
W. Fan, Z. Wu, and J. Yang (Eds.): WAIM 2005, LNCS 3739, pp. 333 – 344, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Intrusion Detection of DoS/DDoS and Probing Attacks
for Web Services

Jun Zheng and Ming-zeng Hu

The Research Center of Computer Network and Information Security Technique,
P.O.Box 320, Harbin Institute of Technology, Harbin, China, 150001

{zhengjun, mzhu}@hit.edu.cn

Abstract. The (Distributed) Denial of Service (DoS/DDoS) attacks have be-
come the main devastating threats to web services, and generally, the Probing
attacks are the prior steps of DoS/DDoS attacks. To achieve the aim of the in-
formation assurance, an intrusion detection mechanism based on the Vector
Quantization (VQ) technique is proposed for countering DoS/DDoS and Prob-
ing attacks in this paper. The normal network traffic usage profile can be mod-
eled and represented by the codebook of VQ from which the abnormal behavior
deviation of TCP traffic can be measured quantitatively well. In data process-
ing, according to the characters of DoS/DDoS and Probing attacks, we imple-
ment the novel feature extraction of TCP flow state. We apply the detection
mechanism to DARPA Intrusion Detection Evaluation Data Set. It is shown that
the network attacks are detected with more efficiency and relatively low false
alarms.

1 Introduction

With the ever-fast development of the Internet, all kinds of network service are rising
today. For example, the Web service becomes more and more popular and general in
the Internet. Because of the extensive public available, the Web service also becomes
the main object of malicious attacks, especially when the e-business flourishes. To
strengthen the security of Web severs and connected database, in addition to security
techniques, such as access control policy, authentication and encryption, Intrusion
Detection System (IDS) becomes an important and traditional security-barrier against
network-based attacks.

Among the malicious attacks, maybe DDoS/DoS and Probing attacks are the main
threat. The DDoS/DoS attacks destroy the service availability directly, whenas Prob-
ing attacks usually are used to explore the detail information of severs, for example,
the network Worms usually utilize probing attacks to scan the certain scope network
using some given scanning policy. Both of two attacks are the TCP attacks mainly.
According to the statistical data from Moore [1], the majority of DoS/DDoS attack
which is main threat to the whole Internet is deployed by using TCP as 90~94%. In
this paper, we concentrate on the TCP attacks via extracting the TCP header informa-
tion.

There are two general approaches in Intrusion Detection: Misuse Intrusion Detec-
tion (MID) and Anomaly Intrusion Detection (AID). Similar to virus detection, mis-
use detection is based on the pattern matching to hunt for the signatures extracted

334 J. Zheng and M.-z. Hu

from the known attacks. However, AID constructing the normal usage behavior pro-
file, named historical or long-term behavior profile. And the analysis model looks for
deviations of the short-term behavior profile from the normal. The deviations can be
treated as the baselines of estimating the attack activities from normal behaviors. The
Fig.1 describes the relation and contrast of main logical procedures in MID and AID.
The two approaches are contrary as well as unitive some time.

Fig. 1. Logic procedures in Intrusion Detection

In this paper, we propose a new AID mechanism using the Vector Quantization
(VQ) [2]. The normal network traffic usage profile can be modeled in the codebook of
VQ from which the abnormal behavior deviation can be measured quantitatively well.
Furthermore, in data processing, according to the characters of DoS/DDoS and Prob-
ing attacks, we implement novel feature extraction of TCP flow state to achieve the
maximal abnormal attack characteristics. The evaluation bed used in this paper is the
1999 DARPA Intrusion Detection Evaluation Data Sets.

The rest of paper is organized as follows: Section 2 explains the background and
related work of AID, Section 3 proposes the new framework to construct the usage
behavior profile and detect anomalies, and Section 4 illustrates the new method of
data processing to intrusion detection. Section 5 describes the details of our experi-
ments. Finally, Section 6 gives conclusions.

2 Background and Related Work

With the knowledge of normal behavior to detect novel intrusions, AID searches for
anomalous behavior or deviations from the established baseline. If the deviations exceed
the specified threshold of baseline, the activities will be flagged as anomalous. It is no
doubt that the most important thing is to establish the profile characteristics of normal
activity. Generally, the AID is looked as the binary classification: the given data sample
is judged as normal activity or intrusion activity according to the AID model.

