
W. Fan, Z. Wu, and J. Yang (Eds.): WAIM 2005, LNCS 3739, pp. 632 – 637, 2005.
© Springer-Verlag Berlin Heidelberg 2005

A Unified Subspace Outlier Ensemble Framework for
Outlier Detection

Zengyou He, Shengchun Deng, and Xiaofei Xu

Department of Computer Science and Engineering,
Harbin Institute of Technology, China

zengyouhe@yahoo.com, {dsc, xiaofei}@hit.edu.cn

Abstract. This paper proposes a unified framework for outlier detection in high
dimensional spaces from an ensemble-learning viewpoint. Moreover, to
demonstrate the usefulness of our framework, we developed a very simple and
fast algorithm, namely SOE1, in which only subspaces with one dimension is
used for mining outliers from large categorical datasets. Experimental results
demonstrate the superiority of SOE1 algorithm.

1 Introduction

Most applications for outlier mining are high dimensional domains in which the data
may contain hundreds of dimensions. In this paper, we propose a unified framework
for outlier detection in high dimensional spaces from an ensemble-learning viewpoint.

In our new framework, the outlying-ness of each data object is measured by fusing
outlier factors in different subspaces using a combination function. In addition, to
demonstrate the usefulness of the ensemble-learning based outlier detection
framework, we developed a very simple and fast algorithm, namely SOE1 (Subspace
Outlier Ensemble using 1-dimensional Subspaces) in which only subspaces with one
dimension is used for mining outliers from large categorical datasets. The SOE1
algorithm needs only two scans over the dataset and hence is very appealing in real
data mining applications. Experimental results on real datasets show that SOE1 has
comparable performance with respect to those state-of-art outlier detection algorithms
on identifying true outliers.

2 Problem Formulation and Unified Framework

Let D be a database of d-dimensional feature vectors. An element P ∈D is called
point or object. Let A = {A1, A2, …, Ad} be the set of all attributes Ai of D. Any subset
S ⊆ A, is called a subspace. The cardinality of S (|S|) is called the dimensionality of S.

The power set of A, denoted by Pow (A), is defined as Pow (A)= { }ASS ⊆| .

Hence, each subspace is an element of Pow (A). The projection of an object P into a

subspace S ∈Pow (A) is denoted by)(PSπ . The outlier factor of an object P in

subspace S is denoted by))((POF Sπ .

 A Unified Subspace Outlier Ensemble Framework for Outlier Detection 633

The problem of outlier detection in high dimensional space and the unified
ensemble learning based algorithmic framework are described in Fig.1.The input for
outlier detection in high dimensional space includes the target database, the number of
desired outliers, the set of subspaces considered in the mining process and the
combination function. Among all these input parameters, the set of subspaces and
combination function are of primary importance.

Outlier Detection in High Dimensional Space:
 Mining top-k outliers from a database using a set of subspaces and a combination function
Input:
 (1): A database D with set of features A
 (2): An Integer k, i.e., the k most outlying objects to be mined
 (3): SS, a set of subspaces, i.e., SS is a subset of Pow (A)

 (4): A combination/ensemble function ⊕
Output:

Top-k outliers that satisfy the requirement
Unified Algorithmic Framework:
(1) Individual subspace outlier factor computation step

For each subspace S in SS
 For each object P in D

 Compute the outlier factor of P in S, i.e.,))((POF Sπ

(2) Outlier ensemble step
For each object P in D
Ensemble all the outlier factors of P in different subspaces, i.e., OF(P)=))((POF S

SSS
π

∈
⊕

Fig. 1. The unified subspace outlier ensemble based algorithmic framework-SOE framework

The unified algorithmic framework (subspace outlier ensemble (SOE) framework)
consists of two steps: subspace outlier mining and subspace outlier ensemble.

In the subspace outlier-mining step, the SOE framework uses existing outlier
mining algorithms to compute the outlier factors of data objects in all the input
subspaces.

