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Preface

This volume contains the papers presented at the 8th International Conference
on Discovery Science (DS 2005) held in Singapore, Republic of Singapore, during
the days from 8–11 of October 2005.

The main objective of the Discovery Science (DS) conference series is to pro-
vide an open forum for intensive discussions and the exchange of new ideas and
information among researchers working in the area of automating scientific dis-
covery or working on tools for supporting the human process of discovery in
science. It has been a successful arrangement in the past to co-locate the DS
conference with the International Conference on Algorithmic Learning Theory
(ALT). This combination of ALT and DS allows for a comprehensive treatment
of the whole range, from theoretical investigations to practical applications. Con-
tinuing in this tradition, DS 2005 was co-located with the 16th ALT conference
(ALT 2005). The proceedings of ALT 2005 were published as a twin volume 3734
of the LNCS series.

The International Steering Committee of the Discovery Science conference se-
ries provided important advice on a number of issues during the planning of Dis-
covery Science 2005. The members of the Steering Commitee are Hiroshi Motoda,
(Osaka University), Alberto Apostolico (Purdue University), Setsuo Arikawa
(Kyushu University), Achim Hoffmann (University of New South Wales),
Klaus P. Jantke (DFKI and FIT Leipzig, Germany), Massimo Melucci (Uni-
versity of Padu ), Masahiko Sato (Kyoto University), Ayumi Shinohara (Tohoku
University), Einoshin Suzuki (Yokohama National University), and Thomas Zeug-
mann (Hokkaido University).

We received 112 full paper submissions out of which 21 long papers (up to
15 pages), 7 regular papers (up to 9 pages), and 9 project reports (3 pages) were
accepted for presentation and are published in this volume. Each submission was
reviewed by at least two members of the Program Committee of international
experts in the field. The selection was made after careful evaluation of each paper
based on originality, technical quality, relevance to the field of discovery science,
and clarity.

The Discovery Science 2005 conference had three types of presentations: long
papers were presented in a plenary session; regular papers were presented in
a short spotlight presentation to generate interest and a presentation during
a poster session for intensive discussions and presentation of details; project
reports were presented in a poster session to allow intensive discussion on ongoing
work and interesting ideas that had not been developed to the same degree of
maturity as long and regular papers.

The Carl Smith Award was presented this year for the first time in honor of
Professor Carl Smith to the student author of the best paper in the Discovery
Science conference authored or co-authored by a student. The prize of 555 Euro
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VI Preface

was awarded to Qianjun Xu for the paper entitled Active Constrained Clustering
by Examining Spectral Eigenvectors.

This volume consists of four parts. The first part contains invited talks of ALT
2005 and DS 2005. Since the talks were shared between the two conferences, for
the speakers invited specifically for ALT 2005 only abstracts are contained in this
volume, while the full paper is found in the twin volume LNCS 3734 (the pro-
ceedings of ALT 2005). We were delighted that Gary Bradshaw (Invention and
Artificial Intelligence), Vasant Honovar (Algorithms and Software for Collab-
orative Discovery from Autonomous, Semantically Heterogeneous, Distributed,
Information Sources), Chih-Jen Lin (Optimization Issues in Training Support
Vector Machines), Ross D. King (The Robot Scientist Project), and Neil Smal-
heiser (The Arrowsmith Project: 2005 Status Report) followed our invitation to
present their work.

The second part of this volume contains the papers accepted as long papers
(acceptance rate of less than 21%). The third part of this volume contains the
regular papers, which were found to belong to the best 27% of all submissions.
Finally, the fourth part of this volume contains the project reports; the total
acceptance rate for all three paper categories sums to 37% of all submissions.

We are deeply indebted to the Program Committee members as well as their
subreferees who had the critically important role of reviewing the submitted
papers and contributing to the intense discussions which resulted in the selection
of the papers published in this volume. Without this enormous effort, ensuring
the high quality of the work presented at Discovery Science 2005 would not have
been possible.

We also thank all the authors who submitted their work to Discovery Science
2005 for their efforts.

We wish to express our gratitude to the invited speakers for their acceptance
of the invitation and their stimulating contributions to the conference.

Finally, we wish to thank everyone who contributed to make Discovery Sci-
ence 2005 a success: the DS Steering committee, the ALT conference chairs,
invited speakers, and last but not least Lee Wee Sun, the Local Arrangements
Chair and his team of supporters.

October 2005 Achim Hoffmann
Hiroshi Motoda
Tobias Scheffer
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The Carl Smith Award

Starting with this year, the “Carl Smith Award” is presented to the most out-
standing paper written or co-authored by a student. The selection is made by
the actual program committee of the Discovery Science conference. The award
carries a scholarship prize of 555 Euro.

The decison to introduce this award has been proposed at the ALT/DS-
business meeting of last year’s conference in Padua after remembering Carl
Smith, who passed away on July 21, 2004 after a long and valiant battle with
cancer, with a minute of silence. Subsequently, this decison has been happily
approved by Patricia Smith.

Carl performed his undergraduated studies in Vermont and received his Bach-
elor of Science Degree from the University of Vermont in 1972. Then, he moved
to State University of New York at Buffulo where he received his Ph.D. Subse-
quently, he was Assistant Professor of Computer Science at Purdue University.
Then he was at the University of Maryland at College Park, where he got pro-
moted to Associate and Full Professor. In 1993, Carl received the Habilitation
degree from the University of Latvia in Riga. He is also one of the very few
non-Latvian scientists who got elected to the Latvian Academy of Science.

Additionally, Carl spent several years as program manager at the National
Science Foundation’s theoretical computer science program and continued to
work for the National Science Foundation by working on programs and panel
reviews for many years.

Carl also contributed to the computer science community as an editor of
the International Journal of the Foundations of Computer Science, Theoretical
Computer Science, and Fundamenta Informaticae.

The Discovery Science conference series is still a young one but many re-
searchers remember Carl for a much longer time, because of his very active role
in the algorithmic or computational learning communities.

Let us look back to 1986 when the 1st International Workshop on Analogical
and Inductive Inference was held in Wendisch-Rietz near Berlin. This was the
starting point of the first international conference series on learning theory which
merged in 1994 with the Algorithmic Learning Theory series established in 1990.
At this workshop Carl gave a talk “On the Inference of Sequence of Functions”
(co-authored with Bill Gasarch) in which he developed a model of “learning how
to learn.” Of course, by this time Carl was already well known through his work
on comparison of identification criteria for machine inductive inference, his work
on team learning, and the beautiful survey paper “Inductive Inference: Theory
and Methods” (co-authored with Dana Angluin).

Besides the very fruitful scientific discussions we all enjoyed at this work-
shop, it was also the beginning or continuation of a lasting friendship many
of us had with Carl which in turn led to many teams including Carl all over
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the world. These long and fruitful collaborations included leading groups from
Japan, Latvia, Germany, USA, Australia, and Singapore among many countries.
As a result, papers on query learning, on memory limitation, on learning with
anomalies, on the complexity of inductive inference, on Barzdinš’s conjecture,
on procrastination, on mind change complexity as well as on a logic of discovery
emerged.

Besides his regular papers, Carl contributed in many ways to the ALT and DS
conference series by serving for their Program Committees and the DS Steering
Committee, and by serving as local chair, as conference chair and arrangements
as invited speaker.

He also chaired IFIP WG 1.4 on Computational Learning Theory and
organized many funding to support, in particular, young scientists.

Since Carl Smith did so much for the ALT and DS conferences, his spirit, his
contributions, his passion, and his ideas will be remembered and passed to the
young generations by the “Carl Smith Award.”

August 2005 Thomas Zeugmann
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Invention and Artificial Intelligence

Gary Bradshaw

Psychology Department, P.O. Box 6161,
Mississippi State University, MS 39762, USA

glb2@ra.msstate.edu

Abstract. Invention, like scientific discovery, sometimes occurs through
a heuristic search process where an inventor seeks a successful invention
by searching through a space of inventions. For complex inventions, such
as the airplane or model rockets, the process of invention can be expe-
dited by an appropriate strategy of invention. Two case studies will be
used to illustrate these general principles: the invention of the airplane
(1799-1909) and the invention of a model rocket by a group of high school
students in rural West Virginia in the late 1950’s. Especially during the
invention of the airplane, inventors were forced to make scientific dis-
coveries to complete the invention. Then we consider the enterprise of
artificial intelligence and argue that general principles of invention may
be applied to expedite the development of AI systems.

1 Heuristic Search and Invention

Humans live in a world that has been shaped by invention: the clothing we
wear, the food we eat, our houses, our transportation, our entertainment – all
depend on a vast aggregation of technology that has been developed over the
millennia. Some invented artifacts, including stone knives and hammers, even
predate homo sapiens. Given the importance of invention in the contemporary
world, it is worth some effort to understand how new inventions are developed.

Even a superficial review of the history of technology and invention shows
that many different paths can lead to an invention. Basalla [1] and Petroski [2]
have discussed the similarities between biological evolution and technological
invention. In reviewing several case studies, Basalla provides strong evidence
that some inventions arise when inventors produce random mutations of existing
inventions, and society determines which inventions are “fit” for reproduction.
One example is the paper clip, which appeared about the same time as steel wire
and wire-bending jigs became available. Figure 1 illustrates different clip shapes
from three different American patents. The familiar double-oval Gem clip was
never patented in the U.S., but other patents were filed that described wire loops
of various shapes in an effort to create a clip that was easy to slip over a set of
papers, did not tear the papers as it was used, and held the collection tightly.

A system of invention based on random mutation (by inventors) and natural
selection (by society) does not appear to require any intelligent activity on the
part of inventors themselves: how difficult can it be to bend wires, after all?

A. Hoffmann, H. Motoda, and T. Scheffer (Eds.): DS 2005, LNAI 3735, pp. 1–13, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



2 G. Bradshaw

Fig. 1. Various forms of paper clips patented in the U.S. around the turn of the century

But in spite of the variability of all of the patented paper clips, they all shared
some important features in common. First, all clips are relatively flat, having a
structure that is mostly two-dimensional rather than 3-dimensional. Next, clips
tend to loop over themselves in a way that allows them to pinch together a stack
of papers. If inventors were simply producing random bends in wire, they would
most commonly produce non-planar bends that created a 3-dimensional struc-
ture and would most commonly produce forms that did not have the necessary
loops to hold together a paper stack. In spite of the diversity of paper clip forms,
it does seem clear that the various alternatives were not produced by blind or
random mutation, but rather by strategic alteration, perhaps akin to genetic
algorithms in use today.

It should also be evident that the “inventive play” described by Basalla,
where inventors produce different forms through manipulation of an existing ar-
tifact, is not sufficient to account for inventions where a number of parts are
necessary to the performance of the whole. Consider, for example, the televi-
sion. Although it might be possible for an infinite monkey team to wire together
tubes, resistors, capacitors, and transformers to produce a television set, it seems
unlikely this would have happened so quickly after the invention of the electron
tube. Similarly, random mutation does not seem to be sufficient to produce in-
ventions like the airplane or the telephone in a reasonable amount of time. These
more complicated inventions appear to call for a more sophisticated method of
invention.

1.1 Invention via Heuristic Search

Several researchers, following in the footsteps of Newell and Simon [3], appear to
have independently developed the idea that inventions could be realized through
heuristic search. Weber and Perkins [4] adapted contemporary problem solving
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Fig. 2. Designs created by analogy to nature. These inventors deliberately copied the

structure of flying creatures in their designs. Although birds were a popular source of

analogy, other flying creatures like bats and beetles were used as well.

to account for the process of invention. Following Simon’s ([5], [6]) model of scien-
tific discovery as heuristic search, Weber and Perkins described a set of heuristics
to produce new inventions by performing a goal-directed search through a space
of possible inventions based on a series of working-forward heuristics that en-
able a new set of inventions to be developed from existing ones. For example, the
join heuristic creates a new invention by combining separate inventions together.
The awl and the scraper can be combined using the join heuristic to produce
a pointed knife. The knife, in turn, can be combined with a screwdriver, a pair
of scissors, a corkscrew, and a saw into the contemporary Swiss army knife, a
lightweight and versatile tool.

The join heuristic is a weak method, but is still far more powerful than
random recombinations. Weber and Perkins restrict the join heuristic to com-
bine functionally related objects. The heuristic would not be invoked to join a
can opener with a computer monitor. Although such an implement would have
greater functionality than the original inventions, the purposes of can openers
and monitors have little to do with one another, so there is no reason to construct
this awkward marriage.

In accounting for the invention of the airplane, Bradshaw & Lienert [7] and
Bradshaw [8] also adopted a problem-solving perspective. Four design heuristics
were identified from historical records of numerous different attempts to cre-
ate a workable airplane from 1799 to 1909. Two of these heuristics, analogy to
nature and copycat were the source of full designs, while two other heuristics,
more is better and make small changes, were used to revise an existing design.
Figure 2 illustrates different examples of the use of analogy, where various flying
creatures (songbird, bat, and beetle) were used to inspire an airplane design.
Figure 3 illustrates copycat, where a design produced by one inventor is adopted
by another.
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Fig. 3. Airplanes designed by copycat. The Wrights copied the sturdy biplane design

introduced by Octave Chanute and Augustus Herring, including the Pratt system of

trussing the wings for strength. Ferber and Esnault-Pelterie both copied the Wright

design. The failure of Esnault-Pelteries “perfect copy” of the Wright glider convinced

Europeans that the Wrights were “bluffing” in their claims to have built airplanes.

Once an airplane had been designed, two additional heuristics could be used
to revise the design. The first such heuristic is called more is better. Inventors
added additional wings, propellers, tail surfaces, and other components to see
if their design could be improved. Phillips, an English inventor, produced a
design that had at least 196 different airfoils in four racks, not realizing that the
turbulence produced by the forward wings would spoil the airflow over rearward
wings. The second design-revision heuristic is known as make small changes.
This covers a multitude of minor modifications made to an airplane, usually for
ad hoc reasons.

Strategies for Searching Through the Design Space. These four heuristics
alone can generate billions of different airplane designs given the parameters
shown in Table 1. We will refer to the set of possible designs as the design space
of the invention. Effective solutions (airplanes that are airworthy) are rare in
this design space, so inventors need to find efficient means of searching through
such a large space for rare solutions.

Most inventors relied upon a simple design and test strategy: They would
design and build a craft, then take it out to the field to test it. Some craft
were launched from a hill, others were launched from a rail system, while others
attempted to fly from grassy meadows. Figure 6 illustrates the best performance
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Fig. 4. Airplanes modified through the more is better heuristic. The Phillips Multiplane

had approximately 196 different airfoils, while the New York Aero Club plane featured

8 propellers.

Fig. 5. Archdeacons airplane was modified several times using make small changes.
The original design (a crude copy of the Wright craft) was changed by reducing the

length of the lower wing, which led to the side curtains being placed at an angle.

Then the rear wing was replaced with an ellipse (which suffers from particularly bad

aerodynamic characteristics) and finally both wings were replaced by an ellipse.

of a number of craft between 1799 and 1909. The dotted line is the regression
line for non-Wright craft in the period 1799 until December, 1905. In 1906 the
Wrights patent first appeared, and so after that time inventors had access to
information about an airworthy craft. The 1799-1905 regression line actually has
a slightly negative slope, indicating that more capable craft were built near the
beginning of this period than could be constructed at the end of the era: There
was no substantial improvement in performance of airplanes over a 110-year
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Table 1. Design Features of Para-Planes

Design Parameter Possible Values

Number of wings. 1–196
Wing position 1–3 (monoplane, tandem, etc.)

Placement stacked, tandem, staggered
Lateral arrangement anhedral, flat, dihedral

Camber of wings 1–12, 1–6, etc.
Wingspan 6’–104’

Wing Chord 3’–10’
Shape of wings bird-like, rectangular, bat-like, insect-like
Tail placement forward (canard), rear, mid
Lateral control none, wing warping, ailerons

Number of Propellers 0–8

span. The Wrights were a clear exception to this trend: their initial gliders were
among the best-performing aircraft from the beginning, and they made steady
progress. The 1903 craft (which was their first powered design) represents the
transition between gliders and powered craft, and fits nicely on both regression
functions.

The data shown in Figure 6 represents a considerable mystery: How were
the Wrights able to develop an effective initial glider and sustain progress, while

Fig. 6. Attempts to master the airplane. Each point represents the best flight made

by a particular craft on the date the flight was made.
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other inventors did not show similar improvements? To explain this mystery, we
first need to examine the logic behind the design-and-test strategy of invention.
Suppose that an inventor has designed an airplane, taken it out to the field, and
flown it. Between 1799 and 1909, about the greatest distance achieved by any
craft was 100 meters. Now the inventor would like to improve upon the design.
As long as an inventor can create a craft that is even slightly better than the last,
he can continue improvements and produce a positive performance slope. This
represents a familiar hill-climbing strategy of solving problems, and hill-climbing
is effective for solving many problems.

Why did this strategy fail in the invention of the airplane? Bradshaw &
Lienert [7] argued that the failure arose because making a test flight does not
provide diagnostic information about the strengths and weaknesses of a design:
The wings may not have produced sufficient lift to keep the craft in flight, the
airframe might be causing too much drag, the center-of-lift might not coincide
with the center-of-balance, or the pilot may have made a mistake in flying the
airplane. Under these circumstances, inventors had no reliable information about
what was wrong with their craft, or what specifically to change to improve it.

So how did the Wrights escape this trap? Although they did build and test
gliders and airplanes, their approach towards invention differed in substantial
ways from their contemporaries. In particular they followed a functional decom-
position strategy: They isolated different functional subsystems (wings, power
plant, elevator), identified specific performance requirements for each of the sys-
tems (i.e., the wings must produce 110 kilos of lift), and employed what little
was known about aerodynamics to produce a subsystem that met their design
requirements. This led to the first glider, which they tested in 1900. When the
glider did not perform as designed, the Wrights realized there was something
wrong with their computations of lift. This led to their construction of a series
of wind tunnels and the development of instruments to measure lift and drag.
Somewhere between 80 and 200 different wing shapes were tested in the wind
tunnel. Their results demonstrated that the current value of the coefficient of
lift was incorrect, revealed a much better approximation for that coefficient, and
showed that long and thin wings had better characteristics than short and broad
ones. Wind tunnel tests also revealed that an airplane wing with its highest point
near the leading edge of the wing had better changes in the travel of the center
of lift than did a wing with the highest point in the center of the wing. Testing a
functional subsystem in isolation produced diagnostic information about which
wing designs were good, and which ones were bad. Their information was so
precise that the Wrights were able to build a glider in 1902 that had excellent
flight characteristics.

Between 1902 and 1903 the Wrights performed more tests in their wind
tunnel – to determine the best shape for an airplane propeller. Once again their
approach was quantitative: the Wrights knew how much horsepower their engine
could produce, so they needed a propeller with a specific level of performance to
produce the thrust their craft needed. The Wrights were so certain of the success
of their 1903 flyer that the pair, who were known for their modesty and caution,
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wrote a press release announcing their success before leaving Dayton for Kitty
Hawk. Their father issued the press release following the receipt of a telegram
from the Wrights told of their actual success.

As an invention strategy, functional decomposition has several advantages
over design-and-test. We have already discussed the lack of diagnosticity in design
and test. Because of the decomposition inherent in functional decomposition,
testing of a part is not confounded by the performance of other parts of the
system. It was also possible for the Wrights to develop far more precise indices
of performance of subsystems than it was to evaluate the performance of the
part in a complete craft. In 1900 and 1901, for example, the Wrights suspected
their wings were not producing as much lift as calculated. They attempted to
measure the lift of their glider by weighting down the wings with some chain,
flying their glider as a kite, and measuring the angle of attack and wind speed
simultaneously. But the winds were not perfectly steady and their glider reacted
by changing its elevation and angle of attack in reaction to changes in wind
speed, so the Wrights could not determine with any degree of accuracy how
much lift their wings were actually producing. They suspected that the value for
the coefficient of lift was incorrect, but did not have proof. Once they built their
wind tunnel, they were able to precisely measure lift, drag, and the coefficient of
lift. A third advantage of functional decomposition arises from the combinatorics
of divide and conquer: When one wing is shown to have poor lift and drag
characteristics, the Wrights were able to exclude from consideration tens- or
hundreds-of-thousands of airplanes: any design that included that wing was a
bad choice.

Another advantage of the Wright approach arose from their use of precise
performance specifications. The Wrights knew their gliders had to support the
weight of the pilot along with the weight of the craft. For an 80-kilo pilot and a
45-kilo glider, the wings must produce 125 kilos of lift. Having these performance
requirements allowed the Wrights to satisfice in their designs: once they found
a wing that could produce the necessary lift at the target weight, they did not
have to look further to find an optimal wing design. Also, having performance
specifications allowed the Wrights to determine when their design had failed. The
Wright’s second glider, built in 1901, performed nearly as well as any other craft,
powered or unpowered, had done to date. Rather than being satisfied with their
near-world-record performance, the Wrights were discouraged that the craft had
not performed as designed: this dissatisfaction led directly to their development
of a wind tunnel to determine why the glider was not generating the computed
lift.

One more aspect of the Wright’s approach deserves mention: the use of the-
ory and math to substitute for search. Previous research had uncovered a lift
function that enabled the Wrights to test small models of wings just a couple of
inches long, then predict the performance of a large-scale wing with considerable
accuracy. If this function were not know, the Wrights might have been forced
to test full-scale wings in a large wind tunnel. Such research would most likely
have been prohibitive given their modest means.
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Through all of these efficiencies, the Wrights were able to develop an airwor-
thy glider in just three years, then take only three more to produce a practical
airplane capable of extended flight. These accomplishments were made while
they maintained a successful small business, and with quite modest financial re-
sources. Only when others were able to study the Wright craft and the advances
they made were they able to produce competitive airplanes.

1.2 Principles of Effective Invention

This review of the invention of the airplane suggests that there are ways to
achieve considerable efficiency in the process of invention. These efficiencies will
be most evident for complex inventions where various elements contribute to the
success of the whole. Under such circumstances, search can be reduced by:

1. Identifying the functions to be performed by the invention;
2. Specifying functional requirements that the system must meet;
3. Developing subsystems that meet these functional requirements;
4. Testing the subsystems in isolation from the whole system;
5. Focusing attention on subsystems that fail to perform as designed; and
6. Utilizing theory to generalize results.

Whenever these strategies can be practically employed, they will reduce the
complexity of the invention.

2 The Invention of AI Systems

In discussing invention, it should be clear that many AI methods, particularly
those in learning and discovery systems, have application as a way to produce
new inventions, just as they can learn and make new discoveries. Perhaps in
the near future a discovery system will build a better mousetrap or a learning
system will produce a better user interface. By exploring such applications we can
increase the utility of our systems and methods: we can apply them to invention
problems as well as discovery and learning problems. But there is another reason
for discussing the process of invention: AI systems are not discovered they are
invented. As such, they are governed by the same principles of invention that
have just been described above.

Why are AI systems best considered as inventions and not discoveries?
Clearly artificial intelligence falls within the“Sciences of the Artificial” as de-
scribed by Herbert Simon [6]. AI may draw upon research findings in psychology,
but clearly AI methods and systems are the product of human enterprise, and
so can be understood as an invention. Given this status, we may consider how
the lessons of invention can be applied to AI systems as a special case. We begin
by considering the design space of AI systems. Table 2 illustrates some of the
choices that investigators face as they are putting together a new AI system:

Many of the entries in the table refer to a family of related methods. For
example, using parametric statistics to handle noise in the data might include
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Table 2. Design Features of AI Systems

Design Parameter Possible Values

Knowledge Representation Symbols; Schemas; Propositions; Productions;
Distributed Sub-Symbolic Nodes . . .

Thought Processes Productions; Bayesian Probabilities; Spreading
Activation; Predicate Calculus; Schema Inference;
Markov Transitions . . .

Learning Proceduralization; Composition; Backpropagation;
Genetic Algorithms; . . .

Noise Parametric Statistics; Non-parametric statistics;
Bayesian Probabilities; Signal Detection; . . .

Test Database Iris; Solar Flare; Credit Card; . . .
Competing System C4.5; Soar; ACT-R; Harmony; Neural Network; . . .

something simple, like computing the mean, to finding a regression line, or even
using the standard deviation to find outliers that are treated as a special case.
Clearly we have produced a rich set of alternatives from which researchers can
choose in developing a new AI system.

Let us suppose, for a moment, that a researcher decides to build a new AI sys-
tem drawing upon the alternatives shown in Table 2. Choosing a system based
upon schemas for knowledge representation, spreading activation and produc-
tions for thought processes, and proceduralization for learning, the researcher
then adds a new method of dealing with noise based on non-parametric sta-
tistics and Bayesian probabilities, known as F.A.K.I.R., further adding to the
pool of methods available in AI. The new system, including the F.A.K.I.R. al-
gorithm, is called HOLIER.THAN.THOU.1 The researcher decides to compare
HOLIER.THAN.THOU. against C4.5 [9] using a database of credit card trans-
actions.

On the first comparative test, HOLIER.THAN.THOU. does not perform
well classifying database transactions. The researcher examines the errors made
by the F.A.K.I.R. and identifies some problems with the new procedure for
accommodating noise in the data. By adjusting several parameters and making
other tweaks to the system, HOLIER.THAN.THOU. now outperforms C4.5 on
the database by 2%.

We might ask, “What value is the new F.A.K.I.R. noise reduction technique
for the AI community?” Clearly the researcher has demonstrated that, under
some conditions, HOLIER.THAN.THOU. can out-perform C4.5. But grave ques-
tions remain about the generality of this claim, about the significance of the 2%
difference, and about the source of the performance difference. Let us consider
each of those issues in turn.

1 Any resemblance between F.A.K.I.R/HOLIER.THAN.THOU. and an actual AI sys-
tems or methods is purely coincidental, and we do not suggest that any existing AI
system has been developed in this way.
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Generality of the Result. AI researchers often begin with an understand-
ing of the problems that certain databases represent for learning and discovery
algorithms. But we lack a deep conceptual understanding of the fundamentals:
“How much adaptation does an adaptive system have to perform?” or “What
kinds of learning does a learning system need to do?” We can answer these ques-
tions with respect to certain well-known databases, but not with respect to an
entire class of problems. For this reason, we cannot readily determine how many
different databases are needed to demonstrate the generality of a new system
or algorithm. Should we test each new system on 10 different databases? Which
ones? At what point are we certain that we have tested a new system against
all of the interesting problems an intelligent system might face? The Wrights
were lucky enough to have mathematical equations that allowed them to pre-
dict the performance of a full-size wing from a small model wing. Would anyone
care to predict how HOLIER.THAN.THOU will do on a database of credit card
transactions vis a vis a neural network system?

We may never enjoy the situation the Wrights found themselves in, where
a simple mathematical function can predict how a system will behave under
different situations. One way researchers have responded to questions about
generalization is to test their system against multiple databases – a method
that does help to establish the generality of a new method or system. Yet even
still another serious issue remains: how good does our system or method need
to be in order to be useful across an interesting range of problems? Remember
that the Wrights could specify in advance how much lift their system needed
to generate in order to fly. That allowed them to find a satisfactory solution
to the problem, without the necessity of finding an optimal one. Are we now
looking at solutions that are sub-satisfactory, satisfactory, approaching optimal,
or optimal?

Significance of a Performance Difference. The researcher found a 2% per-
formance advantage for HOLIER.THAN.THOU when compared to C4.5. But
this advantage only occurred after careful fine tuning of HOLIER.THAN.THOU.
Was the same care taken to ensure that C4.5 was performing at its best? Per-
haps, perhaps not. Even if C4.5 was adjusted to perform at its best, we are still
uncertain about what the best possible performance is on the credit card data-
base. It might seem possible to attain a 100% accuracy on classifying all items in
the database simply by memorizing each item. However, some databases could
suffer from an impoverished description of items where two items with the same
description belong to different classes, or God could be playing dice with the
Universe, and no description would be adequate to classify every item correctly.

A more difficult question arises when we try to determine whether the 2%
improvement in accuracy rate is better or worse. At first glance the question
seems foolish: HOLIER.THAN.THOU performed more accurately on the data-
base. How could that not be better? Yet experience has taught us that adaptive
systems can learn the noise in the database as well as the signal. These sys-
tems do not generalize as well to new data as ones that only learn the true
generalizations present in the database.



12 G. Bradshaw

A final awkward question arises when we consider the statistical and practical
significance of a 2% improvement in classification performance. If C4.5 correctly
classifies 97% of the transactions and HOLIER.THAN.THOU correctly classifies
99%, the difference could be significant and important. But if C4.5 correctly
classifies 20% of the transactions and HOLIER.THAN.THOU classifies 22%,
neither system seems very impressive. Researchers in AI commonly use some
sort of split-part reliability computation, which helps to determine the reliability
and statistical significance of the results.

Credit Assignment for F.A.K.I.R and HOLIER.THAN.THOU. Once
we convince ourselves that the 2% difference is significant and important, we
are left with one more awkward question: where did this difference come from?
Was it due to some advantage of the F.A.K.I.R. algorithm in isolating noise
and concept drift from the signal? Or was it due to a difference in the initial
representation of the data between HOLIER.THAN.THOU and C4.5? Or was
there some other difference between the two systems? Answering the question
has greater importance than at first appears. Perhaps the F.A.K.I.R. algorithm
is improving the performance of HOLIER.THAN.THOU by 25%, but other limi-
tations of HOLIER.THAN.THOU reduce the advantage by 23%. We might then
combine F.A.K.I.R. with C4.5 and achieve a better result yet. By knowing how
well each element of the system is doing its job, we can produce the best possible
combination of elements.

The analogy between the invention of the airplane and the invention of AI sys-
tems can be pushed too far: Computer programs are typically designed through
a series of function calls, and it is possible to determine if the calls are operat-
ing as designed. This lends a transparency to computer programs that airplane
inventors did not enjoy. Function calls often map roughly onto the functional
specifications for a system, although there are many internal function calls that
do not have an obvious connection to the larger functional subsystems of the
program. Yet by considering AI as an invention, it raises two important ques-
tions: “What are we trying to invent?” and “Are we working efficiently toward
that goal?”

2.1 Reflections on Invention and AI

When one examines recent developments in AI, it is clear that AI researchers
are inventive and are pouring tremendous creative energy into developing new
heuristic and algorithmic methods to address difficult problems. Evidence of this
inventiveness is present in the the two volumes published last year for ALT 04
[10] and Discovery Sciences 04 [11], each of which presented a number of impor-
tant papers in their respective fields. As a result of this worldwide enterprise,
researchers are now faced with an embarrassment of riches in the number of
different methods they have available for the construction of new AI systems.

But there still seems to be an important gap in our knowledge – we don’t
fully understand the relationship between where we are and where we want to
be. Are we building AI systems like the pre-Wright airplanes that struggled to
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‘fly’ 100 meters? Or are we improving capable airplanes to extend their range
from trans-continental flight to inter-continental flight? With aviation, everyone
knew that airplanes needed to fly long distances quickly and to carry as much
weight as possible. AI has no such simple goals: it may be quite valuable to build
an expert system like XCON [12] to design the backplane of Vax computers, even
if the system has only a limited expertise and lifetime. Or we may set our goals
higher to develop more versatile and capable AI systems.

We can, of course, continue to develop even more new learning and discovery
methods. But hopefully the energy being spent to develop new methods can be
balanced with an effort to better document what our systems need to do and how
well they need to do those things. As the baseball player Yogi Berra said, “If you
don’t know where you are going, you will wind up somewhere else.” Through a
better understanding of the fundamental problems of learning, discovery, and AI,
we can work towards functional specifications that tell us how well our systems
need to perform, then choose methods that will get us where we want to be,
instead of somewhere else.
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Abstract. Development of high throughput data acquisition technolo-
gies, together with advances in computing, and communications have
resulted in an explosive growth in the number, size, and diversity of po-
tentially useful information sources. This has resulted in unprecedented
opportunities in data-driven knowledge acquisition and decision-making
in a number of emerging increasingly data-rich application domains such
as bioinformatics, environmental informatics, enterprise informatics, and
social informatics (among others). However, the massive size, semantic
heterogeneity, autonomy, and distributed nature of the data reposito-
ries present significant hurdles in acquiring useful knowledge from the
available data. This paper introduces some of the algorithmic and sta-
tistical problems that arise in such a setting, describes algorithms for
learning classifiers from distributed data that offer rigorous performance
guarantees (relative to their centralized or batch counterparts). It also
describes how this approach can be extended to work with autonomous,
and hence, inevitably semantically heterogeneous data sources, by mak-
ing explicit, the ontologies (attributes and relationships between at-
tributes) associated with the data sources and reconciling the seman-
tic differences among the data sources from a user’s point of view. This
allows user or context-dependent exploration of semantically heteroge-
neous data sources. The resulting algorithms have been implemented in
INDUS - an open source software package for collaborative discovery
from autonomous, semantically heterogeneous, distributed data sources.
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Abstract. This article gives a comprehensive study on SMO-type (Se-
quential Minimal Optimization) decomposition methods for training sup-
port vector machines. We propose a general and flexible selection of the
two-element working set. Main theoretical results include 1) a simple as-
ymptotic convergence proof, 2) a useful explanation of the shrinking and
caching techniques, and 3) the linear convergence of this method. This
analysis applies to any SMO-type implementation whose selection falls
into the proposed framework.
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Abstract. We are interested in the automation of science for both philosophical 
and technological reasons. To this end we have built the first automated system 
that is capable of automatically: originating hypotheses to explain data, 
devising experiments to test these hypotheses, physically running these 
experiments using a laboratory robot, interpreting the results, and then repeat 
the cycle. We call such automated systems “Robot Scientists”. We applied our 
first Robot Scientist to predicting the function of genes in a well-understood 
part of the metabolism of the yeast S. cerevisiae. For background knowledge, 
we built a logical model of metabolism in Prolog. The experiments consisted of 
growing mutant yeast strains with known genes knocked out on specified 
growth media. The results of these experiments allowed the Robot Scientist to 
test hypotheses it had abductively inferred from the logical model.  In empirical 
tests, the Robot Scientist experiment selection methodology outperformed both 
randomly selecting experiments, and a greedy strategy of always choosing the 
experiment of lowest cost; it was also as good as the best humans tested at the 
task. To extend this proof of principle result to the discovery of novel 
knowledge we require new hardware that is fully automated, a model of all of 
the known metabolism of yeast, and an efficient way of inferring probable 
hypotheses. We have made progress in all of these areas, and we are currently 
6building a new Robot Scientist that we hope will be able to automatically 
discover new biological knowledge. 

1   Introduction 

1.1   The Robot Scientist Concept 

The Robot Scientist project aims to develop computer systems that are capable of 
automatically: originating hypotheses to explain data, devising experiments to test 
these hypotheses, physically running these experiments using a laboratory robot, 
interpreting the results, and then repeat the cycle (Figure 1). 

1.2   Motivation 

• Philosophical - Our primary motivation is a better understanding of science. For us, 
the question of whether it is possible to automate the scientific discovery process is 
central to an understanding science, as we believe that we do not fully understand a 
phenomenon unless we can make a machine, which reproduces it. 
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• Technical - In many areas of science our ability to generate data is outstripping our 
ability to analyse the data.  One scientific area where this is true is post-genomic 
Biology where data is now being generated on an industrial scale.  We contend that 
the analysis of scientific data needs to become as industrialized as its generation. 

Background 
Knowledge 

Machine 
Learning 

Analysis 

Consistent 
Hypotheses 

Final
Hypothesis 

Experiment 
selection 

Experiment(s) 

Results Robot

Knowledge
Formation 

 

Fig. 1. The Robot Scientist Hypothesis Generation, Experimentation, and Knowledge Formation 
loops 

1.3   Scientific Discovery 

The branch of Artificial Intelligence devoted to developing algorithms for acquiring 
scientific knowledge is known as “scientific discovery”. The pioneering work in the 
field was the development of learning algorithms for analysis of mass-spectrometric 
data [1]. This work was notable as an early example of interdisciplinary research: it 
involved world-class scientists from biology (J. Lederberg), chemistry (C. Djerassi), 
and computer science (E. Feigenbaum). This project initiated the whole field of 
machine learning. In the subsequent 30 years, much has been achieved, and there are 
now a number of convincing examples where computer programs have made explicit 
contributions to scientific knowledge [2,3]. However, the general impact of such 
programs on science has been limited. This is now changing, as the confluence of the 
expansion of automation in science, and advances in AI, are making it increasingly 
possible to couple scientific discovery software with laboratory instrumentation. 

2   Previous Work on the Robot Scientist 

In [4] we first developed the Robot Scientist concept. The Robot Scientist is a 
reasoned, but radically new, approach to scientific discovery that seeks to integrate 
data generation and analysis in a physically closed loop.  A widely accepted view of 
science is that it follows a “hypothetico-deductive” process [5]. Scientific expertise 
and imagination are first used to form possible hypotheses, and then the deductive 
consequences of these hypotheses are tested by experiment. The Robot Scientist 
methodology (Figure 1) is consistent with this paradigm: we employ the logical 
inference mechanism of abduction [6] to form new hypotheses, and that of deduction 
to test which hypotheses are consistent. 
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2.1   The Biological System 

The first aim of the first Robot Scientist project was to develop a proof-of-principle 
system that would demonstrate automated cycles of hypothesis generation and 
experiment on a real biological system. For this we chose the scientific area of 
“Functional Genomics”. The aim of this branch of biology is to both uncover the 
function of genes identified from sequencing projects (such as that on the human 
genome), and to better characterize the function of genes with currently putative 
functions. We chose to focus on brewer’s (or baker’s) yeast (S. cerivisae). This is the 
best understood eukaryotic organism. As humans are eukaryotic organisms, this yeast 
is used as a “model” of human cells, as it is simpler and easier to work with. S. 
cerivisae was the first eukaryotic organism sequenced and has been studied for over a 
hundred and fifty years. Despite this, around 30% of its ~6,000 genes still have no 
known function. 

A key advantage with working with yeast is that it is possible to obtain strains of 
yeast with each of the ~6,000 genes knocked out (removed). We chose to use these 
mutatnts along with a classical genetic technique known as “auxotrophic growth 
experiments”. These experiments consist of making particular growth media and 
testing if the mutants can grow (add metabolites to a basic defined medium). A mutant 
is auxotrophic if cannot grow on a defined medium that the wild type can grow on.  By 
observing the pattern of metabolites that recover growth, the function of the knocked 
out mutant can be inferred. We focused on the aromatic amino acid (AAA) pathway in 
yeast. 

2.2   Logical Model 

In any scientific discovery problem that is not purely phenomenological we need to 
develop a model of the natural system. We therefore developed a logical formalism 
for modelling cellular metabolism that captures the key relationships between protein-
coding sequences (genes, ORFs), enzymes, and metabolites in a pathway, along with 
feedback, etc. [6]. This model is expressed in predicate logic and encoded in the logic 
programming language Prolog (see Figure 2.). 

Logic is our oldest (>2,500 years) and best understood way of expressing 
knowledge, and computer programs are the most general way we have of expressing 
knowledge: logic programs combine the clarity of logic with the expressive power of 
computer programs. All objects (genes, proteins, metabolites) and their relationships 
(coding, reactions, transport, feed-back) are described as logical formulae. The 
structure of the metabolic models pathway is that of directed graphs, with metabolites 
as nodes and enzymes as arcs. An edge arc corresponds to a reaction. The compounds 
at each vertex node are the set of all metabolites and the compounds that can be 
synthesised by the reactions leading to it. Reactions are modelled as unidirectional 
transformations. A model’s consistency and completeness can be analysed by 
comparing the model’s logical consequences with the outcomes of in vivo auxotrophic 
growth experiments. The model can thus be used to yield a procedural specification of 
the functional genomics problem, namely how to infer gene functions from 
experimental observations. The model is both declarative (expressing text-book 
biochemistry) and procedural (enabling inferences about pathways). In particular, two 
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types of inference can be made: deductions to infer phenotype, and abductions to infer 
missing reactions (gene functions) see Figure 3. A mutant is inferred (deduced) to 
grow if and only if, a path can be found from the input metabolites to the three 
aromatic amino acids. Conversely, a mutant is inferred to be auxotrophic if, and only 
if, no such path can be found. We formed our “gold-standard” AAA model to fit both 
the existing knowledge on the AAA pathway and our experimental auxotrophic 
growth experiments. 

 
Fig. 2. The Relationship between the logical model and the experimental System 

 

Fig. 3. Simplified form of the deductive and abductive inference used 

Logical Model 
(Prolog program) Biological

System 

Experimental 
Predictions

Experimental 
Results 

Deduction 
 Rule: If a cell grows, then it can synthesise tryptophan. 
 Fact: cell cannot synthesise tryptophan 
 ∴ Cell cannot grow.  
Given the rule P → Q, and the fact ¬Q, infer the fact ¬P  
(modus tollens) 
 
Abduction 
 Rule: If a cell grows, then it can synthesise tryptophan. 
 Fact: Cell cannot grow.   
 ∴ Cell cannot synthesise tryptophan. 
Given the rule P → Q, and the fact ¬P, infer the fact ¬Q 
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The form of the hypotheses that were abductively inferred was very simple.  Each 
hypothesis binds a particular gene to an enzyme that catalyses the reaction.  For 
example: 

• A correct hypothesis would be that: YDR060C codes for the enzyme for the 
reaction: chorismate →  prephenate. 

• An incorrect hypothesis would be that: it coded for the reaction: chorismate → 
anthranilate. 

2.3   Active Learning 

The branch of machine learning that deals with algorithms that can choose their own 
examples (experiments) is known as “active learning” [7].  If we assume that each 
hypothesis has a prior probability of being correct, and that each experiment has an 
associated price, then scientific experiment selection can be formalised as the task of: 
given a set of possible hypotheses, each with a probability of being correct, and given 
that each experiment has an associated cost, select the optimal series of experiments 
(in terms of expected cost) to eliminate all but the one correct hypothesis [8].  This 
problem is, in general, computationally intractable (NP-hard).  However, it can be 
shown that the experiment selection problem is structurally identical to finding the 
smallest decision tree, where experiments are nodes, and hypotheses leaves.  This is 
significant because a Bayesian analysis of decision-tree learning has shown that near-
optimal solutions can be found in polynomial time [9].  To approximate the full 
Bayesian solution we use the following [8]. EC(H,T) denote the minimum expected 
cost of experimentation given the set of candidate hypotheses H and the set of 
candidate trials T: 
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Ct is the monetary price of the trial t  
p(t) is the probability that the outcome of the trial t is positive 
p(t) can be computed as the sum of the probabilities of the hypotheses (h) which 

are consistent with a positive outcome of t. 

2.4   Results 

A Robot Scientist was physically implemented that can conduct biological assays 
with minimal human intervention after the robot is set up [4]. The hardware platform 
consisted of a liquid-handling robot (Biomek 2000) with its control PC, a plate reader 
(Wallac 1420 Multilabel counter) with its control PC, and a master PC to control the 
system and do the scientific reasoning. The software platform consisted of 
background knowledge about the biological problem, a logical inference engine, 
hypothesis generation code (abduction), experiment selection code (deduction), and 
the Laboratory Information Management System (LIMS) code that glued the whole 
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system together. We used the Inductive Logic Programming (ILP system ASE-
Progol. The robot conducted experiments by pipetting and mixing liquids on 
microtitre plates. Given a computed definition of one or more experiments, we 
developed code which designed a layout of reagents on the liquid-handling platform 
that would enable these experiments, with controls, to be carried out efficiently.  In 
addition, the liquid-handling robot was automatically programmed to plate out the 
yeast and media into the correctly specified wells. The system measured the 
concentration of yeast in the wells of the microtitre trays using the adjacent plate 
reader and returns the results to the LIMS (although microtitre trays were still moved 
in and out of incubators manually). The key point is that there was no human 
intellectual input in the design of experiments or the interpretation of data.   
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Fig. 4. The observed classification accuracy versus iterations (time) 
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Fig. 5. The Observed classification accuracy versus cost (price of chemicals) 
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Figures 4 (below) shows the average classification accuracy versus experimental 
iteration (time) for the robot's intelligent strategy (red) compared with random (blue), 
and the naïve strategy of always choose the cheapest experiment (green).  Figure 5 
shows the average classification accuracy versus money spent (£).  The intelligent 
strategy is both significantly faster and cheaper than the other strategies.  When 
compared with human performance on this task, the Robot was as good as the best 
human scientists. 

3   Current Status of the Robot Scientist 

In our first work with the Robot Scientist we demonsrtaed a proof-of-principle 
application of the Robot Scientist.  We demonsrtaed that we could automatically 
rediscover known biological knowledge. We now wish to extend this result to the 
discovery of new biological knowledge. To achieve this we have chosen to focus on 
the same biological problem.  However to actually fully automattedly discover new 
knowledge a number of extensions are required: 

• New Hardware 
• The original hardware was not fully automated, and several steps had to be done 

manually at the request of the Robot Scientist.  We wish to make the system 
fully automated.   

• The experimental throughput capacity of the original hardware was also limited. 
A key advantage of automation is that it can be scaled up.  The new hardware 
will have far greater capacity. 

• We will also extend the original qualitative experimental methodology (growth 
v no-growth) to a quantitative measurement of growth. 

• Expansion of the background knowledge to include as much as possible of what is 
known about yeast metabolism. For if the Robot Scientist does not already know 
what is scientifically known, then it will be very difficult to discover something 
novel. This will require a move from a model with ~10 reactions to a model with 
more than 1,000 reactions. Our current model includes 1,166 genes (940 known, 
226 inferred). As in the original AAA model, growth is predicted if there exists a 
path from the growth medium to defined end-points. 

• Improve the efficiency of the hypothesis generation method.  The current approach 
is purely logical and does not take advantage of domain knowledge.  This approach 
will not scale to a model of two orders of magnitude greater size.  Therefore, we 
will use bioinformatics to incorporate biological knowledge.  One way of thinking 
about current bioinformatic genome annotation is as hypothesis formation 
processes; and hypothesis formation is perhaps the hardest part of automating 
science. Therefore, bioinformatic methods will generate the hypotheses that the 
robot scientist will experimentally test. 

3.1   The New Robot Scientist Hardware 

Our new Robotic Scientist hardware will be commissioned in the last quarter of 2005, 
and will cost £450,000 (see Figure 6). It will be manufactured by Caliper Life 
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Sciences. The hardware will consist of the following components: -80C freezer, a 
liquid-handling robot, incubator(s), plate-reader(s), and robot arms. The robotic 
system is designed to be able to be able to in a completely automatic manner: select 
frozen yeast strains from the freezer, inoculate these strains into a rich medium, 
harvest a defined quantity of cells, inoculate these cells into specified media (base 
plus added metabolites and/or inhibitors), and accurately measure growth in the 
specified media. Design of this system has been extremely challenging, and the 
specification has taken over 6 months to refine and make practical.  To the best of our 
knowledge, after extensive discussions with manufacturers, we are confident that 
there is no comparable system anywhere in the world that can flexibly automate 
anything close to as many growth experiments. The system will be capable of 
initiating >1,000 new strain/defined growth-medium experiments a day, and each 
experiment will last up to 3days (plus an initiation day), using a minimum of 50 
different yeast strains. It will be possible to take an optical density (OD) measurement 
for an experiment every 20 minutes, enabling accurate growth curves to be formed.  It 
will also be possible to take samples from experiments for more detailed analysis, or 
to inoculate other experiments. The system will be able to run “lights out” for days at 
a time. 

 

Fig. 6. Sketch of the new Robot Scientist hardware 

The class of the experiments possible using this new hardware is comparable to 
those that the Robot Scientist can currently undertake. However the major advances 
will be: 
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• A huge increase in the scale of the number of experiments performed.  Using our 
existing robotic system, we can perform ~200 strain/medium growth measurements 
a day: with our new robotic system we will be able to perform >100,000.  

• A reduction in experimental noise.  The current laboratory robot has ~25% noise 
when assaying growth or no-growth - mostly due to it being in a non-sterile 
environment, and cross-plate contamination.  This noise will be drastically 
reduced, increasing throughput (through fewer controls being required), and 
simplifying data analysis. 

• Accurate quantitative measurement of growth.  Most genes display quantitative 
rather than qualitative effects under most environmental conditions [Ol2].  

• Measure growth curves and yield. 
• An increase in the range of metabolites used.  We plan to have ~500 metabolites 

available, compared to a ~50 at present.   
• The use of specific enzyme inhibitors. 
• An increase in the range of strains used: including a set of Canadian double 

knockouts, and a set of knock-down mutants: where essential genes have been 
placed under the control of a promoter (e.g. tetO). 

• The experiments will be fully automatic.  Currently the Robot Scientist needs to 
direct a technician to execute a number of steps. 

3.2   The Experimental Plan 

The plan is to initiate ~1,000 experiments a day, providing ~200,000 daily 
measurements (based on a 3-day cycle measuring every 20 mins.). The reason that so 
many experiments are required is that even relatively simple cells, such as those of S. 
cerevisiae, are extremely complicated systems involving thousands of genes, proteins, 
and metabolites. Such systems can be in astronomical numbers of states, and the only 
possible way to dissect them is to be intelligent, and to do large numbers of 
experiments. One way to think about it is as an information theory problem: a 
complicated message cannot be sent using a few bits.  Note, we do not plan to do all 
possible experiments, as even to test all possible pairs of metabolites would involve: 
6,000 (genes) * (500 (metabolites))2  = 1,500,000,000 (experiments). 

All results will be stored in the Bio-Logical relational database (see above) along 
with meta-data detailing the experimental conditions. We expect to produce 
>40,000,000 growth measurements and all these results will be placed in the public 
domain. On their own, these results will constitute a significant contribution to 
scientific knowledge. N.B. the existing bioinformatic information on the growth of 
knockouts is often very poor, i.e. often gene knock-outs labelled as “lethal” have no 
description of the growth medium used, and the information is often also unreliable as 
it was produced using noisy high-throughput screens. 

4   Discussion 

The general Robot Scientist idea could be applied to many scientific problems. We are 
actively investigating the following two areas: 
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• Drug design - selection of compounds from libraries and/or use of laboratory on 
chip technology. The idea here is to incorporate the Robot Scientist into a 
Quantitative Structure Activity Relationship (QSAR) system [10]. 

• Quantum control - using femtosecond (10-15s) lasers to control chemical synthesis. 
We are collaborating with the Department of Chemistry at the University of Leeds 
(UK) to use Robot Scientist type ideas to control the search for patterns of 
femtosecond laser pulses that can act as “optical catalysts” [11]. The main 
difference with this application and those in yeast is that the experiments take ~1s 
(and could be as low as 0.001s), compared to 24hours with yeast. 
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Abstract. In the 1980s, Don Swanson proposed the concept of “undiscovered 
public knowledge,” and published several examples in which two disparate 
literatures (i.e., sets of articles having no papers in common, no authors in 
common, and few cross-citations) nevertheless held complementary pieces of 
knowledge that, when brought together, made compelling and testable 
predictions about potential therapies for human disorders. In the 1990s, Don 
and I published more predictions together and created a computer-assisted 
search strategy (“Arrowsmith”). At first, the so-called one-node search was 
emphasized, in which one begins with a single literature (e.g., that dealing with 
a disease) and searches for a second unknown literature having complementary 
knowledge (e.g. that dealing with potential therapies). However, we soon 
realized that the two-node search is better aligned to the information practices 
of most biomedical investigators: in this case, the user chooses two literatures 
and then seeks to identify meaningful links between them. Could typical 
biomedical investigators learn to carry out Arrowsmith analyses?  Would they 
find routine occasions for using such a sophisticated tool?  Would they uncover 
significant links that affect their experiments? Four years ago, we initiated a 
project to answer these questions, working with several neuroscience field 
testers. Initially we expected that investigators would spend several days 
learning how to carry out searches, and would spend several days analyzing 
each search. Instead, we completely re-designed the user interface, the back-end 
databases, and the methods of processing linking terms, so that investigators 
could use Arrowsmith without any tutorial at all, and requiring only minutes to 
carry out a search. The Arrowsmith Project now hosts a suite of free, public 
tools. It has launched new research spanning medical informatics, genomics and 
social informatics, and has, indeed, assisted investigators in formulating new 
experiments, with direct impact on basic science and neurological diseases. 

1   Introduction 

In the 1980s, Don Swanson proposed the concept of “undiscovered public 
knowledge.” He published several examples [1-4] in which two disparate literatures 
(i.e., sets of articles having no papers in common, no authors in common, and few 
cross-citations) nevertheless held complementary pieces of knowledge that, when 
brought together, made compelling and testable predictions about potential therapies 
for human disorders. I was conducting neuroscience research and teaching a course on 
“The Process of Scientific Discovery” at University of Chicago in the early 1990s 
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when I got a phone call from Don, asking me if I could explain an apparent artifact in 
his recent analysis of “magnesium” as a term that was pervasive in the neuroscience 
literature.  Everywhere he looked, no matter what neurological disease, it seemed that 
magnesium was implicated!  I explained that this was no artifact – indeed, glutamate 
excitotoxicity and flow of calcium ions through the NMDA glutamate receptor were 
thought to be fundamentally important in neurological pathophysiology in a wide 
variety of conditions, and magnesium was an endogenous factor that controlled the 
permeability of this receptor to calcium ions. This brief phone call led to a 
collaboration that now has stretched well over a decade. In the ‘90s, we published a 
number of literature-based predictions together [5-8] and created a computer-assisted 
search strategy (“Arrowsmith”) for literature-based discovery [9, 10]. Don then 
created a free, public demonstration website for conducting Arrowsmith searches, 
though perhaps the turning point in evolution of the project occurred when Ron 
Kostoff of the Office of Naval Research asked us to conduct a one-year pilot study to 
test whether Arrowsmith searches could be used to assist intelligence officers in 
gathering and integrating disparate pieces of information [11, 12]. 

These experiences suggested that Arrowsmith might be ready for testing among a 
wider audience of investigators. Since I am a neuroscientist, it was natural to focus on 
the biomedical community, but at the same time, it was not clear whether most bench 
scientists wanted or needed the kind of information that Arrowsmith could provide. 
Would they find routine occasions for using such a sophisticated tool? Furthermore, 
as of 2001, it took many hours to carry out a single search, including crafting 
Arrowsmith queries, navigating the website, and analyzing the results. Would typical 
biomedical investigators be sufficiently motivated to learn to carry out Arrowsmith 
analyses? Would they uncover significant findings that affect their experiments or 
suggest new research directions?  Even more uncertain was the question of which, if 
any, funding agency would support development and testing of Arrowsmith. 
Fortunately, Stephen Koslow of NIMH had spearheaded a unique NIH-wide program 
called the Human Brain Project, which sought to establish an informatics 
infrastructure for neuroscientists to pursue a new paradigm of scientific investigation 
– one which does not simply formulate self-contained hypotheses, but integrates 
concepts across disciplines and across investigators.  His philosophy was that it is not 
enough to acquire new data; rather, scientists must be able to carry out data mining, 
data sharing and data re-use [i.e. re-analyze previous experiments done by others]. 
The Human Brain Project issued grants that were also unique – each funded program 
had to combine neuroscience research and informatics research – and they showed 
enthusiastic support for the Arrowsmith project. 

Our early publications had emphasized the so-called one-node search, in which one 
begins with a single literature (e.g., that dealing with a disease) and searches for a 
second unknown literature having complementary knowledge (e.g. that dealing with 
potential therapies).  However, we soon realized that the two-node search is better 
aligned to the information practices of most biomedical investigators: In this case, the 
user chooses two literatures A and C and then seeks to identify terms B that occur in 
the titles of both literatures, that point to meaningful links between them.  Thus, when 
in 2001 we initiated a so-called Phase I grant to demonstrate feasibility of the 
Arrowsmith search tool, we focused almost exclusively on the two-node search 
strategy. Marc Weeber, an enthusiastic, visionary informatics researcher [13, 14], 



28 N.R. Smalheiser 

 

gave us crucial assistance at the start of the project; and Vetle Torvik, a brilliant and 
creative young mathematician [15, 16], has joined us as Project Manager. 

2   Project Aims 

The Specific Aims of the project are as follows: 

1. To test whether Arrowsmith analyses are feasible and useful for assessing research 
issues, in field tests of neuroscientists working as part of large multi-disciplinary 
groups; and to incorporate feedback from these users to improve the implementation 
of the Arrowsmith software. 
2. To test whether incorporating MEDLINE record fields other than titles in 
Arrowsmith analyses will enhance its ability to analyze biomedical literatures. 
3. To test whether the free Arrowsmith web site, once upgraded and redesigned with 
new instructional material, can be made a feasible and useful public forum for 
conducting Arrowsmith analyses. 
4. To test whether Arrowsmith analyses can facilitate inter-laboratory and cross 
disciplinary collaboration, by identifying complementary sets of investigators that 
may benefit from working together. 

It is most appropriate to discuss our progress on Aims 1-3 together, since our 
experience with field testers was a major factor in developing both the Arrowsmith 
website at UIC and the underlying back-end databases. Don has continued to maintain 
and improve the original website (http://kiwi.uchicago.edu), which has both two-node 
and one-node search capabilities. However, this site requires users to learn how to 
upload and download files from the biomedical literature in a particular format, and is 
limited to 10,000 articles in each set. To overcome these limitations, we created a 
separate non-mirror site for two-node searches (http://arrowsmith.psych.uic.edu) 
which is fully interoperable with the popular PubMed interface operated by the 
National Center for Biotechnology Information (NCBI) – users simply carry out two 
separate literature searches using the familiar PubMed interface, then click a button 
and receive a B-list on the webpage within a minute or two. To accomplish this, a 
dedicated server was set up to handle multi-user queries at UIC; a local copy of 
MEDLINE was imported, parsed and regularly updated; and the underlying 
Arrowsmith software was written with fully documented, optimized Perl code.  We 
also programmed a simple, intuitive user interface that field testers found easy to 
navigate without the need for a tutorial. 

The current implementation of the two-node search requires the user to conduct 
two separate PubMed queries A and C, which define two corresponding sets of 
articles A and C.  (Often the best strategy is to search for articles in which the query 
term appears in the title. However, the system makes no restriction on how the 
PubMed queries are conducted; they may involve use of Medical Subject Headings or 
affiliation fields, may be restricted to review articles, etc.) The Arrowsmith software 
then stems the titles of the papers in each literature, and makes a list of all single 
words and two- and three-word phrases that are found in common in the titles of both 
literatures. Terms that are on a stoplist (consisting of the most common and 
nonspecific words) are removed, and terms that appear only once in a literature are 
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removed automatically if the literature is larger than 1000 records in size. The 
resulting “raw B-list” is then filtered and ranked further before being displayed to the 
user.  

Although the field testers obtained a raw B-list quickly and easily, they found it 
daunting to analyze because for large literatures, there may be hundreds to thousands 
of terms on the list even after stoplisting.  Therefore, a major research effort has been 
devoted to developing filtering and ranking schemes, so that users can be shown a 
single short ranked list of the ~50 most promising terms that match their query needs. 
As summarized below, we have utilized 7 different filtering methods to create a single 
ranked list.  We have two search tracks on the website:  a Basic Search option, in 
which nearly all filters have preset default settings, and an Advanced option in which 
the user can set filter settings at will.  

Filter 1 involves pre-mapping all of the terms (words and up to 3 word phrases) 
from MEDLINE titles through the National Library of Medicine MetaMap program 
[17] to identify those that map to one or more semantic categories as defined by the 
Unified Medical Language System, UMLS [18].  Then, users can examine only those 
B-terms that fit into one or more desired categories. Because MetaMap cannot 
optimally recognize terms out of context and because the UMLS is incomplete for 
some terms (especially protein and gene names), we have added the Tanabe-Wilbur 
list of predicted gene and protein names [19] as a back-up to identify this semantic 
category more accurately.  

Filter 2 is a frequency filter; users examine B-terms that occur more than (or less 
than) a certain number of times in either the A or C literature.  

Filter 3 is a recency filter; users can examine B-terms that appeared for the first 
time more recently than (or only earlier than) a given year in either literature. 

Filter 4 incorporates information from MEDLINE Medical Subject Headings 
(MeSH). For each B-term, the MeSH headings of the AB and BC papers are 
examined [excluding the 20 most frequent MeSH terms in MEDLINE from 
consideration].  If they have no MeSH terms in common (or fewer than a threshold 
number), the B-term is removed from the list (Swanson et al., MS submitted for 
publication). 

Filter 5 merges highly related terms within the same semantic category into a 
single composite B-term, using a statistical model of term co-occurrence within 
papers (title or abstract fields).  

Filter 6 employs “characteristic terms” calculated for the A and C literatures, 
which are terms in title or abstract fields that occur in that literature significantly more 
often than in MEDLINE as a whole. Terms that are not characteristic in either 
literature are removed as being unlikely to be especially significant.   

Filter 7 involves cohesion of B-terms: We hypothesize that for any two B-terms, 
all other things being equal, the one that represents the more narrowly focused 
literature will be more useful to the user. Thus, we have defined a measure of term 
cohesion (based on the set of articles in MEDLINE that contain the term in title; 
Swanson et al. MS submitted) and have pre-calculated cohesion scores for all terms 
found in MEDLINE titles. When displayed to the user, the most cohesive B-terms are 
ranked highest and the lowest may be discarded from the list entirely.   
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3   Field Tester Experiences 

Field testers contributed to the development of Arrowsmith in a number of ways. 
They documented their own “spontaneously conceptualized” two-node searches in 
entries made in an electronic notebook that contained the details of the search 
including the query, all edits made and the final B-list, which were sent to UIC. The 
entries gave the underlying rationale for the search, and rated the ability of the two-
node search to find useful information. We also followed-up to track how often the 
information affected the course of their research in terms of new ideas (that enriched 
the discussion section of papers or grant proposals), new experiments conducted and 
new discoveries made. Two 2-day orientation/training sessions were given at UIC 
(slides of the lectures can be viewed at the Arrowsmith site), and we also visited the 
field test sites to give demonstrations and lectures. It is important to mention that the 
field testing sites consist of active neuroscience investigators whose ongoing work 
generates diverse types of data, ranging from electrophysiology to brain imaging to 
microarrays to microscopic tissue sections.  Moreover, each site is also engaged in 
their own neuroinformatics research projects. Thus, field testers are in an ideal 
position to suggest ways that Arrowsmith searching can be adapted specifically in 
different ways to meet the diverse needs of neuroscientists and other investigators. 

We found that even experienced, oriented, well-trained biomedical investigators 
did not pursue either simple PubMed searches or Arrowsmith searches in the manner 
envisioned and advocated by information scientists. Most users typically were looking 
for one or a few, recent papers on a specific topic, and looked for these on the first 
page of retrieved titles [i.e. the top 20 hits ranked chronologically by PubMed]. They 
had no interest in finding ALL relevant papers comprehensively. Nor did they attempt 
to craft their queries carefully -- rather, the queries were deliberately or casually 
underdetermined and they expected to sift through some irrelevant papers as they 
scanned quickly through the first few retrieved pages. Their definition of success is 
quite different from that of an information scientist, and neither recall nor precision 
(not even top-20 precision) are attuned to this strategy.  We are still not quite sure 
whether this “Googling” strategy is one of naivete or shrewdness! 

Field testers did, indeed, find that Arrowsmith assisted them in assessing 
hypotheses and identifying promising experiments to pursue, and we are currently 
writing up a paper that will document these findings in detail. A number of the 
hypotheses assessed by Arrowsmith searches have grown into new research 
collaborations. However, we found that field testers employed Arrowsmith routinely 
for three other tasks as well: a) Many of the searches posed for Arrowsmith could 
have been pursued with simple PubMed searches, but were found convenient to 
conduct within the Arrowsmith web interface – for example, some users entered two 
separate searches A and C when desiring to search “A AND C.”  b) In addition to 
seeking conceptual links between two literatures, users often wanted simply to 
construct a list of items studied in both literatures. c) Many searches were conducted 
by a user familiar with field A who wanted to browse within an unfamiliar literature 
C, hoping to find a subset of articles in C relevant to A.  We plan to tailor the 
Arrowsmith interface in the future to support these needs (see below). 
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4   Progress Towards Facilitating Collaboration 

In contrast to Aims 1-3, Aim 4 was considered exploratory, and over the last four 
years a variety of eclectic approaches have been pursued to develop tools and venues 
that can assist investigators in finding and facilitating potential collaborations.  

To disambiguate author names in MEDLINE, we created a quantitative model, 
“Author-ity,” to estimate the probability that any two papers (sharing the same 
author last name and first initial) are authored by the same individual [20]. This 
approach, which will be described below in further detail, has grown into a project to 
cluster all papers in MEDLINE according to author-individuals.  Having such 
information should assist investigators in finding potential collaborators, particularly 
in conjunction with planned efforts to create author profiles and to map collaborative 
networks among people publishing in MEDLINE.  

Explicit guidelines were also formulated to help two academic investigators 
negotiate collaborations [21]. 

We recognized the need for a forum to create connections among biomedical 
investigators, who need information management and data integration tools; CS/ 
informatics researchers, who devise these tools; and social scientists, who evaluate 
these tools in the context of scientific practice.  To create such a forum, a new peer 
reviewed, open access journal is being launched at BioMed Central, called Journal of 
Biomedical Discovery and Collaboration. I serve as Editor-in-Chief, and William 
Hersh of Oregon Health Science University is Deputy Editor.  

Finally, we invited a prominent social informatics researcher, Carole Palmer of 
Univ. Illinois-Champaign-Urbana, to analyze the broader information needs and 
practices of neuroscientists in the field testing sites in detail (participation by field 
testers was voluntary, but most participated enthusiastically). This project was funded 
separately as a 3-year project by NSF; the analyses were designed, carried out and are 
being written up by the UIUC team [22] independently of the Arrowsmith Project.  

5   Extending Arrowsmith in New Ways and New Databases 

5.1   Incorporating Abstract Terms as B-terms in MEDLINE Searches 

Perhaps the single most often-asked question we hear regarding Arrowsmith is, “Why 
are B-terms taken only from titles?”  One reason is that titles of MEDLINE articles 
are usually very informative, and this maintains a much higher signal-to-noise ratio 
than simply using terms taken willy-nilly from abstracts and full-text.  Another reason 
is that we already obtain hundreds to thousands of title B-terms from a typical two-
node search based on titles.  However, there are a number of reasons to include terms 
in the abstract and full-text of papers as well.  First, the title conveys only a small 
portion of the total information contained in a scientific paper [e.g., 23-25].  Second, 
terms appearing in the title of a paper may play a qualitatively different role than 
terms appearing in the abstract – for example, when the term “calpain” appears in the 
title of a paper, the paper is likely to be studying calpain itself (its enzyme activity, its 
gene expression, its substrates, etc.).  In contrast, when papers contain “calpain” only 
in abstracts, the authors may be using calpain or calpain inhibitors as experimental 
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reagents.  Third, we have found that users often want to examine a B-list, not only to 
find meaningful conceptual links between two different literatures, but also to quickly 
construct a list of items that are in common to the two literatures – such items might 
potentially include affiliations, funding sources, methods, etc., that never appear in 
the titles of the papers.  Finally, there are other approaches to analyzing two 
literatures that do not involve constructing a B-list for the user at all (see browsing 
display, below), which may make use of terms in abstract and full-text.   

Therefore, a major thrust of our current research is to examine how best to 
incorporate terms from abstract and full-text into the two-node search.  The challenge 
will be to devise appropriate strategies of restriction, filtering and ranking that elevate 
the most useful B-terms above a very significant potential “noise” level. These are not 
simply programming tasks, but involve issues both of basic informatics – how to 
represent and mine the textual information – and of aligning the display and logical 
flow of the search process to the needs of scientific users. Handling abstract terms is, 
in many ways, a straightforward extension of the approaches already outlined for title 
terms.  In contrast, the issue of extracting terms from full-text involves mining 
PubMed Central rather than MEDLINE, is associated with different user queries, has 
a number of special problems related to heterogeneity of text portions within an 
article, and will require establishing a modified user interface. 

The basic method of identifying B-terms within abstracts is to scan the abstracts 
for all terms that are expressed in both A and C literatures. However, if this is 
performed with no further restrictions, the size of the raw B-list will be an order of 
magnitude larger than that obtained using title terms alone, and the number of AB and 
BC papers per B-term will also increase several-fold on average.  Therefore, we will 
only consider terms that occur in at least 2 article titles within MEDLINE (terms that 
do not occur in titles are mostly broken phrases that arise from stemming artifacts). 
Then, the list of “raw” B-terms will be filtered and ranked as for B-terms obtained 
from titles.  Even so, we expect that many incidentally mentioned terms will survive 
the current filtering process, so one or more additional restrictions will be tested and 
implemented: 1. B-terms may only be chosen if they occur in the final sentence of the 
abstract, or within the Conclusion section of a structured abstract.  The last sentence 
often summarizes the main finding of the paper, so this should give the maximal 
signal-to-noise ratio within the abstract.  2. In addition to choosing terms from the 
final sentence, B-terms may also be chosen if they co-occur in the same sentence as a 
term that occurs in the title of the same paper. 3.  B-terms may also be chosen only if 
they are characteristic terms of either A or C literatures. Terms that are not 
characteristic in either A or C literatures are unlikely to convey important, specific 
information across the disciplines.  4. When one is interested in identifying terms that 
may indicate previously unreported links, B-terms that are characteristic in both 
literatures are probably already well studied.  Thus, as a user-specified option for 
certain purposes, B-terms may only be chosen if they are “characteristic terms” in one 
literature but not both.  

The Arrowsmith tool is generic, and to date we have deliberately refrained from 
constraining the type of terms or the type of search that a user can perform.  Because 
of this, two persons carrying out the same search on A = “calpain” vs. C = 
“postsynaptic density” could have entirely different goals in mind:  One could be 
looking for a list of calpain substrates that are located in the postsynaptic density, 
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whereas another could be looking for a list of proteases (other than calpain) that cut 
postsynaptic proteins.  However, an important class of search involves looking for 
statements that “A affects B” or “B interacts with C.”  Several tools, including 
MedMiner [26], Chilibot [27] and BioIE [28] employ part-of-speech information and 
utilize information regarding interaction verbs to identify sentences that discuss 
interactions between entities, or even specific types of entities such as genes or 
proteins.  Similar NLP techniques may be employed to assist in identifying relevant 
B-terms within abstracts.  

5.2   Incorporating the Use of Full-Text Terms as B-terms 

A local copy of PubMed Central (PMC) can be obtained from NCBI, which includes 
all papers that are publicly accessible (a.k.a. “open access”). PMC full text articles are 
XML formatted in a standard manner, and can be parsed to create a database 
capturing each distinct tagged section in the paper (title, abstract, authors, affiliation, 
introduction, methods, figure legends, tables and table legends, results, discussion, 
conclusion, acknowledgments, references). Heuristics do need to be developed to 
recognize sections in cases where sections are not explicitly tagged (e.g., some 
journals do not label the Introduction as such, some articles lump Results and 
Discussion together, and so on). Within each tagged section, text can be split into 
sentences, so that each sentence will comprise a distinct database entry to facilitate 
searching of term pairs that co-occur within sentences.  Each paper can also be cross-
referenced to the paper’s PubMed descriptors and (if the paper is also indexed in 
MEDLINE) to the information encoded in MEDLINE fields. PubMed Central 
contains 372,000 items as of May 2005, with a total of ~800,000 items expected by 
the end of 2005.  

At least initially, users will employ a separate search interface for full-text queries 
in PMC. Users will specify two different queries that define two literatures A and C, 
and the user will be asked to specify a particular type of information to be obtained 
from a menu of choices: 

A) Certain types of information can be processed and presented as B-lists from 
formally structured fields within the papers, without the need for elaborate filtering 
and ranking procedures.  For example, author names common to both literatures can 
be readily identified from the author field; affiliations shared in both literatures, terms 
used in acknowledgments (which may include funding sources and thank-you’s to 
colleagues not named as authors), and d) references cited in both literatures (i.e., co-
citations).  

B) Certain types of information are presented in a more variable form but can be 
recognized by simple look-up: For example, reagents or assays described in methods 
sections, anatomical regions or diagnostic procedures mentioned in figure legends, 
or genes listed within tables.  Users can specify both the section(s) of the paper to be 
examined, and the semantic category or nature of the B-term desired from a menu.  
We can identify the vast majority of such terms by simple look-up, using our existing 
lists of terms that are mapped to UMLS semantic categories. 

C) Finally, we plan to tackle the problem of identifying terms within full-text that 
can supplement the use of title and abstract terms for making conceptual links across 
the two literatures.  We will only consider terms that occur in at least 2 titles in 
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MEDLINE (see above), and will avoid sections of the paper such as introduction, 
methods and discussion where many incidental or historical mentions may occur.  
Thus, B-terms will only be taken from titles, abstracts, figure legends, tables and table 
legends, and results (though the user will have the option to add or subtract sections 
from the list). Additional restrictions will also be implemented, similar to those 
discussed above for abstract terms in MEDLINE, prior to applying filtering and 
ranking procedures.  Depending on how many instances of a single B-term per paper 
may be found, and how inclusion of full-text terms affects the size of the B-list, it 
may be necessary to cluster, compress and/or summarize the sentences related to the 
same B-term for display to the user.  

5.3   Current Challenges 

There are at least five limitations in the filtering and ranking of B-terms.  First, 
filtering B-terms by UMLS semantic categories does not have ideal flexibility – e.g., 
one can specify the category of receptor, but not restrict it further to NMDA 
receptors. Second, ranking B-terms by coherence values gives undue weight to very 
rare B-terms, and we are still learning how to correct this properly.  Third, the 
problem of word-sense disambiguation has not been addressed yet. Fourth, the 
default stoplist is approximately 8200 words, which was originally chosen manually 
by Don Swanson with some further editing at UIC.  Because it is difficult to be sure 
that all of these words are predictably non-interesting to all potential users, we plan to 
construct a smaller and more rationally chosen stoplist, and we are exploring whether 
words having extremely low coherence can be fruitfully added to that list.  Alternative 
1400 and 365 word lists of the most common words are already available within the 
advanced search settings. Fifth, there are both advantages and disadvantages to 
tokenizing the terms prior to processing (stemming, stoplisting, removing uppercase 
and splitting into sentences). This speeds processing greatly in two-node searches, but 
does not allow NLP analyses of free text. At present, the local copy of MEDLINE 
contains titles represented both in original and tokenized versions; however, the 
abstracts are only saved in tokenized form, and our term database consists only of 
tokenized terms.  Therefore, new databases will need to be created if we decide to 
employ information gathered from analyses of free text such as part-of-speech tagging 
or parsing.  

5.4   Adding an Alternative Display for Cross-Disciplinary Browsing 

A surprisingly common, yet previously unanticipated, reason that field testers 
employed the Arrowsmith two-node search was to browse in an unfamiliar discipline, 
looking broadly for articles that might be relevant to one’s home discipline. In this 
situation, scrutinizing a B-list is more of a distraction than an aid in identifying 
relevant papers. Assuming that the user is familiar with literature A, and that the user 
is not familiar with non-overlapping literature C, the goal is to identify a subset of 
papers within C that is most closely related to A. Previous studies have employed 
ontologies or customized standard vocabularies to connect literatures [29].  Certainly 
MeSH terms could also be used for this purpose.  However, MeSH terms may not be 
ideal for connecting literatures that deal with basic science rather than clinical 
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medicine, and particularly may be too limited in the case of very disparate literatures. 
For example, shared MeSH terms might not be useful for linking “pesticides” with 
“fast Fourier transforms.” Eventually one would like to be able to connect biomedical 
articles to literatures found in other fields entirely, such as agriculture, psychology, 
education and engineering.  Thus, just as we have chosen to employ shared B-terms to 
connect disparate literatures for regular two-node searches, so do we hypothesize that 
the articles most relevant for scrutiny by a browsing user will be BC, the subset of C 
that shares certain B-terms with A. Three sub-problems need to be solved in order to 
create the browsing mode: 

1. The size of the subset BC must be chosen so that it represents a relatively small 
proportion of the C literature.  Using the entire raw B-list to define BC would result in 
a set almost as big as C itself.  However, using the default filtering and ranking 
scheme of the regular two-node search (semantic category, frequency, MeSH and 
cohesiveness filters) is a promising approach: Using the top 50-100 ranked B-terms 
results in BC subsets that typically contain only ~200-500 papers.  The size of the BC 
subset is closely linked to the number of B-terms but is relatively insensitive to the 
size of C. Thus, choosing the top 100 B-terms for a large literature (e.g. 
schizophrenia, which contains over 50,000 papers) results in a BC subset that 
represents about 1% of the total. Choosing the optimal size and filtering of the B-list 
for defining BC is an empirical problem (rather than a theoretical one) and will 
require trial-and-error testing over a variety of specific searches.   

2. A method for clustering the BC papers by topic, and giving a short label to each 
cluster, needs to be chosen and implemented.  Although numerous methods have been 
explored for thematic clustering, the requirements of clustering in the present context 
create a number of specific constraints:  a) The method needs to be computationally 
quick, so that it can be computed for thousands of articles within a few seconds. b) 
Clusters should ideally be “soft”; that is, if individual papers fit several clusters 
equally well, they can be placed in both. c) The clusters should fit well with the user’s 
conception of how the literature is coarsely organized according to topics. d) Last, but 
not least, the clusters should be viewable by the user on one webpage.  Once the user 
chooses one cluster, it can be displayed and then optionally re-clustered into another 
set of subclusters, thus permitting drilling-down of the literature in hierarchical 
fashion. 

The “Anne O’Tate” utility (a separate feature of the Arrowsmith website designed 
to allow simple data-mining of literatures) currently makes use of MeSH headings in 
a set-covering approach to form clusters within a set of articles retrieved from 
PubMed in the following manner:  First, all MeSH headings mentioned in the article 
collection are listed in descending order of frequency.  The MeSH that occur in >1/3 
of papers are deemed less useful for grouping subclusters, so they are bypassed; for 
the most frequent MeSH term (below 33%), all papers indexed by that term [and any 
MeSH terms below that term in the MeSH hierarchy] are placed in cluster #1 and 
removed from the stack.  The MeSH term frequencies are re-calculated for the 
remaining papers, and the process is repeated to form cluster #2, and so on, until 
either the clusters contain only single papers or 15 clusters have formed.  Any 
remaining papers [and any papers not indexed with MeSH headings at all] are placed 
in a final cluster called “other.” Finally, for each cluster, a new query is performed 
containing the original query AND the specific MeSH term defining that cluster – this 
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retrieves the additional papers indexed by that MeSH which had been placed earlier 
into other clusters, so that individual papers are placed into multiple clusters where 
appropriate.  This method is fast, robust, soft and intuitive, and immediately gives an 
annotation for the cluster (namely, the MeSH term used to define it).   

5.5   Revisiting the One-Node Search 

In the Arrowsmith one-node search [9], we begin with a single starting literature A 
(e.g., the literature on migraine), and compile a list of all terms Bi in the titles of this 
literature.  The list of Bi terms is filtered using a stoplist, and in some cases is further 
filtered to keep only terms that occur in literature A significantly more than in 
MEDLINE as a whole.  For each Bi term, we search MEDLINE for all papers having 
Bi in the title [as a practical restriction on the search space, these searches are often 
restricted to articles sharing a certain MeSH term, such as “Pharmacologic Actions”]. 
The set of all articles found by searching term Bi is called literature Ci, and all terms 
in the titles of these papers are referred to as Ci terms.  The Ci terms are filtered to 
keep only terms that occur in literature Bi significantly more than in MEDLINE as a 
whole, and in some cases, Ci terms are removed if they occur in literature A at all. 
Then, the Ci terms are combined across all Bi searches to form a master list of C 
terms.  These are ranked according to the number of distinct B terms with which they 
co-occur -- the presumption is that high ranking C terms are likely to point to 
previously undocumented, yet biologically meaningful relationships with the A 
literature.  

Many information scientists have explored refinements to the original one node 
search strategy: Gordon and colleagues used lexical statistics [30] and Latent 
Semantic Indexing [31] to identify other literatures that contain complementary 
information. Weeber used UMLS concepts (rather than text words) captured in full-
text of articles [13]. Hristovski and Srinivasan have used MeSH terms rather than text 
words [32, 33], and Wren used manually-constructed “objects” and used a mutual 
information measure [34-36] to rank objects according to the strength of linkage 
across literatures A and C.  Others, including Pratt [37] and Hearst [38], have 
explored ways to enhance the user interface to support one-node searching. The 
Arrowsmith Project offers a public one-node search interface at 
http://kiwi.uchicago.edu, and Hristovski (http://www.mf.uni-lj.si/bitola/) and Pratt 
http://litlinker.ischool.washington.edu/) maintain search websites as well, which 
indicates a high level of interest in these services.   

Nonetheless, we deliberately did not study one-node searches as part of the field 
tester experiences. One concern was that the typical biomedical scientist might not 
give sufficient credibility to the findings of a one-node search – the indirect links 
found in the structure of the biomedical literature do not necessarily correspond to the 
structure of nature itself!  Another concern is that the one-node search is an exercise 
in “searching for an hypothesis,” whereas most scientists already have more 
hypotheses than they can handle, and instead want a tool [the two-node search] to 
help them assess the ones they already have.  Finally, although one-node searches 
have led to significant testable biomedical predictions, none of the proposed means of 
filtering and ranking C terms have undergone theoretical or empirical validation.  Yet 
the one-node search can be viewed in several respects as a variant or refinement of the 
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two-node search, and we believe that the time is ripe for tackling the one-node search 
again. 

For example, consider the typical two-node search, in which the user specifies two 
topical PubMed queries that define literature A and C.  One could, instead, input a 
topical query for literature A [say, “microRNA”], and allow literature C to be all of 
MEDLINE, or to correspond to a broad MeSH category such as “Disease”.  This 
would create an asymmetric situation similar to that envisioned in a one-node search.  
The current Arrowsmith interface can support literature sizes up to 100,000 in each 
query, but as an advanced option the user will be allowed to input files of any size, 
including all of MEDLINE (actually, handling MEDLINE as literature C is an easy 
task since we have pre-computed frequencies and PubMed IDs for all terms occurring 
in MEDLINE titles). Conversely, given any two-node search, we could readily 
construct a ranked list of C terms that show strong, indirect links with literature A.  
This will provide a different way of browsing an unfamiliar C literature for items that 
may be relevant to A, which should complement the article-based browsing approach 
discussed in the previous section.  Thus, both the asymmetrical nature of the search, 
and the construction of a C-list, can be viewed individually as simple extensions of 
the existing two-node search.  

The issue of how to filter and rank C-terms optimally is not easy, in part because 
different types of searches may have different optimal strategies.  For example, in the 
case where Ai and Ci refer to specific gene names found in the A and C literatures, it 
is probably true that if Ai and Bi co-occur often in MEDLINE, and Bi and CI also co-
occur more often than expected by chance, then one would expect AI and Ci to co-
occur as well – and if they do not, this raises the question whether this represents an 
undocumented discovery of a relationship between Ai and Ci.  Thus, for predicting 
gene interactions, co-occurrence frequencies are probably valid for deriving links. 
However, in other cases, it is probably not valid to focus only on B-terms that occur 
more often than expected by chance in both literatures: suppose literature A 
represents the field of microRNAs, and one seeks complementary information in a 
disparate field (e.g., nutrition).  Rather, the terms most likely to point to 
undocumented discoveries may be those that are characteristic in one, but not both, 
literatures. 

5.6   Gene-Centric Tools 

The basic concept of the two-node search can be extended to other datasets such as 
those in the GEO gene expression database (maintained, like PubMed and PMC, by 
NCBI as part of their Entrez suite of databases).   Suppose that an investigator 
hypothesizes that two genes A and C should be co-expressed, but they have not been 
studied together in previous experiments  -- one of the genes may have been 
discovered recently or is an expressed sequence tag (EST), or the two genes may have 
been studied in different contexts or species and/or were not included on the same 
microarrays.  A two-node search would allow the investigator to find all genes B that 
were co-regulated with A in certain experiments and that were, separately, co-
regulated with C in other experiments.  This would allow one to assess whether a 
relationship between A and C is likely and warrants further study.  Alternatively, 
suppose an investigator has just made a new lab finding that two genes A and C do 
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indeed co-express in one situation.  It would be valuable to examine the set of other 
genes (B genes) that have been reported to co-express with both A and C in different 
experiments.  This B-list will assist in placing the A-C relationship into the larger 
context of gene networks. One may also wish simply to combine data across multiple 
experiments of the same type.  For example, at present, 19 different experiments in 
the GEO database have examined the expression of eIF2c2 in human brain.  (These 
experiments are not necessarily all comparable to each other, but one could filter them 
manually if desired.)  Making a list of genes that co-express with eIF2c2 across 
multiple experiments is one way of detecting the genes that are most robustly linked 
with eIF2c2. Conversely, one might want to compare two apparently disparate 
experiments and find gene pairs that are co-regulated similarly in both cases. 

The GEO Gene Expression database can be adapted for conducting two-node 
searches in a manner that is analogous to the text-based Arrowsmith search: The user 
search-interface would replicate the NCBI site (GEO Profiles).  A two-node search 
might go something like this:  1. The user inputs the name of a gene, together with 
additional restrictions such as platform, species, tissue or developmental stage.  This 
request is processed to retrieve all GEO Profiles that satisfy the query, giving 
literature A. (A GEO Profile describes a single experiment involving that gene.)  
Automatically, for each GEO Profile having more than 2 experimental conditions, the 
software computes all of the “profile neighbors” of that gene – this computation uses 
the Pearson correlation coefficient to identify a set of the other genes whose 
expression was most similar to the index gene in that same experiment. Profile 
neighbors are calculated using a Pearson linear correlation with a threshold of 0.7, and 
a t-test with an arbitrarily-determined Bonferroni adjustment - the top 100 profile 
neighbors are presented.  2. The user inputs the name of a second gene, together with 
restrictions as desired, which gives literature C.  The GEO Profiles are retrieved for 
the second gene, and the “profile neighbors” are computed.  3.  All “profile 
neighbors” which are common to both literatures are identified and displayed on a 
single B-list of gene names.  4. The user can select any B-term and see the Profiles 
that include A and B, juxtaposed to the Profiles that include B and C.  

This scheme is quite analogous to the situation of searching two literatures in 
PubMed. At present, the GEO database is small and extremely heterogeneous, so that 
it is not easy to formulate useful A and C searches. This limitation should become less 
important with time, as GEO becomes more populated and as the scientific 
community formulates standard platforms and standard formats for documenting 
experiments.  

6   Spin-Offs Supported by the Arrowsmith Project 

6.1 “Anne O’Tate” 

We have programmed a utility on the main Arrowsmith homepage that displays, for 
any collection of PubMed articles, a ranked list of most frequent terms, most frequent 
MeSH headings, and most “important” words appearing in title or abstract. The utility 
also displays most frequent author names, affiliations, journals, a histogram of years 
of publication, and a list of the terms that have appeared for the first time most 
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recently in MEDLINE.  Also, the user can cluster the articles into topical subgroups 
(as discussed above). Each of these lists gives a different, partially complementary 
summary view of the contents of the article collection. 

6.2   “WETLAB” 

A simple open source electronic laboratory notebook has been programmed in Java, 
that is oriented to the needs of wet-lab neuroscientists. This notebook, WETLAB, 
allows flexible searching of both data and metadata across templated text fields, stores 
the text in XML files, and allows data-sharing by ftp or email.  WETLAB is currently 
undergoing beta testing and will be placed on the Arrowsmith website for unrestricted 
download.   

6. 3   Genomics Studies 

Unlike the other Arrowsmith projects, this work has not been directed (yet) towards 
generating a software tool or web service. Rather, we have utilized some of our data-
mining approaches to analyze the newly discovered class of genes known as 
microRNAs and their targets in the mammalian genome [39-43].  This combined 
computational and wet-lab project involves several of the Arrowsmith field testers 
and is an important scientific test bed for tool development, as well as an exciting 
scientific arena in its own right. 

6.4   “Author-ity” 

As a first step towards creating an author-individual database of all articles in 
MEDLINE, we have created a statistical model of how two papers authored by the 
same vs. different individuals vary on a similarity profile computed across different 
MEDLINE attributes (title words, MeSH, co-author names, affiliation words, etc) 
[20].  We have programmed a tool, “Author-ity,” that resides on the main Arrowsmith 
homepage: the user specifies a (last name, first name, optional middle initial and 
optional suffix), and retrieves a list of papers bearing that name.  The user then 
chooses one paper from the list and obtains a ranked list of all of the other papers in 
descending order of probability that the paper was written by the same individual.  

A monotone model is satisfied when the value of the function increases 
monotonically as the value for a given variable increases (and all other variables' 
values remain the same).  Such functions are easily computed and can place multi-
dimensional data onto a single dimensional ranking score or probability value in a 
manner that takes into account nonlinear and interactive effects across dimensions, 
yet is readily interpretable for the nature and contribution of each dimension.  This 
type of model appeared to be ideal for the task of comparing two different articles in 
MEDLINE bearing the same author name, and asking whether they were authored by 
the same individual.   

First, we hypothesized that different papers written by the same individual will 
tend to share certain characteristic features, not only dealing with the author’s 
personal information (name and affiliation attributes) but other attributes of the 
articles as well.  The probabilistic model [20] describes, for any two papers bearing 
the same author (last name, first initial), how similar the two papers are across 8 
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different dimensions:  middle initial match, suffix match (e.g., Jr. or III), journal 
name, language of article match, number of co-author names in common, number of 
title words in common after preprocessing and removing title-stopwords, number of 
affiliation words in common after preprocessing and removing affiliation-stopwords, 
and number of MeSH words in common after preprocessing and removing mesh-
stopwords.  These are calculated solely from comparing corresponding MEDLINE 
fields. The resulting 8-dimensional comparison vector, which we call the “similarity 
profile,” is computed for the members of two large reference sets – a match set, 
consisting of many (millions) pairs of papers very likely to be co-authored by the 
same individual across MEDLINE, and a non-match set consisting of many pairs of 
papers known to be authored by different individuals. These training sets were very 
robust against inclusion of incorrect data.  

Thus, given any pair of papers bearing the same author (last name, first initial), we 
compute the similarity profile and observe its relative frequency in the match set vs. 
the non-match set. If the observed profile is much more frequent in the match set than 
in the non-match set, it is likely that the two papers were written by the same 
individual. The ratio of the profile frequency in the match vs. non-match sets, together 
with an estimate of the a priori probability that any two randomly chosen papers 
having that name will be authored by the same individual, gives an estimate of the 
probability that the two papers were written by the same individual [20]. We plan to 
employ clustering algorithms on papers bearing the same (last name, first initial) to 
form clusters of papers that can be assigned to distinct author-individuals across 
MEDLINE.  

If monotone models are so wonderful, why aren’t they utilized more often in a 
variety of other situations in medical informatics and bioinformatics, for example, to 
improve algorithms for information retrieval?  Possibly the reason is that it is often 
hard to generate enough training data to properly fit a monotone model, especially 
when the number of distinct observable cases is high (e.g., when there are many 
variables or variables are continuous).  Hopefully the use of massive, automatically 
generated training sets should enhance the popularity of this approach. 

7   Conclusions 

Don, Vetle and I differ markedly in our backgrounds and personalities, yet are 
compatible in terms of our general approach to informatics, and this has given a 
distinct flavor to our joint research efforts:   

First, are interested in having computers do what they do best, rather than what 
people do best. We are not against AI, NLP or machine learning approaches.  
However, our own goal is to create tools that extend (but not replace) the normal 
capabilities of people.  We seek to make telescopes, not artificial retinas. 

Second, we have undertaken a commitment to developing free, public tools. The 
Arrowsmith websites require no passwords or registration, and although they are 
under continual development, they are not simply demonstration sites but offer full-
strength capabilities for the real-life information needs of scientists.  



 The Arrowsmith Project: 2005 Status Report 41 

 

Third, the tools that we develop are very simple and generic.  They are applicable 
to all fields of biomedical science, by scientists at all levels of seniority, and equally 
by people running small laboratories or practitioners of Big Science.   

Fourth, the field testers are not simply beta testers, experts or “users” but are true 
scientific collaborators in the development process. It is common in bioinformatics to 
combine computational biology and wet-lab studies, but I think that the Arrowsmith 
project has a uniquely multi-disciplinary discovery process that encourages 
investigators to contemplate radically new directions in their research. 

Fifth, we are attuned to a paradoxical requirement of informatics tools:  they need 
to be designed to align well with the perceived needs of scientists and their daily 
practice, yet the tools also need to be designed to expand scientists’ horizons – to 
improve their ability to handle information and scientific ideas, and to raise 
expectations and consciousness in a manner that will reshape routine scientific 
practice [44].  

The Arrowsmith Project has demonstrated that it is feasible for scientific 
investigators to conduct two-node searches in their daily lives.  The next challenge is 
to publicize the tool widely and to induce young scientists, especially, to think 
explicitly about how they formulate and assess new hypotheses.  
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Abstract. We consider the problem of discovering the optimal pattern
from a set of strings and associated numeric attribute values. The good-
ness of a pattern is measured by the correlation between the number
of occurrences of the pattern in each string, and the numeric attribute
value assigned to the string. We present two algorithms based on suffix
trees, that can find the optimal substring pattern in O(Nn) and O(N2)
time, respectively, where n is the number of strings and N is their total
length. We further present a general branch and bound strategy that can
be used when considering more complex pattern classes. We also show
that combining the O(N2) algorithm and the branch and bound heuristic
increases the efficiency of the algorithm considerably.

1 Introduction

Fundamental biological molecules such as DNA, RNA, and proteins can be re-
garded as strings over a certain alphabet. Although the whole genomic sequences
of many species are now becoming available, there is still much that is unknown
about the information that lie hidden in them. Computational analysis of these
sequences rely on the principle that similarity as strings implies similarity in their
sequence structure, which in turn implies similarity in their functions. There-
fore, methods for efficiently and effectively discovering meaningful patterns, or
sequence elements which are conserved in a given set of strings, is an important
problem in the field of Bioinformatics [1].

Earlier work on pattern discovery focus on discovering the most conserved
pattern in a given set of strings, generally preferring longer patterns which occur
in most of the sequences in the set. Another situation is when we are given two
sets of strings, where one set (positive set) consists of sequences known to possess
some biological characteristic, while the other (negative set) consists of sequences
known not to posses these characteristics. The problem is to find a discriminating
pattern, that is, a pattern which occurs in most strings of the positive set, but
does not occur in most of the strings of the negative set [2, 3,4, 5, 6].

Recently, there have been several works which incorporate numeric attributes
which are obtained from other sources, e.g. gene expression data obtained from
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microarray experiments, in order to find meaningful patterns more effectively [7,
8,9,10,11]. The basic idea of these methods is to find sequences elements whose
occurrences in the sequences are correlated with the numeric attributes. For
example, gene expression is regulated by molecules called transcription factors,
which bind to specific sequences usually in the upstream of the coding region
of a gene. The binding sites for a given transcription factor are fairly conserved
across genes which are regulated by the same transcription factor. Therefore, if
we can find sequence elements which occur in upstream regions of genes which
are relatively highly expressed, while not occurring in upstream regions of genes
whose expression is relatively low (or vice versa), such patterns are likely to be
binding sites of specific transcription factors.

In [7], substring patterns of up to length 7 are scored according to the linear
fit between the number of occurrences in the upstream region and the expression
level of the gene. However, they do not consider any algorithm for solving the
problem efficiently. Also, the choice of the maximum pattern length is arbitrary
and it is not guaranteed that the optimal pattern will be found. Algorithmic
work for solving a similar problem has been considered in [8, 9]. In this problem
setting, the number of occurrences of a pattern is only considered as an indicator
value of 0 or 1, i.e. whether the pattern occurs in the string or not. Based on
the algorithm for solving the color set size problem [12], a very efficient O(N)
time algorithm for finding the optimal substring pattern in this problem setting
is given in [9]. A general branch and bound strategy that can be used for more
complex patterns where the problem can be NP-hard, is given in [8].

Although the algorithms above have been shown to discover similar motifs as
in [7], it is generally believed that multiple occurrences of a binding site motif in
the upstream region of a gene will strengthen the function of the transcription
factor for that gene. In this paper, we give an efficient algorithm to discover the
optimal pattern, taking into account the number of occurrences of the pattern
in each string, as in the problem setting in [7]. We first present two simple
algorithms based on the suffix tree data structure that finds the optimal substring
pattern (without a restriction in the length of the pattern), respectively in O(nN)
and O(N2) time. We further develop and apply a branch and bound strategy
in order to speed up the algorithm, also allowing the problem to be solved for
more complex and descriptive classes of patterns. The algorithms developed are
applied to real biological data to show the efficiency and effectiveness of the
approach.

2 Preliminaries

Let Σ be a finite alphabet. An element of Σ∗ is called a string. Strings x, y, and
z are said to be a prefix, substring, and suffix of string w = xyz, respectively.
The length of a string w is denoted by len(w). The empty string is denoted by
ε, that is, len(ε) = 0. For any set S, let |S| denote the cardinality of the set.
The empty set is denoted by ∅, that is, |∅| = 0. Let R represent the set of real
numbers.



46 H. Bannai et al.

Let Π be a set of patterns. We call a function defined over a text string and
pattern ψ : Σ∗ × Π → R a matching function. Let ψp : Σ∗ → R represent
the matching function for a fixed p ∈ Π , that is, ψ(s, p) = ψp(s) for any text
string s ∈ Σ∗. For the matching function value, we shall consider the number
of occurrences of a given pattern in the text string. A substring pattern p is a
pattern p ∈ Π = Σ∗, where the matching function value ψp(s) is defined as the
number of substrings in s which is equal to p. A don’t care pattern p is a pattern
p ∈ Π = ({.}∪Σ)∗, where “.” is a don’t care symbol, and the matching function
value ψp(s) is defined as the number of substrings in s which can be obtained
from p by appropriate substitution of the don’t care symbols with characters of
the alphabet Σ. For the above two pattern classes, we shall refer to Σ or {.}∪Σ
as the pattern alphabet.

For the rest of the paper, we assume that we are given as input, a sequence
of ordered pairs consisting of a string and an associated numeric attribute value:
{(s1, y1), . . . , (sn, yn)} ⊂ Σ∗ × R. Let N =

∑n
i=1 len(si) represent the total

length of the input strings. We denote by y = (y1, . . . , yn)T ∈ Rn , the vector
consisting of the numeric attribute values. Further, for a given pattern p, we
denote by ψp(s) = (ψp(s1), . . . , ψp(sn))T ∈ Rn, the vector consisting of the
matching function values for the input text strings. We define for later use, a
preorder over patterns as follows:

Definition 1. For any p′, p ∈ Π, denote p′ � p if for all {si | i = 1, . . . , n},
ψ(si, p

′) ≤ ψ(si, p).

We now consider how to score the goodness of a given pattern. For a given
x = (x1, . . . , xn)T ∈ Rn, let X = (1, x), and define

RSS(y|x) = ||y −Xβ̂||2 =
n∑

i=1

(yi − (β̂0 + β̂1xi))2

where β̂ = (β̂0, β̂1)
T

are the least square estimates of β in the linear model

y = Xβ + ε.

We consider the problem of finding the pattern which can best fit the numeric
attribute values yi with respect to ψp(si).