 Intrusion Detection of DoS/DDoS and Probing Attacks for Web Services 335

The most classical AID model comes from the earlier landmark paper of Dorothy
Denning -An Intrusion Detection Model. [3] Denning describes building an "activity
profile" of normal usage over an interval of time and proposed to employs statistics to
construct a point of reference for normal behavior. Denning’s work inspires the statis-
tical methodology in Anomaly/Intrusion Detection fields.

However, as the attacks and intrusions become more complex, more and more ma-
chine learning model and data mining model are proposed to solve the problems of
network security, including general Clustering [4], Outlier Detection, Support Vector
Machine [5], Hidden Markov Models [6] and Neural Network [7] and so on. How-
ever, because of the complexities of algorithms, one of main universal shortcomings
of these methods is that these methods are not enough efficient to detect by the real
time style. Without maintaining the profiles of normal behavior, Clustering and Out-
lier Detection [4] seem to be promising recently but these methods depend mightily
on the precondition that abnormal data must take the little percentage among all the
audit data for the certain temporal space. These methods can not get higher detection
rate in case of DDoS or probing attacks because of the huge mount of activities and
the higher proportion attack traffic during some certain time interval. Other ap-
proaches try to construct a certain profile according to different data objects in either
host computer scope or network scope just as Table 1. SVM can achieve the higher
classification rate but its algorithm complexity to describe the normal usage profile
embarrasses the efficiency and usability in actual application. The same problems
arise to HMM and Neural Network, especially in case of the huge mount of network
traffic audit data in the network-based intrusion detection.

Table 1. Profile classification

Data Object Profile Scope
System Audit Log (e.g. BSM) System Profile

OS System Call System Call Profile

User Command Sequence User Command Profile

Host Based

Network Traffic (Packet/Connection/Flow) Network Traffic Profile Network Based

In our methodology, we concentrate on AID and propose a novel approach to es-
tablish structural profiles of normal network traffic usage using VQ, and detect
anomalies according to the deviations. Hereon, a codebook of VQ serves as the struc-
tural depiction of normal network traffic usage profile just deployed in section 3.
However, our main aim is to implement a lightweight AID system based on the Quan-
tization Vector to corporate with other Misuse Intrusion Detection systems (e.g.
SNORT [8]).

3 Vector Quantization for Intrusion Detection

Vector Quantization (VQ) [2] is an efficient coding technique, especially in data
compressions of image and speech signal based on the similarity measures between

336 J. Zheng and M.-z. Hu

feature vectors. Through the compression approach of VQ, it is easy to transmit and
to construct the index structure for the multimedia data files with high-dimensions.
Traditionally, the initialization of Vector Quantization can be looked as the technol-
ogy of the input space partition according to the similarities of input feature vectors.
In this way, Vector Quantization is an approach to data clustering of a data set.

 Definition1. Vector Quantization can be defined as a mapping function from

Euclidean space kR into a certain finite subset C:
kQ R C→： ， { }0 1 1, , , k

n iC y y y y R−= ⋅⋅⋅ ∈ . (1)

The representative vector iy in C is called codewords, and C is called codebook.

 Definition2. Given he input vector 1 2(, ,...,)kx x x x= and the code-

word 1 2(, ,...,)i i i iky y y y= , every input vector will be assigned with a code-

word in which the distortion between this codeword and the input vector is

smallest among all codewords. The distortion is defined as Quantization Errors
D:

2 1/2

1

[()]
k

j j
j

iD x yx y
=

= = −− ∑ . (2)

The potential of VQ application to the usage profile analysis of network traffic is
that VQ can compartmentalize the traffic feature vector space to groups comparing
the similarities of feature vectors. All the profiles can be distilled and recapitulated
into the codebook. Consequently, through the codebook organization of VQ, we can
get the usage profiles to character the network traffic.

 Definition3. The usage profiles P of network traffic can be defined:

{ } 1,2,...,() ,k
i i nP Qx R x y i= ∈ = =： . (3)

All x with the profiles iP can be represented by iy . Here, we can understand that VQ

is also can be looked as a clustering processing that input space is grouped into N
clusters.

