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CMMI RAMS Extension Based 
on CENELEC Railway Standard 

Jose Antonio Fonseca and Jorge Rady de Almeida Júnior 

Computational and Digital Systems Engineering Department, 
Polytechnic School, University of São Paulo, Brazil 

Abstract. Railway systems are also dependable systems and, considering their 
importance, it is vital to assure the application of adequate design techniques. 
So, this work presents a RAMS (Reliability, Availability, Maintainability and 
Safety) extension for CMMI SE-SW version 1.1 "Capability Maturity Model® 
Integration" developed by SEI (Software Engineering Institute), based on 
CENELEC 50126, 50128 and 50129 standards developed to normalize RAMS 
aspects of railway control systems in European Community. This extension is 
based on the inclusion of four new Process Areas into the CMMI SE-SW, 
increasing its actual number from 22 to 26, without changes in the CMMI 
model basic structure. The objective of this extension is to obtain a support tool 
for design process applicable to enterprises that develop railway systems and 
are adopting CMMI or migrating from other CMM models. 

1   Introduction 

This work represents an attempt to join two very important tendencies that are being 
verified by the maturity models use and the railway applications design.  
Considering the great capacity of CMM models to assist innumerous application 
areas, the first trend can be observed through an increase in the use of maturity 
models by industrial community. The focus of such models is represented by CMMI 
(Capability Maturity Model Integration). The second trend is composed by 
integration efforts to create a consensus about RAMS (Reliability, Availability, 
Maintainability and Safety) criteria for railways applications between the European 
Union members that is represented by CENELEC standards.   

This work has also a very closely relationship with others efforts to incorporate 
new specifics aspects to CMMI, such as the job sponsored by FAA (Federal 
Aviation Administration) to include Safety and Security requirements in iCMM and 
CMMI and the task headed by Australian Government’s Defense Material 
Organization (DMO) in the creation of +Safe, a safety extension to CMMI. 

The section 2 presents a brief description about the CMMI model, while section 
3 presents the mains aspects of the CENELEC Standards. Section 4 contains the 
proposed extension of RAMS extension for CMMI model. Finally, section 5 
presents the mains conclusions of this paper. 
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2   The CMMI Model 

The extensive use of the SW-CMM [9] (Capability Maturity Model for Software) by the 
organizations promoted the creation of similar models to address other areas not directly 
related with software development. Considering such aspect, many other models have 
arisen to support production systems, subcontracting areas, etc. But, all of these models 
were not created in order to facilitate integration among them, generating problems with 
their simultaneous implementation in an organization. 

This fact has revealed the need of creating an integrated model, aiming a uniform 
view, besides the elimination of existing redundancies among the various maturity 
models. We can say that the CMMI is a result of a great integration work, and that it 
was elaborated to allow a convergence of the main existing maturity models.  The 
CMMI structure also allows integration of new areas, which reinforces its integration 
capacity. 

The CMMI SE/SW (Capability Maturity Model for Systems and Software 
Engineering) model V1.1 [5] consists of 22 Process Areas. A Process Area is a group 
of related practices that, when accomplished together, means that a set of important 
objectives were achieved, obtaining a significant improvement in such area. 

All the CMMI Process Areas are common to the stage representation and the 
continuous representation. In the stage representation, the Process Areas are organized 
through maturity levels. Considering one level, all of its Process Areas are in the same 
maturity level.  In the continuous representation, the maturity of a Process Area is called 
capability level and each Process Area can be in any of the six capability levels 
existents, independently of any other Process Area. 

Thus, the name “maturity level” refers to a pre-defined group of Process Areas, 
which are in the same maturity level, whereas “capability level” refers only to an 
individual Process Area. 

The continuous representation allows that one organization can choose the more 
adequate improvement sequence to its business goals, making possible a reduction of 
the risk areas.  

The stage representation also offers a series of improvements, starting from basic 
management practices and going through a predefined plan of successive levels where 
each level is the basis for the next one.  

To completely satisfy a Process Area, both generic and specific goals must be 
accomplished. Specific goals are applied to a Process Area and refer to single 
characteristics, which describe what has to be done to satisfy a Process Area. 

The specific goals are supported by specific practices which are activities considered 
important to achieve a specific goal. The specific practices describe the activities, which 
must be accomplished in order to reach a specific goal of a Process Area. 

Generic goals are called “generic” because a single goal can appear in multiple 
Process Areas. Considering the staged representation, every Process Area has a single 
specific goal. Generic goals are supported by common practices. 

The CMMI continuous representation allows one organization to keep its capacity 
on the improvement of a single Process Area, or on multiple specific Process Areas. 
Each Process Area has its own specific goals associated similarly to the staged 
representation. Each capability level (from 0 to 5) has a common goal and many 
common practices.  
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The staged representation does not have requirements for the first maturity level; 
whereas, in the continuous representation there are specific and generic goals to be 
accomplished in order to achieve capability level 1. This has increased the granularity 
of the capability (process maturity), in such way that the organizations show early 
progress. This can be important in organizations that are under pressure to present 
immediate results. 

The 22 Process Areas are divided into four categories, according to figure 1. In the 
activity of selecting a Process Area or a single category, an organization can focus its 
improvement efforts in such area. Each one of the 22 Process Areas can be 
characterized individually by the CMMI as having a maturity level from 0 through 5, 
as follows: 

Capability Level 0 - Incomplete 
An incomplete process is a partially accomplished or a non-accomplished process, 
that is, at least one of the specific goals of the Process Area is not achieved. 

Capability Level 1 – Executed 
At this level, processes achieve the specific goals of the correspondent Process Area. 
The process supports the necessary work to generate the required products from the 
inputs, which are correctly identified during the process. The difference between an 
incomplete process and an executed process is that an executed process achieves all 
the specific goals of the Process Area. 

Capability Level 2 – Managed 
A managed process consists in an executed process (capacity level 1), which is also 
planned and executed, according to a plan, which embraces qualified people, adequate 
resources and appropriate participants. The process is monitored, controlled, revised 
and evaluated according to its process description adherence and it can be instantiated 
to a design, group or organizational function. The process management comprises the 
Process Area institutionalization and the accomplishment of other specific objectives 
defined for the process, such as cost, time schedule and quality goals. 

Capability Level 3 – Defined 
A defined process is a managed process (capacity level 2), which includes a group of 
default processes according to the organization objectives, its metrics, and other 
information on process improvement. 

Capability Level 4 – Quantitatively Managed 
A quantitatively managed process is a defined process (capacity level 3), which is 
controlled through the use of statistics and other quantitative techniques. The 
quantitative objectives of quality and process performance are established and used as 
a criterion in the process management. The quality and process performance are 
transformed into statistics expressions and managed through the process lifecycle. 

Capability Level 5 – Optimized 
An optimized process is a quantitatively managed process (capacity level 4), which is 
modified and adapted to achieve the business and relevant goals in a specific moment. 
An optimized process is focused on the continuous improvement of the process 
performance through the use of technological improvement and innovative 
technologies. 
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Fig. 1. CMMI Continuous Representation Process Areas 

3   The CENELEC Standards 

Since the first steps towards a single market of railway transport services in the 
European Union, it became evident the existence of different regulations in the  
safety issue. 

The main reason for this situation can be explained by the fact that local national 
operators, which have all the responsibility for the systems operation inside their 
territories, perform the railway transport management of these countries. However, 
considering the increasingly integration of the European railway systems, the safety 
aspect should be considered in the most general ambit of the European Union [1]. 

At present, the railway industry is observing a process of developing appropriate 
safety standards that can control the new devices created by the technology 
development, seeking to ensure the adequate safety level for the systems. Railway 
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suppliers are looking for standards that can aid them to show evidences about the 
safety of their products.  Railway owner/operators are also insecure about what they 
can expect from suppliers, in order to make them feel more comfortable in accepting a 
product [6], [7]. 

The European Union, through the European Committee for Electrotechnical 
Standardization (CENELEC), has been developing standards for the safety issues 
regulation for railway application [1]. All the European Union members desire to turn 
possible the interoperability among the several existing systems, through the adoption 
of such standards.  

The main focus of the CENELEC standards is composed by a systematic hazard 
identification followed by a risk reduction at an acceptable level. Considering the 
necessary risk reduction, CENELEC standards “recommend” techniques and methods 
that permit to demonstrate that the required RAMS targets levels are satisfied.  

CENELEC standards consider the critical systems design according to the focus 
shown in the figure 2. Some of the activities presented in that figure are described in a 
simplified way. 

The philosophy adopted by CENELEC Standards is based in systematic hazard 
identification [8]. For each identified hazard there must be, at least, one requirement 
to eliminate or mitigate the risk associated to that hazard. 

Since the initial railway design phases, all RAMS related activities are made in 
agreement with CENELEC standards, considering also the SIL (Safety Integrity 
Level) required for the application, as defined by the operator [6] or by the supplier, 
according to a National Safety Regulatory Office. This phase product is a Safety Plan 
report that defines all design activities, including audits, responsibilities, roles and 
design schedules. 

The Hazard Identification and risk reduction are activities performed during all the 
design lifecycle. In early phases, it is made a Preliminary Hazard Analyses (PHA), 
whose objective is to define a basic set of safety requirements that must be detailed in 
posterior phases. This activity must consider the Hazard Log contents. This  
Hazard Log is constantly updated along the system design development with new 
identified hazards. 

The requirements identified in previous phases are refined in the design phase, 
where the solutions needed to satisfy the identified requirements are developed.  The 
CENELEC Standards describes the main activities needed to demonstrate that the 
RAMS principles were correctly applied during each development phase, always 
considering the selected SIL [2], [3], [4]. 

For CENELEC, the SIL define the depth which the design should be analyzed, the 
necessary evidences to demonstrate that all specified requirements are satisfied and 
define the hierarchical constrains and the required personal skills to the design 
development. 

Audits are performed during system development, whose function is to verify the 
compliance with directives contained in Plans for Quality Assurance, for 
Configuration Management, for Safety and others. A report is generated for each 
audit aspect, in order to demonstrate the design status.  
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Fig. 2. CENELEC Basic Process 

The set of evidences collected during system development and design deliverables 
are used to elaborate a Safety Case, also known as Technical Safety Report (TSR). A 
TSR is a dossier that demonstrates that RAMS requirements were correctly captured, 
satisfied and traceable. 

4   The RAMS Extension for CMMI 

As previously mentioned, both CMMI model and CENELEC standards propose 
concept unification in their application areas.  But, organizations that are developing 
safety-critical systems need to consider the concepts established in those two 
frameworks in an integrated way, which is very difficult, considering that the their 
structures does not consider such kind of integration. 

The main problem in using both CMMI and CENELEC in the same application is 
that CMMI does not attend the RAMS aspects.  This fact makes necessary to apply 
another specific standard, in order to supply such RAMS aspects. However, 
CENELEC does not provide, itself, an evaluation system and a guide to its 
implementation, like CMMI. On the other hand, the simultaneous application of the 
CMMI and CENELEC standards, in a separate way, without a previous 
harmonization, can generate problems such overlaps, different interpretations and 
misunderstandings. 

Thus, the proposal of this work is to make the unification of these two frameworks 
into a single structure, flexible enough to support the necessary adaptations. 
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Fig. 3. RAMS Extension Structure  

This paper proposes the addition of RAMS into the CMMI structure, without 
modifying its fundamental structure, which is widely accepted. So, the CENELEC 
standard arrangement is modified to attend the CMMI language. If we have tried the 
inverse solution, that is, incorporate CMMI into CENELEC standards, there would be a 
problem related to the great quantity of practices to be inserted into the CENELEC 
standards, in order to cover all the CMMI aspects. This happens because CENELEC 
standards are specific in their area and CMMI is a common model for systems. A 
second problem would be the generation of unnecessary redundancies and the need of 
generating a mapping between the model and the standard. 

We believe that the introduction of the CENELEC concepts into CMMI will be more 
natural for the most organizations, reducing implementation costs and time, when 
considering the application of these concepts in a separate way. 

Primarily the RAMS extension was implemented in CMMI SE-SW continuous 
representation (presented in figure 1), because we believe that continuous representation 
provide the necessary flexibility according to organizations needs, schedules and 
budget, although staged representation can also be used.  

To satisfy CENELEC Standards, besides the inclusion of new RAMS Process Areas, 
it is necessary to implement the existent areas of CMMI. Note that these Process Areas 
are distributed in levels 2 and 3 of the staged representation. Therefore it is necessary to 
implement the level 3 for these representations to satisfy CENELEC standards. In 
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addition, some Process Areas of CMMI, above mentioned, exceed CENELEC 
requirements, but this fact contribute with CENELEC process improvement. 

The new Process Areas are included in CMMI SE-SW continuous representation as 
show in figure 3. As shown, the four new Process Areas are distributed between three 
CMMI categories, as follow: 

Table 1. New Process Areas 

CMMI Category Process Areas 
Project Management RAMS Management 

Engineering RAMS Engineering 

Support RAMS Assurance  
RAMS Environment Organization and Maintenance 

The main objectives of the new Process Areas and their respective Specific Goals 
(SG) are: 

RAMS Management 

Purpose 
The aim of this Process Area is to monitor the product development process, checking 
if the RAMS activities are performed as planned and tracking the design evolution. 

Related Process Areas 
There are many processes areas related with RAMS Management. These areas and their 
respective connections with RAMS Management are:   

• Requirements Development: acquisition of information about developing 
requirements that define the product and product components; 

• Requirements Management: acquisition of information about managing 
requirements needed for planning and re-planning; 

• Technical Solution: acquisition of information about transforming requirements 
into product and product component solutions; 

• Organizational Process Definition: acquisition of information about the design 
lifecycle and basic guidelines; and  

• RAMS Environment Organization and Maintenance: identification of 
organization requirements, knowledge and skills. 

Practice-to-Goal Relationship Table 

SG 1. Develop a RAMS Plan 
SP1.1-1 Establish Validation Strategy 
SP1.2-1 Establish RAMS Organization, Roles and Responsibilities 
SP1.3-1 Establish RAMS Lifecycle to the Design 
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SP1.4-1 Establish Audits and Assessments Points 
SP1.5-1 Plan for Data Management 
SP1.6-1 Plan for Resources 
SP1.7-1 Plan for Needed Knowledge and Skills 
SP1.8-1 Plan Stakeholder Involvement 
SP1.9-1 Plan Safety Reviews 
SP1.10-1Establish the RAMS Plan 

SG 2. Obtain Commitment to the Plans   
SP 2.1-1 Review Plans that Affect the Design 
SP 2.2-1 Reconcile Work and Resource Levels 
SP 2.3-1 Obtain Plans Commitments 

SG 3. Develop an Installation and Commissioning Plan 
SP3.1-1 Establish Installation and Commissioning Strategy 
SP3.2-1 Establish Roles and Responsibilities 
SP3.3.1 Plan for Resources 
SP3.4.1 Plan for Needed Knowledge and Skills 
SP3.5.1 Plan Stakeholder Involvement 
SP3.6.1 Establish the RAMS Plan 

SG 4. Monitor Safety Incidents 
SP4.1-1 Monitor Safety Incidents 

RAMS Engineering 

Purpose 
The aim of the RAMS Engineering is to define the activities that must be 
performed, in order to assure that the generated products have the desired and 
adequate RAMS levels for the application. 

Related Process Areas 
There are many processes areas related with RAMS Engineering. These areas and 
their respective connection with RAMS Engineering are:   

• Requirements Development: decision on how to allocate or distribute 
requirements among the product components; 

• Technical Solution: acquisition of more information about RAMS decisions; 

• Project Planning: how design plans reflect requirements and need to be 
revised with changes in requirements; 

• Configuration Management: obtain information about baselines and 
controlling changes, considering configuration issues; 

• Project Monitoring and Control: activities track and control, taking 
appropriate corrective actions; and 

• Requirements Management: get information about managing requirements. 
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Practice-to-Goal Relationship Table 

SG 1. Identify Safety Requirements 
SP1.1-1 Perform Hazard Analysis 
SP1.2-1 Perform Risk Assessment 
SP1.3.1 Define Risk Tolerance Criteria  

SG 2. Develop Safety Requirements 
SP2.1-1 Allocate Safety Requirements to Products 
SP2.2-1 Apply Safety Principles to Safety Requirements 
SP2.3-1 Justify Technical Safety Decisions 

SG 3. Establish a Hazard Log 
SP3.1-1 Establish a Hazard Log to the Design 

SG 4. Identify RAM requirements 
SP4.1-1 Perform Preliminary RAM Analysis 
SP4.2-1 Identify External Influence over RAM Requirements 

SG 5. Develop RAM Requirements 
SP5.1-1 Allocate RAM Requirements to Products 
SP5.2-1 Justify Technical RAM Decisions 

SG 6. Demonstrate the Safety of the system 
SP6.1-1 Perform Analysis about Effects of Faults 
SP6.2-1 Perform Analysis about External Influences 
SP6.3-1 Perform Analysis about Application Conditions 
SP6.4-1 Perform Safety Qualification Tests  
SP6.5-1 Develop a Technical Safety Report 

RAMS Assurance  

Purpose 
The aim of the RAMS Assurance is to evaluate, continuously, the correct 
accomplishment of design lifecycle activities and the related RAMS products, which 
are generated by engineering activities, in order to assure the product integrity. 

Related Process Areas 
There are many processes areas related with RAMS Assurance. These areas and their 
respective connection with RAMS Assurance are:   

• Project Planning: identification of the processes and the associated products 
that need to be evaluated; 

• Verification: satisfaction of RAMS requirements; 

• Process and Product Quality Assurance: audits on RAMS process and 
evidences; 

• RAMS Management: acquisition of safety management evidences 

• RAMS Engineering: acquisition of evidences about functional/technical safety 

• RAMS Environment Organization and Maintenance: identification of 
knowledge and skills. 



 CMMI RAMS Extension Based on CENELEC Railway Standard 11 

Practice-to-Goal Relationship Table 

SG 1. Develop an Assessment Plan 
SP1.1-1 Establish Assessment Strategy 
SP1.2-1 Establish Roles and Responsibilities 
SP1.3-1 Plan for Resources 
SP1.4-1 Plan for Needed Knowledge and Skills 
SP1.5-1 Plan Stakeholder Involvement 
SP1.6-1 Identify Design, Personnel or Documents Dependencies 
SP1.7-1 Establish the Assessment Plan 

SG 2. Perform evaluations 
SP2.1-1 Perform Interviews with Design Personnel 
SP2.2-1 Perform Examination of Design Documents 
SP2.3-1 Perform Observation of Practices, Design Activities and Conditions 
SP2.4-1 Re-work of Parts of the Safety Analysis if Necessary 
SP2.5.1Demonstrations Arranged at the Assessor’s Request 
 SP2.6.1Elaborate an Assessment Report 

SG 3. Develop a Safety Case 
SP3.1-1 Collect evidences of Quality Management 
SP3.2-1 Collect Evidences of Safety Management 
SP3.3-1 Collect Evidences about Functional/Technical Safety 
SP3.4-1 Develop a Safety Case 

RAMS Environment Organization and Maintenance 

Purpose 
The aim of the RAMS Environment Organization and Maintenance is to create a 
suitable infrastructure to support RAMS activities, select RAMS specialists, and 
define roles and responsibilities.  

Related Process Areas 
The Process Area related with RAMS Environment and Maintenance is the 
Organizational Training that can be consulted for information about how to  
creates skills. 

Practice-to-Goal Relationship Table 

SG 1. Establish environment and organization to RAMS Activities 
SP1.2-1 Identify Overall RAMS Organization 
SP1.1-1 Identify and Create Necessary Skills 
SP1.3-1 Define Roles and Responsibilities 
SP1.4-1 Identify Necessary Independence for Activities 
SP1.5-1 Maintain the Qualification of Environment Components 

         SP1.5-1 Plan for Continuity and Improvements 

Final Remarks 
To provide CMMI compatibility with CENELEC standard, some CMMI Process 
Areas need modifications. For Verification and Validation Process Areas, it is 
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necessary to formalize Verification and Validation Plans and for the Organizational 
Process Definition Process Area it is necessary to adopt CENELEC lifecycle 
descriptions for software and system development. 

5   Conclusions 

This paper presented an extension for CMMI based on the CENELEC standards, 
having the objective of aiding organizations that develop railway systems to work in 
an integrated way with CMMI and CENELEC standards, enabling reduction of time 
and its associated costs, when compared with an implementation using those two 
frameworks in an isolated way. 

After a careful refinement process, we believe that this work could come to be very 
useful to the railway applications. 

However, this extension does not include all the details of CENELEC standards 
because it does not define, specifically, as the activities should be done. These details 
should be defined for the organizations in accordance with the design needs of the 
based on CENELEC. 

In that way, the basic structure of the proposed extension is generic and could be 
applied to other areas just needing the inclusion of the specific practices of that  
new area. 

In future works it will be detailed the specific practices for each specific objective 
and will be analyzed the compatibility between Process Areas of this work and other 
works such as +Safe and FAA-iCMM. 
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Abstract. Emergency/Process ShutDown systems (ESD/PSD) involve large 
numbers of signals, span many process units and have strict compliance 
requirements. These factors increase the burden of engineering, operation and 
reporting, and drive the search for techniques such as Cause & Effect Matrix 
(CEM). By showing input signals as matrix rows and outputs as columns, CEM 
provides an intuitive view of shutdown trip logic and is now common practice 
in industry. This popularity has contributed to problems of data duplication and 
transcription errors when multiple incarnations of the same CEM are used at 
different lifecycle stages. Process engineers, programmers, operators and safety 
managers each view the same CEM recreated in different formats. 
    The authors show how the CEM paradigm can benefit from a standardised 
syntax and visual representation so that all the different views of a CEM are 
based on the same underlying data, increasing safety and productivity 
throughout the lifecycle. 

Keywords: Emergency shut down, cause and effect, single-source engineering. 

1   Introduction 

On the face of it, the design of ESD/PSD safety systems appears trivial. There are no 
complex control algorithms to design and test, no parameters to tune, no troublesome 
analog values to filter; just Boolean variables inputs setting Boolean outputs. 

The Cause and Effect Matrix (CEM) visual paradigm, also known as Interlock 
Logic Diagrams, was introduced many years ago to capture this clear signal flow 
from cause to effect which is the hallmark of ESD/PSD systems. In its simplest form, 
it is a matrix of gridlines where named tags occupy rows and columns. A symbol 
placed at a row/column intersection cell indicates that a trip of that column effect will 
occur when that row cause is active. The simple CEM interface evolved to make room 
for shutdown levels, which allowed users to define a cascading shutdown hierarchy, 
with many degrees between PSD and ESD. 