Definition 2 (Pattern Based Linear Regression). We define the pattern
based linear regression problem as follows. Given {(s1, y1), . . . , (sn, yn)} ⊂ Σ∗ ×
R, and a matching function ψ, find the pattern p ∈ Π that minimizes

RSS(y|ψp(s)) = ||y − (1, ψp(s))β̂||2 =
n∑

i=1

(yi − (β̂0 + β̂1ψp(si)))2

where β̂ = (β̂0, β̂1)
T

are the least square estimates of β in the linear model

y = (1, ψp(s))β + ε.
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We note that the consistency problem [13,14] is a special case of our problem.
Since the consistency problem is shown to be NP-complete for several pattern
classes (e.g. subsequence patterns), the above problem is NP-hard for such cases.
An exception is the case for the substring pattern class, for which we shall present
efficient solutions in Section 3.

3 Methods

3.1 Finding the Optimal Substring Pattern

When considering substring patterns, it can be shown that the number of pos-
sible patterns which give distinct RSS scores is linear in the total length of
strings, i.e. O(N). We make use of a very convenient and well studied data
structure called suffix trees.

Generalized Suffix Trees. A suffix tree [15] for a given string s is a rooted
tree whose edges are labeled with substrings of s, satisfying the following char-
acteristics. For any node v in the suffix tree, let l(v) denote the string spelled
out by concatenating the edge labels on the path from the root to v. For each
leaf node v, l(v) is a distinct suffix of s, and for each suffix of s, there exists
such a leaf v. Furthermore, each node has at least two children, and the first
character of the labels on the edges to its children are distinct. A generalized
suffix tree (GST) for a set of n strings S = {s1, . . . , sn} is basically a suffix tree
for the string s1$1 · · · sn$n, where each $i (1 ≤ i ≤ n) is a distinct character
which does not appear in any of the strings in the set. However, all paths are
ended at the first appearance of any $i, and each leaf is labeled with idi. An
example of a GST is shown in Fig. 1. It is well known that suffix trees (and gen-
eralized suffix trees) can be represented in linear space and constructed in linear
time [15] with respect to the length of the string (total length of the strings for
GST).

Notice that candidate substring patterns may be restricted to those repre-
sented by nodes of the generalized suffix tree. This is because, for any substring
pattern that does not correspond to a path in the suffix tree, the pattern does
not occur in any of the strings in the set. Also, note that for a given pattern that
does correspond to a path in the suffix tree, all occurrences of the pattern in the
strings are represented by the leaves of the suffix tree in the subtree below this
path. This means that for any substring pattern that corresponds to a path that
ends in the middle of an edge of the suffix tree, its occurrences in the strings are
identical to the occurrences of the substring pattern corresponding to the path
extended to the next node.

As stated in the Introduction, the pattern based linear regression problem
has been shown to be solvable in O(N) time if the matching function is con-
sidered to be an indicator function returning the value 0 or 1 [9]. However, it
is assumed that the score of a pattern is a function of the sum of the matching
function values and the sum of the numeric attribute values of the strings that
the pattern occurs in. The algorithm cannot be applied to our case since we
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Fig. 1. Example of a generalized suffix tree for the string set { abab, aabb }

require the matching function values of each string in order to compute the RSS
score. Below, we give two algorithms which calculate the score for each candidate
pattern p corresponding to a node in the generalized suffix tree.

An O(N2) Algorithm. Calculating the score for each of the O(N) candidate
patterns requires the calculation of ψp(s) for each p, as well as the calculation
of the least square estimates. The former can be calculated in O(N) time using
well known linear time string pattern matching algorithms such as the Knuth-
Morris-Pratt algorithm [16]. The latter can be calculated by first obtaining the
least square estimate of the parameters:

β̂ = (XT X)−1XT y,

where X = (1, ψp(s)). It is not difficult to see that this can be calculated in
O(n) time. Further, RSS(y|ψp(s)) can be calculated in O(n) time, and therefore
the resulting time complexity is O(N) ·O(N + n) = O(N2).

An O(Nn) Algorithm. Consider assigning a vector of length n at each node
and leaf of the suffix tree. The vectors are initialized as follows: for an internal
node, all values are set to 0. For a leaf labeled with idi, the value at the ith
position is set to 1, and the rest is set to 0. Then, with a bottom-up (postorder)
traversal on the suffix tree, we add up the values in the vector at each node,
element-wise, into the vector of its parent node. The result is that we obtain, at
each node, a vector of length n where each position i of the vector represents
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the number of leaves in the subtree of the suffix tree, with idi. This corresponds
to the number of times the substring pattern occurs in string si, and conse-
quently, the vector represents ψp(s). This means that ψp(s) can be calculated
in O(n) time for each pattern, resulting in a total of O(Nn) time for the score
calculations.

3.2 Branch and Bound Strategy

Since the pattern based linear regression problem can be NP-hard when con-
sidering more complex pattern classes, we propose an enumerative branch and
bound framework for finding the optimal pattern. The basic idea of the enumer-
ation is similar to previous works [3, 4, 2, 5, 6, 8]. The main contrivance of this
paper is in the method for calculating the lower bound of the RSS score for
specific subspaces of the pattern space.

The algorithm proceeds by traversing and enumerating nodes on a search tree,
where each node in the tree represents some pattern in Π . For any pattern p in
the search tree, let p′ be a pattern represented by a node in the subtree rooted
at the node for p. While traversing the search tree at the node corresponding
to p, suppose that we are able to calculate a lower bound for the RSS for any
pattern p′. If this lower bound is greater than the current best RSS found in
the traversal, we know that the score for p′ cannot be below the current best
RSS . This allows us to prune the search space by disregarding the subtree of
the search tree rooted at the node corresponding to p.

Below, we show how such a lower bound can be calculated. The assumptions
for our calculations below is that p′ � p. For the case of string patterns and
don’t care patterns, this assumption can be fulfilled by considering the search
tree described as follows. The root corresponds to the empty string ε, and each
node v will have child nodes whose pattern corresponds to the pattern obtained
by extending the pattern at node v by one character of the pattern alphabet. Al-
though we do not elaborate in this paper, the same branch and bound approach
can be applied to a variety of other patterns such as approximate patterns and
degenerate patterns.

Problem 1 (lower bound of the residual sum of squares for p′ � p). Given some
pattern p ∈ Π , find a lower bound of the score function RSS(y|ψp′(s)) for any
pattern p′ � p.

Below, let x = (x1, . . . , xn)T = ψp(s). Also, let xopt = (xopt
1 , . . . , xopt

n )
T

=
argminz∈Dx RSS(y|z) where Dx = {(z1, . . . zn)T | 0 ≤ zi ≤ xi, i = 1, . . . , n},
and let β̂opt = (β̂opt

0 , β̂opt
1 ) be the least square estimates for the linear model

y = (1, xopt)β + ε. Our objective now is to find RSS(y|xopt). This can be
considered as a relaxed version of the problem stated above, since we do not
require that there exists a pattern p′ � p such that ψp′(s) = xopt. The following
theorem gives a simple lower bound on the RSS score.
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Algorithm 1: Simple algorithm for calculating a lower bound of RSS .
Input: x = (x1, . . . , xn)T ,y = (y1, . . . , yn)T

Output: lb ≤ min{RSS(y|z) | z = (z1, . . . , zn)T , 0 ≤ x′
i ≤ xi}

X ← {i | xi = 0};1

if X = ∅ then return 0; /* Can move all xi onto a single line. */2

m ← i∈X yi/|X|; /* mean of values {yi | xi = 0} */3

lb = i∈X(m − xi)
2; /* residual sum of squares for points {xi = 0} */4

return lb5

Theorem 1 (simple lower bound). Let X = {i | xi = 0}. If X 	= ∅, then∑
i∈X

(m− yi)2 ≤ RSS(y|xopt)

where m =
∑

i∈X yi/|X |.

Proof. For any i, if xi = 0, then since 0 ≤ xopt
i ≤ xi we have that xopt

i = 0.
Ignoring the residuals for all data points x 	= 0, the minimum possible residual
sum of squares for data where xi = xopt

i = 0 must be smaller than the residual
sum of squares for the entire data set. 
�

The simple lower bound can be calculated with the pseudo-code shown in Algo-
rithm 1.

Next, we try to improve on this lower bound. The following lemma gives the
conditions between xopt and the regression line.

Lemma 1. For all i = 1, . . . , n, if β̂opt
1 > 0 then

xopt
i =

{
0 if xi = 0 or yi ≤ β̂opt

0
(yi − β̂opt

0 )/β̂opt
1 otherwise (xi > 0 and yi > β̂opt

0 )

and if β̂opt
1 < 0,

xopt
i =

{
0 if xi = 0 or yi ≥ β̂opt

0
(yi − β̂opt

0 )/β̂opt
1 otherwise (xi > 0 and yi < β̂opt

0 ).

Proof. We will prove the case for β̂opt
1 > 0. The case for β̂opt

1 < 0 can be done
similarly. The lemma states that the points (xopt

1 , y1), . . . , (xopt
n , yn) lie either

on the regression line y = β̂opt
0 + β̂opt

1 x, or on the y-axis. Suppose there exist
points (xopt

i , yi) to the contrary, that is, xopt
i > 0 and the point is not on the

regression line. If yi < β̂opt
0 , then since β̂opt

1 > 0, considering point (0, yi) instead
of (xopt

i , yi) would give a smaller residual, contradicting the definition of xopt.
If yi > β̂opt

0 , then again since β̂opt
1 > 0, (xopt

i , yi) cannot lie to the right of the
regression line, or we can replace (xopt

i , yi) with a point ((yi − β̂opt
0 )/β̂opt

1 , yi)
on the regression line with a smaller residual. We can also say that the points
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cannot lie left of the regression line, since we can construct a new regression
line passing the point (0, β0) that lies left of the points, and replace all points
(xopt

i , yi) with points on the new regression line. The residual of the new points
are clearly smaller, and again contradicts the definition of xopt. 
�

Corollary 1. Let Xopt = {i | xopt
i = 0}. If Xopt = ∅, RSS(y|xopt) = 0. If

Xopt 	= ∅, then
β̂opt

0 =
∑
i∈X

yi/|Xopt|

and
RSS(y|xopt) =

∑
i∈Xopt

(β̂opt
0 − xopt

i )2.

Proof. As a consequence of Lemma 1. If X = ∅, then all points (xopt
i , yi) lie on

the regression line. Otherwise, since the residual for all points xopt
i > 0 is 0, β0

is chosen to minimize the residual sum of squares of points where xopt
i = 0. 
�

In order to calculate the lower bound, the problem now is how to obtain the
value β̂opt

0 . Although the exact value of β̂opt
0 is not known beforehand, Algo-

rithm 2 shows how to calculate the minimum residual sum of squares for any
z = (z1, . . . , zn)T satisfying the constraint: 0 ≤ zi ≤ xi for all i = 1, . . . , n.

Corollary 2. Let

Xopt
+ = {i ∈ Xopt | yi > β̂opt

0 }
Xopt

− = {i ∈ Xopt | yi ≤ β̂opt
0 }.

If β̂opt
1 > 0, then

Xopt
+ = {i | xi = 0, yi > β̂opt

0 }
Xopt

− = {i | yi ≤ β̂opt
0 }.

If β̂opt
1 < 0, then

Xopt
+ = {i | xi = 0, yi < β̂opt

0 }
Xopt

− = {i | yi ≥ β̂opt
0 }.

Proof. As a consequence of Lemma 1. When β̂opt
1 > 0 and yi > β̂opt

0 , xopt
i = 0 if

and only if xi = 0. Similarly, when β̂opt
1 < 0 and yi < β̂opt

0 , xopt
i = 0 if and only

if xi = 0. 
�

Theorem 2. Algorithm 2 correctly outputs RSS(y|xopt).

Proof. Consider the case where {i | xopt
i = 0} 	= ∅ and β̂opt

1 > 0. The claim
is that m = β̂opt

0 , and X = Xopt, after the while loop of lines 5–9. If this
can be proved, the result follows from Corollary 1. Let us split the set X thus
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Algorithm 2: Algorithm for calculating the lower bound of RSS .
Input: x = (x1, . . . , xn)T , y = (y1, . . . , yn)T

Output: min{RSS(y|z) | z = (z1, . . . , zn)T , 0 ≤ x′
i ≤ xi}

X ← {i | xi = 0}; k ← 1;1

if X = ∅ then return 0 ; /* Can move all xi onto a single line. */2

// assuming β̂opt
1 > 0 ////////////////////////////////////////

m ← i∈X yi/|X|; /* mean of values {yi | xi = 0} */3

(i1, . . . , in−|X|) ← indices sorted in increasing order of {yi | i �∈ X} ;4

while yik ≤ m do5

X ← X ∪ {ik}; /* xik → 0 */6

m ← i∈X yi/|X|; /* update mean */7

k ← k + 1;8

endw9

lb = i∈X(m − xi)
2; /* m = β̂opt

0 and X = Xopt if β̂opt
1 > 0 */10

// assuming β̂opt
1 < 0 ////////////////////////////////////////

X ← {i | xi = 0}; k ← 1;11

m ← i∈X yi/|X|; /* mean of values {yi | xi = 0} */12

(i1, . . . , in−|X|) ← indices sorted in decreasing order of {yi | i �∈ X} ;13

while yik ≥ m do14

X ← X ∪ {ik}; /* xik → 0 */15

m ← i∈X yi/|X|; /* update mean */16

k ← k + 1;17

endw18

return min{lb, i∈X(m − xi)
2}; /* m = β̂opt

0 and X = Xopt if β̂opt
1 < 0 */19

av
g 

at
 0

shift to 0

y

x

y

x

Fig. 2. Case of Algorithm 2 where X = ∅ (left) and X �= ∅, β1 > 0 (right)

calculated into two disjoint sets, X+ = {i ∈ X | yi > m} and X− = {i ∈
X | yi ≤ m}. Since the algorithm does not add indices i where yi > m to
X , we have that X+ = {i | xi = 0, yi > m} from the initial construction of
X at line 1. Also, since all indices i where yi ≤ m are added to X , we have
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that X− = {i | yi ≤ m}. Suppose m < β̂opt
0 . From Corollary 2, we have that

X+ ⊇ Xopt
+ , and X− ⊆ {i | yi ≤ β̂opt

0 } = Xopt
− . However, this contradicts the

assumption, since
∑

i∈X yi/|X | = m ≥ β̂opt
0 =

∑
i∈Xopt yi/|Xopt|. Next, suppose

m > β̂opt
0 . We have the opposite situation and X+ ⊆ Xopt

+ and X− ⊇ Xopt
− .

However, due to the way X is constructed, there must have been a point in the
while loop (lines 5–9) where all indices i where yi ≤ β̂opt

0 are added to X , and
no index i where yi > β̂opt

0 is added to X . From Corollary 2, at such point,
X+ = Xopt

+ and X− = Xopt
− , which implies that m = β̂opt

0 . Due to the condition
of the while loop, no other index i where yi > β̂opt

0 could have been added to X

afterwards, contradicting the assumption m > β̂opt
0 . Therefore, m = β̂opt

0 , and
consequently X = Xopt. 
�

Fig. 2 shows the basic idea of Algorithm 2. The time complexities of Algo-
rithm 1 and 2 are both O(n), since they just conduct a constant number of scans
on the data set, provided that the data is initially sorted and ranked according
to yi, so that the sorting at lines 4 and 13 of Algorithm 2 can be computed in
O(n) time.

Combining Suffix Tree Traversal and Branch and Bound. It is easy
to see that for substring patterns, the generalized suffix tree itself can be used
as the search tree, and we can combine the O(N2) algorithm and the pruning
strategy described in this section. Combining the O(Nn) algorithm and the
pruning strategy is not readily realizable, since the direction of the traversal
over the search tree is in the reverse direction. We discuss this issue further in
Section 5.

4 Computational Experiments

We implement our algorithms using the C++ language, and measure the running
times of our algorithm using a Sun Fire 15K (UltraSPARC III Cu 1.2GHz x
96 CPUs) using a single processor for each run. We note that the suffix tree
algorithm is simulated by a suffix array structure, using the method presented
in [17, 18].

For the numeric attribute values, we use the S. cerevisiae gene expression
data obtained from microarray experiments given in [19]. The data consists of
normalized log expression level ratios of genes at specific time points of the yeast
cell cycle. For the string data, we use the 600 nucleotides from the upstream of
the start codon of each gene.

Table 1 shows the running times of the algorithms for finding the optimal
substring pattern applied to the expression data of the 14-minute time point in
the α-synchronized cell-cycle microarray experiment. The times are measured for
various sizes of n by a random sampling from the entire set of 5907 genes which
were available for this time point. Note that since all strings are of fixed length,
N = 600n. From the table, we see that the O(Nn) and O(N2) time algorithms
are able to find the optimal pattern in a reasonable amount of time. However, we
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Table 1. Comparison of running times of algorithm for finding optimal substring
patterns from the 14-minute time point in the α-synchronized cell-cycle microarray
experiment [19].

n O(Nn) O(N2)
O(N2)+
simple bb

O(N2)+bb

100 05.96s 12.43s 05.90s 05.71s
500 00m37s 01m47s 00m30s 00m26s
1000 02m03s 05m28s 01m02s 00m53s
1500 04m09s 11m16s 01m35s 01m19s
2000 07m53s 19m55s 02m00s 01m38s
2500 12m30s 30m05s 02m35s 02m07s
3000 18m20s 42m17s 03m29s 02m51s
3500 25m17s 56m34s 04m11s 03m23s
4000 33m08s 73m06s 04m52s 03m55s
4500 42m48s 92m16s 05m34s 04m28s
5000 55m03s 113m20s 06m13s 04m59s
5500 67m01s 136m25s 07m08s 05m41s
5907 75m55s 157m27s 07m57s 06m21s

can see that O(N2)+bb (the O(N2) algorithm with the branch and bound strat-
egy Algorithm 2) is much faster for all input sizes. Although O(N2)+simple bb
(the O(N2) algorithm with the simple branch and bound strategy Algorithm 1)
is fairly efficient as well, the extra work invested in the O(N2) + bb algorithm is
payed off by a ∼ 20% reduction in the overall computation time.

To show that the algorithm also allows for the discovery of more complex
patterns in a practical amount of time, we searched for the optimal don’t care
pattern on the same data set. The search took 765 minutes and 529 minutes,
respectively, using simple bb and bb with a simple enumeration of don’t care
patterns, limiting the maximum length of the pattern to 15 and the number of
don’t cares characters in the pattern to 20% of its length.

5 Discussion

We presented efficient algorithmic solutions to the problem of discovering the
optimal pattern in terms of a linear least squares fitting of the numeric attribute
values associated with strings, and the matching function values. The efficiency
of the algorithms are confirmed through computational experiments conducted
on actual biological data.

In [20], the branch-and-bound enumerative search was applied in the reverse
direction for finding the optimal degenerate pattern that discriminates between
a positive string set and negative string set, where the matching function is
an indicator function. In their search, the search tree is essentially traversed
bottom-up. A bound on the score is computed in a similar way as for the original
direction, and the traversal on the search can be pruned. This reverse direction
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is, however, difficult to achieve for the problem considered in this paper. This
is because in the original direction, the bound is calculated from the numeric
attribute values of strings which do not match the pattern (ψp(si) = 0), which
is possible due to the condition ψp(si) ≥ 0. In order to calculate a bound for the
reverse direction, we would need to assume a maximum value c where ψp(si) ≤ c,
and we would calculate a bound for the residual sum of squares from the numeric
attribute values of strings which give ψp(si) = c. However, the matching function
used in this paper is not suitable, since the maximum value would change for
each string.

The lower bound calculated in this paper underestimates the actual minimum
value that can be achieved with the matching function and numeric attribute
values. This is because we did not require that there exist a pattern whose
matching function values would be equal to xopt. Notice that when calculating
the lower bound, xopt is obtained by considering points on the regression line.
However, we know that the matching function will only take discrete integer
values, and it may not be possible for some xopt

i to lie on the regression line.
Residuals for such points will not be zero, and would therefore increase the
lower bound. Finding an efficient way to calculate a better lower bound for the
discretized version of the problem is an interesting open problem.
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11. Bannai, H., Hyyrö, H., Shinohara, A., Takeda, M., Nakai, K., Miyano, S.: An O(N2)
algorithm for discovering optimal Boolean pattern pairs. IEEE/ACM Transactions
on Computational Biology and Bioinformatics 1 (2004) 159–170 (special issue for
selected papers of WABI 2004).

12. Hui, L.: Color set size problem with applications to string matching. In: Proceed-
ings of the Third Annual Symposium on Combinatorial Pattern Matching (CPM
92). Volume 644 of LNCS., Springer-Verlag (1992) 230–243

13. Miyano, S., Shinohara, A., Shinohara, T.: Which classes of elementary formal
systems are polynomial-time learnable? In: Proceedings of the 2nd Workshop on
Algorithmic Learning Theory. (1991) 139–150

14. Miyano, S., Shinohara, A., Shinohara, T.: Polynomial-time learning of elementary
formal systems. New Generation Computing 18 (2000) 217–242

15. Gusfield, D.: Algorithms on Strings, Trees, and Sequences. Cambridge University
Press (1997)

16. Knuth, D.E., Morris, J.H., Pratt, V.R.: Fast pattern matching in strings. SIAM
Journal on Computing 6 (1977) 323–350

17. Kasai, T., Lee, G., Arimura, H., Arikawa, S., Park, K.: Linear-time longest-
common-prefix computation in suffix arrays and its applications. In: 12th An-
nual Symposium on Combinatorial Pattern Matching (CPM 2001). Volume 2089
of LNCS., Springer-Verlag (2001) 181–192

18. Kasai, T., Arimura, H., Arikawa, S.: Efficient substring traversal with suffix arrays.
Technical Report 185, Department of Informatics, Kyushu University (2001)

19. Spellman, P.T., Sherlock, G., Zhang, M.Q., Iyer, V.R., Anders, K., Eisen, M.B.,
Brown, P.O., Botstein, D., Futcher, B.: Comprehensive identification of cell cycle-
regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization.
Mol. Biol. Cell 9 (1998) 3273–3297

20. Shinozaki, D., Akutsu, T., Maruyama, O.: Finding optimal degenerate patterns in
DNA sequences. Bioinformatics 19 (2003) ii206–ii214



 

A. Hoffmann, H. Motoda, and T. Scheffer (Eds.): DS 2005, LNAI 3735, pp. 57 – 69, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

Named Entity Recognition for the Indonesian Language:  
Combining Contextual, Morphological  

and Part-of-Speech Features into a Knowledge 
Engineering Approach 

Indra Budi1, Stéphane Bressan2, Gatot Wahyudi1, Zainal A. Hasibuan1, 
 and Bobby A.A. Nazief 1 

1 Faculty of Computer Science University of Indonesia 
{indra, zhasibua, nazief}@cs.ui.ac.id, gatot100@mhs.cs.ui.ac.id 

2 School of Computing, National University of Singapore 
steph@nus.edu.sg 

Abstract - We present a novel named entity recognition approach for the 
Indonesian language. We call the new method InNER for Indonesian Named 
Entity Recognition. InNER is based on a set of rules capturing the contextual, 
morphological, and part of speech knowledge necessary in the process of 
recognizing named entities in Indonesian texts. The InNER strategy is one of 
knowledge engineering: the domain and language specific rules are designed by 
expert knowledge engineers. After showing in our previous work that mined 
association rules can effectively recognize named entities and outperform 
maximum entropy methods, we needed to evaluate the potential for 
improvement to the rule based approach when expert crafted knowledge is 
used. The results are conclusive: the InNER method yields recall and precision 
of up to 63.43% and 71.84%, respectively. Thus, it significantly outperforms 
not only maximum entropy methods but also the association rule based method 
we had previously designed. 

1   Introduction 

Named entity recognition is the task of recognizing and classifying terms and phrases 
as named entity from free text [13]. It is a fundamental building block of many, if not 
all, textual information extraction strategies. It is going to be a crucial component of 
most tools for the construction of a semantic Web layer on top of the existing wealth 
of textual information available on the World Wide Web. We could also applied 
information extraction into scientific documents. Some interesting entities could be 
extracted from the document. For example, we could extract the statement that 
indicates problem, objective, method and result of the research  from the abstract of 
the document. 

Typically useful named entity classes are names of person, locations, 
organizations, money amounts, percentages and dates. Named entity recognition is the 
first step towards the extraction of structured information from unstructured texts. For 
example in the following text in the Indonesian language we can recognize `Habibie’ 
and `Amien Rais’ as names of person and `Jakarta’ as a location. 
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Presiden Habibie bertemu dengan Prof. Amien Rais di Jakarta kemarin. 
(President Habibie met Prof. Amien Rais in Jakarta yesterday) 

The recognition task is usually leveraging features of the terms such as their 
morphology, part of speech, and their classification and associations in thesauri and 
dictionaries. It is also leveraging the context in which terms are found such as 
neighboring terms and structural elements of the syntactical units, for instances 
propositions, sentences, and paragraphs. 

Clearly the characteristic combinations of the above features differ significantly 
from one language to another. Techniques developed for the American language need 
to be adapted to non-English linguistic peculiarities. It is also possible that entirely 
new and specific techniques need to be designed.  
This research is part of a larger project aiming at the design and development of tools 
and techniques for the Indonesian Web.  

We here present a novel named entity recognition approach for the Indonesian 
language. We call the new method InNER for Indonesian Named Entity Recognition. 
InNER is based on a set of rules capturing the contextual, morphological, and part of 
speech knowledge necessary in the process of recognizing named entities in 
Indonesian texts.  

The InNER strategy is one of knowledge engineering: the domain and language 
specific rules are designed by an expert knowledge engineer [1]. After showing in our 
previous work [6] that mined association rules can effectively recognize named 
entities and outperform maximum entropy methods, we now need to evaluate the 
potential for improvement to the rule based approach when expert crafted knowledge 
is added.  

The rest of this paper organized as follows. We present and discuss some 
background and related works on named entity recognition in the next section. In the 
third section, we present the InNER strategy and its implementation. We then present 
the results of an evaluation of its performance in section 4. We empirically evaluate 
the effectiveness of the InNER method and compare it with one of  methods that we 
had previously showed to outperform existing methods when applied to the 
Indonesian language. We present conclusions on section 5 and finally, we give an 
outline of the directions for future work in section 6. 

2    Background and Related Works 

There are two common families of approaches to named entity recognition, 
knowledge engineering approaches and machine learning approaches [1]. Knowledge 
engineering approaches are expert-crafted instances of generic models and techniques 
to recognize named entity in the text. Such approaches are typically rule-based. In a 
rule-based approach the expert design rules to be used by a generic inference engine. 
The rule syntax allows the expression of grammatical, morphological and contextual 
patterns. The rules can also include dictionary and thesauri references. For example, 
the following rule contributes to the recognition of persons. 

If a proper noun is preceded by a title then the proper noun is name of person 

In [2], the authors introduce the FASTUS system whose rules are using regular 
expressions. In [14], the authors built knowledge representation that consist on rules 
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to identify name entities based on geographical knowledge, common person names 
and common organization names. In [16], the authors use a semantic network 
consisting of some 100.000 nodes and hold information such as concepts hierarchies, 
lexical information, and prototypical events. All the above works are applied to the 
English language. 

In machine learning approaches, a generic computer program learns to recognize 
named entities with or without training and feedback. Very general machine learning 
models exist that do not necessitate the mobilization of expensive linguistic expert 
knowledge and resources. For instance the Nymble system [3] uses a hidden Markov 
model. In both [2] and [7], the authors present an approach that uses the now popular 
maximum entropy. These models can make use of different features. For instance, in 
[4], the authors use morphological features, paragraphs and a dictionary. In [7], the 
authors combine local and global features.  

As mentioned in [10], the knowledge engineering and the machine learning 
approach are not incompatible. For instance, the system presented in [15] combines 
rules and maximum entropy to recognize named entity in English texts.  

Our first attempt to design a named entity recognition system for the Indonesian 
language was of the machine learning family [6]. We mined a set of association rules 
from a training corpus in which we considered the sequences of terms annotated with 
their features and name class.  

Numerous other authors have worked on named entity recognition for non-English 
languages. Some have made their results available. In [18], the authors propose a 
named entity recognition approach based on decision tree for the Japanese language.  
In [12], the authors proposed a rule based approach for financial texts in the Greek 
language. In [19], the authors use a combination of lexical, contextual and 
morphological feature to recognize named entities for the Turkish language.  In [9], 
the authors present an approach combining rules with machine learning for the 
Swedish language. 

3   Name Entity Recognition 

The approach we propose in this paper is based on the expert engineering of rules for 
the recognition of named entities. The rules are designed and verified by educated 
native speakers after analysis of a training corpus. A rule combines contextual, 
morphological, and part of speech features to assign a class to terms and groups of 
terms in the text. 

The class of a named entity can be directly recognized from its context. For 
example, in a sentence comprising a title particle such as “Prof.” followed by proper 
name, the proper name is the name of a person. For example, in the sentence: “Prof. 
Yusuf berkunjung ke Jakarta”. The term “Yusuf” is recognized as the name of a person 
because it is a proper name preceded by term which belongs to contextual information 
(“Prof.”). 

In the above example, we can directly infer that the term ‘Yusuf’ is a proper name 
because of its spelling with an upper case in the beginning. The format and nature of 
the characters forming terms give some basic indications: lower and upper cases, 
signs, diacritics, and digits. 
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In the above example, the term ‘Yusuf’ belongs to the morphological proper name. 
It means ‘Yusuf’ is a proper name morphologically. 

We assume the availability of the necessary tools for the lexical analysis and part 
of speech tagging of the text. 

The knowledge engineering task for the expert is the design of rules identifying the 
chosen named entity classes based on contextual, morphological, and part of speech 
information as explained above. As we have seen in the introduction, an example rule 
reads as follows. 

 
If a proper noun  is preceded by a title then the proper noun is the name of person 
If a proper noun is preceded by ‘di’ then the proper noun is the name of a location 
 

The InNER system processes the input text sentence by sentence. To each input 
sentence, the corresponding output is a sentence in which the text corresponding to a 
recognized named entity is marked-up with XML tags following the widely used 
framework introduced in [8]. 

For instance, the processing of the example sentence “Presiden Habibie bertemu 
dengan Prof. Amien Rais di Jakarta kemarin” outputs the following XML tagged text: 

 
Presiden <ENAMEX TYPE=”PERSON”>Habibie</ENAMEX> bertemu dengan Prof. 

<ENAMEX TYPE=”PERSON”>Amien Rais</ENAMEX> di <ENAMEX 
TYPE=”LOCATION”>Jakarta</ENAMEX> kemarin. 
 

The InNER system has four main processes, as depicted on Fig. 1: tokenization, 
feature assignment, rule assignment and name tagging.  

 

Tokenization

Feature
Assignment

Rule
Assignment

Input

Name Tagging

Features
Dictionary

Output

Rules
Dictionary

 

Fig. 1. The InNER architecture 
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The purpose of the tokenization process is to identify tokens (words, punctuation 
and other units of text such as numbers etc.) from the input sentence. Tokens are 
labeled with their kinds. For example, table 4; illustrate the results of the tokenization 
of the sentence below in which the tokenizer identifies words (WORD), punctuation 
(OPUNC, EPUNC) and numbers (NUM). 

Ketua MPR, Amien Rais pergi ke Bandung kemarin (24/4). 
(Chief of MPR, Amien Rais went to Bandung yesterday (24/4).) 

Table 1. List of contextual features 

Feature Name Explanation Example 
PPRE Person prefix Dr., Pak, K.H., 
PMID Person middle bin, van 
PSUF Person suffix SKom, SH 
PTIT Person title Menristek, Mendagri 
OPRE Organization prefix PT., Universitas 
OSUF Organization suffix Ltd., Company 
OPOS Position in organization Ketua 
OCON Other organization contextual Muktamar, Rakernas 
LPRE Location prefix Kota, Propinsi 
LSUF Location suffix Utara, City 
LLDR Location leader Gubernur, Walikota 

POLP Prepositions that’s usually followed by 
person name 

oleh, untuk 

LOPP Prepositions that’s usually followed by 
location name di, ke, dari 

DAY Day Senin, Sabtu 
MONTH Month April, Mei 

Table 2. List of morphological features 

Feature Name Explanation Example 

TitleCase Begin with uppercase letter and 
followed by all lowercase letter  Soedirman 

UpperCase All uppercase letter  KPU 
LowerCase All lowercase letter menuntut 
MixedCase Uppercase and lowercase letter LeIP 
CapStart Begin with uppercase letter LeIP, Muhammad 
CharDigit Letter and number P3K 
Digit All number 2004 
DigitSlash Number with slash 17/5 
Numeric Number with dot or comma 20,5; 17.500,00 
NumStr Number in word satu, tujuh, lima 
Roman Roman number VII, XI 
TimeForm Number in time format 17:05, 19.30 

The feature assignment component labels the terms with their features, the basic 
contextual features (for instance identifying preposition, days, or titles), the 
morphological features, as well as the part of speech classes. The identification of 
contextual features uses the context dictionary. The analysis of the morphological 
features parses the token. The identification of the part of speech classes is a complex 
process. We use part of speech tagging technology developed by our team [5, 17]. 
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Contextual feature example illustrated in the Table 1, while Table 2 and 3 illustrate 
and provide examples for morphological and part of speech features, respectively. For 
example, table 4; illustrate the result of feature assignment process on the above 
sentence. 

Table 3. List of part-of-speech features 

Feature Name Explanation Example 
ART Article  si, sang 
ADJ Adjective indah, baik 
ADV Adverb telah, kemarin 
AUX Auxiliary verb harus 
C Conjunction dan, atau, lalu 
DEF Definition merupakan 
NOUN Noun rumah, gedung 
NOUNP Personal noun ayah, ibu 
NUM Number satu, dua 
MODAL Modal akan 
OOV Out of dictionary  
PAR Particle kah, pun 
PREP Preposition di, ke, dari 
PRO Pronominal saya, beliau 
VACT Active verb menuduh 
VPAS Passive verb dituduh 
VERB Verb pergi, tidur 

The rule assignment component selects the candidate rules for each identified 
token in the text. The actual orchestration and triggering of the rules occur in the 
name tagging component.  

Table 4. Result of tokenization and feature assigment processes 

Token 
string 

Token kind Contextual 
features 

Morphological 
features 

Part-of-speech 
features 

Ketua WORD OPOS TitleCase, CapStart NOUN 
MPR WORD  UpperCase, CapStart OOV 
, OPUNC    
Amien WORD  TitleCase, CapStart OOV 
Rais WORD  TitleCase, CapStart Noun 
pergi WORD  LowerCase VERB 
ke WORD  LowerCase PREP 
Bandung WORD  TitleCase, CapStart NOUN 
kemarin WORD  LowerCase NOUN, ADV 
( SPUNC    
24/4 NUM  DigitSlash  
) EPUNC    
. OPUNC    

 
The rules in the InNER system capture the typical patterns of features 

characterizing the various named entity classes. The left hand side of a rule is the 
pattern. The right hand side of a rule is the identified named entity class. The 
following is an example of a rule. 
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IF Token[i].Kind="WORD" and Token[i].OPOS and Token[i+1].Kind=”WORD” and 
Token[i+1].UpperCase and Token[i+1].OOV 

THEN Token[i+1].NE = "ORGANIZATION" 

Rule above would recognize token “MPR” as an organization. Table 5 shows the 
result of the rule assignment process for the example sentence. The empty string 
indicates that the term or phrase has not been classified. In the example, “MPR”, the 
Indonesian parliament, is identified as an organization. “Amien Rais”, an Indonesian 
politician, is identified as a person. “Bandung”, an Indonesian city is identified as a 
location. 

There is no such order of rules, we arrange the rules randomly without follow 
certain mechanism. We choose the first match between each token and the rules, then 
we applied the rules to that token.  

Table 5. Result of rule assigment process 

Token Type of Named Entity 
Ketua “” 
MPR ORGANIZATION 
, “” 
Amien PERSON 
Rais PERSON 
Pergi “” 
Ke “” 
Bandung LOCATION 
Kemarin “” 
( “” 
24/4 “” 
) “” 

The last process in InNER system is the XML tagging of the original sentence. The 
name tagging arranges some tokens that are identified as same class and position 
consecutively in the text into one single name entity class. The syntax of the tags 
follows mechanism in [8]. The example below is the output of the system for our 
running example. Term “Amien” and “Rais” are positioned consecutively and 
identified as same class PERSON, tagged together as one single name entity class 
(PERSON). 

  
Ketua <ENAMEX TYPE="ORGANIZATION">MPR</ENAMEX>, <ENAMEX 

TYPE=”PERSON”>Amien Rais</ENAMEX> pergi ke <ENAMEX 
TYPE=”LOCATION”>Bandung</ENAMEX> kemarin (24/4). 

4   Performance Analysis 

We now empirically analyze the performance of the newly proposed approach. This 
analysis is done in comparison with our previous association rule based approach. We 
recall that we have shown in [6] that the latter outperforms existing methods 
(maximum entropy) for the named entity recognition task for the Indonesian 
language. 
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4.1   Experimental Setup and Metrics 

For this evaluation we consider three named entity classes: names of person, locations 
and organizations. Our experts are graduate students who are native speakers of  
Indonesian language. 

The observation corpus is composed of a set of articles from the online versions of 
two Indonesian newspaper Kompas (www.kompas.com) and Republika 
(www.republika.co.id). The observation corpus consists of 802 sentences. It 
comprises 559 names of person, 853 names of organization, and 418 names of 
location. Our testing corpus consists of 1.258 articles from the same sources. It 
includes 801 names of person, 1.031 names of organization, and 297 names of 
location. Both the observation and testing corpora have been independently tagged by 
native speakers based on guideline provided in [20].  

We wish to measure the effectiveness of the approaches empirically evaluated. For 
this we use the definitions of the recall, precision and F-Measure metrics proposed by 
MUC (Message Understanding Conference) in [11]. 

These definitions use the following measurements. 

− Correct: number of correct recognition performed by the system 
− Partial: number of partial correct recognition performed by the system. for 

example: 
the phrase "Amien Rais " should be recognize as a person but the system just 
recognize "Amien" as PERSON or just recognize "Rais" as a PERSON. 

− Possible: number named entity in the text as manually tagged for the training. 
− Actual: number of tagged named entity output by the system. They may be 

correct, partially correct, or incorrect (we call incorrect tagged terms which are 
neither correct nor partially correct) 

Based on the values above, the system performance parameters can be calculated 
in term of recall, precision and F-Measure using following formula. 

 

Possible

PartialCorrect
Recall

*5.0+=  
(1) 

Actual

PartialCorrect
Precision

*5.0+=  
(2) 

)  ( * 5.0

 * 

PrecisionRecall

PrecisionRecall
  MeasureF

+
=−  

(3) 

 
Let us illustrate the above definition with our example sentence manually tagged as 

given in section 1: 
 
Presiden <ENAMEX TYPE="PERSON">Habibie</ENAMEX> bertemu dengan Prof. 

<ENAMEX 
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TYPE="PERSON">Amien Rais</ENAMEX> di <ENAMEX  TYPE="LOCATION">Jakarta 
</ENAMEX> kemarin. 

Namely, there are three named entities: Habibie, Amien Rais and Jakarta of 
respective class person, person and location. Let us now assume that the same 
sentence is tagged by the system as follows. 

Presiden <ENAMEX TYPE="PERSON">Habibie</ENAMEX> bertemu dengan Prof. 
<ENAMEX 

TYPE="PERSON">Amien</ENAMEX> <ENAMEX TYPE="ORGANIZATION">Rais</ENAMEX> 
 di<ENAMEX TYPE="LOCATION">Jakarta</ENAMEX> kemarin. 

Namely, the system identifies four named entities: Habibie, Amien, Rais and 
Jakarta of respective class person, person, organization and location. The first and 
fourth terms are correctly tagged. The second term ‘Amien’ is partially tagged as it 
should be ‘Amien Rais’. The third term ‘Rais’ is wrongly tagged.  Therefore recall, 
precision and F-Measure for this sentence alone are computed as follows. 

Recall = (2 + 0.5)/3 = 2.5/3 = 83.33% 
Precision = (2 + 0.5)/4 = 2.5/4 = 62.50% 
F-Measure = 71.43% 

4.2   Results and Analysis 

Our experts engineered a total of 100 rules by examined observation document. We 
have classified the rules in four categories depending on the combination of features 
that they are using.  

We call contextual rules, rules involving contextual features only. This is the base 
set of rules. There are 18 such rules.  

We call CM rules, rules that combine contextual and lexical features. There are 33 
such rules.  

We call CP rules, rules that combine contextual and part of speech features. There 
are 27 such rules.  

We call CMP rules, rules that combine all features. There are 22 such rules. 

Table 6. Result on different combination of the rule sets 

Rules Recall Precision F-Measure 
Contextual (Base) 35.79% 33.87% 34.82% 
Base + CP 46.81% 49.80% 48.26% 
Base + CM 47.91% 70.30% 56.98% 
Base + CP + CM + CMP 63.43% 71.84% 67.37% 

Table 6 shows the performance of different combinations of the rule sets. 
Surprisingly morphological features seem to yield better results than part of speech 
features. This is probably due to the named entity classes that we are considering for 
which upper case first character is often a determinant indicator. However, regardless 
of the specificity of our choice of named entity classes and as we expected, the best 
overall results for recall, precision and F-measure are obtained from the combination 
of all types of rules and all types of features. Using all combinations of all rules is the 
strategy we propose and call the InNER strategy. 
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For further language processing steps, the partial correct is not useful, so we also 
give result without partial correct, only calculate the correct response. Table 7 shows 
the result of system without partially correct and table 8 give the difference on F-
Measure between system with partial correct and without partial correct. 

Table 7. Result of experiment without partial correct 

Rules Recall Precision F-Measure 
Contextual (Base) 28.28% 26.74% 27.49% 
Base + CP 41.29% 43.93% 42.57% 
Base + CM 44.11% 64.71% 52.49% 
Base + CP + CM + CMP 60.22% 67.76% 63.77% 

Table 8. Difference between with and without partial correct on F-Measure 

Rules With Partial 
Correct 

Without Partial 
Correct Difference 

Contextual (Base) 34,82% 27,49% 7,33% 
Base + CP 48,26% 42,57% 5,69% 
Base + CM 56,98% 52,49% 4,49% 
Base + CP + CM + 
CMP 

67,37% 63,77% 3,60% 

Based on table 8, we saw that the contextual feature give highest contribution of 
partial correct and the all combination of features give lowest difference result when 
using partial correct. It means that adding more features give more accurate result.  

We could see that the result are still below standard performance as compare to 
some other languages for NER (e.g. 80%). We have no definitive answer yet why this 
is happen since this is the first generation of NER in Indonesian language. It maybe 
because of the datasets used and decision to choose the rules. We develop the datasets 
manually and carefully, but we have no judgment from the domain expert about 
correctness of the datasets. Moreover, if we look manually at the datasets, we find that 
so many occurrences that a conjuction “dan” (and) used as part of organization name, 
for example: “Fakultas Ilmu Sosial dan Politik” (Political and Social Faculty), 
“Departemen Kehakiman dan HAM” (Human Right and Court Department), “Pusat 
Studi Demokrasi dan HAM” (Center of Human Right and Democracy Study), etc. Our 
system could detect those terms as two entities instead of one entity. The decision of 
choosing the right rules could be contribute to the lower result. Maybe if we could 
design the ranked of rules, the result would be better. 

When comparing the performance of the InNER strategy, i.e. for all rules, to the 
performance of a named entity recognition by means of mined association rules 
(which we had shown in [6] outperforms maximum entropy methods for the 
Indonesian language) we find that InNER yields a consistently and significantly better 
performance in both recall and precision and therefore, naturally, in F-measure. Even 
though if we compare it to the combination of contextual and morphological rules, the 
InNER still have better performance. 

We used observation document as training set to discover those association rules. 
We applied feature rule as association rules which used in [6] that form: 

<t1, f2> => nc2, (support, confidence)  
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Rule above was constructed from a sequence of terms <t1, t2>, where f2 is the 
morphological feature of t2 and nc2 is the name class of t2. The left hand side of the 
association rules are sequences of terms and features while the right hand side is the 
name class. The support and confidence depend on the occurence this form in the 
training sets. See [6] for further detail how this association rules could be used in 
name entity recognition. This form similar to the third rule of InNER, combination 
contextual and morphological feature. 

Table 9 contains the figures of this comparison. 

Table 9. Comparation with association rules method 

Method Recall Precision F-Measure 
InNER 63.43% 71.84% 67.37% 
Association Rules 43.33% 52.50% 47.49% 

 
A manual closer look at the results, going through the correct, partial, possible, and 

actual named entities, seems to indicate that association rules induce more partial 
recognition. This fact also show that the performance of association rules closer 
enough with performance InNER using combination of lexical and morphological 
feature without partially correct. This is avoided by the knowledge engineering 
approach, which is capable of a finer grain tuning of the rule by leveraging the variety 
of features available. 

5   Conclusions 

We have proposed a knowledge engineering approach to the recognition of named 
entities in texts in the Indonesian language. The approach is based on rules that 
combine contextual, morphological, and part of speech features in the recognition 
process.  

The method yields a highest performance of 63.43% recall and 71.84% precision 
with combine all of three features. Based on experiment, we also showed that 
morphological feature have better result than part-of-speech feature, it means that 
knowing the structure of letter forming a term give better result rather than its part-of-
speech.  

We showed that this method outperforms an association rule based method we had 
previously developed because this method reduce the partially correct result. Since we 
had previously shown, under a similar experimental set up, that the association rule 
based yielded a better performance than state of the art methods (maximum entropy) 
[6], we can conclude that based on our experiment, the knowledge engineering 
method is the best. 

6   Future Work 

Clearly this comes at the cost and expenses of expert knowledge and effort. Our 
experts have manually designed 100 rules. It is a tedious task, which we did not 
conduct, to compare these rules individually with the association rules that are 
automatically mined.  It would be however interesting to compare and integrate the 
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mined association rules and the engineered rules. Indeed, not only do we expect the 
controlled merging of the mined association rules with the engineered rules to results 
in an even more efficient method, but also we do expect an effective and elegant tool 
for visualizing and browsing the mined association rules to help the knowledge 
engineer in the design process itself. 

For better performance, specifically to get the standard performance, we think 
there is should be improvement on the datasets beside the method. The datasets 
should be evaluated and revised by the domain expert in order to reducing the manual 
error. 

The next step in our project is to devise a method to reconstruct structured 
elements from the elementary name entities identified. Our target language is XML. 
To illustrate our idea, let us consider the motivating example from which we wish to 
extract an XML document describing the meeting taking place: 

“Presiden Habibie bertemu dengan Prof. Amien Rais di Jakarta kemarin.” 
 

Fig. 2 contains the manually constructed XML we hope to obtain. In italic are 
highlighted the components that require global, ancillary, or external knowledge. 
Indeed, although, we expect similar methods (rules based, association rules) can be 
applied to learn the model of combination of elementary entities into complex 
elements, we also expect that global, ancillary, and external knowledge will be 
necessary such as gazetteers (Jakarta is in Indonesia), document temporal and 
geographical context (Jakarta,  05/06/2003), etc. 

 

 

 

 

 

 

 

 

 
 
 
 
 

Fig. 2. Extracted structural form in XML 
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Abstract. The purpose of this paper is to describe an adaptive algo-
rithm for improving the performance of Bayesian Network Classifiers
(BNCs) in an on-line learning framework. Instead of choosing a priori
a particular model class of BNCs, our adaptive algorithm scales up the
model’s complexity by gradually increasing the number of allowable de-
pendencies among features. Starting with the simple Näıve Bayes struc-
ture, it uses simple decision rules based on qualitative information about
the performance’s dynamics to decide when it makes sense to do the next
move in the spectrum of feature dependencies and to start searching for a
more complex classifier. Results in conducted experiments using the class
of Dependence Bayesian Classifiers on three large datasets show that our
algorithm is able to select a model with the appropriate complexity for
the current amount of training data, thus balancing the computational
cost of updating a model with the benefits of increasing in accuracy.

Keywords: Bias Management, Bayesian Classifiers, Machine Learning.

1 Introduction

Efficient learning algorithms usually involve an artful trade-off of bias vs. vari-
ance. If we choose a model that is too complex for the amount of training data
we have, it will overfit the data. The model has too much variance. Other-
wise, if the model is too simple, it cannot capture the true structure in the
data, it will underfit the data. The model has too much bias. We can improve
the performance of learning algorithms if we reduce either bias or variance.
When we have few training data we can reduce variance by using simpler mod-
els while not increasing our bias too much. However, as it was shown in [2]
as training set size increases variance will decrease and this will become a less
significant part of the error. In this case, we must place more focus on bias
management.

A well-studied and effective classifier is Näıve Bayes (NB). Although NB has
a high bias due to its strong feature independence assumptions, its performance
is compensated by its high variance management, thus producing accurate clas-
sification. Bayesian Network Classifiers (BNCs) have been the natural choice
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for improving the predictive capability of NB. For instance, TAN classifiers [4]
reduce the NB’s bias by allowing the features to form a tree. In this paper, we
examine an adaptive algorithm for improving the performance of BNCs in an
on-line learning framework. Instead of choosing a priori a particular model class
of BNCs, we propose to scale up the model’s complexity by gradually increasing
the number of allowable dependencies among features. If we scale up complexity
slowly enough, the use of more training data will reduce bias at a rate that also
reduces variance and consequently the classification error. This structure regu-
larization leads to the selection of simpler models at earlier learning steps and
of more complex structures as the learning process advances, thus avoiding the
problems caused by either too much bias or too much variance. Starting with
the simple NB, we use simple heuristics based on the performance’s dynamics to
decide about the next move in the spectrum of feature dependencies. This bias
management attempts to select models with the appropriate complexity for the
current amount of data, thus balancing the computational cost of updating a
model with the benefits of increasing in accuracy.

We choose the class of k-Dependence Bayesian Classifiers (k-DBC) for illus-
trating our approach. A k-DBC [11] is a Bayesian Network, which contains the
structure of NB and allows each feature to have a maximum of k feature nodes as
parents. This class is very suitable for our proposal. By varying k we can obtain
classifiers that move smoothly along the spectrum of feature dependencies, thus
providing a flexible control over the model’s complexity. For instance, NB is a
0-DBC, TAN is a 1-DBC, etc. Although the adaptive algorithm is presented here
for the family of k-DBC classifiers, we believe that its underlying principles can
be easily adapted for learning other classifier’s classes with flexible control over
their complexity.

This paper is organized as follows: Section 2 briefly reviews the problem of
learning Bayesian Network Classifiers and provides the learning algorithm for
the class of k-DBCs. In Section 3 we describe our adaptive algorithm in an
on-line learning framework. Next, in Section 4 we describe the experiments we
conducted that demonstrate the effectiveness of our adaptive approach. Finally,
in Section 5 we conclude with a summary of the paper.

2 Learning k-Dependence Bayesian Classifiers

Bayesian Networks (BNs) are probabilistic graphical models that provide a sound
theoretical framework to represent and manipulate probabilistic dependencies in
a domain. Formally, a BN over a set of random variables X = {X1, X2, , Xn} is
a pair BN = (S,ΘS) where the first component is a directed acyclic graph with
a node for each variable and the second component is the set of parameters that
quantifies the network. The arcs in the structure S represent direct dependencies
between variables. Assuming discrete variables, each Θi = P (Xi|Pai) ∈ ΘS
represents a conditional probability table that enumerates the probabilities for
each possible value xk ∈ Xi and paj ∈ Pai where Pai represents the set of
parents of Xi.



72 G. Castillo and J. Gama

In classification problems the domain variables are partitioned into features
F = {X1, X2, , Xn} and the class variable C. A NB classifier is a BN over (F ∪
{C}) with a simple structure that has the class node C as the parent node of all
other feature nodes in F. A k-DBC [11] is a BN which contains the structure of
NB and allows each feature Xi to have a maximum of k feature nodes as parents.
k-DBCs represents in a single class, a full spectrum of allowable dependence in a
given probabilistic model with the NB classifier at the most restrictive end and
the full Bayesian Network at the most general extreme.

Suppose we have a setM of BNC model classes (e.g. NB, TAN, unrestricted
BNs, etc.) and a training dataset D of labelled i.i.d. examples of (F, C). Since
the quality of a BNC is defined in terms of its predictive accuracy, given the
data D and the set M of BNC’s hypotheses, the problem of learning BNCs
is to find a BNC that provides the best classifications for future data. This
learning problem - a model selection problem - can be approached as a discrete
optimization problem where a score that measures the quality of each hypothesis
is optimized in the space of feasible hypotheses. A procedure to solve this discrete
optimization problem is essentially a search algorithm that explores the space
of candidate hypotheses while optimizing the score. In most cases, the search
space is large and an exhaustive search is impractical. One way to handle this
problem is to develop heuristic search algorithms that search for a solution which
is reasonably close to optimal.

There are three main factors that affect the performance of score-based ap-
proaches to model selection: the score and the search method used to learn the
structure and the estimator used to learn the parameters. Next we describe these
three factors in learning k-DBCs.

2.1 Search Algorithm

Instead of using the learning algorithm proposed by Sahami [11] based on the
computation of the conditional mutual information, we apply, in conjunction
with a score, a Hill Climbing procedure. Hill Climbing improves the score by
adding/removing/reversing arcs among attributes, subject to never introducing
a cycle. This process continues until no more operations improve the score.

2.2 Scores

When BNs are used for classification, we are interested in the resulting predic-
tive distribution yielding accurate predictions for future data. We compare three
frequently used scores in learning BNs: BDeu, MDL and AIC; to the prequential
score (Preq) as described in [7]. BDeu, MDL and AIC are optimized for a par-
ticular loss function based on the joint distribution while Preq is optimized for
classification. AIC and MDL are both derived from information theory and prefer
simpler models. Minimizing AIC is approximately equivalent to minimizing the
expected K-L divergence between the true model and the fitted model. MDL prin-
ciple attempts to describe the data using a minimum encoding approach. BDeu
is a Bayesian score, the marginal likelihood with uniform priors as proposed in
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[3]. Preq is computed predictively and sequentially through a sequential updating
of the predictive distribution. Alternative structures are compared by measuring
their cumulative loss. While it is known that standard scores perform worse in
classification than scores based on the classification error (e.g. see [7]), we are
more interested in investigating how different scores handle the bias-variance,
complexity-performance trade-offs in incremental learning of k-DBCs.

2.3 Parameter Estimation

We use the Bayesian estimates for parameters as described in [1]. In addition,
we optionally use an extended version of Iterative Bayes (IB) [5] for parameter
refinement. IB iteratively cycles through all the given examples. For each ex-
ample, the corresponding entries in the contingency tables are updated so as to
increase the confidence on the correct class. The procedure is given an initial
error for the given examples. The iterative process stops when one of the follow-
ing cases occurs: i) the current error is greater than the previous error; ii) the
error remains stationary for three consecutive times; iii) a maximum number
of allowed iterations is reached. In any of the cases, the model returned is that
which attains the best results during the whole iterative process.

3 The Adaptive Algorithm for Learning k-DBCs

In this section we describe our adaptive algorithm for learning k-DBCs in an on-
line framework. We provide our algorithm with a dataset of labelled examples
and the kMax value for the maximum allowable number of feature dependencies.
We assume the environment is stationary, data arrives in batches and a unique
k-DBC model is maintained. The pseudo-code for the algorithm is presented
in Figure 1. At each learning step, the learner accepts a batch of examples
and classifies them using the current model. Next, the current performance is
assessed and the model is then adapted according to the estimated performance’
state.

An efficient adaptive algorithm for supervised learning must be able, above
all, to improve its predictive accuracy over time, while minimizing the cost of
updating. BNs suffer from several drawbacks for updating purposes. While se-
quential updating of the parameters is straightforward (if data is complete); up-
dating the structure is a more costly task. In previous work different approaches
have been carried out in incremental learning of BNs by optimizing the learning
algorithms and/or the memory space (see [10] for a survey). The basic idea of
our approach is that we can improve the performance while reducing the cost
of updating if: i) in each learning step we choose a model with the appropriate
complexity for the amount of training data we have; ii) we try to use new data
to primarily adapt the parameters and only when it is really necessary to adapt
the structure. As a result, our strategy leads to the selection of simpler models
at earlier learning steps and gradually increases the model’s complexity as more
and more data becomes available. This bias control attempts to avoid overfitting
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procedure AdaptiveOnlinekDBCs(data,kMax)
init: model InitAsNaiveBayes()
for each new incoming batch of examples

predictions <- predict(model,batch)
observed <- getFeedback(batch)
performanceState <- assesPerformance(predictions, observed)
if (performanceState != IS_SATISFACTORY)then

adapt(model, examples, FIRST_LEVEL)
if (performanceState == STOP_IMPROVING) then

adapt(model, examples, SECOND_LEVEL)
if (Not change(model.structure)) then

adapt(model, examples, THIRD_LEVEL)
end for
end procedure

Fig. 1. Pseudo-code for the adaptive on-line algorithm for k-DBCs

or underfitting of the current model to the actual data. Next, we describe the two
main aspects of our adaptive algorithm: the adaptation policy and the control
policy.

3.1 Adaptation Policy

The adaptation policy is characterized by a gradual adaptation of the model
using three levels so that increasing the adaptation level increases the cost of
updating:

– first level: only the parameters are updated with new data
– second level: the current structure is adapted by searching for new de-

pendencies among attributes
– third level: if it is still possible, the maximum number of allowable depen-

dencies is increased by one, and the current structure is once again adapted.

The pseudo-code for the adaptation procedure is presented in Figure 2. In
the absence of any information about the true model underlying the data, we
initialize the classifier to the simple NB (k = 0). Whenever we obtain new
data, we first try to improve NB by adapting only its parameters. Only when
we obtain some evidences indicating that the performance of the NB stops im-
proving in the desirable tempo, we move to a more costly level of adaptation:
adapting the structure. We increment k by one and start searching a 1-DBC
by finding 1-dependence among attributes. At this time point, we must have
more data available which allows the search procedure to find new dependen-
cies. Next, the algorithm continues to perform only parameter adaptation, un-
til there will be again evidences that the performance of the current classifier
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procedure Adapt(model, examples, level)
switch level:
case FIRST_LEVEL:

performAdaptation(model, examples, UPDATE_PARAMETERS)
if (bUseIterativeBayes) then
performAdaptation(model, examples, REFINE_PARAMETERS)

case SECOND_LEVEL:
performAdaptation(model, examples, ADAPT_STRUCTURE)

case THIRD_LEVEL:
if (augmentDepIsPossible(model))then
augmentMaxNrAllowableDependencies(model)
performAdaptation(model, examples, ADAPT_STRUCTURE)

end switch
return model
end procedure

Fig. 2. Pseudo-code for the adaptive algorithm

stops improving. In this case, we try to adapt the current structure. Only if
the resulting structure remains the same, we move to the third level of adap-
tation by incrementing the maximum number of allowable dependencies, k,
by one (if this is still possible, i.e. if k < kMax) and searching for new de-
pendencies. This process continues until the performance reaches the desirable
level.

3.2 Control Policy

The control policy defines the criteria for tracking two situations: i) at what time
point do we move from the first level of adaptation to the second level, i.e., when
do we start adapting the structure? ii) at what time point do we stop doing any
adaptation? If we detect that the performance of the current model no longer
improves in a desirable tempo then we start adapting the structure. On the other
hand, if we detect that the performance has already reached the desirable level,
we stop adapting the model.

Assume that feedback can be obtained and that for each batch, we can eval-
uate the error rate ebatch, the proportion of misclassified examples in a batch.
We monitor ebatch obtained for different batches as an indicator of the perfor-
mance at different points in time. As stated, we initialize the structure to NB.
Because of its simplicity, NB learns very quickly, which is reflected in the behav-
ior of the batch error. At earlier learning steps, it exhibits a shorter downward
trend with a steeper slope of descent. However, as time increases, the steepness
of the slope will decrease, approaching zero. We use the Sen’s slope estimator
[12] for assessing the trend strength. At each tth learning step, we use only the
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most recent p batch errors for dynamically assessing the decreasing slope (we
set p to 5). To estimate the Sen’s slope we compute the slopes of each pair of
observed errors ebatch[ti], ebatch[tj ] for (ti > tj) where the slope is defined as
(ebatch[ti]− ebatch[tj ])/(ti − tj). The Sen’s slope is then the median value of the
resulting slopes. The rule is then straightforward. If the slope is sufficiently close
to zero, then we assume that the performance of the current model no longer
improves:

IF SenSlope(ebatch[t− p + 1 : t]) ≤ slopethreshold

THEN performanceState← StopImproving

At subsequent learning steps it results more difficult to apply this kind of
trend analysis using successive error values. Notice that as time increases, batch
error values fluctuate around a certain level, decreasing slowly with a slope ap-
proaching zero. Instead, we proceed in the following way: first, the parameters
are updated using new examples. Then, we once again assess ebatch using the
adapted model. Assume that e′batch[t] and e′′batch[t] are the batch errors obtained
before and after adaptation, respectively. Whenever we obtain a decrease of the
batch error after adaptation, it would be a straightforward idea to consider that
the learner is still able to learn about the current target concept using the current
model’s structure. Otherwise, if for a pre-defined number of consecutive times af-
ter adaptation the error does not improve then we assume that the performance
no longer improves using the current structure:

IF consecCounter(e′′batch[t] ≥ e′batch[t]) = maxT imes

THEN performanceState← StopImproving

Further model adaptations will continue until the performance reaches the
desirable level. Given a threshold level for the batch error, we assume that the
performance is satisfactory if for a fixed number of consecutive times ebatch ≤
errorthreshold.

4 Empirical Study

Primarily, we want to investigate if our adaptive algorithm is able to scale up
the model’s complexity of k-DBCs while improving its performance over time.
With this aim, we carried out an empirical study for evaluating the performance
of k-DBCs and NB induced incrementally from scratch against our adaptive
approach for four scores on three large datasets.

4.1 Experimental Setup

We used two underlying learning algorithms to induce k-DBCs: NB (k = 0) and
hill-climbing (k > 0) with BDeu, MDL, AIC and Preq as described in section
2. We used only arc additions and deletions. All the learning algorithms were
implemented using Weka’s classes for BNCs ([1],[13]). Since we use different
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scores for the same learning algorithm, this helps in ensuring that any differences
in performance are due to the differences in the scores, and not to differences in
the underlying algorithm.

We evaluated the learning algorithms on three datasets: balance, nursery and
adult. Since we needed datasets with large number of examples to better explore
the behaviour of incremental algorithms, we randomly generated artificial large
samples of 10000 examples for balance using its well-known underlying rules. We
used the nursery dataset from the UCI repository and a discretized version of the
adult dataset available on-line at http://www.cs.helsinki.fi/u/p̃kontkan/Data/.
We removed instances with missing values from the datasets. Thus, we used
12800 instances for nursery (128 learning steps) and 16000 instances for adult
(160 learning steps), respectively.

We evaluated two versions of the AdaptiveOnlinekDBCs algorithm. Unlike
Adap1, Adap2 additionally implements IB (section 2.3). We set kMax=3 for bal-
ance, kMax=5 for nursery and adult, slopethreshold = errorthreshold = 0 and
maxT imes = 3. To serve as baselines of our adaptive algorithms, we evaluated
the performance of NB and k-DBCs (varying k), inducing them incrementally
from scratch: at the tth learning step we used the first t batches as training data
and the examples of the next (t + 1)th batch as test data. We use batches of 100
examples. At each learning step, the performance was measured as the average
of the accuracy over 10 runs.

4.2 Cost of Updating vs. Performance

Table 4 compares the relative significant gains of the predictive accuracy aver-
aged over 10 runs of k-DBCs and Adap1-2 in conjunction with the four scores
with respect to NB at different learning steps. Figure 3 compares the perfor-
mance over time of all the algorithms for the three datasets. Table 1 shows
the number of adaptations performed in the structure per data set, score and
adaptive algorithm.

In most cases results show that adaptive algorithms perform at least as well as
the best k-DBC at each learning step. In general, Adap1-2 significantly improve
the performance of NB over time while reducing the cost of updating, as it is
shown by the small number of adaptations performed in the structure during the
whole learning process. However, the best results were obtained with the nursery
and the adult datasets. Note that for balance, as time increases, the best model
for all the scores, except for MDL, is a 3-DBC. Since the balance domain is easier
to learn, adaptive algorithms can get trapped in less complex structures than the
optimal one while progressing to improve their performances. Unlike balance, for
nursery and adult the best results are obtained with Adap2. Moreover, for all the
scores and datasets the number of adaptations performed in the structures using
Adap2 is considerably less than using Adap1 (see Table 1). As it was shown in
[5], the reduction of the error rate observed with IB is mainly due to a reduction
on the bias component, which explains the obtained results. This means that
Adap2 ensures the best balance between the cost of updating and the gain in
performance.
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Fig. 3. Error rate for NB, k-DBCs and Adap1-2 for the four scores over time. At the
tth learning step, # training examples = 100 ∗ t; # test examples = 100.

4.3 Model Complexity vs. Performance

There is a bias-variance trade-off in choosing the appropriate complexity of the
model. We used the bias-variance decomposition of the error as proposed in [6] to
investigate how different scores handle the bias-variance trade-off in incremental
learning of k-DBCs. Due to space limitations we only show the results on the
nursery dataset at two point times: t = 10 and t = 120 in figure 4. Plots on
the left show the training and test errors as a function of k-DBC models. Each
point in a line represents the training or test error of the related k-DBC for
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Table 1. Number of adaptive actions per data set, score and adaptive algorithm

balance nursery adult

Score Algor. Ref.Str. Aug.Dep Ref.Str. Aug.Dep Ref.Str. Aug.Dep

BDeu Adap1 3.0±0.0 3.0±0.0 3.2±0.5 3.2±0.5 1.8±0.5 1.8±0.5
Adap2 2.1±0.9 2.1±0.9 3.4±0.6 3.4±0.6 1.2±0.5 1.2±0.5

MDL Adap1 16.7±0.0 3.0±0.0 23.8±2.8 5.0±0.0 14.0±2.0 4.0±0.0
Adap2 1.2±0.6 1.1±0.3 15.6±3.8 5.0±0.0 3.8±0.8 2.4±1.6

AIC Adap1 3.7±0.7 3.0±0.0 14.4±2.0 5.0±0.0 4.6±1.1 3.4±0.9
Adap2 2.2±0.9 2.2±0.9 13.2±2.1 5.0±0.0 2.4±0.6 1.6±0.6

Preq Adap1 3.5±0.5 3.0±0.0 5.0±1.9 3.6±1.1 3.4±0.6 2.8±0.5
Adap2 2.4±1.2 2.2±0.9 5.2±1.9 3.8±1.1 1.6±0.6 1.4±0.6

a particular score. The first points in the lines represent the errors of NB. In
each learning step, given a particular score there is an optimal model class that
gives minimum test error. For Preq and BDeu, the optimal models are 1-DBC
at t = 10 and 3-DBC at t = 120, respectively. For MDL and AIC, all k-DBCs
present identical results starting from some k. Results in Table 3 suggest that
found models are all identical.

Pictures on the right show the bias-variance decomposition of the test error
for all scores. Results show that varying k, the score and the training set size
can have different effects on bias and variance. The best results were obtained
with Preq due to a more optimal bias management. On the other hand, BDeu
consistently favors the dependent structure over the independent one, thus find-
ing maximal models (see Table 3). As you can see, if the class model is more

Table 2. The values of k averaged over 10 runs at t = 10 and t = 120 for the nursery
dataset

Adap1 Adap2
t BDeu MDL AIC Preq BDeu MDL AIC Preq
10 0.8 0.8 0.8 0.8 1 1 1 1
120 3.2 5 5 3.6 3.2 5 5 3.4

Table 3. The number of added arcs to the NB structure averaged over 10 runs for the
nursery dataset at two time points. K1-7 represent 1-7-DBCs, A1-2 - Adap1, Adap2,
respectively

1000 training examples 12000 training examples

Score K1 K2 K3 K4 K5 K6 K7 A1 A2 K1 K2 K3 K4 K5 K6 K7 A1 A2

BDeu 7 13 18 22 25 27 28 4.2 5.6 7 13 18 22 25 27 28 18.8 18.6
MDL 0 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2 2
AIC 1.4 1.4 1.4 1.4 1.4 1.4 1.4 0.8 1.2 7 9.4 9.4 9.4 9.4 9.4 9.4 10.4 9.8
Preq 6.4 8 8 8 8 8 8 3.4 4.2 7 12.6 17.4 18 18.4 18.4 18.4 17.6 17.8
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Table 4. Relative significative gains of the predictive accuracy of k-DBCs, Adap1-2
with respect to NB. (+) indicates significative gain using a paired t-test at the 5% level
, no indicates there is no significative gain.

Balance 10 20 30 40 50 60 70 80 90 100
NB 87.52 88.62 89.04 89.22 89.34 89.52 89.6 89.66 89.81 89.87

BDeu 1-DBC no no no no no no no no no (+)0.29
2-DBC no no no no no (+)0.66 (+)1.06 (+)1.35 (+)1.63 (+)1.86
3-DBC no (+)0.91 (+)3.14 (+)4.5 (+)5.31 (+)5.67 (+)6.06 (+)6.29 (+)6.52 (+)6.65
Adap1 no no no (+)0.99 (+)1.57 (+)2.03 (+)2.61 (+)3.12 (+)3.6 (+)3.95
Adap2 no no no (+)0.53 (+)0.86 (+)1.03 (+)1.25 (+)1.52 (+)1.82 (+)2.11

MDL 1-DBC no no no no (+)0.19 (+)0.3 (+)0.44 (+)0.55 (+)0.66 (+)0.72
2-DBC no no no no (+)0.19 (+)0.3 (+)0.44 (+)0.55 (+)0.66 (+)0.72
3-DBC no no no no (+)0.19 (+)0.3 (+)0.44 (+)0.55 (+)0.66 (+)0.72
Adap1 no no no no no (+)0.28 (+)0.43 (+)0.55 (+)0.65 (+)0.71
Adap2 no no no no no no no no no no

AIC 1-DBC no no no no no no no (+)0.28 (+)0.42 (+)0.5
2-DBC no no no (+)0.55 (+)0.98 (+)1.26 (+)1.58 (+)1.81 (+)2.01 (+)2.2
3-DBC no no no (+)0.55 (+)1.04 (+)2.08 (+)2.98 (+)3.6 (+)4.13 (+)4.48
Adap1 no no no (+)0.45 (+)0.83 (+)1.14 (+)1.74 (+)2.32 (+)2.95 (+)3.4
Adap2 no no no (+)0.6 (+)0.9 (+)1.12 (+)1.36 (+)1.64 (+)1.93 (+)2.19

Preq 1-DBC no no no no no no no (+)0.27 (+)0.46 (+)0.57
2-DBC no no no no (+)0.65 (+)1.01 (+)1.33 (+)1.6 (+)1.84 (+)2.03
3-DBC no no (+)2.25 (+)3.82 (+)4.77 (+)5.22 (+)5.67 (+)5.95 (+)6.22 (+)6.38
Adap1 no no no no (+)1.01 (+)1.47 (+)2.05 (+)2.49 (+)2.93 (+)3.34
Adap2 no no no no (+)0.63 (+)0.82 (+)1.04 (+)1.17 (+)1.45 (+)1.77

Nursery 10 20 30 40 50 60 80 100 110 128
NB 87.52 88.62 89.04 89.22 89.34 89.52 89.66 89.97 89.98 89.96

BDeu 1-DBC no no (+)0.93 (+)1.12 (+)1.36 (+)1.51 (+)1.75 (+)1.90 (+)1.98 (+)2.18
2-DBC no no no no (+)0.45 (+)0.97 (+)1.64 (+)2.00 (+)2.12 (+)2.35
3-DBC no no no no no no no (+)0.95 (+)1.23 (+)1.73
Adap1 no (+)0.80 (+)1.19 (+)1.46 (+)1.70 (+)1.84 (+)2.25 (+)2.65 (+)2.83 (+)3.16
Adap2 no (+)0.91 (+)1.38 (+)1.62 (+)1.86 (+)1.97 (+)2.26 (+)2.77 (+)3.02 (+)3.39

MDL 1-DBC no no (+)0.32 (+)0.51 (+)0.71 (+)0.77 (+)0.82 (+)0.84 (+)0.88 (+)1.02
2-DBC no no (+)0.32 (+)0.51 (+)0.71 (+)0.77 (+)0.82 (+)0.84 (+)0.88 (+)1.02
3-DBC no no (+)0.32 (+)0.51 (+)0.71 (+)0.77 (+)0.82 (+)0.84 (+)0.88 (+)1.02
Adap1 no no no no (+)0.51 (+)0.6 (+)0.68 (+)0.73 (+)0.77 (+)0.92
Adap2 no no no no (+)0.28 (+)0.42 (+)0.56 (+)0.66 (+)0.77 (+)1.05

AIC 1-DBC (+)0.54 (+)0.89 (+)1.46 (+)1.87 (+)2.19 (+)2.38 (+)2.70 (+)2.80 (+)2.86 (+)3.02
2-DBC (+)0.54 (+)0.89 (+)1.46 (+)1.87 (+)2.19 (+)2.39 (+)2.66 (+)2.95 (+)3.03 (+)3.23
3-DBC (+)0.54 (+)0.89 (+)1.46 (+)1.87 (+)2.19 (+)2.39 (+)2.66 (+)2.95 (+)3.03 (+)3.23
Adap1 no (+)0.58 (+)0.91 (+)1.12 (+)1.47 (+)1.78 (+)2.15 (+)2.39 (+)2.50 (+)2.78
Adap2 no (+)1.09 (+)1.61 (+)2.10 (+)2.44 (+)2.78 (+)3.22 (+)3.62 (+)3.76 (+)4.10

Preq 1-DBC no (+)1.59 (+)2.31 (+)2.72 (+)2.96 (+)3.13 (+)3.35 (+)3.46 (+)3.53 (+)3.72
2-DBC no (+)1.86 (+)2.69 (+)3.26 (+)3.75 (+)4.06 (+)4.50 (+)4.74 (+)4.82 (+)5.05
2-DBC no (+)2.06 (+)3.14 (+)3.64 (+)4.10 (+)4.42 (+)4.99 (+)5.28 (+)5.41 (+)5.73
Adap1 (+)0.34 (+)1.38 (+)1.98 (+)2.37 (+)2.70 (+)2.96 (+)3.49 (+)3.94 (+)4.15 (+)4.62
Adap2 no (+)2.56 (+)3.33 (+)3.80 (+)4.24 (+)4.58 (+)5.29 (+)5.76 (+)5.93 (+)6.29

Adult 10 20 40 60 80 90 100 120 140 168
NB 81.14 81.91 81.69 81.89 82.00 81.93 81.99 82.01 82.04 82.16

BDeu 1-DBC no (+)0.15 (+)1.34 (+)1.46 (+)1.54 (+)1.62 (+)1.65 (+)1.80 (+)1.86 (+)1.82
2-DBC no no no no (+)0.59 (+)0.70 (+)0.80 (+)1.08 (+)1.17 (+)1.26
3-DBC no no no no no no no (+)0.48 (+)0.63 (+)0.75
Adap1 no no (+)0.91 (+)1.08 (+)1.24 (+)1.35 (+)1.41 (+)1.56 (+)1.61 (+)1.62
Adap2 (+)0.98 (+)0.49 (+)1.43 (+)1.62 (+)1.77 (+)1.86 (+)1.93 (+)2.09 (+)2.11 (+)2.09

MDL 1-DBC no (+)0.34 (+)1.36 (+)1.58 (+)1.66 (+)1.72 (+)1.74 (+)1.86 (+)1.91 (+)1.87
2-DBC no (+)0.34 (+)1.36 (+)1.59 (+)1.66 (+)1.72 (+)1.75 (+)1.88 (+)1.90 (+)1.87
3-DBC no (+)0.34 (+)1.36 (+)1.59 (+)1.66 (+)1.72 (+)1.75 (+)1.88 (+)1.90 (+)1.87
Adap1 no no (+)0.95 (+)1.31 (+)1.40 (+)1.51 (+)1.55 (+)1.75 (+)1.81 (+)1.83
Adap2 (+)1.00 (+)0.78 (+)1.86 (+)2.14 (+)2.17 (+)2.27 (+)2.32 (+)2.52 (+)2.57 (+)2.57

AIC 1-DBC (+)1.06 (+)0.60 (+)1.71 (+)1.77 (+)1.78 (+)1.79 (+)1.84 (+)1.96 (+)1.98 (+)1.96
2-DBC (+)1.04 (+)0.55 (+)1.51 (+)1.65 (+)1.73 (+)1.77 (+)1.82 (+)1.99 (+)2.07 (+)2.10
3-DBC (+)1.04 (+)0.55 (+)1.51 (+)1.65 (+)1.73 (+)1.77 (+)1.82 (+)1.99 (+)2.07 (+)2.10
Adap1 no no (+)1.08 (+)1.39 (+)1.56 (+)1.66 (+)1.70 (+)1.89 (+)1.97 (+)2.00
Adap2 (+)0.94 (+)0.61 (+)1.86 (+)2.11 (+)2.17 (+)2.24 (+)2.25 (+)2.42 (+)2.49 (+)2.48

Preq 1-DBC no (+)0.92 (+)1.41 (+)1.35 (+)1.28 (+)1.33 (+)1.31 (+)1.35 (+)1.37 (+)1.37
2-DBC (+)1.44 (+)1.06 (+)1.67 (+)1.66 (+)1.54 (+)1.58 (+)1.54 (+)1.67 (+)1.69 (+)1.68
3-DBC (+)1.52 (+)1.00 (+)1.71 (+)1.77 (+)1.67 (+)1.72 (+)1.68 (+)1.79 (+)1.81 (+)1.78
Adap1 no no (+)0.64 (+)0.85 (+)0.93 (+)1.01 (+)1.03 (+)1.19 (+)1.26 (+)1.30
Adap2 (+)1.00 (+)0.93 (+)1.70 (+)1.91 (+)1.88 (+)1.93 (+)1.97 (+)2.14 (+)2.19 (+)2.22
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Fig. 4. Training-test errors and bias-variance decompositions of k-DBCs varying k at
two time points

complex than the optimal model, BDeu leads to severe overfitting due to increase
in variance. However, as training set size increases, the variance decreases for all
k-DBCs, thus reducing the test error and the overfitting problem. In contrast,
MDL and AIC find models simpler than the optimal model, thus underfitting the
data. Both scores increase in bias, especially, if the class model is less complex
than the optimal model. Because MDL penalizes complexity more severely that
AIC does, the model with the least MDL will tend to be simpler than the model
with the most AIC. Notice that as training size increases AIC reduces the bias
slightly. On the contrary, MDL increases it. As a result AIC outperforms MDL.

To provide evidences toward the hypothesis that our adaptive algorithm at-
tempts to select the appropriate complexity of the model (i.e. the optimal model
class) for the current amount of training data, we can look at table 2. At t = 10,
for all scores, adaptive algorithms find a model with k approaching 1, i.e., a
1-DBC. At t = 120, for BDeu and Preq, they find a model with k approaching 3
(a 3-DBC). For MDL and AIC, they find a model with k =kMax, i.e., a 5-DBC.
These results are consistent with the optimal model classes that we have found
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previously. Note that optimal k-DBCs present the lowest biases. Finally, results
in Table 1 evidence that the number of adaptations performed in the structure
for BDeu was always minimal when compared with other scores. On the contrary,
the number of adaptations performed in the structures using MDL was always
maximal. These results reflect the efforts made by our adaptive algorithms to
control the overfitting and underfitting problems.

5 Conclusions

We have examined a practical adaptive learning algorithm for improving the
performance of BNCs over time. The main idea is to scale up the model’s com-
plexity as training data increases by gradually increasing the number of allowable
dependencies among features. This allows reducing both bias and variance and
consequently the classification error. Starting with the simple NB, we use simple
decision rules based on the performance dynamics to decide on the next move
in the spectrum of feature dependencies and search for a more complex model.
Therefore, as training set size increases, bias will decrease because we choose a
more complex model and variance will also decrease because we use more exam-
ples to learn. Results in conducted experiments using the class of k-DBCs and
a hill climbing learning algorithm in conjunction with four scores on three large
datasets show that our adaptive algorithm in combination with IB performs an
artful bias management for choosing the appropriate complexity of the model.

Our adaptation policy is characterized by a gradual adaptation of the model
using three levels so that increasing the adaptation level increases the cost of up-
dating. We attempt to use new data to primarily adapt the parameters and only
if this is really necessary, to adapt the structure. Since updating the structure
is a costly task, this way we reduce the computational cost of updating while
improving the performance. Results in conducted experiments show that adap-
tive algorithms significantly improve the performance of NB over time and that
they perform no worse than the best k-DBC while reducing the cost of updating
as it is shown by the small number of adaptations performed on the structure
during the whole learning process in contrast to the great number of adaptations
performed on the structure of k-DBCs when they were induced incrementally
from scratch.

Although we have used only three datasets for evaluation, the results ob-
tained here encourage us to continue this work thus to be able to improve the
adaptation and control policies involved in our adaptive algorithm. One of the
crucial question that we will focus in the future will be to investigate several
criteria for determining when we should stop the learning process according to
the observed performance, instead of using a given threshold level for the batch
error. Future work will also involve additional experimentation with more large
datasets in order to obtain more evidences on the effectiveness of our adaptive
system.

Finally, although the adaptive algorithm is presented here for the family of
k-DBC classifiers, we believe that its underlying principles can be easily adapted
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for learning other classifier’s model classes (e.g. decision trees [8], neural networks
using different topologies [9]) with a hierarchical and increasing control over their
complexity.
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Abstract. Literature discovery can be characterized as a goal directed
search for previously unknown implicit knowledge captured within a col-
lection of scientific articles. Swanson’s serendipitous discovery of a treat-
ment for Raynaud’s disease by dietary fish-oil while browsing Medline,
an online collection of biomedical literature, exemplifies such a discov-
ery. By means of a series of experiments, the impact of stop words, vari-
ous weighting schemes, discovery mechanisms, and contextual reduction
are studied in relation to replicating the Raynaud/fish-oil and migraine-
magnesium discoveries by operational means. Two aspects of discovery
were brought under focus: (i) the discovery of intermediate, or B−terms,
and (ii) the discovery of indirect A − C connections via the B−terms. A
semantic space representation of the underlying corpus is computed and
discoveries automated by computing associations between words in both
higher and contextually reduced spaces. It was found that the discovery
of B−terms and A − C connections can be achieved to an encouraging
degree with a standard stop word list. In addition, no single weighting
scheme seems to suffice. Log-likelihood appears to be potentially effective
for leading to the discovery of B−terms, whereas both odds ratio and
simple co-occurrence frequencies both facilitate the discovery of A − C
connections. With regard to discovery mechanism, both semantic simi-
larity (via cosine) and information flow computation seem promising for
computing A−C connections, but more research is needed to understand
their relative strengths and weaknesses. Discovery in a contextually re-
duced semantic space revealed mixed results.

1 Introduction

In the mid-nineteen eighties, Don Swanson, made a chance discovery relating
two discrete islands of literature, one related to the circulatory disease Ray-
naud’s and the other with fish-oil. At the time Raynaud’s did not have a cure or
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a general treatment. He formulated the hypothesis that dietary fish-oil might be
beneficial to Raynaud’s even though this information was not explicitly stated in
either of the literatures surrounding Raynaud’s or dietary fish-oils. His hypothe-
sis was later corroborated by clinical studies [24]. Swanson also made subsequent
discoveries, for example, the connection between migraine and magnesium.

The basic architecture of the discovery is denoted by A − B − C, where C
denotes the phenomenon, e.g., Raynaud’s, and A represents the potential cure,
or treatment, e.g., fish oil [25]. The discovery between C and A is made by means
of intermediate B-terms, e.g., “platelet aggregation”, “vascular reactivity” and
“blood viscosity”. It is important to note that the connection between C and
A is indirect. This article is about replicating the Raynaud/fish-oil discovery by
operational means with the view of studying parameters such as stop words,
weighting schemes and the like in order to see how they impact the effectiveness
of discovery.

In terms of the A−B −C architectures, two models of discovery have been
identified. The open mode of discovery involves the generation of a hypothesis,
for example, that “fish-oil may be a potential treatment for Raynaud’s”. In
this article, the open mode of discovery is further refined. Firstly, there is the
problem of identifying salient B-terms. Secondly, once salient B-terms have been
identified, these are then used to make connections to potential C−terms. The
closed mode of discovery involves the justification of the hypothesis. This article
will focus on the open mode of discovery.

2 Related work

The problem of literature based discovery is exemplified by Swanson’s Raynaud/
fish-oil discovery. This discovery highlighted the possible existence of several such
hidden links in the literature. Swanson called the existence of such knowledge,
undiscovered public knowledge. In a series of publications thereafter Swanson
addressed the possibility of hidden hypotheses[20,22,23,21,24].

Swanson’s attempt to automate the A − B − C discovery resulted in the
ARROWSMITH system [24]. This is a semi-automatic system and works as
follows. First identify a concept C of interest such as the disease Raynaud’s.
Then finding a treatment for Raynaud’s disease would involve inspecting all
the concepts that are discussed in the same documents as those that discuss
Raynaud’s. These concepts are the B terms. Potential B-terms are identified
by manual exclusion of terms deemed to be irrelevant to the phenomenon at
hand and ranking the remainder by statistical means. Supporting this process
is a sophisticated, manually updated stop word list. Then, using these B-terms
the system finds A concepts that are discussed in association with the B-terms.
The main disadvantage of ARROWSMITH is the amount of manual intervention
required by the user in selecting the terms that need to be discarded from the
B list and the A list.

Gordon & Lindsay [8,6] used lexical statistics, primarily TF*IDF. The
authors used stemming to combine singular and plural words and manual
clustering was used to identify groups of terms within the B list. Query
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expansion is then done manually using these groups to further identify liter-
ature related to these topics. Gordon & Lindsay were successful in replicating
Swanson’s Raynaud’s/fish-oil [8] and migraine/magnesium [6] discoveries using
this method. However, their method also involves a high degree of human in-
volvement.

Gordon and Dumais[7] use Latent Semantic Indexing (LSI) as the underly-
ing technique for their discovery methodology. The authors created a term by
document matrix based on 560 documents in Medline that contained the term
Raynaud’s. LSI scaling was performed and the top 100 factors were selected.
The cosine distance was measured from these terms to the term Raynaud’s and a
ranked list of B terms was formed according to decreasing order of cosines. From
these B terms, the authors picked blood viscosity arbitrarily based on Swanson’s
discovery. LSI scaling was then performed again on Medline documents that con-
tain blood viscosity and cosines were computed between the resulting list and
Raynaud’s. The authors hypothesized that this would show all the terms that
were close to Raynaud’s from blood viscosity’s view point. However, the authors
found that fish-oil was not highly ranked in this list even though their ranked B
list was quite similar to the list that was obtained by Gordon and Lindsay.

Weeber [26] and Srinivasan [19] have been quite successful in replicating
the Raynaud’s/fish-oil discovery. They both employ Unified Medical Language
Systems (UMLS)1 concepts to reduce the size of the search space. Their method
takes advantage of the semantic knowledge that is inherent in the UMLS. Weeber
uses the Meta-map program to reduce the raw text in titles and abstracts to
UMLS concepts. He further reduces the search space by what he calls semantic
filtering where he collects all terms that come under a particular UMLS concept
and then ranks them. Srinivasan uses the Medical Subject Headings (MeSH)2

terms that have been indexed for titles and abstracts. These MeSH terms are
then mapped to UMLS and weighted according to their occurrence frequency
using TF*IDF scheme. An advantage of Srinivasan’s method is that user is not
required to intervene in the sorting of the lists. Employing MeSH together with
UMLS ensures that the words that end up in the list do not contain words that
may be considered irrelevant. This is the alternative to using the stop list that
Swanson used to remove erroneous words. However this method relies heavily
on external knowledge sources: the UMLS and MeSH.

Bruza et. al’s method [1] addresses a variation of the open discovery process
discussed earlier. This method involves compiling a set of literatures into a
knowledge representation model known as the Hyperspace Analogue to Lan-
guage (HAL). HAL represents words as vectors in a high dimensional space. An
information flow metric is employed to discover implicit connections between the
HAL vector for “Raynaud’s” and other words, which are ranked in decreasing
order of information flow from “Raynaud’s”. This method deviates significantly
from the other authors in several aspects. Conceptually it tries to simulate how
a human would come up with a hypothesis having read literatures on A and

1 UMLS Knowledge Sources, 15th Edition, The National Library of Medicine.
2 http://www.nlm.nih.gov/mesh/meshhome.html
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C. Operationally it does not use a two step process of attaining the literatures.
The literatures used in this method contains titles that do not contain any of A,
B or C terms. This is also consistent with the way that a human would gener-
ally acquire knowledge. Nonetheless, a human is able to abduce new knowledge
relating to concepts that they have read about in the past.

In summary, term co-occurrence information provides an important founda-
tion for uncovering useful connections in the text. There seems to be no consensus
as to how best exploit it. In this article, we adopt the position that cognitive
knowledge representation in the computational form of semantic space naturally
captures term co-occurrence information. Moreover, semantic space offers a flex-
ible representation within which various weighting schemes can be examined. In
this paper we take a “bare bones” approach by trying to replicate Swanson’s
Raynaud’s/fish-oil and migraine-magnesium discoveries without recourse to ex-
ternal knowledge sources such as MeSH, or UMLS. This will provide some insight
into the portability of text-based discovery in domains in which such knowledge
sources are non existent, or less developed. More specifically, this paper explores
the following questions:

1. Can term weighting schemes be used as a substitute for a carefully tailored
and informed stop word list?

2. Is reduction of the semantic space beneficial for the open mode of discovery?

2.1 Semantic Space

If Swanson’s discoveries were to be replicated automatically, what knowledge rep-
resentation would be appropriate, and how could the hypothesis be generated?
According to the philosopher C.S. Peirce, Swanson’s explanatory hypothesis is
a manifestation of abduction: “It [abduction] is the only logical operation which
introduces any new idea; for induction does nothing but determine a value and
deduction merely evolves the necessary consequences of a pure hypothesis” ([17],
p216). Abduction has recently been considered from a psychologistic perspective
which does not permit the reasoning process to be abstracted from the (human)
agent performing the reasoning [5]. As abduction is a form of human reasoning,
treating it from a psychologistic perspective is particularly apt.

A semantic space is a dimensional space in which words are represented as
points, or vectors, in a high dimensional space. The meanings of the words are
derived “..from the way words are used in a discourse context” [9]. A colloquial
way of interpreting this view is the meaning of a word is determined by “the
company it keeps”.

There is a growing ensemble of semantic space models
[15,3,13,14,10,11,16,12,18]. The most well known of these models in IR is
Latent Semantic Indexing (LSI), which is known as Latent Semantic Analysis
(LSA) in the cognitive science community. Even though there is ongoing debate
about specific details of the respective models, they all feature quite a remark-
able level of compatibility with a variety of human information processing
tasks such as semantic word association. For this reason a semantic space
would seem to be a promising basis on which to build a computational system
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which mimics the human’s ability to form abductive associations between
terms. Semantic space also offers a flexible representation within which various
weighting schemes can be embedded. In a nutshell, semantic space is a single
representation which reflects both statistical and “semantic” aspects.

Semantic spaces are built from text corpora using word co-occurrence in-
formation. As stated earlier, there seems no consensus in the literature about
how best to use co-occurrence information. For this reason, and the cognitive
track record mentioned above, semantic space would seem to be a particularly
applicable model for investigating co-occurrence in relation to literature based
discovery.

The basis of the semantic space used in the experiments reported below is
an n×n term-term matrix denoted by S. The value of the cell S[i, j] reflects the
strength of co-occurrence of term i and term j. In the experiments reported be-
low, co-occurrence is computed within the context of a Medline document title.
For example, in a simple semantic space model, S[i, j] is set to the number of
documents in which both terms i and j co-occur. In the construction of a seman-
tic space there is the tacit assumption that the frequency of co-occurrence of two
words u and v gives some indication of the importance of v in establishing the
meaning of u. In literature discovery however the value of frequency in establish-
ing a connection between words is suspect. Highly frequent co-occurrences may
be part of the background knowledge and therefore it may be the very infrequent
co-occurrences that contain the surprises that convey useful information to the
human. Therefore at the very least it is desirable to correct for the frequency
bias inherent in semantic space models by term weighting.

2.2 Odds Ratio

Lowe [14] argues convincingly for the use of an odds ratio to compensate for the
frequency bias inherent in co-occurrence counts. The odds ratio is a notion from
statistics. We consider that Medline document titles are produced by a process
of drawing word pairs from a bag. We are interested in comparing two situations:
(i) the odds of getting a term u when we already have drawn a term v and (ii)
the odds of getting u when we don’t have v.

The odds of event, e, is the ratio of the probability of e to the probability of
not e. When comparing two situations, s1 and s2 the odds ratio forms the ratio
of the odds of e given s1 and the odds of e given s2.

Lowe estimates the ratio of the odds of drawing a pair containing u given
that the pair contains v with the odds of drawing a pair containing u given that
the pair does not contain v.

θ =
p(u|v)/p(¬u|v)

p(u|¬v)/p(¬u|¬v)
(1)

The probabilities in this function can be estimated from frequency counts. Before
giving the formulae we introduce for notational convenience:

s(v) =
∑

i

S[i, v] and ss =
∑
i,j

S[i, j] (2)
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Given this notation the probabilities can be estimated by:

p̂(u|v) =
S[u, v]
s(v)

(3)

p̂(¬u|v) =
s(v)− S[u, v]

s(v)
(4)

p̂(u|¬v) =
s(u)− S[u, v]

ss− s(v)
(5)

p̂(¬u|¬v) =
ss− s(v)− s(u) + S[u, v]

ss− s(v)
(6)

In the odds ratio the denominators of the above expression cancel to leave

θ̂(u, v) =
S[u, v](ss− s(v)− s(u) + S[u, v])

(s(v)− S[u, v])(s(u)− S[u, v])
(7)

Once θ has been estimated it is thresholded to be above 1.

θ̂th(u, v) =
{

θ̂(u, v) if θ̂(u, v) > 1
1 otherwise

(8)

Lowe reports that sometimes the log of the odds ratio is taken, however we
found in our experiments that taking the log significantly impaired the perfor-
mance of the odds ratio weighting scheme. In this paper we use the thresholded
odds ratio to define the semantic space.

S[u, v]← θth(u, v) (9)

2.3 Log Likelihood

The log-likelihood test introduced by Dunning[4] is a test for independence.
The test attempts to measure whether or not the probability of two terms is
independent or not, i.e. to test whether or not

Pr(uv) = Pr(u)Pr(v) (10)

where Pr(uv) is the probability that both the terms u and v will occur together
in a document, Pr(u) is the probability that u will occur in the document and
so on.

The basic assumption is that documents are produced by a binomial process
so that the likelihood of seeing the terms u and v together in k documents out
of n is distributed according to the binomial distribution.

h(puv; kuv, n) = pk
uv(1− puv)n−k

(
n

k

)
(11)

Dunning’s test is a log-likelihood test. It calculates the ratio of the maxi-
mum likelihood of the observed parameter given the independence assumption
to the maximum likelihood of the observed parameters without the independence
assumption

λ =
max

puv=pupv

h(puv, pu, pv; kuv, ku, kv, n)

max h(puv, pu, pv; kuv, ku, kv, n)
(12)
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Table 1. Example HAL representation of the term “Raynaud”

nifedipine (0.44), scleroderma (0.36), ketanserin (0.22), synthetase
(0.22), sclerosis (0.22), thromboxane (0.22), prostaglandin (0.22), da-
zoxobin (0.21), E1 (0.15), calcium (0.15), vasolidation (0.15), platelet
(0.15), . . ., platelets (0.07), blood (0.07), viscosity (0.07), vascular
(0.07), . . .

where puv is the probability of observing both u and v within a document and
kuv is the number of documents that contain both u and v, and n is total number
of documents, and so on.

It is difficult to find an analytical or even computationally stable solution for
Equation 12. To side-step this problem Dunning suggests the comparison of pu|v
with pu|¬v which leads to the analytically solvable:

λ =
max

pu|v=pu|¬v

h(pu|v, pu|¬v; ku|v, ku|¬v, nu|v, nu|¬v)

maxh(pu|v, pu|¬v; ku|v, ku|¬v, nu|v, nu|¬v)
(13)

Solving this equation produces the following:

λ =
h(p; ku|v, nu|v)h(p; ku|¬v, nu|¬v)

h(pu|v; ku|v, nu|v)h(pu|¬v; ku|¬v, n)
(14)

where p = (ku|v + ku|¬v)/(nu|v + nu|¬v), pu|v = ku|v/nu|v, and pu|¬v =
ku|¬v/nu|¬v, ku|v is the number of documents containing both u and v, ku|¬v

is the number of documents containing u but not v, nu|¬v is the number of doc-
uments containing v, and nu|¬v is the number of document that don’t contain v.

For both odds ratio and log-likelihood we only calculated their value if kuv >
0 otherwise we set the value to zero. This was partly a pragmatic concern as to
do otherwise generates very large matrices.

2.4 Hyperspace Analogue to Language

The Hyperspace Analogue to Language (HAL) model has quite remarkable suc-
cess in replicating human semantic word association norms [3]. For this reason,
it could be potentially effective for the discovery of B-terms. HAL has also used
to replicate the Raynaud’s/fish-oil discovery with some degree of success [1].
HAL weights co-occurrence via a linearly decreasing function of word distance
within a context window of length l. Typically, l = 10. For reasons of brevity,
the HAL algorithm is not discussed. Rather an example HAL vector for the term
“Raynaud” is given in table 1 .

Dimensional Reduction of Semantic Space. Singular Value Decomposition
(SVD), a theorem from linear algebra, projects the semantic space into a space
of lower dimensionality with the effect that words of similar meaning tend to
cluster. SVD has been used with encouraging effect to replicate human cognitive
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phenomena involving association or semantic similarity [10]. Its performance in
replicating the Raynaud’s/fish-oil discovery is disappointing [7]. Our pilot studies
into using SVD for literature based discovery were also disappointing. Therefore,
we adopt a different approach to reduce the space. The B-terms are integral to
the discovery, so when a set of B-terms {B1, . . . , Bk} are identified by the user,
these terms are used to compute a semantic “subspace” defined by {B1, . . . , Bk}.
More specifically, those titles are selected which contain at least one B-term Bi

resulting in a subcorpus from which a semantic space is computed. Discovery
of the A − C connection is driven within this reduced space. This method of
dimensional reduction is termed contextual reduction.

3 Discovery in Semantic Space

Recall from the introduction that the indirect A − C connection is made via
intermediate B-terms. If more of the B-terms are shared by the respective A
and C vectors, the stronger the connection between A and C. The dot product
of the A and C semantic space vectors (in both higher and lower dimensionality)
is a means of computationally realizing this intuition provided the B-terms are
prominently weighted in the representations of A and C. Alternatively, the cosine
between A and C can be calculated in order to bridge the connection between
A and C [7]. When A and C are both normalized to unit length, cosine equates
to dot product.

Under the assumption that the B-terms are prominently weighted in the A
and C representations, another computational means that can be brought to
bear to establish the A − C connection is to consider them as points and to
measure the distance between them. However, when vectors are normalized to
unit length the “relative ranking” achieved by cosine and Euclidean distance are
the same [27]. For this reason, results are reported using cosine similarity.

