
CLASSIC’CL: An Integrated ILP System

Christian Stolle, Andreas Karwath, and Luc De Raedt

Albert-Ludwigs Universität Freiburg, Institut für Informatik,
Georges Köhler Allee 79, D-79110 Freiburg, Germany

{stolle, karwath, deraedt}@informatik.uni-freiburg.de

Abstract. A novel inductive logic programming system, called Clas-
sic’cl is presented. Classic’cl integrates several settings for learning, in
particular learning from interpretations and learning from satisfiability.
Within these settings, it addresses descriptive and probabilistic modeling
tasks. As such, Classic’cl (C-armr, cLAudien, icl-S(S)at, ICl, and CLl-
pad) integrates several well-known inductive logic programming systems
such as Claudien, Warmr (and its extension C-armr), ICL, ICL-SAT,
and LLPAD. We report on the implementation, the integration issues as
well as on some experiments that compare Classic’cl with some of its
predecessors.

1 Introduction

Over the last decade, a variety of ILP systems have been developed. At the same
time, some of the most advanced systems such as Progol [12, 16] and ACE [3]
can solve several different types of problems or problem settings. ACE induces
rules (as in ICL [7]), decision trees (as in TILDE [1]) and frequent patterns
and association rules (as in Warmr [8]). However, most of the present ILP tech-
niques focus on predictive data mining setting and also deal with the traditional
learning from entailment setting [4]. The key contribution of this paper is the
introduction of the system Classic’cl, which learns from interpretations in a de-
scriptive setting. The key novelty is that it tightly integrates several descriptive
ILP, such as Claudien [5], Warmr [8], C-armr [6], and LLPADs [15]. This is re-
alized using a generalized descriptive ILP algorithm that employs conjunctive
constraints for specifying the clauses of interest. A wide variety of constraints
is incorporated, including minimum frequency, exclusive disjunctions, and con-
densed representations [6]. By combining constraints in different ways,Classic’cl
can emulate Warmr, Claudien, C-armr and LLPADS as well as some novel vari-
ations. Classic’cl is derived from the implementation of C-armr [6]. The perfor-
mance of Classic’cl is experimentally compared with some of its predecessors,
such as ACE and Claudien. In addition to the descriptive setting, Classic’cl also
includes a predictive learning setting that emulates the ICL system [7]. This
setting is not covered in this paper.

This paper relies on some (inductive) logic programming concepts. The reader
unfamiliar with this terminology is referred to [13] for more details.

In the following section we introduce general constraints for the descriptive
ILP problem and show how known algorithms can be expressed in this formalism.

A. Hoffmann, H. Motoda, and T. Scheffer (Eds.): DS 2005, LNAI 3735, pp. 354–362, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

CLASSIC’CL: An Integrated ILP System 355

A general algorithm to tackle this problem is presented in 3, some implementa-
tional issues are described in section 4 and experiments are presented in section
5. We conclude in section 6.

2 The Descriptive ILP Problem

2.1 Constraint Based Mining Problem

Mannila and Toivonen [11] formalized the task of data mining as that of finding
the set Th(Q, D,L), where Q is a constraint or query, D a data set and L a
set of patterns. Th(Q, D,L) then contains all patterns h in L that satisfy the
constraint Q w.r.t. the data set D, i.e. Th(Q, D,L) = {h ∈ L|Q(h, D) = true}.
When applying this definition of descriptive data mining to ILP, the language L
will be a set of clauses, the data set D a set of examples and Q can be a complex
constraint. Clauses are expressions of the form h1 ∨ · · · ∨ hn ← b1 ∧ · · · ∧ bm

where the hi and bj are logical atoms and all variables are universally quantified
(cf. appendix in [13]). The learning from interpretations setting is incorporated
by many well-known systems such as Claudien, Warmr, C-armr, Farmr, and
LLPADS. We therefore choose interpretations as examples. In this paper, an
interpretation is a set of ground facts. The above leads to the descriptive ILP
problem, which is tackled in this paper:

Given:
– a language Lh (i.e., a set of clauses)
– a set of interpretations E
– a constraint cons(h, E) ∈ {true, false} where h ∈ Lh

Find:
– Th(cons, E,Lh), i.e., the set of clauses c ∈ Lh for which cons(c, E)= true

Using this generic formulation of descriptive ILP, we can now consider various
constraints cons as a conjunction of constraints c1 ∧ · · · ∧ ck (e.g frequency,
covers, cf. below). Some of the constraints can be monotonic or anti-monotonic,
which can be used to prune the search space. A constraint consm is monotonic
if all specializations of a clause c will satisfy consm whenever c does, and a
constraint consa is anti-monotonic if all generalizations of a clause c will satisfy
consm whenever c does. As framework for generality we employ Plotkin’s θ-
subsumption, which is the standard in ILP. It states that a clause c is more
general than a clause c′ if and only if there exists a substitution θ such that
cθ ⊂ C′.