The CEM paradigm was a visual success and CEM drawings made in Excel 
became a de-facto standard. Some vendors followed with specialised CEM 
programming tools to generate control code for their respective platforms. See Figure 
1 for an example of the CEM format. 
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Fig. 1. Sample from a typical early CE Matrix 

1.1   Trends in ESD/PSD Systems 

The CEM format became a popular representation but without the support of a formal 
standard a variety of formats proliferated, even between different lifecycle stages of 
the same project. Recreating the same CEM in different formats introduced delays 
and increased the potential for misunderstandings and errors.  

The Cause and Effect Matrix paradigm had become a victim of its own success. 
In addition to the proliferation of data formats and visual formats, the CEM 

paradigm has also been under growing pressure to cope with these important trends in 
industry. 

• Size and complexity: ESD/PSD systems comprise a large and ever-
increasing number of tags, arranged in an increasingly complex hierarchy of 
cascading shutdown levels, with special cascade inhibit logic. 

• Safety compliance: ESD/PSD programmable systems have high safety 
integrity (SIL) and the accompanying compliance burden is increasing as 
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regulatory demands become stricter Ref [IEC-61511].  In the operational 
phase, periodic proof-testing reports of the ESD/PSD are also mandatory. 

• Common Control Platforms: The trend toward using commercial off-the 
shelf (COTS) hardware platforms and use of common control software 
libraries even for ESD/PSD systems with high safety integrity (SIL) 
requirements. 

• Decision support: The need for operators to quickly trace backward to 
determine the cause(s) of a trip in an ESD/PSD system. 

• Additional signal processing: ESD/PSD programmers want the freedom re-
configure the input cause signals, add additional logic before setting the 
outputs. 

• Spanning process areas: ESD/PSD systems spans many more diverse 
process areas, engineered by different contractors and teams. 

2   Single Source Engineering 

In their work with engineers responsible for large shutdown implementations, the 
authors discovered the benefits of “single-source engineering” (SSE) as a way of 
mitigating the problems created by the trends listed above. They offer the following 
recommendations, whose application to those problems are discussed in the following 
paragraphs of this paper. 

• Single representation for CEM applications & visual displays:  agree on a 
single standard visual “language” for representing CE matrices, from which 
the operator display and the 1131 code is co-generated. 

• Single source of data for of CEM lifecycle activities: use a portable 
document as a single source of data for all activities throughout the lifecycle. 

2.1   Size and Complexity 

ESD/PSD systems comprise a large and ever-increasing number of tags, arranged in 
an increasingly complex hierarchy of cascading shutdown levels, with special cascade 
inhibit logic.Ref [DNV1] 

The size and complexity of ESD/PSD systems have dramatically increased the 
effort of coding and maintaining such an application directly in one of the standard 
1131 languages. A generative approach suggests itself, where 1131 code objects are 
automatically created based on the visual layout in the CEM diagram. The authors 
approve of vendors which offer such tools; programming at a higher level of 
abstraction is an effective way to reduce implementation errors and ease application 
maintenance. 

The authors tool development layout is shown in the figure below. This matrix 
view uses text, colour and shading patterns to show direct and indirect trips as the 
result of cascading level logic.  These indirect effects would be difficult to trace if the 
logic were programmed directly in control code structured text, for example. 

Generative techniques should not stop at the control code; re-creating the logic for 
an operator display is also a very time-consuming and error-prone task. The author’s 
 



16 Robert Martinez and Torgeir Enkerud 

 

 

Fig. 2. A CEM editor using colour to show cascade logic 

approach is to co-generate the display by linking display artifacts with the generated 
code variables to provide an online view of current status. 

2.2   Safety Compliance 

ESD/PSD programmable systems have high safety integrity (SIL) and the 
accompanying compliance burden is increasing as regulatory demands become 
stricter Ref [IEC-61511].  In the operational phase, periodic proof-testing reports of 
the ESD/PSD are also mandatory. 

When the CEM drawing of the ESD/PSD system has become the subject of formal 
integrity approval by national authorities, then there is strong motivation to preserve 
its format throughout the engineering lifecycle. In this way, suppliers, operators and 
engineers have a common understanding of the CEM shutdown behaviour, based on a 
common visual representation. This approach assists “cognitive recognition” Ref 
[HCI2]. 

In the operational phase, periodic proof-testing reports of the ESD/PSD are also 
mandatory. Such reports are difficult to configure and maintain without access to the 
original CEM data structures from the design phase. 
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The solution to both of the above problems is to make the approved CEM drawing 
the single source of engineering data for all engineering and operational activities 

When the document is approved then it can be argued that all subsequent 
transformations based on that document also inherit this approval. In the authors tool 
development, a single document serves as the basis for all lifecycle activities, 
including the operator display. This document can then be input to an editor/compiler 
capable of generating IEC-61131 compliant control code objects Ref [IEC-61131] 
and the operator display. 

The advantages of having a “single source of truth” are many (Refs [CE1] , [CE2]), 
and these assume an even greater importance for the development of safety-critical 
systems. The authors suggest that this principle should be encouraged in future drafts 
of both corporate and international safety standards. 

Using a single document throughout the engineering process and then taking this 
same document into the daily operational phase of a system will reduce 
synchronisation problems.  Version checking and inconsistency reporting between the 
original documentation and the online operator display: By generating the control 
logic from the master document, a version number can be introduced to the control 
logic and later used online to check that the operator display has the same version 
number as the code running in the controller. This will help to ensure that the operator 
display is always up to date with the control logic: the display matches the plant “as 
built”. 

A single source approach enables printing of online status in a format that is 
identical to the design documentation: This aids the task of tracing trip signals and 
documenting shutdown situations in a consistent way. It is also very useful to be able 
to include information like versions, build numbers, approvals and engineering and 
operator notes in the online display.  

2.3   Common Control Platforms 

There is an industry-wide trend trend toward using commercial off-the shelf (COTS) 
hardware platforms and the use of common control software libraries even for 
ESD/PSD systems with high safety integrity (SIL) requirements. This trend will soon 
extend to safety fieldbusses [CE1]. 

This trend means that modern safety solutions must conform to standard languages, 
interoperate with standard device control software libraries and standard operator 
displays. Most importantly, it means that ESD/PSD safety systems can no longer 
assume exclusive ownership of the devices and must accommodate a wider and 
“wilder” range of configurations. The downside of this trend has the potential to make 
the engineering and operation of ESD/PSD systems more difficult and potentially 
increase the chances of design errors.  

The benefits of using a single platform for safety and non-safety applications can 
be realised if the critical parts of that platform are safety certified. For control 
software this means selecting a relevant subset of 1131 function blocks or control- 
modules and ensuring that these are SIL-compliant. This subset should be sufficient to 
cover the needs of ESD/PSD programming. These safety status of these types should 
be clearly visible within the programming tool and that tool’s compiler should check 
that their usage is consistent with the safety level of the entire application and the 
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target controller. This approach allows safety engineering to flow together with the 
basic process control system engineering. 

Implicit in this recommendation is the use of pre-defined 1131 types or classes, 
stored in tested and approved libraries. This type-based approach is especially 
important for safety programming, whether it is manual or generative, since it builds 
on approved and version-controlled code.  

The benefits of standardisation can be extended by encapsulating all the variety of 
device types (transmitters, valves, motors etc.) inside control object types which 
expose their internal states in a standard way, for example in a bit pattern of a defined 
32-bit variable. Ref [PCCUG] 

2.4   Decision Support 

As the complexity of ESD/PSD systems has increased, so has the need to assist 
operators in quickly tracing backward to determine the cause(s) of a trip, without 
having to deduce the cause from many different documents and inputs Ref: [HCI]. 
Operators find it increasingly difficult to understand a trip situation and trace 
backward to the originating causes in real-time. 

The solution to this problem is to provide the operators with online displays which 
allow him/her to see the online status of the ESD/PSD system at any level of 
aggregation, with the freedom to drill down to individual process areas or devices. At 
the lowest device level, the operator is presented with an online “faceplate” display 
showing the device signal pathway traced back to one or more input devices. 

To achieve this desirable functionality requires that all the signal pathways from 
output backward to input must be charted and embedded in the operator display logic. 
Typically this signal flow information is hidden within the temporary data structures 
of the 1131 code compiler and is not available to any other engineering tools.  

The authors found that the most robust way to re-create this path information was 
to adopt the approach pioneered by a team led by Alan Munns of ABB in the UK, 
called the Priority Command Concept (PCC). The PCC is an open concept for 1131 
type design. To be PCC-compliant, a control type (or “class”) must expose its 
instance name and its internal state in data elements NAME and ACTION, 
respectively. A further requirement is that each PCC type must propagate the name of 
the PCC instances to which it is connected, both up- and down-stream. This 
propagation is done via 1131 string operations performed once in the first scan after 
start-up in the controller.  

Each PCC instance knows its neighbors: this allows operator viewer tools to trace 
the signal pathway from output to input device, regardless of the number of 
intermediate control objects. These tools can automatically create a dynamic visual 
display element which is inserted into the view of the output device (See Figure 
below). 

The operator can access any of the devices participating in the CEM matrix by 
right-clicking on the display itself and choosing the “faceplate” item as shown in the 
following figure. 
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Fig. 3. Operator output signal faceplate showing signal pathway from input 

 

Fig. 4. CEM display for operator showing quick access to signal object 
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At the highest level, the user can navigate between the various process areas 
represented as different parts of the CEM matrix. The navigation display (shown in 
the figure below) shows these areas to the operator and are color-coded with the 
current status of all their contained device signals. The operator can click on the area 
“button” and be presented with the CEM matrix for that area, as shown in the 
previous figure. 

 

 

Fig. 5. Operator’s top-level CEM Navigation display 

The relationships between the various displays are shown in the following Figure. 

 
Fig. 6. Relationships between operator CEM displays 
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2.5   Additional Signal Processing  

ESD/PSD programmers want the freedom re-configure the input cause signals, add 
additional logic before setting the outputs. The previously clean and simple CEM grid 
format sprouted many footnotes and comments as designers struggled to capture 
special logic cases on the crowded matrix grid. An additional problem is the quality of 
the generated code, which in most cases is custom IEC-61511 structured text. 

The solution to this problem is three-fold: firstly, vendors and industry should 
agree on a set of functionality which satisfies the needs of most CEM engineers. In 
particular, voting arrangements should be a standard part of such a proposed CEM 
language. The authors propose that the CEM language syntax be limited to these basic 
functions: 

• Signal Name & Description 
• Trip (“X”) 
• Inversion 
• Normal & Cascade Inhibit 
• Reset 
• Time Delay 
• Voting (NooM) 
• Comments 

Secondly, analog thresholding, boolean latching and other related configuration work 
should be encapsulated in the signal device object, so that the CEM is freed to do 
what it does best: show the routing cleanly and intuitively.  

Custom textual coding nullifies one of the main benefits of single source 
engineering. So the final recommendation here is to use a control library in which 
even simple “routing” operations such as AND / OR / SPLIT are SIL- marked object 
types. These can be configured safely by the CEM editor user and then instantiated by 
the CEM editor’s generation function, thus ensuring higher quality executable code. 
In the approach taken by the authors, these control object types simply route the 
originating device data, packaged within a standardised bit pattern of a 32-bit variable 
data element. This data type contains a data word (ACTION) with a standard bit 
pattern for commanded action, inhibit, connected and a few other states. The simple 
routing object type instances operate on this data. 

2.6   Spanning Process Areas 

ESD/PSD systems span many more diverse process areas, engineered by different 
contractors and teams. 

Single source engineering is challenging in a multi-disciplinary and geographically 
dispersed engineering environment. Vendors who claim to support this principle offer 
centralised database or object stores, but access to these are complicated by the need 
for special client software and the ability to cross corporate firewalls. 

The authors believe that the internet points the way to a more flexible architecture 
based on exchange of a document in a standard format which contains its own 
validation logic. This validation could be either in the form of an XML schema or via 
a component (such as ActiveX) which is embedded in the document. Such a 
document is highly portable: it can be exchanged via email between all the partners in 
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a large project, without difficulties caused by firewalls, licensing, and installation and 
setting up special access permissions. 

A typical use case illustrating this solution is when a contractor can specify CEM 
connections in a portable document without being forces to install any special 
software by the control system supplier. He/She then sends the document via email to 
the control system supplier who can then automatically generate the control code and 
the operator display without modifying or translating the original CEM document. 

Finally, automation vendors are urged to now agree on a common visual and 
textual representation which should be submitted to a standards-setting body for 
approval. Taken together, these are syntax rules for a proposed common CEM 
“language”. The textual representation should be in the form of an XML schema. The 
accompanying visual standard should reflect the contents of the XML representation 
in a universally recognisable way, which is intelligible to CEM programmers and 
operators. 

3   Conclusion 

Let us conclude by marking up our original list of problems with the recommend-
ations:  

• Size and Complexity: ESD/PSD systems comprise a large and ever-
increasing number of tags, arranged in an increasingly complex hierarchy of 
cascading shutdown levels, with special cascade inhibit logic. 

o Program directly in the CEM matrix and use tools to generate both 
the control code and the operator graphic displays. 

• Safety Compliance: ESD/PSD programmable systems have high safety 
integrity (SIL) and the accompanying compliance burden is increasing as 
regulatory demands become stricter Ref [IEC-61511].  In the operational 
phase, periodic proof-testing reports of the ESD/PSD are also mandatory. 

o Use a single CEM data source for lifecycle compliance activities. 
• Common Control Platforms: The trend toward using commercial off-the 

sheflf (COTS) hardware platforms and use of common control software 
libraries even for ESD/PSD systems with high safety integrity (SIL) 
requirements. 

o Use a single common library with a subset of SIL-approved types 
which share a common interface with other types. 

• Decision Support: The need for operators to quickly trace backward to 
determine the cause(s) of a trip in an ESD/PSD system. 

o Use object types which support upstream signal tracing and tools 
which can generate displays showing the active device signal 
pathways. 

• Additional Signal Processing: ESD/PSD programmers want the freedom 
re-configure the input cause signals, add additional logic before setting the 
outputs. 

o Use an approach which allows reconfiguration and additional 
routing logic based on types, not loose code. 
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• Spanning Process Areas: ESD/PSD systems spans many more diverse 
process areas, engineered by different contractors and teams. 

o Use a portable document which can be easily shared amongst 
project teams. 

o Use a single visual representation “language”; make it a standard 
for programming by providing tools to generate the required 1131 
code objects. 
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Abstract. In the paper, we present a methodology developed in order to verify 
probabilistic temporal properties related to dependability of real-time systems. 
The methodology is made of three essential steps. The first one is a UML pro-
file called DAMRTS (Dependability Analysis Models for Real-Time Systems) 
designed using GME tool. The aim is to model a real-time system with qualita-
tive and quantitative information related to its quality of service. In this profile, 
UML statecharts are used to represent the system behavior. An extension is in-
troduced with probabilities, real-time requirements and nondeterministic 
choices. The second one proposes a translation from the extended UML state-
charts to probabilistic timed automata (PTAs). In this step, global clocks are 
used to represent synchronization of concurrent UML statecharts in probabilis-
tic timed automata. The last one concerns a probabilistic model checking with 
PRISM tool. This requires specification of dependability properties with a suit-
able temporal logic. 

1   Introduction 

Several approaches have already been explored to introduce quantitative information 
in the dynamic UML models. A stochastic extension of UML statechart diagrams is 
proposed in [7]. It is based on a set of stochastic clocks which can be used as guards 
for transitions. The clock value is given by a random variable with specified distribu-
tion function. Other approaches are also proposed to formalize UML models which 
are extended with quantitative information. Dynamic UML models are formalised 
with stochastic Petri nets in [15], with stochastic process algebra in [5] or with con-
tinuous time Markov Chains such as we proposed it in [2]. This one is adequate for 
the performance evaluation and the verification of some dependability properties. 
However, the formal model contains only rates. Then, it is not suitable for modeling 
real-time systems. Different models exist to describe real-time systems such as timed 
automata [3] which have a clear semantics and for which a tool support for automatic 
verification (Uppaal, Kronos) is available.  

The Unified Modeling Language (UML) [16] which becomes an official standard 
of the Object Management Group (OMG) is widely adopted in industry. This semi-
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formal language, easy-understood and well-established design notation in the soft-
ware engineering community, is extended to support the aspect-oriented design for a 
system. UML support many application domains and provides a common notation 
independent of the kind of systems that are developed. 

To combine the advantages of intuitive modeling by UML with formal verification, 
we chose the approach which consists to transform UML models into the input lan-
guage of an existing model checker. Input of a model checker is a formal description 
of a system. For formal analysis, it is necessary to define what kind of semantic re-
quirements are implied by the domain and what kind of semantics that easily allows 
translation into the formal model to be analyzed by the model checker. Our contribu-
tion includes: 

− Definition of the profile DAMRTS [1] for modeling and analyzing real-time sys-
tems: a class diagram is proposed to represent static model with quality of service 
of system components; the conventional UML statecharts are extended with prob-
abilities and real-time requirements, 

− Specification of the nondeterminism in extended statecharts and synchronization of 
concurrent statecharts, 

− Métamodeling with the Generic modeling Environment (GME) to construct the 
proposed profile, 

− Translation of extended UML statecharts to probabilistic timed automata: global 
clocks are defined to represent synchronization of UML statecharts. 

In section 2, the methodology of real-time systems analysis is described. The dy-
namic view of UML models is presented in sections 3 and 4. We present in section 5, 
real-time constraints of an assembly chain as well as their behavioral UML models as 
defined in the profile DAMRTS. This one is designed using GME tool as presented in 
section 6. The behavioral UML models are nondeterministic, with probabilistic transi-
tions and real-time aspects. That make possible to translate them into probabilistic 
timed automata as given in section 7. The translation process of resulting models is 
also described in this section. In section 8, we give an overview on the type of proper-
ties that can be checked. We conclude with section 9. 

2   General Methodology 

In order to have UML accepted by the real-time development community, the OMG 
group has proposed a profile called “Schedulability, Performance and Time” [17] for 
real-time systems. In this profile, some supports are introduced in UML to capture a 
maximum of real-time requirements and to perform the real-time development tasks 
directly on UML models. Beside the usual analysis and design stages, scheduling 
analysis, performance evaluation and formal verification of critical properties are 
included. However, the two last activities are partially covered because “quality of 
service” requirements are introduced without a clear indication about the formal veri-
fication of this type of properties. Adapted tools to formal verification or performance 
evaluation on these UML models are not yet available.  

For the reasons indicated above, a new profile called DAMRTS is proposed to ana-
lyze and verify dependability properties of real-time systems [1]. It represents an 
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extension to the reference metamodels of the OMG profile “Schedulability, Perform-
ance and Time” [17]. The first aim is to be compliant with the standard OMG profile. 
The second one is to provide concepts that enable to specify a real-time system with 
its real-time constraints and probabilistic information. A behavioral UML models are 
proposed with a formal semantics served to probabilistic model checking [10]. It is 
developed with probabilities and real-time aspects, resulting in probabilistic timed 
automata as semantics models. These models are used to verify probabilistic temporal 
properties related to the dependability of real-time systems.  

GME Tool 

Metamodel 

Profile DAMRTS 

Models DAMRTS 

XML 

PRISM Tool 

Probabilistic  
Model checking 

Probabilistic 

timed automata 

Temporal 
probabilistic 

properties

Automatic 
translation 

 

Fig. 1. Global methodology  

As depicted in fig.1, the proposed approach is presented with the essential steps 
that allow associating a formal method to UML models extended with probabilities 
and time. The GME tool is used to construct metamodels specifying the modeling 
paradigm (modeling language) of our application domain. The modeling paradigm 
contains all syntactic, semantic and presentation information regarding the domain of 
real-time systems dependability. This is developed in section 6. 

Once the profile DAMRTS is built, we model the real-time system. The output of 
GME tool is a file having an extended XML format. The DAMRTS models are then 
exported in XML format for which an automatic translation is applied to transform 
UML behavioral models into probabilistic timed automata as it is detailed in section 
7.3. The PRISM tool is then used to verify the properties of real-time system. 

3   Modeling with Extended UML 

To represent dynamic aspects of the system, extended UML statecharts and collabora-
tion diagrams are used. Combination of these two diagrams allows representing all 
system interactions. Indeed, the collaboration model describes external interactions 
between objects whereas UML statecharts diagrams represent how an instance of a 
class reacts to an event occurrence.  

A collaboration diagram consists of objects and associations that describe how the 
objects communicate. It represents the structural organisation of objects which ex-
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changes messages. In the DAMRTS profile, the signals and the orders are the two 
types of messages taken into account. The first ones are sent from objects of Sensor 
classes to objects of Controller class. The second ones are sent from instances of Con-
troller class to instances of Effector classes (see fig 3).  

The proposed statecharts allow expressing events with probabilities and actions with 
real-time constraints. The nondeterminism and synchronization are defined as follows:  

Nondeterminism. Nondeterministic choices can be specified in transition systems by 
having several transitions leaving from the same state. It is used when we wish to 
incorporate several potential system behaviors in a model. Nondeterminism is used 
for several purposes. As it is specified in [6] and [18], it is used to represent phenom-
ena such as: 

Unknown scheduling in concurrent systems. When a system consists of several com-
ponents running in parallel, we often do not make any assumptions on the relative 
speeds of the components, because we want the application to work no matter what 
these relative speeds are. Therefore nondeterminism is essential to define the parallel 
composition operator, where we model the choice of which system take the next step 
as a nondeterministic choice. 

External environment. A system interacts with its environment via its external actions. 
When modeling a system, we can not predicate how the environment will behave 
(failures, abnormal functioning). Therefore the possible interactions with the envi-
ronment are modeled by nondeterministic choices. 

Uncertainty in probabilities and the expected times. Sometimes it is not possible to 
obtain exact information about the system to be modeled. When the exact duration of 
an action or the exact probability of an event is not known exactly but only with a 
lower and upper bound. In this case, all possible values are incorporated by nonde-
terministic choices.  

Synchronisation. The extended UML statecharts are allowed to communicate with 
each other in well-defined manners. The communication and synchronization method 
are presented as follow: 

− One UML statechart may create an event as a result of a transition that is con-
sumed by another UML statechart. 

− A guard may be used to test if another UML statechart is in a certain state before 
allowing a transition to occur to the guarded state. 

