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Abstract. In this paper, we discuss a method of finding useful clusters
of web pages which are significant in the sense that their contents are
similar or closely related to ones of higher-ranked pages. Since we are
usually careless of pages with lower ranks, they are unconditionally dis-
carded even if their contents are similar to some pages with high ranks.
We try to extract such hidden pages together with significant higher-
ranked pages as a cluster.

In order to obtain such clusters, we first extract semantic correlations
among terms by applying Singular Value Decomposition(SVD) to the
term-document matrix generated from a corpus w.r.t. a specific topic.
Based on the correlations, we can evaluate potential similarities among
web pages from which we try to obtain clusters. The set of web pages
is represented as a weighted graph G based on the similarities and their
ranks. Our clusters can be found as pseudo-cliques in G. We present an
algorithm for finding Top-N weighted pseudo-cliques. Our experimen-
tal result shows that quite valuable clusters can be actually extracted
according to our method.

1 Introduction

We often try to obtain useful information or knowledge from web pages on
the Internet. Information retrieval (IR) systems are quite powerful and helpful
tools for this task. For instance, Google is well known as a popular IR system
with a useful search engine. Given some keywords we are interested in, such a
system shows a list of web pages that are related to the keywords. These pages
are usually ordered by some ranking mechanism adopted in the system. For
example, the method of PageRank [1] adopted in Google is widely known to
provide a good ranking.

In general, only some of the higher-ranked pages are actually browsed and
the others are discarded as less important ones, since the list given by the system
contains a large number of pages. However, such a system presents just one can-
didate of ranking from some viewpoint. Therefore, there might exist many pages
which are unfortunately lower-ranked but are significant for us. More concretely
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speaking, the ranking by PageRank is determined based on the link structure
of each web page. For example, pages without enough links from others tend to
be lower-ranked even if they have significant contents similar to higher ranked
pages. From this point of view, it would be worth investigating a framework
in which such implicitly significant pages are listed together with higher-ranked
pages. We discuss in this paper a method for finding useful clusters of web pages
which are significant in the sense that their contents are similar or closely related
to ones of higher-ranked pages.

1.1 Similarities Among Web Pages

In order to realize it, we first extract semantic correlations among terms by
applying Singular Value Decomposition(SVD) [3] to the term-document matrix
generated from a corpus gathered with respect to a specific topic. Given a set of
ranked web pages for which we try to extract clusters, we can evaluate potential
similarities among them based on the semantic correlations of terms. In previous
approaches, similarities among web pages are often determined based on the link
structure of web pages [2]. More concretely speaking, it has been considered that
web pages with similar topical contents have dense links among them. Such a
link structure might roughly reflect similarities among relatively mature pages.
However, many interesting pages are newly released day by day and it is often
difficult to expect a dense link structure of fresh pages. As the result, based
on the link-based approach, we will fail in finding similarities among such new
pages even if they have similar contents. On the other hand, we try to capture
similarities among web pages independently of their link structure.

1.2 Extracting Clusters by Clique Search

The set of web pages is then represented as a weighted undirected graph based
on the similarities and their ranks. If a pair of web pages has a similarity higher
than a given threshold, they are connected by an edge. Moreover, each vertex
(i.e. a web page) is assigned a weight so that higher-ranked pages have higher
weights. Our clusters can be extracted by finding pseudo-cliques in the graph
G. A pseudo-clique is defined as the union of several maximal cliques in G with
a required degree of overlap. Simple theoretical properties of pseudo-cliques are
presented. Based on the properties, we can obtain some pruning rules for pseudo-
clique search. We design a depth-first algorithm for finding pseudo-cliques whose
weights (evaluation values) are in the top N . Our preliminary experimental result
shows that a quite valuable cluster can be actually extracted as a pseudo-clique
in G.

One might claim that a naive method would be sufficient for extracting clus-
ters consisting of similar higher-ranked and lower-ranked pages. That is, for each
web page with a higher rank, we can gather lower-ranked pages similar to the
higher-ranked one. As well as this kind of clusters, our method can extract other
various kinds of clusters simultaneously by changing the weighting of web pages
in our graph construction process. Under some weighting, for example, a cluster



348 Y. Okubo, M. Haraguchi, and B. Shi

consisting of several pages which are moderately ranked might be obtained as in
the top N . In this sense, our method includes such a naive method.

Our method for extracting clusters by clique search is a general framework.
The literature [6,9] has investigated methods for finding appropriate data ab-
stractions (groupings) of attribute values for classification problems, where each
abstraction is extracted as a weighted exact clique. A gene expression data has
been also processed in [7]. A cluster consisting of genes which behave similarly
is extracted as an exact clique. The current pseudo-clique search can be viewed
as an extension of these previous search methods for exact cliques [6,7,8,9].

