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Abstract. The classification of time-varying neurophysiological signals,
e.g., electroencephalogram (EEG) signals, advances the requirement of
adaptability for classifiers. In this paper we address the challenge of neu-
rophysiological signal classification arising from brain-computer inter-
face (BCI) applications and propose an on-line classifier designed via the
decorrelated least mean square (LMS) algorithm. Based on a Bayesian
classifier with Gaussian mixture models, we derive the general formula-
tion of gradient descent algorithms under the criterion of LMS. Further,
to accelerate convergence, the decorrelated gradient instead of the in-
stantaneous gradient is adopted for updating the parameters of the clas-
sifier adaptively. Utilizing the presented classifier for the off-line analysis
of practical classification tasks in brain-computer interface applications
shows its effectiveness and robustness compared to the stochastic gradi-
ent descent classifier which uses the instantaneous gradient directly.

1 Introduction

Recently, the emerging research of brain-computer interface (BCI) technology,
which is to give its users communication and control routes that do not depend
on the brain’s normal output channels of peripheral nerves and muscles, issues
many challenges to the artificial intelligence community [1][2][3][4]. One of the
big challenges in BCI applications is how to recognize the user’s intent from the
observation of neurophysiological signals as accurate as possible. In this paper,
we focus on the classification problem of one particular variety of neurophysio-
logical signals, namely electroencephalogram (EEG) signals which are electrical
brain activities recorded from electrodes placed on the scalp.

Compared to magnetoencephalography (MEG), optical imaging, positron
emission tomography (PET) and functional magnetic resonance imaging (fMRI),
electroencephalography is a relatively inexpensive and convenient means to mon-
itor the brain’s activities. Although the recorded EEG signals suffer from the
trouble of low signal noise rate (SNR), currently it is a rather recipient way
(non-invasive and ethical) to access brain signals [5][6]. However, the essential
nondeterminacy of brain activity implies the high variability of EEG recordings.
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The EEG signals being used in a BCI are typically non-stationary, especially
between two different sessions with a rather long time interval. Factors such
as user’s strategy, motivation, attention, fatigue or frustration may affect the
features of EEG activities significantly. Besides, the environmental noise in all
kinds of natural conditions can also cause the mental state to change by gradual
degrees. As an instance, Millán had shown that two different mental tasks, imagi-
nation of left and right hand movements respectively, can have closer power maps
than the same task during two consecutive sessions [7]. Altogether, the sponta-
neous variability of EEG recordings between experimental sessions makes it a
difficult issue to categorize different EEG signals, and necessitates learning the
on-line classification to boost up the performance of existing BCIs.

Hitherto, there is few work dealing with the problem of on-line learning for
EEG signal classification in the literature. Although many on-line learning meth-
ods are available from the neural network, statistical, and computational learning
disciplines, they are usually computationally expensive and do not suit BCI ap-
plications simply [8][9][10]. Our current work is initially inspired by several recent
publications of Millán and his colleagues [7][11][12][13]. Although they presented
to use the idea of stochastic gradient descent to carry out on-line learning of a
statistical classifier, under their rather rigorous assumptions, they hadn’t pro-
vided the formulations of variable updates in a systematic way. We will make
up for this deficiency and discuss the related work later in the main text.

The main contribution of this article is that, based on a Bayesian classifier
with Gaussian mixture models we derive the exact formulation of gradient algo-
rithm in a much general way, and then present a decorrelated least mean square
(DLMS) algorithm utilizing the theoretical outcome to learn the on-line classifi-
cation of EEG signals in BCI applications. Real-world classification experiments
with three kind of mental imagery tasks also verifies the effectiveness of our
approach.

The remainder of this paper is organized as follows. Besides the theoretical
derivation of gradient update, section 2 also covers the details of how to build up
the on-line Bayesian classifier employing the idea of decorrelated LMS algorithm.
Section 3 reports the experimental results for several BCI subjects on three
mental imagery tasks. Then, in section 4 we discuss some related work. Finally,
section 5 gives the conclusions and future work plan.

2 On-Line Classifiers

As we have stated before, the competence of on-line learning is very necessary
in BCI applications. However, to the best of our knowledge, there is little work
addressed this matter in the literature till now. The articles of Millán et al. are
one of the first to bring forward this problem in the BCI settings [7][11][12][13].
For the on-line learning in BCIs, one would first encounter the problem of choose
which kind of classifiers. For the consideration of low computation cost and
practical superiority, here we adopt the Bayesian classifier to deal with the issue
of multi-class categorization, as suggested by others [7][12].
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2.1 Bayesian Classifier

Assume there are N samples in a training set which come from K categories, and
each class denoted by Ck has prior P (Ck), (k = 1, ..., K), s.t.,

∑K
k=1 P (Ck) = 1.

