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Abstract. Previous sphere-based classification algorithms usually need
a number of spheres in order to achieve good classification performance.
In this paper, inspired by the support vector machines for classifica-
tion and the support vector data description method, we present a new
method for constructing single spheres that separate data with the max-
imum separation ratio. In contrast to previous methods that construct
spheres in the input space, the new method constructs separating spheres
in the feature space induced by the kernel. As a consequence, the new
method is able to construct a single sphere in the feature space to sepa-
rate patterns that would otherwise be inseparable when using a sphere
in the input space. In addition, by adjusting the ratio of the radius of the
sphere to the separation margin, it can provide a series of solutions rang-
ing from spherical to linear decision boundaries, effectively encompassing
both the support vector machines for classification and the support vec-
tor data description method. Experimental results show that the new
method performs well on both artificial and real-world datasets.

1 Introduction

When objects are represented as d-dimensional vectors in some input space,
classification amounts to partitioning the input space into different regions and
assigning unseen objects in those regions into their corresponding classes. In the
past, people have used a wide variety of shapes, including rectangles, spheres,
and convex hulls, to partition the input space.

Spherical classifiers were first introduced into pattern classification by Cooper
in 1962 and subsequently studied by many other researchers [1,2,3,4]. One well
known classification algorithm consisting of spheres is the Restricted Coulomb
Energy (RCE) network. The RCE network, first proposed by Reilly, Cooper,
and Elbaum, is a supervised learning algorithm that learns pattern categories
by representing each class as a set of prototype regions - usually spheres [5,6].
The RCE network incrementally creates spheres around training examples that
are not covered, and it adaptively adjusts the sizes of spheres so that they do
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not contain training examples from different classes. After the training process,
only the set of class-specific spheres is retained and a new pattern is classified
based on which sphere it falls into and the class affiliation of that sphere.

Another learning algorithm that is also based on spherical classifiers is the set
covering machine (SCM) proposed by Marchand and Shawe-Taylor [7]. In their
approach, the final classifier is a conjunction or disjunction of a set of spherical
classifiers, where every spherical classifier dichotomizes the whole input space
into two different classes with a sphere. The set covering machine, in its simplest
form, aims to find a conjunction or disjunction of a minimum number of spherical
classifiers such that it classifies the training examples perfectly.

Regardless of whether the influence of a sphere is local (as in the RCE net-
work) or global (as in the SCM), classification algorithms that use spheres nor-
mally need a number of spheres in order to achieve good classification perfor-
mance, and therefore have to deal with difficult theoretical and practical issues
such as how many spheres are needed and how to determine the centers and radii
of the spheres. In this paper, inspired by the support vector machines (SVMs) for
classification [8,9,10] and the support vector data description (SVDD) method
[11,12], we propose a new method, which computes a single sphere that sepa-
rates data from different classes with the maximum separation ratio. In contrast
to previous methods that construct spheres in the input space, the proposed
method constructs the separating sphere in the feature space induced by the
kernel. Because the class of spherical boundaries in the feature space actually
represents a much larger class than in the input space, our method is able to
construct a single sphere in the feature space that separates patterns that would
otherwise be inseparable when using a sphere in the input space.

Furthermore, when the ratio of the radius of the separating sphere to the sep-
aration margin is small, a sphere is constructed that gives a compact description
of one class, coinciding with the solution of the SVDD method; and when the
ratio is large, the solution effectively coincides with the maximum margin hy-
perplane solution. Therefore, by adjusting the ratio, the new method effectively
encompasses both the support vector machines for classification and the SVDD
method for data description, and may lead to better generalization performance
than both methods.

The remainder of the paper is organized as follows. In Section 2 we give
a brief overview of the support vector data description method that computes
a minimum enclosing sphere to describe a set of data from a single class. In
Section 3, we propose our new algorithm, which extends the SVDD method by
computing a single sphere that separates data from different classes with the
maximum separation ratio. In Section 4 we test the new algorithm on both
artificial and real-world datasets. Concluding remarks are given in Section 5.

2 Support Vector Data Description

The basic idea of the SVDD method is to construct a minimum bounding sphere
to describe a set of given data. The minimum bounding sphere, which is defined
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as the smallest sphere enclosing all data, was first used by Schölkopf, Burges,
and Vapnik to estimate the VC-dimension of support vector classifiers and later
applied by Tax and Duin to data description [11,12].

