
Bias Management of Bayesian Network
Classifiers

Gladys Castillo1,2 and João Gama1,3

1 LIACC, University of Porto, Portugal
2 Department of Mathematics, University of Aveiro, Portugal

3 FEP, University of Porto, Portugal
gladys@mat.ua.pt, jgama@liacc.up.pt

Abstract. The purpose of this paper is to describe an adaptive algo-
rithm for improving the performance of Bayesian Network Classifiers
(BNCs) in an on-line learning framework. Instead of choosing a priori
a particular model class of BNCs, our adaptive algorithm scales up the
model’s complexity by gradually increasing the number of allowable de-
pendencies among features. Starting with the simple Näıve Bayes struc-
ture, it uses simple decision rules based on qualitative information about
the performance’s dynamics to decide when it makes sense to do the next
move in the spectrum of feature dependencies and to start searching for a
more complex classifier. Results in conducted experiments using the class
of Dependence Bayesian Classifiers on three large datasets show that our
algorithm is able to select a model with the appropriate complexity for
the current amount of training data, thus balancing the computational
cost of updating a model with the benefits of increasing in accuracy.

Keywords: Bias Management, Bayesian Classifiers, Machine Learning.

1 Introduction

Efficient learning algorithms usually involve an artful trade-off of bias vs. vari-
ance. If we choose a model that is too complex for the amount of training data
we have, it will overfit the data. The model has too much variance. Other-
wise, if the model is too simple, it cannot capture the true structure in the
data, it will underfit the data. The model has too much bias. We can improve
the performance of learning algorithms if we reduce either bias or variance.
When we have few training data we can reduce variance by using simpler mod-
els while not increasing our bias too much. However, as it was shown in [2]
as training set size increases variance will decrease and this will become a less
significant part of the error. In this case, we must place more focus on bias
management.

A well-studied and effective classifier is Näıve Bayes (NB). Although NB has
a high bias due to its strong feature independence assumptions, its performance
is compensated by its high variance management, thus producing accurate clas-
sification. Bayesian Network Classifiers (BNCs) have been the natural choice

A. Hoffmann, H. Motoda, and T. Scheffer (Eds.): DS 2005, LNAI 3735, pp. 70–83, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Bias Management of Bayesian Network Classifiers 71

for improving the predictive capability of NB. For instance, TAN classifiers [4]
reduce the NB’s bias by allowing the features to form a tree. In this paper, we
examine an adaptive algorithm for improving the performance of BNCs in an
on-line learning framework. Instead of choosing a priori a particular model class
of BNCs, we propose to scale up the model’s complexity by gradually increasing
the number of allowable dependencies among features. If we scale up complexity
slowly enough, the use of more training data will reduce bias at a rate that also
reduces variance and consequently the classification error. This structure regu-
larization leads to the selection of simpler models at earlier learning steps and
of more complex structures as the learning process advances, thus avoiding the
problems caused by either too much bias or too much variance. Starting with
the simple NB, we use simple heuristics based on the performance’s dynamics to
decide about the next move in the spectrum of feature dependencies. This bias
management attempts to select models with the appropriate complexity for the
current amount of data, thus balancing the computational cost of updating a
model with the benefits of increasing in accuracy.

We choose the class of k-Dependence Bayesian Classifiers (k-DBC) for illus-
trating our approach. A k-DBC [11] is a Bayesian Network, which contains the
structure of NB and allows each feature to have a maximum of k feature nodes as
parents. This class is very suitable for our proposal. By varying k we can obtain
classifiers that move smoothly along the spectrum of feature dependencies, thus
providing a flexible control over the model’s complexity. For instance, NB is a
0-DBC, TAN is a 1-DBC, etc. Although the adaptive algorithm is presented here
for the family of k-DBC classifiers, we believe that its underlying principles can
be easily adapted for learning other classifier’s classes with flexible control over
their complexity.

This paper is organized as follows: Section 2 briefly reviews the problem of
learning Bayesian Network Classifiers and provides the learning algorithm for
the class of k-DBCs. In Section 3 we describe our adaptive algorithm in an
on-line learning framework. Next, in Section 4 we describe the experiments we
conducted that demonstrate the effectiveness of our adaptive approach. Finally,
in Section 5 we conclude with a summary of the paper.

2 Learning k-Dependence Bayesian Classifiers

Bayesian Networks (BNs) are probabilistic graphical models that provide a sound
theoretical framework to represent and manipulate probabilistic dependencies in
a domain. Formally, a BN over a set of random variables X = {X1, X2, , Xn} is
a pair BN = (S,ΘS) where the first component is a directed acyclic graph with
a node for each variable and the second component is the set of parameters that
quantifies the network. The arcs in the structure S represent direct dependencies
between variables. Assuming discrete variables, each Θi = P (Xi|Pai) ∈ ΘS
represents a conditional probability table that enumerates the probabilities for
each possible value xk ∈ Xi and paj ∈ Pai where Pai represents the set of
parents of Xi.

