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Abstract. Given a transaction database as a global set of transactions
and its local database obtained by some conditioning to the global one,
we consider a pair of itemsets whose degrees of correlations are higher in
the local database than in the global one. A problem of finding paired
itemsets with high correlation in one database is known as Discovery of
Correlation, and some algorithms to search for such characteristic paired
itemsets are already proposed. However, even non-characteristic paired
itemsets in the local database are also meaningful, provided the degree
of correlation increases much higher in the local database than in the
global one. They can be an implicit and hidden evidence showing that
something particular to the local database occurs even though they are
not yet realized as characteristic ones in the local. From this viewpoint,
we have already proposed to measure the significance of paired itemsets
by the difference of two correlations before and after the conditioning to
the local database, and define a notion of DC pairs whose degrees of dif-
ferences of correlations are high. As DC pairs are regarded as compound
itemsets consisting of two component itemsets, we can have two basic
strategies for finding them. One strategy firstly examines the compound
itemsets and then the components, while another one does the compo-
nent itemsets and then the compound ones. According to the former
strategy, which we have already proposed and tested for its effectiveness,
we have to enumerate many number of candidate compound itemsets
that cannot be decomposable to components. For this reason, this pa-
per presents a new algorithm according to the second strategy. It firstly
enumerate possible component itemsets based on a new pruning rule for
cutting off useless components. Secondly it forms the compound item-
sets by combining the components thus detected, while we also make use
of a constraint for preventing our algorithm from checking meaningless
combinations.

1 Introduction

In the studies of data mining from transaction databases, many studies have been
paying much attention to finding itemsets with high supports, paired itemsets
appeared in association rules with high confidence [4], or paired itemsets with
strong correlation [8,9,10,11]. These notions are considered useful for distinguish-
ing characteristic paired itemsets with strong correlation in a single transaction
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database. A similar strategy based on the notion of change of supports, known
as Emerging Patterns [5], is successful even for finding itemsets characterizing
either of two databases. All of these notions about itemsets are thus proposed
to extract paired itemsets required to be characteristic in a given database or
either of two or more databases.

Although some users regard characteristic paired itemsets with strong corre-
lation as useful, others may often regard many number of such paired itemsets
as trivial because of the reason that they have been already known without ex-
amining a database. On the other hand, as is indicated in the study of Chance
Discovery [12], some itemsets not characteristic in the above sense are also useful,
as they are potentially significant under some condition.

For instance, suppose a database in which information about ages of cus-
tomers and goods they purchased are stored. There may exist several pairs of
particular ages and goods with high correlations, if people at those ages have a
general tendency to buy those goods. In this case, the degree of correlation is
not much dependent on time stamp data. As a result, there will be a little differ-
ence between the degree of correlation in the whole database and one in a local
database of transactions with the recent time stamp data. On the other hand,
there may exist another kinds of goods which teen-agers, for instance, begin to
drastically buy just recently. As the purchase actions made by those aged people
just begin, the overall degree of correlation between the ages and the goods is
still low. However, its degree observed by restricting the transactions to those
with the recent time stamp will show a significantly higher value.

Thus, the notion of potential significance we would like to define is the dif-
ference of degrees of correlation before and after some conditioning by which a
local database is derived. Although we can consider various ways of conditioning
and the corresponding local databases, we try to present a general algorithm
to find a significant paired itemset with high change ratio of correlations, given
a global and a local database. In section 6, a database with items designating
places of transactions is examined. In this case, the conditioning is given by
specifying particular place of transactions. The task of our algorithm is to find
paired itemsets with higher correlation in the particular area, compared with the
correlation in the whole area. Again it should be noted that the former correla-
tion in the particular area need not be high, as we can interpret such a paired
itemset as an implicit evidence showing that something particular to the local
area occurs.

From the viewpoints mentioned in the above, we have already defined the
notion of DC pairs and presented an algorithm to find them in [1]. More pre-
cisely, given a global and a local transaction databases, an itemset pair with
higher change ratio of correlations is called a DC pair. A DC pair is syntacti-
cally regarded as a compound itemset consisting of two component itemsets. So,
the algorithm presented in [1] is designed so that it firstly examines the com-
pound itemsets and then the components, using two parameters for restricting
the search spaces for the compound and the component itemsets. Although the
algorithm is equipped with some pruning rules, an experimental result showed
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that large number of useless compound itemsets never decomposable into candi-
dates in the space of component itemsets are generated and tested. Consequently,
the subspace our algorithm actually visited turned out to be a very large one.

