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Abstract. This paper proposes a method for detecting misclassifications of a
classification rule and then revising them. Given a rule and a set of examples,
the method divides misclassifications by the rule into miscovered examples and
uncovered examples, and then, separately, learns to detect them using Inductive
Logic Programming (ILP). The method then combines the acquired rules with
the initial rule and revises the labels of misclassified examples. The paper shows
the effectiveness of the proposed method by theoretical analysis. In addition, it
presents experimental results, using the Brill tagger for Part-Of-Speech (POS)
tagging.

1 Introduction

Classification is one of the most popular fields in machine learning. It is concerned with
constructing new classification rules from given training examples. Most previous work
has focused on creating rules from scratch. Therefore, these approaches do not make use
of previously constructed classification rules, even if they are reasonable. We consider
that such rules are useful, and that it is more effective to correct misclassifications of a
rule, than to create a new classification rule from scratch.

In this paper, we propose a method that detects misclassifications of a classification
rule and then revises them. Given a rule and a set of examples, the method divides
misclassifications by the rule into miscovered examples and uncovered examples and,
separately, learns to detect them. It then combines the acquired rules with the initial rule
and revises the labels of misclassified examples. This paper shows the effectiveness of
the proposed method by theoretical analysis.

We use Inductive Logic Programming (ILP) to learn rules for detecting and revising
misclassifications. ILP is a framework that combines machine learning and logic pro-
gramming. ILP systems construct logic programs from examples and from background
knowledge, which is also described by logic programs. One of the most important ad-
vantages of using ILP for discovering knowledge is that ILP can acquire hypotheses
that can be understood by human beings. Another important advantage of ILP is that it
is able to use background knowledge.

We have applied our method to Part-Of-Speech (POS) tagging, to which ILP has
been applied previously [1]. We use the Brill tagger [2] as the initial classifier, which is
one of the best rule-based tagging systems and is widely used in research into natural
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language processing. This paper shows the results of combining the Brill tagger with
the additional acquired rules.

2 Miscovered Examples and Uncovered Examples

In this paper, we consider binary classification, which is also called concept learning.
Let x be an example from a set of possible examples X . The example is expressed as
(x, c(x)), where c is a target function. If x belongs to the target concept, then c(x) = 1;
if otherwise, c(x) = 0.

Misclassified examples of a classification rule are either miscovered examples or
uncovered examples. Consider a classification rule r. Let hr be the hypothesis func-
tion of r: if it estimates that x belongs to the target concept, then hr(x) = 1; oth-
erwise, hr(x) = 0. We say that an example x ∈ X is miscovered by a classification
rule r whenever c(x) = 0, but hr(x) = 1. We say that x is uncovered by r whenever
c(x) = 1, but hr(x) = 0. Fig. 1 shows miscovered examples and uncovered exam-
ples of a classification rule r for a target concept. Miscovered examples and uncovered
examples are sometimes called false positives and false negatives, respectively.
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Fig. 1. Miscovered examples and Uncovered examples of a Classification Rule r for a Target
concept

3 Method

3.1 Detecting and Revising Miscovered Examples

First, we consider the detection and revision of miscovered examples by using ILP. We
generate examples for ILP from the data set by using the initial classification rule. We
then construct a rule for detecting miscovered examples. Finally, we revise the labels of
the detected miscovered examples.

Consider a classification rule r. Because all of the examples miscovered by r are
included in examples covered by r, we can define the problem of detecting miscovered
examples as follows: given a classification rule r and an example x that is covered by r,
estimate whether x is miscovered or not.
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Denote the subset of training examples that are covered by r as Em. We then divide
them into miscovered and correctly covered examples. Let E+

m be the set of miscovered
examples, and let E−

m be the set of correctly covered examples. E+
m and E−

m can be
written as:

E+
m = {x | (x, c(x)) ∈ D, hr(x) = 1, c(x) = 0} ,

E−
m = {x | (x, c(x)) ∈ D, hr(x) = 1, c(x) = 1} ,

where D is the set of training examples, hr is the estimating function of r, and c is the
target-concept function. This is shown in the left hand figure in Fig. 2, where the +
signs are positive examples and − signs are negative examples.
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Fig. 2. Training examples for the miscovered concept (left) and the combined classification rule,
hrm, of the acquired rule and the initial rule (right)