72 G. Castillo and J. Gama

In classification problems the domain variables are partitioned into features
F = {X1, X2, , Xn} and the class variable C. A NB classifier is a BN over (F ∪
{C}) with a simple structure that has the class node C as the parent node of all
other feature nodes in F. A k-DBC [11] is a BN which contains the structure of
NB and allows each feature Xi to have a maximum of k feature nodes as parents.
k-DBCs represents in a single class, a full spectrum of allowable dependence in a
given probabilistic model with the NB classifier at the most restrictive end and
the full Bayesian Network at the most general extreme.

Suppose we have a set M of BNC model classes (e.g. NB, TAN, unrestricted
BNs, etc.) and a training dataset D of labelled i.i.d. examples of (F, C). Since
the quality of a BNC is defined in terms of its predictive accuracy, given the
data D and the set M of BNC’s hypotheses, the problem of learning BNCs
is to find a BNC that provides the best classifications for future data. This
learning problem - a model selection problem - can be approached as a discrete
optimization problem where a score that measures the quality of each hypothesis
is optimized in the space of feasible hypotheses. A procedure to solve this discrete
optimization problem is essentially a search algorithm that explores the space
of candidate hypotheses while optimizing the score. In most cases, the search
space is large and an exhaustive search is impractical. One way to handle this
problem is to develop heuristic search algorithms that search for a solution which
is reasonably close to optimal.

There are three main factors that affect the performance of score-based ap-
proaches to model selection: the score and the search method used to learn the
structure and the estimator used to learn the parameters. Next we describe these
three factors in learning k-DBCs.

2.1 Search Algorithm

Instead of using the learning algorithm proposed by Sahami [11] based on the
computation of the conditional mutual information, we apply, in conjunction
with a score, a Hill Climbing procedure. Hill Climbing improves the score by
adding/removing/reversing arcs among attributes, subject to never introducing
a cycle. This process continues until no more operations improve the score.

2.2 Scores

When BNs are used for classification, we are interested in the resulting predic-
tive distribution yielding accurate predictions for future data. We compare three
frequently used scores in learning BNs: BDeu, MDL and AIC; to the prequential
score (Preq) as described in [7]. BDeu, MDL and AIC are optimized for a par-
ticular loss function based on the joint distribution while Preq is optimized for
classification. AIC and MDL are both derived from information theory and prefer
simpler models. Minimizing AIC is approximately equivalent to minimizing the
expected K-L divergence between the true model and the fitted model. MDL prin-
ciple attempts to describe the data using a minimum encoding approach. BDeu
is a Bayesian score, the marginal likelihood with uniform priors as proposed in

Bias Management of Bayesian Network Classifiers 73

[3]. Preq is computed predictively and sequentially through a sequential updating
of the predictive distribution. Alternative structures are compared by measuring
their cumulative loss. While it is known that standard scores perform worse in
classification than scores based on the classification error (e.g. see [7]), we are
more interested in investigating how different scores handle the bias-variance,
complexity-performance trade-offs in incremental learning of k-DBCs.

2.3 Parameter Estimation

We use the Bayesian estimates for parameters as described in [1]. In addition,
we optionally use an extended version of Iterative Bayes (IB) [5] for parameter
refinement. IB iteratively cycles through all the given examples. For each ex-
ample, the corresponding entries in the contingency tables are updated so as to
increase the confidence on the correct class. The procedure is given an initial
error for the given examples. The iterative process stops when one of the follow-
ing cases occurs: i) the current error is greater than the previous error; ii) the
error remains stationary for three consecutive times; iii) a maximum number
of allowed iterations is reached. In any of the cases, the model returned is that
which attains the best results during the whole iterative process.

3 The Adaptive Algorithm for Learning k-DBCs

In this section we describe our adaptive algorithm for learning k-DBCs in an on-
line framework. We provide our algorithm with a dataset of labelled examples
and the kMax value for the maximum allowable number of feature dependencies.
We assume the environment is stationary, data arrives in batches and a unique
k-DBC model is maintained. The pseudo-code for the algorithm is presented
in Figure 1. At each learning step, the learner accepts a batch of examples
and classifies them using the current model. Next, the current performance is
assessed and the model is then adapted according to the estimated performance’
state.

An efficient adaptive algorithm for supervised learning must be able, above
all, to improve its predictive accuracy over time, while minimizing the cost of
updating. BNs suffer from several drawbacks for updating purposes. While se-
quential updating of the parameters is straightforward (if data is complete); up-
dating the structure is a more costly task. In previous work different approaches
have been carried out in incremental learning of BNs by optimizing the learning
algorithms and/or the memory space (see [10] for a survey). The basic idea of
our approach is that we can improve the performance while reducing the cost
of updating if: i) in each learning step we choose a model with the appropriate
complexity for the amount of training data we have; ii) we try to use new data
to primarily adapt the parameters and only when it is really necessary to adapt
the structure. As a result, our strategy leads to the selection of simpler models
at earlier learning steps and gradually increases the model’s complexity as more
and more data becomes available. This bias control attempts to avoid overfitting

74 G. Castillo and J. Gama

procedure AdaptiveOnlinekDBCs(data,kMax)
init: model InitAsNaiveBayes()
for each new incoming batch of examples

predictions <- predict(model,batch)
observed <- getFeedback(batch)
performanceState <- assesPerformance(predictions, observed)
if (performanceState != IS_SATISFACTORY)then

adapt(model, examples, FIRST_LEVEL)
if (performanceState == STOP_IMPROVING) then

adapt(model, examples, SECOND_LEVEL)
if (Not change(model.structure)) then

adapt(model, examples, THIRD_LEVEL)
end for
end procedure

Fig. 1. Pseudo-code for the adaptive on-line algorithm for k-DBCs

or underfitting of the current model to the actual data. Next, we describe the two
main aspects of our adaptive algorithm: the adaptation policy and the control
policy.