For each class, its class conditional probability density is assumed to be the
weighted combination of Nk Gaussian probability density functions, i.e.,

p(x|Ck) =
Nk∑

i=1

ai
kG(x|µi

k, Σi
k), s.t., ΣNk

i=1a
i
k = 1 (1)

where G(x|µi
k, Σi

k) is a Gaussian probability density function with mean µi
k and

covariance Σi
k [14]. According to Bayesian theorem [10], the posterior probability

of x belonging to class Ck can be given as

P (Ck|x) =
P (Ck)p(x|Ck)

p(x)

=
P (Ck)

∑Nk

i=1 ai
kG(x|µi

k, Σi
k)

∑K
j=1 P (Cj)

∑Nj

i=1 ai
jG(x|µi

j , Σ
i
j)

. (2)

Now we represent the samples as {xn, yn}, n = 1, ..., N , whereas xn is the
feature vector, yn is the corresponding label. If xn ∈ Ck, then yn = eK

k =
[
0, . . . , 1(k), . . . , 0

]�
(K) . Denote ŷn as the outcome of our Bayesian classifier,

i.e.,
ŷn =

[
P (C1|xn), P (C2|xn), . . . , P (CK |xn)

]�
.

Under the criterion of least mean square (LMS), the cost function for uncon-
strained optimization becomes

min J(Θ) = min E{‖en‖2} = min E{‖yn − ŷn‖2} (3)

where variable Θ represents any of the parameters Nk, ai
k, µi

k, Σi
k. To make our

analysis feasible, we only presume here that parameters Nk, ai
k are given or

obtained from previous training data, while parameters µi
k, Σi

k would have the
most general form (µi

k is a general column vector, Σi
k is a symmetric and positive

definite matrix) and would be updated through on-line learning.
For the application of LMS algorithm and the later mentioned decorrelated

LMS algorithm, one should first derive the formulation of stochastic gradient
(instantaneous gradient) ∇Θ‖yn − ŷn‖2. Note that ‖yn − ŷn‖2 can be rewritten
as follows:

‖yn − ŷn‖2 = (yn − ŷn)T (yn − ŷn)
= yT

n yn − 2yT
n ŷn + ŷT

n ŷn

= yT
n yn − 2

K∑

i=1

yi
nP (Ci|xn) +

K∑

j=1

(P (Cj |xn))2

= yT
n yn +

K∑

j=1

[(P (Cj |xn))2 − 2yj
nP (Cj |xn)] . (4)
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Thus, we have

∇Θ‖yn − ŷn‖2 = 2
K∑

j=1

[(P (Cj |xn) − yj
n)∇ΘP (Cj |xn)] (5)

where Θ is µi
k or (Σi

k)−1 (for computational convenience, we use (Σi
k)−1 instead

of Σi
k from now on) in this paper.

2.2 Derive ∇µi
k
P (Cj |xn)

Define Φ1 = P (Ck)ai
k

p(xn) G(xn|µi
k, Σi

k)(Σi
k)−1(xn − µi

k), then

∇µi
k
P (Cj |xn) =

{
[1 − P (Ck|xn)]Φ1, for j = k
−P (Cj |xn)Φ1, for j �= k

(6)

(see Appendix A for details).

2.3 Derive ∇(Σi
k)−1P (Cj |xn)

Because ∇Σi
k
P (Cj |xn) is difficult to get directly, we try to derive ∇(Σi

k)−1P (Cj |xn)
alternatively.

∇(Σi
k)−1P (Cj |xn) =

{
P (Ck)ai

k

p(xn) [1 − P (Ck|xn)]Φ2, for j = k

−P (Ck)ai
kP (Cj|xn)

p(xn) Φ2, for j �= k
(7)

where
Φ2 = G(xn|µi

k, Σi
k){Σi

k − 1
2
diag(Σi

k) − A +
1
2
diag(A)}

with A = (xn − µi
k)(xn − µi

k)� (see Appendix B for details).