3.1 Codebook Design

The first important step to implement Vector Quantization, codebook construction is
the training processing by the normal network traffic with a certain algorithm.[2] The
LBG algorithm [9] and Competitive Learning [10] are the most widely used approach
to design codebook of VQ. Here, we use the Competitive Learning --Kohonen Learn-
ing Algorithm (KLA) [11] to train the structural codebook of normal network traffic.
The codebook can be treated as the dictionary of normal network traffic behavior
where the similar traffic behaviors are clustered to the same Voronoi partition space
[12] represented by one codeword, also known as the centroid. After training, the
normal traffic behaviors have been compacted to the codebook and the similar behav-
iors have been clustered together. The usage profiles are embodied in the codebook at
last.

 Intrusion Detection of DoS/DDoS and Probing Attacks for Web Services 337

 Table 2. Parameters in KLA

Parameter Value
Topology Hexa

Neighborhood function Bubble

Dimension (X×Y) 30×30
40×40

Learning rate function Linear

Training rate of first phase 0.5

Radius in first phase 20

Training length of first phase 50000

Training length of second phase 500000

Training rate of second phase 0.02

Radius in second phase 10

Fig. 2. Vector Quantization framework for intrusion detection

The codewords close to the input vectors by iterations. The codebook construction
processing is the coupling processing between the all codewords and the input vector
of network traffic.

 Definition4: Every TCP Flow is a data point in the n-dimension feature space
Rn and Rn is Euclidian space.

{ }TCPFlow XX= ∈ nR . (4)

338 J. Zheng and M.-z. Hu

Every TCP Flow is expressed by the form of feature vector:
()1 2, , , nX x x x= L .

The following are the main steps involved in KLA:
The input vector: ()1 2, , , nX x x x= L The codeword: ()1 2, , , nW w w w= L

Step1. To initialize every codeword of KLA with random values: (0)jW

Step2. To compute the distance between the input vector
i

X and the code-
word ()jW t , designate the winner neuron node *j with the smallest dis-
tance. *j is also called the Best Matching Unit (BMU).

*

1
a rg m in ()i jj m

j X W t
≤ ≤

= − . (5)

The Euclidean distance is chosen as Quantization Errors (QEs):

1

2 2

1

() ((()))
n

i j ik jk
k

D X W t x w t
=

= − = −∑ .
(6)

Step3. To update the winner vectors of the winner node and its neighborhood:

 (1) () ()[()]
jk jk ik jk

w t w t t x w tα= + −＋ ()j N t∈ .
 (7)

()N t is the non-increasing neighborhood function, ()tα is learning rate function

0 () 1tα< < .

Step4. To repeat Step2 and Step3 until KLA learning stabilizes

In this paper, the parameters of KLA used to train the codebook in this paper can
be referred in the following Table2.

3.2 Detection

The Vector Quantization framework for the TCP attack detection is described in the
following Fig.2. After training, the codebook has been constructed for the normal
network traffic. In other words, Voronoi partition [12] is formed in the normal traffic
behavior space. Every codeword of codebook represents the centroid of the more
similar group according to the minimum Euclidean distances among the input vectors
of network traffic. In detection phase, the input feature vectors will be processed to
the codebook, which is known as searching best matching codeword, i.e. the nearest
neighbor searching. The anchor point named as the nearest neighbor codeword has
been found for each input feature vector by exhaustively searching to compute its
minimum Euclidean distance to all of the codewords in the codebook. The Quantiza-
tion Errors [2], the Euclidean distance to the nearest neighbor, can be utilized to
measure the similarity of short-term behavior in input space and long-term behavior
embedded in codebook.

 Intrusion Detection of DoS/DDoS and Probing Attacks for Web Services 339

4 Data Processing

Before AID process, it is necessary to do data preprocessing to extract the feature
attributes from IP packets, and then, the Date Normalization will be processed to
project whole feature attributes to a unit range no matter the continue attributes or
quantitative attributes. In the paper, data preprocessing is focused on TCP traffic.

4.1 TCP Flow Feature Attribute

The extraction of feature attributes of network traffic is the foundation of machine
learning algorithms in AID. Moreover, excellent detection models or algorithms must
be combined with the rational feature vector extraction to improve the attack recogni-
tion capability. Traffic features should prefer to differentiate usual traffic profiles
from anomaly traffic profiles. The aim of feature extraction is to achieve the maxi-
mum difference degree between usual usage behaviors and anomaly behaviors. A
feature vector of the TCP traffic flow is shown in Table 3.

