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Abstract. Invention, like scientific discovery, sometimes occurs through
a heuristic search process where an inventor seeks a successful invention
by searching through a space of inventions. For complex inventions, such
as the airplane or model rockets, the process of invention can be expe-
dited by an appropriate strategy of invention. Two case studies will be
used to illustrate these general principles: the invention of the airplane
(1799-1909) and the invention of a model rocket by a group of high school
students in rural West Virginia in the late 1950’s. Especially during the
invention of the airplane, inventors were forced to make scientific dis-
coveries to complete the invention. Then we consider the enterprise of
artificial intelligence and argue that general principles of invention may
be applied to expedite the development of AI systems.

1 Heuristic Search and Invention

Humans live in a world that has been shaped by invention: the clothing we
wear, the food we eat, our houses, our transportation, our entertainment – all
depend on a vast aggregation of technology that has been developed over the
millennia. Some invented artifacts, including stone knives and hammers, even
predate homo sapiens. Given the importance of invention in the contemporary
world, it is worth some effort to understand how new inventions are developed.

Even a superficial review of the history of technology and invention shows
that many different paths can lead to an invention. Basalla [1] and Petroski [2]
have discussed the similarities between biological evolution and technological
invention. In reviewing several case studies, Basalla provides strong evidence
that some inventions arise when inventors produce random mutations of existing
inventions, and society determines which inventions are “fit” for reproduction.
One example is the paper clip, which appeared about the same time as steel wire
and wire-bending jigs became available. Figure 1 illustrates different clip shapes
from three different American patents. The familiar double-oval Gem clip was
never patented in the U.S., but other patents were filed that described wire loops
of various shapes in an effort to create a clip that was easy to slip over a set of
papers, did not tear the papers as it was used, and held the collection tightly.

A system of invention based on random mutation (by inventors) and natural
selection (by society) does not appear to require any intelligent activity on the
part of inventors themselves: how difficult can it be to bend wires, after all?
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Fig. 1. Various forms of paper clips patented in the U.S. around the turn of the century

But in spite of the variability of all of the patented paper clips, they all shared
some important features in common. First, all clips are relatively flat, having a
structure that is mostly two-dimensional rather than 3-dimensional. Next, clips
tend to loop over themselves in a way that allows them to pinch together a stack
of papers. If inventors were simply producing random bends in wire, they would
most commonly produce non-planar bends that created a 3-dimensional struc-
ture and would most commonly produce forms that did not have the necessary
loops to hold together a paper stack. In spite of the diversity of paper clip forms,
it does seem clear that the various alternatives were not produced by blind or
random mutation, but rather by strategic alteration, perhaps akin to genetic
algorithms in use today.

It should also be evident that the “inventive play” described by Basalla,
where inventors produce different forms through manipulation of an existing ar-
tifact, is not sufficient to account for inventions where a number of parts are
necessary to the performance of the whole. Consider, for example, the televi-
sion. Although it might be possible for an infinite monkey team to wire together
tubes, resistors, capacitors, and transformers to produce a television set, it seems
unlikely this would have happened so quickly after the invention of the electron
tube. Similarly, random mutation does not seem to be sufficient to produce in-
ventions like the airplane or the telephone in a reasonable amount of time. These
more complicated inventions appear to call for a more sophisticated method of
invention.

1.1 Invention via Heuristic Search

Several researchers, following in the footsteps of Newell and Simon [3], appear to
have independently developed the idea that inventions could be realized through
heuristic search. Weber and Perkins [4] adapted contemporary problem solving
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Fig. 2. Designs created by analogy to nature. These inventors deliberately copied the
structure of flying creatures in their designs. Although birds were a popular source of
analogy, other flying creatures like bats and beetles were used as well.

to account for the process of invention. Following Simon’s ([5], [6]) model of scien-
tific discovery as heuristic search, Weber and Perkins described a set of heuristics
to produce new inventions by performing a goal-directed search through a space
of possible inventions based on a series of working-forward heuristics that en-
able a new set of inventions to be developed from existing ones. For example, the
join heuristic creates a new invention by combining separate inventions together.
The awl and the scraper can be combined using the join heuristic to produce
a pointed knife. The knife, in turn, can be combined with a screwdriver, a pair
of scissors, a corkscrew, and a saw into the contemporary Swiss army knife, a
lightweight and versatile tool.