4   Extended UML Statecharts  

In UML, each class has an optional statechart which describes the behavior of its 
instances (the objects). This statechart receives events from other statecharts and 
reacts to them. The reactions include sending of the new events to other objects and 
executing of internal methods on the object. The communications between compo-
nents of the system are modeled as events. Exchanged signals and orders as well as 
random events (e.g. undesired and lost signals) are represented as events associated to 
a discrete probability distribution.  
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The syntax of UML statecharts, defined in the standard UML [16] is extended as 
presented below. The operational semantics of UML statechart is inspired from [9] 
and extended with real-time and probabilistic aspects as presented in [1]. The infor-
mal interpretation of extended UML statecharts is based on a set of nodes and a set of 
edges. An edge is presented by the following syntax:  

Edge: = Event [Guard] / Action 
Event: = Event name (Probability) 
Guard: = Boolean Expression 
Action: = Operation name (Arguments) [Duration, deadline] 

Event represents received signals, sent orders or random events with their associ-
ated probability. Guard is a boolean expression which represents either AND-
composition or OR-composition states related to degraded or failure states of other 
objects. The compositions are excerpted from a faults tree analysis of the system [1]. 
Action expresses operation execution or sending messages to other objects. They are 
not instantaneous but have duration or deadline. Transitions between states are prob-
abilistic. When two transitions are enabled, the choice is nondeterministic.  

5   Example of an Assembly Chain 

This example presents an automated chain assembly of electrical micro-motors. It is 
excerpted from a European project named PABADIS (Plant Automation BAsed on 
DIstributed Systems) [14]. This one deals with a flexible and a reconfigurable system 
designed for production of different types of micro-motors. Fig 2 represents the con-
trolled system. 
 

 

Fig. 2. Assembly chain of micro-motors 

Micro-motors consist to stators and rotors. The first are transported to assembly 
robots, on pallets via a conveyor system and seconds are available into stocks near 
each robot. A set of pallets containing stators moves along the conveyor belt. These 
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are detected by pallet sensors PSi at different levels of the conveyor system. When 
assembly of micro-motors is completed, the pallets then move into a fault detection 
station where a camera detects the possible assembly faults. Set of PLC (Programma-
ble Logic Controller) and PC composes the control system. 

The assembly robots work in parallel. Let us consider a stators pallet arrives at the 
level of assembly robots and detected by PS3. If the two robots are both idle, the 
pallet is arbitrary send to one of the waiting areas w1 or w2 showed in fig 2. If the 
robots are both busy, the controller send information request to robots. These send the 
information about the assembly state. The pallet is then leaded to the robot which will 
be the idle first. This behavior is modeled as given in the statecharts of fig 4 and fig 5. 

5.1   Collaboration Diagram 

In the collaboration diagram of fig 3, interactions between objects are presented. Ex-
changed messages describe the signals (S.PPi) and (S.Fault), respectively sent from 
pallet sensors (PSi for sensor i) and Fault detector objects to the Controller. They 
also represent orders sent from Controller to Robot 1, Robot 2 and Elevator objects. 
Our example presents a distributed system such that several controllers (PLC) interact 
to control the system functioning. To simplify, we represent in the collaboration dia-
gram one controller object.  
 

  

Fig. 3. Collaboration diagram 

5.2   Extended UML Statecharts 

Robot and Controller objects behavior are respectively modeled in fig 4 and fig 5. In 
Robot statechart (describes robot 1 or robot 2); assembly tasks as well as communica-
tion with controller are executed in parallel.  

In substate A, the controller orders are modeled as events. In transition: “O.Ass 
(0.10) [PS1.Ds OR PS2.Ds]/ Assembly()[10s]”, guard expresses that the edge is en-
abled if one of sensors PS2 or PS3 is in degraded state Ds. The probability of sending 
an assembly order when one of sensors is in degraded state is evaluated to 0.10; the 
execution of the assembly operation, Ass () lasts 10s. Otherwise, the robot performs a 
correct assembly with probability 0.90. The guard “S.Active AND E.Active” repre-
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sents the condition to leave the state Emergency stop: sensors and elevator must be in 
the state Active of their respective UML statecharts. When probability is not repre-
sented, it means it is equal to 1.  

Nondeterminism is modeled at the level of the state, Idle. A probabilistic choice is 
used to represent the possibility of performing a correct or a faulty assembly. It is also 
possible that robot remains idle when there is absence of pallets (AP). Substate B, 
describes the controller requests and sending of data from robot to controller. 

 

 

Fig. 4. Robot statechart 

Fig 5 describes controller behavior. When signal S.PP3 becomes true (sensor PS3 
detects a pallet), the order Info.need is send to the robots.  After receiving informa-
tion, the controller sends the order of assembly for one of the two robots (which will 
be the idle first). 

 

Fig. 5. Controller statechart 
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Among the malfunctions of controller, sending of undesired orders or lost orders 
are modeled in Controller statechart as random events, e.g. “Fault (0.05)/ Order [5s]”. 
The received sensor signals are presented as events and the sending of orders as ac-
tions with their associated deadlines. The edge “S.PP1/ O.Go up()[5s]”, expresses that 
when PS1 detects a pallet, order to go up from controller to elevator is send.  

6   Metamodeling Using GME Tool 

The Generic Modeling Environment (GME) developed at the institute for Software 
Integrated Systems at Vanderbilt University is a configurable toolkit for creating 
domain-specific modeling and program synthesis environments [13].  

There is a metamodeling paradigm defined that configures GME for creating 
metamodels. These models are then automatically translated into GME configuration 
information through model interpretation. Once the metamodeling interpreter is op-
erational, a meta-metamodel is created and the metamodeling paradigm is regenerated 
automatically [13]. The metamodeling paradigm is based on UML notation. The syn-
tactic definitions are modeled using UML class diagrams and the static semantics are 
specified with constraints using the Object Constraint Language (OCL).  

6.1   Modeling Concepts 

The vocabulary of the domain-specific languages implemented by different GME 
configurations is based on a set of generic concepts built into GME itself. This one 
supports various concepts for building complex models.  

Folders, FCOs (Models, Atoms, Sets, References, and Connections), Roles, Con-
straints and Aspects are the main concepts that are used to define a modeling para-
digm. The First Class Objects (FCOs) used to represent entities and relations, form 
the core of the GME concepts. These generic concepts are not generally used at the 
same time. However, the choice is rather an important design decision. The concepts 
used in our metamodel are: Aspects, Models, Atoms and connections. These latter and 
the other quoted concepts are defined in [8] and [13]. 

6.2   Overview on the Metamodels of DAMRTS 

The DAMRTS profile is a specific profile designed for dependability analysis of a 
real-time system. It is based on concepts defined in the profile SPT [17] with new 
stereotypes. Those are added to the metamodel in order to introduce particular de-
pendability information. The malfunctions considered as undesirable events and their 
possible causes are modelled with stereotypes. The QoS is represented as attributes 
when it is about actions of resource classes (e.g. duration of actions, response time for 
a call action, etc.). It is also represented as a tagged value when it is about general 
QoS, like reliability and maintainability of resources [1]. 

To build the profile DAMRTS, the metamodeling paradigm based on UML is used. 
Three UML metamodels are created to represent class diagram, collaboration diagram 
and extended UML statecharts of a real-time system. Such as presented in fig 6,  
the metamodel of the class diagram contains the concept Atoms: sensor, effector  
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(all components in contact with raw material such robots, conveyor belt, etc.) and 
controller.  

The FCOs Resource and Dependability are defined to be hidden in the class dia-
gram. We use the concept Attributes (which does not necessarily represent attributes 
in the class diagram) to define the QoS related to dependability of Resource as well as 
the methods send signals, send orders and actions related to the Atoms sensor, con-
troller and effector (see fig 6). The Attributes of GME tool can have a set of specifica-
tions such as the data-type [8]. Then we specify the defined Attributes with integer or 
double according to whether it is of real-time data (deadline and duration of methods) 
or of probabilities assigned to undesired events. 

 

Fig. 6. Class diagram metamodel of profile DAMRTS 

Each entity Resource is associated the Atom Indicator which represent the unde-
sired events such failures. The Atom Cause has as attribute one or several logical 
expressions composed by elementary logical conditions linked by conjunctive and 
disjunctive connectors. This attribute is specified to be boolean. When one of the 
expressions is true, it indicates that associated failure became true. 

7   Translating Extended UML Statecharts to PTAs 

Timed automata are automata extended with clocks, positive real valued variables 
which increase uniformly with time, and whose nodes and edges are labeled with 
clocks constraints, respectively called invariants and guards. The invariant dictate 
when the automaton may remain in a node, letting time pass, and guards when the 
corresponding edge can be taken [3]. Probabilistic timed automata are a variant of 
timed automata extended with discrete probability distributions [11]. This type of 
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automata has been chosen for formalizing extended UML statecharts because it takes 
into account dense time, nondeterminism and probabilistic choice as defined in the 
extended UML statecharts. They are also amenable to model check probabilistic tem-
poral properties. 

7.1   Principle of Translation 

To translate extended UML statecharts to probabilistic timed automata, real-time 
constraints of actions are represented with clocks. Events are described with their 
probabilities on edges. The guards defined in proposed UML statecharts describe the 
active state of other objects.  

In probabilistic timed automata, it is not really possible to observe the location of 
another component directly as the principle defined in our extended UML statecharts. 
However, a probabilistic timed automaton component A can check the location of 
another component B in the following way: component B is equipped with self-loop 
edges in all of its locations (or some of its locations), where the events of the self-loop 
edges would be different for each location. Therefore, in location L1, the probabilistic 
timed automaton B would have enabled a self-loop edge with an event which is 
unique to L1: “in-L1”, for example. Then component A, when it want to know 
whether B is in L1 or not, would try to synchronize on event “in-L1”. If synchroniza-
tion is possible, then A knows that B is in L1 and can act accordingly; otherwise, it 
can do something else, knowing that B is not in L1. 

7.2   Synchronization with Global Clocks 

Synchronization between probabilistic timed automata components is done using 
edge-labeling events, as defined in [12]. One manner to synchronize probabilistic 
timed automata is to create a probabilistic timed automaton component which has a 
single clock which is never reset during the execution of the system. Then this clock 
could be regarded as a “global clock”. This component could then synchronize with 
the other components when the value of the global clock reaches certain values. 

In fig 7, we give probabilistic timed automaton describing a sub-system of the as-
sembly chain example: the robot behavior reacting to controller orders. The probabili-
ties used in the example should in practice be obtained from statistical analysis of 
observed behavior. 

In the probabilistic timed automaton, the sub-system consists to robot, controller 
and two clocks x and y. Atomic propositions, related to probabilistic timed automata 
of elevator and sensor, are included in nodes. “s:Ds, e:Active and s:Active” express 
guards of UML statecharts in fig 4. In initial state, both clocks x and y set to 0. The 
controller sends assembly order to robot in 5 time units. Then, the robot performs the 
assembly tasks with probability 0.90. After assembly takes 10 time units, the robot 
becomes idle. When one sensor is in degraded state, then robot performs a fault as-
sembly with probability 0.10. When an order stop is send by the controller, the robot 
stop. It becomes idle when sensors and elevator are in active state. 
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7.3   Automatic Translation Process 

Once the UML models are built with the profile DAMRTS, the different view of the 
real-time system are presented including dependability information. The following 
step consists to analyze the models. For lack of UML’s models analysis tools, we 
chose a tool which allows analysis of models containing real-time and probabilistic 
information such as in the extended UML statecharts. The probabilistic model 
checker PRISM is then used [10].  
 

 

 
 

Fig. 7. Probabilistic timed automaton 

 
To allow verification of probabilistic temporal properties, it is necessary to trans-

late behavioral UML models from the GME tool to input model of PRISM tool. For 
this, an automatic translation is performed using the parser Xerces [19].  

The statecharts UML models are exported to XML format. Syntactic analysis is 
applied on the XML files using the parser. Transformation rules are then defined to 
rewrite the XML nodes to PRISM language based on the Reactive Modules formal-
ism [4]. This formal model is designed for concurrent systems and represents syn-
chronous and asynchronous components in a uniform framework that supports com-
positional and hierarchical design and verification.  

8   Probabilistic Model Checking 

To verify dependability properties, the model checker PRISM is adopted [10]. This 
tool is designed for analysis of probabilistic models and supports various models such 
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as Markov decision processes, discrete time Markov chains and continuous time 
Markov chains. The tool takes as input a description of a system written in PRISM 
language. It constructs the model from this description and computes the set of reach-
able states. It accepts specification in either the logic PCTL or CSL [11] depending on 
the model type. It then determines which states of the system satisfy each specification. 

Some probabilistic properties related to our example are presented. Their informal 
specifications are given as follows: 

Property 1: “The probability the robot carries out a faulty assembly is less than 1%”. 
Property 2: “In initial state, the probability that the robot remains in emergency stop 

until the elevator and the sensors are reactivated is at least 0.95”. 
Property 3: “Elevator remains in down position less than k units of time until the sensor 

1 detects a pallet with a probability ≥ p”.  

These dependability requirements are formally specified with PCTL. We use the 
variables: r, e and si, to respectively represent the states of the robot, elevator and sen-
sors. The following are their PRISM specification language: 

Property 1: P<0.1 [(r=2)] 
Property 2: “init”  P>0.95[(r=3) U (e=0) & (s1=0) & (s2=0) & (s3=0)] 
Property 3: P=? [(e=0) U≥ K   S.PP1= true]. 

The fundamental components of Prism language are modules and variables. A sys-
tem is modeled with a number of modules which can interact with each other. A module 
contains a number of local variables. The values of these variables at any given time 
constitute state of the module. Global state of the system is determined by local states of 
all modules. Though the model checking method is automatic, it is confronted to the 
explosion of system states number. In our case, the difficulty of handling the models 
particularly depends of type of the local variables (integer, double, etc.) that we ma-
nipulate, combined with the number of these variables.  

9   Conclusion  

The approach used in our proposition is to enrich the UML model with the local quality 
of services parameters relevant to a specific analysis objective (for instance, fail-
ure/repair rates are associated with elements of UML model) and to automatically trans-
form the relevant parts of the enriched UML models to probabilistic timed automata.  

The advantage of the approach is that it is relatively easy to experienced UML users 
to create extended UML models and automatic translation made it possible to apply 
PRISM. The formal model is correct with respect to requirements of UML model. Writ-
ing properties with probabilistic temporal logic such as PCTL is not easy. In PRISM, 
syntax is proposed to express properties. This one is easier than that of probabilistic 
temporal logic.  

Due to the denseness of time, the underlying semantic model of a probabilistic timed 
automaton is infinite, and hence effective decision procedure rely on building a finite 
quotient of the state space. In future works, the verification technique used, will be 
based on the generation of the forward reachability graph with Kronos, and model 
checking the obtained graph encoded as a Markov decision process with PRISM.  
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Abstract. A ‘system of systems’ (SoS) comprises many other systems
operating collectively with a shared purpose. Individual system auton-
omy can give rise to unpredictable, and potentially undesirable, emergent
behaviour. A policy is a set of rules that bounds the behaviours of enti-
ties. Policy can be expressed at various levels of abstraction. By building
on existing goal-based decomposition approaches this paper proposes
policy as a means of achieving safety in SoS. The decomposition of pol-
icy to lower levels of abstraction must be carried out in a consistent,
complete and systematic manner. The approach is agent-oriented and
emphasises the recognition of contextual assumptions (such as knowl-
edge of other agents’ behaviour) in decomposing policy. To this end we
present patterns of decomposition based on KAOS tactics of refinement.
The application of these patterns, expressed in the Goal Structuring No-
tation, is illustrated using existing civil aerospace policy (the Rules of
the Air Regulations).

1 Introduction

There exist systems whose constituent components are sufficiently complex and
autonomous to be considered as systems in their own right and which operate
collectively with a shared purpose. Many real systems of systems are geograph-
ically distributed and some of its component systems are mobile. Examples are
numerous and include any permanent transport network (such as air, rail or
road) as well as more short-lived SoS which may arise in network-centric war-
fare.

In such SoS the interactions between component systems are not constrained
by physical design as in conventional monolithic systems. Since the SoS often
comprise systems designed, manufactured and operated by various organisa-
tions, the set of possible interactions between any of the entities in the whole
SoS cannot be known by any one individual. Such unpredictable interactions, if
left unchecked, can lead to undesirable emergent behaviour, which may lead to
accidents and loss of life. Some means is required to bound the behaviour of the
system entities in such a way that no accidents occur. Defining a safety policy
is the first step towards providing the necessary degree of control of interactions
and coordination of responsibility.
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Historically, interpretation of policy has relied upon human intelligence;
hence loose and possibly ambiguous guidelines have been acceptable. This has
not always been successful, as evidenced by the case in which two aircraft osten-
sibly operating according to policy were nevertheless involved in a fatal collision
[1]. In this case it seems that the policy was not constrictive enough. In contrast,
work-to-rule strikes expose flaws in overly conservative policies by reducing op-
erational effectiveness.

An increasing desire to deploy unmanned and highly autonomous systems
has brought to the fore the challenge of producing correct and complete safety
policies. With systems such as unmanned air vehicles (UAVs) entering service we
no longer have the luxury of relying on human flexibility and ingenuity to deal
with vague or over-constraining policies. A way must be found to decompose
high-level safety goals into policy ‘statements’ that are formulated in such a way
that they can be implemented by man or machine.

This paper puts forward a number of patterns for decomposition. Section 2
provides an overview of policy. Section 3 presents the challenges of developing
policy. Sections 4 and 5 describe the approach to supporting policy development.
Section 6 outline the problems of defining a resilient policy. Finally there is some
discussion of related and future work.

2 Overview of Policy

Policy describes the allowed envelope of an entity’s actions, in that it defines
behaviour that is both permitted and required from individual entities in order
to be able to operate in a given environment (as described by the assumed
context). To take a simple example as an illustration, consider a mother who
asks her child to go to the corner shop to buy a pint of milk. She may lay down
two rules with which the child must comply on this trip:

1. The child must not talk to strangers.
2. The child must use the pedestrian crossing when crossing the road.

The first of these rules defines what the child is allowed to do, specifically
it proscribes conversation with people with whom the child is not previously
acquainted. The second statement expresses the obligation that the child should
take a safe route across the road, namely by using the pedestrian crossing.

Together these rules form a policy that guides the behaviour of the child on
a journey to the corner shop. However the policy is orthogonal to the plan or
mission of the child. It still holds regardless of whether the child is going to buy
a loaf of bread or a dozen eggs, or not going to the corner shop at all.

Both rules are motivated by the desire that no harm should come to the child.
Perhaps we have identified being in the path of an oncoming car and being in
the company of untrustworthy (and hence potentially malevolent) individuals
as hazards. However, even this simple policy is fraught with problems. Indeed,
it demonstrates problems that face larger and technologically more complicated
SoS. That is, the need to constrain and permit interactions.
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3 Challenges of Developing Safety Policy for SoS

There are a number of challenges to developing a safety policy for a system of
systems. The policy must take into account the following SoS characteristics:

– Wide variety of systems.
– Dynamic environment.
– Changing number of system entities.

The inability to address these issues fully leads to an assumed or implicit
context in expressed policy statements. Indeed, the challenges for developing
policy for SoS are in addition to the issues of formulating policy in a more
general sense:

– Ambiguous nature of policy statements.
– No structured process of generating policy.
– Statements expressed at various levels of abstraction with no clear relation-

ship between them.

All policy statements are expressed in the context of assumptions about the
capabilities of the systems they address. Therefore a policy places a restriction
on the type of systems that may form part of the SoS. For instance, the policy
above requires that the child be able to recognise and operate (where necessary)
a pedestrian crossing. For legacy systems this requirement may entail modifying
the way they operate to comply with policy, together with the attendant costs
this involves. In the case of human operated systems, it may involve retraining
people to be aware of the new policy. If, however, a capability is required that
is not already provided by an existing system, or new technology (e.g. UAVs) is
replacing old, the policy indirectly places constraints on the design of these new
systems.

Clearly, therefore, there is a relationship between safety policy and the re-
quirements on individual system design as well as the configuration of the SoS.
This relationship is not at first obvious and, what is more, the concepts are often
conflated in current policy documents. Similarly, the formulation and adherence
to safety policy can have a strong relationship with the safety arguments re-
quired within system safety cases. The details of this relationship is beyond the
scope of this paper but is discussed further in [2].

4 Supporting Policy Development

The Goal Structuring Notation (GSN) [3] — typically used to construct safety
cases — can be used to represent policy decomposition structures. In certain
respects GSN is similar to another graphical notation, KAOS.

KAOS is a goal-oriented notation for representing requirements refinement
hierarchies. However, KAOS adopts a more formal approach to the specifica-
tion of goals in that it employs temporal logic to formulate expressions about
requirements. Nevertheless, it is possible to adapt some of the methods from one
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technique to the other. Namely the work by Darimont and van Lamsweerde [4]
detailing patterns of refinement.

Refinements in KAOS can be formally proven, whereas GSN (owing to the
inductive nature of most safety arguments) does not attempt to formally prove
decompositions. However, it has been suggested that argumentation techniques
have a role to play in the engineering of emergent systems such as SoS [5]. Indeed,
classical refinement is still a process of trial and error (ibid.). Using GSN allows
documenting of the context under which the decomposition of the policy goals
takes place. This means that any assumptions can be contested and that the
decision processes are not hidden or implicit. They are therefore accountable
and subject to scrutiny and change should they be found inadequate, or in the
event of a change to the originally assumed context.

Policy cannot be formulated without consideration of the systems whose
behaviour it is expected to influence. That is, there must exist a model of expec-
tations about the agents and their environment. It is important to recognise and
capture these expectations in terms of the context in which policy is expressed.

The policy model that is assumed in this work allows for a hierarchical struc-
ture of policy. The decomposition progresses from high-level, often state-based,
goals down to action-oriented policy statements. GSN allows context to be cap-
tured at every level of the decomposition. It also explicitly documents the strat-
egy by which the decomposition takes place. It is features such as these that
KAOS lacks, and which we will make use of in the next section.

5 Patterns of Decomposition

In this section patterns are introduced that facilitate the process of decomposing
policy from high-level safety goals down to implementable rules. These patterns
are illustrated in GSN, however they have been inspired by work on tactics for
requirements elaboration in KAOS. The reuse of common structures in GSN
through the use of patterns has been recognised [6]. However, KAOS’ patterns
take advantage of the formal specification of requirements goals and can be
formally derived and proven. Every pattern is proven once for all, hence every
application of said pattern is correct.

Three tactics for developing patterns are identified by Darimont [7]:

– Agent-based decomposition
– Milestone-based decomposition
– Case-based decomposition

The patterns are described in more detail in the following sections and il-
lustrated with examples from the civil aerospace Rules of the Air Regulations
(RoA). The RoA [8] can be thought of as the policy that guides the behaviour
of aircraft that wish to operate in the civil aerospace system of systems. It is
expressed as a natural language document, which sets out a number of rules for
the safe inter-operation of aircraft and air traffic control (ATC).

The RoA document sets out rules without the principles on which they were
derived. The work shown in this paper represents an attempt to reverse engineer
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the RoA and, in so doing, rediscover the rationale behind the rules. It is assumed
that all the rules in the RoA are motivated by the top-level safety goal that no
collisions shall occur in the civil aerospace SoS. Figure 1 shows the first few stages
of policy decomposition. All further examples refer to steps of the decomposition
below these policy goals1.