Our clique search-based method has advantage over previous clustering meth-
ods in the following points. In the traditional hierarchical or partitional cluster-
ing, the whole set of data is divided into some clusters. Although the number
of clusters is usually controlled by a user-defined parameter, it is well known
that providing an adequate value for the parameter is not so easy. Under an
inadequate parameter setting, we often obtain many useless clusters. From the
computational point of view, the cost for producing such useless clusters will be
quite waste. On the other hand, in our method, we can extract only nice clus-
ters whose evaluation values are in the top-N , where N can be given arbitrarily.
In this sense, we will never suffer from quite useless clusters. Furthermore, ex-
tracting only nice clusters has an advantage in the computation. We can enjoy
a branch-and-bound search in order to extract them. In our search, we do not
have to examine many branches concerning clusters not in the top N .

2 Semantic Similarity Among Web Pages

In order to find clusters of web pages, we have to measure similarities among
web pages. For the task, we follow a technique in Information Retrieval(IR) [3].

2.1 Term-Document Matrix

Let D be a set of documents and T the set of terms appeared in D 1. We
first remove too frequent and too infrequent terms from T . The set of remain-
ing terms, called feature terms, is denoted by T ∗. Supposing |T ∗| = n, each
document di ∈ D can be represented as an n-dimensional document vector
di = (tfi1, . . . , tfin)T , where tfij is the frequency of the term tj ∈ T ∗ in the doc-
ument di. Thus, D can be translated into a term-document matrix (d1, . . . , d|D|).

2.2 Extracting Semantic Similarity with SVD

For the term-document matrix, we apply Singular Value Decomposition(SVD)
in order to extract correlations among feature terms [3].

An m × n matrix A can be decomposed by applying SVD as A = UΣV T ,
where U and V are m × m and n × n orthogonal matrices, respectively. Each
1 In order to obtain such terms from documents without spaces among words (like

Japanese documents), we need to apply Morphological Analysis to D.
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column vector in U (V ) is called a left (right) singular vector. Σ is an m × n
matrix of the form

Σ =

⎡
⎢⎢⎢⎣

σ1 O

. . . Or×(n−r)
O σr

O(m−r)×r O(m−r)×(n−r)

⎤
⎥⎥⎥⎦,

where rank(A) = r (r ≤ min{m, n}) and σi is called a singular value. First r
left singular vectors u1, . . . , ur correspond to a orthonormal basis and define a
new subspace of the original one in which column vectors of A exist, where the
m × r matrix (u1, . . . , ur) is denoted by Ur.

Let us assume the matrix A is a term-document matrix generated from a set
of documents. Intuitively speaking, by applying SVD to A, we can capture poten-
tial but not presently evident correlations among the terms. Highly semantically
correlated terms give a base vector ui and define a dimension corresponding to
a compound term. Such new base vectors define a new subspace based on com-
pound terms. For documents d1 and d2 not in A, therefore, if they are projected
on the subspace, we can find similarity between them based on the semantic
correlations among terms captured from the original documents in A.

In order to take such semantic similarities of web pages into account, we
prepare a corpus of documents written about some specific topic. Then by ap-
plying SVD to the term-document matrix generated from the corpus, we obtain
a subspace reflecting semantic correlations among terms in the corpus. Let Ur

be the orthonormal basis defining the subspace 2.
Besides the corpus, with some keywords related to the corpus topic, we re-

trieve a set of web pages P from which we try to obtain clusters. Using the same
feature terms for the corpus, each document pi ∈ P is represented as a vector
pi = (tfi1, . . . , tfin)T , where tfij is the frequency of the feature term tj in pi.
Then each web page pi is projected on the subspace as pr

i = UT
r pi.

A similarity between web pages pi and pj , denoted by sim(pi, pj), is defined

based on the standard cosine measure, that is, sim(pi, pj) =
pr

i ·pr
j

‖pr
i ‖×‖pr

j ‖
.

3 Finding Clusters by Top-N Pseudo-Clique Search

3.1 Graph Representation of Web Pages

Let P be a set of web pages from which we try to extract clusters. In order to
find our clusters, P is represented as an undirected weighted graph G.

Assume we computed the semantic similarities among pages in P according
to the procedure just discussed above. Let δ be a similarity threshold. Each
2 In IR, we do not always use r left singular vectors. A part of them, that is, Uk =

(u1, . . . , uk) (k < r) is usually used for approximation. Such an approximation with
Uk is called Latent Semantic Indexing (LSI) [3].
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page pi ∈ P corresponds to a vertex in G. For any web pages pi, pj ∈ P , if
sim(pi, pj) ≥ δ, then they are connected by an edge. Furthermore, we assign a
weight to each vertex (page) based on its rank, where a higher-ranked page is
assigned a larger weight. The weight of a page p is referred to as w(p).