The join heuristic is a weak method, but is still far more powerful than
random recombinations. Weber and Perkins restrict the join heuristic to com-
bine functionally related objects. The heuristic would not be invoked to join a
can opener with a computer monitor. Although such an implement would have
greater functionality than the original inventions, the purposes of can openers
and monitors have little to do with one another, so there is no reason to construct
this awkward marriage.

In accounting for the invention of the airplane, Bradshaw & Lienert [7] and
Bradshaw [8] also adopted a problem-solving perspective. Four design heuristics
were identified from historical records of numerous different attempts to cre-
ate a workable airplane from 1799 to 1909. Two of these heuristics, analogy to
nature and copycat were the source of full designs, while two other heuristics,
more is better and make small changes, were used to revise an existing design.
Figure 2 illustrates different examples of the use of analogy, where various flying
creatures (songbird, bat, and beetle) were used to inspire an airplane design.
Figure 3 illustrates copycat, where a design produced by one inventor is adopted
by another.
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Fig. 3. Airplanes designed by copycat. The Wrights copied the sturdy biplane design
introduced by Octave Chanute and Augustus Herring, including the Pratt system of
trussing the wings for strength. Ferber and Esnault-Pelterie both copied the Wright
design. The failure of Esnault-Pelteries “perfect copy” of the Wright glider convinced
Europeans that the Wrights were “bluffing” in their claims to have built airplanes.

Once an airplane had been designed, two additional heuristics could be used
to revise the design. The first such heuristic is called more is better. Inventors
added additional wings, propellers, tail surfaces, and other components to see
if their design could be improved. Phillips, an English inventor, produced a
design that had at least 196 different airfoils in four racks, not realizing that the
turbulence produced by the forward wings would spoil the airflow over rearward
wings. The second design-revision heuristic is known as make small changes.
This covers a multitude of minor modifications made to an airplane, usually for
ad hoc reasons.

Strategies for Searching Through the Design Space. These four heuristics
alone can generate billions of different airplane designs given the parameters
shown in Table 1. We will refer to the set of possible designs as the design space
of the invention. Effective solutions (airplanes that are airworthy) are rare in
this design space, so inventors need to find efficient means of searching through
such a large space for rare solutions.

Most inventors relied upon a simple design and test strategy: They would
design and build a craft, then take it out to the field to test it. Some craft
were launched from a hill, others were launched from a rail system, while others
attempted to fly from grassy meadows. Figure 6 illustrates the best performance
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Fig. 4. Airplanes modified through the more is better heuristic. The Phillips Multiplane
had approximately 196 different airfoils, while the New York Aero Club plane featured
8 propellers.

Fig. 5. Archdeacons airplane was modified several times using make small changes.
The original design (a crude copy of the Wright craft) was changed by reducing the
length of the lower wing, which led to the side curtains being placed at an angle.
Then the rear wing was replaced with an ellipse (which suffers from particularly bad
aerodynamic characteristics) and finally both wings were replaced by an ellipse.

of a number of craft between 1799 and 1909. The dotted line is the regression
line for non-Wright craft in the period 1799 until December, 1905. In 1906 the
Wrights patent first appeared, and so after that time inventors had access to
information about an airworthy craft. The 1799-1905 regression line actually has
a slightly negative slope, indicating that more capable craft were built near the
beginning of this period than could be constructed at the end of the era: There
was no substantial improvement in performance of airplanes over a 110-year
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Table 1. Design Features of Para-Planes

Design Parameter Possible Values

Number of wings. 1–196
Wing position 1–3 (monoplane, tandem, etc.)

Placement stacked, tandem, staggered
Lateral arrangement anhedral, flat, dihedral

Camber of wings 1–12, 1–6, etc.
Wingspan 6’–104’

Wing Chord 3’–10’
Shape of wings bird-like, rectangular, bat-like, insect-like
Tail placement forward (canard), rear, mid
Lateral control none, wing warping, ailerons

Number of Propellers 0–8

span. The Wrights were a clear exception to this trend: their initial gliders were
among the best-performing aircraft from the beginning, and they made steady
progress. The 1903 craft (which was their first powered design) represents the
transition between gliders and powered craft, and fits nicely on both regression
functions.

