the true outcome xt with probability μ(xt|zt). In this case M={ν(x1:n|z1:n)=
ν(x1|z1)· ...·ν(xn|zn)}. (Note that ξ is not i.i.d). Solomonoff’s bound K(μ)ln2
(5) holds unchanged. Compared to the sequence prediction case we have extra
information z, so we may wonder whether some improved bound K(μ|z) or so,
holds. For a fixed z this can be achieved by also replacing 2−K(μ) in (2) by
2−K(μ|z). But if at time t only z1:t is known like in the classification example,
this leads to difficulties (ξ is no longer a (semi)measure, which sometimes can be
corrected [PH04]). Alternatively we could keep definition (2) but apply it to the
(chronologically correctly ordered) sequence z1x1z2x2..., condition to z1:t, and
try to derive improved bounds.

More Open Problems. Since D1:∞ is finite, one may expect that the tails
Dl:∞ tend to 0 as l→∞. However, as Lemma 3 implies, this holds only with
probability 1: for some special α we have even Dl:∞(α<l)

+≥ 1
3K(l) l→∞−→ ∞. It

would be very interesting to find a wide class of α such that Dl:∞(α<l)→ 0.
The natural conjecture is that one should take μ-random α. Another (probably,
closely related) task is to study the asymptotic behavior of K∗(μ|α<l∗). It is nat-
ural to expect that K∗(μ|α<l∗) is bounded by an absolute constant (independent
of μ) for “most” α and for sufficiently large l. Finally, (dis)proving equality of
the various definitions of K∗ we gave, would be useful.

428 A. Chernov and M. Hutter

References

[CV05] R. Cilibrasi and P. M. B. Vitányi. Clustering by compression. IEEE Trans.
Information Theory, 51(4):1523–1545, 2005.

[HM04] M. Hutter and An. A. Muchnik. Universal convergence of semimeasures on
individual random sequences. In Proc. 15th International Conf. on Algo-
rithmic Learning Theory (ALT’04), volume 3244 of LNAI, pages 234–248,
Padova, 2004. Springer, Berlin.

[Hut01] M. Hutter. Convergence and error bounds for universal prediction of non-
binary sequences. Proc. 12th Eurpean Conference on Machine Learning
(ECML-2001), pages 239–250, December 2001.

[Hut03a] M. Hutter. Convergence and loss bounds for Bayesian sequence prediction.
IEEE Trans. on Information Theory, 49(8):2061–2067, 2003.

[Hut03b] M. Hutter. Optimality of universal Bayesian prediction for general loss and
alphabet. Journal of Machine Learning Research, 4:971–1000, 2003.

[Hut03c] M. Hutter. Sequence prediction based on monotone complexity. In Proc.
16th Annual Conference on Learning Theory (COLT’03), volume 2777 of
LNAI, pages 506–521, Berlin, 2003. Springer.

[Hut04] M. Hutter. Universal Artificial Intelligence: Sequential Decisions based on
Algorithmic Probability. Springer, Berlin, 2004. 300 pages, http://www.
idsia.ch/∼marcus/ai/uaibook.htm.

[LV97] M. Li and P. M. B. Vitányi. An introduction to Kolmogorov complexity and
its applications. Springer, 2nd edition, 1997.

[PH04] J. Poland and M. Hutter. Convergence of discrete MDL for sequential pre-
diction. In Proc. 17th Annual Conf. on Learning Theory (COLT’04), volume
3120 of LNAI, pages 300–314, Banff, 2004. Springer, Berlin.

[Sch00] J. Schmidhuber. Algorithmic theories of everything. Report IDSIA-20-00,
quant-ph/0011122, IDSIA, Manno (Lugano), Switzerland, 2000.

[Sch02a] J. Schmidhuber. Hierarchies of generalized Kolmogorov complexities and
nonenumerable universal measures computable in the limit. International
Journal of Foundations of Computer Science, 13(4):587–612, 2002.

[Sch02b] J. Schmidhuber. The Speed Prior: a new simplicity measure yielding near-
optimal computable predictions. In Proc. 15th Annual Conference on Com-
putational Learning Theory (COLT 2002), Lecture Notes in Artificial Intel-
ligence, pages 216–228, Sydney, Australia, July 2002. Springer.

[Sol64] R. J. Solomonoff. A formal theory of inductive inference: Part 1 and 2.
Inform. Control, 7:1–22, 224–254, 1964.

[Sol78] R. J. Solomonoff. Complexity-based induction systems: comparisons and
convergence theorems. IEEE Trans. Information Theory, IT-24:422–432,
1978.

[US96] V. A. Uspensky and A. Shen. Relations Between Varieties of Kolmogorov
Complexities. Math. Systems Theory, 29:271–292, 1996.

[VSU05] N. K. Vereshchagin, A. Shen, and V. A. Uspensky. Lecture Notes on Kol-
mogorov Complexity. Unpublished, http://lpcs.math.msu.su/∼ver/kolm-
book, 2005.

[ZL70] A. K. Zvonkin and L. A. Levin. The complexity of finite objects and the
development of the concepts of information and randomness by means of the
theory of algorithms. Russian Mathematical Surveys, 25(6):83–124, 1970.

Non-asymptotic Calibration and Resolution

Vladimir Vovk

Computer Learning Research Centre,
Department of Computer Science,

Royal Holloway, University of London,
Egham, Surrey TW20 0EX, England

vovk@cs.rhul.ac.uk

Abstract. We analyze a new algorithm for probability forecasting of
binary labels, without making any assumptions about the way the data
is generated. The algorithm is shown to be well calibrated and to have
high resolution for big enough data sets and for a suitable choice of
its parameter, a kernel on the Cartesian product of the forecast space
[0, 1] and the object space. Our results are non-asymptotic: we establish
explicit inequalities for the performance of the algorithm.

1 Introduction

We consider the problem of predicting the label of a new object given a training
set of labeled objects (or, as we will call them, examples). To make the process
of prediction more vivid, we imagine that the examples are chosen by a player
called Reality and the predictions are made by a player called Forecaster. To
establish properties of prediction algorithms, the traditional theory of machine
learning makes some assumptions about the way Reality generates the examples;
e.g., statistical learning theory [14] assumes that the examples are generated
independently from the same probability distribution. A more recent approach,
prediction with expert advice (see, e.g., [1]), replaces the assumptions about
Reality by a comparison class of prediction strategies; a typical result of this
theory asserts that Forecaster can perform almost as well as the best strategies
in the comparison class. This paper further explores a third possibility, suggested
in [6], which requires neither assumptions about Reality nor a comparison class
of Forecaster’s strategies. It is shown in [6] that there exists a prediction strategy
which is automatically well calibrated; this result has been further developed in
several other papers. All the known calibration results, however, are asymptotic
(see [10] for a critique of the standard asymptotic notion of calibration); the
main results of this paper (Theorems 1 and 2) are first non-asymptotic results
of this kind.

It should be noted that, although our approach was inspired by [6] and papers
further developing [6], precise statements of our results and our proof techniques
are completely different.

The non-asymptotic nature of our results makes it possible to derive new
results in prediction with expert advice [15]. Such applications are, however,
outside the scope of this paper.

S. Jain, H.U. Simon, and E. Tomita (Eds.): ALT 2005, LNAI 3734, pp. 429–443, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

430 V. Vovk

2 The K29 and K29∗ Algorithms

In this section we describe our learning protocol and the general prediction
algorithms studied in this paper. The protocol is:

FOR n = 1, 2, . . . :
Reality announces xn ∈ X.
Forecaster announces pn ∈ [0, 1].
Reality announces yn ∈ {0, 1}.

END FOR.

On each round, Reality chooses an object xn, then Forecaster gives his prediction
pn for this object’s label, and finally Reality discloses the true label yn ∈ {0, 1}.
Reality chooses xn from an object space X and yn from the two-element set
{0, 1}; intuitively, Forecaster’s move pn is the probability he attaches to the
event yn = 1. Prediction algorithm is Forecaster’s strategy in this protocol.

Our learning protocol is a perfect-information protocol; in particular, Reality
may take into account the forecast pn when deciding on her move yn. (This
feature is unusual for probability forecasting but it does extend the domain of
applicability of our results.)

Next we describe the two general prediction algorithms that we study in this
paper (one of them was derived informally in [17]). A function k : Z2 → IR,
where Z is an arbitrary set and IR is the set of real numbers, is a kernel on
Z if it is symmetric (k(z, z′) = k(z′, z) for all z, z′ ∈ Z) and positive definite
(
∑m

i=1

∑m
j=1 λiλjk(zi, zj) ≥ 0 for all (λ1, . . . , λm) ∈ IRm and all (z1, . . . , zm) ∈

Zm). The usual interpretation of a kernel k(z, z′) is as a measure of similarity
between z and z′ (see, e.g., [11], §1.1). The K29 and K29∗ algorithms have one
parameter, which is a kernel on the Cartesian product [0, 1] × X. The most
standard way of constructing such kernels from kernels on [0, 1] and kernels on
X is the operation of tensor product. Let us say that a kernel k on [0, 1]×X is
admissible if the function k((p, x), (p′, x′)), where p, p′ ∈ [0, 1] and x, x′ ∈ X, is
continuous in p for any fixed x, p′, x′.

The K29 algorithm
Parameter: admissible kernel k on [0, 1]×X
FOR n = 1, 2, . . . :

Read xn ∈ X.
Set Sn(p) :=

∑n−1
i=1 k((p, xn), (pi, xi))(yi − pi), p ∈ [0, 1].

Output any root p of Sn(p) = 0 as pn;
if there are no roots, pn := (1 + signSn)/2.

Read yn ∈ {0, 1}.
END FOR.

The intuition behind this algorithm is that pn is chosen so that pi are unbiased
forecasts for yi on the rounds i = 1, . . . , n − 1 for which (pi, xi) is similar to
(pn, xn).

Non-asymptotic Calibration and Resolution 431

The K29∗ algorithm is defined in the same way except that:

– its parameter k is required to be ∗-admissible: to be admissible with the
function k((p, x), (p, x)) continuous in p for any fixed x ∈ X (the fact that
this requirement is stronger than admissibility was established by Lehto in
1950; for a proof, see, e.g., [8], pp. 46–47);

– the function Sn(p) in the description of K29 is now defined as

Sn(p) :=
n−1∑
i=1

k((p, xn), (pi, xi))(yi − pi) +
1
2
k((p, xn), (p, xn))(1 − 2p)

(intuitively, the second addend, which can be rewritten as

k((p, xn), (p, xn))(0.5− p) ,

adds an element of regularization, i.e., bias towards the “neutral” value pn =
0.5, to K29).

According to Mercer’s theorem (a very simple proof of a suitable version can
be found in [5], Theorem II.3.1), there exists a function Φ : [0, 1] ×X → H (a
feature mapping taking values in an inner product space H called the feature
space) such that

k(a, b) = Φ(a) · Φ(b), ∀a, b ∈ [0, 1]×X (1)

(· standing for the inner product in H). It is known that, for any k and Φ
connected by (1), k is ∗-admissible if and only if Φ is a continuous function of p
for each fixed x ∈ X (the idea of a proof is described in, e.g., [13], Lemma 3).

Now we can state the basic result about K29 and K29∗.

Theorem 1. Let k be the kernel defined by (1) for a feature mapping Φ : [0, 1]×
X→ H. If k is admissible, the K29 algorithm with parameter k ensures∥∥∥∥∥

N∑
n=1

(yn − pn)Φ(pn, xn)

∥∥∥∥∥
2

≤
N∑

n=1

‖Φ(pn, xn)‖2 , ∀N ∈ {1, 2, . . .} . (2)

If k is ∗-admissible, the K29 ∗ algorithm with parameter k ensures

∥∥∥∥∥
N∑

n=1

(yn − pn)Φ(pn, xn)

∥∥∥∥∥
2

≤
N∑

n=1

pn(1− pn) ‖Φ(pn, xn)‖2 ,

∀N ∈ {1, 2, . . .} . (3)

Let us assume, for simplicity, that

C := sup
p,x
‖Φ(p, x)‖ <∞ (4)

432 V. Vovk

(it is often a good idea to use kernels with ‖Φ(p, x)‖ ≡ 1 and, therefore, C = 1).
Equation (2) then implies

∥∥∥∥∥
N∑

n=1

(yn − pn)Φ(pn, xn)

∥∥∥∥∥ ≤ C
√
N, ∀N ∈ {1, 2, . . .} . (5)

When Φ is absent (in the sense Φ ≡ 1), this shows that the forecasts pn are
“unbiased” predictions of the true labels yn; the presence of Φ implies, for a
suitable kernel, “local unbiasedness”. This is further discussed in §5.

3 Fermi–Sobolev Spaces

In the following section we will consider an especially suitable kernel for K29 and
K29∗ and we will state a calibration and resolution result for it. This result will
involve a functional norm, and the goal of this preparatory section is to define
this norm.

Let f : [0, 1]k → IR be a smooth function. The L2 norm

√∫ 1

0

· · ·
∫ 1

0

(
∂kf(t1, . . . , tk)
∂t1 · · ·∂tk

)2

dt1 · · · dtk

of its full cross-derivative will be denoted S(f); it is easy to see that S is a
seminorm.

The Fermi–Sobolev norm ‖f‖FS of a smooth function f : [0, 1]k → IR is
defined by

‖f‖2FS :=
∑

{i1,...,im}⊆{1,...,k}
S2

(∫ 1

0

· · ·
∫ 1

0

f(t1, . . . , tk) dti1 · · · dtim

)
,

where
∫ 1

0 · · ·
∫ 1

0 f(t1, . . . , tk) dti1 · · · dtim is considered as a function of the
free variables (the elements of the set {t1, . . . , tk} \ {ti1 , . . . , tim}) and∑

{i1,...,im}⊆{1,...,k} stands (in this and similar places) for summation over
all subsets, of all sizes m = 0, . . . , k, of {1, . . . , k} (and so we could have written∑k

m=0

∑
{i1,...,im}⊆{1,...,k} instead).

The Fermi–Sobolev space on [0, 1]k is the completion of the set of smooth
f : [0, 1]k → IR satisfying ‖f‖FS <∞ with respect to the norm ‖·‖FS. It is easy
to see that it is in fact a Hilbert space. Elements of this Hilbert space will be
called Fermi–Sobolev functions.

In the rest of this paper we will usually assume X = [0, 1]K for some K ∈
{0, 1, . . .} and will be interested in the Fermi–Sobolev space on [0, 1]K+1.

Non-asymptotic Calibration and Resolution 433

4 The FS and FS∗ Algorithms

Suppose X = [0, 1]K . The kernel

k
(
(t0, (t1, . . . , tK)), (t′0, (t

′
1, . . . , t

′
K))
)

:=
K∏

k=0

(
3 min2(tk, t′k) + 3 min2(1− tk, 1− t′k) + 5

)
(6)

on [0, 1] ×X will be called the FS kernel, and the K29 (resp. K29∗) algorithm
applied to this kernel will be called the FS (resp. FS ∗) algorithm. (Intuitively,
t0 and t′0 are the forecasts and (t1, . . . , tK) and (t′1, . . . , t

′
K) are the objects.) It

is obvious that (6) is ∗-admissible.
One can deduce the following corollary from Theorem 1.

Theorem 2. Let X = [0, 1]K for some K ∈ {0, 1, . . .}. The FS algorithm en-
sures ∣∣∣∣∣

N∑
n=1

(yn − pn)f(pn, xn)

∣∣∣∣∣ ≤
(

2√
3

)K+1

‖f‖FS

√
N (7)

for all N and for all Fermi–Sobolev functions f : [0, 1]K+1 → IR. The FS∗

algorithm ensures∣∣∣∣∣
N∑

n=1

(yn − pn)f(pn, xn)

∣∣∣∣∣ ≤
(

2√
3

)K+1

‖f‖FS

√√√√ N∑
n=1

pn(1− pn) (8)

for all N and all Fermi–Sobolev f : [0, 1]K+1 → IR.

5 Informal Discussion of Theorems 1 and 2

In this section we will assume that (4) and, therefore, (5) hold true. We will show
that the latter can be interpreted as saying that K29 is well calibrated (this is
also true about K29∗, but in this section we will only discuss, for simplicity, the
unstarred versions of the K29 and FS algorithms).

First, we briefly discuss the intuitive notion of calibration (for further details,
see [4] and [6]). The forecasts pn, n = 1, . . . , N , are said to be “well calibrated”
(or “unbiased in the small”, or “reliable”, or “valid”) if, for any p∗ ∈ [0, 1],∑

n=1,...,N :pn≈p∗ yn∑
n=1,...,N :pn≈p∗ 1

≈ p∗ (9)

provided
∑

n=1,...,N :pn≈p∗ 1 is not too small. To make sense of the ≈ in the
numerator and denominator of (9), we replace each “crisp” point p∗ by a “fuzzy
point” Ip∗ : [0, 1] → [0, 1]; Ip∗ is required to be continuous; we might also want
to have Ip∗(p∗) = 1 and Ip∗(p) = 0 for all p outside a small neighborhood of

434 V. Vovk

p∗. (The alternative of choosing Ip∗ := I[p−,p+], where [p−, p+] is a short interval
containing p∗ and I[p−,p+] is its indicator function, does not work because of
Oakes’s and Dawid’s examples [9, 3]; Ip∗ can, however, be arbitrarily close to
I[p−,p+].) With this interpretation, (9) can be rewritten as∑N

n=1(yn − p∗)Ip∗(pn)∑N
n=1 Ip∗(pn)

≈ 0 . (10)

It will be convenient to replace (10) with∑N
n=1(yn − pn)Ip∗(pn)∑N

n=1 Ip∗(pn)
≈ 0 ; (11)

the difference between the left-hand sides of (10) and (11),∑N
n=1(pn − p∗)Ip∗(pn)∑N

n=1 Ip∗(pn)

is typically small (viz., is small assuming that Ip∗(p) is small when p is far from
p∗ and that Ip∗(pn) is not small for many n).

Let (p∗, x∗) be a point in [0, 1]×X. Fix an admissible kernel k : ([0, 1]×X)2 →
IR and consider the “soft neighborhood”

I(p∗,x∗)(p, x) := k((p∗, x∗), (p, x)) (12)

of the point (p∗, x∗). The following is an easy corollary of Theorem 1.

Corollary 1. The K29 algorithm with parameter k such that

C2 := sup
(p,x)∈[0,1]×X

k((p, x), (p, x)) <∞

ensures ∣∣∣∣∣
N∑

n=1

(yn − pn)I(p∗,x∗)(pn, xn)

∣∣∣∣∣ ≤ C2
√
N (13)

for each point (p∗, x∗) ∈ [0, 1]×X, where I is defined by (12).

Proof. Let Φ : [0, 1] ×X → H be a function taking values in an inner product
space H and satisfying (1); the constant C can be equivalently defined by (4).
The Cauchy–Schwarz inequality, (4), and (5) imply∣∣∣∣∣

N∑
n=1

(yn − pn)I(p∗,x∗)(pn, xn)

∣∣∣∣∣
=

∣∣∣∣∣
(

N∑
n=1

(yn − pn)Φ(pn, xn)

)
· Φ(p∗, x∗)

∣∣∣∣∣
≤
∥∥∥∥∥

N∑
n=1

(yn − pn)Φ(pn, xn)

∥∥∥∥∥ ‖Φ(p∗, x∗)‖ ≤ C2
√
N .

Non-asymptotic Calibration and Resolution 435

Taking as k a non-negative admissible kernel that ignores the objects,

k((p, x), (p′, x′)) = k(p, p′) ,

we can rewrite (13) as∣∣∣∣∣
∑N

n=1(yn − pn)Ip∗(pn)∑N
n=1 Ip∗(pn)

∣∣∣∣∣ ≤ C2
√
N∑N

n=1 Ip∗(pn)
;

comparing this with (11), we can see that K29 is well calibrated provided

N∑
n=1

Ip∗(pn)3
√
N .