No collisions

No collisions shall
occur in the civil
aviation SoS

Collision strategy

Decomposition over all
entities with which an
aircraft can collide

Aircraft collision

An aircraft shall not
collide with other aircraft

Ground collision

An aircraft shall not collide
with the ground or fixed
objects

Awareness

The pilot of an aircraft shall maintain
his own awareness of other aircraft
as well as contribute to others'
awareness of his own

Control

The pilot of an aircraft shall
control his aircraft such that it can
be manoeuvred appropriately to
avoid collisions in a shared
airspace

Entities

Entities that should be
avoided are other aircraft,
the ground and fixed
objects

Collision factors

Decomposition over factors
to be maintained by pilot to
avoid collision with other
aircraft

FixedObjects

Fixed objects are
attached to the ground
and have some height

Factors

Factors affecting collision
are a pilot's awareness of
the environment and
control of the aircraft

Key to Symbols

Goal

Strategy

Context

Solved by

In context of

UndevelopedGoal

Decomposition
continues

Fig. 1. High Level Policy Decomposition for Rules of the Air

5.1 Agent-Based Decomposition

An agent-based decomposition concentrates on decomposing policies according
to specific agents or groups of agents.

Agent Capabilities. Often it is desirable for a set of heterogeneous agents to
adhere to a common policy. Clearly the way in which the policy must be broken
down is dependent on the capability of said agent. This pattern is a specialisation
of the case-based pattern, specifically each case represents a group of agents with
a particular capability (or lack thereof).

Figure 2 demonstrates how a policy to fly at an altitude that minimises the
chance of collision encounters can be decomposed over the ability of agents to
1 Alphanumerical references in the goal decomposition — e.g. 17(a) — denote a par-

ticular rule in the Rules of the Air.
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FlightLevel

A pilot must fly at an
appropriate altitude so as to
minimise the chance of
collision encounters

CanDetermineAltitude

Decomposition over
ability of aircraft to
determine altitude

AircraftWithInstruments

Aircraft with instruments must
fly at a flight level appropriate
to its magnetic track

AircraftWithoutInstruments

Aircraft without instruments fly at
an appropriate flight level so as
to minimise the chance of
collision encounters

QuadrantalRule

Aircraft flying below 24500
must determine their flight level
according to the Quadrantal
Rule

AircraftHeight

Decomposition over
altitude of aircraft

SemicircularRule

Aircraft flying below 24500
must determine their flight level
according to the Semicircular
Rule

Altimeter

Altitude is determined
through use of instruments -
an altimeter set to a
pressure of 1013.2
hectopascals

QRule

<<Definition of
Quadrantal
Rule>>

SCRule

<<Definition of
Semi-circular
Rule>>

MagneticTrack

Magnetic track is angle
of direction of the aircraft
with magnetic North

Fig. 2. Decomposition by Agent Capabilities

determine their altitude. There must be one policy for those systems able to
determine their own flight level accurately (i.e. those with instruments), and one
for those that cannot. Similarly, the policy could be decomposed over the ability
of the agent type to modify their altitude — for instance, a glider may not climb
in the same way as powered craft. Different ways of complying with the same
policy must be devised for both types of agent.

In fact figure 2 also demonstrates how this decomposition pattern can be ex-
tended beyond agent capabilities to encompass all agent properties. The second
strategy in the decomposition splits the policy according to the existing altitude
of the aircraft. In this way it approaches the more general case-based pattern
discussed later.

Agent Cooperation. This is a specialisation of the milestones pattern. How-
ever, in contrast with that pattern the milestones are assigned to different agents.

Consider figure 7. The policy that the conflict of right of way must be resolved
when overtaking can be decomposed into the responsibilities of the two systems
involved. One aircraft must cede to the other aircraft, which then has priority
and is allowed to pass. These requirements on the agents are shown in figure 3
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Overtaking

Overtaking shall be
handled appropriately

OvertakingKeepOutOfWay

The pilot of an aircraft shall alter
his course to the right to keep out
of the way of the aircraft being
overtaken (17)(4)(a)

OvertakingRightOfWay

The pilot of an aircraft being
overtaken shall have right of
way (17)(4)(a)

Right of Way

OvertakingCooperation

Decomposition over parties
cooperating in deconflicting
right of way during
overtaking manoeuvre

OvertakingDefn

Overtaking involves one
faster moving aircraft
passing another aircraft
travelling in the same
direction

Fig. 3. Decomposition over Cooperating Agents

as two separate subgoals. The two policies are dependent on one another in that
they represent the cooperation of two agents.

5.2 Milestone-Based Decomposition

A milestone-based decomposition attempts to decompose a policy goal by iden-
tifying an intermediate state to be achieved that contributes to the satisfaction
of the policy goal. This is illustrated in figure 4. The milestone and the policy
goal are temporally related; that is, the achievement of the milestone precedes
the satisfaction of the final goal. The first subgoal states that the milestone be
achieved, while the second subgoal defines a policy goal that can be achieved as
a consequence of the milestone being achieved.

For example, a policy goal from the RoA identifies that to maintain good
visibility pilots must not fly in poor weather conditions. This goal can be achieved
by describing a milestone policy with two subgoals. The first subgoal requires
the pilot first to become aware of the weather conditions through acquiring the
latest weather forecast prior to take-off. A second subgoal requires that a pilot
may not take-off if the forecast predicts bad weather (in the context of ‘bad
weather’).

Variants of this particular example milestone occur frequently. An agent (hu-
man or machine) must first become aware of some state (be it troop movements
or the state of the weather) whereupon some restriction on its actions is made
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Weather

The pilot of an aircraft shall
not fly in poor weather
conditions (16)

PoorWeather

An aircraft is not permitted to take-off
if the forecasted weather indicates that
the destination aerodrome's conditions
will have a visibility < 10km or cloud
ceiling < 1500 feet on arrival.

ObtainForecast

The pilot of an aircraft must
obtain the weather forecast for
the proposed flight prior to take-
off 16(1)

KnowWeather

Decomposition by
achievement of
milestone 'know weather
conditions'

PoorWeather

Poor weather is defined
as being the presence of
low visibility conditions or
a low cloud ceiling

PredictWeather

A weather forecast
contains sufficient
information for a pilot to
predict weather conditions

PoorWeatherDefn

Visibility of < 10km or a cloud
ceiling < 1500 feet provides
an unacceptably poor visual
range for the pilot

Fig. 4. Decomposition over Achievement of Milestone

Weather2

The pilot of an aircraft shall
not fly in poor weather
conditions (16)

Poor Weather

An aircraft is not permitted to take-off
if the forecasted weather indicates that
the destination aerodrome's conditions
will have a visibility < 10km or cloud
ceiling < 1500 feet on arrival.

Obtain Forecast

The pilot of an aircraft must
obtain the weather forecast for
the proposed flight prior to take-
off 16(1)

Know Weather

Decomposition by
achievement and
maintenance of milestone
'know weather conditions'

NotTakeOffPoorWeather

An aircraft must not take off if the
weather forecast for its
destination predicts poor weather
on arrival

RespondToWeather

An aircraft must respond to
a change in the predicted
weather

UpToDateForecast

The pilot of an aircraft must
request an updated weather
forecast every two hours

LandASAP

An aircraft must land at the nearest
aerodrome as soon as possible if the
forecasted weather indicates that the
destination aerodrome's conditions will
have a visibility < 10km or cloud ceiling <
1500 feet on arrival.

ChangingWeather

Weather forecast may
change during flight
to destination

Forecast

Two hours is sufficient
to remain up to date
with current forecasts

Fig. 5. Decomposition over Achievement and Maintenance of Milestone

accordingly. This can be demonstrated by a standardised model of agent be-
haviour — such as OODA [9] — in that the observations made directly or indi-
rectly (e.g. through third party information) affect the agent’s actions.
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All decomposition patterns are advisory; they guide the thoughts of the policy
maker rather than constrict them. The decomposition process is not automatic,
it is a creative process and the choice of a different pattern can lead to a different,
but nonetheless viable policy.

A subtle variation on the milestone policy demonstrates this. Consider, in-
stead of simply reaching the milestone once (treating it as a target), that the
milestone were maintained in some way. This pattern leads to a subtly different
decomposition of policy and hence affects the way the system operates. In this
example the pilot would have not only to obtain the weather forecast but also
to keep up to date with any changes (figure 5). This has non-trivial implications
for the policy decomposition. It is too late to forbid take-off if the weather fore-
cast predicts poor weather once the aircraft is in flight. The policy-maker then
has a number of options for the pilot’s behaviour: land at the next available
opportunity, return to origin, or simply contact ATC and await instructions.

Fig. 6. Decomposition into Disjoint Cases

VisualRange

The pilot of an aircraft shall
maintain a minimum visual
range from the cockpit

MinimumVisRange

Visual range such that
pilot can take evasive
action in time to avoid a
collision

VisAllAirspace

Decomposition over
nature of control of
airspace

VisRangeInContrAirspace

The pilot of an aircraft shall
maintain a minimum visual range
from the cockpit within controlled
airspace (25)

VisRangeOutContrAirspace

The pilot of an aircraft shall
maintain a minimum visual range
from the cockpit outside
controlled airspace (26)

ReportedVisibility

Visual range (visibility) is that
communicated to the pilot by
ATC upon landing or taking-
off from an aerodrome (24)(3)

VisRangeClassAirspa

ce

Decomposition over all
classes of airspace

AirspaceClasses

Controlled airspace is
either of class A, B,
C, D or E

VisRangeInClassBAirspace

The pilot of an aircraft shall
maintain a minimum visual range
from the cockpit within class B
airspace (25)(1)

VisRangeInClassCDEAirspace

The pilot of an aircraft shall
maintain a minimum visual range
from the cockpit within class C, D
and E airspace (25)(2)

ClassA

Flights in class A
airspace are assumed to
require no minimum
visibility

ATControl

Controlled airspace is
controlled by an air
traffic control unit

FlightLevel

Decomposition over
flight level of aircraft

Below1000

Aircraft flying below 1000
feet must maintain a
visibility > 5km

Above1000

Aircraft flying above 1000
feet must maintain a
visibility > 8km

VisibilityAtAltitude

Altitude of aircraft
affects visibility
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5.3 Case-Based Decomposition

A case-based decomposition attempts to break the policy down into a number
of cases, with each subgoal representing a case. Policy goals can be thought of as
consisting of two parts: the conditions under which the policy must apply and
the active part of the policy, i.e. the actions that are allowed or forbidden or
states that are to be maintained etc. It would seem natural that a policy would
‘always’ apply, but this is deceptive. The conditions include not only temporal
constraints but also the classes of systems the policy applies to as well as other
restrictions. A policy goal with no conditions would be truly universal and apply
always and to all things. The second part of the policy goal describes what the
policy is to achieve. In decomposing policies both of these parts can be considered
and broken down into simpler cases.

Decomposition into Condition Cases. The conditions in which a policy
applies may be decomposed into specific cases of these conditions. These cases
may overlap, i.e. the policies covering two or more cases can apply at the same
time, or they may be totally disjoint.

Figure 6 shows an example of breaking down the fulfilment of a policy goal
into a number of cases which do not overlap. Maintaining a sufficient visual range
in all airspace can be broken down into those regions of airspace within ATC
control and those outside. These two cases are obviously disjoint since there is
no region of airspace that is not either uncontrolled or controlled by ATC. By
applying the pattern again the policy that applies in controlled airspace can then
be decomposed according to regions of airspace denoted with particular classes.
In this case it must be asserted that the regions do not overlap, i.e. that there
is no region that has more than one class assigned to it.

RightOfWay

Conflicts of right of way
between two aircraft shall
be resolved

RightofWaySituations

Decomposition over all
situations in which two or
more aircraft need to
determine right of way

OnGround

The pilot of an aircraft shall
give way appropriately to other
vehicles on the ground (37)

Converging

The pilot of an aircraft shall
give way appropriately to
converging aircraft (17)(2)

HeadOn

The pilot of an aircraft shall alter his
course to the right when approaching
another aircraft head-on and a
collision is imminent (neither plane
has right of way) (17)(3)

Overtaking

Overtaking shall be
handled appropriately

Landing

The pilot of an aircraft that is
landing or on final approach
shall have right of way (17)(6)

RoWSituations

Situations identified that
require deconfliction of
aircraft priorities are
complete and overlapping

Fig. 7. Decomposition into Overlapping Cases
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It is important to identify the type of case-based decomposition pattern be-
cause it has implications for how the child policies are formulated. Figure 7
illustrates the more tricky situation of decomposing the policy that right of way
conflicts be resolved. One way to address this is by identifying all the cases in
which a conflict can arise and generate a policy for each. Unfortunately it is not
feasible to guarantee that the situations are completely disjoint. Where overlap
between the cases occurs this implies that a resolution policy must be described
for the intersection.

Decomposition into Active Cases. In a manner similar to identifying sub-
cases of the conditions under which a policy applies, the active part of the policy
can also be decomposed into cases. The policies covering the individual cases may
be linked or convergent, where convergent means that any one of the policies in-
dividually fulfils the top-level policy and linked implies that all cases of the policy
interdependently fulfil it [10]. Convergence does not necessarily mean that some of
the policies are optional or that there is a choice. It means simply that each branch
of the policy hierarchy below a policy goal independently fulfils this goal.

Figure 8 shows how the policy of maintaining a pilot’s awareness can be bro-
ken down into two (linked) cases. On the one hand, the active case of observing
allows a pilot to maintain awareness of the current local environment. Similarly
the pilot must consider the case of passive observation, i.e. the fact that he is

Awareness

The pilot of an aircraft shall maintain
his own awareness of other aircraft
as well as contribute to others'
awareness of his own

See

The pilot of an aircraft shall
maintain his own awareness
of other aircraft

BeSeen

The pilot of an aircraft shall
contribute to others'
awareness of his aircraft

high level

LinkedDecomposition

Decomposition into
mutually dependent
(linked) activities

SharedAirspace

An aircraft shares the
airspace with other
aircraft

LinkedAwareness

The actions of one pilot
can affect other pilots'
awareness of his
aircraft

Fig. 8. Decomposition into Linked Cases
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being observed by other pilots. Policies facilitating both seeing and being seen
are required in order for awareness in general to be maintained.

To deviate from the RoA briefly, taking an example from road traffic; a
driver must signal the intention to turn or otherwise manoeuvre in good time.
The policy (highway code) stipulates two possible ways of doing this: Either with
mechanical indicators or using arm signals. These two policies are convergent in
the sense that either one can reasonably indicate a driver’s intention to turn.
However, it should be clear that the use of arm signals provides a lower level of
assurance [10] that the intention will be registered by other road users.

6 Problems of Defining a Resilient Policy

The very nature of the systems for which policy is being defined undermines
the resilience of that policy. Systems of systems have dynamic structures, are
distributed and consist of heterogeneous autonomous entities. It is these char-
acteristics which necessitate the use of policy in the first place. However, they
each present unique challenges.

Continual evolution of a dynamic SoS implies that systems are retired, re-
placed and upgraded and that the SoS has no well-defined ‘end state’. This has
implications for the resilience of policy because new systems can introduce new
capabilities that break the context in which the original policy decisions were
made. Similarly, systems that provide capabilities that were previously relied
upon by policy can be withdrawn. The temptation is to create a policy that
is liberal enough to accommodate such changes, whereas what is required is a
process of recognising and systematically dealing with change [11].

The fact that systems are heterogeneous and that they change in this way
means that any decomposition of policy that identifies a specific target system
(e.g. a specific make and model of aircraft) will inevitably be wrong for future
systems. To avoid such a ‘brittle’ policy implies that the lowest level of abstrac-
tion at which policy is expressed involves implementation by a target system.

Policy is therefore open to interpretation in the way it is implemented by
autonomous systems. This can lead to various implementations and potential
problems. Such misinterpretations must be, where possible, mitigated by an un-
ambiguous policy. Unfortunately, unlike the KAOS patterns, safety policy is not
afforded the luxury of an unambiguous refinement. It is clear that ‘policy failure
analysis’ will need to be undertaken in order to predict the possible misinter-
pretations in implementing policy. Indeed the problem of preempting failures in
decomposition has already been considered in [12].

So far, the issue of acceptable risk has remained implicit in our discussion.
It can be implied that adhering to a defined set of policy objectives leads to an
acceptable level of risk, while not following the policy leads to an unacceptable
level of risk. However, such thinking masks how adherence, or non-adherence,
to individual policy objectives contributes specifically to overall system risk.
Other issues, such as the level of trust an agent has in its peer agents, is also
masked.
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Finally, because the systems are distributed means that coordinating policy
distribution and adherence is not a trivial problem. In fact, given these char-
acteristics, it would seem that the only reasonable way to evaluate policy is
through simulation of a SoS. That is, by using policy to modify the simulated
behaviour on a per-agent basis.

7 Related Work

This work draws on two areas of research: policy specification and goal decom-
position. The use of policies to curb the behaviour of system entities is well
established in the security and management domains. There are many notations
used to express policies for controlling organisational complexity. For example,
Ponder [13] is a language that attempts to present a unified approach to policy-
based management and security. Ponder expresses policies in terms of authorisa-
tions and obligations in both positive and negative modalities. Whilst languages
such as Ponder provide a means of expressing policy statements on agents, they
do not deal well with the problems of expressing high-level policy objectives and
their decomposition. Our work continues to look at how such policy languages
can be integrated into policy decomposition.

There is also precedent in the area for the classification of policy into hier-
archies of increasing abstraction [14,15,16]. It is suggested by Koch et al that
a refinement of policy can be accomplished through the unambiguous mapping
from one level of the hierarchy to the next. However, such an unambiguous map-
ping is not possible when considering safety policy goals for the reasons discussed
in this paper. The approach presented in this paper is not strictly refinement
(relying on deductive reasoning); instead it is a structured decomposition (rely-
ing on inductive reasoning). Other goal-directed decomposition approaches exist
such as KAOS, TROPOS [17] and intent specifications [18]. However, none of
these explicitly addresses the problems of systematising informal policy decom-
position.

8 Further Work

The work presented in this paper provides a basis for resolving the problems
of how to structure safety policy, however it is recognised that further work
is necessary in a number of areas. Further evaluation of the use of patterns
presented in this paper in defining new ‘top-down’ policy decompositions is re-
quired. Similarly, it is necessary to further define the context model of agents
and its refinement, which is required to support the structuring and improved
expression of policy goals. This improved expression of goals will aid in further
work on detecting the potential for conflicts within and between policies in a
multi-policy SoS. Finally, safety policy can be evaluated and improved by ap-
plying it to entities in a simulated SoS environment as discussed in a previous
paper [19].
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9 Conclusions

This paper has shown how it is possible to begin to structure policy using a
pattern-based decomposition approach. It is desirable to be able to produce a
safety policy, to which a system of systems can operate. This approach stresses
the importance of recognising the contextual assumptions and strategies of de-
composition often implicit in real-world policy documents. The Goal Structuring
Notation, which is typically used to structure safety cases, was used to organise
Rules of the Air into a hierarchy of policy goals at different levels of abstraction.

A number of patterns of decomposition based upon the KAOS tactics of
agent-, case- and milestone-based refinement have been presented. These pat-
terns have been adapted from the formal specification of KAOS since policy
goals are not represented formally.

It has also been shown that the intrinsic characteristics of SoS leads to chal-
lenges for developing safety policy. Given an ostensibly perfect set of policy
rules, the dynamic and heterogeneous nature of SoS means that interpretation
and implementation of the policy may lead to ‘failure’ of the policy.

It is clear that future work must also entail analysing how policy is affected
by changing scenarios. Simulation provides the basis for experimental validation
of policy.
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Abstract. Event trees are a popular technique for modelling accidents in system 
safety analyses. Bayesian networks are a probabilistic modelling technique 
representing influences between uncertain variables. Although popular in expert 
systems, Bayesian networks are not used widely for safety.  Using a train 
derailment case study, we show how an event tree can be viewed as a Bayesian 
network, making it clearer when one event affects a later one.  Since this effect 
needs to be understood to construct an event tree correctly, we argue that the 
two notations should be used together.  We then show how the Bayesian 
Network enables the factors that influence the outcome of events to be 
represented explicitly.  In the case study, this allowed the train derailment 
model to be generalised and applied in more circumstances.  Although the 
resulting model is no longer just an event tree, the familiar event tree notation 
remains useful.  

1   Introduction 

Event trees are used in quantified risk analysis to analyse possible accidents occurring 
as a consequence of hazardous events in a system.  Event trees are often used together 
with fault trees, which analyse the causes of the hazardous event that initiates the 
accident sequence.  Their origin goes back at least to the WASH-1400 reactor safety 
study in 1975 [1]. 

The most serious accident may be quite improbable, so an accurate assessment of 
the risk requires the probabilities of possible accident scenarios to be determined.  
The analysis of accidents must consider both the state of the system and of its 
environment when the hazardous event occurs.  The analysis is made more difficult 
when the environment of a system is complex or variable. 

Event trees model an accident as a sequence of events: this is an intuitive approach 
but it does not explicitly represent the state of the system and its environment, which 
influences the evolution of events.  In this paper, we propose to address this limitation 
of event trees by using Bayesian Networks (BNs).  We have applied this approach to 
a case study, adapting an existing event tree modelling a train derailment accident.  
The original author of the event tree was able to explain the system and 
environmental factors that had been considered when preparing the event tree, but 
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which could not be included explicitly in it.  Using a BN, these factors can be made 
explicit in the accident model, which can still be viewed as an event tree but is now 
more general with a single BN-based model taking the place of a set of related event 
trees. 

We argue that the event tree and BN are complementary: an event tree can be 
translated into a BN allowing two views of the accident model, each view showing 
different properties of the model most clearly. The generalised model, with system 
and environmental factors that influence the events made explicit, is a BN but it can 
still be viewed using the event tree notation. 

Event trees are supported by many software packages but are sufficiently simple to 
be created with standard tools such as a spreadsheet.  Perhaps because of this, the 
notation used by different authors varies.  Since we wish to translate between event 
trees and BNs, the first step, in Section 2, is a precise description of an event tree. 

In Section 3, we introduce BNs and show how to translate an event tree into a BN.  
We first give a ‘generic’ translation based only on the number of events in the tree and 
then we give rules for simplifying the resulting BN.  Section 4 introduces the case study 
and uses it to show that the combination of event trees and BNs allows a more general 
model of possible accidents.  Conclusions and related work are in Section 5. 

2   Event Trees 

In this section, we give an informal but precise description of event trees, which will 
be the basis for the translation of event trees to BNs. 