The data shown in Figure 6 represents a considerable mystery: How were
the Wrights able to develop an effective initial glider and sustain progress, while

Fig. 6. Attempts to master the airplane. Each point represents the best flight made
by a particular craft on the date the flight was made.
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other inventors did not show similar improvements? To explain this mystery, we
first need to examine the logic behind the design-and-test strategy of invention.
Suppose that an inventor has designed an airplane, taken it out to the field, and
flown it. Between 1799 and 1909, about the greatest distance achieved by any
craft was 100 meters. Now the inventor would like to improve upon the design.
As long as an inventor can create a craft that is even slightly better than the last,
he can continue improvements and produce a positive performance slope. This
represents a familiar hill-climbing strategy of solving problems, and hill-climbing
is effective for solving many problems.

Why did this strategy fail in the invention of the airplane? Bradshaw &
Lienert [7] argued that the failure arose because making a test flight does not
provide diagnostic information about the strengths and weaknesses of a design:
The wings may not have produced sufficient lift to keep the craft in flight, the
airframe might be causing too much drag, the center-of-lift might not coincide
with the center-of-balance, or the pilot may have made a mistake in flying the
airplane. Under these circumstances, inventors had no reliable information about
what was wrong with their craft, or what specifically to change to improve it.

So how did the Wrights escape this trap? Although they did build and test
gliders and airplanes, their approach towards invention differed in substantial
ways from their contemporaries. In particular they followed a functional decom-
position strategy: They isolated different functional subsystems (wings, power
plant, elevator), identified specific performance requirements for each of the sys-
tems (i.e., the wings must produce 110 kilos of lift), and employed what little
was known about aerodynamics to produce a subsystem that met their design
requirements. This led to the first glider, which they tested in 1900. When the
glider did not perform as designed, the Wrights realized there was something
wrong with their computations of lift. This led to their construction of a series
of wind tunnels and the development of instruments to measure lift and drag.
Somewhere between 80 and 200 different wing shapes were tested in the wind
tunnel. Their results demonstrated that the current value of the coefficient of
lift was incorrect, revealed a much better approximation for that coefficient, and
showed that long and thin wings had better characteristics than short and broad
ones. Wind tunnel tests also revealed that an airplane wing with its highest point
near the leading edge of the wing had better changes in the travel of the center
of lift than did a wing with the highest point in the center of the wing. Testing a
functional subsystem in isolation produced diagnostic information about which
wing designs were good, and which ones were bad. Their information was so
precise that the Wrights were able to build a glider in 1902 that had excellent
flight characteristics.

Between 1902 and 1903 the Wrights performed more tests in their wind
tunnel – to determine the best shape for an airplane propeller. Once again their
approach was quantitative: the Wrights knew how much horsepower their engine
could produce, so they needed a propeller with a specific level of performance to
produce the thrust their craft needed. The Wrights were so certain of the success
of their 1903 flyer that the pair, who were known for their modesty and caution,
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wrote a press release announcing their success before leaving Dayton for Kitty
Hawk. Their father issued the press release following the receipt of a telegram
from the Wrights told of their actual success.

As an invention strategy, functional decomposition has several advantages
over design-and-test. We have already discussed the lack of diagnosticity in design
and test. Because of the decomposition inherent in functional decomposition,
testing of a part is not confounded by the performance of other parts of the
system. It was also possible for the Wrights to develop far more precise indices
of performance of subsystems than it was to evaluate the performance of the
part in a complete craft. In 1900 and 1901, for example, the Wrights suspected
their wings were not producing as much lift as calculated. They attempted to
measure the lift of their glider by weighting down the wings with some chain,
flying their glider as a kite, and measuring the angle of attack and wind speed
simultaneously. But the winds were not perfectly steady and their glider reacted
by changing its elevation and angle of attack in reaction to changes in wind
speed, so the Wrights could not determine with any degree of accuracy how
much lift their wings were actually producing. They suspected that the value for
the coefficient of lift was incorrect, but did not have proof. Once they built their
wind tunnel, they were able to precisely measure lift, drag, and the coefficient of
lift. A third advantage of functional decomposition arises from the combinatorics
of divide and conquer: When one wing is shown to have poor lift and drag
characteristics, the Wrights were able to exclude from consideration tens- or
hundreds-of-thousands of airplanes: any design that included that wing was a
bad choice.