In subspace outlier ensemble step, we borrow some ideas from ensemble learning
by fusing outlier factors in different subspaces using a combination function. Hence,
the choice of combination function (or combining operator) is at the core of the
outlier ensemble stage.

Suppose the outlier factors of an object P in D in different subspaces are denoted as
v1, v2, …, vm (the number of input subspaces is m). And the combining operator is
denoted as ⊕ . By fusing all the subspace outlier factors, the final outlier factor of P

is OF (P) = ⊕ (v1, v2, …, vm). Note that if m=1, ⊕ (v1, v2, …, vm) = v1.

Our potential choices for ⊕ are the followings (which are also used in [7] for
class outlier mining).

 The product operator ∏ : ⊕ (v1, v2, …, vm) = v1v2 … vm.

 The addition operator +: ⊕ (v1, v2, …, vm) = v1+ v2 +…+ vm.

634 Z. He, S. Deng, and X. Xu

 A generalization of addition operator-it is called the Sq combining rule, where q

is an integer number. Sq (v1, v2, …, vm) =)/1(
21)...(qq

m
qq vvv +++ . Note that

the addition is simply the S1 rule.

 A “limiting” version of Sq rules, denoted as ∞S . ∞S (v1, v2, …, vm) is defined to

be equal to vi, where vi has the largest absolute value among (v1, v2, …, vm).

3 SOE1 Algorithm

Let D be a database of d-dimensional feature vectors. Let A = {A1, A2, …, Ad} be the
set of all attributes Ai of D. The value set Vi is set of values of Ai that are present in D.
For each attribute value v∈Vi, the frequency f (v), denoted as fv, is number of objects
P ∈D with P. Ai = v. The number of distinct attribute values of Ai is supposed to be

ip . We define the histogram of Ai as the set of pairs: hi = {(v1, f1), (v2, f2),…,

(
ipv ,

ipf)}. Each element of hi is called an entry in the histogram or just a histogram

entry. The histogram of the dataset D is defined as: H = {h1, h2, …, hd}.
The proposed SOE1 algorithm needs only two scans over the dataset. The first scan

of SOE1 is the subspace outlier-mining step, in which we construct the histogram of
the dataset D. Intuitively, in one-dimensional space the outlying-ness of an object is
determined by the occurrences of its corresponding attribute value, i.e., higher
frequency implies more normal the object is. Hence, the outlier factor of each object

P ∈D in subspace Ai is the frequency f (P. Ai). Hence, ∞S (v1, v2, …, vm) is modified

to be equal to vi, where vi has the smallest absolute value among (v1, v2, …, vm). To
store the histogram of the dataset D, we need d hash tables as our basic data structures
(each hash table for one histogram of Ai). Actually, each hash table is the
materialization of a histogram. Therefore, we will use histogram and hash table
interchangeably in the remaining parts of the paper.

The second scan of SOE1 is the subspace outlier-ensemble step, in which we
aggregate the outlier factors in different one-dimensional subspaces using a
combination function. That is, for each object P ∈D, we retrieve its frequencies of
attribute values, i.e., outlier factors, from hash tables efficiently. Then, fusing these
outlier factors to get final outlying-ness. To report the top-k outliers, we maintain a k-
length array for this purpose.

4 Experimental Results

We used three real life datasets from UCI [5] to demonstrate the effectiveness of our
algorithm against FindFPOF algorithm [1], FindCBLOF algorithm [2] and KNN
algorithm [3].

For all the experiments, the two parameters needed by FindCBLOF algorithm are
set to 90% and 5 separately as done in [2]. For the KNN algorithm [3], the results
were obtained using the 5-nearest-neighbour; For FindFPOF algorithm [1], the
parameter mini-support for mining frequent patterns is fixed to 10%, and the maximal
number of items in an itemset is set to 5. Since the SOE1 algorithm is parameter-free,

 A Unified Subspace Outlier Ensemble Framework for Outlier Detection 635

we don’t need to set any parameters. Furthermore, we empirically study the impact of
different combining operators on SOE1. That is, in the experiments, we report the
results of SOE1 with different combining operators. For Sq operator, we set q to 2, 5
and 7 separately.