3.2 Top-N Weighted Pseudo-Clique Problem

Our cluster of similar pages can be obtained as a weighted pseudo-clique in the
graph G. In fact, we obtain only nice clusters by extracting maximal weighted
pseudo-cliques whose evaluation values are in the top-N . Before giving the prob-
lem description, we first define degree of overlap for a class of maximal cliques.

Definition 1 (Degree of Overlap for Maximal Clique Class). Let C =
{C1, . . . , Cm} be a class of maximal cliques. The degree of overlap for C, denoted
by overlap(C), is defined as overlap(C) = minCi∈C

{∣∣∩Cj∈CCj

∣∣ /|Ci|
}

.

Using the notion of overlap degree, our pseudo-cliques is defined as follows.

Definition 2 (Pseudo-Clique). Let C = {C1, . . . , Cm} be a class of maximal
cliques in a graph. pseudo(C) = ∪Ci∈CCi is called a pseudo-cliques with the
overlap degree overlap(C). Its size and weight (evaluation value) are given by
|pseudo(C)| and w(pseudo(C)) = Σv∈pseudo(C)w(v), respectively 3. Moreover, the
shared vertices,

⋂
Ci∈C Ci, is called the core.

We can now define the problem of finding Top-N weighted pseudo-cliques.

Definition 3 (Top-N Weighted Maximal τ Pseudo-Clique Problem).
Let G be a graph and τ a threshold for overlap degree. The Top-N Weighted
Maximal τ Pseudo-Clique Problem is to find any maximal pseudo-clique in G
such that its overlap degree is greater than or equal to τ 4 and its weight is in
the top N .

3.3 Algorithm for Finding Top-N Weighted Pseudo-Cliques

We present here an algorithm for finding Top-N weighted pseudo-cliques.
In our search, for a clique Q in G, we try to find a τ -valid pseudo-clique C̃

whose core is Q. In order to precisely discuss how it can be found, we introduce
a notion of extensible candidates for a given clique.

Definition 4 (Extensible Candidates). Let G be a graph and Q a clique
in G. A vertex v ∈ V adjacent to any vertex in Q is called an extensible candidate
for Q. The set of extensible candidates is denoted by cand(Q).

From the definition, we can easily observe the followings.
3 The weight of pseudo-clique is not restricted to the sum of vertex weights. Any

monotone weight under the set inclusion can be accepted in the following discussion.
4 Such a pseudo-clique is said to be τ -valid.
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Observation 1. Let Q and Q′ be cliques in G such that Q ⊆ Q′. Then,
cand(Q) ⊇ cand(Q′) and w(Q) + w(cand(Q)) ≥ w(Q′) + w(cand(Q′)) hold,
where w(Q) is the weight of the clique Q.

Note here that the weight of a pseudo-clique with the core Q is at most
w(Q) + w(cand(Q)). Therefore, a simple theoretical property can be derived.

Observation 2. Let Q be a clique. Assume we already have tentative Top-N
weighted maximal pseudo-cliques and the minimum weight of them is wmin. If
w(Q) + w(cand(Q)) < wmin holds, then for any extension Q′ of Q5, there exists
no pseudo-clique with the core Q′ whose weight is in the top N .

Assume that a τ -valid pseudo-clique C̃ contains a clique Q as its core. C̃
can be obtained as the union of any maximal clique C such that Q ⊂ C and
|Q|/|C| ≥ τ . It should be noted here that for such a clique C, there exists a
maximal clique D in G(cand(Q)) such that Q ∪ D = C, where G(cand(Q)) is
the subgraph induced by cand(G). That is, finding any maximal clique D in
G(cand(Q)) such that |Q|/(|Q| + |D|) ≥ τ is sufficient to obtain the pseudo-
clique C̃. Although one might claim that such a task is quite expensive from
the computational point of view, we can enjoy a pruning in the maximal clique
search based on the following observation.

Observation 3. For a clique Q in G, let us assume that we try to find a τ -
valid pseudo-clique C̃ whose core is Q. For a clique D in G(cand(Q)), if |D| >
( 1

τ − 1) · |Q|, then any extension of D is useless for obtaining C̃.

Furthermore, in a certain case, we can immediately obtain a pseudo-clique
without finding maximal cliques in G(cand(Q)).

Observation 4. Let Q be a clique in G and τ a threshold for overlap degree.
If the followings hold, then Q∪cand(Q) is a τ -valid maximal pseudo-clique with
the core Q.

– ( 1
τ − 1) · |Q| ≥ k holds, where k is an upper bound of the maximum clique

size in G(cand(Q)).
– For any v ∈ cand(Q), its degree in G(cand(Q)) is less than |cand(Q)| − 1.