3.1 Adaptation Policy

The adaptation policy is characterized by a gradual adaptation of the model
using three levels so that increasing the adaptation level increases the cost of
updating:

– first level: only the parameters are updated with new data
– second level: the current structure is adapted by searching for new de-

pendencies among attributes
– third level: if it is still possible, the maximum number of allowable depen-

dencies is increased by one, and the current structure is once again adapted.

The pseudo-code for the adaptation procedure is presented in Figure 2. In
the absence of any information about the true model underlying the data, we
initialize the classifier to the simple NB (k = 0). Whenever we obtain new
data, we first try to improve NB by adapting only its parameters. Only when
we obtain some evidences indicating that the performance of the NB stops im-
proving in the desirable tempo, we move to a more costly level of adaptation:
adapting the structure. We increment k by one and start searching a 1-DBC
by finding 1-dependence among attributes. At this time point, we must have
more data available which allows the search procedure to find new dependen-
cies. Next, the algorithm continues to perform only parameter adaptation, un-
til there will be again evidences that the performance of the current classifier

Bias Management of Bayesian Network Classifiers 75

procedure Adapt(model, examples, level)
switch level:
case FIRST_LEVEL:

performAdaptation(model, examples, UPDATE_PARAMETERS)
if (bUseIterativeBayes) then
performAdaptation(model, examples, REFINE_PARAMETERS)

case SECOND_LEVEL:
performAdaptation(model, examples, ADAPT_STRUCTURE)

case THIRD_LEVEL:
if (augmentDepIsPossible(model))then
augmentMaxNrAllowableDependencies(model)
performAdaptation(model, examples, ADAPT_STRUCTURE)

end switch
return model
end procedure

Fig. 2. Pseudo-code for the adaptive algorithm

stops improving. In this case, we try to adapt the current structure. Only if
the resulting structure remains the same, we move to the third level of adap-
tation by incrementing the maximum number of allowable dependencies, k,
by one (if this is still possible, i.e. if k < kMax) and searching for new de-
pendencies. This process continues until the performance reaches the desirable
level.

3.2 Control Policy

The control policy defines the criteria for tracking two situations: i) at what time
point do we move from the first level of adaptation to the second level, i.e., when
do we start adapting the structure? ii) at what time point do we stop doing any
adaptation? If we detect that the performance of the current model no longer
improves in a desirable tempo then we start adapting the structure. On the other
hand, if we detect that the performance has already reached the desirable level,
we stop adapting the model.

Assume that feedback can be obtained and that for each batch, we can eval-
uate the error rate ebatch, the proportion of misclassified examples in a batch.
We monitor ebatch obtained for different batches as an indicator of the perfor-
mance at different points in time. As stated, we initialize the structure to NB.
Because of its simplicity, NB learns very quickly, which is reflected in the behav-
ior of the batch error. At earlier learning steps, it exhibits a shorter downward
trend with a steeper slope of descent. However, as time increases, the steepness
of the slope will decrease, approaching zero. We use the Sen’s slope estimator
[12] for assessing the trend strength. At each tth learning step, we use only the

76 G. Castillo and J. Gama

most recent p batch errors for dynamically assessing the decreasing slope (we
set p to 5). To estimate the Sen’s slope we compute the slopes of each pair of
observed errors ebatch[ti], ebatch[tj] for (ti > tj) where the slope is defined as
(ebatch[ti] − ebatch[tj])/(ti − tj). The Sen’s slope is then the median value of the
resulting slopes. The rule is then straightforward. If the slope is sufficiently close
to zero, then we assume that the performance of the current model no longer
improves:

IF SenSlope(ebatch[t − p + 1 : t]) ≤ slopethreshold

THEN performanceState ← StopImproving

At subsequent learning steps it results more difficult to apply this kind of
trend analysis using successive error values. Notice that as time increases, batch
error values fluctuate around a certain level, decreasing slowly with a slope ap-
proaching zero. Instead, we proceed in the following way: first, the parameters
are updated using new examples. Then, we once again assess ebatch using the
adapted model. Assume that e′batch[t] and e′′batch[t] are the batch errors obtained
before and after adaptation, respectively. Whenever we obtain a decrease of the
batch error after adaptation, it would be a straightforward idea to consider that
the learner is still able to learn about the current target concept using the current
model’s structure. Otherwise, if for a pre-defined number of consecutive times af-
ter adaptation the error does not improve then we assume that the performance
no longer improves using the current structure:

IF consecCounter(e′′batch[t] ≥ e′batch[t]) = maxT imes

THEN performanceState ← StopImproving

Further model adaptations will continue until the performance reaches the
desirable level. Given a threshold level for the batch error, we assume that the
performance is satisfactory if for a fixed number of consecutive times ebatch ≤
errorthreshold.

