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Abstract. This paper proposes a novel system to discover simultaneous
time differential law equations reflecting first principles underlying objec-
tive processes. The system has the power to discover equations containing
hidden state variables and/or representing chaotic dynamics without us-
ing any detailed domain knowledge. These tasks have not been addressed
in any mathematical and engineering domains in spite of their essential
importance. Its promising performance is demonstrated through appli-
cations to both mathematical and engineering examples.

1 Introduction

A set of well known pioneering approaches of scientific law equation discovery
is called BACON family [1]. They try to figure out a static equation on mul-
tiple quantities over a wide state range under a given laboratory experiment
where quantities are actively controlled. Their drawback is the low likelihood to
discover the law equations, since they do not use certain essential criteria to cap-
ture relations induced by the first principles. A law equation reflecting the first
principle here is an observable, reproducible and concise relation satisfying gen-
erality, soundness and mathematical admissibility. The generality is to be widely
observed in the objective domain of the equation, the soundness not to conflict
with any observations and the mathematical admissibility to follow some con-
straints deduced from the invariance of the relation under various times, places
and measurement expressions. Especially, the mathematical admissibility can be
used to narrow down the equation formulae for the search. Some systems intro-
duced unit dimension constraints and “scale-type constraints” to limit the search
space to mathematically admissible equations [2,3,4]. Especially, the scale-type
constraints have wide applicability since they do not need unit information of
quantities. LAGRANGE addressed the discovery of “simultaneous time differ-
ential law equations” reflecting the dynamics of objective processes under “pas-
sive observations” where none of quantities are experimentally controllable [5].
Its extended version called LAGRAMGE introduced domain knowledge of the
objective process to limit the search space within plausible law equations [6].
IPM having similar functions with LAGRAMGE further identified plausible law
equations containing “hidden state variables” when the variables are known in
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the detailed domain knowledge [7]. PRET identified “chaotic dynamics” under
similar conditions where very rich domain knowledge is available [8].

However, scientists and engineers can develop good models of the objective
dynamics without using the discovery systems in many practical cases when de-
tailed domain knowledge is available. Accordingly, the main applications of the
discovery systems are to identify simultaneous time differential equations reflect-
ing the first principles under passive observation and “little domain knowledge.”
One of such important applications is the discovery of “hidden state variables.”
In many problems, some state variables are not directly observed, and even the
number of unobserved state variables is not known. Another important issue is
the analysis of the observed data representing “chaotic dynamics.” If the de-
tailed domain knowledge on the dynamics underlying the chaos is given, some of
the aforementioned systems can construct the dynamic equations appropriately
representing the chaos. However, scientists can hardly grasp the dynamic laws on
many chaotic behaviors based on their domain knowledge, since the background
mechanisms of the chaos are usually very complex [9].

In this paper, we propose a novel scientific equation discovery system called
SCALETRACK (SCALE-types and state TRACKing based discovery system)
to discover a model of an objective process under the following requirements.

(1) The model is simultaneous time differential equations representing the dy-
namics of an objective process.

(2) The model is not an approximation but a plausible candidate to represent
the underlying first principles.

(3) The model is discovered from passively observed data without using domain
knowledge specific to the objective process.

(4) The model can include hidden state variables.
(5) The model can represent chaotic dynamics.

2 Outline

2.1 Basic Problem Setting

We adopt the following “state space model” of objective dynamics and measure-
ment without loss of generality.

ẋ(t) = f(x(t)) + v(t) (v(t) ∼ N(0,Σv)), and (1)
y(t) = Cx(t) + w(t) (w(t) ∼ N(0,Σw)), (2)

where the first equation is called a “state equation” and the second a “mea-
surement equation.” x is called a state vector, f(x) a system function, v a
process noise vector, y a measurement vector, C a measurement matrix, w a
measurement noise and t a time index. f(x), a model of the objective dynam-
ics over its wide state range, is not limited to linear formulae in general, and
any state transition of x can be represented by this formulation. C, the model
of measurement, is represented by a linear transformation matrix, because the
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measurement facilities are artificial and linear in most cases, and some state
variables in x are often observed indirectly as their linear combinations through
measurement variables in y. If C is column full rank, the values of all state
variables with the measurement noise are estimated by solving the measurement
equation with x. Otherwise, some state variables are not estimated within the
measurement equation, and these variables are called “hidden state variables.”