From the experimental observation thus obtained, in this paper, we present
another new algorithm that enumerates component itemsets firstly and then
combines those detected components into compound ones. It is clear from the
definition that there exists no chance for the algorithm to examine any com-
pound itemset not decomposable to possible component itemsets. Additionally,
we can show that it suffices to check only transactions containing the candidates
components in the local database in order to identify possible combinations of
components. As the number of such transactions is not many, our algorithm can
effectively generate compound itemsets from the set of candidate component
itemsets. On the other hand, in the process of generating components, we can
enjoy a monotone property over itemsets, depending on the parameters, that is
also useful to prevent our algorithm from generating useless component itemsets.

Thus, in both processes of generating components and of combining them
into compound itemsets, the number of generated candidates are restricted.

2 Related Works and Paper Organization

There exist many works in the field of data mining that are based on a strategy
of contrasting two or more databases in order to extract significant properties or
patterns from a huge data set. Particularly, data mining techniques, known as
contrast-set mining [5,6,7], have been designed specifically to identify differences
between databases to be contrasted.

For instance, in the study of Emerging Patterns [5] for two transaction
databases, itemsets whose supports are significantly higher in one database than
in another one are considered significant, as they can be candidate patterns for
distinguishing the former from the latter. A similar strategy is also used in the
system STUCCO [6] in order to obtain characteristic itemsets in one database
based on χ2 test. In addition, the system, Magnum Opus [7], examines relations
between itemsets and a database among several databases. On the other hand,
what this paper tries to find are paired itemsets whose correlations drastically
increase in one database. Thus we can say that the subject of this paper is a
kind of ”contrast-set mining of correlations between itemsets”.

Secondly, many methodologies have been proposed to detect characteristic
correlations in a single database [8,9,10]. In these studies, using some function
measuring the degree of correlation between itemsets, strongly correlated item-
sets in a given database or in one database from given two databases are ex-
amined. Thus, these methods are also used to discover itemsets or family of
itemsets that are characteristic in one database. On the other hand, the algo-
rithm presented in this paper is designed so as to find even paired itemsets whose
correlation in one database is not significantly high but is significantly higher
than correlation in another database. Our algorithm may find the characteristic
paired itemsets as special cases, but is never supposed to find only characteristic
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ones. To find these paired itemsets, we present some new pruning rules so that
the algorithm successfully detects even non-characteristic paired itemsets.

Several notions about correlations have been proposed and used in the above
previous studies from information theoretic or statistical viewpoints. If we need
to consider even negative events Y that an itemset Y does not appear in transac-
tions, the notion of correlations between two itemsets X and Y based on χ2-test
shall be taken into account. However, this paper is concerned with the notion
of correlation in the sense that the number of chances for Y to occur increases
under the presence of X . The degree of correlation in this sense can be calculated
by the ratio P (Y |X)/P (Y ), known as self-mutual information by taking log.

Finally, we discuss the relation between a condition itemset which decide a
local database and itemset pairs we try to find. If the condition is regarded as an
antecedent of some rule, the itemset pairs can be considered a consequent of the
rule. For example, association rule [4] is a rule whose consequent is an itemset
such that the conditional probability of the itemset given by the antecedent
(the condition in this paper) is no more than some parameter. That is, itemsets
such that the probability of the itemsets is high in local database can be found
by association rule. On the other hand, we find even itemsets such that the
probability of the itemsets is very low in local database as a result of detecting
high changes of correlation by the conditioning to the local database. Further, the
correlation between the condition and the itemset pair is not always high. Briefly
speaking, we try to find rules such that a consequent of the rule is an implicit
itemset pair with high degree of change of correlations under an antecedent (a
condition) of the rule.

The rest of this paper is organized as follows. The next section defines some
terminologies used throughout this paper. In Section 4, we introduce the notion
of DC pairs and define our problem of mining DC pairs. An algorithm for finding
DC pairs is described in Section 5. Section 6 presents our experimental results.
In the final section, we summarize our study and discuss future work.