2.2 Constraints for ILP

Motivated by constraints used in Claudien, Warmr, C-armr, and LLPAD, Clas-
sic’cl employs constraints defined on clauses of the form h1 ∨ · · · ∨ hn ←
b1 ∧ · · · ∧ bm:

1. query is true iff the head of the clause is empty, i.e., if n = 0. This constraint
is built-in in systems searching for frequent queries such as Warmr and C-
armr.

356 C. Stolle, A. Karwath, and L. De Raedt

2. covers(e) is true for an interpretation e ∈ E iff ← b1 ∧ · · · ∧ bm suc-
ceeds in e, i.e. if there is a substitution θ s.t. {b1θ, . . . , bmθ} ⊆ e. E.g., ←
drinks(X), beer(X) covers {drinks(vodka), liquor(vodka), drinks(duvel),
beer(duvel)}. This constraint is often used in the case of queries (i.e., where
n = 0).

3. satisfies(e) is true iff h1 ∨ · · · ∨ hn ← b1 ∧ · · · ∧ bm satisfies e ∈ E,
i.e., iff ∀θ: {b1θ, . . . , bmθ} ⊆ e → {h1θ, . . . , hnθ} ∩ e
= ∅, e.g. the clause
beer(X) ← drinks(X) does not satisfy the interpretation {drinks(vodka),
liquor(vodka), drinks(duvel), beer(duvel)} but does satisfy {drinks(duvel),
beer(duvel)}.

4. xor(e) is true iff for any two hi
= hj there exist no substitutions θ1 and θ2

such that {b1θ1, . . . , bmθ1, hiθ1} ⊆ e and {b1θ2, . . . , bmθ2, hjθ2} ⊆ e. The xor
constraint specifies that at most one literal in the head of the clause can be
true within the interpretation e.

5. freq(cons, E) = |{e ∈ E|cons(e)}| specifies the number of examples e in E
for which the constraint cons(e) is true. This is typically used in combination
with the constraints satisfies or covers.

6. maxgen is true iff h1∨· · ·∨hn ← b1∧· · ·∧bm satisfies the monotonic part of
the rest of the constraint cons and no clause h1∨· · ·∨hi−1∨hi+1∨· · ·∨hn ←
b1∧· · ·∧bm satisfies cons. This constraint is needed as there may be an infinite
number of refinements of such clauses that satisfy a monotonic constraint.

7. s-free(T) is true, where T is a set of horn clauses, iff there is no range-
restricted clause p ← b′1 ∧ · · · ∧ b′k where all b′i ∈ {b1, . . . , bm} and p ∈
{b1, . . . , bm} − {b′1 ∧ · · · ∧ b′k} for which T |= p← b′1 ∧ · · · ∧ b′k. So no redun-
dancies are induced w.r.t. a background theory T that specifies properties of
the predicates (cf. [6]). E.g. T = {leq(X, Z)← leq(X, Y), leq(Y, Z)} (transi-
tivity) averts clauses such as (← leq(X, Y), leq(Y, Z), leq(X, Z)) as the last
literal is redundant.

8. free(E) is true iff there is no range-restricted clause p← b′1 ∧ · · · ∧ b′k where
all b′i ∈ {b1, . . . , bm} and p ∈ {b1, . . . , bm} and p
= bi for which freq(p ←
b′1 ∧ · · · ∧ b′k, satisfies, E) = |E|. This assures that there are no redundant
literals given the data. E.g., given the interpretation I := {beer(duvel),
alcohol(duvel), alcohol(vodka)}, the clause ← beer(X) is free while ←
beer(X) ∧ alcohol(X) is not free, as the clause alcohol(X) ← beer(X) is
satisfied by I (cf. [6]).