Table 3. Feature attributes of TCP Flow feature vector

Feature Attribute Describe
SrcIP source IP address
DestIP destination IP address
SrcPort source port
DestPort destination port
PktSize average packet size in one TCP Flow
SrcBytes the number of bytes from source
DestBytes the number of bytes from destination
FlowState TCP Flow closed state
Fre_SrcIP frequency of a certain source IP in time-window
Fre_DestIP frequency of a certain destination IP in time-window

There are nine flags involved in the connection establishment of TCP 3-way hand-

shake protocol and the connection close of TCP 4-way handshake protocol. We de-
vised a 9-bit number to identify the connection state. The flag will be set to 1 if the
corresponding flag is observed during the establishment-close process. Otherwise, the
corresponding flag will set to 0. A decimal function with the non-superposed value is
used to quantitate the whole connection process —

0 1, 8(,)Sum Flag Flag Flag……，
：

0 1 2 3 4

5 6 ' 7 ' 8

0 1 8
0

2

2 2 2 2 2

2 2 2 2

(,)

active passive syn

fin fin

i
i

i

RST RST SYN ACK ACK

FIN ACK FIN ACK

FlowState Sum Flag Flag Flag Flag
=

⋅

= ⋅ + ⋅ + ⋅ + ⋅ + ⋅

+ ⋅ + ⋅ + ⋅ + ⋅

== ∑，…，

 (8)

The TCP connection with the normal close is:

Sum=（111111100）2=（508）10

340 J. Zheng and M.-z. Hu

For example: There are two statuses according to one SYN probing attack

(1) The target port is not open and the target computer responses a RST passive:
1 2 1 22 2 1 2 1 2 6passiveSum RST SYN= • + • = × + × =

(2) The target port is open and the target computer responses an ACKsyn:
2 3 0 2 32 2 2 1 2 1 2 1 13activesynSum SYN ACK RST= • + • + • = × + × + =

The number 6 and 13 describe two abnormal TCP connection states in the process of
SYN probing attack. Consider the situation that TCP protocol has the re-transmission
mechanism and a TCP Flow aggregates some TCP connections so that the certain flag
will repeatedly in a TCP Flow, we substituted the 32-bit number (4 bytes) for the 9-bit
number, as in Fig 3. So if the occurrence time of one certain flag is less than 15, the
sum will not be repeated. The number of occurrence time will take value of 15 if it
exceeds 15. (RST passive/ RST active occurrence time is less than 3).

Fig. 3. Quantization of TCP Flow state

The reason that RST takes low-bit and ACK’fin takes high-bit is to maximize the
discrepancy between the normal connection closed (ACKfin) and the connection re-
jected abnormally (RST). The large discrepancy between normal feature attribute and
abnormal can help to advance AID accuracy.

The TCP Flow state is the most important feature attribute. Many attacks can result
in the abnormal state of connection according to the TCP protocol. Generally, 14
connection-closing states are summarized in AID model based on the data mining [4,
5]. We found that the method of tracking 14 connection states is clumsy relatively in
data preprocessing program. What is more important, these 14 states cannot include
all the complicated instances of TCP connection state. By state quantization, every
state of connection can be mapped to an int data range affording the state synopsis
attribute directly leading to the whole improvement of feature vector.

4.2 Time Window

In order to get the correlation and statistical information in a certain time interval (2
seconds in this paper), a time window was designed as in Fig.4. The dashed denotes
the flow began out of time window but ended in it while the real line denotes the
Whole cirle of flow is in the time window. In the data preprocessing the flows closed
in time window are counted no matter when did it began which is convenient to the
traffic statistical correlation and the data preprocessing.