The presence of objects in (13) reflects the fact that, under a suitable choice
of the parameter k, K29 is not only well calibrated but can also have high
“resolution”; we will now briefly discuss the latter property, again informally.

The fact that good calibration is only a necessary condition for good fore-
casting performance can be seen from the following standard example [4, 6]:
if

(y1, y2, y3, y4, . . .) = (1, 0, 1, 0, . . .) ,

the forecasts pn = 1/2, n = 1, 2, . . . , are well calibrated but rather poor; it would
be better to predict with

(p1, p2, p3, p4, . . .) = (1, 0, 1, 0, . . .) .

Assuming that each object xn contains the information about the parity of
n (which can always be added to xn), we can see that the problem with the
forecasting system pn ≡ 1/2 is its lack of resolution: it does not distinguish
between the objects with odd and even n. In general, we would like each forecast
pn to be as specific as possible to the current object xn; the resolution of a
prediction algorithm is the degree to which it achieves this goal. Equation (13)
implies that we can expect unbiasedness of the forecasts pn, n = 1, . . . , N , in the
“soft neighborhood” of (p∗, x∗) when

N∑
n=1

I(p∗,x∗)(pn, xn)3
√
N ;

if I(p∗,x∗) is concentrated around (p∗, x∗), this means not only good calibration
but also high resolution.

Remark. In principle, it can be seen directly (without using Corollary 1) that
(5) implies good calibration and high resolution for a suitable Φ and large N :
indeed, (5) shows that the forecasts pn are unbiased in the neighborhood of each

436 V. Vovk

(p∗, x∗) for functions Φ that map distant (p, x) and (p′, x′) to almost orthogonal
elements of the feature space (such as Φ corresponding to the Gaussian kernel

exp

(
(p− p′)2 + ‖x− x′‖2

2σ2

)
for a small “kernel width” σ > 0).

We can see that Theorem 1 has implications for the calibration and resolution
of the K29 algorithm. It should be admitted, however, that these implications
are not immediate and require certain properties of the kernel parameter that we
did not specify precisely. The interpretation of Theorem 2 as a statement about
the calibration and resolution of the FS algorithm is more straightforward.

Let us discuss, e.g., calibration. Notice that in the case of a function of one
variable f : [0, 1]→ IR the Fermi–Sobolev squared norm reduces to

‖f‖2FS =
(∫ 1

0

f(t) dt
)2

+
∫ 1

0

(f ′(t))2 dt .

To interpret (11), consider the following approximation to the indicator function
of a short interval [p−, p+] containing p∗:

f(p) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if p− + ε ≤ p ≤ p+ − ε

0 if p ≤ p− − ε or p ≥ p+ + ε
1
2 + 1

2ε (p− p−) if p− − ε ≤ p ≤ p− + ε
1
2 + 1

2ε (p+ − p) if p+ − ε ≤ p ≤ p+ + ε ;

(14)

we assume that ε > 0 satisfies

0 < p− − ε < p− + ε < p+ − ε < p+ + ε < 1 .

It is clear that this approximation is a Fermi–Sobolev function. An easy compu-
tation shows that (7) implies∣∣∣∣∣

N∑
n=1

(yn − pn)f(pn)

∣∣∣∣∣ ≤ 2√
3

√(
1
ε

+ (p+ − p−)2
)
N (15)

for all N .
It is clear that inequalities analogous to (15) can also be proved for “soft

neighborhoods” of points (p∗, x∗) in [0, 1]×X, and so Theorem 2 also implies high
resolution for large N . Convenient neighborhoods in [0, 1]K+1 can be constructed
as tensor products of neighborhoods (14); it can be shown that the Fermi–
Sobolev norm of a tensor product is the product of the Fermi–Sobolev norms of
the factors (see Appendix C).

An important advantage of (15) over the calibration properties of K29, as
discussed above, is that the former implies that good calibration will be eventu-
ally attained at an arbitrarily fine scale (and not just at the scale determined by
the “width” of the kernel used); a similar remark can be made about resolution
as well.

Non-asymptotic Calibration and Resolution 437

Acknowledgments

I am grateful to Ingo Steinwart for information about Lehto’s example and to
the anonymous reviewers for their comments. This work was partially supported
by MRC (grant S505/65) and Royal Society.

References

[1] Nicolò Cesa-Bianchi, Yoav Freund, David Haussler, David P. Helmbold, Robert E.
Schapire, and Manfred K. Warmuth. How to use expert advice. Journal of the
Association for Computing Machinery, 44:427–485, 1997.

[2] A. Philip Dawid. Calibration-based empirical probability (with discussion). An-
nals of Statistics, 13:1251–1285, 1985.

[3] A. Philip Dawid. Self-calibrating priors do not exist: Comment. Journal of the
American Statistical Association, 80:340–341, 1985. This is a contribution to the
discussion in [9].

[4] A. Philip Dawid. Probability forecasting. In Samuel Kotz, Norman L. Johnson,
and Campbell B. Read, editors, Encyclopedia of Statistical Sciences, volume 7,
pages 210–218. Wiley, New York, 1986.

[5] Joseph L. Doob. Stochastic Processes. Wiley, New York, 1953.
[6] Dean P. Foster and Rakesh V. Vohra. Asymptotic calibration. Biometrika, 85:379–

390, 1998.
[7] Sham M. Kakade and Dean P. Foster. Deterministic calibration and Nash equi-

librium. In John Shawe-Taylor and Yoram Singer, editors, Proceedings of the Sev-
enteenth Annual Conference on Learning Theory, volume 3120 of Lecture Notes
in Computer Science, pages 33–48, Heidelberg, 2004. Springer.

[8] Herbert Meschkowski. Hilbertsche Räume mit Kernfunktion. Springer, Berlin,
1962.

[9] David Oakes. Self-calibrating priors do not exist (with discussion). Journal of the
American Statistical Association, 80:339–342, 1985.

[10] Mark J. Schervish. Contribution to the discussion in [2]. Annals of Statistics,
13:1274–1282, 1985.

[11] Bernhard Schölkopf and Alexander J. Smola. Learning with Kernels. MIT Press,
Cambridge, MA, 2002.

[12] Glenn Shafer and Vladimir Vovk. Probability and Finance: It’s Only a Game!
Wiley, New York, 2001.

[13] Ingo Steinwart. On the influence of the kernel on the consistency of support vector
machines. Journal of Machine Learning Research, 2:67–93, 2001.

[14] Vladimir N. Vapnik. Statistical Learning Theory. Wiley, New York, 1998.
[15] Vladimir Vovk. Defensive prediction with expert advice. These Proceedings.
[16] Vladimir Vovk. Non-asymptotic calibration and resolution. Technical Report

arXiv:cs.LG/0506004 (version 2), arXiv.org e-Print archive, July 2005. This is
the full version of this paper, containing all proofs.

[17] Vladimir Vovk, Akimichi Takemura, and Glenn Shafer. Defensive forecast-
ing. In Robert G. Cowell and Zoubin Ghahramani, editors, Proceedings of
the Tenth International Workshop on Artificial Intelligence and Statistics, Jan-
uary 6–8, 2005, Savannah Hotel, Barbados, pages 365–372. Society for Artifi-
cial Intelligence and Statistics, 2005. Available electronically at http://www.

gatsby.ucl.ac.uk/aistats/.

438 V. Vovk

Appendix A: Proof of Theorem 1

The proof of Theorem 1 (as well as its statement and the K29 and K29∗ algo-
rithms themselves) is based on the game-theoretic approach to the foundations
of probability proposed in [12]. A new player, called Skeptic, is added to the
learning protocol of §2; the idea is that Skeptic is allowed to bet at the odds
defined by Forecaster’s probabilities.

Binary Forecasting Game I
Players: Reality, Forecaster, Skeptic
Protocol:
K0 := C.
FOR n = 1, 2, . . . :

Reality announces xn ∈ X.
Forecaster announces pn ∈ [0, 1].
Skeptic announces sn ∈ IR.
Reality announces yn ∈ {0, 1}.
Kn := Kn−1 + sn(yn − pn).

END FOR.

The protocol describes not only the players’ moves but also the changes in Skep-
tic’s capital Kn; its initial value is an arbitrary constant C.

The crucial (albeit very simple) observation [17] is that for any continuous
strategy for Skeptic there exists a strategy for Forecaster that does not allow
Skeptic’s capital to grow, regardless of what Reality is doing (a similar obser-
vation was made in [7]). To state this observation in its strongest form, we will
make Skeptic announce his strategy for each round before Forecaster’s move on
that round rather than announce his full strategy at the beginning of the game.
Therefore, we consider the following perfect-information game:

Binary Forecasting Game II
Players: Reality, Forecaster, Skeptic
Protocol:
K0 := C.
FOR n = 1, 2, . . . :

Reality announces xn ∈ X.
Skeptic announces continuous Sn : [0, 1]→ IR.
Forecaster announces pn ∈ [0, 1].
Reality announces yn ∈ {0, 1}.
Kn := Kn−1 + Sn(pn)(yn − pn).

END FOR.

Lemma 1. Forecaster has a strategy in Binary Forecasting Game II that ensures
K0 ≥ K1 ≥ K2 ≥ · · · .

Non-asymptotic Calibration and Resolution 439

Proof. Forecaster can use the following strategy to ensure K0 ≥ K1 ≥ · · · :
– if the function Sn(p) takes value 0, choose pn so that Sn(pn) = 0;
– if Sn is always positive, take pn := 1;
– if Sn is always negative, take pn := 0.

Proof of the Theorem

Following the K29 algorithm Forecaster ensures that Skeptic will never increase
his capital with the strategy

sn :=
n−1∑
i=1

k ((pn, xn), (pi, xi)) (yi − pi) . (16)

The increase in Skeptic’s capital when he follows (16) is

KN −K0 =
N∑

n=1

sn(yn − pn)

=
N∑

n=1

n−1∑
i=1

k ((pn, xn), (pi, xi)) (yn − pn)(yi − pi)

=
1
2

N∑
n=1

N∑
i=1

k ((pn, xn), (pi, xi)) (yn − pn)(yi − pi)

− 1
2

N∑
n=1

k ((pn, xn), (pn, xn)) (yn − pn)2 . (17)

We can rewrite (17) as

KN−K0 =
1
2

∥∥∥∥∥
N∑

n=1

(yn − pn)Φ(pn, xn)

∥∥∥∥∥
2

− 1
2

N∑
n=1

‖(yn − pn)Φ(pn, xn)‖2 , (18)

which immediately implies (2).
To prove (3), notice that

(yn − pn)2 = pn(1− pn) + (1− 2pn)(yn − pn)

both for yn = 0 and for yn = 1. Therefore, replacing strategy (16) with

sn :=
n−1∑
i=1

k ((pn, xn), (pi, xi)) (yi − pi) +
1
2
k ((pn, xn), (pn, xn)) (1− 2pn)

(which is the strategy for Skeptic prevented by K29∗ from making a profit), we
will obtain, instead of (17) and (18),

440 V. Vovk

KN −K0 =
N∑

n=1

sn(yn − pn)

=
1
2

N∑
n=1

N∑
i=1

k ((pn, xn), (pi, xi)) (yn − pn)(yi − pi)

− 1
2

N∑
n=1

k ((pn, xn), (pn, xn)) (yn − pn)2

+
1
2

N∑
n=1

k ((pn, xn), (pn, xn)) (1− 2pn)(yn − pn)

=
1
2

N∑
n=1

N∑
i=1

k ((pn, xn), (pi, xi)) (yn − pn)(yi − pi)

− 1
2

N∑
n=1

k ((pn, xn), (pn, xn)) pn(1− pn)

=
1
2

∥∥∥∥∥
N∑

n=1

(yn − pn)Φ(pn, xn)

∥∥∥∥∥
2

− 1
2

N∑
n=1

pn(1− pn) ‖Φ(pn, xn)‖2 ;

this proves (3).

Appendix B: Proof Sketch of Theorem 2

Let M be a countable set and a = (am |m ∈ M) be a fixed array of positive
numbers summing to 1: ∑

m∈M

am = 1 . (19)

The feature space used in this proof will be the set H of all arrays u = (um |m ∈
M) of real numbers um such that∑

m∈M

amu2
m <∞ .

The inner product in H is defined by

u · v :=
∑

m∈M

amumvm ;

we will use the notation ‖u‖a for the norm
√
u · u in this space.

Let (fm |m ∈M) be an orthogonal array of continuous functions

fm : [0, 1]K+1 → [−1, 1] (20)

(eventually we will be interested in tensor products of cosine functions) consid-
ered as elements of L2([0, 1]K+1). We are interested in the feature mapping

Φ : t ∈ [0, 1]K+1 ,→ (fm(t) |m ∈M)

Non-asymptotic Calibration and Resolution 441

(as in (6), we use the letter t to stand, intuitively, for the vector of attributes x
extended by adding the forecast p on the left). The corresponding kernel is

k(t, t′) := Φ(t) · Φ(t′) =
∑

m∈M

amfm(t)fm(t′) . (21)

This kernel is continuous in t since, by (19) and (20), the series (21) converges ab-
solutely and uniformly in t. Therefore, k is a valid parameter for K29. Similarly,
taking t = t′ in (21), we can see that k is a valid parameter for K29∗.

For each function f ∈ L2([0, 1]K+1) its Fourier series is defined as∑
m∈M

cmfm ,

where
cm :=

1
‖fm‖22

∫
ffm dΛ

and Λ is the Lebesgue measure on [0, 1]K+1.
Lemma 2. The K29 algorithm with parameter k ensures that, for any function
f with Fourier coefficients cm,∣∣∣∣∣

N∑
n=1

(yn − pn)f(pn, xn)

∣∣∣∣∣ ≤
√√√√(∑

m∈M

c2m
am

)
N , (22)

provided that the Fourier series of f converges to f everywhere. For K29 ∗, the
right-hand side of (22) can be replaced by√√√√(∑

m∈M

c2m
am

)
N∑

n=1

pn(1− pn) .

Proof. First notice that

sup
t
‖Φ(t)‖2a = sup

t

∑
m∈M

amf2
m(t) ≤

∑
m∈M

am = 1 .

Now we can deduce from Theorem 1:∣∣∣∣∣
N∑

n=1

(yn − pn)f(pn, xn)

∣∣∣∣∣ =
∣∣∣∣∣ ∑
m∈M

cm

N∑
n=1

(yn − pn)fm(pn, xn)

∣∣∣∣∣
=

∣∣∣∣∣
(
cm

am

)
m∈M

·
(

N∑
n=1

(yn − pn)fm(pn, xn)

)
m∈M

∣∣∣∣∣
≤
∥∥∥∥(cm

am

)
m∈M

∥∥∥∥
a

∥∥∥∥∥
(

N∑
n=1

(yn − pn)fm(pn, xn)

)
m∈M

∥∥∥∥∥
a

=
∥∥∥∥(cm

am

)
m∈M

∥∥∥∥
a

∥∥∥∥∥
N∑

n=1

(yn − pn)Φ(pn, xn)

∥∥∥∥∥
a

≤
√√√√(∑

m∈M

c2m
am

)
N .

The proof for K29∗ is analogous.

442 V. Vovk

Idea of the Proof of the Theorem

We take the orthogonal array (fm |m ∈ M) to be the standard “half-range”
Fourier basis in L2([0, 1]K+1): M := {0, 1, . . .}K+1 and

fm0,...,mK (t0, . . . , tK) := cosπm0t0 · · · cosπmKtK ;

the L2-norm of such a function is 2−k/2, where k is the number of non-zero
indices among m0, . . . ,mK . The corresponding Fourier coefficients are

c0,...,0,mi1 ,0,...,0,mik
,0,...,0 =

2k

∫ 1

0

· · ·
∫ 1

0

f(t0, . . . , tK) cosπmi1ti1 · · · cosπmik
tik

dt0 · · · dtK ,

where mi1 , . . . ,mik
are the non-zero indices among m0, . . . ,mK . It turns out

that if we take

a0,...,0,mi1 ,0,...,0,mik
,0,...,0 :=

(
3
4

)K+1 2k

π2k

1
m2

i1
· · ·m2

ik

, (23)

we will obtain ∑
m∈M

c2m
am

=
(

4
3

)K+1

‖f‖2FS .

For details, see [16].

Derivation of the FS Kernel

The details of the derivation are again given in [16], but it is based on the formula

∞∑
m=1

cosπmq

m2
=

π2

12
(
3q2 − 6q + 2

)
,

which is valid for q ∈ [0, 1]. This formula can be obtained by combining the
standard Fourier expansions

x =
π

2
− 4

π

(
cosx +

cos 3x
32

+
cos 5x

52
+ · · ·

)
(valid for x ∈ [0, π]) and

x2 =
π2

3
− 4
(

cosx− cos 2x
22

+
cos 3x

32
− · · ·

)
(valid for x ∈ [−π, π]), and substituting πq for x.

Non-asymptotic Calibration and Resolution 443

Appendix C: A Useful Property of the Fermi–Sobolev
Spaces

The following property is useful for understanding of calibration and resolution
in the multidimensional case (and we used it in §5).

Lemma 3. If a function f is the tensor product of Fermi–Sobolev functions g
and h, then f is a Fermi–Sobolev function satisfying

‖f‖FS = ‖g‖FS ‖h‖FS .

Proof. We will only consider the case of smooth g and h. Let g and h be functions
of K1 and K2 variables, respectively; therefore, f is a function of K1 + K2

variables and

f(t11, . . . , t
1
K1

, t21, . . . , t
2
K2

) = g(t11, . . . , t
1
K1

)h(t21, . . . , t
2
K2

).

We will let ∂t{j1,...,jk} and dt{j1,...,jk} stand for ∂tj1 · · ·∂tjk
and dtj1 · · · dtjk

,
respectively. We find:

‖f‖2FS =
∑

{i11,...,i1k1
}⊆{1,...,K1}

{i21,...,i2k2
}⊆{1,...,K2}

∫ 1

0

· · ·
∫ 1

0

(
∂k1

∂t{i11,...,i1k1
}

∂k2

∂t{i21,...,i2k2
}

∫ 1

0

· · ·
∫ 1

0

g(t11, . . . , t
1
K1

)h(t21, . . . , t
2
K2

)

dt2{1,...,K2}\{i21,...,i2k2
} dt1{1,...,K1}\{i11,...,i1k1

}

)2

dt2{i21,...,i2k2
} dt1{i11,...,i1k1

}

=

(∑
{i11,...,i1k1

}⊆{1,...,K1}

∫ 1

0

· · ·
∫ 1

0

(
∂k1

∂t{i11,...,i1k1
}

∫ 1

0

· · ·
∫ 1

0

g(t11, . . . , t
1
K1

)

dt1{1,...,K1}\{i11,...,i1k1
}

)2

dt1{i11,...,i1k1
}

)
(∑

{i21,...,i2k2
}⊆{1,...,K2}

∫ 1

0

· · ·
∫ 1

0

(
∂k2

∂t{i21,...,i2k2
}

∫ 1

0

· · ·
∫ 1

0

h(t21, . . . , t
2
K2

)

dt2{1,...,K2}\{i21,...,i2k2
}

)2

dt2{i21,...,i2k2
}

)
= ‖g‖2FS ‖h‖2FS .

Defensive Prediction with Expert Advice

Vladimir Vovk

Computer Learning Research Centre,
Department of Computer Science,

Royal Holloway, University of London,
Egham, Surrey TW20 0EX, England

vovk@cs.rhul.ac.uk

Abstract. The theory of prediction with expert advice usually deals
with countable or finite-dimensional pools of experts. In this paper we
give similar results for pools of decision rules belonging to an infinite-
dimensional functional space which we call the Fermi–Sobolev space. For
example, it is shown that for a wide class of loss functions (including the
standard square, absolute, and log loss functions) the average loss of the
master algorithm, over the first N steps, does not exceed the average
loss of the best decision rule with a bounded Fermi–Sobolev norm plus
O(N−1/2). Our proof techniques are very different from the standard
ones and are based on recent results about defensive forecasting. Given
the probabilities produced by a defensive forecasting algorithm, which
are known to be well calibrated and to have high resolution in the long
run, we use the Expected Loss Minimization principle to find a suitable
decision.