4 Empirical Study

Primarily, we want to investigate if our adaptive algorithm is able to scale up
the model’s complexity of k-DBCs while improving its performance over time.
With this aim, we carried out an empirical study for evaluating the performance
of k-DBCs and NB induced incrementally from scratch against our adaptive
approach for four scores on three large datasets.

4.1 Experimental Setup

We used two underlying learning algorithms to induce k-DBCs: NB (k = 0) and
hill-climbing (k > 0) with BDeu, MDL, AIC and Preq as described in section
2. We used only arc additions and deletions. All the learning algorithms were
implemented using Weka’s classes for BNCs ([1],[13]). Since we use different

Bias Management of Bayesian Network Classifiers 77

scores for the same learning algorithm, this helps in ensuring that any differences
in performance are due to the differences in the scores, and not to differences in
the underlying algorithm.

We evaluated the learning algorithms on three datasets: balance, nursery and
adult. Since we needed datasets with large number of examples to better explore
the behaviour of incremental algorithms, we randomly generated artificial large
samples of 10000 examples for balance using its well-known underlying rules. We
used the nursery dataset from the UCI repository and a discretized version of the
adult dataset available on-line at http://www.cs.helsinki.fi/u/p̃kontkan/Data/.
We removed instances with missing values from the datasets. Thus, we used
12800 instances for nursery (128 learning steps) and 16000 instances for adult
(160 learning steps), respectively.

We evaluated two versions of the AdaptiveOnlinekDBCs algorithm. Unlike
Adap1, Adap2 additionally implements IB (section 2.3). We set kMax=3 for bal-
ance, kMax=5 for nursery and adult, slopethreshold = errorthreshold = 0 and
maxT imes = 3. To serve as baselines of our adaptive algorithms, we evaluated
the performance of NB and k-DBCs (varying k), inducing them incrementally
from scratch: at the tth learning step we used the first t batches as training data
and the examples of the next (t + 1)th batch as test data. We use batches of 100
examples. At each learning step, the performance was measured as the average
of the accuracy over 10 runs.

4.2 Cost of Updating vs. Performance

Table 4 compares the relative significant gains of the predictive accuracy aver-
aged over 10 runs of k-DBCs and Adap1-2 in conjunction with the four scores
with respect to NB at different learning steps. Figure 3 compares the perfor-
mance over time of all the algorithms for the three datasets. Table 1 shows
the number of adaptations performed in the structure per data set, score and
adaptive algorithm.

In most cases results show that adaptive algorithms perform at least as well as
the best k-DBC at each learning step. In general, Adap1-2 significantly improve
the performance of NB over time while reducing the cost of updating, as it is
shown by the small number of adaptations performed in the structure during the
whole learning process. However, the best results were obtained with the nursery
and the adult datasets. Note that for balance, as time increases, the best model
for all the scores, except for MDL, is a 3-DBC. Since the balance domain is easier
to learn, adaptive algorithms can get trapped in less complex structures than the
optimal one while progressing to improve their performances. Unlike balance, for
nursery and adult the best results are obtained with Adap2. Moreover, for all the
scores and datasets the number of adaptations performed in the structures using
Adap2 is considerably less than using Adap1 (see Table 1). As it was shown in
[5], the reduction of the error rate observed with IB is mainly due to a reduction
on the bias component, which explains the obtained results. This means that
Adap2 ensures the best balance between the cost of updating and the gain in
performance.

78 G. Castillo and J. Gama

Fig. 3. Error rate for NB, k-DBCs and Adap1-2 for the four scores over time. At the
tth learning step, # training examples = 100 ∗ t; # test examples = 100.

4.3 Model Complexity vs. Performance

There is a bias-variance trade-off in choosing the appropriate complexity of the
model. We used the bias-variance decomposition of the error as proposed in [6] to
investigate how different scores handle the bias-variance trade-off in incremental
learning of k-DBCs. Due to space limitations we only show the results on the
nursery dataset at two point times: t = 10 and t = 120 in figure 4. Plots on
the left show the training and test errors as a function of k-DBC models. Each
point in a line represents the training or test error of the related k-DBC for

Bias Management of Bayesian Network Classifiers 79

Table 1. Number of adaptive actions per data set, score and adaptive algorithm

balance nursery adult
Score Algor. Ref.Str. Aug.Dep Ref.Str. Aug.Dep Ref.Str. Aug.Dep
BDeu Adap1 3.0±0.0 3.0±0.0 3.2±0.5 3.2±0.5 1.8±0.5 1.8±0.5

Adap2 2.1±0.9 2.1±0.9 3.4±0.6 3.4±0.6 1.2±0.5 1.2±0.5
MDL Adap1 16.7±0.0 3.0±0.0 23.8±2.8 5.0±0.0 14.0±2.0 4.0±0.0

Adap2 1.2±0.6 1.1±0.3 15.6±3.8 5.0±0.0 3.8±0.8 2.4±1.6
AIC Adap1 3.7±0.7 3.0±0.0 14.4±2.0 5.0±0.0 4.6±1.1 3.4±0.9

Adap2 2.2±0.9 2.2±0.9 13.2±2.1 5.0±0.0 2.4±0.6 1.6±0.6
Preq Adap1 3.5±0.5 3.0±0.0 5.0±1.9 3.6±1.1 3.4±0.6 2.8±0.5

Adap2 2.4±1.2 2.2±0.9 5.2±1.9 3.8±1.1 1.6±0.6 1.4±0.6

a particular score. The first points in the lines represent the errors of NB. In
each learning step, given a particular score there is an optimal model class that
gives minimum test error. For Preq and BDeu, the optimal models are 1-DBC
at t = 10 and 3-DBC at t = 120, respectively. For MDL and AIC, all k-DBCs
present identical results starting from some k. Results in Table 3 suggest that
found models are all identical.