Another advantage of the Wright approach arose from their use of precise
performance specifications. The Wrights knew their gliders had to support the
weight of the pilot along with the weight of the craft. For an 80-kilo pilot and a
45-kilo glider, the wings must produce 125 kilos of lift. Having these performance
requirements allowed the Wrights to satisfice in their designs: once they found
a wing that could produce the necessary lift at the target weight, they did not
have to look further to find an optimal wing design. Also, having performance
specifications allowed the Wrights to determine when their design had failed. The
Wright’s second glider, built in 1901, performed nearly as well as any other craft,
powered or unpowered, had done to date. Rather than being satisfied with their
near-world-record performance, the Wrights were discouraged that the craft had
not performed as designed: this dissatisfaction led directly to their development
of a wind tunnel to determine why the glider was not generating the computed
lift.

One more aspect of the Wright’s approach deserves mention: the use of the-
ory and math to substitute for search. Previous research had uncovered a lift
function that enabled the Wrights to test small models of wings just a couple of
inches long, then predict the performance of a large-scale wing with considerable
accuracy. If this function were not know, the Wrights might have been forced
to test full-scale wings in a large wind tunnel. Such research would most likely
have been prohibitive given their modest means.



Invention and Artificial Intelligence 9

Through all of these efficiencies, the Wrights were able to develop an airwor-
thy glider in just three years, then take only three more to produce a practical
airplane capable of extended flight. These accomplishments were made while
they maintained a successful small business, and with quite modest financial re-
sources. Only when others were able to study the Wright craft and the advances
they made were they able to produce competitive airplanes.

1.2 Principles of Effective Invention

This review of the invention of the airplane suggests that there are ways to
achieve considerable efficiency in the process of invention. These efficiencies will
be most evident for complex inventions where various elements contribute to the
success of the whole. Under such circumstances, search can be reduced by:

1. Identifying the functions to be performed by the invention;
2. Specifying functional requirements that the system must meet;
3. Developing subsystems that meet these functional requirements;
4. Testing the subsystems in isolation from the whole system;
5. Focusing attention on subsystems that fail to perform as designed; and
6. Utilizing theory to generalize results.

Whenever these strategies can be practically employed, they will reduce the
complexity of the invention.

2 The Invention of AI Systems

In discussing invention, it should be clear that many AI methods, particularly
those in learning and discovery systems, have application as a way to produce
new inventions, just as they can learn and make new discoveries. Perhaps in
the near future a discovery system will build a better mousetrap or a learning
system will produce a better user interface. By exploring such applications we can
increase the utility of our systems and methods: we can apply them to invention
problems as well as discovery and learning problems. But there is another reason
for discussing the process of invention: AI systems are not discovered they are
invented. As such, they are governed by the same principles of invention that
have just been described above.

Why are AI systems best considered as inventions and not discoveries?
Clearly artificial intelligence falls within the“Sciences of the Artificial” as de-
scribed by Herbert Simon [6]. AI may draw upon research findings in psychology,
but clearly AI methods and systems are the product of human enterprise, and
so can be understood as an invention. Given this status, we may consider how
the lessons of invention can be applied to AI systems as a special case. We begin
by considering the design space of AI systems. Table 2 illustrates some of the
choices that investigators face as they are putting together a new AI system:

Many of the entries in the table refer to a family of related methods. For
example, using parametric statistics to handle noise in the data might include
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Table 2. Design Features of AI Systems

Design Parameter Possible Values

Knowledge Representation Symbols; Schemas; Propositions; Productions;
Distributed Sub-Symbolic Nodes . . .

Thought Processes Productions; Bayesian Probabilities; Spreading
Activation; Predicate Calculus; Schema Inference;
Markov Transitions . . .