Given a set of training data x1, . . . , xn ∈ IRd, the minimum bounding sphere
S, characterized by its center c and radius R, can be found by solving the fol-
lowing constrained quadratic optimization problem

min
c,R

R2 , (1)

subject to the constraints

‖xi − c‖2 ≤ R2 ∀i = 1, . . . , n . (2)

To allow for the possibility of some examples falling outside of the sphere, one
can relax the constraints (2) with a set of soft constraints:

‖xi − c‖2 ≤ R2 + ξi ∀i = 1, . . . , n , (3)

where ξi ≥ 0 are slack variables introduced to allow some examples to have
larger distances. To penalize large distances to the center of the sphere, one can
therefore minimize the following quadratic objective function

min
c,R,ξi

R2 + C

n∑

i=1

ξi , (4)

under the constraints (3), where C > 0 is a constant that controls the trade-off
between the size of the sphere and the number of examples that possibly fall
outside of the sphere.

Using the Lagrange multiplier method, the constrained quadratic optimiza-
tion problem can be formulated as the following Wolfe dual form

min
αi

∑

i,j

αiαj〈xi, xj〉 −
∑

i

αi〈xi, xi〉 (5)

subject to the constraints
n∑

i=1

αi = 1 and 0 ≤ αi ≤ C ∀i = 1, . . . , n . (6)

Solving the dual quadratic programming problem, one obtains the Lagrange
multipliers αi for all i = 1, . . . , n, which give the center c of S as a linear com-
bination of xi

c =
n∑

i=1

αixi . (7)

According to the Karush-Kuhn-Tucker (KKT) optimality conditions, we have

αi = 0 ⇒ ‖xi − c‖2 < R2 and ξi = 0
0 < αi < C ⇒ ‖xi − c‖2 = R2 and ξi = 0

αi = C ⇒ ‖xi − c‖2 ≥ R2 and ξi ≥ 0 .
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Therefore, only αi that correspond to training examples xi which lie either on
or outside of the sphere are non-zero. All the remaining αi are zero and the
corresponding training examples are irrelevant to the final solution. Knowing
c, one can subsequently determine the radius R from the KKT conditions by
letting

R2 = 〈xi, xi〉 − 2
n∑

j=1

αi〈xi, xj〉 +
∑

j,l

αjαl〈xj , xl〉 (8)

for any i such that 0 < αi < C.
In practice, training data of a class is rarely distributed spherically, even if

the outermost examples are excluded. To allow for more flexible descriptions of
a class, one can apply the kernel trick by replacing the inner products 〈xi, xj〉
in the dual problem with suitable kernel functions k(xi, xj). As a consequence,
training vectors xi in IRd are implicitly mapped to feature vectors Φ(xi) in some
high dimensional feature space IF such that inner products in IF are defined as
〈Φ(xi), Φ(xj)〉 = k(xi, xj), and spheres are constructed in the feature space IF
and they may represent highly complex shapes in the input space IRd:

{x : R2 = k(x, x) − 2
n∑

i=1

αik(x, xi) +
∑

i,j

αiαjk(xi, xj)} , (9)

depending on one’s choice of the kernel function k. Kernels that have proven
to be effective for data description include the Gaussian kernel k(x1, x2) =
exp(−‖x1 − x2‖2/σ2) and the polynomial kernel k(x1, x2) = (1 + 〈x1, x2〉)p.

3 Pattern Classification via Single Spheres

In the above section, we have described how to construct a minimum bounding
sphere to provide a compact description of a set of data, which are assumed
to belong to the same class. For each class, such a sphere can be constructed
without considering training data from other classes. In this section, we explore
the possibility of using single spheres for pattern separation.