Pictures on the right show the bias-variance decomposition of the test error
for all scores. Results show that varying k, the score and the training set size
can have different effects on bias and variance. The best results were obtained
with Preq due to a more optimal bias management. On the other hand, BDeu
consistently favors the dependent structure over the independent one, thus find-
ing maximal models (see Table 3). As you can see, if the class model is more

Table 2. The values of k averaged over 10 runs at t = 10 and t = 120 for the nursery
dataset

Adap1 Adap2
t BDeu MDL AIC Preq BDeu MDL AIC Preq
10 0.8 0.8 0.8 0.8 1 1 1 1
120 3.2 5 5 3.6 3.2 5 5 3.4

Table 3. The number of added arcs to the NB structure averaged over 10 runs for the
nursery dataset at two time points. K1-7 represent 1-7-DBCs, A1-2 - Adap1, Adap2,
respectively

1000 training examples 12000 training examples
Score K1 K2 K3 K4 K5 K6 K7 A1 A2 K1 K2 K3 K4 K5 K6 K7 A1 A2
BDeu 7 13 18 22 25 27 28 4.2 5.6 7 13 18 22 25 27 28 18.8 18.6
MDL 0 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2 2
AIC 1.4 1.4 1.4 1.4 1.4 1.4 1.4 0.8 1.2 7 9.4 9.4 9.4 9.4 9.4 9.4 10.4 9.8
Preq 6.4 8 8 8 8 8 8 3.4 4.2 7 12.6 17.4 18 18.4 18.4 18.4 17.6 17.8

80 G. Castillo and J. Gama

Table 4. Relative significative gains of the predictive accuracy of k-DBCs, Adap1-2
with respect to NB. (+) indicates significative gain using a paired t-test at the 5% level
, no indicates there is no significative gain.

Balance 10 20 30 40 50 60 70 80 90 100
NB 87.52 88.62 89.04 89.22 89.34 89.52 89.6 89.66 89.81 89.87

BDeu 1-DBC no no no no no no no no no (+)0.29
2-DBC no no no no no (+)0.66 (+)1.06 (+)1.35 (+)1.63 (+)1.86
3-DBC no (+)0.91 (+)3.14 (+)4.5 (+)5.31 (+)5.67 (+)6.06 (+)6.29 (+)6.52 (+)6.65
Adap1 no no no (+)0.99 (+)1.57 (+)2.03 (+)2.61 (+)3.12 (+)3.6 (+)3.95
Adap2 no no no (+)0.53 (+)0.86 (+)1.03 (+)1.25 (+)1.52 (+)1.82 (+)2.11

MDL 1-DBC no no no no (+)0.19 (+)0.3 (+)0.44 (+)0.55 (+)0.66 (+)0.72
2-DBC no no no no (+)0.19 (+)0.3 (+)0.44 (+)0.55 (+)0.66 (+)0.72
3-DBC no no no no (+)0.19 (+)0.3 (+)0.44 (+)0.55 (+)0.66 (+)0.72
Adap1 no no no no no (+)0.28 (+)0.43 (+)0.55 (+)0.65 (+)0.71
Adap2 no no no no no no no no no no

AIC 1-DBC no no no no no no no (+)0.28 (+)0.42 (+)0.5
2-DBC no no no (+)0.55 (+)0.98 (+)1.26 (+)1.58 (+)1.81 (+)2.01 (+)2.2
3-DBC no no no (+)0.55 (+)1.04 (+)2.08 (+)2.98 (+)3.6 (+)4.13 (+)4.48
Adap1 no no no (+)0.45 (+)0.83 (+)1.14 (+)1.74 (+)2.32 (+)2.95 (+)3.4
Adap2 no no no (+)0.6 (+)0.9 (+)1.12 (+)1.36 (+)1.64 (+)1.93 (+)2.19

Preq 1-DBC no no no no no no no (+)0.27 (+)0.46 (+)0.57
2-DBC no no no no (+)0.65 (+)1.01 (+)1.33 (+)1.6 (+)1.84 (+)2.03
3-DBC no no (+)2.25 (+)3.82 (+)4.77 (+)5.22 (+)5.67 (+)5.95 (+)6.22 (+)6.38
Adap1 no no no no (+)1.01 (+)1.47 (+)2.05 (+)2.49 (+)2.93 (+)3.34
Adap2 no no no no (+)0.63 (+)0.82 (+)1.04 (+)1.17 (+)1.45 (+)1.77

Nursery 10 20 30 40 50 60 80 100 110 128
NB 87.52 88.62 89.04 89.22 89.34 89.52 89.66 89.97 89.98 89.96