2.1   Events and Outcomes 

The evolution of the system following the hazardous occurrence is divided into 
discrete events, starting from the initiating event.  Each event has a finite set of 
outcomes; commonly there are just two outcomes – the event happens or does not 
happen – but a greater number of outcomes can be distinguished. 

initiating 
event

i

event
e1

event
e2

o11

o12

o13

0.01

o22

o21

o22

consequence

c1

c2

c2

c1

c2

0.1

0.2

0.7

o21

0.99

0.7

0.3

 

Fig. 1. An example event tree.  There are two events: event e1 has three possible outcomes o11, 
o12 and o13 whereas e2 has only two outcomes o21 and o22.  Two different consequences are 
distinguished c1 and c2; c1 results both from the event sequence i → o11 → o21 and from the 
event sequence i → o12 → o22. 
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The events form a sequence in time: a tree of possible outcomes for all the events 
is constructed and the consequence or loss evaluated for each path through the tree.  
Some paths may be judged to lead to the same consequence.  Fig. 1 shows an example 
event tree. 

2.2   Probabilities and Consequence  

The event tree specifies a logical combination of the event outcomes for each 
consequence.  For the event tree in Fig. 1, the logical formulae for the consequences 
are c1 = (o11 ∧ o21) ∨ (o12 ∧ o22) and c2 = (o11 ∧ o22) ∨ (o12 ∧ o21) ∨ o13. 

The probability of each consequence is calculated from the event probabilities, 
determined from data or experience.  For example in Fig. 1, the probability of 
outcome o11 of e1 event is 0.1.  However, the probability of an outcome may depend 
on the outcomes of events earlier on the path: in Fig. 1 the probability of outcome o21 
of event e2 depends on the outcome of event e1.  The probabilities labelling the 
branches of the tree for e2 are therefore conditional probabilities, in this example: 
p(o21 | o11 ), p(o22 | o11 ), p(o21 | o12 ), and p(o22 | o12 ). 

The probabilities of the two consequences are calculated by multiplying the 
probabilities along each path and then adding the probabilities of paths leading to the 
same consequence.  The calculation for Fig 1 is shown below.  

Consequence Calculation Result 
C1 0.1 × 0.01 + 0.2 × 0.3 0.061 
C2 0.1 × 0.99 + 0.2 × 0.7 + 0.7 0.939 

It is notable that the logical formulae for the consequences do not carry any 
information about how the outcome of one event is influenced by earlier events or 
even of how the events are ordered in time.  The logical formulae are sufficient for 
combining the probabilities of event outcomes to give the consequence probabilities.  
On the other hand, understanding how the outcome of one event is influenced by 
earlier events is crucial for judging the event probabilities and the event tree shows 
only part of the information used during its construction: 

• The time ordering of events shows the set of earlier events on which a 
probability may be conditioned; later events cannot influence the outcome of 
earlier events. 

• However, some earlier events may have no influence and the event tree does not 
show what subset of the earlier events actually conditions each probabilities.  
Indeed, we have seen cases where inexperienced users of event trees are 
unaware that the probabilities attached to branches in an event tree are 
conditional probabilities at all. 

In the example of Fig. 1, when event e1 has outcome o13 the tree does not branch 
for the possible outcomes of event e2.  We refer to this as a don’t care condition.  
There is more than one reason why the event tree may contain such a condition: 

• Only one of the outcomes of e2 is possible following the outcome of the earlier 
event. 

• Both outcomes of e2 are possible, but the consequence is the same for both. 
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It is important to note that the event tree does not distinguish between these reasons – 
there is no need to do so to calculate the consequence probabilities. 

3   Translating an Event Tree to a Bayesian Network 

In this section we first introduce BNs and describe a ‘generic’ representation of an 
event tree as a BN before showing how it can be simplified for a specific event tree. 

3.1   Bayesian Networks 

A BN [2] is a graph with a set of probability tables.  The nodes of the graph represent 
uncertain variables and the arcs represent the causal relationships between the 
variables.  The arcs are directed from ‘parent’ to ‘child’ with, conventionally, the 
parent as the cause and the child the effect.  There is a probability table for each node, 
providing the probabilities of each state of the variable, for each combination of the 
states of parent variables.  The model of cause is probabilistic rather than 
deterministic and this makes it possible to include factors that influence the frequency 
of events, but do not determine their occurrence. 

Although the underlying theory (Bayesian probability) has been around for a long 
time, executing realistic models was only first made possible in the late 1980s using 
new algorithms.  Methods for building large-scale BNs are even more recent [3] but it 
is only such work that has made it possible to apply BNs to the problems of systems 
engineering. 

The RADAR group at QMUL, in collaboration with Agena Ltd, has built 
applications based on BNs that have shown the technology to be effective.  Several 
such applications are for dependability assessment, notably the TRACS tool [4] used 
to assess vehicle reliability by QinetiQ (on behalf of the MOD) and a tool used by 
Philips to manage software quality [5]. 

3.2   A Generic Translation from ET to BN 

Any event tree with three events e1, e2, and e3 can be represented by the BN shown in 
Fig. 2. Two types of arc complete the network: 

• Consequence arcs (shown as dotted lines in Fig. 2) connect each event node to 
the consequence node.  This relationship is deterministic: the probability table 
for the consequence node encodes the logical relationship between the events 
and the consequences. (An example is shown in Fig. 5.) 

• Causal arcs (shown as solid lines in Fig. 2) connect each event node to all events 
later in time.  We say that e1 influences the probability of (or, equivalently, is a 
causal factor for) event e2. 

We call this representation generic since the nodes and arcs depend only on the 
number of events.  However, assuming that the BN is only used to determine the 
consequence probabilities (i.e. just as the event tree), some of the arcs may not be 
necessary allowing the BN to be simplified.  In the next two sections we give rules for 
eliminating unnecessary arcs.  
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e1

e2

e3

consequence

 

Fig. 2. Generic BN representation of an event tree.  Nodes e1, e2, and e3 represent the events; 
each node has a state for each outcome.  The node consequence has a state for each of the 
consequences in the event tree. 

3.3   Eliminating Consequence Arcs 

The consequence arc from an event can be eliminated if the logical formulae for the 
consequences do not refer to any outcome of the event.  Fig. 3 shows an example: the 
logical expression for c1 is (o11 ∧ o21) ∨ (o12 ∧ o21) but this can be simplified to o21; 
since this expression (and the similar expression for c2) includes only the outcomes of 
the e2 event, the BN node e1 is not needed as a parent of the consequence node.  The 
set of consequence arcs is not determined by the branching structure of the event tree 
but by the assignment of consequences to each of the paths through the tree. 

initiating 
event
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event
e1

event
e2

o11

o12

o21

o22

o21

o22

consequence

c1

c2

c1

c2

0.7

0.3

0.01

0.99

0.1

0.9

 
Fig. 3. Example of an event tree allowing a consequence arc to be eliminated, since e2 
determines the consequence whatever the outcome of the first event: the first event influences 
the relative probability of the two outcome of e2 but does not change the consequence 

3.4   Eliminating Causal Arcs 

A causal arc to an event et from an earlier event ef can be eliminated if and only if the 
probabilities labelling branches for event et do not depend on the outcome of event ef.  
We can see this in the event tree: are the probabilities labelling an outcome oxy the 
same on all branches for this outcome or do they differ?  An example of this is shown 
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in Fig. 4, where both branches for o21 have probability 0.1 and both branches for o22 
have probability 0.9: 

p(e2 = o21 | e1 = o11 ) = p(e2 = o21 | e1 = o12 ) = 0.1 
p(e2 = o22 | e1 = o11 ) = p(e2 = o22 | e1 = o12 ) = 0.9 

Because the probabilities of the outcome of event e2 do not depend on the outcome of 
event e1 no causal arc is needed from e1 to e2.  More generally, if for all outcomes of 
et the probability p(et | …, ef, … ) does not depend on the outcome of ef (given the 
outcome of the other events) then the two events are ‘conditionally independent’ and 
the arc from ef to et is not needed.   

The complete BNs, including the probability tables, for the event trees in Figs 4 & 
5, showing the two types of elimination, are given in Fig. 5. 
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Fig 4. Example of an event tree allowing a causal arc to be eliminated: the probabilities of the 
two outcomes of event e2 are the same whatever the outcome of event e1.  Note that this figure 
and Fig. 3 have the same shape but differ in the pattern of probabilities and consequences. 

3.5   Handling ‘Don’t Care’ Conditions 

The event trees in Figs. 3 and 4 are both complete: a path exists for all possible 
combinations of outcomes of the two events.  An event tree that is complete in this 
way includes all the probabilities needed to complete the node probability tables for 
the event nodes.  However, this is not the case when there are don’t care conditions in 
the event tree.  In this section we show how the rules described above can be adapted 
for don’t care conditions. 

Consider the don’t care branch in the event tree of Fig. 1: suppose that it is instead 
split into the two outcomes of event e2, the first given probability α and the other 1-α.  
Any probability α could be used: since the two branches both lead to the same 
consequence (or set of consequences) the value chosen has no effect on the 
consequence probabilities.  We are free to choose α to simplify the BN as far as 
possible, so we choose α to create conditional independence whenever this is possible.   

This procedure produces the fewest causal arcs but it does not distinguish between 
the two reasons given at end of section 0 why a don’t care condition may occur.  This 
is satisfactory because the distinction doesn’t affect the calculation of the 
consequence probabilities in either the event tree or the BN.  However, by assuming 
that event outcomes are conditionally independent except when the probabilities 
shown in the event tree force the opposite conclusion we may have ignored causal 
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relationships between events that really exist.  If we use the BN model of the event 
sequence for other calculations we may need to add the causal arcs modelling these 
causal relationships to the BN.  We could do this by determining the probabilities of 
the outcomes of don’t care conditions and adding extra branches into the event tree.  
The resulting BN has some interesting properties but we do not need it to calculate 
consequence probabilities. 

e1
e2

consequence

e1 o11 o12 
e2 o21 o22 o21 o22 

consq = c1 1 0 1 0 
consq = c2 0 1 0 0 
consq = c3 0 0 0 1 

e1 = o11 0.7 
e1 = o12 0.3 

e2 = o21 0.1 
e2 = o22 0.9 

 

e1
e2

consequence

e1 o11 o12 
e2 = o21 0.01 0.1 
e2 = o22 0.99 0.9 

 

e2 o21 o22 
consq = c1 1 0 
consq = c2 0 1 

 

 
e1 = o11 0.7 
e1 = o12 0.3 

 

Causal Arc 
Eliminated

Consequence 
Arc Eliminated

 

Fig. 5. Complete BNs for event trees of Figs. 4 & 5, showing the two types of arc elimination 

3.6   Using a Hierarchy of Nodes for Consequence 

Rather than having a single BN ‘consequence’ node with a probability table 
determined from the logical relationship between events and consequences, it is 
possible to represent this relationship using a hierarchy of nodes, determined from the 
event tree structure.  A node can be introduced for each vertical line (representing a 
branch or decision point) in the event tree provided that more than two sequences lead 
from the branch.  The parents of this node are the node representing the event and the 
nodes from the decision points to the right.  Using a hierarchy of nodes has two 
potential advantages: 

• more efficient propagation of the BN 
• clearer representation (for the risk analyst) of the logical relationship between 

events and consequences. 

We do not consider the efficiency of propagation further in this paper.  In section 4.2, 
we assess whether the clarity of the model improves using this translation for a 
realistic event tree. 

4   Why Use Bayesian Networks to Model Event Sequences 

The previous section showed how to construct a BN equivalent to an event tree; 
however, if the two models are equivalent what purpose does the BN serve?  We 
examine this using a case study of train derailment, which is introduced in section 4.1.  
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In the following sections, we first argue that an event tree and a BN provide 
complementary views of the relationship between events.  Secondly, we show how an 
event tree expressed using a BN can usefully be generalised by making the factors 
influencing the evolution of events explicit, producing a more widely applicable 
model of the accident. 

4.1   Case Study: Train Derailment 

A ‘Derailment Study’ was carried out in 2001 as part of development studies for a 
proposed upgrade to an urban railway.  The objective of the study was to quantify the 
risks to passengers and staff arising from derailment.  This required the consequences 
of derailment to be analysed and event trees were constructed for this.  Other models 
were used to analyse the frequency of derailment and, given the accident sequences, 
the likely toll of injuries.  Since the ultimate aim was to ensure that risks were 
tolerable, some conservative assumptions were made. 
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Fig. 6. An event tree from the ‘Derailment Study’ covering derailment in open track areas.  The 
structure of the event tree, and the event probabilities, were adapted from a network-wide 
model by considering factors specific to the local circumstances. 

The analysis used separate event trees for six different infrastructure areas, each 
with different characteristics including open track, in tunnels and on bridges.  Here, 
we consider only derailments on areas of open track, which is track not in tunnels or 
carried on bridges.  The analysis drew on a version of the ‘Safety Risk Model’ (SRM) 
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[6], which analyses the risk arising from different hazards using historic accident data 
and expert judgement for the UK rail network as a whole.  The event trees for the 
derailment study used the structure of the SRM but had to be tailored to the local 
circumstances: for example, the maximum speed limit is 30 miles per hour, the trains 
are electric multiple units with third-rail electrification.  The original author of the 
derailment study was available and assisted the authors with the case study. 

The event tree for open track derailment is shown in Fig. 6.  The events, all of 
which have only two outcomes, are described in Table 1.  Twelve consequences or 
‘derailment accidents’ are distinguished: for example ‘d2’ is ‘minor derailment within 
clearance’ and ‘d7’ is a ‘major derailment to cess, striking line-side structure’.  Given 
the frequency of the initiating ‘derailment’ event, the frequency of each accident can 
be calculated.  The ‘equivalent fatalities’ for each accident are estimated by a separate 
method, which is not relevant here.  

 

Table 1. Derailment Events 

Event Description 

1 Derailment containments 
controls the train. 

An extra raised ‘containment’ rail, if fitted, limits 
movement sideways. 

2 The train maintains 
clearance. 

The train remains within the lateral limits and does 
not overlap adjacent lines or obtrude beyond the edge 
of the track area. 

3 Derails to cess or 
adjacent line. 

The train can derail to either side of the track: 
derailing to the ‘cess’, or outside, may lead to a 
collision with a structure beside the line, while 
derailing to the ‘adjacent’ side brings a risk of 
colliding with another train. 

4 One or more carriages 
fall on their side. 

The carriages may remain upright or fall over. 

5 Train hits a line-side 
structure. 

The train hits a structure beside the line. 

6 The train structure 
collapses. 

Collision with a line-side structure causes the train 
structure to collapse. 

7 Secondary collision with 
a passenger train. 

A following or on-coming train collides with the 
derailed train. 

4.2   Causality in the Event Sequence 

Fig. 7 shows the BN generated for the event tree, using the algorithm described  
in section 3.  Comparing the two notations – the BN of Fig. 7 and the event tree of  
Fig. 6 – we see that: 

1. The logical combination of events leading to each accident is most clearly 
shown in the event tree.   

2. The occurrence of conditional probabilities – arising from dependence between 
the events – is shown more clearly in the BN.   



 Generalising Event Trees Using Bayesian Networks 61 

 

derailment
accident

contained
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collapse

collision

clear

cess /
adjacent

hits
structure

Fig. 7. Equivalent BN for open track derailment 

The first point remains true even if the single ‘derailment accident’ node is 
replaced by a hierarchy of nodes as described in section 0, producing the BN shown 
in Fig. 8.  Although this alternative translation may improve the efficiency of 
Bayesian propagation, the logical relationship between events and consequence is still 
more clearly shown in the original event tree. 
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collision
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structure1

structure1

fall2

fall1

clear1
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Fig. 8. Alternative translation of open track derailment event tree, using a hierarchy of nodes to 
encode the logical relationship between events and consequences 

It may seem surprising that there is only a single causal arc – from ‘falls’ to ‘hits 
structure’ between the nodes representing events.  This arc occurs because the 
probability p(hits | falls = yes) ≠ p (hits | falls = no).  For other events, the probability 
of each outcome is the same on all the branches.  The absence of other causal arcs 
depends on our treatment of don’t care conditions.  For example, a collision is only 
possible following a derailment to the adjacent side, but we do not need to represent 
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this relationship by a causal arc since it is captured by the branching structure of the 
event tree.  Since the two views of the event tree show different information most 
clearly, we propose to use them together: the BN view is used to ensure that 
conditional probabilities are handled correctly and the tree view is used for mapping 
event sequences to consequences.  The BN can be shown without the consequence 
node and arcs, so this part of the BN can be chosen to optimise propagation. 

4.3   Generalised Event Trees 

As described above, the event tree was originally prepared from a network-wide event 
tree for derailment accidents.  To be applied to an analysis in a specific location, the 
network-wide model has to be tailored.  In this section, we show how a more general 
model can be represented as a BN, which can be tailored automatically. 

The author of the event tree was asked to identify the conditions of the 
infrastructure and the operation of the railway that influence a derailment accident.  
Table 2 shows the conditions identified.  The causal relationships between these 
conditions were then elicited together with the probability tables.  Fig. 9 shows the 
resulting BN, with the consequence node and arcs omitted for clarity. 

Table 2. Derailment Operating and Infrastructure Conditions 

Conditions Description 
Fitted Whether the derailment containment is fitted: Yes, No 

Curvature The curvature of the track: Severe, Mild, None 

Number of tracks  The number of adjacent tracks: 2, 4 

Track Speed The running speed of the track (mph): 0-10, 10-30, 30-60, 60> 

Derailment Speed The speed of the derailment (mph): >15, <15 

Lineside Density The density of objects beside the line: High, Low 

Lineside Type The type of equipment beside the line: Fixed, Anchored 

Density of Traffic The traffic density: High, Low 

Peak The time of day when the incident occurs: Peak, Off peak 

Passenger Loading How full the coaches are: >50%, <50% 

Crashworthiness The crashworthiness of the train: High, Low 

Rolling Stock The type of rolling stock: High Speed Train, EMU 

The relationships in the model are causal.  For example, a train derailing on a tight 
curve will be more likely to exceed its clearances while one travelling in a straight 
line is more likely to maintain its clearances, as its momentum will tend to carry it 
forward in the direction of travel.  The probability table for the event ‘clear’ (whether 
the train maintains clearance in a derailment) is: 

Derailment Speed > 15 mph <15mph 
Curvature None Mild Severe None Mild Severe 
Yes 0.75 0.6 0.29 0.9 0.7 0.4 
No 0.25 0.4 0.71 0.1 0.3 0.6 
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The values 0.29 and 0.71 are taken from the original event tree (Fig. 6), since the 
circumstance of the original study were ‘Derailment Speed’ > 15 mph and severe 
track ‘Curvature’.  The author of the original event trees judged the other 
probabilities: although the generalised model requires more such judgements they are 
similar to those needed to construct an event tree.  

 

Fig. 9. Derailment BN generalised with the factors that determine the event probabilities.  
Event nodes are shaded; the consequence node and arcs are not shown. 

The generalised model can be used to calculate the accident probabilities in 
different scenarios.  We can compare the scenario in the original study (a dense urban 
line) with a scenario more typical of an inter-city line: 

 Urban Scenario Inter-city Scenario 
Fitted  ‘No’ ‘No’ 
Curvature ‘Severe’ ‘None’ 
Number of Tracks 4 2 
Derailment Speed ‘> 15’ mph ‘> 15’ mph 
Lineside Density  ‘High’ ‘Low’ 
Lineside Type ‘Anchored Equipment’ ‘Fixed Equipment’ 
Rolling Stock ‘EMU’ ‘High Speed Train’ 
Density of Traffic ‘High’ ‘Low’ 

These data can be entered into the BN and new event probabilities calculated.  The 
probabilities (relative to the probability of the initial derailment event) of the 
derailment accidents for the two scenarios are shown in Fig. 10.  In the new scenario 
the less severe accidents are more likely: this results mainly from the absence of 
curvature.  However, following the original study, we have considered only two 
possible derailment speed ranges and this should be re-examined before drawing any 
real conclusions.  We also note that speed is a factor in the severities (equivalent 
fatalities) of the accidents, which are estimated using another method. 
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Fig. 10. Accident probabilities for two scenarios calculated using the BN. The ‘urban’ scenario 
is identical to the original derailment study giving the same probabilities as the event tree; the 
hypothetical scenario shows an example of the use of the generalised BN to adapt the accident 
analysis to different circumstances. 

5   Discussion 

5.1   Summary 

We have shown how a BN can represent an event tree.  The translation from BN to 
event tree is automatic (though we have not yet automated it) and reversible.  We 
argue that the two notations are complementary and should be used together.  The 
event tree shows the logical relationship of events, which is not shown clearly on the 
BN diagram where it is encoded in a probability table.  On the other hand, the BN 
diagram shows clearly where event probabilities are conditioned on earlier events. 

A greater advantage of using a BN is that the accident model can be generalised by 
including the conditions that influence the evolution of the events in the accident.  
This generalisation reverses the process used originally to analyse derailments in our 
case study, where an event tree for a specific location was developed from a network-
wide model.  The original author of the event tree remarked on the value of analysing 
causal influences on the events and was lead to re-examine some of the allocated 
probabilities.   

It is advantageous to retain the familiar event tree notation when building the more 
general accident model.  In the case study we were easily able to explain our approach 
to the author of the derailment event tree: only a short explanation of BNs was needed 
for this analyst to identify influencing factors and the causal relationships between 
them.  Of course, generalising the accident model in the way we have shown is not 
automatic.  A rigorous elicitation process is needed to understand the influences: 
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some remained unresolved in our case study, for example the influence of the train 
weight on the probability of the train falling over in a derailment.  The process of 
judging probabilities for the BN, though time consuming, is similar to that required 
for building an event tree though potentially many more probabilities are needed.   

The validity of the network-wide SRM rests on its use of historic accident data and 
it is desirable that an accident model for a specific location should have the same 
basis.  At present, the SRM does not include influencing factors although the potential 
advantages of generalising it have been noted [7].  Clearly, further investigation of the 
cost-benefit of building such a model is needed. 

5.2   Related Work 

Others have used BNs to analyse risk.  The SCORE project [8] has applied a BN to 
model accidents in an air-traffic control case study, based on a barrier model of 
accidents.  In [9], an influence diagram is used to model the occurrence of rail 
breakage, also starting from a barrier model.  In both cases the BN replaces the 
accident model used as a starting point – a barrier model rather than an event tree – 
rather than providing an alternative view as we have described. 

Organisational and management causes of accidents are modelled using BNs in 
[10] and [8].  Organisational and management causes are examples of ‘influencing 
factors’ that could be included in our generalised event trees, so both are generalised 
representations of accidents, but without the connection to an underlying accident 
model such as an event tree, in the way we have proposed. 