Given a set of training data {(x1, y1), . . . , (xn, yn)}, where xi ∈ IRd and yi ∈
{−1, 1}, instead of trying to find a sphere that provides a compact description
of one class, for classification purposes, we want to find a sphere that encloses
all examples from one class but excludes all examples from the other class, e.g.,
a sphere S with center c and radius R that encloses all positive examples and
excludes all negative examples. In addition, we assume that sphere S separates
the two classes with margin 2d, i.e., it satisfies the following constraints:

R2 − 〈xi − c, xi − c〉 ≥ d2, ∀i such that yi = 1, (10)

and
〈xi − c, xi − c〉 − R2 ≥ d2, ∀i such that yi = −1, (11)

where d is the shortest distance from the sphere to the closest positive and
negative examples (see Fig. 1).
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R

d d

Fig. 1. Spherical classifier that maximizes the separation ratio

There may exist many spheres that satisfy the above constraints. Among
many such spheres, it is natural that we seek to find a sphere that separates the
training data with the maximum separation ratio, i.e.,

max
c,R,d

R + d

R − d
(12)

subject to
yi(R2 − 〈xi − c, xi − c〉) ≥ d2 ∀i = 1, . . . , n . (13)

It is easy to show that maximization of the separation ratio (R + d)/(R − d) is
equivalent to minimization of R2/d2. The objective function R2/d2 is a nonlinear
function of R2 and d2 and is hard to deal with directly. However, at any given
point (R0, d0), R2/d2 can be approximated as:

R2

d2
≈ R2

0

d2
0

+
1
d2
0

(R2 − R2
0

d2
0

d2) . (14)

Therefore, the problem of finding the sphere with maximum separation ratio can
be reformulated as:

min
c,R,d

R2 − Kd2 (15)

subject to
yi(R2 − 〈xi − c, xi − c〉) ≥ d2 ∀i = 1, . . . , n , (16)

where K = R2
0/d2

0 ≥ 1 is a constant that controls the ratio of the radius to the
separation margin.

Introducing Lagrange multipliers αi ≥ 0, one for each of the constraints in
(16), we obtain the Lagrangian:

L = R2 − Kd2 −
n∑

i=1

αi[yi(R2 − 〈xi − c, xi − c〉) − d2] . (17)
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The task is to minimize the Lagrangian L with respect to R, d, and c, and to
maximize it with respect to αi. Setting the partial derivatives to zero, we obtain

c =
n∑

i=1

αiyixi , (18)

which gives the center c of the sphere as a linear combination of training data
xi, and

n∑

i=1

αi = K (19)

n∑

i=1

αiyi = 1 . (20)

Substituting the new constraints into the Lagrangian (17), we obtain the follow-
ing dual form of the quadratic programming problem:

min
αi,i=1,...,n

1
2

n∑

i,j=1

αiαjyiyj〈xi, xj〉 − 1
2

n∑

i=1

αiyi〈xi, xi〉 (21)

subject to

αi ≥ 0, ∀i = 1, . . . , n (22)
n∑

i=1

αi = K (23)

n∑

i=1

αiyi = 1 . (24)

It should be emphasized that, unlike the quadratic programming problems
in Sect. 2 or in standard SVMs, the primal constrained optimization problem
defined by (15) and (16) is non-convex. In fact, it is easy to see that the set of
constraints (16) for all i such that yi = −1 is non-convex. However, fortunately,
the Lagrangian (17) is convex at the solution of the dual problem. Therefore,
strong duality still holds and the solution of the dual problem provides an optimal
solution of the primal problem.

Solving the dual problem, one obtains the coefficients αi, i = 1, . . . , n. The
center c of the optimal sphere can be obtained by Eq. (18). Similarly, the radius
R can be determined from the KKT conditions by letting

R2 =
minyi=−1〈xi − c, xi − c〉 + maxyi=1〈xi − c, xi − c〉

2
, (25)

which leads to the following spherical decision function:

f(x) = sgn

⎛

⎝R2 − (〈x, x〉 − 2
n∑

i=1

αi〈x, xi〉 +
∑

i,j

αiαj〈xi, xj〉)
⎞

⎠ . (26)
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In general, the solution to the above optimization problem may not exist
because there is no such sphere in the input space that separates all the positive
samples from the negative samples. Similarly to the SVDD case, we can apply the
kernel trick here by replacing the inner products with suitable kernel functions.
In effect, the maximum separation sphere is constructed in the feature space
induced by the kernel. So far, we have only considered the case in which the
data is separable by a sphere in the input space or in the feature space that is
induced by the kernel. However, such a sphere may not exist, even in the kernel
feature space. To allow for some classification errors, we introduce slack-variables
ξi ≥ 0 for i = 1, . . . , n to relax the constraints (13) with