Information flow computations through semantic space has shown some
promise for computing suggestions relevant to the Raynaud’s-fish-oil discovery[1]
as well as computing related terms for automatic query expansion in text re-
trieval [2]. It is essentially an asymmetric form of dot product. Information flow
thresholds the co-occurrence values with respect to two threshold values δ1 and
δ2, and then forms a special type of vector product. The degree of information
flow from u to v with respect to a thresholds δ1 and δ2 is given by:

degreeδ1,δ2
(i, j) =

∑
x | S[x,i]>δ1
and S[x,j]>δ2

S[x, i]

∑
x | S[x,i]>δ1

S[x, i]
(15)

A high degree of information flow is achieved when many of the dimensions in
the vector u above the threshold δ1 are also present in vector v. It can therefore
be considered as an heuristic form of dot product.
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A common choice for δ1 is the mean value of the non-zero components of the
i vector, i.e

δ1 =
1

count(S[i, u] 	= 0)

∑
i

S[i, u] (16)

The parameter δ2 is commonly set to zero.

4 Replicating the Raynaud’s/Fish-Oil Discovery

The experiments reported below are based on the two facets of the open discovery
mode mentioned earlier:

1. Discovery of potential B-terms
2. Discovery of potential A−terms via the B-terms starting from C (i.e., making

the indirect A− C connection)

Stop words (normal vs. tailored), term weighting scheme (odds ratio, log-
likelihood, HAL), and contextual reduction (with or without) were varied.

4.1 Data

A corpus of 111,603 Madeline core clinical journal articles from the period
1980-1985 were used. Only the titles of the articles were used as Swanson’s
Raynaud’s/fish-oil discovery was made solely on the basis of document titles.

Two stop words lists were employed: A standard collection of stop words
commonly used in IR experiments and the tailored stop words of the ARROW-
SMITH system.

4.2 Method

From these documents we then generated semantic spaces using (i) HAL with a
window length of 10 and (ii) the simple semantic space model described earlier.
The simple co-occurrence counts were additionally weighted using odds ratio θ
and Dunning’s log likelihood score −2 logλ. Log-likelihood can produce non zero
values for kuv = 0, but these were excluded. The simple co-occurrence frequencies
were generated using words without stemming. The resultant semantics spaces
spanned 34716 dimensions (normal stop words removed), or 28779 dimensions if
ARROWSMITH stop words were removed.

Method for Discovery of B-terms. The guiding intuition behind the dis-
covery of B-terms follows Gordon & Lindsay’s argument that the best B-terms
are those that are semantically and statistically close to the C−term [8]. This
view was supported by Gordon & Dumais, where a semantic neighbourhood was
computed around the Raynaud vector using cosine in a SVD generated lower
dimensional space. (The original higher space was a term-document matrix).
We adopt a similar approach. A semantic space is computed as above and the
semantic neighbourhood by ranking the terms on decreasing cosine with the Ray-
naud vector. Stop word lists and weighting schemes were manipulated covering
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all combinations. In the ensuing results, these rankings are referred to as a se-
mantic neighbourhood ranking. Only those terms which explicitly co-occur with
“Raynaud” were ranked reflecting the intuition in the literature that B-terms
are related explicitly to the phenomenon represented by C.

In addition, the rankings of terms within the Raynaud vector itself were
examined (see table 1). As with the semantic neighbourhood rankings, stop word
list and weighting scheme were manipulated. These rankings are referred to as
within vector term rankings as the terms with positive value in the Raynaud
vector are terms which appeared in the same context(s) as the term “Raynaud”.

Rankings were evaluated by examining the rank of known B-terms:
“platelet”, “blood “viscosity” and “vascular”. (These are single terms reflecting
the B-terms “platelet aggregation”, “blood viscosity” and “vascular reactivity”
mentioned in the introduction). The higher that these terms were ranked, the
better the result. Both the actual rank, and the percentage distance from the
top of ranking are reported.

Method for A − C Discovery. Once a set of B−terms has been discovered,
they can be used to prime an A−C discovery in the following way. The C vector
(corresponding to “Raynaud”) is normalized to unit length. Thereafter, those
dimensions corresponding to the B−terms are given a maximal weight of one.
This corresponds to the situation where the scientist is giving positive relevance
feedback with respect to those terms (s)he assesses as salient to addressing the
phenomenon represented by C. In the experiments reported below, the known
B−terms blood, viscosity, vascular, and platelet were boosted manually. Cosine
and information flow are measured to all terms in the vocabulary, and ranked.
The ranks of the terms “fish” and “oil” are then inspected. Both the actual rank,
and the percentage distance from the top of ranking are reported.

4.3 Results

For reasons of brevity only selected results are reported.

Discovery of B-terms. Table 2(a) and table 3 depict the effect of stop word
list and weighting scheme on the ranking of B−terms in higher space.

For both within vector ranking and semantic neighbourhood, log-likelihood
appears to be superior for both normal stop words and the ARROWSMITH stop
words. It outperforms odds ratio possibly because odds ratio favours infrequently
occurring terms. The linearly decreasing function used in HAL does not seem to
promote the discovery of B-terms as effectively as log-likelihood. This may be
evidence of HAL being subject to frequency bias [14].

Ranking of B-terms using the ARROWSMITH stop words (table 2(a)) is
only marginally better than with normal stop words. This is an encouraging
result, as manually crafted stop words are time-consuming to produce.

Interestingly the best within vector ranking (LL columns in table 2(a)) is
very similar to the best semantic neighbourhood ranking for both normal and
ARROWSMITH stop words. Both of these rankings were produced by log-
likelihood. This suggests that computing the semantic neighbourhood maybe
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Table 2. A comparison of weighting schemes and stop word lists for (a) “within Ray-
naud term ranking”, and (b) “within migraine term ranking”

B-Term Normal Arrowsmith

HAL LL Odds HAL LL Odds

blood 76 43 166 47 12 61
viscosity 54 43 25 26 12 19
platelet 37 36 115 10 11 52
vascular 77 43 125 27 12 54

Average 61 41 107 27 11 46

(a)

B-Term HAL LL Odds

platelet 21 64 780
aggregattion 201 130 703
ischemia 44 17 563
prostaglandins 1237 645 953
sodium 56 294 1110
calcium 195 382 1205
channel 201 155 581
cerebrospinal 573 411 991
blocker 307 69 456

Average 315 240 815

(b)

Table 3. A comparison of weighting schemes and stop word lists for the cosine semantic
neighbourhood of “Raynaud”

blood viscosity platelet vascular

Standard Stop words

- Log-likelihood 43 (0.12%) 43 (0.12%) 28 (0.08%) 43 (0.12%)

- Odds-ratio 166 (0.48%) 81 (0.23%) 76 (0.22%) 144 (0.41%)

- HAL 127 (0.37%) 140 (0.40%) 56 (0.16%) 9 (0.03%)

ARROWSMITH Stop words

- Log-likelihood 11 (0.04%) 11 (0.04%) 7 (0.02%) 11 (0.04%)

- Odds-ratio 34 (0.12%) 39 (0.14%) 32 (0.11%) 46 (0.16%)

- HAL 37 (0.13%) 40 (0.14%) 6 (0.02%) 12 (0.04%)

redundant. This would be a significant saving in computational cost as some
discoveries may potentially involve huge numbers of terms. Effective rankings of
B-terms appear to arise as a product of the construction of the semantic space
with log-likelihood weighting.

Discovery of A − C Connections. Table 4(a) depicts the best perform-
ing results for replicating the Raynaud’s/fish-oil discovery in both the high-
dimensional semantic space and the contextually-reduced space. The striking
feature is the excellent performance of information flow across stop words when
primed with odds ratio weights. The performance of information flow in a con-
textually reduced space is ideal with both fish and oil at the head of the ranking.
This is significant as driving discovery within a reduced space can be orders of
magnitude more efficient than in the higher space.

Cosine’s performance lags considerably behind that of information flow in
both high and lower space. This may be due to the fact that information flow
only considers those dimensions above average weight in the Raynaud vector,
thereby better “focussing” for the purposes of discovery.

Log-likelihood does not perform well in the discovery of A− C connections.
This is in contrast to its good performance in the the discovery of B-terms. It is
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Table 4. Similarity to A-terms in semantic space after boosting B-term weights in (a)
the Raynaud vector, and (b) the migraine vector

Info. Flow Cosine
fish oil fish oil

High
Normal (Odds.) 5 5 197 445
Arr. (Odds.) 4 4 346 384

Low
Normal (Odds.) 1 1 49 25
Arr. (Odds.) 1 1 82 77
Arr. (None) 3 3 39 12

(a)

Info.
Flow

Cosine

magnes.magnes.

High
Normal (Odds.) 72 612
Normal (Simple) 707 8

Low
Normal (Simple) 296 573

(b)

hard to fathom this mix of results. We speculate that odds ratio are more stable
in relation to the manual boosting of B-terms, than is log-likelihood.

5 Replicating the Migraine-Magnesium Discovery

The replication of the Raynaud’s/fish-oil discovery showed log-likelihood weight-
ing as beneficial for the discovery of B-terms and odds ratio weighting beneficial
for the discovery of the A − C connection, particularly with information flow
in both higher and contextually reduced space. In both cases, a tailored stop
word list seems not to be necessary. In order to investigate the potential of these
results to carry over to other discoveries, the following experiment replicates the
migraine-magnesium discovery within the same experimental framework as used
for the Raynaud’s/fish-oil discovery. A semantic space was computed from the
same corpus as the previous experiment, but abstracts were included to examine
the effect of extra information. The resulting semantic space comprised 90,023
dimensions and the average document length is significantly greater than when
considering titles alone. The standard stop word list was used.

5.1 Discovery of B-terms

Table 2(b) shows that log-likelihood is once again the best weighting scheme
for the promotion of B-terms in terms of average B-term ranking. There is a
cautionary note, however: in the migraine/magnesium discovery not all of the
B-terms had their rank improved log-likelihood. Log-likelihood is a test of de-
pendence, and some terms such as “platelet” while having a high rank according
to HAL which is frequency based, have a somewhat lower rank according to
log-likelihood.

5.2 Discovery of A − C Connections

Table 4 shows the best performing results for information flow and cosine. In this
case, cosine is clearly superior and performance of both information flow and co-
sine within a contextually reduced space is disappointing. This may because the
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reduced space is considerably larger than was the case when only titles were used
as the basis of the contextually reduced subspace. As a consequence, many more
associations are represented and effectively “muddying” the discovery process.

6 Summary and Conclusions

This paper analyzes the effect of term weighting, stop word list and dimen-
sional reduction on literature-based discovery. Swanson’s Raynaud’s/fish-oil and
migraine-magnesium discoveries were used as case studies. Even though we can-
not claim these case studies as being typical, we feel that some of their charac-
teristics would carry across to other discoveries. Two aspects of discovery were
brought under focus. The discovery of intermediate, or B-terms, and the dis-
covery of indirect A − C connections terms via these B-terms. As Swanson’s
scientific discoveries are examples of abduction, a form of human reasoning, a
cognitively motivated form of knowledge representation was employed called se-
mantic space. Semantic space provides representations of words in a dimensional
space. Moreover it allows both semantic and statistical issues to be reflected in
the one representation framework.

This paper set out to address whether a bare bones approach to literature-
based discovery is possible. This goal is significant because most successful repli-
cations of discoveries have involved significant manual interventions and/or the
use of external knolwedge sources. In relation to the question whether weighting
schemes can be used as a substitute for tailored stop word lists, there is evi-
dence toward the affirmative, for both discoveries based on titles, or titles plus
abstracts. This is encouraging as tailored stop word lists are time consuming
to create and they need to be constructed per discovery. In regard to the ques-
tion whether dimensional reduction is beneficial to discovery, the evidence from
our studies is ambivalent when contextual reduction of the space is performed.
More research is warranted to investigate this issue further as driving discoveries
in reduced space has the potential to be far more efficient than in the higher
dimensional semantic space. More specific conclusions are as follows:

– Log-likelihood weighting appears to promote discovery of B-terms to an
encouraging degree. It should seriously be considered as part of the arsenal
for the discovery of B-terms mindful that it may not promote all salient
B-terms.

– If a significant set of relevant B-terms have been discovered, A − C con-
nections can be discovered to an encouraging degree by computations in
semantic space. Both information flow (an asymmetric measure) and a sim-
ilarity metric such as cosine can be used. Cosine is more “forgiving” than
information flow and can best better be employed when the user is not fully
confident of the associated B-term set, or when discovery is performed over
both titles and abstracts. More research is needed to understand their rela-
tive strengths and weaknesses of cosine and information flow.

We envisage literature based discovery to be an interactive process somewhat
akin to relevance feedback in IR. The scientist can first browse suggestions for
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B-terms from the system, use his or her background knowledge to enhance the
suggestions, or change their weights. These can then be used to compute A-C
suggestions with the A and/or C vector representations conditioned by feedback
from the scientist, e.g., boosting weights where prominent. Statistical weight-
ing in semantic space provides only part of the machinery for literature based
discovery. Future work needs to consider how best to gather and incorporate
relevance feedback from the scientist, or user. Clearly, single terms are problem-
atic as they can be ambiguous. Phrases would perhaps provide a better vehicle
for harnessing feedback. If so, research is needed to efficiently enhance semantic
space representation with phrases.
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Abstract. This paper is an attempt to design an interaction protocol
for a multi-agent learning platform to assist a human community in their
task of scientific discovery. Designing tools to assist Scientific Discovery
offers a challenging problematic, since the problems studied by scientists
are not yet solved, and valid models are not yet available. It is therefore
impossible to create a problem solver to simulate a given phenomenon
and explain or predict facts. We propose to assist scientists with learning
machines considered as adaptive problem solvers, to build interactively
a consistent model suited for reasoning, simulating, predicting, and ex-
plaining facts.

The interaction protocol presented in this paper is based on Angluin’s
“Learning from Different Teachers” [1] and we extend the original pro-
tocol to make it operational to assist scientists solve open problems. The
main problem we deal with is that this learning model supposes the ex-
istence of teachers having previously solved the problem. These teachers
are able to answer the learner’s queries whereas this is not the case in
the context of Scientific Discovery in which it is only possible to refute
a model by finding experimental processes revealing contradictions. Our
first contribution is to directly use Angluin’s interaction protocol to let
a machine learn a program that approximates the theory of a scientist,
and to help him improve this theory. Our second contribution is to at-
tenuate Angluin’s protocol to take into account a social cognition level
during which multiple scientists interact with each other by the means
of publications and refutations of rival theories. The program learned by
the machine can be included in a publication to avoid false refutations
coming from a wrong interpretation of the theory.

1 Introduction

Assistance to Scientific Discovery is a very challenging research domain: scien-
tists study open problems which have never been solved. Therefore, no satisfying
model or theory might already exist, so we propose to assist scientists by learning
machines in their task of theory building. Such a software assistant can learn to
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simulate an observed phenomenon explain or predict facts, has to deal with un-
certainty, pattern discovery, interactive ontology building [2], and has to produce
statements comprehensible to a human to improve human-machine interaction.
We divide the problem solving process in 3 steps:

1. The user, acting as the teacher, interacts with his learning assistant to make
him learn his hypothesis. To model the interaction between a scientist vali-
dating his hypothesis with his assistant, we directly exploit Dana Angluin’s
Learning from different teachers paradigm [1] which formalizes a protocol for
a human compliant robust learning defined as the result of a stable interac-
tion cycle between a Learner and a Teacher. Her conclusions are completed
by theoretical results about query driven machine learning complexity in [3]
and [4].

2. The assistant brings a critical attitude concerning an approximation of the
user’s hypothesis to confirm or invalidate his hypothesis, and this interaction
can lead to a revision of the hypothesis and/or of the description model, in
which case they are both considered as learners. The user, at the heart of
the system, builds interactively with an adaptive problem solver an adequate
description model of the studied phenomena: he is in charge of providing a
description model, and the adaptive problem solver uses machine learning
and paraconsistent logic to detect contradictions between the learned theo-
ries and empirical results, or inadequateness between the description model
and learned theories. These contradictions are used to initiate an Angluin-
like interaction cycle during which the user learns at the same time as the
machine, and this co-learning leads to a pertinent understanding of the prob-
lem.

3. Once the user considers that the approximation of his theory learned by his
assistant is expressive enough, he can use it to publish his own theory: each
theory proposed by a scientist is not refutable, but a logical theory produced
by a machine can always be reduced to a universal form which is refutable by
an existential statement. Our contribution is to extend Angluin’s protocol
by introducing a social interaction level inspired by Popper’s philosophy of
science [5] and based on proofs and refutations of publications. The publi-
cations are logical conjectures which have to be submitted to the judgment
of other learners to be pitilessly tested, put into question, and eventually
falsified.

In section 2, we define the needed functionalities that a problem solver should
implement to be adaptive and autonomous, and we emphasize that such an
adaptive problem solver has to reason in paraconsistent logic to cope with con-
tradictions. We show in section 3 that these contradictions are at the source of
the interaction between the solver and the human it’s assisting, and how this
interaction is formalized in [1] by the use of Membership and equivalence queries.
However, this learning model supposes an access to a Teacher to answer these
queries whereas there isn’t any to help scientists understand Nature and its laws,
so we propose in sections 3.2 and 3.3 two extensions of this model to make it op-
erational in the context of scientific discovery, and we validate in section 4 this
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protocol on a toy game, E+N. Finally, we present some experimental results
before concluding.

2 Toward a Definition of an Adaptive Problem Solver

Common definitions of a problem solver take into account the type of solv-
able problem which characterizes it, as a differential equation problem solver, or
nonlinear equation systems solver: a problem solver is designed to perform the
computation of a known problem which has already been solved and modelled.
So for any presented instantiation of the specific problem, it is able to solve it
and produce its solutions.

An adaptive and autonomous problem solver should be able to acquire new
abilities by learning how to solve new problems, and use this knowledge and
experience to find solutions. To solve an open problem, one has to observe the
problematic situation and analyse it to build a language describing the situation’s
dimensions pertinent for reasoning. These dimensions determine the definition
domain of the variables characterising the problem and influencing the solution’s
computation. The language thus defined is used to formulate assumptions and
hypothesis that have to be experimented. Comparing empirical results and theo-
retical computations can reveal contradictions between a theory and reality, and
therefore lead to a revision of the description model and to the formulation of
new hypothesis.

By making an analogy with the process of scientific discovery, in which nei-
ther the ontology nor the theory are perfectly known a-priori, we define below
the functionalities that an adaptive autonomous problem solver should be em-
powered with to assist the process of discovery. It should be able to build and
maintain an Ontology of the domain. By Ontology, we mean a logical language
relevant with observations describing the pertinent dimensions of the problem,
i.e. the types of the variables involved in its resolution. Furthermore, we want
the ontology building to be the consequence of the interactive learning process
of the logical language.

The principles of nominalization and reducibility [6] are the keys of a problem
solver’s adaptability, since they allow it to manipulate new concepts and design
experimentations to validate the pertinence of these new dimensions for the
computation of the problem’s solutions:

– The solver should be able to learn ontological statements to constraint the
relations between the values of the problem’s dimensions, by analysing and
correlating gathered information.

– The solver should be able to theorize: discover, name, and symbolically use
regularities or patterns appearing on data by revising the ontology and in-
troducing new dimensions to the problem’s formulation. Transforming an
observed property into a symbolic object and re-use it is called the Nom-
inalization principle. This principle is essential to formulate and express a
theory to explain the problem and predict further results. By theory, we
mean a set of rules used to compute a problem’s solutions.
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– The solver should be able to empirically validate theories: transcribing math-
ematical abstractions to design experimentations feasible in the real world
is called the Reducibility principle.

Interactions between the solver and its environment are sine qua non con-
ditions of its evolution: by comparing the results of theoretical computations
and the results of its interactions with the environment, the solver is able to de-
tect contradictions in the formulated theories. These contradictions are used to
motivate the actions and reflections of the adaptive problem solver: each exper-
imentation is made to validate a theory, and is preceded by a prediction about
its consequences. This prediction is compared to observed results to search for
contradictions. Of course, the most informing situation is when a contradiction
is detected, because it reveals either a wrong formulation of the problem by
the user (perhaps a parameter was forgotten), or a inconsistency in the learned
theory (coming from a bias in the learning set). To reason in the presence of
contradictions, the logical ontology must be paraconsistent [7]: paraconsistent
logics don’t allow absurd reasoning (ex-contradiction sequitur quod libet), i.e. a
statement and its negation can be true at the same time.

The following deduction shows that the paraconsistent contradiction princi-
ple requires four arguments to deduce a contradiction about A:

¬A�B ¬A�¬B ¬A �¬(B∧¬B)
A∧¬A

¬pope�rain ¬pope�¬rain ¬pope �¬(rain∧¬rain)
pope∧¬pope

In this example, all the arguments are evaluated. A contradiction Only if the
contradiction ”� ¬(rain∧¬rain)” is not admitted, then “it is paradoxical to be
pope”.

This is very useful when reasoning on descriptions coming from different
contexts or points of view, and [8] gives an elegant example of paraconsistency
based on a defeasible deontic logic:

– a Paraconsistent Logic allows to reason in presence of contradictions in order
to maintain obligations.

– a Deontic Logic allows to maintain a past knowledge by using the Obligation,
Forbiddance and Permission modalities. In the context of machine learning,
an obligatory fact is a fact which provoques a major contradiction when false,
a forbiden fact is a fact which provoque a major contradiction when true.
An advised (not obligatory) fact will provoque a minor contradiction when
false, a disadvised fact (not forbiden) will provoque a minor contradiction
when true.

– a Defeasible Logic allows to revise the model when new contradictory facts
occur, and to produce a new theory adapting the strength of the contradic-
tions.

Deontic logic is used to localise contradictions and provoke a revision in the
set of defeasible theories, and this paraconsistency allows the solver to adapt the
ontology to new facts and new observations.
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Paraconsistent defeasible deontic logic rules describing a complex system are
not easy to determinate, and since this kind of monotonous and multivaluated
logics have experimentaly been shown as learnable using Angluin’s paradigm [2],
our goal is to have them learned by an adaptive problem solver interacting with
a human.

In the following section, we discuss how Angluin’s interaction protocol for
machine learning can be used to formalise the necessary interactions between
such a solver and its environment. We use contradictions to drive this interaction.
We also propose an extension of this protocol to adapt concept learning theory
to scientific discovery.

3 Making Angluin’s Formalism Operational in the
Context of Scientific Discovery

Angluin’s formalism [1] gives a strong basis to interactive learning from different
teachers, and introduces the idea that a learner could possibly become a teacher
for another learner. We present this formalism in section 3.1, then we apply this
protocol to assist scientific discovery with a learning machine in section 3.2. We
show in section 3.3 how we introduce a social interaction level between learners
to make this protocol operational in the context of scientific discovery, i.e. to
cope with the apparent impossibility to use Equivalence queries.

3.1 Formal Aspects

Formal learning models differ by the information sources, by a priori knowledge
given to the Learner, by its tasks and abilities, and by the success criteria of the
learning process. In the model of exact identification with queries, studied in [3]
and [4], the task is to identify an unknown concept drawn from a known concept
class using queries to gather information about the unknown concept.

The interest of Angluin’s works lies in the theoretic results she provides about
the learnability of different concept classes (as monotonous DNF which are not
learnable in the case of PAC learning or online learning) by methods based on
the use and the combination of two main types of queries: Membership and
Equivalence queries defined as follows:

Let the domain X be a nonempty finite set. A concept c is a subset of X ,
and a concept class C is any nonempty set of concepts. In a Membership query
(MQ), the learner exhibits an example x ∈ X , and the access to an oracle
returns 1 if x ∈ c, and 0 if x /∈ c. In an Equivalence query (EQ), the learner
exhibits a concept c′ ⊆ X , and the oracle’s answer is either ”yes” if c′ = c,
or an element x in the symmetric difference of c and c′, if c′ 	= c. In [9] and
[4], Angluin demonstrates the necessity of combining MQs and EQs to allow
a powerful and effective learning. [1] formalizes a learning model based on the
interaction between a Learner L and a Teacher T . Both of them are modelled
as computers, and T is assumed to have a program p representing the concept
to be taught to the learner, as illustrated in figure 1.
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Fig. 1. Exact identification with queries

The teaching protocol involves examples of the concept, and possibly other
information (we bring up this topic again later in this section) from which the
learner is to develop a program p′ that also represents the target concept. [3]
emphasizes the fact that outright coding, in which T would transmit (using an
encoding via examples) the text of the program p to L, is neither compliant, nor
representative of human learning. Indeed, the ”hardware and software environ-
ment” differs quite substantially from one person to another. In other words, all
of us don’t have the same brains, nor the same ways of thinking, although our
anatomies are comparable.

Angluin illustrates this point of view with the human learning of juggling,
which brings in muscular and visual reflexes, time perception and so on. . . These
are ”low level” mechanisms from which we only know very few about their
triggering and their control. We merely know how to use or how to interpret their
inputs and outputs, doing so in a symbolic way. The idea we want to put forward
is that to realize a task, acquire an ability, or identify a concept, the learner
has to learn how to correctly use and combine ”black boxes” representing the
mechanisms triggered during the execution of the task, which are only partly and
poorly known to him. This example gave us the motivation to test this protocol
in the context of scientific discovery (see section 3.3): according to Popper’s
conception of Scientific Discovery [5], scientists try to understand Nature’s laws,
by designing experiments and formulating theories on the basis of their results.

We show in section 3.2 and 3.3 how Angluin’s protocol, in such a context,
can be used at different levels of interaction.

Here is the theorem enunciated in [1]: There exists a learner L* such that
for every total recursive function b(x, s) there is a teacher T * b such that for
every universal function box g’ and every function box g that is b-related to g’,
L*(g) learns all the partial recursive functions from T * b (g’). Furthermore, L*
is box-and-teacher-proof. Using works as [10], [1] demonstrates the identification
in the limit [11] of this process.
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This means that whatever might T ’s and L’s applications black box be (appli-
cations being formalized by Angluin by recursive functions), L will learn after a
finite number of queries, a program p′ simulating p and producing only a finite
number of errors if:

1. The computing performances of T and L are comparable, which means L is
”not too slow” compared to T ,

2. T has already managed to solve the problem.

This theorem stands in the context of language learning, to which the context
of scientific discovery is comparable since scientists aim at learning or discover-
ing a language adapted to describe their environment and various phenomena
occurring in it.

This protocol is clear and simple, and it ensures the convergence of the learn-
ing process, or at least, it ensures that whoever might the teachers be, the learner
will not converge towards an incorrect solution. An adaptive problem solver can
then learn a theory formulated by a scientist during the process of scientific
discovery. However, in the context of scientific discovery, the Nature, which is
considered as the teacher, is ”silent” and cannot answer all learner’s queries:
the learner may still use MQs, by designing experiments and interpreting their
results, but there is no way he can access Nature to answer his EQs (“is earth
flat?”, “is the law of gravitation true?”).

We show in section 3.2 how the learning assistant can bring a critical point of
view to the scientist while analysing experimentations’ results and formulating
theories, and in section 3.3 how we extend the model ”Learning from Different
Teachers” to ”Learning from each other” by introducing multiple learners and
interactions between them to confront a learner’s interpretation of Nature with
others’.

3.2 Interactive Aspects: Individual Reasoning

A scientist L learns from Nature T , by experimenting his hypothesis. In our
approach of assistance to scientific discovery, we want the scientist to interact
with an adaptive problem solver to find the solution of a problem, and the
solution comes from the co-learning of these two entities.

An intelligent assistant is an adaptive problem solver, as described in section
2, able to analyse facts described in the language of the ontology written by the
researcher while observing and describing the problem. The intelligent assistant
that we develop [12] uses induction and abduction methods coming from machine
learning with graphs and Galois lattice theory [13] which allow to find relevant
logical implications and equivalence rules between the descriptors introduced by
the user to describe the facts observed (see fig. 2). These rules can be easily
understood by the researcher since they are formulated with his own words.
The assistant can then induce theories predicting the behaviour of the studied
system, and use abduction to explain past facts and to design experimentations
testing the validity of the produced logical rules.



106 C. Dartnell and J. Sallantin

Fig. 2. Human-Machine interaction cycle

Compared to Angluin’s protocol, we propose to let the Learner be a couple
of Learners: a scientist and his assistant, learning as well from their common
Teacher (Nature) than from each other. The interaction between them follows
the protocol presented in section 3.1, with this difference that both entities can
act in turn either as the Teacher or as the Learner. So the scientist is in charge of
formulating a description model of the problem’s domain, and to modify it when
irrelevant examples arise: erroneous predictions invalidate either the theories,
either the initial conditions (description model). Therefore, he represents the
teacher guiding the learning machine, and can also eliminate learning errors
coming from bias of the learning set, for example by designing experiments to
produce results considered by him as informant. The assistant can analyse large
data and formulate an opinion concerning the scientist’s choices, and act as the
Teacher by anticipating negative result of MQs or EQs.

This justifies the use of a paraconsistent defeasible deontic logic to localise
contradictions in the scientist’s interpretation of results, in the approximation of
his theory learned by the assistant, or in the discretization of the problem by the
scientist, i.e. in his description model. We saw how Angluin’s protocol formalized
the interaction between a scientist and his assistant, and how the link to their
common Teacher was made by designing experimentations and interpreting their
results. The next section deals with the need of a social game between learners
to answer one’s EQs.

3.3 Social Aspects: Collective Cognition

As we introduced in section 3.1, the Nature, which is considered as the Teacher
from which scientists learn during the process of scientific discovery, cannot be
accessed to answer EQs, so we introduced a social interaction level to answer
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Fig. 3. Coping with EQs without an oracle

these queries. A scientist is member of a community, and published theories are
temporary solutions accepted until they become insufficient to explain Nature:
in our model, learners (who are couples of scientists and their assistant) are
confronted to the judgment of other learners to cope with the impossibility to
access an oracle for EQs in the context of scientific discovery. Every learner has
the same access to Nature for MQs, whether they have proper interpretations
and points of view, and they are in charge of answering other’s EQs, as shown
on fig.3.

Angluin’s prospect of letting a learner becoming a teacher is meaningful for
us, and our model let other learners answer EQs by the means of publications
and refutations. Doing so, we allow the learners to act on behalf of a teacher by
refuting other’s hypothesis. According to ”Learning From Different Teachers”
theory, learning is still possible in these conditions (if the learners are teacher-
proof ). We symbolize the product of this social interaction by a score and a profit
function. By attributing or deducing points for each query, depending on the or-
acle’s answer, we can create a competition atmosphere or collaborative work
between multiple learners. This atmosphere motivates the emission of EQs to
score points and MQs to prove or refute a theory. The introduction of this social
level can lead to experiment different points attribution in order to determine in
which condition the community formed by the learners converges faster to an ac-
ceptable solution. These kinds of experiments are planned by cognitive scientists
[14], and some of them have already taken place with human players only.

We shall now describe these experimentations with the game E+N and link
the manipulated concepts with the notions presented previously.

4 Protocol Validation on a Toy Game: E + N

We implemented this toy game E+N to validate the protocol of assistance to
scientific discovery presented in previous sections. In this experimentation, we
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aim at defining the limits of our protocol, and having a standard reference to
evaluate further experiments implying scientists and their assistants.

4.1 Problem’s Definition: Eleusis

The problem in Abbott’s Eleusis card game [15] is to find a secret law hidden
from the players and determining the valid sequences of cards that can be played
during the game. The difficulty of the game can be adapted by:

– changing the length of the sequences concerned by the secret rule, to increase
the complexity of the learning problem.

– fixing the choices offered by the rule, determining the ramifications in the
resolution space. This might lead to formulations of various classes of Boolean
formulas, as CNF, DNF, k-term-DNF, ...

– giving or hiding this information to players. This allows letting the learner
fix his own learning biases or not.

– providing or not the Ontology used to explain the rule. This might be equiv-
alent to concept learning on a finite or infinite domain

Players can formulate membership queries (MQs) by proposing a sequence of
cards which is accepted or rejected by an oracle machine simulating Nature, and
build on the basis of their experiments a theory consistent with their current
knowledge to explain the hidden rule and predict further sequences. Since a
concept learning problem can be assimilated to the problem of learning the
mapping function between a set of examples (x ∈ X , X being a non empty
finite set) and the Boolean value representing the belonging of x to the unknown
concept c ⊆ X , we assume that it is suited to apply concept learning theory and
use the interaction protocol formalized by [1].

Experimentations are in fact membership queries (“is g(x) true?”, g being
an hypothesis, is an MQ), with this difference that experimentations often have
a cost (time, resource, ...). [1] showed that algorithms using only membership
queries were less performing than algorithms using membership queries combined
with equivalence queries (“does g = f?”, f being the hidden function). The
problem in the case of scientific discovery is that if experimentation results can
be analyzed and interpreted to estimate the answer of a membership query, it
is impossible to access an oracle able to answer an equivalence query (“is earth
flat?”). By taking this point into account, and to improve the rule discovery
process, we introduce a social interaction level by letting learner agents join a
community respecting a multi-agent publication protocol to dispatch equivalence
queries to other members of the community, as described in next section.

4.2 A Social Interaction Level to Cope with Equivalence Queries:
Eleusis + Nobel

We designed the card game E+N to simulate a situation of collective problem
solving implementing MQs. To simulate a real problem of scientific discovery,
the oracle cannot be accessed to answer EQs. In fact, it is often hard and time
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consuming to determine the equivalence of two elaborated theories, which might
not even use the same ontology, since each researcher has a personal way of
describing the world and interpreting the experiment results.

Fig. 4. Eleusis + Nobel Game display

Figure 4 shows a possible interface for E+N. This is the first we developed,
as a web application, sufficient for the basic experimentations we made with
human players only.

Private environment: The central frame displays the results of the experi-
ments made by a player, by selecting cards in the bottom frame and placing
them on the ”? holes” to form a new sequence and submit it to the studied
Nature’s law. This way of displaying the results comes from Abbot’s original
game:

– A red surrounded card means it can not be placed after the previous one in
the depicted main sequence.

– A green surrounded card means it forms a valid sequence with the previous
card AND with the following one in the main sequence.

– When the card forms a valid sequence with the previous one in the main
sequence BUT NOT with the following one, it is surrounded in orange.

Public environment: The frame on the left hand side displays a set of hidden
rules, publicly accessible by an imaginary name so their meaning is hidden. A
player can select the one he (or she) wants to study, and can switch between
them whenever he wants to. It opens in the central frame a private experimen-
tation context associated with the selected rule. When an EQ is formulated,
by publishing a theory, the rule appears in the ”published theories” cell, every
player can read it, and the publisher scores P points. The theory is considered
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as correct until a player finds a counter example to refute it. The theory then
moves to the ”refuted theory” cell, the refuter wins R points, and the original
publisher looses R points.

The P/R ratio can be set to modify the experimentation’s conditions, and can
also be different in the competitive scientific community and in a collaborative
working group, as proposed in section 3.3.

The alternative to Equivalence queries is a publication, a broadcast of the
player’s theory to every other player belonging to the community. Each player
can then compare this published theory with his personal current data, try to
prove it’s inconsistency, and refute it if a counter example is found. In fact, the
theory is not broadcasted to everyone, but is added to a publicly accessible data-
base storing every publication that is made on a hidden rule, and a notification
is sent to players. This public database is a kind of collective memory, which
efficiency as been shown in works on Case Based Reasoning as [16] or [17].

5 Results and Comments

We present in this section the results concerning the experimentation we made to
validate our protocol. To reach this goal, we needed players, an experimentation
which duration can be controlled, so the rules were defined to concern sequences
of only two cards, in order to have a degree of difficulty suited to non assisted
human players. The results showed that a human playing alone (i.e. using MQs
alone) takes between 5 and 15 minutes to publish a theory concerning a rule
implying only sequences of two cards. He usually considers his theory correct,
and doesn’t try to refute it. Moreover, the average number of published theories
is between 10 and 20 (players stop before trying the 33 rules), and few of them
are equivalent to the corresponding hidden rule.

An interesting alternative was to organise duels, between two players working
on the same rule, until one of them admitted, without being sure, that the
adverse theory was true. The players reached a consensus on a common Ontology.

To contrast with previous results, we made further experimentations involv-
ing multiple players, students coming from different scholar backgrounds. The
average time for a publication is the same, and we observe a period of roughly
half an hour during which players publish. Then they begin refuting each other,
and theories are revised and republished. A community of ten to thirteen play-
ers takes between 1h 1/2 and 2h two reach a stable equilibrium of published
theories (opposed to the theoretical length of 5h 1/2 for one-player games). The
amount of correct theories is also much more superior. This empirically vali-
date the need to use both Membership and Equivalence queries [1], and the
use of a collective memory to share experience and points of view on a given
problematic.

Some of these experimentations of the protocol failed because players made
false refutations caused either by a misunderstanding of the ontology or of the
published theory, or even of the notion of refutation. This shows the need, even
for such small learning problems, to include in the publication a program sim-
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ulating the user’s theory and allowing to detect eventual contradictions within
it (see section 2). A second notice is that the bias coming from the P/R ratio
favoured the players who only refuted others’ publications without publishing
themselves. We need to define an other ratio taking into account Popper’s idea
that a falsifying experimentation shows a contradiction in a theory, but doesn’t
stand without a rival theory. The third notice is that this game is very efficient
to teach the epistemological foundations of science theory.

Since the protocol is validated, we will now introduce the interaction between
scientists and assisting machines, but this implies more time and more efforts
from the players to learn how to work with adaptive problem solvers. This has
to be worth it, so next experimentations will have to last longer, for example
one month. These experimentations have excited some biologists who plan to
help us designing another version of the game in which the hidden laws will
be real scientific discoveries as described in [18], to simulate the (re)discovery
of Nobel prizes... We will organize very soon an experimentation in which a
team of human players will be opposed to a team of human players assisted
by intelligent learning assistants to validate our approach. An obvious use of
intelligent assistants is to let them test a sequence on various published theories,
and to be the guaranteeing one of the user’s published theory to answer MQs.
The violation of the theory is located by the contradiction between the assistant’s
answer and what is really observed.

6 Conclusion

We presented an interaction model to assist scientists with adaptive problem
solvers in their task of scientific discovery.

[1] formalized an interaction protocol for machine learning based on the use
and combination of Membership queries and Equivalence queries, that enables a
machine to learn a user’s theory. In the context of scientific discovery, the user
is fallible, and we emphasized that reasoning in a paraconsistent logic allows the
solver to localize contradictions in the user’s theory, which leads to a revision
of the description model. Defeasible logic is useful to supervise the learning
process and ”forget” wrong theories. In our model, the user and the software
assistant act in turns as the teacher or as the learner, and this interactive co-
learning leads to a better understanding of the problem and to the creation of
an adequate description model; being assisted by a learning machine trivializes
some fairly easy problems.

Membership Queries can be simulated by designing experiments and inter-
preting their results, experimentation putting the hypothesis to test. To simulate
the oracle to answer Equivalence Queries, we introduced a social cognition level
to let multiple learners interact by answering each other’s EQs. Stating that a
group will solve a problem faster than an individual, we described a community
of agents learning from each others, each having its own point of view and in-
terpretation of events occurring in its environment, the learner refuting an EQ
acting temporarily as the Teacher. Defining this interaction as a competition to
optimize a score motivates the emission of queries.
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This multi-agent discovery platform offers various industrial applications,
especially as a tool for analysts trying to have a synthetic vision of a complex
situation described by heterogeneous information sources, or for optimizing a
production process involving complex systems.
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Abstract. We propose a method that aligns biomedical acronyms and their long-
form definitions across different languages. We use a freely available search and
extraction tool by which abbreviations, together with their fully expanded forms,
are massively mined from the Web. In a subsequent step, language-specific vari-
ants, synonyms, and translations of the extracted acronym definitions are normal-
ized by referring to a language-independent, shared semantic interlingua.

1 Introduction

The understanding of acronyms and abbreviations in biomedical texts is crucial for
various NLP applications, such as text mining [1], information extraction [2], or in-
formation retrieval systems [3]. This is witnessed, in particular, for protein and gene
expressions from biomedical texts [4] (as well as the relations between them). Those
expressions frequently consist of acronyms, but their definitions in the text might dif-
fer from the ones found, e.g., in external databases, such as ARGH, ACROMED, or
SARAD [5] (cf. also [6] for an overview).

Multiple expansions for the same acronym, or multiple acronyms for the same defin-
ition, will lead to difficulties when one tries to match natural language expressions with
a standardized vocabulary such as the UMLS or MESH [7]. In an information retrieval
scenario, unresolved acronyms will possibly lead to a loss of precision: Does ”AD”
refer to ”Alzheimer’s Disease” or to ”allergic dermatitis”? The problem of ambiguity
becomes even harder when multilingual documents are encountered. This is likely to
happen to Web search engines. In this case, the acronym ”AD” may have a German ex-
pansion (”atopische Dermatitis”), a Spanish one (”aurı́cula derecha”), or a Portuguese
one (”agua destilada”), and possibly many more. Even worse, the German acronym
equivalent to ”Alzheimer’s Disease” is ”AK” (”Alzheimer Krankheit”) or ”MA” (”Mor-
bus Alzheimer”), while for Spanish the equivalent short-cut is ”EA”(”enfermedad de
Alzheimer”).

Many research efforts have been spent on the automatic extraction of short-
form/long-form (SF/LF) pairs (abbreviations and acronyms mapped to their expan-
sions/completions) within a single language [8, 9, 10, 11, 5, 12, 13, 14]. Different ways
of how abbreviations are actually used in written (medical) language were also stud-
ied [15], while little attention has been paid to how acronyms behave across languages.

A. Hoffmann, H. Motoda, and T. Scheffer (Eds.): DS 2005, LNAI 3735, pp. 113–123, 2005.
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This is a particular challenge for intelligent Web search engines and it is the focus of
this paper.

2 Analysis of Terms into Subwords

We propose a method that automatically aligns acronyms and their definitions across
different languages. It is based upon a dictionary the entries of which are equivalence
classes of subwords, i.e., semantically minimal units [1]. From a linguistic perspective,
subwords are often closer to formal Porter-style stems [2] rather than to lexicologically
orthodox basic forms, e.g., of verbs or nouns or linguistically plausible stems. Hence,
their merits have to be shown in experiments. These equivalence classes capture in-
tralingual as well as interlingual synonymy. As equivalence classes abstract away from
subtle particularities within and between languages and reference to them is realized
via a language-independent concept system they form an interlingua.

Subwords are assembled in a multilingual lexicon and thesaurus, with the following
considerations in mind:

– Subwords are listed, together with their attributes such as language (English, Ger-
man, Portuguese, Spanish) or subword type (stem, prefix, suffix, invariant). Each
subword is assigned one or more morpho-semantic class identifier(s), we call
MID(s), representing the corresponding synonymy equivalence class.

– Intralingual synonyms and interlingual translation synonyms of subwords are as-
signed the same equivalence class (judged within the context of medicine only).

– Two types of meta relations can be asserted between synonymy classes:
(i) a paradigmatic relation has-meaning, which relates one ambiguous class to its
specific readings, as with:
{head}⇒ {kopf,zephal,caput,cephal,cabec,cefal}OR {boss,leader,lider,chefe}.
(ii) a syntagmatic relation expands-to, which consists of predefined segmentations
in case of utterly short subwords, such as:
{myalg} ⇒ {muscle,muskel,muscul} ⊕ {pain,schmerz,dor}.1

We refrain from introducing additional hierarchical relations between MIDs be-
cause such links can be acquired from domain-specific vocabularies, e.g., the Medical
Subject Headings [3] (cf. experimental evidence from Markó et al. [4]).

Figure 1 depicts how source documents (top-left) are converted into an interlingual
representation by a three-step procedure. First, each input word is orthographically nor-
malized in terms of lower case characters and according to language-specific rules for
the transcription of diacritics (top-right). Next, words are segmented into sequences
of subwords as found in the lexicon (bottom-right). Finally, each meaning-bearing
subword is replaced by a language-independent semantic identifier, the corresponding
MID, which unifies intralingual and interlingual (quasi-)synonyms, thus producing the
interlingual output representation of the system (bottom-left). In Figure 1, bold-faced
MIDs co-occur in both document fragments (after conversion into the interlingua for-
mat).

1 ‘⊕’ denotes the string concatenation operator.
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MID Representation
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Thesaurus

Semantic
Normalization

Fig. 1. Morpho-Semantic Indexing (MSI)

In the meantime, the entire subword lexicon (as of July 2005) contains 72,513 en-
tries, with 22,067 for English,2 22,497 for German, 14,888 for Portuguese, and 13,061
for Spanish. All of these entries are related in the thesaurus by 20,990 equivalence
classes. We also found a well-known logarithmic growth behavior as far as the increase
of the number of subwords are concerned [1]. Under this observation, at least the Eng-
lish and German subword lexicons have already reached their saturation points.

Our project started from a bilingual German-English lexicon, while the Portuguese
part was added in a later project phase (hence, its size still lags somewhat behind). All
three lexicons and the common thesaurus structure were manually constructed, which
took us about five person-years. While we simultaneously experimented with various
subword granularities as well as weaker and stronger notions of synonymy, this manual
approach was even heuristically justified. With a much more stable set of criteria for
determining subwords emerging from these experiments, we recently switched from a
manual to an automatic mode for lexicon acquisition. The Spanish sublexicon, unlike
all other previously built sublexicons, was the first one generated solely by an auto-
matic learning procedure which is specifically targeted at large-scale lexical acquisi-
tion. It makes initial use of cognate relations (roughly, string similarities) that can be
observed for typologically related languages [5] and has recently been embedded into a
bootstrapping methodology which induces new subwords that cannot be found by con-
sidering merely cognate-style string similarities. This extended acquisition mode makes
heavy use of contextual co-occurrence patterns in comparable corpora [6].

In earlier experiments on cross-language information retrieval [1] and multilingual
document classification [7], we showed the usefulness of representing medical doc-
uments on an interlingual layer. However, we were not able to properly account for
acronyms, since they were completely missing in our lexicons. Therefore, we here

2 Just for comparison, the size of WORDNET assembling the lexemes of general Eng-
lish in the 2.0 version is on the order of 152,000 entries (http://wordnet.
princeton.edu/man/wnstats.7WN, last visited on May 13, 2005). Linguistically
speaking, the entries are basic forms of verbs, nouns, adjectives and adverbs.
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adapt previous work on automatic acronym detection to the needs of our interlingual
representation approach.

3 Extracting Biomedical Acronyms and Completions

Our work reuses, without any modification, a simple and fast algorithm for the ex-
traction of abbreviations and their completions from biomedical documents, which has
been developed by Schwartz and Hearst [8].3 The algorithm achieves 96% precision
and 82% recall on a standardized test collection and, thus, performs at least as good as
other existing approaches [9, 10, 11, 12, 13]. It deals with the extraction of acronyms
and abbreviations together with their full forms (completions) in a two-step process.
First, a list of candidate short-form/long-form (SF-LF) pairs is determined, which are
then validated by taking additional selection criteria into account. In the following, we
briefly describe the principles underlying both steps.

Extraction of possible SF-LF terms. Basically, SF-LF pairs are identified by their
adjacency to parentheses. Two basic patterns, LF (SF) and SF (LF), have to be distin-
guished. According to Schwartz and Hearst, a short form has the following characteris-
tics: it contains between 2 and 10 characters, has a maximum of two words, at least one
character is a letter, and its first character is alphanumeric. The long form must imme-
diately appear before or after the corresponding short form and the maximum number
of words is constrained by min(|A| + 5, |A| ∗ 2).4 In practice, the LF (SF) pattern oc-
curs more frequently. Therefore, only if a criterion for an LF (SF) pattern is not fulfilled
(e.g., more than two words inside the parentheses), the complemenatry pattern, SF (LF),
is tried.

Selection of the correct SF-LF term. Next, rules are applied to identify the correct
SF-LF pair from the list of candidates which were extracted in the first step. Most
importantly, each character in the short form must match a character in the long form
and characters of the short form must appear in the same linear order as in the long
form. Furthermore, the first character of the SF has to be the same in the LF. Finally,
all LFs are removed which are shorter than the corresponding SF, or which include the
corresponding SF within one of their single words.

4 Experiments

The WWW is here taken as the authoritative textual resource where the largest and most
up-to-date variety of acronyms and their associated completions can be found. Hence,
for our experiments, we generated very large corpora directly from different, hetero-
geneous WWW sources, including MEDLINE. With more than 250m text tokens, the
derived English corpus was much larger than those for the other languages involved
(37m tokens for German, 14m for Portuguese, and 11m for Spanish, cf. Table 1). The

3 The source code (in Java) is made available on the Web; see http://biotext.berkeley.edu/
software.html.

4 |A| is the number of characters in the corresponding SF.
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Table 1. Corpus and Acronym Extraction Statistics

Language Corpus Tokens Proportion of Acronyms

English 250,258,039 1,253,311 (0.50%)
MSI-Covered 1,033,929 (82.5%)

German 37,105,363 29,967 (0.08%)
MSI-Covered 26,770 (89.3%)

Portuguese 13,904,790 8,532 (0.06%)
MSI-Covered 7,065 (82.8%)

Spanish 11,103,066 7,714 (0.07%)
MSI-Covered 4,723 (61,2%)

contribution of this paper lies in the cross-language linking of these data items by ap-
plying the MSI procedure outlined in Section 2.

Using the algorithm described above, we collected over 1.2m abbreviations together
with their long forms for English, while we extracted some 30K pairs for German,
9K pairs for Portuguese and 8K pairs for Spanish (for exact numbers, cf. Table 1). In
contradistinction to the other languages, the English corpus included a large number of
expert-level MEDLINE abstracts. As a consequence, every 200th token in the collection
was classified as an acronym. For the other languages (for which the corpora included a
larger amount of consumer information), this ratio is much smaller (0.06 to 0.08 percent
of the text tokens in the corpora).

After the acquisition of SF-LF pairs, the long forms were processed by the MSI
procedure as described in Section 2. Upon prior manual inspection of document sam-
ples we observed that English long forms also tended to frequently occur in German,

Fig. 2. Distribution of SF-LF Occurrences per Corpus



118 U. Hahn et al.

Table 2. Effects of Morpho-semantic Normalization in Terms of Unique SF-LF Pairs and Tokens
per Type

Language Surface MSI
Unique Ratio Unique Ratio

English 212,470 4.87 189,639 5.45
German 4,276 6.26 3,653 7.33
Portuguese 3,934 1.20 3,633 1.95
Spanish 2,037 2.32 1,911 2.47

Portuguese, and Spanish texts. Therefore, a decision had to be taken which lexicon to
use for the MSI process. Our approach was to segment the long forms using every lexi-
con available (so no a priori decision was taken). Those language hypotheses were kept
for which the underlying lexicon yielded complete lexical coverage with regard to the
specific long form. If there were more than one remaining language hypothesis, the
document language (if not English) was preferred over English.

This procedure led to over one million SF-LF pairs completely covered by the MSI
procedure for English (83%), and approximately 27K pairs (89%) for German, 7K pairs
(83%) for Portuguese, and 5K pairs (61%) for Spanish (cf. Table 1 for detailed num-
bers). In the following, we will only focus on this subset of extracted abbreviations.
Figure 2 yields an impression of how frequent unique SF-LF pairs occur in the corpora
considered, for each language condition. 61% to 76% of all acronyms extracted occur
only once, 12% to 23% appear two times, whilst five or more occurrences are found for
6% to 12% of all SF-LF pairs.

As depicted in Table 2 (Column 2), 212,470 unique SF-LF pairs were generated
for English, 4,276 for German, 3,934 for Portuguese, and 2,037 for Spanish. Column
3 of the table shows the average number of corpus occurrence for each unique SF-LP
pair. After the MSI normalization of long forms, the number of unique SF-LF pairs
decreases to 189,639 for English (3,653 for German, 3,633 for Portuguese and 1,911
for Spanish). Accordingly, the number of tokens per type increases, as depicted in the
fifth column of Table 2. As an example, morpho-syntactic variants in long forms such
as in “CTC”-“computed tomographic colonography” and “CTC”-“computed tomo-
graphy colonography” are unified, an immediate effect of term normalization based on
the interlingua (composed of equivalence classes of subwords).

4.1 Intra-Lingual Phenomena

Two basic ambiguity phenomena have to be considered when we discuss the results for
a given language: First, one short form can have multiple long forms (SF ambiguity),
and, second, one long form can have multiple short forms (LF ambiguity). An example
for an SF ambiguity is given with “ABM” mapped to “acute bacterial meningitis”
and to “adult bone marrow”. Table 3 shows the average numbers of different long
forms for each short form, both for the baseline condition (lower-case surface form)
and the MSI condition. For English, 82,501 unique short forms were extracted. The
average number of long forms associated to unique SFs decreases from 2.56 to 2.30 for
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Table 3. SF Ambiguity

Language SFs Average LF
Surface MSI

English 82,501 2.56 2.30
German 2,954 1.45 1.24
Portuguese 2,517 1.56 1.44
Spanish 1,450 1.41 1.32

Table 4. LF Ambiguity

Language Surface MSI

LFs Average SF LFs Average SF
English 184,639 1.15 154,693 1.23
German 4,187 1.02 3,515 1.04
Portuguese 3,798 1.04 3,395 1.07
Spanish 1,979 1.03 1,825 1.05

MSI, as expected. A similar tendency can also be observed for the other languages we
considered.

The second phenomenon, one long form which comes with multiple different short
forms, can also be observed in all languages involved in our experiments. For example,
the noun phrase “acid phosphatase” has nine different abbreviations in the English cor-
pus we processed (case insensitive): “AcP”, “acPAse” “ACP-ase”, “Acph”, “ACPT”,
“AP”, “APase”, “AphA”, and “APs”. Table 4 depicts the numbers describing this phe-
nomenon. For English, a total of 184,639 different long forms were extracted, arising
from 212,470 different SF-LF pairs (cf. Table 2). Thus, each LF is associated with 1.15
SFs, on the average. For the MSI condition, fewer different long forms are encountered.
Hence, the ratio slightly increases, for all languages.

4.2 Inter-Lingual Phenomena

4.2.1 Identical SF-LF Pairs
The first observation we made is that quite often SF-LF pairs are appear in other lan-
guages, such as “WHO” and its expansion “World Health Organization”, “PCR”
and its completion “polymerase chain reaction”, or “IL” associated with “inter-
leukin”. Summarizing (cf. Table 5, Column 2), we found 584 identical SF-LF for
English-German, 181 for English-Portuguese, 192 for English-Spanish, 35 for German-
Portuguese, 40 for German-Spanish, and 106 for Portuguese-Spanish (the latter sets also
may contain some English SF-LF pairs).

4.2.2 Identical SF, Different LF
One way of identifying possible translations of long forms is to collect those long
forms which are connected to a unique short form at the surface level. For example,
if an English document contains “WHO”-“World Health Organization” and a German
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document contains “WHO”-“Weltgesundheitsorganisation”, the long forms can be re-
garded as possible translations of each other. For English-German, 100,915 of these
pairs can be extracted, for English-Portuguese 151,037, for English-Spanish 109,568,
for German-Portuguese 2,468, for German-Spanish 1,709, and for Portuguese-Spanish
we counted 3,454 of these hypothesized translations (Table 5, Column 3). Of course,
these sets also contain syntactic variants and a large number of false positives, since
short forms are used differently across languages. Therefore, we switched our perspec-
tive to the interlingual layer of long form representations.

4.2.3 Identical SF, Translation of LF
In this condition, we examined those cases, in which short forms were identical and long
forms were different at the surface level, but identical at the interlingual layer, by com-
paring SF-LF pairs extracted from the different source corpora. As a result, we obtained
lists of bilingually aligned terms, such as English “acute lymphatic leukemia” linked
to the German “akute lymphatische Leukämie” via the common short term “ALL”. As
an example, 2,479 translations were generated for English-German using this heuristics
(cf. Table 5 for additional data covering the remaining language pairs, as well).

Table 5. Statistics on Cross-Lingual Acronym Extraction: Results for Identical (I), Different (D)
and Translations (T) of Short Forms (SF) and Long Forms (LF)

Surface MSI
Language I(SF) I(SF) I(SF) D(SF)

Pair I(LF) D(LF) T(LF) T(LF)

EN-GE 584 100,915 2,479 3,212
EN-PT 181 151,037 665 3,982
EN-SP 192 109,568 573 2,136
GE-PT 35 2,468 81 328
GE-SP 40 1,709 110 290
PT-SP 106 3,454 250 207

Total 1,138 369,151 4,158 10,155

4.2.4 Different SF, Translation of LF
In this scenario, we examined those cases, for which the long forms were identical or
translations of each other (i.e., identical at the interlingua layer), but with different short
forms. This captures interesting constellations such as English “AIDS” (“acquired im-
mune deficiency syndrome”) aligned to Spanish or Portuguese “SIDA” (“sı́ndrome de
inmunodeficiencia adquirida”). We collected 207 of these translations for Portuguese-
Spanish, and up to 3,212 for English-German (cf. Table 5, Column 5, for additional data
covering the remaining language pairs, as well).

5 Lexicon Integration

In order to enhance the existing lexicons with acronyms automatically, the quality of
the derived associations of short forms to long forms had to be ensured. To the best
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of our knowledge, we know of no multilingual acronym repository in the biomedical
field which might serve as a suitable gold standard. With 96% precision, as measured
by Schwartz and Hearst [8] on a standardized test set, we expect, however, about 8,500
false positives in the set of unique SF-LF pairs, only considering English (cf. Table 2).
Furthermore, since our work focuses on cross-language information retrieval [1] and
multilingual text classification [7], we are interested in the cross-lingual mapping of
lexical entries. Both challenges are met by a simple heuristics, based upon the idea that
“two languages are more informative than one” [14]. Hence, we incorporated those ex-
tracted SF-LF pairs in our subword lexicons, for which the long form is a translation
of another, at least one, long form in a different language (after mapping on the inter-
lingua layer). Thus, we collected those pairs for which the number of occurrences are
depicted in Column 4 and 5 in Table 5. As a result, we obtained an intersection of 4,931
English SF-LF forms, and, correspondingly, 1,149 for German, 1,077 for Portuguese,
and 647 for Spanish (a total of 7,804). For the monolingual mapping of short forms
to long forms, we decided to additionally collect those language-specific SF-LF pairs,
which occur at least 2 times on the layer of the interlingua (cf. Table 2, right). As Ta-
ble 6 reveals, the lexicon size for the specific languages increased from initially 72,513
entries to 138,343 lexical items ( 61,081 new entries for English, 2,055 for German,
1,585 for Portuguese, and 1,109 for Spanish). Hence, our approach can truly be consid-
ered as a cross-language mining methodology for boosting lexicon growth through the
incorporation of acronyms and abbreviations, as well as their associated completions.

Table 6. Enhancement of the Size of the Subword Lexicon

Language Initial Size New Acronyms

English 22,067 61,081
German 22,497 2,055
Portuguese 14,888 1,585
Spanish 13,061 1,109

Sum 72,513 65,830

Total 138,343

6 Related Work

Several different techniques for the automatic extraction of abbreviations and their de-
finitions from biomedical text (particularly from MEDLINE abstracts) have been de-
veloped up until now. Schwartz and Hearst [8] offer a simple and fast algorithm for
the extraction of abbreviations and their completions from biomedical documents, to
which we completely adhere in our approach. The algorithm achieves 96% precision
and 82% recall on a standardized test collection and, thus, performs at least as good as
other existing approaches [9, 10, 11, 12, 13].

Comprehensive databases with millions of entries are provided by different research
groups [15, 9, 11, 12, 13]. They adopt similar sorts of heuristics such as identifying and
processing parenthetical phrases within texts. Some of them rely on pattern matching
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only [16], some use stemming [9, 13], and/or apply term normalization routines to
abbreviations and full forms [9, 11, 13] or employ statistical metrics [17]. In addition,
Pustejovsky et al. [9] even incorporate a shallow parsing approach. A general overview
of four large databases and their algorithms can be found in [18].

Our approach for the multilingual alignment of acronyms and their definitions is
tied up to the research from these precursors. Unlike most previous research, however,
we heavily exploit the WWW for gathering evidence for the linkage between abbrevi-
ations and their expanded forms. Furthermore, by mapping extracted long forms onto
an interlingual representation layer, an approach which has not been considered so far,
acronyms and their definitions are made comparable across different languages with
a high coverage. The interlingua layer also serves as a conceptual filter to eliminate
false friends (incorrectly linking short and long forms), which are likely to occur in a
multilingual Web environment.

7 Conclusions

We introduced a method for aligning biomedical short forms (acronyms, abbreviations)
and their associated long forms (completions) across four different languages. A total
of 65,830 new lexicon entries were added to an already existing multilingual subword
lexicon, boosting its original size by more than 90% of new lexical material.
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Abstract. Mining patterns under constraints in large data (also called
fat data) is an important task to benefit from the multiple uses of
the patterns embedded in these data sets. It is a difficult task due to
the exponential growth of the search space according to the number
of attributes. From such contexts, closed patterns can be extracted by
using the properties of the Galois connections. But, from the best of
our knowledge, there is no approach to extract interesting patterns like
δ-free patterns which are on the core of a lot of relevant rules. In this
paper, we propose a new method based on an efficient way to compute
the extension of a pattern and a pruning criterion to mine frequent
δ-free patterns in large databases. We give an algorithm (FTminer) for
the practical use of this method. We show the efficiency of this approach
by means of experiments on benchmarks and on gene expression data.

Keywords: Large databases, δ-free patterns, extensions, rules, con-
densed representations.

1 Introduction

Large data are data sets characterized by a large number of columns (i.e., at-
tributes) and few rows (i.e., transactions). Data mining algorithms extracting
patterns have difficulty in running on this kind of data because the search
space grows exponentially according to the number of rows and it becomes huge.
Known algorithms such as Apriori [1] or the recent algorithms that compute
the so-called condensed representations can fail in mining frequent or constrained
patterns in large data [17]. This is an important challenge because these geomet-
rical dimensions are often encountered in a lot of domains (e.g., bioinformatics,
quality control, text mining). For instance, in gene expression data, the matrices
to explore gather the expression of tens of thousands of genes in few biological
situations (we will see in Section 5 an example of such a matrix with 27,679 gene
expressions and 90 biological situations). In quality control, the number of steps
and parameters during the mass production is very numerous.

Extracting the complete collection of patterns under various kind of con-
straints in such data is a promising direction research . The completeness means
that every pattern which satisfies the defined constraints has to be returned
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(e.g., every frequent pattern, every closed pattern). This is important to capture
all the information embedded in the data. For instance, in biological data, fre-
quent patterns are on the basis of synexpression groups (i.e., co-regulated sets
of genes assumed to take part in a common function within the cell). Thanks to
the properties of Galois connections and the transposition of data, a technique
has been proposed in the particular case of closed patterns [17]. Unfortunately,
we will see Section 2.2 that this approach of transposition is impracticable with
the δ-free patterns.

In this paper, we focus on the search of free (or key) patterns [4, 14] and
δ-free patterns [6]. The latter are a generalization of free patterns. Let us re-
call that free patterns are made of attributes without relations among them.
They reveal the sound relationships between the data. With regard to the con-
straint of frequency, they are the minimal patterns of the classes of equivalence.
As the property of freeness (and δ-freeness) is anti-monotonous, free and δ-free
patterns can be efficiently extracted even in correlated data [6]. These patterns
make an efficient condensed representation of all frequent patterns and their uses
are highly interesting. They enable to build rules with a bounded number of ex-
ceptions [5], non redundant rules [18], their capacity to indicate the minimal
part of attributes highlighting a phenomenon is precious in classes character-
ization and classification [3, 7]. δ-free patterns combine the exhaustiveness of
the relations within the database and the simplicity which is required to build
rules (and especially classification rules) without over-fitting. There is a need of
classes characterization and classification techniques in large data, for instance,
to predict a cancer diagnosis according to individual gene expression profiles or,
in the area of the quality control, to detect an equipment which is badly tuned
in a silicon plate production chain.

We propose in this paper a method to mine frequent and δ-free patterns
from large data without transposing the data set. The key idea is to use the
extension of a pattern to check these constraints, because the extension has few
objects in large databases. We show a new property to compute the extension of a
pattern and a new pruning criterion. Their simultaneous use is on the core of the
FTminer algorithm that we propose to extract the frequent and δ-free patterns
from data. Then we show the efficiency of FTminer by means of experiments
on several benchmarks and a gene expression database.

The organization of this paper is as follows. In Section 2, we recall useful
definitions and we discuss related work on δ-free patterns mining. Section 3
presents our approach and new properties on extensions and pruning. The algo-
rithm FTminer is given in Section 4. We end this paper by some experimental
results in Section 5.

2 Context and Definitions

2.1 Notations and Definitions

Basic notations. Let us recall some definitions and notations useful for the rest of
this paper. We define a database r as a relationR between the set A of attributes
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(or items) and the setO of objects (or transactions): for a ∈ A, o ∈ O, aRo if and
only if the object o contains the attribute a. r can also be viewed as a boolean
matrix. In this case, we say that aRo if and only if (a, o) = 1 in the matrix.
Notice that o ∈ O is also a set of attributes. An attribute pattern or itemset
is a subset of A. Similarly, an object pattern is a subset of O. We say that an
attribute pattern X is supported by an object o if o contains X . A specialization
relation is defined on the attributes patterns (resp. objects patterns): a pattern
X1 is more specific than X2 if X2 is a subset of X1. Thanks to this relation,
the attribute patterns can be represented in a lattice. We give an example of
transactional database in Table 1.

Table 1. An example of transactional database

a1 a2 a3 a4 a5 a6 a7 a8

o1 1 0 1 0 1 0 1 0

o2 0 1 1 0 1 0 1 0

o3 1 0 1 0 1 0 0 1

o4 1 0 0 1 0 1 0 1

o5 0 1 1 0 0 1 0 1

γ-frequency and δ-freeness. An attribute pattern X is γ-frequent if it is sup-
ported by at least γ objects in r, γ being a given threshold. In Table 1, the
frequency (noted F) of the attribute pattern a3a5 is 3 (i.e., F(a3a5) = 3) and
a3a5 is said 3-frequent. X is a δ-free pattern if there is no association rule be-
tween two of its proper subsets with less than δ exceptions (i.e., there is no rule
X1 ⇒ X2 with F(X1 ∪X2) + δ ≥ F(X1) and X1 ∪X2 = X and X1 ∩X2 = ∅).
To facilitate the understanding of the next sections, we will use the follow-
ing equivalent definition of the δ-freeness [6]: X is a δ-free pattern if for each
X1 ⊂ X, F(X) + δ < F(X1). In Table 1, a5a8 is 1-free since F(a5a8) = 1 and
one have F(a5) = F(a8) = 3 > F(a5a8) + δ. When δ = 0, X is called a 0-free
set or a free set.

Extension and Intension. We recall the definition of the extension of an attribute
pattern. Let X be an attribute pattern, O an object pattern. The extension
g(X) is the maximal set of the objects containing X . The intension f(O) is the
maximal set of attributes appearing in every object of O. h = f ◦g and h′ = g◦f
are the closure operators of the Galois connection. An attribute (resp. object)
pattern X (resp. O) is closed if h(X) = X (resp. h′(O) = O).

2.2 Related Work

The minimal frequency constraint is the most usual constraint in data mining. It
is on the core of well-known algorithms like Apriori [2] which extracts all the γ-
frequent patterns by scanning the database at each level. This levelwise algorithm
is generalized to anti-monotonous constraints according to the specialization of
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attributes [12]. If this technique is efficient in sparse data, it fails in correlated
data [5]. By computing the frequency of only a few patterns (the minimal and the
maximal patterns of the classes of equivalence), condensed representations based
on free (or key) patterns [4, 14] and on closed patterns [5, 13, 15, 19] improve this
approach on correlated data. These condensed representations are called exact
because the exact frequency of each pattern can be inferred. If a bounded number
of errors on the frequency of patterns is accepted, the condensed representation
of δ-free patterns is more concise and can be mined more efficiently. Let us note
that the δ-freeness is an anti-monotonous constraint and the higher δ, the more
the efficiency of the pruning increases. It is important to be able to extract these
patterns because they enable multiple uses on data mining techniques [3, 11, 18]
(e.g., rules with minimal body, characterization of classes, classification).

Unfortunately, if the number of attributes is very large (i.e., large data), even
the algorithms on condensed representations based on closed and δ-free patterns
fail (except if the frequency threshold is very high, which is not sensible in real
applications). In the specific case of the closed patterns, a technique relying
on the properties of Galois connections and the transposition of data has been
proposed [17]. Unfortunately, there is no straightforward generalization of this
approach for a lot of constraints. By using this technique, the extracted pat-
terns are object patterns and no longer attribute patterns and it is necessary
to define the transposed form of the constraint. It is easy for closed patterns
(thanks to the Galois connections), but not for a lot of constraints and espe-
cially for the δ-freeness [10]. In this case, each equivalence class contains at least
one constrained pattern and one has to consider each attribute pattern of the
lattice [10].

Notice that another method to extract free patterns is presented in [16]. It
uses generalized properties on antimatroid spaces. An antimatroid space corre-
sponds to the particular case of a lattice where each equivalence class of frequency
contains one unique minimal generator. It is unlikely that happens in real data
sets but this method has been extended to spaces that are not antimatroids in [9].
In this last case, the free patterns can be extracted from the closed ones by us-
ing minimal transversals of hypergraphs, but the complexity of the technique
remains an open issue [8] and this approach cannot be used in practice.

3 Computing Frequency and δ-freeness in Large Data

This section presents our approach to mine frequent δ-free patterns in large data.
We start by giving the main ideas, then we specify the technical key points: the
link between extensions and the minimal frequency and δ-freeness constraints,
our technique to compute the extensions and a new criterion based on the con-
junction of the minimal frequency and δ-freeness constraints.

3.1 Main Ideas of Our Approach

The computation of the closures of patterns is often a bottleneck for algo-
rithms mining frequent and δ-free patterns. Unfortunately, in the case of large
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databases, the closures contain a lot of attributes and their storage requires a
large amount of memory. That is why this approach often fails. But, with large
data, there are only few objects which satisfy a set of attributes. Our idea is to
check the δ-freeness constraint by using the corresponding patterns of objects:
the extensions gather small object patterns easier to store.

Let us note that γ-frequency and δ-freeness are anti-monotonous constraints.
We benefit from the pruning properties coming from such constraints. Moreover,
we define and exploit a new pruning criterion stemmed from the conjunction of
the γ-frequency and δ-freeness. This criterion is checked by using the extensions
of patterns. Finally, we think that the success of this approach lies on the com-
bination of these two points: mining γ-frequent and δ-free patterns by using the
extensions and the use of this new pruning criterion.

3.2 Extension as a Frequency

Property 1 indicates the relation between the extension and the frequency of an
attribute pattern.

Property 1. The frequency of an attribute pattern X is equal to the cardinal of
its extension |g(X)|.

It is clear that Property 1 is well known but its use is interesting because
it enables to rewrite the definitions of the minimal frequency and δ-freeness
constraints with extension:

Definition 1. An attribute pattern X is γ-frequent if |g(X)| ≥ γ.

Definition 2. An attribute pattern X is δ-free if for all X1 ⊂ X,
|g(X)| + δ < |g(X1)|.

In the example in Table 1, the extension of the attribute pattern a1a3 is equal
to o1o3 and its frequency is 2 as indicated by Property 1. a1a3 is 2-frequent. To
illustrate Definition 2, let us have a look at the patterns a1a3 and a1a4. a1a3 is
0-free because |g(a1)| = 3 > |g(a1a3)| + δ = 2 and |g(a3)| = 4 > |g(a1a3)| + δ.
Nevertheless, a1a4 is not 0-free since |g(a4)| = 1 = |g(a1a4)|+ δ.

An immediate and important consequence of Definitions 1 and 2 is that we
are now able to establish the frequency and the δ-freeness of any pattern only
with its extension. The next section explains how to compute efficiently the
extensions.

3.3 A New Property to Compute Extension

The Property 2 allows to compute the extension of a pattern X from the exten-
sion of two of its subsets provided that their union is equal to X . So, from the
extensions of the patterns at the level k, we are able to determine the extensions
of the patterns at the level k + 1.

Property 2. Let X1 and X2 be two patterns, the extension of X1 ∪X2 is equal
to g(X1) ∩ g(X2).
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Proof. ⊆ We have X1 ⊆ X1 ∪ X2 and X2 ⊆ X1 ∪ X2. As g is a decreasing
function, we obtain that g(X1 ∪ X2) ⊆ g(X1) and g(X1 ∪ X2) ⊆ g(X2) so we
have immediately g(X1 ∪X2) ⊆ g(X1) ∩ g(X2).
⊇ Let us consider o an object of g(X1) ∩ g(X2). By definition, o contains the
patterns of attributes X1 and X2. As a consequence, we deduce that o contains
X1 ∪X2. So o belongs to g(X1 ∪X2).

For instance, in the example in Table 1: g(a1a8) = o3o4, g(a3a5) = o1o2o3
and g(a1a3a5a8) = o3 = g(a1a8) ∩ g(a3a5).

Several advantages stem from this property for mining patterns in large data.
Firstly, as already said, the extensions are short patterns, easy to store and their
intersections are computed in a short time. Secondly, to get the extension of a
pattern X , we only have to compute the intersection of the extensions of two
subsets of X (and not of all its subsets). Thirdly, the database is only scanned
once (for patterns of length 1, i.e., items). On the contrary of the running of an
usual levelwise algorithm, this avoids storing for each level of the search space
all the candidate patterns.

We will see in Section 4 that it is sufficient to use Property 2 on patterns
having the same length and a common prefix to mine frequent δ-free patterns in
large data.

3.4 A New Pruning Criterion

This section presents a new pruning criterion for mining frequent δ-free pat-
terns. First, let us note that, as both the frequency and the δ-freeness are anti-
monotonous constraints, we naturally use the efficient pruning properties linked
to such constraints [12]. Nevertheless, we go further and we highlight a new
pruning criterion (Criterion 1) which comes from Theorem 1. This new pruning
criterion is based on the common use of the minimal frequency and the δ-freeness
properties.

Theorem 1. Let X be a pattern. If X is a γ-frequent and δ-free pattern then
for all X1 ⊂ X, |g(X1)| is greater than γ + δ.

Proof. Theorem 1 is an immediate consequence of Definitions 1 and 2. X is
a γ-frequent and δ-free pattern. Definitions 1 and 2 imply that for all X1 ⊂
X, γ + δ ≤ |g(X)|+ δ < |g(X1)|.

Pruning Criterion 1. Let X be a pattern such that |g(X)| ≤ γ + δ, there is
no superset of X being a γ-frequent δ-free pattern. So a levelwise algorithm can
prune the search space from X.

Criterion 1 is obtained by the contrapositive of Theorem 1. Let us examine
the pattern a5a7 in the example in Table 1. a5 and a7 are 1-frequent and 1-free.
They cannot be pruned by using classical pruning properties of anti-monotonous
constraints and a5a7 is generated. Nevertheless, by using Criterion 1, a5a7 is not
a candidate because |g(a7)| = 2 = γ + δ. The explanation of this pruning is
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the following. To be 1-frequent, |g(a5a7)| should be greater than or equal to
1. But, to be 1-free, |g(a5a7)| should be smaller than |g(a7)| − 1 = 1. So, the
minimal frequency is in contradiction with the δ-freeness and a5a7 cannot satisfy
simultanously these constraints.

4 FTminer

This section presents FTminer (FT for Free faT1 databases Miner), an
algorithm based on our approach given in Section 3. FTminer extracts all the
γ-frequent δ-free patterns from a database r. It follows the outline of levelwise al-
gorithms. Let us recall that its originality is that there is no generation phase for
all candidates which is very useful for large data. The database is only scanned
once (for items) and, thanks to the use of extension, generation and verifica-
tion are simultaneous. The process is also speeded up by the pruning Criterion 1.

FTminer ( database r, threshold γ, number of exceptions δ )

1. Free1 := {a ∈ A | |O| − δ > |g(a)| ≥ γ}
2. Gen1 := {a ∈ Free1 | |g(a)| > γ + δ)}
3. k := 1
4. while Genk 	= ∅ do
5. for each (Y ∪ {A}, Y ∪ {B}) ∈ Genk × Genk do

// generation of one candidate of length k + 1
6. X := Y ∪ {A} ∪ {B}
7. g(X) := g(Y ∪ {A}) ∩ g(Y ∪ {B})

// γ-frequency
8. if |g(X)| ≥ γ then

// δ-freeness
9. i := 1

10. while i ≤ k + 1 and X\{xi} ∈ Genk and
|g(X)|+ δ < |g(X\{xi})| do

i := i + 1
11. od
12. if i = k + 2 then
13. Freek+1 := Freek+1 ∪ {X}
14. if |g(X)| > γ + δ then
15. Genk+1 := Genk+1 ∪ {X}
16. od
17. k := k + 1
18. od
19. return

⋃k−1
i=1 Freei

1 The word “fat” is also used to refer to large data sets as indicated for instance by
D. Hand during his invited talk at PKDD’04.
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Let Freek be the set of the free patterns at the level k whose frequency is
greater than or equal to γ and Genk be the set of generators at the level k i.e.,
the patterns in Freek with a frequency greater than γ + δ.

The first step is the initialization of Free1 and Gen1. One scan on the
database enables to compute the extension of the items and to determine whether
they are γ-frequent and δ-free or not and Free1 is obtained (Line 1). The initial-
ization of Gen1, using the pruning Criterion 1, stands in Line 2 and Gen1 contains
the γ-frequent δ-free patterns which have a frequency greater than γ + δ.

The main loop begins in Line 4: it stops when there is no generators left at
the considered level. For generating one candidate X at the level k + 1 (Line 5),
two patterns having a common prefix Y of length k − 1 are joined (Line 6).
The computation of the extension of X by intersecting the extensions of its
generators is performed Line 7 using Property 2. In Line 8, Definition 1 is used
to test whether the candidate X is γ-frequent thanks to its extension.

The loop begining at Line 10 considers every subset of X of length k. For
each one (except for the two generators) the algorithm checks if it belongs to
Genk (i.e., if it is γ-frequent, δ-free and if its frequency is greater than γ + δ)
and if its frequency is greater than the frequency of the candidate plus δ. If X
satisfies all the tests (Line 12), it is added in Freek+1. Moreover, X is also a
generator if its frequency is greater than γ + δ using Criterion 1.

Theorem 2 shows that FTminer is correct and complete.

Theorem 2. The algorithm FTminer extracts all the γ-frequent and δ-free pat-
terns from the database r.

Proof (Correctness). Let us prove that a pattern X in Freek is a γ-frequent δ-
free pattern. We test at Line 8 if |g(X)| ≥ γ, what ensures that X is γ-frequent.
At Line 10, we establish that X is δ-free using the condition |g(X)| + δ <
|g(X\{xi})| (cf. Definition 2).

Proof (Completeness). The algorithm FTminer covers the whole attribute
search space thanks to the principle of the levelwise algorithms. The accuracy
of the used pruning criteria (properties of anti-monotonous constraints and Cri-
terion 1) entails the completeness of FTminer.

5 Experiments

The aim of the experiments is to show the run-time benefit brought by FTminer
and emphasizes that FTminer is able to mine frequent δ-free patterns in sit-
uations where prototypes (even taking benefit from condensed representations)
fail. In Section 5.1 we compare on benchmarks FTminer to MVminer. The
latter is a common prototype to extract condensed representations composed of
δ-free patterns2. Let us note that it is equivalent to ACminer implemented by

2 MVminer has been implemented by François Rioult (GREYC).
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A. Bykowski (LIRIS) [5]. To the best of our knowledge, there exists no other
prototype to mine frequent δ-free patterns. Section 5.2 widens the comparison
to real gene expression data sets.

All the tests were performed on a 2.20 GHz Pentium IV processor with Linux
operating system by using 3Go of RAM memory.

5.1 Results on Benchmarks

The benchmarks come from the UCI repository3.

Benchmarks with a Lot of Attributes. In order to get large benchmarks, we
transposed the CMC and ABALONE data sets. Thus, in the following, the used data
sets have 30 rows and 1474 columns for CMC, 30 rows and 4178 columns for
ABALONE. Figure 1 plots the comparison between FTminer and MVminer on
run-times during the computation of frequent 0-free patterns according to the
frequency threshold γ. γ ranges from 10 to 6 (37 to 20 percent) for CMC, 9 to 6
(30 to 20 percent) for ABALONE.
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Fig. 1. Run-time performances according to the frequency on large data

As expected, the run-time increases when γ decreases. FTminer clearly out-
performs MVminer (Figure 1). The latter fails when γ is equal to 5 (17%) for
lack of memory while FTminer ends in 2420 s on CMC. MVminer also fails on
ABALONE when γ is equal to 6 (20%).

Benchmarks with Usual Dimensions. Out of curiosity, we test FTminer on
data with usual dimensions i.e. having much more rows than attributes. We
used the benchmarks MUSHROOM and PUMSB (from UCI repository). MUSHROOM
is a 8124 × 120 data and PUMSB a 49046 × 7118 data. Figure 2 indicates that
FTminer runs faster than MVminer even if there is an important number of

3 http://www.ics.uci.edu/~mlearn/MLSummary.html
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Fig. 2. Run-time performances according to the frequency on data having usual

dimensions

objects in MUSHROOM and PUMSB. However, in one situation (PUMSB benchmark
with a relative frequency threshold of 75.5%), FTminer was lacking of memory
due to the size of the extensions while MVminer ends in 8829 seconds. This
result was expected because the benefit of using the extension on large data
(i.e., few patterns of objects) might not be reached on huge data with usual
dimensions.

5.2 Results on Gene Expression Data Sets

We performed similar comparisons on a publicly available human Serial Anal-
ysis of Gene Expression (SAGE) data set4 SAGE is an experimental technique
designed to quantify gene expression. SAGE data provide expression values for
given biological situations and given genes. These data sets are characterized by
a large number of columns and few biological situations. For instance, the data
set used for these experiments gathers 27,679 gene expressions for 90 biological
situations.

Figure 3 (left) plots the run-times for mining the 3-free patterns with γ
varying from 30 to 24 (33 to 27 percent). We used a logarithmically scaled
ordinate axis. With a relative frequency threshold of 33.3%, FTminer spends
30 seconds whereas one day is needed for MVminer. With a threshold of 32%,
FTminer spends 50 seconds and MVminer more than two days. Such results
show the efficiency of FTminer on large data.

Another aim was to experimentally quantify the efficiency of the new pruning
criterion (Criterion 1). Figure 3 (right) plots the run-times of the extractions with
and without this pruning criterion according to the number of exceptions. The
run-time benefit is important: for γ = 27 (corresponding to 30%) and δ = 5,
it spends 31 seconds to extract the frequent δ-free patterns using Criterion 1
and 527 seconds without. In average, the run-time is divided by 7 thanks to
4 This data set comes from the CGMC laboratory (CNRS UMR 5534) and has been

prepared by Olivier Gandrillon and Sylvain Blachon.
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Criterion 1. This can be explained by the large number of candidates additionally
pruned thanks to this criterion: when γ = 27 and δ = 5, this number is divided
by 52, from 732,557,270 to 14,056,991.

Obviously this approach runs on other gene expression data sets. Out of cu-
riosity, we ran our prototype on the gene expression data GDS464 from the Gene
Expression Omnibus repository5 This data (collected in Dual-Channel experi-
ments) gives the expression of 7085 genes in 90 biological situations. Figure 4
shows the run-times for mining the 2-free patterns according to γ (logarithmi-
cally scaled ordinate axis). The extraction becomes intractable with MVminer
when γ is less than 20%.

These experiments show that using both the extensions and the new pruning
criterion enables to mine frequent δ-free patterns in large data whereas other
approaches fail.
5 Publicly available at URL http://www.ncbi.nlm.nih.gov/projects/geo/gds/gds
browse.cgi?gds=464
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5.3 Discussion

These experiments prove the practical interest of the use of the extension in the
case of large data sets. Nevertheless, Section 5.1 shows that the use of exten-
sion could also be efficient when mining data with usual dimensions (i.e., a large
number of objects and few attributes). Furthermore, even in such data, the com-
putational cost of the closures is more expensive than the one of the extension.
It may be explained by the fact that the computing of a closure requires to in-
tersect all the objects containing a given pattern in the data set. The computing
of an extension is purely limited to the intersection of two objects as explained
in Section 3.3.

6 Conclusion

Mining patterns in large data is a difficult task due to the large number of
attributes. It is an important challenge because a lot of data sets have such geo-
metrical dimensions and patterns like frequent δ-free are required by the owners
of the data for several uses like classes characterization or classification. In this
paper, we have proposed a new method based on a efficient way to compute the
extension of a pattern and a pruning criterion to mine frequent δ-free patterns
in large databases. A key point of the success of this approach is that the ex-
tensions in large data gather small object patterns easy to store. Experiments
on benchmarks and a real gene expression data set show the practical use of
this approach. Further work deals with the use of the extension to improve the
extraction of patterns satisfying other constraints.
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Abstract. In this paper we study a new technique we call post-bagging,
which consists in resampling parts of a classification model rather then
the data. We do this with a particular kind of model: large sets of classifi-
cation association rules, and in combination with ordinary best rule and
weighted voting approaches. We empirically evaluate the effects of the
technique in terms of classification accuracy. We also discuss the predic-
tive power of different metrics used for association rule mining, such as
confidence, lift, conviction and χ2. We conclude that, for the described
experimental conditions, post-bagging improves classification results and
that the best metric is conviction.

1 Introduction

One can use an association rule discovery strategy to obtain a large set of rules
from a given dataset, and subsequently combine a subset of the rules to obtain
a classification model. This two-step training process is typically heavier than
building directly a model, such as a decision tree. The motivation for going the
long way lies on the possibility for delaying heuristic decisions in model building,
while maintaining the scalability of the process. On the other hand, association
rules can be seen as Bayesian statements about the data, and can be combined
using Bayesian principles in a justified way.

As an example of the power of association based classifiers we can resort to
a variant of the well known XOR two class problem, with three independent
attributes (x, y and z) and one dependent attribute class, all taking values 0 or
1. The value of class is 1 if and only if x and y have different values. Attribute z
introduces noise. A heuristic method, such as decision tree induction, will tend
to choose z as the root variable, and then possibly fail to discover the correct
answer in all the branches. A technique based on association rules can discover
the 4 rules that are needed to correctly classify a new example, independently
of the values of z.
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Since at least 1997, some proposals have appeared that employed association
rules to obtain classification models [2] [15][17][18][20]. Such classifiers have been
empirically shown as competitive in terms of predictive power (although, in the
case of the works cited above, no indication of the statistical significance of the
results has been provided). In this paper we explore a variant of bagging [6] to
obtain a classification model from a set of association rules. In classical bagging,
a number of bootstrap samples are obtained from the given training examples.
For each sample, a classification model is learnt, and new cases are classified
by combining the decisions of the resulting models for the new case. Bagging
is therefore an ensemble method that requires a single training data set and a
single model generator algorithm.

We propose and empirically evaluate a post-bagging method. From the train-
ing data, we obtain one set of association rules, and from that single set of rules
we build a number of (partial) classification models using a bootstrap sampling
approach on the set of rules.

We compare this approach with the single best rule and voting approaches
using different rule characterization metrics, and also with two decision tree
methods (c4.5 and rpart) on 12 datasets. The empirical results provide some
evidence on the average predictive power of post-bagging.

2 Classification from Association

An association rule discovery algorithm such as APRIORI [1], takes a set of
transactions D = {T | T is a set of items i}, a minimal support threshold σ
and a minimal confidence threshold φ, and outputs all the rules of the form
A → B, where A and B are sets of items in D and sup(A ∪ B) ≥ σ and
sup(A ∪ B)/sup(A) ≥ φ. sup(X) is the support or the relative frequency of an
item set X observed in D.

Association rule discovery can be directly applied to tabular datasets, such
as the typical UCI dataset, with one column for each attibute by regarding
each example as a set of items of the form < attribute = value >. Likewise,
continuous attributes can be dealt with if discretized in advance.

Despite the fact that an association rule algorithm finds ALL rules that sat-
isfy σ and φ, the discovery process can be relatively fast and discovery time
grows linearly with the number of examples (clearly shown in [1] for the algo-
rithm AprioriHybrid). This provides a scalable heuristic-free process that makes
possible to avoid greedy methods such as decision trees.

The discovery of association rules can then be seen as a step preceding model
building, or a computationally feasible way of having a quasi-complete search on
the space of rules. A classification rule model built from such an unrestrained
set of rules can potentially be more accurate than another using a greedy search
approach [17,18,20].

Which is the best way of obtaining a classification model from a set of associ-
ation rules is, however, not entirely clear. One can look at the set of association
rules as a large decision list ordered by confidence and support [18], or by some
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other metric. Rules can also be combined to classify new examples through some
kind of voting [17] or by using Bayesian principles [20].

In the following, we state the problem of finding a good Classification model
from Association Rules.

2.1 The Problem

The problem we approach in this paper consists in obtaining a classifier, or a
discriminant model M , from a set of association rules R. The rules are generated
from a particular data set D of cases T , where each case T is a set of pairs
< attribute = value >, where value can be categorical or numerical. One of the
attributes is the class attribute, ranging over a finite, and typically small, set G
of classes. All the rules have exactly one item on the consequent involving the
class attribute.

We want the model M to be successful in the prediction of the classes of
unseen cases taken from the same distribution as D. A Bayesian view of the
success of a classifier defines that the optimal classifier MBayes maximizes the
probability of predicting the correct class value g ∈ G for a given case x [11].

MBayes(x) = max
g∈G

Pr(g | x) (1)

The success of a model M in estimating MBayes will depend on how the model
is obtained from R and on how it is used to classify new cases from R. Given a
case with description x, the confidence φ of an association rule x′ → class = g,
with x′ covering x, estimates the conditional probability Pr(g | x′) , and in the
lack of more information it is a good estimator of Pr(g | x). The coverage relation
is defined as: x covers x′ iff x′ ⊆ x when x and x′ are sets of items.

Previous work on classification from association rules has confirmed the pre-
dictive power of confidence. In this paper we provide empirical indication that
another metric, conviction, obtains better results.

When we have a set R of association rules, we can expect to obtain more
predictive power by combining different rules that apply to the same case. How
to select the rules from R and how to use them is not trivial. In other words,
given a rule set R, how do we obtain and use a classification model M?

3 Obtaining Classifiers from Association Rules

We can regard classification from association rules as a particular case of the
general problem of model combination. Either because we see each rule as a
separate model or because we consider subsets of the rules for combination. We
first build a set of rules R. Then we select a subset M of rules that will be used
in classification, and finally we choose a prediction strategy π that obtains a
decision for a given unknown case x. To optimize predictive performance we can
fine tune one or more of these three steps.

Strategy for the Generation of Rules: The simplest choice is to run APRI-
ORI [1] once over the data D. The choice of minimal support and confidence
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is not trivial. Constraints on other rule charateristics can be used. A more so-
phisticated approach is to employ a sort of coverage strategy [18]: Build all the
association rules, choose the best, remove the covered cases and repeat until all
cases are covered. In [17] this standard coverage strategy is generalised to allow
more redundancy between rules. A case is only removed from the training data
when it is covered by a pre-defined number of rules.

In our work, we build the set of rules separately using the Carenclass system
[4]. Carenclass is specialized in generating association rules for classification and
employs a bitwise depth-first frequent patterns mining algorithm. It resembles
the ECLAT algorithm proposed in [25], which is also a depth first algorithm that
makes use of a vertical representation of the database.

Choice of the Rule Subset:We can use the whole set of rules for prediction,
and count on the predictive strategy to dynamically select the most relevant
ones. Selection of rules is based on some measure of their quality, or combination
of measures. The structure of rules can also be used, for example for discarding
rules that are generalizations of others. The general effort of discarding rules that
are potentially irrelevant or harmful for prediction is called pruning [17][18].

Strategy for Prediction: Most of the previous work on using association rules
for classification has been done on this topic. The simplest approach is to go
for the rule with the highest quality, where quality is typically measured as the
confidence of the rule, sometimes combined with support [18]. Other approaches
combine the rules by some kind of committee method, such as simple voting [14],
or weighted voting [17]. In this paper we explore another possibility inspired in
bagging [6].

4 Rule Generation

Typically, the generation of association rules is done after the identification of
frequent itemsets. For efficiency purposes, it is desirable to push the rules genera-
tion task into the frequent pattern mining phase. Frequent itemset identification
is typically done as follows: first, all frequent items are identified, and then candi-
date itemsets are generated following an imposed order. In the case of [1] this is a
lexicographic order. Other, like [25], use a support oriented order. When we inter-
leave frequent itemset counting and rule generation, as soon as a frequent itemset
is counted and checked as valid (for instance, that it contains the required conse-
quent item), rule generation for that itemset can be triggered. However, depth-
first approaches to itemset mining face a problem. It may happen that subsets
of the itemset in question are not yet determined due to unfavourable ordering.
Thus, we might have a rule ready to be derived (because it already contains a
consequent item) but that does not have its antecedent support already counted.

Carenclass has a simple and elegant approach to this problem. Since it knows
in advance which items it will generate rules for (they will occur in the conse-
quent) it imposes an itemset ordering that keeps the itemsets involving conse-
quent items at the end. This ensures two things: first, consequent items appear
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at last in an itemset; secondly, when about to generate a rule, the subset of the
itemset (without the consequent item) is already counted.

5 Rule Selection

Rule selection, or pruning, can be done right after rule generation. However,
most of the rule selection techniques can be used earlier when the rules are
being generated.

Pruning techniques rely on the elimination of rules that do not improve more
general versions. For example, rule {a, b, c} → g, may be pruned away if rule
{a, c} → g has similar or better predictive accuracy. CBA [18] uses pessimistic er-
ror pruning. Another possibility is to simply use some measure of improvement [5]
on a chosen rule quality metric. Using the same example as above, if we set a min-
imal confidence improvement of 0.1, we may discard {a, b, c} → g if its confidence
is less than confidence({a, c} → g)+0.1. In general, improvement(A→ B) can
be defined as min({metric(A→ B)−metric(As → B) | As ⊆ A}, where metric
is a rule characterization metric such as confidence.

At modeling time we can still reduce the set of rules by choosing only the
N -best ones overall, or the N -best ones for each class [14], where N is a user
provided parameter. This technique may reduce the number of rules in the model
dramatically, but the choice of the best value for N is not clear. The rule selection
method RC [15] builds a decision list by traversing the generalization lattice of
the rules and by looking at the training error of the rules. It starts with the
most general rules, which will be at the bottom of the decision list. After that,
it moves to the next level of the generalization lattice and chooses the rules that
better handle the exceptions of the more general rules, while discarding the other
rules at the same generalization level. This is done iteratively until the bottom
of the lattice is reached.

6 Combining the Decisions of Rules

In this section we will analyze how association rules have been, and can be used
for classification purposes, by studying the quality of the decisions produced.
In the discussion we assume we have a static set R of classification association
rules, and a predefined set of classes G and that we want to classify cases with
description x, where the description of a case is a set of statements involving
independent attributes. The set of rules that apply to the case, or that fire upon
the case with description x will be F (x) defined as {(x′ → class = g) ∈ R | x′ ⊆
x, g ∈ G}.

Given a new case x to classify, we can use some prediction strategy to combine
the rules in R.

6.1 Best Rule

This strategy tries to solve the problem with one single rule bestrulex obtained
with:
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bestrulex = arg max
r∈F (x)

metric(r) (2)

The metric used is a function that assigns to each rule a value of its predictive
power. In this paper we study interest metrics typically used in association rule
discovery: confidence, conviction, lift and χ2.

Confidence is the natural choice when it comes to prediction. It estimates
the posterior probability of B given A, and is defined as confidence(A→ B) =
sup(A ∪B)/sup(A).

Lift is sometimes also called interest [8] and is a ratio between the observed
support of A ∪ B and its expected support under the assumption that A and
B are independent, lift(A → B) = sup(A ∪B)/(sup(A).sup(B)). Under this
assumption, the expected support is given by sup(A).sup(B). Lift measures the
deviation from independence of A and B. If lift is close to 1, A and B are
independent, and the rule is not interesting.

Conviction is another interest metric [8] that also measures the independence
of A and B, but goes a little bit further. Contrarily to lift, conviction is sensitive
to rule direction (lift(A→ B) = lift(B → A)). Conviction is somewhat inspired
in the logical definition of implication and attempts to measure the degree of
implication of a rule. Conviction is infinite for logical implications (confidence
1), and is 1 if A and B are independent.

conviction(A→ B) =
1− sup(B)

1− confidence(A→ B)
(3)

Another way of measuring the independence of antecedent and consequent
of a rule is by testing that hypothesis with a χ2 test [19]. If the value of the
statistic (equation 4) is close to zero the hypothesis of independence is accepted.
How close it must be to zero depends on the level of the significance of the test.

χ2(A→ B) =| D |
∑

X∈{A,¬A},Y ∈{B,¬B}

(sup(X ∪ Y )− sup(X).sup(Y ))2

sup(X).sup(Y )
(4)

where | D | is the database size.
The prediction given by the best rule is the best guess we can have with one

single rule. When the best rule is not unique we can break ties maximizing sup-
port [18]. A kind of best rule strategy, combined with a coverage rule generation
method, provided encouraging empirical results when compared with state of
the art classifiers on some datasets from UCI [21].

However, the decision of a single rule is optimal only if we have a rule x →
class = g that uses all the information in the description of the case. In general
such a ‘complete’ rule has a very low support, most likely zero, and will not be
available, or is not reliable. Therefore, we can expect to improve the quality of the
prediction by using rules that use different sets of attributes in the antecedent.
In [20] different rules have been combined to better approximate a Bayesian
estimate of the probability of each class.



An Experiment with Association Rules and Classification 143

6.2 Voting

These strategies combine the rules F (x) that fire upon a case x. A simple vot-
ing strategy takes all the rules in F (x), groups the rules by antecedent, and
for each antecedent x′ obtains the class corresponding to the rule with highest
confidence. We will denote the class voted by an antecedent x′ with a binary
function vote(x′, g) which takes the value 1 when x′ votes for g, and 0 for the
other classes.

predictionsv = arg max
g∈G

∑
x′∈antecedents(F (x))

vote(x′, g) (5)

6.3 Weighted Voting

This strategy is similar to voting, but each vote is multiplied by a factor that
quantifies the quality of the vote [16]. In the case of association rules, this can
be done using one of the above defined metric.

predictionwv = arg max
g∈G

∑
x′

vote(x′, g). maxmetric(x′ → g) (6)

Carenclass implements these and other prediction strategies efficiently by
keeping in an appropriate data structure [3].

In the next section we describe a technique for rule combination inspired in
bagging.

7 Bagging Association Rules for Classification

Bagging is the generation of several models from bootstrap samples of the same
original dataset D [6]. The prediction given by the set of resulting models for one
example e is done by averaging the predictions of the different models. Bagging
has the effect of improving the results of an unstable classifier by reducing its
variance [11]. Domingos [9] suggests that, in the case of decision trees, bagging
works because it increases the probability of choosing more complex models.