Next, using ILP, we acquire a hypothesisHm from E+
m, E−

m, and background knowl-
edge B, such that B∨Hm |= E+

m and B∨Hm �|= E−
m. We define the estimating function

hm as: if B ∨Hm |= x for an example x ∈ X , then hm(x) = 1; otherwise, hm(x) = 0.
After acquiring Hm, we revise the misclassified labels by combining hr with hm.

We define the combined hypothesis function hrm as:

hrm(x) =

{
1 if hr(x) = 1 and hm(x) = 0,

0 otherwise.

The right-hand figure of Fig. 2 illustrates this combined classification rule rm. If
an example is included in the shaded area, the classification rule now estimates that it
belongs to the target concept.

3.2 Detecting and Revising Uncovered Examples

We now consider uncovered examples. Again, we generate examples for detection and
then revision. Previously, we used examples covered by r as a source of miscovered
examples, but now we use the remaining examples, i.e., examples not covered by r.
Denote the subset of training examples that are not covered by r as Eu. We divide these

U
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Fig. 3. Training examples for the uncovered concept (left) and the combined classification rule,
hru, of the acquired rule and the initial rule (right)

examples into two subsets. Let E+
u be the set of uncovered examples, and let E−

u be the
set of correctly not-covered examples. E+

u and E−
u can be written as:

E+
u = {x | (x, c(x)) ∈ D, hr(x) = 0, c(x) = 1} ,

E−
u = {x | (x, c(x)) ∈ D, hr(x) = 0, c(x) = 0} .

The left-hand figure of Fig. 3 shows these training examples E+
u and E−

u .
We now construct a hypothesis Hu from E+

u , E−
u , and background knowledge B,

using ILP. We define the estimating function as hu: hu(x) = 1 if B ∨ Hu |= x for an
example x ∈ X ; otherwise, hu(x) = 0. After acquiring Hu, we revise the misclassified
labels by combining hr with hu. We define the combined hypothesis function hru as:

hru(x) =

{
1 if hr(x) = 1 or hu(x) = 1,

0 otherwise.

The right-hand figure of Fig. 3 illustrates this classification rule ru.

3.3 Detecting and Revising Misclassified Examples

Finally, we combine the two acquired hypotheses with the initial classification rule.
Because hm and hu are constructed from nonoverlapping training sets, we can combine
them directly. We define a combined estimating function hrmu:

hrmu(x) =

{
1 if hr(x) = 1 and hm(x) = 0, or hr(x) = 0 and hu(x) = 1
0 otherwise.

Fig. 4 illustrates this final combined classification rule hrmu. Given an example x,
we firstly compute hr(x). If we find that hr(x) = 1, then we calculate hm(x); otherwise,
we calculate hu(x). Thus, we choose the second classification rule depending on the
situation, and it revises labels that were misclassified by the initial classification rule.
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Fig. 4. The final combined classification rule hrmu

4 Theoretical Analysis

We can show the effectiveness of the proposed method by theoretical analysis.

Theorem 1. Let Pr and Ar be the precision and the accuracy of rule r. If the inequality
Pm ≥ 1/2 is satisfied, then the inequality Arm ≥ Ar is valid.

Proof. To prove the theorem, consider the difference:

Arm − Ar =
|TPrm| + |TNrm|

|Erm| − |TPr| + |TNr|
|Er| ,

where Erm and Er are the example sets for rm and r, respectively. Since the example
sets are the same, the denominators are the same, and positive. Now consider the nu-
merators. In our method, examples classified by the rule rm can be written as:

TPrm = TPr \ FPm FPm ⊆ TPr, (1)

TNrm = TNr ∪ TPm TNr ∩ TPm = ∅, (2)

where TPr, FPr, FNr, and TNr are sets of true positive, false positive, false negative,
and true negative examples of r, respectively. From Equations (1) and (2), the inequality

|TPrm| + |TNrm| − (|TPr| + |TNr|)
= |TPr \ FPm| + |TNr ∪ TPm| − (|TPr| + |TNr|)
= (|TPr| − |FPm|) + (|TNr| + |TPm|) − (|TPr| + |TNr|)

= |TPm| − |FPm| = |TPm| 2 (Pm − 1/2)
Pm

≥ 0

is valid, if the condition of the theorem is satisfied. The theorem is proved.