3 Preliminaries

Let I = {i1, i2, · · · , in} be a set of items. An itemset is a subset of I. A
transaction database D is a set of transactions, where a transaction is an itemset.
We say that a transaction t contains an itemset X , if X ⊆ t. For a transaction
database D and an itemset X , the occurrence of X over D, denoted by O(X,D),
is defined as O(X,D) = {t|t ∈ D ∧ X ⊆ t}, and the probability of X over D,
denoted by P (X), is defined as P (X) = |O(X,D)|/|D|.

For an itemset C, a sub-database of D w.r.t. C, denoted by DC , is defined as
the set of transactions containing C in D, that is, DC = O(C,D). The comple-
ment of DC w.r.t. D is denoted by DC and is defined as DC = D −DC .

For itemsets X and Y , the correlation between X and Y over a trans-
action database D, correl(X, Y ), is defined as correl(X, Y ) = P (X ∪
Y )/P (X)P (Y ). For a sub-database DC , the correlation between X and Y over
DC , correlC(X, Y ), is given by correlC(X, Y ) = P (X ∪ Y |C)/P (X |C)P (Y |C),
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where P (X |C) = P (X ∪ C)/P (C). Note here that correlations are defined for
only itemsets X whose supports in D and DC are non-zero. We regard a pair
of X and Y such that correl(X, Y ) > 1 as characteristic since P (X |Y ) > P (X)
holds. Note that P (Y |X) > P (Y ) holds, too. Similarly, we regard a pair of X
and Y such that correl(X, Y ) ≤ 1 as non-characteristic.

4 DC Pair Mining Problem

In this section, we define a notion of DC pairs and our problem of mining them.
For a pair of itemsets X and Y , we especially focus on “difference of cor-

relations observed by conditioning to a local database”. Suppose here that an
itemset C is a condition given by users. The difference of correlations is measured
by the following ratio:

change(X, Y ; C) =
correlC(X, Y )
correl(X, Y )

=
P (C)P (C|X ∪ Y )
P (C|X)P (C|Y )

. (1)

Let ρ(> 1) be an admissible degree of difference of correlations. In our framework,
a pair of itemsets X and Y is considered significant if change(X, Y ; C) ≥ ρ
holds. Since we assume C is given by users, P (C) can be regarded as a constant.
Therefore, the difference is actually evaluated with the following function g:

g(X, Y ; C) =
P (C|X ∪ Y )

P (C|X)P (C|Y )
. (2)

A pair of itemsets X and Y is called a DC pair if g(X, Y ; C) ≥ ρ/P (C). We
try to find all DC pairs efficiently. It should be noted here that the function g
behaves non-monotonically according to expansion of itemsets X and Y . So we
cannot apply a simple pruning method like one Apriori adopted [4]. Therefore,
we approximate the above problem according to the following naive strategy:

Find pairs of X and Y which give higher values of P (C|X ∪ Y ), keeping
the values of P (C|X) and P (C|Y ) small.

In order to control the values of P (C|X ∪ Y ), we use a new parameter ζ
(0 ≤ ζ ≤ 1). Given ρ and ζ, we use a new parameter ε such that ε2 = ζ ·P (C)/ρ
in order to control each value of P (C|X) and P (C|Y ). Note here that ε can be
replaced with another parameter if the value of P (C|X)P (C|Y ) is low.

Definition 1. DC Pairs Mining Problem
Let C be an itemset for conditioning. Given ρ and ζ, the DC pair mining problem
is to find any pairs of X and Y such that P (C|X ∪ Y ) > ζ, P (C|X) < ε and
P (C|Y ) < ε, where ε =

√
ζ · P (C)/ρ. We say that X ∪ Y is a compound itemset

and X and Y are component itemsets.

5 An Algorithm for Finding DC Pairs

In this section, we present an algorithm to solve the DC pair mining problem. At
first, we discuss a basic strategy of finding DC pairs. Next, we prove a pruning
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rule in order to find candidates for component itemsets efficiently. Finally, we
show some constraints of DC pairs in order to restrict the combinations of the
candidates properly.

5.1 A Basic Strategy of Finding DC Pairs

At first, we discuss a basic strategy of finding DC pairs. The DC pairs we try
to find are pairs of itemsets X and Y such that X ∪ Y is a compound itemset
and X and Y are component itemsets. Then, two strategies of finding DC pairs
can be considered mainly. One strategy is that compound itemsets are identified
and each compound itemset is divided into component itemsets. And another
strategy is that component itemsets are identified and their compound itemsets
are found. The former strategy has already been tried to find DC pairs in [1]
and there exist some difficulties. In order to explain the difficulties, we show
properties of P (C|X) and DC pairs based on the following observation.