2.4 Decorrelated LMS Algorithm for Bayessian Classifier

With the derived stochastic gradient formulation in (5), one might seek to update
parameter Θ using the gradient directly (namely LMS algorithm), i.e. using

Θn = Θn−1 − µn∇Θn−1‖yn − ŷn‖2 (8)

to carry out on-line learning adaptively, where µn is the learning rate [15]. How-
ever, this would take a risk of low convergence rate and poor tracking per-
formance, since stochastic gradient ∇Θn−1‖yn − ŷn‖2 is only the instantaneous
approximation of the true gradient which should be derived from ∇Θn−1E{‖yn−
ŷn‖2}. If two consecutive instantaneous gradients correlate with each other, then
the mean square error (MSE) might be accumulated and couldn’t be corrected
in time. Therefore, to get rid of these shortcomings, here we adopt the decorre-
lated gradient instead of the instantaneous gradient [15][16]. Using decorrelated
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Table 1. The flow chart of the decorrelated LMS (DLMS) algorithm for learning on-
line classification

The variable Θ in the following procedure denotes µi
k or (Σi

k)−1

with {k = 1, . . . , K; i = 1, . . . , Nk}.
Step 1:
Initialize Θ with Θ0.
Step 2:
For n = 1, 2, . . ., calculate the decorrelated gradient
∇̂Θn−1‖yn − ŷn‖2 from (5) and (9), and update Θ with Θn =
Θn−1 − µn∇̂Θn−1‖yn − ŷn‖2.

gradient can effectively avoid the case of error accumulation which might arise
in instantaneous gradient descent algorithms, and hence, can accelerate the con-
vergence of the adaptive-gradient methods.

The decorrelated gradient of Θn can be defined as

∇̂Θn‖yn − ŷn‖2 = ∇Θn‖yn − ŷn‖2 − an∇Θn−1‖yn − ŷn‖2 (9)

where an is the decorrelation coefficient between ∇Θn‖yn−ŷn‖2 and ∇Θn−1‖yn−
ŷn‖2 . For two vectors vn and vn−1, the decorrelation coefficient an can be defined
as

an =
(vn − v̄n)�(vn−1 − v̄n−1)

(vn−1 − v̄n−1)�(vn−1 − v̄n−1)
(10)

where v̄n represents the mean value of vn [15]. For two matrices, the concept of
decorrelation coefficient can be similarly extended. Table 1 describes the para-
digm of our proposed decorrelated LMS (DLMS) algorithm for learning on-line
classification.

3 Experiments

3.1 Materials and Protocols

Here we describe the data set analyzed in this paper. The data set contains EEG
recordings from 3 normal subjects (denoted by A, B, C respectively) during non-
feedback mental imagery tasks. The subjects sat in a normal chair, relaxed arms
resting on their legs. The three tasks are: imagination of repetitive self-paced
left hand movements (class C1), imagination of repetitive self-paced right hand
movements (class C2) and generation of different words beginning with the same
random letter (class C3).

For a given subject, there are 3 recording sessions acquired on the same
day, each lasting about 4 minutes with breaks of 5-10 minutes in between. The
subject performed a given task for about 15 seconds and then switched randomly
to the next task at the operator’s request. The raw EEG potentials were first
spatially filtered by means of a surface Laplacian [17][18]. The superiority of
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surface Laplacian transformation over raw potentials for the operation of BCI
has already been demonstrated [19]. Then, every 62.5 ms, the power spectral
density in the band 8-30Hz was estimated over the last second of data with a
frequency resolution of 2 Hz for 8 centro-parietal channels (EEG signals recorded
over this region reflects the activities of brain’s sensorimotor cortices). The power
spectra in the frequency band 8-30 Hz were then normalized according to the
total energy in that band. As a result, an EEG sample is a 96-dimensional vector
(8 channels times 12 frequency components). The total number of samples for
subjects A, B, and C during three sessions are respectively 3488/3472/3568,
3472/3456/3472, and 3424/3424/3440. For a more detailed description of the
data and the brain computer interface protocol, please refer to [7]. In this article,
we concentrate on utilizing the 96 dimensional pre-computed features to address
the problem of on-line classification.

3.2 Experimental Results

EEG signal classification is conducted for each subject. First of all, to reduce the
parameters to be estimated and avoid the over-fitting problem, principal com-
ponent analysis (PCA) is adopted to reduce the feature dimensions by reserving
90% energy. The threshold 90% is a good tradeoff between dimension reduction
and energy preservation for our problem. To initialize the parameters µi

k and Σi
k

of the DLMS algorithm, we first apply the k-Means clustering algorithm with
multiple runs [10], and the result with the least cost value is selected for initial-
ization utility. On the selection of parameters P (Ck), Nk and ai

k in the Bayesian
classifier of Gaussian mixture models, we take the same configuration as [7],
for in his research, Millán had shown its effectiveness through cross-validations.
Thus, P (Ck) = 1