 Intrusion Detection of DoS/DDoS and Probing Attacks for Web Services 341

T∆

Fig. 4. Time window

5 Evaluation Method and Result

5.1 Experiment Data Set

We take a part of the 1999 DARPA Intrusion Detection Evaluation Data Sets of [13,
14] to estimate the structural Vector Quantization for AID off line. The codebook of

Table 4. Attacks in evaluation

(a) QEs of data Week1 Fri. Out (b) QEs of data Week5 Mon. Out

(c) QEs of data Week4 Mon. Out (d) QEs of data Week5 Wed. Out

Fig. 5. QE distributions of the training data and testing data

Back (DoS) 3 Ntinfoscan (Probing) 3
Selfping (Probing) 3 Apache2 (DoS) 3
Portsweep (Probing) 12 Queso (Probing) 3
Satan (Probing) 2 Neptune/SYN-flood (DoS) 3
Mscan (Probing) 1 Processtable (DoS) 2
Total 35

342 J. Zheng and M.-z. Hu

Table 5. Attack detection rates for Week4 and Week5 attacks

Date

Attack ID

Attack
Name

DR

QE

FPR

41.091531 Portsweep 1/3(33.3%) 1.3999
41.111531 Portsweep 5/5(100%) 0.9072~1.2328
41.122222 Portsweep 4/5(80%) 1.1001~1.3125

Week4
Mon

41.162715 Portsweep 0/10(0%) 0.6723~0.7213

0.31%

43.080401 Satan 7/16(43.8%) 0.7164~1.3196 Week4
Wed 43.164334 Portsweep 3/3 (100%) 1.1281~1.2947

0.11%

Week4
Thu

44.080000

Ntinfoscan

9/15 (60%)

0.8793~0.9539

0.14%

45.111010 Portsweep 0/8 (0%) 0.7234~0.7379 Week4
Fri 45.181011 Portsweep 5/5 (100%) 0.9012~1.2318

0.96%

51.084334 Portsweep 3/3 (100%) 1.0417~1.2256
51.094334 Portsweep 90/106 (84.9%) 0.8039~1.3017

51.102700

Apache2

948/1014
(93.5%)

0.8769~0.8972

51.140100 Apache2 11/12 (91.7%) 0.8592~0.8874

51.180445

Neptune

19731/20480
(96.3%)

1.8038~2.3063

Week5
Mon

51.201715 Selfping 1/1 (100%) 1.0218

3.15%

52.094514 Selfping 0/1 (0%) 0.7288
52.103409 Back 47/47(100%) 0.8254~2.0578

52.113855

Neptune

40950/40960
(99.9%)

1.9088~2.3583

52.165435 Queso 7/7 (100%) 1.0017~1.0021

Week5
Tue

52.181637

Neptune

950/1024
(92.7%)

1.9075~2.3572

3.25%

53.045454 Selfping 5/5 (100%) 0.9059~1.0134
53.102617 Back 40/40 (100%) 0.8906~0.8941
53.110516 Queso 4/7 (57.1%) 1.0218~1.0431
53.123735 Portsweep 8/13 (61.5%) 1.0047~1.2766
53.134015 Queso 4/7 (57.1%) 0.8084~0.8507

53.150110

Processt-
able

124/375(33.1%)

0.8821~0.8927

53.152648 Back 0/40 (0%) 0.5679~0.7221
53.171350 Apache2 155/340(45.6%) 0.8832~0.8959

Week5
Wed

53.195130 Portsweep 100/100 (100%) 1.0413~1.6032

0.37%

54.103459 Portsweep 3/3 (100%) 1.0585~1.3623
54.110416 Ntinfoscan 5/16 (100%) 0.8243~0.8448

54.145832

Satan

8817/9120
(96.7%)

0.8023~1.9823

54.183002 Ntinfoscan 6/17 (37.3%) 0.8121~0.8528

Week5
Thu

54.195951

Mscan

5724/5724
(100%)

1.0071~1.4995

0.67%

(The threshold of QE is 0.8)

 Intrusion Detection of DoS/DDoS and Probing Attacks for Web Services 343

VQ is designed on the data set attack free in week 3 and week 1. However, consider
the fact that the target of this paper is network work attack based on TCP and not
general, we test for ten TCP attacks（DoS and Probing mainly）, 35 instance attacks
total, as showed in Table 4. We filter out some other attacks out of the test traffic data
according to the attack identification [13] of 1999 DARPA deliberately after the fea-
ture vectors extracted. A detailed description of these attacks could be found in [13].