yi(R2 − 〈x − c, x − c〉) ≥ d2 − ξi , (27)

and consequently minimize the following objective function:

min
c,R,d,ξi,i=1,...,n

R2 − Kd2 + C

n∑

i=1

ξi , (28)

where the regularization constant C determines the trade-off between the empir-
ical error and spherical separation margin term. Using the Lagrange multiplier
method, we obtain the following dual problem in the kernel form:

min
αi,i=1,...,n

1
2

n∑

i,j=1

αiαjyiyjk(xi, xj) − 1
2

n∑

i=1

αiyik(xi, xi) (29)

subject to

0 ≤ αi ≤ C, ∀i = 1, . . . , n (30)
n∑

i=1

αi = K (31)

n∑

i=1

αiyi = 1 . (32)

The above dual optimization problem can be solved using standard quadratic
programming solvers, such as CPLEX, LOQO, MINOS and Matlab QP rou-
tines. Similarly to the standard SVMs, one can also use the sequential minimal
optimization (SMO) method or other decomposition methods to speed up the
training process by exploiting the sparsity of the solution and the KKT condi-
tions [13,14,15].

It should be noted that separating data using spheres is a special case of
separating data via ellipsoids, which results in a convex semi-definite program
(SDP) that can be efficiently solved by interior point methods [16]. However, a
drawback of the ellipsoid separation approach is that it cannot be easily extended
by the kernel method, because the SDP problem cannot be expressed purely in
inner products between input vectors. Therefore, both the decision boundaries it



248 J. Wang, P. Neskovic, and L.N. Cooper

can generate and the problems it can solve are limited, unless special preprocess-
ing is carried out prior to applying the ellipsoid separation method. On the other
hand, using spheres combined with suitable kernels can produce more flexible
decision boundaries than ellipsoids. Furthermore, SDP is limited in terms of the
number of input dimensions it can effectively deal with.

4 Results and Discussion

We applied the method to both artificial and real-world data. The training al-
gorithm was implemented based on the SMO method. Figure 2 displays a 2-D
toy example and shows how different values of the parameter K lead to differ-
ent solutions. The training examples of two classes are denoted as +’s and ×’s
respectively in the figure. Clearly, there exist many spheres that can separate
the training data in the 2-D input space. Therefore, for this dataset, no kernel
trick was used, and the separating spheres were constructed directly in the input
space using the standard definition of the Euclidean inner product. The three
remaining plots show the results with three different values of the constant K.
In each plot, three spheres (or their portions) are displayed. The darkest line
represents the sphere with radius R − d. The lightest line represents the sphere
with radius R + d. The line in between represents the separating sphere with
radius R. The support vectors (the training examples with nonzero α values)
are marked with small circles.

As we can see, increasing the value of K from 1 to 100, the shape of the
decision surface changes from a sphere to a plane. When K is set to a small value,
the algorithm finds a sphere that gives a compact description of the positive
examples. For instance, when K = 1, the inner sphere (the sphere with radius
R − d) coincides with the smallest sphere found by the SVDD method that
encloses all the positive examples [12,17]. When K is set to a larger value, a
larger sphere is found to contain the positive examples and the decision surface
is more like a plane. Therefore, by adjusting the constant K that controls the
ratio of the radius of the sphere to the separation margin, one can obtain a series
of solutions from sphere-like decision boundaries to linear decision boundaries,
including the solution of the SVDD method for data description and the solution
of SVMs for classification.

Figure 3 shows the results of the spherical classifiers with a Gaussian kernel on
another artificial dataset. The training data is generated randomly in a rectangu-
lar region. Training examples of the two classes, separated by f2 = sin(πf1), are
denoted as +’s and ×’s respectively (see figure 3, upper-left plot). Clearly, there
is no single sphere in the 2-D input space that can separate the two classes. We
used a Gaussian kernel to map the data into a high dimensional feature space,
in which the separating spheres were constructed. The remaining three plots
show the results of the spherical classifier at different values of K. For better
visualization, only training examples that correspond to the support vectors are
shown in the three plots. The results demonstrate that a separating sphere was
found in the feature space by adjusting the value of the constant K.