In the scientific law equation discovery, f(x) is initially unknown, and even x
is not known correctly. Only a state subvector x′(⊆ x) and a submatrix C′(⊆ C)
representing an artificial measurement facility are initially known to relate x′

with y as y = C′x′. To derive C from C′, the number of missing state variables,
i.e., the difference between the dimensions of x and x′, must be estimated. Thus,
SCALETRACK identifies the number of elements in x including hidden state
variables based on passively observed data at first. Then, it searches plausible
candidates of f(x) reflecting the first principles from the data.

2.2 Entire Approach

The entire approach of SCALETRACK is outlined in Figure 1. Given a set of
measurement data, the dimension of x is identified through a statistical anal-
ysis called “correlation dimension analysis.” Once the dimension is known, all
possible combinations of scale-types of the elements in x are enumerated based
on scale-type constraints, the known measurement submatrix C′ and the known
scale-types of the elements in y. Then, for every combination, the candidate for-
mulae of a state equation admissible to the scale-type constraints are generated.
Subsequently, through a set of state tracking simulations called “SIS/RMC filter”
combined with parameter search on the given measurement data, the parame-
ter values in every candidate formula are estimated. Finally, some candidates
providing highly accurate tracking in terms of “Mean Square Error (MSE)” are
selected as the discovered dynamic models of the objective process. The details
of each step in Figure 1 are described in the following section.

3 Methods

3.1 Estimating Dimension of x

“Correlation dimension analysis” estimates the dimension of x, dim(x), from
given measurement data y over n sampling time steps [9]. Given an element
yh (h = 1, .., dim(y)) of y, let τh be the minimum time step lag that the time
lagged autocorrelation of yh(t) becomes 0 as follows.

τh = argminτ∈[1,n]{
1
n

n−τ∑

t=1

(yh(t) − ȳh)(yh(t + τ) − ȳh) � 0}, (3)

where ȳh is the time average of yh(t) over [1, n]. τh is the time steps within that
the local dependency among the observed states is vanished. Then the following
time lagged vectors of length m are constructed from yh.
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Fig. 1. Outline of SCALETRACK

Y m
h (1) = [yh(1), yh(1 + τh), . . . , yh(1 + (m − 1)τh)]
· · · · · · · · ·

Y m
h (n − (m − 1)τh) = [yh(n − (m − 1)τh), yh(n − (m − 2)τh), . . . , yh(n)]

If m is sufficiently large, each of these vectors reflects a global relation among
the states, since the time intervals among the elements in a vector are equal to
or longer than τh. Then the following correlation integral in the time lagged
phase space is calculated.

Rm
h (r) =

2
n′(n′ − 1)

[number of (i, j)s; ∆Y m
h (i, j) < r], (4)

where n′ = n − (m − 1), 1 ≤ i, j ≤ n′ and ∆Y m
h (i, j) = |Y m

h (i) − Y m
h (j)|. Rm

h (r)
represents the density of states in the space, and shows the following power law
relation in general over the range of r covering the state distribution.

Rm
h (r) ∝ rνh(m), (5)

where νh(m) is called a “correlation exponent.” Theoretically it is an approxima-
tion of the fractal dimension of the global state distribution which is equivalent
to dim(x) under the condition of m ≥ 2dim(x)+1. dim(x) is estimated through
the least square fitting of Eq.(5) to Rm

h (r)s derived by Eq.(4) under a sufficiently
large m. νh(m) is computed for each yh (h = 1, .., dim(y)), and the nearest in-
teger of its maximum, νmax(m), among them is used for dim(x), since some
measurement variables may miss the behaviors of some state variables.
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3.2 Identifying Scale-Types of x

Once dim(x) is known, the “scale-type” of each element of x is identified for
the candidate f(x) generation in the next step. This is done based on “scale-
type constraints” [10] and the scale-types of elements of y. Representatives of
quantitative scale-types are ratio scale and interval scale. Examples of the ratio
scale quantities are physical mass and absolute temperature where each has an
absolute origin. The admissible unit conversion of the ratio scale follows x′ = αx.
Examples of the interval scale quantities are temperature in Celsius and sound
pitch where the origins of their scales are not absolute and arbitrary changed by
human’s definitions. The admissible unit conversion of the interval scale follows
x′ = αx + β. Though the scale-type is strongly related with the unit dimension,
they are different each other.