Theorem 2. If the inequality Pu ≥ 1/2 is satisfied, then the inequality Armu ≥ Arm is
valid.

This proof is omitted, to save space.
Finally, the following theorem indicates the effectiveness of our method:

Detecting and Revising Misclassifications sing ILPU



368 M. Yokoyama, T. Matsui, and H. Ohwada

Theorem 3. If the inequalities Pm ≥ 1/2 and Pu ≥ 1/2 are satisfied, then the inequal-
ity Armu ≥ Ar is valid.

Proof. From Theorems 1 and 2, Arm ≥ Ar and Armu ≥ Arm are valid, if the conditions
of the theorem are satisfied. Therefore, the inequality Armu ≥ Arm ≥ Ar is valid, if the
conditions of the theorem are satisfied. The theorem is proved.

Since it is not difficult to learn a classifier whose precision is greater than or equal
to 1/2 in binary classification problems, the classification accuracy of our method can
be higher than that of the initial classification rule.

5 Experiment: Part-of-Speech Tagging

5.1 Accuracy Comparison

POS tagging is the problem of assigning POS tags to each word in a document. We
have applied our method to POS tagging, using the Brill tagger [2] as the initial classi-
fication rule. The data set is the set of Wall Street Journal articles in the Penn Treebank
Project [3].

POS tagging involves more than three classes, and we adopted the one-against-the-
rest method for formulation in terms of binary classification. Since there are 45 kinds
of tags, we created 45 binary classification problems. For each problem, we applied the
Brill tagger and created examples for learning the concepts of miscovered examples and
uncovered examples. We used an ILP system, GKS [4,5], to learn the concepts with an
acceptable error ratio of 0.2. We prepared the background knowledge of referring to the
preceding three words and the following three words. We evaluated the performance
of the acquired rules with 10-fold cross validation. We compared the accuracy of the
initial classification rule of the Brill tagger with that of the proposed method. In this
experiment, we added true-positive examples of the Brill tagger to the negative training
examples for the uncovered concept. This enables us to acquire a hypothesis that covers
only the uncovered examples. We also proved that Theorem 2 is true in this case.

Table 1 shows the results for each tag and overall. Ar stand for the accuracy of the
Brill tagger alone. Armu stand for that of the combined classification rule, using the
proposed method. Pm and Pu are the precisions of m and u alone, respectively. The
“-” symbol means that the ILP system could not acquire rules at all. For all of the tags,
the accuracies of the proposed method, Armu, were better than or equal to those of the
Brill tagger alone, Ar. Because Pm and Pu were greater than 1/2, the conditions of
Theorem 3 were satisfied.

5.2 Discovered Knowledge on Misclassifications

There is another good aspect of the proposed method, in addition to increased accuracy:
we have human-readable acquired knowledge on misclassifications, because ILP can
create a hypothesis represented by first-order logic.

Here is the acquired knowledge for the “preposition” tag. The Prolog-formatted rule
for the miscovered examples was as follows:
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Table 1. The experiment result