Pattern Classification via Single Spheres 249

K=1

K=10 K=100

Fig. 2. Results of the spherical classifier on an artificial dataset at different values of

K

f
1

f 2

K=1

K=10 K=100

Fig. 3. Results of the spherical classifier (using a Gaussian kernel) on an artificial

dataset. Top left: The training data and desired decision boundary; The rest: spheres

of different radii mapped back onto the 2-D input space for three different values of K.

The darker the line, the smaller the radius. The small circles around training examples

indicate the support vectors.

We also tested the new algorithm and compared it to standard SVMs using
several real-world datasets from the UCI machine learning repository [18]. For
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all the datasets, we used the 5-fold cross-validation method to estimate the
generalization error of the classifiers. In the 5-fold cross-validation process, we
ensured that each training set and each testing set were the same for both
algorithms, and the same Gaussian kernel was used. The datasets used and the
results obtained by the two algorithms are summarized in Table 1. The results
of the spherical classifier and the SVM classifier both depend on the values of
the kernel parameter σ and the regularization parameter C. In addition, the
performance of the spherical classifier also depends on the value of K. In our
tests, we set C to infinity for both algorithms, i.e., we only considered hard-
margin spherical and hyperplane classifiers. On each dataset, the value of the
kernel parameter σ was optimized to provide the best error rate of the SVM
classifier, and the same value was used for the spherical classifier. As we can see,
the spherical classifier achieves the same or slightly better results than SVMs on
all 5 datasets.

Table 1. Comparison of Error Rates

Dataset Sphere SVM

Breast Cancer 4.26 (±1.73) 4.26 (±1.73)
Ionosphere 5.71 (±2.80) 6.00 (±2.86)
Liver 35.36 (±1.93) 36.23 (±5.39)
Pima 34.90 (±2.13) 35.03 (±2.20)
Sonar 10.73 (±1.91) 11.22 (±2.44)

0 0.5 1 1.5 2 2.5 3
0.1

0.15

0.2

0.25

0.3

0.35

log(K)
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ro

r 
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Fig. 4. Error rates of the spherical classifier on the sonar dataset for different values of

K. The solid line represents the error rate of the spherical classifier. The dashed line

is the error rate of the SVM classifier.

In Figure 4, we show a detailed comparison of the spherical classifier and the
SVM classifier on the Sonar dataset. The solid line displays the error rates of
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the spherical classifier at different values of K. The dashed line gives the corre-
sponding error rates of the support vector machine. Once again, the same kernel
parameter σ was used for both algorithms, and the regularization parameter
C was set to infinity. As we can see, the error rates of the spherical classifier
decrease as the value of K increases. If K is set to be large enough, the result
of the spherical classifier reaches that of the support vector machine, which is
consistent with what we have observed in our toy examples.

From Table 1 and Fig. 4, we see that the spherical classifier yields comparable
results as the support vector machine, demonstrating that it is suitable for real-
world classification problems.

5 Conclusion

In this paper we explored the possibility of using single spheres for pattern clas-
sification. Inspired by the support vector machines and the support vector data
description method, we presented an algorithm that constructs single spheres in
the kernel feature space that separate data from different classes with the max-
imum separation ratio. By incorporating the class information of the training
data, our approach provides a natural extension to the SVDD method of Tax
and Duin, which computes minimal bounding spheres for data description (also
called One-class classification).

By adopting the kernel trick, the new algorithm effectively constructs spher-
ical boundaries in the feature space induced by the kernel. As a consequence, the
resulting classifier can separate patterns that would otherwise be inseparable when
using a single sphere in the input space. Furthermore, by adjusting the ratio of the
radius of the separating sphere to the separation margin, a series of solutions rang-
ing from spherical to linear decision boundaries can be obtained. Specifically, when
the ratio is set to be small, a sphere is constructed that gives a compact description
of the positive examples, coinciding with the result of the SVDD method; when the
ratio is set to be large, the solution effectively coincides with the maximum mar-
gin hyperplane solution. Therefore, our method effectively encompasses both the
support vector machines for classification and the SVDD method for data descrip-
tion. This feature of the proposed algorithm may also be useful for dealing with
the class-imbalance problem. We tested the new algorithm and compared it to the
support vector machines using both artificial and real-world datasets. The exper-
imental results show that the new algorithm offers comparable performance on all
the datasets tested. Therefore, our algorithm provides an alternative to the maxi-
mum margin hyperplane classifier.
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