As noted in the previous section, only a state subvector x′(⊆ x) is measured
by y through a measurement facility C′(⊆ C) as y = C′x′. Because the
structure of the facility is independent of the units of the elements of x′ and y,
C′ is invariant against the change of their units. Then the following theorem
holds.

Linear Formula Theorem. Let x′ be a known state subvector of x, yh an
element of a measurement vector y and x′

h a state subvector of x′ where each
xi ∈ x′

h has a nonzero (h, i)-element, chi, in the known measurement submatrix
C′. The scale-types of xis in x′

h are constrained by the scale-type of yh and the
following rules.
(1) If yh is a ratio scale, all xis are ratio scales, or more than one xi are interval

scales and the rest ratio scales.
(2) If yh is an interval scale, one xi at least is an interval scale and the rest

ratio scales.
Proof. Because of the relation y = C′x′, yh =

∑
xi∈x′

h
chixi holds. Let the set

of interval scale quantities in x′
h be Ih. Every xi ∈ Ih follows the admissible

unit conversion x′
i = αixi + βi, and every xi in the rest, i.e., ratio scales,

follows x′
i = αixi. When yh is a ratio scale, it follows y′

h = αyh. Because of
the invariance of C′, y′

h =
∑

x′
i∈x′

h
chix

′
i holds. By substituting the admissible

unit conversions and yh =
∑

xi∈x′
h

chixi to this linear relation, the following is
obtained.

∑

xi∈x′
h

αchixi =
∑

xi∈x′
h

chiαixi +
∑

xi∈Ih

chiβi

Because this is an identity equation for every xi ∈ x′
h, αi = α for every xi and∑

xi∈Ih
chiβi = 0 hold. If Ih is empty, the last relation trivially holds. If Ih has

only a unique xi, βi = 0 must hold, and this is contradictory to the interval
scale xi ∈ Ih. If Ih has more than one xi, the last relation can hold for non-zero
βis while βis are mutually dependent in the relation. This concludes the rule
(1). When yh is an interval scale, it follows y′

h = αyh + β. Through the similar
discussion with the rule (1),

∑
xi∈Ih

chiβi = β hold. If Ih is empty, β = 0 must
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hold, and this is contradictory to the interval scale yh. If Ih is not empty, this
relation can hold for non-zero βis and β while they are mutually dependent in
the relation. This concludes the rule (2).

Based on this theorem and the scale-types of all yh ∈ y, a set of constraints
on the scale-types of all xi ∈ x′ is obtained. Because the scale-types of all xi ∈ x
which are not in x′ are unknown, they can be either ratio or interval scale.
Then, every admissible combination (Rx, Ix) where Rx is a set of ratio scale
state variables and Ix a set of interval scale state variables in x satisfying these
constraints are enumerated by using a simple search. Though this search is com-
binatorial, it is tractable in practice as far as the dimension of x is not very large.

3.3 Generating Candidate State Equations

“Extended Product Theorem” [4] provides a basis of the candidate generation
of state equations. This theorem comes from the invariance of the formula
shape against the unit conversions and the scale-type constraints similarly to
the aforementioned Linear Formula Theorem, and it has been used in several
law equation discovery systems in the past. The following is the theorem where
some notions are adapted to our descriptions.

Extended Product Theorem. Given a combination (Rx, Ix) for x, the state
variables have the following relation.

ẋi =
∏

xj∈Rx

|xj |αj

∏

Ik⊆(Ix−Ig)

(
∑

xj∈Ik

βkj |xj | + βk)αk

∏

xj∈Ig

exp(βgj |xj |)

where xi ∈ Rx ∪ Ix, all coefficients are constants, Ig a subset of Ix, and {Ik} a
covering of (Ix − Ig).

In a state equation ẋ(t) = f(x(t)), all elements in ẋ are ratio scales, since the
time derivative of an element of x is the difference of two states divided by a time
interval in essence. The formulae following this theorem are called “regimes”
having the invariance against the unit conversions. Since this is a required
character of the formulae to represent the first principles, the candidates have
high plausibility to be law equations. Under ratio scale time derivatives ẋ and
a given combination (Rx, Ix), the multiple candidates of a state equation are
enumerated based on this theorem. The set of combinations of (Rx, Ix) de-
rived in the previous step provides a set of many candidate state equations, CSE.