1 Introduction

This paper further develops a new approach to probability forecasting which
we call “defensive forecasting”. This approach has several appealing features.
First, for every constructive law of probability expressed in game-theoretic terms
there exists a procedure of defensive forecasting that satisfies this law perfectly
[15]. In particular, one can construct a prediction algorithm with high degrees of
calibration and resolution in the long term, which is mathematically expressed by
explicit inequalities without making any assumptions about the data-generating
mechanism [10]. This paper describes a third feature: defensive forecasts lead to
efficient decisions; in particular, defensive forecasting allows one to obtain new
results in prediction with expert advice.

First papers on prediction with expert advice with general loss functions
(e.g., [1, 11]) dealt with countable (often finite) pools of experts. The next step
was to consider finite-dimensional pools of experts (e.g., [3, 7, 12]). This paper
continues with infinite-dimensional pools of experts. To get an idea of its central
results, the reader is advised to start from Corollaries 1–3.

S. Jain, H.U. Simon, and E. Tomita (Eds.): ALT 2005, LNAI 3734, pp. 444–458, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Defensive Prediction with Expert Advice 445

2 The FS Algorithm

In this paper we will use a defensive forecasting algorithm introduced in [10] and
called the FS algorithm. We will not give an explicit description of the algorithm
(which can be found in [10]) and only describe one of its properties.

Our prediction protocol is:

FOR n = 1, 2, . . . :
Reality announces xn ∈ [0, 1]K .
Forecaster announces pn ∈ [0, 1].
Reality announces yn ∈ {0, 1}.

END FOR.

At each step n Forecaster observes the K attributes of an object xn and is asked
to predict its label yn. The FS algorithm is Forecaster’s strategy in this protocol
(or prediction algorithm). In Theorem 1 below we will state its property, but
before that we will need to give several auxiliary definitions. We will be following
[10].

If f : [0, 1]k → IR is a smooth function, the L2 norm√∫ 1

0

· · ·
∫ 1

0

(
∂kf(t1, . . . , tk)
∂t1 · · ·∂tk

)2

dt1 · · · dtk

of its full cross-derivative is denoted S(f). We define the Fermi–Sobolev norm
of a smooth function f : [0, 1]k → IR by

‖f‖2FS :=
k∑

m=0

∑
{i1,...,im}⊆{1,...,k}

S2

(∫ 1

0

· · ·
∫ 1

0

f(t1, . . . , tk) dti1 · · · dtim

)
,

where
∫ 1

0
· · · ∫ 1

0
f(t1, . . . , tk) dti1 · · · dtim is considered as a function of the free

variables. The Fermi–Sobolev space on [0, 1]k (k will always be clear from the
context) is the completion of the set of such f satisfying ‖f‖FS <∞ with respect
to the norm ‖·‖FS. Elements of the Fermi–Sobolev space will be called Fermi–
Sobolev functions (or, for brevity, FS functions).

The reader might find it helpful to concentrate at first on the one-dimensional
case, k = 1; the Fermi–Sobolev squared norm then reduces to

‖f‖2FS :=
(∫ 1

0

f(t) dt
)2

+
∫ 1

0

(f ′(t))2 dt ,

the first addend reflecting how centered f is and the second measuring the volatil-
ity of f .

Theorem 1 ([10]). The predictions pn output by the FS algorithm satisfy∣∣∣∣∣
N∑

n=1

(yn − pn)f(pn, xn)

∣∣∣∣∣ ≤
(

2√
3

)K+1

‖f‖FS

√
N (1)

for all N and all FS functions f : [0, 1]K+1 → IR.

446 V. Vovk

The right-hand side of (1) is O(
√
N); this term will be as ubiquitous in this

paper as it is in the traditional theory (see, e.g., [1] and [4]). In all our results
the ratio 2/

√
3 can be replaced by its upper bound 1.155.

Theorem 1 will be useful in our preliminary discussion in the next section,
but much stronger results can be derived from its simple modifications, which
will be stated in the appendix.

3 Preliminary Discussion

In this section we will introduce our decision making protocol, give several defi-
nitions needed for the following sections, and prove a simple result (Proposition
1) showing how defensive forecasting is relevant to decision making. A much
more useful result will be proved in the next section.

The decision making protocol of this paper is:

FOR n = 1, 2, . . . :
Reality announces xn ∈ [0, 1]K .
Decision Maker announces γn ∈ Γ .
Reality announces yn ∈ {0, 1}.

END FOR.

In applications, xn will represent information deemed useful in predicting yn.
Decision Maker chooses his actions γn from a nonempty decision space Γ and
his performance is measured with a loss function λ : {0, 1}×Γ → IR; his average
loss over the first N steps is

1
N

N∑
n=1

λ(yn, γn) .

In tradition of prediction with expert advice, Decision Maker will compete
against a pool of decision rules, where a decision rule is defined to be a function
D : [0, 1]K → Γ ; the average loss suffered by such a decision rule is

1
N

N∑
n=1

λ(yn, D(xn)) .

It is important that no assumptions are made about Reality (cf. [6, 8], where
results somewhat similar to ours are obtained under the assumption that yn =
D(xn) for all n and for a fixed decision rule D belonging to a known functional
class). The exposure ExpD : [0, 1]K → IR of the decision rule D at a point
x ∈ [0, 1]K is defined by

ExpD(x) := λ(1, D(x)) − λ(0, D(x)) .

A choice function is any function mapping [0, 1] to Γ ; intuitively, such a
function maps a probability distribution (1−p, p) on {0, 1} to a decision γ = γ(p)

Defensive Prediction with Expert Advice 447

that is optimal or nearly optimal under this probability distribution. The defect
of a choice function G is

ΔG := sup
p∈[0,1]

(
λ(p,G(p)) − inf

γ∈Γ
λ(p, γ)

)
,

where λ(p, γ) is the expected loss caused by taking the decision γ when the
probability of 1 is p:

λ(p, γ) := pλ(1, γ) + (1− p)λ(0, γ) . (2)

If Γ = [0, 1] and the choice function G(p) := p has zero defect, the loss function is
called a proper scoring rule (e.g., the square loss and log loss functions, discussed
in Section 5, are known to be proper scoring rules). The exposure ExpG : [0, 1]→
IR of the choice function G is defined by

ExpG(p) := λ(1, G(p)) − λ(0, G(p)) .

We will be interested in decision rules and, in this section, choice functions whose
exposure is an FS function.

We will construct decision strategies from FS’s probabilities by minimizing
the expected loss. In some cases instead of the literal minimization we might want
to use slightly suboptimal (but, e.g., continuous) choice functions. Therefore, we
will use the following “soft” version of the Expected Loss Minimization principle:
the decision strategy (i.e., Decision Maker’s strategy) based on a choice function
G and a prediction algorithm is the one that outputs γn := G(pn) at the nth
step, where pn is the prediction output by the prediction algorithm.

Proposition 1. The decision strategy based on a choice function G with Lip-
schitzian ExpG and the FS algorithm outputs decisions γn such that

1
N

N∑
n=1

λ(yn, γn) ≤ 1
N

N∑
n=1

λ(yn, D(xn))

+
(

2√
3

)K+1 ‖ExpD‖FS + ‖ExpG‖FS√
N

+ ΔG

for all N and all decision rules D with Fermi–Sobolev ExpD.

Proof. Notice that

λ(y, γ)− λ(p, γ) = (y − p)
(
λ(1, γ)− λ(0, γ)

)
always holds (this can be checked by subtracting (2) from λ(y, γ) := yλ(1, γ) +
(1− y)λ(0, γ)). In conjunction with Theorem 1 this implies

N∑
n=1

λ(yn, γn) =
N∑

n=1

λ(yn, G(pn))

448 V. Vovk

=
N∑

n=1

λ(pn, G(pn)) +
N∑

n=1

(
λ(yn, G(pn))− λ(pn, G(pn))

)
=

N∑
n=1

λ(pn, G(pn)) +
N∑

n=1

(yn − pn)
(
λ(1, G(pn))− λ(0, G(pn))

)
≤

N∑
n=1

λ(pn, G(pn)) + (2/
√

3)K+1 ‖ExpG‖FS

√
N

≤
N∑

n=1

λ(pn, D(xn)) + NΔG + (2/
√

3)K+1 ‖ExpG‖FS

√
N

=
N∑

n=1

λ(yn, D(xn))−
N∑

n=1

(
λ(yn, D(xn))− λ(pn, D(xn))

)
+ NΔG + (2/

√
3)K+1 ‖ExpG‖FS

√
N

=
N∑

n=1

λ(yn, D(xn))−
N∑

n=1

(yn − pn)
(
λ(1, D(xn))− λ(0, D(xn))

)
+ NΔG + (2/

√
3)K+1 ‖ExpG‖FS

√
N

≤
N∑

n=1

λ(yn, D(xn)) + (2/
√

3)K+1 ‖ExpD‖FS

√
N

+ NΔG + (2/
√

3)K+1 ‖ExpG‖FS

√
N , (3)

which completes the proof.

The chain (3) demonstrates our proof technique very well; to show that the
actual loss of our decision strategy does not exceed the actual loss of a decision
rule D by much, we notice that:

– the actual loss
∑N

n=1 λ(yn, G(pn)) of our decision strategy is approximately
equal, by Theorem 1, to the (one-step-ahead conditional) expected loss∑N

n=1 λ(pn, G(pn)) of our strategy;
– since we used the Expected Loss Minimization principle, the expected loss

of our strategy does not exceed the expected loss of D (assuming ΔG = 0);
– the expected loss of D is approximately equal to its actual loss (again by

Theorem 1).

It will be convenient to introduce the following terminology (very imprecise, to
be used in informal discussions only). We say that a prediction algorithm has
good calibration-cum-resolution if the left-hand side of (1) is much less than N
for a wide class of functions f : [0, 1]K+1 → IR and large N . We say that the
algorithm has good calibration if∣∣∣∣∣

N∑
n=1

(yn − pn)f(pn)

∣∣∣∣∣0 N

Defensive Prediction with Expert Advice 449

for a wide class of functions f : [0, 1]→ IR and large N . Finally, we say that the
algorithm has good resolution if∣∣∣∣∣

N∑
n=1

(yn − pn)f(xn)

∣∣∣∣∣0 N

for a wide class of f : [0, 1]K → IR and for large N .

4 General Result

The main purpose of the previous section was to motivate the somewhat less
natural definitions of this section. Our approach so far suffered from two draw-
backs:

– The inequality in Proposition 1 can be tightened if we notice that in applying
(1) to establishing the first and third inequalities in (3) we need not arbitrary
Fermi–Sobolev f = f(p, x) but only f = f(p) (known in advance) and
f = f(x). (In particular, we only need calibration and resolution separately,
not calibration-cum-resolution.)

– The requirement that the exposure of the choice function should be contin-
uous (even Fermi–Sobolev) is very restrictive: for example, in the case of the
absolute loss function (described in Subsection 5.2), there is no perfect (i.e.,
with ΔG = 0) choice function G with continuous exposure.

These drawbacks will be dealt with in the appendix. To deal with the second
one, we will have to modify the FS algorithm so that it outputs extended pre-
dictions (pn, qn) ∈ [0, 1]2, where pn is the prediction of yn, as before, and the
extra component qn will make it possible to design perfect choice functions with
continuous exposure.

The lexicographic square £ is defined to be the set [0, 1]2 equipped with the
following linear order: if (x1, y1) and (x2, y2) are two points in £, (x1, y1) <
(x2, y2) means that either x1 < x2 or x1 = x2, y1 < y2. (Cf. [2], Problem
3.12.3(d).) The topology on the lexicographic square is, as usual, generated by
the open intervals

(a, b) := {u ∈ £ | a < u < b} ,

a and b ranging over £. As a topological space, the lexicographic square is normal
([2], Problem 1.7.4(d)), compact ([2], Problem 3.12.3(a), [5], Problem 5.C), and
connected ([2], Problem 6.3.2(a), [5], Problem 1.I(d)).

Now we redefine a choice function to be any function G mapping the lexico-
graphic square £ to Γ ; in all our examples, it will map a probability distribution
(1−p, p) on {0, 1} and the extra “tie-breaking” component q to an optimal, under
this probability distribution, decision G(p, q). The defect of G is

ΔG := sup
(p,q)∈£

(
λ(p,G(p, q))− inf

γ∈Γ
λ(p, γ)

)
,

450 V. Vovk

where λ(p, γ) is defined by (2). In the next section, we will be interested in
zero-defect choice functions. The exposure ExpG : £ → IR of G is now defined
as

ExpG(p, q) := λ(1, G(p, q))− λ(0, G(p, q)) .

The following theorem describes a property of the Expected Loss Minimiza-
tion principle applied to a modification of the FS algorithm which outputs, at
each step, a pair (pn, qn) ∈ £.

Theorem 2. The decision strategy based on a choice function G with continuous
ExpG and a certain prediction algorithm outputting (pn, qn) produces decisions
γn such that

N∑
n=1

λ(yn, γn) ≤
N∑

n=1

λ(yn, D(xn))

+

((
2√
3

)K

‖ExpD‖FS + 1

)√√√√ N∑
n=1

pn(1− pn)
(
Exp2

G(pn, qn) + 1
)

+ NΔG

(4)

for all N and all decision rules D with Fermi–Sobolev ExpD.

The proof of this theorem will be sketched in the appendix.

5 Examples

By a game we will mean a pair (Γ, λ), where Γ is the decision space and λ :
{0, 1} × Γ → IR is the loss function. For all games considered in this section
decisions γ ∈ Γ may be interpreted as predictions, but we will still refer to them
as decisions to avoid confusion with, e.g., FS’s forecasts.

5.1 The Square Loss Game

If Γ = [0, 1] and λ(y, γ) = (y − γ)2, we have

λ(1, D(x)) − λ(0, D(x)) = (1−D(x))2 − (D(x))2 = 1− 2D(x) (5)

and, for G(p, q) := p,

λ(1, G(p, q))− λ(0, G(p, q)) = (1− p)2 − p2 = 1− 2p .

Therefore, |ExpG| ≤ 1, and so Theorem 2 implies

Corollary 1. In the square loss game, there is a decision strategy that guaran-
tees that, for all N and all FS decision rules D,

N∑
n=1

λ(yn, γn) ≤
N∑

n=1

λ(yn, D(xn)) +
1√
2

((
2√
3

)K ∥∥D†∥∥
FS

+ 1

)√
N , (6)

where D† := 2D − 1 is the decision rule scaled to take values in [−1, 1].

Defensive Prediction with Expert Advice 451

5.2 The Absolute Loss Game

For this game, λ(y, γ) = |y − γ| with Γ = [0, 1]. We find

λ(p, γ) = p(1− γ) + (1 − p)γ = p + (1− 2p)γ ,

and so the ideal decision would be

γ :=

{
0 if p < 1/2
1 if p > 1/2 ,

with an arbitrary choice in the case of a tie, p = 1/2. This is a discontinuous
function of p, but we can instead use the following continuous choice function
on the lexicographic square:

G(p, q) :=

⎧⎪⎨⎪⎩
0 if p < 1/2
1 if p > 1/2
q if p = 1/2 .

(7)

Since
λ(1, γ)− λ(0, γ) = 1− 2γ ,

ExpD is the same as in the square loss case, (5), and

ExpG(p, q) = 1− 2G(p, q) =

⎧⎪⎨⎪⎩
1 if p < 1/2
−1 if p > 1/2
1− 2q if p = 1/2 .

Therefore, |ExpG| ≤ 1, and we have the following corollary of Theorem 2.

Corollary 2. In the absolute loss game, there is a decision strategy that produces
decisions γn such that, for all N and all Fermi–Sobolev D, (6) holds.

5.3 The Simple Loss Game

In this subsection we mainly limit ourselves to informal discussions.
The loss function for the simple loss game is the same as for the absolute

loss game, λ(y, γ) = |y − γ|, but Γ = {0, 1}. Now the approach we have used
so far does not work: since Γ consists of two elements, there is no non-trivial
continuous choice function G : £→ Γ (every continuous image of £ is connected:
[2], Theorem 6.1.4).

A natural idea ([1]) is to allow Decision Maker to use randomization. The
expected loss of an algorithm making decision 1 with probability γ and 0 with
probability 1−γ is |y−γ|, where y is the observed label; therefore, for the simple
loss game a randomized decision strategy can guarantee the following analogue
of (6):

N∑
n=1

Eλ(yn, γn) ≤
N∑

n=1

λ(yn, D(xn)) +
1√
2

((
2√
3

)K ∥∥D†∥∥
FS

+ 1

)√
N , (8)

452 V. Vovk

where E refers to the strategy’s internal randomization (the decision rules D can
be allowed to take values in [0, 1]).

The disadvantage of (8) is that typically we are interested in the strategy’s
actual rather than expected loss. Our derivation of (8) shows the role of ran-
domization: with the choice function (7) no randomization is required unless
p = 1/2. Typically, we rarely find ourselves in a situation of complete uncer-
tainty, pn = 1/2; therefore, only a little bit of randomization is needed, essen-
tially for tie breaking. The actual loss will be very close to the expected loss.
(It is instructive to compare this with the discussion of Dawid’s example in [15],
Subsection 4.4.)

5.4 The Log Loss Game

For the log loss game, Γ = [0, 1] and

λ(y, γ) =

{
− ln γ if y = 1
− ln(1− γ) if y = 0

(we temporarily, in this subsection only, allow λ to take the value ∞; cf. the
discussion at the end of this subsection). As in the square loss case, we use the
“perfect” choice function G(p, q) := p. Since

λ(1, γ)− λ(0, γ) = − ln γ + ln(1− γ) = ln
1− γ

γ

and

N∑
n=1

pn(1− pn)

((
ln

1− pn

pn

)2

+ 1

)
≤ N max

p∈[0,1]
p(1− p)

((
ln

1− p

p

)2

+ 1

)
≈ 0.526N ≤ 0.53N ,

we obtain from Theorem 2:

Corollary 3. Some decision strategy in the log loss game produces decisions γn

such that, for all N and all D with Fermi–Sobolev log-likelihood ratio ln D
1−D ,

N∑
n=1

λ(yn, γn) ≤
N∑

n=1

λ(yn, D(xn)) + 0.73

((
2√
3

)K ∥∥∥∥ln D

1−D

∥∥∥∥
FS

+ 1

)√
N .

The only problem with this derivation is that the log loss function takes
values in (−∞,∞] (since λ(0, 1) = λ(1, 0) = ∞), whereas Theorem 2 assumes
that λ takes values in IR. The details of the corrected derivation are given in [13]
(Appendix B).

5.5 Convex Games

One can generalize Corollaries 1–3 making them less precise (viz., involve an
unspecified constant). In this subsection we consider games (Γ, λ) such that Γ
is nonempty and

Defensive Prediction with Expert Advice 453

C0 := inf
γ∈Γ

λ(0, γ), C1 := inf
γ∈Γ

λ(1, γ) (9)

are finite. As usual, λ is assumed to take values in IR; therefore, to cover the log
loss game we redefine its decision space to Γ := (0, 1). It is convenient (see, e.g.,
[4]) to summarize a game by its superdecision set

Σ :=
{
(x, y) ∈ IR2 | ∃γ ∈ Γ : x ≥ λ(0, γ) and y ≥ λ(1, γ)

}
;

elements of this set will be called superdecisions. Superdecisions of the form
(λ(0, γ), λ(1, γ)) will sometimes be called decisions. We will assume, additionally,
that the set Σ ⊆ IR2 is convex and closed. The Eastern tail of the game is the
function

f : [C0,∞)→ IR ∪ {∞}
x ,→ inf{y |(x, y) ∈ Σ} − C1

and its Northern tail is

g : [C1,∞)→ IR ∪ {∞}
y ,→ inf{x |(x, y) ∈ Σ} − C0 ,

where, as usual, inf ∅ :=∞; it is clear that f and g are nonnegative everywhere
and finite on (C0,∞) and (C1,∞), respectively.