BDeu 1-DBC no no (+)0.93 (+)1.12 (+)1.36 (+)1.51 (+)1.75 (+)1.90 (+)1.98 (+)2.18
2-DBC no no no no (+)0.45 (+)0.97 (+)1.64 (+)2.00 (+)2.12 (+)2.35
3-DBC no no no no no no no (+)0.95 (+)1.23 (+)1.73
Adap1 no (+)0.80 (+)1.19 (+)1.46 (+)1.70 (+)1.84 (+)2.25 (+)2.65 (+)2.83 (+)3.16
Adap2 no (+)0.91 (+)1.38 (+)1.62 (+)1.86 (+)1.97 (+)2.26 (+)2.77 (+)3.02 (+)3.39

MDL 1-DBC no no (+)0.32 (+)0.51 (+)0.71 (+)0.77 (+)0.82 (+)0.84 (+)0.88 (+)1.02
2-DBC no no (+)0.32 (+)0.51 (+)0.71 (+)0.77 (+)0.82 (+)0.84 (+)0.88 (+)1.02
3-DBC no no (+)0.32 (+)0.51 (+)0.71 (+)0.77 (+)0.82 (+)0.84 (+)0.88 (+)1.02
Adap1 no no no no (+)0.51 (+)0.6 (+)0.68 (+)0.73 (+)0.77 (+)0.92
Adap2 no no no no (+)0.28 (+)0.42 (+)0.56 (+)0.66 (+)0.77 (+)1.05

AIC 1-DBC (+)0.54 (+)0.89 (+)1.46 (+)1.87 (+)2.19 (+)2.38 (+)2.70 (+)2.80 (+)2.86 (+)3.02
2-DBC (+)0.54 (+)0.89 (+)1.46 (+)1.87 (+)2.19 (+)2.39 (+)2.66 (+)2.95 (+)3.03 (+)3.23
3-DBC (+)0.54 (+)0.89 (+)1.46 (+)1.87 (+)2.19 (+)2.39 (+)2.66 (+)2.95 (+)3.03 (+)3.23
Adap1 no (+)0.58 (+)0.91 (+)1.12 (+)1.47 (+)1.78 (+)2.15 (+)2.39 (+)2.50 (+)2.78
Adap2 no (+)1.09 (+)1.61 (+)2.10 (+)2.44 (+)2.78 (+)3.22 (+)3.62 (+)3.76 (+)4.10

Preq 1-DBC no (+)1.59 (+)2.31 (+)2.72 (+)2.96 (+)3.13 (+)3.35 (+)3.46 (+)3.53 (+)3.72
2-DBC no (+)1.86 (+)2.69 (+)3.26 (+)3.75 (+)4.06 (+)4.50 (+)4.74 (+)4.82 (+)5.05
2-DBC no (+)2.06 (+)3.14 (+)3.64 (+)4.10 (+)4.42 (+)4.99 (+)5.28 (+)5.41 (+)5.73
Adap1 (+)0.34 (+)1.38 (+)1.98 (+)2.37 (+)2.70 (+)2.96 (+)3.49 (+)3.94 (+)4.15 (+)4.62
Adap2 no (+)2.56 (+)3.33 (+)3.80 (+)4.24 (+)4.58 (+)5.29 (+)5.76 (+)5.93 (+)6.29

Adult 10 20 40 60 80 90 100 120 140 168
NB 81.14 81.91 81.69 81.89 82.00 81.93 81.99 82.01 82.04 82.16

BDeu 1-DBC no (+)0.15 (+)1.34 (+)1.46 (+)1.54 (+)1.62 (+)1.65 (+)1.80 (+)1.86 (+)1.82
2-DBC no no no no (+)0.59 (+)0.70 (+)0.80 (+)1.08 (+)1.17 (+)1.26
3-DBC no no no no no no no (+)0.48 (+)0.63 (+)0.75
Adap1 no no (+)0.91 (+)1.08 (+)1.24 (+)1.35 (+)1.41 (+)1.56 (+)1.61 (+)1.62
Adap2 (+)0.98 (+)0.49 (+)1.43 (+)1.62 (+)1.77 (+)1.86 (+)1.93 (+)2.09 (+)2.11 (+)2.09

MDL 1-DBC no (+)0.34 (+)1.36 (+)1.58 (+)1.66 (+)1.72 (+)1.74 (+)1.86 (+)1.91 (+)1.87
2-DBC no (+)0.34 (+)1.36 (+)1.59 (+)1.66 (+)1.72 (+)1.75 (+)1.88 (+)1.90 (+)1.87
3-DBC no (+)0.34 (+)1.36 (+)1.59 (+)1.66 (+)1.72 (+)1.75 (+)1.88 (+)1.90 (+)1.87
Adap1 no no (+)0.95 (+)1.31 (+)1.40 (+)1.51 (+)1.55 (+)1.75 (+)1.81 (+)1.83
Adap2 (+)1.00 (+)0.78 (+)1.86 (+)2.14 (+)2.17 (+)2.27 (+)2.32 (+)2.52 (+)2.57 (+)2.57