Consider an itemset X appeared in a global and a local databases. And note
that P (X) �= 0 and P (C ∪ X) �= 0 must hold. Also, as the size of X is longer,
P (X) and P (C ∪ X) tend to become lower. Since P (C|X) is non-zero, P (C|X)
tend to be high in the case that P (X) is low. That is, when the size of X is
long, P (C|X) tends to be high. This means that there exist a few candidates
for component itemsets whose size is long in the database. Next, consider two
itemsets X and Y and suppose here that the size of X ∪ Y is almost the same
size of maximal transactions in the database. Since the size of either X or Y is
necessarily no more than the half size of X ∪ Y , either P (C|X) or P (C|Y ) tend
to be high. This means that there are a small number of DC pairs X and Y
such that the size of X ∪ Y is long because either P (C|X) < ε or P (C|Y ) < ε
is difficult to hold. Therefore, there are many candidates for compound itemsets
which cannot be divided into DC pairs in the database.

Based on the above observation, there is a difficulty of the strategy of finding
candidates for compound itemsets. So, in this paper, we discuss the strategy of
finding candidates for component itemsets in a bottom-up manner. Of course, if
the number of the candidates components is large, the number of combinations
of the candidate components is also very large. If the number of the candidates
is N , the number of the combinations is O(N2). However, as the combinations
can be restricted by using some constraint, it is expected that the number of the
combinations is not so many.

After all, our strategy of finding DC pairs is that component itemsets are
identified firstly, and the computation for mining DC pairs is divided into two
phases:

Phase1: Identifying Component Itemsets
An itemset X such that P (C|X) < ε is identified as a candidate for a com-
ponent itemset.

Phase2: Combining Component Itemsets
One component X is combined with another one Y such that P (C|X ∪ Y )
> ζ.



An Algorithm for Mining Implicit Itemset Pairs 233

5.2 Pruning Search Branches in Phase 1

In Section 4, by using parameters ζ and ε, we restrict DC pairs we try to find. Al-
though P (C|X) behaves non-monotonically according to expansion of an itemset
X as well as g, we prove that a monotone property over itemsets can be observed
depending on ε. In Phase 1, we consider a problem of mining candidates for com-
ponent itemsets X in a bottom-up manner. During this search, we can prune
useless branches (itemsets) based on the following observation.

Let X be an itemset and Z be an itemset containing X . Suppose that there
exists a superset Z ′ of X such that X ⊆ Z ′ ⊆ Z and P (C|Z ′) < ε. Since
P (C|Z ′) = P (C)P (Z ′|C)/P (Z ′) < ε, P (C ∪ Z ′) < ε · P (Z ′) holds. Therefore,
P (C ∪Z) ≤ P (C ∪Z ′) < ε ·P (Z ′) ≤ ε ·P (X). As the result, we have P (C ∪Z) <
ε · P (X). This means that if P (C ∪ Z) ≥ ε · P (X) holds, then we cannot obtain
any Z ′ such that P (C|Z ′) < ε. That is, if P (C ∪ Z) ≥ ε · P (X) holds, any Z ′

does not have to be examined.

Pruning Rule:
For a search node (itemset) X and a superset Z such that X ⊆ Z ′ ⊆ Z, if
P (C∪Z) ≥ ε·P (X), any Z ′ never be a candidate node of X in our search process.

When X examined in our bottom-up search can be applied to the above
pruning rule, Z ′ do not have to be examined. However, there is a problem that
the way of identifying a superset Z of X properly. We describe the way of
identifying Z and a termination condition in Phase 1 in the next section.