3 , Nk = 4 and ai
k = 1

4 (k = 1, 2, 3; i = 1, 2, 3, 4).
In this article, the data of session 1 from each mental task of every subject

is employed to implement parameter initialization. For class Ck, we first use
k-Means clustering algorithm to initialize µi

k which comes from one of the Nk

cluster centers. Then Σi
k can be obtained using the data belonging to the same

cluster Ci
k. Subsequently, we update the parameters adaptively on the first one

minute data of the next session (the samples are processed sequentially and
only once, to completely stimulate the on-line situation). With the final updated
parameters, we test the performance of the classifier on the data of the last three
minutes from the next session. The learning rate of µi

k and (Σi
k)−1 are taken as

1e-6 and 1e-4 respectively, which are found to provide good classification results
among a small number of parameter search for the basic LMS algorithm. The
same procedure is performed on session 2 and session 3, i.e., we initialize the
parameters µi

k and Σi
k through k-Means clustering on session 2, then update

them using the first one minute data of session 3 and test the final classifier on
the last three minute data of session 3.

To evaluate the performance of our decorrelated LMS (DLMS) algorithm
for learning on-line classification, under the same conditions we also carry out
on-line classification using the basic LMS algorithm, which adopts instanta-
neous gradient instead of decorrelated gradient to update parameters. The final
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Table 2. Classification accuracies of on-line learning by LMS algorithm and decorre-
lated LMS (DLMS) algorithm

Subjects Sessions LMS DLMS

2 67.79% 67.87%
A 3 70.71% 70.59%

2 47.40% 45.63%
B 3 51.83% 52.31%

2 49.19% 48.78%
C 3 41.45% 42.82%

classification accuracy rates using these two classifiers with parameters updated
by the whole one minute data are given in Table 2.

Through statistical Z-test, no significant difference is found between the final
results of these two algorithms (p-value=0.8845). This only indicates that the
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Fig. 1. (a): The time course of classification accuracies on session 3, subject A. (b):
The time course of classification accuracies on session 3, subject B. (c): The time course
of classification accuracies on session 3, subject C.
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Table 3. The standard deviations (STDs) (normalized to the range [1, 10]) of the time
courses of on-line classification by LMS algorithm and DLMS algorithm

LMS DLMS STD
Subjects Sessions STD STD Reduced

2 1.46 1.02 30.1%
A 3 1.79 1.30 27.4%

2 9.95 2.22 77.7%
B 3 4.32 1.87 56.7%

2 4.26 4.42 −3.8%
C 3 8.39 3.89 53.6%

Average 40.28%

performance of LMS algorithm is statistically similar to DLMS algorithm after
a long time of update. As we have stated before, one important requirement for
on-line BCI applications is to improve the classification performance using as
minimal training data as possible. Besides, for non-feedback BCIs, as there is no
sign helping subjects to rectify their latent strategies generating EEG signals,
effective algorithms should be of good stability. Below we give the time courses
of the convergence of these two algorithms during the on-line update stage for
classifying the last three minutes of session 3 of three subjects in Fig. 1. That is,
after every update, we obtain the classification accuracy on the last 3 minutes
of session 3. From Fig. 1, the robustness and the rapid convergence of DLMS
algorithm are manifested. Although the results of LMS algorithm and DLMS
algorithm have the same tendencies, the magnitude variance of classification
accuracy obtained by DLMS algorithm is rather smaller than that of LMS al-
gorithm. Thus the rapid convergence and robustness of DLMS algorithm are
indicated. For other test sessions, similar results are observed. In addition, to
give a quantitative description, the standard deviations of the classification re-
sults for LMS algorithm and DLMS algorithm are respectively given in Table 3,
from which we can see that by using DLMS algorithm for gradient descent the
standard deviation has been reduced to a large extent.

4 Related Work

With regard to the idea of stochastic gradient descent, Millán et al., have men-
tioned it in their publications [7][11][13]. However, they usually make a very
rigorous assumption about the formulation of covariance matrix Σi

k, such as the
assumption of diagonal and common to all the prototypes of a certain class,
and make a simple approximation about the gradient of µi

k. Fig. 2 shows the
distribution of two features from the original 96 ones. Clearly, using the combina-
tion of diagonal covariances could not represent the external oblique distribution
logically.
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Fig. 2. The distribution of two features from the original 96 ones of session 1, subject A

While in this article, PCA is adopted for dimension reduction and the covari-
ance matrices are described with a general form. This would be more reasonable
and more powerful in depicting different data distributions. Besides, we indepen-
dently derive the general representation of gradient descent algorithm for µi

k and
(Σi

k)−1 in a Bayesian classifier context, which didn’t appear before in the liter-
ature as far as we know. In addition, a new algorithm namely decorrelated LMS
algorithm is proposed for the on-line learning of µi

k and (Σi
k)−1, and obtains

better performance than the basic LMS algorithm (stochastic gradient descent
algorithm). These make our current work much different from Millán’s.