The SABINE emergency planning system [11] for accidents in nuclear power 
plants uses BNs.  Part of this system is an accident diagnosis BN, derived from event 
trees constructed for level 2 PSA.  Accident diagnosis requires back propagation from 
effects to causes and this is prevented by our simple and automatic treatment of don’t 
care conditions (section 3.5) which may hide further causal relationships between 
event outcomes; rather than minimising the number of causal arcs in the BN, we 
could maximise it, including a causal arc wherever this is possible.  We have not 
followed this approach because diagnosis is not required in our case study. 

5.3   Further Work 

The derailment study included six separate event trees for different areas of the 
infrastructure: we are examining how to merge these models.  Existing software tools 
do not allow the event tree and BN views of the accident to be combined 
conveniently: we would like to investigate how to automate this in practice. 

More fundamentally, some of the operating and infrastructure conditions also 
influence the causes of the initiating event: this is important because such factors 
introduce correlations between the probability of the initial event and the probabilities 
of different accident sequences.  The present analysis does not capture such 
correlation and this could lead to an incorrect estimate of the risk.  We plan to 
examine this in future. 
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Abstract. As programmable logic controllers(PLCs) have been used in
safety-critical applications, testing of PLC applications has become im-
portant. The previous PLC-based software testing technique generates
intermediate code, such as C, from function block diagram(FBD) net-
works and uses the intermediate code for testing purposes. In this paper,
we propose a direct testing technique on FBD without generating in-
termediate code. In order to test FBD, we define testing granularity in
terms of function blocks and propose an algorithm that transforms an
FBD network to a flow graph. We apply existing control and data flow
testing coverage criteria to the flow graph in order to generate test cases.
To demonstrate the effectiveness of the proposed method, we use a trip
logic of BP(Bistable Processor) at RPS(Reactor Protection System) in
DPPS(Digital Plant Protection System) which is currently being devel-
oped at KNICS[1] in Korea.

1 Introduction

Software testing is the act of exercising software with test cases for the purpose of
finding failures [2]. Because failures of safety critical software can cause serious
damage to life or property, testing of safety critical software has become an
indispensable step required to assure software quality.

In the nuclear power plant control system, as existing analog systems have
been replaced by digital systems controlled by software, testing of digital control
systems has become more important. The control software is usually imple-
mented on PLCs which are widely used to implement safety critical real-time
systems. To test PLC applications, the characteristics of PLC programming lan-
guages should be considered. This work focuses on the FBD which is one of the
most widely used standard PLC programming languages.

A PLC application implemented by FBD is automatically compiled to PLC
machine code and executed on PLC. Testing of PLC machine code is difficult
due to its complexity. Although the behavior of FBD is similar to the proce-
dure or function of procedural program languages, there is no systematic way
to apply software testing techniques to FBD. In previous cases[3], FBD testing
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has been done on intermediate C source code transformed from FBD networks.
Although this method can test FBD networks at some level, it cannot be ap-
plied to FBD networks from which intermediate C code cannot be generated.
Moreover, generating intermediate code leads to additional cost.

In this paper, we propose a direct cost-efficient testing method on FBD with-
out generating intermediate code. We assume that the transformation process
from FBD to PLC machine code has no errors. Because the transformation pro-
cess has been validated for several decades by many PLC vendors, this assump-
tion is reasonable. First, we define granularity of FBD testing. FBD is composed
of network of function blocks. We define unit and module of FBD from the per-
spective of a function block network. In this paper, we focus on unit testing of
FBD. To execute FBD unit testing, we propose an algorithm for the transforma-
tion of an FBD network to a flow graph. After generating a flow graph from an
FBD network, we apply existing control and data flow testing strategies to the
flow graph. To demonstrate the effectiveness of the proposed method, we use a
trip logic of BP at DPPS RPS which is being currently developed at KNICS[1]
in Korea.

The remainder of the paper is organized as follows: section 2 briefly introduces
FBD and software testing, and section 3 defines granularity of FBD testing. In
section 4, we propose an algorithm to transform an FBD network to a flow graph.
We apply control and data flow testing strategies to the flow graph transformed
from a real FBD example in section 5. Finally, conclusion and future works are
described in section 6.

2 Background

2.1 Function Block Diagram

A PLC[4] is an industrial computer widely used in control systems such as
chemical processing systems, nuclear power plants or traffic control systems.
A PLC is an integrated system that consists of a CPU, memory, and input- and
output-points.

IEC 61131-3[5] identifies PLC programming languages, which includes Struc-
tured Text(ST), Function Block Diagram(FBD), Ladder Diagram(LD), Instruc-
tion List(IL), and Sequential Function Chart(SFC). FBD is one of the most
widely used PLC languages. FBD is easy to understand and good for represent-
ing data flow between control blocks.

FBD represents system behaviors by means of signal flow among function
blocks. Functions between input variables and output variables are configured
by a network of function blocks in the form of a circuit. Function blocks figured by
rectangles are connected by input variables on the left side and output variables
on the right side. Function blocks are classified into several groups according to
their functions.

Figure 1 shows several function block groups and an example function block of
each group. RPS, which currently being developed at KNICS[1], is programmed
with function blocks which belong to the five function block groups in figure 1.
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Fig. 1. Representative examples of function blocks

Fig. 2. An FBD program example

Figure 2 is an example of a function block network. The value of final out-
put th X Trip is generated from the combined execution of several function
blocks. The LT INT function block in the leftmost position receives f X and
h X Trip Setpoint as inputs and computes output. If f X is less than
h X Trip Setpoint, it emits 1, else it emits 0. This output is inverted and used as
an input to the TOF function block. The TOF function block is executed on the
inverted output of previous function and k Trip Delay which is a constant for
delay time. The output Q of the TOF function block is inputted into the next
SEL function block. The output of the SEL function block enters the next SEL
function block as input. If G is 0, the SEL function block selects and emits IN0
input, otherwise it selects and emits IN1 input. Finally, the AND BOOL func-
tion block computes value of th X Trip which is the AND-ed combination of the
output of SEL function block, inverted f Channel Error, inverted f Module Error
and inverted f X Valid.

2.2 Software Testing

Software testing is the act of exercising software with test cases. There are two
distinct goals of a test: to find failures, and to demonstrate correct execution
[2]. Because it is hard to test all possible behaviors of software, the essence of
software testing is to determine a set of test cases for the item being tested.
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Each test case is the composition of inputs and expected output. Results of
executing test cases are compared to expected outputs which are extracted from
requirements specification.

There are two fundamental approaches to identifying test cases: functional
and structural testing. Functional testing is based on the view that any program
can be considered to be a function that maps values from its input domain
to values in its output range. The essential difference of structural testing with
functional testing is that the implementation of the black box is known and used
to identify test cases. Being able to see inside the black box allows the tester to
identify test cases based on how the function is actually implemented [2].

This work applies the structural testing approach. Structural testing can be
classified into two approaches. One is control flow testing that focuses on control
flow in software. The other is data flow testing that focuses on the points at
which variables receive values and the points at which these values are used. Both
these two testing techniques are necessary and can be combined to complement
each other.

Test coverage metrics are devices used to measure the extent to which a set
of test cases covers a program [2]. It is used to decide if testing is executed
adequately. Given a set of test cases, we execute test cases for the object pro-
gram and determine how much of the program is covered. Through this, we can
examine whether the test coverage criteria are satisfied.

In this paper, we propose FBD testing technique in which we transform an
FBD network to a flow graph and apply existing control and data flow testing
strategies to the flow graph. We consider All-Nodes, All-Edges and All-Paths
test coverage criteria in control flow testing, and All-Defs, All-Uses and All-DU-
Paths test coverage criteria in data flow testing.

3 FBD Testing Granularity

FBD is configured by a network of function blocks. Because established defi-
nitions of unit or module in procedural programming languages cannot be ap-
plied directly to FBD, we should define testing granularity from a view of func-
tion blocks.

If we define a unit as a function block in FBD, unit testing becomes unnec-
essary because we assumed that a function block always operates correctly. On
the other hand, if we define a unit as a set of several function blocks, we have
to consider the interaction between function blocks. This means that we should
deal with integration testing issues. Therefore, proper definition for FBD unit
and module is required.

We define a unit of FBD as ’a meaningful set of function blocks used to
compute a primary output’ [6]. The primary output is stored in the memory of
the PLC for external output or internal use in other units. If the output variable
is used just for programming conveniences, we do not consider it as a primary
output. Figure 2 shows a part of KNICS RPS BP trip logic. It is the pre-trip
set-point calculation part for manual reset variable set-point rising trip logic.
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(a) FOD for g PZR PRS WR

(b) FOD for g BP

Fig. 3. FODs of KNICS RPS BP represented by NuEditor

This set of function blocks can be considered an individual unit because they
perform the computation of an external output th X Trip.

We define a module as ’a set of units used to perform a meaningful function’.
In KNICS RPS BP, each trip logic block can be defined as a module. Each
module consists of several units.

In KNICS, NuSCR[7] is used to specify software requirements. NuSCR is a
formal specification language that specializes in the nuclear power plant domain.
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In NuSCR, the software system is specified by the combined use of FOD(Function
Overview Diagram), FSM(Finite State Machine), TTS(Timed Transition Sys-
tem) and SDT(Structured Decision Table). We can get guidelines to divide the
FBD into units and modules once the software requirement specification is writ-
ten by the NuSCR.

Figure 3(a) shows an FOD for g PZR PRS WR, a part of KNICS RPS BP,
drawn by NuEditor[8], which is a tool that supports the NuSCR specification.
An FOD represents relationship between various nodes using notation similar to
data-flow diagram. FODs can represent complex hierarchical structures system-
atically by enabling nodes in higher level FOD to be refined in lower level FOD.

In KNICS, software requirements specified by NuSCR are implemented by
FBD in the design step. In accordance with the definitions of unit and module
in FBD, each node in figure 3(a) becomes an individual unit in FBD. An FOD
in figure 3(a) corresponds to a module in FBD. This module is composed of 7
units with 6 inputs and 5 outputs. The higher level FOD for g PZR PRS WR
in figure 3(a) is the FOD for g BP in the upper part of figure 3(b). The lower
part of figure 3(b) shows an FOD with one node and several external inputs and
outputs. It is the higher level FOD of the upper part FOD in figure 3(b). Figure
3(b) shows the highest level FOD in the system.

In FBD, a software system can be defined as a collection of all the modules
of the system. A software system gets inputs from the outside of the system
and emits outputs to the outside of the system. The highest level node g BP,
described in the lower part of figure 3(b), corresponds to the definition of a
software system in FBD. Rectangles on the left side are external inputs, and
rectangles on the right side are external outputs.

In this section, we defined the concept of units, modules and software systems
in terms of function blocks for the testing of FBD. The division of units and
modules of the FBD program can be easily identified using formal specification
languages such as NuSCR.

4 Flow Graph Generation from FBD

To test FBD networks, we propose an algorithm to translate an FBD unit to
a flow graph. If a flow graph can be generated from FBD, we can apply exist-
ing control and data flow testing techniques based on flow graphs to the flow
graph[9,10,11]. Therefore, translation from FBD networks to flow graphs can be
considered as the most fundamental and important process for FBD testing.

Figure 4 is an FBD unit which computes the value of th Prev X Trip. This
unit FBD is a part of the g PZR PRS WR module presented in figure 3. It
receives the pre-trip set-point value as input and determines the pre-trip value.

To translate the FBD unit to a flow graph, we have to understand the char-
acteristics of the FBD execution. Every function block in FBD has its own
execution order. Function blocks are executed sequentially in each scan cycle
according to the corresponding execution order. In figure 4, the number inside
parentheses on the top of function block is its execution order. For example,
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Fig. 4. FBD unit for th Prev X Trip

Fig. 5. Flow graph generated from FBD unit for th X Pretrip

in figure 4, the (14) AND BOOL function block is executed first and the (24)
MOVE function block is executed last. The translation process should reflect
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execution order characteristics of FBD correctly. Figure 5 is the flow graph
translated from the FBD unit in figure 4. A flow graph is pictured by nodes
and arrows. Each node is identified by a number assigned to it by the algorithm.

Figure 6 shows an algorithm which describes the process of translating an
FBD to a flow graph. This algorithm does not cover all types of function blocks.
According to this algorithm, we can generate nodes of the flow graph from the
function blocks which belong to the arithmetic, bitwise Boolean, comparison, or
selection group.

We describe the process of applying this algorithm to the FBD in figure 4. In
lines 2–5, inputs needed to translate an FBD unit to a flow graph are described.
Lines 15–19 generate a node which reads all input variables used in the FBD
unit. The input variables of FBD in figure 4 are Cond a, Cond b, Cond c, Cond d,
status, th Prev X Trip and th Prev Trip. The node 0 in figure 5 is a node which
reads these input variables. After inserting the first node into the flow graph,
each function block is translated into nodes of the flow graph in the order of
execution. The first executed function block in figure 4 is the (11) AND BOOL.
Because the AND BOOL function block belongs to the bitwise Boolean function
group, fb.group in line 23 is BITWISE BOOLEAN and lines 28–33 are executed.
Function blocks of function groups of ARITHMETIC, BITWISE BOOLEAN
and COMPARISON follow the same translation mechanism. Node 1 is created
in lines 28–29 and variable v 11 is created in line 30.

In line 30, outVar := SetOutVariable(fb.executionNo, fb.outputVar) means
that the output variable name is decided by SetOutVariable function. The (23)
MUX INT in figure 4 has the output variable th Prev X Trip and the (24) MOVE
has the output variable th Prev Trip. If an output variable of a function block
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Fig. 6. An algorithm for generating a flow graph from an FBD unit program

is identified in a fashion similar to these examples, the output variable name of
the function block will be assigned to the outVar variable. If output variable of
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the function block is not identified, we generate new variable, such as v 11 or
v 12, and assign it to outVar.

In line 31, MakeContent(ASSIGN, outVar, fb.outputSpec) generates node
content where fb.outputSpec is assigned to outVar, which is then assigned to
contentString. The (11) AND BOOL function block receives two inputs Cond a
and Cond d and executes an AND operation. In this case, MakeContent can
generate a statement such as ”v 11 = Cond a ∧ Cond d”, which becomes the
content of node 1 in line 32. Because the (11) AND BOOL function block does
not have divided control flow, it becomes a single node in the flow graph.

The (12) SEL function block outputs th Prev X Trip or 0 according to the
conditional input Cond d. In this case, the SEL function block has two control
branches according to the input, so that it is translated into an if-then-else
structure, like nodes 2,3 and 4 in figure 5. Lines 37–42 describe the process
of making node 2 and lines 43–53 describe the process for node 3 and 4. The
(23) MUX INT function block is translated into a structure with multiple control
flows. Applying lines 34–53 to the (23) MUX INT function block results in nodes
29–34 in figure 5.

5 FBD Unit Testing

5.1 Control Flow Testing

After transforming the FBD unit program to a flow graph, we select proper test
coverage criteria and generate satisfying test cases.

Control flow testing coverage criteria include All-nodes, All-edges and All-
path [9]. To satisfy the All-nodes coverage criterion, all nodes in flow graph
should be executed at least once by test cases. All-edges coverage criterion re-
quires that all edges in flow graph should be executed at least once. All-edges
test coverage criterion subsumes All-nodes coverage criterion because test cases
by which all edges are visited are sure to visit all nodes. All-paths test cover-
age criterion requires that every possible complete path in the program should
be tested. All-paths coverage subsumes All-edges coverage, and therefore also
subsumes All-nodes coverage. It is difficult to satisfy All-paths test coverage
criterion due to its stringency.

Table 1 shows test cases that satisfy the All-edges test coverage criteria for
the flow graph in figure 5. The six columns Cond a, Cond b, Cond c, Cond d,
status and th Prev X Trip represent six input variables for the th X Pretrip unit
program. The rightmost column is the expected output for the th Prev X Trip
variable which is the final output of this unit program. After generating test
cases, we get actual output by executing test cases through the flow graph,
and then compare the actual output to the expected output. If two values are
different, it means that the program has some errors.

5.2 Data Flow Testing

Data flow testing refers to forms of structural testing that focus on the points
where variables receive values and the points where these values are used (or
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Table 1. Test cases satisfying All-edges test coverage criterion

Test Case Cond a Cond b Cond c Cond d status th Prev X Trip Expected Output
CT1 1 0 1 0 0 1 1
CT2 1 1 0 1 1 0 0
CT3 0 0 0 0 2 1 1
CT4 0 1 1 1 3 0 1

referenced) [2]. Node n is a defining node of the variable v if and only if the value
of the variable v is defined at the statement fragment corresponding to node n.
There are two forms of definition nodes: definition by input and definition by
assignment. Node n is a usage node of the variable v if and only if the value
of the variable v is used at the statement fragment corresponding to node n.
Path from a definition node to a usage node is du-path. A definition-clear path
with respect to a variable v is du-path such that no other node in the path is a
defining node of v [10]. For example, the content of node 1 in figure 5 is ’v 11
= Cond a ∧Cond d ’. Node 1 is a definition node with respect to variable v 11,
and a usage node with respect to variable Cond a and Cond d.

To apply data flow testing to the program, we first identify definition and
usage nodes for all the program variables. We also identify du-paths with respect
to each variable, and then apply All-Defs, All-Uses or All-DU-paths test coverage
criteria. If T is a set of paths in the flow graph, the set T satisfies the All-Defs
criterion for the program if and only if for every variable v, T contains definition-
clear paths from every defining node of v to a use of v. All-Uses and All-DU-paths
coverage criteria are defined similarly [11].

There are two types of variables in the flow graph generated from an FBD unit.
One is input and output variables of the FBD, and the other is temporary vari-
ables. Temporary variables typed as ’v number’ store outputs of function blocks
and are created during the transformation process. In data flow testing for FBD,
we have to consider both types of variables. We need to identify definition and
usage nodes for all variables and extract du-path information for each variable.

In comparison to other data flow testing, FBD data flow testing has several
defining characteristics. When transforming the FBD to a flow graph, we created
the first node of the flow graph with the content of reading all input variables of
the unit FBD program. The first node of flow graph becomes a definition node
for all input variables. For example, the FBD unit program in figure 4 has six
input and output variables - Cond a, Cond b, Cond c, Cond d, th Prev X Trip,
th Prev Trip and status. These variables are all read in the first node 0. Thus,
node 0 becomes the definition node for all input and output variables.

Temporary variables and an output variable of a unit FBD have definition
nodes only by assignment; they have no definitions by input. This is one of the
characteristics of FBD data flow testing. The variable th X Trip, used as an
output variable at (23) MUX INT in figure 4, is defined by assignment at node
30–33 of the flow graph in figure 5. The variable th X Trip has four definition
nodes - node 30, 31, 32 and 33.
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The du-paths for temporary variables are all definition-clear paths because
each temporary variable has only one definition node and one usage node in a
path. Moreover, except for the timer function group, FBDs have no loop con-
struction; therefore we do not have to consider loop structure when generating
test cases.

Table 2 shows test cases satisfying All-DU-paths test coverage criteria. They
are generated with du-path information for all variables in the flow graph.

Table 2. Test cases satisfying All-DU-paths test coverage criteria

Test Case Cond a Cond b Cond c Cond d status th Prev X Trip Expected Output
DT1 0 0 0 0 0 1 1
DT2 1 0 0 1 1 1 0
DT3 1 1 0 0 0 1 1
DT4 0 0 0 0 1 0 0
DT5 0 1 0 0 2 0 0
DT6 1 1 1 0 2 0 1
DT7 1 1 1 0 3 0 0
DT8 0 0 0 1 3 1 1

5.3 Case Study

We applied the proposed approach to BP trip logic of DPPS RPS, which is being
developed in KNICS. This section explains how we can find various errors in FBD
program using the proposed FBD testing method. First, we seeded four different
errors to the th Prev X Trip FBD unit in figure 4. All these errors frequently
occur in FBD programming. More errors occurring in FBD programming are
explained and classified in [12]. The seeded faults were all found by test cases
satisfying All-edges test coverage criteria in table 1. Test cases satisfying All-
DU-paths test coverage criteria in table 2 could also find all seeded faults.

– Case 1 (Switched input): One of the frequently occurring mistakes in FBD
programming is switched input. While change of the input order in
AND BOOL function blocks is not a problem, switched input in SEL, MUX,
or GE INT function blocks can cause serious errors. For these kinds of func-
tion blocks, the correct order of inputs is important. We reversed inputs of
the (12) SEL function block. We assign IN0 ’0’ instead of ’th Prev X Trip’
and assign IN1 ’th Prev X Trip’ instead of ’0’. In control flow testing, this
fault was found by the CT1 test case in table 1. In data flow testing, it was
found by the DT1 test case in table 2. We found that the expected output of
th Prev X Trip is 1, but actual output of executing the test case is a different
value, namely 0.

– Case 2 (Misused inverter): The inverter, drawn by small circle, is often added
in unnecessary positions or omitted in necessary positions. Misused inverters
are also one of the frequently occurring errors in FBD programming. We
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inserted an unnecessary inverter to IN0 input of the (18) SEL function block.
In control flow testing, this fault was found by the CT2 test case in table 1.
In data flow testing, it was found by the DT2 test case in table 2.

– Case 3 (Incorrect variable): Variable names are often written incorrectly.
Incorrect variable names result in wrong value assignments or computations.
We wrote an input of (20) SEL as th Prev Trip instead of th Prev X Trip.
This fault was found by the CT3 test case of table 1 in control flow testing
and by the DT5 test case of table 2 in data flow testing.

– Case 4 (Incorrect constant): Another case of input errors is incorrect con-
stant. We changed the original input of IN1 in the (22) SEL from 1 to 0.
Wrong descriptions between 0 and 1 occur frequently. This fault was found
by the CT4 test case of table 1 in control flow testing and by the DT8 test
case of table 2 in data flow testing.

6 Conclusion

We proposed a direct testing technique on FBD without generating intermediate
source code. A previous approach for FBD testing generates intermediate C code
and performs testing on the intermediate code. Because the previous approach
requires generating intermediate C code, it cannot be applied to FBD which
do not generate intermediate C code. Moreover, generating intermediate code
leads to additional cost. We proposed a cost-efficient testing method for FBD
by applying testing strategies to FBD directly.

We defined unit and module of FBD in the view of function blocks and pro-
posed an algorithm for translating an FBD unit to a flow graph. After generating
a flow graph from an FBD unit, we applied existing testing techniques to the flow
graph. In control flow testing, we generated test cases satisfying the All-edges
test coverage criteria. We also generated test cases satisfying the All-DU-paths
coverage criteria in data flow testing. To demonstrate the effectiveness of the
proposed method, we used a trip logic of BP in DPPS RPS which is currently
being developed at KNICS [1] in Korea. We seeded frequently occurring errors
into the example FBD. We were able to find all seeded faults by the test cases
generated by the proposed approach.