In the case of classification from association, we obtain a large set of rules
R that contain many alternative possible models. So what we propose is the
technique we call post-bagging. It consists in sampling repeatedly the set of rules
a posteriori to obtain an ensemble of models similarly to bagging. The models
in a particular ensemble will be similar, but their differences will tend to reflect
the variability of rule sets obtained from the same source of data.

New cases are classified by obtaining the prediction of each of the models
in the ensemble (and this can be done with any strategy), and using simple
voting to combine those predictions. Experimental evaluation indicates that this
technique can obtain good results when compared to a bestrule or a voting
approach, or even to decision tree learners, such as c4.5 [23] and rpart [13].

We will now describe the BAGGAR (Bootstrap Aggregation of Association
Rules) algorithm (Algorithm 1) in detail. After obtaining a set of association
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rules R from a dataset D, we build a number of baggs from R. Each bagg is
a sample with a pre-defined size of the rule set. Sampling is performed with
replacement. The number of baggs (n.baggs) is 30 by default, and the size T
of each bag is, in general, 10%. These defaults have been set in preliminary
experiments and should not be regarded as necessarily ideal.

Algorithm 1. Baggar Algorithm, training
Given: a set E with labelled examples; n.bags: the number of baggs (default 30);
T : size of each bag (default min(| R |, max(50, 0.1× | R |)))
Do:

1. Build a set R of Association Rules
2. For i in 1 to n.bags
3. Si ← sample with replacement from R of size T

Output: the set of baggs {Si}

The classification of a single example e using a set of baggs {Si} is done by
applying a chosen prediction strategy π to each of the baggs. The most voted
class is then output as the overall prediction.

8 Empirical Evaluation

To test the value of post-bagging, we have compared different variants of caren-
class, corresponding to different prediction strategies, on 12 UCI datasets [21].
To serve as a state of the art reference, we used the decision tree inducer c4.5
[23]. Due to its availability and ease of use we have also compared the results
with rpart from the statistical package R [13]. Rpart is a CART-like decision tree
inducer [7].

We used eight carenclass variants, by combining two strategies: “Best rule”
and “Weighted Voting” with four metrics (confidence, conviction, lift and χ2).
Minimal support was set to 0.02 and minimal improvement to 0.01. For each
combination we ran carenclass with and without post-bagging. Numerical at-
tributes have been previously discretized using Weka’s [24] implementation of
Fayyad and Irani’s supervised discretization method [10].

An estimation of the error of each algorithm (and carenclass variant) was
obtained on each dataset with a 10 × 10-fold cross-validation (Table 2). From
the estimated errors we ranked the algorithms separately for each dataset, and
used mean ranks as an indication of global rank. Besides that, we have studied
the statistical significance of the results obtained.

8.1 Post-Bagging Ranks High

The first empirical observation is that 3 post-bagging variants rank high among
the four top places (Table 3). Compared to c4.5 and rpart, 5 carenclass variants
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Table 1. Datasets used for the empirical evaluation

Dataset #examples #classes #attr

australian 690 2 14
breast-wisconsin 699 2 9
cleveland 303 5 13
diabetes 768 2 8
flare 1066 2 10
heart 270 2 13
hepatitis 155 2 19
house votes 435 2 16
german 1000 2 20
segment 2310 7 19
vehicle 846 4 18
yeast 1484 10 8

Table 2. Average error rates obtained with the algorithms on the datasets (minimal
support=0.02 and improvement=0.01)

austr breas diabe flare cleve yeast house germa vehic heart hepat segme
rpart 0.1504 0.0611 0.2572 0.1831 0.4566 0.4276 0.0481 0.2611 0.3213 0.1856 0.3044 0.0831
c4.5 0.1493 0.0512 0.2599 0.1804 0.4939 0.4408 0.0343 0.2862 0.2690 0.2205 0.2122 0.0324
Bestrule.conf 0.1432 0.0438 0.2279 0.1884 0.4587 0.4439 0.0770 0.2961 0.3968 0.1767 0.1794 0.1731
Bestrule.lift 0.3096 0.1890 0.4158 0.2179 0.6545 0.5237 0.4457 0.5865 0.4358 0.2270 0.5819 0.1752
Bestrule.conv 0.1409 0.0413 0.2236 0.2039 0.4466 0.4408 0.0770 0.2801 0.3961 0.1715 0.1794 0.1729
Bestrule.chi 0.1449 0.0635 0.2798 0.1978 0.4409 0.4558 0.0498 0.3059 0.4893 0.2522 0.3006 0.3315
Voting.conf 0.1800 0.0372 0.2301 0.1857 0.4306 0.4591 0.1236 0.2558 0.3590 0.1759 0.2314 0.2808
Voting.lift 0.1686 0.0300 0.2365 0.1936 0.4565 0.4448 0.1417 0.2592 0.3586 0.1707 0.3663 0.2805
Voting.conv 0.1542 0.0376 0.2244 0.1856 0.4272 0.4453 0.1101 0.2465 0.3437 0.1596 0.2108 0.1971
Voting.chi 0.1448 0.0388 0.2400 0.1913 0.4285 0.4397 0.1423 0.2683 0.3872 0.1767 0.2401 0.2914
Bag.Bestrule.conf 0.1351 0.0378 0.2271 0.1880 0.4345 0.4480 0.0723 0.2883 0.3696 0.1696 0.1663 0.2533
Bag.Bestrule.lift 0.2035 0.0571 0.3278 0.2104 0.5065 0.4764 0.2767 0.4322 0.3831 0.1681 0.5099 0.2515
Bag.Bestrule.conv 0.1345 0.0329 0.2246 0.1984 0.4361 0.4426 0.0739 0.2699 0.3702 0.1648 0.1672 0.2533
Bag.Bestrule.chi 0.1480 0.0499 0.2582 0.1968 0.4176 0.4488 0.1457 0.2961 0.4186 0.1800 0.2554 0.3196
Bag.Voting.conf 0.1810 0.0376 0.2283 0.1853 0.4326 0.4582 0.1220 0.2562 0.3597 0.1737 0.2314 0.2819
Bag.Voting.lift 0.1703 0.0300 0.2381 0.1939 0.4518 0.4427 0.1393 0.2567 0.3589 0.1707 0.3622 0.2823
Bag.Voting.conv 0.1394 0.0342 0.2219 0.1850 0.4287 0.4469 0.0778 0.2528 0.3437 0.1659 0.2048 0.2592
Bag.Voting.chi 0.1535 0.0399 0.2424 0.1906 0.4318 0.4435 0.1425 0.2636 0.3876 0.1778 0.2414 0.3043

rank higher than those. Although this is a good indication of the predictive
power of post-bagging, we still have to discriminate its effect from the effect of
the metric, and test its statistical significance.

To perceive the specific effect of post-bagging, we can observe that 5 (Vot-
ing.conv, Bestrule.conv, Bestrule.conf, Bestrule.chi and Bestrule.lift) against 3
(Voting.conf, Voting.lift, Voting.chi) of the carenclass variants benefit from post-
bagging. The improvement is more visible on the simple Bestrule approach,
rather than Voting. This may be explained by the fact that Voting is already a
multi rule method.

We should note that the segment data set appears as a particularly difficult
task for our association rule approaches. This is the data set, out of these 12,
where the tree approaches perform visibly better. Moreover, it is also the only
data set where post-bagging does not improve the results of best rule with con-
fidence as a metric. In fact, post-bagging obtains very bad results. The segment
data set has seven equally balanced classes. However, the number of rules per
class tend to be unbalanced, which may be the reason for the higher error of the
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Table 3. Ranks obtained (minimal support=0.02 and improvement=0.01)

mean austr breas diabe flare cleve yeast house germa vehic heart hepat segme
Bag.Voting.conv 4.79 3 4 1 3 4 11 8 2 3.5 3 5 10
Voting.conv 5.42 12 6.5 3 5 2 10 9 1 3.5 1 6 6
Bag.Bestrule.conv 6.21 1 3 4 15 9 5 5 10 10 2 2 8.5
Bag.Bestrule.conf 6.88 2 8 5 7 8 12 4 13 9 5 1 8.5
Bestrule.conv 7.79 4 11 2 16 11 3.5 6.5 11 14 8 3.5 3
c4.5 8.04 9 14 15 1 16 3.5 1 12 1 16 7 1
rpart 8.17 10 16 13 2 14 1 2 7 2 15 14 2
Voting.conf 8.88 15 5 8 6 5 16 11 3 7 10 8.5 12
Bag.Voting.conf 9 16 6.5 7 4 7 15 10 4 8 9 8.5 13
Bestrule.conf 9.08 5 12 6 8 15 8 6.5 14.5 15 11.5 3.5 4
Voting.chi 9.38 6 9 11 10 3 2 14 9 12 11.5 10 15
Voting.lift 9.5 13 1.5 9 11 13 9 13 6 5 6.5 16 11
Bag.Voting.lift 9.5 14 1.5 10 12 12 6 12 5 6 6.5 15 14
Bag.Voting.chi 10.92 11 10 12 9 6 7 15 8 13 13 11 16
Bag.Bestrule.chi 12.62 8 13 14 13 1 13 16 14.5 16 14 12 17
Bestrule.chi 13.67 7 17 16 14 10 14 3 16 18 18 13 18
Bag.Bestrule.lift 14.42 17 15 17 17 17 17 17 17 11 4 17 7
Bestrule.lift 16.75 18 18 18 18 18 18 18 18 17 17 18 5

best rule approach: classes with more rules tend to get more votes. Similarly,
the rule distribution per class is unbalanced in the produced baggs.

8.2 Conviction Ranks High

Four of the five top places are taken by carenclass variants that use conviction
as a rule value metric. Moreover, conviction always has higher mean ranks than
all the other metrics with respect to all the variants, and always higher than
c4.5 and rpart. This predictive power of conviction is somewhat surprising and
deserves to be better explained in the future. One possibility for the apparently
good predictive performance of this metric may be due to the fact that it tends
to favour less frequent classes. In particular, given two rules with the same confi-
dence, conviction prefers the one whose consequent has lower support (Equation
3). The results with segment corroborate this intuition. This is a problem with 7
equally frequent classes. As a result, confidence and conviction practically have
the same results. This is also observed on datasets with an almost balanced
number of classes (australian, heart, vehicle).

The second best metric is clearly confidence. χ2 and lift seem more or less
equivalent in terms of results with a slight advantage to χ2. Note that these two
metrics are symmetric w.r.t. antecedent and consequent of the rule, contrarily
to confidence and conviction.

8.3 Statistical Significance of Results

Although the average ranks provide a good overall picture of the results, these
should be verified in terms of statistical significance. Our claims are based on
statements of the form “algorithm x is better than algorithm y”, and “the tested
algorithms perform equally”. To assess the statistical significance to such state-
ments we will use paired t-tests and the Friedman rank sum test [22]. The t-tests
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are used as follows. For each partition of a dataset, we average the 10 error val-
ues obtained with a given algorithm from 10-fold cross validation. Since we have
10 different partitions we obtain 10 average errors. To compare two algorithms
we perform an hypothesis test where the two samples are the average errors of
each algorithm on the same dataset. The null hypothesis is that the algorithms
perform equally. The alternative hypothesis is accepted if the p value for the t
statistic is lower than 0.001. Friedman tests the hypothesis that all the methods
have equal performance.

Table 4. Statistically significant (α = 0.001) wins

Bestrule Voting

conv conf conv conf

Bagging Simple Bagging Simple Bagging Simple Bagging Simple

c4.5 3/4 4/3 3/5 3/2 3/5 3/5 4/5 5/5
rpart 3/3 4/3 5/3 4/3 3/3 2/3 5/3 5/3

If we compare directly post bagging and single model variants using t-test,
we observe that statistically significant wins are not outstanding (Table 4). We
mostly observe a near-draw with a slight advantage in favour of the post-bagging
variants. However, if we separately compare post-bagging and the respective sin-
gle model variant with c4.5, we observe a higher number of statistically significant
wins of the post-bagging approach. With respect to rpart, post-bagging tends to
improve the results of the single model variants. Compared with post-bagging,
we observe an advantage of rpart, despite the fact that the direct comparison
between rpart and c4.5 is favourable to the latter (4 wins against 2).

By using Friedman’s test on all the data on Table 2, we reject the hypothesis
that all the approaches have equal performance with very high confidence (p-
value is lower than 10−7). However, if we take out the carenclass variants that
use lift and χ2, p-value goes up to 0.13. Despite the good indications given by the
ranking and the t-tests, and despite the fact that similar rankings are observed
when the parameters of post-bagging are changed (number of baggs=30, 50, 70,
200; size of baggs=50%, minsup=0.01), we cannot firmly claim that there is a
highly significative advantage in using post-bagging.

9 Conclusions

We have presented the technique of post-bagging, which produces an ensemble
of rule classification from a single set of association rules. Post bagging has the
advantage that a single model is built from the dataset and bootstrap models are
built from this one. Empirical experiments indicate that post-bagging outranks
on average standard decision tree techniques and tends to improve the results of
bestrule, for the metrics considered. The effect of post-bagging on voting is only
marginally positive, using confidence and conviction. We hypothesize that this
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is probably due to the fact that voting is already a multi rule decision method,
and post-bagging has little room for improvement.

In terms of metrics, conviction tends to give better results than confidence,
which is the second best metric. This is probably because class frequency is
taken into account by conviction but not by confidence. The other two metrics
(lift and χ2) have been included for the sake of completeness but are far from
being competitive.

We also observe that a simple Bestrule approach (generate rules-use best
rule) gives competitive results: slightly better than c4.5 with conviction, slightly
worse with confidence.

In conclusion, we can say that it is worthwhile to proceed with the research on
post-bagging, and to better study the reasons for failure and success according
to data set and rule set characteristics (number of classes, class distribution,
number of rules, number of rules per class). This could lead us to improved
classification accuracy and a better insight of the classification problem itself.
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Abstract. Behavioral sequences of the medaka (Oryzias latipes) were continu-
ously investigated through an automatic image recognition system in response 
to medaka treated with the insecticide and medaka not treated with the insecti-
cide, diazinon (0.1 mg/l) during a 1 hour period. The observation of behavior 
through the movement tracking program showed many patterns of the medaka. 
After much observation, behavioral patterns were divided into four basic pat-
terns: active-smooth, active-shaking, inactive-smooth, and inactive-shaking. 
The “smooth” and “shaking” patterns were shown as normal movement behav-
ior. However, the “shaking” pattern was more frequently observed than the 
“smooth” pattern in medaka specimens that were treated with insecticide. Each 
pattern was classified using a devised decision tree after the feature choice. It 
provides a natural way to incorporate prior knowledge from human experts in 
fish behavior and contains the information in a logical expression tree. The 
main focus of this study was to determine whether the decision tree could be 
useful for interpreting and classifying behavior patterns of the medaka.  

1   Introduction 

Ecological data are very complex, unbalanced, and contain missing values. Relation-
ships among variables may be strongly nonlinear and involve high-order interactions. 
The commonly used exploratory and statistical modeling techniques often fail to find 
meaningful ecological patterns from data [1], [2], [3]. The behavioral or ecological 
monitoring of water quality is important regarding bio-monitoring and risk assess-
ment [4], [5]. An adaptive computational method was utilized to analyze behavioral 
data in this study. The decision tree is a modern statistical technique that is ideally 
suited for both exploring and modeling data. It is constructed by repeatedly splitting 
the data, and defined by a simple rule based on a single explanatory variable.  

Recently, behavioral responses to sub-lethal doses of toxic chemicals have drawn 
attention as a means of developing a bio-monitoring tool for detecting toxic chemicals 
in the environment. Behavioral responses have been reported to be sensitive to sub-
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lethal exposures to various chemical pollutants [4], [5]. In recent years, research on 
the effects of sub-lethal levels of toxic substances has been rapidly accumulating for 
various taxa, including crustaceans [6], snails [7], fish [8], [9], and insects [10]. How-
ever, these studies are mostly based on observation of single or combinations of sin-
gle behaviors with qualitative descriptions. Not much quantitative research has been 
conducted on behavioral changes in spatial and temporal domains in response to treat-
ments of toxic chemicals. 

The observation of the movement tracks of small sized animals has been separately 
initiated in the field of search behavior in chemical ecology [11] and computational 
behavior [12], [13]. In regard to searching behavior, the servometer and other tools 
were used for investigating the continuous movement tracks of insects, including 
cockroaches, in characterizing the effects of wind [14], pheromone [15], [16], relative 
humidity [17], and sucrose feeding [18]. 

In regard to the computational aspects [12], Alt modeled the movement of the or-
ganism, such as the circling path of gametes or the meander search by isopods, and 
Scharstein [19] revealed a complex directional autocorrelation function with mono-
tonic decay and discontinuity at the origin. Tourtellot et al. [13] analyzed the move-
ment length and turn definition in the analysis of the orientation data of cockroaches. 
Johnson et al. and Weins et al. attempted to quantify insect movements and suggested 
the fractal dimensions of pathway configurations [20], [21]. Recently, studies on rats 
were conducted in dynamic perspectives and statistical discrimination of motion in 
exploration behavior [22], [23]. 

These computational methods convey useful mathematical information regarding 
similarities present in the data of the movement tracks; for instance, correlation coef-
ficients or fractal dimensions. Using these methods, however, the parameters are 
obtained through mathematical transformations of the movement data, and informa-
tion is in a generally highly condensed state. These methods are usually not interpret-
able for uniquely and directly characterizing the actual shape of the movement tracks.  

In this paper, we utilized the decision tree for the classification of response behav-
iors and attempted to explain the shapes of the movement tracks through feature ex-
traction in response to sub-lethal treatments of an insecticide. The decision tree is a 
widely used technique for data classification and prediction. One of its advantages is 
that rules, which are easy to understand, can be induced. Realizing that there is a limit 
to observing with the naked eye, computational methods were used to conduct our 
research more effectively. First, statistical analysis in total moving distance, average 
speed, and sectional domination was conducted as a feature extraction. Furthermore, 
we devised a new analysis method for pattern isolation based on a decision tree to 
differentiate the patterns we thought distinctive. This research can help the biosensor 
field in detecting defects in fish, or in finding out chemical toxicants that exist in the 
water by observing specific behavior patterns of fish.  

2   Experiments for Data Acquisition 

The specimens of medaka (Oryzias latipes) used in our experiment were obtained 
from the Toxicology Research Center, Korea Research Institute of Chemical Tech-
nology (KRICT; Taejon, Korea). Only the specimens six to twelve months old were 
used. The medaka is about 4cm in length and lives for about 1-2 years. Because it is 
an easy species to rear and reproduce, it is used widely in the research of genetics or 
as a testing material in the detection of water pollution. 
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Before the experiment, specimens of medaka were maintained in a glass tank and 
were reared with an artificial dry diet (TetraminTM, Tetra Werke, Germany) under the 
light regime of Light 10: Dark 14 at a temperature of 25 ± 0.5˚ . The water in the 
tank was continually oxygenated prior to experimentation. 

A day before experimentation, the medaka was put into the observation tank and 
was given approximately twelve hours to adjust. The specimens were kept in a tem-
perature of 25˚  and were given a sufficient amount of oxygen during these twelve 
hours prior to the experiment. The specimens used were male and about 4cm long. In 
order to achieve image processing and pattern recognition effectively, a stable condi-
tion was maintained in the monitoring system. Disturbances to observation tanks and 
changes in experimental conditions were minimized. Aeration, water exchange and 
food were not provided to the specimens during the observation period and the light 
regime was kept consistent.  

The aquarium used was based on the experiments on fish behavior in KRICT. The 
observed aquarium size was 40cm×20cm×10cm. Diazinon (DongYang Chemical; 
O,O-diethyl O-2-isopropyl-4-methyl-6-pyrimidyl thiophosphate, 93.9%) dissolved in 
dimethylsulfoxide (DMSO; 10mg/l), was introduced at the concentration of 0.1mg/L 
directly into an aquarium in which a 6-12 month old individual adult medaka speci-
men resided. During the period of observation, individual medaka specimens were 
placed in a glass aquarium. The analog data captured by the camera set in front of the 
aquarium were digitized by using the video overlay board every 0.25 seconds and 
were sent to the image recognition system to locate the target in spatial time domains. 
The spatial position of the medaka was recorded in two-dimensional x, y coordinate 
values. After giving the experimenting specimen approximately twelve hours to adjust 
to the observation aquarium, the experiment was started. The experiment was started 
at about 8:00~8:30 AM every day. Each data from a movement pattern had an interval 
of one minute. 

3   Feature Extraction Process 

3.1   Images of Movement Behavior of Medaka 

In this paper, the movement patterns of the medaka were classified into shaking and 
smooth patterns as shown respectively in Fig. 1 and 2. When a medaka was affected 
 

 

Fig. 1. Example of shaking patterns during a one-minute interval (•: start, *: end) 



Movement Analysis of Medaka (Oryzias Latipes) for an Insecticide Using Decision Tree 153 

y diazinon (0.1 mg/l), the treated specimen was generally less active, and the move-
ment behavior was shaky and interspersed with irregular, repetitive back-and-forth 
movements. Response behaviors were frequently vertical as can be observed in Fig. 1,  
 

 

Fig. 2. Example of smooth patterns in a one-minute interval (•: start, *: end) 
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Fig. 3. Schematic diagram for automatic pattern isolation 

and the degree of shaking was usually higher during the upward climb. Fig. 2 shows 
generally not be treated species. The behavior of the medaka in a minute period of 
time was used to classify them into 5 patterns: active-smooth, active-shaking, inac-
tive-smooth, inactive-shaking, and not determined in each case. “Not determined” 
means that a pattern was not classified into any one of these four categories. By the 
observation of an expert in fish behavior to initiate pattern isolation, the features were 
observed and the following three feature variables could be defined: high-speed ratio, 
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FFT (Fast Fourier transformation) to angle transition, and projection to x- and y-axes. 
Fig. 3 shows the schematic diagram during one minute of the movement analysis for 
the process of extracting three distinctive characteristics from the data acquired and 
classifying 5 patterns based on this information. It is possible that some patterns may 
not have been classified for medaka treated with sub-lethal chemicals. However, in 
these cases, further analysis and observation can add new patterns and update the 
decision tree. 

3.2   Feature Extraction from Images 

In order to know the activeness of a medaka, speed information was used to define 
high-speed ratio. The speed of the medaka shows whether the pattern is an active 
movement or inactive movement. The formula for speed is as the following: 
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Here, xn and yn are the position values of the medaka in a sampled time. The ratio of 
patterns that exceeded the calculated average speed of the overall 7 data sets, 
21mm/sec and the total number of patterns was used as the first feature variable. 
High-speed ratio is calculated using the following equation. A2 represents the average 
speed of the overall 7 data sets in equation (2). 
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The change of direction in the movement track was observed to consider movements 
of medaka. The change of direction is represented as an angle transition to classify the 
movement. Angle transition between two sampled times denoted as H is calculated in 
the following equation. Here xn and yn show the coordinate value for the x and y axes.  
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Fourier transformation is used to transform signals in the time domain to signals in 
the frequency domain [30].  We apply the Fast Fourier Transform (FFT) to the signal 
of angle transition in order to calculate energy. The FFT for a given discrete signal 
x[n] is calculated using the following equation: 
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After applying the FFT to angle transition, the power of FFT (PF) is calculated using 
the following equation for the amplitudes above a median. 
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Here, xi is the amplitude above a median. We use all sets to find the median in ex-
periments. We are used to FFT power because of the calculation in qualified angle 
transition. The PF is employed as the second feature variable for pattern isolation.  
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Projection is a method of showing a shape in a two-dimensional graph into a shape 
in a one-dimensional graph. In this paper, the method of projection was used to ob-
serve and understand the movement route of the medaka in a two-dimensional space. 
The projection to the x-axis and the projection of the y-axis were calculated and then 
multiplied to figure out the area of the movement track of the medaka. The calculated 
area tells whether the medaka moved broadly all over the tank or in a restricted area 
of the tank. The area calculated was used as the third variable to classify patterns. 
 

 

Fig. 4. Movement tracking program  

Fig. 4 shows a program that was devised using Matlab environment to analyze the 
data that was acquitted consecutively. This picture shows the path of the medaka in a 
two-dimensional space and the three numerical values for the distinctive characteris-
tics mentioned above.  

4   Classification Based on Decision Tree 

4.1   Decision Tree 

A decision tree is a graph of decisions and possible consequences, used to create a 
plan to reach a goal. Decision trees are constructed in order to help make decisions. It 
has interpretability in its own tree structure. Such interpretability has manifestations 
which can easily interpret the decision for any particular test pattern using the  
conjunction of decisions along the path to its corresponding leaf node. Another  
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manifestation can occasionally get clear interpretations of the categories themselves, 
by creating logical descriptions using conjunctions and disjunctions [3], [29].  

Many people related to artificial intelligence research has developed a number of 
algorithms that can automatically construct decision tree out of a given number of 
cases, e.g. CART [1], ID3 [24], [25], C4.5 [26], [27], [28]. The C4.5 algorithm is the 
most popular in a series of “classification” tree methods. In the C4.5 algorithm, real-
valued variables are treated in the same as in CART. 

A decision tree consists of nodes(N) and queries(T). The fundamental principle un-
derlying tree creation is simplicity. We prefer decisions that lead to a simple, compact 
tree with few nodes. During the process of building the decision tree, we seek a prop-
erty query T at each node N that makes the data reaching the immediate descendent 
nodes as “pure” as possible. It turns out to be more convenient to define the impurity, 
than to define the purity of a node. Several different mathematical measures of impu-
rity have been proposed, i.e. entropy impurity (or occasionally information impurity), 
variance impurity, Gini impurity, misclassification impurity are shown in equations 
(6), (7), (8), (9) respectively.  
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Here i(N) denotes the impurity of a node and P(wi) is the fraction of patterns at node 
N that are in category wj.  
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All of them show basically the same behavior. Based on the well-known properties 
of entropy, if all the patterns are of the same category, the entropy impurity is 0. A 
variance impurity is particularly useful in the two-category case. A generalization of 
the variance impurity, applicable to two or more categories, is the Gini impurity in 
equation (8). This is just the expected error rate at node N if the category label is se-
lected randomly from the class distribution present at N. The misclassification impu-
rity measures the minimum probability that a training pattern would be misclassified 
at N. Out of all the impurity measures typically considered, this measure is the most 
strongly peaked at equal probabilities.  

In order to drop in impurity, we used the equation (10) 

)()1()()()( RLLL NiPNiPNiNi −−−=Δ  (10) 

Here NL and NR are respectively the left and right descendent nodes, i(NL) and i(NR) 
are their impurities, and PL is the fraction of patterns at node N that will go to NL 
when property query T is used. Then the “best” query value s is the choice for T that 
maximizes i(T). 

If we continue to grow the full tree until each leaf node corresponds to the lowest 
impurity, the data have been typically overfitted. Conversely, if splitting is stopped 
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too early, then the error on the training data is not sufficiently low and performance 
may suffer. To search for the sufficient splitting value, we used cross-validation (10-
fold cross validation). In cross-validation, the tree is trained using a subset of the data 
with the remainders kept as a validation set.  

4.2   Implementation of Decision Tree  

We analyzed movement tracks of the medaka using Matlab6.1. The decision tree is 
employed and programmed to express the classification in the form of a tree and as a 
set of IF-THEN rules.  

In order to classify the patterns into active smooth, active shaking, inactive smooth 
and inactive shaking divided by the experts in fish behavior, the following features 
were used: high speed ratio (HSR), power of FFT (PF), and area of projection product 
(APP). These 3 features were used as input variables for the decision tree. The train-
ing data for the decision tree consisted of 30 data in each pattern: active smooth, ac-
tive shaking, inactive smooth, inactive shaking, and not determined. 

 

Fig. 5. Result of cross-validation (hold-out method) 
 
We continue splitting nodes in successive layers until the error on the validation 

data is minimized. Cross validation is a model evaluation method that is better than 
residuals. The problem with residual evaluations is that they do not give an indication 
of how well the learner will do when it is asked to make new predictions for data it 
has not already seen. One way to overcome this problem is to not use the entire data 
set when training a learner. Some of the data is removed before training begins. Then 
when training is done, the data that was removed can be used to test the performance 
of the learned model. We used a 10-fold cross validation for model evaluation. The 
data set of the 10-fold cross validation is divided into 10 subsets, and the holdout 
method is repeated 10 times. Result of this method is shown in Fig. 5.  

The principal alternative approach to stopped splitting is pruning. Fig. 6 shows the 
decision tree applied to evaluated pruning. This benefit of this logic is that the re-
duced rule set may give improved interpretation. 



158 S. Lee et al. 

HSR<49.3776

APP<1214

APP<1375.5

PF<106.206

PF<109.974

PF<124.389

PF<117.776

Not D

Inactive shaking

Inactive smooth

Not D

Not D

Active shaking

APP<1564.5

Not D

Not D

Active smooth

HSR<49.3776

APP<1214

APP<1375.5

PF<106.206

PF<109.974

PF<124.389

PF<117.776

Not D

Inactive shaking

Inactive smooth

Not D

Not D

Active shaking

APP<1564.5

Not D

Not D

Active smooth

 

Fig. 6. The decision logic for pattern classification generated by decision tree applied to prun-
ing. (HSR: high-speed ratio, APP: area of projection product, PF: power of FFT). 

5   Behavior Analysis and Discussion 

5.1   Analysis of Movement Behavior  

The decision tree was applied into the movement tracks of the medaka at real-time to 
classify patterns. We developed models based on the classification and regression tree 
(CART) in order to classify and recognize movement tracks of the medaka for an 
insecticide. Matlab6.1 was used in order to create the program. Results were calcu-
lated for the decision logic for 60 minutes. The specimens used in the experiment 
were 10 medakas treated with insecticide and 10 medakas not treated with insecticide. 
The recognition is calculated by 5 patterns that includes “not determined.” “Smooth” 
means that “active smooth” patterns and “inactive smooth” patterns appeared in the 
decision tree logic. “Shaking” means that “active shaking” patterns and “inactive 
shaking” patterns appeared in the decision tree logic. “Not determined” means that 
neither “smooth” nor “shaking” appeared in the decision tree logic.  

Fig. 7 shows the ratio of “smooth”, “shaking” and “not determined” patterns in 
specimens without the insecticide. “Smooth” is the sum of active smooth and inactive 
smooth patterns. “Shaking” is the sum of active shaking and inactive shaking. “Not” 
is the sum of patterns that are not inactive shaking, not inactive smooth, not active 
shaking, and not active smooth shown in Fig. 6. Among the 10 data sets, the recogni-
tion rate of specified patterns in smooth and shaking is in a range of 48~77% while 
the rate of average is 62.1%. Most specimens showed more smooth patterns detected 
by the decision tree logic. 

Fig. 8 shows the ratio of “smooth”, “shaking” and “not determined” patterns in 
medaka that were treated with medaka. Among the 10 data sets, the recognition rate 
of specified patterns in smooth and shaking is 23~57% and the recognition rate of 
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Fig. 7. Recognition rate for each pattern in set of medaka without the insecticide 
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Fig. 8. Recognition rate for each pattern in set of medaka with insecticide 

average is 40.5%. The shaking pattern has a higher observed rate than the smooth 
pattern regarding to the medaka treated with insecticide The lower recognition rate is 
observed in medaka that were treated with the insecticide compared to the medaka 
that were not treated with the insecticide. Unlike the data sets of specimens without 
the insecticide, the data sets A’, B’, C’ which exceeded a 50% recognition rate 
showed many shaking patterns. However, the data sets of less than 50% showed a 
similar rate of smooth and shaking patterns. 

5.2   Discussion 

This study demonstrated that behavioral differences of animals in response to an in-
secticide could be detected by a decision tree using 3 features of behavior. One diffi-
culty of conducting this type of monitoring study is the necessity of handling a large 
amount of data. In this study, the data were produced in every 0.25 second interval 
continuously for each individual measurement period. This produced a gigantic 
amount of data. The automatic pattern recognition system solved this time-consuming 
problem in detecting response behaviors. Besides time consumption in recognition, 
objectivity in judgments for classification has been another problem for manual  
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recording. The application of machine intelligence to behavioral data has the advan-
tage of classifying the movement patterns on a more objective basis. In this regard, 
the pattern recognition by a decision tree was demonstrated as an alternative to detect-
ing the movement tracks of animals. These points will help in the analysis of behavior 
patterns in not only temperature elevation but also in different types of chemicals.  

Another problem that arouses from this experiment is that biological specimens 
such as the medaka show too many different types of movement patterns. This makes 
selecting certain characteristics for a pattern difficult. This is why so many artificial 
systems such as neural networks and fuzzy are being used [31], [32], [33], [34]. How-
ever, although neural networks are sufficiently able to differentiate patterns, it is im-
possible to interpret exactly how much a certain pattern the specimen shows.  

Results revealed that after differentiating smooth and shaking patterns through a 
decision tree, insecticide treatment caused the shaking ratio to increase. This can be 
seen as a pattern that appears in response to sub-lethal treatments of an insecticide, 
and is a process of adaptation. Smooth patterns show less angle change than shaking 
patterns and can be seen as a pattern without insecticide treatment, and it can be said 
that it appears the most frequently. Speed ratio of the medaka shows whether it is an 
active movement or inactive movement as shown in Fig. 6. Also, the area of projec-
tion product interprets smooth or shaking pattern. Power of FFT distinguishes specific 
patterns from unknown patterns. 

Through this research, the decision tree logic was devised using 4 characteristic 
patterns and ‘not determined’ for the patterns that could not be defined, based on the 
knowledge of experts. The decision tree was able to differentiate the 4 patterns based 
on the observation of the three variables. However, more research must be done in 
order to define the patterns that were ‘not determined.’ Also, in order to better ob-
serve the many movement patterns of the medaka, more data sets should be examined 
and studied.  

Biologically, results showed that variables such as smooth ratio vs. shaking ratio 
distinguished before and after insecticide treatment in Fig. 7 and 8. It can be inferred 
from these results that the activity did increase as the treatment began to rise. Al-
though this is a short period of time it may be seen as a case of fast acclimation to the 
insecticide by the medaka.  

6   Conclusions 

The complex movement data were used to construct a decision tree with 3 features 
that could represent the movement tracks of medaka: speed ratio, power of FFT, and 
x- and y-axes projection product. As new input data were given to the decision logic, 
it was possible to recognize the change of pattern by examining the availability of 
insecticide. In these cases, a new analysis can be done to add new patterns and update 
the decision tree. The results of the decision tree revealed that whether the medaka 
was affected by insecticide or not, it interpreted speed, angle, area of projection to x- 
and y-axes using decision tree logic. If this is applied to more data sets, it is thought 
that more distinctive and accurate methods of differentiating the behavior patterns can 
be created. Also, this research in differentiating patterns may help in the field of re-
search for the special characteristics of living organisms. This research can help the 
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biosensor field in detecting defects in fish, or in finding out other chemical toxicants 
that exist in the water by observing specific behavior patterns of fish.  
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Abstract. In this paper we explore a topic which is at the intersection of two ar-
eas of Machine Learning: namely Support Vector Machines (SVMs) and Induc-
tive Logic Programming (ILP). We propose a general method for constructing
kernels for Support Vector Inductive Logic Programming (SVILP). The kernel
not only captures the semantic and syntactic relational information contained in
the data but also provides the flexibility of using arbitrary forms of structured
and non-structured data coded in a relational way. While specialised kernels
have been developed for strings, trees and graphs our approach uses declara-
tive background knowledge to provide the learning bias. The use of explicitly
encoded background knowledge distinguishes SVILP from existing relational
kernels which in ILP-terms work purely at the atomic generalisation level. The
SVILP approach is a form of generalisation relative to background knowledge,
though the final combining function for the ILP-learned clauses is an SVM rather
than a logical conjunction. We evaluate SVILP empirically against related ap-
proaches, including an industry-standard toxin predictor called TOPKAT. Evalu-
ation is conducted on a new broad-ranging toxicity dataset (DSSTox). The exper-
imental results demonstrate that our approach significantly outperforms all other
approaches in the study.

1 Introduction

In this paper we propose a novel machine learning approach which combines the di-
mensionality independence advantages of Support Vector Machines (SVMs) with the
expressive power and flexibility of Inductive Logic Programming (ILP). In particular,
we propose a kernel which is an inner product in the feature space spanned by a given set
of first order hypothesised clauses. As with normal ILP, examples, background knowl-
edge and hypothesised clauses are encoded as logic programs. The kernel not only
captures the semantic and syntactic relational information contained in the data but also
provides the flexibility of using arbitrary forms of structured and non-structured data.

The approach we suggest differs from the relational kernels suggested in [1,2] by
our use of logical background knowledge. In order to understand the distinction being
made here consider the following three settings for ILP.

Atomic Generalisation. This setting is characterised by having examples of which are
typically ground atomic formulae and hypotheses consisting of atomic formulae which

A. Hoffmann, H. Motoda, and T. Scheffer (Eds.): DS 2005, LNAI 3735, pp. 163–175, 2005.
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entail the examples. Plotkin [3] showed that this hypothesis space forms a lattice which
is partially ordered by atomic subsumption.

Clausal Generalisation. In this setting examples are ground clauses and hypotheses are
clauses which entail the examples. Plotkin [4] showed that once more this hypothesis
space forms a lattice which is partially ordered by clausal subsumption.

Clausal Generalisation Relative to Background Knowledge. This third setting [4]
is distinguished by assuming the existence of background knowledge in the form of
a conjunction of clauses. Examples are ground clauses. Hypotheses are clauses which
when conjoined with the background knowledge entail the examples.

Most ILP research has assumed the third setting, clausal generalisation relative to
background knowledge, since this is the more general approach. The use of background
knowledge provides a flexible way of encoding the understanding of domain experts,
and can increase both the predictive accuracy of the learning and the degree of insight
provided relative to the background knowledge. However, this setting brings with it
overheads related to the theorem proving involved in using background knowledge.
For this reason Page and Frisch [5] investigated the use of atomic generalisation with
respect to a monadic constraint theory. This is a generalisation of the first setting, and a
special case of the third setting.

More recently Lloyd [6] and others [2] have investigated algorithms which use the
setting of atomic generalisation, but with more general forms of strongly-typed terms. In
particular, terms can consist of arbitrary sets. This allows more flexibility for defining
data types without the overheads associated with background knowledge. In [2] it is
shown that this form of representation and learning can be used to formulate a relational
kernel. In [1] it is shown that by using the “bag of atoms” representation introduced in
[7] a multi-instance kernel approach can even be applied to structurally complex ILP
learning problems involving small molecules.

The SVILP approach is a form of generalisation relative to background knowledge,
though the final combining function for the ILP-learned clauses is an SVM rather than
a logical conjunction. We will now provide a simplified worked example to show the
difference in representing molecules using the Gärtner/Chevaleyre approach from the
representation used by our SVILP kernel. Figure 1 shows a typical molecule from the
DSSTox dataset of toxins (see Section 5). In the SVILP approach we start by formu-
lating chemical background knowledge in the form of Prolog definitions. These have
been designed by one of the authors (Ata Amini), a biochemistry domain expert, to be
relevant to properties associated with toxins. Such properties include the existence of
substructures such as aromatic rings, methyl and alcohol substructures, types of atom,
charge, the existence of hydrogen acceptors and distances between various critical struc-
tures on the molecule. The ILP system CProgol5.0 is used to generate a set of hypothe-
sised clauses based on the given background knowledge and examples. An SVM kernel
is then used as the combining function for predictions of these clauses. By contrast, the
Gärtner/Chevaleyre features consist simply of the frequency of occurrence of atoms,
bonds and atom pairs within the given molecule. These are used to form a vector repre-
sentation of the molecule. An obvious advantage of this “bag-of-atoms” representation
is that it requires no domain expertise and thus is less effort to develop. By analogy with



Support Vector Inductive Logic Programming 165

O

CH3

N+

O

-O

O

Br

O

H H

H

methyl

hydrogen_acceptor

Nitro

phenyl

aldehyde

alcohol

ether

bromine

positive_charge

positive_charge

negative_charge

distance

distance

Br: 1
C: 8
H: 6
N: 1
O: 5
Single Bonds: 16
Double and Aromatic Bonds: 5
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Fig. 1. Molecule represented using a) SVILP representation which employs a kernel based on
domain-expert informed chemical background knowledge indicated by the annotations on the fig-
ure and b) Gärtner/Chevaleyre bag-of-atoms uses Multi-Instance (MI) kernel based on frequency
of occurrences of atoms and atom pairs

the use of the “bag-of-words” [8] representation in text classification one might expect
a simple representation of this form to lead to superior predictive accuracy. However,
this is not the case in the experiments reported in Section 5 in which the SVILP kernel
significantly outperforms the Gärtner/Chevaleyre kernel. In this case, the use of more
highly informed background knowledge in the SVILP appears to provide a significant
advantage.

The paper is arranged as follows. The Background Section 2 introduces the ba-
sic ideas behind kernels, SVMs and Inductive Logic Programming (ILP). In Section 3
SVILPs are defined and their properties proved. This is followed by a section which
describes Related Work (Section 4). Next we describe the Experiments (Section 5) on
toxicity data. The paper then concludes.

2 Background

Kernels and Support Vector Machines: During recent years, there has been increasing
interest in kernel-based methods such as Support Vector Machines (SVMs) [9]. The
non-dependence of these methods on the dimensionality of the feature space and the
flexibility of using any kernel make them a good choice for different tasks such as
classification and regression. We can view the learning process of SVMs as comprising
two stages. 1) Map the input data, d1, . . . , dn ∈ D, into some higher dimensional space
H through a non-linear mapping φ that is given by φ : D → H. The mapping φ may
not be known explicitly but be accessed via the kernel function described below. 2)
Construct a linear function f in the space.

The kernel function K(di, dj) = 〈φ(di), φ(dj)〉 computes the inner product be-
tween the mapped instances. The mathematical foundation of such a function was es-
tablished during the first decade of the twentieth century [10]. A kernel function is
a symmetric function, K(di, dj) = K(dj , di) for i, j = 1, . . . , n, and satisfies the
property of positive semi-definiteness,

∑n
1,j=1 aiajK(di, dj) ≥ 0 for ai, aj ∈ R.
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The n × n matrix with entries of the form Kij = K(di, dj) is known as the kernel
matrix or the Gram matrix. A kernel matrix is a symmetric, positive definite matrix. In
other words the n Eigen values of this n×n kernel matrix are non-negative. Kernel func-
tions can be defined over general sets [11]. This important fact has allowed successful
exploration of novel kernels for discrete spaces such as strings and graphs [12,13].

Inductive Logic Programming: Inductive Logic Programming (ILP) [14] is the area
of AI which deals with the induction of hypothesised predicate definitions. In ILP logic
programs are used as a single representation for examples, background knowledge and
hypotheses. ILP is differentiated from most other forms of Machine Learning (ML)
both by its use of an expressive representation language and its ability to make use of
logically encoded background knowledge. This has allowed successful applications of
ILP in areas such as molecular biology [15] and chemoinformatics [16].

In the following it is assumed that the examples, background knowledge and hy-
potheses each consist of logic programs, ie sets of first-order Horn clauses. The normal
semantics of ILP is as follows. We are given background (prior) knowledge B and ev-
idence E. The evidence E = E+ ∧ E− consists of positive evidence E+ and negative
evidence E−. The aim is then to find a hypothesis H such that the following conditions
hold.

Prior Satisfiability. B ∧E− 	|=
Posterior Satisfiability. B ∧H ∧ E− 	|=
Prior Necessity. B 	|= E+

Posterior Sufficiency. B ∧H |= E+

Since a large number of hypotheses will typically fit such a definition, the Bayesian
ILP setting [17] assumes a prior probability distribution defined over the hypothesis
space. Algorithms such as CProgol [18] use such a prior to search for hypotheses which
maximise the posterior probability p(H |E).

3 Support Vector Inductive Logic Programming (SVILP)

The SVILP framework builds on the ILP framework. Thus we also assume background
knowledge B, examples E and a hypothesis H for which the conditions of the normal
semantics hold. The key difference between ILP and SVILP is the way in which the set
of clauses H is used for predictive purposes. In ILP H is simply treated as a conjunction,
for which any instance d from the domain of instances D is predicted to be true if and
only if B, H |= d.

By contrast, SVILP bases a kernel on the predictions of the clauses h in H . This
involves forming a binary hypothesis-instance association matrix M in which element
Mij = 1 (0 otherwise) if and only if clause hi ∈ H entails instance dj ∈ D as follows,
B, hi |= dj .

The kernel described in Section 3.2 can be viewed as a function for which similarity
of two instances d1 and d2 is based on the similarity of the rows of clauses in M
associated with d1 and d2.
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father(henry,john). father(david,henry). mother(jane,john). mother(elizabeth,henry).
father(charles,mary). father(egbert,jill). mother(jill,mary). mother(ann,jill).

grandfather(F,P) ← father(F,P1), parent(P1,P).
grandmother(M,P) ← mother(M,P1), parent(P1,P).
parent(F,P) ← father(F,P).
parent(M,P) ← mother(M,P).

hair(john,blond). hair(mary,black).
hair(henry,blond). hair(charles,black).
hair(jill,blond). hair(elizabeth,blond).
hair(egbert,black). hair(ann,blond).
hair(david,black). hair(jane,black).

Fig. 2. Background knowledge for disease inheritance

3.1 Family Example

In this artificial example we assume that the occurrence of a disease is related to the
inheritance patterns of an observable property (e.g., hair colour) in various families.
The background knowledge is shown in Figure 2. This describes the relationships in the
family tree shown in Figure 6. Examples of individuals having the disease are shown in
Figure 3 and various hypothesised clauses are shown in Figure 4. Assuming the domain
is limited to the examples, we show the resulting binary hypothesis-instance association
matrix in Figure 5.

1. disease(john) 2. disease(mary) 3. disease(jane) 4. disease(henry) 5. disease(charles)

Fig. 3. Examples for disease inheritance

A. disease(P) ← hair(P,Colour), father(F,P), hair(F,Colour)
B. disease(P) ← hair(P,Colour), mother(M,P), hair(M,Colour)
C. disease(P) ← hair(P,Colour), grandmother(M,P), hair(M,Colour)
D. disease(P) ← hair(P,Colour), grandfather(F,P), hair(F,Colour)
E. disease(P) ← hair(P,black), father(F,P), mother(M,P),

hair(F,blond), hair(M,black)
F. disease(P) ← hair(P,black), father(F,P), grandfather(G,P),

hair(F,blond), hair(G,black)

Fig. 4. Hypothesised clauses for disease inheritance

A B C D E F
1 1 0 0 1 0 0
2 1 0 0 1 0 0
3 1 0 0 0 0 0
4 0 1 0 0 0 0
5 1 0 0 0 0 0

Fig. 5. Resulting binary hypothesis-instance as-
sociation matrix

David − Elizabeth

Henry − Jane

John

Egbert − Ann

Mary

Charles − Jill

Fig. 6. Family trees for disease inheritance



168 S. Muggleton et al.

Note that according to the matrix examples 1 and 2 have maximum similarity. This
is despite the fact that the hair colour (the main observable feature) of John and Mary
(the individuals involved in the examples) are opposite (blond and black respectively).
The example demonstrates the strong learning bias which can be introduced by the use
of background knowledge and hypotheses within the SVILP setting. In the next section
we define the kernel formally.

3.2 Definition of Kernel

We assume background knowledge B and a set of hypothesised clauses H drawn from
a class of hypotheses H and a set of instances D drawn from a class of instances D.
Each hypothesis clause h in H can be thought of as a function of the following form,
h : D → {True, False}. Conversely the τ function gives the hypothesised clauses
covering any particular instance, τ : D → 2H . Where for any di in D

τ(di) = {h : ∃h ∈ H, (B, h |= di)}

As in the Bayesian ILP framework [17], we assume a prior probability distribution over
the hypotheses. This can be represented as a function π such that

π : H → [0, 1] and
∑
h∈H

π(h) = 1

Next we define a function, which maps sets of hypothesised clauses to probabilities.

f : 2H → [0, 1]

For all H ′ ⊆ H
f(H ′) =

∑
h∈H′

π(h)

Now the kernel function is as follows. For all di, dj in D

K(di, dj) = f(τ(di) ∩ τ(dj))

It can be easily shown that the kernel is an inner product in ILP space.The kernel re-
quires a hypothesised clause set H . In order to improve the informative power of the
kernel we define a prior probability distribution and fits the prior to the coordinates in
space spanned by the hypothesised clauses. In this way a countable set of hypothesised
clauses implies a mapping φ that maps the data into an ILP space, where dimensionality
of the space is the same as the cardinality of the set of hypothesised clauses and each
mapped instance can have r number of non-zero entries (in a column vector) where r is
in the range 1 ≤ r ≤ k . Formally

fi(d) =
√

π(hi(d)) for i = 1, . . . , k

Hence the mapping φ for an instance is given by

φ : d→ ((f1(d), f2(d), . . . , fk(d)) = (fi(d)k
i=1)

and kernel for instance di and dj is given by
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K(di, dj) = 〈φ(di), φ(dj)〉 =
k∑

i=1

fi(di)fi(dj)

Hence, K(di, dj) = f(τ(di) ∩ τ(dj))

The validity of kernel function follows from the definition as an inner product how-
ever we can show that it satisfies Mercer’s condition (symmetry and positive semi-
definiteness). Clearly the kernel function is symmetric and positive semi-definiteness
occurs since there is mapping φ from D into an ILP space. For all ai ∈ R and di ∈ D,
for i = 1, . . . , n we have the following expression,

∑n
1,j=1 aiajK(di, dj). We now

use a compact representation A = (ai)n
i=1 and φ = (φ(di))n

i=1, hence kernel matrix∑n
i,j=1 K(di, dj) = φφ′ and the expression is, Aφ′φA′ = t′t ≥ 0.
Given that φ maps the data into ILP space, we can construct Gaussian RBF ker-

nels in ILP space KRBF (di, dj) = exp
(−‖(φ(di)−φ(dj)‖2

2σ 2

)
, where ‖(φ(di)−φ(dj)‖ =√

K(di, di)− 2K(di, dj) + K(dj , dj). Our method is flexible to construct any kernel
in the space spanned by the clauses. However we select RBF kernels (KRBF ) con-
structed in ILP space for our experiments in section 5.

We now consider the analysis of the complexity of the kernel. Assuming the theorem
prover can test each hypothesised clause against each instance in time bounded by a
constant k, the overall time taken to compute the kernel is proportional to the number
of hypothesised clauses |H | and the number of instances |D|.

4 Related Work

Propositionalisation: Within ILP “propositionalisation” [19] techniques transform ma-
chine learning problems from a first-order logic setting into one which can be handled
by a “propositional” or feature-based learner. Kramer et al. [19] distinguish between
domain-independent ([20,21,22,23]) and domain-dependent approaches (eg [24]). In
most domain-independent propositionalisation approaches [21,22,23] features are in-
troduced as clauses with a monadic head predicate. For instance, when applied to prob-
lems involving molecular descriptions these techniques introduce new features such as
the following.

f1(A):-has_rings(A, [R1, R2]), hydrophobic(A,H), H > 1.0.
f2(A):-atm(A,B,_,27,_), bond(A,B,C,_), atm(A,C,_,29,_).

Though superficially similar to domain-independent propositionalisation, the
SVILP approach described in this paper is not a propositionalisation technique since
it does not transform the representation by the introduction of such monadic features.
Instead a general-purpose ILP learning algorithm is used to learn clauses with heads
having arbitrary predicate arities. The heads of these clauses can contain terms with
multi-arity function symbols and constants. In normal ILP the hypothesis used for pre-
dictive purposes would consist of these clauses conjoined together. In SVILP the truth-
value predictions of these individual clauses are projected onto the instance space. The
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kernel matrix is then formulated over the instance-space predictions of the individual
clauses.

SVILP is similar in its use of support-vector technology to the domain-dependent
propositionalisation approach of Kramer and Frank [24]. This uses bottom-up evalua-
tion to fine. The key difference here is that SVILP is domain-independent, allowing the
use of background knowledge to encode the appropriate machine learning bias.

Kernels within ILP: Within ILP there has recently been interest in the development
of kernels which incorporate relational information, for use within support vector
machines[2,25,26,27]. Several authors [2,25] take the approach of using syntactic mea-
sures of distance between first-order formulae as the basis for such kernels. Within the
ILP literature it is normal to differentiate between syntactic [28,29] and semantic [30]
distance measures. Syntactic measures are based on differences in the structure of first-
order formulae, and tend to be confined to comparison of terms, rather than arbitrary
first-order formulae. Semantic measures are based on comparison of models, making
this approach intractable for all but simple formulae.

The kernel approaches described in [2,25] are unable to make use of background
knowledge, since they are based on syntactic comparison of ground atoms. By contrast,
a central feature of the SVILP described in this paper is its use of generalisation relative
to background knowledge.

5 Experiments

A new dataset was used for evaluating SVILP. The DSSTox dataset was made available
to us by Dr Ann Richards of National Health and Environmental Effects Research Lab-
oratory, USA. The dataset represents the most diverse set of toxins presently available
in the public domain. By choosing a new toxin dataset we avoided over-testing prob-
lems associated with molecular datasets such as the Mutagens [31]. The 188 molecule
Mutagenic dataset has now been evaluated by so many researchers that it is becoming
hard to argue that some of the higher reported accuracies are not simply due to chance.

O

O

O

Cl

Cl

Permethrin
O

O

N

O

O

F

F

Flucythrinate

Fig. 7. Examples of compounds in DSSTox

Materials: The DSSTox [32] database contains organic and organometalic molecules
with their toxicity values. The dataset consists of 576 molecules. Figure 7 shows an
example of two of the molecules found in DSSTox. As far as we know no previous
attempt has been made to quantify the structure and activity relationship for the whole
DSSTox dataset.
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Methods: We now describe the pre-processing stage. Molecules in the form of SMILES
strings, were transformed into 3D structures using the software CONCORD 4.0 [33]
(implemented in TRIPOS). All of the molecules contain continuous chemical feature
known as the lowest unoccupied molecule orbital (LUMO), water/octanol partition co-
efficient (LOGP) and dipole moment. LOGP reflects the hydrophobicity of compounds
and the mechanism of toxicities of these chemicals are based on their accumulation in
the non-polar lipid phase of the biomembranes. LUMO and dipole moment can describe
electrophilicities of compounds. The key information is given in the form of atom and
bond description.

We compared the performance of SVILP with a number of related techniques in-
cluding partial least squares (PLS), multi instance kernels (MIK) [1,2], an RBF kernel
using only 3 chemical features (LOGP, LUMO, dipole moment) that we term as CHEM.
We also compared the performance of SVILP with well known QSAR software TOP-
KAT (Toxicity Prediction by Komputer Assisted Technology).

As our experimental methodology we used 5-fold cross validation. For evaluation
we used mean squared error (MSE) and R-squared (standard measure of accuracy in
QSAR). In this work we employed ε−insensitive SVM regression (SVR)[9]. We used
the SVM package SVMTorch [34] for our experiments. C (regularization parameter), ε
(controls width of insensitive band), σ (width of Gaussian) are the tunable parameters
for kernel-based methods (SVILP, CHEM and MIK). In PLS the tunable parameter is
the ”number of components”. These parameters can be set by some model selection
method. The traditional protocol to set the values for the parameters is the minimisation
(maximisation) of some criterion relative to the values of the parameters using a valida-
tion set. We select the optimal values of the tunable parameters using a validation set as
described. We set the parameters for each fold using only the training set of the fold. We
randomly selected a subset comprising 75% of the data (training set of each fold) for
the training set and used the remaining data as a test set. A range of values of the para-
meters were selected. The sets of the values are given by C = {10, 100, 1000, 10000},
ε = {0.1, 0.3, 0.5, 1.0}, σ = {0.125, 0.25, 0.5, 4, 16}. For PLS we used the number of
components from 1 to 15. The parameters which give the minimum MSE on the vali-
dation set were chosen. For the selected parameters we obtained the models (created by
the methods) using full training set and performed evaluation on test compounds.

In order to perform the prediction task using SVILP, we first obtained a set of
clauses. Examples and Background knowledge (atom-bond, high level chemical groups
e.g. phenyl ring, aldehyde, carboxylic acids and chemical features) are given to CPro-
gol5.0 [18] which generates a set of hypothesised clauses. For all the folds, the clauses
with positive compression were selected where the number of obtained clauses for
each fold can vary between 1500-2000. The compression value of a clause is given by
V = P∗(p−(n+c+h))

p , where p is the number of positive instances correctly deducible
from the clause, n is the number of negative examples incorrectly deducible from the
clause, c is the length of the clause and h is number of further atoms to complete the
input/output connectivity of the clause and P is the total number of positive exam-
ples. The hypothesised clauses are then taken by a Prolog program which computes the
hypothesis-instance association (see Section 3), indicating for each instance the set of
all hypothesised clauses which imply it. In this work we used a uniform probability
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MSE R-squared

CHEM 0.811 0.519
PLS 0.671 0.593
MIK 0.838 0.503

SVILP 0.574 0.655

Fig. 8. MSE and R-squared for CHEM, PLS, MIK and SVILP

Accuracy
ILP (CProgol5.0) 55

CHEM 58
PLS 71
MIK 60

SVILP 73

Fig. 9. Accuracy for ILP, CHEM, PLS, MIK and SVILP

distribution over the clauses. We then computed the similarity between molecules using
proposed kernel. In order to apply PLS for toxicity prediction, we used the same set of
hypothesised clauses generated by CProgol5.0 as SVILP.

Results: We conducted a series of experiments to evaluate the performance of the pro-
posed method. We conducted the first set of experiments to evaluate the efficacy of
the new method for predicting the toxicity values. Figure 8 shows the results. The re-
sults are averaged over 5 runs of the methods. Based on the statistical sign test method,
SVILP shows significant improvement in comparison with the other methods in the
study. In the second set of experiments we assessed the performance of the methods
for qualitative prediction. We evaluated our approach by employing it for categorising
the molecules into two categories, toxic and non-toxic. We also compared the perfor-
mance of SVILP with the standard ILP system CProgol5.0. All of the methods predict
the non-toxic molecules with high accuracy. Figure 9 shows the results for the category
”toxic”. According to McNemar test the SVILP method shows significant improvement
with respect to the other methods. We finally compared SVILP with TOPKAT. The soft-
ware accepts the structures of the molecules in SMILES string and automatically split
the molecule into different fragments, and then uses these fragments as well as some
chemical descriptors such as LOGP and shape index for predictions. In order to make

MSE R-squared
CHEM 1.04 0.48

PLS 1.03 0.47
TOPKAT 2.2 0.26

SVILP 0.8 0.57

Fig. 10. MSE and R-squared for CHEM, PLS, TOPKAT and SVILP
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a fair comparison of the above methods with the commercial software TOPKAT, we
must ensure that we only consider predicted accuracies for molecules that were not in-
cluded in the training data of either method. We therefore excluded any of the DSSTox
molecules that TOPKAT had in its database leaving 165 unseen molecules. Figure 10
shows the results. According to sign test, the SVILP shows significant improvement in
comparison with all of the other approaches. Our results show that SVILP outperforms
all the other methods in the study. The results confirm the efficacy and usefulness of our
approach.

6 Conclusions and Further Work

In this paper we introduce a new framework for combining Support Vector machine
technology with Inductive Logic Programming. Unlike existing relational kernels, the
present approach works within the standard ILP setting of generalisation with respect
to background knowledge, rather than the limited setting of atomic generalisation. A
particular kernel is defined and implemented on top of the ILP system CProgol5.0.
This kernel has been tested on an important new toxin dataset. In our experiments we
compared the performance of the SVILP against related approaches. In all cases our
approach produced significantly higher predictive accuracy.

Further theoretical work is necessary to clarify the effects on performance of varying
the amount of background knowledge used by the kernel. Also further empirical work
is needed to test the kernel on a wider variety of relational problems.
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Abstract. We consider the problem of finding a set of patterns that best
characterizes a set of strings. To this end, Arimura et. al. [3] considered
the use of minimal multiple generalizations (mmg) for such characteriza-
tions. Given any sample set, the mmgs are, roughly speaking, the most
(syntactically) specific set of languages containing the sample within a
given class of languages. Takae et. al. [17] found the mmgs of the class of
pattern languages [1] which includes so-called sort symbols to be fairly
accurate as predictors for signal peptides. We first reproduce their results
using updated data. Then, by using a measure for estimating the level
of over-generalizations made by the mmgs, we show results that explain
the high level of accuracies resulting from the use of sort symbols, and
discuss how better results can be obtained. The measure that we suggests
here can also be applied to other types of patterns, e.g. the PROSITE
patterns [4].

1 Introduction

Finding patterns that characterize a set of samples is a common task in molecular
biology [6]. The samples are genes that are known to share certain traits, while
the discovered patterns are to be used for the study of the genes, or for predicting
if an unknown gene will demonstrate similar traits.

Computational means to find such patterns vary from statistical approaches
to methods used in language learning [6,7]. In language learning, the class of
patterns most commonly used is the one which defines the pattern languages [1],
in which case, a pattern is taken to be a string over a finite alphabet Σ and
an infinite set {x1, x2, . . .} of variables, while the language generated by such a
pattern is taken to be the strings obtainable by replacing all the variables in the
pattern with strings over Σ. As an example, let A, C ∈ Σ, then the language of
the pattern “Ax1C” are the strings over Σ that begins with ‘A’ and ends with
‘C’.

A. Hoffmann, H. Motoda, and T. Scheffer (Eds.): DS 2005, LNAI 3735, pp. 176–188, 2005.
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For such pattern languages, the problem of finding a characterization for a
set of samples is frequently restated as the problem of looking for a language (or
the unions of a set of languages) within a class that contains all the strings in
the sample. Such approaches have been very actively studied within the learning
theory community in the last decade, using either the pattern languages or its
subclasses [14,8]. We consider the problem first introduced by Arimura et. al. [3],
where we are to find a collection of up to k languages within a class L of pattern
languages which (1) together contains all the elements in the given sample S,
and (2) is the most “specific” set of languages (we formally define this notion of
“most specific languages” in Section 2) among every union of up to k languages
in the class that contains S. Hence each number k, class L of languages, and set
S of samples completely specify an instance of such a problem. A set of patterns
that fulfills these conditions is called a k-mmg. Note that more than one k-
mmg may exist for any given problem instance. Arimura et. al. gave a generic
polynomial time algorithm (MMG) [3] for finding a k-mmg, for the problem
instances where certain conditions are fulfilled [18].

There are a number of studies that followed up on the MMG algorithm
[2,19,16], using the class of regular patterns [15] as search space. The regular
patterns are patterns where each variable may appear at most once in it. For
example, “Ax1Cx2” has the variables x1 and x2 each appearing only once in it.
(As a counter-example, x1 appears twice in “Ax1Cx1”.) Takae et. al. [17] added
an element called sort symbol to the regular patterns, resulting in a new pattern
class called sort regular patterns.

A sort symbol is a letter associated with a non-empty set S ⊆ Σ, and is
written [A1A2 . . .] where A1, A2, . . . is an enumeration of the elements in S.
A sort symbol associated with a set S in a pattern p can be replaced with
any element in S in generating elements of the pattern language of p. Such
sort symbols have been in common use within the molecular biology community
for some time [4], usually under the name of ambiguous letter or ambiguous
character. Takae et. al. found that the k-mmgs of sort regular pattern languages
achieve higher accuracies than those of regular pattern languages of the same k
in the prediction of signal peptide functions in unknown biosequences.

The present work aims to clarify Takae et. al.’s observations.
We first note that any sort regular pattern can be expressed as the union

of a few regular patterns. For example, “x1[AC]x2” is the union of “x1Ax2”
and “x1Cx2”. Hence allowing the use of sort symbols achieves similar effects as
allowing more languages to be in a union. From this observation, we can perhaps
compare the k-mmgs of sort regular patterns to the k′-mmgs of regular patterns
for some k′ that is “suitably” larger than k. However, such k′ and k cannot be
straight-forwardly decided from the alphabet size, or the number of occurrences
of sort symbols that appeared in the k-mmg. This is because allowing for more
languages to be union-ed provides more flexibility than simply allowing the use of
sort symbols, since patterns in a union can bear no similarity at all to each other.
In a more delicate example, we see that the union of the languages of “Ax1C”
and “Cx1A” cannot be expressed as the language of a single sort regular pattern.
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To illustrate this difficulty in comparisons more clearly, we found, through
experiments, that a 4-mmg of sort regular pattern languages where 3 occurrences
of sort symbols are allowed in each pattern to be somewhat comparable to an
8-mmg of regular pattern languages, in terms of accuracies in signal peptide
prediction. These numbers do not appear to be intuitively derivable to us.

Nevertheless, we did find a measure that has a very good correlation with the
accuracy values we obtained. This measure is the total number of strings in the
language of a k-mmg of up to approximately the length of the longest sample
used. We expected that such a count would give us a good indication of the
amount of over-generalization that a k-mmg makes. (The computational com-
plexity involved in such countings has been discussed in [11,9,13], and learning-
related results of it can be found in [12]. We note also that such a counting
can be done for many kinds of patterns studied in molecular biology [6,7], for
instance the PROSITE patterns [4].)

What does the correlation between this measure and the accuracies of the
k-mmgs tell us? We answer this at the end of the paper.

This paper is structured as follows. We first introduce the terminology re-
quired in our subsequent discussion. This is followed by a detailed description of
our experimental setup, where we also make some remarks that have been left
out in Takae et. al.’s earlier work. We then present results from the experiments
and finally, discuss their significance.

2 Preliminaries

The symbol N denotes the set of natural numbers. For a set A we denote by
card(A) the cardinality of A. A word over a non-empty alphabet A is a string of
symbols taken from A. The empty word is a null string and is denoted ε. For a
set A, the symbols A∗, A+, and A≤n denote the sets of all the words, non-empty
words, and words of length n or less over A, respectively. For any sets A and B,
A− B denotes the set {x | x ∈ A and x 	∈ B}.

Let Σ be a finite set of alphabets. A sort symbol is a letter associated with
a non-empty set S ⊆ Σ, and is written [S], or [A1A2 . . .] where A1, A2, . . . is an
enumeration of the elements of S. Π denotes the set {[S]|S 	= ∅ ∧ S ⊆ Σ}. For
any A ∈ Σ, [A] is treated as equivalent to A, and hence Σ is treated as a proper
subset of Π .

A regular pattern is a string over Σ ∪ {∗}, and a sort regular pattern is a
string over Π ∪ {∗}, where the ‘∗’ symbol is called a variable. A substitution
θ for a pattern p is a set of replacements for variables in p with patterns, and
sort symbols with sort symbols. The image of a pattern p under a substitution
θ is written pθ. Every occurrence of a variable or sort symbol may be replaced
independently. A sort symbol [S] can only be replaced with another sort symbol
[S′] where S′ ⊆ S. We write p � q if p = qθ for some substitution θ. We write
p ≺ q if p � q but not q � p. Given two sets of patterns P and Q, we write
P � Q if for each p ∈ P , p � q for some q ∈ Q, and P � Q just in case P � Q
but not Q � P . In the latter case, P is also said to be more specific than Q, and
Q more general than P .
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The language L(p) for a pattern p is the set of all w ∈ Σ∗ where w = pθ for
some substitution θ, that is, L(p) = {w ∈ Σ∗ | w � p}. For a set of patterns
P , L(P ) is the union of L(p) of each p ∈ P . Note that for any sets of patterns
P, Q, if P � Q then L(P ) ⊆ L(Q) [15]. Given k ∈ N , a finite set S ⊆ Σ∗ and a
class of patterns ℘ ⊆ (Π ∪{∗})∗, a set of patterns P ⊆ ℘ is a k-minimal multiple
generalization (or k-mmg) for S within ℘ if card(P) ≤ k, S ⊆ L(P ), and there
are no other set of up to k patterns Q in ℘ where Q � P and S ⊆ L(Q). Note
that for each k, ℘, and S there may be more than one such k-mmgs.

2.1 The MMG Algorithm

We introduce the MMG algorithm and our implementation of it in this section.
Given a positive integer k, a set of strings S and a class of patterns ℘, the
following is the listing for the MMG algorithm given in [3] for finding a k-mmg.
All patterns in the following are implicitly elements of ℘.

MMG(k, S)
(1) Let P ← {“ ∗ ”}.
(2) Let Δk ← k.
(3) While Δk ≥ 2 and there exists p ∈ P and

Q � {p} of more than one pattern where
(i) S − L(P − {p}) ⊆ L(Q), but
(ii) no Q′ ⊂ Q has S − L(P − {p}) ⊆ L(Q′) (i.e. no pattern in Q

is redundant),
(3.1) Replace each q ∈ Q with a more specific q′ ≺ q until any further

such replacement will result in S 	⊆ L(P )− L({p}) ∪ L(Q).
(3.2) Let P ← P − {p} ∪Q.
(3.3) Let Δk ← Δk − |Q|+ 1.

(4) Output P .

A detailed description of the algorithm can be found in [3], here we only
explain the parts which is needed in our discussion. Intuitively, the MMG al-
gorithm starts with a most general pattern, and continues making the patterns
more specific until no further refinement can be performed.

To make the search for Q at step (3) efficient, the MMG algorithm looks
for candidates for Q from only a subset ρ(p) of refinements of p of cardinality
polynomial in the length of p. Such a ρ, called a refinement operator, is said to
be complete with respect to the class ℘ just in case for all p, p′ ∈ ℘, p′ � p ⇔
p′ ∈ ρ+(p), where ρ+ is the transitive closure of ρ. It has been shown that for
a complete refinement operator ρ, for any p, such Q that fulfill the requirement
at step (3) exists if and only if some Q′′ ⊆ ρ(p) also fulfills the requirement —
hence limiting the search to ρ(p) does not make the search less complete.

Refinement Operator. In this paper we use the pattern class where only up
to a number of occurrences of the letters in Π −Σ and {∗} are allowed in each
pattern. (The regular patterns are simply patterns where 0 occurrence of the
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letters in Π −Σ are allowed.) Let ℘(m, s) denote the class of patterns with at
most m occurrences of variables and at most s occurrences of the letters in Π−Σ
in each pattern. It is clear that for each m, s ∈ N , ℘(m, s) ⊂ ℘(m + 1, s) and
℘(m, s) ⊂ ℘(m, s+1). For each class ℘(m, s), we use the following as refinement
operator.

ρ(p)
(1) Let P ← ∅.
(2) For each variable occurrence ‘∗’ in p and

for each q in {“∗[Σ]∗”, “∗[Σ]”, “[Σ]∗”, ε },
(2.1) Let p′ be the pattern obtained from p by replacing the ‘∗’ with q,
(2.2) if p′ ∈ ℘(m, s), add p′ to P .

(3) For each sort symbol occurrence [S] in p, for each S′ ∈ {S − {X} | X ∈ S},
(3.1) Add the pattern obtained by replacing [S] with [S′] to P .

(4) Output P .

Hence in this case, card(ρ(p)) is linear in the length of p, |p| say, and fur-
thermore, ρ(p) can be computed in time O(|p|).4 We let m = 4 throughout this
paper, that is, we consider only the classes ℘(4, s) for some s ∈ N . For this
reason we also write ℘(4, s) simply ℘(s).

Implementation. Our implementation of the algorithm is in C, and compiles
on GCC 3.3 and 3.4 (on both gcc and g++). The program supports most of the
modifications studied in the earlier publications [2,17,16], and provides other use-
ful features such as the automatic compilation of alphabet from the input sample
(that is, the alphabet for the amino acids is not coded into the program). The pro-
gram can be downloaded from http://www.daisy.ai.kyutech.ac.jp/∼kalngyk/.

3 Experimental Setup and Reproduced Earlier Results

Our samples are biosequences selected from the flat files for bacterial (release
137.0), plant (release 138.0) and rodent (release 138.0) sequences from NCBI
GenBank [5]. All the signal peptide entries (that is, entries with the primary tag
sig peptide) were extracted, and from among these, we discarded the entries
where the corresponding coding sequence (CDS)

1. has more than one translation table specified, or
2. translates into a sequence different from that given in the file.

We also removed the signal peptide entries which

1. translates into a sequence containing the ‘∗’ symbol, or
2. does not begin with a Methionine, or where
3. the location specified is fuzzy, or references an external sequence.

4 Note that this operator is not complete with respect to any class ℘(m,s) where
1 ≤ m ≤ 2 and s ≥ 1. As an example, let A, C ∈ Σ, p =“∗A[AC]A∗” and q =“∗”.
Clearly, p, q ∈ ℘(2, 1) and p  q, but it can be shown that p �∈ ρ+(q).
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Finally, we remove the prefixing Methionine from each sequence obtained.
We denote this set of sequences by POST , where T is a sequence type of either
bacterial, plant, or rodent. The following table lists the number of signal pep-
tide sequences obtained using this method. Entries in brackets are numbers for
the sequences used in [17] (corrected to count only distinct sequences) and the
increase comes from the growth in the available sequences from GenBank.

Table 1. Sequences used in finding k-mmgs (POST ) and in evaluation (POST , NEGT )

Sequence type T card(POST ) POST min/max/ave length card(NEGT )

bacterial 1869 (422) 10 / 31 / 23 18690
plant 1694 (324) 10 / 30 / 22 16940
rodent 1803 (745) 10 / 30 / 21 18030

The negative examples NEGT for each type T are (1) randomly chosen sub-
strings of (randomly selected) type T CDSs, of a randomly decided length be-
tween 21 to 35, which are (2) not a substring of any sequence in POST . While
it is not guaranteed that sequences obtained this way will not turn out to be
signal peptides, we trust that this odds is small, and by using a large number of
sequences we can reduce its effects.

3.1 Measures for Evaluating a k-mmg

Accuracy. For a sequence type T , let S ⊂ POST be the samples used in deriving
a k-mmg P . For each such P and S we define the following measures of accuracy,

1. The positive accuracy, p(P, S) = 100× card((POST−S)∩L(P))
card(POST−S)

2. The negative accuracy, n(P ) = 100× card(NEGT−L(P))
card(NEGT )

3. The overall accuracy, acc(P, S) =
√

p(P, S) · n(P )

Coverage. For a k-mmg P and a length n, the quantity card(L(P)≤n) gives
us an indication of the amount of over-generalization P has made within Σ≤n.
In this paper we are interested in the case where n = 30, since that is roughly
the longest length of our positive examples. Hence for a k-mmg P we define the
coverage of P ,

cov(P ) = card(L(P)≤30 )
In our experiment, to count cov(P ), we first construct a DFA [10] that accepts
the words in L(P ), and then count the number of distinct paths of up to length
30 which reaches an accepting state [13].

3.2 Reproduced Earlier Results Using Updated Samples

We first reproduce the results as obtained in [17]. For each T and for each n in
{50, 100, 150, . . . , 800}, we randomly choose 100 sets of samples Sn

1 , Sn
2 , . . . , Sn

100
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each of size n from POST . From each such Sn
i we obtain a 5-mmg Pn

i from the
class ℘(9). We then compute the average accuracy

∑
i acc(Pn

i , Sn
i )/100, of the

100 5-mmgs obtained from samples of the size n, and we plot these accuracy
values against n to see how this accuracy depends on the input size. These
dependencies are quite similar to those observed in [17]. In our plots (Fig. 1) we
also show the averages of n(Pn

i ) and p(Pn
i , Sn

i ) for a better picture of what leads
to the trend observed in acc(Pn

i , Sn
i ). We see that the positive accuracy increases

but negative accuracy decreases as we increase the sample size. This tells us that
the k-mmgs produced becomes more general as we add more samples to MMG.
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Fig. 1. Accuracies (acc(P, S)) vs input sample sizes (card(S)) of k-mmgs

4 Results: Correlation of Accuracies with Coverages

In this section we study the correlation between the accuracies of k-mmgs with
their coverages, to examine the effects of over-generalization on the k-mmgs,
under various conditions. We only reproduce the plots for bacterial samples
here, but all the results in this section are also observed on the plant and rodent
samples.

4.1 Coverages of k-mmgs from the Same k, ℘(s) and Sample S

We first compare among the k-mmgs obtainable from the same sample. We run
a modified form of the MMG algorithm to make it produce more than one
k-mmg on a given sample set. This is done in a straight-forward manner, by
letting MMG continue on a few different branches at step (3.1), each branch
with a different order on the patterns in Q to refine.

Fig. 2 shows accuracies (acc(P, S)) against coverage (cov(P )) for the 5-mmgs
obtained from respectively ℘(1), ℘(5) and ℘(9), all from the same sample (of
size 800). We see a very close correlation for the case of ℘(1) and the correlation
becomes less obvious for the case of ℘(9), since the accuracies then conglomerate
around similar values.
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Fig. 2. acc(P, S) vs cov(P ) of 5-mmgs obtained from the same sample

4.2 Coverages of k-mmgs for Various k, ℘(s) at Different Sample
Sizes

The correlation of accuracies with coverages can be observed across k-mmgs
obtained from different samples as well as classes. Fig. 3 shows these values for
k-mmgs obtained from the classes

1. 3-mmgs from ℘(0) (legend �) 4. 5-mmgs from ℘(5) (legend ◦)
2. 3-mmgs from ℘(3) (legend ×) 5. 5-mmgs from ℘(9) (legend +)
3. 5-mmgs from ℘(0) (legend �)

In each graph in Fig. 3 we fix a sample size n, and for each of the classes we
obtain 50 k-mmgs, each from a different sample of size n. Comparing among the
graphs, we see how increasing the sample size makes the k-mmgs more general,
and we also see how this affects their accuracies. The values obtained are in
consistency with those in Section 4.1. Interestingly, k-mmgs of similar coverages
almost always score about the same accuracies, regardless of k, or the class
where the patterns are drawn. We also notice, from the plots for samples of the
sizes 50∼150, that k-mmgs with coverages below a certain threshold score lower
accuracies as their coverages decrease. We look at this region of the plots more
closely in Section 4.4.

4.3 Similarly Accurate k-mmgs of Different k, ℘(s) at Different
Sample Sizes

Allowing letters in Π−Σ to occur in patterns achieves similar effects as increas-
ing the number k of patterns allowed in a k-mmg. However, given any k-mmg
from ℘(n) for some k and n, it is difficult to decide if some k′-mmgs from ℘(n′)
for some k′ 	= k and n′ 	= n will be similarly accurate for protein prediction.
Nevertheless, we found a specific case where such accuracies are comparable for
all the sample sizes used in our tests: the 4-mmgs obtained from ℘(3) (legend
�) and 8-mmgs from ℘(0) (legend ×). This is shown in Fig. 4.
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Fig. 3. acc(P, S) vs cov(P ) of k-mmgs obtained from different classes and samples.
� = 3-mmgs from ℘(0) × = 3-mmgs from ℘(3) � = 5-mmgs from ℘(0)

◦= 5-mmgs from ℘(5) + = 5-mmgs from ℘(9).

Interestingly, while the two different classes produce k-mmgs of similar ac-
curacies, it is very much faster for the MMG algorithm to find 4-mmgs in ℘(3)
than 8-mmgs in ℘(0), since the runtime of the algorithm increases more in k
than in the size of the refinement operator.
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Fig. 4. acc(P, S) vs cov(P ) of 4-mmgs from ℘(3) and 8-mmgs from ℘(0).
� = 4-mmgs from ℘(3) × = 8-mmgs from ℘(0).

4.4 Overly Specific k-mmgs

We now show the details on the positive correlation between accuracies and
coverage in the low coverage region in Fig. 3, by showing the x-axis in log scale.
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In Fig. 5 we show respectively, the accuracies, the positive accuracies, and
the negative accuracies of

(1) 5-mmgs from ℘(4) (legend �) (3) 5-mmgs from ℘(9) (legend ◦)
(2) 5-mmgs from ℘(5) (legend ×) (4) 7-mmgs from ℘(20) (legend �)

obtained from samples of size 50.
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Fig. 5. Details of acc(P, S), p(P, S) and n(P ), against cov(P ) for samples of size 50

We see a rapid decline of the positive accuracies around the coverage range
of 1030∼1038, and for this region the trend of the accuracies follows closely that
of the positive accuracies.

5 Conclusions

We now revisit the proposition made by Takae et. al. in [17], where they observed
that the k-mmgs of sort regular patterns achieve higher accuracies than k-mmgs
of regular patterns. We have shown that these higher accuracies are brought
forth by a reduction of over-generalization in the k-mmgs of the sort regular
patterns. We also argued that similar reduction in over-generalization can be
achieved by increasing the number k of patterns allowed in a k-mmg, though we
lack a theoretical basis to make any meaningful comparison between the two.
Nevertheless, in Section 4.3 we gave an empirical case where k-mmgs of a higher
k of only regular patterns scored similar accuracies as the k-mmgs of sort regular
patterns. It is noteworthy, however, that the MMG algorithm finds k-mmgs of
sort regular patterns very much faster than it finds k-mmgs of regular patterns
of similar accuracies. This is because the runtime of the algorithm grows faster
on k than the usage of letters in Π − Σ (which results in a larger refinement
operator).

By counting the coverages of the k-mmgs, that is, the number of strings of up
to a certain length in the languages of the k-mmgs, we also found that k-mmgs
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with similar coverages always achieve similar accuracies — and this is regardless
of the number k, or the kind of patterns used in the k-mmg. For the samples we
used, we found that in general the accuracy values correlate negatively with the
coverages, except for very small values of coverages, where the opposite trend is
observed. This implies that in general, the k-mmgs obtained in our tests are over-
generalized, and hence as a rule it is preferable to find more specific k-mmgs,
although we should also be on the guard so that they do not become overly
specific, for which we have seen that the accuracies will go into a rapid decline
very suddenly. In practice, with respect to any samples of a specific kind, it
may be possible for us to locate the range of coverage values where the k-mmgs’
accuracies would be highest, and then use these coverage values as a guide in
whether or not to accept an MMG output.

We note that such coverage may also be useful for making comparisons be-
tween pattern sets that are otherwise incomparable through syntax or set inclu-
sion, a possibility which may be interesting in both theory and practice.

Finally, we hope that the idea of coverage can be adopted in the analysis
of other types of patterns used to represent biological sequences, such as the
PROSITE patterns [4].
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Abstract. In this paper, we investigate the q-gram distance for ordered
unlabeled trees (trees, for short). First, we formulate a q-gram as simply
a tree with q nodes isomorphic to a line graph, and the q-gram dis-
tance between two trees as similar as one between two strings. Then, by
using the depth sequence based on postorder , we design the algorithm
EnumGram to enumerate all q-grams in a tree T with n nodes which
runs in O(n2) time and in O(q) space. Furthermore, we improve it to
the algorithm LinearEnumGram which runs in O(qn) time and in O(qd)
space, where d is the depth of T . Hence, we can evaluate the q-gram
distance Dq(T1, T2) between T1 and T2 in O(q max{n1, n2}) time and in
O(q max{d1, d2}) space, where ni and di are the number of nodes in Ti

and the depth of Ti, respectively. Finally, we show the relationship be-
tween the q-gram distance Dq(T1, T2) and the edit distance E(T1, T2) that
Dq(T1, T2) ≤ (gl + 1)E(T1, T2), where g = max{g1, g2}, l = max{l1, l2},
gi is the degree of Ti and li is the number of leaves in Ti. In particu-
lar, for the top-down tree edit distance F (T1, T2), this result implies that
Dq(T1, T2) ≤ min{gq−2, l − 1}F (T1, T2).

1 Introduction

The q-gram, which is a string with length just q, is one of the bases for string
processing, in particular, approximate string matching [8,16]. Then, the q-gram
profile is formulated as a vector of the frequency for every q-gram, and the q-gram
distance between two strings is as the difference of their q-gram profiles.

Such a q-gram (or also called n-gram) has also been widely applied to text
indexing and filtering,data mining, web mining, and so on [4,6,7,12]. Note that,
while their researches deal with semi-structured data, they always focus on the
labels rather than the structures of the data and apply the q-gram for strings.
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On the other hand, it is necessary for filtering structured data and finding
the frequency paths from structured data (cf., [5,6,15]) to extract the struc-
tured features. Hence, in this paper, in order to characterize just the struc-
tures, we investigate the q-gram for ordered unlabeled trees which we call trees
simply.

In this paper, first we adopt the simplest definition that a q-gram is a tree
with q nodes isomorphic to a line graph. Then, we formulate the q-gram profile
and the q-gram distance for trees as similar as ones for strings [16].

Next, by using the depth sequence [10,11] based on postorder , we design the
naive and simple algorithm EnumGram to enumerate all q-grams in a tree T .
After selecting the current depth as the depth of the left leaf of some q-gram,
the algorithm EnumGram searches for the depth of the right leaf of the q-gram
from the right side of the current depth in the depth sequence of T . For a tree T
with n nodes, the algorithm EnumGram runs in O(n2) time and in O(q) space.

Furthermore, we improve it to the algorithm LinearEnumGram, which checks
whether or not the current depth is the right leaf or the root of some q-gram,
by calling the two tables of size O(qd), where d is the depth of T . Then, the
algorithm LinearEnumGram runs in O(qn) time and in O(qd) space. This im-
plies that, if we can regard q as a constant or as q  n, then the algorithm
LinearEnumGram runs in linear time on n. Hence, we can evaluate the q-
gram distance Dq(T1, T2) between T1 and T2 in O(q max{n1, n2}) time and in
O(q max{d1, d2}) space, where ni and di are the number of nodes in Ti and the
depth of Ti, respectively.

Note that, while the original depth sequence in [1,2,10,11,18] has been defined
by using preorder , our depth sequence is defined by using postorder . This is
essential for our algorithms to search for the depth of the leaf of a q-gram.

Finally, we investigate the relationship between the q-gram distance
Dq(T1, T2) and the edit distance E(T1, T2) (cf., [3,9,14,19]) between two trees
T1 and T2. Here, the edit distance E(T1, T2) is the minimum number of appli-
cations of the edit operation, that is, insertion and deletion (since we deal with
just unlabeled trees) transforming from T1 to T2.

For two strings x and y, it is known that Dq(x, y) ≤ 2qE(x, y) [16]. In
contrast, we show that Dq(T1, T2) ≤ (gl + 1)E(T1, T2), where g = max{g1, g2},
l = max{l1, l2}, gi is the degree of Ti and li is the number of leaves in Ti.
Furthermore, the top-down tree edit distance F (T1, T2) [13,17] is the restricted
edit distance that the edit operator can be applied to just leaves. Then, the
above result implies that Dq(T1, T2) ≤ min{gq−2, l − 1}F (T1, T2).

2 The q-Gram Distance for Ordered Unlabeled Trees

A tree is a connected graph without cycles. A rooted tree is a tree with one node
r chosen as its root . For a tree T = (N, E), we sometimes denote v ∈ T instead
of v ∈ V , and |T | instead of |N |.

For each node v in a rooted tree with the root r, let UPr(v) be the unique
path from v to r. If UPr(v) has exactly d edges, then we say that the depth of
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v is d and denote it by dep(v) = d. In particular, UPr(r) = {r} and dep(r) = 0.
For a tree T , we denote max{dep(v) | v ∈ T } by dep(T ).

The parent of v(	= r) is its adjacent node on UPr(v) and the ancestors of
v(	= r) are the nodes on UPr(v)−{v}. The parent and the ancestors of the root
r are undefined. We say that u is a child of v if v is the parent of u, and u is a
descendant of v if v is an ancestor of u. A leaf is a node having no children. A
node that is neither the root or the leaves is called an internal node. The number
of all children of a node v is called a degree of v and denoted by deg(v). For a
tree T , we denote max{deg(v) | v ∈ T } by deg(T ) and the number of all leaves
of T by lvs(T ).

A tree is ordered if a left-to-right order for the children of each node is given;
unordered otherwise. Furthermore, we deal with a rooted ordered unlabeled tree,
so we call it a tree simply.

Let T be a tree with the root v and the children v1, . . . , vm of v. The postorder
traversal (postorder , for short) of T is obtained by visiting vi (1 ≤ i ≤ m)
in order, recursively, and then visiting v. For a tree T with n nodes, suppose
that v1 · · · vn is the sequence of nodes of T in postorder . Then, the sequence
D(T ) = dep(v1) · · · dep(vn) is called the depth sequence of T [10,11]. For the
depth sequence D(T ) = D of T , we denote max{d | d ∈ D} by maxD. Then, it
is obvious that dep(T ) = maxD.

Note that, while the original depth sequence in [1,2,10,11,18] has been defined
by using preorder , our depth sequence is defined by using postorder . The reason is
that, while the main topic in their works [1,2,10,11,18] is to enumerate supertrees ,
one in our work is to enumerate subtrees .

In this paper, we adopt the simplest definition of the q-gram for trees. We say
that a q-gram is a tree with q nodes isomorphic to a line graph as an unrooted
unordered tree, that is, the degree of the root is at most 2 and the degree of
internal nodes is 1. It is obvious that the number of all q-grams is just q − 1.
We denote the q-gram such that the first depth in its depth sequence (that is,
the depth of the left leaf) is k by Pk (1 ≤ k ≤ q − 1). For example, Figure 1
describes all of the 4-grams P1, P2 and P3 and their depth sequences.

Definition 1 (cf. Zhang & Shasha [19]). Let T and P be trees. Then, we
say that P matches T at a node v if there exists a one-to-one mapping f from
the nodes of P into the nodes of T satisfying the following conditions.

�

�

�

� �

�

�

�

�

�

�

�

1210 2110 3210
P1 P2 P3

Fig. 1. All 4-grams and their depth sequences
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1. f maps the root of P to v.
2. Suppose that f maps x to y and x has children x1, . . . , xl from left to right.

Then, y has children y1, . . . , ym such that m ≥ l and there exists a monotone
function g : {1, . . . , l}→ {1, . . . , m} such that f(xi) = yg(i) and g(i1) < g(i2)
whenever i1 < i2.

Then, we introduce the q-gram profile and the q-gram distance for trees based
on the depth sequence, as similar as one for strings [16].

Definition 2. Let T be a tree and Pk a q-gram (1 ≤ k ≤ q − 1). Then, we say
that Pk occurs in T if there exists a node v in T such that Pk matches T at v.

Let G(T )[Pk] denote the total number of the occurrences of Pk in T . Then,
the q-gram profile of T is a vector Gq(T ) = (G(T )[P1], . . . , G(T )[Pq−1]).

Example 1. Consider the 4-gram profile of the trees T and S described as Fig-
ure 2. Note that the labels of T and S in Figure 2 denote the postorder traversals.

� �
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� � ��
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Fig. 2. The trees T and S in Example 1

Then, the following subtrees in T are corresponding to G(T )[Pi].

P1 (3, 6, 5, 4), (6, 14, 13, 8), (6, 14, 13, 10), (6, 14, 13, 12),
(8, 13, 10, 9), (8, 13, 12, 11), (10, 12, 13, 11)

P2 (1, 3, 6, 5), (2, 3, 6, 5), (3, 6, 14, 13), (5, 6, 14, 13),
(7, 8, 13, 10), (7, 8, 13, 12), (9, 10, 13, 12)

P3 (1, 3, 6, 14), (2, 3, 6, 14), (4, 5, 6, 14), (7, 8, 13, 14),
(9, 10, 13, 14), (11, 12, 13, 14)

Also the following subtrees in S are corresponding to G(S)[Pi].

P1 (2, 5, 4, 3), (5, 14, 13, 8), (5, 14, 13, 10), (5, 14, 13, 12),
(8, 13, 10, 9), (8, 13, 12, 11), (10, 13, 12, 11)

P2 (1, 2, 5, 4), (2, 5, 14, 13), (4, 5, 14, 13), (6, 8, 13, 10),
(6, 8, 13, 12), (7, 8, 13, 10), (7, 8, 13, 12), (9, 10, 13, 12)

P3 (1, 2, 5, 14), (3, 4, 5, 14), (6, 8, 13, 14), (7, 8, 13, 14),
(9, 10, 13, 14), (11, 12, 13, 14)

Hence, we can obtain the 4-gram profiles of T and S as G4(T ) = (7, 7, 6) and
G4(S) = (7, 8, 6), respectively.
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Definition 3. Let T and S be trees and q > 0 be a positive integer. Then, the
q-gram distance Dq(T, S) between T and S is defined as follows.

Dq(T, S) =
q−1∑
k=1

|G(T )[Pk]−G(S)[Pk]| .

For the trees T and S in Example 1, it holds that D4(T, S) = 1.

3 Enumeration Algorithm of All q-Grams in a Tree

In this section, we design the enumeration algorithm EnumGram of all q-grams
in a tree T from the depth sequence D = D(T ) of T as Figure 3. Here, D[i] is
the i-th element of D and P [k] is the number of the occurrences of Pk in T .

procedure EnumGram(D, q)
/* D: the depth sequence of a tree, q > 0: integer */
for k = 1 to q − 1 do P [k] ← 0; /* initialize */
for i = 1 to |D| − q do begin

k ← 1; j ← i + 1;
while j ≤ |D| do begin

if D[j] = q + D[i] − k − 2 then P [k] ← P [k] + 1;
if D[j] = D[i] − 1 then k ← k + 1; i ← j;
if k = q then break;
j ← j + 1;

end /* while */
end /* for */
for k = 1 to q − 1 do return P [k];

Fig. 3. Algorithm EnumGram

Suppose that |D| = n. Then, the algorithm EnumGram counts the number
of the occurrences of Pk in T by searching for the depth sequence D from D[1] to
D[n]. For the i-th iteration, EnumGram initializes k to 1 and D[i] to the depth
of the left leaf v of Pk, checks whether or not D[j] is the depth of the right leaf
of Pk for i + 1 ≤ j ≤ n, updates k to k + 1 and i to j if D[j] is the depth of the
parent of the current node with depth D[i], and repeats the same procedure for
the new k and D[i] until j > |D| or k = q.

Theorem 1. The algorithm EnumGram(D, q) is correct.

Proof. Consider the depth sequence D = D(T ) of a tree T and suppose that
|D| = n. For a fixed i, let D[i] be the current depth in D and w the current
node in T corresponding to D[i]. Then, the algorithm EnumGram searches for
Pk with the left leaf v as follows.
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Initially, let w = v, k = 1 and j = i + 1. If EnumGram finds the depth
q + D[i] − k − 2 as D[j] in D[i + 1] · · ·D[n], then it updates P [k] to P [k] + 1,
because q + D[i]− k − 2 is the depth of the right leaf of Pk with the left leaf v
as shown bellow. Also if EnumGram finds the depth D[i]− 1 as D[j], then there
exists no more Pk with the left leaf v in T , because D[i]− 1 is the depth of the
parent of w and the depth sequence is based on postorder. Hence, EnumGram
updates k to k + 1 and i to j, that is, it finishes searching for Pk and begins
searching for Pk+1, where D[i] is updated to D[j]. This procedure for i is repeated
until j > |D| or k = q.

We show that, for the updated D[i] and k, q + D[i] − k − 2 is the depth
of the right leaf of Pk with the left leaf v. Note that w is an ancestor of v,
and k is the number of edges between v and the parent r of w, or equivalently,
k = dep(v) − dep(r) + 1. Furthermore, since the updated depth is D[i], the
algorithm EnumGram has been already searched for all of the descendants of w,
so it searches for the depth of the descendants of r except the descendants of w.

Let u be the right leaf of Pk with the left leaf v. Since |UPr(v)| = k + 1, Pk

contains q nodes and r is contained by both UPr(v) and UPr(u), it holds that
|UPr(u)| = q − k. Then, the number of edges from r to u is q − k − 1, which
means that dep(u) − dep(r) = q − k − 1. Since dep(r) = D[i]− 1, it holds that
dep(u) = q + D[i]− k − 2. See Figure 4.

Since the above procedure is executed for each i (1 ≤ i ≤ |D| − q), the
algorithm EnumGram can enumerate all q-grams in T such that D = D(T ). 
�
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Fig. 4. The q-gram Pk in the proof of Theorem 1

Theorem 2. The algorithm EnumGram(D, q) runs in O(|D|2) time and in
O(q) space.

Note that we can obtain the q-gram distance between two trees T and S by
using the results of EnumGram(D(T ), q) and EnumGram(D(S), q). By Theo-
rem 2, it holds the following corollary.

Corollary 1. The q-gram distance Dq(T, S) can be evaluated in
O(max{|T |2, |S|2}) time and in O(q) space.
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4 Linear Time Enumeration Algorithm

Although the algorithm EnumGram can correctly enumerate all q-grams and
is naive and simple, it is redundant, that is, it contains the similar running
processes. Then, in this section, we improve the algorithm EnumGram to a
faster algorithm LinearEnumGram as Figure 5.

procedure LinearEnumGram(D, q)
/* D: the depth sequence of a tree, q > 0: integer */
/* initialize */
for j = max D downto 1 do

for k = 1 to min{q, j} do
freq [j][k] ← 0;

for k = 1 to q − 1 do P [k] ← 0;
for d = max D downto 0 do

for k = 1 to q − 1 do
if 0 ≤ d − q + 1 + 2k ≤ q then count [d] ← count [d] ∪ {(d − q + 1 + 2k, k)};

for d = max D − 1 downto 1 do
for k = 1 to q − 1 do

if 0 ≤ d + k ≤ max D then shift [d] ← shift[d] ∪ {(d + k, k)};
/* main routine */
for i = 1 to |D| do begin

foreach (j, k) ∈ count [D[i]] do P [k] ← P [k] + freq [j][k]; /* Count */
if i = |D| then break;
if D[i] < max D then

foreach (j, k) ∈ shift[D[i]] do
freq [j][k + 1] ← freq [j][k + 1] + freq [j][k]; freq [j][k] ← 0; /* Shift */

freq [D[i]][1] ← freq [D[i]][1] + 1;
end /* for */
for k = 1 to q − 1 do return P [k];

Fig. 5. Algorithm LinearEnumGram

The main idea of the algorithm LinearEnumGram is to use two tables count
and shift . For 0 ≤ d ≤ maxD, count [d] consists of the pairs (j, k) such that
j = d− q + 1 + 2k, 0 ≤ j ≤ q and 1 ≤ k ≤ q − 1. Also for 1 ≤ d ≤ maxD − 1,
shift [d] consists of the pairs (j, k) such that j = d + k, 0 ≤ j ≤ max D and
1 ≤ k ≤ q − 1. Note that |count [d]| ≤ q and |shift [d]| ≤ q. For example, the
tables count and shift for q = 4 and max D = 3 are described as Figure 6.

The following lemmas characterize the parameters j, k and d such that
(j, k) ∈ count [d] and (j, k) ∈ shift [d], respectively.

Lemma 1. Let Pk be a q-gram (1 ≤ k ≤ q − 1) and d the depth of the right
leaf (or the root if k = q − 1) of Pk. Then, the depth of the left leaf of Pk is
d− q + 1 + 2k.
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d (j, k)

3 (2, 1)
2 (3, 2), (1, 1)
1 (2, 2)
0 (3, 3)

d (j, k)

2 (3, 1)
1 (2, 1), (3, 2)

count shift

Fig. 6. The tables count and shift for q = 4 and max D = 3

Proof. Let v, u and r be the the left leaf, the right leaf and the root of Pk,
respectively. Then, it holds that |UPr(v)| = k + 1 and |UPr(u)| = q − k. Since
dep(u) = d, it holds that d−dep(r) = (q−k)−1, so dep(r) = d+q+1+k. Since
|UPr(v)| = k+1, it holds that dep(v) = (d+q+1+k)+(k+1)−1 = d−q+1+2k.
See Figure 7 (left). 
�

Lemma 2. Let Pk be a q-gram (1 ≤ k ≤ q − 1) and d the depth of the root of
Pk. Then, the depth of the root of Pk is d + k.