5.3 Termination Condition in Phase1

In the previous section, we present a pruning rule in Phase 1. In order to use our
pruning rule effectively, in sub-database DC , while an itemset X is examined in a
bottom-up manner, a superset Z of X have to be checked simultaneously. And, if
the size of Z is long and our pruning rule can be applied to, many itemsets can be
pruned. In order to identify such Z, the notion of look ahead in [2] can be used.
Originally, the notion is used to find a frequent maximal itemset by checking a
superset of an itemset examined. In order to use the notion, suppose a lexical
ordering of the items and let X be an itemset examined at present. Let tail(X)
be the greatest item of X and T (tail(X)) be a set of a possible item which is
greater than tail(X) according to the lexical ordering. Then, X is expanded by
adding an item i ∈ T (tail(X)) in order to avoid duplications. Note here that
an itemset Z such that Z = X ∪ T (tail(X)) is a potentially frequent maximal
itemset which does not contain other itemsets in the database. That is, the size
of Z is approximately the size of a maximal transaction and Z whose size is long
is useful for pruning of many search nodes (itemsets). Further, although Z is
not always a maximal itemset, we do not have to check whether Z is a maximal
itemset or not. Rather, Z in this case is also useful for our search because a
maximal itemset is not always able to be applied to the pruning rule and an
itemset whose size is middle may be applied to. It should be noted that the cost
of checking Z is not so high as only DC is examined.
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Termination Condition of search in Phase 1:
For an itemset X and an itemset Z = X ∪ T (tail(X)), if P (C ∪ Z) ≥ ε · P (X),
X is not expanded further in our search.

5.4 An Algorithm for Finding Candidates for Component Itemsets

We show a termination condition of our search in Phase 1 in the previous section.
In this section, in order to implement the termination condition, we simply
explain an algorithm for finding candidates for component itemsets.

At first, we use backtracking algorithm [2,3] in order to enumerate candi-
dates for component itemsets. Backtracking algorithm is based on recursive
calls. Normally, an iteration of the algorithm inputs a frequent itemset F whose
probability is no more than some parameter, and generates itemsets by adding
every possible items to F . However, an iteration of our algorithm inputs an
itemset X whose probability is non-zero because even itemsets whose proba-
bility is very low may be DC pairs and it is difficult to set a really proper
parameter of probability. For each itemset whose probability is non-zero among
itemsets generated, the iteration generates recursive calls with respect to it. To
avoid duplications, an iteration of backtracking algorithms adds items contained
T (tail(X)).

Next, when an itemset X is examined, a proper T (tail(X)) is not known
yet. Let i be tail(X), D be a global database and DC be its local database.
Then, the probability of X ∪ {j} (j ∈ T (tail(X − {i})), j > i) in D and
DC , and X ∪ T (tail(X − {i})) in DC have to be calculated. The probabil-
ity of X ∪ T (tail(X − {i})) is calculated in order to check whether X ful-
fill the termination condition or not. On the other hand, the probability of
X ∪ {j} is calculated in order to check whether j can be contained T (tail(X))
or not. That is, although we do not use any parameter of probability, an
itemset whose probability is zero is, of course, trivial. Because the probabil-
ity of a superset of X ∪ {j} is zero if the probability of X ∪ {j} is zero,
j do not have to be added T (tail(X)). In order to calculate the probability
of X ∪ {j} efficiently, the notion of occurrence deliver [3] can be used. Let
{j1, j2, · · · , jm} be T (tail(X − {i})). Occurrence deliver computes the proba-
bility of X ∪ {j1}, X ∪ {j2}, · · · , X ∪ {jm} at once by tracing transactions con-
taining X in D and DC . It uses a bucket for j1, j2, · · · , jm, and set them to empty
set at the beginning. Then, for each transaction t containing X , occurrence de-
liver inserts t to the bucket of j1, j2, · · · , jm. After these insertions, the bucket of
j1, j2, · · · , jm is equal to O(X∪{j1},DC), O(X ∪{j2},DC), · · · , O(X∪{jm},DC)
if DC is examined.

Based on the above techniques, our algorithm for finding candidates for com-
ponent itemsets is summarized as follows. In the algorithm, suppose that, for
each item e such that P (C ∪ {e}) �= 0, P (C ∪ {e}) and P ({e}) are calculated
in advance. And let T (tail({e} − tail({e}))) be T (tail({e})). For each item e,
by using the following algorithm, the candidates for component itemsets can be
found.
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ALGORITHM FindCandidateComponent(X)
IF P (C ∪ X)/P (X) < ε then Output X ;
T (tail(X)) = ∅; count look ahead = 0;
For each item i such that i ∈ T (tail(X − {tail(X)})) do

Bucketc[i] = ∅; Bucket[i] = ∅;
End for
For each transaction tc such that tc ∈ DC and X ⊆ tc do

IF (C∪X∪T (tail(X−{tail(X)}))) ⊆ tc then count look ahead++;
// look ahead

For each item j such that j ∈ tc and j > tail(X) do
Insert tc to Bucketc[j]; // occurrence deliver
IF j /∈ T (tail(X)) then T (tail(X)) = T (tail(X)) ∪ {j};