We have a plan to take timer function blocks into consideration. The trans-
formation algorithm from an FBD unit to a flow graph has to be supplemented
in order to cover FBD units with timer function block where we have to deal
with time and state as well as input variables. Integration testing of FBD
which focuses on interfaces and interactions between tested units should also be
considered.
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Abstract. Systematic validation and verification of safety-critical software is of 
crucial importance. A key precaution is intensive testing at several levels, from 
the entire system down to individual functional elements, the latter often carried 
out as unit testing. This paper presents results from a unit test performed on a 
C++ package from a testbed of a safety critical application at the ARC Seibers-
dorf research lab. After outlining the test environment and relevant characteris-
tics of the tested software package, a detailed analysis of the test results is 
given. This analysis comprises fault categorization, fault distribution, relations 
between software metrics (like McCabe’s cyclomatic complexity or the risk 
categories of NASA SATC), software faults, and testing efforts, and yields 
clues about the significance of these measures for fault probabilities. A sum-
mary of the findings and related work conclude the paper. 

1   Introduction 

Computer systems increasingly permeate our environment and become an indispensa-
ble part of our everyday life. Behind their most visible representatives – the PC, the 
mobile phone, customer electronics and related gadgets, as well as the Internet and 
mobile telecommunication networks – a vastly growing realm of extensively unno-
ticed electronic devices fly our airplanes, guide surgical operations, or control the 
brakes in our cars. They all rely on software, making the high safety requirements 
imposed by the authorities in areas where failures imply threats for human life, as for 
instance in the aerospace or rail domains, almost obvious. But even if ‘only’ an irre-
coverable material loss in case of a system failure may be incurred, like in space tech-
nologies or industrial control, an extremely low failure probability is demanded. Ac-
cordingly, from the system level down to subsystems and components, quality man-
agement and software development process technologies have to be obeyed thor-
oughly, and especially systematic testing deserves a maximum of attention. 

A well established means for fault detection is unit testing, where individual soft-
ware units (functions, procedures, methods) are exhaustively tested against their re-
quirements or specifications, under consideration of a complete as possible code or 
even higher coverage like path coverage. Although unit testing repeatedly is criticized 
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due to the rather big effort it requires, as well as the fact that it does not cover integra-
tion aspects, it is also regarded as the most effective means to test individual software 
components for boundary value behavior and ensure that all code has been exercised 
adequately [4]. 

(We used the term ‘fault’ rather than ‘error’ in accordance with the terminology 
common for safety-critical systems, where faults are defined as the sources of errors. 
However, when discussing related work, we took over their terminology rather than 
impress ours.) 

This paper describes the results of a unit test carried out in the accredited software 
test laboratory of ARC Seibersdorf research as part of overall software product assur-
ance measures within a large European space project. The SUT (software under test) 
consisted of a set of C++ classes, and the task was to verify the documentation and the 
code based on the European standard ISO/IEC 61508 [8]. The goal of the software 
test was 100 % statement coverage with an appropriate set of test cases. The faults 
encountered during the test were classified and extensively documented.  

These documented details are – of course – confidential. But we also applied a 
number of software measures to the SUT in order to investigate to what extent the 
quality metrics determined by these measures correlate with the fault distributions we 
found. And there are the results of these analyses which are at the focus of this paper. 
On class level, fault counts have been put in relation to lines of code and cyclomatic 
complexity [12], based on a mean fault rate per method of a class. On method level, 
we first give an analysis of methods with and without faults in relation to these meas-
ures, considering the risk areas defined by the NASA SATC (Software Assurance 
Test Center) [17], [18], as well as the effort (time spent) to carry out the tests. To 
some degree, the latter could be regarded as a measure for the ‘readability’ or ‘under-
standability’ of software, and its relation to detected faults was also of interest. 

Therefore, this paper is structured as follows. In chapter 2 the test setup is de-
scribed, including a quantitative description of the SUT as well as the test environ-
ment. Chapter 3 summarizes the test results and gives the chosen fault classification, 
while chapter 4 comprises the analysis of the relation between several software meas-
ures and the test results. Chapter 5 shortly addresses related work, while chapter 6 
concludes the paper giving a summary of the findings. 

2   Test Setup 

The SUT consisted of more than 580 different methods in about 50 classes with an 
average of 12 methods per class. The total number of source code lines with state-
ments, so excluding blank and commentary lines, was more than 16,000. Therefore 
each method consisted of 28 statement lines on the average. 

As test tool, Cantata++ Version 2.2 of IPL was used [10], running on an Alpha sta-
tion with a Tru64 UNIX© operating system. Although the source code was written in 
C++, the performed software tests did not focus on object oriented characteristics but 
were white box unit tests on a method level with the goal of 100% statement  
coverage. 
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Fig. 1. Unit Test with IPL Cantata++ 

Figure 1 depicts the way Cantata++ handles a software unit test. Two different files 
have to be created by the tester in order to get an instrumented code: One that creates 
an instance of the class under test and another one that defines the different wrapper 
functions. Wrappers are used to modify the environment, they replace current func-
tions by the system functions or other methods under test (MUT). The test file con-
tains valid C++ code creating an instance of the class to call the MUT with different 
parameters and wrapper configurations to traverse different paths in the software. 
After compiling all those files with Cantata++ an executable will be created that con-
tains the instrumented code, whose output is a text file, the report, listing all impor-
tant test results. 

The overall time it took to perform all tests on the SUT was about 40.000 minutes 
with an average of 67 min per method. In this context “time” considers the following 
activities: 

• Design and implementation of test cases 
• Test execution and refinement of test cases to meet the acceptance criteria (e.g. 

coverage) 
• Configuration Management of several hundred items 
• Documentation (e.g. justifications in case of non-fulfillment of acceptance cri-

teria) 
• Software Problem Reporting using WWQM 
• Performing quality measures (e.g. check test cases according to checklists) 
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Less than 2.3% of the statements could not be reached due to defensive programming, 
a fact that had to be reported since it is a deviation from the demanded 100% state-
ment coverage. 

For each encountered fault in the software, we filed a software problem report 
(SPR) using the web based tool WWQM (World Wide Quality Management), an in-
house development of ARC Seibersdorf research [13], [14], [19], providing workflow 
management for system (in particular, software) maintenance. This was very helpful 
for analyzing the results in detail and finding interesting facts about the correlation 
between static measures of the particular software and the observed fault rate. 

3   Fault Classification 

The tests as described before revealed more than one hundred faults (or SPRs, respectively), 
which can be categorized as documentation faults (49%), incomplete coverage (17%), cod-
ing (33%) and other faults (1%) [16]. That means, only a third of them had to be classified as 
coding faults, while half of all faults were classified as documentation faults. 

Since we performed testing at unit level, the specification of the MUT was pro-
vided in the form of a functional description of the MUT. This covered the: 

• Expected output parameters 
• Expected return value 
• Expected exceptions 

Therefore, testing revealed either real coding faults or documentation faults as de-
scribed below. Additionally, an acceptance criterion of 100% statement coverage was 
given which was not always achieved as mentioned below. 

Coding Faults 

This category contains ‘real’ coding faults, which might cause fatal failures during 
system operation. 

Implementation dependencies (38%).  These are semantic or implementation specific 
faults, like variables that will not be initialized in every case. 

Wrong pointer handling (23%).  Typical C or C++ faults like NULL pointer derefer-
encing or invalid pointer assignment. 

Inversion of ‘true’ and ‘false’ (13%).  In an own structure, 0 has been used to encode 
‘true’, while values greater 0 encoded various errors.  However, for compari-
son, the Boolean constants ‘true’ and ’false’ have been used. 

Other (26%).  Various faults could not be assigned to one of the first three groups but 
occurred too scarcely to be split into distinct groups. 

Documentation Faults 

In most cases, documentation faults refer to incomplete descriptions of methods, e.g. 
in header files. Since, however, this may lead to erroneous usage and testing of the 
methods, it has been considered as fault. In addition, the documentation served as 
base for the test case generation. In detail, classification faults have been sub-
structured as follows: 
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Value never returned (54%). A documented valid return value is never returned by 
the method. 

Value not documented (31%). A value returned by the method has not been defined as 
a valid return value. 

Documentation fault (10%). This relates to textual faults like quoting wrong OUT 
values or describing used structures incorrectly. 

Doc. not sufficient (5%). The provided information is incomplete or does not specify 
the method properly. 

Incomplete Coverage Faults 

This category comprises all faults resulting from the fact that certain code lines could 
not be executed. In most cases, this was caused by ‘defensive programming’, e.g. an 
otherwise-branch in a switch-statement for a variable of an enumerative type, with all 
possible values captured by case-branches. 

Defensive programming (65%). Assertions which are always true due to prior checks. 
Default or else branch (35%). The use of default or else branches that cannot be 

reached due to checking every possible value before. 

4   Fault Distribution Analysis 

In this chapter the found faults are brought into relation with several measures in 
order to estimate their expressivity with respect to fault density prediction. However, 
documentation faults will not be considered, because it can hardly be argued that the 
description of a method in e.g. its header file is a proof for the defectiveness of its 
code. Also, the subcategories as presented in chapter 3 are not distinguished any fur-
ther, because some of them contained too few faults for being statistically relevant. 

4.1   At Method Level 

A common approach of unit test analysis is to look directly at the method level, be-
cause in general methods are the primary test objects. Therefore, several method 
based analyses are presented here. 

4.1.1   Risk Analysis 
‘Lines of Code (LOC)’ is a simple measure which just counts the number of code 
lines in a source code unit. We considered only the ‘net’ number of code lines, i.e. no 
blank lines or pure commentary lines, for measuring LOC. Figure 2 shows the rela-
tionship of LOC and number of SPR per tested method. Since a unit test stops as soon 
as a fault is detected, SPR values higher than 1 result from retesting of faulty meth-
ods, when another fault has been detected. Not more than two retests have been nec-
essary, which to a certain degree was caused by the fact that code has already been 
tested by the developers before being provided to us for unit testing. 

Although figure 2 shows that no method with a LOC value higher than 200 was 
free of faults, it although illustrates that LOC is not a really good indicator for fault 
risk, because the distribution of methods with one and two detected faults is pretty 
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similar to that of methods without detected faults. This observation coincides with 
results from previous works, see chapter 5. 
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Fig. 2. Methods plotted with respect to their LOC and number of SPR 

Therefore, we looked at other measures like the ‘Cyclomatic Complexity (CC)’, 
which is the number of linear independent paths as a specialization of McCabe’s 
measure (edges – nodes + (2 * connected regions)) [12] with only one connected 
region. Based on LOC and CC, we derived an interesting metric developed by the 
NASA SATC (Software Assurance Test Center) [17], [18], that assigns every single 
method to one of seven ‘Risk Areas’ based on the lines of code and the cyclomatic 
complexity measures. The SATC claims that the lower the number of the risk area a 
method belongs to due its LOC and CC measures, the lower the probability of a po-
tential fault in that method. Figure 3 shows these risk areas, together with the distribu-
tion of the methods tested. 
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Fig. 3. Methods plotted with respect to their LOC and CC values. 
Numbers and lines within the diagram field denote the SATC risk areas. 
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Fig. 4. Percentage of faulty methods of all per SATC risk area 

What strikes one’s mind is the narrow band (which would be rather straight on a 
linear LOC-scale) where the methods are located. But what also surprises is the ap-
parently even distribution of faulty methods over the whole band, which seems to 
indicate that fault density is not correlated with risk areas. However, if the number of 
faulty methods (with SPR) relative to non-faulty ones (i.e. without SPR) is consid-
ered, this correlation is clearly present, as indicated in figure 4.  

4.1.2   Test Effort Analysis 
Another interesting aspect addresses how strong the time effort for testing each me-
thod correlates with its LOC and CC, as shown in figure 5. 

In general, the time effort for testing seems to depend fairly linearly on both LOC 
and CC, with a – not surprising – higher amount of effort for methods with SPRs.  For 
methods with low complexity, i.e. below 10 or 15, the testing effort was almost con-
stant, namely approximately 50 minutes if no fault has been detected, and approxi-
mately 100 minutes if some fault has been detected. 

It should be noted, that also methods with a minimal CC-value of 1 took time to be 
tested, namely up to three hours, as indicated in the diagram on the right side of  
figure 5. 
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4.2   At Class Level 

Besides looking at correlations between fault distributions, LOC, CC, and test time 
effort as discussed before, we also wanted to examine whether these correlations 
remain significant at class level as well. 

To enable comparison of classes based on the fault counts of their methods, a cer-
tain ‘normalization’ of these counts is necessary, in order to compensate the different 
numbers of methods per class. This class fault rate is computed by CFrk = SPRk / Mk, 
with k as the class index, CFrk the class fault rate of class k, SPRk the sum of all faults 
found for its methods, and Mk the number of its methods. 

We further categorized classes into eight categories according to their CFr as 
shown in table 1. 

Table 1. CFr categories and characteristic data 

Category CFr-Range # Classes 
0 0.0 19 
1 (0.0, 0.1] 9 
2 (0.1, 0.2] 11 
3 (0.2, 0.3] 4 
4 (0.3, 0.4] 2 
5 (0.4, 0.5] 0 
6 (0.5, 0.6] 0 
7 (0.6, 0.7] 1 

4.2.1   CFr versus LOC 
When placing all classes, represented by their CFr, relative to their LOC, a distribu-
tion as shown in figure 6, results. 
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Fig. 6. Number of classes per LOC, presented by their CFr categories (0..7). Left: LOC in-
cludes all code lines of a class. Right: class LOCs divided by number of methods in class. CFr 
categories 5 and 6 are not presented, because no classes are contained in these categories. 
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Remarkably, when complete classes are considered (left diagram in figure 6), those 
with highest CFr have the smallest LOC-values, while in the group with largest 
LOCs, only classes with low CFr are present. When LOC-values are normalized with 
respect to number of methods per class (right diagram in figure 6), a slightly stronger 
correlation between LOC and CFr results, but still classes with high CFr have meth-
ods of rather small means size. 

4.2.2 CFr versus CC 
Figure 7 shows the relation between the mean CC per class and its CFr. It is claimed 
that the higher the CC, the higher the fault probability, with values above 40 best to 
avoid. Values up to 20 are considered ‘safe’ in general. 
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Fig. 7. Left: number of classes ordered per mean CC, presented by their CFr categories (0..7). 
Right: accumulated fault numbers, divided by number of classes. CFr categories 5 and 6 are not 
presented, because no classes are contained in these categories. 

Of course, since mean CC values over all methods of a class have been taken, the 
abscissa range in figure 7 is smaller, since in general the majority of methods of a 
class have rather small CC values. Nevertheless, figure 7 shows a notably closer cor-
relation between CFr and CC than can be found in figure 6 with respect to LOC. To 
the left, although classes with CFr = 0 can be found in all mean CC categories, those 
with higher CFr values clearly tend to lie in higher CC categories. If per CC category 
the number of faults of those classes contained in the respective category is divided 
by the number of classes in that category, an almost stunning linear correlation be-
tween CC and fault probability emerges, as shown in the right diagram of figure 7. 

If mean CC values are replaced by a simpler measure, namely the maximum CC 
over all methods per class, a similar though less significant distribution can be found, 
as shown in figure 8. In this case, classes with CFr = 0 are not found with high CC 
values (over 40), while below 20 only two with a remarkable CFr category are pre-
sented. Both are, however, those with the second highest CFr value. But if we con-
dense these values as before to mean fault rates per class as displayed on the right side 
of figure 8, the correlation between CC and fault probability on class level shows up 
clearly, although not as ‘linear’ as with mean CC values. 
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Fig. 8. Left: number of classes ordered per maximum CC over their methods, presented by their 
CFr categories (0..7) Right: accumulated fault numbers, divided by number of classes. CFr 
categories 5 and 6 are not presented, because no classes are contained in these categories 

These results are interesting because maximum CC is a measure simpler than mean 
CC, but of comparable meaningfulness. 

5   Related Work 

In [4], it is stated that in contrast to a comprehensive body of theoretical work on 
software testing methodology there are not many published results of empirical stud-
ies in real-world software projects available, because ‘Industrial staff rarely have the 
time to analyze past projects before being moved to other projects, and academics 
very rarely have access to statistically valid collections of data’. We largely share this 
impression, what has also been a driving force behind this paper.  

Not too surprisingly, the available studies vary significantly in their general ap-
proach and methodology, as well as in scope and abstraction of hypotheses to be sup-
ported or rejected by statistical evidence, often based on fairly small samples. Other 
differences rendering comparison more difficult come from the tested software sys-
tems themselves, specifically from the unclear contribution of heterogeneous software 
engineering techniques applied for development, from the use of different implemen-
tation languages, and from the undefined coding maturity of software implementers 
from various academic institutions and industrial enterprises. But there are a couple of 
papers with a sufficient thematic overlap with our work, which shall be outlined here. 

In [5] eight hypotheses, partially subdivided into sub-hypotheses, were tested 
against in two releases of a major commercial system. Concentrating on differences 
between pre- and post-release fault densities, the authors found support for theses like 
‘a small number of modules contain most of the faults discovered during pre-release 
testing, as well as operational faults (the Pareto principle)’ or ‘fault densities at corre-
sponding phases of testing and operation remain roughly constant between major 
releases of a software system’, while they found rather no support for theses like 
‘higher incidence of faults in all pre-release testing implies higher incidence of faults 
in post-release operation’ or ‘size metrics (such as LOC) are good predictors of num-
ber of pre-release faults in a module’, which for LOC on class-level is in alignment 
with our observations. In contrast, we found that CC proves to be a simple and 
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suitable predictor for fault probability, which again complies with findings previously 
published in [15]. 

Based on observation on three related software projects from the embedded sys-
tems domain, Ellims et al. found out that beside detailed design (and review), unit 
testing contributed most to the detection of faults [4]. 

[2] is, though published more than twenty years ago, still of interest. The authors 
analyzed the distribution of errors in modules of a medium-scale software project 
with respect to environmental factors like complexity, developer’s experience, and 
reuse. Of greatest interest are the differences found between the prevalent errors in 
modified and in new modules. At the first glance, modifying existing modules seemed 
to reduce development costs but modified modules turned out to be more susceptible 
to errors due to misunderstanding of specifications. After thorough analysis the au-
thors could show that there are ‘hidden costs’ due to the increased necessary effort for 
correcting the specific faults of modified modules. Another result was that module 
size did not account for error-proneness. The larger the modules, the less error-prone 
they were, even if they were more complex. This fact can be substantiated with the 
results of our study where modules with lower LOC count tended to exhibit a greater 
probability for errors. 

[1], another standard in the field of empirical software quality data, investigates the 
distribution of error rates for design errors in product code. Based on his data on the 
(great) mean time to discovery, the author doubted that all design errors could be 
removed through testing. He assumed that any software product exhibits similar regu-
larities in the rate behavior, irrespective of the use of the product. Consequently, his 
findings are appropriate for the estimation and planning of service effort a software 
product will need after deployment. 

[11] analyzes the defect data from several wide-distribution commercial software 
releases in order to address the problem of quantifying the software products’ field 
quality. The authors found out that the estimated number of defects remaining in the 
code constitute a metric for the field quality, rather than the estimated reliability of the 
product. The apparent number of defects is strongly related to the number of users of 
that software, with new users having a greater probability to find new defects. Addi-
tionally, it became apparent that new releases of a software stimulate the discovery of 
latent defects already present in the preceding release. 

[3] is an analysis of typical issues related to empirical studies in the field of soft-
ware testing techniques. The authors address the topics: Fault seeding, academic v/s 
industrial settings, need for replication of studies across different settings, and the 
implications of human factors in the production of error seeded test sets. They pro-
pose topics for future research, like the establishment of a standardized benchmark for 
testing techniques. 

Common topics most authors want to shed light upon are relations between design 
and code complexity measures, testing methods and testing intensity (coverage), and a 
probability interval for the absolute number of faults in dedicated portions of the 
software under test. Consequently, faults should be identifiable at an early develop-
ment stage, at significantly lower cost. [5] states that “(...) the various empirical stud-
ies have thrown up results which are counter-intuitive to the very basic and popular 
software engineering beliefs”, and follows that this should be a warning to the soft-
ware engineering research community.  
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Examples for such results are: Simple complexity measures seem to be as useful as 
more complicated measures ([15]). Modules where more defects are found by pre-
release test coincide with modules where customers find more defects ([6]). Larger 
components are proportionally more reliable than smaller components ([7], cited in 
[5]). The concerted establishment of a wide collection of empirical data would pro-
vide the foundation for a proper evaluation of different software engineering and 
testing methods. We hope to be able to contribute a small part to this basis with the 
data and analysis presented in this paper. 

6   Conclusion 

Primarily, our observations confirm CC as a good measure for fault probability: Al-
though the absolute density of faulty methods is rather constant over the CC-range of 
approximately 5 to 50 (see figure 3), its density relative to methods without detected 
faults rises significantly with increasing CC (see figures 7 and 8).  

Since in our test set the ratio LOC/CC is almost constantly 6 (see figure 3), at 
method level LOC can to some extent be seen as an indicator for fault probability, 
although less significant than CC due to its higher variability (see also figure 2). How-
ever, this resemblance breaks down at class level; while CC turns out to be a remark-
able measure for fault probability at class level (figures 7 and 8), this does not apply 
for LOC (figure 6). Perhaps, the strong, almost linear correlation between mean CC 
per class and mean fault number per CC class as shown at the right side of figure 7 
may turn out as one of the most surprising results of this study. 

The risk areas concept of SATC proves to be reasonable and valid (see figure 3), in 
particular, when fault probability is computed as ratio between non-faulty and faulty 
methods (figure 4). 

Furthermore, comparison of effort with LOC indicates that from a threshold about 
40 or 50, the time spent for dealing with a method increases somewhat over-linearly 
with LOC. Small CC values (below approximately 10) appear to have no visible ef-
fect on effort, while higher values do have, of course (figure 5).  

Finally, we want to point out that within the Integrated Project DECOS (project nr. 
IST-511764) “Dependable Embedded Components and Systems” in the sixth Euro-
pean Framework (www.decos.at), which is coordinated by ARC Seibersdorf research, 
we are designing and implementing a Test Bench Framework, which includes unit 
testing besides a set of other methods and tools to fulfill validation and verification of 
distributed time-triggered, safety critical systems from the application system model 
to deployment. We expect further experimental results for a variety of V&V methods 
and metrics. 
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Abstract. We show how the Murϕ model checker can be used to au-
tomatically carry out safety analysis of a quite complex hybrid system
tele-controlling vehicles traffic inside a safety critical transport infras-
tructure such as a long bridge or a tunnel. We present the Murϕ model
we developed towards this end as well as the experimental results we
obtained by running the Murϕ verifier on our model.