Proof. Let v and r be the left leaf and the root of Pk, respectively. Since
|UPr(v)| = k + 1 and dep(r) = d, it holds that dep(v) = d + (k + 1)− 1 = d + k.
See Figure 7 (right). 
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Fig. 7. The q-gram Pk in the proofs of Lemma 1 (left) and Lemma 2 (right)

Theorem 3. The algorithm LinearEnumGram(D, q) is correct.

Proof. Let D = D(T ) be the depth sequence of T and D[i] the current depth in
D. Note that freq [j][k] is the number of the occurrences of Pk with the left leaf
of the depth j in the depth sequence D[1] · · ·D[i− 1]. Then, by using freq [j][k],
the algorithm LinearEnumGram checks whether or not D[i] is the depth of the
right leaf of Pk, and, if so, then it updates the number of the occurrences of Pk

by freq [j][k].
Consider the “Count” routine. By Lemma 1 and the definition of count [d],

(j, k) ∈ count [d] implies that d and j are the depth of the left and right leaves
of Pk, respectively. Hence, for every (j, k) ∈ count [D[i]], since D[i] is the depth
of the right leaf of Pk, LinearEnumGram updates P [k] to P [k] + freq[j][k].
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Consider the “Shift” routine. By Lemma 2 and the definition of shift [d],
(j, k) ∈ shift [d] implies that d and j are the depth of the root and the left leaf of
Pk, respectively. Then, for every (j, k) ∈ shift [D[i]], there exists no more Pk with
the left leaf v in T , because D[i] is the depth of the root of Pk and the depth
sequence is based on postorder. Hence, by shifting k to k +1, LinearEnumGram
updates freq [j][k + 1] to freq[j][k + 1] + freq [j][k] and initializes freq [j][k] to 0,
that is, it finishes searching for Pk and begins searching for Pk+1.

After the above “Count” and “Shift” routines, LinearEnumGram updates
freq [D[i]][1] to freq [D[i]][1] + 1, in order to add D[i] to the left leaf of P1.

Since freq [j][k] such that (j, k) ∈ count(D[i]) is the number of the occur-
rences of Pk of which depth of the left and right leaves are j and D[i], and by
summing up freq [j][k] for every D[i] in the “Count” routine, the algorithm Lin-
earEnumGram can enumerate all q-grams in T such that D = D(T ). 
�

Theorem 4. The algorithm LinearEnumGram(D, q) runs in O(q|D|) time and
in O(q maxD) space.

Proof. Note that, while the sizes of the tables count and shift are O(q maxD),
the “Count” and “Shift” routines in LinearEnumGram call just count [D[i]] and
shift [D[i]], respectively, both of which sizes are at most O(q) for every i. 
�

Hence, if we regard q as a constant or as q  |D|, which is a natural setting, then
the algorithm LinearEnumGram(D, q) runs in O(|D|) time and in O(max D)
space. Furthermore, since maxD = dep(T ) for a tree T and its depth sequence
D = D(T ), the following corollary also holds.

Corollary 2. The q-gram distance Dq(T, S) can be evaluated in
O(q max{|T |, |S|}) time and in O(q max{dep(T ), dep(S)}) space.

Example 2. Consider the trees T and S in Example 1 again, where:

D(T ) = 33232132323210,
D(S) = 32321332323210.

The tables count and shift for q = 4 and maxD = 3 have been already de-
scribed as Figure 6. Then, Figure 8 describes the transitions of the table freq
of the algorithm LinearEnumGram for D(T ) and D(S), respectively, where 0 is
omitted.

Note that the i-th column in Figure 8 denotes the table freq for the i-th it-
eration of the for-loop. Also the underlined number in the i-th column is added
to P [k] by the “Count” routine in the (i + 1)-th iteration of the for-loop. Fur-
thermore, the arrow ↘ in the i-th column denotes the shifting by the “Shift”
routine in the (i + 1)-th iteration of the for-loop.

By summing the underlined numbers for every k (k = 1, 2, 3), we can ob-
tain the q-gram profile of T and S as G4(T ) = (7, 7, 6) and G4(S) = (7, 8, 6),
respectively. Hence, it holds that Dq(T, S) = 1.
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T

j k 3 3 2 3 2 1 3 2 3 2 3 2 1 0

3 1 1 2↘ 1↘ 1↘ 1↘ 1↘
3 2 2 2 3↘ 1 1 2 2 3↘
3 3 3 3 3 3 3 3 3 6 6

2 1 1 1 2↘ 1 1 2 2 3↘
2 2 2 2 2 2 2 2 2 5 5

1 1 1 1 1 1 1 1 1 2 2

S

j k 3 2 3 2 1 3 3 2 3 2 3 2 1 0

3 1 1↘ 1↘ 1 2↘ 1↘ 1↘
3 2 1 1 2↘ 2 2 3 3 4↘
3 3 2 2 2 2 2 2 2 2 6 6

2 1 1 1 2↘ 1 1 2 2 3↘
2 2 2 2 2 2 2 2 2 2 5 5

1 1 1 1 1 1 1 1 1 1 2 2

Fig. 8. The transitions of the table freq for T and S

5 The Relationship to Edit Distance

In this section, we discuss the relationship between the q-gram distance and the
edit distance (cf., [3,9,14,19]) for trees.

The edit operation on a(n unlabeled) tree T is one of the following two op-
erations1.

1. Insertion of a new node v as a child of a node u ∈ T .
2. Deletion of either an internal node or a leaf v from T , moving all children

of v right under the parent of v.

In particular, we assume that every edit operation has a unit cost [14]. For trees
T and S, the edit distance E(T, S) between T and S is the minimum number of
applications of the edit operation transforming from T to S.

As stated in Section 1, it is known the relationship Dq(x, y) ≤ 2qE(x, y) [16]
between the q-gram distance Dq(x, y) and the edit distance E(x, y) for two
strings x and y. However, this relationship does not hold for trees in general.

Example 3. Consider the trees T and S in Figure 9. Then, it is obvious that
E(T, S) = 1. On the other hand, since G3(T ) = (11, 5) and G3(S) = (15, 0), it
holds that D3(T, S) = 9. Then, it holds that D3(T, S) = 9 > 2 ·3 ·1 = 2qE(T, S).

Theorem 5. Let g = max{deg(T ), deg(S)} and l = max{lvs(T ), lvs(S)} for
trees T and S. Then, the following statement holds.

Dq(T, S) ≤ (gl + 1)E(T, S).

1 For labeled trees, the edit operation consists of insertion, deletion and relabel-
ing [3,19].
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T S

Fig. 9. Trees T and S in Example 3

Proof. Suppose that q ≥ 3 and T is transformed to S by the deletion, that is,
deleting an internal node v ∈ T . Let D1, D2 and D be the set of all q-grams
containing v as a root, a leaf and an internal node, respectively. Consider whether
or not a q-gram P ∈ D1 ∪D2 ∪D is still in S.

1. Each P ∈ D1 is also a q-gram in S.
2. For each P ∈ D2, P occurs in S as deg(v) q-grams.
3. Consider P ∈ D(= D3 ∪D4 ∪D5).

D3: If P contains a leaf of T as a descendant of v, then P is not a q-gram in
S.

D4: Else if the parent of v is the root of P and the degree of it is 1 (that
is, P = Pq−1), then P is not a q-gram in S, because such a P has been
already counted as a q-gram in S by D1.

D5: Otherwise, P is also a q-gram in S.

Let |Di| be di and e the number of q-grams not containing v in T . Then, the
number of all q-grams in T is e + d1 + d2 + d3 + d4 + d5 and the number of all
q-grams in S is e + d1 + deg(v)d2 + d5. Hence, the following statement holds.

Dq(T, S) = (deg(v)− 1)d2 + d3 + d4.

Let g = deg(T ) and l = lvs(T ). Note that d2 is bounded by the number of
all q-grams of which root is in UPu(v)− {v} for u such that |UPu(v)| = q. The
total number of all q-grams of which root is in UPu(v) − {v} is at most l − 1,
so it holds that d2 ≤ l − 1. Furthermore, it is obvious that d3 ≤ l and d4 ≤ g.
Hence, the following statement holds.

Dq(T, S) ≤ (g − 1)(l − 1) + g + l = gl + 1.

For the case deleting a leaf v ∈ T , let u be the parent of v. Then, the q-grams
in T containing u and v are not q-grams in S, so Dq(T, S) coincides with the
number of such q-grams. By the bound of d2, it holds that Dq(T, S) ≤ l − 1.
Furthermore, it is obvious that D2(T, S) = 1.

Suppose that T is transformed to S by the insertion, that is, inserting v in
S as an internal node. By replacing v ∈ T with v ∈ S and by replacing D1, D2
and D(= D3 ∪D4 ∪D5) with the set of all q-grams that v is a root, a leaf and
an internal node, respectively, in S, we obtain the q-gram distance between T
and S by letting g = deg(S) and l = lvs(S). Furthermore, the case inserting v
in S as a leaf of S, let u be the parent of v. Since the q-grams in S containing u
and v are not q-grams in T , it holds the similar result of deleting a leaf v ∈ T .
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Let g = max{deg(T ), deg(S)} and l = max{lvs(T ), lvs(S)}. Since the above
estimation is corresponding to E(T, S) = 1, the statement holds. 
�

The top-down tree edit distance (or 1-degree tree edit distance) [13,17] is the
restricted edit distance that the edit operator can be applied to just leaves. We
denote the top-down tree edit distance between T and S by F (T, S). Then, by
using the proof of Theorem 5 when v is a leaf, the following corollary holds.

Corollary 3. Let g = max{deg(T ), deg(S)} and l = max{lvs(T ), lvs(S)} for
trees T and S. Then, the following statement holds for q ≥ 3.

Dq(T, S) ≤ min{gq−2, l − 1}F (T, S).

Proof. By Theorem 5, it holds that Dq(T, S) ≤ (l−1)F (T, S). Consider the case
d2 in the proof of Theorem 5 again. Suppose that r ∈ UPu(v)− {v} is the root
of a q-gram P such that dep(v)− dep(r) = k (1 ≤ k ≤ q − 1). Since deg(r) ≤ g
and |UPr(v)| = k + 1, the number of all q-grams with a root r and a leaf v is at
most (g − 1)gq−k−2. In particular, if k = q − 1, then the number is 1. Then, d2
is bounded by:

1 +
q−2∑
k=1

(g − 1)gq−k−2 = 1 + (g − 1)
q−3∑
k=0

gk = gq−2.

Hence, the statement holds. 
�

6 Conclusion

In this paper, we have investigated the q-gram for ordered unlabeled trees. First,
we have formulated a q-gram as a tree with q nodes isomorphic to a line graph.
Then, we have also formulated the q-gram profile and the q-gram distance for
trees as similar as ones for strings [16].

Next, by using the depth sequence based on postorder, we have designed
the naive and simple algorithm EnumGram to enumerate all q-grams in a tree
T with n nodes that runs in O(n2) time and in O(q) space. Furthermore, we
have improved it to the algorithm LinearEnumGram that runs in O(qn) time
and in O(qd) space. Here, d is the depth of T . Hence, we have evaluated the
q-gram distance Dq(T1, T2) between T1 and T2 in O(q max{n1, n2}) time and in
O(q max{d1, d2}) space, where ni and di are the number of nodes in Ti and the
depth of Ti, respectively.

Finally, for the edit distance E(T1, T2) and the top-down tree edit distance
F (T1, T2), we have shown that Dq(T1, T2) ≤ (gl + 1)E(T1, T2) and Dq(T1, T2) ≤
min{gq−2, l − 1}F (T1, T2), where g = max{g1, g2}, l = max{l1, l2}, gi is the
degree of Ti and li is the number of leaves in Ti.

The setting in this paper is closely related to extract structured features
from structured data, such as filtering structured data and finding the frequency
paths from structured data, for example, [5,6,15]. It is a future work to apply
our algorithms to such an application.
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The main idea in our algorithms is to maintain just the information of the
depth of nodes. In order to extend our method to labeled trees, it is necessary to
maintain the information of not only the depth but also the label of any node.
Then, it is an important future work to design the algorithm to enumerate all
labeled q-grams in a labeled tree efficiently. Furthermore, it is also a future work
to investigate the relationship between the q-gram distance and the edit distance
for ordered labeled trees.

The efficiency of our algorithms follows that we have adopted the simplest
definition of a q-gram that is a tree with q nodes isomorphic to a line graph.
On the other hand, it is also a natural definition that a q-gram is a tree with
q nodes. However, this definition makes the enumeration of all q-gram more
difficult, because of the existence of internal nodes with greater than degree
1. Hence, it is a future work to design the algorithm to enumerate all of such
q-grams efficiently.
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Abstract. The paper focuses on the problem of classification by func-
tion decomposition within the frame of monotone classification. We pro-
pose a decomposition method for discrete functions which can be applied
to monotone problems in order to generate a monotone classifier based
on the extracted concept hierarchy. We formulate and prove a criterion
for the existence of a positive extension of the scheme f = g(S0, h(S1)) in
the context of discrete functions. We also propose a method for finding
an assignment for the intermediate concept with a minimal number of
values.

1 Introduction

Problem decomposition approaches are used in many areas of science, e.g. switch-
ing theory, game theory, reliability theory, machine learning. One of the appli-
cations in machine learning is in structured induction which aims at splitting
a concept to be learnt in a hierarchy of sub-concepts which can be used sep-
arately to generate classification rules. The methods vary but the majority of
them involve a human expert who provides domain knowledge of the structure
of the problem. This process can take a long time and a lot of energy while the
availability of the expert is not necessarily guaranteed.

The contribution of this paper is within the research in automating the de-
composition process. We look at the problem from the point of view of classifica-
tion for monotone data sets. A data set with a set of attributes A and a labeling
λ is called monotone if the values of each attribute are ordered and for each two
data points x, y such that x ≤ y (y dominates x on all attributes, i.e. ∀i xi ≤ yi)
it is true that λ(x) ≤ λ(y).

In practice monotone problems appear in various domain areas (e.g. credit
rating, bankruptcy prediction, bond rating, etc.). For example in credit rating
if one applicant for credit outperforms another on all criteria then he should
be given at least the same chance for being approved. Here as well as in other
areas it is desirable to use a monotone classifier not only with the aim to avoid
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unnecessary money loss but also to help in motivating the decision in front of
internal or external parties.

The property of monotonicity appears in different settings in many areas
of science - from natural language processing (upward/downward monotonic-
ity of quantifiers) to game theory (co-operative games), reliability theory
(semi-coherent structures), database theory (minimal keys), rough sets theory
(reducts) and association rules (frequent patterns).

Monotone classification has been studied in the context of logical analysis of
data, decision trees, decision lists, neural networks, rough sets theory, instance-
based learning, etc. (see [6] for a list of references). In this paper we aim at
building a decomposition hierarchy that preserves the monotonicity property
with the ultimate goal of generating a monotone classifier.

The paper is organized as follows. Section 2 reviews related research. Section 3
presents our contribution. First experimental results are shown in Section 4.
Section 5 concludes and gives some future research directions.

2 Related Research on Function Decomposition

Within machine learning the first attempts in decomposition were presented in
[8] where manually defined concept structures were used with two layers of inter-
mediate concepts. A related field to function decomposition is feature extraction
which aims at constructing new better attributes from the existing ones. These
methods in general need to be given in advance the operators they can use for
generating the new attributes. Other approaches use an expert to decompose the
problem and construct the concept hierarchy, e.g. [9] and [4]. The hierarchical
structure is used to generate decision rules.

A lot of research has been done in the specific case of Boolean functions de-
composition. Important results relevant for our approach were presented in [5]
which investigates the problem of decomposability of partially defined Boolean
functions. It concentrates on the complexity of determining whether a Boolean
function is decomposable using a specific scheme. The most general scheme con-
sidered is:

f = g(S0, h1(S1), . . . , hk(Sk))

where Si are (not necessarily disjoint) subsets of the set of attributes A such that⋃k
i=0 Si = A. The authors of [5] show that deciding whether a partially defined

Boolean function is decomposable is an NP-complete problem for k ≥ 2. For
k = 1 the time complexity is O(mn) where m is the number of data points and
n is the number of attributes. The article also examines the problem of positive
schemes in the frames of Boolean functions (see Section 3).

The research presented in this paper is related to the algorithm presented in
[10,11]. This algorithm recursively decomposes a discrete function y = f(A) into
y = g(S0, h(S1)) (see Figure 1) where S0 and S1 are disjoint and S0∪S1 = A. The
functions g and h are not predefined in the application of the method and are
induced during the decomposition process. The requirement for them is to have
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joint complexity which is lower than the complexity of f and that is determined
using some complexity measure.

By applying the method recursively on h and g we can generate a hierarchy
of concepts. Figure 2 shows an example of a concept hierarchy. The names of
the intermediate concepts are not given by the decomposition method – they
are just interpretations. The concepts in the leaves correspond to the attributes
in A. They are grouped in more general concepts in the internal nodes which
correspond to the intermediate functions generated by the algorithm.

The decomposition method proceeds as follows. The attribute partition selec-
tion step determines which is the best partition into S0 and S1 using a predefined
complexity measure. The basic decomposition step finds the functions g and h
for the partition. The procedure used is equivalent to graph coloring. The overall
function decomposition step is the recursive application of the above two steps
until no decomposition can be found such that the resulting functions are less
complex than the function being decomposed.

Let us concentrate on the basic decomposition step of the algorithm. It starts
by constructing the co-called partition matrix. The rows of this matrix corre-
spond to the distinct values of the attributes in S0 and similarly the columns
correspond to the distinct values of the attributes in S1. The entries of the ma-
trix contain the class label for the specific combination of S0 and S1 values from
the row and the column. Obviously some of these will be empty and considered
as ”don’t care”.

As an example of a partition matrix we consider the data set from Ta-
ble 2. Let us choose the partition into the two subsets S0 = {a1, a2, a3, a6} and
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S1 = {a4, a5}. The corresponding partition matrix is given in Table 1 where the
rows are labelled with the values of S0 and the columns are labelled with the
values of S1.

Table 1. An example of a partition matrix

13 23 11 12 22

3221 3 * * * *
2221 * 3 * * *
3132 3 * * * *
2112 * * 2 * *
2231 * * * 2 *
1121 * * 1 * 2
1211 * * 1 * *

h 2 2 2 2 1

Two columns of the matrix are called compatible if they do not contradict
each other or, more precisely, if they do not contain entries for the same row
that are non-empty and are labelled with a different class label. The number of
such pairs of entries is called the degree of compatibility of the two columns. If
two columns are not compatible, they are called incompatible. In our example we
have two incompatible columns: 11 and 22. For them the values of the attributes
in S0 are the same but the class label is different.

In order to find a new intermediate concept for S1 we need a labelling for
the columns of the partition table (in other words, values for the intermediate
concept) such that g and h are consistent with f . This is exactly the case when
incompatible columns are never assigned the same label. The resulting problem
is equivalent to graph colouring and the corresponding graph is the so called
incompatibility graph. Its vertices correspond to the columns of the partition
matrix and there is an edge between two vertices if and only if their columns are
incompatible.

In the example, the graph contains five vertices and only one edge between
11 and 22 which indicates that they should be assigned different colours. For
these two columns there is a pair of data points from different classes that differ
only in the values in S1. If we assign the same value for S1 then we introduce an
inconsistency – two points that have the same attribute values but are classified
in different classes. Therefore the last row of the matrix in Table 1 is a valid
assignment for the intermediate concept.

The decomposition algorithm achieves higher generalization than the original
data set. The construction of the sets defining the new functions g and h might
lead to adding new points previously not present in the data set. This is due to
the basic decomposition step at which some of the empty entries in the partition
matrix might be assigned a value. This happens exactly when a non-empty entry
exists in the same row which corresponds to the same value of the new concept.
The generalization however does not necessarily extend to a cover of the whole
input space. In the experiments in [10,11], a default rule was used which assigns
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the value of the most frequently used class in the example set that defines the
intermediate concept.

A number of heuristics can be applied to limit the complexity, e.g. limit
the size of S1. Furthermore a number of partition selection measures have been
investigated in [10,11], however, the most simple one, called column multiplicity,
proved best. It chooses the partition with the least number of values of the new
concept.

3 Decomposition with Monotonicity Constraints

Let us have a monotone data set D with an attribute set A and a discrete
monotone labelling λ : D → {0, m}. S0 ∩ S1 = ∅, S0 ∪ S1 = A. A scheme of the
type f = g(S0, h(S1)) is called positive if the functions g, h are positive.

Monotone decomposition looks at the question whether for given S0 and S1
there exists an extension of the positive scheme f = g(S0, h(S1)). The require-
ment that h(S1) should be positive implies that the data set generated by S1 and
the corresponding values given by h should satisfy the monotonicity constraint.
We denote this data set by S1|h. Similarly the requirement that g should be
positive implies that the resulting set (denoted by S0h|λ) after applying h on S1
in D should also satisfy the monotonicity constraint.

Let us use the example in Table 2. The attributes are split in subsets S0 =
{a1, a2, a3} and S1 = {a4, a5, a6}. We assume that g and h are known. Then
the data set generated by applying h on S1 is given in Table 3. This data set
is required to be monotone. Using the values of h from Table 3 in the original
table (in Table 2) we construct the set from Table 4. It is also required to be
monotone.

The problem has so far been investigated in the context of Boolean functions
in [5]. There a criterion is given for the existence of an extension of positive
schemes of a number of different types. A partially defined Boolean function has
an extension of positive scheme f = g(S0, h(S1)) if and only if there is no pair
of vectors x ∈ T ∗ and y ∈ F ∗ such that x[S1] ≤ y[S1] (i.e. y dominates x on all
attributes in the subset S1). Here x[S1] denotes the vector containing only the
values of x for the attributes in S1 and T ∗/F ∗ are defined as follows:

Table 2. A monotone data set

X a1 a2 a3 a4 a5 a6 λ

x1 3 2 2 1 3 1 3
x2 2 2 2 2 3 1 3
x3 3 1 3 1 3 2 3
x4 2 1 1 1 1 2 2
x5 2 2 3 1 2 1 2
x6 1 1 2 2 2 1 2
x7 1 1 2 1 1 1 1
x8 1 2 1 1 1 1 1
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Table 3. The new data set S1|h

X a4 a5 a6 h

x1 1 3 1 1
x2 2 3 1 2
x3 1 3 2 1
x4 1 1 2 1
x5 1 2 1 1
x6 2 2 1 2
x7 1 1 1 1
x8 1 1 1 1

Table 4. The new data set S0h|λ

X a1 a2 a3 h λ

x1 3 2 2 1 3
x2 2 2 2 2 3
x3 3 1 3 1 3
x4 2 1 1 1 2
x5 2 2 3 1 2
x6 1 1 2 2 2
x7 1 1 2 1 1
x8 1 2 1 1 1

T ∗ = {x ∈ T |∃y ∈ F : y[S0] ≥ x[S0]}

F ∗ = {y ∈ F |∃x ∈ T : y[S0] ≥ x[S0]}.

Deciding if a partially defined Boolean function has an extension of such positive
scheme can be done in polynomial time with complexity O(m2n).

In this paper we investigate the corresponding problem in the context of
discrete functions. First, the following lemma can be proven:

Lemma 1. There exists a positive extension for the scheme f = g(S0, h(S1)) if
and only if there exists an assignment of values h : D → {hi}ki=1 such that the
two new data sets S1|h and S0h|λ are monotone.

(see [6] for a proof)
Let us consider the data set generated by h, i.e. S1|h. The monotonicity

constraint here means that if x[S1] ≤ y[S1] then h(x[S1]) ≤ h(y[S1]). We assign
some unknown values to the class attribute {hi}ki=0 and generate constraints of
the type hi ≤ hj for the class values for each couple of different data points such
that xi[S1] ≤ xj [S1]. For the example of Table 2, the constraints generated in
this way will be as shown in Table 5 where hi = h(xi[S1]).

Table 5. The set of constraints from the data table S1|h

h1 ≥ h5 h2 ≥ h8 h4 ≥ h8

h1 ≥ h7 h3 ≥ h1 h5 ≥ h7

h1 ≥ h8 h3 ≥ h4 h5 ≥ h8

h2 ≥ h1 h3 ≥ h5 h6 ≥ h7

h2 ≥ h5 h3 ≥ h7 h6 ≥ h8

h2 ≥ h6 h3 ≥ h8 h7 ≥ h8

h2 ≥ h7 h4 ≥ h7 h8 ≥ h7

We now replace the vectors x[S1] with the corresponding (for the moment
still unknown) values hi and that results in the data set S0h|λ. It should also be
monotone which here means that if x ≤ y then x cannot belong to a higher class
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than y. We transform this constraint to a constraint over h: if x[S0] ≤ y[S0] and
x belongs to a higher class than y then h(x[S1]) > h(y[S1]). For the example,
the constraints of this type are: h2 > h5 and h6 > h7.

Note that if there are no constraints of the second type the remaining con-
straints of only the first type can be satisfied by assigning the same value to all
h-variables and that would be a valid solution to the problem.

A natural way of representing the constraints is in a directed graph with
vertices corresponding to {hi}ki=1 and two types of directed edges. The first
type of constraints (larger or equal) will be denoted by a dashed arrow: x → y
will mean x ≥ y. The second type (larger) will be represented by solid arrows
where x → y will mean x > y. This representation will be used for finding a
consistent assignment for h. Intuitively, such assignment cannot be found if a
cycle is present such as: x1 ≥ x2, x2 > x3, x3 ≥ x1. The graph for our example
is given in Figure 3.

x
1

x
7
=x

8

x
6

x5

x
4

x3

x
2

Fig. 3. The constraints graph for the example

3.1 Existence and Minimality of a Positive Extension of the Scheme
f = g(S0, h(S1))

We can formulate a more precise criterion for whether there exists an assignment
for the values {hi}ki=1 consistent with all constraints. First we define the following
notation:

Ti = {x ∈ D : λ(x) = i} for i ∈ [0, m],

T>i = {x ∈ D : λ(x) > i} for i ∈ [0, m− 1],

T<i = {x ∈ D : λ(x) < i} for i ∈ [1, m].

Using this, we define the following two sets:

T ∗
>i = {x ∈ T>i | ∃y ∈ Ti, x[S0] ≤ y[S0]} for i ∈ [0, m− 1],
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T ∗
<i = {x ∈ T<i | ∃y ∈ Ti, y[S0] ≤ x[S0]} for i ∈ [1, m].

Theorem 1. There exists a positive extension of scheme f = g(S0, h(S1))
iff there are no data points xi, x

′
i, xi+1, x

′
i+1, . . . , xi+j , x

′
i+j , xi+j+1 such that

xi+j+1 = xi and such that for all xk, x′
k the following conditions hold:

1. if xk ∈ Tl then x′
k ∈ T ∗

>l,
2. x′

k[S1] ≤ xk+1[S1].

(see [6] for a proof)
When an assignment exists it is hardly ever unique. In general we are in-

terested in assignments with a (nearly) minimal number of values. In order to
address this problem we first define a path in the constraint graph as a sequence
of vertices x1, x2, . . . , xj such that for each xi, xi+1 there exists an edge from xi

to xi+1(i.e. h(xi) < h(xi+1) or h(xi) ≤ h(xi+1)). The length of a path P is the
number of solid edges in it, denoted by |P |. For an acyclic constraint graph, we
denote the maximal length of a path in the graph by χ.

Theorem 2. If there exists a positive extension of the scheme f = g(S0, h(S1)),
then the minimal number of values necessary for an assignment consistent with
the constraints equals the number χ + 1 of the constraint graph.

(see [6] for a proof)
Two possible assignments for h are (where hmin is the minimal possible value

of h):

hD(x) =
{

hmin + max{|P | : P − path starting from x} if such path exists,
hmin otherwise

h′
D(x) =

{
hmin + χ−max{|P | : P − path leading to x} if such path exists,
hmin + χ otherwise.

Lemma 2. For each vertex x of an acyclic constraints graph, it holds that
hD(x) ≤ h′

D(x).

(see [6] for a proof)
We apply a graph theory algorithm called topological sorting to order the

vertices so that all edges point in the same direction (e.g. the graph of Fig. 3 is
rearranged as in Fig. 4). We can now find an assignment as follows:

If no edges start from the vertex, assign hmin;
Otherwise for each such edge:

extract the label of the end vertex;
for solid edges add 1 to the corresponding number;
find the maximal among the numbers for all edges ending in x;
assign this maximal number to the current vertex.

The complexity of the procedure is O(|V ||E|) where V is the set of vertices
and E is the set of edges. For our example the new assignment is shown in
Table 4.
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Fig. 4. The constraint graph from Figure 3 after the topological sorting

3.2 Default Rule for Covering the Whole Input Space

Our algorithm inherits the characteristic of the general decomposition algorithm
that it cannot guarantee coverage of the whole input space. A default rule is
needed that results in a monotone classifier. It should be applied at two steps -
comparison with S1|h and with S0h|λ. At the first step we compare x[S1] with
the data set S1|h. If none of the data points in it is equal to x[S1] we need to
find a new label consistent with S1|h. Then we replace x[S1] with it and compare
the new example with the data set S0h|λ. Here again if none of the examples is
equal to the new one we have to find a new label that is consistent with the rest
of the data.

Since these two steps are similar, we can use the same type of labelling
function over the two data sets. We denote the data set by D which at the first
step should be replaced by S1|h and at the second step by S0h|λ. Similarly λ(x)
at the first step should be replaced by h and at the second step by g.

We propose two alternatives for the labelling function – λmin and λmax, which
are defined as follows:

λmin(x) =
{

max{λ(y) : y ∈ D ∩ ↓ x} if x ∈ ↑ D
cmin otherwise

λmax(x) =
{

min{λ(y) : y ∈ D ∩ ↑ x} if x ∈ ↓ D
cmax otherwise

where X is the input space, cmin/cmax are the minimal and the maximal possible
label respectively and we use the following other notation:

↓ x = {y ∈ X : y ≤ x},

↑ x = {y ∈ X : y ≥ x},

↓ D =
⋃

x∈D

↓ x,

↑ D =
⋃

x∈D

↑ x.
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Different functions may be used on the different steps, e.g. λmin for labelling
at the first step and λmax at the second step, as long as the same function is
applied every time we are at the same step. If we apply both functions at the same
step the monotonicity is no longer guaranteed. These functions were previously
used in the Monotone Decision Trees algorithm ([2,7]) and are proven to give
consistent labels when the data set is monotone. λmax tends to give higher labels
and more optimistic predictions than λmin.

As an example we take x = (2, 2, 2, 2, 2, 2). x[S1] = (2, 2, 2) does not appear
in S1|h (Table 3). We apply the labelling functions and both λmin and λmax give
label 2. We then replace the label in x and compare the new data point (2, 2, 2, 2)
with S0h|λ (Table 4). It is not present there, therefore we need to apply again
a labelling function. λmin predicts a label 2 and λmax predicts 3. Let us assume
that we prefer more optimistic predictions and we choose λmax. Therefore the
label assigned to x = (2, 2, 2, 2, 2, 2) will be 3.

4 Experimental Results

In order to investigate the successfulness of the proposed algorithm, some exper-
iments were conducted on the Nursery data set obtained from UCI ML Reposi-
tory [3]. It is a real-world monotone data set of 12960 applications for a nursery
school described by 8 attributes and covers the whole input space. It was gen-
erated using a hierarchical model developed by experts, see Figure 5, therefore
has known underlying structure. The values of all attributes are ordered accord-
ing to how inconvenient the situation is. Furthermore the underlying problem is
monotone since the better the situation of the family is the more recommended
it is to accept the application. We have previously used the same data set for
experiments with another classification algorithm for monotone data - Monotone
Decision Trees (see [1,6]).

In the experiments the following rules were used in order to handle tie sit-
uations. If one candidate is a subset of another candidate with the same score

Fig. 5. The concept hierarchy used to generate the Nursery data set
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then the superset candidate has priority. Right-breadth-first strategy is used in
building the decomposition tree, i.e. among candidates with the same score, the
right-most has priority and we first consider for splitting the remaining attributes
on the same level before we look deeper. The minimal length of a candidate is
2, the maximal is fixed to 5. We used column multiplicity for partition selection
and hD(x) for finding the new concept.

With these assumptions, the final decomposition structure extracted by the
algorithm is identical to the one developed by the experts and used to produce
the data set. It must be noted that with different design decisions (left-breadth-
first/depth-first strategies) the algorithm takes a different path but generates
equivalent structures. Further experiments were performed with a sample of 500
data points. The algorithm produced the same decomposition tree.

5 Conclusions

In this paper we propose a decomposition method for monotone discrete func-
tions which generates a monotone classifier based on the extracted concept hi-
erarchy. We formulate a criterion for the existence of a positive extension of the
scheme f = g(S0, h(S1)) and propose a method for finding an assignment for the
intermediate concept using minimal number of values. Furthermore we propose
two monotone default rules for the classification of points not covered by the
extended data set of the concept hierarchy.

At least two directions for further research can be mentioned. It would be
interesting to investigate whether the results could be extended to cope with
noise. It would also be interesting to consider decompositions with a restriction
on the intermediate concepts.
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Abstract. The classification of time-varying neurophysiological signals,
e.g., electroencephalogram (EEG) signals, advances the requirement of
adaptability for classifiers. In this paper we address the challenge of neu-
rophysiological signal classification arising from brain-computer inter-
face (BCI) applications and propose an on-line classifier designed via the
decorrelated least mean square (LMS) algorithm. Based on a Bayesian
classifier with Gaussian mixture models, we derive the general formula-
tion of gradient descent algorithms under the criterion of LMS. Further,
to accelerate convergence, the decorrelated gradient instead of the in-
stantaneous gradient is adopted for updating the parameters of the clas-
sifier adaptively. Utilizing the presented classifier for the off-line analysis
of practical classification tasks in brain-computer interface applications
shows its effectiveness and robustness compared to the stochastic gradi-
ent descent classifier which uses the instantaneous gradient directly.

1 Introduction

Recently, the emerging research of brain-computer interface (BCI) technology,
which is to give its users communication and control routes that do not depend
on the brain’s normal output channels of peripheral nerves and muscles, issues
many challenges to the artificial intelligence community [1][2][3][4]. One of the
big challenges in BCI applications is how to recognize the user’s intent from the
observation of neurophysiological signals as accurate as possible. In this paper,
we focus on the classification problem of one particular variety of neurophysio-
logical signals, namely electroencephalogram (EEG) signals which are electrical
brain activities recorded from electrodes placed on the scalp.

Compared to magnetoencephalography (MEG), optical imaging, positron
emission tomography (PET) and functional magnetic resonance imaging (fMRI),
electroencephalography is a relatively inexpensive and convenient means to mon-
itor the brain’s activities. Although the recorded EEG signals suffer from the
trouble of low signal noise rate (SNR), currently it is a rather recipient way
(non-invasive and ethical) to access brain signals [5][6]. However, the essential
nondeterminacy of brain activity implies the high variability of EEG recordings.
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c© Springer-Verlag Berlin Heidelberg 2005
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The EEG signals being used in a BCI are typically non-stationary, especially
between two different sessions with a rather long time interval. Factors such
as user’s strategy, motivation, attention, fatigue or frustration may affect the
features of EEG activities significantly. Besides, the environmental noise in all
kinds of natural conditions can also cause the mental state to change by gradual
degrees. As an instance, Millán had shown that two different mental tasks, imagi-
nation of left and right hand movements respectively, can have closer power maps
than the same task during two consecutive sessions [7]. Altogether, the sponta-
neous variability of EEG recordings between experimental sessions makes it a
difficult issue to categorize different EEG signals, and necessitates learning the
on-line classification to boost up the performance of existing BCIs.

Hitherto, there is few work dealing with the problem of on-line learning for
EEG signal classification in the literature. Although many on-line learning meth-
ods are available from the neural network, statistical, and computational learning
disciplines, they are usually computationally expensive and do not suit BCI ap-
plications simply [8][9][10]. Our current work is initially inspired by several recent
publications of Millán and his colleagues [7][11][12][13]. Although they presented
to use the idea of stochastic gradient descent to carry out on-line learning of a
statistical classifier, under their rather rigorous assumptions, they hadn’t pro-
vided the formulations of variable updates in a systematic way. We will make
up for this deficiency and discuss the related work later in the main text.

The main contribution of this article is that, based on a Bayesian classifier
with Gaussian mixture models we derive the exact formulation of gradient algo-
rithm in a much general way, and then present a decorrelated least mean square
(DLMS) algorithm utilizing the theoretical outcome to learn the on-line classifi-
cation of EEG signals in BCI applications. Real-world classification experiments
with three kind of mental imagery tasks also verifies the effectiveness of our
approach.

The remainder of this paper is organized as follows. Besides the theoretical
derivation of gradient update, section 2 also covers the details of how to build up
the on-line Bayesian classifier employing the idea of decorrelated LMS algorithm.
Section 3 reports the experimental results for several BCI subjects on three
mental imagery tasks. Then, in section 4 we discuss some related work. Finally,
section 5 gives the conclusions and future work plan.

2 On-Line Classifiers

As we have stated before, the competence of on-line learning is very necessary
in BCI applications. However, to the best of our knowledge, there is little work
addressed this matter in the literature till now. The articles of Millán et al. are
one of the first to bring forward this problem in the BCI settings [7][11][12][13].
For the on-line learning in BCIs, one would first encounter the problem of choose
which kind of classifiers. For the consideration of low computation cost and
practical superiority, here we adopt the Bayesian classifier to deal with the issue
of multi-class categorization, as suggested by others [7][12].
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2.1 Bayesian Classifier

Assume there are N samples in a training set which come from K categories, and
each class denoted by Ck has prior P (Ck), (k = 1, ..., K), s.t.,

∑K
k=1 P (Ck) = 1.

For each class, its class conditional probability density is assumed to be the
weighted combination of Nk Gaussian probability density functions, i.e.,

p(x|Ck) =
Nk∑
i=1

ai
kG(x|μi

k, Σi
k), s.t., ΣNk

i=1a
i
k = 1 (1)

where G(x|μi
k, Σi

k) is a Gaussian probability density function with mean μi
k and

covariance Σi
k [14]. According to Bayesian theorem [10], the posterior probability

of x belonging to class Ck can be given as

P (Ck|x) =
P (Ck)p(x|Ck)

p(x)

=
P (Ck)

∑Nk

i=1 ai
kG(x|μi

k, Σi
k)∑K

j=1 P (Cj)
∑Nj

i=1 ai
jG(x|μi

j , Σ
i
j)

. (2)

Now we represent the samples as {xn, yn}, n = 1, ..., N , whereas xn is the
feature vector, yn is the corresponding label. If xn ∈ Ck, then yn = eK

k =[
0, . . . , 1(k), . . . , 0

]

(K) . Denote ŷn as the outcome of our Bayesian classifier,

i.e.,
ŷn =

[
P (C1|xn), P (C2|xn), . . . , P (CK |xn)

]

.

Under the criterion of least mean square (LMS), the cost function for uncon-
strained optimization becomes

min J(Θ) = min E{‖en‖2} = min E{‖yn − ŷn‖2} (3)

where variable Θ represents any of the parameters Nk, ai
k, μi

k, Σi
k. To make our

analysis feasible, we only presume here that parameters Nk, ai
k are given or

obtained from previous training data, while parameters μi
k, Σi

k would have the
most general form (μi

k is a general column vector, Σi
k is a symmetric and positive

definite matrix) and would be updated through on-line learning.
For the application of LMS algorithm and the later mentioned decorrelated

LMS algorithm, one should first derive the formulation of stochastic gradient
(instantaneous gradient) ∇Θ‖yn − ŷn‖2. Note that ‖yn − ŷn‖2 can be rewritten
as follows:

‖yn − ŷn‖2 = (yn − ŷn)T (yn − ŷn)
= yT

n yn − 2yT
n ŷn + ŷT

n ŷn

= yT
n yn − 2

K∑
i=1

yi
nP (Ci|xn) +

K∑
j=1

(P (Cj |xn))2

= yT
n yn +

K∑
j=1

[(P (Cj |xn))2 − 2yj
nP (Cj |xn)] . (4)
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Thus, we have

∇Θ‖yn − ŷn‖2 = 2
K∑

j=1

[(P (Cj |xn)− yj
n)∇ΘP (Cj |xn)] (5)

where Θ is μi
k or (Σi

k)−1 (for computational convenience, we use (Σi
k)−1 instead

of Σi
k from now on) in this paper.

2.2 Derive ∇μi
k
P (Cj |xn)

Define Φ1 = P (Ck)ai
k

p(xn) G(xn|μi
k, Σi

k)(Σi
k)−1(xn − μi

k), then

∇μi
k
P (Cj |xn) =

{
[1− P (Ck|xn)]Φ1, for j = k
−P (Cj |xn)Φ1, for j 	= k

(6)

(see Appendix A for details).

2.3 Derive ∇(Σi
k)−1P (Cj |xn)

Because∇Σi
k
P (Cj |xn) is difficult to get directly, we try to derive∇(Σi

k)−1P (Cj |xn)
alternatively.

∇(Σi
k)−1P (Cj |xn) =

{
P (Ck)ai

k

p(xn) [1− P (Ck|xn)]Φ2, for j = k

−P (Ck)ai
kP (Cj|xn)

p(xn) Φ2, for j 	= k
(7)

where
Φ2 = G(xn|μi

k, Σi
k){Σi

k −
1
2
diag(Σi

k)−A +
1
2
diag(A)}

with A = (xn − μi
k)(xn − μi

k)
 (see Appendix B for details).

2.4 Decorrelated LMS Algorithm for Bayessian Classifier

With the derived stochastic gradient formulation in (5), one might seek to update
parameter Θ using the gradient directly (namely LMS algorithm), i.e. using

Θn = Θn−1 − μn∇Θn−1‖yn − ŷn‖2 (8)

to carry out on-line learning adaptively, where μn is the learning rate [15]. How-
ever, this would take a risk of low convergence rate and poor tracking per-
formance, since stochastic gradient ∇Θn−1‖yn − ŷn‖2 is only the instantaneous
approximation of the true gradient which should be derived from ∇Θn−1E{‖yn−
ŷn‖2}. If two consecutive instantaneous gradients correlate with each other, then
the mean square error (MSE) might be accumulated and couldn’t be corrected
in time. Therefore, to get rid of these shortcomings, here we adopt the decorre-
lated gradient instead of the instantaneous gradient [15][16]. Using decorrelated
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Table 1. The flow chart of the decorrelated LMS (DLMS) algorithm for learning on-
line classification

The variable Θ in the following procedure denotes μi
k or (Σi

k)−1

with {k = 1, . . . , K; i = 1, . . . , Nk}.
Step 1:
Initialize Θ with Θ0.
Step 2:
For n = 1, 2, . . ., calculate the decorrelated gradient
∇̂Θn−1‖yn − ŷn‖2 from (5) and (9), and update Θ with Θn =

Θn−1 − μn∇̂Θn−1‖yn − ŷn‖2.

gradient can effectively avoid the case of error accumulation which might arise
in instantaneous gradient descent algorithms, and hence, can accelerate the con-
vergence of the adaptive-gradient methods.

The decorrelated gradient of Θn can be defined as

∇̂Θn‖yn − ŷn‖2 = ∇Θn‖yn − ŷn‖2 − an∇Θn−1‖yn − ŷn‖2 (9)

where an is the decorrelation coefficient between ∇Θn‖yn−ŷn‖2 and∇Θn−1‖yn−
ŷn‖2 . For two vectors vn and vn−1, the decorrelation coefficient an can be defined
as

an =
(vn − v̄n)
(vn−1 − v̄n−1)

(vn−1 − v̄n−1)
(vn−1 − v̄n−1)
(10)

where v̄n represents the mean value of vn [15]. For two matrices, the concept of
decorrelation coefficient can be similarly extended. Table 1 describes the para-
digm of our proposed decorrelated LMS (DLMS) algorithm for learning on-line
classification.

3 Experiments

3.1 Materials and Protocols

Here we describe the data set analyzed in this paper. The data set contains EEG
recordings from 3 normal subjects (denoted by A, B, C respectively) during non-
feedback mental imagery tasks. The subjects sat in a normal chair, relaxed arms
resting on their legs. The three tasks are: imagination of repetitive self-paced
left hand movements (class C1), imagination of repetitive self-paced right hand
movements (class C2) and generation of different words beginning with the same
random letter (class C3).

For a given subject, there are 3 recording sessions acquired on the same
day, each lasting about 4 minutes with breaks of 5-10 minutes in between. The
subject performed a given task for about 15 seconds and then switched randomly
to the next task at the operator’s request. The raw EEG potentials were first
spatially filtered by means of a surface Laplacian [17][18]. The superiority of
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surface Laplacian transformation over raw potentials for the operation of BCI
has already been demonstrated [19]. Then, every 62.5 ms, the power spectral
density in the band 8-30Hz was estimated over the last second of data with a
frequency resolution of 2 Hz for 8 centro-parietal channels (EEG signals recorded
over this region reflects the activities of brain’s sensorimotor cortices). The power
spectra in the frequency band 8-30 Hz were then normalized according to the
total energy in that band. As a result, an EEG sample is a 96-dimensional vector
(8 channels times 12 frequency components). The total number of samples for
subjects A, B, and C during three sessions are respectively 3488/3472/3568,
3472/3456/3472, and 3424/3424/3440. For a more detailed description of the
data and the brain computer interface protocol, please refer to [7]. In this article,
we concentrate on utilizing the 96 dimensional pre-computed features to address
the problem of on-line classification.

3.2 Experimental Results

EEG signal classification is conducted for each subject. First of all, to reduce the
parameters to be estimated and avoid the over-fitting problem, principal com-
ponent analysis (PCA) is adopted to reduce the feature dimensions by reserving
90% energy. The threshold 90% is a good tradeoff between dimension reduction
and energy preservation for our problem. To initialize the parameters μi

k and Σi
k

of the DLMS algorithm, we first apply the k-Means clustering algorithm with
multiple runs [10], and the result with the least cost value is selected for initial-
ization utility. On the selection of parameters P (Ck), Nk and ai

k in the Bayesian
classifier of Gaussian mixture models, we take the same configuration as [7],
for in his research, Millán had shown its effectiveness through cross-validations.
Thus, P (Ck) = 1

3 , Nk = 4 and ai
k = 1

4 (k = 1, 2, 3; i = 1, 2, 3, 4).
In this article, the data of session 1 from each mental task of every subject

is employed to implement parameter initialization. For class Ck, we first use
k-Means clustering algorithm to initialize μi

k which comes from one of the Nk

cluster centers. Then Σi
k can be obtained using the data belonging to the same

cluster Ci
k. Subsequently, we update the parameters adaptively on the first one

minute data of the next session (the samples are processed sequentially and
only once, to completely stimulate the on-line situation). With the final updated
parameters, we test the performance of the classifier on the data of the last three
minutes from the next session. The learning rate of μi

k and (Σi
k)−1 are taken as

1e-6 and 1e-4 respectively, which are found to provide good classification results
among a small number of parameter search for the basic LMS algorithm. The
same procedure is performed on session 2 and session 3, i.e., we initialize the
parameters μi

k and Σi
k through k-Means clustering on session 2, then update

them using the first one minute data of session 3 and test the final classifier on
the last three minute data of session 3.

To evaluate the performance of our decorrelated LMS (DLMS) algorithm
for learning on-line classification, under the same conditions we also carry out
on-line classification using the basic LMS algorithm, which adopts instanta-
neous gradient instead of decorrelated gradient to update parameters. The final
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Table 2. Classification accuracies of on-line learning by LMS algorithm and decorre-
lated LMS (DLMS) algorithm

Subjects Sessions LMS DLMS

2 67.79% 67.87%
A 3 70.71% 70.59%

2 47.40% 45.63%
B 3 51.83% 52.31%

2 49.19% 48.78%
C 3 41.45% 42.82%

classification accuracy rates using these two classifiers with parameters updated
by the whole one minute data are given in Table 2.

Through statistical Z-test, no significant difference is found between the final
results of these two algorithms (p-value=0.8845). This only indicates that the
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Fig. 1. (a): The time course of classification accuracies on session 3, subject A. (b):
The time course of classification accuracies on session 3, subject B. (c): The time course
of classification accuracies on session 3, subject C.
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Table 3. The standard deviations (STDs) (normalized to the range [1, 10]) of the time
courses of on-line classification by LMS algorithm and DLMS algorithm

LMS DLMS STD
Subjects Sessions STD STD Reduced

2 1.46 1.02 30.1%
A 3 1.79 1.30 27.4%

2 9.95 2.22 77.7%
B 3 4.32 1.87 56.7%

2 4.26 4.42 −3.8%
C 3 8.39 3.89 53.6%

Average 40.28%

performance of LMS algorithm is statistically similar to DLMS algorithm after
a long time of update. As we have stated before, one important requirement for
on-line BCI applications is to improve the classification performance using as
minimal training data as possible. Besides, for non-feedback BCIs, as there is no
sign helping subjects to rectify their latent strategies generating EEG signals,
effective algorithms should be of good stability. Below we give the time courses
of the convergence of these two algorithms during the on-line update stage for
classifying the last three minutes of session 3 of three subjects in Fig. 1. That is,
after every update, we obtain the classification accuracy on the last 3 minutes
of session 3. From Fig. 1, the robustness and the rapid convergence of DLMS
algorithm are manifested. Although the results of LMS algorithm and DLMS
algorithm have the same tendencies, the magnitude variance of classification
accuracy obtained by DLMS algorithm is rather smaller than that of LMS al-
gorithm. Thus the rapid convergence and robustness of DLMS algorithm are
indicated. For other test sessions, similar results are observed. In addition, to
give a quantitative description, the standard deviations of the classification re-
sults for LMS algorithm and DLMS algorithm are respectively given in Table 3,
from which we can see that by using DLMS algorithm for gradient descent the
standard deviation has been reduced to a large extent.

4 Related Work

With regard to the idea of stochastic gradient descent, Millán et al., have men-
tioned it in their publications [7][11][13]. However, they usually make a very
rigorous assumption about the formulation of covariance matrix Σi

k, such as the
assumption of diagonal and common to all the prototypes of a certain class,
and make a simple approximation about the gradient of μi

k. Fig. 2 shows the
distribution of two features from the original 96 ones. Clearly, using the combina-
tion of diagonal covariances could not represent the external oblique distribution
logically.
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Fig. 2. The distribution of two features from the original 96 ones of session 1, subject A

While in this article, PCA is adopted for dimension reduction and the covari-
ance matrices are described with a general form. This would be more reasonable
and more powerful in depicting different data distributions. Besides, we indepen-
dently derive the general representation of gradient descent algorithm for μi

k and
(Σi

k)−1 in a Bayesian classifier context, which didn’t appear before in the liter-
ature as far as we know. In addition, a new algorithm namely decorrelated LMS
algorithm is proposed for the on-line learning of μi

k and (Σi
k)−1, and obtains

better performance than the basic LMS algorithm (stochastic gradient descent
algorithm). These make our current work much different from Millán’s.

5 Conclusions and Future Work

The research of brain-computer interface technology is an interdisciplinary project,
which gestates many challenges in a variety of aspects. In this paper, we address
the problem of on-line classification of EEG signals with applications to brain-
computer interfaces. The time-varying characteristic of EEG recordings between
experimental sessions makes it a difficult issue to categorize different EEG sig-
nals, and necessitates learning the on-line classification. Based on a Bayesian
classifier of Gaussian mixture models, we derive the general formulations of the
instantaneous gradient and the decorrelated gradient. Besides, a decorrelated
LMS algorithm (DLMS) is developed to accelerate the convergence of the tra-
ditional LMS algorithm (stochastic gradient descent method). Experiments and
comparisons shows the effectiveness and robustness of our approach.

For practical utilities, one can design a easy-going protocol to implement on-
line learning. Each time users make use of BCI equipments after a long break,
there would be a on-line learning stage of one minute or so during which a
display device generates a series of random signs indicating upcoming tasks.
Following these cues, users carry out specific mental activities. Simultaneously,
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the classifier would be updated on-line. In the future, study on the realization
of automatic on-line training and on the active selection of training instances
would be an interesting issue.

Acknowledgements

Shiliang Sun and Changshui Zhang would like to thank IDIAP Research Institute
(Switzerland) for providing the analyzed data. Besides, we would also like to
thank the National Natural Science Foundation of China for supporting this
work under Project 60475001.

References

1. Nicolelis, M.A.L.: Actions from Thoughts. Nature, Vol. 409 (2001) 403-407
2. Wolpaw, J.R., Birbaumer, N., McFarland, D.J., Pfurtscheller, G., Vaughan, T.M.:

Brain-Computer Interfaces for Communication and Control. Clinical Neurophysi-
ology, Vol. 113 (2002) 767-791

3. Ebrahimi, T., Vesin, J.M., Garcia, G.: Brain-Computer Interfaces in Multimedia
Communication. IEEE Signal Processing Magazine, Vol. 20 (2003) 14-24

4. Wickelgren, I.: Tapping the Mind. Science, 299 (2003) 496-499
5. Wolpaw, J.R., Birbaumer, N., Heetderks, W.J., McFarland, D.J., Peckham, P.H.,

Schalk, G., Donchin E., Quatrano, L.A., Robinson, C.J., Vaughan, T.M.: Brain-
Computer Interface Technology: A Review of the First International Meeting. IEEE
Transactions on Rehabilitation Engineering, Vol. 8 (2000) 164-173

6. Vaughan, T.M.: Guest Editorial Brain-Computer Interface Technology: A Review
of the Second International Meeting. IEEE Transactions on Neural Systems and
Rehabilitation Engineering, Vol. 11 (2003) 94-109

7. Millán, J.R.: On the Need for On-Line Learning in Brain-Computer Interfaces.
Proceedings of 2004 International Joint Conference on Neural Networks. Budapest,
Hungary (2004)

8. Mitchell, T.M.: Machine Learning. McGraw-Hill, New York (1997)
9. Saad, D.: On-Line Learning in Neural Networks. Cambridge University Press

(1998)
10. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification. 2th edn. John Wiley

& Sons, New York (2000)
11. Millán, J.R., Renkens, F., Mouriño, J., Gerstner, W.: Non-Invasive Brain-Actuated

Control of a Mobile Robot. Proceedings of the Eighteenth International Joint Con-
ference on Artificial Intelligence, (2003) 1121-1126

12. Millán, J.R., Renkens, F., Mouriño, J., Gerstner, W.: Brain-Actuated Interaction.
Artificial Intelligence, Vol. 159 (2004) 241-259

13. Millán, J.R., Renkens, F., Mouriño, J., Gerstner, W.: Noninvasive Brain-Actuated
Control of a Mobile Robot by Human EEG. IEEE Transactions on Biomedical
Engineering, Vol. 51 (2004) 1026-1033

14. Mclachlan, G., Peel, D.: Finite Mixture Models. Wiley, New York (2000)
15. Glentis, G.O., Berberidis, K., Theodoridis, S.: Efficient Least Square Adaptive

Algorithms for FIR Transversal Filtering. IEEE Signal Processing Magzine, Vol.
16 (1999), 13-41



Learning On-Line Classification via Decorrelated LMS Algorithm 225

16. Doherty, J., Porayath, R.: A Robust Echo Canceler for Acoustic Environments.
IEEE Transactions on Circuits and Systems, II, Vol, 44 (1997) 389-398

17. Perrin, R., Pernier, J., Bertrand, O., Echallier, J.: Spherical Spline for Potential and
Current Density Mapping. Electroencephalography and Clinical Neurophysiology,
Vol. 72 (1989), 184-187

18. Perrin, R., Pernier, J., Bertrand, O., Echallier, J.: Corrigendum EEG 02274. Elec-
troencephalography and Clinical Neurophysiology, Vol. 76 (1990), 565

19. McFarland, D.J., McCane, L.M., David, S.V., Wolpaw, J.R.: Spatial Filter Selec-
tion for EEG-Based Communication. Electroencephalography and Clinical Neuro-
physiology, Vol. 103 (1997) 386-394

Appendix A: Derive ∇μi
k
P (Cj|xn)

∇μi
k
P (Cj |xn) = ∇μi

k

P (Cj)p(xn|Cj)
p(xn)

= ∇μi
k

P (Cj)
∑Nj

l=1 al
jG(xn|μl

j , Σ
l
j)

p(xn)
(11)

A.1 When j = k

∇μi
k

P (Cj)
∑Nj

l=1 al
jG(xn|μl

j , Σ
l
j)

p(xn)

=
P (Ck)ai

k

p(xn)
[1− P (Ck|xn)]∇μi

k
G(xn|μi

k, Σi
k) (12)

where

∇μi
k
G(xn|μi

k, Σi
k) = G(xn|μi

k, Σi
k)(Σi

k)−1(xn − μi
k) . (13)

A.2 When j �= k

∇μi
k

P (Cj)
∑Nj

l=1 al
jG(xn|μl

j , Σ
l
j)

p(xn)

= −P (Ck)ai
kP (Cj |xn)

p(xn)
∇μi

k
G(xn|μi

k, Σi
k) . (14)
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Appendix B: Derive ∇(Σi
k)−1P (Cj|xn)

∇(Σi
k
)−1P (Cj |xn) = ∇(Σi

k
)−1

P (Cj)p(xn|Cj)
p(xn)

= ∇(Σi
k)−1

P (Cj)
∑Nj

l=1 al
jG(xn|μl

j , Σ
l
j)

p(xn)
(15)

B.1 When j = k

∇(Σi
k)−1

P (Cj)
∑Nj

l=1 al
jG(xn|μl

j , Σ
l
j)

p(xn)

=
P (Ck)ai

k

p(xn)
[1− P (Ck|xn)]∇(Σi

k
)−1G(xn|μi

k, Σi
k) . (16)

Considering the normal distribution G(xn|μi
k, Σi

k) = 1
(2π)d/2|Σi

k|1/2 exp{− 1
2 (xn−

μi
k)
(Σi

k)−1(xn −μi
k)} = 1

(2π)d/2|Σi
k
|1/2 exp{− 1

2 tr[(Σi
k)−1(xn −μi

k)(xn−μi
k)
]} ,

if we denote A = (xn − μi
k)(xn − μi

k)T , then

∇(Σi
k)−1G(xn|μi

k, Σi
k)

=
1

(2π)d/2 exp{−1
2
tr[(Σi

k)−1A]}1
2
|(Σi

k)−1|− 1
2 |(Σi

k)−1|[2Σi
k − diag(Σi

k)] +

G(xn|μi
k, Σi

k){−1
2
[2A− diag(A)]}

= G(xn|μi
k, Σi

k){Σi
k −

1
2
diag(Σi

k)−A +
1
2
diag(A)}. (17)

B.2 When j �= k
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Abstract. Given a transaction database as a global set of transactions
and its local database obtained by some conditioning to the global one,
we consider a pair of itemsets whose degrees of correlations are higher in
the local database than in the global one. A problem of finding paired
itemsets with high correlation in one database is known as Discovery of
Correlation, and some algorithms to search for such characteristic paired
itemsets are already proposed. However, even non-characteristic paired
itemsets in the local database are also meaningful, provided the degree
of correlation increases much higher in the local database than in the
global one. They can be an implicit and hidden evidence showing that
something particular to the local database occurs even though they are
not yet realized as characteristic ones in the local. From this viewpoint,
we have already proposed to measure the significance of paired itemsets
by the difference of two correlations before and after the conditioning to
the local database, and define a notion of DC pairs whose degrees of dif-
ferences of correlations are high. As DC pairs are regarded as compound
itemsets consisting of two component itemsets, we can have two basic
strategies for finding them. One strategy firstly examines the compound
itemsets and then the components, while another one does the compo-
nent itemsets and then the compound ones. According to the former
strategy, which we have already proposed and tested for its effectiveness,
we have to enumerate many number of candidate compound itemsets
that cannot be decomposable to components. For this reason, this pa-
per presents a new algorithm according to the second strategy. It firstly
enumerate possible component itemsets based on a new pruning rule for
cutting off useless components. Secondly it forms the compound item-
sets by combining the components thus detected, while we also make use
of a constraint for preventing our algorithm from checking meaningless
combinations.

1 Introduction

In the studies of data mining from transaction databases, many studies have been
paying much attention to finding itemsets with high supports, paired itemsets
appeared in association rules with high confidence [4], or paired itemsets with
strong correlation [8,9,10,11]. These notions are considered useful for distinguish-
ing characteristic paired itemsets with strong correlation in a single transaction
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database. A similar strategy based on the notion of change of supports, known
as Emerging Patterns [5], is successful even for finding itemsets characterizing
either of two databases. All of these notions about itemsets are thus proposed
to extract paired itemsets required to be characteristic in a given database or
either of two or more databases.

Although some users regard characteristic paired itemsets with strong corre-
lation as useful, others may often regard many number of such paired itemsets
as trivial because of the reason that they have been already known without ex-
amining a database. On the other hand, as is indicated in the study of Chance
Discovery [12], some itemsets not characteristic in the above sense are also useful,
as they are potentially significant under some condition.

For instance, suppose a database in which information about ages of cus-
tomers and goods they purchased are stored. There may exist several pairs of
particular ages and goods with high correlations, if people at those ages have a
general tendency to buy those goods. In this case, the degree of correlation is
not much dependent on time stamp data. As a result, there will be a little differ-
ence between the degree of correlation in the whole database and one in a local
database of transactions with the recent time stamp data. On the other hand,
there may exist another kinds of goods which teen-agers, for instance, begin to
drastically buy just recently. As the purchase actions made by those aged people
just begin, the overall degree of correlation between the ages and the goods is
still low. However, its degree observed by restricting the transactions to those
with the recent time stamp will show a significantly higher value.

Thus, the notion of potential significance we would like to define is the dif-
ference of degrees of correlation before and after some conditioning by which a
local database is derived. Although we can consider various ways of conditioning
and the corresponding local databases, we try to present a general algorithm
to find a significant paired itemset with high change ratio of correlations, given
a global and a local database. In section 6, a database with items designating
places of transactions is examined. In this case, the conditioning is given by
specifying particular place of transactions. The task of our algorithm is to find
paired itemsets with higher correlation in the particular area, compared with the
correlation in the whole area. Again it should be noted that the former correla-
tion in the particular area need not be high, as we can interpret such a paired
itemset as an implicit evidence showing that something particular to the local
area occurs.

From the viewpoints mentioned in the above, we have already defined the
notion of DC pairs and presented an algorithm to find them in [1]. More pre-
cisely, given a global and a local transaction databases, an itemset pair with
higher change ratio of correlations is called a DC pair. A DC pair is syntacti-
cally regarded as a compound itemset consisting of two component itemsets. So,
the algorithm presented in [1] is designed so that it firstly examines the com-
pound itemsets and then the components, using two parameters for restricting
the search spaces for the compound and the component itemsets. Although the
algorithm is equipped with some pruning rules, an experimental result showed
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that large number of useless compound itemsets never decomposable into candi-
dates in the space of component itemsets are generated and tested. Consequently,
the subspace our algorithm actually visited turned out to be a very large one.

From the experimental observation thus obtained, in this paper, we present
another new algorithm that enumerates component itemsets firstly and then
combines those detected components into compound ones. It is clear from the
definition that there exists no chance for the algorithm to examine any com-
pound itemset not decomposable to possible component itemsets. Additionally,
we can show that it suffices to check only transactions containing the candidates
components in the local database in order to identify possible combinations of
components. As the number of such transactions is not many, our algorithm can
effectively generate compound itemsets from the set of candidate component
itemsets. On the other hand, in the process of generating components, we can
enjoy a monotone property over itemsets, depending on the parameters, that is
also useful to prevent our algorithm from generating useless component itemsets.

Thus, in both processes of generating components and of combining them
into compound itemsets, the number of generated candidates are restricted.

2 Related Works and Paper Organization

There exist many works in the field of data mining that are based on a strategy
of contrasting two or more databases in order to extract significant properties or
patterns from a huge data set. Particularly, data mining techniques, known as
contrast-set mining [5,6,7], have been designed specifically to identify differences
between databases to be contrasted.

For instance, in the study of Emerging Patterns [5] for two transaction
databases, itemsets whose supports are significantly higher in one database than
in another one are considered significant, as they can be candidate patterns for
distinguishing the former from the latter. A similar strategy is also used in the
system STUCCO [6] in order to obtain characteristic itemsets in one database
based on χ2 test. In addition, the system, Magnum Opus [7], examines relations
between itemsets and a database among several databases. On the other hand,
what this paper tries to find are paired itemsets whose correlations drastically
increase in one database. Thus we can say that the subject of this paper is a
kind of ”contrast-set mining of correlations between itemsets”.

Secondly, many methodologies have been proposed to detect characteristic
correlations in a single database [8,9,10]. In these studies, using some function
measuring the degree of correlation between itemsets, strongly correlated item-
sets in a given database or in one database from given two databases are ex-
amined. Thus, these methods are also used to discover itemsets or family of
itemsets that are characteristic in one database. On the other hand, the algo-
rithm presented in this paper is designed so as to find even paired itemsets whose
correlation in one database is not significantly high but is significantly higher
than correlation in another database. Our algorithm may find the characteristic
paired itemsets as special cases, but is never supposed to find only characteristic
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ones. To find these paired itemsets, we present some new pruning rules so that
the algorithm successfully detects even non-characteristic paired itemsets.

Several notions about correlations have been proposed and used in the above
previous studies from information theoretic or statistical viewpoints. If we need
to consider even negative events Y that an itemset Y does not appear in transac-
tions, the notion of correlations between two itemsets X and Y based on χ2-test
shall be taken into account. However, this paper is concerned with the notion
of correlation in the sense that the number of chances for Y to occur increases
under the presence of X . The degree of correlation in this sense can be calculated
by the ratio P (Y |X)/P (Y ), known as self-mutual information by taking log.

Finally, we discuss the relation between a condition itemset which decide a
local database and itemset pairs we try to find. If the condition is regarded as an
antecedent of some rule, the itemset pairs can be considered a consequent of the
rule. For example, association rule [4] is a rule whose consequent is an itemset
such that the conditional probability of the itemset given by the antecedent
(the condition in this paper) is no more than some parameter. That is, itemsets
such that the probability of the itemsets is high in local database can be found
by association rule. On the other hand, we find even itemsets such that the
probability of the itemsets is very low in local database as a result of detecting
high changes of correlation by the conditioning to the local database. Further, the
correlation between the condition and the itemset pair is not always high. Briefly
speaking, we try to find rules such that a consequent of the rule is an implicit
itemset pair with high degree of change of correlations under an antecedent (a
condition) of the rule.

The rest of this paper is organized as follows. The next section defines some
terminologies used throughout this paper. In Section 4, we introduce the notion
of DC pairs and define our problem of mining DC pairs. An algorithm for finding
DC pairs is described in Section 5. Section 6 presents our experimental results.
In the final section, we summarize our study and discuss future work.

3 Preliminaries

Let I = {i1, i2, · · · , in} be a set of items. An itemset is a subset of I. A
transaction databaseD is a set of transactions, where a transaction is an itemset.
We say that a transaction t contains an itemset X , if X ⊆ t. For a transaction
database D and an itemset X , the occurrence of X over D, denoted by O(X,D),
is defined as O(X,D) = {t|t ∈ D ∧ X ⊆ t}, and the probability of X over D,
denoted by P (X), is defined as P (X) = |O(X,D)|/|D|.

For an itemset C, a sub-database of D w.r.t. C, denoted by DC , is defined as
the set of transactions containing C in D, that is, DC = O(C,D). The comple-
ment of DC w.r.t. D is denoted by DC and is defined as DC = D −DC .

For itemsets X and Y , the correlation between X and Y over a trans-
action database D, correl(X, Y ), is defined as correl(X, Y ) = P (X ∪
Y )/P (X)P (Y ). For a sub-database DC , the correlation between X and Y over
DC , correlC(X, Y ), is given by correlC(X, Y ) = P (X ∪ Y |C)/P (X |C)P (Y |C),
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where P (X |C) = P (X ∪ C)/P (C). Note here that correlations are defined for
only itemsets X whose supports in D and DC are non-zero. We regard a pair
of X and Y such that correl(X, Y ) > 1 as characteristic since P (X |Y ) > P (X)
holds. Note that P (Y |X) > P (Y ) holds, too. Similarly, we regard a pair of X
and Y such that correl(X, Y ) ≤ 1 as non-characteristic.

4 DC Pair Mining Problem

In this section, we define a notion of DC pairs and our problem of mining them.
For a pair of itemsets X and Y , we especially focus on “difference of cor-

relations observed by conditioning to a local database”. Suppose here that an
itemset C is a condition given by users. The difference of correlations is measured
by the following ratio:

change(X, Y ; C) =
correlC(X, Y )
correl(X, Y )

=
P (C)P (C|X ∪ Y )
P (C|X)P (C|Y )

. (1)

Let ρ(> 1) be an admissible degree of difference of correlations. In our framework,
a pair of itemsets X and Y is considered significant if change(X, Y ; C) ≥ ρ
holds. Since we assume C is given by users, P (C) can be regarded as a constant.
Therefore, the difference is actually evaluated with the following function g:

g(X, Y ; C) =
P (C|X ∪ Y )

P (C|X)P (C|Y )
. (2)

A pair of itemsets X and Y is called a DC pair if g(X, Y ; C) ≥ ρ/P (C). We
try to find all DC pairs efficiently. It should be noted here that the function g
behaves non-monotonically according to expansion of itemsets X and Y . So we
cannot apply a simple pruning method like one Apriori adopted [4]. Therefore,
we approximate the above problem according to the following naive strategy:

Find pairs of X and Y which give higher values of P (C|X ∪ Y ), keeping
the values of P (C|X) and P (C|Y ) small.

In order to control the values of P (C|X ∪ Y ), we use a new parameter ζ
(0 ≤ ζ ≤ 1). Given ρ and ζ, we use a new parameter ε such that ε2 = ζ ·P (C)/ρ
in order to control each value of P (C|X) and P (C|Y ). Note here that ε can be
replaced with another parameter if the value of P (C|X)P (C|Y ) is low.

Definition 1. DC Pairs Mining Problem
Let C be an itemset for conditioning. Given ρ and ζ, the DC pair mining problem
is to find any pairs of X and Y such that P (C|X ∪ Y ) > ζ, P (C|X) < ε and
P (C|Y ) < ε, where ε =

√
ζ · P (C)/ρ. We say that X ∪ Y is a compound itemset

and X and Y are component itemsets.

5 An Algorithm for Finding DC Pairs

In this section, we present an algorithm to solve the DC pair mining problem. At
first, we discuss a basic strategy of finding DC pairs. Next, we prove a pruning
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rule in order to find candidates for component itemsets efficiently. Finally, we
show some constraints of DC pairs in order to restrict the combinations of the
candidates properly.

5.1 A Basic Strategy of Finding DC Pairs

At first, we discuss a basic strategy of finding DC pairs. The DC pairs we try
to find are pairs of itemsets X and Y such that X ∪ Y is a compound itemset
and X and Y are component itemsets. Then, two strategies of finding DC pairs
can be considered mainly. One strategy is that compound itemsets are identified
and each compound itemset is divided into component itemsets. And another
strategy is that component itemsets are identified and their compound itemsets
are found. The former strategy has already been tried to find DC pairs in [1]
and there exist some difficulties. In order to explain the difficulties, we show
properties of P (C|X) and DC pairs based on the following observation.

Consider an itemset X appeared in a global and a local databases. And note
that P (X) 	= 0 and P (C ∪X) 	= 0 must hold. Also, as the size of X is longer,
P (X) and P (C ∪X) tend to become lower. Since P (C|X) is non-zero, P (C|X)
tend to be high in the case that P (X) is low. That is, when the size of X is
long, P (C|X) tends to be high. This means that there exist a few candidates
for component itemsets whose size is long in the database. Next, consider two
itemsets X and Y and suppose here that the size of X ∪ Y is almost the same
size of maximal transactions in the database. Since the size of either X or Y is
necessarily no more than the half size of X ∪ Y , either P (C|X) or P (C|Y ) tend
to be high. This means that there are a small number of DC pairs X and Y
such that the size of X ∪ Y is long because either P (C|X) < ε or P (C|Y ) < ε
is difficult to hold. Therefore, there are many candidates for compound itemsets
which cannot be divided into DC pairs in the database.

Based on the above observation, there is a difficulty of the strategy of finding
candidates for compound itemsets. So, in this paper, we discuss the strategy of
finding candidates for component itemsets in a bottom-up manner. Of course, if
the number of the candidates components is large, the number of combinations
of the candidate components is also very large. If the number of the candidates
is N , the number of the combinations is O(N2). However, as the combinations
can be restricted by using some constraint, it is expected that the number of the
combinations is not so many.

After all, our strategy of finding DC pairs is that component itemsets are
identified firstly, and the computation for mining DC pairs is divided into two
phases:

Phase1: Identifying Component Itemsets
An itemset X such that P (C|X) < ε is identified as a candidate for a com-
ponent itemset.

Phase2: Combining Component Itemsets
One component X is combined with another one Y such that P (C|X ∪ Y )
> ζ.
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5.2 Pruning Search Branches in Phase 1

In Section 4, by using parameters ζ and ε, we restrict DC pairs we try to find. Al-
though P (C|X) behaves non-monotonically according to expansion of an itemset
X as well as g, we prove that a monotone property over itemsets can be observed
depending on ε. In Phase 1, we consider a problem of mining candidates for com-
ponent itemsets X in a bottom-up manner. During this search, we can prune
useless branches (itemsets) based on the following observation.

Let X be an itemset and Z be an itemset containing X . Suppose that there
exists a superset Z ′ of X such that X ⊆ Z ′ ⊆ Z and P (C|Z ′) < ε. Since
P (C|Z ′) = P (C)P (Z ′|C)/P (Z ′) < ε, P (C ∪ Z ′) < ε · P (Z ′) holds. Therefore,
P (C ∪Z) ≤ P (C ∪Z ′) < ε ·P (Z ′) ≤ ε ·P (X). As the result, we have P (C ∪Z) <
ε · P (X). This means that if P (C ∪ Z) ≥ ε · P (X) holds, then we cannot obtain
any Z ′ such that P (C|Z ′) < ε. That is, if P (C ∪ Z) ≥ ε · P (X) holds, any Z ′

does not have to be examined.

Pruning Rule:
For a search node (itemset) X and a superset Z such that X ⊆ Z ′ ⊆ Z, if
P (C∪Z) ≥ ε·P (X), any Z ′ never be a candidate node of X in our search process.

When X examined in our bottom-up search can be applied to the above
pruning rule, Z ′ do not have to be examined. However, there is a problem that
the way of identifying a superset Z of X properly. We describe the way of
identifying Z and a termination condition in Phase 1 in the next section.

5.3 Termination Condition in Phase1

In the previous section, we present a pruning rule in Phase 1. In order to use our
pruning rule effectively, in sub-database DC , while an itemset X is examined in a
bottom-up manner, a superset Z of X have to be checked simultaneously. And, if
the size of Z is long and our pruning rule can be applied to, many itemsets can be
pruned. In order to identify such Z, the notion of look ahead in [2] can be used.
Originally, the notion is used to find a frequent maximal itemset by checking a
superset of an itemset examined. In order to use the notion, suppose a lexical
ordering of the items and let X be an itemset examined at present. Let tail(X)
be the greatest item of X and T (tail(X)) be a set of a possible item which is
greater than tail(X) according to the lexical ordering. Then, X is expanded by
adding an item i ∈ T (tail(X)) in order to avoid duplications. Note here that
an itemset Z such that Z = X ∪ T (tail(X)) is a potentially frequent maximal
itemset which does not contain other itemsets in the database. That is, the size
of Z is approximately the size of a maximal transaction and Z whose size is long
is useful for pruning of many search nodes (itemsets). Further, although Z is
not always a maximal itemset, we do not have to check whether Z is a maximal
itemset or not. Rather, Z in this case is also useful for our search because a
maximal itemset is not always able to be applied to the pruning rule and an
itemset whose size is middle may be applied to. It should be noted that the cost
of checking Z is not so high as only DC is examined.
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Termination Condition of search in Phase 1:
For an itemset X and an itemset Z = X ∪ T (tail(X)), if P (C ∪ Z) ≥ ε · P (X),
X is not expanded further in our search.

5.4 An Algorithm for Finding Candidates for Component Itemsets

We show a termination condition of our search in Phase 1 in the previous section.
In this section, in order to implement the termination condition, we simply
explain an algorithm for finding candidates for component itemsets.

At first, we use backtracking algorithm [2,3] in order to enumerate candi-
dates for component itemsets. Backtracking algorithm is based on recursive
calls. Normally, an iteration of the algorithm inputs a frequent itemset F whose
probability is no more than some parameter, and generates itemsets by adding
every possible items to F . However, an iteration of our algorithm inputs an
itemset X whose probability is non-zero because even itemsets whose proba-
bility is very low may be DC pairs and it is difficult to set a really proper
parameter of probability. For each itemset whose probability is non-zero among
itemsets generated, the iteration generates recursive calls with respect to it. To
avoid duplications, an iteration of backtracking algorithms adds items contained
T (tail(X)).

Next, when an itemset X is examined, a proper T (tail(X)) is not known
yet. Let i be tail(X), D be a global database and DC be its local database.
Then, the probability of X ∪ {j} (j ∈ T (tail(X − {i})), j > i) in D and
DC , and X ∪ T (tail(X − {i})) in DC have to be calculated. The probabil-
ity of X ∪ T (tail(X − {i})) is calculated in order to check whether X ful-
fill the termination condition or not. On the other hand, the probability of
X ∪ {j} is calculated in order to check whether j can be contained T (tail(X))
or not. That is, although we do not use any parameter of probability, an
itemset whose probability is zero is, of course, trivial. Because the probabil-
ity of a superset of X ∪ {j} is zero if the probability of X ∪ {j} is zero,
j do not have to be added T (tail(X)). In order to calculate the probability
of X ∪ {j} efficiently, the notion of occurrence deliver [3] can be used. Let
{j1, j2, · · · , jm} be T (tail(X − {i})). Occurrence deliver computes the proba-
bility of X ∪ {j1}, X ∪ {j2}, · · · , X ∪ {jm} at once by tracing transactions con-
taining X in D and DC . It uses a bucket for j1, j2, · · · , jm, and set them to empty
set at the beginning. Then, for each transaction t containing X , occurrence de-
liver inserts t to the bucket of j1, j2, · · · , jm. After these insertions, the bucket of
j1, j2, · · · , jm is equal to O(X∪{j1},DC), O(X ∪{j2},DC), · · · , O(X∪{jm},DC)
if DC is examined.

Based on the above techniques, our algorithm for finding candidates for com-
ponent itemsets is summarized as follows. In the algorithm, suppose that, for
each item e such that P (C ∪ {e}) 	= 0, P (C ∪ {e}) and P ({e}) are calculated
in advance. And let T (tail({e} − tail({e}))) be T (tail({e})). For each item e,
by using the following algorithm, the candidates for component itemsets can be
found.
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ALGORITHM FindCandidateComponent(X)
IF P (C ∪X)/P (X) < ε then Output X ;
T (tail(X)) = ∅; count look ahead = 0;
For each item i such that i ∈ T (tail(X − {tail(X)})) do

Bucketc[i] = ∅; Bucket[i] = ∅;
End for
For each transaction tc such that tc ∈ DC and X ⊆ tc do

IF (C∪X∪T (tail(X−{tail(X)}))) ⊆ tc then count look ahead++;
// look ahead

For each item j such that j ∈ tc and j > tail(X) do
Insert tc to Bucketc[j]; // occurrence deliver
IF j /∈ T (tail(X)) then T (tail(X)) = T (tail(X)) ∪ {j};

End for
End for
IF T (tail(X)) 	= ∅ and P (C ∪X ∪ T (tail(X − {tail(X)}))) < ε · P (X)
then // our pruning rule

For each transaction t such that t ∈ DC and X ⊆ t do
//DC = D −DC

For each item k such that k ∈ t and k ∈ T (tail(X)) do
Insert t to Bucket[k]; // occurrence deliver

End for
End for
For each item e such that e ∈ T (tail(X))

O(X ∪ {e},DC) = Bucketc[e];
O(X ∪ {e},D) = Bucketc[e] + Bucket[e];
IF P (C ∪X ∪ {e}) 	= 0 then call FindCandidatePart(X ∪ {e});

End for
End if

5.5 Constraints of DC pairs in Phase2

After we find candidates for component itemsets in Phase 1, we have to combine
one component with another one in order to find DC pairs finally. If the number
of the candidates is large, the number of the combinations is very large. However,
two constraints of DC pairs can be used in order to restrict the combination.

At first, we describe a basic constraint of DC pairs. The DC pairs are pairs
of itemsets X and Y such that two itemsets do not overlap. Then, if both X
and Y contain some same item, pairs of X and Y are not DC pairs. In this case,
combined itemsets X ∪ Y do not have to be examined. Secondly, we explain a
main constraint of DC pairs. If pairs of X and Y are DC pairs, P (C∪X∪Y ) 	= 0
must hold. Therefore, Y is necessarily contained by transactions containing
X in a sub-database DC . Also, P (C ∪ X) is low in many case if P (C|X) < ε
holds. For example, if ε = 0.1 and P (X) = 0.5, P (C ∪X) < 0.05. Therefore, we
firstly check whether or not Y is contained by transactions which contain X in
DC , and if Y is not contained by the transaction, Y does not have to be examined.
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The combinations actually examined in detail are restricted properly by only
checking the small number of such transactions.

6 An Experiment

In this section, we present our experimental results. The purpose of experiments
is to confirm that DC pairs can be found efficiently by using our pruning rules
and constraints, and potentially significant DC pairs can be actually found for
a given database.

6.1 Dataset and Implementation

We conducted the experiments on Entree Chicago Recommendation Data, a
database in the UCI KDD Archive [13]. It consists of eight databases each of
which contains restaurant features in a region, e.g. Atlanta, Boston and so on
in the USA. The eight databases are combined into a single database D referred
to as the global one. With the conditioning by each region C, we define a lo-
cal (sub-)database DC in D. The global database consists of 4160 transactions
each of which is a subset of 265 items, where each item represents a feature of
restaurant, e.g., ”Italian”, ”romantic”, ”parking” and so on. Thus, a transaction
{f1, f2, f3} means there exists a restaurant with the feature f1, f2 and f3.

Based on the algorithm presented in the previous section, our system has
been implemented in C and run on a PC with 1.00 GB RAM and a Xeon 3.60
GHz processor.

6.2 An Effect of our Pruning Rule

In this section, we show an effect of our pruning rule in Phase 1, that is, in
the search for finding the candidates for component itemsets. Our experimental
result is summarized in Figure 1. In the figure, N is the number of possible
itemsets with the probability of non-zero in the local database we are concerned
with. That is, it is the size of the whole search space. The computation time
for extracting the candidates without the pruning is denoted by tN . Nact is the
number of itemsets actually examined in our search with the pruning and tNact is
the computation time for the search. Ncand denotes the number of the extracted
candidates for component itemsets.

The result shows that the number of the candidates to be extracted, Ncand,
is much smaller than the number of the possible ones in each case (region).
Therefore, finding the candidates without any pruning will be quite impractical.
As shown in the figure, since the pruning rule can reduce at least 90 % of the
whole search space, it can be considered that our pruning can work well to
improve the search efficiency in Phase 1.

6.3 An Effect of Constraints of DC Pairs

Let Compcand be the set of the candidates obtained in Phase 1. In Phase 2, we
examine whether a pair of component itemsets in Compcand can be a DC pair
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ρ = 3.0, ζ = 0.4

region P (C) ε N Nact Ncand tN(sec) tNact(sec)

Atlanta 0.0642 0.0922 2.4 × 107 1.8 × 106 3.5 × 104 144.031 17.906

Boston 0.105 0.118 2.4 × 108 4.5 × 106 4.5 × 104 1428.641 43.985

Chicago 0.163 0.147 4.8 × 107 3.1 × 106 4.7 × 104 283.172 28.735

Los Angeles 0.108 0.118 2.7 × 107 1.8 × 106 1.2 × 104 161.578 17.656

New Orleans 0.0786 0.102 1.5 × 107 1.4 × 106 1.2 × 104 89.656 12.735

New York 0.289 0.196 1.6 × 107 1.5 × 106 7.2 × 104 95.078 14.578

San Francisco 0.0995 0.114 3.0 × 107 2.3 × 106 5.3 × 104 176.141 21.750

Washington DC 0.0940 0.112 2.0 × 109 2.9 × 107 2.2 × 104 11536.375 279.500

Fig. 1. An effect of our pruning rule

region |Call| |Cb| |Cm| |DC| |DCimp| t|Cb|(sec) t|Cm|(sec)

Atlanta 6.1 × 108 2.8 × 108 3.0 × 106 1.4 × 106 353 355.922 132.422

Boston 1.0 × 109 4.5 × 108 4.5 × 106 2.9 × 106 240 804.329 223.016

Chicago 1.1 × 109 5.8 × 108 4.5 × 106 3.1 × 106 7 829.906 236.282

Los Angeles 6.7 × 107 4.1 × 107 5.4 × 105 2.5 × 105 101 54.062 16.375

New Orleans 7.4 × 107 4.5 × 107 5.3 × 105 2.2 × 105 57 57.656 20.062

New York 2.6 × 109 1.2 × 109 9.7 × 106 6.8 × 106 44 2820.750 551.547

San Francisco 1.4 × 109 6.0 × 108 4.2 × 106 2.5 × 106 393 900.907 285.953

Washington DC 2.4 × 108 1.3 × 108 9.1 × 105 6.0 × 105 86 216.579 59.079

Fig. 2. An effect of constraint of DC pairs in Phase 2

or not. The results for Phase 2 is summarized in Figure 2. In the figure, |Call| is
the number of the possible pairs we can extract from Compcand.
|Cb| is the number of pairs of X and Y in Compcand such that X ∩ Y = φ

and t|Cb| is the computation time for finding the DC pairs from Cb. Furthermore,
|Cm| is the number of pairs of X and Y in Compcand such that both of X and Y
are contained in a transaction in DC . The computation time for finding the DC
pairs from Cm is denoted by t|Cm|. Finally, |DC| is the number of extracted DC
pairs and |DCimp| the number of DC pairs in DC whose degree of correlation is
less than or equal to 1.

From the results, by the latter constraint, the number of candidate pairs to
be examined can be drastically reduced. Therefore, it is expected that our search
in Phase 2 can be performed efficiently. As the result, it is shown that DC pairs
can be found efficiently by using our pruning rule and constraint. Further, in
the next section, we show our search for DC pairs in this paper is efficient in
contrast with our previous search in [1].

6.4 A Comparison Our New Method with Our Previous Method

As we discussed in 5.1, we have already tested the way of finding DC pairs that
compound itemsets are firstly found in [1]. In order to compare our new method
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region N Ncomp NDC Ncomp − NDC |Cm| − |DC|
Atlanta 2.42 × 107 2.36 × 107 4.69 × 105 2.32 × 107 1.64 × 106

Boston 2.42 × 108 2.42 × 108 1.01 × 106 2.41 × 108 1.56 × 106

Chicago 4.78 × 107 4.76 × 107 5.41 × 105 4.70 × 107 1.44 × 106

Los Angeles 2.74 × 107 2.72 × 107 7.56 × 104 2.72 × 107 2.80 × 105

New Orleans 1.51 × 107 1.49 × 107 8.12 × 104 1.49 × 107 3.08 × 105

New York 1.59 × 107 1.56 × 107 8.83 × 105 1.47 × 107 2.95 × 106

San Francisco 2.96 × 107 2.88 × 107 7.90 × 105 2.80 × 107 1.69 × 106

Washington DC 1.95 × 109 1.95 × 109 2.76 × 105 1.95 × 109 3.06 × 105

Fig. 3. a comparison our new method with our previous method

with our previous one, we examine the number of candidates for compound
itemsets and whether the candidates can be divided into DC pairs or not. Our
experimental result is summarized in Figure 3. In the figure, N is the same
number in 6.2, and |DC| and |Cm| are the same number in 6.3. Ncomp is the
number of candidates for compound itemsets in each region. NDC is the number
of the candidates which can be divided into DC pairs. Note here that the
candidate may be several DC pairs. Although NDC differs from |DC| in 6.3, as a
result, the same number of DC pairs can be found by using our previous method.

The experimental result shows that the number of candidates for compound
itemsets, Ncomp, is almost the same number of possible itemsets with the prob-
ability of non-zero in the local database, N , in each region. That is, there are a
few itemsets which can be pruned even if some pruning rules presented in [1] are
used. Therefore, in Phase 1, our new method can be found candidates efficiently
in contrast with our previous method.

Although it is difficult to realize efficient search in Phase 1 by using our
previous method, this does not mean that the previous method is not efficient if
most of the candidates can be divided into DC pairs. However, as we discussed
in 5.1, the number of the candidates which can be divided into DC pairs, NDC , is
much smaller than Ncomp, so most of the candidates cannot be divided into DC
pairs. Therefore, we have to check many candidates which cannot be DC pairs,
further, may examine all subsets of each the candidates in worst case. On the
other hand, the number of combinations of candidates for component itemsets
which cannot be DC pairs, |Cm|− |DC|, is much smaller than the number of the
candidates for compound itemsets which cannot be DC pairs, Ncomp−NDC . As a
result, by using our new method, we do not have to examine many combinations
which cannot be DC pairs.

Thus, it can be considered that our new method realize efficient mining of
DC pairs in contrast with our previous method.

6.5 An Example of DC Pair

We have obtained various kinds of DC pairs in the experimental data. For
instance, in New Orleans, a DC pair X = {Entertainment, Quirky, Up and
Coming} and Y = {$ 15-$ 30, Private Parties, Spanish} has been found. The
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pair shows high degree of difference of correlations by conditioning to New Or-
leans. However, since the pair shows very high degree of correlation in the lo-
cal database, we will be able to find them as characteristic itemsets by some
method previously proposed. On the other hand, we have also found a DC pair,
X = {Quirky} and Y = {Good Decor, Italian, $15-$30, Good Service} for New
Orleans. The pair is not correlated in both global database and local database.
Therefore, the pair cannot be found by previous methods. However, the pair
shows high degree of difference of correlations by conditioning to New Orleans.
Although the correlation of the pair in New Orleans seems to be not so high, it
is much higher than one in the global database. We consider such a DC pair can
be especially useful in some cases. For instance, people looking for a restaurant
in New Orleans may be interested in a ”quirky Italian restaurant” which is a
hidden feature in New Orleans in contrast with a ”quirky Spanish restaurant”
which is an explicit feature in the local database because there may be some
factor of its high degrees of difference of correlations even if the pair does not
show high degree of correlation.

Thus, our algorithm has actually found potentially significant DC pairs for
the given database.

7 Concluding Remarks

Given a transaction databaseD and its sub-database DC , we proposed the notion
of DC pairs. A pair of itemsets X and Y is called a DC pair if the correlation
between X and Y in DC is relatively high to one in the original D with some
degree. It should be noted that the correlation is not always high in DC even
though we can observe some degree of correlation change for D and DC . In
this sense, such a pair might not be characteristic in DC . Thus, some DC pairs
are regarded as potential characteristics in DC . Our experimental results showed
that DC pairs which are potentially significant can be actually found for “Entree
Chicago Recommendation Data” under conditioning by each region.

In order to efficiently find DC pairs, we investigated several pruning mech-
anisms which can prune useless search nodes (branches) and designed an algo-
rithm adopted them. The computation is divided into two phases. In Phase 1,
we can efficiently extract the set of candidates for component itemsets with a
look ahead strategy. In Phase 2, then, a restricted pairs of obtained candidates
are examined whether they can be DC pairs or not. Our experimental results
have also shown effectiveness of the pruning rules in our search.

A more powerful pruning mechanism would be desired in more practical cases.
We would be able to realize such an improvement of computational efficiency
heuristically. For instance, imposing a semantic constraint on itemsets will be
effective in reducing our search space. We might consider only candidates for
compound itemsets each of which contains a certain pair of items semantically
interesting. As the result, the number of candidates can be drastically reduced
still preserving semantical significance. This kind of constraints will be investi-
gated as future work.
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Abstract. Previous sphere-based classification algorithms usually need
a number of spheres in order to achieve good classification performance.
In this paper, inspired by the support vector machines for classifica-
tion and the support vector data description method, we present a new
method for constructing single spheres that separate data with the max-
imum separation ratio. In contrast to previous methods that construct
spheres in the input space, the new method constructs separating spheres
in the feature space induced by the kernel. As a consequence, the new
method is able to construct a single sphere in the feature space to sepa-
rate patterns that would otherwise be inseparable when using a sphere
in the input space. In addition, by adjusting the ratio of the radius of the
sphere to the separation margin, it can provide a series of solutions rang-
ing from spherical to linear decision boundaries, effectively encompassing
both the support vector machines for classification and the support vec-
tor data description method. Experimental results show that the new
method performs well on both artificial and real-world datasets.

1 Introduction

When objects are represented as d-dimensional vectors in some input space,
classification amounts to partitioning the input space into different regions and
assigning unseen objects in those regions into their corresponding classes. In the
past, people have used a wide variety of shapes, including rectangles, spheres,
and convex hulls, to partition the input space.

Spherical classifiers were first introduced into pattern classification by Cooper
in 1962 and subsequently studied by many other researchers [1,2,3,4]. One well
known classification algorithm consisting of spheres is the Restricted Coulomb
Energy (RCE) network. The RCE network, first proposed by Reilly, Cooper,
and Elbaum, is a supervised learning algorithm that learns pattern categories
by representing each class as a set of prototype regions - usually spheres [5,6].
The RCE network incrementally creates spheres around training examples that
are not covered, and it adaptively adjusts the sizes of spheres so that they do
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not contain training examples from different classes. After the training process,
only the set of class-specific spheres is retained and a new pattern is classified
based on which sphere it falls into and the class affiliation of that sphere.

Another learning algorithm that is also based on spherical classifiers is the set
covering machine (SCM) proposed by Marchand and Shawe-Taylor [7]. In their
approach, the final classifier is a conjunction or disjunction of a set of spherical
classifiers, where every spherical classifier dichotomizes the whole input space
into two different classes with a sphere. The set covering machine, in its simplest
form, aims to find a conjunction or disjunction of a minimum number of spherical
classifiers such that it classifies the training examples perfectly.

Regardless of whether the influence of a sphere is local (as in the RCE net-
work) or global (as in the SCM), classification algorithms that use spheres nor-
mally need a number of spheres in order to achieve good classification perfor-
mance, and therefore have to deal with difficult theoretical and practical issues
such as how many spheres are needed and how to determine the centers and radii
of the spheres. In this paper, inspired by the support vector machines (SVMs) for
classification [8,9,10] and the support vector data description (SVDD) method
[11,12], we propose a new method, which computes a single sphere that sepa-
rates data from different classes with the maximum separation ratio. In contrast
to previous methods that construct spheres in the input space, the proposed
method constructs the separating sphere in the feature space induced by the
kernel. Because the class of spherical boundaries in the feature space actually
represents a much larger class than in the input space, our method is able to
construct a single sphere in the feature space that separates patterns that would
otherwise be inseparable when using a sphere in the input space.

Furthermore, when the ratio of the radius of the separating sphere to the sep-
aration margin is small, a sphere is constructed that gives a compact description
of one class, coinciding with the solution of the SVDD method; and when the
ratio is large, the solution effectively coincides with the maximum margin hy-
perplane solution. Therefore, by adjusting the ratio, the new method effectively
encompasses both the support vector machines for classification and the SVDD
method for data description, and may lead to better generalization performance
than both methods.

The remainder of the paper is organized as follows. In Section 2 we give
a brief overview of the support vector data description method that computes
a minimum enclosing sphere to describe a set of data from a single class. In
Section 3, we propose our new algorithm, which extends the SVDD method by
computing a single sphere that separates data from different classes with the
maximum separation ratio. In Section 4 we test the new algorithm on both
artificial and real-world datasets. Concluding remarks are given in Section 5.

2 Support Vector Data Description

The basic idea of the SVDD method is to construct a minimum bounding sphere
to describe a set of given data. The minimum bounding sphere, which is defined
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as the smallest sphere enclosing all data, was first used by Schölkopf, Burges,
and Vapnik to estimate the VC-dimension of support vector classifiers and later
applied by Tax and Duin to data description [11,12].

Given a set of training data x1, . . . , xn ∈ IRd, the minimum bounding sphere
S, characterized by its center c and radius R, can be found by solving the fol-
lowing constrained quadratic optimization problem

min
c,R

R2 , (1)

subject to the constraints

‖xi − c‖2 ≤ R2 ∀i = 1, . . . , n . (2)

To allow for the possibility of some examples falling outside of the sphere, one
can relax the constraints (2) with a set of soft constraints:

‖xi − c‖2 ≤ R2 + ξi ∀i = 1, . . . , n , (3)

where ξi ≥ 0 are slack variables introduced to allow some examples to have
larger distances. To penalize large distances to the center of the sphere, one can
therefore minimize the following quadratic objective function

min
c,R,ξi

R2 + C

n∑
i=1

ξi , (4)

under the constraints (3), where C > 0 is a constant that controls the trade-off
between the size of the sphere and the number of examples that possibly fall
outside of the sphere.

Using the Lagrange multiplier method, the constrained quadratic optimiza-
tion problem can be formulated as the following Wolfe dual form

min
αi

∑
i,j

αiαj〈xi, xj〉 −
∑

i

αi〈xi, xi〉 (5)

subject to the constraints
n∑

i=1

αi = 1 and 0 ≤ αi ≤ C ∀i = 1, . . . , n . (6)

Solving the dual quadratic programming problem, one obtains the Lagrange
multipliers αi for all i = 1, . . . , n, which give the center c of S as a linear com-
bination of xi

c =
n∑

i=1

αixi . (7)

According to the Karush-Kuhn-Tucker (KKT) optimality conditions, we have

αi = 0 ⇒ ‖xi − c‖2 < R2 and ξi = 0
0 < αi < C ⇒ ‖xi − c‖2 = R2 and ξi = 0

αi = C ⇒ ‖xi − c‖2 ≥ R2 and ξi ≥ 0 .
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Therefore, only αi that correspond to training examples xi which lie either on
or outside of the sphere are non-zero. All the remaining αi are zero and the
corresponding training examples are irrelevant to the final solution. Knowing
c, one can subsequently determine the radius R from the KKT conditions by
letting

R2 = 〈xi, xi〉 − 2
n∑

j=1

αi〈xi, xj〉+
∑
j,l

αjαl〈xj , xl〉 (8)

for any i such that 0 < αi < C.
In practice, training data of a class is rarely distributed spherically, even if

the outermost examples are excluded. To allow for more flexible descriptions of
a class, one can apply the kernel trick by replacing the inner products 〈xi, xj〉
in the dual problem with suitable kernel functions k(xi, xj). As a consequence,
training vectors xi in IRd are implicitly mapped to feature vectors Φ(xi) in some
high dimensional feature space IF such that inner products in IF are defined as
〈Φ(xi), Φ(xj)〉 = k(xi, xj), and spheres are constructed in the feature space IF
and they may represent highly complex shapes in the input space IRd:

{x : R2 = k(x, x)− 2
n∑

i=1

αik(x, xi) +
∑
i,j

αiαjk(xi, xj)} , (9)

depending on one’s choice of the kernel function k. Kernels that have proven
to be effective for data description include the Gaussian kernel k(x1, x2) =
exp(−‖x1 − x2‖2/σ2) and the polynomial kernel k(x1, x2) = (1 + 〈x1, x2〉)p.