AIC 1-DBC (+)1.06 (+)0.60 (+)1.71 (+)1.77 (+)1.78 (+)1.79 (+)1.84 (+)1.96 (+)1.98 (+)1.96
2-DBC (+)1.04 (+)0.55 (+)1.51 (+)1.65 (+)1.73 (+)1.77 (+)1.82 (+)1.99 (+)2.07 (+)2.10
3-DBC (+)1.04 (+)0.55 (+)1.51 (+)1.65 (+)1.73 (+)1.77 (+)1.82 (+)1.99 (+)2.07 (+)2.10
Adap1 no no (+)1.08 (+)1.39 (+)1.56 (+)1.66 (+)1.70 (+)1.89 (+)1.97 (+)2.00
Adap2 (+)0.94 (+)0.61 (+)1.86 (+)2.11 (+)2.17 (+)2.24 (+)2.25 (+)2.42 (+)2.49 (+)2.48

Preq 1-DBC no (+)0.92 (+)1.41 (+)1.35 (+)1.28 (+)1.33 (+)1.31 (+)1.35 (+)1.37 (+)1.37
2-DBC (+)1.44 (+)1.06 (+)1.67 (+)1.66 (+)1.54 (+)1.58 (+)1.54 (+)1.67 (+)1.69 (+)1.68
3-DBC (+)1.52 (+)1.00 (+)1.71 (+)1.77 (+)1.67 (+)1.72 (+)1.68 (+)1.79 (+)1.81 (+)1.78
Adap1 no no (+)0.64 (+)0.85 (+)0.93 (+)1.01 (+)1.03 (+)1.19 (+)1.26 (+)1.30
Adap2 (+)1.00 (+)0.93 (+)1.70 (+)1.91 (+)1.88 (+)1.93 (+)1.97 (+)2.14 (+)2.19 (+)2.22

Bias Management of Bayesian Network Classifiers 81

Score: AIC

0%

5%

10%

15%

20%

25%

30%

0 1 2 3 4 5 6 7

k-DBC

Score: BDeu

0%

5%

10%

15%

20%

25%

30%

0 1 2 3 4 5 6 7

k-DBC

Score: MDL

0%

5%

10%

15%

20%

25%

30%

0 1 2 3 4 5 6 7

k-DBC

1000 Training Examples

0%

5%

10%

15%

20%

25%

30%

0-DBC 1-DBC 2-DBC 3-DBC 4-DBC 5-DBC 6-DBC 7-DBC

T
ra
in
in
g
 a
n
d
 T
e
s
t
E
rr
o
r
(i
n
 %
)

Train_BDeu Train_MDL Train_AIC Train_Preq

Test_BDeu Test_MDL Test_AIC Test_Preq

b

e

s

t

Score: Preq

0%

5%

10%

15%

20%

25%

30%

0 1 2 3 4 5 6 7

k-DBC

Score: AIC

0%

2%

4%

6%

8%

10%

0 1 2 3 4 5 6 7

k-DBC

Score: BDeu

0%

2%

4%

6%

8%

10%

0 1 2 3 4 5 6 7

k-DBC

Score: MDL

0%

2%

4%

6%

8%

10%

0 1 2 3 4 5 6 7

k-DBC

120000 Training Examples

0%

2%

4%

6%

8%

10%

0-DBC 1-DBC 2-DBC 3-DBC 4-DBC 5-DBC 6-DBC 7-DBC

T
ra
in
in
g
 a
n
d
 T
e
s
t
E
rr
o
r
(i
n
 %
)

Train_BDeu Train_MDL Train_AIC Train_Preq

Test_BDeu Test_MDL Test_AIC Test_Preq

Score: Preq

0%

2%

4%

6%

8%

10%

0 1 2 3 4 5 6 7

k-DBC

best

Fig. 4. Training-test errors and bias-variance decompositions of k-DBCs varying k at
two time points

complex than the optimal model, BDeu leads to severe overfitting due to increase
in variance. However, as training set size increases, the variance decreases for all
k-DBCs, thus reducing the test error and the overfitting problem. In contrast,
MDL and AIC find models simpler than the optimal model, thus underfitting the
data. Both scores increase in bias, especially, if the class model is less complex
than the optimal model. Because MDL penalizes complexity more severely that
AIC does, the model with the least MDL will tend to be simpler than the model
with the most AIC. Notice that as training size increases AIC reduces the bias
slightly. On the contrary, MDL increases it. As a result AIC outperforms MDL.

To provide evidences toward the hypothesis that our adaptive algorithm at-
tempts to select the appropriate complexity of the model (i.e. the optimal model
class) for the current amount of training data, we can look at table 2. At t = 10,
for all scores, adaptive algorithms find a model with k approaching 1, i.e., a
1-DBC. At t = 120, for BDeu and Preq, they find a model with k approaching 3
(a 3-DBC). For MDL and AIC, they find a model with k =kMax, i.e., a 5-DBC.
These results are consistent with the optimal model classes that we have found

82 G. Castillo and J. Gama

previously. Note that optimal k-DBCs present the lowest biases. Finally, results
in Table 1 evidence that the number of adaptations performed in the structure
for BDeu was always minimal when compared with other scores. On the contrary,
the number of adaptations performed in the structures using MDL was always
maximal. These results reflect the efforts made by our adaptive algorithms to
control the overfitting and underfitting problems.