3.4 Evaluating Candidate State Equations

Once CSE for an objective process is provided in the previous step, a fitting
error E(c) of every candidate c ∈ CSE under given measurement data is
evaluated through adjustment of its coefficients and state tracking.

Searching for Power Coefficients. As shown in Extended Product Theo-
rem, the formulae of the state equations have two types of constants, i.e., power
coefficients αs and proportional coefficients βs. The search space of a power
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Table 1. Nonlinearity of T α.

case of α range of T nonlinearlity
range parity
α > 1 α T ≥ 0 monotonic increase

is even. T < 0 monotonic decrease
0 < α < 1 1/α T ≥ 0 monotonic increase

is even. T < 0 not admissible
α > 0 α or 1/α T ≥ 0 monotonic increase

is odd. T < 0 monotonic increase
α = 0 1
α < 0 α or 1/α T ≥ 0 monotonic decrease

is odd. T < 0 monotonic decrease
−1 < α < 0 1/α T ≥ 0 monotonic decrease

is even. T < 0 not admissible
α < −1 α T ≥ 0 monotonic decrease

is even. T < 0 monotonic increase
where T → 0 ⇒ T α → 0(α > 0) and T α → ±∞(α < 0).

coefficient α is limited to small integers, within [−5, 5] for instance, and their
inverses. This is because the power coefficients reflect the dimensions of space
and units where the objective process operates, and their complexities are lim-
ited. Moreover, given a term T having a power coefficient α in the formulae of
Extended Product Theorem, the range and the parity of α strongly affect the
nonlinearity of Tα as shown in Table 1. Because of these discrete characteristics
of α, the standard approaches for continuous and nonlinear optimization such
as gradient descent method are not applicable. Instead, for every combination
of the cases over all αs appearing in the candidate c, a monotonic and discrete
search on integer αs is applied to reduce the fitting error E(c). Because the num-
ber of αs in c is not very large, this part does not cause severe combinatorial
explosion.

Searching for Proportional Coefficients. The search of the proportional
coefficients βs minimizing E(c) under every combination of αs provided in
abovementioned scheme is performed. We experienced in our preliminary study
that the standard nonlinear optimization of βs such as gradient descent method
again does not converge to their right values within tractable time, because the
influence of some βs to ẋi can be very small under some αs. Accordingly, the
following Golden Ratio Search [11] which is a well-known opportunistic line
search without using the quantitative gradient information has been applied to
βs. Under a combination of values of all αs and a combination of default values
of all βs appearing in c, given initial upper bound βu

j and lower bound βl
j of

βj in c, E(c)s are evaluated on the following β1
j and β2

j by the state tracking
which will be described shortly.

β1
j = βl

j + r(βu
j − βl

j), and (6)

β2
j = βu

j − r(βu
j − βl

j), (7)
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where r = (3 −
√

5)/2 is the golden ratio. Let E(c)s evaluated on β1
j and β2

j be
E(c|β1

j ) and E(c|β2
j ) respectively. If E(c|β1

j ) ≥ E(c|β2
j ) then β1

j → βl
j , β2

j → β1
j

and calculate new β2
j by Eq.(7), else β2

j → βu
j , β1

j → β2
j and calculate new β1

j

by Eq.(6). This rule is applied iteratively until |β2
j − β1

j | becomes less than a
threshold ε. After this convergence, the converged value becomes a new default
value of βj . Subsequently, another β in c is selected in place of βj , and this
Golden Ratio Search is repeated until the default values of all βs in c becomes
stable. Finally, the estimated βs are rounded off to integers when the values
are close enough to the integers within the statistically expected estimation
errors, since the parameters tend to be integers in many physical processes.
After obtaining values of all βs for each combination of values of all αs, the
unique combination of values of all αs, Ac, and that of all βs, Bc, providing the
minimum E(c) is chosen to be the coefficients of c.