Corollary 4. Let the game (Γ, λ) be such that Γ �= ∅, (9) are finite, the su-
perdecision set Σ is convex and closed, and the tails f and g satisfy

f ′
+(t) = O(t−2), g′+(t) = O(t−2) (10)

as t→∞, where f ′
+ and g′+ stand for the right derivatives (see, e.g., [9], Section

23) of f and g. There exist a constant C and a decision strategy producing
decisions γn such that

N∑
n=1

λ(yn, γn) ≤
N∑

n=1

λ(yn, D(xn)) + C

((
2√
3

)K

‖ExpD‖FS + 1

)√
N

always holds, for all N and all D with Fermi–Sobolev ExpD.

This corollary (proved in [13], Appendix C) is applicable to the square, absolute,
and log loss games; for the log loss game, this follows from the fact that its tails
satisfy

f ′(t) = g′(t) = − 1
et − 1

∼ −e−t = O(t−2) .

Remark. If the loss function λ is bounded, (10) holds trivially. The right deriva-
tives in (10) can be replaced by left derivatives, since

∣∣f ′
+

∣∣ ≤ ∣∣f ′−
∣∣ and

∣∣g′+∣∣ ≤ ∣∣g′−∣∣
(see, e.g., [9], Theorem 24.1). Condition (10) can be interpreted as saying that
the tails should shrink fast enough. The case f(t) = g(t) = t−1 can be consid-
ered borderline; Corollary 4 is still applicable in this case, but it ceases to be
applicable for tails that shrink less fast.

454 V. Vovk

6 Further Research

Two of the most natural directions in which this paper’s results can be developed
are:

– to extend Theorem 2 and its corollaries to the multi-class case (defensive
forecasting for this case is discussed in [14]);

– to formally analyze games with non-convex loss functions along the lines of
Subsection 5.3.

Acknowledgments

I am grateful to the anonymous referees for useful comments. This work was
partially supported by MRC (grant S505/65) and Royal Society.

References

[1] Nicolò Cesa-Bianchi, Yoav Freund, David Haussler, David P. Helmbold, Robert E.
Schapire, and Manfred K. Warmuth. How to use expert advice. Journal of the
Association for Computing Machinery, 44:427–485, 1997.

[2] Ryszard Engelking. General Topology, volume 6 of Sigma Series in Pure Mathe-
matics. Heldermann, Berlin, second edition, 1989.

[3] Yoav Freund. Predicting a binary sequence almost as well as the optimal biased
coin. In Proceedings of the Ninth Annual Conference on Computational Learning
Theory, pages 89–98, New York, 1996. Association for Computing Machinery.

[4] Yuri Kalnishkan and Michael V. Vyugin. The Weak Aggregating Algorithm and
weak mixability. In Proceedings of the Eighteenth Annual Conference on Learning
Theory, 2005.

[5] John L. Kelley. General Topology. Van Nostrand, Princeton, NJ, 1957.
[6] Don Kimber and Philip M. Long. On-line learning of smooth functions of a single

variable. Theoretical Computer Science, 148:141–156, 1995.
[7] Jyrki Kivinen and Manfred K. Warmuth. Exponential Gradient versus Gradient

Descent for linear predictors. Information and Computation, 132:1–63, 1997.
[8] Philip M. Long. Improved bounds about on-line learning of smooth functions of

a single variable. Theoretical Computer Science, 241:25–35, 2000.
[9] R. Tyrrell Rockafellar. Convex Analysis. Princeton University Press, Princeton,

NJ, 1970.
[10] Vladimir Vovk. Non-asymptotic calibration and resolution. These Proceedings.
[11] Vladimir Vovk. Aggregating strategies. In Mark Fulk and John Case, editors,

Proceedings of the Third Annual Workshop on Computational Learning Theory,
pages 371–383, San Mateo, CA, 1990. Morgan Kaufmann.

[12] Vladimir Vovk. Competitive on-line statistics. International Statistical Review,
69:213–248, 2001.

[13] Vladimir Vovk. Defensive prediction with expert advice. Technical Report
arXiv:cs.LG/0506041 (version 2), arXiv.org e-Print archive, July 2005. This
is the full version of this paper.

[14] Vladimir Vovk, Ilia Nouretdinov, Akimichi Takemura, and Glenn Shafer. Defen-
sive forecasting for linear protocols. These Proceedings.

Defensive Prediction with Expert Advice 455

[15] Vladimir Vovk, Akimichi Takemura, and Glenn Shafer. Defensive forecast-
ing. In Robert G. Cowell and Zoubin Ghahramani, editors, Proceedings of
the Tenth International Workshop on Artificial Intelligence and Statistics, Jan-
uary 6–8, 2005, Savannah Hotel, Barbados, pages 365–372. Society for Artifi-
cial Intelligence and Statistics, 2005. Available electronically at http://www.

gatsby.ucl.ac.uk/aistats/.

Appendix: Proof Sketch of Theorem 2

This appendix assumes that the reader has read [10] and makes constant ref-
erences to that paper. All results of [10] were based on the Intermediate Value
Theorem. Since we now allow predictions to be elements of the lexicographic
square £, the Intermediate Value Theorem needs to be replaced with the follow-
ing lemma.

Lemma 1. If a continuous function f : £→ IR takes both positive and negative
values, there exists x ∈ £ such that f(x) = 0.

Proof. A continuous image of a connected compact set is connected ([2], Theorem
6.1.4) and compact ([2], Theorem 3.1.10). Therefore, f(£) is a closed interval.

The definition of the K29∗ algorithm can be easily adapted to the case of
predictions in £; this version of the K29∗ algorithm will be called the lexico-
graphic K29 ∗ algorithm (see [13] for details). We can then prove the following
version of Theorem 1 in [10].

Theorem 3. Let k be the kernel defined by

k(a, b) = Φ(a) · Φ(b), ∀a, b ∈ £×X ,

for a forecast-continuous feature mapping Φ : £ × X → H (i.e., Φ(p, q, x) is
assumed continuous in (p, q) ∈ £). The lexicographic K29 ∗ algorithm with pa-
rameter k outputs (pn, qn) such that∥∥∥∥∥

N∑
n=1

(yn − pn)Φ(pn, qn, xn)

∥∥∥∥∥
2

≤
N∑

n=1

pn(1− pn) ‖Φ(pn, qn, xn)‖2 (11)

always holds for all N = 1, 2,

For a detailed proof, see [13].
In the construction of the FS kernel on [0, 1] × [0, 1]K = [0, 1]K+1 given

in [10], the fact that the first coordinate of the points in [0, 1]K+1 was special
(corresponding to the forecast rather than an attribute) was never used, and we
could carry out the same construction taking only the attributes into account,
with K + 1 replaced by K. The resulting kernel will be called the object FS
kernel.

Theorem 3 allows us to prove the required results about separate calibration
and resolution, decoupling Theorem 1’s calibration-cum-resolution. The case of

456 V. Vovk

calibration is simple: we will just take the feature mapping (p, q, x) ,→ ExpG(p, q),
where G is the choice function. Resolution is covered by the following version of
Theorem 1 (i.e., Theorem 2 in [10]):

Theorem 4. The predictions pn output by the K29 ∗ algorithm with the object
FS kernel as parameter satisfy∣∣∣∣∣

N∑
n=1

(yn − pn)f(xn)

∣∣∣∣∣ ≤
(

2√
3

)K

‖f‖FS

√√√√ N∑
n=1

pn(1− pn) (12)

for all N and all Fermi–Sobolev functions f : [0, 1]K → IR.

The proof of this result is completely analogous to the proof of Theorem 2 in [10],
and we do not reproduce it here. We will complement each prediction pn ∈ [0, 1]
to (pn, qn) ∈ £ choosing qn ∈ [0, 1] arbitrarily.

To achieve both calibration and resolution, we will have to mix the feature
mapping Φ0(p, q, x) := ExpG(p, q) and the feature mapping Φ1 leading to the
object FS kernel. The following corollary of Theorem 3 gives a simple way to
mix two feature mappings.

Corollary 5. Let Φj : £×X → Hj, j = 0, 1, be forecast-continuous mappings
from £×X to inner product spaces Hj. The lexicographic K29 ∗ algorithm with
a suitable kernel parameter satisfies∥∥∥∥∥

N∑
n=1

(yn − pn)Φj(pn, qn, xn)

∥∥∥∥∥
2

≤
N∑

n=1

pn(1− pn)
(
‖Φ0(pn, qn, xn)‖2 + ‖Φ1(pn, qn, xn)‖2

)
for all N and for both j = 0 and j = 1.

Proof. Define the direct sum H of H0 and H1 as the Cartesian product H0×H1

equipped with the inner product

h · h′ = (h0, h1) · (h′
0, h

′
1) :=

1∑
j=0

hj · h′
j .

Now we can define Φ : £×X→ H by

Φ(p, q, x) := (Φ0(p, q, x), Φ1(p, q, x)) ;

the corresponding kernel is

k((p, q, x), (p′, q′, x′)) := Φ(p, q, x) · Φ(p′, q′, x′)

=
1∑

j=0

Φj(p, q, x) · Φj(p′, q′, x′) =
1∑

j=0

kj((p, q, x), (p′, q′, x′)) ,

Defensive Prediction with Expert Advice 457

where k0 and k1 are the kernels corresponding to Φ0 and Φ1, respectively. Ap-
plying lexicographic K29∗ to this kernel and using (11), we obtain

∥∥∥∥∥
N∑

n=1

(yn − pn)Φj(pn, qn, xn)

∥∥∥∥∥
2

≤
∥∥∥∥∥
(

N∑
n=1

(yn − pn)Φ0(pn, qn, xn),
N∑

n=1

(yn − pn)Φ1(pn, qn, xn)

)∥∥∥∥∥
2

=

∥∥∥∥∥
N∑

n=1

(yn − pn)Φ(pn, qn, xn)

∥∥∥∥∥
2

≤
N∑

n=1

pn(1− pn) ‖Φ(pn, qn, xn)‖2

=
N∑

n=1

pn(1− pn)
1∑

j=0

‖Φj(pn, qn, xn)‖2 .

Proof Proper

Let us take Φ0(p, q, x) := ExpG(p, q) and Φ1(p, q, x) := (fm(x))m∈M , the lat-
ter as in the proof of Theorem 4 (see [10], Appendix B). Remember that
‖Φ1(p, q, x)‖a ≤ 1, ∀p, q, x. Merging Φ0 and Φ1 by Corollary 5, we obtain from
the proof of Theorem 4 (namely, following the proof of Lemma 2 in [10]; cm are
the Fourier coefficients of f w.r. to the system (fm)):∣∣∣∣∣

N∑
n=1

(yn − pn)f(xn)

∣∣∣∣∣ =
∣∣∣∣∣ ∑
m∈M

cm

N∑
n=1

(yn − pn)fm(xn)

∣∣∣∣∣
=

∣∣∣∣∣
(
cm

am

)
m∈M

·
(

N∑
n=1

(yn − pn)fm(xn)

)
m∈M

∣∣∣∣∣
≤
∥∥∥∥(cm

am

)
m∈M

∥∥∥∥
a

∥∥∥∥∥
(

N∑
n=1

(yn − pn)fm(xn)

)
m∈M

∥∥∥∥∥
a

=

√∑
m∈M

c2m
am

∥∥∥∥∥
N∑

n=1

(yn − pn)Φ1(pn, qn, xn)

∥∥∥∥∥
a

≤
(

2√
3

)K

‖f‖FS

√√√√ N∑
n=1

pn(1− pn)
(
Exp2

G(pn, qn) + 1
)
. (13)

Finally, analogously to (3) and using (13), we obtain for the lexicographic K29∗

algorithm with the merged kernel as parameter:

N∑
n=1

λ(yn, γn) =
N∑

n=1

λ(yn, G(pn, qn))

458 V. Vovk

=
N∑

n=1

λ(pn, G(pn, qn)) +
N∑

n=1

(
λ(yn, G(pn, qn)) − λ(pn, G(pn, qn))

)
=

N∑
n=1

λ(pn, G(pn, qn)) +
N∑

n=1

(yn − pn)
(
λ(1, G(pn, qn))− λ(0, G(pn, qn))

)

≤
N∑

n=1

λ(pn, G(pn, qn)) +

√√√√ N∑
n=1

pn(1 − pn)
(
Exp2

G(pn, qn) + 1
)

≤
N∑

n=1

λ(pn, D(xn)) + NΔG +

√√√√ N∑
n=1

pn(1− pn)
(
Exp2

G(pn, qn) + 1
)

=
N∑

n=1

λ(yn, D(xn))−
N∑

n=1

(
λ(yn, D(xn))− λ(pn, D(xn))

)

+ NΔG +

√√√√ N∑
n=1

pn(1− pn)
(
Exp2

G(pn, qn) + 1
)

=
N∑

n=1

λ(yn, D(xn))−
N∑

n=1

(yn − pn)
(
λ(1, D(xn))− λ(0, D(xn))

)

+ NΔG +

√√√√ N∑
n=1

pn(1− pn)
(
Exp2

G(pn, qn) + 1
)

≤
N∑

n=1

λ(yn, D(xn)) +
(

2√
3

)K

‖ExpD‖FS

√√√√ N∑
n=1

pn(1− pn)
(
Exp2

G(pn, qn) + 1
)

+ NΔG +

√√√√ N∑
n=1

pn(1− pn)
(
Exp2

G(pn, qn) + 1
)

=
N∑

n=1

λ(yn, D(xn)) + NΔG

+

((
2√
3

)K

‖ExpD‖FS + 1

)√√√√ N∑
n=1

pn(1 − pn)
(
Exp2

G(pn, qn) + 1
)
.

Defensive Forecasting for Linear Protocols

Vladimir Vovk1, Ilia Nouretdinov1, Akimichi Takemura2, and Glenn Shafer1,3

1 Department of Computer Science, Royal Holloway, University of London,
Egham, Surrey TW20 0EX, England
{vovk, ilia, glenn}@cs.rhul.ac.uk

2 Department of Mathematical Informatics,
Graduate School of Information Science and Technology, University of Tokyo,

7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
takemura@stat.t.u-tokyo.ac.jp

3 Rutgers Business School – Newark and New Brunswick,
180 University Avenue, Newark, New Jersey 07102 USA

gshafer@andromeda.rutgers.edu

Abstract. We consider a general class of forecasting protocols, called
“linear protocols”, and discuss several important special cases, includ-
ing multi-class forecasting. Forecasting is formalized as a game between
three players: Reality, whose role is to generate objects and their labels;
Forecaster, whose goal is to predict the labels; and Skeptic, who tries to
make money on any lack of agreement between Forecaster’s predictions
and the actual labels. Our main mathematical result is that for any con-
tinuous strategy for Skeptic in a linear protocol there exists a strategy
for Forecaster that does not allow Skeptic’s capital to grow. This result
is a meta-theorem that allows one to transform any constructive law of
probability in a linear protocol into a forecasting strategy whose predic-
tions are guaranteed to satisfy this law. We apply this meta-theorem to
a weak law of large numbers in inner product spaces to obtain a ver-
sion of the K29 prediction algorithm for linear protocols and show that
this version also satisfies the attractive properties of proper calibration
and resolution under a suitable choice of its kernel parameter, with no
assumptions about the way the data is generated.

1 Introduction

In a recent paper, [14], we suggested a new methodology for designing forecasting
strategies. Considering only the simplest case of binary forecasting, we showed
that any constructive, in the sense explained below, law of probability can be
translated into a forecasting strategy that satisfies this law. In this paper this
result is extended to a general class of protocols including multi-class forecasting.
In proposing this approach to forecasting we were inspired by [3] and papers
further developing [3], although our methods and formal results appear to be
completely different.

Whereas the meta-theorem stated in [14] is mathematically trivial, we have
to overcome some technical difficulties in the generalization considered in this pa-

S. Jain, H.U. Simon, and E. Tomita (Eds.): ALT 2005, LNAI 3734, pp. 459–473, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

460 V. Vovk et al.

per. Our general meta-theorem is stated in §4. The general forecasting protocols
covered by this result are introduced and discussed in §§2–3.

In [14] we demonstrated the value of the meta-theorem by applying it to
the strong law of large numbers, obtaining from it a kernel forecasting strategy
which we called K29. The derivation, however, was informal, involving heuristic
transitions to a limit, and this made it impossible to state formally any properties
of K29. In this paper we deduce K29 in a much more direct way from the weak
law of large numbers and state its properties. (For binary forecasting, this was
also done in [13], and the reader might prefer to read that paper first.) The weak
law of large numbers is stated and proved in §5, and K29 is derived and studied
in §6.

We call the approach to forecasting using our meta-theorem “defensive fore-
casting”: Forecaster is trying to defend himself when playing against Skeptic.
The justification of this approach given in this paper and in [13] is K29’s prop-
erties of proper calibration and resolution. Another justification, in a sense the
ultimate justification of any forecasts, is given in [12]: defensive forecasts lead
to good decisions; this result, however, is obtained for rather simple decision
problems requiring only binary forecasts, and we expect that its extensions will
require this paper’s results.

The exposition of probability theory needed for this paper is given in [9].
The standard exposition is based on Kolmogorov’s measure-theoretic axioms of
probability, whereas [9] states several key laws of probability in terms of a game
between the forecaster, the reality, and a third player, the skeptic. The game-
theoretic laws of probability in [9] are constructive in that we explicitly construct
computable winning strategies for the forecaster in various games of forecasting.

2 Forecasting as a Game

Following [9] and [14] we consider the following general forecasting protocol:

Forecasting Game 1
Players: Reality, Forecaster, Skeptic
Parameters: X (object space), Y (label space), F (Forecaster’s move space), S

(Skeptic’s move space), λ : S × F × Y → IR (Skeptic’s gain function and
Forecaster’s loss function)

Protocol:
K0 := 1.
FOR n = 1, 2, . . .:

Reality announces xn ∈ X.
Forecaster announces fn ∈ F.
Skeptic announces sn ∈ S.
Reality announces yn ∈ Y.
Kn := Kn−1 + λ(sn, fn, yn).

END FOR
Restriction on Skeptic: Skeptic must choose the sn so that his capital is
always nonnegative (Kn ≥ 0 for all n) no matter how the other players move.

Defensive Forecasting for Linear Protocols 461

This is a perfect-information protocol: the players move in the order indicated,
and each player sees the other player’s moves as they are made. It specifies
both an initial value for Skeptic’s capital (K0 = 1) and a lower bound on its
subsequent values (Kn ≥ 0). We will say that xn are the objects, yn are the
labels, (xn, yn) are the examples, and fn are the forecasts.

Book [9] contains several results (game-theoretic versions of limit theorems of
probability theory) of the following form: Skeptic has a strategy that guarantees
that either a property of agreement between the forecasts fn and labels yn is
satisfied or Skeptic becomes very rich (without risking bankruptcy, according to
the protocol). All specific strategies considered in [9] have computable versions.
According to Brouwer’s principle (see, e.g., §1 of [11] for a recent review of the
relevant literature) they must be automatically continuous; in any case, their
continuity can be checked directly. In [14] we showed that, under a special choice
of the players’ move spaces and Skeptic’s gain function λ, for any continuous
strategy for Skeptic Forecaster has a strategy that guarantees that Skeptic’s
capital never increases when he plays that strategy. Therefore, Forecaster has
strategies that ensure various properties of agreement between the forecasts and
the labels.