Upper bounds for the maximum clique size have been widely utilized in
efficient depth-first branch-and-bound algorithms for finding maximum cliques
[4,5,9]. The literature [5] has argued that the (vertex) chromatic number χ can
provide the tightest upper bound. However, identifying χ is an NP -complete
problem. Therefore, approximations of χ are usually computed [4,5,9].

Based on the above properties, Top-N τ -valid weighted pseudo-cliques can
be extracted with a depth-first hybrid search. For each core candidate Q, its
surroundings are explored by finding maximal cliques in G(cand(Q)). In the
search for core candidates, we can enjoy a pruning based on Observation 2.
In the surroundings search, a pruning based on Observation 3 can be applied.
Furthermore, for some core candidates, our surroundings search can be skipped
based on Observation 4. More precise description of our algorithm is found in [10].
5 For a pair of cliques Q and Q′, if Q ⊂ Q′, then Q′ is called an extension of Q.
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4 Experimental Result

In this section, we present a result of our experimentation conducted on a PC
with Xeon-2.4 GHz and 512MB RAM.

We have manually prepared a (Japanese) corpus with 100 documents written
about “Hokkaido” and have selected 211 feature terms from the corpus. Applying
SVD to the 211 × 100 matrix, a 98-dimensional subspace has been obtained.

Besides the corpus, we have retrieved 829 web pages by Google with the
keywords “Hokkaido” and “Sightseeing”. The 211× 829 term-document matrix
for the pages has been projected on the subspace in order to capture semantic
similarities among pages. Under the setting of δ = 0.95, we have constructed a
weighted graph G from the projected pages. The numbers of vertices and edges
are 829 and 798, respectively. Each page d has been given a weight defined as
w(d) = 1/rank(d)2, where rank(d) is the rank of d assigned by Google (PageR-
ank). We have tried to extract Top-15 weighted 0.8-pseudo cliques in the graph.

Among the extracted 15 clusters (pseudo-cliques), the authors especially con-
sider that the 11th one is quite interesting. It consists of 6 pages with the ranks,
11th, 381th, 416th, 797th, 798th and 826th. The 11th and 328th pages are index
pages for travel information and we can make reservations for many hotels via
the pages. The 416th page is an article in a private BBS site for travels. It re-
ports on a private travel in Hokkaido and provides an actual information about
hotels and enjoyable foods. The 797th and 798th personal pages give the names
of two hotels serving smorgasbords in Hokkaido. The 826th page lists hotels most
frequently reserved in a famous travel site in 2004. Thus, their contents are very
similar in the sense that all of them give some information about accommoda-
tions in Hokkaido, especially about hotels and foods. When we try to make travel
plans for sightseeing in Hokkaido, we would often care about hotels and foods
as important factors. In such a case, the cluster will be surely helpful for us.

Similar to the literature [8], we can find Top-N clusters of web pages by
an exact clique search. In that case, however, our 11th cluster can never be
obtained. The cluster (that is, a pseudo-clique) consists of two exact maximal
cliques: {11th, 382nd, 797th, 798th, 826th} and {382nd, 416th, 797th, 798th, 826th}.
In the exact case, the former is 11th cluster, whereas the latter 343rd one. It
should be noted that the 416th page will be invisible unless we specify a large
N for Top-N (about 350). However, it would be impractical to specify such a
large N because many clusters are undesirably extracted. Although 416th page
has valuable contents as mentioned above, we will lose a chance to browse it.

In case of pseudo-clique search, the 343rd exact clique can be absorbed into
the 11th clique to form a pseudo-clique. That is, the 343rd cluster can be drasti-
cally raised its rank. As the result, 416th page can become visible by just speci-
fying a reasonable N . Thus, our chance to get significant lower-ranked pages can
be enhanced with the help of pseudo-cliques.

Our experimental result also shows that our pruning rules can be applied
very frequently in our search. The number of cores actually examined was 69981
and our pruning were invoked at 40832 nodes of them. As the result, the total
computation time was just 0.847 second.
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5 Concluding Remarks

In this paper, we discussed a method of finding clusters of web pages which are
significant in the sense that their contents are similar or closely related to ones of
higher-ranked pages. Although we are usually careless of pages with lower ranks,
they can be explicitly extracted together with significant higher-ranked pages.
As the result, our clusters can provide new valuable information for users.

Obtained clusters are very sensitive to the assignment of vertex weights in
our graph construction process. Although the reciprocal of the page rank squared
currently adopted seems to be promising, we have to examine any other candi-
dates. Furthermore, the required degree of overlap for pseudo-cliques also affects
which clusters can be found. In order to obtain good heuristics for these settings,
further experimentations should be conducted.

A meaningful cluster should have a clear explanation why the pages in the
cluster are grouped together or what the common features in the cluster are.
Our current method, unfortunately, does not have any mechanism to provide
it clearly. If such a explanation mechanism is integrated, our clusters would be
more convincing. An improvement on this point is currently ongoing.
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