Since we know the true class of each object in the test datasets, we define objects in
small classes as rare cases (i.e., outliers). The number of rare cases identified is
utilized as the assessment basis for comparing our algorithm with other algorithms.

The first dataset used is the Lymphography dataset, which has 148 instances with
18 attributes. The data set contains a total of 4 classes. Classes 2 and 3 have the
largest number of instances. The remained classes are regarded as rare class labels for
they are small in size. The corresponding class distribution is illustrated in Table 1.

Table 1. Class Distribution of Lymphography Dataset

Case Class codes Percentage of instances
Commonly Occurring Classes 2, 3 95.9%
Rare Classes 1, 4 4.1%

Table 2 shows the results produced by different algorithms. Here, the top ratio is
ratio of the number of records specified as top-k outliers to that of the records in the
dataset. For example, we let SOE1 (+) algorithm find the top 16 outliers with the top
ratio of 11%. By examining these 16 points, we found that 6 of them belonged to the
rare classes.

Table 2. Detected Rare Classes in Lymphography Dataset

Number of Rare Classes Included
SOE1 (Sq)

Top Ratio
(Number of
Records)

SOE1
(∏)

SOE1
(+) q=2 q=5 q=7

SOE1
(

∞S)
Find
FPOF

Find
CBLOF

KNN

5% (7) 6 5 4 4 4 2 5 4 4
10%(15) 6 6 5 4 4 6 5 4 6
11%(16) 6 6 5 4 4 6 6 4 6
15%(22) 6 6 5 5 4 6 6 4 6
20%(30) 6 6 6 5 4 6 6 6 6

One important observation from Table 2 was that, among all the potential choices
of ⊕ we are considered in SOE1, the + operator and ∏ operator are the clear

winners in this experiment. That is, SOE1 with the + operator and ∏ operator

outperform Sq and ∞S in all cases. This observation suggests that the + operator and

∏ operator will be better choices in practice for users. Consequent experiments also
support similar conclusions. Moreover, with increase of q in the Sq operator, the
performance of SOE1 will deteriorate.

Furthermore, in this experiment, the SOE1 algorithm with ∏ operator performed
the best for all cases and can find all the records in rare classes when the top ratio

636 Z. He, S. Deng, and X. Xu

reached 5%. In contrast, for the FindFPOF algorithm, it achieved this goal with the
top ratio at 10%, which is almost the twice for that of our algorithm.

The second dataset used is the Wisconsin breast cancer data set, which has 699
instances with 9 attributes. Each record is labeled as benign (458 or 65.5%) or
malignant (241 or 34.5%). We follow the experimental technique of Harkins, et al. [6]
by removing some of the malignant records to form a very unbalanced distribution;
the resultant dataset had 39 (8%) malignant records and 444 (92%) benign records
(http://research.cmis.csiro.au/rohanb/outliers/breast-cancer/). The corresponding class
distribution is illustrated in Table 3.

Table 3. Class Distribution of Wisconsin Breast Cancer Dataset

Case Class codes Percentage of instances
Commonly Occurring Classes 1 92%
Rare Classes 2 8%

Table 4. Detected Malignant Records in Wisconsin Breast Cancer Dataset

Number of Rare Classes Included
SOE1 with different operators

(Sq)

Top Ratio
(Number of

Records) ∏

+
 q=2 q=5 q=7

∞S

Find
FPOF

Find
CBLOF

RNN KNN

1%(4) 4 4 3 3 3 3 3 4 3 4
2%(8) 7 7 7 7 7 5 7 7 6 8

4%(16) 15 14 14 14 14 11 14 14 11 16
6%(24) 22 21 19 19 16 17 21 21 18 20
8%(32) 27 28 26 25 23 23 28 27 25 27

10%(40) 33 32 31 30 28 28 31 32 30 32
12%(48) 36 36 34 33 33 33 35 35 35 37
14%(56) 39 39 38 37 37 37 39 38 36 39
16%(64) 39 39 39 38 38 38 39 39 36 39
18%(72) 39 39 39 39 39 38 39 39 38 39
20%(80) 39 39 39 39 39 39 39 39 38 39