The purpose of this paper is to extend the result of [14] to a wide class of
Skeptic’s gain functions λ. But first we consider several important special cases
of Forecasting Game 1.

Binary Forecasting

The simplest non-trivial case, considered in [14], is where Y = {0, 1}, F = [0, 1],
S = IR, and

λ(sn, fn, yn) = sn(yn − fn) . (1)

Intuitively, Forecaster gives probability forecasts for yn: fn is his subjective prob-
ability that yn = 1. The operational interpretation of fn is that it is the price
that Forecaster charges for a ticket that will pay yn at the end of the nth round
of the game; sn is the number (positive, zero, or negative) of such tickets that
Skeptic chooses to buy.

Bounded Regression

This is the most straightforward extension of binary forecasting, considered in
[9], §3.2. The move spaces are Y = F = [A,B], where A and B are two constants,
and S = IR; the gain function is, as before, (1). This protocol allows one to prove
a strong law of large numbers ([9], Proposition 3.3) and a simple one-sided law
of the iterated logarithm ([9], Corollary 5.1).

Multi-class Forecasting

Another extension of binary forecasting is the protocol where Y is a finite set,
F is the set of all probability distributions on Y, S is the set of all real-valued
functions on Y, and

λ(sn, fn, yn) = sn(yn)−
∫

sn dfn .

462 V. Vovk et al.

The intuition behind Skeptic’s move sn is that Skeptic buys the ticket which
pays sn(yn) after yn is announced; he is charged

∫
sn dfn for this ticket.

The binary forecasting protocol is “isomorphic” to the special case of this
protocol where Y = {0, 1}: Forecaster’s move fn in the binary forecasting proto-
col is represented by the probability distribution f ′

n on {0, 1} assigning weight fn

to {1} and Skeptic’s move sn in the binary forecasting protocol is represented
by any function s′n on {0, 1} such that s′n(1) − s′n(0) = sn. The isomorphism
between these two protocols follows from

s′n(yn)−
∫

s′n df ′
n = s′n(yn)− s′n(1)fn − s′n(0)(1− fn)

= s′n(yn)− s′n(0)− snfn = sn(yn − fn)

(remember that yn ∈ {0, 1}).

Bounded Mean-Variance Forecasting

In this protocol, Y = [A,B], where A and B are again two constants, F = S =
IR2, and

λ(sn, fn, yn) = λ((Mn, Vn), (mn, vn), yn) = Mn(yn−mn)+Vn((yn−mn)2−vn) .

Intuitively, Forecaster is asked to forecast yn with a number mn and also forecast
the accuracy (yn −mn)2 of his first forecast with a number vn. This protocol,
although usually without the restriction yn ∈ [A,B], is used extensively in [9]
(e.g., in Chaps. 4 and 5).

An equivalent representation of this protocol is Y = {(t, t2) | t ∈ [A,B]},
F = S = IR2 and

λ(sn, fn, yn) = λ((s′n, s
′′
n), (f ′

n, f
′′
n), (tn, t2n)) = s′n(tn − f ′

n) + s′′n(t2n − f ′′
n) .

The equivalence of the two representations can be seen as follows: Reality’s
move (xn, tn) in the first representation corresponds to (xn, yn) = (xn, (tn, t2n))
in the second representation, Forecaster’s move (mn, vn) in the first repre-
sentation corresponds to (f ′

n, f
′′
n) = (mn, vn + m2

n) in the second representa-
tion, and Skeptic’s move (s′n, s

′′
n) in the second representation corresponds to

(Mn, Vn) = (s′n + 2mns
′′
n, s

′′
n) in the first representation. This establishes a bi-

jection between Reality’s move spaces, a bijection between Forecaster’s move
spaces, and a bijection between Skeptic’s move spaces in the two representa-
tions; Skeptic’s gains are also the same in the two representations:

s′n(tn − f ′
n) + s′′n(t2n − f ′′

n)

= s′n(tn −mn) + s′′n
((

(tn −mn)2 + 2(tn −mn)mn + m2
n

)− (vn + m2
n

))
= (s′n + 2mns

′′
n)(tn −mn) + s′′n

(
(tn −mn)2 − vn

)
.

Defensive Forecasting for Linear Protocols 463

3 Linear Protocol

Forecasting Game 1 is too general to derive results of the kind we are interested
in. In this subsection we will introduce a narrower protocol which will still be
wide enough to cover all special cases considered so far.

All move spaces are now subsets of a Euclidean space L (i.e., L = IRm for
some positive integer m), equipped with the usual dot product “·”. The label
space is a non-empty bounded subset Y ⊂ L, Forecaster’s move space F is the
whole of L, and Skeptic’s move space S is also the whole of L. Skeptic’s gain
function is

λ(sn, fn, yn) = sn · (yn − fn) .

Therefore, we consider the following perfect-information game:

Forecasting Game 2
Players: Reality, Forecaster, Skeptic
Parameters: X, L (Euclidean space), Y (a non-empty bounded subset of L)
Protocol:
K0 := 1.
FOR n = 1, 2, . . .:

Reality announces xn ∈ X.
Forecaster announces fn ∈ L.
Skeptic announces sn ∈ L.
Reality announces yn ∈ Y.
Kn := Kn−1 + sn · (yn − fn). (2)

END FOR
Restriction on Skeptic: Skeptic must choose the sn so that his capital is
always nonnegative no matter how the other players move.

Let us check that the specific protocols considered in the previous section are
covered by this linear protocol. At first sight, even the binary forecasting protocol
is not covered, as Forecaster’s move space is [0, 1] rather than IR. It is easy to see,
however, that Forecaster’s move fn /∈ coY outside the convex closure coY of the
label space (the convex closure coA of a set A is defined to be the intersection
of all convex closed sets containing A) is always inadmissible, in the sense that
there exists Skeptic’s reply sn making him arbitrarily rich regardless of Reality’s
move, and so we can as well choose F := coY. Indeed, suppose that fn /∈ coY
in the linear protocol. Then coY − fn is a compact convex set not containing
the origin. By the hyperplane separation theorem, there exists a vector sn ∈ L
such that

sn · (yn − fn) > 0, ∀yn ∈ coY .

By the compactness of coY,

inf
yn∈Y

sn · (yn − fn) ≥ min
yn∈coY

sn · (yn − fn) > 0 .

464 V. Vovk et al.

Skeptic’s move Csn can make him as rich as he wishes as C can be arbitrarily
large. In what follows, we will usually assume that Forecaster’s move space is
coY and use F as a shorthand for coY.

Now it is obvious that the binary forecasting, bounded regression, and
bounded mean-variance forecasting (in its second representation) protocols are
special cases of the linear protocol (perhaps with F = coY). For the multi-class
forecasting protocol, we should represent Y as the vertices

y1 := (1, 0, 0, . . . , 0), y2 := (0, 1, 0, . . . , 0), . . . , ym := (0, 0, 0, . . . , 1)

of the standard simplex in IRm, where m is the size of Y, represent the probability
distributions f on Y as vectors (f{y1}, . . . , f{ym}) in IRm, and represent the
real-valued functions s on Y as vectors (s(y1), . . . , s(ym)) in IRm.

4 Meta-theorem

In this section we prove the main mathematical result of this paper: for any
continuous strategy for Skeptic there exists a strategy for Forecaster that does
not allow Skeptic’s capital to grow, regardless of what Reality is doing. As in [14],
we make Skeptic announce his strategy at the outset of each round rather than at
the beginning of the game, and we drop all restrictions on Skeptic. Forecaster’s
move space is restricted to F = coY. The resulting perfect-information game is:

Forecasting Game 3
Players: Reality, Forecaster, Skeptic
Parameters: X, L (Euclidean space), Y ⊂ L (non-empty and bounded)
Protocol:
K0 is set to a real number.
FOR n = 1, 2, . . .:

Reality announces xn ∈ X.
Skeptic announces continuous Sn : coY → L.
Forecaster announces fn ∈ coY.
Reality announces yn ∈ Y.
Kn := Kn−1 + Sn(fn) · (yn − fn).

END FOR

Theorem 1. Forecaster has a strategy in Forecasting Game 3 that ensures K0 ≥
K1 ≥ K2 ≥ · · · .
Proof. Fix a round n and Skeptic’s move Sn : F → L (we will refer to Sn as a
vector field in F). Our task is to prove the existence of a point fn ∈ F such that,
for all y ∈ Y, Sn(fn) · (y − fn) ≤ 0.

If for some f ∈ ∂F (we use ∂A to denote the boundary of A ⊆ L) the vector
Sn(f) is normal and directed exteriorly to F (in the sense that Sn(f)·(y−f) ≤ 0
for all y ∈ F), we can take such f as fn. Therefore, we assume, without loss of
generality, that Sn is never normal and directed exteriorly on ∂F. Then by

Defensive Forecasting for Linear Protocols 465

Lemma 1 in Appendix A there exists f such that Sn(f) = 0, and we can take
such f as fn.

Remark. Notice that Theorem 1 will not become weaker if the first move by
Reality (choosing xn) is removed from each round of the protocol.

5 A Weak Law of Large Numbers in the Feature Space

Unfortunately, the usual law of large numbers is not useful for the purpose of
designing forecasting strategies (see the discussion in [14]). Therefore, we state
a generalized law of large numbers; at the end of this section we will explain
connections with the usual law of large numbers. In this section we consider
Forecasting Game 2 without the requirement K0 > 0 and with the restriction
on Skeptic dropped. If we fix a strategy for Skeptic and Skeptic’s initial capital
K0 (not necessarily a positive number), Kn defined by (2) becomes a function of
Reality’s and Forecaster’s moves. Such functions will be called capital processes.

Let Φ : F×X→ H (as usual, F = coY) be a feature mapping into an inner
product (typically Hilbert) space H; H is called the feature space. The next
theorem uses the notion of tensor product; the relevant definitions and facts can
be found in Appendix B.

Theorem 2. The function

Kn :=

∥∥∥∥∥
n∑

i=1

(yi − fi)⊗ Φ(fi, xi)

∥∥∥∥∥
2

−
n∑

i=1

‖yi − fi‖2 ‖Φ(fi, xi)‖2 (3)

is a capital process (not necessarily non-negative) of some strategy for Skeptic.

Proof. We start by noticing that

Kn −Kn−1 =

∥∥∥∥∥
n−1∑
i=1

(yi − fi)⊗ Φ(fi, xi) + (yn − fn)⊗ Φ(fn, xn)

∥∥∥∥∥
2

−
∥∥∥∥∥

n−1∑
i=1

(yi − fi)⊗ Φ(fi, xi)

∥∥∥∥∥
2

− ‖yn − fn‖2 ‖Φ(fn, xn)‖2

= 2

(
n−1∑
i=1

(yi − fi)⊗ Φ(fi, xi)

)
· ((yn − fn)⊗ Φ(fn, xn)

)
= 2

n−1∑
i=1

(
(yi − fi) · (yn − fn)

)(
Φ(fi, xi) · Φ(fn, xn)

)
(in the last two equalities we used Lemma 2 stated in Appendix B:). Introducing
the notation

k((f, x), (f ′, x′)) := Φ(f, x) · Φ(f ′, x′) , (4)

where (f, x), (f ′, x′) ∈ F×X, we can rewrite the expression for Kn −Kn−1 as

466 V. Vovk et al.(
2

n−1∑
i=1

k((fi, xi), (fn, xn))(yi − fi)

)
· (yn − fn) .

Therefore, Kn is the capital process corresponding to Skeptic’s strategy

2
n−1∑
i=1

k((fi, xi), (fn, xn))(yi − fi) ; (5)

this completes the proof.

More Standard Statements of the Weak Law

In the rest of this section we explain connections of Theorem 2 with more stan-
dard statements of the weak law of large numbers; in this part of the paper we
will use some notions introduced in [9]. The rest of the paper does not depend
on this material, and the reader may wish to skip the rest of this section.

Let us assume that

C := sup
(f,x)∈F×X

‖Φ(f, x)‖ <∞ .

We will use the notation diam(Y) := supy,y′∈Y dist(y, y′), where dist(y, y′) =
‖y − y′‖ stands for the Euclidean distance in L.

For any initial capital K0,

Kn := K0 +

∥∥∥∥∥
n∑

i=1

(yi − fi)⊗ Φ(fi, xi)

∥∥∥∥∥
2

−
n∑

i=1

‖yi − fi‖2‖Φ(fi, xi)‖2

is the capital process of some strategy for Skeptic. Suppose a positive integer
N (the duration of the game, or the horizon) is given in advance and K0 :=
diam2(Y)C2N . Then, in the game lasting N rounds, Kn is never negative and

KN ≥
∥∥∥∥∥

N∑
i=1

(yi − fi)⊗ Φ(fi, xi)

∥∥∥∥∥
2

.

If we do not believe that Skeptic can increase his capital 1/δ-fold for a small
δ > 0 without risking bankruptcy, we should believe that∥∥∥∥∥

N∑
i=1

(yi − fi)⊗ Φ(fi, xi)

∥∥∥∥∥
2

≤ diam2(Y)C2N/δ ,

which can be rewritten as∥∥∥∥∥ 1
N

N∑
i=1

(yi − fi)⊗ Φ(fi, xi)

∥∥∥∥∥ ≤ diam(Y)C(Nδ)−1/2 . (6)

Defensive Forecasting for Linear Protocols 467

In the terminology of [9], the game-theoretic lower probability of the event (6)
is at least 1− δ.

The game-theoretic version of Bernoulli’s law of large numbers is a special
case of (6) corresponding to Φ(f, x) = 1, for all f and x, Y = {0, 1}, and |X| = 1
(the last two conditions mean that we are considering the binary forecasting
protocol without the objects); as usual, we assume that fi are chosen from
[0, 1]. As explained in [9], in combination with the measurability of Skeptic’s
strategy guaranteeing (6), this implies that the measure-theoretic probability of
the event (6) is at least 1−δ, assuming that the yi are generated by a probability
distribution and that each fi is the conditional probability that yi = 1 given
y1, . . . , yi−1. This measure-theoretic result was proved by Kolmogorov in 1929
(see [5]) and is the origin of the name “K29 strategy”.

We will see in the next section that the feature-space version (6) of the weak
law of large numbers is much more useful than the standard version for the
purpose of forecasting, and it will turn out that K29 guarantees (6) with δ = 1.

6 The K29 Strategy and Its Properties

According to Theorem 1, under the continuity assumption there is a strategy
for Forecaster that does not allow Kn to grow, where Kn is defined by (3).
Fortunately (but not unusually), this strategy depends on the feature mapping
Φ only via the corresponding Mercer kernel k defined by (4). The continuity
assumption needed is that k((f, x), (f ′, x′)) should be continuous in f ; such
kernels will be called admissible. According to (5), the corresponding forecasting
strategy, which we will call the K29 strategy with parameter k, is to output, on
the nth round, a forecast fn satisfying

S(fn) :=
n−1∑
i=1

k((fi, xi), (fn, xn))(yi − fi) = 0

(or, if such fn does not exist, the forecast is chosen to be a point fn ∈ ∂F where
S(fn) is normal and directed exteriorly to F).

The protocol of this section is essentially that of Forecasting Game 3; as
Skeptic ceases to be an active player, it simplifies to:

FOR n = 1, 2, . . .:
Reality announces xn ∈ X.
Forecaster announces fn ∈ coY.
Reality announces yn ∈ Y.

END FOR

Theorem 3. The K29 strategy guarantees that always∥∥∥∥∥
n∑

i=1

(yi − fi)⊗ Φ(fi, xi)

∥∥∥∥∥ ≤ diam(Y)C
√
n , (7)

where C := sup(f,x)∈F×X ‖Φ(f, x)‖ is assumed to be finite.

468 V. Vovk et al.

Proof. The K29 strategy ensures that (3) never increases; therefore,∥∥∥∥∥
n∑

i=1

(yi − fi)⊗ Φ(fi, xi)

∥∥∥∥∥
2

≤
n∑

i=1

‖yi − fi‖2 ‖Φ(fi, xi)‖2 ≤ diam2(Y)C2n .

Remark. The property (7) is a special case of (6) corresponding to δ = 1; we
gave an independent derivation to make our exposition self-contained and to
avoid the extra assumptions used in the derivation of (6), such as the horizon
being finite and known in advance.

Calibration and Resolution

Two important properties of a forecasting strategy are its calibration and reso-
lution, which we introduce informally. Our discussion in this section extends the
discussion in [13], §5, to the case of linear protocols (in particular, to the case of
multi-class forecasting). Forecaster’s move space is assumed to be F = coY.

We say that the forecasts fn are properly calibrated if, for any f∗ ∈ F,∑
i=1,...,n:fi≈f∗ yi∑
i=1,...,n:fi≈f∗ 1

≈ f∗

provided
∑

i=1,...,n:fi≈f∗ 1 is not too small. (We shorten (1/c)v to v/c, where v
is a vector and c �= 0 is a number.) Proper calibration is only a necessary but
far from sufficient condition for good forecasts: for example, a forecaster who
ignores the objects xn can be perfectly calibrated, no matter how much useful
information xn contain. (Cf. the discussion in [2].)

We say that the forecasts fn are properly calibrated and resolved if, for any
(f∗, x∗) ∈ F×X, ∑

i=1,...,n:(fi,xi)≈(f∗,x∗) yi∑
i=1,...,n:(fi,xi)≈(f∗,x∗) 1

≈ f∗ (8)

provided
∑

i=1,...,n:(fi,xi)≈(f∗,x∗) 1 is not too small.
Instead of “crisp” points (f∗, x∗) ∈ F × X we will consider “fuzzy points”

I : L→ [0, 1] such that I(f∗, x∗) = 1 and I(f, x) = 0 for all (f, x) outside a small
neighborhood of (f∗, x∗). A standard choice would be something like I := IE ,
where E ⊂ L is a small neighborhood of (f∗, x∗) and IE is its indicator function,
but we will want I to be continuous (it can, however, be arbitrarily close to IE).

Let (f∗, x∗) be a point in F×X; we would like the average of yi, i = 1, . . . , n,
such that (fi, xi) is close to (f∗, x∗) to be close to f∗. (Cf. (8).) Fix an admissible
Mercer kernel k : (F×X)2 → IR and consider the “soft neighborhood”

I(f∗,x∗)(f, x) := k((f∗, x∗), (f, x)) (9)

of the point (f∗, x∗). The following is an easy corollary of Theorem 3.

Corollary 1. The K29 strategy with parameter k ≥ 0 ensures∥∥∥∥∥
n∑

i=1

(yi − fi)I(f∗,x∗)(fi, xi)

∥∥∥∥∥ ≤ diam(Y)C2√n (10)

Defensive Forecasting for Linear Protocols 469

for each point (f∗, x∗) ∈ F×X, where I is defined by (9) and C is defined as in
Theorem 3.

Proof. Let Φ : F×X→ H be a function taking values in an inner product space
H and satisfying (4). Theorem 3 then implies∥∥∥∥∥

n∑
i=1

(yi − fi)I(f∗,x∗)(fi, xi)

∥∥∥∥∥ =

∥∥∥∥∥
n∑

i=1

(yi − fi)
(
Φ(fi, xi) · Φ(f∗, x∗)

)∥∥∥∥∥
=

∥∥∥∥∥
n∑

i=1

(
(yi − fi)⊗ Φ(fi, xi)

)
Φ(f∗, x∗)

∥∥∥∥∥
≤
∥∥∥∥∥

n∑
i=1

(yi − fi)⊗ Φ(fi, xi)

∥∥∥∥∥ ‖Φ(f∗, x∗)‖ ≤ diam(Y)C2
√
n

(the second equality follows from Lemma 4 and the first inequality from Lemma 3
in Appendix B).