Tag Ar Armu Pm Pu

cc 0.9998 0.9998 0.8889 -
cd 0.9991 0.9995 1.0 0.9297
cln 0.9999 0.9999 - -
cma 0.9999 0.9999 - -
dlr 1.0 1.0 - -
dt 0.9920 0.9988 0.7778 0.9360
ex 0.9999 0.9999 - 0.8472
fw 0.9998 0.9999 1.0 0.8710
in 0.9907 0.9943 0.9947 0.9716
jj 0.9892 0.9924 0.7888 0.9005
jjr 0.9991 0.9993 0.8788 0.8310
jjs 0.9995 0.9996 1.0 0.7640
lpn 1.0 1.0 - -
lqt 1.0 1.0 - -
ls 0.9999 0.9999 - -

md 0.9999 0.9999 - -
nn 0.9872 0.9914 0.8165 0.9088
nns 0.9967 0.9982 0.8354 0.9133
np 0.9941 0.9961 0.7720 0.9401
nps 0.9976 0.9978 0.7024 0.8773
pdt 0.9998 0.9998 0.8947 -
pnd 1.0 1.0 - -
pos 0.9986 0.9999 - 0.9642

Tag Ar Armu Pm Pu

pp 0.9998 0.9999 1.0 -
ppz 0.9999 1.0 - 1.0
rb 0.9947 0.9963 0.9005 0.9488
rbr 0.9989 0.9992 0.8682 0.9296
rbs 0.9995 0.9999 1.0 0.9482
rp 0.9984 0.9984 - -

rpn 0.9988 0.9988 - -
rqt 0.9999 0.9999 0.8824 -
stp 0.9999 0.9999 - -
sym 0.9987 0.9999 - 0.9565
to 0.9999 0.9999 - -
uh 0.9999 0.9999 0.8000 -
vb 0.9950 0.9974 0.6429 0.8627
vbd 0.9938 0.9949 0.9162 0.9043
vbg 0.9976 0.9982 0.6712 0.8708
vbn 0.9924 0.9953 0.7073 0.8614
vbp 0.9953 0.9965 0.9888 0.9203
vbz 0.9971 0.9976 0.9212 0.8766
wdt 0.9976 0.9980 0.9405 0.9730
wp 0.9999 0.9999 - -
wpz 1.0 1.0 - -
wrb 0.9999 0.9999 - -
All 0.9978 0.9986 0.8973 0.9151

miscovered(A) :- post1word(A,’.’).
miscovered(A) :- post2tag(A,vb), word(A,’like’).

This rule means that the given word A is a miscovered example, i.e., it is not a preposi-
tion if: the following word is “.” (period sign); or the next-but-one word is tagged “vb”
and the given word is “like.” Therefore, we can discover the Brill tagger mistakes with
respect to prepositions. For example, the Brill tagger sometimes classifies the final word
of a sentence as a preposition.

Similarly, we can see the rule for the uncovered examples. The rule is as follows:

uncovered(A) :- word(A,’up’).
uncovered(A) :- post3word(A,’different’).

This means that the given word A is an uncovered example, i.e. it is also a preposition
if: the given word is “up”, or the third-next word is “different”.

We consider these rules to be very useful for correcting the Brill tagger itself. They
show where we should change the Brill tagger’s rule. So, if we install this knowledge
into the Brill tagger, its performance will improve.

Detecting and Revising Misclassifications sing ILPU
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6 Conclusion

This paper proposes a method for decreasing misclassification, by using ILP to detect
and revise misclassifications. The proposed method acquires two additional classifi-
cation rules and combines them with the initial classification rule. We then show, by
theoretical analysis, that this method works well. Finally, we apply it to POS tagging
and present the experimental results.

Abney et al. have applied boosting to tagging [6]. They used their algorithm, Ad-
aBoost, which calls a weak learner repeatedly to update the weights of examples. If the
hypothesis acquired by the weak learner incorrectly classifies an example, it increases
the weight; otherwise, it decreases the weight. Given an example to be predicted, boost-
ing produces the final label, using a simple vote of the weak hypotheses. Although it
can improve the classification accuracy very well, it cannot provide an understandable
final hypothesis.

The good points of our method are that:

– it is simple and reliable,
– it can reduce the misclassification produced by the initial classification rule,
– it is shown that the classification accuracy of our method can be higher than that of

initial classification rule, and
– the acquired rules are useful for modifying the initial rule because of their readabil-

ity due to the use of ILP.

One drawback of our method is that it tends to overfit the training examples. Future
work will include evaluating the acquired rules used to modify the initial classification
rules.
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