End for
End for
IF T (tail(X)) �= ∅ and P (C ∪ X ∪ T (tail(X − {tail(X)}))) < ε · P (X)
then // our pruning rule

For each transaction t such that t ∈ DC and X ⊆ t do
//DC = D −DC

For each item k such that k ∈ t and k ∈ T (tail(X)) do
Insert t to Bucket[k]; // occurrence deliver

End for
End for
For each item e such that e ∈ T (tail(X))

O(X ∪ {e},DC) = Bucketc[e];
O(X ∪ {e},D) = Bucketc[e] + Bucket[e];
IF P (C ∪ X ∪ {e}) �= 0 then call FindCandidatePart(X ∪ {e});

End for
End if

5.5 Constraints of DC pairs in Phase2

After we find candidates for component itemsets in Phase 1, we have to combine
one component with another one in order to find DC pairs finally. If the number
of the candidates is large, the number of the combinations is very large. However,
two constraints of DC pairs can be used in order to restrict the combination.

At first, we describe a basic constraint of DC pairs. The DC pairs are pairs
of itemsets X and Y such that two itemsets do not overlap. Then, if both X
and Y contain some same item, pairs of X and Y are not DC pairs. In this case,
combined itemsets X ∪ Y do not have to be examined. Secondly, we explain a
main constraint of DC pairs. If pairs of X and Y are DC pairs, P (C∪X∪Y ) �= 0
must hold. Therefore, Y is necessarily contained by transactions containing
X in a sub-database DC . Also, P (C ∪ X) is low in many case if P (C|X) < ε
holds. For example, if ε = 0.1 and P (X) = 0.5, P (C ∪ X) < 0.05. Therefore, we
firstly check whether or not Y is contained by transactions which contain X in
DC , and if Y is not contained by the transaction, Y does not have to be examined.
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The combinations actually examined in detail are restricted properly by only
checking the small number of such transactions.

6 An Experiment

In this section, we present our experimental results. The purpose of experiments
is to confirm that DC pairs can be found efficiently by using our pruning rules
and constraints, and potentially significant DC pairs can be actually found for
a given database.

6.1 Dataset and Implementation

We conducted the experiments on Entree Chicago Recommendation Data, a
database in the UCI KDD Archive [13]. It consists of eight databases each of
which contains restaurant features in a region, e.g. Atlanta, Boston and so on
in the USA. The eight databases are combined into a single database D referred
to as the global one. With the conditioning by each region C, we define a lo-
cal (sub-)database DC in D. The global database consists of 4160 transactions
each of which is a subset of 265 items, where each item represents a feature of
restaurant, e.g., ”Italian”, ”romantic”, ”parking” and so on. Thus, a transaction
{f1, f2, f3} means there exists a restaurant with the feature f1, f2 and f3.

Based on the algorithm presented in the previous section, our system has
been implemented in C and run on a PC with 1.00 GB RAM and a Xeon 3.60
GHz processor.

6.2 An Effect of our Pruning Rule

In this section, we show an effect of our pruning rule in Phase 1, that is, in
the search for finding the candidates for component itemsets. Our experimental
result is summarized in Figure 1. In the figure, N is the number of possible
itemsets with the probability of non-zero in the local database we are concerned
with. That is, it is the size of the whole search space. The computation time
for extracting the candidates without the pruning is denoted by tN . Nact is the
number of itemsets actually examined in our search with the pruning and tNact is
the computation time for the search. Ncand denotes the number of the extracted
candidates for component itemsets.

The result shows that the number of the candidates to be extracted, Ncand,
is much smaller than the number of the possible ones in each case (region).
Therefore, finding the candidates without any pruning will be quite impractical.
As shown in the figure, since the pruning rule can reduce at least 90 % of the
whole search space, it can be considered that our pruning can work well to
improve the search efficiency in Phase 1.