We can rewrite (10) as∥∥∥∥∑n
i=1(yi − fi)I(f∗,x∗)(fi, xi)∑n

i=1 I(f∗,x∗)(fi, xi)

∥∥∥∥ ≤ diam(Y)C2
√
n∑n

i=1 I(f∗,x∗)(fi, xi)
(11)

(assuming the denominator
∑n

i=1 I(f∗,x∗)(fi, xi) is positive); therefore, we can
expect proper calibration and resolution in the soft neighborhood of (f∗, x∗)
when

n∑
i=1

I(f∗,x∗)(fi, xi)3
√
n . (12)

In conclusion, we will illustrate (11) on a simple example. Choose the scale
σ > 0 at which calibration and resolution are sought, suppose X is a subset of
a Euclidean space, and consider the Gaussian kernel (obviously admissible)

k((f, x), (f ′, x′)) := exp
(
−‖(f, x)− (f ′, x′)‖2

2σ2

)
; (13)

the corresponding soft neighborhoods I(f∗,x∗) will be Gaussian bells of “size”
σ. Fix (f∗, x∗) ∈ F ×X. If n is large enough, we expect (12) to hold (indeed,
the left-hand side of (12) typically grows as Θ(n) as n→∞), and so we expect
proper calibration and resolution at (f∗, x∗).

7 Further Research

The main result of this paper is an existence theorem: we did not show how to
compute Forecaster’s strategy ensuring K0 ≥ K1 ≥ · · · . (The latter was easy
in the case of binary forecasting considered in [14].) It is important to develop
computationally efficient ways to find zeros of vector fields. There are several

470 V. Vovk et al.

popular methods for finding zeros, such as the Newton–Raphson method (see,
e.g., [7], Chap. 9), but it would be ideal to have efficient methods that are
guaranteed to find a zero (or a near zero) in a prespecified time.

In this paper we considered only the case where Y is a subset of a finite-
dimensional space L. There are important protocols (such as the one in [9],
p. 360) in which Y, F, and S are subsets of, e.g., a Banach space. The proof
techniques used in this paper, however, depend on the assumption that L is
finite-dimensional in an essential way.

Finally, it is interesting to study performance guarantees for K29 when used
in conjunction with universal kernels [10]. The disadvantage of kernel (13), for
example, is that it is not clear how to choose σ: too large σ are useless ((12)
holds but calibration and resolution are not useful at a crude scale) and too
small σ are not achievable ((12) does not hold). In the binary case, this work is
started in [13].

Acknowledgments

This work was partially supported by MRC (grant S505/65), Royal Society, and
the Superrobust Computation Project (Graduate School of Information Science
and Technology, University of Tokyo). We are grateful to the anonymous review-
ers for their comments.

References

[1] Ravi P. Agarwal, Maria Meehan, and Donal O’Regan. Fixed Point Theory and
Applications. Cambridge University Press, Cambridge, 2001.

[2] A. Philip Dawid. Probability forecasting. In Samuel Kotz, Norman L. Johnson,
and Campbell B. Read, editors, Encyclopedia of Statistical Sciences, volume 7,
pages 210–218. Wiley, New York, 1986.

[3] Dean P. Foster and Rakesh V. Vohra. Asymptotic calibration. Biometrika, 85:379–
390, 1998.

[4] Alfred Gray. Tubes. Birkhäuser, Basel, second edition, 2004.
[5] Andrei N. Kolmogorov. Sur la loi des grands nombres. Atti della Reale Accademia

Nazionale dei Lincei. Classe di scienze fisiche, matematiche, e naturali. Rendi-
conti Serie VI, 185:917–919, 1929.

[6] Marston Morse. Singular points of vector fields under general boundary condi-
tions. American Journal of Mathematics, 51:165–178, 1929.

[7] William H. Press, Brian P. Flannery, Saul A. Teukolsky, and William T. Vetter-
ling. Numerical Recipes in C. Cambridge University Press, Cambridge, second
edition, 1992.

[8] Rolf Schneider. Convex Bodies: The Brunn–Minkowski Theory. Cambridge Uni-
versity Press, Cambridge, 1993.

[9] Glenn Shafer and Vladimir Vovk. Probability and Finance: It’s Only a Game!
Wiley, New York, 2001.

[10] Ingo Steinwart. On the influence of the kernel on the consistency of support vector
machines. Journal of Machine Learning Research, 2:67–93, 2001.

Defensive Forecasting for Linear Protocols 471

[11] Viggo Stoltenberg-Hansen and John V.Tucker. Computable and continuous par-
tial homomorphisms on metric partial algebras. Bulletin of Symbolic Logic, 9:299–
334, 2003.

[12] Vladimir Vovk. Defensive prediction with expert advice. These Proceedings.
[13] Vladimir Vovk. Non-asymptotic calibration and resolution. These Proceedings.
[14] Vladimir Vovk, Akimichi Takemura, and Glenn Shafer. Defensive forecasting.

In Robert G. Cowell and Zoubin Ghahramani, editors, Proceedings of the Tenth
International Workshop on Artificial Intelligence and Statistics, pages 365–372.
Society for Artificial Intelligence and Statistics, 2005. Available electronically at
http://www.gatsby.ucl.ac.uk/aistats/.

Appendix A: Zeros of Vector Fields

The following lemma is the main component of the proof of Theorem 1.

Lemma 1. Let F be a compact convex non-empty set in L and S : F → L be
a continuous vector field on F. If at no point of the boundary ∂F the vector
field S is normal and directed exteriorly to F then there exists f ∈ F such that
S(f) = 0.

Proof. If the boundary ∂F were assumed to be smooth, the lemma would follow
from [6], Theorem A0 on p. 170; without smoothness, we will have to give an
independent proof, starting with a modification of a simple trick from [6].

For each ε > 0 we define

Fε := {z | dist(z,F) ≤ ε} ,

where, as usual, dist(z,F) := inff∈F dist(z, f); Fε is called the tube of radius ε
around F ([4]) or the local parallel set of radius ε around F ([8], §4). Note that
Fε can be written as the Minkowski sum Fε = F + εU of F and the ball εU of
radius ε centered at the origin. Therefore, the convexity of F implies that Fε is
also convex.

Following [6], we extend the vector field S from F to F1 (Fε with ε = 1) as
follows: for any point f ∈ ∂F1 and any t ∈ [0, 1), set

S (ty + (1− t)f) := tS(y) + (1− t)S(f) , (14)

where y ∈ F is the unique closest point to f and S(f) is defined as y − f .
Let us first prove that this extension is well defined, i.e., that each point

p ∈ F1 \F has a unique representation in the form ty + (1− t)f , as above. Such
a representation exists since we can take y to be the closest point of F to p and
f to be the point lying on the straight line connecting y and p at a distance of 1
from y in the direction of p; it is clear that y is the closest point to f in F and
that f ∈ ∂F1. Such a representation is unique since y is uniquely determined as
the closest to p point of F, f is uniquely determined as the point lying on the
straight line connecting y and p at a distance of 1 from y in the direction of p,
and t is uniquely determined as the distance between f and p.

472 V. Vovk et al.

Let us now prove that the extension of S to F1 is continuous. Let

p ∈ (F1 \ F) ∪ ∂F, pk ∈ F1 \ F, k = 1, 2, . . . ,

be such that pk → p as k → ∞; we are required to prove that S(pk) → S(p).
Represent each pk and p in the form pk = tkyk +(1− tk)fk and p = ty+(1− t)f ,
as above (i.e., f and fk are in ∂F1 and y and yk are the corresponding closest
points in F). It is easy to check that yk → y (as yk and y are the closest points
in F to pk and p, respectively), then to check that fk → f (provided f /∈ ∂F),
and finally to check that tk → t (this is true even if f ∈ ∂F, in which case t = 1
and tk → 1). This immediately implies S(pk)→ S(p).

Since S is never normal and directed exteriorly on ∂F, S will have no zeros
inside F1 \F. Since the vector field S is interiorly directed on ∂F1 (we will never
need a formal definition of “interiorly directed” in this paper), our task would
be accomplished if we assumed that the boundary of F1 is smooth: we would
apply the Poincaré–Hopf theorem to deduce that S has at least one zero in F1

and, therefore, at least one zero in F. We will, however, give an argument that
does not depend on any smoothness assumptions.

The proof will be complete if we show that the continuous vector field S in
the closed convex set F1, which is normal and interiorly directed on ∂F1, always
has at least one zero. We consider the tube F2 of radius 2 around F and extend
the vector field S to F2 \ F1 by

S (ty + (1− t)f) := S(f)

in the notation of (14) but with t ∈ [−1, 0) (as before, f ranges over ∂F1 and
y ∈ F is the closest point to f). Again, it is easy to check that this extension is
well defined and continuous.

By the compactness of F2,

C := max

(
sup
f∈F2

‖S(f)‖, 1
)

<∞ .

Notice that f + tS(f) ∈ F2 for all f ∈ F2 and all t ∈ [0, 1/C) (for f ∈ F2 \ F1

this follows from the fact that f + tS(f) lies between f and the closest point to
f in F, and for f ∈ F1 this follows from the fact that the distance between f
and the complement of F2 is at least 1). The function

G : F2 → F2

f ,→ f +
1

2C
S(f)

is continuous and so, by Schauder’s fixed point theorem (see, e.g., [1], Chap. 4),
has a fixed point; it is clear that such a fixed point will be a zero of S.

Appendix B: Tensor Product

In this appendix we list several definitions and simple facts about tensor prod-
ucts, in the form used in this paper.

Defensive Forecasting for Linear Protocols 473

The tensor product L ⊗ H of L = IRm and H (an inner product space,
perhaps infinite-dimensional) is the vector space Hm with the addition and scalar
multiplication defined component-wise,

(a1, . . . , am) + (b1, . . . , bm) := (a1 + b1, . . . , am + bm) ,
c(a1, . . . , am) := (ca1, . . . , cam) ,

and the inner product

(a1, . . . , am) · (b1, . . . , bm) := a1 · b1 + · · ·+ am · bm .

The tensor product of (t1, . . . , tm) ∈ L and h ∈ H is defined to be

(t1, . . . , tm)⊗ h := (t1h, . . . , tmh) .

Lemma 2. For any t1, t2 ∈ L and h1, h2 ∈ H,

(t1 ⊗ h1) · (t2 ⊗ h2) = (t1 · t2)(h1 · h2) .

In particular, ‖t⊗ h‖2 = ‖t‖2 ‖h‖2 for all t ∈ L and h ∈ H.

Proof. Immediate from the definition.

If v ∈ L⊗H and h ∈ H, we define the product vh ∈ L by the equality

(v1, . . . , vm)h := (v1 · h, . . . , vm · h) ,

where (v1, . . . , vm) := v. The following lemma generalizes (and is an easy impli-
cation of) the Cauchy–Schwarz inequality.

Lemma 3. For any v ∈ L⊗H and h ∈ H,

‖vh‖ ≤ ‖v‖‖h‖ .
Proof. Our goal is to prove

‖(v1 · h, . . . , vm · h)‖ ≤ ‖(v1, . . . , vm)‖‖h‖ ,
which is equivalent to

(v1 · h)2 + · · ·+ (vm · h)2 ≤ ‖v1‖2‖h‖2 + · · ·+ ‖vm‖2‖h‖2 ;

the last inequality follows from (vi · h)2 ≤ ‖vi‖2‖h‖2 (a special case of the
Cauchy–Schwarz inequality).

Lemma 4. For any t ∈ L and a, b ∈ H,

(a · b)t = (t⊗ a)b . (15)

Proof. If t = (t1, . . . , tm), both sides of (15) equal (t1(a · b), . . . , tm(a · b)).

Teaching Learners with Restricted
Mind Changes

Frank J. Balbach1 and Thomas Zeugmann2

1 Institut für Theoretische Informatik, Universität zu Lübeck,
Ratzeburger Allee 160, 23538 Lübeck, Germany

balbach@tcs.uni-luebeck.de
2 Division of Computer Science,

Hokkaido University, Sapporo 060-0814, Japan
thomas@ist.hokudai.ac.jp

Abstract. Within learning theory teaching has been studied in various
ways. In a common variant the teacher has to teach all learners that
are restricted to output only consistent hypotheses. The complexity of
teaching is then measured by the maximum number of mistakes a consis-
tent learner can make until successful learning. This is equivalent to the
so-called teaching dimension. However, many interesting concept classes
have an exponential teaching dimension and it is only meaningful to
consider the teachability of finite concept classes.

A refined approach of teaching is proposed by introducing a neigh-
borhood relation over all possible hypotheses. The learners are then
restricted to choose a new hypothesis from the neighborhood of their
current one. Teachers are either required to teach finitely or in the limit.
Moreover, the variant that the teacher receives the current hypothesis of
the learner as feedback is considered.

The new models are compared to existing ones and to one another in
dependence of the neighborhood relations given. In particular, it is shown
that feedback can be very helpful. Moreover, within the new model one
can also study the teachability of infinite concept classes with potentially
infinite concepts such as languages. Finally, it is shown that in our model
teachability and learnability can be rather different.

1 Introduction

Teaching has been modeled and investigated in various ways within algorithmic
learning theory. Already in Angluin’s query model [1, 2] the oracles have some
characteristics of teachers. However, they remain completely passive. In order to
study teachers in a more active role, several models have been developed, each
of which follows one of two basically different approaches.

In the first approach, the goal is to find a teacher and a learner such that
a given learning task can be carried out by them. For the inductive inference
framework, Freivalds et al. [8] and Jain et al. [14] developed a model in which a
rather implicit teacher provides the learning strategy with good examples. Jack-
son and Tomkins [13] as well as Goldman and Mathias [10, 15] defined models

S. Jain, H.U. Simon, and E. Tomita (Eds.): ALT 2005, LNAI 3734, pp. 474–489, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Teaching Learners with Restricted Mind Changes 475

of teacher/learner pairs where teachers and learners are constructed explicitly.
In all these models, some kind of adversary disturbing the teaching process is
necessary to avoid collusion between the teacher and the learner. Angluin and
Kriķis’ [3, 4] model prevents collusion by giving incompatible hypothesis spaces
to teacher and learner. This makes simple encoding of the target impossible.

In the second approach, a teacher has to be found that teaches all learners.
This prevents collusion, since teaching happens the same way for all learners
and cannot be tailored to a specific one. Goldman et al. [11] and Goldman and
Kearns [9] substitute the adversarial teacher in the online learning model by
a helpful one selecting good examples. They investigate how many mistakes a
consistent learner can make in the worst case. In Shinohara and Miyano’s [17]
model the teacher produces a set of examples for the target concept such that it
is the only consistent one in the concept class. The size of this set is the same as
the worst case number of mistakes in the online model. This number is termed
the teaching dimension of the target. Because of this similarity we will from now
on refer to both models as the teaching dimension (TD-)model.

One difficulty of teaching in the TD-model results from the teacher not
knowing anything about the learners besides them being consistent. In reality
a teacher can benefit a lot from knowing the learners’ behavior or their current
hypotheses. It is therefore natural to ask how teaching can be improved if the
teacher may observe the learners’ hypotheses after each example.

After translating this question into the TD-model, one sees that there is no
gain in sample size at all. The current hypothesis of a consistent learner reveals
nothing about its following hypothesis. Even if the teacher knew the hypothesis
and provided a special example in response, he can only be sure that the learner’s
next hypothesis will be consistent. But this was already known to the teacher.

In this paper we extend the TD-model by a neighborhood relation over all
hypotheses and by the requirement that all learners may only switch to a hy-
pothesis in the neighborhood of their current one. We then compare basically
two variants: In the first, the teacher receives the learner’s hypothesis after every
example taught. In the second, the teacher has no feedback available. It turns
out that in the extended model the existence of feedback can really make a
difference. Some concept classes can be taught much faster with feedback than
without and some cannot be taught unless feedback is available to the teacher.

As a side effect the model can be used to study the teachability of infinite
classes with potentially infinite concepts, e.g., languages. In the class containing
all finite languages, for example, all concepts have an infinite teaching dimen-
sion and are thus unteachable in the TD-model. With appropriate neighborhood
relations this class can be taught, as we shall show in Section 3.

2 Preliminaries

A concept c is a subset of an instance space X and a concept class is a set of
concepts over X . We consider two instance spaces: {0, 1}n for Boolean functions
and Σ∗ for languages over a finite and non-empty alphabet Σ. By X = X×{0, 1}

476 F.J. Balbach and T. Zeugmann

we denote the set of examples overX . An example (x, b) is either positive, if b = 1,
or negative, if b = 0. A concept c is consistent with (x, b) iff x ∈ c⇔ b = 1.

Let R be a set of strings. R represents C iff there is a function γ : R ×X →
{0, 1} with C = {Cr r ∈ R}, where Cr = {x γ(r, x) = 1}. The length of r is
denoted by |r| and size(c) := min{|r| Cr = c} for every c ∈ C. For any set S, we
denote by card(S) its cardinality and by S∗ the set of all finite tuples over S. We
use the symbols ◦ for concatenation of tuples and+ for the symmetric difference
of two sets. Let c be a concept and let x ∈ X ∗ be a list of examples, then err(x, c)
is the set of all examples in x that are inconsistent with c.

A teaching set for a concept c with respect to C is a set S of examples such
that c is the only concept in C consistent with S. The teaching dimension TD(c)
is the size of the smallest teaching set for c, the teaching dimension of C is
TD(C) = max{TD(c) c ∈ C}.

For studying feedback, the learners in our model have to evolve over time. We
adopt the online learning model and divide the teaching process into rounds. In
each round the teacher provides an example to the learner who then computes a
hypothesis from R. At the end of the round the teacher observes this hypothesis.

Thus, we describe a teacher by a function T : R × R∗ → X receiving a
concept’s representation and a sequence of previously observed hypotheses as
input and outputting an example.

A learner can be described by a function L : X ∗ → R receiving a sequence of
examples as input and outputting a hypothesis. Let ν ⊆ R×R be a relation over
R. Then L is called restricted to ν iff ∀x ∈ X ∗ ∀z ∈ X [(L(x), L(x◦z)) ∈ ν], that
is ν defines the admissible mind changes of L. Now, (R, ν) is a directed graph
and we define the neighborhood of r ∈ R as Nb(r) := {s ∈ R (r, s) ∈ ν} ∪ {r}
and denote by dist(r, s) the length of a shortest path from r to s.

In the TD-model, the learner is required to always output a consistent hy-
pothesis. Since in the restricted model all admissible hypotheses might be incon-
sistent, we have to modify this demand. We require that L chooses only among
the admissible hypotheses with least error with respect to the known examples.
Moreover, we require a form of conservativeness : L may only change its hypoth-
esis if the new one has a smaller error. This ensures that L will not change its
mind after reaching a correct hypothesis. On the other hand, we also require L to
search for a better hypothesis if it receives an inconsistent example. Otherwise,
L could stay at the initial hypothesis forever and teaching were impossible.

Definition 1. Let R be a representation language for a concept class C and let
ν ⊆ R×R be a relation over R and h0 ∈ R a starting hypothesis. A ν-learner is
a function L : X ∗ → R with L(∅) = h0 and for all x ∈ X ∗ and for all z ∈ X :

(1) (L(x), L(x ◦ z)) ∈ ν,
(2) if L(x) �= L(x ◦ z) then z is inconsistent with CL(x),
(3) if z is inconsistent with CL(x) then

L(x ◦ z) ∈ argmins∈Nb(L(x)) card(err(x ◦ z, Cs)).
We briefly remark that one can think of many plausible variants of the above

definition. For instance, the learner could be allowed to change its mind on a

Teaching Learners with Restricted Mind Changes 477

consistent example if its hypothesis is inconsistent with an example received
earlier. In this paper, however, all learners follow Definition 1.

The teaching process for a concept c = Cr is fully described by a teacher T and
a learner L together with an initial hypothesis h0. Such a process will result in a
series (hi)i∈ of hypotheses and a series (zi)i∈ of examples: hi+1 = L(z0, . . . , zi)
and zi = T (r, (h0, . . . , hi)).