3 Pattern Classification via Single Spheres

In the above section, we have described how to construct a minimum bounding
sphere to provide a compact description of a set of data, which are assumed
to belong to the same class. For each class, such a sphere can be constructed
without considering training data from other classes. In this section, we explore
the possibility of using single spheres for pattern separation.

Given a set of training data {(x1, y1), . . . , (xn, yn)}, where xi ∈ IRd and yi ∈
{−1, 1}, instead of trying to find a sphere that provides a compact description
of one class, for classification purposes, we want to find a sphere that encloses
all examples from one class but excludes all examples from the other class, e.g.,
a sphere S with center c and radius R that encloses all positive examples and
excludes all negative examples. In addition, we assume that sphere S separates
the two classes with margin 2d, i.e., it satisfies the following constraints:

R2 − 〈xi − c, xi − c〉 ≥ d2, ∀i such that yi = 1, (10)

and
〈xi − c, xi − c〉 − R2 ≥ d2, ∀i such that yi = −1, (11)

where d is the shortest distance from the sphere to the closest positive and
negative examples (see Fig. 1).
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R

d d

Fig. 1. Spherical classifier that maximizes the separation ratio

There may exist many spheres that satisfy the above constraints. Among
many such spheres, it is natural that we seek to find a sphere that separates the
training data with the maximum separation ratio, i.e.,

max
c,R,d

R + d

R− d
(12)

subject to
yi(R2 − 〈xi − c, xi − c〉) ≥ d2 ∀i = 1, . . . , n . (13)

It is easy to show that maximization of the separation ratio (R + d)/(R − d) is
equivalent to minimization of R2/d2. The objective function R2/d2 is a nonlinear
function of R2 and d2 and is hard to deal with directly. However, at any given
point (R0, d0), R2/d2 can be approximated as:

R2

d2 ≈
R2

0

d2
0

+
1
d2
0
(R2 − R2

0

d2
0

d2) . (14)

Therefore, the problem of finding the sphere with maximum separation ratio can
be reformulated as:

min
c,R,d

R2 −Kd2 (15)

subject to
yi(R2 − 〈xi − c, xi − c〉) ≥ d2 ∀i = 1, . . . , n , (16)

where K = R2
0/d2

0 ≥ 1 is a constant that controls the ratio of the radius to the
separation margin.

Introducing Lagrange multipliers αi ≥ 0, one for each of the constraints in
(16), we obtain the Lagrangian:

L = R2 −Kd2 −
n∑

i=1

αi[yi(R2 − 〈xi − c, xi − c〉)− d2] . (17)
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The task is to minimize the Lagrangian L with respect to R, d, and c, and to
maximize it with respect to αi. Setting the partial derivatives to zero, we obtain

c =
n∑

i=1

αiyixi , (18)

which gives the center c of the sphere as a linear combination of training data
xi, and

n∑
i=1

αi = K (19)

n∑
i=1

αiyi = 1 . (20)

Substituting the new constraints into the Lagrangian (17), we obtain the follow-
ing dual form of the quadratic programming problem:

min
αi,i=1,...,n

1
2

n∑
i,j=1

αiαjyiyj〈xi, xj〉 −
1
2

n∑
i=1

αiyi〈xi, xi〉 (21)

subject to

αi ≥ 0, ∀i = 1, . . . , n (22)
n∑

i=1

αi = K (23)

n∑
i=1

αiyi = 1 . (24)

It should be emphasized that, unlike the quadratic programming problems
in Sect. 2 or in standard SVMs, the primal constrained optimization problem
defined by (15) and (16) is non-convex. In fact, it is easy to see that the set of
constraints (16) for all i such that yi = −1 is non-convex. However, fortunately,
the Lagrangian (17) is convex at the solution of the dual problem. Therefore,
strong duality still holds and the solution of the dual problem provides an optimal
solution of the primal problem.

Solving the dual problem, one obtains the coefficients αi, i = 1, . . . , n. The
center c of the optimal sphere can be obtained by Eq. (18). Similarly, the radius
R can be determined from the KKT conditions by letting

R2 =
minyi=−1〈xi − c, xi − c〉+ maxyi=1〈xi − c, xi − c〉

2
, (25)

which leads to the following spherical decision function:

f(x) = sgn

⎛
⎝R2 − (〈x, x〉 − 2

n∑
i=1

αi〈x, xi〉+
∑
i,j

αiαj〈xi, xj〉)

⎞
⎠ . (26)
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In general, the solution to the above optimization problem may not exist
because there is no such sphere in the input space that separates all the positive
samples from the negative samples. Similarly to the SVDD case, we can apply the
kernel trick here by replacing the inner products with suitable kernel functions.
In effect, the maximum separation sphere is constructed in the feature space
induced by the kernel. So far, we have only considered the case in which the
data is separable by a sphere in the input space or in the feature space that is
induced by the kernel. However, such a sphere may not exist, even in the kernel
feature space. To allow for some classification errors, we introduce slack-variables
ξi ≥ 0 for i = 1, . . . , n to relax the constraints (13) with

yi(R2 − 〈x− c, x− c〉) ≥ d2 − ξi , (27)

and consequently minimize the following objective function:

min
c,R,d,ξi,i=1,...,n

R2 −Kd2 + C

n∑
i=1

ξi , (28)

where the regularization constant C determines the trade-off between the empir-
ical error and spherical separation margin term. Using the Lagrange multiplier
method, we obtain the following dual problem in the kernel form:

min
αi,i=1,...,n

1
2

n∑
i,j=1

αiαjyiyjk(xi, xj)−
1
2

n∑
i=1

αiyik(xi, xi) (29)

subject to

0 ≤ αi ≤ C, ∀i = 1, . . . , n (30)
n∑

i=1

αi = K (31)

n∑
i=1

αiyi = 1 . (32)

The above dual optimization problem can be solved using standard quadratic
programming solvers, such as CPLEX, LOQO, MINOS and Matlab QP rou-
tines. Similarly to the standard SVMs, one can also use the sequential minimal
optimization (SMO) method or other decomposition methods to speed up the
training process by exploiting the sparsity of the solution and the KKT condi-
tions [13,14,15].

It should be noted that separating data using spheres is a special case of
separating data via ellipsoids, which results in a convex semi-definite program
(SDP) that can be efficiently solved by interior point methods [16]. However, a
drawback of the ellipsoid separation approach is that it cannot be easily extended
by the kernel method, because the SDP problem cannot be expressed purely in
inner products between input vectors. Therefore, both the decision boundaries it
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can generate and the problems it can solve are limited, unless special preprocess-
ing is carried out prior to applying the ellipsoid separation method. On the other
hand, using spheres combined with suitable kernels can produce more flexible
decision boundaries than ellipsoids. Furthermore, SDP is limited in terms of the
number of input dimensions it can effectively deal with.

4 Results and Discussion

We applied the method to both artificial and real-world data. The training al-
gorithm was implemented based on the SMO method. Figure 2 displays a 2-D
toy example and shows how different values of the parameter K lead to differ-
ent solutions. The training examples of two classes are denoted as +’s and ×’s
respectively in the figure. Clearly, there exist many spheres that can separate
the training data in the 2-D input space. Therefore, for this dataset, no kernel
trick was used, and the separating spheres were constructed directly in the input
space using the standard definition of the Euclidean inner product. The three
remaining plots show the results with three different values of the constant K.
In each plot, three spheres (or their portions) are displayed. The darkest line
represents the sphere with radius R− d. The lightest line represents the sphere
with radius R + d. The line in between represents the separating sphere with
radius R. The support vectors (the training examples with nonzero α values)
are marked with small circles.

As we can see, increasing the value of K from 1 to 100, the shape of the
decision surface changes from a sphere to a plane. When K is set to a small value,
the algorithm finds a sphere that gives a compact description of the positive
examples. For instance, when K = 1, the inner sphere (the sphere with radius
R − d) coincides with the smallest sphere found by the SVDD method that
encloses all the positive examples [12,17]. When K is set to a larger value, a
larger sphere is found to contain the positive examples and the decision surface
is more like a plane. Therefore, by adjusting the constant K that controls the
ratio of the radius of the sphere to the separation margin, one can obtain a series
of solutions from sphere-like decision boundaries to linear decision boundaries,
including the solution of the SVDD method for data description and the solution
of SVMs for classification.

Figure 3 shows the results of the spherical classifiers with a Gaussian kernel on
another artificial dataset. The training data is generated randomly in a rectangu-
lar region. Training examples of the two classes, separated by f2 = sin(πf1), are
denoted as +’s and ×’s respectively (see figure 3, upper-left plot). Clearly, there
is no single sphere in the 2-D input space that can separate the two classes. We
used a Gaussian kernel to map the data into a high dimensional feature space,
in which the separating spheres were constructed. The remaining three plots
show the results of the spherical classifier at different values of K. For better
visualization, only training examples that correspond to the support vectors are
shown in the three plots. The results demonstrate that a separating sphere was
found in the feature space by adjusting the value of the constant K.
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K=1

K=10 K=100

Fig. 2. Results of the spherical classifier on an artificial dataset at different values of

K

f
1

f 2

K=1

K=10 K=100

Fig. 3. Results of the spherical classifier (using a Gaussian kernel) on an artificial

dataset. Top left: The training data and desired decision boundary; The rest: spheres

of different radii mapped back onto the 2-D input space for three different values of K.

The darker the line, the smaller the radius. The small circles around training examples

indicate the support vectors.

We also tested the new algorithm and compared it to standard SVMs using
several real-world datasets from the UCI machine learning repository [18]. For
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all the datasets, we used the 5-fold cross-validation method to estimate the
generalization error of the classifiers. In the 5-fold cross-validation process, we
ensured that each training set and each testing set were the same for both
algorithms, and the same Gaussian kernel was used. The datasets used and the
results obtained by the two algorithms are summarized in Table 1. The results
of the spherical classifier and the SVM classifier both depend on the values of
the kernel parameter σ and the regularization parameter C. In addition, the
performance of the spherical classifier also depends on the value of K. In our
tests, we set C to infinity for both algorithms, i.e., we only considered hard-
margin spherical and hyperplane classifiers. On each dataset, the value of the
kernel parameter σ was optimized to provide the best error rate of the SVM
classifier, and the same value was used for the spherical classifier. As we can see,
the spherical classifier achieves the same or slightly better results than SVMs on
all 5 datasets.

Table 1. Comparison of Error Rates

Dataset Sphere SVM

Breast Cancer 4.26 (±1.73) 4.26 (±1.73)
Ionosphere 5.71 (±2.80) 6.00 (±2.86)
Liver 35.36 (±1.93) 36.23 (±5.39)
Pima 34.90 (±2.13) 35.03 (±2.20)
Sonar 10.73 (±1.91) 11.22 (±2.44)
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Fig. 4. Error rates of the spherical classifier on the sonar dataset for different values of

K. The solid line represents the error rate of the spherical classifier. The dashed line

is the error rate of the SVM classifier.

In Figure 4, we show a detailed comparison of the spherical classifier and the
SVM classifier on the Sonar dataset. The solid line displays the error rates of
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the spherical classifier at different values of K. The dashed line gives the corre-
sponding error rates of the support vector machine. Once again, the same kernel
parameter σ was used for both algorithms, and the regularization parameter
C was set to infinity. As we can see, the error rates of the spherical classifier
decrease as the value of K increases. If K is set to be large enough, the result
of the spherical classifier reaches that of the support vector machine, which is
consistent with what we have observed in our toy examples.

From Table 1 and Fig. 4, we see that the spherical classifier yields comparable
results as the support vector machine, demonstrating that it is suitable for real-
world classification problems.

5 Conclusion

In this paper we explored the possibility of using single spheres for pattern clas-
sification. Inspired by the support vector machines and the support vector data
description method, we presented an algorithm that constructs single spheres in
the kernel feature space that separate data from different classes with the max-
imum separation ratio. By incorporating the class information of the training
data, our approach provides a natural extension to the SVDD method of Tax
and Duin, which computes minimal bounding spheres for data description (also
called One-class classification).

By adopting the kernel trick, the new algorithm effectively constructs spher-
ical boundaries in the feature space induced by the kernel. As a consequence, the
resulting classifier can separate patterns that would otherwise be inseparable when
using a single sphere in the input space. Furthermore, by adjusting the ratio of the
radius of the separating sphere to the separation margin, a series of solutions rang-
ing from spherical to linear decision boundaries can be obtained. Specifically, when
the ratio is set to be small, a sphere is constructed that gives a compact description
of the positive examples, coinciding with the result of the SVDD method; when the
ratio is set to be large, the solution effectively coincides with the maximum mar-
gin hyperplane solution. Therefore, our method effectively encompasses both the
support vector machines for classification and the SVDD method for data descrip-
tion. This feature of the proposed algorithm may also be useful for dealing with
the class-imbalance problem. We tested the new algorithm and compared it to the
support vector machines using both artificial and real-world datasets. The exper-
imental results show that the new algorithm offers comparable performance on all
the datasets tested. Therefore, our algorithm provides an alternative to the maxi-
mum margin hyperplane classifier.
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Abstract. This paper proposes a novel system to discover simultaneous
time differential law equations reflecting first principles underlying objec-
tive processes. The system has the power to discover equations containing
hidden state variables and/or representing chaotic dynamics without us-
ing any detailed domain knowledge. These tasks have not been addressed
in any mathematical and engineering domains in spite of their essential
importance. Its promising performance is demonstrated through appli-
cations to both mathematical and engineering examples.

1 Introduction

A set of well known pioneering approaches of scientific law equation discovery
is called BACON family [1]. They try to figure out a static equation on mul-
tiple quantities over a wide state range under a given laboratory experiment
where quantities are actively controlled. Their drawback is the low likelihood to
discover the law equations, since they do not use certain essential criteria to cap-
ture relations induced by the first principles. A law equation reflecting the first
principle here is an observable, reproducible and concise relation satisfying gen-
erality, soundness and mathematical admissibility. The generality is to be widely
observed in the objective domain of the equation, the soundness not to conflict
with any observations and the mathematical admissibility to follow some con-
straints deduced from the invariance of the relation under various times, places
and measurement expressions. Especially, the mathematical admissibility can be
used to narrow down the equation formulae for the search. Some systems intro-
duced unit dimension constraints and “scale-type constraints” to limit the search
space to mathematically admissible equations [2,3,4]. Especially, the scale-type
constraints have wide applicability since they do not need unit information of
quantities. LAGRANGE addressed the discovery of “simultaneous time differ-
ential law equations” reflecting the dynamics of objective processes under “pas-
sive observations” where none of quantities are experimentally controllable [5].
Its extended version called LAGRAMGE introduced domain knowledge of the
objective process to limit the search space within plausible law equations [6].
IPM having similar functions with LAGRAMGE further identified plausible law
equations containing “hidden state variables” when the variables are known in
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the detailed domain knowledge [7]. PRET identified “chaotic dynamics” under
similar conditions where very rich domain knowledge is available [8].

However, scientists and engineers can develop good models of the objective
dynamics without using the discovery systems in many practical cases when de-
tailed domain knowledge is available. Accordingly, the main applications of the
discovery systems are to identify simultaneous time differential equations reflect-
ing the first principles under passive observation and “little domain knowledge.”
One of such important applications is the discovery of “hidden state variables.”
In many problems, some state variables are not directly observed, and even the
number of unobserved state variables is not known. Another important issue is
the analysis of the observed data representing “chaotic dynamics.” If the de-
tailed domain knowledge on the dynamics underlying the chaos is given, some of
the aforementioned systems can construct the dynamic equations appropriately
representing the chaos. However, scientists can hardly grasp the dynamic laws on
many chaotic behaviors based on their domain knowledge, since the background
mechanisms of the chaos are usually very complex [9].

In this paper, we propose a novel scientific equation discovery system called
SCALETRACK (SCALE-types and state TRACKing based discovery system)
to discover a model of an objective process under the following requirements.

(1) The model is simultaneous time differential equations representing the dy-
namics of an objective process.

(2) The model is not an approximation but a plausible candidate to represent
the underlying first principles.

(3) The model is discovered from passively observed data without using domain
knowledge specific to the objective process.

(4) The model can include hidden state variables.
(5) The model can represent chaotic dynamics.

2 Outline

2.1 Basic Problem Setting

We adopt the following “state space model” of objective dynamics and measure-
ment without loss of generality.

ẋ(t) = f(x(t)) + v(t) (v(t) ∼ N(0,Σv)), and (1)
y(t) = Cx(t) + w(t) (w(t) ∼ N(0,Σw)), (2)

where the first equation is called a “state equation” and the second a “mea-
surement equation.” x is called a state vector, f(x) a system function, v a
process noise vector, y a measurement vector, C a measurement matrix, w a
measurement noise and t a time index. f(x), a model of the objective dynam-
ics over its wide state range, is not limited to linear formulae in general, and
any state transition of x can be represented by this formulation. C, the model
of measurement, is represented by a linear transformation matrix, because the
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measurement facilities are artificial and linear in most cases, and some state
variables in x are often observed indirectly as their linear combinations through
measurement variables in y. If C is column full rank, the values of all state
variables with the measurement noise are estimated by solving the measurement
equation with x. Otherwise, some state variables are not estimated within the
measurement equation, and these variables are called “hidden state variables.”

In the scientific law equation discovery, f(x) is initially unknown, and even x
is not known correctly. Only a state subvector x′(⊆ x) and a submatrix C′(⊆ C)
representing an artificial measurement facility are initially known to relate x′

with y as y = C′x′. To derive C from C′, the number of missing state variables,
i.e., the difference between the dimensions of x and x′, must be estimated. Thus,
SCALETRACK identifies the number of elements in x including hidden state
variables based on passively observed data at first. Then, it searches plausible
candidates of f(x) reflecting the first principles from the data.

2.2 Entire Approach

The entire approach of SCALETRACK is outlined in Figure 1. Given a set of
measurement data, the dimension of x is identified through a statistical anal-
ysis called “correlation dimension analysis.” Once the dimension is known, all
possible combinations of scale-types of the elements in x are enumerated based
on scale-type constraints, the known measurement submatrix C′ and the known
scale-types of the elements in y. Then, for every combination, the candidate for-
mulae of a state equation admissible to the scale-type constraints are generated.
Subsequently, through a set of state tracking simulations called “SIS/RMC filter”
combined with parameter search on the given measurement data, the parame-
ter values in every candidate formula are estimated. Finally, some candidates
providing highly accurate tracking in terms of “Mean Square Error (MSE)” are
selected as the discovered dynamic models of the objective process. The details
of each step in Figure 1 are described in the following section.

3 Methods

3.1 Estimating Dimension of x

“Correlation dimension analysis” estimates the dimension of x, dim(x), from
given measurement data y over n sampling time steps [9]. Given an element
yh (h = 1, .., dim(y)) of y, let τh be the minimum time step lag that the time
lagged autocorrelation of yh(t) becomes 0 as follows.

τh = argminτ∈[1,n]{
1
n

n−τ∑
t=1

(yh(t)− ȳh)(yh(t + τ)− ȳh) ' 0}, (3)

where ȳh is the time average of yh(t) over [1, n]. τh is the time steps within that
the local dependency among the observed states is vanished. Then the following
time lagged vectors of length m are constructed from yh.
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Fig. 1. Outline of SCALETRACK

Y m
h (1) = [yh(1), yh(1 + τh), . . . , yh(1 + (m− 1)τh)]
· · · · · · · · ·

Y m
h (n− (m− 1)τh) = [yh(n− (m− 1)τh), yh(n− (m− 2)τh), . . . , yh(n)]

If m is sufficiently large, each of these vectors reflects a global relation among
the states, since the time intervals among the elements in a vector are equal to
or longer than τh. Then the following correlation integral in the time lagged
phase space is calculated.

Rm
h (r) =

2
n′(n′ − 1)

[number of (i, j)s; ΔY m
h (i, j) < r], (4)

where n′ = n− (m− 1), 1 ≤ i, j ≤ n′ and ΔY m
h (i, j) = |Y m

h (i)− Y m
h (j)|. Rm

h (r)
represents the density of states in the space, and shows the following power law
relation in general over the range of r covering the state distribution.

Rm
h (r) ∝ rνh(m), (5)

where νh(m) is called a “correlation exponent.” Theoretically it is an approxima-
tion of the fractal dimension of the global state distribution which is equivalent
to dim(x) under the condition of m ≥ 2dim(x)+1. dim(x) is estimated through
the least square fitting of Eq.(5) to Rm

h (r)s derived by Eq.(4) under a sufficiently
large m. νh(m) is computed for each yh (h = 1, .., dim(y)), and the nearest in-
teger of its maximum, νmax(m), among them is used for dim(x), since some
measurement variables may miss the behaviors of some state variables.
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3.2 Identifying Scale-Types of x

Once dim(x) is known, the “scale-type” of each element of x is identified for
the candidate f(x) generation in the next step. This is done based on “scale-
type constraints” [10] and the scale-types of elements of y. Representatives of
quantitative scale-types are ratio scale and interval scale. Examples of the ratio
scale quantities are physical mass and absolute temperature where each has an
absolute origin. The admissible unit conversion of the ratio scale follows x′ = αx.
Examples of the interval scale quantities are temperature in Celsius and sound
pitch where the origins of their scales are not absolute and arbitrary changed by
human’s definitions. The admissible unit conversion of the interval scale follows
x′ = αx + β. Though the scale-type is strongly related with the unit dimension,
they are different each other.

As noted in the previous section, only a state subvector x′(⊆ x) is measured
by y through a measurement facility C′(⊆ C) as y = C′x′. Because the
structure of the facility is independent of the units of the elements of x′ and y,
C′ is invariant against the change of their units. Then the following theorem
holds.

Linear Formula Theorem. Let x′ be a known state subvector of x, yh an
element of a measurement vector y and x′

h a state subvector of x′ where each
xi ∈ x′

h has a nonzero (h, i)-element, chi, in the known measurement submatrix
C′. The scale-types of xis in x′

h are constrained by the scale-type of yh and the
following rules.
(1) If yh is a ratio scale, all xis are ratio scales, or more than one xi are interval

scales and the rest ratio scales.
(2) If yh is an interval scale, one xi at least is an interval scale and the rest

ratio scales.
Proof. Because of the relation y = C′x′, yh =

∑
xi∈x′

h
chixi holds. Let the set

of interval scale quantities in x′
h be Ih. Every xi ∈ Ih follows the admissible

unit conversion x′
i = αixi + βi, and every xi in the rest, i.e., ratio scales,

follows x′
i = αixi. When yh is a ratio scale, it follows y′

h = αyh. Because of
the invariance of C′, y′

h =
∑

x′
i∈x′

h
chix

′
i holds. By substituting the admissible

unit conversions and yh =
∑

xi∈x′
h

chixi to this linear relation, the following is
obtained. ∑

xi∈x′
h

αchixi =
∑

xi∈x′
h

chiαixi +
∑

xi∈Ih

chiβi

Because this is an identity equation for every xi ∈ x′
h, αi = α for every xi and∑

xi∈Ih
chiβi = 0 hold. If Ih is empty, the last relation trivially holds. If Ih has

only a unique xi, βi = 0 must hold, and this is contradictory to the interval
scale xi ∈ Ih. If Ih has more than one xi, the last relation can hold for non-zero
βis while βis are mutually dependent in the relation. This concludes the rule
(1). When yh is an interval scale, it follows y′

h = αyh + β. Through the similar
discussion with the rule (1),

∑
xi∈Ih

chiβi = β hold. If Ih is empty, β = 0 must
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hold, and this is contradictory to the interval scale yh. If Ih is not empty, this
relation can hold for non-zero βis and β while they are mutually dependent in
the relation. This concludes the rule (2).

Based on this theorem and the scale-types of all yh ∈ y, a set of constraints
on the scale-types of all xi ∈ x′ is obtained. Because the scale-types of all xi ∈ x
which are not in x′ are unknown, they can be either ratio or interval scale.
Then, every admissible combination (Rx, Ix) where Rx is a set of ratio scale
state variables and Ix a set of interval scale state variables in x satisfying these
constraints are enumerated by using a simple search. Though this search is com-
binatorial, it is tractable in practice as far as the dimension of x is not very large.

3.3 Generating Candidate State Equations

“Extended Product Theorem” [4] provides a basis of the candidate generation
of state equations. This theorem comes from the invariance of the formula
shape against the unit conversions and the scale-type constraints similarly to
the aforementioned Linear Formula Theorem, and it has been used in several
law equation discovery systems in the past. The following is the theorem where
some notions are adapted to our descriptions.

Extended Product Theorem. Given a combination (Rx, Ix) for x, the state
variables have the following relation.

ẋi =
∏

xj∈Rx

|xj |αj

∏
Ik⊆(Ix−Ig)

(
∑

xj∈Ik

βkj |xj |+ βk)αk

∏
xj∈Ig

exp(βgj |xj |)

where xi ∈ Rx ∪ Ix, all coefficients are constants, Ig a subset of Ix, and {Ik} a
covering of (Ix − Ig).

In a state equation ẋ(t) = f(x(t)), all elements in ẋ are ratio scales, since the
time derivative of an element of x is the difference of two states divided by a time
interval in essence. The formulae following this theorem are called “regimes”
having the invariance against the unit conversions. Since this is a required
character of the formulae to represent the first principles, the candidates have
high plausibility to be law equations. Under ratio scale time derivatives ẋ and
a given combination (Rx, Ix), the multiple candidates of a state equation are
enumerated based on this theorem. The set of combinations of (Rx, Ix) de-
rived in the previous step provides a set of many candidate state equations, CSE.

3.4 Evaluating Candidate State Equations

Once CSE for an objective process is provided in the previous step, a fitting
error E(c) of every candidate c ∈ CSE under given measurement data is
evaluated through adjustment of its coefficients and state tracking.

Searching for Power Coefficients. As shown in Extended Product Theo-
rem, the formulae of the state equations have two types of constants, i.e., power
coefficients αs and proportional coefficients βs. The search space of a power
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Table 1. Nonlinearity of T α.

case of α range of T nonlinearlity
range parity

α > 1 α T ≥ 0 monotonic increase
is even. T < 0 monotonic decrease

0 < α < 1 1/α T ≥ 0 monotonic increase
is even. T < 0 not admissible

α > 0 α or 1/α T ≥ 0 monotonic increase
is odd. T < 0 monotonic increase

α = 0 1

α < 0 α or 1/α T ≥ 0 monotonic decrease
is odd. T < 0 monotonic decrease

−1 < α < 0 1/α T ≥ 0 monotonic decrease
is even. T < 0 not admissible

α < −1 α T ≥ 0 monotonic decrease
is even. T < 0 monotonic increase

where T → 0 ⇒ T α → 0(α > 0) and T α → ±∞(α < 0).

coefficient α is limited to small integers, within [−5, 5] for instance, and their
inverses. This is because the power coefficients reflect the dimensions of space
and units where the objective process operates, and their complexities are lim-
ited. Moreover, given a term T having a power coefficient α in the formulae of
Extended Product Theorem, the range and the parity of α strongly affect the
nonlinearity of Tα as shown in Table 1. Because of these discrete characteristics
of α, the standard approaches for continuous and nonlinear optimization such
as gradient descent method are not applicable. Instead, for every combination
of the cases over all αs appearing in the candidate c, a monotonic and discrete
search on integer αs is applied to reduce the fitting error E(c). Because the num-
ber of αs in c is not very large, this part does not cause severe combinatorial
explosion.

Searching for Proportional Coefficients. The search of the proportional
coefficients βs minimizing E(c) under every combination of αs provided in
abovementioned scheme is performed. We experienced in our preliminary study
that the standard nonlinear optimization of βs such as gradient descent method
again does not converge to their right values within tractable time, because the
influence of some βs to ẋi can be very small under some αs. Accordingly, the
following Golden Ratio Search [11] which is a well-known opportunistic line
search without using the quantitative gradient information has been applied to
βs. Under a combination of values of all αs and a combination of default values
of all βs appearing in c, given initial upper bound βu

j and lower bound βl
j of

βj in c, E(c)s are evaluated on the following β1
j and β2

j by the state tracking
which will be described shortly.

β1
j = βl

j + r(βu
j − βl

j), and (6)

β2
j = βu

j − r(βu
j − βl

j), (7)
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where r = (3−
√

5)/2 is the golden ratio. Let E(c)s evaluated on β1
j and β2

j be
E(c|β1

j ) and E(c|β2
j ) respectively. If E(c|β1

j ) ≥ E(c|β2
j ) then β1

j → βl
j , β2

j → β1
j

and calculate new β2
j by Eq.(7), else β2

j → βu
j , β1

j → β2
j and calculate new β1

j

by Eq.(6). This rule is applied iteratively until |β2
j − β1

j | becomes less than a
threshold ε. After this convergence, the converged value becomes a new default
value of βj . Subsequently, another β in c is selected in place of βj , and this
Golden Ratio Search is repeated until the default values of all βs in c becomes
stable. Finally, the estimated βs are rounded off to integers when the values
are close enough to the integers within the statistically expected estimation
errors, since the parameters tend to be integers in many physical processes.
After obtaining values of all βs for each combination of values of all αs, the
unique combination of values of all αs, Ac, and that of all βs, Bc, providing the
minimum E(c) is chosen to be the coefficients of c.

State Tracking. Given a time series of measurement vector y(t)s, a candidate
state equation c and its Ac∪Bc, the fitting error E(c) is evaluated through state
tracking. The recent massive increase in computational power became to allow
the introduction of direct and sequential Monte Carlo integration of the state
probability distributions within Bayesian framework. This approach is called
“Sequential Importance Sampling/Resampling Monte Carlo filter (SIS/RMC fil-
ter)” [12], and can track the states generated in c without introducing any es-
sential approximation. This state tracking has many advantages comparing with
the other nonlinear state tracking approaches such as the conventional Extended
Kalman Filter [13] and the qualitative reasoning based PRET [8]. The former us-
ing the linearization of the state equations does not work well when the equations
include some singular points and/or some state regions having strong sensitivity
to the tracking error. The latter faces a combinatorial explosion of qualitative
states when the dimension and/or the complexity of the state space structure
are high. In contrast, SIS/RMC filter does not require any approximation to
be spoiled by the singularity and the strong nonlinearity, and does not face the
combinatorial explosion of the states to be considered.

Because of the space limit, readers should refer the literature [12] to learn
the background theory of SIS/RMC filter. In this paper, only the procedure
of the state tracking adapted to our basic problem setting is indicated. The
SIS/RMC filter is represented by the following procedures where the probabilities
p(x(t)|x(t− 1),y(t)) and p(y(t)|x(t− 1)) are defined by y(t), c and its Ac ∪Bc.

1 Importance sampling
(1-1) For i = 1, ..., N , sample x̃(i)(t) ∼ p(x(t)|x(i)(t− 1),y(t)).
(1-2) For i = 1, ..., N , evaluate the importance weights:

w∗(i)(t) = w∗(i)(t− 1)p(y(t)|x(i)(t− 1)).

(1-3) For i = 1, ..., N , normalize the importance weights: w̃(i)(t)= w∗(i)(t)∑N
j=1 w∗(j)(t)

.

(1-4) Let MAP estimation, x̃(t), be x̃(i)(t) having the maximum w̃(i)(t).
(1-5) Neff = 1∑N

i=1(w̃
(i)
k )2

.
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(1-6) If Neff ≥ Nthres then x(i)(t) = x̃(i)(t) for i = 1, ..., N , t = t + 1 and go
to 1. Otherwise go to 2.

2 Resampling
(2-1) Generate random integers j(i) (i = 1, ..., N) in proportion to the proba-

bilities w̃(l)(t) (l = 1, ..., N) so that l having larger w̃(l)(t) appears more
as j(i).

(2-2) x(i)(t) = x̃j(i)(t), w(i)(t) = 1/N for i = 1, ..., N , t = t + 1 and go to 1.

In the importance sampling, many x̃(i)(t)s called “particles” derive “Maximum A
Posteriori (MAP)” estimation of the state vector in concert with the normalized
weight w̃(i)(t). An index Neff monitors the ratio of probable particles having
high weights. When the ratio becomes lower than a predefined threshold Nthres,
resampling is applied to increase the probable particles.

Once the MAP estimation x̃(t)s are obtained over t = 1, ..., n time
steps, the time series of ỹ(t)s (t = 1, ..., n) are estimated via Eq.(2). Then the
fitting error E(c) can be evaluated by the following “Mean Square Error (MSE).”

E(c) =
1
n

n∑
t=1

|y(t)− ỹ(t)|2

3.5 Selecting Accurate State Equations

The previous steps provide CSE and < c,Ac ∪ Bc, E(c) > for all c ∈ CSE.
The solutions < c,Ac ∪ Bc, E(c) > having the top K accuracy, i.e. the K least
E(c)s, are selected as discovered dynamic state equations in large CSE. The
value of K is empirically chosen according to the complexity of the objective
process and the quality of measurement data. K = 5 is used throughout this
paper to check the variation of the search space.

4 Result

4.1 Implementation

The evaluation of candidate state equations by the SIS/RMC filter is the most
time consuming step. Any search can not be skipped, since the search space
is discrete and nonmonotonic. We experienced that one run of a stand alone
SCALETRACK to discover a simple state equation took more than weeks even
if we used an efficient algorithm. Accordingly, the current SCALETRACK
introduced a simple grid computing framework using a PC cluster consisting of
a control server and 10 clients, where the server has an AthlonXP1900+ 1.6GHz
CPU and 2GB RAM, and each client has an AthlonXP3000+ 2.7GHz and
512MB RAM. The server computes the first three steps and then allocates the
task to evaluate 10% of candidate state equations to each computer. Because
this task is mutually independent, and occupies the most of computation of
SCALETRACK, this implementation accelerates the run speed almost 10 times.
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4.2 Basic Performance Evaluation

Basic performance of SCALETRACK in terms of scale-types of state variables,
hidden state variables and measurement noise levels is evaluated by using the
following two artificial formulae of two dimensions.

ẋ1(t) = x1(t)x2(t)
ẋ2(t) = −0.5x1(t)

}
RR,

where y1 = x1 and y2 = x2 are ratio scale.

ẋ1(t) = 0.4x1(t)(x2(t) + 0.2)
ẋ2(t) = −0.1(x2(t) + 0.6)

}
RI,

where y1 = x1 is ratio scale and y2 = x2 interval scale. The measurement data
were generated by the simulations under one time step Δt = 0.005 and total
steps n = 600. Empirically, m in the correlation dimension analysis and N in
the state tracking were chosen to be 7 and 500 respectively. The process noise
is set to be 0 to check the pure effect of the measurement noise. These settings
were used in every demonstration in the rest of this paper.

Table 2. Basic Performance

case νmax(7) ct (h) σw(%)
0.1 0.5 1.0 2.0 5.0

RR 2.21 1.5 + ± ± ± −
RRH 2.21 5.5 ± ± − − −
RI 2.19 4.0 + ± ± ± −

RIH 2.19 5.5 + ± − − −
ct is a required comp. time and σw a measurement noise level.

Table 2 shows the result of the evaluation. The case names, RR and RI, in the
table correspond to the above two state equations, and RRH and RIH are the
cases where the second measurement variable y2 is not available, and hence x2
is hidden. The correlation dimension analysis properly estimated the dimension
of state vectors as nearly 2 in each case, and thus two state variables were
assumed in the subsequent steps. The computation times required for RRH, RI
and RIH were longer than that of RR, because the variety of admissible formulae
containing interval scale variables is larger than that of ratio scale variables. The
result in that the formula having the correct shape is top ranked by the accuracy
is marked by + in the table. If the formula having the correct shape is derived
within the top five solutions, it is marked by ±, otherwise it is marked by −.
The table shows that almost 2.0% relative noise is acceptable for the discovery
of the correct formulae, if all state variables are measured. On the other hand,
noise less than 1.0% is required to discover the correct formulae, if a hidden state
variable exists. Similar results were obtained under the other n samplings more
than a hundred. Since 0.5 − 2.0% noise is widely seen in many scientific and
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engineering process measurements, the basic performance of SCALETRACK is
considered to be acceptable for practical use, though further improvements on
the noise robustness is needed in future study.

4.3 Discovery of Circuit Dynamics

SCALETRACK has been applied to synthetic data of an electric circuit
consisting of LCs and a Field Effect Transister (FET) as shown in Figure 2 . Its
state equation is represented as follows.

V̇I(t) = −I(t)
C1

= −100I(t), İ(t) =
VI(t)

L
= 50VI(t), and

V̇F (t) =
VI(t)VF (t)

rC2
= 250VI(t)VF (t),

where the definitions of VI , I, VF , L = 20mH,C1 = 10mF and C2 = 1mF are
clear in the figure, and r = 4.0ΩV is a voltage-resistance coefficient of the FET.
All state variables are ratio scale, and can be measured via corresponding ratio
scale measurement variables respectively. The measurement data were sampled
under one time step Δt = 0.001, total time steps n = 800 and relative noise level
σw = 1.0%. Because νmax(7) = 2.94 was obtained in the correlation dimension
analysis, the state equations consisting of three state variables were searched.

Fig. 2. An LC and FET Circuit

When every state variables are directly measured, the computation time
was 18.5 hours, and the following equation having the best accuracy was derived.

V̇I(t) = −133.3I(t), İ(t) = 60.2VI(t), and
V̇F (t) = 249.0VI(t)VF (t).

Though the values of coefficients are moderately different from the the originals,
the entire shape of the formulae is identical. Next, the measurement of I was
omitted to make I a hidden state variable. The computation time was 24 hours.
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In this case, the following correct formula except the discrepancy of coefficient
values showed up within the solutions having top five accuracies.

V̇I(t) = −26.9I(t), İ(t) = 298.0VI(t), and
V̇F (t) = 250.0VI(t)VF (t).

These results indicate that SCALETRACK has ability to discover state equa-
tions of engineering objects having three dimensional dynamics.

4.4 Discovery of Chaos

The future state of a chaotic process will never be identical with its past state,
and thus the state changes as if it is partially at random. Due to this nature, the
state of the process gradually loses the dependency on its past state in a long
term, and this makes harder to identify the dynamic equations governing the
process. Nevertheless the trajectory of the state evolution is determined by the
current state in the chaotic dynamics. Accordingly, the dynamic equation of the
process can be discovered, if the state of the process is observed in sufficiently
short sampling intervals comparing with the term length in which the state
dependency dies out. Because the maximum term length of the state dependency
is known by τh of Eq.(3) introduced in the aforementioned correlation analysis,
the appropriate sampling interval can be easily known.

Under this consideration, the identification of chaotic dynamics was at-
tempted. The state equation to be discovered is the following Altered Rossler
Chaos.

ẋ1 = −x2 − x3, ẋ2 = x1 + 0.36 ∗ x2, and
ẋ3 = 0.01 ∗ (x1 − 4.5) ∗ (x1 + 1000 ∗ x3 − 4.5).

This has an attractor in a (x1, x2, x3)-phase space as depicted in Figure 3. All
state variables are interval scale, and can be measured through the correspond-
ing interval scale measurement variables respectively. The measurement data

Fig. 3. An Attractor of Altered Rossler Chaos
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were simulated under one time step Δt = 0.001, total time steps n = 1500 and
relative noise level σw = 1.0%. Because νmax(7) = 3.33 was obtained in the
correlation dimension analysis, SCALETRACK searched for state equations
consisting of three state variables. The computation time was 15.0 hours, and
SCALETRACK resulted the following most accurate state equation. This
formula has an identical shape with the original except some discrepancies of
coefficients. This result indicates the high ability of SCALETRACK to discover
the dynamic models of chaotic behaviors reflecting the underlying first principles.

ẋ1 = −x2 − x3, ẋ2 = x1 + 0.33 ∗ x2, and
ẋ3 = 0.064 ∗ (x1 − 6.34) ∗ (x1 + 1002 ∗ x3 − 4.75).

5 Discussion

SCALETRACK is the first discovery system which introduced a state tracking
approach in the search mechanism. In the demonstrations, the discrepancies of
coefficient values are frequently observed. This may be because the particles
and the weights are updated to follow the time series of y(t)s at each time
step in the SIS/RMC filter. This correction derives the robustness of the state
tracking, but reduces the precision of the coefficient values. This may be a reason
why the standard approaches for continuous and nonlinear optimization of the
coefficients such as gradient descent do not perform well in the search. Another
observation is that the candidate state equations top ranked by the accuracy
often have formulae shapes different from the originals. This also may be due to
the robustness of the state tacking against the modeling error in addition to the
existence of many local minima of the accuracy in the nonlinear search space.
Accordingly, the performance improvement of SCALETRACK is expected by
introducing less robust state tracking, and this is a future research topic.

Another remaining issue is the current limitation of the search space. The
search space of SCALETRACK is currently limited to a class of equation for-
mulae called “regime”s specified by Extended Product Theorem. Although this
class captures ample law equation formulae, another class of dynamic equations
called “ensemble”s which are coupled with dimensionless variables are known
not to be covered by this class. Further extension of criteria and algorithm for
the search must be introduced in future while maintaining the tractability of the
computation.

Introducing further valid constraints to narrow down the formulae within
the law equations may enhance the plausibility of the discovered equations while
reducing the search space. One of the candidate constraints is the relational
templates representing conservation and flow of entities and interactions similar
to Bond-Graph approach [14]. Though this type of constraints significantly
contributes to the plausibility and the search space reduction in some domains
including physics, they may not be applied to the wider domains such as economy
and psychology where these templates do not hold, and thus the discovery sys-
tems become domain dependent. Introduction of new search constraints must be
explored by carefully considering both the domain dependency and the efficiency.
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6 Conclusion

SCALETRACK achieved three advantages which has not been addressed in
any past work of mathematics, physics and engineering not limited to scientific
discovery. The first is the discovery of first principle based simultaneous time
differential equations without using detailed domain knowledge. The second is
the discovery of hidden state variables. The third is the discovery of chaotic
dynamics. These advantages are essentially important in many scientific and
engineering fields due to the wide existence of such dynamics in nature.
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Abstract. In this paper, the semantic relationships between a predicate and its 
arguments in terms of semantic roles are employed to improve lexical-based 
named entity recognition (NER) in the molecular biology domain. The semantic 
roles were realized in various sets of syntactic features used by a machine learn-
ing model to explore what should be the efficient way in allowing this knowl-
edge to provide the highest positive effect on the NER. The empirical results 
show that the best feature set consists of predicate’s surface form, predicate’s 
lemma, voice, and the united feature of subject-object head’s lemma and transi-
tive-intransitive sense. The performance improvement from using these features 
indicates the advantage of the predicate-argument semantic knowledge on NER. 
There are still rooms to enhance NER by using this semantic knowledge (e.g. to 
employ other semantic roles besides agent and theme and to extend the rules for 
efficient identification of an argument’s boundary). 

1   Introduction 

Named entity recognition (NER) is the task aiming to identify and categorize entities 
appearing in text. According to the Message Understanding Conferences (MUCs) [1], 
it is the lowest level in the task hierarchy of Information Extraction (IE) system. The 
entities to be recognized in the newswire domain include persons, organizations, loca-
tions, email addresses, and so on, whereas in the molecular biology domain, molecu-
lar entities such as genes, proteins, small molecules, chemical molecules, tissues, etc. 
need to be recognized. Not only is NER an important component of molecular biol-
ogy IE to reach the goal of discovering biological pathways, but it is also beneficial to 
other applications of biological text mining. For instance, document retrieval where a 
relevant subset of documents are obtained [2] and document clustering where similar 
documents are grouped together [3]. For example, after NER has been used to process 
the sentence “Cytokines bind to hematopoietin receptors and activate JAK kinases”, 
the fact that Cytokines, hematopoietin receptors and JAK kinases are referred to three 
different types of protein would be extracted. The different focus among researches 
gives variety to the granularity of concept classes to be distinguished. For example, to 
work with the GENIA ontology, 36 biologically nominal categories needed to be 
grouped [4]. 

Although, NER in the molecular biology domain has received wide scale attention 
by many researchers for nearly a decade, the overall performance is still far from 
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human’s capability [5-12]. As can be seen from the most recently shared-task of NER 
in the molecular biology domain (JNLPBA-2004), the best performance is only 72.6 
for F-measure [9]. Contrastingly, the accuracy in general news-based NER is about 
96% in MUC-6 [1] which is at near human levels of performance. This lag should 
mainly be due to the lack of naming convention1 which leads to several sources of 
difficulties for NER. This work aims to handle two main difficulties as follows. First, 
the difficulty results from terminological variations i.e. molecular names may be 
formed by using a standard English word (e.g. “light”, “map”, “complement”) or 
using an amino acid sequence (e.g. “amino acids [aa] 1 to 25”) or using alpha nu-
meric (e.g. “9-cis retinoic acid”). Second, the difficulty is from polysemy which is the 
ambiguity of a name that can refer to two or more different entities. Polysemy is clas-
sified into two cases: homonymy and systematic polysemy. Homonymy relates to the 
ambiguity of a name referring to unrelated meanings or objects (e.g. the term “cat” 
can refer to “choline acetyltransferase protein” and “catalase gene”). Systematic 
polysemy relates to the ambiguity of a name referring to the objects which systemati-
cally relate to each other (e.g. the term “BCL-6” can refer to “B-cell CLL/lymphoma 6 
gene” and its protein product). These difficulties are expected to increase when we 
scale-up NER from an abstract to full text. Thus, most molecular NER systems now 
take place on MEDLINE abstracts. 

In this paper, we argue that to overcome the limits in what can be achieved by ex-
isting NER systems traditionally based on lexical features and context features de-
rived from neighboring words [7, 10-12], deeper knowledge such a predicate-
argument relationship should be taken into account. This hypothesis is motivated by 
the basic observation that events are realized as predicates2 and their participating 
named entities (NEs) as the predicates’ arguments. The semantic role each argument 
plays in the event should impose type restrictions on the entity within the argument. 
The investigation of how to efficiently transform the knowledge of predicate-
argument relations into features of training data for our NER system using a machine 
learning approach is the main focus in this work.  

The paper is organized as follows. Section 2 discusses how predicate-argument re-
lation is useful to NER and how other researchers have taken efforts to apply this 
knowledge. Section 3 outlines the transformation of predicate-argument relations into 
our machine learning features. Section 4 shows experimental results and the analysis 
on the results. Section 5 discusses concerning impediments to high performance im-
provement. Finally, Section 6 summarizes the conclusion. 

2   Predicate-Argument Relation and Biological NER 

A frame of predicate-argument structure (PAS) represents a set of semantic relation-
ships in terms of the specified role each argument plays in the event indicated by a 

                                                           
1  Some efforts have been shown to standardize in naming biological entity (e.g. Guidelines of 

Human Gene Nomenclature, Drosophila Gene Nomenclature, etc., however many biologists 
often do not follow the recommended nomenclature. 

2  Hence, a predicate refers to a verb which can exist in a sentence in its verbal form (e.g. in-
finitive – to activate, present simple – activate or activates, past simple – activated, present 
or past participial – activating or activated), or its nominal form (e.g. activation). 
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predicate. For example, the predicate-argument frame of the predicate recognize 
which is used to express the recognition event in the molecular biology domain would 
be as Fig. 1(a). Thus, deeper knowledge than surface syntax of sentence 1 and 2 can 
be obtained as shown in Fig. 1(b). That is the occurrence of a recognition event would 
be participated by two participants (i.e. Arg0 and Arg1). The first argument (Arg0) 
has a relationship to the predicate recognize as a recognizer or agent of the event and 
the second argument (Arg1) plays role as thing being identified or theme in the event. 
Sentence 1 shows the usage of predicate recognize in active voice. The sentence’s 
surface subject which is “transcriptional activators” plays role as agent and its sur-
face object “common consensus motif” plays role as theme. On the contrary, a surface 
subject of sentence 2 which is “DNA binding sites” plays role as theme and a surface 
object “Ah receptor” plays role as agent as the predicate recognize is used in passive 
voice. 

Recognition
Event

( predicate
recognition )

Arg 0 Arg 1
Role: recognizer

or agent
Role: thing being

identified or theme

a) The predicate-argument frame for predicate recognize

Sentence 1 ...these [transcriptional activators]PROTEIN recognize a [common
                  consensus motif]DNA ...

            Arg0: transcription activators
            Arg1: common consensus motif

Sentence 2 [DNA binding sites]DNA are recognized by the [Ah receptor]PROTEIN.
            Arg0: Ah receptor
            Arg1: DNA binding sites

b) Instances of arguments in example sentences for predicate recognize
 

Fig. 1. The semantic relationships between predicate recognize and its argument 

As can be noticed from Fig. 1, the argument playing role as agent belongs to class 
PROTEIN in both sentences. Similarly, the argument with semantic roles of theme 
belongs to class DNA. This restriction of NE-types corresponding to arguments’ se-
mantic roles is a key concept to employ semantic relations in PAS for enhancing 
molecular NER system.3 As the NER system used in this work is based on Support 
Vector Machines (SVMs) [13], this predicate-argument relationship knowledge is 
required in the form of machine learning features. 

Recently, due to the ability of PAS to straightforwardly represent the biological 
event, this knowledge has been used mostly as a reference frame to extract instances 
of biological events from text, e.g. the protein-protein interaction event [14-17]. To 
our knowledge, two previous works have shown the efforts to employ this knowledge 

                                                           
3  The empirical evidence observed on GENIA V3.02 corpus (http://www-tsujii.is.s.u-

tokyo.ac.jp/~genia/topics/Corpus/) shows that the frequency of occurrence for PROTEIN to 
be agent in an recognition event is about 53% and for DNA to be theme is about 26%. 
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for NER in the molecular biology domain [6, 8]. In the first approach [6], the verb 
complementation patterns between each verb and the arguments which their concept 
classes are known have been automatically learnt by using an iterative reasoning 
process based on a partial order relation induced by the domain-specific ontology. 
Then, an unknown class term will be classified to the potential class based on the 
similarity measure between this new term’s verb complementation patterns and the 
pre-analyzed known class term. This method still gets low performance to classify 
terms related to the small set of verbs that were studied (i.e. F-measure = 40.68%, 
26.28%, 21.85%, and 19.69% for bind, inhibit, interact, and mediate respectively). In 
the second approach [8], a set of verbs, such as inhibit, express, bind, and activate has 
been set as binary features in HMM-based model. Unexpectedly, the overall F-
measure has decreased by 1.8. One possible explanation for this result is that it could 
be due to the impractical way to represent predicate-argument relations in the model. 
The verb features represented only the knowledge that the verb exists in the context of 
the term or not. 

In this paper, we explore an efficient way to exploit the semantic relations between 
predicate and its argument for improving SVM-based NER system. 

3   Our Method 

Our SVM-based NER system develops from the learning model of Takeuchi and 
Collier [7] in which the Tiny SVM4 with the multi-class strategy of one-against-one 
was used. The context window was set to 1± providing features for the previous word, 
current word, and next word. Also, the two previous class assignments were taken 
into the model. The training data used in our system is in a form of a column format-
ted table of features with the NE classes provided in IOB2 format5. We form 6 sets of 
features (i.e. the Model 1 – Model 6) to be trained by SVMs. Model 1 contains only 
lexical-based features proposed in earlier studies to reduce known problems of ambi-
guity for term recognition. This model is used as a base model to be compared with 
the Model 2-6 in which predicate-argument related features are included in addition to 
lexical-based features. Thus, the significance of the semantic relationships represented 
in PAS to NER system can be evaluated. In order to evaluate the efficiency of differ-
ent ways to convert this semantic knowledge into features of input data, Model 3, 4, 5, 
and 6 will be compared to the Model 2. How each feature set is derived and what 
thought is underlying the forming of it will be explained in section 3.3. 

3.1   Data Set 

The GENIA corpus V3.02, the largest annotated corpus in the molecular biology 
domain available to public, is used as our data set of the NE tagged text. As the predi-
cate-argument relationship is a specific characteristic for each individual predicate, 
we decide to explore the influences of features derived from the knowledge of predi-
cate-argument relation separately for each predicate. In this paper, we mainly focus to 

                                                           
4  The Tiny SVM package is available from http://chasen.org/~taku/software/TinySVM/.  
5  IOB2 format is a standard format for word-chunk. The tag “O” is given to words outside a 

chunk, “B-k” to the first word in a chunk of type k, and “I-k” to the remaining words. 
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a predicate in verbal form, thus a collection for each predicate will be retrieved from 
GENIA by using the criteria that the relevant sentences must contain a focus predicate 
in verbal form at least once. With regard to the classes of NE used in evaluation, we 
follow the JNLPBA-2004 shared task [9] to use the conflated set of classes consisting 
of 5 classes: protein, DNA, RNA, cell line, and cell type. 

3.2   Selection of Predicates to Be Explored 

We started selecting predicates by gathering predicates used in earlier works to cap-
ture biological events [14-16] and predicates used in our previous work to construct 
the PASBio6 resource [18]. Most predicates from the 44 predicates which have been 
gathered are found rarely in the GENIA corpus. In order to avoid having too small set 
of training data, we filtered out predicates containing less than 100 examples7. This 
filtering process results in a set of 19 predicates in which bind has a biggest and alter 
has a smallest volumes of training data, i.e. 825 and 102 examples respectively.  

Table 1. The proportion of agent and theme arguments to 5 classes of NEs 

Group 1 Group 2 Group 3 
Agent and theme with 

High NE% 
Agent and Theme with  

Low NE% 
Only Agent or Theme 

with High NE% 

 
Predicate 

encode recognize block lead regulate associate 
Total Agent 228 113 209 241 381 39 
Protein% 03.51 53.10 28.71 06.64 54.33 41.03 
DNA% 47.81 00.00 02.39 00.41 08.92 00.00 
RNA% 04.82 00.00 00.00 00.00 00.00 00.00 
Cell line% 00.44 07.08 00.48 01.24 00.00 05.13 
Cell type% 00.44 14.16 00.48 00.83 01.05 05.13 
Total NE% 57.02 74.34 32.06 09.13 64.30 51.29 A

ge
nt

 A
rg

um
en

t 

Non-NE% 42.98 25.66 67.94 90.87 35.70 48.71 
Total Theme 234 94 234 296 482 614 
Protein% 66.67 25.53 11.54 02.36 10.17 16.61 
DNA% 00.85 25.53 01.71 00.68 10.17 05.05 
RNA% 00.85 00.00 00.85 00.00 00.21 00.00 
Cell line% 00.00 00.00 00.00 00.00 00.41 00.49 
Cell type% 00.00 00.00 01.28 00.34 00.41 01.95 
Total NE% 68.37 51.06 15.38 03.38 21.37 24.10 T

he
m

e 
A

rg
um

en
t 

Non-NE% 31.63 48.94 84.62 96.62 78.63 75.90 

 
Due to our intuition that the proportion of belonging to a NE class of an agent ar-

gument and a theme argument8 should be a key impact to the performance of NER 
system when predicate-argument related features are applied, we selected 6 predicates 

                                                           
6  PASBio resource contains frames of predicate-argument structure analyzed from the litera-

tures in MB domain. Available online at http://research.nii.ac.jp/~collier/projects/PASBio/.  
7  The number of examples is a number of clauses containing a particular predicate. In a sen-

tence, it is possible to have more than one clause related to the predicate in focus.  
8  The agent argument refers to the argument which has syntactic role as subject in the case of 

active voice and refers to the argument having syntactic role as object introduced by the 
preposition “by” in the case of passive voice. The theme argument refers to the argument 
which has syntactic role as object in the case of active voice and refers to the argument hav-
ing syntactic role as subject in the case of passive voice. 
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from the total 19 predicates to be the representative predicates of the 3 groups as fol-
lows. First, the predicates encode and recognize were selected to be the representa-
tives for a group of predicates having arguments both agent and theme with higher 
possibility to belong to a NE class than non-NE class. Second, the predicates block 
and lead were selected for a group of predicates having arguments both agent and 
theme with lower possibility to belong to a NE class than non-NE class. Third, the 
predicates regulate and associate were selected for a group of predicate having argu-
ments either agent or theme with higher possibility to belong to a NE class than non-
NE. Table 1 shows the proportion of the arguments of these representative predicates 
to 5 classes of NEs. 

Moreover, if the number of examples for predicates from each group is not in bal-
ance, it could be difficult to compare their results. The intention to balance the num-
ber of examples of predicates to be investigated had been applied for selecting these 
representative predicates as well. More precisely, these 6 predicates were selected 
because they also conform to the condition that they have the numbers of examples 
nearly the average value for the total 19 predicates. 

3.3   Derivation of Feature Sets 

The Conexor FDG parser [19] which is widely used and is considered to be a state-of-
the-art commercial parser is used to parse our NE tagged text. In addition to each 
word’s morphological information (i.e. surface form and lemma form) and lexical 
category (i.e. part-of-speech), this parser also provides functional dependency rela-
tions between words which is one of a key syntactic information for acquiring seman-
tic relationships between a predicate and its arguments. These parsing results are used 
to derive a set of features used in the Model 1-6 as follows. 

Model 1. This model composes of 6 features widely recognized as important for NER 
task. These features include surface word, lemma form, head word of noun phrase, 
part-of-speech, orthographic feature, and phrase-chunk. This model is named lexical-
based model as it is based mainly on lexical information. As stated before, this model 
is used as a base model for evaluating the importance of the semantic knowledge 
represented in PAS to NER system. 

Model 2. This model contains all lexical-based features used in the Model 1, with 
additional set of features constituted from syntactic information to represent argu-
ments’ semantic roles). These supplementary features consist of predicate surface 
form, predicate lemma, voice and surface syntactic role. The voice feature is used to 
distinguish between active and passive voice of the predicate. The tag “ACT” repre-
sents active voice and “PAS” represents passive voice. The surface syntactic role 
feature describes syntactic functions (i.e. surface subject or surface object) of the 
head word of a noun-phrase which is bound as the predicate’s argument. Tags used 
are “SSUBJ” for surface subject and “SOBJ” for surface object which is found as 
direct object. Moreover, the tag “PCOMP” used for surface object which is found as a 
prepositional complement. For instance, from sentences “A binds B.” and “A binds to 
B.”, “A” will be tagged with “SSUBJ” in both sentences but “B” will be tagged with 
“SOBJ” for the former sentence and “PCOMP” for the latter. The procedures used to 
identify the argument’s boundary are illustrated in section 3.4. The semantic roles of 
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arguments can be determined partially from a combination of the 4 additional features 
used in this model. Only if both surface subject and surface object co-occur with a 
target verb, the argument with syntactic function as subject and the argument with  
syntactic function as object will be confidently concluded that they semantically plays 
role as agent and theme respectively in case of active voice and vice versa in case of 
passive voice. The correct determination of semantic role would lead to the correct 
NE classification; underlying our hypothesis that semantic relationships in PAS (ar-
guments’ semantic roles) for each predicate confine classes of NEs participating the 
event indicated by the predicate. However, as the arguments with the same semantic 
role possibly belong to different NE classes, the lexical-based features and semantic 
relationships are required altogether to solve this ambiguity. This model is a PAS-
based model which will be extended to the Model 3-6 by adding features of several 
kinds of syntactic information in order to decrease the ambiguity in determining se-
mantic roles. 

Model 3. Path feature representing the syntactic path from the subject argument to the 
related predicate and from the related predicate to the object argument is added to all 
features used in Model 2. The path is derived from the flat structure of dependency 
tree resulting from the parser. For example, the path between the subject constituent 
and the predicate is “NP_VP_ADVP_VP” and the path between the object constituent 
and the predicate is “VP_PP_NP” for the sentence “[Increased cytokine secretion]NP  
[was]VP  [specifically]ADVP [inhibited]VP [by]PP [G1]NP”.  

Model 4. A feature representing a pair of subject and object’s heads is added to the 
Model 2 instead of path feature. This feature is designed following the intuition that a 
NE class of an agent should restrict a possible type of a NE playing role as theme and 
vice versa. The using of a subject-object head pair in lemma form would help to 
reduce data sparseness problem compared to the using in surface form. For the 
sentence in Fig. 2, the subject-object head feature will be “compound_complex”. 

Model 5. This model augments the Model 2 with a feature representing if a predicate 
is used in transitive or intransitive sense. For each surface subject’s constituent, a tag 
“fobj” is set if the surface object is found in the current clause. A tag “O” is set if the 
surface object is not found. However, this feature helps just in part to correctly 
determine transitive or intransitive sense implicit in the usage of a predicate. It is due 
to the object argument can be omit in a clause although a predicate is used in 
transitive sense. For instance, the predicate “eat” is used in transitive sense without 
mentioning an object in the sentence “Yesterday, John ate at ABC restaurant”. 

Model 6. This model is considered as a joining of the Model 4 and the Model 5. A 
pair of subject and object’s heads is used to be assigned to a column of transitive-
intransitive feature instead of “fobj” when the object is found in the clause. 

The lexical-based features used in Model 1 will be given to every word or token in 
a sentence. Contrastingly, the PAS-related features proposed in Model 2-6 will be 
assigned to only the constituents bound as the arguments having syntactic function as 
surface subject and surface object of the focus predicate. How to identify the bound-
ary of these constituents is as follows. 
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3.4   Sub-Structure Recognition 

The sub-structure recognition is the process to identify the tokens that constitute ar-
guments of predicates. In our study, we have focused mainly on a predicate in verbal 
form but not nominal form. Therefore, for a predicate such as activate, the surface 
forms of this predicate to be analyzed include activate, activates, activated, and acti-
vating¸ but not activation. Furthermore, only an argument corresponding to the syn-
tactic relation of either subject or object is bound in this study. At present, there is a 
lack of practical semantic role labeling systems to identify arguments of a predicate, 
especially for the molecular biology domain. Thus, this study which is to investigate 
the constitution of semantic relationship between predicate and its arguments simpli-
fies its scope to arguments as grammatical subject or object. 

 C. 1 C. 2 C. 3 C. 4 C. 5 C. 6 C. 7  

 Word 
No. 

Surface 
Form 

Lemma 
Form 

Syntactic 
Relation 

Functional 
Tag 

Surface 
Syntac-
tic 

Part-of- 
Speech 

 

 1 Both Both det:>2 @DN> %>N DET -  

 2 compounds compound subj:>3 @SUBJ %NH N 
NOM_PL 

Subject 

 3 altered Altered main:>0 @+FMAINV %VA V PAST Verb 
 4 the The det:>7 @DN> %>N DET -  

 5 NFAT-1 NFAT-1 attr:>6 @A> %>N N 
NOM_SG 

Object 

 6 transcrip-
tional 

transcrip-
tional attr:>7 @A> %>N A ABS  

 7 complex Complex obj:>3 @OBJ %NH A ABS  

 8 , ,      
 9 causing Causing ha:>3 @-FMAINV %VA V ING  

 10 its Its attr:>11 @A> %>N 
PRON 
GEN_SG
3 

 

 11 retarded retarded attr:>12 @A> %>N A ABS  
 12 mobility Mobility obj:>9 @OBJ %NH N 

NOM_SG 
 

 13 on On loc:>9 @ADVL %EH PREP -  
 14 gels Gel pcomp:>13 @<P %NH N 

NOM_PL 
 

 15 . .      

Fig. 2. Boundaries of surface subject and object of the verb alter recognized by the system 
(thick squares) using the FDG parsing result of a sentence “Both compounds altered the NFAT-
1 transcriptional complex, causing its retarded mobility on gels” 

The algorithm used to find a subject constituent and an object constituent of each 
predicate is based mainly on the functional dependency relations between words ob-
tained from the parser as shown in Fig. 2. It comprises of several steps as follows. 
First, find a position of target predicate which must be in a verbal form. Second, in-
terpret the verb’s voice by checking at the column Surface Syntactic (Fig. 2, C. 6) of 
the verb token (Word No. 3). If it is %VA, the verb is an active verb. On the other 
hand, if it is %VP, the verb is a passive verb. Third, find a token functioning as a 
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subject or object of the target verb by traversing through syntactic relations given by 
the parser (Fig. 2, C. 4). Basically, the system will traverse up until subj:># is found 
in case of subject and traverse down until obj:># is found in case of object.9 From 
Fig. 2, the token compounds is found to have subject relation to the verb alter and the 
token complex is found to be an object. Subsequent to founding the head of subject or 
object, the full boundary of a subject or an object is identified by propagating to the 
premodifiers of a noun which is a subject head or an object head. These premodifiers 
will have @A> at the column Functional Tag in parsing data (Fig. 2, C. 5). All modi-
fiers except determiners are included in surface subject or surface object boundary as 
shown in Fig. 2 that NFAT-1 and transcriptional are included but the is not included 
in the boundary of surface object containing complex as the object head. A determiner 
is not included into both boundary of object and subject because any determiners 
never ever are parts of the biological terms. This rule not to include a determiner is 
also used by Rindflesch and colleagues to extract binding relationships [17]. 

To look for subj:>#  or obj:>#, at the column Syntactic Relation (Fig. 2, C. 4), to 
get a subject head or an object head is practical for a simple clause. In some cases, a 
token holding subj:># or obj:># is not found as a subject head or an object head has a 
direct dependency relation to another token but not to a target verb. The more com-
plex criterion needs to be processed to recover the relations between a subject and an 
object to the target verb. These cases are as follows: 1) an auxiliary verb (e.g. be, do, 
have, etc.) or a verb phrase functioning similar to auxiliary verb (e.g. play a role in, is 
required to, have been shown to, etc.) precedes a target verb, 2) a target verb shares its 
subject or object with other verbs, 3) a target verb is a main verb in a subordinate 
clause of which the relative pronoun presents as the subject, and 4) an object of a 
target verb is introduced by a preposition following a target verb10. 

4   Experimental Results and Analysis 

All results reported here are given as F1-scores calculated using 10-fold cross valida-
tion. F1-score is defined as F1= (2PR)/(P+R) where P, called as Precision, is the 
ratio of the number of correctly found NE chunks to the number of found NE chunks 
and R, called as Recall, is the ratio of the number of correctly found NE chunks to the 
number of true NE chunks. 

The results of 6 predicates using the feature sets from the Models 1-6 are shown in 
Table 2. In each column, the F1-score of a corresponding predicate is given for Model 
1 (Lexical-based model), Model 2 (PAS-related model), Model 3 (the Model 2 added 
with Path feature), Model 4 (the Model 2 added with Pair of subject and object’s 
heads feature), Model 5 (the Model 2 added with Transitive/Intransitive feature) and 
the Model 6 (the Model 4 is embodied into the Model 5). For each predicate, the 
higher F1-scores from the models which outperform the Model 1 are shown in bold 
number. The models with bold number indicate the positive effect of PAS-related 
features to NER. Moreover, if the F1-scores in any models among Models 3-6 are 

                                                           
9  Hence, the symbol # refers to the word number of the target verb. 
10  Due to the space limitation, the details of the extended criterion for these complicated cases 

to identify the boundaries of subject and object arguments cannot be explained here. 
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higher than in Model 2, the scores will be highlighted with gray background. This 
helps to notice which PAS-related feature in addition to features used in PAS-based 
model (Model 2) has capability to increase positive effect of semantic relations be-
tween predicate and its arguments. 

Table 2. F1-scores of the 6 representative predicates trained with features in Models 1-6 

Group 1 Group 2 Group 3 
Agent and Theme with 

High NE% 
Agent and Theme with 

Low NE% 
Only Agent or Theme 

with High NE% 
       Predicates 
 
Model encode 

(265) 
recognize 

(121) 
block 
(270) 

lead 
(288) 

regulate 
(525) 

associate 
(377) 

Model 1 (Lexical-based) 56.60 47.24 51.19 57.01 61.87 52.09 
Model 2 (PAS-based) 57.56 49.39 51.47 57.40 60.48 51.48 
Model 3 (Path) 58.38 48.47 52.23 56.70 60.13 51.29 
Model 4 (Head Pair) 57.16 49.54 51.85 57.12 60.72 50.43 
Model 5 (Trans/Intrans) 57.69 49.16 52.02 57.53 60.01 51.40 
Model 6 (M4+M5) 57.64 49.39 51.95 57.49 60.37 50.97 

As can be observed from Table 2, the simple representation of PAS-related knowl-
edge such in Model 2 improve the performance for all predicates except the predicates 
regulate and associate which have only agent or theme argument with higher possi-
bility to belong to a NE class than non-NE. Moreover, these Group 3’s predicates do 
not show any improvement in other models using PAS-related features (Model 3-6) 
compared to the lexical-based model (Model 1). Therefore, they will not be covered 
in the following discussion of how the extra PAS-related features used in Models 3-6 
help to improve the performance of PAS-based features used in Model 2. 

With regard to Path feature (Model 3), the performance is improved for only the 
model training on data set of predicate encode and block. Empirically, one reason we 
found for this is the surface subject and surface object of these two predicates are 
located close to the predicate in most of the cases. For example, the path patterns 
between arguments and the predicate encode of “…[proteins]NP [encoded]VP [by]ADVP 
[these two latter genes]NP…” are “NP_VP” for the subject argument and 
“VP_ADVP_NP” for the object argument. Due to short path patterns, so the path 
patterns can be generalized throughout the data sets. On the contrary, long path pat-
terns are mostly found in the samples of other predicates (i.e. recognize and lead). For 
example, from the sentence “[Control peptides]NP [corresponding]VP [to]ADVP [the 
normal pml]NP [and]O [RAR alpha proteins]NP [were]VP [not]ADVP [recognized]VP.”, the 
path from the subject argument “Control peptides” to the predicate recognize is 
“NP_VP_ADVP_NP_O_NP_VP_ADVP_VP”.  This long path pattern would causes 
data sparseness problems for the path feature. 

The next feature, the Head Pair feature, does not show its usefulness for predicates 
encode and lead. The reason for the predicate lead is that its arguments both as agent 
and theme are prone to be non-NE rather than to belong to NE class, thus the pair of 
its arguments’ head words can have many variants. It causes this feature ineffective to 
constrain NE functioning as subject with NE functioning as object and vice versa. In 
case of predicate encode, although both arguments of it are prone to belong to NE 
classes rather than to be non-NE, the Head Pair feature does not show its positive 
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effect. As the predicate encode used in the molecular biology domain has its specific 
meaning to describe relationships between genes and gene products, the head pair of 
arguments for this predicate is mostly found as gene_protein. Therefore, this feature 
contains too general information to be helpful for encode.  

In case of Transitive/Intransitive feature, we believe that this feature should be use-
ful to improve performances of all predicates. This feature is important to correctly 
interpret semantic role of an argument. For instance, the subject in the sentence “John 
broke the window” has the semantic role as agent but the subject in the sentence “The 
window broke” has semantic role as theme. These two sentences illustrate that to 
know only syntactic function as subject or object cannot have a correct determination 
on semantic role. The difference between these two sentences is that the predicate 
break is used in transitive sense in the former sentence and intransitive sense in the 
latter. Therefore, to give information stating if the object is found in a sentence or not 
would help to some extent to imply sense in which the predicate is used. The per-
formance of the model having this feature (Model 5) should outperform the PAS-
based model (Model 2). However, the performance for recognize has decreased when 
this feature is applied. From our analysis, the problem originates from parsing error of 
failing to provide syntactic relations between words. For instance, the FDG parser 
fails to give the constituent “DNA binding sites” syntactic relation as the object of 
“recognizes” in the sentence “The Ah receptor recognizes DNA binding sites for the 
B cell transcription factor” This causes subsequent problem to the Transi-
tive/Intransitive feature, i.e. this feature is set to “O” to represent that the predicate 
recognize is used in intransitive sense, whereas it does not. This incomplete parsing 
result accounts for decreasing F1-score of recognize when using the Transi-
tive/Intransitive feature (Model 5) compared to when not using it (Model 2). 

In order to evaluate the contribution of PAS-related features from different models, 
the average F1-score from each PAS-related model (Model 2-6) is compared to the 
average F1-score of the lexical-based model (Model 1). Without considering the mix 
model (Model 6), the results show that the Transitive/Intransitive feature (Model 5) 
gives the highest contribution as expected. Some more improvement can be obtained 
in Model 6 when the Head Pair feature (Model 4) is embedded in the Transi-
tive/Intransitive feature (Model 5). Thus far, the Model 6 is considered to be the best 
model in this work with the improvement, on average, in F1-score of 1.11 as shown in 
Table 3. Furthermore, each predicate reflects the benefit from using PAS-related fea-
tures in different levels of improvement, listed in descending order as recognize, en-
code, block, and lead.  

Table 3. The improvement in F1-scores of Model 6 (the best of PAS-related model) compared 
to Model 1 (the lexical-based model) 

Predicates Number of Exam-
ples 

Model 1 (Lexical-based) Model 6 (M4+ 
M5) 

Improvement 

Encode 265 56.60 57.64 1.04 
Recognize 121 47.24 49.39 2.15 
block 270 51.19 51.95 0.76 
lead 288 57.01 57.49 0.48 

Average of Improvement 1.11 
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5   Discussions 

In Table 3, the experimental results have shown that the PAS-related features make 
only small progress in NER. However, it is not because semantic relationship between 
predicate and its argument is not an important knowledge to improve lexical-based 
NER. The incorrect identification of an argument boundary is an impediment for the 
system to acquire the actual performance improvement. This impediment is mainly 
caused by a failing of parser to provide syntactic relation information between tokens. 
One of its examples has already been shown in the previous section to explain why 
the Transitive/Intransitive feature degrades the performance of recognize. To investi-
gate the contribution of PAS-related features without the impact from parsing error, 
the arguments agent and theme are identified manually on training examples of predi-
cates recognize and encode (100 examples for each predicate). These two predicates 
are selected for this experiment because they obtain higher performance improvement 
than other predicates. The 2 sets of training data are trained by using features in 
Model 1 and Model 6 to calculate the performance improvement. The predicate en-
code obtains performance improvement of 2.40 from training on only 100 manual-
examples (about 38% of parsing-examples) 11 . This performance improvement is 
about 2 times of what obtained from 265 parsing-examples (Table 3). In case of 
predicate recognize, from training on 100 manual-examples, the performance im-
provement increase to 6.12 which is about 3 times of what is obtained from 121 pars-
ing-examples. The size of manual-examples of recognize is nearly equal to the pars-
ing-examples’ size, thus it can be implied that the parsing error can decrease the per-
formance improvement at least 3 times. 

In addition to the parsing error, the more complex rule to identify an argument 
boundary is required for some specific cases. For example, the constituent “multiple 
isotypes” in the sentence “T cells express multiple isotypes of protein kinase C” will 
be bounded to be theme argument of predicate express after the general algorithm for 
sub-structure recognition is applied. However, the real argument playing semantic 
role as theme which is related to NE-type protein is the constituent “protein kinase C”. 
Therefore, a set of rules to distinguish between a quantifier (e.g. “multiple isotypes”) 
and a real argument (e.g. “protein kinase C”) is required. Moreover, a rule set to in-
clude or not to include an entity’s abbreviation name (always mentioned in a bracket) 
in an argument boundary is required as well. For instance, in GENIA corpus V3.02 
the constituent “cytokine receptor gamma chain (gamma c) gene” of a sentence 
“…cytokine receptor gamma (gamma c) gene encodes a component of …” is hand-
annotated as one named entity, but the constituent “Sterol regulatory element (SRE)” 
of a sentence “….Sterol regulatory element (SRE) has been recognized …” is sepa-
rated into two named entities (i.e. “Sterol regulatory element” and “SRE”). 

In order to allow semantic knowledge of predicate-argument relationship covering 
semantic roles of agent and theme to express its actual contribution, the sources of 
errors in identifying an argument boundary as mentioned above must be handled. 

                                                           
11  Hence, the training examples are called manual-examples when argument boundaries are 

identified manually and are called parsing-examples when argument boundaries are identi-
fied automatically based on syntactic relation information given by the parser. 
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6   Conclusions 

In this work, we have shown that the deeper knowledge of semantic relationship be-
tween a predicate and its argument is benefit for NER. The choice of syntactic fea-
tures to represent the PAS semantic knowledge is the key issue underlying the effi-
cient employment of this knowledge. So far, the best set of syntactic features consists 
of features predicate’s surface form, predicate’s lemma, voice, and the united feature 
of subject-object head’s lemma and transitive-intransitive sense. The highest im-
provement is found from applying these features to the training examples of predicate 
recognize. Without parsing error which is one of the problems that can impede the 
contribution of the predicate-argument semantic knowledge to NER system, the high-
est improvement for recognize can reach to 6.12 F1-score. 

Besides dealing with an argument’s boundary identification discussed in this work, 
there are still rooms to enhance NER by using this PAS knowledge such as employing 
syntactic features to represent other semantic roles in addition to agent and theme. 
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Abstract. Most technical and scientific terms are comprised of complex, multi-
word noun phrases but certainly not all noun phrases are technical or scientific
terms. The distinction of specific terminology from common non-specific noun
phrases can be based on the observation that terms reveal a much lesser degree
of distributional variation than non-specific noun phrases. We formalize the lim-
ited paradigmatic modifiability of terms and, subsequently, test the corresponding
algorithm on bigram, trigram and quadgram noun phrases extracted from a 104-
million-word biomedical text corpus. Using an already existing and community-
wide curated biomedical terminology as an evaluation gold standard, we show
that our algorithm significantly outperforms standard term identification mea-
sures and, therefore, qualifies as a high-performant building block for any termi-
nology identification system.

1 Introduction

With proliferating volumes of medical and biological text available, the need to extract
and manage domain-specific terminologies has become increasingly relevant in the re-
cent years. Most available terminological dictionaries, however, are still far from being
complete, and what’s worse, a constant stream of new terms enters via the ever-growing
biomedical literature. Naturally, the costly and time-consuming nature of manually
identifying new terminology from text calls for procedures which can automatically
assist database curators in the task of assembling, updating and maintaining domain-
specific controlled vocabularies. Whereas the recognition of single-word terms usually
does not pose any particular challenges, the vast majority of biomedical or any other
domain-specific terms typically consists of multi-word units,1 which are, thus, much
more difficult to recognize and extract. Moreover, although the need to assemble and
extend technical and scientific terminologies is currently most pressing in the biomed-
ical domain, virtually any (sub-)field of human research / expertise in which structured
knowledge needs to be extracted from text collections calls for high-performance ter-
minology identification methods.

1 According to [1], more than 85% of domain-specific terms are multi-word units.

A. Hoffmann, H. Motoda, and T. Scheffer (Eds.): DS 2005, LNAI 3735, pp. 281–293, 2005.
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2 Related Work and Purpose

There have been many studies examining various methods to automatically extract sci-
entific or technical terms from domain-specific corpora, such as from biomedical ones
(see, e.g., [2], [3], [4], [5], [6] and [7]). Typically, approaches to multi-word term extrac-
tion collect term candidates from texts by making use of various degrees of linguistic
filtering (e.g., part-of-speech tagging, phrase chunking etc.), through which candidates
of various linguistic patterns are identified (e.g. noun-noun, adjective-noun-noun com-
binations etc.). These possible choices are then submitted to frequency- or statistical-
based evidence measures (e.g., C-value [8]) which compute weights indicating to what
degree a candidate qualifies as a terminological unit. While term mining, as a whole,
is a complex process involving several other components (e.g., orthographic and mor-
phological normalization, acronym detection, conflation of term variants, term context,
term clustering, etc., see [6]), the measure which assigns a termhood value to a term
candidate is an essential building block of any term identification system.

In multi-word automatic term recognition (ATR) the C-value approach [8, 9], which
aims at improving the extraction of nested terms, has been one of the most widely used
techniques in recent years. Other potential association measures are mutual informa-
tion [10], and the battery of statistical and information-theoretic measures (t-test, log-
likelihood, entropy) which is typically employed for the extraction of general-language
collocations (see [11, 12]). While these measures have their statistical merits in ter-
minology identification, it is interesting to note that they make little use of linguistic
properties associated with terminological units.2 However, such properties have proven
to be helpful in the identification of general-language collocations [13]. Therefore, one
may wonder whether there are linguistic features which may also be beneficial to ATR.
One such feature we have identified is the limited paradigmatic modifiability of terms,
which will be described in detail in Subsection 3.3.

The purpose of our study is to present a novel term recognition measure which
directly incorporates this linguistic criterion, and in evaluating it against some of the
standard procedures, we show that it substantially outperforms them on the task of term
extraction from the biomedical literature.

3 Methods and Experiments

3.1 Construction and Statistics of the Training Set

We collected a biomedical training corpus of approximately 513,000 MEDLINE ab-
stracts using the following MESH-terms query: transcription factors, blood cells and
human.3 We then annotated this 104-million-word corpus with the GENIA part-of-

2 One notable exception is the C-value method which incorporates a term’s likelihood of being
nested in other multi-word units.

3 MEDLINE is a large biomedical bibliographic database (see http://www.ncbi.
nlm.nih.gov). For information retrieval purposes, all its abstracts are indexed with a controlled
indexing vocabulary, viz. MESH. Our query is aimed at the molecular biology domain, with
the publication period from 1978 to 2004.
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speech tagger4 and identified noun phrases (NPs) with the YAMCHA-Chunker [14].
In this study, we restricted ourselves to NP recognition (i.e., determining the extension
of a noun phrase but refraining from assigning any internal constituent structure to that
phrase), because the vast majority of technical or scientific terminology (and terms in
general) is contained within noun phrases [15]. We filtered out a number of stop words
(i.e., determiners, pronouns, measure symbols etc.) and also ignored noun phrases with
coordination markers (e.g., and, or etc.).5

Table 1. Frequency distribution for noun phrase term candidate tokens and types for our 104-
million-word MEDLINE text corpus

n-gram cut-off NP term candidates
length tokens types

no 5,920,018 1,055,820
bigrams c ≥ 10 4,185,427 67,308

no 3,110,786 1,655,440
trigrams c ≥ 8 1,053,651 31,017

no 1,686,745 1,356,547
quadgrams c ≥ 6 222,255 10,838

In order to obtain our term candidate sets (see Table 1), we counted the frequency
of occurrence of noun phrases in our training corpus and categorized them according to
their length. For this study, we restricted ourselves to noun phrases of length 2 (word
bigrams), length 3 (word trigrams) and length 4 (word quadgrams). Morphological nor-
malization of term candidates has shown to be beneficial for ATR [9]. We thus normal-
ized the nominal head of each noun phrase (typically the rightmost noun in English)
via the full-form UMLS SPECIALIST LEXICON [16], a large repository of both general-
language and domain-specific (medical) vocabulary. To eliminate noisy low-frequency
data, we set different frequency cut-off thresholds c for the bigram, trigram and
quadgram candidate sets and only considered candidates above these thresholds (see
Table 1).

3.2 Evaluating Terminology Extraction Algorithms

(Domain-specific) terms are usually referred to as the linguistic surface manifestation
of (domain-specific) concepts. Typically, terminology extraction studies evaluate the
goodness of their algorithms by having their ranked output examined by so-called do-
main experts who identify the true positives among the ranked candidates. There are
several problems with such an approach. First, very often only one such expert is con-
sulted and so inter-annotator agreement is not accounted for (e.g. in the studies of [8],

4 http://www-tsujii.is.s.u-tokyo.ac.jp/GENIA/postagger/
5 Of course, terms can also be contained within coordinative structures (e.g. B and T cell). How-

ever, analyzing their inherent ambiguity is a complex syntactic operation, with a comparatively
marginal benefit for ATR [9].
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[4]). Furthermore, what constitutes a relevant term for a particular domain may be rather
difficult to decide – even for domain experts – if all they have in front of them is a list
of candidates without any further context. Thus, rather than relying on direct human
judgement in identifying true positives among a candidate set, a better solution may
be to take already existing terminolgical resources, which have developed over years
and have gone through various modifications and editions by expert committees. In
this sense, the biomedical domain is an ideal test bed for evaluating the goodness of
ATR algorithms because it hosts one of the most extensive and curated terminological
resources, viz. the UMLS METATHESAURUS [17], and thus offers a well-established
source of curated and agreed judgements about what constitutes a biomedical term.

Accordingly, for our purposes of evaluating the quality of different measures in
recognizing multi-word terminology from the biomedical literature, we take every word
bigram, trigram, and quadgram in our candidate sets to be a term (i.e., a true positive)
if it was found in the 2004 UMLS METATHESAURUS.6 For example, the word trigram
“long terminal repeat” is listed as a term in one of the UMLS vocabularies, viz. MESH
[18], whereas “t cell response” is not. Thus, among the 67,308 word bigram candidate
types, 14,650 (21.8%) were identified as true terms; among the 31,017 word trigram
candidate types, the number was 3,590 (11.6%), and for the 10,838 word quadgram
types, 873 (8.1%) were identified as true terms.7

3.3 Paradigmatic Modifiability of Terms

For most standard association measures utilized for terminology extraction, frequency
of occurrence of the term candidates either plays a major role (e.g., C-value) or at least
has a significant impact concerning the degree of termhood assigned (e.g., t-test). How-
ever, frequency of occurrence in a training corpus may be misleading regarding the
decision whether or not a multi-word expression is a term. For example, taking the two
trigram multi-word expressions from the previous subsection, the non-term “t cell re-
sponse” appears 2410 times in our 104-million-word MEDLINE corpus, whereas the
term “long terminal repeat” (= long repeating sequences of DNA) only appears 434
times (see also Tables 2 and 3 below).

The linguistic property around which we built our measure of termhood is the lim-
ited paradigmatic modifiability of multi-word terminological units. For example, a tri-
gram multi-word expression such as “long terminal repeat” contains three word/token
slots in which slot 1 is filled by “long”, slot 2 by “terminal” and slot 3 by “repeat”. The
limited paradigmatic modifiability of such a trigram is now defined by the probability
with which one or more such slots cannot be filled by other tokens, i.e., the tendency
not to let other words appear in particular slots. To arrive at the various combinatory
possibilities that fill these slots, the standard combinatory formula without repetitions

6 We excluded those UMLS source vocabularies that were definitely not deemed relevant for
molecular biology, such as nursing and health care billing codes.

7 As can be seen, not only does the number of candidate types drop with increasing n-gram
length but also the proportion of true terms. In fact, their proportion drops more sharply than
can actually be seen from the above data because the various cut-off thresholds have a leveling
effect.
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Table 2. P -Mod and k-modifiabilities for k = 1 and k = 2 for the trigram term long terminal
repeat

n-gram freq P -Mod (k=1,2)

long terminal repeat 434 0.03
k slots possible selections sel freq modsel

k = 1 k1 terminal repeat 460 0.94
long k2 repeat 448 0.97
long terminal k3 436 0.995

mod1 =0.91

k = 2 k1 k2 repeat 1831 0.23
k1 terminal k3 1062 0.41
long k2 k3 1371 0.32

mod2 =0.03

Table 3. P -Mod and k-modifiabilities for k = 1 and k = 2 for the trigram non-term t cell
response

n-gram freq P -Mod (k=1,2)

t cell response 2410 0.00005
k slots possible selections sel freq modsel

k = 1 k1 cell response 3248 0.74
t k2 response 2665 0.90
t cell k3 27424 0.09

mod1 =0.06

k = 2 k1 k2 response 40143 0.06
k1 cell k3 120056 0.02
t k2 k3 34925 0.07

mod2 =0.00008

can be used. For an n-gram (of size n) to select k slots (i.e., in an unordered selection)
we define:

C(n, k) =
n!

k!(n− k)!
(1)

For example, for n = 3 (a word trigram) and k = 1 and k = 2 slots, there are three
possible selections for each k for “long terminal repeat” and for “t cell response” (see
Tables 2 and 3). Here, k is actually a placeholder for any possible word/token (and its
frequency) which fills this position in the training corpus.

Now, for a particular k (1 ≤ k ≤ n; n = length of n-gram), the frequency of each
possible selection, sel, is determined. The paradigmatic modifiability for a particular
selection sel is then defined by the n-gram’s frequency scaled against the frequency
of sel. As can be seen in Tables 2 and 3, a lower frequency induces a more limited
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paradigmatic modifiability for a particular sel (which is of course expressed as a higher
probability value; see the column labeled modsel in the tables). Thus, with s being the
number of distinct possible selections for a particular k, the k-modifiability, modk , of
an n-gram can be derived as follows:

modk(n-gram) :=
s∏

i=1

f(n-gram)
f(seli, n-gram)

(2)

Then, the paradigmatic modifiability, P -Mod, of an n-gram is the product of all its
k-modifiabilities:8

P -Mod(n-gram) :=
n∏

k=1

modk(n-gram) (3)

Comparing the trigram P -Mod values for k = 1, 2 in Tables 2 and 3, it can be seen
that the term “long terminal repeat” gets a much higher weight than the non-term “t
cell response”, although their mere frequency values suggest the opposite. This is also
reflected in the respective output list rank (see Subsection 4.1 for details) assigned to
both trigrams by t-test and by our P -Mod measure. While “t cell response” has rank 24
on the t-test output list (which has to be attributed to its high frequency), P -Mod puts
it on the 1249th rank. Conversely, “long terminal repeat” is ranked on 242 by t-test,
whereas it is ranked on 24 by P -Mod. In fact, even lower-frequency multi-word units
gain a prominent ranking if they exhibit limited paradigmatic modifiability. For exam-
ple, the trigram term “porphyria cutanea tarda” is ranked on 28 by P -Mod although
its frequency is only 48 (which results in rank 3291 on the t-test output list). Despite its
lower frequency, this term may be judged relevant for the molecular biology domain.9

It should be noted that the termhood values (and the corresponding list ranks) computed
by P -Mod also include k = 3 and hence take into account some frequency factor. As
can be seen from the previous ranking examples, however, this factor does not override
the paradigmatic modifiability factors of the lower ks.

On the other hand, P -Mod, of course, will also demote true terms in their ranking
if their paradigmatic modifiability is less limited. This is particularly the case if one
or more of the tokens of a particular term often occur in the same slot of other equal-
length n-grams. For example, the trigram term bone marrow cell occurs 1757 times
in our corpus and is thus ranked quite high (on 31) by t-test. P -Mod, however, ranks
this term on 550 because the token cell also occurs in many other trigrams and thus
leads to a less limited paradigmatic modifiability. Still, the underlying assumption of
our approach is that such a case is rather the exception than the rule and that terms are
in fact linguistically more fixed than non-terms, which is exactly what our measure of
limited paradigmatic modifiability aims at quantifying.

8 Setting the upper limit of k to n (which would be n = 3 for trigrams) actually has the pleasant
side effect of including frequency in our modifiability measure. In this case, the only possible
selection k1k2k3 as the denominator of Formula (2) is equivalent to summing up the frequen-
cies of all trigram term candidates.

9 It denotes a group of related disorders, all of which arise from deficient activity of the heme
synthetic enzyme uroporphyrinogen decarboxylase (URO-D) in the liver.
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3.4 Methods of Evaluation

As already described in Subsection 3.2, standard procedures for evaluating the quality
of termhood measures usually involve identifying the true positives among an (usually)
arbitrarily set number m of the highest ranked candidates returned by a particular mea-
sure, which is usually done by a domain expert. Because this is also labor-intensive
(besides being unreliable), m is usually small, ranging from 50 to several hundreds.10

In contrast, by taking a large and already established terminology as an evaluation gold
standard, we are able to dynamically examine various m-highest ranked samples, which
allows for the plotting of standard precision and recall graphs for the whole candidate
set. Through this, we provide a much more reliable evaluation metric for ATR measures
than what is typically employed in the literature.

We evaluate our P -Mod algorithm against the t-test measure,11 which, of all stan-
dard mesures, yields the best results in general-language collocation extraction studies
[12], and against the widely used C-value, which aims at enhancing the common fre-
quency of occurrence measure by making it sensitive to nested terms [8]. Our baseline
is defined by the proportion of true positives (i.e., the proportion of terms) in our bi-,
tri- and quadgram candidate sets, which is equivalent to the likelihood of finding one
by blindly picking from one of the different sets (see Subsection 3.2 above).

4 Results and Discussion

4.1 Precision/Recall for Terminology Extraction

For each of the different candidate sets, we incrementally examined portions of the
ranked output lists returned by each of the three measures we considered. The precision
values for the various portions were computed such that for each percent point of the
list, the number of true positives found (i.e., the number of terms found, according to
the UMLS METATHESAURUS) was scaled against the overall number of candidate items
returned. This yields the (descending) precision curves in Figures 1, 2 and 3 and some
associated values in Table 4.

First, we observe that, for the various n-gram candidate sets examined, all mea-
sures outperform the baselines by far, and, thus, all are potentially useful measures of
termhood. As can be clearly seen, however, our P -Mod algorithm substantially outper-
forms all other measures at almost all points for all n-grams examined. Considering 1%
of the bigram list (i.e., the first 673 candidates) the precision value for P -Mod is 20
points higher than for t-test and for C-value. At 1% of the trigram list (i.e., the first 310
candidates), P -Mod’s lead is 7 points. Considering 1% of the quadgrams (i.e., the first
108 candidates), t-test actually leads by 7 points. At 10% of the quadgram list, however,
the P -Mod precision score has overtaken the other ones. With increasing portions of all
(bi-, tri-, and quadgram) ranked lists considered, the precision curves start to converge
toward the baseline, but P -Mod maintains a steady advantage.
10 Studies on collocation extraction (e.g. [12]) also point out the inadequacy of such evaluation

methods claiming they usually lead to very superficial judgements about the measures to be
examined.

11 See [11] for a description how this measure can be used for the extraction of multi-word
expressions.
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Fig. 1. Precision/Recall for Bigram Biomedical Term Extraction
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Fig. 2. Precision/Recall for Trigram Biomedical Term Extraction

The (ascending) recall curves in Figures 1, 2 and 3 and their corresponding values
in Table 5 indicate which proportion of all true positives (i.e., the proportion of all
terms in a candidate set, according to the UMLS METATHESAURUS) is identified by a
particular measure at a certain point of the ranked list. In this sense, recall is an even
better indicator of a particular measure’s performance.
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Fig. 3. Precision/Recall for Quadgram Biomedical Term Extraction

Table 4. Precision Scores for Biomedical Term Extraction at Selected Portions of the Ranked
Output List

Portion of Precision scores of measures
ranked list
considered P -Mod t-test C-value

1% 0.82 0.62 0.62
Bigrams 10% 0.53 0.42 0.41

20% 0.42 0.35 0.34
30% 0.37 0.32 0.31

baseline 0.22 0.22 0.22

1% 0.62 0.55 0.54
Trigrams 10% 0.37 0.29 0.28

20% 0.29 0.23 0.23
30% 0.24 0.20 0.19

baseline 0.12 0.12 0.12

1% 0.43 0.50 0.50
Quadgrams 10% 0.26 0.24 0.23

20% 0.20 0.16 0.16
30% 0.18 0.14 0.14

baseline 0.08 0.08 0.08

Again, our linguistically motivated terminology extraction algorithm outperforms
all others, and with respect to tri- and quadgrams, its gain is even more pronounced than
for precision. In order to get a 0.5 recall for bigram terms, P -Mod only needs to winnow
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Table 5. Portions of the Ranked Output List to consider to obtain Selected Recall Scores for
Biomedical Term Extraction

Recall Portion of Ranked List
scores of
measures P -Mod t-test C-value

0.5 29% 35% 37%
0.6 39% 45% 47%

Bigrams 0.7 51% 56% 59%
0.8 65% 69% 72%
0.9 82% 83% 85%

0.5 19% 28% 30%
Trigrams 0.6 27% 38% 40%

0.7 36% 50% 53%
0.8 50% 63% 66%
0.9 68% 77% 84%

0.5 20% 28% 30%
0.6 26% 38% 40%

Quadgrams 0.7 34% 49% 53%
0.8 45% 62% 65%
0.9 61% 79% 82%

Table 6. Significance testing of differences for bi-, tri- and quadgrams using the two-tailed Mc-
Nemar test at 95% confidence interval

# of # of significant differences comparing
measure P -Mod with

points t-test C-value t-test C-value t-test C-value

10 10 10 9 9 3 3
20 20 20 19 19 13 13
30 30 30 29 29 24 24
40 40 40 39 39 33 33
50 50 50 49 49 43 43
60 60 60 59 59 53 53
70 70 70 69 69 63 63
80 75 80 79 79 73 73
90 84 90 89 89 82 83

100 93 100 90 98 82 91
bigrams trigrams quadgrams

29% of the ranked list, whereas t-test and C-value need to winnow 35% and 37%,
respectively. For trigrams and quadgrams, P -Mod only needs to examine 19% and 20%
of the list, whereas the other two measures need to scan almost 10 additional percentage
points. In order to obtain a 0.6, 0.7, 0.8 and 0.9 recall, the differences between the
measures narrow for bigram terms, but they widen substantially for tri- and quadgram
terms. To obtain a 0.6 recall for trigram terms, P -Mod only needs to winnow 27% of
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its output list while t-test and C-value need to analyze 38% and 40%, respectively. To
get 0.7 recall, P -Mod only needs to analyze 36%, and the second-placed t-test already
50% of the ranked list. For a 0.8 recall, this relation is 50% (P -Mod) to 63% (t-test),
and at recall point 0.9, 68% (P -Mod) to 77% (t-test). For quadgram term identification,
the results for P -Mod are equally superior to those for the other measures, and at recall
points 0.8 and 0.9 even more pronounced than for trigram terms.

We also tested the significance of differences for our results, both between P -Mod
and t-test and between P -Mod and C-value. Because in all cases the ranked lists were
taken from the same set of candidates (viz. the set of bigram candidate types, the set of
trigram candidate types, or the set of quadgram candidate types), and hence constitute
dependent samples, we applied the McNemar test [19] for statistical testing. We selected
100 measure points in the ranked lists, one after each increment of one percent, and
then used the two-tailed test for a confidence interval of 95%. Table 6 lists the number
of significant differences for these measure points at intervals of 10 for the bi-, tri-,
and quadgram results. For the bigram differences between P -Mod and C-value, all
of them are significant, and between P -Mod and t-test, all are significantly different
up to measure point 70.12 Looking at the tri- and quadgrams, although the number of
significant differences is less than for bigrams, the vast majority of measure points still
is significantly different and thus underlines the superiour performance of the P -Mod
measure.

5 Conclusions

In our study, we proposed a new terminology identification algorithm and showed that
it substantially outperforms some of the standard measures in distinguishing terms from
non-terms in the biomedical literature. While mining technical and scientific literature
for new terminological units and assembling those in controlled vocabularies is an over-
all complex task involving several components, one essential building block is a mea-
sure indicating the degree of termhood of a candidate. In this respect, our study has
shown that an algorithm which incorporates a vital linguistic property of terms, viz.
their limited paradigmatic modifiability, can be a much more powerful and valuable
part of a terminology extraction system (like, e.g., proposed by [20]) than the standard
measures that are typically employed.

In general, a high-performing term identification system is not only valuable for
collecting new terms per se but is also essential in updating already existing termi-
nology resources. As a concrete example, the term “cell cycle” is contained in the
hierarchically-structured biomedical MESH terminology and the term “cell cycle ar-
rest protein BUB2” in the MESH supplementary concept records which include many
proteins with a GENBANK[21]13 identifier. The word trigram cell cycle arrest, however,
is not included in MESH although it is ranked in the top 10% of P -Mod. Utilizing this
prominent ranking, the missing semantic link can be established between these two

12 As can be seen in Figures 1, 2 and 3 above, the curves start to merge at the higher measure
points and thus the number of significant differences decreases.