6.3 An Effect of Constraints of DC Pairs

Let Compcand be the set of the candidates obtained in Phase 1. In Phase 2, we
examine whether a pair of component itemsets in Compcand can be a DC pair
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ρ = 3.0, ζ = 0.4

region P (C) ε N Nact Ncand tN(sec) tNact(sec)

Atlanta 0.0642 0.0922 2.4 × 107 1.8 × 106 3.5 × 104 144.031 17.906

Boston 0.105 0.118 2.4 × 108 4.5 × 106 4.5 × 104 1428.641 43.985

Chicago 0.163 0.147 4.8 × 107 3.1 × 106 4.7 × 104 283.172 28.735

Los Angeles 0.108 0.118 2.7 × 107 1.8 × 106 1.2 × 104 161.578 17.656

New Orleans 0.0786 0.102 1.5 × 107 1.4 × 106 1.2 × 104 89.656 12.735

New York 0.289 0.196 1.6 × 107 1.5 × 106 7.2 × 104 95.078 14.578

San Francisco 0.0995 0.114 3.0 × 107 2.3 × 106 5.3 × 104 176.141 21.750

Washington DC 0.0940 0.112 2.0 × 109 2.9 × 107 2.2 × 104 11536.375 279.500

Fig. 1. An effect of our pruning rule

region |Call| |Cb| |Cm| |DC| |DCimp| t|Cb|(sec) t|Cm|(sec)

Atlanta 6.1 × 108 2.8 × 108 3.0 × 106 1.4 × 106 353 355.922 132.422

Boston 1.0 × 109 4.5 × 108 4.5 × 106 2.9 × 106 240 804.329 223.016

Chicago 1.1 × 109 5.8 × 108 4.5 × 106 3.1 × 106 7 829.906 236.282

Los Angeles 6.7 × 107 4.1 × 107 5.4 × 105 2.5 × 105 101 54.062 16.375

New Orleans 7.4 × 107 4.5 × 107 5.3 × 105 2.2 × 105 57 57.656 20.062

New York 2.6 × 109 1.2 × 109 9.7 × 106 6.8 × 106 44 2820.750 551.547

San Francisco 1.4 × 109 6.0 × 108 4.2 × 106 2.5 × 106 393 900.907 285.953

Washington DC 2.4 × 108 1.3 × 108 9.1 × 105 6.0 × 105 86 216.579 59.079

Fig. 2. An effect of constraint of DC pairs in Phase 2

or not. The results for Phase 2 is summarized in Figure 2. In the figure, |Call| is
the number of the possible pairs we can extract from Compcand.

|Cb| is the number of pairs of X and Y in Compcand such that X ∩ Y = φ
and t|Cb| is the computation time for finding the DC pairs from Cb. Furthermore,
|Cm| is the number of pairs of X and Y in Compcand such that both of X and Y
are contained in a transaction in DC . The computation time for finding the DC
pairs from Cm is denoted by t|Cm|. Finally, |DC| is the number of extracted DC
pairs and |DCimp| the number of DC pairs in DC whose degree of correlation is
less than or equal to 1.

From the results, by the latter constraint, the number of candidate pairs to
be examined can be drastically reduced. Therefore, it is expected that our search
in Phase 2 can be performed efficiently. As the result, it is shown that DC pairs
can be found efficiently by using our pruning rule and constraint. Further, in
the next section, we show our search for DC pairs in this paper is efficient in
contrast with our previous search in [1].

6.4 A Comparison Our New Method with Our Previous Method

As we discussed in 5.1, we have already tested the way of finding DC pairs that
compound itemsets are firstly found in [1]. In order to compare our new method
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region N Ncomp NDC Ncomp − NDC |Cm| − |DC|
Atlanta 2.42 × 107 2.36 × 107 4.69 × 105 2.32 × 107 1.64 × 106

Boston 2.42 × 108 2.42 × 108 1.01 × 106 2.41 × 108 1.56 × 106

Chicago 4.78 × 107 4.76 × 107 5.41 × 105 4.70 × 107 1.44 × 106

Los Angeles 2.74 × 107 2.72 × 107 7.56 × 104 2.72 × 107 2.80 × 105

New Orleans 1.51 × 107 1.49 × 107 8.12 × 104 1.49 × 107 3.08 × 105

New York 1.59 × 107 1.56 × 107 8.83 × 105 1.47 × 107 2.95 × 106

San Francisco 2.96 × 107 2.88 × 107 7.90 × 105 2.80 × 107 1.69 × 106

Washington DC 1.95 × 109 1.95 × 109 2.76 × 105 1.95 × 109 3.06 × 105

Fig. 3. a comparison our new method with our previous method

with our previous one, we examine the number of candidates for compound
itemsets and whether the candidates can be divided into DC pairs or not. Our
experimental result is summarized in Figure 3. In the figure, N is the same
number in 6.2, and |DC| and |Cm| are the same number in 6.3. Ncomp is the
number of candidates for compound itemsets in each region. NDC is the number
of the candidates which can be divided into DC pairs. Note here that the
candidate may be several DC pairs. Although NDC differs from |DC| in 6.3, as a
result, the same number of DC pairs can be found by using our previous method.