5 Conclusions and Future Work

The research of brain-computer interface technology is an interdisciplinary project,
which gestates many challenges in a variety of aspects. In this paper, we address
the problem of on-line classification of EEG signals with applications to brain-
computer interfaces. The time-varying characteristic of EEG recordings between
experimental sessions makes it a difficult issue to categorize different EEG sig-
nals, and necessitates learning the on-line classification. Based on a Bayesian
classifier of Gaussian mixture models, we derive the general formulations of the
instantaneous gradient and the decorrelated gradient. Besides, a decorrelated
LMS algorithm (DLMS) is developed to accelerate the convergence of the tra-
ditional LMS algorithm (stochastic gradient descent method). Experiments and
comparisons shows the effectiveness and robustness of our approach.

For practical utilities, one can design a easy-going protocol to implement on-
line learning. Each time users make use of BCI equipments after a long break,
there would be a on-line learning stage of one minute or so during which a
display device generates a series of random signs indicating upcoming tasks.
Following these cues, users carry out specific mental activities. Simultaneously,
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the classifier would be updated on-line. In the future, study on the realization
of automatic on-line training and on the active selection of training instances
would be an interesting issue.
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Appendix A: Derive ∇µi
k
P (Cj|xn)

∇µi
k
P (Cj |xn) = ∇µi

k

P (Cj)p(xn|Cj)
p(xn)

= ∇µi
k

P (Cj)
∑Nj

l=1 al
jG(xn|µl

j , Σ
l
j)

p(xn)
(11)

A.1 When j = k

∇µi
k

P (Cj)
∑Nj

l=1 al
jG(xn|µl

j , Σ
l
j)

p(xn)

=
P (Ck)ai

k

p(xn)
[1 − P (Ck|xn)]∇µi

k
G(xn|µi

k, Σi
k) (12)

where

∇µi
k
G(xn|µi

k, Σi
k) = G(xn|µi

k, Σi
k)(Σi

k)−1(xn − µi
k) . (13)

A.2 When j �= k

∇µi
k

P (Cj)
∑Nj

l=1 al
jG(xn|µl

j , Σ
l
j)

p(xn)

= −P (Ck)ai
kP (Cj |xn)

p(xn)
∇µi

k
G(xn|µi

k, Σi
k) . (14)
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Appendix B: Derive ∇(Σi
k)−1P (Cj|xn)

∇(Σi
k
)−1P (Cj |xn) = ∇(Σi

k
)−1

P (Cj)p(xn|Cj)
p(xn)

= ∇(Σi
k)−1

P (Cj)
∑Nj

l=1 al
jG(xn|µl

j , Σ
l
j)

p(xn)
(15)

B.1 When j = k

∇(Σi
k)−1

P (Cj)
∑Nj

l=1 al
jG(xn|µl

j , Σ
l
j)

p(xn)

=
P (Ck)ai

k

p(xn)
[1 − P (Ck|xn)]∇(Σi

k
)−1G(xn|µi

k, Σi
k) . (16)

Considering the normal distribution G(xn|µi
k, Σi

k) = 1
(2π)d/2|Σi

k|1/2 exp{− 1
2 (xn−

µi
k)�(Σi

k)−1(xn − µi
k)} = 1

(2π)d/2|Σi
k
|1/2 exp{− 1

2 tr[(Σi
k)−1(xn − µi

k)(xn − µi
k)�]} ,

if we denote A = (xn − µi
k)(xn − µi

k)T , then

∇(Σi
k)−1G(xn|µi

k, Σi
k)

=
1

(2π)d/2 exp{−1
2
tr[(Σi

k)−1A]}1
2
|(Σi

k)−1|− 1
2 |(Σi

k)−1|[2Σi
k − diag(Σi

k)] +

G(xn|µi
k, Σi

k){−1
2
[2A − diag(A)]}

= G(xn|µi
k, Σi

k){Σi
k − 1

2
diag(Σi

k) − A +
1
2
diag(A)}. (17)

B.2 When j �= k

∇(Σi
k)−1

P (Cj)
∑Nj

l=1 al
jG(xn|µl

j , Σ
l
j)

p(xn)

= −P (Ck)ai
kP (Cj |xn)

p(xn)
∇(Σi

k)−1G(xn|µi
k, Σi

k). (18)
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