9. δ-free(E) is true, where δ is a natural number, iff there is no range-restricted
clause p ← b′1 ∧ · · · ∧ b′k where all b′i ∈ {b1, . . . , bm} and p ∈ {b1, . . . , bm} −
{b′1 ∧ · · · ∧ b′k} for which freq(p← b′1 ∧ · · · ∧ b′k, satisfies, E) ≥ |E| − δ. It is
not required that the rule perfectly holds on the data, but only that it holds
approximately, as δ exceptions are allowed (cf. [6]).

10. consistent(T) is true, where T is a set of horn clauses, if and only if T ∪
{h1 ∨ · · · ∨hn ← b1 ∧ · · · ∧ bm}
|= �, i.e., if it is satisfiable. E.g., consider the
theory T = {← parent(X, X)} which specifies that no one is its own parent.
Any clause containing this literal is not consistent with respect to T .

The above specified constraints have the following properties:
freq(h, consm, E) > t and satisfies are monotonic, while covers, query,

CLASSIC’CL: An Integrated ILP System 357

consistent, s−free, free, δ-free, and freq(h, consa, E) > t are anti-monotonic.
xor is anti-monotonic w.r.t. the head only, i.e., xor is anti-monotonic w.r.t.
a fixed body. Clauses with an empty head always satisfy the xor constraint.
Therefore, this constraint only applies when refining the heads of clauses. The
maxgen constraint is is neither monotonic nor anti-monotonic. Therefore, it
will require special attention in our algorithm.

2.3 Existing Descriptive ILP Systems

Claudien [5] essentially searches for all maximally general clauses that satisfy a
set of interpretations. This corresponds to using the constraint cons = maxgen∧
freq(satifies, E) = |E|. E.g., given the interpretation I = {vodka(smirnov),
beer(duvel),alcohol(smirnov), alcohol(duvel)} and a language bias over the
literals in I, one would find the following clauses: {beer(X) ∨ vodka(X) ←
alcohol(X); ← beer(X) ∧ vodka(X); alcohol(X) ← vodka(X); alcohol(X) ←
beer(X)}.
Warmr [8] extends the well-known Apriori system to a relational data mining
setting. It employs essentially the constraints cons = query ∧ freq(covers, E) >
t. In the example above (t = 1) these queries would be generated: {← beer(X);←
vodka(X);← alcohol(X);← beer(X)∧alcohol(X);← vodka(X)∧alcohol(X)}.
C-armr [6] is a variant of Warmr that extends Warmr with condensed repre-
sentations. Additional constraints that can be imposed include free, s − free,
consistent and δ − free. On the same example, and having the additional
constraint free, the following queries would be generated. {← beer(X);←
vodka(X);← alcohol(X)}.
CLLPAD combines ideas from Claudien with probabilistic ILP. It essen-
tially mines for LPADS, [17]. These consists of annotated clauses of the form
(h1 : α1) ∨ · · · ∨ (hn : αn) ← b1 ∧ · · · ∧ bm. The αi ∈ [0, 1] are real-valued
numbers, s.t.

∑n
i=1 αi = 1. The head atoms hi of the clauses fulfill the xor con-

straint, such that for each interpretation at most one hi is true with a certain
probability. This ensures that the clauses ci of an LPAD P can be considered
independently as in traditional inductive logical programs.

cons = maxgen ∧
∧

e∈E

xor(e) ∧ freq(satisfies, E) = |E| ∧ freq(covers, E) ≥ 1

Notice that the xor constraint together with satisfies actually implies maxgen,
so that the CLLPAD can be considered a specialization of the Claudien set-
ting. This constraint is imposed in an early system inducing LPADs, LLPAD
[15]. The annotated clauses satisfying cons are then composed to LPADs in
a post-processing step (cf. [15]). E.g., consider the following interpretations
{beer(duvel), alcohol(duvel)} and {vodka(smirnov), alcohol(smirnov)}. The
clauses {0.5 : vodka(X)∨ 0.5 : beer(X) ← alcohol(X); 1.0 : alcohol(X) ←
vodka(X); 1.0 : alcohol(X)← beer(X)} would satisfy the constraints. As in [15]

the rules get annotated using the equation αi =
∑

e∈E,satisfies(hi←b1∧···∧bn,e) π∗P (e)
∑

e∈E,covers(←b1∧···∧bn,e) π∗P (e) ,

358 C. Stolle, A. Karwath, and L. De Raedt

where the π∗
P (E) denotes the probabilities of the interpretations specified in the

data set. So the probability of hi is the sum of probabilities of the interpretations
which are covered by hi ∧ b divided by the sum of probabilities of the interpre-
tations which are covered by b.