State Tracking. Given a time series of measurement vector y(t)s, a candidate
state equation c and its Ac ∪Bc, the fitting error E(c) is evaluated through state
tracking. The recent massive increase in computational power became to allow
the introduction of direct and sequential Monte Carlo integration of the state
probability distributions within Bayesian framework. This approach is called
“Sequential Importance Sampling/Resampling Monte Carlo filter (SIS/RMC fil-
ter)” [12], and can track the states generated in c without introducing any es-
sential approximation. This state tracking has many advantages comparing with
the other nonlinear state tracking approaches such as the conventional Extended
Kalman Filter [13] and the qualitative reasoning based PRET [8]. The former us-
ing the linearization of the state equations does not work well when the equations
include some singular points and/or some state regions having strong sensitivity
to the tracking error. The latter faces a combinatorial explosion of qualitative
states when the dimension and/or the complexity of the state space structure
are high. In contrast, SIS/RMC filter does not require any approximation to
be spoiled by the singularity and the strong nonlinearity, and does not face the
combinatorial explosion of the states to be considered.

Because of the space limit, readers should refer the literature [12] to learn
the background theory of SIS/RMC filter. In this paper, only the procedure
of the state tracking adapted to our basic problem setting is indicated. The
SIS/RMC filter is represented by the following procedures where the probabilities
p(x(t)|x(t − 1),y(t)) and p(y(t)|x(t − 1)) are defined by y(t), c and its Ac ∪ Bc.

1 Importance sampling
(1-1) For i = 1, ..., N , sample x̃(i)(t) ∼ p(x(t)|x(i)(t − 1),y(t)).
(1-2) For i = 1, ..., N , evaluate the importance weights:

w∗(i)(t) = w∗(i)(t − 1)p(y(t)|x(i)(t − 1)).

(1-3) For i = 1, ..., N , normalize the importance weights: w̃(i)(t)= w∗(i)(t)∑ N
j=1 w∗(j)(t)

.

(1-4) Let MAP estimation, x̃(t), be x̃(i)(t) having the maximum w̃(i)(t).
(1-5) Neff = 1∑ N

i=1(w̃
(i)
k )2

.
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(1-6) If Neff ≥ Nthres then x(i)(t) = x̃(i)(t) for i = 1, ..., N , t = t + 1 and go
to 1. Otherwise go to 2.

2 Resampling
(2-1) Generate random integers j(i) (i = 1, ..., N) in proportion to the proba-

bilities w̃(l)(t) (l = 1, ..., N) so that l having larger w̃(l)(t) appears more
as j(i).

(2-2) x(i)(t) = x̃j(i)(t), w(i)(t) = 1/N for i = 1, ..., N , t = t + 1 and go to 1.

In the importance sampling, many x̃(i)(t)s called “particles” derive “Maximum A
Posteriori (MAP)” estimation of the state vector in concert with the normalized
weight w̃(i)(t). An index Neff monitors the ratio of probable particles having
high weights. When the ratio becomes lower than a predefined threshold Nthres,
resampling is applied to increase the probable particles.

Once the MAP estimation x̃(t)s are obtained over t = 1, ..., n time
steps, the time series of ỹ(t)s (t = 1, ..., n) are estimated via Eq.(2). Then the
fitting error E(c) can be evaluated by the following “Mean Square Error (MSE).”

E(c) =
1
n

n∑

t=1

|y(t) − ỹ(t)|2

3.5 Selecting Accurate State Equations

The previous steps provide CSE and < c,Ac ∪ Bc, E(c) > for all c ∈ CSE.
The solutions < c,Ac ∪ Bc, E(c) > having the top K accuracy, i.e. the K least
E(c)s, are selected as discovered dynamic state equations in large CSE. The
value of K is empirically chosen according to the complexity of the objective
process and the quality of measurement data. K = 5 is used throughout this
paper to check the variation of the search space.

4 Result

4.1 Implementation

The evaluation of candidate state equations by the SIS/RMC filter is the most
time consuming step. Any search can not be skipped, since the search space
is discrete and nonmonotonic. We experienced that one run of a stand alone
SCALETRACK to discover a simple state equation took more than weeks even
if we used an efficient algorithm. Accordingly, the current SCALETRACK
introduced a simple grid computing framework using a PC cluster consisting of
a control server and 10 clients, where the server has an AthlonXP1900+ 1.6GHz
CPU and 2GB RAM, and each client has an AthlonXP3000+ 2.7GHz and
512MB RAM. The server computes the first three steps and then allocates the
task to evaluate 10% of candidate state equations to each computer. Because
this task is mutually independent, and occupies the most of computation of
SCALETRACK, this implementation accelerates the run speed almost 10 times.
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4.2 Basic Performance Evaluation

Basic performance of SCALETRACK in terms of scale-types of state variables,
hidden state variables and measurement noise levels is evaluated by using the
following two artificial formulae of two dimensions.