5 Conclusions

We have examined a practical adaptive learning algorithm for improving the
performance of BNCs over time. The main idea is to scale up the model’s com-
plexity as training data increases by gradually increasing the number of allowable
dependencies among features. This allows reducing both bias and variance and
consequently the classification error. Starting with the simple NB, we use simple
decision rules based on the performance dynamics to decide on the next move
in the spectrum of feature dependencies and search for a more complex model.
Therefore, as training set size increases, bias will decrease because we choose a
more complex model and variance will also decrease because we use more exam-
ples to learn. Results in conducted experiments using the class of k-DBCs and
a hill climbing learning algorithm in conjunction with four scores on three large
datasets show that our adaptive algorithm in combination with IB performs an
artful bias management for choosing the appropriate complexity of the model.

Our adaptation policy is characterized by a gradual adaptation of the model
using three levels so that increasing the adaptation level increases the cost of up-
dating. We attempt to use new data to primarily adapt the parameters and only
if this is really necessary, to adapt the structure. Since updating the structure
is a costly task, this way we reduce the computational cost of updating while
improving the performance. Results in conducted experiments show that adap-
tive algorithms significantly improve the performance of NB over time and that
they perform no worse than the best k-DBC while reducing the cost of updating
as it is shown by the small number of adaptations performed on the structure
during the whole learning process in contrast to the great number of adaptations
performed on the structure of k-DBCs when they were induced incrementally
from scratch.

Although we have used only three datasets for evaluation, the results ob-
tained here encourage us to continue this work thus to be able to improve the
adaptation and control policies involved in our adaptive algorithm. One of the
crucial question that we will focus in the future will be to investigate several
criteria for determining when we should stop the learning process according to
the observed performance, instead of using a given threshold level for the batch
error. Future work will also involve additional experimentation with more large
datasets in order to obtain more evidences on the effectiveness of our adaptive
system.

Finally, although the adaptive algorithm is presented here for the family of
k-DBC classifiers, we believe that its underlying principles can be easily adapted

Bias Management of Bayesian Network Classifiers 83

for learning other classifier’s model classes (e.g. decision trees [8], neural networks
using different topologies [9]) with a hierarchical and increasing control over their
complexity.

Acknowledgments

Thanks to the financial support given by the FEDER, the Plurianual support
attributed to LIACC, and project ALES II (POSI/EIA/55340/2004).

References

1. Bouckaert, R.: Bayesian Network Classifiers in Weka (2004), Technical Report
14/2004. Computer Science Department. University of Waikato. (2004)

2. Brian, D., Webb, G.: The need for Low Bias Algorithms in Classification Learning
from Large Data Sets, In Proceedings of the 6th European Conference on Principles
of Data Mining and Knowledge Discovery (PKDD 2002), Springer-Verlag (2002)
62: 73

3. Buntine, W.: Theory Refinement on Bayesian Networks. In Proceedings of the 7th
Conference on Uncertainty in Artificial Intelligence, (1991) 52: 60 4.

4. Friedman, N., Geiger, D. and Goldszmidt, M.: Bayesian Network Classifiers. Ma-
chine Learning 4 (1997) 131:161 5.

5. Gama, J.: Iterative Bayes. In Intelligent Data Analysis, 4 (2000) 475:488, IOS Press
6.

6. Kohavi, R., Wolpert, D.: Bias Plus Variance Decomposition for Zero-One Loss
Functions. In Proceedings of the 13th International Conference on Machine Learn-
ing (ICML’96), Morgan Kaufmann Publishers, (1999) 7.

7. Kontkanen, P., Myllymaki, P., Silander, T., Tirr, H: On Supervised Selection
of Bayesian Networks. In Proceedings of the Fifteenth International Conference
on Uncertainty in Artificial Intelligence (UAI’99), Morgan Kaufmann Publishers,
(1999) 334:342

8. Quinlan, R.: C4.5 Programs for Machine Learning. Morgan Kaufmann Publishers,
(1993).

9. Ripley, B.: Pattern Recognition and Neural Networks. Cambridge University Press,
(1996).

10. Roure, J., Sangüesa,R.: Incremental Methods for Bayesian Network Learning. Re-
search Report LSI-99-42-R. Software Department. Technical University of Catalo-
nia, (1999).

11. Sahami, M.: Learning Limited Dependence Bayesian Classifiers, In Proceedings of
the Second International Conference on Knowledge Discovery and Data Mining,
AAAI Press, Portland, OR, (1996) 335:338 10.

12. Sen, P.K.: Estimates of the regression coefficient based on Kendall’s tau. In Journal
of the American Statistical Association. 63 (1968) 1379:1389

13. Witten,I.H., Frank, E.: Data Mining: Practical machine learning tools and tech-
niques, 2nd Edition, Morgan Kaufmann, San Francisco, (2005).

	Introduction
	Learning k-Dependence Bayesian Classifiers
	Search Algorithm
	Scores
	Parameter Estimation

	The Adaptive Algorithm for Learning k-DBCs
	Adaptation Policy
	Control Policy

	Empirical Study
	Experimental Setup
	Cost of Updating vs. Performance
	Model Complexity vs. Performance

	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