The usage of these constraints opens the possibility for several new combinations:

– introduction of condensed representations within the Claudien and CLLPAD
setting. The effect of constraints as free, δ− free, and s− free is that less
patterns are found, that they are typically found more efficiently, and also
that (for free and s − free) only redundant and undesirable clauses are
pruned away, without affecting the semantics of the solution set.

– the original implementation of LLPAD, as described in [15], does not seem
to allow for the use of variables in clauses, which essentially corresponds to
a propositional version of LLPAD. In contrast, the version inClassic’cl does
allow for variabelized clauses.

– new combinations, combining, e.g., freq(satisfies, E), freq(covers, E) and
δ-free, now become possible.

3 The Descriptive ILP Algorithm

By now we are able to specify the algorithm. We will first discover all bodies that
satisfy the constraints, and then expand these into those clauses that satisfy also
the head. The algorithm employs two different phases for realizing that. The first
phase employs a body refinement operator ρb, which merely refines the body of
a clause whereas the second phase employs a head refinement operator ρo, which
merely refines the head by adding literals to the conclusion part of clauses.

Algorithm 1 The generic function body(cons, E).

C0 := {false← true}; i := 0; F0 := I0 := ∅
while Ci �= ∅ do

Fi:= {c ∈ Ci|consa(c, E)}
if cons does not contain the constraint query then

call head(cons, Fi)
else

output {f ∈ Fi|consm(f, E)}
end if
Ii := Ci − Fi

Ci+1 := {b′ | b ∈ Fi and b′ ∈ ρb(b) and ¬∃s ∈ ⋃
j Ij : s � b′}

i := i + 1
end while

The body function (algorithm 1) is very similar to a traditional level wise
search algorithm such as Warmr. It starts from the empty query and repeat-
edly refines it – in a level wise fashion – until the anti-monotonic consa part
of the constraint cons no longer holds on candidate clauses. The algorithm

CLASSIC’CL: An Integrated ILP System 359

does not only keep track of the clauses satisfying the anti-monotonic constraint
consa (on the Fi) but also of the negative border (using the Ii). This is use-
ful for pruning because – when working with a language bias specified using
rmodes (cf. below) – not all clauses in the θ-subsumption lattice are within
the language Lh, i.e. the language Lh is not anti-monotonic. Consider for in-
stance the clause p(K)← benzene(K, S)∧member(A, S)∧ atom(K, A, c). Even
though this clause will typically satisfy the syntactic constraints, its generaliza-
tion p(K) ← member(A, S) will typically not be mode-conform. Furthermore,
when a new candidate is generated, it is tested whether the candidate is not
subsumed by an already known infrequent one.

Algorithm 2 The generic function head(cons, F).

C0 := F ; i := 0; S0 := I0 := ∅
while Ci �= ∅ do

Si:= {c ∈ Ci|consm(c, E)}
if cons does contain the constraint maxgen then

Ii := Ci − Si

Si:= {c ∈ Si|¬∃s ∈ ⋃
j Sj : s � c}

else
Ii := Ci

end if
Ci+1 := {c′ |c ∈ Ii and c′ ∈ ρh(c) and consa(c′, E), }
i := i + 1

end while
output filter(∪iSi)

The interesting and new part of the algorithm is concerned with the function
head (algorithm 2). This part is used if query
∈ cons, and one searches for
proper clauses, not just queries. The algorithm then proceeds as follows. The
head function is invoked using the call head(cons, F) for every body. Within
the procedure only the head is changed using a head refinement operator ρh

(which adds literals to the head). Within this context, the algorithm head is
similar in spirit to the level wise algorithm, except that if the constraint maxgen
is included in cons, those clauses that satisfy cons are no longer refined. The
algorithm employs a list of candidate clauses on Ci. Those candidates satisfying
the constraint are put on Si, the set of solutions. Depending on maxgen all
candidates on Ci or only those not satisfying cons are refined. The algorithm
then outputs, according to some output filter (e.g. a filter that annotates the
clauses for CLLPAD), all solutions ∪Si.

4 Implementation Issues

Language Bias. Within ILP, Lh typically imposes syntactic restrictions on the
clauses to be used as patterns. Whereas some of the original implementations
(such as Claudien [5]) employed complex formalisms such as DLAB, Classic’cl
uses the now standard mode and type restrictions (rmodes) of ILP.