Learning Proceduralization; Composition; Backpropagation;
Genetic Algorithms; . . .

Noise Parametric Statistics; Non-parametric statistics;
Bayesian Probabilities; Signal Detection; . . .

Test Database Iris; Solar Flare; Credit Card; . . .
Competing System C4.5; Soar; ACT-R; Harmony; Neural Network; . . .

something simple, like computing the mean, to finding a regression line, or even
using the standard deviation to find outliers that are treated as a special case.
Clearly we have produced a rich set of alternatives from which researchers can
choose in developing a new AI system.

Let us suppose, for a moment, that a researcher decides to build a new AI sys-
tem drawing upon the alternatives shown in Table 2. Choosing a system based
upon schemas for knowledge representation, spreading activation and produc-
tions for thought processes, and proceduralization for learning, the researcher
then adds a new method of dealing with noise based on non-parametric sta-
tistics and Bayesian probabilities, known as F.A.K.I.R., further adding to the
pool of methods available in AI. The new system, including the F.A.K.I.R. al-
gorithm, is called HOLIER.THAN.THOU.1 The researcher decides to compare
HOLIER.THAN.THOU. against C4.5 [9] using a database of credit card trans-
actions.

On the first comparative test, HOLIER.THAN.THOU. does not perform
well classifying database transactions. The researcher examines the errors made
by the F.A.K.I.R. and identifies some problems with the new procedure for
accommodating noise in the data. By adjusting several parameters and making
other tweaks to the system, HOLIER.THAN.THOU. now outperforms C4.5 on
the database by 2%.

We might ask, “What value is the new F.A.K.I.R. noise reduction technique
for the AI community?” Clearly the researcher has demonstrated that, under
some conditions, HOLIER.THAN.THOU. can out-perform C4.5. But grave ques-
tions remain about the generality of this claim, about the significance of the 2%
difference, and about the source of the performance difference. Let us consider
each of those issues in turn.

1 Any resemblance between F.A.K.I.R/HOLIER.THAN.THOU. and an actual AI sys-
tems or methods is purely coincidental, and we do not suggest that any existing AI
system has been developed in this way.
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Generality of the Result. AI researchers often begin with an understand-
ing of the problems that certain databases represent for learning and discovery
algorithms. But we lack a deep conceptual understanding of the fundamentals:
“How much adaptation does an adaptive system have to perform?” or “What
kinds of learning does a learning system need to do?” We can answer these ques-
tions with respect to certain well-known databases, but not with respect to an
entire class of problems. For this reason, we cannot readily determine how many
different databases are needed to demonstrate the generality of a new system
or algorithm. Should we test each new system on 10 different databases? Which
ones? At what point are we certain that we have tested a new system against
all of the interesting problems an intelligent system might face? The Wrights
were lucky enough to have mathematical equations that allowed them to pre-
dict the performance of a full-size wing from a small model wing. Would anyone
care to predict how HOLIER.THAN.THOU will do on a database of credit card
transactions vis a vis a neural network system?

We may never enjoy the situation the Wrights found themselves in, where
a simple mathematical function can predict how a system will behave under
different situations. One way researchers have responded to questions about
generalization is to test their system against multiple databases – a method
that does help to establish the generality of a new method or system. Yet even
still another serious issue remains: how good does our system or method need
to be in order to be useful across an interesting range of problems? Remember
that the Wrights could specify in advance how much lift their system needed
to generate in order to fly. That allowed them to find a satisfactory solution
to the problem, without the necessity of finding an optimal one. Are we now
looking at solutions that are sub-satisfactory, satisfactory, approaching optimal,
or optimal?

Significance of a Performance Difference. The researcher found a 2% per-
formance advantage for HOLIER.THAN.THOU when compared to C4.5. But
this advantage only occurred after careful fine tuning of HOLIER.THAN.THOU.
Was the same care taken to ensure that C4.5 was performing at its best? Per-
haps, perhaps not. Even if C4.5 was adjusted to perform at its best, we are still
uncertain about what the best possible performance is on the credit card data-
base. It might seem possible to attain a 100% accuracy on classifying all items in
the database simply by memorizing each item. However, some databases could
suffer from an impoverished description of items where two items with the same
description belong to different classes, or God could be playing dice with the
Universe, and no description would be adequate to classify every item correctly.