ẋ1(t) = x1(t)x2(t)
ẋ2(t) = −0.5x1(t)

}
RR,

where y1 = x1 and y2 = x2 are ratio scale.

ẋ1(t) = 0.4x1(t)(x2(t) + 0.2)
ẋ2(t) = −0.1(x2(t) + 0.6)

}
RI,

where y1 = x1 is ratio scale and y2 = x2 interval scale. The measurement data
were generated by the simulations under one time step ∆t = 0.005 and total
steps n = 600. Empirically, m in the correlation dimension analysis and N in
the state tracking were chosen to be 7 and 500 respectively. The process noise
is set to be 0 to check the pure effect of the measurement noise. These settings
were used in every demonstration in the rest of this paper.

Table 2. Basic Performance

case νmax(7) ct (h) σw(%)
0.1 0.5 1.0 2.0 5.0

RR 2.21 1.5 + ± ± ± −
RRH 2.21 5.5 ± ± − − −
RI 2.19 4.0 + ± ± ± −

RIH 2.19 5.5 + ± − − −
ct is a required comp. time and σw a measurement noise level.

Table 2 shows the result of the evaluation. The case names, RR and RI, in the
table correspond to the above two state equations, and RRH and RIH are the
cases where the second measurement variable y2 is not available, and hence x2
is hidden. The correlation dimension analysis properly estimated the dimension
of state vectors as nearly 2 in each case, and thus two state variables were
assumed in the subsequent steps. The computation times required for RRH, RI
and RIH were longer than that of RR, because the variety of admissible formulae
containing interval scale variables is larger than that of ratio scale variables. The
result in that the formula having the correct shape is top ranked by the accuracy
is marked by + in the table. If the formula having the correct shape is derived
within the top five solutions, it is marked by ±, otherwise it is marked by −.
The table shows that almost 2.0% relative noise is acceptable for the discovery
of the correct formulae, if all state variables are measured. On the other hand,
noise less than 1.0% is required to discover the correct formulae, if a hidden state
variable exists. Similar results were obtained under the other n samplings more
than a hundred. Since 0.5 − 2.0% noise is widely seen in many scientific and
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engineering process measurements, the basic performance of SCALETRACK is
considered to be acceptable for practical use, though further improvements on
the noise robustness is needed in future study.

4.3 Discovery of Circuit Dynamics

SCALETRACK has been applied to synthetic data of an electric circuit
consisting of LCs and a Field Effect Transister (FET) as shown in Figure 2 . Its
state equation is represented as follows.

V̇I(t) = −I(t)
C1

= −100I(t), İ(t) =
VI(t)

L
= 50VI(t), and

V̇F (t) =
VI(t)VF (t)

rC2
= 250VI(t)VF (t),

where the definitions of VI , I, VF , L = 20mH,C1 = 10mF and C2 = 1mF are
clear in the figure, and r = 4.0ΩV is a voltage-resistance coefficient of the FET.
All state variables are ratio scale, and can be measured via corresponding ratio
scale measurement variables respectively. The measurement data were sampled
under one time step ∆t = 0.001, total time steps n = 800 and relative noise level
σw = 1.0%. Because νmax(7) = 2.94 was obtained in the correlation dimension
analysis, the state equations consisting of three state variables were searched.

Fig. 2. An LC and FET Circuit

When every state variables are directly measured, the computation time
was 18.5 hours, and the following equation having the best accuracy was derived.

V̇I(t) = −133.3I(t), İ(t) = 60.2VI(t), and
V̇F (t) = 249.0VI(t)VF (t).

Though the values of coefficients are moderately different from the the originals,
the entire shape of the formulae is identical. Next, the measurement of I was
omitted to make I a hidden state variable. The computation time was 24 hours.
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In this case, the following correct formula except the discrepancy of coefficient
values showed up within the solutions having top five accuracies.

V̇I(t) = −26.9I(t), İ(t) = 298.0VI(t), and
V̇F (t) = 250.0VI(t)VF (t).

These results indicate that SCALETRACK has ability to discover state equa-
tions of engineering objects having three dimensional dynamics.