Definition 2. Let C be a concept class with representation R and let ν ⊆ R×R.
We call C teachable to ν-learners in the limit with feedback iff there is a teacher
T such that for all representations r ∈ R and all ν-learners L the series (hi)i∈
of hypotheses converges to an h with Ch = Cr.

The teaching time of T on r is the maximum i such that there is a ν-learner L
that reaches a representation of Cr at round i for the first time.

Note that an infinite teaching time does not imply unteachability of a concept.
For studying the influence of feedback, we also have to define teaching without

feedback. In this situation the teacher is modeled as a function T : R× → X ,
where the second argument specifies the round. The series of hypotheses is then
given by hi+1 = L(T (r, 0), . . . , T (r, i)). With this notation the definition of teach-
ing in the limit without feedback is literally the same as Definition 2.

In the situation with feedback the teacher can stop teaching as soon as the
learner has reached the goal. If there is no feedback, the teacher may or may not
know when to stop. A teacher stopping after finitely many examples and still
ensuring the learning success is said to teach finitely without feedback. More for-
mally we consider T : R× → X ∪{⊥} where ⊥ means “teaching has stopped.”

With feedback we do not need to distinguish teaching finitely from teaching
in the limit and we shall call this kind of teaching simply teaching with feedback.

Definition 3. Let C be a concept class with representation R and let ν ⊆ R×R.
We call C finitely teachable to ν-learners without feedback iff there is a teacher T
such that for all representations r ∈ R and all ν-learners L the hypothesis hj

with j = min{i T (r, i) = ⊥} satisfies Chj = Cr.

Setting ν = R × R in Definition 3 gives the teacher-directed learning model
[11] having no restriction on hypothesis changes. Theorem 4 justifies the use of
arbitrary ν’s for studying the impact of feedback on the teaching process.

Theorem 4. Let C be a concept class with representations R and let ν = R×R.
Then the following statements are equivalent:
(1) C is finitely teachable to ν-learners without feedback,
(2) C is teachable in the limit to ν-learners without feedback,
(3) C is teachable to ν-learners with feedback.
Furthermore in all three cases the same teacher can be used to obtain minimum
teaching time which for all c ∈ C equals TD(c) with respect to C.
Proof. The implication 1.⇒ 2.⇒ 3. is clear from the definitions.

It remains to show 3. ⇒ 1. Let C be teachable to ν-learners with feedback
for ν = R × R and let c ∈ C. We first prove that for all c ∈ C, TD(c) < ∞.

478 F.J. Balbach and T. Zeugmann

Suppose there is a c∗ ∈ C with TD(c∗) =∞. Then there is a ν-learner L always
assuming a consistent hypothesis not representing c∗. This is possible because
there is no finite set of examples specifying c∗ and because every hypothesis can
be reached from every other. Obviously L cannot be taught c∗ in the limit, not
even with feedback; a contradiction.

Now, since all teaching dimensions are finite, we can define a teacher T that
outputs for each c ∈ C a teaching sequence and stops. T does not need any
feedback. Clearly, T teaches C to all ν-learners finitely and without feedback,
because at the end of teaching there is only one consistent hypothesis left which
is certainly reachable.

To see that T has optimal teaching time for c ∈ C with respect to all three
teaching models, we consider a ν-learner L that always outputs a consistent
hypothesis not representing c, unless c is the only consistent concept in which
case L outputs a representation for c. It is easy to see that c cannot be taught to L
with less than TD(c) examples, no matter whether or not feedback is allowed.

Note that Theorem 4 relies on the fact that neither the teacher nor the learn-
ers nor the function γ are required to be recursive. Adding these requirements
leads to new questions which we skip here due to space constraints.

3 Comparison of the Teaching Models

In this section we will apply the new framework to the class Cfin of all finite
languages over an alphabet Σ. This class cannot be taught in the TD-model. By
using different ν-restrictions we demonstrate various effects.

We fix any total ordering on all strings over Σ and use as representation
language R the set of all comma-separated ordered lists of strings over Σ, i.e.,
r = w1, . . . , wm ∈ R represents the language {w1, . . . , wm}. To simplify proofs
later, we set |r| :=∑m

i=1 |wi|, i.e., without counting the commas. We define the
allowed transitions from r to s by (r, s) ∈ ν iff card(Cr+Cs) ≤ 1. The initial
hypothesis is the empty string ε representing the empty concept. Now we have:

Fact 5. Cfin is finitely teachable to ν-learners without feedback.

Proof. For a finite language with representation w1, . . . , wm a teacher simply
presents all positive examples (w1, 1), . . . , (wm, 1). In every round, the learners
may either add or remove a string from their hypothesis. Starting at the empty
language, there is only one possibility to stay consistent with the examples,
namely by adding them to the hypothesis. Therefore, after m rounds all ν-
learners have arrived at the target hypothesis.

Feedback can be utilized when the restriction is modified. We define (r, s) ∈ ν′

iff Cs = Cr ∪ {w1, w2} for some w1, w2 ∈ Σ∗ or Cs = Cr \ {w1}. In both cases, we
require that the size of the hypotheses may at most double each round: |s| ≤ 2|r|.
In the special case r = ε we allow every singleton concept as neighbor: (ε, s) ∈ ν
for all s with card(Cs) = 1. For ν′-learners there is a big difference in teaching
time between teaching with and without feedback.

Teaching Learners with Restricted Mind Changes 479

Fact 6. Cfin is teachable to ν′-learners with feedback such that for all c ∈ C the
number of examples is O(card(c)) ≤ O(size(c)).

Proof. All ν′-learners may either add two strings to their hypothesis or remove
one. As a consequence, whenever a ν′-learner receives a positive example, he can
add it to the hypothesis and “invent” another string and add it to the hypothesis
as well. Due to the size restriction there are always only finitely many strings
that can be invented.

Let c∗ = {w1, . . . , wm} be a target concept. A teacher with feedback first
teaches all strings wi as positive examples. After wm the hypothesis of each
learner contains c∗ plus at most m invented strings u1, . . . , u�. From the feedback,
the teacher gets to know these strings and can teach them as negative examples.
Since at most one string can be removed per round, the learners have to remove
the negative example they are taught and thus arrive at the correct hypothesis
after � rounds. Alltogether teaching takes at most 2m = 2card(c∗) rounds.

Fact 7. Cfin is finitely teachable to ν′-learners without feedback. Every such
teacher needs Ω(2size(c)) examples for some c ∈ C and there is no upper bound
for the number of examples that depends only on card(c).

Proof. A suitable teacher is defined as follows. Let c ∈ Cfin . First of all, the
teacher gives all strings of length at most 2size(c) that are not in c as negative
examples. Afterwards, all strings in c, starting with a longest one, are taught as
positive examples. The initial hypothesis is consistent with all negative examples,
hence no hypothesis change happens. During the positive examples, the learners
cannot include any strings outside of c into their hypotheses, since all these
strings either have been ruled out by the negative examples or are too long to
be included. Also, since a longest string is taught first, the hypothesis growth
limitation cannot be violated by positive examples included later. Hence, all ν′-
learners must reach the target hypothesis after the positive examples are taught.

For the lower bound, let T be a teacher that teaches Cfin finitely without
feedback to all ν′-learners. Let a and b be symbols from the alphabet and c∗ =
{am, b} a concept of size m + 1 for an arbitrary m > 2. Let z0, . . . , zM be all
examples taught by T on concept c∗. Let L be a ν′-learner.

Clearly both strings, am and b, must occur as positive examples, otherwise
the ν′-learner L0 that never “invents” a string could not be taught. Moreover,
am must occur before b, since otherwise L0 would at some point have b as
hypothesis. But because of the growth restriction, b cannot by changed to am, b
later, thus L0 cannot learn c∗. Let zj1 = (am, 1) be the the first occurrence of
am and let zj2 = (b, 1) be the first occurrence of b.

It suffices to show that z1, . . . , zM contains all strings of length at most m−1.
This implies M ≥ 2m−1 = Ω(2size(c∗)). Assume there were a string ŵ /∈ c∗ with
|ŵ| ≤ m− 1 which is not taught. We give a ν′-learner L that does not arrive at
c∗ during teaching. On zj1 , L switches to hypothesis hj1+1 = am and does not
change it until zj2 arrives. Then L chooses the hypothesis hj2+1 = am, b, ŵ which
is incorrect, but consistent with the examples so far. The length restriction is

480 F.J. Balbach and T. Zeugmann

obeyed, since size(am) = m = |b|+ |ŵ|. From then on, L will never change the
hypothesis, since the only inconsistent example, (ŵ, 0), is never taught according
to the assumption.

As m can be choosen arbitrarily large, there is no bound on the number of
examples needed that depends on card(c∗) only.

If we remove the size restriction from ν′ we obtain ν′′.

Fact 8. Cfin is not finitely teachable to ν′′-learners without feedback, but it is
finitely teachable with feedback as well as in the limit without feedback.

Proof. Suppose there is a teacher that finitely teaches Cfin to ν′′-learners without
feedback. Let c = {w1, w2} ∈ Cfin . Then a learner that, when the second positive
example arrives, “invents” a word not occurring in the examples does not arrive
at a correct hypothesis, a contradiction.

Next, we describe a teacher T which teaches Cfin finitely with feedback. On
c ∈ Cfin , T first gives all positive examples. This may lead to at most card(c)
superfluous strings in the hypothesis of a ν′′-learner. T observes these strings
and gives them as negative examples, thus forcing all learners to remove the
excessive strings and to reach the correct hypothesis.

A teacher for teaching Cfin in the limit without feedback, first teaches all
positive examples. Again, a ν′′-learner’s hypothesis may contain finitely many
excessive strings. By teaching all strings outside the target concept, the super-
fluous strings can be removed in the limit.

Finally we define ν′′′. It differs from ν′′ in that a string may only be removed
from the hypothesis if neither its predecessor nor its successor (with respect to
the fixed ordering on Σ∗) is contained in the hypothesis.

Fact 9. Cfin is not teachable to ν′′′-learners in the limit without feedback, but it
is finitely teachable with feedback.

Proof. Suppose there is a teacher T which teaches Cfin to ν′′′-learners in the limit
without feedback. Let c∗ = {w1, w2, w3} ∈ Cfin and let (zi)i∈ be the sequence
of examples taught by T on c∗. All three strings must occur in the example
sequence, otherwise the learner that does not “make up” strings could not be
taught. Let zji = (wi, 1) be first occurrence of wi for i = 1, 2, 3. Without loss of
generality, we assume j1 < j2 < j3.

We now construct a ν′′′-learner L which fails on the above example sequence.
After zj1 , L’s hypothesis is w1. When taught zj2 , L adds w2 to the hypothesis,
as well as a string u1 /∈ c∗ such that (1) neither u1 nor its successor u2 occurs
in z1, . . . , zj3 , and (2) u2 /∈ c∗. When taught zj3 , L adds w3 and u2 to the
hypothesis. Adding u2 is possible, because it has not yet occurred as negative
example. At this point L’s hypothesis contains the strings u1 and u2 neither of
which can be deleted any more. Thus, L cannot end up with a correct hypothesis
(because of the definition of ν′′′), a contradiction.

Teaching Cfin to ν′′′-learners finitely with feedback can be done as follows. Let
c∗ ∈ Cfin be the target concept. The teacher first teaches all negative examples

Teaching Learners with Restricted Mind Changes 481

that are predecessors or successors of a string in c∗. Then all positive examples
are taught and as soon as the teacher discovers that a learner has introduced
a wrong string u into the hypothesis, the negative example (u, 0) is given. The
string u cannot be predecessor or successor of any other string in the hypothesis
and is thus deleted from the hypothesis. After at most (2 + 1 + 1) · card(c) =
O(size(c)) examples all ν′′′-learners have reached the target.

If we denote by TFIN ,TFB ,TLIM the set of all (C, R, ν, h0) such that C is
finitely teachable without feedback, with feedback or in the limit, respectively,
we have just proved the following theorem.

Theorem 10. TFIN ⊂ TLIM ⊂ TFB.

The teaching times in our model can hardly be compared to the teaching
dimension, since the latter depends only on C, whereas different choices of ν can
lead to different teaching times for the same C.

4 Finding Teachers

The problem of finding an optimal teacher (with or without feedback) for ν-
learners is NP-hard, since it is a generalization of finding an optimal teaching
set, namely if ν = R×R (see [17, 9, 5]).

Concept classes over finite instance spaces can always be taught in the TD-
model. Given ν-learners, however, the first question is whether teaching is pos-
sible at all. We shall show that this is difficult to decide in general.

The next theorem assumes that C and ν over an instance space X and repre-
sentation language R are represented as a 0-1-valued matrix with card(R) rows
and card(X) + card(R) columns. Each row describes the represented concept in
the first card(X) bits, and its neighborhood in the last card(R) bits (cf. Fig 1).

x1 x̄1 x2 x̄2 x3 x̄3 x4 x̄4 w y1 y′
1 y2 y′

2 y3 y′
3 y4 y′

4 r0 r1 r2 r3 s0 s1 s2 s3 s4 s∗

r0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0
r1 0 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
r2 0 1 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
r3 1 0 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
s0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 0 0 0 0
s1 0 0 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 0 0 0 0 0 0 1 0 0 0
s2 0 0 0 0 1 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1 0 0
s3 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0
s4 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
s∗ 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Fig. 1. Example for the reduction in Theorem 11 for the formula F = (v1 ∨ v̄2 ∨ v3) ∧
(v2 ∨ v4 ∨ v1) ∧ (v̄1 ∨ v3 ∨ v̄4). The left part of the matrix defines C, the right one ν.

482 F.J. Balbach and T. Zeugmann

Theorem 11. For all notions of teaching, the following problem is NP-hard:
Instance: C, R, ν, and a concept c∗ as 0-1-vector of length card(X).
Question: Can c∗ be taught to ν-learners?

Proof. The proof is by reduction from 3-SAT. Let F = K1∧· · ·∧Km be a formula
in 3-CNF with clauses K1, . . . ,Km and variables v1, . . . , vn. Define XF , CF , RF

and νF as follows. XF contains instances x1, x̄1, . . . , xn, x̄n and y1, y
′
1, . . . , yn, y

′
n

and an instance w, hence card(XF) = 4n + 1. RF contains the representations
r0, r1, . . . , rm, s0, s1, . . . , sn, s

∗. The initial hypothesis r0 represents {x1, x̄1, . . . ,
xn, x̄n}, the target concept c∗ := {x1, x̄1, . . . , xn, x̄n, w} will be represented by s∗.
For each clause Ki we use ri to represent a concept that consists of all instances
except of xj for all vj in Ki and except of x̄j for all v̄j in Ki. Finally s0 represents
XF and si represents the concept {xi+1, x̄i+1 . . . xn, x̄n, yi+1, y

′
i+1, . . . , yn, y

′
n, w}

for i = 1, . . . , n (see Fig. 1).
The relation νF contains (r0, ri) for all i = 1, . . . , n and (r0, s0) and (si, si+1)

for i = 0, . . . , n − 1, as well as (sn, s
∗). The only path from the initial to the

target hypothesis is r0, s0, s1, . . . , sn, s
∗. If one of the ri’s is reached, teaching

has failed as these representations are dead ends.
CF and νF can easily be computed and encoded as a (4n+1+m+1+n+2) ·

(m+1+n+2) = O((n+m)2) size matrix. Therefore the reduction is polynomial.
Let F be satisfied by an assignment β : {v1, . . . , vn} → {0, 1}. We have to

show that c∗ is teachable in the environment defined above. A successful example
sequence consists of (1) for all i = 1, . . . , n the positive examples xi, if β(vi) = 1,
or x̄i, if β(vi) = 0; (2) the positive example w; (3) the sequence y1, y

′
1, . . . , yn, y

′
n

of negative examples; (4) any positive example not yet presented. All examples
before w are consistent with r0, hence no mind change can take place. A mind
change is then triggered by teaching (w, 1). By their definition all ri’s are incon-
sistent with the examples taught at Step (1), whereas s0 certainly is consistent.
Therefore all νF -learners will hypothesize s0 after Step (2). Teaching y1 and y′1
causes two inconsistencies with s0, but s1 has only one error (either x1 or x̄1,
depending on β). It follows that all learners are forced to s1. Similarly one can
see that after teaching y2, y

′
2, . . . , yn, y

′
n all learners have reached sn. Now each

missing positive example triggers a mind change to s∗. This shows that c∗ is
teachable.

Let F be a formula such that c∗ ∈ CF is teachable to all νF -learners. Let
z1, . . . , z� ∈ X be a sequence of examples such that all νF -learners starting at r0
end up in s∗. We have to show that F can be satisfied.

The idea of the proof is as follows. First we show that after a certain example
all learners must have reached s0. At this point, for all i = 1, . . . , n not both
xi and x̄i have been taught. To prove this we show that, if for some i both xi

and x̄i have been taught, then it is impossible to force all learners to reach s∗.
Finally we define a satisfying assignment β depending, for each i, on whether xi

or x̄i occurs in the sample.
As long as the teacher teaches examples different from w, r0 is consistent

and no mind change happens. Therefore, for some k, zk = (w, 1). At this point
a mind change must happen. If there were no mind change, all neighbors of r0,

Teaching Learners with Restricted Mind Changes 483

i.e., r1, . . . , rm, s0, had more errors than r0. This cannot be repaired, thus all
learners would remain in r0 forever.

Since the example sequence eventually leads to s∗, the hypothesis after ex-
ample zk must be s0. Furthermore none of the y-examples can have been taught:
Otherwise all neighbors of r0 had at least one error (the y-example) and r0 had
exactly one error (the example w), hence no change from r0 had occured.

Since the only way to s∗ is via s1, . . . , sn, the teacher must now provide ex-
amples that make all learners switch to s1. Now, the point is that, if x1 and x̄1

occur in the sample, then s1 has two errors, but if only one of these examples
occurs, then s1 has only one error. If the hypothesis is to be switched to s1, the
teacher must provide examples such that s0 has at least two errors (otherwise
there were no better hypothesis in the neighborhood). Since s0 and s1 are iden-
tical with respect to all instances except x1, x̄1, y1, y

′
1, such errors can only be

generated by teaching y1 as well as y′1. But even then, the mind change can only
be performed if s1 has less than two errors. Thus, since s1 is reached via the
example sequence, it follows that not both x1 and x̄1 have been taught.

In a similar way it can be shown that si+1 can only be reached from si if
not both xi+1 and x̄i+1 appear in the sample. Note that teaching xi or x̄i after
the learners have reached si is possible, but does not influence the following
mind changes, because the concepts si+1, . . . , sn are identical with respect to
x1, x̄1 . . . , xi, x̄i.

Altogether it follows that when all learners changed to s0 for all i either xi

or x̄i had not been in the sample taught so far. Therefore the assignment β is
well-defined by β(vi) = 1 iff xi appears among the examples z1, . . . , zk.

It remains to show that β satisfies F . This is clear from the definition of
the ri’s. If β did not satisfy a clause Kj then rj is consistent with whatever
x-examples have been taught before w. Thus, rj is an equally good neighbor
as s0 and there will be a νF -learner choosing rj instead of s0. But this is a
contradiction to the assumption that all such learners reach s∗.

For infinite instance spaces or classes (and infinite ν) the next theorem applies.

Theorem 12. The following function is not computable:
Input: Algorithms computing total functions deciding C and ν.
Output: 1, if C can be taught to ν-learners; 0 otherwise.

Proof. We use as instance space and as representation language. Let C =
{{0, . . . , i} i ≥ 1} ∪ { } a concept class. A concept {0, . . . , i} is represented by
i, and 0 represents the concept . Let (ϕi)i∈ be an effective enumeration of
all partial recursive functions. For all j ∈ we define an effective enumeration
(νj)j∈ by

νj(r, s) =
{

1, if r + 1 = s or (s = 0 and ϕj(j) is defined after ≤ r steps),
0, otherwise.