A more difficult question arises when we try to determine whether the 2%
improvement in accuracy rate is better or worse. At first glance the question
seems foolish: HOLIER.THAN.THOU performed more accurately on the data-
base. How could that not be better? Yet experience has taught us that adaptive
systems can learn the noise in the database as well as the signal. These sys-
tems do not generalize as well to new data as ones that only learn the true
generalizations present in the database.
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A final awkward question arises when we consider the statistical and practical
significance of a 2% improvement in classification performance. If C4.5 correctly
classifies 97% of the transactions and HOLIER.THAN.THOU correctly classifies
99%, the difference could be significant and important. But if C4.5 correctly
classifies 20% of the transactions and HOLIER.THAN.THOU classifies 22%,
neither system seems very impressive. Researchers in AI commonly use some
sort of split-part reliability computation, which helps to determine the reliability
and statistical significance of the results.

Credit Assignment for F.A.K.I.R and HOLIER.THAN.THOU. Once
we convince ourselves that the 2% difference is significant and important, we
are left with one more awkward question: where did this difference come from?
Was it due to some advantage of the F.A.K.I.R. algorithm in isolating noise
and concept drift from the signal? Or was it due to a difference in the initial
representation of the data between HOLIER.THAN.THOU and C4.5? Or was
there some other difference between the two systems? Answering the question
has greater importance than at first appears. Perhaps the F.A.K.I.R. algorithm
is improving the performance of HOLIER.THAN.THOU by 25%, but other limi-
tations of HOLIER.THAN.THOU reduce the advantage by 23%. We might then
combine F.A.K.I.R. with C4.5 and achieve a better result yet. By knowing how
well each element of the system is doing its job, we can produce the best possible
combination of elements.

The analogy between the invention of the airplane and the invention of AI sys-
tems can be pushed too far: Computer programs are typically designed through
a series of function calls, and it is possible to determine if the calls are operat-
ing as designed. This lends a transparency to computer programs that airplane
inventors did not enjoy. Function calls often map roughly onto the functional
specifications for a system, although there are many internal function calls that
do not have an obvious connection to the larger functional subsystems of the
program. Yet by considering AI as an invention, it raises two important ques-
tions: “What are we trying to invent?” and “Are we working efficiently toward
that goal?”

2.1 Reflections on Invention and AI

When one examines recent developments in AI, it is clear that AI researchers
are inventive and are pouring tremendous creative energy into developing new
heuristic and algorithmic methods to address difficult problems. Evidence of this
inventiveness is present in the the two volumes published last year for ALT 04
[10] and Discovery Sciences 04 [11], each of which presented a number of impor-
tant papers in their respective fields. As a result of this worldwide enterprise,
researchers are now faced with an embarrassment of riches in the number of
different methods they have available for the construction of new AI systems.

But there still seems to be an important gap in our knowledge – we don’t
fully understand the relationship between where we are and where we want to
be. Are we building AI systems like the pre-Wright airplanes that struggled to
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‘fly’ 100 meters? Or are we improving capable airplanes to extend their range
from trans-continental flight to inter-continental flight? With aviation, everyone
knew that airplanes needed to fly long distances quickly and to carry as much
weight as possible. AI has no such simple goals: it may be quite valuable to build
an expert system like XCON [12] to design the backplane of Vax computers, even
if the system has only a limited expertise and lifetime. Or we may set our goals
higher to develop more versatile and capable AI systems.

We can, of course, continue to develop even more new learning and discovery
methods. But hopefully the energy being spent to develop new methods can be
balanced with an effort to better document what our systems need to do and how
well they need to do those things. As the baseball player Yogi Berra said, “If you
don’t know where you are going, you will wind up somewhere else.” Through a
better understanding of the fundamental problems of learning, discovery, and AI,
we can work towards functional specifications that tell us how well our systems
need to perform, then choose methods that will get us where we want to be,
instead of somewhere else.
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