4.4 Discovery of Chaos

The future state of a chaotic process will never be identical with its past state,
and thus the state changes as if it is partially at random. Due to this nature, the
state of the process gradually loses the dependency on its past state in a long
term, and this makes harder to identify the dynamic equations governing the
process. Nevertheless the trajectory of the state evolution is determined by the
current state in the chaotic dynamics. Accordingly, the dynamic equation of the
process can be discovered, if the state of the process is observed in sufficiently
short sampling intervals comparing with the term length in which the state
dependency dies out. Because the maximum term length of the state dependency
is known by τh of Eq.(3) introduced in the aforementioned correlation analysis,
the appropriate sampling interval can be easily known.

Under this consideration, the identification of chaotic dynamics was at-
tempted. The state equation to be discovered is the following Altered Rossler
Chaos.

ẋ1 = −x2 − x3, ẋ2 = x1 + 0.36 ∗ x2, and
ẋ3 = 0.01 ∗ (x1 − 4.5) ∗ (x1 + 1000 ∗ x3 − 4.5).

This has an attractor in a (x1, x2, x3)-phase space as depicted in Figure 3. All
state variables are interval scale, and can be measured through the correspond-
ing interval scale measurement variables respectively. The measurement data

Fig. 3. An Attractor of Altered Rossler Chaos
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were simulated under one time step ∆t = 0.001, total time steps n = 1500 and
relative noise level σw = 1.0%. Because νmax(7) = 3.33 was obtained in the
correlation dimension analysis, SCALETRACK searched for state equations
consisting of three state variables. The computation time was 15.0 hours, and
SCALETRACK resulted the following most accurate state equation. This
formula has an identical shape with the original except some discrepancies of
coefficients. This result indicates the high ability of SCALETRACK to discover
the dynamic models of chaotic behaviors reflecting the underlying first principles.

ẋ1 = −x2 − x3, ẋ2 = x1 + 0.33 ∗ x2, and
ẋ3 = 0.064 ∗ (x1 − 6.34) ∗ (x1 + 1002 ∗ x3 − 4.75).

5 Discussion

SCALETRACK is the first discovery system which introduced a state tracking
approach in the search mechanism. In the demonstrations, the discrepancies of
coefficient values are frequently observed. This may be because the particles
and the weights are updated to follow the time series of y(t)s at each time
step in the SIS/RMC filter. This correction derives the robustness of the state
tracking, but reduces the precision of the coefficient values. This may be a reason
why the standard approaches for continuous and nonlinear optimization of the
coefficients such as gradient descent do not perform well in the search. Another
observation is that the candidate state equations top ranked by the accuracy
often have formulae shapes different from the originals. This also may be due to
the robustness of the state tacking against the modeling error in addition to the
existence of many local minima of the accuracy in the nonlinear search space.
Accordingly, the performance improvement of SCALETRACK is expected by
introducing less robust state tracking, and this is a future research topic.

Another remaining issue is the current limitation of the search space. The
search space of SCALETRACK is currently limited to a class of equation for-
mulae called “regime”s specified by Extended Product Theorem. Although this
class captures ample law equation formulae, another class of dynamic equations
called “ensemble”s which are coupled with dimensionless variables are known
not to be covered by this class. Further extension of criteria and algorithm for
the search must be introduced in future while maintaining the tractability of the
computation.

Introducing further valid constraints to narrow down the formulae within
the law equations may enhance the plausibility of the discovered equations while
reducing the search space. One of the candidate constraints is the relational
templates representing conservation and flow of entities and interactions similar
to Bond-Graph approach [14]. Though this type of constraints significantly
contributes to the plausibility and the search space reduction in some domains
including physics, they may not be applied to the wider domains such as economy
and psychology where these templates do not hold, and thus the discovery sys-
tems become domain dependent. Introduction of new search constraints must be
explored by carefully considering both the domain dependency and the efficiency.
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6 Conclusion

SCALETRACK achieved three advantages which has not been addressed in
any past work of mathematics, physics and engineering not limited to scientific
discovery. The first is the discovery of first principle based simultaneous time
differential equations without using detailed domain knowledge. The second is
the discovery of hidden state variables. The third is the discovery of chaotic
dynamics. These advantages are essentially important in many scientific and
engineering fields due to the wide existence of such dynamics in nature.
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