25%(100) 39 39 39 39 39 39 39 39 38 39
28%(112) 39 39 39 39 39 39 39 39 39 39

For this dataset, we also consider the RNN algorithm [6]. The results of RNN
algorithm on this dataset are reproduced from [6]. Table 4 shows the results produced
by the different algorithms. Clearly, SOE1 with + operator and ∏ operator also

outperform SOE1 with Sq and ∞S in all cases on this dataset. Furthermore, among all

of these algorithms, RNN performed the worst in most cases. Compared to other
algorithms, SOE1 (with + operator and ∏ operator) achieves roughly the same
average performance with respect to the number of outliers identified.

Arrhythmia data is the third dataset used in our experiments, which has 279
attributes. The dataset contains a total of 13 non-empty classes. As suggested in [4],

 A Unified Subspace Outlier Ensemble Framework for Outlier Detection 637

class labels that occurred less than 5% of the dataset are considered as rare classes. The
corresponding class distribution is illustrated in Table 5.

Since most attributes in this dataset are continuous, hence, we first perform a grid
discretization of the data. Each attribute is divided into 2 equal-width bins.

We let each algorithm report top 85 outliers, as done in [4]. Among these reported data
objects, we examine how many of them belong to rare classes. Table 6 shows the results
produced by the different algorithms.

From Table 6, we can see that the algorithm in [4] produced the best result with the cost of
much more running time. In the remaining algorithms, most SOE1 variations are slight
better, at least achieved the same level performance. Although the performance of SOE1
algorithm on this dataset is not so good as that of the algorithm in [4], it is at least acceptable.

Table 5. Class Distribution of Arrhythmia Dataset

Case Class codes Percentage of instances
Commonly Occurring Classes
(>=5%)

01,02,06,10,16 92%

Rare Classes (<5%) 03,04,05,07,08,09,14,15 8%

Table 6. Detected Rare Classes in Arrhythmia Dataset

Number of Rare Classes Included
SOE1(Sq)

Number
of
Records

SOE1

(∏)

SOE1
(+)

q=2 q=5 q=7

SOE1
(∞S)

Find
FPOF

Find
CBLOF

[4] KNN

85 33 32 33 34 33 27 32 32 43 28

5 Conclusions

From an ensemble-learning viewpoint, a unified subspace outlier ensemble
framework for outlier detection in high dimensional spaces is proposed in this paper.
Empirical evidence verified the feasibility and advantage of our method.

References

1. He, Z., Xu, X., Huang, J., Deng, S.: A Frequent Pattern Discovery Based Method for
Outlier Detection. In: Proc. of WAIM’04, pp. 726-732, 2004

2. He, Z., Xu, X., Deng, S.: Discovering Cluster Based Local Outliers. Pattern Recognition
Letters, 2003, 24(9-10): 1641-1650

3. Ramaswamy, S., Rastogi, R., Kyuseok, S.: Efficient Algorithms for Mining Outliers from
Large Data Sets. In: Proc. of SIGMOD’00, pp. 93-104, 2000

4. Aggarwal, C., Yu, P.: Outlier Detection for High Dimensional Data. In: Proc. of
SIGMOD’01, pp. 37-46, 2001

5. Merz, G., Murphy, P.: Uci Repository of Machine Learning Databases. http://www.ics.
uci.edu/ mlearn/MLRepository.html, 1996

6. Harkins, S., et al.: Outlier Detection Using Replicator Neural Networks. In: Proc. of
DaWaK’02, pp. 170-180, 2002

7. He, Z., Xu, X., Huang, J., Deng, S.: Mining Class Outliers: Concepts, Algorithms and
Applications in CRM. Expert System With Applications, 2004, 27(4): 681-697

	Introduction
	Problem Formulation and Unified Framework
	SOE1 Algorithm
	Experimental Results
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