It suffices to show that C is teachable to νj-learners iff ϕj(j) is defined. Let
C be teachable to νj-learners. Then can be taught, hence the representation 0

484 F.J. Balbach and T. Zeugmann

must be reachable in the graph (, νj). ¿From the definition of νj follows that
ϕj(j) is defined.

For the converse let ϕj(j) be defined after r steps. Then can be taught by
the example sequence (2, 1), . . . , (r, 1), (r+ 2, 1), where the last example ensures
that the only consistent neighbor of r is 0. Concepts {0, . . . , i} can be taught
by (i + 1, 0), (2, 1), . . . , (i, 1), where the first example prohibits a transition to
hypothesis 0.

5 Teaching Without Feedback

A teacher T without feedback knows all learners’ initial hypotheses h0, but can
quickly lose track of them during teaching. On the other hand, T can rule out
neighbors r of h0 by giving examples consistent with h0, but inconsistent with r.
If in such a way T can eliminate all but one neighbor r′, he effectively forces
all learners to switch to r′. By continuing in this manner, T always knows all
learners’ hypotheses even without feedback. If the enforced hypotheses approach
the target, T will be successful. Figure 2 describes this strategy more formally.

1 r := h0;
2 while Cr �= c∗ do:

2.1 Find s ∈ Nb(r), S ⊆ X , and z ∈ X such that (1) Cr is consistent with S, but
not with z, (2) s is the only neighbor of r consistent with S ∪ {z}, and (3)
dist(s, r∗) < dist(r, r∗);

2.2 Teach S in arbitrary order and then z;
2.3 r := s;

Fig. 2. A simple general strategy for teaching without feedback by forcing all learners
to make the same mind changes. The initial hypothesis is h0, r∗ represents the target.

The feasibility of this strategy depends on Step 2.1. If teaching does not
need to be finite, the condition in Step 2 does not need to be checked. Albeit
simple, the strategy works surprisingly often for natural concept classes and ν-
restrictions. In the following we give some examples. Some proofs are omitted
due to lack of space; the reader is refered to [6].

First, we consider the class of all monomials over n variables. Let R =
{0, 1, ∗}n and define (r, s) ∈ ν iff r and s differ only in one “bit.” As initial
hypothesis h0 = ∗n is used.

Fact 13. Monomials are finitely teachable without feedback. The teaching time
for each concept equals its teaching dimension.

Proof. Let c∗ be a concept represented by r∗. We use the “standard” minimum
teaching set for monomials that can be constructed in time O(n2) (see [9, 17]).
Let k1, . . . , k� be the positions of all constants in r∗. The teaching set consists of
two positive examples x+

0 , x
+
1 which result from substituting all ∗’s with zeroes

and ones, respectively. Furthermore it contains one negative example x−i for each

Teaching Learners with Restricted Mind Changes 485

ki where the ki-th bit is inverted and all ∗’s are replaced by zeroes. Let T teach
the sequence 〈x+

0 , x
+
1 , x

−
1 , . . . , x

−
� 〉.

T follows the strategy of Fig. 2: After the first inconsistent example, x−1 , all
ν-learners are forced to a consistent hypothesis in the neighborhood of ∗n. The
only such hypothesis is obtained from ∗n by setting the k1-th “bit” to the correct
value. This reduces the distance from the target by one. Each of the remaining
examples forces all learners to set one ∗-bit of their hypothesis to a constant.
After x−� all constants are set correctly and the target is reached.

At first glance, the new and the TD-model show little difference with regard
to monomials, since we can use teaching sets also for ν-learners. However, not
every teaching set could be used for teaching. Even the same teaching set might
fail if the examples are given in the wrong order. For example, consider r∗ = 11∗∗
which has a teaching set with x+

0 = 1100, x+
1 = 1111, x−1 = 0100, x−2 = 1000.

Teaching those examples in reverse order can lead to the following hypothesis
sequence: 0∗∗∗, 00∗∗, 00∗∗, 00∗∗. The last hypothesis is not only incorrect, it is
even impossible to reach r∗ from it (given the examples taught so far).

As another natural concept class, together with a representation, we consider
the class of all Boolean functions of n variables represented by decision trees. A
decision tree is a binary tree whose internal nodes are labeled with a variable and
whose leaves are labeled either as positive or as negative. An instance x ∈ {0, 1}n
traverses the tree beginning at the root and at each internal node choosing the
left child if that node’s variable is satisfied and the right child otherwise, until
a leaf is reached. Thus each tree represents a concept c ⊆ {0, 1}n containing all
positively classified instances.

Each learner starts at the tree consisting of only one negative leaf. In each
round one leaf may be substituted by an internal node that has two differently
labeled leaves as children. This specifies a relation νDT over all decision trees.

Fact 14. The class of Boolean functions represented as decision trees can be
taught without feedback to νDT -learners. The teaching time is linear in the size
of the tree representation.

The teaching dimension with respect to all Boolean functions is 2n for all
concepts. As we have seen, for ν-learners based on decision trees, teaching can
often be successful with much fewer examples.

One can think of three situations where the above strategy either fails or is
inefficient due to lack of feedback: (1) it is impossible to enforce a certain mind
change by ruling out all but one neighbor; (2) correcting a wrong hypothesis
afterwards is cheaper than preventing all possible errors beforehand; (3) there are
several equivalent, but syntactically different hypotheses in the neighborhood.

We have already seen examples of situations (1) in Fact 9, and of situation (2)
in Facts 6 and 7. In the following we construct an example for (3).

We consider monotone 1-decision lists 〈(y1, b1), . . . , (ym, bm), (∗, 0)〉 of vari-
ables y1, . . . , ym and bits bi ∈ {0, 1}. An instance x ∈ {0, 1}n runs through the
list starting at the node (y1, b1) until it satisfies a variable, say yj , in which case

486 F.J. Balbach and T. Zeugmann

it is classified as bj. The default node (∗, 0) classifies all instances as negative
that do not satisfy any of the variables y1, . . . , ym.

We use two kinds of learners obeying different neighborhood relations. Both
start at a decision list with only a positive default node (∗, 1) whose only neighbor
is the list 〈(∗, 0)〉 with a negative default node. All learners may insert nodes of
the form (y, 0) in any position of the list. However, restrictions apply with regard
to nodes of the form (y, 1). Learners of the first kind are allowed to substitute
the first node of the hypothesis by an arbitrary positive node or to insert such a
node at the beginning of the list. Learners of the second kind may only substitute
the last node or insert at the end of the list. In both cases, the default node must
not be substituted.

To distinguish the hypotheses of both kinds of learners we label the decision
lists with either B or E specifying whether modifications are allowed at the be-
ginning or at the end of the list, respectively. We have therefore two relations,
νB and νE , with exactly one common representation, the initital hypothesis
〈(∗, 1)〉. If we join both relations at this point, we get a relation νDL. Thus,
a νDL-learner will, after receiving the first negative example, switch to either
〈(∗, 0)〉B or 〈(∗, 0)〉E and then act like a νB- or a νE-learner.

Intuitively, examples suitable for νB-learners can lead νE-learners into a dead
end hypothesis and vice versa. Hence, it is important for the teacher to know
what type of learner he teaches. This can be recognized by the B/E-extension of
the hypotheses, which requires feedback.

Fact 15. The class of monotone 1-decision lists can be taught to νDL-learners
with feedback using m + 1 examples for a list of length m. It cannot be taught
without feedback.

6 Comparison with Learning

Such comparisons have been done in the mistake bound model between teacher-
directed learning and self-directed learning. In many natural concept classes, the
best learner can always learn with fewer mistakes than the best teacher needs
to teach all consistent learners [12, 9, 11]. Rivest und Yin [16] use cryptographic
assumptions to construct a concept class where a teacher needs less examples
than the best learner, if both are restricted to polynomial time algorithms. Ben-
David and Eiron [7] construct such classes without relying on cryptographic
assumptions.

Teaching and learning can also be compared according to the sample com-
plexity instead of the mistake bound. This amounts to a comparison of the
teaching dimension TD with the number MEMB of membership queries neces-
sary. Goldman and Kearns [9] observed that for all C, MEMB(C) ≥ TD(C), i.e.,
being taught is generally simpler than learning by oneself. This contrasts with
the mistake bound model.

We will have a brief look at how the introduction of the ν-relation influences
the relationship between teaching and learning. To do so, we give the ν-learners
access to a membership oracle. Note that still all conditions of Definition 1 apply.

Teaching Learners with Restricted Mind Changes 487

For example, a ν-learner must try to change his mind when the oracle’s answer
is inconsistent with the current hypothesis.

The next two facts demonstrate that in our model teachability and learnabil-
ity can be rather different.

Fact 16. There are a class C with representation language R and a ν ⊆ R×R
such that C can be taught to all ν-learners, but no ν-learner can learn it.

Proof. Let X = {x1, x2, x3}, c0 = ∅, c1 = {x1}, c2 = {x1, x3}, c3 = {x2},
c4 = {x2, x3} and R = {r0, r1, r2, r3, r4} with ri representing ci. Finally, ν
contains (r0, ri) for i = 1, 2, 3, 4.

The concept c1 can be taught using the instances x3, x1; c2 by x2, x3; c3 by
x3, x2; and c4 by x1, x3. Thus C can be taught without feedback to ν-learners.

Assume there is a ν-learner L with access to a membership oracle.
Case 1. L first queries x1. On answer “1”, L must change its hypothesis to

either r1 or r2. If L chooses r1 than it cannot learn c2 since there is no way back
to r0. Similar, if r2 is chosen, L cannot learn c1 any more.

Case 2. L first queries x2. Analogous to Case 1 with concepts c3 and c4.
Case 3. L first queries x3. Analogous to Case 1 with concepts c2 and c4.

Fact 17. There are a class C with representation language R and a ν ⊆ R×R
such that C can be learned by a ν-learner, but cannot be taught to all ν-learners.

Proof. Let X = {x1, x2}, c0 = ∅, c1 = {x1}, c2 = {x1, x2}, and let R =
{r0, r1, r′1, r2} with ri representing ci and additionally r′1 representing c1. Let
ν = {(r0, r1), (r0, r′1), (r1, r2)}.

A ν-learner works as follows. First query x1. If the answer is “0”, then the
target must be c0 and L stops. If the answer is “1”, change to hypothesis r1 and
query x2. If the answer is “0”, the target is c1 and L stops, otherwise L switches
to r2 and stops. Hence, this ν-learner learns C.

Let T be a teacher. We show that T cannot teach c2. Let z be the first
example taught. If z = (x1, 1) there is a ν-learner going to r′1 from where r2
cannot be reached. Consequently, T has to begin with z = (x2, 1) which causes
no hypothesis change. As soon as T teaches (x2, 1) there is a learner switching
to r′1. This learner will never reach r2. Thus, C cannot be taught.

7 Conclusion and Further Research

In our model several effects regarding feedback can be observed. Feedback can
be useless, helpful, or even indispensable for teaching. In addition, natural infi-
nite concept classes can be taught in this model and the relationship between
teachability and learnability is more diverse than in the TD-model.

The variety of possible results stems mostly from the ability to define ν arbi-
trarily. We have also used rather artificial ν’s in some places. It would therefore
be interesting to put some natural restrictions on ν, e.g., some relation between
syntax (distance in the (R, ν)-graph) and semantics (number of errors).

488 F.J. Balbach and T. Zeugmann

The strategy of Section 5, which often makes teaching without feedback pos-
sible, relies on the (somewhat unrealistic) feature of our models that all learners
remember all examples (especially the consistent ones). It seems natural to study
feedback for learners with some sort of memory limitation.

Further directions of research include adding computability restrictions to
the teachers and/or learners, teaching with only positive examples, and other
types of feedback, e.g., answering teacher’s questions.

Acknowledgments. The authors heartily thank the anonymous referees for
many valuable comments. The second author has been supported by the 21st
Century COE Program C01.

References

[1] D. Angluin. Queries and concept learning. Machine Learning, 2(4):319–342, 1988.
[2] D. Angluin. Queries revisited. In Algorithmic Learning Theory, 12th International

Conference, ALT 2001, Proc., vol. 2225 of Lecture Notes in Artificial Intelligence,
pages 12–31. Springer, 2001.

[3] D. Angluin and M. Kriķis. Teachers, learners and black boxes. In Proc. 10th
Annual Conference on Computational Learning Theory, pages 285–297, ACM
Press, New York, NY, 1997.

[4] D. Angluin and M. Kriķis. Learning from different teachers. Machine Learning,
51(2):137–163, 2003.

[5] M. Anthony, G. Brightwell, D. Cohen, and J. Shawe-Taylor. On exact specification
by examples. In Proc. 5th Annual ACM Workshop on Computational Learning
Theory, pages 311–318. ACM Press, New York, NY, 1992.

[6] F.J. Balbach and T. Zeugmann. Teaching Learners that can only Perform Re-
stricted Mind Changes, TCS Technical Report, Series A, TCS-TR-A-05-5, Divi-
sion of Computer Science, Hokkaido University, July 18, 2005.

[7] S. Ben-David and N. Eiron. Self-directed learning and its relation to the VC-di-
mension and to teacher-directed learning. Machine Learning, 33(1):87–104, 1998.

[8] R. Freivalds, E. B. Kinber, and R. Wiehagen. Learning from good examples. In
Algorithmic Learning for Knowledge-Based Systems, vol. 961 of Lecture Notes in
Artificial Intelligence, pages 49–62. Springer, 1995.

[9] S. A. Goldman and M. J. Kearns. On the complexity of teaching. J. of Comput.
Syst. Sci., 50(1):20–31, 1995.

[10] S. A. Goldman and H. D. Mathias. Teaching a smarter learner. J. of Comput.
Syst. Sci., 52(2):255–267, 1996.

[11] S. A. Goldman, R. L. Rivest, and R. E. Schapire. Learning binary relations and
total orders. SIAM J. Comput., 22(5):1006–1034, Oct. 1993.

[12] S. A. Goldman and R. H. Sloan. The power of self-directed learning. Machine
Learning, 14(3):271–294, 1994.

[13] J. Jackson and A. Tomkins. A computational model of teaching. In Proc. 5th
Annual ACM Workshop on Computational Learning Theory, pages 319–326. ACM
Press, New York, NY, 1992.

[14] S. Jain, S. Lange, and J. Nessel. Learning of r.e. languages from good examples. In
Algorithmic Learning Theory, 8th International Workshop, ALT ’97, Proc., vol.
1316 of Lecture Notes in Artificial Intelligence, pages 32–47. Springer, 1997.

Teaching Learners with Restricted Mind Changes 489

[15] H. D. Mathias. A model of interactive teaching. J. of Comput. Syst. Sci.,
54(3):487–501, 1997.

[16] R. L. Rivest and Y. L. Yin. Being taught can be faster than asking questions. In
Proc. 8th Annual Conference on Computational Learning Theory, pages 144–151.
ACM Press, New York, NY, 1995.

[17] A. Shinohara and S. Miyano. Teachability in computational learning. New Gen-
eration Computing, 8(4):337–348, 1991.

Author Index

Balbach, Frank J. 474
Bao, Jie 13
Bennet, Rotem 183
Bousquet, Olivier 63
Bradshaw, Gary 10
Bshouty, Nader H. 183

Caragea, Doina 13
Carlucci, Lorenzo 241
Case, John 241
Chapelle, Olivier 78
Chen, Pai-Hsuen 45
Chernov, Alexey 414
Clark, Alexander 283

Elomaa, Tapio 371
Eyraud, Rémi 283

Fakcharoenphol, Jittat 135
Fan, Rong-En 45
Fernau, Henning 297

Geng, Zhi 92
Goldberg, Paul W. 157
Gretton, Arthur 63
Guttman, Omri 171

Harada, Shigeaki 343
Henderson, Matthew 386
He, Yang-Bo 92
Honavar, Vasant 13
Hutter, Marcus 356, 414

Jain, Sanjay 1, 226, 241, 256, 327

Kato, Hirotaka 211
Kijsirikul, Boonserm 135
Kinber, Efim 256
King, Ross D. 12
Kowalczyk, Adam 78
Kujala, Jussi 371

Lange, Steffen 226
Liang, Xun 92

Lin, Chih-Jen 45
Lindner, Wolfgang 198

Martin, Eric 327
Maruoka, Akira 343
Matsumoto, Satoshi 211
Mesterharm, Chris 399
Miyahara, Tetsuhiro 211

Ng, Yen Kaow 269
Nouretdinov, Ilia 459

Palmer, Nick 157
Pathak, Jyotishman 13
Poland, Jan 356
Pudi, Vikram 122

Rao, M.R.K. Krishna 312
Ryabko, Daniil 148

Schölkopf, Bernhard 63
Shafer, Glenn 459
Shawe-Taylor, John 386
Shinohara, Takeshi 269
Smalheiser, Neil R. 11
Smola, Alex 63
Stephan, Frank 241, 327

Takemura, Akimichi 459
Takimoto, Eiji 343
Thonangi, Risi 122
Tomita, Etsuji 1

Ulrich Simon, Hans 1

Vishwanathan, S.V.N. 171
Vovk, Vladimir 429, 444, 459

Watanabe, Kazuho 107
Watanabe, Sumio 107
Williamson, Robert C. 171

Žerovnik, Janez 386
Zeugmann, Thomas 474
Zhang, Jun 13
Zilles, Sandra 226

	Frontmatter
	Editors' Introduction
	Invited Papers
	Invention and Artificial Intelligence
	The Arrowsmith Project: 2005 Status Report
	The Robot Scientist Project
	Algorithms and Software for Collaborative Discovery from Autonomous, Semantically Heterogeneous, Distributed Information Sources
	Training Support Vector Machines via SMO-Type Decomposition Methods

	Kernel-Based Learning
	Regular Contributions
	Measuring Statistical Dependence with Hilbert-Schmidt Norms
	An Analysis of the Anti-learning Phenomenon for the Class Symmetric Polyhedron

	Bayesian and Statistical Models
	Learning Causal Structures Based on Markov Equivalence Class
	Stochastic Complexity for Mixture of Exponential Families in Variational Bayes
	ACME: An Associative Classifier Based on Maximum Entropy Principle

	PAC-Learning
	Constructing Multiclass Learners from Binary Learners: A Simple Black-Box Analysis of the Generalization Errors
	On Computability of Pattern Recognition Problems
	PAC-Learnability of Probabilistic Deterministic Finite State Automata in Terms of Variation Distance
	Learnability of Probabilistic Automata via Oracles

	Query-Learning
	Learning Attribute-Efficiently with Corrupt Oracles
	Learning DNF by Statistical and Proper Distance Queries Under the Uniform Distribution
	Learning of Elementary Formal Systems with Two Clauses Using Queries
	Gold-Style and Query Learning Under Various Constraints on the Target Class

	Inductive Inference
	Non~U-Shaped Vacillatory and Team Learning
	Learning Multiple Languages in Groups

	Language Learning
	Inferring Unions of the Pattern Languages by the Most Fitting Covers
	Identification in the Limit of Substitutable Context-Free Languages
	Algorithms for Learning Regular Expressions

	Learning and Logic
	A Class of Prolog Programs with Non-linear Outputs Inferable from Positive Data
	Absolute Versus Probabilistic Classification in a Logical Setting

	Learning from Expert Advice
	Online Allocation with Risk Information
	Defensive Universal Learning with Experts
	On Following the Perturbed Leader in the Bandit Setting
	Mixture of Vector Experts

	Online Learning
	On-line Learning with Delayed Label Feedback
	Monotone Conditional Complexity Bounds on Future Prediction Errors

	Defensive Forecasting
	Non-asymptotic Calibration and Resolution
	Defensive Prediction with Expert Advice
	Defensive Forecasting for Linear Protocols

	Teaching
	Teaching Learners with Restricted Mind Changes

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