13 GENBANK is a database containing an annotated collection of all publicly available DNA
sequences.
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terms (i.e., between cell cycle and cell cycle arrest protein BUB2), both by including
the trigram cell cycle arrest in the MESH hierarchy and by linking it via the comprehen-
sive terminological umbrella system for biomedicine, viz. UMLS, to the Gene Ontology
(GO [22]), in which it is listed as a stand-alone term.
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Abstract. This work focuses on the active selection of pairwise con-
straints for spectral clustering. We develop and analyze a technique for
Active Constrained Clustering by Examining Spectral eigenvectorS (AC-
CESS) derived from a similarity matrix. The ACCESS method uses an
analysis based on the theoretical properties of spectral decomposition
to identify data items that are likely to be located on the boundaries
of clusters, and for which providing constraints can resolve ambiguity
in the cluster descriptions. Empirical results on three synthetic and five
real data sets show that ACCESS significantly outperforms constrained
spectral clustering using randomly selected constraints.

1 Introduction

Recently, clustering research has focused on developing methods to incorporate
domain knowledge into clustering algorithms, so that the results are tailored
to the interests and existing knowledge of the user. For example, pairwise con-
straints were introduced by Wagstaff et al. [1] as a way to use domain-specific
information in the form of must-link constraints, which specify that two in-
stances must be in the same cluster, and cannot-link constraints, which indicate
that two instances must be in different clusters. Although it has been repeat-
edly demonstrated that constraints can improve clustering performance [1,2,3,4],
these gains often require the user to specify constraints for a significant fraction
of the items in the data set. In this paper, we seek to reduce that user burden by
actively selecting item pairs for constraint labelling, so that the most informative
constraints are acquired as quickly as possible.

Active constraint selection has been previously studied by Basu et al. for
the K-means algorithm [5]. Their method aims to find k neighborhoods to ini-
tialize the clusters. However, for data sets that have close boundaries or small
overlap areas on the boundaries, which are the focus of this paper, this method
does not work well. We instead propose an active constraint selection method
that identifies crucial boundary points (those near cluster boundaries) with high
probability.
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The main contribution of this paper is an active constraint selection technique
for data sets with close or overlapping boundaries. We refer to this method as
Active Constrained Clustering by Examining Spectral eigenvectorS (ACCESS).
ACCESS uses a heuristic derived from the theoretical properties of spectral
decomposition methods to identify points at or near cluster boundaries with high
probability. Providing the clustering algorithm with constraints on such points
can help to resolve ambiguity in the cluster descriptions. Our experiments on
three synthetic and five real data sets show that ACCESS yields a significant
performance improvement over constrained clustering with randomly selected
constraints.

2 Background

Spectral Clustering. The eigenvectors derived from the data similarity graph have
good properties and can be used for clustering; this class of methods is referred
to as spectral clustering techniques. Given n data points, we can construct a
graph G = (V, E, A), where each vertex vi corresponds to a point pi, and the
edge ei,j between vertices i and j is weighted by their (dis)similarity value, ai,j .
Any similarity measure can be used; one popular similarity metric is defined as

Ai,j = exp(
−δ2

ij

2σ2 ), (1)

where δij is the Euclidean distance between point i and j and σ is a free scale
parameter. Using this definition, the larger the distance δij , the smaller the
similarity Aij .

The goal of spectral clustering is to find a minimal cut of the graph such
that the inter-cluster similarities are minimized. However, this objective favors
cutting off a small number of isolated points [6]. Previous research explored
refined objectives to overcome this drawback, including the ratio cut [6] and
normalized cut [7] criteria. It can be shown that the second smallest eigenvector
of the (generalized) graph Laplacian matrix, defined as L = D − A, where D
is a diagonal matrix with element dii =

∑n
j=1 Aij , is an approximation of the

cluster membership indicator vector and its corresponding eigenvalue gives the
optimal cut value [6,7]. The second smallest eigenvector is used to split the data
into two groups.

Recently, researchers have proposed to make use of k eigenvectors simultane-
ously for the multi-cluster problem [8,9]. These methods usually use a normalized
similarity graph, such as

P = D−1A (2)

or
N = D− 1

2 AD− 1
2 . (3)

Note that the eigenvectors derived from the P and N matrices are related to the
eigenvectors derived from the (generalized) Laplacian matrix. In particular, if λ
and x are the solutions of Equation 2, then 1− λ and x are the solutions of the
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generalized Laplacian matrix [9]. After obtaining k eigenvectors, any clustering
technique, such as the K-means algorithm, can be applied to the eigenspace, that
is, the space spanned by the largest k eigenvectors. The justification of clustering
in the eigenspace can be found in Ng et al. [8] and Meila et al. [9].

Each row in the P matrix sums to 1. Therefore, we can interpret the entries
Pij as the transition probabilities of a random walker moving from point i to
point j. The probabilistic interpretation of the normalized similarity matrix gives
an intuitive explanation of the constraints, as we will discuss next.

Incorporating Constraints in Spectral Clustering. Kamvar et al. developed a
technique to incorporate constraints into spectral clustering [10]. We will refer
to their method as KKM after the authors’ initials. Their work uses a different
normalization matrix, as follows:

N = (A + dmaxI −D)/dmax, (4)

where dmax is the largest element in the matrix D and I is the identity matrix.
Note that the off-diagonal entries of N are simply the scaled similarity values:
Nij = Aij/dmax for i 	= j. The diagonal entries, however, are computed by
Nii = (dmax − dii)/dmax.

Given a must-link constraint (i, j), KKM modifies the corresponding affinities
so that Aij = Aji = 1; as a result, when N is re-derived from the new similarity
matrix, the transition probability between i and j will be greater than or equal
to the transition probabilities leading from i or j to any other point. Similarly, a
cannot-link constraint (i, j) is incorporated by setting Aij = Aji = 0, preventing
a direct transition between points i and j.

Note that the use of the transition probability matrix in Equation 4 may
cause problems when there are outliers in the data. For example, if point i is
isolated from all other data points, then Nii will be much larger than all other
entries Nij . Therefore, once a random walk encounters point i, it has a very
low probability of leaving it, resulting in a singleton cluster. To overcome this
drawback, our method replaces KKM’s transition matrix N with the P matrix
in Equation 2. We discuss the advantages of using this matrix in Section 5.

Notation. In this paper, we focus on the two-cluster problem, and assume that
there are only two clusters, C1 and C2. We index the points so that the points
in the first cluster appear before the points in the second cluster. We write the
similarity matrix A = (AC1C1 , AC1C2 ; AC2C1 , AC2C2), where AC1C1 and AC2C2

are the intra-cluster similarity sub-matrices, and AC1C2 = AT
C2C1

are the inter-
cluster similarity sub-matrices.

3 Active Constraint Selection

We are interested in clustering problems where the clusters are nearly separated
– by which we mean that the boundaries of the clusters are very close, and there
may be small overlapping areas. We propose to first analyze the eigenvectors
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derived from the data similarity matrix to identify sparse points and boundary
points. Then we will query an oracle to give us correct pairwise constraints on
these ambiguous points. Incorporating these constraints into spectral clustering
improves performance.

Properties of Eigenvectors. Our active constraint selection method is based on
the following properties of the eigenvectors. Interested readers are referred to
the citations for proofs of the theoretical results that we use here.

1. In the ideal case, if the k clusters are well separated, so that only the intra-
cluster similarity sub-matrices have nonzero entries, we will obtain k piece-
wise constant eigenvectors—in other words, items from the same cluster will
have the same values in the eigenvector, and the clusters can be easily rec-
ognized [11,12].

2. If the clusters are nearly separated (i.e., the dense clusters are loosely con-
nected by a few bridges (edges) between them), then the first k eigenvectors
will be approximately piecewise constant. This claim has previously been
shown by applying matrix perturbation theory to the ideal case [13]. The
values in the eigenvectors of points adjacent to these bridges will be pulled
towards each other.

3. If the graph is connected, then the identity vector 1 is the smallest eigen-
vector of the Laplacian matrix, and the corresponding eigenvalue is 0. All
other eigenvectors are orthogonal to 1, which implies that there are both
positive and negative (and possibly zero) values in each eigenvector. This
can be easily shown by the definition of the Laplacian matrix. This fact mo-
tivates a simple heuristic to partition the data: items with positive values in
the eigenvector can be put into one cluster, and items with negative values
in the eigenvector can be put into the other cluster [11].

4. It has been proved [6] that the second smallest eigenvector of the Lapla-
cian matrix gives the optimal ratio cut cost for splitting the data set into
two groups. By inference, the third smallest eigenvector gives the optimal
ratio cut cost for further splitting the first two groups. A similar result has
been derived for the generalized eigenvectors of the Laplacian matrix for the
normalized cut criterion[7]. In summary, the sorted eigenvalues indicate the
estimate of cut cost in order, and the different eigenvectors correspond to
different splitting strategies.

Close and Distant Boundary Points. For the scenario we are interested in, the
items located on the cluster boundaries are the objectives of our active constraint
selection, since they are far from the cluster centers and may be interspersed with
boundary points of the other clusters. If we can impose constraints to strengthen
the similarity between boundary points and members of their clusters, while
weakening their similarity to points from other clusters, the clusters themselves
will be more clearly apparent in the similarity matrix. We distinguish boundaries
between clusters from the outer boundaries of clusters by calling the former close
boundaries, and the latter distant boundaries. Our method aims to find both
types.
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Fig. 1. An illustration of the active constraint selection

According to statement 2 above, for the data sets we are interested in, the
eigenvector will be approximately piecewise constant. In this case, the values in
the eigenvector will be bimodally distributed and centered on v and −w (where
v and w are positive numbers), with some variances. The close boundary points,
i.e., items adjacent to the bridges, are likely to have eigenvector values towards
the opposite center. In addition, we hypothesize that the items with eigenvector
values far from 0 will be on the distant boundaries (see Figure 1).

Figure 1(a) shows the sorted second largest eigenvector of two Gaussian dis-
tributed clusters (represented by + and ·) and the close and distant boundary
points identified from this eigenvector (represented by o). The 10 points with
eigenvector values closest to 0 are shown in Figure 1(b); they indeed appear to be
located on the close boundaries. In Figure 1(c), the points with largest positive
(negative) values have been identified as distant boundary points.

Since we only consider clustering problems with two clusters, we expect that
the largest two eigenvectors of the P matrix will be most useful for splitting the
data. However, whether or not these eigenvectors are appropriate for this purpose
depends on the true data distribution and on the value of the σ parameter, as
we show next.
Sparse Points. Figure 2 shows the Ellipses data set. It has two important char-
acteristics: (1) the two clusters have very close boundaries and there is a small
group of overlapped items; and (2) there are two small groups of ‘+’ data—the
three circled items located at the bottom left corner and one located at the top
right corner in Figure 2—that are far away from the main group of ‘+’ data. We
call these sparse points, and we now examine their effects on the eigenvectors.

The distance from these sparse points to the center of the cluster to which
they belong is larger than the distance between the boundaries of two clusters.
Therefore, for small values of σ, it is possible that the largest eigenvectors will
treat these small groups of ‘+’ data items as a separate cluster. This is exactly
what we see using the similarity matrix with σ = 0.2. Figure 3(a) shows the
second largest eigenvector of the Ellipses data set. The anomalous points are
exactly those sparse points in Figure 2. Fortunately, the third largest eigenvector
(Figure 3(b)) roughly corresponds to the groupings for the remaining data. From
Figure 3(b) we can see that most of the data in the first cluster (indexed from 1
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Fig. 2. Ellipses data set

to 80) have positive values, while most data in the second cluster have negative
values. Several items violate this structure. These items have either values near
zero or large negative values, and therefore can be identified by our method.
We can interpret the eigenvectors as follows: the first eigenvector gives cut 1 in
Figure 2, the second eigenvector gives cut 2, and the third eigenvector gives cut
3. The third largest eigenvector will be automatically selected by ACCESS to
identify the close and distant boundary points.
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Fig. 3. The eigenvectors of Ellipses data set

In summary, for two-cluster problems, our active constraint selection method
will identify two types of informative points: (1) the sparse points, identified by
the first m eigenvectors (where m depends on how many sparse subclusters are
found in the data set), and (2) the close and distant boundary points identified
by the (m+1)st eigenvector. These m+1 eigenvectors are used to construct the
eigenspace matrix in step 7 of the ACCESS algorithm, given below. In the next
section, we explain how we identify these points.
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1: Derive matrix A and matrix P = D−1A.
2: Compute the eigenvalues and eigenvectors of P .
3: Actively pick q data points by examining the eigenvectors and query the oracle for

labels or pairwise constraints.
4: Impose must-link constraint pairs (i, j) by assigning Aij = Aji = 1.
5: Impose cannot-link constraint pairs (i, j) by assigning Aij = Aji = 0.
6: Reconstruct matrix P ′.
7: Identify the largest m′ eigenvectors that have sparse points.
8: Pick the largest m′ + 1 largest eigenvectors of P ′, and construct the eigenspace

matrix X = (x1, x2, · · · , xm′+1).
9: Row normalize X to length 1.

10: Perform K-means clustering on the rows of X to identify two clusters.
11: Assign data point i to cluster c if row Xi. is assigned to cluster c.

Fig. 4. The ACCESS algorithm

Implementation of Active Constraint Selection. Active constraint selection starts
with the largest eigenvector. Each eigenvector may produce one of two outcomes.
If it identifies one or more sparse points (defined as points whose deviation from
the mean value in the eigenvector are greater than three standard deviations),
then the next eigenvector will be further examined. Alternatively, if it does not
identify any sparse points, then we use this (m+1)st eigenvector to identify the
close and distant boundary points, and we ignore the remaining eigenvectors.

The close and distant boundary points are identified as follows. Each data
point has an associated pclose-value and pdistant-value when considered as a
close or distant boundary point, respectively. The pclose-value is inversely pro-
portional to its distance from 0, while the pdistant-value is proportional to its
distance from 0. The detailed computation is as follows (ε is a small constant):

1: for the (m + 1)st eigenvector e
2: maxpos = max{ei | ei >= 0}
3: maxneg = max{abs(ei) | ei < 0}
4: for ei do
5: if ei >= 0 then
6: pi

close = (maxpos − ei + ε)/(maxpos + ε)
7: pi

distant = (ei + ε)/(maxpos + ε)
8: else
9: pi

close = (maxneg − abs(ei) + ε/(maxneg + ε))
10: pi

distant = (abs(ei) + ε)/(maxneg + ε)
11: end if
12: end for

Our method chooses sets of boundary points Sclose and Sdistant such that
following condition is satisfied: {pi

close >= pj
close, ∀i, j, i ∈ Sclose, j /∈ Sclose}

and {pi
distant >= pj

distant, ∀i, j, i ∈ Sdistant, j /∈ Sdistant}. Given q, the number
of points to query, ACCESS selects s sparse points, 2(q − s)/3 close boundary
points and (q − s)/3 distant boundary points.
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Algorithm. The pseudo-code for the ACCESS algorithm is given in Figure 4.
There are two parameters: q, the number of items to query, and σ, the scale
parameter in Equation 1. Note that our main contribution is in step 3, active
constraint selection.

4 Experiments and Results

Data Sets. We implemented experiments on three synthetic and five real data
sets. The Sphere data set is generated by Gaussian distributions with mean (0, 0)
and (3, 0), and covariance matrix (1, 0; 0, 1). The Ellipses and Test data sets are
shown in Figure 2 and Figure 5. The Iris and Soybean data sets are from the UCI
Machine Learning Repository [14]. For these data sets, we derive the similarity
matrix from the Euclidean distances as in Equation 1. The text data sets are
from the 20 Newsgroups collection. We preprocess the data as described by Basu
et al. [5], then use cosine similarity values. Let NN20(p) be the set of 20 nearest
neighbors to point p. We set Ai,j of the similarity matrix to zero if pi /∈ NN20(j)
and pj /∈ NN20(i). The value 20 was selected based on the method reported by
Kamvar et al. [10]. Key properties of each data set are shown in Table 1.
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Fig. 5. Tester data set

Table 1. Real data sets

data cluster 1 cluster 2 num

Iris Versicolour Virginica 100
Soybean brown-spot frog-eye-leaf-spot 183
Text1 alt.atheism rec.sport.baseball 200
Text2 alt.atheism sci.space 200
Text3 rec.sport.baseball sci.space 200

Parameter Selection. The σ parameter in Equation 1 significantly affects clus-
tering performance. Ng et al. [8] proposed a parameter selection criterion based
on the observation that a good σ parameter will yield a partition with small dis-
tortion (i.e., small mean squared error). In our implementation, we use a small σ
value, since this yields a sparse similarity matrix, which tends to produce good
spectral clustering results. In addition, we automatically identify eigenvectors
that will isolate small groups of data (Figure 3(b)) and use m + 1 eigenvectors
for clustering.
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Evaluation. The Rand index [15] is often used as an evaluation of the clustering
result. The Rand index measures the agreement of two partitions, P1 and P2.
Given a data set with n points, there are n(n− 1)/2 pairs of decisions: for each
pair of items, each partition either assigns them to the same cluster or to different
clusters. Let a and b be the number of pairs for which the two partitions agree
by assigning them to the same cluster or to different clusters, respectively. The
Rand index (RI) is then defined as:

RI(P1, P2) =
a + b

n(n− 1)/2
. (5)

In other words, the RI computes the percentage of agreements among all pairs
of decisions.

One problem with the Rand index is that its expected value for two ran-
dom partitions is not a constant. The adjusted Rand index (ARI) [16] has been
proposed to overcome this shortcoming. The expected value for two random par-
titions with a fixed number of clusters for each partition and a fixed number of
instances for each cluster is zero. Let nij be the number of items that appear
in cluster i in P1 and in cluster j in P2. ARI is computed as:

ARI(P1, P2) =
R− E[R]

M [R]− E[R]
, R =

∑
ij

(
nij

2

)
(6)

where E[R] =
[∑

i

(
ni.

2

)∑
j

(
n.j

2

)]
/

(
n
2

)
is the expected value of R and

M [R] = 1
2

[∑
i

(
ni.

2

)
+
∑

j

(
n.j

2

)]
is the maximum possible value for R. Note

that, the ARI is usually smaller than the RI. We use the ARI for evaluating the
expect of our clustering result with the a priori assigned class labels.

Results and Analysis. The baseline for our experiments is constrained clustering
with randomly selected constraints. The items are randomly selected, and con-
straints for each pair of selected items are derived from their true class labels.
We compute the transitive closure of the must-link and cannot-link constraints
as in Wagstaff et al. [1]. Results are averaged over 100 runs. In the results shown
in Figures 6(a) to 6(h), the x axis is the number of items selected, and the y axis
is the adjusted Rand index. Note that the only difference between the baseline
and our method is which items are selected for querying.

ACCESS yields better performance, with fewer queries, than randomly se-
lecting constraints, on all data sets except Soybean (for which the performance of
ACCESS and random selection is approximately equal). To further understand
why our method selects good constraints, we examine the similarity matrix for
the Text2 data set, before (Figure 7 (a)) and after (Figure 7 (b)) imposing con-
straints derived from 50 actively selected items (636 must-link and 589 cannot-
link constraints). Rows and columns correspond to the item indices. A dot at
position (i, j) means that the similarity value Ai,j is positive. We first obtain
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Fig. 6. Performance plots

the second largest eigenvector of the similarity matrix (before imposing any
constraints), and then sort the matrix according to the ascending order of this
eigenvector. Both plots have the same item ordering. From Figure 7 (a), we can
see that the items at the cluster boundaries (i.e., at the intersection of the two
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Fig. 8. The sixth largest eigenvector of the Ellipses data set derived using the N matrix

in Equation 4

diagonal blocks) are mixed together. After imposing the constraints, they are
more clearly distinguished (Figure 7 (b)).

We also did comparative experiments when imposing only must-link or only
cannot-link constraints. The results show that the must-link constraints improve
clustering performance more than the cannot-link constraints. For some of the
data sets (Figure 6(g)), imposing only must-link constraints achieves the same
performance as imposing both types of constraints. In Figure 6(g), the curve
labeled ’ACCESS-M’ shows the result of imposing only actively selected must-
link constraints, while the ’ACCESS-C’ curve illustrates the result of imposing
only actively selected cannot-link constraints.

Figure 6(e) shows a case where our method is less effective. Further examining
the Soybean data set, there are large overlapping areas between the two clusters.
In this case, our method performs comparably to randomly selected constraints.

5 Discussion and Related Work

There are two primary reasons that we used the P matrix given in Equa-
tion 2, rather than the N matrix used by KKM in Equation 4. First, we have
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previously showed that using randomly selected constraints, the KKM method
sometimes performs worse (and was not seen to perform better) than the P -based
method [17]. Second, and more importantly, due to the disadvantages discussed
in Section 2, the eigenvectors derived from the N matrix fail to identify close and
distant boundary points. Because of the complicated distribution of clusters, the
N matrix often yields eigenvectors in which several sparse points have extremely
large values, while all other points have values near 0. For example, for the N
matrix of the Ellipses data set, ACCESS identifies sparse points in the first five
eigenvectors. The sixth eigenvector is plotted in Figure 4. However, even for this
eigenvector, our method for identifying sparse points returns new points. As a
result, it is difficult to use the N matrix to identify the boundary points in the
data set.

Recently, there has been some work on active constrained clustering in gen-
eral. Basu et al. implemented an active constraint selection for their Pairwise
Constrained K-means algorithm [5]. Their method has two phases. The first
phase, Explore, selects an k-neighborhood of must-linked points using the k-
centers heuristic. This k-neighborhood is used to initialize the cluster centroids.
When queries are allowed, the Consolidate phase is invoked to randomly select
a point and query the user about its relation to the known neighborhoods until
a must-link is obtained. The authors proved that at least one point can be ob-
tained for each cluster in at most k

(
k
2

)
queries. It implies that 2-neighborhoods

can be obtained after querying four items using their method. After that, the au-
thors suggest invoking the Consolidate phase as early as possible, to randomly
select items for querying, because the randomly selected samples capture the
underlying data distribution and can produce a better estimate of centroids.
Their method is tailored to the K-means algorithm, and the purpose of active
selection is to get a good estimate of the cluster centroids. When applying their
method to spectral clustering with a large number of selected items (>4 items
for 2-cluster problems), the performance should be similar to that of randomly
selected items because of the Consolidate phase. An empirical comparison of
ACCESS and PCK-means is described in another paper [18].

Klein et al. developed a cluster-level active querying technique for hierarchi-
cal clustering, which works on data sets that exhibit local proximity structure –
locally a point has the same cluster membership as its closest neighbors, while
globally, a subcluster has different cluster memberships from its closest neigh-
boring subclusters [2]. These active techniques do not work well in our scenario,
where the boundaries are very close. In contrast, our method can identify the
points close to the boundaries of clusters.

6 Conclusions and Future Work

In this paper, we described ACCESS, an active constrained spectral cluster-
ing method. The actively selected constraints significantly improve clustering
performance over randomly selected constraints for data sets that have close
boundaries and overlapping regions.
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The constraints selected by our method are located on the boundaries of
the clusters. It is likely that they could also improve the performance of other
clustering methods such as K-means and hierarchical clustering. We are working
on applying these constraints to these clustering methods and comparing the
performances of different active selection methods.

Our current method focuses on two-cluster problems. We believe that the
same idea can be generalized to multiple-cluster problems as well, by identifying
the boundary points of one cluster and splitting these points, then recursively
splitting the remaining data items.
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Abstract. Many practical applications of machine learning in data-
driven scientific discovery commonly call for the exploration of data from
multiple points of view that correspond to explicitly specified ontolo-
gies. This paper formalizes a class of problems of learning from ontology
and data, and explores the design space of learning classifiers from at-
tribute value taxonomies (AVTs) and data. We introduce the notion of
AVT-extended data sources and partially specified data. We propose a
general framework for learning classifiers from such data sources. Two
instantiations of this framework, AVT-based Decision Tree classifier and
AVT-based Näıve Bayes classifier are presented. Experimental results
show that the resulting algorithms are able to learn robust high ac-
curacy classifiers with substantially more compact representations than
those obtained by standard learners.

1 Introduction

Current advances in machine learning have offered powerful approaches to ex-
ploring complex, a-priori unknown relationships or discovering hypotheses that
describe potentially interesting regularities from data. Data-driven knowledge
discovery in practice, occurs within a context, or under certain ontological com-
mitments on the part of the learner. The learner’s ontology (i.e., assumptions
concerning things that exist in the world) determines the choice of terms and
relationships among terms (or more generally, concepts) that are used to de-
scribe the domain of interest and their intended correspondence with objects
and properties of the world [22]. This is particularly true in scientific discovery
where specific ontological and representational commitments often reflect prior
knowledge and working assumptions of scientists [8][27].

Hierarchical taxonomies over attribute values or classes are among the most
common type of ontologies in practice. Examples of such ontologies include:
Gene Ontology [3] that is a hierarchical taxonomy for describing many aspects
of macromolecular sequence, structure and function; Hierarchical taxonomy built
for features of intrusion detection [25]; Hierarchical groupings of attribute values
for Semantic Web [5]; Hierarchies defined over data attributes in e-commerce
applications of data mining [16].
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Making ontological commitments (that are typically implicit in a data set)
explicit enables users to explore data from different points of view, and at differ-
ent levels of abstraction. Each point of view corresponds to a set of ontological
(and representational) commitments regarding the domain of interest. In scien-
tific discovery, there is no single perspective that can serve all purposes, and
it is always helpful to analyze data in different contexts and from alternative
representations. Hence, there is a need for ontology-aware learning algorithms
to facilitate the exploration of data from multiple points of view.

Exploring ontology-aware learning algorithms can provide us with a better
understanding of the interaction between data and knowledge. The availability
of user-supplied ontologies (e.g., taxonomies) presents the opportunity to learn
classification rules that are expressed in terms of familiar hierarchically related
concepts leading to simpler, easier-to-comprehend rules [26]. Moreover, learning
algorithms that exploit hierarchical taxonomies can potentially perform a built-
in regularization and thereby yielding robust classifiers [27].

Against this background, it is of significant practical interest to precisely
formulate the problem of learning from ontologies (as a form of background
knowledge or working assumptions) and data, and to explore the design space
of algorithms for data-driven knowledge acquisition using explicitly specified on-
tologies (such as taxonomies). In this paper, we formalize the problem of learning
pattern classifiers from Attribute Value Taxonomies, and propose a general learn-
ing framework that takes into account the tradeoff between the complexity and
the accuracy of the predictive models. According to this general framework, we
presents two well-founded AVT-based variants of machine learning algorithms,
including Decision Tree and Näıve Bayes classifiers. We present our experimental
results, and conclude with summary and discussion.

2 Problem Formulation

2.1 Ontology-Extended Data Source

In supervised classification learning problems, the data to be explored are typi-
cally available as a set of labelled training instances {(Xp, cXp)} where Xp is an
instance in instance space I, and cXp is the class label from C = {c1, c2, · · · , cM},
a finite set of mutually disjoint classes. Assume that D is the data set rep-
resented using an ordered set of attributes A = {A1, A2, · · · , AN}, and O =
{Λ1, Λ2, · · · , ΛN} be an ontology associated with the data set. The element
Λi ∈ O corresponds to the attribute Ai, and describes the type of that par-
ticular attribute. In general, the type of an attribute can be a standard type
(e.g., Integer or String) or a hierarchical type, which is defined as an ordering of
a set of terms (e.g., attribute values). The schema S of the data set D is given by
the set of attributes {A1, A2, · · · , AN} used to describe the data together with
their respective types {Λ1, Λ2, · · · , ΛN} described by the ontology O. Caragea et
al [8] defined ontology-extended data source to be expressed as D = 〈D, S, O〉,
where D is the data set, S is the schema of the data and O is the ontology
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Student Status Work Status 

Freshman

Undergraduate Graduate

JuniorSophomore

Senior

Master Ph.D

On-Campus Off-Campus

TA RA AA

Government Private

Federal State

Com Org

Student ID Student Status Work Status Hourly Income Internship

60-421 Freshman Org $10/hr. No

73-727 Master Com $30/hr. Yes

81-253 Ph.D RA $20/hr. No

75-455 Graduate On-Campus $20/hr. No

32-719 Sophomore AA $15/hr. No

42-139 Senior Government $25/hr. Yes

66-338 Undergraduate Federal $25/hr. Yes

…… …… …… …… ……

Fig. 1. Two attribute value taxonomies on student status and work status and a sample

data set based on the two corresponding AVTs

associated with the data source. The instance space I where D is sampled can
be defined as I = Λ1 × Λ2 × · · · × ΛN

In the discussion that follows, we focus on hierarchical ontologies in the form
of attribute value taxonomies (AVTs). Typically, attribute values are grouped
into a hierarchical structure to reflect actual or assumed similarities among the
attribute values in the domain of interest. We use T = {T1, T2, . . . , TN} to rep-
resent the ordered set of attribute value taxonomies associated with attributes
A1, A2, . . . , AN . Thus, an AVT defines an abstraction hierarchy over values of
an attribute. Figure 1 shows an example of two AVTs, together with a sample
data set collected by a university department based on the corresponding AVTs.

Specifically, we use AVT-extended data source D = 〈D, S, T 〉 to refer to the
special case of ontology-extended data source where ontology is a set of attribute
value taxonomies.s

2.2 AVT-Induced Instance Space

In many real world application domains, the instances from AVT-extended data
sources are often specified at different levels of precision. The value of a particular
attribute or the class label associated with an instance or both are specified at
different levels of abstraction with regard to the hierarchical taxonomies, leading
to partially specified instances [27]. Partially specified data require us to extend



Learning Ontology-Aware Classifiers 311

our definition of instance space. We give formal definitions on partially specified
data and AVT-induced instance space in the following.

Attribute value taxonomies enable us to specify a level of abstraction that
reflects learner’s perspective on the domain.

Definition 1 (Cut [14]). A cut γi is a subset of elements in Nodes(Ti) satisfy-
ing the following two properties: (1) For any leaf m ∈ Leaves(Ti), either m ∈ γi

or m is a descendant of an element n ∈ γi; and (2) For any two nodes f, g ∈ γi,
f is neither a descendant nor an ancestor of g.

Definition 2 (Global Cut). Let Δi be the set of all valid cuts in Ti of attribute
Ai, and Δ = ×N

i=1 Δi be the cartesian product of the cuts through the individual
AVTs. Γ = {γ1, γ2, . . . , γN} defines a global cut through T = {T1, T2, . . . , TN},
where each γi ∈ Δi and Γ ∈ Δ.

Any global cut Γ in Δ specifies a level of abstraction for D = 〈D, S, T 〉.
We use AVT frontier to refer to a global cut that is specified by the learning
algorithm. In terms of a certain level of abstraction (i.e., a global cut Γ ), we can
precisely define fully specified instance and partially specified instance:

Definition 3 (Partially Specified Instance [27]). If Γ represents the cur-
rent level of abstraction in learner’s AVT and Xp = (v1p, v2p, ..., vNp) is an
instance from D, then Xp is:

– Fully specified with respect to Γ , if ∀i, vip is on or below the cut Γ .
– Partially specified with respect to Γ , if ∃vip ∈ Xp, vip is above the cut Γ .

When attribute value vip is below the specified cut Γ , it is fully specified
because there is always a corresponding value on the cut that can replace the
current value in the current level of abstraction. However, when vip is above
the cut, there are several descendant values on the cut. It is uncertain which
value will be the true attribute value, and hence partially specified. A particular
attribute value can dynamically switch between being a fully specified value
and being a partially specified value when the level of abstraction changes.
For example, the shaded instances in Figure 1 are partially specified if the
global cut Γ chooses to be all primitive attribute values in the corresponding
AVTs.

The original instance space I is an instance space relative to a global cut Γφ

with a domain of all primitive attribute values (all leaf-nodes in AVTs). Because
any choice Γ defines a corresponding instance space IΓ that is an abstraction
of the original instance space IΓφ

, we can formally define AVT-induced instance
space as follows.

Definition 4 (AVT-Induced Instance Space [28]). A set of AVTs T =
{T1 · · ·TN} associated with a set of attributes A = {A1 · · ·AN} induces an in-
stance space IT = ∪Γ∈ΔIΓ (the union of instance spaces induced by all of the
cuts through the set of AVTs T ).
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Therefore, a partially specified data set DT is a collection of instances drawn
from IT where each instance is labeled with the appropriate class label from C.
Thus, DT ⊆ IT ×C. Taking into account partially specified data, AVT-extended
data source becomes D = 〈DT , S, T 〉.

2.3 Learning Classifiers from Ontology-Extended Data Source

The problem of learning classifiers from data can be described as follows: Given
a data set D, a hypothesis class H , and a performance criterion P , the classifier
learner L generates a hypothesis in the form of a function h : I → C, where
h ∈ H optimizes P . For example, we search for a hypothesis h that is most
likely given the training data D.

Learning classifiers from an ontology-extended data set is a generalization of
learning classifiers from data. The typical hypothesis class H has been extended
to HO, where the original hypothesis language has been enriched by ontology
O. The resulting hypothesis space HO is a much larger space. In the case where
the ontology is a set of attribute value taxonomies, the hypothesis space changes
to HT , a collection of hypothesis classes {HΓ |Γ ∈ Δ}. Each HΓ corresponds
a hypothesis class with regard to a global cut Γ in the AVTs. Because partial
ordering exists among global cuts, it is obvious that the resulting hypothesis
space HT also has partial ordering structure.

The problem of learning classifiers from AVT-extended data can be stated
as follows: Given a user-supplied set of AVTs T and a data set DT of (possibly)
partially specified labeled instances, construct a classifier h : IT → C for assign-
ing appropriate class labels to each instance in the instance space IT . It is the
structure of the hypothesis space HT that makes it possible to search the space
efficiently for a hypothesis h that could be both concise and accurate.

3 AVT-Based Classifier Learners

We describe in the following a general framework for designing algorithms to
learn classifiers from AVT-extended data sources. Base on this framework, we
demonstrate our approach by extending standard decision tree classifier and
Näıve Bayes classifier.

3.1 A General Learning Framework

There are essentially three elements in learning classifiers from AVT-extended
data sources: (1) A procedure for identifying estimated sufficient statistics on
AVTs from data; (2) A procedure for building and refining hypothesis; (3) A
performance criterion for making tradeoff between complexity and accuracy of
the generated classifiers. In what follows, we discuss each element in details.
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(1) Identifying Estimated Sufficient Statistics

Building a classifier only needs certain statistics (i.e., a function of data). A
statistic S(D) is called a sufficient statistic for a parameter θ if S(D) provides
all the information needed for estimating the parameter θ from data D. We can
formally define sufficient statistic for a learning algorithm.

Definition 5 (Sufficient Statistic for a Learning Algorithm [7]). We say
that SL(D) is a sufficient statistic for learning the hypothesis h using a learning
algorithm L if there exists a procedure that takes SL(D) as input and outputs h.

For many learning algorithms, sufficient statistics are frequency counts or
class conditional frequency counts for attribute values. Given a hierarchical
structured AVT, we can define a tree of frequency counts or class conditional
frequency counts as the sufficient statistics for the learning algorithms. More
specifically, with regard to an attribute value taxonomy Ti for attribute Ai, we
define a tree of class conditional frequency counts CCFC(Ti) (and similarly, a
tree of frequency counts FC(Ti)).

If all the instances are fully specified in AVT-extended data source, the class
conditional frequency counts associated with a non leaf node of CCFC(Ti)
should correspond to the aggregation of the corresponding class conditional
frequency counts associated with its children. CCFC(Ti) can be computed
in one upward pass. When data are partially specified in AVT-extended data
source, we can use a 2-step process for computing CCFC(Ti) [28]: First we
make an upward pass aggregating the class conditional frequency counts based
on the specified attribute values in the data set; Then we propagate the counts
associated with partially specified attribute values down through the tree, aug-
menting the counts at lower levels according to the distribution of values along
the branches based on the subset of the data for which the corresponding values
are fully specified. This procedure can be seen as a special case of EM (Expecta-
tion Maximization) algorithm [11] to estimate sufficient statistics for CCFC(Ti).

(2) Building and Refining Hypothesis

As we have mentioned earlier, for a particular global cut Γ there is a correspond-
ing hypothesis class HΓ , and we can learn a hypothesis h(θ|Γ ) with parameters
θ from this hypothesis class HΓ using a learning algorithm L. The total number
of global cuts |Δ| grows exponentially with the scale of AVTs, and so does the
number of possible hypotheses. Since an exhaustive search over the complete
hypothesis space {HΓ |Γ ∈ Δ} is computationally infeasible, we need a strategy
to search through the resulting hypothesis space.

Following the definition of cut, we can define a refinement operation on cut
as follows:

Definition 6 (Cut Refinement [28]). We say that a cut γ̂i is a refinement
of a cut γi if γ̂i is obtained by replacing at least one attribute value v ∈ γi by its
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Student Status Work Status

Freshman

Undergraduate Graduate

JuniorSophomore

Senior

Master Ph.D

On-Campus Off-Campus

TA RA AA

Government Private 

Federal State

Com Org 
11 γ̂γ →

Γ̂

Γ

Fig. 2. Cut refinement. The cut γ1={Undergraduate, Graduate} in the student status
attribute has been refined to γ̂1={Undergraduate, Master, Ph.D}, and the global cut

Γ has been refined to Γ̂ .

descendant attribute values. A global cut Γ̂ is a refinement of a global cut Γ if
at least one cut in Γ̂ is a refinement of a cut in Γ .

Figure 2 shows a demonstrative cut refinement process based on the AVTs
shown in Figure 1. When Γ̂ is a cut refinement of Γ , the corresponding hypothesis
h(Γ̂ ) is a hypothesis refinement of h(Γ ). Hypothesis refinements in AVT-based
learning are conducted through cut refinements in AVTs.

Based on gathered sufficient statistics, our goal is to search for the optimal
hypothesis h(Γ ∗) from {HΓ |Γ ∈ Δ}, where Γ ∗ is an optimal level of abstraction
(i.e., an optimal cut) that is decided by the learning algorithm L using certain
performance measurement P .

We use a top-down refinement on the global cut to greedily explore the design
space of the corresponding classifier. Our general strategy is to start by building
a classifier that is based on the most abstract global cut and successively refine
the classifier (hypothesis) by cut refinement. Therefore, the learning algorithm
L generates a sequence of cut refinements Γ0, Γ1, · · · , Γ ∗, which corresponds
to a sequence of hypothesis refinements h(Γ0), h(Γ1), · · · , h(Γ ∗), until a final
optimal cut Γ ∗ and an optimal classifier h(Γ ∗) is obtained.

(3) Trading Off the Complexity Against the Error

For almost every learning algorithm L, there is a performance measurement
P that is explicitly or implicitly optimized by L. For example, some perfor-
mance measurements include predictive accuracy, statistical significance tests,
and many information criteria. However, the lack of good performance measure-
ment makes the learning algorithm to build over complex model as the classifier
that shows excellent performance on training data but poor performance on test
data. This problem is called overfitting, which is a general problem that many
learning algorithms seek to overcome.

Of particular interest to us are those criteria that can make tradeoffs between
the accuracy and the complexity of the model [2][21], thereby having a built-in
mechanism to overcome overfitting. For example, Minimum Description Length
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(MDL) principle [21] is to compress the training data D and encode it by a
hypothesis h such that it minimizes the length of the message that encodes both
h and the data D given h. By making this tradeoff, we are able to learn classifiers
that is both compact and accurate.

In order to perform hypothesis refinements effectively, we need a performance
criterion P that can decide if we need to make a refinement from h(Γ ) to h(Γ̂ ).
Also this criterion should be able to decide whether we should stop making
refinement and output a final hypothesis as the classifier.

The performance criterion P is applied in the calculation of sufficient statis-
tics for hypothesis refinement that is defined as follows.

Definition 7 (Sufficient Statistics for Hypothesis Refinement[7]). We
denote SL(D, hi→hi+1) as the sufficient statistic for hypothesis refinement from
hi to hi+1, if the learner L accepts hi and a sufficient statistic SL(D, hi→hi+1)
as inputs and outputs an updated hypothesis hi+1.

Different learning algorithms may use different performance criteria, and thus
may have different formats and expressions of refinement sufficient statistics.

By combining the three elements of AVT-based classifier learners, we can
write the following procedure to show this general learning framework.

1. Identify estimated sufficient statistics SL(D) for AVTs as counts {CCFC(Ti)
|i = 1, ..., N} or {FC(Ti)|i = 1, ..., N}.

2. Initialize the global cut Γ to the most abstract cut Γ0.
3. Based on the estimated sufficient statistic, generate a hypothesis h(Γ ) cor-

responding to the current global cut Γ and learn its parameters.
4. Generate a cut refinement Γ̂ on Γ , and construct hypothesis h(Γ̂ )
5. Calculate SL(D, h(Γ )→h(Γ̂ )) for hypothesis refinement from h(Γ ) to h(Γ̂ ).
6. Based on performance criterion P , if stopping criterion is met, then output

h(Γ ) as the final classifier; else if the condition for hypothesis refinement is
met, set current hypothesis to h(Γ̂ ) by replacing Γ with Γ̂ , else keep h(Γ ),
and goto step 4;

Next, we discuss two instantiations of this learning framework and identify
their corresponding elements within the same framework.

3.2 AVT-Based Näıve Bayes Learner (AVT-NBL)

AVT-NBL [28] is an extension of the standard Näıve Bayes learning algorithm
that effectively exploits user-supplied AVTs to construct compact and accurate
Näıve Bayes classifier from partially specified data. We can easily identify the
three elements in the learning framework for AVT-NBL as follows:

(1) The sufficient statistics SL(D) for AVT-NBL is the class conditional fre-
quency counts {CCFC(Ti)|i = 1, ..., N}.
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(2) The hypothesis refinements strictly follow the procedure of cut refine-
ments in the framework. When a global cut Γ is specified, there is a corre-
sponding Näıve Bayes classifier h(Γ ) that is completely specified by a set of
class conditional probabilities for the attribute values on Γ . Because each at-
tribute is assumed to be independent of others given the class, the search for
the AVT-based Näıve Bayes classifier (AVT-NBC) can be performed efficiently
by optimizing the criterion independently for each attribute.

(3) The performance criterion that AVT-NBL optimizes is the Conditional
Minimum Description Length (CMDL) score suggested by Friedman et al [12].
CMDL score can be calculated as follows:

CMDL(h(Γ )|D) =
(

log |D|
2

)
size(h(Γ ))− CLL(h(Γ )|D)

where, CLL(h(Γ )|D) = |D|
∑|D|

p=1 log Ph(cXp |v1p, · · · , vNp)

where, Ph(cXp |v1p, · · · , vNp) is the class conditional probability, size(h(Γ )) is
the number of parameters used by h(Γ ), |D| the size of the data set, and
CLL(h(Γ )|D) is the conditional log likelihood of the hypothesis h(Γ ) given the
data D. In the case of a Näıve Bayes classifier, size(h(Γ )) corresponds to the
total number of class conditional probabilities needed to describe h(Γ ).

The sufficient statistics for hypothesis refinement in AVT-NBL can be quan-
tified by the difference between their respective CMDL scores: sL(D, h(Γ ) →
h(Γ̂ )) = CMDL(h(Γ̂ )|D)−CMDL(h(Γ )|D). If sL(D, h(Γ ) → h(Γ̂ )) > 0, h(Γ )
is refined to h(Γ̂ ). This refinement procedure terminates when no further refine-
ment can make improvement in the CMDL score (i.e., the stoping criterion).

3.3 AVT-Based Decision Tree Learner (AVT-DTL)

AVT-DTL [27] implements a top-down AVT-guided search in decision tree hy-
pothesis space, and is able to learn compact and accurate decision tree classifier
from partially specified data. Similarly, we can identify the three elements in the
learning framework for AVT-DTL as follows:

(1) The sufficient statistics SL(D) for AVT-DTL is the frequency counts
{FC(Ti)|i = 1, ..., N}.

(2) The hypothesis refinement is incorporated into the process of decision tree
construction. The cut refinement is done by keeping track of “pointing vectors”
in the AVTs. Each “pointing vector” is a set of pointers, and each pointer points
to a values in an AVT. As an example, in Figure 3, the pointing vector points
to two high-level attribute values in the two corresponding taxonomies.

The union of the set of pointing vectors at all leaves of a partially constructed
decision tree corresponds to a global cut in AVTs. Obviously, any global cut in
the constructed decision tree has a corresponding global cut in AVTs. At each
stage of decision tree construction, we have a current set of pointing vectors
as the global cut Γ being explored, and a corresponding partially constructed
decision tree to be the hypothesis h(Γ ). AVT-DTL indirectly makes refinement
on Γ by updating each pointing vector, and hence makes hypothesis refinement
on h(Γ ) and grows the decision tree accordingly. AVT-DTL does not have the
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T1 T2

P

Fig. 3. Illustration of a Pointing Vector P

independent assumption on attributes given the class, the search is conducted
globally to make refinements on possible cuts.

(3) The performance criterion that AVT-DTL uses is the standard informa-
tion gain or gain ratio [20]. The sufficient statistic for hypothesis refinement is
exactly the information criterion: sL(D, h(Γ ) → h(Γ̂ )) = info(Γ → Γ̂ ), where
info(Γ → Γ̂ ) is the information gain (or gain ratio) when current decision tree
h(Γ ) has been extended to h(Γ̂ ). The stopping criterion for AVT-DTL is the
same for standard decision tree. For example, such stopping criterion can be χ2

test to test statistical significance on further split.

4 Experiments and Results

We summarize below, results of experiments that compare the performance of
standard learning algorithm (DTL, NBL) with that of their AVT-based counter-
parts (AVT-DTL/AVT-NBL) as well as the standard learning algorithms applied
to a propositionalized version of the data set (PROP-DTL/PROP-NBL) [27]. In
propositionalized method, the data set is represented using a set of Boolean

Table 1. Comparison of error rate and size of classifier generated by NBL, PROP-NBL

and AVT-NBL on benchmark data

% Error rates using 10-fold cross validation with 90% confidence interval; The size of the classifiers for 
each data set is constant for NBL and Prop-NBL, and for AVT-NBL, the size shown represents the 
average across the 10-cross validation experiments.

NBL PROP-NBL AVT-NBL DATA      
SET

ERROR SIZE ERROR SIZE ERROR SIZE

Audiology 26.55 (±5.31) 3696 27.87 (±5.39) 8184 23.01 (±5.06) 3600 

Breast-Cancer 28.32 (±4.82) 84 27.27 (±4.76) 338 27.62 (±4.78) 62

Car 14.47 (±1.53) 88 15.45 (±1.57) 244 13.83 (±1.50) 80

Dermatology 2.18 (±1.38) 876 1.91 (±1.29) 2790 2.18 (±1.38) 576 

Mushroom 4.43 (±1.30) 252 4.45 (±1.30) 682 0.14 (±0.14) 202 

Nursery 9.67 (±1.48) 135 10.59 (±1.54) 355 9.67 (±1.48) 125 

Soybean 7.03 (±1.60) 1900 8.19 (±1.72) 4959 5.71 (±1.45) 1729 

Zoo 6.93 (±4.57) 259 5.94 (±4.25) 567 3.96 (±3.51) 245 
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Table 2. Comparison of error rate and size of classifier generated by C4.5, PROP-C4.5

and AVT-DTL on benchmark data No printing. No pruning is applied.

% Error rates using 10-fold cross validation with 90% confidence interval; The size of the classifier for 
each data set represents the average across the 10-cross validation experiments.

C4.5 PROP- C4.5 AVT- DTL DATA      
SET

ERROR SIZE ERROR SIZE ERROR SIZE

Audiology 23.01 (±5.06) 37 23.01 (±5.06) 26 21.23 (±4.91) 30

Breast-Cancer 33.91 (±5.06) 152 32.86 (±5.03) 58 29.37 (±4.87) 38

Car 7.75 (±1.16) 297 1.79 (±0.58) 78 1.67 (±0.57) 78

Dermatology 6.83 (±2.38) 71 5.74 (±2.20) 19 5.73 (±2.19) 22

Mushroom 0.0 (±0.00) 26 0.0 (±0.00) 10 0.0 (±0.00) 10

Nursery 3.34 (±0.90) 680 1.75 (±0.66) 196 1.21 (±0.55) 172

Soybean 9.81 (±2.06) 175 8.20 (±1.90) 67 7.75 (±1.85) 90

Zoo 7.92 (±4.86) 13 8.91 (±5.13) 9 7.92 (±4.86) 7

Table 3. Comparison of error rate on data with 10%, 30% and 50% partially or totally

missing values. The error rates were estimated using 10-fold cross validation, and we

calculate 90% confidence interval on each error rate.

DATA PARTIALLYMISSING TOTALLYMISSING

METHODS NBL PROP-NBL AVT-NBL NBL PROP-NBL AVT-NBL

10% 4.65(±1.33) 4.69(±1.34) 0.30(±0.30) 4.65(±1.33) 4.76(±1.35) 1.29(±071)

30% 5.28 (±1.41) 4.84(±1.36) 0.64(±0.50) 5.28 (±1.41) 5.37(±1.43) 2.78(±1.04)

MU
SH

RO
OM

50% 6.63(±1.57) 5.82(±1.48) 1.24(±0.70) 6.63(±1.57) 6.98(±1.61) 4.61(±1.33)

10% 15.27(±1.81) 15.50(±1.82) 12.85(±1.67) 15.27(±1.81) 16.53(±1.86) 13.24(±1.70)

30% 26.84(±2.23) 26.25(±2.21) 21.19(±2.05) 26.84(±2.23) 27.65(±2.24) 22.48(±2.09)

NU
RS

ER
Y

50% 36.96(±2.43) 35.88(±2.41) 29.34(±2.29) 36.96(±2.43) 38.66(±2.45) 32.51(±2.35)

10% 8.76(±1.76) 9.08(±1.79) 6.75(±1.57) 8.76(±1.76) 9.09(±1.79) 6.88(±1.58)

30% 12.45(±2.07) 11.54(±2.00) 10.32(±1.90) 12.45(±2.07) 12.31(±2.05) 10.41(±1.91)

SO
YB

EA
N

50% 19.39(±2.47) 16.91(±2.34) 16.93(±2.34) 19.39 (±2.47) 19.59(±2.48) 17.97(±2.40)

attributes obtained from Ti of attribute Ai by associating a Boolean attribute
with each node (except the root) in Ti. Thus, each instance in the original data
set defined using N attributes is turned into a Boolean instance specified using
Ñ Boolean attributes where Ñ =

∑N
i=1(|Nodes(Ti)| − 1).

The data sets used in our experiments [27][28] were based on benchmark
data sets available in the UC-Irvine repository. AVTs were supplied by domain
experts for some of the data sets. For the remaining data sets, the AVTs were
generated using AVT-Learner, a Hierarchical Agglomerative Clustering (HAC)
algorithm for constructing AVTs [15].

Table 1 shows the estimated error rates of the Näıve Bayes classifiers gen-
erated by the AVT-NBL, NBL, and PROP-NBL on benchmark data sets [28].
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Table 2 shows the estimated error rates of the decision tree classifiers generated
by the AVT-DTL, C4.5 [20], and PROP-C4.5 on the same benchmark data sets.

Experiments were also run with synthetic data sets with different pre-
specified percentages of totally or partially missing attribute values generated
from the original benchmark data sets. Table 3 compares the estimated error
rates of AVT-NBL with that of NBL and PROP-NBL in the presence of varying
percentages of partially missing attribute values and totally missing attribute
values [28].

Our main results can be summarized as follows: (1) AVT-DTL and AVT-
NBL are able to learn robust high accuracy classifiers from data sets consisting
of partially specified data comparing to those produced by their standard coun-
terparts on original data and propositionalized data. (2) Both AVT-DTL and
AVT-NBL yield substantially more compact and comprehensible classifiers than
standard version and propositionalized version of standard classifiers.

5 Summary and Discussion

5.1 Summary

Ontology-aware classifier learning algorithms are needed to explore data from
multiple points of view, and to understand the interaction between data and
knowledge. By exploiting ontologies in the form of attribute value taxonomies
in learning classifiers from data, we are able to construct robust, accurate and
easy-to-comprehend classifiers within a particular domain of interest.

We provide a general framework for learning classifiers from attribute value
taxonomies and data. We illustrate the application of this framework in the
case of AVT-based variants of decision tree and Näıve Bayes classifiers. How-
ever, this framework can be used to derive AVT-based variants of other learning
algorithms, such as nonlinear regression classifiers, support vector machines, etc.

5.2 Related Work

Several authors have explored the use of attribute value taxonomies in learning
classifiers from data. [1][9][10][13][17][23][27][28]. The use of prior knowledge or
domain theories specified in first order logic or propositional logic to guide learn-
ing from data has been explored in ML-SMART [4], FOCL [19], and KBANN
[24] systems. However, the work on exploiting domain theories in learning has
not focused on the effective use of AVT to learn classifiers from partially speci-
fied data. McClean et al [18] proposed aggregation operators defined over partial
values in databases. Caragea et al have explained the use of ontologies in learning
classifiers from semantically heterogeneous data [8]. The use of multiple inde-
pendent sets of features has led to “multi-view” learning [6]. However, our work
focuses on exploring data with associated AVTs at multiple levels of abstraction,
which corresponds to multiple points of view of the user.

In this paper, we have described a general framework for deriving ontology-
aware algorithms for learning classifiers from data when ontologies take the form
of attribute value taxonomies.
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5.3 Future Work

Some promising directions for future work in ontology-guided data-driven learn-
ing include:

(1) Design of AVT-based variants of other machine learning algorithms. Specif-
ically, it would be interesting to design AVT and CT-based variants of algo-
rithms for construction Bag-of-words classifiers, Bayesian Networks, Nonlin-
ear Regression Classifiers, and Hyperplane classifiers (Perceptron, Winnow
Perceptron, and Support Vector Machines).

(2) Extensions that incorporate richer classes of AVT. Our work has so far fo-
cused on tree-structured taxonomies defined over nominal attribute values.
It would be interesting to extend this work in several directions motivated by
the natural characteristics of data: (a) Hierarchies of Intervals to handle nu-
merical attribute values; (b) Ordered generalization Hierarchies where there
is an ordering relation among nodes at a given level of a hierarchy (e.g., hier-
archies over education levels); (c) Tangled Hierarchies that are represented
by directed acyclic graphs (DAG) and Incomplete Hierarchies which can be
represented by a forest of trees or DAGs.
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Abstract. Text mining techniques have been proposed for extracting
protein names and their interactions from biological text. First, we have
made improvements on existing methods for handling single word protein
names consisting of characters, special symbols, and numbers. Second,
compound word protein names are also extracted using conditional prob-
abilities of the occurrences of neighboring words. Third, interactions are
extracted based on Bayes theorem over discriminating verbs that repre-
sent the interactions of proteins. Experimental results demonstrate the
feasibility of our approach with improved performance in terms of accu-
racy and F-measure, requiring significantly less amount of computational
time.

1 Introduction

In biologically significant applications such as developing a new drug and curing
an inveterate disease, understanding the mutual effects of proteins (or genes
which will be used interchangeably in the paper) are essential [1]. For instance,
in order to develop a medicine for the breast cancer, we need to figure out the
proteins related to the disease, and understand the mechanism how they work
together in the course of the development of the breast cancer. In order to achieve
the goal, extracting gene names must be proceeded. However, results by some of
the existing methods leave much to be desired (e.g. extraction of multiple protein
names, handling of negative and compound sentences and special characters).
[2,3]. Motivated by this background, we propose a new approach to extracting
gene names and their relations. Section 2 and 3 describe the extraction of gene
names and interactions between them. Section 4 shows experimental results in
comparison with other approaches, followed by concluding remarks in Section 5.
� This work was supported by grant No. R01-2004-000-10689-0 from the Basic Re-

search Program of the Korea Science & Engineering Foundation.
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2 Extraction of Protein Names

A Protein is named either as a single word (i.e. singular protein name (SPN))
or multiple words (i.e. multiple protein name (MPN)). We describe extracting
methods for each case.

2.1 SPN Extraction

A SPN is extracted by two steps:

1. Word Class Tagging
First, we used the Brill’s tagger for tagging the text [4]. We added a word
class GENE and prepared a list of the words in the class. GenBank1 database
is used for making the list. To define lexicon rules and context rules during
the tagger’s learning stage, we used GENIA CORPUS [2,5].

2. SPN Extraction
Generally, the protein names in biological literature are usually irregular and
ambiguous. Even though there exist some rules for protein naming (some
can be found at Nature Genetics site [3]), it is hard to apply the rules to
existing protein names. Also as the rules are not generalized, some of the
special characters are used frequently (e.g. hyphens, Greek letters, digits
and Roman letters). In our lexicon, about 37% of these special characters
are contained in the text. For this reason, processing them plays a great role
for the whole efficiency. The HMM(Hidden Markov Model) with the Viterbi
algorithm is applied for SPN extraction [6]. In addition to the algorithm, in
order to handle the special characters, a substitution method was considered
(e.g. & for digits and ? for roman letters). Substring matching was applied
to the substituted protein names. However, there could be a collision in
substring matching. For instance, ‘gap1’ will be substituted to ‘gap&’ which
can be confused with ‘gap’ since ‘gap’ and ‘gap&’ has the same prototype
‘gap’. Therefore, a set of words that can be confused in this fashion has been
reserved as stopwords, which are ignored.

2.2 MPN Extraction

Usually an SPN makes up an MPN with near (or neighboring) words. However,
an MPN not including an SPN should be considered as well (e.g. tumor necrosis
factor). Based on the technique used in TagGeN [3], we developed an enhanced
probability model. First, if GENE tag is included, the range of an MPN is
determined by expanding words in bidirection (i.e. right and left). If an MPN
does not include any GENE word, we use SEED word (e.g. the words appearing
in MPNs frequently) for MPN determination. In our experiment, about 80 SEED
words were used. To determine the range of an MPN, it is needed to expand the
search from a GENE word or a SEED word, considering the following probability:

P (Wnext|Wcurrent, Mcurrent = 1) (1)
1 http://www.ncbi.nlm.nih.gov/Genbank/index.html
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Table 1. Examples of Wi’s Used in Probabilistic Models

Left Direction
Set Example

NN(Noun Class) single-chain/NN fv/GENE

JJ(Adjective Class) human/JJ GM-CSF/GENE gene/NN

CD(Number Class) 3/CD alpha/NN HSD/GENE

GENE(Gene Class) human/JJ GM-CSF/GENE gene/NN

...ase phospholipase
Roman, Greek Character type II IL-1R

Word Set(i.e. protein, gene, factor, etc.) protein tyrosine kinase

Right Direction
Set Example

reporter beta-globin reporter
product start-1 gene product

single character c-erb A
Numerals IFN-stimulated gene factor 3

...ed C5a induced kappa-B

...like Proximal c-jun TRE-like promoter element

...ing IRF-1 GAS-binding complex

Fig. 1. Probabilistic Model for MPN Tagging

where Wi represents a word occurring at position i, and Mi is binary value which
represents whether the word at position i belongs to GENE word class or not.
Some of the examples of Wi are illustrated in Table 1.
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Initially, only M values of SEED words have 1 and all the others have 0. From
the SEED word in the middle of the MPN, we move bidirectionally (i.e. to the
right and to the left). By calculating the probability in (1), we calculate M values
which represent whether the word is included in the MPN or not. Generally,
the left-hand side words of an MPN have diverse word classes than the right
ones, and the right-hand side words of an MPN consist of Greek letters, Roman
letters and digits. This bidirectional expansion of words is expected to generate
a more accurate model than that by TagGeN [3]. In order to make a probabilistic
model for MPN extraction, we used 600 documents which are arbitrarily chosen
from GENIA corpus and pre-tagged by domain experts. Figure 1 illustrates the
probabilistic model used for tagging MPN from documents.

3 Extraction of Protein Interactions

This section describes the method for protein interactions. For example, there
could be a pattern like ‘Protein(A)-Type(interaction)-Protein(B)’ [4]. We define
the verbs for the interactions and extract events from these predefined patterns.
Then we are able to know that entity A has a relation with B. We first extract
the discriminating verbs and then extract the associated protein interactions.

3.1 Discriminating Verb Extraction

A discriminating verb is extracted as follows:

1. Pre-processing
The set of types (i.e. interactions) we are interested in would be the discrim-
inating verb set. To define the set, pre-processing for extracting verbs from
the text is needed. This can be done easily as Brill’s tagger tags verbs as
VB(verb, base form) including VBN(verb, past participle), and VBZ(verb,
3rd person singular present) that we can extract and stem.

2. P-Score Estimation
We design a Bayesian probabilistic model for estimating the P-Score of each
verb in the document. Then, we determine the set of discriminating verbs
based on the P-Scores. The P-Score exhibits how well a verb describes the
interaction between proteins. This was proposed for extracting a word set to
classify documents by Marcotte [7]. We applied the method for extraction of
discriminating verbs and calculate the following probability:

P (n|N, f) ≈ e−Nf (Nf)n

n!
(2)

where n means how many times a verb is used as a protein interaction, N is
total number of words in a document, and f is the total occurrences of each
verb. The Poisson distribution can be an alternative for P (n|N, f) while N
is big enough and f is fairy small.
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3. Discriminating Verb Selection
Calculate the P-Score for every word, and then choose a set of arbitrary
number of words with the highest P-Scores. 80 words (e.g. inhibit, indicate,
etc.) were used in our experiment.

3.2 Protein Mutual Effect Extraction

To extract an interaction between genes from a sentence, there should be more
than two gene names and one verb which describes their relation. However, due
to an ambiguity of natural language, it is hard to recognize the structure well.
We introduce a simple method to decrease the ambiguity of natural language
structures. The steps of extracting protein interaction by using discriminating
verbs and events are as follows:

1. Complex Sentence Processing
To handle the ambiguity in a sentence, we used Toshihide Ono’s method [1].
The method diminishes the ambiguity by converting a complex sentence into
simple sentences and a negative sentence into a positive one.

2. Interaction Extraction
If there is a pattern like ‘Protein(A)-Type(Verb)- Protein(B)’ and a discrim-
inating verb in a sentence, we calculate Conf idence of the sentence and then
add the sentence into the event (protein interaction) set.

The Confidence is calculated as follows:

Conf idence = s +
1
sd

(3)

where s is a binary value which represents whether the pattern is included in the
sentence or not, and sd is sum of distances from proteins to a verb in the sentence.
The distance is a number of words from a verb to proteins in a sentence. For
example, ‘IL-10 inhibits IFN-gamma-induced ICAM-1 expression in monocytes.’
has distance 2 as IL-10 and inhibit have distance 1 and inhibit and IFN-gamma-
induced ICAM-1 expression have distance 1, too.

A sentence with no discriminating verb is also added to the candidate event
set. We re-calculate Conf idence with F requency (how many times protein(A)
and (B) are found in documents).

4 Experiments

We obtained the following extraction results of proteins and their interactions.
Data used for the experiments are 600 papers from the GENIA Corpus. Our
results are compared with those by ABGene and TagGeN [2,3] in following tables.

– SPN Extraction
To observe the results while a data set size is changing, we experimented
on 100 to 600 documents. Table 2 exhibits comparable accuracies among
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Table 2. Accuracy of SPN Extraction

�������System
Dataset

100 200 300 400 500 600 Average

Our system 83.28 85.17 84.97 85.10 85.58 85.88 85.00(%)

ABGene 87.40 87.12 87.13 87.19 86.12 87.10 87.01(%)

TagGeN 80.17 82.24 83.51 84.09 84.50 84.91 83.24(%)

Table 3. Recall of SPN Extraction

�������System
Dataset

100 200 300 400 500 600 Average

Our system 95.06 95.99 96.39 97.00 96.89 96.33 96.27(%)

ABGene 50.15 57.75 49.16 54.12 60.02 61.12 55.22(%)

TagGeN 68.75 75.49 78.32 77.16 78.82 79.09 76.27(%)

Table 4. F-measure of SPN Extraction

�������System
Dataset

100 200 300 400 500 600 Average

Our system 88.78 90.26 90.32 90.66 90.88 90.80 90.28(%)

ABGene 63.74 69.02 62.86 66.79 70.74 71.83 67.56(%)

TagGeN 74.02 78.72 80.83 80.48 81.56 81.90 79.56(%)

Table 5. Processing Time of SPN Extraction

�������System
Dataset

100 200 300 400 500 600

Our system 2.81 3.50 4.23 4.85 5.46 6.23(sec)

ABGene 19.01 39.28 56.12 74.31 94.11 113.00(sec)

TagGeN 5913 11925 18777 24970 30979 36324(sec)

the approaches, with no conspicuous differences in performance for various
sizes of data. Due to the substring matching method our system showed 2%
low accuracy than that of ABGene, while it produced high recall and F-
measure as shown in Table 3 and Table 4. In addition, our system was order
of magnitude faster due to protein name hashing and simplified tagging
process, as shown in Table 5.

– MPN Extraction
‘Exact’ means the case every words in an MPN is extracted correctly. When
some range of an MPN is partially extracted, it is named as ‘Partial’. As
shown in Table 6, our approach outperformed TagGeN in MPN extraction.
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Table 6. Performance of MPN Extraction

Recall(%) Precision(%) F-measure(%)

Our system(exact/partial) 84.25/91.56 86.65/91.35 84.84/91.84

TagGeN(exact/partial) 80.23/86.51 87.81/91.15 83.84/88.77

Table 7. Performance of Interaction Extraction

Precision(%) Recall(%) F-measure(%)

76.58 92.70 83.87

– Protein Interaction Extraction
We used 80 discriminating verbs in order of high P-Score. Selected 100 sen-
tences including 14 negative, 8 compound sentence structures, and 121 pro-
tein interactions were used. From the sentences, we got 139 protein inter-
actions. The number of interactions obtained by only discriminating verbs
were 89, and 50 relations were added from the sentences in the candidate
event set. We obtained F-measure over 80% as shown in Table 7.

5 Conclusion

We developed an extraction system for proteins and their interactions. Our pro-
tein name substring matching method and more abundant lexicon improved
overall system performance. We also defined discriminating verbs and extracted
them using a probabilistic model. We extracted 80 discriminating verbs by Pois-
son distribution. Finally, we defined events, and by their confidence values ex-
tracted their interactions. We observed improved performance in experiments
with biological data.

Some of future research directions include: First, current simple substring
matching method might cause low precision, which can be improved; Second,
current algorithm includes ad hoc steps, and a more systematic algorithm for
interaction extraction can be devised; Third, a thoughtful consideration for nat-
ural language processing is needed for more enhanced information extraction;
Finally, more experiments with additional data will help verify our system.
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Abstract. In recent years, the problem of finding the different aspects
existing in a dataset has attracted many authors in the domain of knowl-
edge quality in KDD. The discovery of knowledge in the form of associ-
ation rules has become an important research. One of the most difficult
issues is that an enormous number of association rules are discovered,
so it is not easy to choose the best association rules or knowledge for a
given dataset. Some methods are proposed for choosing the best rules
with an interestingness measure or matching properties of interesting-
ness measure for a given set of interestingness measures. In this paper,
we propose a new approach to discover the clusters of interestingness
measures existing in a dataset. Our approach is based on the evaluation
of the distance computed between interestingness measures. We use two
techniques: agglomerative hierarchical clustering (AHC) and partition-
ing around medoids (PAM) to help the user graphically evaluates the
behavior of interestingness measures.

1 Introduction

Knowledge quality has become an important issue of recent researches in KDD.
The problem of selecting the best knowledge for a given dataset has attracted
many authors in the literature. Our approach is based on the knowledge repre-
sentation in the form of association rules [2], one of the few models dedicated
to unsupervised discovery of rules tendencies in data. With association rules,
many authors have proposed a lot of interestingness measures to evaluate the
best matched knowledge from a ruleset: to select the best measures or the best
rules. According to Freitas [5], two kinds of interestingness measures existing
can be differentiate: objective and subjective. Subjective measures are strongly
influenced by the user’s goals and his/her knowledge or beliefs, and are combined
to specific supervised algorithms in order to compare the extracted rules with
what the user knows or wants [13] [12], rule novelty and unexpectedness in point
of view of the user are captured. Objective measures are statistical indexes that
depend strictly on the data structures. The definitions and properties of many
objective measures are proposed and surveyed [3] [8] [16] to study the behavior of
the objective measures to design a suitable measure or to help the user to select
the best ones with their preferences. We focus on objective measures (called mea-
sure for short) as a natural way to discover different hidden aspects in the data.
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Many interesting surveys on objective measures can be found in the litera-
ture. They mainly address two related research issues: the definition of the set
of principles or properties that lead to the design of a good measure; their com-
parison from a data-analysis point of view to study measure behavior in order
to help the user to select the best ones [8][16][17][10].

In this paper, we propose a new approach to evaluate the behavior of 35
interestingness measures discussed in the literature to discover the clusters of
interestingness measures existing in the user’s dataset. Our approach is based
on the distance computed between interestingness measures by using the two
clustering methods agglomerative hierarchical clustering (AHC) and partition-
ing around medoids (PAM) to help the user to discover the behavior of the
interestingness measures studied in his/her dataset graphically.

The paper is organized as follows. In Section 2, we present the correlation
and the distance between measures. In Section 3, we introduce two views for
evaluating the behavior of a set of 35 measures on a dataset. Finally, we conclude
and introduce some future researches.

2 Distance Between Measures

Based on the idea of measuring the the statistical surprisingness of implication
theory [7] that we have mentioned in [10], we continue to extend the principles
discussed from [10]. Let R(D) = {r1, r2, ..., rp} denote input data as a set of p
association rules derived from a dataset D. Each rule a ⇒ b is described by its
itemsets (a, b) and its cardinalities (n, na, nb, nab). Let M be the set of q available
measures for our analysis M = {m1,m2, ...,mq}. Each measure is a numerical
function on rule cardinalities: m(a⇒ b) = f(n, na, nb, nab).

For each measure mi ∈M , we can construct a vector
mi(R) = {mi1,mi2, ...,mip}, i = 1..q, where mij corresponds to the calculated
value of the measure mi for a given rule rj .

The correlation value between any two measures mi,mj{i, j = 1..q} on the
set of rules R will be calculated by using a Pearson’s correlation coefficient CC
[15], where mi,mj are the average calculated values of vector mi(R) and mj(R)
respectively.

CC(mi,mj) =
∑p

k=1[(mik −mi)(mjk −mj)]√
[
∑p

k=1(mik −mi)2][
∑p

k=1(mjk −mj)2]

In order to interpret the correlation value, we introduce the two following
definitions:

Definition 2. Correlated measures (τ -correlation). Two measures mi and mj

are correlated with respect to the dataset D if their absolute correlation value
is greater than or equal to a threshold τ : |CC(mi,mj)| ≥ τ .
Definition 3. Distance. The distance d between two measures mi,mj is defined
by:

d(mi,mj) = 1− |CC(mi,mj)|
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As both correlation and distance are symmetrical, the q(q − 1)/2 values can
be stored in one half of a table q× q. We then use the distances computed from
this table for both the AHC and PAM methods.

3 Measure Behavior

3.1 Data Description and Used Measures

To study the measure behavior, we try to evaluate the effect of measures based on
the distance calculations for the dataset D1. We use the categorical dataset mush-
room (D1) from Irvine machine-learning database repository [4]. We then gen-
erate the set of association rules (ruleset) R1 from the dataset D1 using the the
algorithm Apriori [1]. We use 35 interestingness measures to this study (34 mea-

sures are referenced in [10] and a measure II = 1−
∑n

ab

k=max(0,na−nb)

Cna−k
nb

Ck
n

b

Cna
n

).
A remark is that EII[α = 1] and EII[α = 2] are two entropic versions of the II
measure). Hereafter, we use this ruleset as our knowledge data for analysis.

Table 1. Ruleset description

Dataset Items Transactions Average length Number of rules Ruleset
of transactions (support threshold)

D1 118 8416 22 123228 (12%) R1

Our aim is to discover the behavior of the measures via two views: the strong
relation and the relative distance between measures occur when they are applied
to the distance matrix (or distance table) calculated from R1 (see Sec. 2). This
result is useful because we can capture the different aspect or the nature of the
available knowledge existing in the rulesets. We use the two techniques AHC and
PAM for each of these views respectively.

3.2 With AHC

Fig. 1 illustrates the result computed from R1. The horizontal line goes through-
out the cluster dendrogram has the small distance 0.15 determining the clus-
ters of measures having strong relation (strongly correlated). The assignment
τ = 0.85 = 1− 0.15 of τ -correlation is used because this value is widely accept-
able in the literature. The clusters are represented in details in Tab. 2.

Intuitively, the user can choose the biggest cluster in Tab. 2 contains the
measures Lift, Rule Interest, Phi-Coefficient, Kappa, Similarity Index, Putative
Causal Dependency, Dependency, Klosgen, Pavillon for their first choice. In this
cluster we can easily see two strong related clusters with four measures for each.
This cluster gives the strongest effect on evaluation the similarity between two
parts of an association rule. Another observation illustrates the existence of a



A Data Analysis Approach 333

Fig. 1. View on the strong relation between measures

Table 2. Clusters of measures with AHC (distance = 0.15)

Cluster R1
1 Causal Confidence, Causal Confirmed-Confidence, Confidence,

Descriptive Confirmed-Confidence, Laplace
2 Causal Confirm, Descriptive Confirm, Example & Contra-Example,

Least Contradiction
3 Causal Support
4 Collective Strength
5 Conviction
6 Cosine, Jaccard
7 Dependency, Kappa, Klosgen, Lift, Pavillon, Phi-Coefficient,

Putative Causal Dependency, Rule Interest, Similarity Index
8 EII, EII 2
9 Gini-index, J-measure
10 II
11 Loevinger
12 Odds Ratio
13 Sebag & Schoenauer
14 Support
15 TIC
16 Yule’s Q, Yule’s Y

confidence cluster (the first cluster in Tab. 2) with Causal Confidence, Causal
Confirmed-Confidence, Laplace, Confidence, Descriptive Confirmed-Confidence.
The user can then select this cluster to discover all the rules have the effect of
high confidence.

This view is useful because the user can determine the strong relation be-
tween interestingness measures via the graphical representation. The hierarchical
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structure allows the user clearly seeing the clusters of measures that are con-
nected closely with the hierarchical level computed.

3.3 With PAM

We can see relatively the distance between clusters by applying the principal
component analysis, the number of cluster is determined from the first view
(Sec. 3.2). For example, Fig. 2 illustrates the result obtained from R1. Each
symbol from Fig. 2 represents every measure in the same cluster. PAM is very
useful because it gives a graphical view of clusters intuitively.

The user can now choose the aspects in the ruleset by viewing the clus-
ters with their distances calculated (Fig. 2) based on the projection on the
two principal components. The measures that have the smallest distances be-
tween them will be grouped in one cluster. In Tab. 3 the two clusters 1 (Causal
Confirmed-Confidence, Descriptive Confirmed-Confidence, Confidence, Laplace,
Causal Confidence) and 2 (Least Contradiction, Example & Contra-Example,
Causal Confirm, Descriptive Confirm) as two different aspects the most close
with the very small between-distance or separation. Then, the user can obtain
automatically the representative measures for each of these two clusters are
Causal Confirmed-Confidence and Example & Contra-Example. Another useful

Fig. 2. Views on the relative distance between clusters of measures



A Data Analysis Approach 335

Table 3. Clusters of measures with PAM

Cluster R1
1 Causal Confidence, Causal Confirmed-Confidence, Confidence,

Descriptive Confirmed-Confidence, Laplace
2 Causal Confirm, Descriptive Confirm, Example & Contra-Example,

Least Contradiction
3 Causal Support, Kappa, Lift, Phi-Coefficient, Rule Interest, Similarity Index
4 Collective Strength
5 Conviction
6 Cosine, Jaccard
7 Dependency, Klosgen, Pavillon,Putative Causal Dependency
8 EII, EII 2
9 Gini-index, J-measure
10 II
11 Loevinger
12 Odds Ratio
13 Sebag & Schoenauer
14 Support
15 TIC
16 Yule’s Q, Yule’s Y

information is that the diameter of the cluster 1 is smaller than the cluster 2 so
this observation illustrates the strongly coherent interestingness values computed
from the measures in cluster 1, representing the high value of the confidence as-
pect. Another choice is that the user can select in Tab. 3 one aspect formed by
the cluster 3 (Causal Support, Kappa, Lift, Phi-Coefficient, Rule Interest, Sim-
ilarity Index) that is very far from the two clusters 1&2 but the nearest cluster
with the others such as 9,7,15 (Fig. 3) and having Kappa as the representative
measure for this cluster. The user can also interest in the cluster 10 (II) in Tab.
3 standing isolated with other clusters (Fig. 3).

This view based on relative distance has an important role because it allows
the user to choose the aspects that he/she takes interested by regarding the scale
between them. The distance between clusters will help the user to evaluate more
precisely the near or far between these aspects.

3.4 Comparing with AHC and PAM

With two different evaluations based on the two views of AHC and PAM we can
obtain some interesting results: cluster that seems independent from the nature
of data and the selection of rules. Comparing from Tab. 2 and Tab. 3 we can
easily see sixteen clusters agreed perfectly (see Tab. 4).

To understand the behavior of the measures we will examine some important
clusters in Tab. 4. For example, the first cluster (Causal Confidence, Causal
Confirmed-Confidence, Confidence, Descriptive Confirmed-Confidence, Laplace)
has most of the measures issued from the Confidence measure. The fifth cluster
(Cosine, Jaccard) has a strong relation with the fifth property proposed by Tan
et al. [16]. The sixth cluster (Dependency, Klosgen, Pavillon, Putative Causal
Dependency) is necessary to distinguish between the strength of the rule a⇒ b
from b ⇒ a. The seventh cluster (EII, EII 2) are two measures obtained with
different parameters of the same original formula and very useful in evaluating
the entropy of implication intensity. The ninth cluster (II) has only one measure
provides the strong evaluation on the intensity of implication. The tenth cluster
(Kappa, Lift, Phi-Coefficient, Rule Interest, Similarity Index) mainly gathers the
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Table 4. Clusters agreed with both AHC and PAM

Cluster R1
1 Causal Confidence, Causal Confirmed-Confidence,

Confidence, Descriptive Confirmed-Confidence, Laplace
2 Causal Confirm, Descriptive Confirm, Example & Contra-Example, Least Contradiction
3 Collective Strength
4 Conviction
5 Cosine, Jaccard
6 Dependency, Klosgen, Pavillon,Putative Causal Dependency
7 EII, EII 2
8 Gini-index, J-measure
9 II
10 Kappa, Lift, Phi-Coefficient, Rule Interest, Similarity Index
11 Loevinger
12 Odds Ratio
13 Sebag & Schoenauer
14 Support
15 TIC
16 Yule’s Q, Yule’s Y

measures from different properties such as symmetry, anti-symmetry [16]. The
last cluster (Yule’s Y, Yule’s Q) gives a trivial observation because the measures
are all derived from Odds Ratio measure, that is similar to the second property
proposed by Tan et al. [16].

4 Conclusion

To understand the behavior of the interestingness measures on a specific dataset,
we have studied and compared the various interestingness measures described in
the literature to find the different aspects existing in a dataset. Our approach
is the first step towards the process of evaluating the knowledge issued in the
form of association rules in the domain of knowledge quality research. We use a
data analysis approach based on the distance computed between interestingness
measures (with two clustering methods AHC and PAM) in order to evaluate the
behavior of 35 interestingness measures. These two graphically clustering meth-
ods can be used to help a user in selecting the best measures. We also determine
sixteen clusters with some interesting results: cluster that seems independent
from the nature of data and the selection of rules. We also evaluate the behavior
of the measures on some important clusters agreed with both AHC and PAM.
With this result, the decision-maker will decide what measures are interesting
to capture the best knowledge.

Our future research will be investigated in introducing a new approach to
facilitate the the user’s decision making from the best interestingness measures
to select the best association rules (the best knowledge discovered).
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Abstract. Extracting useful knowledge from numerous distributed data
repositories can be a very hard task when such data cannot be directly
centralized or unified as a single file or database. This paper suggests
practical distributed clustering algorithms without accessing the raw
data to overcome the inefficiency of centralized data clustering methods.
The aim of this research is to generate unit volume based probabilis-
tic mixture model from local clustering results without moving original
data. It has been shown that our method is appropriate for distributed
clustering when real data cannot be accessed or centralized.

1 Introduction

Data clustering is a method of grouping or partitioning similar patterns to sub-
sets. Patterns that are grouped in the same cluster can be analyzed to have
closer relationship than other patterns in different clusters. Clustering algo-
rithms are applied in various areas such as visualization, pattern recognition,
learning theory, computer graphics, and neural networks [1]. Recently, issues
on distributed clustering has arisen. Distributed clustering is particularly useful
when distributed data are hard to be centralized because of privacy, communica-
tion cost, and the limit of storage. Against this background, we suggest practical
distributed algorithms.

Our method runs in three steps. First, local clustering results are gathered
without moving the original data. Second, based on the received results (mean
and covariance that represent the local clusters) each unit volume in the global
data space is assigned to clusters with the highest probability. Finally, clusters
with similar probability distributions are merged.
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Unit volume based distributed clustering has three advantages compared to
other existing distributed clustering methods. First, distributed data are clus-
tered in parallel without physically moving the data, and each local site may
run different clustering algorithms. Second, the size of the unit volume can be
configured freely based on the size and domain of the data, so that global cluster-
ing can approximate on local data distributions. Third, when merging normally
distributed models in global clustering, a diversity of mixture models can be
deduced during the process which will lead to near optimal clustering models
that represent overall data.

Two types of distributed data exist: horizontally distributed data where data
are distributed by instance, and vertically distributed data where data are dis-
tributed by attributes. In this paper we concern only horizontally distributed
data to perform clustering.

2 Related Work

Two major types of distributed algorithms exist depending on the relationship
between global clustering and local clustering. The first type is where the lo-
cal clustering algorithm is related to the global clustering algorithm. The other
type is where the local and global clustering is independent and does not inter-
fere with each other. The former includes DBDC [2] and k-windows distributed
clustering [3,4], and the latter includes privacy preserving distributed cluster-
ing [5].

DBDC is an extension of DBSCAN [6] which is a density based clustering
algorithm. It performs DBSCAN in each local clustering phase and DBSCAN is
used once again in global clustering. This method requires large memory space
for saving every distance value between data as a tree. And global clustering
algorithm is deeply related to local clustering algorithms. Therefore, different
clustering algorithms can not be introduced separately for local clustering and
global clustering.

K-windows distributed clustering uses k-windows algorithm to cluster data
at each local site. Global clustering is performed by merging local clusters of high
similarity. The drawback is that there are too many parameters that the user
must define, and local clustering algorithm is bound to k-windows clustering
algorithm, which means that the user doesn’t have any freedom to use other
clustering algorithms for local clustering.

Privacy preserving distributed clustering algorithm complements the inher-
ent drawbacks of DBDC and k-windows distributed clustering, and let local
clustering algorithms be independent from global clustering algorithms. In other
words, each local site is allowed to use different clustering algorithms to clus-
ter its local data. The drawback is that the user must define the universal set
of potential clustering models and produce a dataset through MCMC sampling
before global clustering.

Based on these backgrounds about distributed clustering, our algorithm not
only allows each local site to choose its clustering algorithm freely but the user
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only needs to decide the unit volume size which gives better chances to deduce
various mixture models.

3 Unit Volume Based Distributed Clustering

3.1 Local Clustering

If we let random variable X = (X1, X2, ..., Xn) represent features of the instance,
a probability density function indicates a local cluster from the local clustering
results. That is, instances in the same local cluster are represented by the mean
and the covariance values. Then the clustering results (i.e. mean and covariance
value of each local cluster) are sent to the global site to be used in global cluster-
ing. Therefore, different clustering algorithms are able to run in each local site.
The overall conceptual diagram is shown in Fig 1.

Local Clustering Results Local Clustering Results Local Clustering Results

Clustering each unit volume 
based on probability

Fig. 1. Conceptual diagram of unit volume based distributed clustering

3.2 Global Clustering

In global clustering, distribution of instances are presumed by the results of
local clustering. First, data space is divided into unit volume V = hn equally
where n ∈ * is the number of features and h is the given unit length. Next,
centerV , which is the central point of each unit volume, is used to decide which
cluster the unit volume is most likely to be assigned to, based on the probability
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density function. The probability density function is calculated by the mean and
the variance calculated by each local clustering. Therefore each unit volume is
assigned to clusters depending on the results of,

Cluster(centerV ) = argmaxci∈C

∫
V

f(X = centerV )

= argmaxci∈C volumeV (1)

× 1
σ
√

2π
exp[−1

2
(centerV − μci)

tΣ−1
ci

(centerV − μci)]

where ci is the ith cluster, C is the set of clusters, volumeV is the volume of one
unit, μci , Σci , σ are mean, variance, standard deviation values of ci, respectively.

3.3 Merging

The merging process is to reflect the similarity between local clusters. Two meth-
ods, mean based merging and unit volume based merging, have been introduced.
We present the following notations to facilitate the description on merging clus-
ters:

– CGlobal = {c1, c2, ..., ci} is a set of global clusters.
– Vtotal = {V1, V2, ..., VN} is a set of unit volumes in the data space.
– μci is the mean point of cluster ci.
– |Di| is number of instances in cluster ci.
– pci(x) is the approximated integration of probability density function fci

with unit volume where central point is x.
– pmerge is the probability of sampling the sample point from mixture model

of two merged clusters.
– psplit is the probability of sampling the sample point from two separate

clusters.
– mixtureModel(fci, fcj) is a mixture of two normally distributed models, fci

and fcj , with different weights [7].

If pmerge >psplit then the two clusters are merged and mixtureModel(fci, fcj)
is calculated with weights given by ratio of |Di|. The overall algorithm is:

Function mergingGlobalClusters (CGlobal, Vtotal, mergeType)
if (mergeType==meanBased) then

for i = 1 to |CGlobal| do
μci = E[centerV ] ∀centerV ∈ ci

endfor

for all adjacent ci, cj ∈ Cglobal do
wi = |Di|

|Di|+|Dj | , wj = |Dj |
|Di|+|Dj |

calculate pmerge, psplit
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if pmerge > psplit then
fci = mixtureModel(fci, fcj)
ci ← {ci

⋃
cj} /* merging */

endif
endfor

Endfunction

Mean Based Merging. Mean points in each cluster are considered for merging.
Therefore,

pmerge = wipci(μci)× wjpcj (μcj ) (2)
psplit = pci(μci)× pcj(μcj ) (3)

Unit Volume Based Merging. Every central point of the unit volume in the
cluster is considered for merging. Therefore,

pmerge =
∏

centerV ∈ci,cj

[wipci(centerV ) + wjpcj (centerV )] (4)

psplit = [
∏

centerV ∈ci

pci(centerV )]× [
∏

centerV ∈cj

pcj(centerV )] (5)

4 Experiments

4.1 Description of Datasets

Five different datasets were tested in the experiment. A real-world dataset, Iris,
was from the UCI Machine Learning Repository 1. The other four datasets,
2D3C3S, 2D3C3Sbiased, 3D3C3S, 3D3C3Sbiased (D: number of attributes, C:
number of class, S: number of distributed sites, biased: dataset that has specific
class biased in a certain site) were artificially generated. For example, 2D3C3S
is generated by selecting 3000 instances randomly out of three different type
of normally distributed models each corresponding to three different type of
classes, while 3D3C3S is generated by selecting 1800 instances randomly from
three different type of normally distributed models. Table 1 shows the number
of features, classes, clusters and instances of the datasets used in our experi-
ments.

4.2 Experimental Results

In this experiment, k-means clustering has been adopted for local clustering and
the classification accuracy was used to measure the quality of clustering. The
accuracy was calculated by comparing instances in resulting clusters with actual
classes. In other words, accuracy is the hit ratio of the instances that matches
with the real class which is specified in formula (6).
1 http://www.ics.uci.edu/∼mlearn/MLRepository.html
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Table 1. Number of features, classes, clusters and instances of each dataset

Dataset Feature Class Cluster Instance

Iris 4 3 3 150
2D3C3S 2 3 3 3000
2D3C3S(biased) 2 3 3 300
3D3C3S 3 3 3 1800
3D3C3S(biased) 3 3 3 900

(a) True Model (b) Global Clustered Model (c) Merged Model 

Fig. 2. Representation of 3D3C3S dataset

accuracyCluster =
number of hit instance

number of total instance
(6)

In Fig.2 we can see the clustered models with 3D3C3S data. Fig.2(a) is the
true model of 3D3C3S data, representing each data point in the three dimen-
sional feature space. Fig.2(b) shows the results of global clustering. Fig.2(c) is
the final model after merging. By comparing Fig.2(a) with Fig.2(c) we can see
that our clustered model approximates the true model accurately.

Table 2 shows the accuracies for the five datasets compared among the four
different algorithms. Global K-means indicates experiments performed with

Table 2. Comparison of different clustering algorithms using global and local k-means

algorithm and unit volume based distributed clustering with mixture models

Global Local MeanBased VolumeBased
Dataset K-means K-means(avg) GC GC
Iris 86.2% 84.6% 73.5% 79.3%
2D3C3S 84.2% 83.1% 76.8% 78.2%
2D3C3S(biased) 81.3% 52.6% 62.4% 69.3%
3D3C3S 82.1% 79.8% 71.4% 70.6%
3D3C3S(biased) 77.0% 49.5% 59.7% 60.4%
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all instances running k-means algorithm 10 times. Local K-means(avg) indi-
cates average accuracy calculated by doing k-means on each local site. Mean-
Based GC is our unit volume algorithm performed by merging clusters with
mean points while Volume Based GC indicates merging considering all unit
volume’s center points. From the results, Global K-means showed the highest
accuracies because clustering was performed on the whole dataset. Note that Lo-
cal K-means(avg) produced better results than both MeanBased GC and
VolumeBased GC for unbiased data, but the latter algorithms outperformed
the former algorithm for biased data. This is because Local K-means simply
computes the averaged results regardless of the distribution of instances, while
MeanBased GC and VolumeBased GC generate appropriate clusters con-
sidering all the instances at every site. Additionally as MeanBased GC and
VolumeBased GC scarcely have significant difference on accuracy. Mean-
Based GC is recommended when dealing with large datasets due to the low
computational overhead.

From this experiment we can say that the unit volume distributed clustering
performed well, considering real world data being biased in distributed environ-
ments, and gives the merit that distributed data can be clustered without being
directly accessed or physically moved from one site to another with high accu-
racy. Among the unit volume distributed clustering algorithms, MeanBased
GC turned out to be our gold standard algorithm due to low computational
cost and high accuracy.

5 Summary and Discussion

Throughout this paper we have proposed a method that clusters global data
probabilistically based on the unit volume without physically moving or directly
accessing distributed data. Likewise, similar clusters are merged considering the
mean points or probability of unit volume’s central points in mixture models
at global clustering stage. The method introduced in this paper proved to show
better performance when distributed data is impossible to reach directly and
instance classes are biased at certain sites, in particular.

Some of future research directions include: First, setting the definition of the
unit volume to describe clusters more naturally; Second, further experiments
with various types of distributed data; Third, using other measures of cluster
similarity such as the distance between cluster centers; Finally, improving our
global clustering method to overcome its limited capability and to handle data
in high dimensional space.
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Abstract. In this paper, we discuss a method of finding useful clusters
of web pages which are significant in the sense that their contents are
similar or closely related to ones of higher-ranked pages. Since we are
usually careless of pages with lower ranks, they are unconditionally dis-
carded even if their contents are similar to some pages with high ranks.
We try to extract such hidden pages together with significant higher-
ranked pages as a cluster.

In order to obtain such clusters, we first extract semantic correlations
among terms by applying Singular Value Decomposition(SVD) to the
term-document matrix generated from a corpus w.r.t. a specific topic.
Based on the correlations, we can evaluate potential similarities among
web pages from which we try to obtain clusters. The set of web pages
is represented as a weighted graph G based on the similarities and their
ranks. Our clusters can be found as pseudo-cliques in G. We present an
algorithm for finding Top-N weighted pseudo-cliques. Our experimen-
tal result shows that quite valuable clusters can be actually extracted
according to our method.

1 Introduction

We often try to obtain useful information or knowledge from web pages on
the Internet. Information retrieval (IR) systems are quite powerful and helpful
tools for this task. For instance, Google is well known as a popular IR system
with a useful search engine. Given some keywords we are interested in, such a
system shows a list of web pages that are related to the keywords. These pages
are usually ordered by some ranking mechanism adopted in the system. For
example, the method of PageRank [1] adopted in Google is widely known to
provide a good ranking.

In general, only some of the higher-ranked pages are actually browsed and
the others are discarded as less important ones, since the list given by the system
contains a large number of pages. However, such a system presents just one can-
didate of ranking from some viewpoint. Therefore, there might exist many pages
which are unfortunately lower-ranked but are significant for us. More concretely
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speaking, the ranking by PageRank is determined based on the link structure
of each web page. For example, pages without enough links from others tend to
be lower-ranked even if they have significant contents similar to higher ranked
pages. From this point of view, it would be worth investigating a framework
in which such implicitly significant pages are listed together with higher-ranked
pages. We discuss in this paper a method for finding useful clusters of web pages
which are significant in the sense that their contents are similar or closely related
to ones of higher-ranked pages.

1.1 Similarities Among Web Pages

In order to realize it, we first extract semantic correlations among terms by
applying Singular Value Decomposition(SVD) [3] to the term-document matrix
generated from a corpus gathered with respect to a specific topic. Given a set of
ranked web pages for which we try to extract clusters, we can evaluate potential
similarities among them based on the semantic correlations of terms. In previous
approaches, similarities among web pages are often determined based on the link
structure of web pages [2]. More concretely speaking, it has been considered that
web pages with similar topical contents have dense links among them. Such a
link structure might roughly reflect similarities among relatively mature pages.
However, many interesting pages are newly released day by day and it is often
difficult to expect a dense link structure of fresh pages. As the result, based
on the link-based approach, we will fail in finding similarities among such new
pages even if they have similar contents. On the other hand, we try to capture
similarities among web pages independently of their link structure.

1.2 Extracting Clusters by Clique Search

The set of web pages is then represented as a weighted undirected graph based
on the similarities and their ranks. If a pair of web pages has a similarity higher
than a given threshold, they are connected by an edge. Moreover, each vertex
(i.e. a web page) is assigned a weight so that higher-ranked pages have higher
weights. Our clusters can be extracted by finding pseudo-cliques in the graph
G. A pseudo-clique is defined as the union of several maximal cliques in G with
a required degree of overlap. Simple theoretical properties of pseudo-cliques are
presented. Based on the properties, we can obtain some pruning rules for pseudo-
clique search. We design a depth-first algorithm for finding pseudo-cliques whose
weights (evaluation values) are in the top N . Our preliminary experimental result
shows that a quite valuable cluster can be actually extracted as a pseudo-clique
in G.

One might claim that a naive method would be sufficient for extracting clus-
ters consisting of similar higher-ranked and lower-ranked pages. That is, for each
web page with a higher rank, we can gather lower-ranked pages similar to the
higher-ranked one. As well as this kind of clusters, our method can extract other
various kinds of clusters simultaneously by changing the weighting of web pages
in our graph construction process. Under some weighting, for example, a cluster
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consisting of several pages which are moderately ranked might be obtained as in
the top N . In this sense, our method includes such a naive method.

Our method for extracting clusters by clique search is a general framework.
The literature [6,9] has investigated methods for finding appropriate data ab-
stractions (groupings) of attribute values for classification problems, where each
abstraction is extracted as a weighted exact clique. A gene expression data has
been also processed in [7]. A cluster consisting of genes which behave similarly
is extracted as an exact clique. The current pseudo-clique search can be viewed
as an extension of these previous search methods for exact cliques [6,7,8,9].

Our clique search-based method has advantage over previous clustering meth-
ods in the following points. In the traditional hierarchical or partitional cluster-
ing, the whole set of data is divided into some clusters. Although the number
of clusters is usually controlled by a user-defined parameter, it is well known
that providing an adequate value for the parameter is not so easy. Under an
inadequate parameter setting, we often obtain many useless clusters. From the
computational point of view, the cost for producing such useless clusters will be
quite waste. On the other hand, in our method, we can extract only nice clus-
ters whose evaluation values are in the top-N , where N can be given arbitrarily.
In this sense, we will never suffer from quite useless clusters. Furthermore, ex-
tracting only nice clusters has an advantage in the computation. We can enjoy
a branch-and-bound search in order to extract them. In our search, we do not
have to examine many branches concerning clusters not in the top N .

2 Semantic Similarity Among Web Pages

In order to find clusters of web pages, we have to measure similarities among
web pages. For the task, we follow a technique in Information Retrieval(IR) [3].

2.1 Term-Document Matrix

Let D be a set of documents and T the set of terms appeared in D 1. We
first remove too frequent and too infrequent terms from T . The set of remain-
ing terms, called feature terms, is denoted by T ∗. Supposing |T ∗| = n, each
document di ∈ D can be represented as an n-dimensional document vector
di = (tfi1, . . . , tfin)T , where tfij is the frequency of the term tj ∈ T ∗ in the doc-
ument di. Thus, D can be translated into a term-document matrix (d1, . . . , d|D|).

2.2 Extracting Semantic Similarity with SVD

For the term-document matrix, we apply Singular Value Decomposition(SVD)
in order to extract correlations among feature terms [3].

An m × n matrix A can be decomposed by applying SVD as A = UΣV T ,
where U and V are m × m and n × n orthogonal matrices, respectively. Each
1 In order to obtain such terms from documents without spaces among words (like

Japanese documents), we need to apply Morphological Analysis to D.
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column vector in U (V ) is called a left (right) singular vector. Σ is an m × n
matrix of the form

Σ =

⎡
⎢⎢⎢⎣

σ1 O

. . . Or×(n−r)
O σr

O(m−r)×r O(m−r)×(n−r)

⎤
⎥⎥⎥⎦,

where rank(A) = r (r ≤ min{m, n}) and σi is called a singular value. First r
left singular vectors u1, . . . , ur correspond to a orthonormal basis and define a
new subspace of the original one in which column vectors of A exist, where the
m× r matrix (u1, . . . , ur) is denoted by Ur.

Let us assume the matrix A is a term-document matrix generated from a set
of documents. Intuitively speaking, by applying SVD to A, we can capture poten-
tial but not presently evident correlations among the terms. Highly semantically
correlated terms give a base vector ui and define a dimension corresponding to
a compound term. Such new base vectors define a new subspace based on com-
pound terms. For documents d1 and d2 not in A, therefore, if they are projected
on the subspace, we can find similarity between them based on the semantic
correlations among terms captured from the original documents in A.

In order to take such semantic similarities of web pages into account, we
prepare a corpus of documents written about some specific topic. Then by ap-
plying SVD to the term-document matrix generated from the corpus, we obtain
a subspace reflecting semantic correlations among terms in the corpus. Let Ur

be the orthonormal basis defining the subspace 2.
Besides the corpus, with some keywords related to the corpus topic, we re-

trieve a set of web pages P from which we try to obtain clusters. Using the same
feature terms for the corpus, each document pi ∈ P is represented as a vector
pi = (tfi1, . . . , tfin)T , where tfij is the frequency of the feature term tj in pi.
Then each web page pi is projected on the subspace as pr

i = UT
r pi.