The experimental result shows that the number of candidates for compound
itemsets, Ncomp, is almost the same number of possible itemsets with the prob-
ability of non-zero in the local database, N , in each region. That is, there are a
few itemsets which can be pruned even if some pruning rules presented in [1] are
used. Therefore, in Phase 1, our new method can be found candidates efficiently
in contrast with our previous method.

Although it is difficult to realize efficient search in Phase 1 by using our
previous method, this does not mean that the previous method is not efficient if
most of the candidates can be divided into DC pairs. However, as we discussed
in 5.1, the number of the candidates which can be divided into DC pairs, NDC , is
much smaller than Ncomp, so most of the candidates cannot be divided into DC
pairs. Therefore, we have to check many candidates which cannot be DC pairs,
further, may examine all subsets of each the candidates in worst case. On the
other hand, the number of combinations of candidates for component itemsets
which cannot be DC pairs, |Cm|− |DC|, is much smaller than the number of the
candidates for compound itemsets which cannot be DC pairs, Ncomp−NDC . As a
result, by using our new method, we do not have to examine many combinations
which cannot be DC pairs.

Thus, it can be considered that our new method realize efficient mining of
DC pairs in contrast with our previous method.

6.5 An Example of DC Pair

We have obtained various kinds of DC pairs in the experimental data. For
instance, in New Orleans, a DC pair X = {Entertainment, Quirky, Up and
Coming} and Y = {$ 15-$ 30, Private Parties, Spanish} has been found. The
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pair shows high degree of difference of correlations by conditioning to New Or-
leans. However, since the pair shows very high degree of correlation in the lo-
cal database, we will be able to find them as characteristic itemsets by some
method previously proposed. On the other hand, we have also found a DC pair,
X = {Quirky} and Y = {Good Decor, Italian, $15-$30, Good Service} for New
Orleans. The pair is not correlated in both global database and local database.
Therefore, the pair cannot be found by previous methods. However, the pair
shows high degree of difference of correlations by conditioning to New Orleans.
Although the correlation of the pair in New Orleans seems to be not so high, it
is much higher than one in the global database. We consider such a DC pair can
be especially useful in some cases. For instance, people looking for a restaurant
in New Orleans may be interested in a ”quirky Italian restaurant” which is a
hidden feature in New Orleans in contrast with a ”quirky Spanish restaurant”
which is an explicit feature in the local database because there may be some
factor of its high degrees of difference of correlations even if the pair does not
show high degree of correlation.

Thus, our algorithm has actually found potentially significant DC pairs for
the given database.

7 Concluding Remarks

Given a transaction database D and its sub-database DC , we proposed the notion
of DC pairs. A pair of itemsets X and Y is called a DC pair if the correlation
between X and Y in DC is relatively high to one in the original D with some
degree. It should be noted that the correlation is not always high in DC even
though we can observe some degree of correlation change for D and DC . In
this sense, such a pair might not be characteristic in DC . Thus, some DC pairs
are regarded as potential characteristics in DC . Our experimental results showed
that DC pairs which are potentially significant can be actually found for “Entree
Chicago Recommendation Data” under conditioning by each region.

In order to efficiently find DC pairs, we investigated several pruning mech-
anisms which can prune useless search nodes (branches) and designed an algo-
rithm adopted them. The computation is divided into two phases. In Phase 1,
we can efficiently extract the set of candidates for component itemsets with a
look ahead strategy. In Phase 2, then, a restricted pairs of obtained candidates
are examined whether they can be DC pairs or not. Our experimental results
have also shown effectiveness of the pruning rules in our search.

A more powerful pruning mechanism would be desired in more practical cases.
We would be able to realize such an improvement of computational efficiency
heuristically. For instance, imposing a semantic constraint on itemsets will be
effective in reducing our search space. We might consider only candidates for
compound itemsets each of which contains a certain pair of items semantically
interesting. As the result, the number of candidates can be drastically reduced
still preserving semantical significance. This kind of constraints will be investi-
gated as future work.
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