360 C. Stolle, A. Karwath, and L. De Raedt

Optimizations and Optimal Refinement Operators. In order to search
efficiently for solutions, it is important that each relevant pattern is generated
at most once. For this, optimal refinement operators (using some canonical form)
are employed. As Classic’cl is based on the original C-armr implementation of
[6], it employs the same optimal refinement operator. In a similar way, we have
used a canonical form and optimal refinement operator defined for disjunctive
head literals with a fixed body. As computing constraints like frequency are
computationally expensive, we have employed the same optimizations as in [6],
the system is equally designed as a light Prolog implementation that is small but
still reasonably efficient.

5 Experiments

The aim was to 1) investigate the performance of Classic’cl w.r.t the original
implementations, and 2) show that we can tackle some new problem settings.

Datasets. We used artificial and real-world datasets. As artificial datasets, we
used the Bongard 300 and 6013 datasets. As real world datasets, we have chosen
the Mutagenesis data set [10], the secondary structure prediction dataset from
[14], and the SCOP-fold dataset [9].

Warmr and C-armr. First, we compared ACE-Warmr with Classic’cl. ACE-
Warmr is the original Warmr algorithm in the ACE toolkit [3]. ACE is imple-
mented in a custom build Prolog (iProlog), and can be used with a number of
optimizations, like query packs [2]. The results of the comparison can be seen in
table 1. The different number of frequent patterns is due to a slightly different
language bias and operators. If one takes as criterion time per pattern, then
ACE-Warmr and Classic’cl are more or less comparable in this experiment.

As a second test, we investigated searching for disjunctive clauses ver-
sus searching for horn clauses. This compares to the settings cons1 =
freq(h, covers, E) > t ∧ query(h) ∧ freq(h, satisfies, E) > t to cons2 =
query(h) ∧ freq(h, covers, E) > t.

Claudien. We evaluated Classic’cl Claudien compared to the original Claudien
implementation using the Mutagenisis and Bongard datasets. All tests we ran on
a SUN Blade 1550, as we only had a compiled version for the original Claudien
version available. We only mined for horn clauses with a maximum of 5 literals
in the Mutagenesis case. This was necessary, as the computational costs proved
to be too expensive for the original Claudien. In the case of the Bongard 300
experiment we also restricted the search to definite clauses, as the language bias
definition languages rmodes and DLAB are too different to generate comparable
results. The results can be found in table 3.

CLLPAD. We employed the LPAD setting and applied it to the SCOP dataset.
The test was to evaluate the applicability of the CLLPAD setting to a real world

CLASSIC’CL: An Integrated ILP System 361

Table 1. Comparison between the ACE WARMR and Classic’cl in the Warmr and C-

armr setting on mutagenesis. For the C-armr setting, we chose to employ δ− free, s−
free, consistent (with δ = 0, t = 2 and maxlevel = 4). ACE-Warmr (packs) denotes

the setting for ACE with the option ’use packs(ilp)’.

Runtime [secs]. # freq. Patterns

ACE-Warmr(no packs) 12960 91053
ACE-Warmr(packs) 1816 91053
Classic’cl-Warmr 5301 194737
Classic’cl-Carmr() 4622 124169

Table 2. Comparison between the run times and number of rules for the definite

(cons = query(h) ∧ freq(h, covers, E) > t) and disjunctive (cons = query(h) ∧
freq(h, satisfies, E) > t) search

Runtime [s] # Rules Factor
Data set Subset Horn Disj. Horn Disj. Horn Disj

Mutagenesis 188 2602.62 4098.26 893 9099 1.57 10.19
42 1454.52 1839.45 996 6291 1.26 6.32
230 3484.94 5339.67 1002 9904 1.53 9.88

Bongard 300 4.78 12.52 54 1628 2.62 30.15
6013 212.02 1597.97 114 2610 7.54 22.89

Sec. Structure alpha 75414.4 76950.51 1188 18145 1.02 15.27
beta 162.79 188.11 111 16768 1.16 151.06
coil 55102.04 55827.35 1186 18146 1.01 15.3

Table 3. Comparison between the original Claudien and the Classic’cl in the Claudien

setting. The differences in the number of rules found is due to the different language

bias used (DLAB vs. rmodes). To avoid the comparison between the different setting

we also present the time spent by the two implementations producing a rule in seconds

per rule. Classic’cl clearly outperforms the original algorithm.