A similarity between web pages pi and pj , denoted by sim(pi, pj), is defined

based on the standard cosine measure, that is, sim(pi, pj) =
pr

i ·pr
j

‖pr
i ‖×‖pr

j ‖
.

3 Finding Clusters by Top-N Pseudo-Clique Search

3.1 Graph Representation of Web Pages

Let P be a set of web pages from which we try to extract clusters. In order to
find our clusters, P is represented as an undirected weighted graph G.

Assume we computed the semantic similarities among pages in P according
to the procedure just discussed above. Let δ be a similarity threshold. Each
2 In IR, we do not always use r left singular vectors. A part of them, that is, Uk =

(u1, . . . , uk) (k < r) is usually used for approximation. Such an approximation with
Uk is called Latent Semantic Indexing (LSI) [3].
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page pi ∈ P corresponds to a vertex in G. For any web pages pi, pj ∈ P , if
sim(pi, pj) ≥ δ, then they are connected by an edge. Furthermore, we assign a
weight to each vertex (page) based on its rank, where a higher-ranked page is
assigned a larger weight. The weight of a page p is referred to as w(p).

3.2 Top-N Weighted Pseudo-Clique Problem

Our cluster of similar pages can be obtained as a weighted pseudo-clique in the
graph G. In fact, we obtain only nice clusters by extracting maximal weighted
pseudo-cliques whose evaluation values are in the top-N . Before giving the prob-
lem description, we first define degree of overlap for a class of maximal cliques.

Definition 1 (Degree of Overlap for Maximal Clique Class). Let C =
{C1, . . . , Cm} be a class of maximal cliques. The degree of overlap for C, denoted
by overlap(C), is defined as overlap(C) = minCi∈C

{∣∣∩Cj∈CCj

∣∣ /|Ci|
}

.

Using the notion of overlap degree, our pseudo-cliques is defined as follows.

Definition 2 (Pseudo-Clique). Let C = {C1, . . . , Cm} be a class of maximal
cliques in a graph. pseudo(C) = ∪Ci∈CCi is called a pseudo-cliques with the
overlap degree overlap(C). Its size and weight (evaluation value) are given by
|pseudo(C)| and w(pseudo(C)) = Σv∈pseudo(C)w(v), respectively 3. Moreover, the
shared vertices,

⋂
Ci∈C Ci, is called the core.

We can now define the problem of finding Top-N weighted pseudo-cliques.

Definition 3 (Top-N Weighted Maximal τ Pseudo-Clique Problem).
Let G be a graph and τ a threshold for overlap degree. The Top-N Weighted
Maximal τ Pseudo-Clique Problem is to find any maximal pseudo-clique in G
such that its overlap degree is greater than or equal to τ 4 and its weight is in
the top N .

3.3 Algorithm for Finding Top-N Weighted Pseudo-Cliques

We present here an algorithm for finding Top-N weighted pseudo-cliques.
In our search, for a clique Q in G, we try to find a τ -valid pseudo-clique C̃

whose core is Q. In order to precisely discuss how it can be found, we introduce
a notion of extensible candidates for a given clique.

Definition 4 (Extensible Candidates). Let G be a graph and Q a clique
in G. A vertex v ∈ V adjacent to any vertex in Q is called an extensible candidate
for Q. The set of extensible candidates is denoted by cand(Q).

From the definition, we can easily observe the followings.
3 The weight of pseudo-clique is not restricted to the sum of vertex weights. Any

monotone weight under the set inclusion can be accepted in the following discussion.
4 Such a pseudo-clique is said to be τ -valid.
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Observation 1. Let Q and Q′ be cliques in G such that Q ⊆ Q′. Then,
cand(Q) ⊇ cand(Q′) and w(Q) + w(cand(Q)) ≥ w(Q′) + w(cand(Q′)) hold,
where w(Q) is the weight of the clique Q.

Note here that the weight of a pseudo-clique with the core Q is at most
w(Q) + w(cand(Q)). Therefore, a simple theoretical property can be derived.

Observation 2. Let Q be a clique. Assume we already have tentative Top-N
weighted maximal pseudo-cliques and the minimum weight of them is wmin. If
w(Q) + w(cand(Q)) < wmin holds, then for any extension Q′ of Q5, there exists
no pseudo-clique with the core Q′ whose weight is in the top N .

Assume that a τ -valid pseudo-clique C̃ contains a clique Q as its core. C̃
can be obtained as the union of any maximal clique C such that Q ⊂ C and
|Q|/|C| ≥ τ . It should be noted here that for such a clique C, there exists a
maximal clique D in G(cand(Q)) such that Q ∪ D = C, where G(cand(Q)) is
the subgraph induced by cand(G). That is, finding any maximal clique D in
G(cand(Q)) such that |Q|/(|Q| + |D|) ≥ τ is sufficient to obtain the pseudo-
clique C̃. Although one might claim that such a task is quite expensive from
the computational point of view, we can enjoy a pruning in the maximal clique
search based on the following observation.

Observation 3. For a clique Q in G, let us assume that we try to find a τ -
valid pseudo-clique C̃ whose core is Q. For a clique D in G(cand(Q)), if |D| >
( 1

τ − 1) · |Q|, then any extension of D is useless for obtaining C̃.

Furthermore, in a certain case, we can immediately obtain a pseudo-clique
without finding maximal cliques in G(cand(Q)).

Observation 4. Let Q be a clique in G and τ a threshold for overlap degree.
If the followings hold, then Q∪cand(Q) is a τ -valid maximal pseudo-clique with
the core Q.

– ( 1
τ − 1) · |Q| ≥ k holds, where k is an upper bound of the maximum clique

size in G(cand(Q)).
– For any v ∈ cand(Q), its degree in G(cand(Q)) is less than |cand(Q)| − 1.

Upper bounds for the maximum clique size have been widely utilized in
efficient depth-first branch-and-bound algorithms for finding maximum cliques
[4,5,9]. The literature [5] has argued that the (vertex) chromatic number χ can
provide the tightest upper bound. However, identifying χ is an NP -complete
problem. Therefore, approximations of χ are usually computed [4,5,9].

Based on the above properties, Top-N τ -valid weighted pseudo-cliques can
be extracted with a depth-first hybrid search. For each core candidate Q, its
surroundings are explored by finding maximal cliques in G(cand(Q)). In the
search for core candidates, we can enjoy a pruning based on Observation 2.
In the surroundings search, a pruning based on Observation 3 can be applied.
Furthermore, for some core candidates, our surroundings search can be skipped
based on Observation 4. More precise description of our algorithm is found in [10].
5 For a pair of cliques Q and Q′, if Q ⊂ Q′, then Q′ is called an extension of Q.
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4 Experimental Result

In this section, we present a result of our experimentation conducted on a PC
with Xeon-2.4 GHz and 512MB RAM.

We have manually prepared a (Japanese) corpus with 100 documents written
about “Hokkaido” and have selected 211 feature terms from the corpus. Applying
SVD to the 211× 100 matrix, a 98-dimensional subspace has been obtained.

Besides the corpus, we have retrieved 829 web pages by Google with the
keywords “Hokkaido” and “Sightseeing”. The 211× 829 term-document matrix
for the pages has been projected on the subspace in order to capture semantic
similarities among pages. Under the setting of δ = 0.95, we have constructed a
weighted graph G from the projected pages. The numbers of vertices and edges
are 829 and 798, respectively. Each page d has been given a weight defined as
w(d) = 1/rank(d)2, where rank(d) is the rank of d assigned by Google (PageR-
ank). We have tried to extract Top-15 weighted 0.8-pseudo cliques in the graph.

Among the extracted 15 clusters (pseudo-cliques), the authors especially con-
sider that the 11th one is quite interesting. It consists of 6 pages with the ranks,
11th, 381th, 416th, 797th, 798th and 826th. The 11th and 328th pages are index
pages for travel information and we can make reservations for many hotels via
the pages. The 416th page is an article in a private BBS site for travels. It re-
ports on a private travel in Hokkaido and provides an actual information about
hotels and enjoyable foods. The 797th and 798th personal pages give the names
of two hotels serving smorgasbords in Hokkaido. The 826th page lists hotels most
frequently reserved in a famous travel site in 2004. Thus, their contents are very
similar in the sense that all of them give some information about accommoda-
tions in Hokkaido, especially about hotels and foods. When we try to make travel
plans for sightseeing in Hokkaido, we would often care about hotels and foods
as important factors. In such a case, the cluster will be surely helpful for us.

Similar to the literature [8], we can find Top-N clusters of web pages by
an exact clique search. In that case, however, our 11th cluster can never be
obtained. The cluster (that is, a pseudo-clique) consists of two exact maximal
cliques: {11th, 382nd, 797th, 798th, 826th} and {382nd, 416th, 797th, 798th, 826th}.
In the exact case, the former is 11th cluster, whereas the latter 343rd one. It
should be noted that the 416th page will be invisible unless we specify a large
N for Top-N (about 350). However, it would be impractical to specify such a
large N because many clusters are undesirably extracted. Although 416th page
has valuable contents as mentioned above, we will lose a chance to browse it.

In case of pseudo-clique search, the 343rd exact clique can be absorbed into
the 11th clique to form a pseudo-clique. That is, the 343rd cluster can be drasti-
cally raised its rank. As the result, 416th page can become visible by just speci-
fying a reasonable N . Thus, our chance to get significant lower-ranked pages can
be enhanced with the help of pseudo-cliques.

Our experimental result also shows that our pruning rules can be applied
very frequently in our search. The number of cores actually examined was 69981
and our pruning were invoked at 40832 nodes of them. As the result, the total
computation time was just 0.847 second.
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5 Concluding Remarks

In this paper, we discussed a method of finding clusters of web pages which are
significant in the sense that their contents are similar or closely related to ones of
higher-ranked pages. Although we are usually careless of pages with lower ranks,
they can be explicitly extracted together with significant higher-ranked pages.
As the result, our clusters can provide new valuable information for users.

Obtained clusters are very sensitive to the assignment of vertex weights in
our graph construction process. Although the reciprocal of the page rank squared
currently adopted seems to be promising, we have to examine any other candi-
dates. Furthermore, the required degree of overlap for pseudo-cliques also affects
which clusters can be found. In order to obtain good heuristics for these settings,
further experimentations should be conducted.

A meaningful cluster should have a clear explanation why the pages in the
cluster are grouped together or what the common features in the cluster are.
Our current method, unfortunately, does not have any mechanism to provide
it clearly. If such a explanation mechanism is integrated, our clusters would be
more convincing. An improvement on this point is currently ongoing.
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Abstract. A novel inductive logic programming system, called Clas-
sic’cl is presented. Classic’cl integrates several settings for learning, in
particular learning from interpretations and learning from satisfiability.
Within these settings, it addresses descriptive and probabilistic modeling
tasks. As such, Classic’cl (C-armr, cLAudien, icl-S(S)at, ICl, and CLl-
pad) integrates several well-known inductive logic programming systems
such as Claudien, Warmr (and its extension C-armr), ICL, ICL-SAT,
and LLPAD. We report on the implementation, the integration issues as
well as on some experiments that compare Classic’cl with some of its
predecessors.

1 Introduction

Over the last decade, a variety of ILP systems have been developed. At the same
time, some of the most advanced systems such as Progol [12, 16] and ACE [3]
can solve several different types of problems or problem settings. ACE induces
rules (as in ICL [7]), decision trees (as in TILDE [1]) and frequent patterns
and association rules (as in Warmr [8]). However, most of the present ILP tech-
niques focus on predictive data mining setting and also deal with the traditional
learning from entailment setting [4]. The key contribution of this paper is the
introduction of the system Classic’cl, which learns from interpretations in a de-
scriptive setting. The key novelty is that it tightly integrates several descriptive
ILP, such as Claudien [5], Warmr [8], C-armr [6], and LLPADs [15]. This is re-
alized using a generalized descriptive ILP algorithm that employs conjunctive
constraints for specifying the clauses of interest. A wide variety of constraints
is incorporated, including minimum frequency, exclusive disjunctions, and con-
densed representations [6]. By combining constraints in different ways,Classic’cl
can emulate Warmr, Claudien, C-armr and LLPADS as well as some novel vari-
ations. Classic’cl is derived from the implementation of C-armr [6]. The perfor-
mance of Classic’cl is experimentally compared with some of its predecessors,
such as ACE and Claudien. In addition to the descriptive setting, Classic’cl also
includes a predictive learning setting that emulates the ICL system [7]. This
setting is not covered in this paper.

This paper relies on some (inductive) logic programming concepts. The reader
unfamiliar with this terminology is referred to [13] for more details.

In the following section we introduce general constraints for the descriptive
ILP problem and show how known algorithms can be expressed in this formalism.
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A general algorithm to tackle this problem is presented in 3, some implementa-
tional issues are described in section 4 and experiments are presented in section
5. We conclude in section 6.

2 The Descriptive ILP Problem

2.1 Constraint Based Mining Problem

Mannila and Toivonen [11] formalized the task of data mining as that of finding
the set Th(Q, D,L), where Q is a constraint or query, D a data set and L a
set of patterns. Th(Q, D,L) then contains all patterns h in L that satisfy the
constraint Q w.r.t. the data set D, i.e. Th(Q, D,L) = {h ∈ L|Q(h, D) = true}.
When applying this definition of descriptive data mining to ILP, the language L
will be a set of clauses, the data set D a set of examples and Q can be a complex
constraint. Clauses are expressions of the form h1 ∨ · · · ∨ hn ← b1 ∧ · · · ∧ bm

where the hi and bj are logical atoms and all variables are universally quantified
(cf. appendix in [13]). The learning from interpretations setting is incorporated
by many well-known systems such as Claudien, Warmr, C-armr, Farmr, and
LLPADS. We therefore choose interpretations as examples. In this paper, an
interpretation is a set of ground facts. The above leads to the descriptive ILP
problem, which is tackled in this paper:

Given:
– a language Lh (i.e., a set of clauses)
– a set of interpretations E
– a constraint cons(h, E) ∈ {true, false} where h ∈ Lh

Find:
– Th(cons, E,Lh), i.e., the set of clauses c ∈ Lh for which cons(c, E)= true

Using this generic formulation of descriptive ILP, we can now consider various
constraints cons as a conjunction of constraints c1 ∧ · · · ∧ ck (e.g frequency,
covers, cf. below). Some of the constraints can be monotonic or anti-monotonic,
which can be used to prune the search space. A constraint consm is monotonic
if all specializations of a clause c will satisfy consm whenever c does, and a
constraint consa is anti-monotonic if all generalizations of a clause c will satisfy
consm whenever c does. As framework for generality we employ Plotkin’s θ-
subsumption, which is the standard in ILP. It states that a clause c is more
general than a clause c′ if and only if there exists a substitution θ such that
cθ ⊂ C′.

2.2 Constraints for ILP

Motivated by constraints used in Claudien, Warmr, C-armr, and LLPAD, Clas-
sic’cl employs constraints defined on clauses of the form h1 ∨ · · · ∨ hn ←
b1 ∧ · · · ∧ bm:

1. query is true iff the head of the clause is empty, i.e., if n = 0. This constraint
is built-in in systems searching for frequent queries such as Warmr and C-
armr.
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2. covers(e) is true for an interpretation e ∈ E iff ← b1 ∧ · · · ∧ bm suc-
ceeds in e, i.e. if there is a substitution θ s.t. {b1θ, . . . , bmθ} ⊆ e. E.g., ←
drinks(X), beer(X) covers {drinks(vodka), liquor(vodka), drinks(duvel),
beer(duvel)}. This constraint is often used in the case of queries (i.e., where
n = 0).

3. satisf ies(e) is true iff h1 ∨ · · · ∨ hn ← b1 ∧ · · · ∧ bm satisfies e ∈ E,
i.e., iff ∀θ: {b1θ, . . . , bmθ} ⊆ e → {h1θ, . . . , hnθ} ∩ e 	= ∅, e.g. the clause
beer(X) ← drinks(X) does not satisfy the interpretation {drinks(vodka),
liquor(vodka), drinks(duvel), beer(duvel)} but does satisfy {drinks(duvel),
beer(duvel)}.

4. xor(e) is true iff for any two hi 	= hj there exist no substitutions θ1 and θ2
such that {b1θ1, . . . , bmθ1, hiθ1} ⊆ e and {b1θ2, . . . , bmθ2, hjθ2} ⊆ e. The xor
constraint specifies that at most one literal in the head of the clause can be
true within the interpretation e.

5. freq(cons, E) = |{e ∈ E|cons(e)}| specifies the number of examples e in E
for which the constraint cons(e) is true. This is typically used in combination
with the constraints satisf ies or covers.

6. maxgen is true iff h1∨· · ·∨hn ← b1∧· · ·∧bm satisfies the monotonic part of
the rest of the constraint cons and no clause h1∨· · ·∨hi−1∨hi+1∨· · ·∨hn ←
b1∧· · ·∧bm satisfies cons. This constraint is needed as there may be an infinite
number of refinements of such clauses that satisfy a monotonic constraint.

7. s-free(T) is true, where T is a set of horn clauses, iff there is no range-
restricted clause p ← b′1 ∧ · · · ∧ b′k where all b′i ∈ {b1, . . . , bm} and p ∈
{b1, . . . , bm} − {b′1 ∧ · · · ∧ b′k} for which T |= p ← b′1 ∧ · · · ∧ b′k. So no redun-
dancies are induced w.r.t. a background theory T that specifies properties of
the predicates (cf. [6]). E.g. T = {leq(X, Z) ← leq(X, Y ), leq(Y, Z)} (transi-
tivity) averts clauses such as (← leq(X, Y ), leq(Y, Z), leq(X, Z)) as the last
literal is redundant.

8. free(E) is true iff there is no range-restricted clause p ← b′1 ∧ · · · ∧ b′k where
all b′i ∈ {b1, . . . , bm} and p ∈ {b1, . . . , bm} and p 	= bi for which freq(p ←
b′1 ∧ · · · ∧ b′k, satisf ies, E) = |E|. This assures that there are no redundant
literals given the data. E.g., given the interpretation I := {beer(duvel),
alcohol(duvel), alcohol(vodka)}, the clause ← beer(X) is free while ←
beer(X) ∧ alcohol(X) is not free, as the clause alcohol(X) ← beer(X) is
satisfied by I (cf. [6]).

9. δ-free(E) is true, where δ is a natural number, iff there is no range-restricted
clause p ← b′1 ∧ · · · ∧ b′k where all b′i ∈ {b1, . . . , bm} and p ∈ {b1, . . . , bm} −
{b′1 ∧ · · · ∧ b′k} for which freq(p ← b′1 ∧ · · · ∧ b′k, satisf ies, E) ≥ |E| − δ. It is
not required that the rule perfectly holds on the data, but only that it holds
approximately, as δ exceptions are allowed (cf. [6]).

10. consistent(T ) is true, where T is a set of horn clauses, if and only if T ∪
{h1 ∨ · · · ∨hn ← b1 ∧ · · · ∧ bm} 	|= �, i.e., if it is satisfiable. E.g., consider the
theory T = {← parent(X, X)} which specifies that no one is its own parent.
Any clause containing this literal is not consistent with respect to T .

The above specified constraints have the following properties:
freq(h, consm, E) > t and satisf ies are monotonic, while covers, query,



CLASSIC’CL: An Integrated ILP System 357

consistent, s−free, free, δ-free, and freq(h, consa, E) > t are anti-monotonic.
xor is anti-monotonic w.r.t. the head only, i.e., xor is anti-monotonic w.r.t.
a fixed body. Clauses with an empty head always satisfy the xor constraint.
Therefore, this constraint only applies when refining the heads of clauses. The
maxgen constraint is is neither monotonic nor anti-monotonic. Therefore, it
will require special attention in our algorithm.

2.3 Existing Descriptive ILP Systems

Claudien [5] essentially searches for all maximally general clauses that satisfy a
set of interpretations. This corresponds to using the constraint cons = maxgen∧
freq(satif ies, E) = |E|. E.g., given the interpretation I = {vodka(smirnov),
beer(duvel),alcohol(smirnov), alcohol(duvel)} and a language bias over the
literals in I, one would find the following clauses: {beer(X) ∨ vodka(X) ←
alcohol(X); ← beer(X) ∧ vodka(X); alcohol(X) ← vodka(X); alcohol(X) ←
beer(X)}.
Warmr [8] extends the well-known Apriori system to a relational data mining
setting. It employs essentially the constraints cons = query ∧ freq(covers, E) >
t. In the example above (t = 1) these queries would be generated: {← beer(X); ←
vodka(X); ← alcohol(X); ← beer(X)∧alcohol(X); ← vodka(X)∧alcohol(X)}.
C-armr [6] is a variant of Warmr that extends Warmr with condensed repre-
sentations. Additional constraints that can be imposed include free, s − free,
consistent and δ − free. On the same example, and having the additional
constraint free, the following queries would be generated. {← beer(X);←
vodka(X);← alcohol(X)}.
CLLPAD combines ideas from Claudien with probabilistic ILP. It essen-
tially mines for LPADS, [17]. These consists of annotated clauses of the form
(h1 : α1) ∨ · · · ∨ (hn : αn) ← b1 ∧ · · · ∧ bm. The αi ∈ [0, 1] are real-valued
numbers, s.t.

∑n
i=1 αi = 1. The head atoms hi of the clauses fulfill the xor con-

straint, such that for each interpretation at most one hi is true with a certain
probability. This ensures that the clauses ci of an LPAD P can be considered
independently as in traditional inductive logical programs.

cons = maxgen ∧
∧
e∈E

xor(e) ∧ freq(satisf ies, E) = |E| ∧ freq(covers, E) ≥ 1

Notice that the xor constraint together with satisf ies actually implies maxgen,
so that the CLLPAD can be considered a specialization of the Claudien set-
ting. This constraint is imposed in an early system inducing LPADs, LLPAD
[15]. The annotated clauses satisfying cons are then composed to LPADs in
a post-processing step (cf. [15]). E.g., consider the following interpretations
{beer(duvel), alcohol(duvel)} and {vodka(smirnov), alcohol(smirnov)}. The
clauses {0.5 : vodka(X)∨ 0.5 : beer(X) ← alcohol(X); 1.0 : alcohol(X) ←
vodka(X); 1.0 : alcohol(X) ← beer(X)} would satisfy the constraints. As in [15]

the rules get annotated using the equation αi =
∑

e∈E,satisfies(hi←b1∧···∧bn,e) π∗
P (e)∑

e∈E,covers(←b1∧···∧bn,e) π∗
P (e) ,
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where the π∗
P (E) denotes the probabilities of the interpretations specified in the

data set. So the probability of hi is the sum of probabilities of the interpretations
which are covered by hi ∧ b divided by the sum of probabilities of the interpre-
tations which are covered by b.

The usage of these constraints opens the possibility for several new combinations:

– introduction of condensed representations within the Claudien and CLLPAD
setting. The effect of constraints as free, δ− free, and s− free is that less
patterns are found, that they are typically found more efficiently, and also
that (for free and s − free) only redundant and undesirable clauses are
pruned away, without affecting the semantics of the solution set.

– the original implementation of LLPAD, as described in [15], does not seem
to allow for the use of variables in clauses, which essentially corresponds to
a propositional version of LLPAD. In contrast, the version inClassic’cl does
allow for variabelized clauses.

– new combinations, combining, e.g., freq(satisf ies, E), freq(covers, E) and
δ-free, now become possible.

3 The Descriptive ILP Algorithm

By now we are able to specify the algorithm. We will first discover all bodies that
satisfy the constraints, and then expand these into those clauses that satisfy also
the head. The algorithm employs two different phases for realizing that. The first
phase employs a body refinement operator ρb, which merely refines the body of
a clause whereas the second phase employs a head refinement operator ρo, which
merely refines the head by adding literals to the conclusion part of clauses.

Algorithm 1 The generic function body(cons, E).

C0 := {false ← true}; i := 0; F0 := I0 := ∅
while Ci �= ∅ do

Fi:= {c ∈ Ci|consa(c, E)}
if cons does not contain the constraint query then

call head(cons, Fi)
else

output {f ∈ Fi|consm(f, E)}
end if
Ii := Ci − Fi

Ci+1 := {b′ | b ∈ Fi and b′ ∈ ρb(b) and ¬∃s ∈ ⋃
j Ij : s  b′}

i := i + 1
end while

The body function (algorithm 1) is very similar to a traditional level wise
search algorithm such as Warmr. It starts from the empty query and repeat-
edly refines it – in a level wise fashion – until the anti-monotonic consa part
of the constraint cons no longer holds on candidate clauses. The algorithm
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does not only keep track of the clauses satisfying the anti-monotonic constraint
consa (on the Fi) but also of the negative border (using the Ii). This is use-
ful for pruning because – when working with a language bias specified using
rmodes (cf. below) – not all clauses in the θ-subsumption lattice are within
the language Lh, i.e. the language Lh is not anti-monotonic. Consider for in-
stance the clause p(K) ← benzene(K, S)∧member(A, S)∧ atom(K, A, c). Even
though this clause will typically satisfy the syntactic constraints, its generaliza-
tion p(K) ← member(A, S) will typically not be mode-conform. Furthermore,
when a new candidate is generated, it is tested whether the candidate is not
subsumed by an already known infrequent one.

Algorithm 2 The generic function head(cons, F ).

C0 := F ; i := 0; S0 := I0 := ∅
while Ci �= ∅ do

Si:= {c ∈ Ci|consm(c, E)}
if cons does contain the constraint maxgen then

Ii := Ci − Si

Si:= {c ∈ Si|¬∃s ∈ ⋃
j Sj : s  c}

else
Ii := Ci

end if
Ci+1 := {c′ |c ∈ Ii and c′ ∈ ρh(c) and consa(c′, E), }
i := i + 1

end while
output filter(∪iSi)

The interesting and new part of the algorithm is concerned with the function
head (algorithm 2). This part is used if query 	∈ cons, and one searches for
proper clauses, not just queries. The algorithm then proceeds as follows. The
head function is invoked using the call head(cons, F ) for every body. Within
the procedure only the head is changed using a head refinement operator ρh

(which adds literals to the head). Within this context, the algorithm head is
similar in spirit to the level wise algorithm, except that if the constraint maxgen
is included in cons, those clauses that satisfy cons are no longer refined. The
algorithm employs a list of candidate clauses on Ci. Those candidates satisfying
the constraint are put on Si, the set of solutions. Depending on maxgen all
candidates on Ci or only those not satisfying cons are refined. The algorithm
then outputs, according to some output filter (e.g. a filter that annotates the
clauses for CLLPAD), all solutions ∪Si.

4 Implementation Issues

Language Bias. Within ILP, Lh typically imposes syntactic restrictions on the
clauses to be used as patterns. Whereas some of the original implementations
(such as Claudien [5]) employed complex formalisms such as DLAB, Classic’cl
uses the now standard mode and type restrictions (rmodes) of ILP.
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Optimizations and Optimal Refinement Operators. In order to search
efficiently for solutions, it is important that each relevant pattern is generated
at most once. For this, optimal refinement operators (using some canonical form)
are employed. As Classic’cl is based on the original C-armr implementation of
[6], it employs the same optimal refinement operator. In a similar way, we have
used a canonical form and optimal refinement operator defined for disjunctive
head literals with a fixed body. As computing constraints like frequency are
computationally expensive, we have employed the same optimizations as in [6],
the system is equally designed as a light Prolog implementation that is small but
still reasonably efficient.

5 Experiments

The aim was to 1) investigate the performance of Classic’cl w.r.t the original
implementations, and 2) show that we can tackle some new problem settings.

Datasets. We used artificial and real-world datasets. As artificial datasets, we
used the Bongard 300 and 6013 datasets. As real world datasets, we have chosen
the Mutagenesis data set [10], the secondary structure prediction dataset from
[14], and the SCOP-fold dataset [9].

Warmr and C-armr. First, we compared ACE-Warmr with Classic’cl. ACE-
Warmr is the original Warmr algorithm in the ACE toolkit [3]. ACE is imple-
mented in a custom build Prolog (iProlog), and can be used with a number of
optimizations, like query packs [2]. The results of the comparison can be seen in
table 1. The different number of frequent patterns is due to a slightly different
language bias and operators. If one takes as criterion time per pattern, then
ACE-Warmr and Classic’cl are more or less comparable in this experiment.

As a second test, we investigated searching for disjunctive clauses ver-
sus searching for horn clauses. This compares to the settings cons1 =
freq(h, covers, E) > t ∧ query(h) ∧ freq(h, satisf ies, E) > t to cons2 =
query(h) ∧ freq(h, covers, E) > t.

Claudien. We evaluated Classic’cl Claudien compared to the original Claudien
implementation using the Mutagenisis and Bongard datasets. All tests we ran on
a SUN Blade 1550, as we only had a compiled version for the original Claudien
version available. We only mined for horn clauses with a maximum of 5 literals
in the Mutagenesis case. This was necessary, as the computational costs proved
to be too expensive for the original Claudien. In the case of the Bongard 300
experiment we also restricted the search to definite clauses, as the language bias
definition languages rmodes and DLAB are too different to generate comparable
results. The results can be found in table 3.

CLLPAD. We employed the LPAD setting and applied it to the SCOP dataset.
The test was to evaluate the applicability of the CLLPAD setting to a real world
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Table 1. Comparison between the ACE WARMR and Classic’cl in the Warmr and C-

armr setting on mutagenesis. For the C-armr setting, we chose to employ δ − free, s −
free, consistent (with δ = 0, t = 2 and maxlevel = 4). ACE-Warmr (packs) denotes

the setting for ACE with the option ’use packs(ilp)’.

Runtime [secs]. # freq. Patterns
ACE-Warmr(no packs) 12960 91053
ACE-Warmr(packs) 1816 91053
Classic’cl-Warmr 5301 194737
Classic’cl-Carmr() 4622 124169

Table 2. Comparison between the run times and number of rules for the definite

(cons = query(h) ∧ freq(h, covers, E) > t) and disjunctive (cons = query(h) ∧
freq(h, satisfies, E) > t) search

Runtime [s] # Rules Factor
Data set Subset Horn Disj. Horn Disj. Horn Disj

Mutagenesis 188 2602.62 4098.26 893 9099 1.57 10.19
42 1454.52 1839.45 996 6291 1.26 6.32
230 3484.94 5339.67 1002 9904 1.53 9.88

Bongard 300 4.78 12.52 54 1628 2.62 30.15
6013 212.02 1597.97 114 2610 7.54 22.89

Sec. Structure alpha 75414.4 76950.51 1188 18145 1.02 15.27
beta 162.79 188.11 111 16768 1.16 151.06
coil 55102.04 55827.35 1186 18146 1.01 15.3

Table 3. Comparison between the original Claudien and the Classic’cl in the Claudien

setting. The differences in the number of rules found is due to the different language

bias used (DLAB vs. rmodes). To avoid the comparison between the different setting

we also present the time spent by the two implementations producing a rule in seconds

per rule. Classic’cl clearly outperforms the original algorithm.

Runtime [s] # Rules Sec. p. rule Factor
Dataset Subset Level Orig. Classic Orig. Classic Orig. Classic

Mutagenesis 188 4 66631.9 3290.6 262 308 254.32 10.68 23.8
42 4 12964.3 1214.41 123 303 105.40 4.01 26.3
230 4 86022.3 4490.62 279 418 308.32 10.74 28.7

Bongard 300 5 71.53 14.44 32 51 2.24 0.28 7.89

database. The initial set of clauses, Classi’cl took 5,714 seconds to construct.
Applying the post processing filter solving the CSP took 5,742 seconds and
resulted in 33 LPADs build from 18 horn clauses and 7 annotated disjunctive
clauses. The disjunctive clauses produced, all center around three folds, name
fold1, fold37, and fold55. For space limitations, detailed results are omitted from
this paper. This application was impossible with the previous implementation
of LLPADs which only employes propositional examples.

To summarize, the experiments clearly show that Classic’cl can indeed sim-
ulate its predecessors, that its performance is much better of that of Claudien
and despite the light Prolog implementation realistic enough to be applied to
real-world data.
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6 Conclusions

A novel descriptive data mining approach within the ILP setting of learning
from interpretations has been presented. The approach incorporates ideas from
constraint based mining in that a rich variety of constraints on target hypotheses
can be specified. The algorithm is also incorporated in the systemClassic’cl,
which is able to emulate many of its predecessors such as Claudien, Warmr,
c-Armr, CLLPad, as well as ICL and ICL-SAT, as well as some new settings.
Classic’cl is implemented in Prolog and it is available from the authors.
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Abstract. This paper proposes a method for detecting misclassifications of a
classification rule and then revising them. Given a rule and a set of examples,
the method divides misclassifications by the rule into miscovered examples and
uncovered examples, and then, separately, learns to detect them using Inductive
Logic Programming (ILP). The method then combines the acquired rules with
the initial rule and revises the labels of misclassified examples. The paper shows
the effectiveness of the proposed method by theoretical analysis. In addition, it
presents experimental results, using the Brill tagger for Part-Of-Speech (POS)
tagging.

1 Introduction

Classification is one of the most popular fields in machine learning. It is concerned with
constructing new classification rules from given training examples. Most previous work
has focused on creating rules from scratch. Therefore, these approaches do not make use
of previously constructed classification rules, even if they are reasonable. We consider
that such rules are useful, and that it is more effective to correct misclassifications of a
rule, than to create a new classification rule from scratch.

In this paper, we propose a method that detects misclassifications of a classification
rule and then revises them. Given a rule and a set of examples, the method divides
misclassifications by the rule into miscovered examples and uncovered examples and,
separately, learns to detect them. It then combines the acquired rules with the initial rule
and revises the labels of misclassified examples. This paper shows the effectiveness of
the proposed method by theoretical analysis.

We use Inductive Logic Programming (ILP) to learn rules for detecting and revising
misclassifications. ILP is a framework that combines machine learning and logic pro-
gramming. ILP systems construct logic programs from examples and from background
knowledge, which is also described by logic programs. One of the most important ad-
vantages of using ILP for discovering knowledge is that ILP can acquire hypotheses
that can be understood by human beings. Another important advantage of ILP is that it
is able to use background knowledge.

We have applied our method to Part-Of-Speech (POS) tagging, to which ILP has
been applied previously [1]. We use the Brill tagger [2] as the initial classifier, which is
one of the best rule-based tagging systems and is widely used in research into natural
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language processing. This paper shows the results of combining the Brill tagger with
the additional acquired rules.

2 Miscovered Examples and Uncovered Examples

In this paper, we consider binary classification, which is also called concept learning.
Let x be an example from a set of possible examples X . The example is expressed as
(x, c(x)), where c is a target function. If x belongs to the target concept, then c(x) = 1;
if otherwise, c(x) = 0.

Misclassified examples of a classification rule are either miscovered examples or
uncovered examples. Consider a classification rule r. Let hr be the hypothesis func-
tion of r: if it estimates that x belongs to the target concept, then hr(x) = 1; oth-
erwise, hr(x) = 0. We say that an example x ∈ X is miscovered by a classification
rule r whenever c(x) = 0, but hr(x) = 1. We say that x is uncovered by r whenever
c(x) = 1, but hr(x) = 0. Fig. 1 shows miscovered examples and uncovered exam-
ples of a classification rule r for a target concept. Miscovered examples and uncovered
examples are sometimes called false positives and false negatives, respectively.
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Fig. 1. Miscovered examples and Uncovered examples of a Classification Rule r for a Target
concept

3 Method

3.1 Detecting and Revising Miscovered Examples

First, we consider the detection and revision of miscovered examples by using ILP. We
generate examples for ILP from the data set by using the initial classification rule. We
then construct a rule for detecting miscovered examples. Finally, we revise the labels of
the detected miscovered examples.

Consider a classification rule r. Because all of the examples miscovered by r are
included in examples covered by r, we can define the problem of detecting miscovered
examples as follows: given a classification rule r and an example x that is covered by r,
estimate whether x is miscovered or not.
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Denote the subset of training examples that are covered by r as Em. We then divide
them into miscovered and correctly covered examples. Let E+

m be the set of miscovered
examples, and let E−m be the set of correctly covered examples. E+

m and E−m can be
written as:

E+
m = {x | (x, c(x)) ∈ D, hr(x) = 1, c(x) = 0} ,

E−m = {x | (x, c(x)) ∈ D, hr(x) = 1, c(x) = 1} ,

where D is the set of training examples, hr is the estimating function of r, and c is the
target-concept function. This is shown in the left hand figure in Fig. 2, where the +
signs are positive examples and − signs are negative examples.

Target conceptRule rRule r Target concept

+

−

+

+

+

++ −
−

−
−

−
−

Miscovered example
Rule m

Fig. 2. Training examples for the miscovered concept (left) and the combined classification rule,
hrm, of the acquired rule and the initial rule (right)

Next, using ILP, we acquire a hypothesisHm from E+
m, E−m, and background knowl-

edge B, such that B∨Hm |= E+
m and B∨Hm 	|= E−m. We define the estimating function

hm as: if B ∨Hm |= x for an example x ∈ X , then hm(x) = 1; otherwise, hm(x) = 0.
After acquiring Hm, we revise the misclassified labels by combining hr with hm.

We define the combined hypothesis function hrm as:

hrm(x) =

{
1 if hr(x) = 1 and hm(x) = 0,

0 otherwise.

The right-hand figure of Fig. 2 illustrates this combined classification rule rm. If
an example is included in the shaded area, the classification rule now estimates that it
belongs to the target concept.

3.2 Detecting and Revising Uncovered Examples

We now consider uncovered examples. Again, we generate examples for detection and
then revision. Previously, we used examples covered by r as a source of miscovered
examples, but now we use the remaining examples, i.e., examples not covered by r.
Denote the subset of training examples that are not covered by r as Eu. We divide these

U
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Fig. 3. Training examples for the uncovered concept (left) and the combined classification rule,
hru, of the acquired rule and the initial rule (right)

examples into two subsets. Let E+
u be the set of uncovered examples, and let E−u be the

set of correctly not-covered examples. E+
u and E−u can be written as:

E+
u = {x | (x, c(x)) ∈ D, hr(x) = 0, c(x) = 1} ,

E−u = {x | (x, c(x)) ∈ D, hr(x) = 0, c(x) = 0} .

The left-hand figure of Fig. 3 shows these training examples E+
u and E−u .

We now construct a hypothesis Hu from E+
u , E−u , and background knowledge B,

using ILP. We define the estimating function as hu: hu(x) = 1 if B ∨ Hu |= x for an
example x ∈ X ; otherwise, hu(x) = 0. After acquiringHu, we revise the misclassified
labels by combining hr with hu. We define the combined hypothesis function hru as:

hru(x) =

{
1 if hr(x) = 1 or hu(x) = 1,

0 otherwise.

The right-hand figure of Fig. 3 illustrates this classification rule ru.

3.3 Detecting and Revising Misclassified Examples

Finally, we combine the two acquired hypotheses with the initial classification rule.
Because hm and hu are constructed from nonoverlapping training sets, we can combine
them directly. We define a combined estimating function hrmu:

hrmu(x) =

{
1 if hr(x) = 1 and hm(x) = 0, or hr(x) = 0 and hu(x) = 1
0 otherwise.

Fig. 4 illustrates this final combined classification rule hrmu. Given an example x,
we firstly compute hr(x). If we find that hr(x) = 1, then we calculate hm(x); otherwise,
we calculate hu(x). Thus, we choose the second classification rule depending on the
situation, and it revises labels that were misclassified by the initial classification rule.
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Target conceptRule r 

Rule u

Rule m

Fig. 4. The final combined classification rule hrmu

4 Theoretical Analysis

We can show the effectiveness of the proposed method by theoretical analysis.

Theorem 1. Let Pr and Ar be the precision and the accuracy of rule r. If the inequality
Pm ≥ 1/2 is satisfied, then the inequality Arm ≥ Ar is valid.

Proof. To prove the theorem, consider the difference:

Arm −Ar =
|TPrm|+ |TNrm|

|Erm|
− |TPr|+ |TNr|

|Er|
,

where Erm and Er are the example sets for rm and r, respectively. Since the example
sets are the same, the denominators are the same, and positive. Now consider the nu-
merators. In our method, examples classified by the rule rm can be written as:

TPrm = TPr \ FPm FPm ⊆ TPr, (1)

TNrm = TNr ∪TPm TNr ∩TPm = ∅, (2)

where TPr, FPr, FNr, and TNr are sets of true positive, false positive, false negative,
and true negative examples of r, respectively. From Equations (1) and (2), the inequality

|TPrm|+ |TNrm| − (|TPr|+ |TNr|)
= |TPr \ FPm|+ |TNr ∪ TPm| − (|TPr|+ |TNr|)
= (|TPr| − |FPm|) + (|TNr|+ |TPm|)− (|TPr|+ |TNr|)

= |TPm| − |FPm| = |TPm|
2 (Pm − 1/2)

Pm
≥ 0

is valid, if the condition of the theorem is satisfied. The theorem is proved.

Theorem 2. If the inequality Pu ≥ 1/2 is satisfied, then the inequality Armu ≥ Arm is
valid.

This proof is omitted, to save space.
Finally, the following theorem indicates the effectiveness of our method:

Detecting and Revising Misclassifications sing ILPU
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Theorem 3. If the inequalities Pm ≥ 1/2 and Pu ≥ 1/2 are satisfied, then the inequal-
ity Armu ≥ Ar is valid.

Proof. From Theorems 1 and 2, Arm ≥ Ar and Armu ≥ Arm are valid, if the conditions
of the theorem are satisfied. Therefore, the inequality Armu ≥ Arm ≥ Ar is valid, if the
conditions of the theorem are satisfied. The theorem is proved.

Since it is not difficult to learn a classifier whose precision is greater than or equal
to 1/2 in binary classification problems, the classification accuracy of our method can
be higher than that of the initial classification rule.

5 Experiment: Part-of-Speech Tagging

5.1 Accuracy Comparison

POS tagging is the problem of assigning POS tags to each word in a document. We
have applied our method to POS tagging, using the Brill tagger [2] as the initial classi-
fication rule. The data set is the set of Wall Street Journal articles in the Penn Treebank
Project [3].

POS tagging involves more than three classes, and we adopted the one-against-the-
rest method for formulation in terms of binary classification. Since there are 45 kinds
of tags, we created 45 binary classification problems. For each problem, we applied the
Brill tagger and created examples for learning the concepts of miscovered examples and
uncovered examples. We used an ILP system, GKS [4,5], to learn the concepts with an
acceptable error ratio of 0.2. We prepared the background knowledge of referring to the
preceding three words and the following three words. We evaluated the performance
of the acquired rules with 10-fold cross validation. We compared the accuracy of the
initial classification rule of the Brill tagger with that of the proposed method. In this
experiment, we added true-positive examples of the Brill tagger to the negative training
examples for the uncovered concept. This enables us to acquire a hypothesis that covers
only the uncovered examples. We also proved that Theorem 2 is true in this case.

Table 1 shows the results for each tag and overall. Ar stand for the accuracy of the
Brill tagger alone. Armu stand for that of the combined classification rule, using the
proposed method. Pm and Pu are the precisions of m and u alone, respectively. The
“-” symbol means that the ILP system could not acquire rules at all. For all of the tags,
the accuracies of the proposed method, Armu, were better than or equal to those of the
Brill tagger alone, Ar. Because Pm and Pu were greater than 1/2, the conditions of
Theorem 3 were satisfied.

5.2 Discovered Knowledge on Misclassifications

There is another good aspect of the proposed method, in addition to increased accuracy:
we have human-readable acquired knowledge on misclassifications, because ILP can
create a hypothesis represented by first-order logic.

Here is the acquired knowledge for the “preposition” tag. The Prolog-formatted rule
for the miscovered examples was as follows:
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Table 1. The experiment result

Tag Ar Armu Pm Pu

cc 0.9998 0.9998 0.8889 -
cd 0.9991 0.9995 1.0 0.9297
cln 0.9999 0.9999 - -
cma 0.9999 0.9999 - -
dlr 1.0 1.0 - -
dt 0.9920 0.9988 0.7778 0.9360
ex 0.9999 0.9999 - 0.8472
fw 0.9998 0.9999 1.0 0.8710
in 0.9907 0.9943 0.9947 0.9716
jj 0.9892 0.9924 0.7888 0.9005
jjr 0.9991 0.9993 0.8788 0.8310
jjs 0.9995 0.9996 1.0 0.7640
lpn 1.0 1.0 - -
lqt 1.0 1.0 - -
ls 0.9999 0.9999 - -

md 0.9999 0.9999 - -
nn 0.9872 0.9914 0.8165 0.9088
nns 0.9967 0.9982 0.8354 0.9133
np 0.9941 0.9961 0.7720 0.9401
nps 0.9976 0.9978 0.7024 0.8773
pdt 0.9998 0.9998 0.8947 -
pnd 1.0 1.0 - -
pos 0.9986 0.9999 - 0.9642

Tag Ar Armu Pm Pu

pp 0.9998 0.9999 1.0 -
ppz 0.9999 1.0 - 1.0
rb 0.9947 0.9963 0.9005 0.9488
rbr 0.9989 0.9992 0.8682 0.9296
rbs 0.9995 0.9999 1.0 0.9482
rp 0.9984 0.9984 - -

rpn 0.9988 0.9988 - -
rqt 0.9999 0.9999 0.8824 -
stp 0.9999 0.9999 - -
sym 0.9987 0.9999 - 0.9565
to 0.9999 0.9999 - -
uh 0.9999 0.9999 0.8000 -
vb 0.9950 0.9974 0.6429 0.8627
vbd 0.9938 0.9949 0.9162 0.9043
vbg 0.9976 0.9982 0.6712 0.8708
vbn 0.9924 0.9953 0.7073 0.8614
vbp 0.9953 0.9965 0.9888 0.9203
vbz 0.9971 0.9976 0.9212 0.8766
wdt 0.9976 0.9980 0.9405 0.9730
wp 0.9999 0.9999 - -
wpz 1.0 1.0 - -
wrb 0.9999 0.9999 - -
All 0.9978 0.9986 0.8973 0.9151

miscovered(A) :- post1word(A,’.’).
miscovered(A) :- post2tag(A,vb), word(A,’like’).

This rule means that the given word A is a miscovered example, i.e., it is not a preposi-
tion if: the following word is “.” (period sign); or the next-but-one word is tagged “vb”
and the given word is “like.” Therefore, we can discover the Brill tagger mistakes with
respect to prepositions. For example, the Brill tagger sometimes classifies the final word
of a sentence as a preposition.

Similarly, we can see the rule for the uncovered examples. The rule is as follows:

uncovered(A) :- word(A,’up’).
uncovered(A) :- post3word(A,’different’).

This means that the given word A is an uncovered example, i.e. it is also a preposition
if: the given word is “up”, or the third-next word is “different”.

We consider these rules to be very useful for correcting the Brill tagger itself. They
show where we should change the Brill tagger’s rule. So, if we install this knowledge
into the Brill tagger, its performance will improve.

Detecting and Revising Misclassifications sing ILPU
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6 Conclusion

This paper proposes a method for decreasing misclassification, by using ILP to detect
and revise misclassifications. The proposed method acquires two additional classifi-
cation rules and combines them with the initial classification rule. We then show, by
theoretical analysis, that this method works well. Finally, we apply it to POS tagging
and present the experimental results.

Abney et al. have applied boosting to tagging [6]. They used their algorithm, Ad-
aBoost, which calls a weak learner repeatedly to update the weights of examples. If the
hypothesis acquired by the weak learner incorrectly classifies an example, it increases
the weight; otherwise, it decreases the weight. Given an example to be predicted, boost-
ing produces the final label, using a simple vote of the weak hypotheses. Although it
can improve the classification accuracy very well, it cannot provide an understandable
final hypothesis.

The good points of our method are that:

– it is simple and reliable,
– it can reduce the misclassification produced by the initial classification rule,
– it is shown that the classification accuracy of our method can be higher than that of

initial classification rule, and
– the acquired rules are useful for modifying the initial rule because of their readabil-

ity due to the use of ILP.

One drawback of our method is that it tends to overfit the training examples. Future
work will include evaluating the acquired rules used to modify the initial classification
rules.

References

1. James Cussens. Part-of-speech tagging using progol. S. Džeroski and N. Lavrač, editors,
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Abstract. In coagulant control of water treatment plants, rule extraction, one of 
datamining categories, was performed for coagulant control of a water treat-
ment plant. Clustering methods were applied to extract control rules from data. 
These control rules can be used for fully automation of water treatment plants 
instead of operator’s knowledge for plant control. In this study, statistical indi-
ces were used to determine cluster numbers and seed points from hierarchical 
clustering. These statistical approaches give information about features of clus-
ters, so it can reduce computing cost and increase accuracy of clustering. The 
proposed algorithm can play an important role in datamining and knowledge 
discovery. 

1   Introduction 

The treatment process used depends on the quality and nature of the raw water. Water 
treatment processes can be simple, as in sedimentation, or may involve complex phys-
icochemical changes, such as coagulation. Several types of chemicals are applied for 
coagulation. Therefore, it is very important to determine the type and dosage of co-
agulant [1]. [2].  

In the target treatment plant, three coagulants are usually used, such as PAC (Poly 
Aluminum Chloride), PASS (Poly Aluminum Sulfate Silicate) and PSO-M (Poly 
Organic Aluminum Magnesium Sulfate). The type and dosage are determined based 
on a Jar-test, and then the test result is analyzed according to an expert’s knowledge. 
However, at this site, all of the subsystems have been constructed for full automation 
except a coagulation basin. This causes a bottleneck in fully automatic control of a 
water treatment plant. Thus, an automatic decision support algorithm is proposed to 
determine the coagulant type and dosage. In this study, we used the statistical index to 
determine the cluster number and seed points of fuzzy clustering. The proposed 
method is easily applied and performance is also adequate for industrial processes. 
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2    Water Treatment Plant 

A water treatment plant involves several processes from the influent water basin to 
the supplying water line. A water treatment plant should have the capability of purify-
ing water for standard quality and supply to customers even though the quality of the 
water source gets worse. The principal unit processes of a water treatment plant con-
sist of the following, as shown in Fig. 1.  
 

Influent water

Treated water

CoagulationInfluent water
basin

SedimentationFlocculation

Filtration

Chemical tank

Coagulant
Primary
ozone

Post
ozone

 

Fig. 1. Basic processes of water purification plant 

3   Rule Extraction from Water Data 

3.1   Find Initial Points of Fuzzy c-Mean Based on Hierarchical Clustering 

Hierarchical methods do not require a priori knowledge of the number of clusters of 
the starting partition. On the other hand, in nonhierarchical methods, the cluster 
center or initial partition has to be identified before the technique can proceed to 
cluster observation. The nonhierarchical clustering algorithms, in general, are very 
sensitive to the initial partition. Therefore, hierarchical and nonhierarchical tech-
niques should be viewed as complementary clustering techniques. In this study, seed 
points were calculated by clustering results of the hierarchical method. After finding 
initial partition points, fuzzy c-mean clustering was performed with the calculated 
seed points.  

3.2   Determination of the Number of Clusters Using Statistics Index 

In this study, hierarchical clustering was employed in order to obtain cluster  
information. Using this information, the cluster numbers were determined. The  
candidate concept for cluster numbers was added, because the result through 
hierarchical clustering does not support precisely correct information of clusters. 
Two or three candidate cluster numbers were examined by fuzzy c-mean clustering, 
which finally determined the number of clusters. Given the cluster solution, the next 
obvious steps are to evaluate the solution, determine cluster numbers, and extract 
rules (Fig. 2). 
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If Temperature is L, Turbidity is L, Alkalinity is H, and Chl-a is H, Then Coagulant is PASS

If Temperature is H, Turbidity is H, Alkalinity is L, and Chl-a is L, Then Coagulant is PAC

If Temperature is M, Turbidity is M, Alkalinity is M, and Chl-a is M, Then Coagulant is PSO-M  

Coagulant type

PSO-M coagulant

PAC coagulant

PASS coagulant

Coagulant type

PSO-M coagulant

PAC coagulant

PASS coagulant

Source water

Temperature

pH

Chlorophyll
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iA1

iB
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Fig. 2. Coagulant selection rules and the system proposed in this study 

4   Conclusions 

In this study, the datamining application was accomplished for coagulant control in 
water treatment plants based on clustering methods and the quality of source water. In 
the author’s previous study, decision tree methods were applied to generate control 
rules, but they require preliminary knowledge. Alternatively, the proposed clustering 
method can group inputs corresponding to patterns without preliminary knowledge. 
Thereby, the clustering method can generate proper rules in rule extraction. Through 
the proposed algorithm, control rules can be extracted from data to determine the 
coagulant type automatically.  
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1 Introduction

Our work deals with the automatic construction of domain specific data ware-
houses. Our application domain concerns microbiological risks in food products.
The MIEL++ system [2], implemented during the Sym’Previus project, is a tool
based on a database containing experimental and industrial results about the
behavior of pathogenic germs in food products. This database is incomplete by
nature since the number of possible experiments is potentially infinite. Our work,
developed within the e.dot project1, presents a way of palliating that incomplete-
ness by complementing the database with data automatically extracted from the
Web. We propose to query these data through a mediated architecture based on
a domain ontology. So, we need to make them compatible with the ontology. In
the e.dot project [5], we exclusively focus on documents in Html or Pdf format
which contain data tables. Data tables are very common presentation scheme
to describe synthetic data in scientific articles. These tables are semantically
enriched and we want this enrichment to be as automatic and flexible as possi-
ble. Thus, we have defined a Document Type Definition named SML (Semantic
Markup Language) which can deal with additional or incomplete information in
a semantic relation, ambiguities or possible interpretation errors. In this paper,
we present this semantic enrichment step.

2 An Automatic Approach to Enrich Tables Semantically

The data tables which are extracted from the Web are first represented in an
XML format using purely syntactic tags : rows and cells. Besides, when it is
possible, titles are extracted. We have then to express these data using the vo-
cabulary stored in the ontology. The Sym’Previus ontology contains a taxonomy
of 428 terms and a relational schema which describes 25 semantic relations of
the domain. In a SML document rows are not represented by cells anymore but
by a set of semantic relations between columns.

The semantic enrichment of tables is done in two steps: the first step consists
in identifying the semantic relations appearing in the data table. The second
step consists in instantiating semantic relations discovered in the table.
1 Cooperation between INRIA, Paris South University, INRA and Xyleme.
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In order to extract semantic the relations of the table, we first identify the
A-terms2 which represent each table column. We look for an A-term which
subsumes most of the values. [4] and [6] showed that such techniques give good
results when one searches for schema mappings for relational data bases or XML.
If the values do not help, we exploit the title of the column. If no A-Term has
been found, we associate a generic A-term named attribute with the column.
Thus we obtain a schema for the table. The schema tabSch of the table Table. 1
is: {(1,food) (2,attribute) (3,lipid),(4,calorie)}.

<table> <table-title>Nutritional Composition of some food products </table-title >
<column-title> Product </column-title> ... <content> <rowRel additionalAttr=”yes”>
<foodLipid relType=”completeRel”><food attrType=”Normal”>
<ontoVal indMap=”intersection”> whiting Provencale</ontoVal>
<ontoVal indMap=”intersection”> green lemon </ontoVal>
<ontoVal indMap=”intersection”> whiting fillets </ontoVal>
<originalVal> whiting with lemon </originalVal></food>
<lipid attrType=”Normal”> <ontoVal indMap=”notFound”/>
<originalVal> 7.8 g</originalVal> </lipid>
<attribute indMap=”notFound” attrType=”generic”> <ontoVal/>
<originalVal> 100 g</originalVal></attribute> </foodLipid>

<foodAmountLipid relType=”partialNull”> ... <amount attrType=”null”>...
</amount></foodAmountLipid> </rowRel> ... </content> </table>

Fig. 1. SML Representation of the nutritional composition of food products

Table 1. Nutritional Composition of some food products

Products Qty Lipids Calories
whiting with lemon 100 g 7.8 g 92 kcal

ground crab 150 g 11.25 g 192 kcal
chicken 250 g 18.75 g 312 kcal

Then we propose an automatic identification of the semantic relations as flex-
ible as possible. A relation is completely represented (CR) if each attribute
of its signature subsumes or is equal to a distinct A-term of the table schema.
A relation is partially represented (PR) if it is not completely represented
and if at least two attributes of its signature subsume or are equal to a distinct
A-term of the table schema. In such cases one of the missing attributes may cor-
respond to a constant value which appears in the title of the table. The missing
attributes are represented in the SML document by means of an empty tag or
by a constant. For example the relation foodAmountLipid shown in figure 1 is a
partially represented relation, where the attribute amount is represented by
an empty tag. When no relation has been found, a generic relation is generated
in order to keep semantic links between values. Fig.1 shows a part of the SML
document which is automatically generated from the table shown in Table. 1.
2 An A-term is a term of the taxonomy that appears at least once as an attribute of

a relation signature in the relational schema of the ontology.
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Once the relations are extracted, we instantiate them by the values contained
in the table. Besides, terms of the ontology are associated with each value when
it is possible. The SML formalism allows us to associate several terms that can
be found by different mappings procedures. The first one uses simple syntactic
criteria. The second one is the unsupervised approach PANKOW [3].

The SML representation of a relation is composed of the set of attributes
that appear in the signature of the relation described in the ontology (e.g.
foodLipid(food, lipid)). A set of terms represented inside the XML tag onto-
Val is associated with each value. Thus, three different terms are proposed for
whiting with lemon : whiting Provençale, green lemon and whiting fillets. The
original value is kept inside the XML tag originalVal and this value can be shown
to the user.

In order to evaluate our approach, we have collected 50 tables from the Web
and we have compared the recall, the precision and the F-measure for the differ-
ent kinds of semantic relations. This result shows that the recall significatively
increases when partially identified relations are kept (recall(CR)=0.37 and re-
call(CR&PR)=0.60) and that the precision do not fall much (0.61 to 0.56).

3 Conclusion

Our method allows one to enrich semantically tables extracted from heterogenous
documents found on the Web. The semantic enrichment is completely automatic
and is guided by an ontology of the domain. Thus, that processing cannot lead to
a perfect and complete enrichment. The SML representation we propose keeps
all the possible interpretations, incompletely identified relations and original
elements of the context. Contrarily to previous approaches like [1], we cannot
base the search for information on a common structure discovered among a set
of homogeneous documents.
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Abstract. In large databases, many problems occur when visualizing, navigat-
ing and retrieving information from databases. Ontologies help in adding se-
mantics and context to the resources in databases. Hence, this paper presents the 
OntoVis, an ontological authoring and visualization tool, which emphasizes on 
the clustering of concepts in Formal Concept Analysis (FCA). The composited 
visualization, navigation and retrieval of resources will be presented in this pa-
per. 

1   Introduction 

With the growth of information in databases, it becomes more and more difficult for 
the users to visualize and search for the interested piece of data, especially in the case 
of OLAP (Online Analytical Processing) in terms of drill-down analysis.  More effec-
tive means for visualization, navigation and retrieval is thus needed.  

In order to solve the problems mentioned, we developed a visualization tool (On-
toVis). OntoVis visualizes concepts based on the updated ontology from OntoShare, 
which is stored in XML/the database. The OntoShare algorithm (Kiu & Lee, 2005; 
Lee & Kiu, 2005) allows structural and intentional morphism between ontologies in 
different electronic databases prior to merging. Discovery of new categories of con-
cepts are automated through SOM-FCA and visualized in the OntoVis. 

OntoVis attempts to focus on 3 aspects to efficiently address disorientation, cogni-
tive overload and facilitation of knowledge discovery in databases:  

• Automatic generation of trees/lattices from a formal context using Formal Con-
cept Analysis (FCA)  

• Ontological retrieval of resources 
• Compositional view for navigation  

The outline for this paper is as follows: Section 2 automatic generation of the com-
posited visualization and Section 3 retrieval of resources. Section 4 concludes.  

2   Automatic Generation of Concept Lattices from Formal Context 

The concept lattice (Waiyamai, Taouil & Lakhal, 1997) is used in this paper for onto-
logical structuring, navigation and retrieval. The authoring interface allows the  
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designer to indicate how many concepts or topics and attributes to generate.  The con-
cepts-attributes relationship forms the context table. Subsequently, the system gener-
ates the concept lattice based on the following algorithm:  

List all the mathematical combinations of intents that can be created from the for-
mal context, K: = (E, P, R). 

Example: If 3 intents (attributes) are keyed in, then the total combinations will be: 
Total combinations: 3C0 + 3C1 + 3C2 + 3C3  
* C = combination 

1. Based on the context table and lists of combinations, create the concepts for the   
entry marked “Y” (Yes). 

2. Construct the concept lattice based on the result from steps 1 and 2. 

The automated building of concept lattice in OntoVis is based on the context inputs 
provided by the user. In addition, OntoVis supports the creation of instances, a feature 
not provided for in ConExp (Tao, 2003). Editing is done by double clicking on the 
concept or instances. OntoVis generates a tree or concept lattice depending on the 
context filled in by the user and does not force a tree to be visualized as a lattice struc-
ture.  

The grouping of similar concepts leads to a compositional concept lattice, which is 
a significant difference from ConExp. A compositional view allows the lattice to have 
different levels of details while ConExp is able to present only a “flat”, level-0 con-
cept lattice. The idea of compositing keeps the irrelevant concepts away from the 
user, thus helping the user to focus on concepts relevant to them. The user can also 
zoom into deeper levels (instances) and pan across the first level of main concepts 
(Lee, 2004). 

Besides the visualization view, OntoVis shows the formal labeling for the concept 
nodes. A formal identification of a concept includes all the objects which are explicit 
(directly contained in it) and implicit (objects which are encapsulated in the concept). 

3   Ontological Query and Retrieval of Resources 

According to Carpineto and Romano (1995), the extent-intent (object-attribute) pairs 
are considered complete pairs if 

1. the extent is the set of objects described by minimally the properties in the intents 
2. the intent is the set of properties shared by all the objects in the extent 

The retrieval of data in OntoVis is semantic-based because of the ontological gen-
eration of concepts. OntoVis uses the intents of the concept as the query terms for 
searching. The object(s) retrieved must fulfill all the terms (properties) specified by 
the query relevant to the object.  This means that a query which requires fulfillment of 
all terms or properties will retrieve the most specific concept in the concept lattice and 
vice versa. Search generality is increased or decreased as the user traverses up or 
down the concept lattice using OR or AND operators. This will increase the accuracy 
of querying and assist the user in knowledge discovery. 

Findings from an initial case study show promising results for visualization, navi-
gation and retrieval using the OntoVis (Lee & Lim, 2005).   
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4   Conclusion 

This paper has investigated automatic generation of trees/lattices, ontological retrieval 
of data and composited navigation. In terms of automatic generation of trees/concept 
lattices, Formal Concept Analysis (FCA) has been used due to its semantic clustering 
properties. Besides, retrieval of resources based on the intents/attributes is more effi-
cient and accurate based on semantics. For the navigational part, a composited view is 
feasible for modeling database structure. A compositional representation allows dis-
play of multiple levels of abstraction, allowing a compact view of composite classes 
leading to object classes and objects (each with its metadata). Future work involves 
enhancing query and dynamic inclusion strategies.   
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Abstract. A new tabu clustering method called ITCA is developed for
the minimum sum of squares clustering problem, where DHB operation
and mergence and partition operation are introduced to fine-tune the
current solution and create the neighborhood, respectively. Compared
with some known clustering methods, ITCA can obtain better perfor-
mance, which is extensively demonstrated by experimental simulations.

1 ITCA Algorithm

In this article, we focus on the minimum sum of squares clustering problem. Many
researches deal with this problem by stochastic optimization methods [1,2,3]. Re-
cently, researchers combine genetic algorithms and K-means algorithm to solve
this problem [4,5]. Here, two novel operations, DHB operation and mergence and
partition operation, are introduced to fine-tune the current solution and establish
the neighborhood, respectively. Therefore, an Improved Tabu Clustering Algo-
rithm (ITCA) is developed. Most procedures of ITCA observe the architecture
of tabu search. Here, we pay main attention to these two operations.

DHB Operation : In [6], five iteration methods (DHB, DHF, ABF, AFB, and
K-means) are compared. By computer experiments, we choose DHB algorithm
as the improvement operation. That is, if object xi belonging to cluster Cj is
reassigned, then the corresponding parameters are updated.⎧⎨

⎩
c′j = (njcj − xi)/(nj − 1)
c′k = (nkck + xi)/(nk + 1)
J ′ = J − nj‖xi − cj‖2/(nj − 1) + nk‖xi − ck‖2/(nk + 1)

(1)

DHB operation is given as follows: Object xi belonging to cluster Cj is reassigned
to cluster Ck, iff min ΔJik < ΔJij , where i = 1, . . . , N , j, k = 1, . . . , K, and
j 	= k. After all objects are considered, the modified solution is obtained.

Mergence and Partition Operation : We introduce mergence and partition
operation to create the neighborhood. Here, we randomly perform one partition
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and one mergence on solution Xc, keep the number of clusters constant, and form
a neighbor. This operation includes four sub operations: 1).Mergence Cluster
Selection: Here, we introduce proportional selection to determine the cluster to
be merged. That is, the closer two clusters to each other, the more possibly
one of them is selected as the one to be merged, and vice versa. In the cluster
pair, the cluster with sparser structure is the one to be merged. 2).Partition
Cluster Selection: Like above sub operation, proportional selection is adopted to
choose the cluster to be partitioned. That is, the sparser the cluster, the more
possibly it is selected as the one to be partitioned, and vice versa. 3).Cluster
Mergence: Here, objects belonging to the cluster to be merged will be reassigned
to their respective nearest clusters. 4).Cluster Partition: Here, iteration methods
are introduced to divide the cluster to be partitioned into two new clusters. By
computer experiments, K-means algorithm is chosen to perform this task.

2 Experiments and Analysis

Figure 1 shows the algorithm equipped with DHB operation can attain the best
result more quickly and stably than the other. Figure 2 shows mergence and
partition operation is far superior to the probability threshold. Five data sets
are considered: German Towns [4], British Towns [4], Data52 [5], Data62 [5],
and Vowel [5]. Here, we consider two cases: one is that the number of clusters is
variable (German Towns and British Towns); the other is that this parameter is
fixed (Data52, Data62, and Vowel). Five methods are considered here: GGA [1],
GKA [4], KGA [5], TCA [2], and ITCA. The time complexities of GGA, GKA,
KGA, and TCA are O(GPKmN), O(GPmN2), O(GPKmN), and O(GNtmN),
respectively. For ITCA, its time complexity is equal to O(GNtm(KN ′+N))). In
many cases, KN ′ < N , the cost of ITCA is close to that of TCA. If the mergence
is performed before the partition, the complexity of ITCA will be similar to that
of TCA and far lower than those of GGA, GKA, and KGA. The average (Avg)
and standard deviation (SD) values of the clustering results and their success
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Table 1. Comparison of the clustering resutls of five methods for different data sets

GGA GKA KGA TCA ITCA

GT4C
Avg 50872.12 49600.59 49600.59 78343.36 49600.59
SD 5016.98 0.00 0 4348.65 0

SR(%) 0 100 100 0 100

GT6C
Avg 31988.74 30806.99 30535.39 63465.08 30535.39
SD 1186.72 805.12 0 4374.93 0

SR(%) 0 85 100 0 100

GT8C
Avg 23833.86 21787.32 21566.13 53091.34 21483.02
SD 1236.95 347.12 241.77 3582.64 0

SR(%) 0 5 55 0 100

GT10C
Avg 18729.89 17180.32 16502.70 48505.45 16357.39
SD 795.36 381.71 101.64 3907.92 85.61

SR(%) 0 0 15 0 75

BT4C
Avg 193.11 181.11 180.91 218.96 180.91
SD 8.94 0.45 0 5.60 0

SR(%) 0 80 100 0 100

BT6C
Avg 173.20 142.84 142.06 183.03 141.46
SD 24.19 1.96 0.96 6.85 0

SR(%) 0 55 65 0 100

BT8C
Avg 156.04 116.35 114.40 162.36 113.58
SD 34.95 2.41 0.98 8.27 0.15

SR(%) 0 20 25 0 80

BT10C
Avg 163.48 95.71 93.50 145.13 92.70
SD 46.93 2.24 1.17 6.95 0.02

SR(%) 0 0 25 0 60

Data52
Avg 492.34 488.08 488.02 2666.24 488.02
SD 6.12 0.13 0 52.87 0

SR(%) 0 50 100 0 100

Data62
Avg 806.43 543.17 543.17 19592.24 543.17
SD 353.36 0 0 296.33 0

SR(%) 0 100 100 0 100

Vowel
Avg 33970758.08 31017497.96 30690310.02 250440977.65 30686385.75
SD 2444084.44 490397.18 11187.13 2462485.38 351.67

SR(%) 0 0 20 0 85

rates (SR) are compared as shown in Table 1. GGA is better than TCA. KGA
is slightly better than GKA and they are both better than GGA and TCA. It
is seen that ITCA is the best among five algorithms and can achieve the best
results more stably than other methods especially in complicated ones.
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Abstract. The search engine log files have been used to gather direct
user feedback on the relevancy of the documents presented in the re-
sults page. Typically the relative position of the clicks gathered from the
log files is used a proxy for the direct user feedback. In this paper we
identify reasons for the incompleteness of the relative position of clicks
for deciphering the user preferences. Hence, we propose the use of time
spent by the user in reading through the document as indicative of user
preference for a document with respect to a query. Also, we identify the
issues involved in using the time measure and propose means to address
them.

The unstructured and noisy data on the web poses serious challenges to web
search engines. The problem of retrieval quality of the search engines is further
augmented by systematic spamming aimed at improving the page ranking prac-
tised by the page owners. The most popular technique called the Page-Rank for
producing an importance ranking of the pages on the web took advantage of the
link structure of the web [1]. Another popular approach is to include anchor-text
analysis in the scoring function [2]. These techniques can be classified as indirect
approaches of evaluating web-page quality with respect to a query. A more direct
approach to the web-page quality problem was necessitated due to the fact that
the indirect methods are very susceptible to spamming. However users are very
reluctant to give direct feedback on the web-page quality. User feedback can be
implicitly collected, albeit partially, using web search engine logs.

Given that the link to document da was clicked before document db, it repre-
sents the relative quality judgement of the user on the documents with respect
to the query. Joachim’s proposed a method that used the click-through data
with the relative quality judgement’s to train a retrieval function. This method
uses the relative position of the clicks to deduce the user preference with respect
to the query [3]. Another more recent model for using the click-through data
uses the co-visited relationship of the web-pages across queries [5]. The co-visited
principle means that if two web-pages are visited by users with the same query,
then the two web-pages are co-visited. Using this similarity concept the authors
developed an iterative algorithm that measures similarities between queries and
web-pages and used them in rearranging the search engine results.
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The relative quality judgement based on the relative position of the clicks in
the click-through data is incomplete for the following reasons:

– Since the users only review a limited search result pages, the pages down in
ranking is less likely to be clicked on independent of the pages relevance for
the query. In fact, analysis has shown that for 85% of the queries only the
first result screen is reviewed by the user [4].

– Since only a limited number of links are presented in a page the relative
quality judgement can at best be made only among the links presented in
that page.

– Even with in a single pages, users rarely review all the links presented before
selecting the pages to view. Hence it is very unlikely that links that are down
the list even with in a single search result page will be viewed ahead of pages
that are listed above them.

– The text accompanying the links to web-pages in search results pages are
often short and incomplete. Hence the users decision is based on incomplete
information.

When a user visits a page, the time spent in reading through its contents cab
be used as a proxy for the user feedback on the relevancy of a document to the
posed query, assuming that the user’s attention is not distracted to other topics.
Hence we propose to use the time measure, and for that purpose, we identify
three major issues in using the time measure namely, last visited page dilemma,
inter-session and intra-session issues.

Last Visited Page Dilemma

Under ideal conditions, if a user with a query visited document da at time ta
and and the very next visited document document db at time tb, then the time
spent by the user reading through the web-page da is given by τa = tb− ta. This
measure can be computed for all but the last page visited by the user. This can
be construed as either the user found perfect page answering the posed query or
the user just stopped looking further even without finding a page that matched
the posed query. It would be difficult to resolve this dilemma without a direct
feedback from the user.

Though it would be ideal to have the user feedback in resolving the last visited
page dilemma (LVPD) described above, the dilemma could be addressed to some
extent by using the co-visited relationships of web-pages. This dilemma could be
addressed by looking at the behaviour of users with other queries that are similar
to the one posed by the current user. Let the set of all queries related to query q
be given by Q(q). The web-pages that are returned by the search engine for query
q is given by D(q). The web-pages that are clicked by users with queries that
are related to each other are defined to have a co-visited relationship, i.e., given
a query q, the co-visited pages are d ∈ D(q′), ∀q′ ∈ Q(q) and it is represented by
C(q).

If for all the related queries τ is unknown for a specific page d, then it is quite
possible that this document is the most relevant page for these queries. However,
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knowing how we browse the web, it is quite unlikely that τ will be unknown for
all related queries, or in other words, it is quite unlikely that a specific web-
page will be the last page visited by all the users with related queries. Hence
hopefully there will be some users who have visited other pages after visiting the
page under consideration. This will provide us with information for assessing the
relevance of the document for a query.

Inter-Session Issues

Different users browse through the pages at varying speeds. Hence, the time
spent by a user reading through a page cannot be directly used as a measure
of documents relevancy. It is important to normalise the time spent by the user
in a web-page before using it. The normalisation procedure should maintain
the relative relevance judgement specified by the time spent the user browsing
through the web-pages. Further across sessions that are generated by different
users the relative relevance judgement’s should be comparable.

Intra-Session Issues

The computing platform, Internet connection speeds and the reading speeds vary
among the users. Hence a direct comparison of the times as computed from the
log files will be grossly misleading. The normalised times will be able to adjust
for the varying reading speeds of the users. However, the varying connection
speeds and platform processes could still influence the time measures in the log
file. One solution to this problem would be consider a measure like the time
spent per kilobyte of data accessed. Given the multiple modes of document
presentation on the web like pdf, doc, etc., which can only be viewed after
completely downloading the entire document, a measure like time spent per
kilobyte of data becomes crucial.

Though it seems that time will be good proxy for direct user feedback, future
work needs to implement it to prove its efficacy.

References

1. S. Brin and L. Page. The anatomy of a large-scale hypertextual web search engine.
In Proceedings of the 7th International World Wide Web Conference, pages 107–117,
1998.

2. Nick Craswell, David Hawking, and Stephen Robertson. Effective site finding using
link anchor information. In ACM SIGIR, pages 250–257, New Orleans, 2001.

3. Thorsten Joachims. Optimizing search engines using clickthrough data. In SIGKDD,
pages 133–142, Alberta, Canada, 2002.

4. C. Silverstein, M. R. Henzinger, J. Marais, and M. Moricz. Analysis of a very large
altavista query log. SIGIR Forum, 33:6–12, 1999.

5. Gui-Rong Xue, Hua-Jun Zeng, Zheng Chen, Yong Yu, Wei-Ying Ma, WenSi Xi, and
WeiGuo Fan. Optimizing web search using web clickthrough data. In CIKM, pages
118–126, Washington DC, 2004.



Network Boosting for BCI Applications

Shijun Wang, Zhonglin Lin, and Changshui Zhang

Department of Automation, Tsinghua University, Beijing 100084, China
{wsj02, linzl02}@mails.tsinghua.edu.cn, zcs@mail.tsinghua.edu.cn

Abstract. Network Boosting is an ensemble learning method which
combines learners together based on a network and can learn the tar-
get hypothesis asymptotically. We apply the approach to analyze data
from the P300 speller paradigm. The result on the Data set II of BCI
(Brain-computer interface) competition III shows that Network Boost-
ing achieves higher classification accuracy than logistic regression, SVM,
Bagging and AdaBoost.

BCI (Brain-computer interface) is a direct cybernetic link between a mind and a
computer which does not depend on the brain’s normal output pathways of pe-
ripheral nerves and muscles [1]. Most BCIs make use of mental tasks that lead to
distinguishable electroencephalogram (EEG) signals of two or more classes. P300
potentials provide a means of detecting user’s intentions concerning the choice
of objects within a visual field. Farwell and Donchin [2] first introduced P300
potentials into BCI, and proposed P300 speller paradigm [3]. In P300 speller
paradigm the key task is to detect presence or absence of the P300 component
in noisy EEG signals accurately and fast.

Network Boosting (NB) [4] is a new ensemble learning method which com-
bines classifiers on the basis of a network. Theoretic analysis based on the game
theory shows that the algorithm can learn the target hypothesis asymptotically.
NB is more suitable than other ensemble learning methods for noisy data and
distributed application. In this paper We utilize NB for classifying electroen-
cephalogram (EEG)-signals to detect absence or presence of the P300 component
in EEG event related potentials.

The basic idea of NB is that through the cooperation between classifiers, we
expect the learned classifier ensemble has high accuracy as well as high resistance
to the noise. The idea comes from our recent research [5] on complex network
[6]. In order to facilitate the cooperation of classifiers, a network topology is
introduced which serves as a communication structure between them.

Fig. 1 shows the NB algorithm. Assume there are K nodes in the network
and the training round is T . In the learning phase, given training set Z =
〈(x1, y1) , (x2, y2) , ..., (xl, yl)〉, each classifier on the classifier network is provided
with the same training instances and maintains a weight record wk,t (i) for k =
1, ..., K , t = 1, ..., T , i = 1, ..., l of the instances respectively. Then the classifier
in the classifier network is built by the training set sampled from the training
data according to the weights record. After that, the weights of the instances of
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every node are updated according to the classification results of the node and
its predecessors. The classifier network is trained T rounds in such way.

We compare 5 algorithms on data set II of BCI Competition III [7]. In P300
speller paradigm, the user faces a 6 × 6 matrix of letters. The user’s task is to
focus attention on characters in a word that was prescribed by the investigator
(i.e., one letter at a time). All rows and columns of this matrix are successively
and randomly intensified at a rate of 5.7Hz. Two out of 12 intensifications of
rows or columns contains the desired letter (i.e., one particular row and one
particular column). The responses evoked by these infrequent stimuli (i.e., the
2 out of 12 stimuli that did contain the desired letter) are different from those
evoked by the stimuli that do not contain the desired letter.

Algorithm Network Boosting

Input: Examples Z = 〈(x1, y1) , (x2, y2) , ..., (xl, yl)〉
Directed Network N
Training rounds T
Sampling parameter ρ
Weight update parameter β

Initialize: wk,1 (xi) = 1 for all sample i = 1, ..., l and node k = 1, ..., K

Do for: 1. Generate a replicate training set Tk,t of size lρ, by weighted
sub-sampling with replacement from training set Z for k = 1, 2, ..., K.
2. Train the classifier (node) Ck in the classifier network with respect
to the weighted training set Tk,t and obtain hypothesis
hk,t : x �→ {−1, +1} for k = 1, ..., K .
3. Update the weight of instance i of node k :

wk,t+1 (i) = wk,t (i)β
I(hk,t(xi)=yi)+

∑
n

I(hn,t(xi)=yi)
/Zk,t, (1)

where node n is predecessor of node i. I is indication function and Zk,t

is a normalization constant, such that
∑l

i=1 wk,t+1 (xi) = 1.

Output: Final hypothesis by majority voting using the learned hypotheses
hk,t : x �→ {−1, +1} for k = 1, ..., K and t = 1, ..., T .

Fig. 1. Algorithm Network Boosting

The data set comes from two subjects’ experiments. For evaluation, we only
use the labeled training set. In preprocessing, we find that epoch 11, 62 and
63 of subject A have much larger amplitude than others and we treat them as
outliers and discard them. So there are 82 epochs from subject A and 85 epochs
from subject B. Then the preprocessing are performed as following: All data are
band-pass filtered between 0.5-15Hz; The No. 34, 11, 51, 62, 9, 13, 49, 53, 56
and 60 channels are selected; Signals (lasting 900ms from stimulus) from above
channels are concatenated, and then down-sampled to 1/8.
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All the algorithms are used to classify single-trial signal. If a signal is judged
to have P300 potential, the corresponding code’s score is incremented. After 15
classifications for each code, the two codes which gain the highest score gives
the target character. We divide epochs as 4 folds, taking 3 as training set and
the remaining one test, for subject A and B respectively. After 4 repetitions,
we predict all characters. Table.1 gives the error rates by algorithms: Logistic
Regression (LR), Support Vector Maching (SVM), Bagging, AdaBoost and NB.
Logistic Regression as base classifier is used in all the ensemble learning meth-
ods (SVM, Logistic Regression, Bagging and AdaBoost are implemented using
WEKA [8].) For Bagging and AdaBoost, 100 base classifiers were used. For NB,
NB(100, 10, 1/3, 0.7) and directed random network with connection probability
0.03 (for each directed link) is used.

Table 1. Comparisons of 5 methods on Data set II of BCI competition III

Name Logistic Regression SVM Bagging AdaBoost Network Boosting

Subject A (82) 10.98% 10.98% 14.63% 9.76% 6.10%

Subject B (85) 7.06% 17.65% 11.76% 10.59% 5.88%

The comparison results show that NB achieves higher accuracy than others
and is more robust than other ensemble learning methods. In the present work,
all the data from different channel are combined together as the training data of
classifiers. What if we apply one classifier for one channel in the NB algorithm
and combine the final results together? It may be a way of future research.
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Abstract. Rule-Based Fuzzy Cognitive Map (RBFCM) is proposed as an evolu-
tion of Fuzzy Causal Maps (FCM) to allow more complete and complex repre-
sentation of cognition so that relations other than monotonic causality are made 
possible. This paper shows how RBFCM can be viewed in the context of rela-
tion algebra, and proposes a novel model for representing and reasoning causal 
knowledge relation. The mapping model and rules are introduced to infer three 
kinds of causal relations that FCM can’t support. Capability analysis shows that 
our model is much better than FCM in emulating real world. 

1   Motivation 

Fuzzy Conceptual Maps have become an important means for drawing a graphical 
representation of a system , and connecting the state concepts (variables) in the sys-
tem by links that symbolize cause and effect relations, and have been used in  simulat-
ing process, forecasting or decision support, etc. Though FCMs have many desirable 
properties, they have some major limitations [4]. For example, .FCMs can’t provide 
the inference of sequential relations or time-delay causal relations because all the 
interaction of FCMs’ concepts is synchronous, and can’t provide the inference of 
conditional probabilistic causal relations. Their inference results in some intelligent 
systems are usually distorted.  

Some authors have tried to extend FCMs to include time, and they developed sys-
tems such as “Extended FCMs” (Hagiwara [2]) and rule-based FCMs (Carvalho 
[3]).But they can’t support conditional probabilistic causal relations. Neural Cognitive 
Map (NCM [5]) are presented to solve complex causal relations, but NCM needs 
much training data that are difficult to be obtained in some intelligent systems, and 
time-delay causal relations as well as sequential relations are difficult to be found by 
neural networks.  

Our model proposes a novel model for representing and reasoning causal knowl-
edge relation. The mapping model and rules are introduced to infer three kinds of 
causal relations including sequential relation, time-delay causal relations, and condi-
tional probabilistic causal relations that FCM can’t support. 

2   The Mathematical Model  

In our model, causal knowledge is in the form of concepts, relations, directional con-
nections and weights. Fig.1 describes the cause-effect relation mapping about terror 
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events represented by RBFCM. The hostage, explosion and casualty are the subse-
quences of terrorists, and the terrorists are the subsequence of the foreign policy and 
the striking power. The foreign policy has not an immediate effect because it needs 
days or months to make a full impact on terrorists. The striking power also needs 
hours or days to make a full impact on terrorists. Our model is the map that can repre-
sent and infer more complex and complete casual knowledge than FCM.  

striking power

terrorist

casualty

hostage

explosion

foreign policy

terror event

-0.7

+1

+0.6 +0.5 -0.5

+0.5 +0.5

+0.5

+0.7

+0.8

+0.45

+0.9

+0.45 +0.7

C3

C4

C6(6S71,d71,P65/P67)

C7

C5(5S67,d67,P52/P53/P54)

C2(2S543,d543,P21)
C1(1S234,d234,P17)  

Fig. 1. The cause-effect relation mapping terror events represented by RBFCM 

Definition. Let Sci and Scj be the state values of concept Ci and Cj,, ( )f x be the rea-

soning function of Cj. Rij and wij are the relation type and the weight from Ci to Cj 
respectively, and are the elements of the relation matrix R and the adjacency matrix 
A.  The mapping model can be determined by the following operations of Rule 1- 3: 

1. If there exist conditional probabilistic causal relations from different concepts Ci to
 

Cj, f(x) is a computing function of all the concepts Ci occurrences leading to the in-
crease / decrease probability of concept Cj. Here ( ) tanh( ) [ 1,1]f x x= ∈ −   . 2. If there

 

exists time-delay causal relation from Ci to Cj, then reserve the primary value of Ci

 

during the time delay, and all values of the ith  row are zero in the adjacency matrix A, 

then set Sci(t) equal to the original value of Ci. Here ( ) 1/(1 ) [0,1]xf x e−= + ∈ . 3. The
 

(i-1)th sequential relation should be reasoned before the reasoning of the ith sequential
 

relation. if the concept value interval is [-1, 0], Then ( ) 1/(1 )xf x e= − . 

The effect concept’s state value at time (t+1) should partly depend on its own state
 

value at time t. φ  and ϕ  are allotted coefficient. 1φ ϕ+ = . The computing of effect
 

concept’s state value is as follows: 
1 1

( 1) ( ( ) ( ))
n n

cj ij ci ij cj
i j

S t f w S t w S tφ ϕ
= =

+ = + . 

The relation matrix R and the adjacency matrix A describe the relation types and
 

the weights between concepts of directional connections respectively. And all of their
 

interactions among concepts, relations, directional connections and weights compose
 

a dynamic network. In Fig.1, the cause-effect causal relation and the conditional
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 probabilistic causal relation are denoted as Rce and Rcp respectively. If there does not 
exist causal relation between concepts, it is denoted as N in R. The mth subsequence is 
denoted as mS and the time-delay causal relation is denoted as dn.  For example, R2 
(2, 1) = (2S, d543) represents that there exists first sequential relation and the time-
delay causal relation from C2 to C1.. The denotation C5 (5S67, d67, P52/ P53/ P54) in 
Fig.1 represents that there exists first sequential relation and the time-delay causal 
relation from C6 and C7 to C5, and there also exists conditional probabilistic causal 
relation from C5 to C2, from C5 to C3  and  from C5 to C4 . 

                N   N           Rce    Rcp      N      N                           0       0   +0.7   +0.6     0       0     
               Rce  Rcp         Rcp  (6S,d71) N      N                        +1    -0.7  +0.5   +0.7     0       0 
               Rce  N      (5S,d67)  Rcp      Rcp   Rcp                      +0.6     0    -0.7   +0.5  +0.5  +0.5 

R=       N   Rce          Rcp        N       N     N             A=       0    +0.45  +0.5      0      0       0 
                N   Rce          Rcp        N       N     N                         0    + 0.7  + 0.5      0      0       0 
               Rce  Rce          Rce  (2S,d543) N    Rcp                     +0.5  +0.7   +0.8  +0.45   0   +0.45 
               Rce  Rce          Rce  (1S,d432)  N   Rcp                     +0.45 +0.9 +0.45   +0.7   0      +1 

3   Conclusions and Future Work 

In this paper, RBFCM represent a very promising inference structure that is able to 
capture the causal reasoning processing present in most human decision making ac-
tivities. We present our formal definitions and theoretical results for the analysis of 
the inference mechanisms of RBFCM. Although in real-world applications, FCM can 
be extremely complex, we can regularly divide a given FCM into basic FCM mod-
ules. The ongoing work is to use the mapping model to share and understand causal 
knowledge in Knowledge Grid environment. 
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Abstract. This paper presents an algorithm to prune a tree classifier
with a set of rules which are converted from a C4.5 classifier, where rule
information is used as a pruning criterion. Rule information measures
the goodness of a rule when discriminating labeled instances. Empiri-
cal results demonstrate that the proposed pruning algorithm has high
predictive accuracy1.

1 Introduction

Decision tree pruning is a kind of method to improve predict accuracy and
avoid overfitting. There are some approaches previously proposed in this area.
Minimum description length pruning [1] and minimal cost complexity pruning
[2] generate a sequence of pruned trees and later select better one from them.
It should be noted these methods prune a decision tree in a direct way, pruning
nodes among the paths from a tree node to a tree leaf. It cannot delete a condition
if the reorganization of the tree fails. This paper proposes a tree pruning method,
pruning a tree with a rule set. The rule set is converted from a decision tree [3],
where rule information proposed in [4] is used as pruning criteria. It prunes a
tree in an indirect way. The tree pruning with a set of rules has some advantages
over those done by a direct way. It can avoid the over pruning caused in the
previous pruning methods especially when the training set is small.

Rule information [4] is used to calculate relationship between antecedent (con-
ditions) and consequent (prediction) of a rule. Rule information is suited to de-
scribe the relationship among the conditions and the prediction. Moreover, a rule
belief is employed to identify a rule if the rule is necessary to be pruned before
a rule pruning starts. Empirical tests and comparisons show that our algorithm
outperforms C4.5 in predictive accuracy.

1 The work is supported by the Scientific Research Foundation for the Returned Over-
seas Chinese Scholars, State Education Ministry, and the Project (No.2004D006)
from Hubei Provincial Department of Education, P. R. China.
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2 Rule Information and Rule Belief

A decision tree can be converted to a set of rules. The rules with IF-THEN form
are used to prune a tree. A rule is expressed with

∑n
i=i(A1 = vij)→ (C = cm),

where Ai = vij is a condition of the rule and C = cm the prediction of the rule,
n is the number of the attributes; vij a value of the attribute Ai, cm a class of
the prediction C (assume m is among 1 · · ·k, k denotes the number of the class
values of C).

Rule information describes the mutual relationship for a rule between its
conditions and its prediction. Rule information [4] is defined as

I(R) = log2
P (C = cm|

∏n
i=1(Ai = vij))

P (C = cm)

where P (C = cm|(Ai = vij)) is the proportion of attribute Ai with value vij

under C = cm, P (C = cm) is the proportion of class C with value cm in the
training set.

As the definition of I(R), a rule with a larger value denotes the relationship be-
tween the condition part and the prediction part in a rule is tighter. If C = cm

and all the examples in the training data are covered, I(R) is the maximum
− log2 P (C = cm). If the prediction of a rule cannot derive from inadequate con-
ditions, its rule information is probably negative. Our algorithm only deals with
the rules whose rule information ranges from 0 to − log2 P (C = cm). To identify
a rule if it can be a candidate to be pruned, we define a concept ”rule belief”:
B(R) = I(R)

− log2 P (C=cm) . B(R) is a normalization of I(R) with − log2 P (C = cm),
which can be directly used to identify whether a rule should be deleted before
pruning.

Both rule information and rule belief are used in our rule pruning algorithm.
Rule information is used as a pruning criterion. Given a rule r, every step in rule
pruning of r should not decrease the rule information I(r). Rule belief is used to
identify whether a rule should be directly deleted without entering rule pruning
process.

3 Pruning Algorithm and Experiments

Our tree growing process is similar to that of C4.5. A built decision tree is then
converted to a rule set. The algorithm mainly consists of: 1) Calculation of rule
information and rule belief for each rule; 2) Deletion of the rules whose rule belief
is less than a given threshold δ; 3) For each rule, any condition of the rule can be
removed once it does not worsen the rule information of the rule. In every rule
pruning, so that the increment of rule information should be greater than a value
ε (given according to the noisy rate in the training data). For every condition
of the rule, the algorithm tries to find the most effective pruning, where the
increment of the rule information is maximum. The pruned rule with the most
effective pruning is inserted into the pruned rule set Rp.
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The experiments have extensively been evaluated with 4 data sets (Connect-4,
Breast-cancer, Iris Plants, Credit-screening) selected from the well-known UCI
data repository [5]. The predictive accuracy on their testing set is calculated. The
results demonstrate our rule pruning algorithm outperforms C4.5 in predictive
accuracy. For each data set, we have carried out several training and testing
respectively. In case of Connect-4 (10-600-100), 10 training-testing tunes are
performed; the first training set includes 600 examples; and each of the next
training set is increased with 100 examples which are randomly selected from
its data source. For Breast-cancer, Iris Plants, and Credit-screening, the above
number is (10-50-50), (10-50-10), (9-300-30), respectively. Predictive accuracy is
calculated with every training-testing tune by applying the pruned tree on the
original data source except the training examples.

Fig. 1. Predict accuracy comparison

The results (see Fig. 1) show the predictive accuracy of these four conducted
domains. Fig.1-1 shows both C4.5 and our algorithm have high error ratios (more
than 30%) on Connect-4. The predictive accuracy obtained on Breast-Cancer
(Fig. 1-2) and Iris Plant (Fig. 1-3) is reasonable, where the error ratios decrease
when the training examples increase. However, for Credit-screening (Fig. 1-4),
the increasing examples seem to be not improving the predictive accuracy. Both
C4.5 and our algorithm have similar accuracy curves on these 4 domains. Our al-
gorithm performs better than C4.5 on these 4 domains, and learns more accurate
classifiers.
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4 Conclusion

The proposed tree pruning method with rule information and rule belief performs
better than C4.5 in the predictive accuracy. One of the future works is to explore
the model optimization with the decision tree.
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Abstract. Chinese herbal medicine has been an effective therapy for healthcare 
and disease treatment. Large amount of TCM literature data have been curated 
in the last ten years, most of which is about the TCM clinical researches with 
herbal medicine. This paper develops text mining system named MeDisco/3T to 
extract the clinical Chinese medical formula data from literature, and discover 
the combination knowledge of herbal medicine by frequent itemset analysis. 
Over 18,000 clinical Chinese medical formula are acquired, furthermore, sig-
nificant frequent herbal medicine pairs and the family combination rule of 
herbal medicine have primary been studied.  

1   Introduction 

Recently, text mining has attracted great attention in the biomedical research commu-
nity [1,2,3] due to the large amount of literature and TextBases (e.g. Medline) have 
been accumulated in the biomedical fields. 

Traditional Chinese Medicine (TCM) has been a successful approach for Chinese 
health practice since several thousand years ago. It is significant to study the composi-
tional rule of Chinese Herbal Medicine (CHM) since CHM has been a novel basis of 
new drug development. The TCM bibliographic database, which contains over one 
half million records from 900 biomedical journals published in China since 19841. 
This paper aims to discover knowledge from TCM literature with regard to clinical 
CMF (Chinese Medical Formula) component CHM combination. We follow the ap-
proach suggested in [4] to extract the structured objective information and then apply 
the traditional data mining algorithms. We develop a text mining system called 
MeDisco/3T(Medical Discover for Traditional Treatment inTelligence) to mine the 
CHM knowledge from TCM literature. Firstly, MeDisco/3T extracts structured CMF 
information (e.g. CMF name, CHM components and efficacy description) from litera-
ture based on bootstrapping method [5]. Secondly, it uses frequent itemset algorithm 
to analyze the data.  

2   MeDisco/3T Text Mining System 

Fig 1 depicts the framework of MeDisco/3T. There are three main steps to be proc-
essed in MeDisco/3T.  
                                                           
1  http://www.cintcm.com 
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(1) Iterative extracts the CMF names from literature when provided with a handful of 
CMF seed name tuples. 

(2) Extracts the CHM components and efficacy descriptions data according to the 
extracted CMF names. Some simple heuristic rules are used in this procedure 
since the abstracts are semi-structured, because most of them are delimited by 
special word labels such as “Approaches”, “Objectives” and “Results” etc.. 

(3) Conducts various kinds of data mining algorithms based on the clinical CMF 
database, currently, we only perform the simple frequent itemset analysis.  

It is clearly that MeDisco/3T will produce two important results, namely a database 
of novel clinical CMFs and support of classical data mining studies on CHM.  

MeDisco/3T

TCM
Literature

DB

tid CMFName Threshold Matched

1 ´ó³ÐÆøÌÀ 10 0

2 ÁùÎ¶ μØ»ÆÌÀ 10 0

... ... ... ...

User Provided Seed Tuples

Bootstrapping T CM T erm
Recognizer

CMF Name
DB

CMF Content
Extractor

Clinical CMF
DB

Data MiningMining
Results

Expert

 

Fig 1  MeDisco/3T text mining system 

3   Main Results 

We extract and identify 18,213 CMFs (from the year of 2000 to 2003 of TCM litera-
ture database) with different CHM composition to have a frequent itemset CHM 
analysis. The average name extraction precision by bootstrapping method2 is high 
over 95%. MeDisco/3T performs a preprocessing procedure to transform the extracted 
data to a completely structured form, which is suitable for data mining algorithms. 
Where after, it apply the Apriori algorithm to analyze the frequent CHM pairs and 
CHM family combination characteristics in clinical CMF using. 

All the clinical CMF used in TCM can be classified by its efficacy. Exactly, One 
CHM can be used for different efficacy in different CMF. We have chosen five dif-

ferent types of CMFs according to the efficacy such as HuoXueHuaYu , 

BuZhongYiQi  etc.. The 10 frequent CHM pairs and family combinations of 
the above two CMF types are listed in Table 1. Due to the page limit, the results of 
the other three CMF types are not depicted. It indicated from the experiment results 
that there exist many important CHM pairs and family combinations with different 

efficacy. For example,  is a typical CHM pair with BuZhongYiQi efficacy, 

and builds the core of CMF with BuZhongYiQi efficacy, because the 

                                                           
2  Zhou, X., Text Mining and the Applications in TCM. PhD thesis, College of computer sci-

ence, Zhejiang University, 2004,12,8. The thesis has a detail description of bootstrapping 
method used in MeDisco/3T. 

..
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support of  combination in CMF with BuZhongYiQi efficacy is 180%. 
This knowledge will surely help to clinical CMF prescription practice and new drug 
development. 

Table 1. The 10 top frequent CHM and its family combinations of efficacy BuzhongYiQi and 
HuoXueHuaYu, Supp(Family/CHM) represents the support of frequent family/CHM 
combination. For convenience, the CHM name is in Chinese, but all can be referred from the 
online databases on http://www.cintcm.com for the Latin or English names. 

 BuZhongYiQi   HongXueHuaYu  
Family  Supp(Family/CHM) CHM  Family Supp(Family/CHM) CHM 

 1.8/0.3   1.2/0.36  
 1.1/0.26   1.1/0.31  
 0.96/0.24   1.03/0.30  

 0.96/0.23   0.95/0.29  
 0.80/0.23   0.93/0.29  

 0.79/0.22   0.77/0.28  
 0.74/0.22   0.69/0.26  

 0.70/0.22   0.67/0.26  
 0.63/0.21   0.65/0.24  

 0.63/0.21   0.59/0.24  
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Briand, Henri 330
Bruza, Peter D. 84
Budi, Indra 57

Caragea, Doina 14, 308
Castillo, Gladys 70
Chen, Kefei 380
Chen, Pai-Hsuen 15
Chon, Tae-Soo 150
Clare, Amanda J. 16
Cole, Richard J. 84
Collier, Nigel 267
Cooper, Leon N. 241
Crémilleux, Bruno 124

Dartnell, Christopher 99
Daumke, Philipp 113
desJardins, Marie 294

Fan, Rong-En 15

Gagliardi, Hélène 374
Gama, João 70
Guillet, Fabrice 330
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