5.2 Quantization Errors and Result

We use Quantization Errors (QEs) to evaluate the on-detecting network traffic vectors.
Fig.5 (a-d) presents the QEs distributions in outside traffic of 4 days in DARPA data set
including one the training data Week1 Fri. and the three-day testing data. The DARPA
data of week1 Fri. begins in 8:00 morning and ends about in 22:08 evening (22:04 about
in week5 Mon.) after which few data can be observed in those two days. [13]

From the Fig.5 (a), we can observe that QEs in training data is well regulated and
don’t change with the large deviation. However, the strong contrast in Fig.5 (b) is the
sharp variation of QEs due to the high values of attack traffic QEs. Markedly, on
18:04, Neptune attack (Syn-flood) can be viewed with QEs values ranging from
1.8038 to 2.3063 in Fig.5 (b). The same case happens in other day data which just can
be viewed by Fig.5 (c) and Fig.5 (d).

The overall outcome of evaluation is present in Table 5. The Detection Rate (DR)
and False Positive Rate (FPR) are both presented for the whole day circumstances
accordingly. Individuals in one attack circumstance are given singly for the better
understand. Obviously, every attack with certain ID is composed of the attack multi-
flows, from a few to the huge volume such as Neptune because many DoS/DDoS and
Probing attacks behave the style of the bursty network traffic. These bursty attacks
usually manoeuvre the huge of network traffic to attack computer severs. The single
or a few of TCP flows usually are used to explore the service information of some
severs, for instance, if the port of 8080 is open in severs. We can conclude that our
intrusion detection method exhibit more robust to these bursty attacks with the huge
multi-flows and get the higher DR with the lower FPR.

6 Conclusions

The paper proposed an intrusion detection mechanism using the structural Vector
Quantization, especially to detect DoS/DDoS and Probing attacks for web services.
With the codebook, the normal usage profile of the temporal-spatial scale network
traffic could be constructed quantitatively to describe the normal long-term behaviors.
The evaluation experiments confirmed that our anomaly intrusion detection frame-
work can achieve the higher detection rate with the lower false detection rate.

References

1. Moore D., Voelker G., and Savage S., :Inferring Internet Denial-of-Service Activity, in
Usenix Security Symposium, Washington, D.C., (2001) 401-414

2. Robert Gray and David L. Neuhoff: Quantization. IEEE Transactions on Information The-
ory, Vol. 44, (1998) 2325-2384

344 J. Zheng and M.-z. Hu

3. D. E. Denning: An Intrusion-detection Model. IEEE Transactions on Software Engineer-
ing, Vol. 13(2), (1987) 222-232

4. E. Eskin, A. Arnold, M. Prerau: A Geometric Framework for Unsupervised Anomaly De-
tection: Detecting Intrusions in Unlabeled Data. Applications of Data Mining in Computer
Security, Kluwer, 2002

5. Andrew H. Sung, Srinivas Mukkamala: Identifying Important Features for Intrusion De-
tection Using Support Vector Machines and Neural Networks. Proceedings of the 2003
Symposium on Applications and the Internet, (2003) 119-123

6. Y. Qiao, X. W. Xin, Y. Bin and S. Ge:Anomaly Intrusion Detection Method Based on
HMM, Electronics Letters, 38(13), (2002) 663-664

7. J. M. Bonifaco, E. S. Moreira: An Adaptive Intrusion Detection System Using Neural Net-
work, Research Report, UNESP, Brazil, 1997

8. http://www.snort.org
9. Linde, Y., Buzo, A. and Gray, R. M.: An Algorithm for Vector Quantizer Design. IEEE

Transactions on Communications, 28(1), (1980) 84–95
10. Ueda, N. and Nakano, R.: A New Competitive Learning Approach Based on an Equidis-

tortion Principle for Designing Optimal Vector Quantizers. IEEE Transactions on Neural
Networks, 7(8), (1994) 1211–1227

11. Kohonen, T.: Self-Organization Maps , 3rd ed., Springer-Verlag, Berlin, 1997
12. Tom Mitchell: Machine Learning, McGraw Hill, New York, 1997
13. http://www.ll.mit.edu/IST/ideval/index.html
14. Richard Lippmann, Joshua W. Haines, David J. Fried, Jonathan Korba, Kumar Das. :The

1999 DARPA Off-Line Intrusion Detection Evaluation, Computer Networks, 34 (4),
(2000) 579-595

	Introduction
	Background and Related Work
	Vector Quantization for Intrusion Detection
	Codebook Design
	Detection

	Data Processing
	TCP Flow Feature Attribute
	Time Window

	Evaluation Method and Result
	Experiment Data Set
	Quantization Errors and Result

	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