Runtime [s] # Rules Sec. p. rule Factor
Dataset Subset Level Orig. Classic Orig. Classic Orig. Classic

Mutagenesis 188 4 66631.9 3290.6 262 308 254.32 10.68 23.8
42 4 12964.3 1214.41 123 303 105.40 4.01 26.3
230 4 86022.3 4490.62 279 418 308.32 10.74 28.7

Bongard 300 5 71.53 14.44 32 51 2.24 0.28 7.89

database. The initial set of clauses, Classi’cl took 5,714 seconds to construct.
Applying the post processing filter solving the CSP took 5,742 seconds and
resulted in 33 LPADs build from 18 horn clauses and 7 annotated disjunctive
clauses. The disjunctive clauses produced, all center around three folds, name
fold1, fold37, and fold55. For space limitations, detailed results are omitted from
this paper. This application was impossible with the previous implementation
of LLPADs which only employes propositional examples.

To summarize, the experiments clearly show that Classic’cl can indeed sim-
ulate its predecessors, that its performance is much better of that of Claudien
and despite the light Prolog implementation realistic enough to be applied to
real-world data.

362 C. Stolle, A. Karwath, and L. De Raedt

6 Conclusions

A novel descriptive data mining approach within the ILP setting of learning
from interpretations has been presented. The approach incorporates ideas from
constraint based mining in that a rich variety of constraints on target hypotheses
can be specified. The algorithm is also incorporated in the systemClassic’cl,
which is able to emulate many of its predecessors such as Claudien, Warmr,
c-Armr, CLLPad, as well as ICL and ICL-SAT, as well as some new settings.
Classic’cl is implemented in Prolog and it is available from the authors.

References

[1] H. Blockeel and L. De Raedt. Top-down induction of first order logical decision
trees. AI, 101(1-2):285–297, 1998.

[2] H. Blockeel, B. Dehaspe, L.and Demoen, and G. Janssens. Improving the efficiency
of inductive logic programming through the use of query packs. JAIR, 16:135–166,
2002.

[3] H. Blockeel, L. Dehaspe, J. Ramon, and J.Struyf. Ace - a combined system.
[4] L. De Raedt. Logical settings for concept-learning. AI, 95(1):187–201, 1997.
[5] L. De Raedt and L. Dehaspe. Clausal discovery. Machine Learning, 26:99–146,

1997.
[6] L. De Raedt and J. Ramon. Condensed representations for inductive logic pro-

gramming. In KR ’04, pages 438–446, 2004.
[7] L. De Raedt and W. Van Laer. Inductive constraint logic. In ALT95, volume 997

of LNAI. SV, 1995.
[8] L. Dehaspe. Frequent Pattern Discovery in First-Order Logic. K. U. Leuven, Dec.

1998.
[9] K. K. Kersting, T. Raiko, S. Kramer, and L. De Raedt. Towards discovering

structural signatures of protein folds based on logical hidden markov models. In
PSB 2003, pages 192–203, 2003.

[10] R. D. King, S. Muggleton, A. Srinivasan, and M. J. E. Sternberg. Structure-
activity relationships derived by machine learning: The use of atoms and their
bond connectivities to predict mutagenicity by inductive logic programming.
PNAS, 93:438–442, 1996.

[11] H. Mannila and H. Toivonen. Levelwise search and borders of theories in knowl-
edge discovery. In Data Mining and Knowledge Discovery, volume 1, 1997.

[12] S. Muggleton. Inverse entailment and Progol. New Generation Computing, Special
issue on Inductive Logic Programming, 13(3-4):245–286, 1995.

[13] S. Muggleton and L. De Raedt. Inductive logic programming: Theory and meth-
ods. Journal of Logic programming, 17(20):629–679, 1994.

[14] S. Muggleton, R. D. King, and M. J. E. Sternberg. Protein secondary structure
prediction using logic. In S. Muggleton, editor, ILP’92, Report ICOT TM-1182,
pages 228–259, 1992.

[15] F. Riguzzi. Learning logic programs with annotated disjunctions. In ILP’04, 2004.
[16] A. Srinivasan. The aleph manual.
[17] J. Vennekens, S. Verbaeten, and M. Bruynooghe. Logic programs with annotated

disjunctions. Technical report cw386, K.U. Leuven, 2003.

	Introduction
	The Descriptive ILP Problem
	Constraint Based Mining Problem
	Constraints for ILP
	Existing Descriptive ILP Systems

	The Descriptive ILP Algorithm
	Implementation Issues
	Experiments
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