Our experimental results show that the approach presented here can
be used to verify safety of critical dimensioning parameters (e.g. band-
width) of the telecommunication network embedded in a safety
critical system.

1 Introduction

Because of technological as well as economical reasons, the number of systems
relying on wireless telecommunication (telco) networks is always increasing. This
is also happening for safety critical systems. This poses new challenges to the
safety analysis work. In fact, the telco network behaviour needs to be modeled in
a fairly accurate way in order to formalize the relationship between telco network
parameters (e.g. bandwidth) and the system safety property being investigated.

We show how the above is possible by presenting a case study on the analysis
of a safety property for a Tele Control System (TCS), developed in the frame of
the European project SAFETUNNEL [11].

The goal of TCS is to take active measures to improve safety in the Critical
Transport Infrastructure (CTI) it controls, namely a tunnel. More specifically,
TCS aims at reducing the number of accidents inside alpine road tunnels, ex-
ploiting GPRS (General Packet Radio Service)) communication between instru-
mented vehicles and a Tunnel Control Centre (TCC). TCS implements preven-
tive safety functions, namely: vehicle prognostics, vehicle tunnel access control,
vehicle speed and distance control, dissemination of emergency message.
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We present a model of TCS and an automatic analysis of it via model checking
[12]. Our goal is to show that TCS operates in a safe way, that is no dangerous
situation can arise from installation and usage of the TCS in our CTI.

More specifically, our analysis focuses on the interaction of TCS telco net-
work dimensioning with TCS preventive safety functions. We formally check,
via model checking, that the telco dimensioning, in terms of bandwidth, guar-
antees TCC ability to safely handle different tunnel scenarios. Namely: nor-
mal system operational mode (registrations, deregistrations, anomaly situations
and emergency situations), emergency scenarios (i.e. dissemination of emergency
information).

Basically, our presentwork is about TCS validation by modeling along the lines
of [1]. In fact, in our case, only a limited number of field tests can be run on the
actual system. This is because measures requiring long observation times inside the
infrastructure (that has to be closed to the ordinary vehicular traffic, with loss of
availability and money) should be kept to a minimum. Moreover measures which
would require irreproducible infrastructure scenarios (i.e occurrence of incidents
and emergency scenarios) cannot simply be done. From the above considerations
stem the importance safety and performance analysis on the system model.

TCS is a quite large hybrid system, that is a system with continuous as well as
discrete state variables. Automatic analysis of Hybrid Systems poses formidable
challenges both from a modeling as well as from a verification point of view. In
fact the simultaneous presence of continuous and discrete variables may lead very
quickly to state explosion, thus preventing completion of the verification process.

Many verification tools (model checkers) are available for automatic verifi-
cation of hybrid systems. Examples are: HyTech [9,3,2] and UPPAAL [10,18].
Also tools originally designed for hardware verification have been used for hybrid
systems verification. E.g. in [17] SMV [12,16] has been used for verification of
chemical processing systems.

In this case study we use the CMurϕ [5,4] verifier since both HyTech and
SMV could not complete the verification task because of state explosion. This is
in agreement with our previous experience in hybrid systems verification [14].

CMurϕ is the Murϕ verifier [6,13] extended with (finite precision) real num-
bers [14], caching and disk based algorithms [15,5].

Automatic timeliness verification with the Murϕ verifier and performability
analysis of TCS telco network has also been studied, respectively, in [8], [7].

Our main contributions here can be summarized as follows. We sketch TCS
features (Section 3), present our modeling of the TCS system (Sections 4, 4.1, 4.2,
4.3, 4.4), present a formalization of the main TCS safety requirement (Section
5) and finally give experimental results showing effectiveness of our approach
(Section 6). Lack of space prevents us from giving the Murϕ model of TCS.

2 Basic Notions

A Finite State System (FSS) S is a 4-tuple (S, I, A, R) where: S is a finite set
(of states), I ⊆ S is the set of initial states, A is a finite set (of transition labels
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or events or actions) and R is a relation on S × A × S. R is usually called the
transition relation of S. We define the set next(s) of successors of state s as
follows: next(s) = {s′|∃aR(s, a, s′)}.

The set of reachable states of S (notation Reach(S)) is the set of states of
S reachable in zero or more steps from I.

A trace π of S is a finite or infinite sequence π ≡ s0, a0, s1, a1, . . . s.t.: s0 ∈ I
and for i = 0, 1, . . . R(si, ai, si+1) holds. We also write π(i) for s(i).

In the following we will always refer to a given (once and for all) system S
= (S, I, A, R). Thus, e.g., we will write Reach for Reach(S). Also we may
speak about the set of initial states I as well as about the transition relation R
without explicitly mentioning S.

Let B = {0, 1} the set of boolean values. An invariant for S = (S, I, A,
R) is a map ϕ from S to B. We say that S satisfies invariant ϕ iff for all
s ∈ Reach ϕ(s) = 1. That is, if for all reachable states of S, ϕ holds.

Safety properties are modeled using invariants. That is, an error state or an
undesired state is a state that does not satisfy the given invariant.

Basically, using a suitable high level language, a model checker takes as input
the definitions of an FSS S and of an invariant ϕ for S an returns PASS if S
satisfies ϕ, FAIL otherwise. Moreover, when a model checker returns FAIL, it
also returns a finite trace π ≡ s0, a0, s1, a1, . . . sk, of S leading to an error state,
that is we have ϕ(π(k)) = ϕ(sk) = 0.

From the above follows that, given a system S and an invariant ϕ, a model
checker automatically carries out a a reachability analysis, i.e. the computation of
all reachable states, for S, looking for undesired states (i.e. states not satisfying
invariant ϕ).

We plan to use CMurϕ [5,4] extended with real numbers [14] to analyze hy-
brid systems. For this reason we model hybrid systems as Discrete Time Systems
(DTSs). We show the easy relationship between DTSs and FSSs using a toy ex-
ample. Let us consider the DTS x defined by Equation 1, where x(t) is the state
value at time t and d(t) is the disturbance value at time t.

x(t + 1) =
{

x(t) + d(t) if x(t) ≤ 3
x(t) − d(t) otherwise ∀t[d(t) ∈ {0, 1, 2}], x(0) = 0. (1)

ϕ1(v) = (v ≤ 5) ϕ2(v) = (v < 5) (2)

Fig. 1 shows the FSS corresponding to the DTS defined by Equation 1.
The initial state x(0) = 0 is shown with an arrow in Fig. 1, where nodes are
labeled with state values and edges are labeled with action (disturbance, in our
case) values.

Equation 2 defines possible invariants for system x in Equation 1. A model
checker taking as input the pair (x, ϕ1) will return PASS since all reachable states
of x are less than or equal to 5. On the other hand a model checker with input (x,
ϕ2) will return FAIL with the following trace (counterexample) 0, 1, 1, 2, 3, 2, 5.
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Fig. 1. FSS for the discrete time system in Equation 1

3 System Overview

In this Section we give a high level description of our TCS architecture. The
remaining Sections will gradually zoom in TCS components showing how our
Murϕ model is organized.

The goal of TCS is to monitor and control vehicle (mainly trucks) traf-
fic inside the CTI area. This is done by equipping each vehicle with suitable
sensors and actuators (e.g. to measure and control the distance from the pre-
ceding vehicle) and with telecommunication devices (to communicate with the
control center).

TCS consists of three main subsystems: Vehicles, Telecommunication network
(TLC) and, finally, the Tele Control Center (TCC).

The Tele Control Center (TCC) manages the vehicles in the CTI area. The
TCC-vehicle communication protocol is defined with Message Sequence Charts
(MSCs) which also define the telecommunication network load, since they define
the number of bytes traveling in the communication channels. In case of an
accident the TCC sends to all vehicles in the CTI suitable directives to escape
from the accident area.

This is the most stressful situation for the telecommunication network. Since
our main goal here is to verify the telecommunication network dimensioning, we
will just focus on the case in which, for some reason (e.g. an accident), the TCC
needs to send a given (emergency) message to all vehicles.

As far as we are concerned, vehicles are equipped as follows: 1) Fuel level
sensors, distance sensors, oil level sensors, etc; 2) GPRS telecommunication de-
vices; 3) Automatic Cruise Control (ACC), which takes from the TCC the max
speed and min distance and actuates vehicle throttle and brakes accordingly.

A vehicle equipped with the above devices is also called a mobile station.
For safety reasons a vehicle must be an autonomous system, i.e. it should work

safely also when the TCC or the telecommunication network are not working.
This is why vehicles are equipped with an Automatic Cruise Control (ACC) that
keeps the vehicle speed below a given threshold and the distance of the vehicle
from the preceding one above a given threshold.
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Communication between mobile stations (vehicles) and the TCC essentially
exploits the GPRS technology used to support communication between mobile
stations and TCC inside the whole CTI area.

CTI GPRS network consists of a set of Base Stations situated inside the
CTI. Each Base Station supports traffic for a certain number of Carriers. The
number of carriers per base station depends on the type and configuration of the
base station model.

Using Time Sharing policies each carrier, in turn, is split into 8 Time Slots.
This is the channel used for actual data transmission. The time slot channel has
a transmission speed of 10.22 kbps. Theoretically a GPRS terminal can use up
to 8 time slots in uplink (UL) plus 8 in downlink (DL). Typically, commercial
terminals use 6 time slots for uplink and downlink.

As an example, assuming we have a 3 carriers base station, we have available
3 ∗ 8 = 24 time slots for each installation.

The following alternative working hypothesis have been considered in the
GPRS dimensioning: 1) The max bit rate (UL + DL) for each mobile station is
5 kbps, thus 2 vehicles can share one time slot; 2) The max bit rate (UL + DL)
for each mobile station is 2 kbps, thus 5 vehicles can share one time slot. Of
course the first solution gives faster communication, but requires more carriers.
The second solution saves on the number of carriers, yielding however slower
communication.

4 TCS Model

We use the Murϕ programming language to define our model and the Murϕ
verification engine to check that our model meets given safety requirements.
Murϕ uses a Pascal-like programming language to define model dynamics. This
makes the definition of complex systems quite easy, since an object oriented
modeling approach can be followed.

Because of lack of space we cannot present the actual Murϕ code of our
model. We will just describe the main subsystems forming our systems as well
as their interactions.

Murϕ constants are our TCS model parameters. Some of our constants
are suggested by [11], others have been obtained from various (e.g. physical)
considerations.

Murϕ data structures are our TCS model objects (e.g. vehicles, etc). Murϕ
functions are used to define the dynamics of our TCS model.

As usual we follow the convention of ending function names with (). Function
names used in this section correspond exactly to those in the Murϕ model.

We model TCS as a discrete time system with sampling time T = 100ms [11].
A high level view of TCS consists of three main objects (Figure 2). Namely,

(an array of) mobile stations (i.e. vehicles), the Telecommunication Network
(TLC), the Tele Control Center (TCC).

Figure 2 shows some of the (Murϕ) functions (SendRequest(),
AssignChannel(), CheckBarrier() and BlueToothTrigger()) implementing
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Fig. 2. Model top view

the interaction between (top) TCS objects, namely Mobile Stations, TCC
and TLC.

Mobile Stations and TCC communicate via the TLC which consists of a
GPRS network and a system of antennas used to check vehicle parameters (e.g.
position) at the CTI barriers (CheckBarrier() in Figure 2) and possibly to send
messages to the TCC (BlueToothTrigger() in Figure 2).

For GPRS communication a channel must be assigned to the peers. This is
modeled as follows (Figure 2). The sender asks for a communication channel
SendRequest() to the Network Manager. Once such channel is assigned to the
sender (using AssignChannel()) the communication can take place. That is the
sender can send its message to the receiver (Data).

Note that the CTI itself does not appear in Figure 2. This is because the
CTI status does not change over time. Thus it can be simply modeled using its
physical constants.

For example, constant TUNNEL LENGTH defines the physical length of the CTI
under consideration. Constant APPROACHING LENGTH defines the distance out-
side CTI entrances that we still consider relevant for our modeling (CTI area).
Constant TOOTH DISTANCE gives the distance of the first Bluetooth barrier from
the CTI entrance (of course, on both sides of the CTI). As a result, position
(in meters) of the four CTI barriers can be easily computed. Thus, in our TCS
model, to formalize the fact that a vehicle has passed a certain barrier it suffices
to compare the vehicle position with the barrier position.

4.1 Vehicles

A single vehicle is modeled using a record (named Vehicle). Each record
Vehicle field models a vehicle feature (e.g. position, speed, etc) needed in
order to define the dynamics of our model. In other words, record Vehicle holds
the vehicle state information.
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Our CTI has one lane for each direction. Each lane is modeled with an array
of size NUMBER OF VEHICLES PER LANE of vehicle records.

A vehicle can be a car or a truck. Each vehicle is equipped with suitable
communication devices [11]. For this reason, in our context, vehicles are also
called mobile stations or terminals (when dealing with TLC network issues).

When modeling a vehicle dynamics we also take into account its acceleration
and deceleration characteristics.

4.2 The Tele Control Center

The TCC consists of four interacting subsystems: 1) Communication devices;
2) Constant directives (storing system parameters)p 3) Registered vehicle data
(storing information about registered vehicles); 4) Right monitoring devices
(handling the tight monitoring procedure to be describe din Section 4.4).

For example, among the TCC constants directives (parameters) we have
STANDARD RECOMMENDED SPEED (70 Km/h) STANDARD RECOMMENDED DISTANCE
(150 m). If an anomaly occurs in the monitored area TCC suitably recomputes
these values.

For each vehicle v, TCC stores information about v as well as information
about the messages exchanged between TCC and v.

Our model for the Tele Control Center consists of: 1) CTI Status Variables,
storing all information (directives) to be sent to vehicles (e.g. Recommended
Speed AND Recommended Distance); 2) The I/O system handling GPRS com-
munication with the mobile stations; 3) Administrative information to make
decisions about messages to be sent to vehicles.

4.3 The Telecommunication Network

The TLC network is one of the main target of our analysis. More specifically,
our goal is to check that TLC dimensioning guarantees TCC ability to safely
handle emergency situations. In fact, when an emergency occurs, TCS sets up
a particular emergency procedure involving the TCC as well as many vehicles.
This is the more demanding situation for the telco network.

Figure 3 shows our model for the telecommunication network. We view the
telecommunication network as a set of (virtual) channels and a manager that
handles virtual channel assignments and releases.

To save on the state space dimension, we only model the GPRS network and
ignore other components.

In the GPRS architecture each base station can have up to 12 carriers, al-
though typically a base station has 3 or 4 carriers. In our setting we can assume
that each base station can have at least 6 carriers because of the high expected
traffic volume. In the following we denote with C the number of carriers for each
each base station.

Each carrier can have up to 8 time slots to be used for communication.
However usually at most 6 are used. In the following we denote with Nslots the
number of time slots for each carrier.
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In the following we denote with Tspeed the number of bits per second that
a time slot can transmit. With the network configuration envisaged in [11] we
have: Tspeed = 10.22 kbps = 10465 bps.

The same time slot can be used by more than one terminal (vehicle). We
denote with Vehic the number of vehicles sharing the same Time Slot.

For example if the max bit rate per vehicle (UpLink + DownLink) is 5kbps
we can allocate 2 vehicles on the same time slot.

We define as Virtual Communication Channel or just channel the trans-
mission bandwidth ideally allocated to each terminal (vehicle). In the previous
example we have 2 channels with a transmission speed of 5kbps for each slot.

We denote with B the number of base stations available.
Given the network technology (e.g. GPRS for us) the number of channels

NUMBER OF CHANNELS and their speed CHANNEL CAPACITY are project require-
ments for the network design. The following relations hold:

NUMBER OF CHANNELS = BCNslots, CHANNEL CAPACITY = Tspeed/Vehic.

For example, with our data (Tspeed = 10.22 kbps, Vehic = 5) we have:
CHANNEL CAPACITY = Tspeed/Vehic = 10465/5 = 2093 bps.

Here we are only interested in transmission capacity. For this reason we
consider channels as basic elements of our modeling.

Communication channels, of course, can be implemented with many tech-
nologies. The only difference resides in the network architecture (e.g. number
of base stations, carriers, etc) needed to meet the given network specifications,
NUMBER OF CHANNELS, and CHANNEL CAPACITY for us.

In other words, NUMBER OF CHANNELS and CHANNEL CAPACITY define the ex-
ternal view of the telecommunication network and are indeed the design parame-
ters of the network itself. Since our goal is to study the interaction of the telecom-
munication network with the other TCS subsystems NUMBER OF CHANNELS and
CHANNEL CAPACITY are indeed a good abstraction of the network. That is, they
are what the other TCS subsystems see of the network.

Of course the above computation of B assumes that each base station covers
most of the area of our interest. This is a reasonable assumption in the case of
CTI area.

Communication set up is done, once and for all, from each vehicle upon en-
tering CTI area. This establishes a communication link between the terminal
(vehicle) and the TCC. During this setup the vehicle sends to the TCC admin-
istrative information such as vehicle identifier, etc. When a terminal (vehicle)
wants to communicate with the TCC it must look for an available channel, that
is a channel not in use by another vehicle. Only once such available channel is
found communication can take place. Thus each communication round is pre-
ceded by a channel search phase.

A terminal (vehicle) may loose its communication link with the TCC. In such
cases the interaction protocol with the TCC is such that the lost link cannot be
recovered. Thus if a vehicle looses its communication link, it is no more connected
to the TCC.
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Fig. 3. Telecommunication Network

4.4 Communication Protocols

The protocols used in the TCS are defined by using Message Sequence Charts
(MSCs). In particular we have a Vehicle Registration Procedure (VRP), a Vehicle
Deregistration Procedure (VDP), a Tele Control Application Procedure (TAP), a
CTI Exit Procedure (CEP), an Emergency Procedure (EP). To make our model
working we have to model all such procedures. For space reasons, however, here
we only show (Figure 4) the Emergency Procedure which is needed to define our
safety requirement.

Many different kind of emergencies, with different severity levels, each re-
quiring specific recovery procedures, are considered in CTI.

However, emergency ranking often requires a human intervention. This is
hard (if possible at all) to model in our framework. On the other hand our goal
here is to evaluate safety of the Tele Control System consisting of the TCC, the
TLC network and the vehicles. For this reason we just consider the emergency
situation that is more demanding for the TLC network. This happens when the
TCC has to broadcast an emergency message to all vehicles in the CTI area,
Figure 4.

Our goal here is to simulate an accident blocking traffic on both lanes. In this
case TCC sends to all vehicles a request to stop. Thus in our model we have a
procedure SimulateAccident() that stops (suddenly) a given vehicle at a given
point in the CTI. That vehicle then sends a DetectedAnomalyMessage to the
TCC. Such message send to the TCC the vehicle id, the kind of accident, etc.

Upon receiving the DetectedAnomalyMessagemessage the TCC, once it has
determined the nature of the emergency, starts the procedure in Figure 4. More
specifically, once the TCC has determined the nature of the emergency, it sends
a recovery strategy using the message ActivateRepairingPlanningRequest
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Fig. 4. Emergency Procedure

(left side of Figure 4). At the same time TCC sets to true the TCC alarm
field and registers the vehicle involved in the emergency in order to activate
a Tight Monitoring (TM) procedure. The TM procedure tells TCC to check
the vehicles status with a higher frequency than usual. Moreover one (virtual)
channel is reserved for each vehicle under tight monitoring. The mobile sta-
tion (vehicle) answers the ActivateRepairingPlanningRequest message with
a ActivateRepairingPlanningResponse message.

The right side of Figure 4 shows that notice of a serious emergency (incident)
must be broadcasted to all vehicles in the CTI area. This, together with the
ongoing TM puts a nontrivial load on the TLC network. Checking that the
TLC network, under such condition, can deliver the emergency notification, to
ALL vehicles in the CTI area within an assigned time constraint, is the safety
requirement what we want to verify here.

Of course satisfaction of such requirement depends on the number of virtual
channels available, which in turn depends on the TLC network dimensioning.

Moreover we must consider that GPRS technology, used for our TCS, does
not allow one to many communications. Thus the broadcast needed in case of
the above mentioned emergency is simulated by the TCC by sending sequentially
to each vehicle in the CTI area the emergency message.

The message to be broadcast to all vehicles is Dissemination Of
Emergency Info and its length is 200 bytes (the longest message of all here).
This message transmit an updated version of the emergency exits map, a strategy
to leave the accident area as well as TCC notes (if any).

Summing up, we are going to analyze the scenario in which there is
one vehicle that requires tight monitoring and TCC that broadcasts the
Dissemination Of Emergency Info message. This is the most stressful situa-
tion (assuming single vehicle failure) for the TLC network.
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Note that, the case in which we have n channels and (k + 1) vehicles
requiring tight monitoring and (at the same time) broadcasting of the
Dissemination Of Emergency Info can be treated as the case in which we have
(n − k) channels and one vehicle requiring tight monitoring and broadcasting.
This is because each vehicle under tight monitoring reserves a channel which is
not released until the tight monitoring is over.

5 Requirements

Murϕ defines requirements by using invariants. An invariant is a condition that
all reachable states must satisfy. In other words, if a reachable state does not
satisfy the given invariant we have a reachable undesired (error) state. The ver-
ifications task is to check if it is possible for the given system to reach an error
state, i.e. to reach a state that does not satisfy the given invariant.

In general there are many invariants to check, one for each requirements.
Here we will discuss only the main invariant for our system.

Our invariant asks that the time needed by the TCC to broadcast the
Dissemination Of Emergency Info message (Section 4.4) be below given
threshold TIME TO FAULT.

The TCC, Upon receiving the Detected Anomaly Message from the vehicle:

– handles, if possible, vehicle involved in an accident;
– sends (broadcast) to all N registered vehicle a

Dissemination Of Emergency Info message;
– sets to 0 the value of our auxiliary variable ReceivedAcks counting the

number of ack’s (Emergency Info Ack) received in response to the
Dissemination Of Emergency Info message;

– initialize our timer timer to TIME TO FAULT.

Depending on channel availability some messages will get sent immediately,
some will have to wait accordingly to the rules described in Section 4.3.

Upon receiving message Dissemination Of Emergency Info, each mobile
station will send to the TCC a Emergency Info Ack message. The TCC, in turn,
increments by 1 counter ReceivedAcks for each Emergency Info Ack message
received.

At each sampling time, variable timer is decremented by SAMPLING TIME.
Our invariant asks that it does not take too much to broadcast the emergency

info to all vehicles in the CTI area. That is, (timer 
= 0 or receivedAcks = N).
Using Murϕ syntax this is written as follows.

Invariant "Too much time to deliver"
!(timer = 0.0) | receivedAcks = registeredVehicles;

That is, not too much time is elapsed (!(timer = 0.0)) or all vehicles
have got the Dissemination Of Emergency Info message (receivedAcks =
registeredVehicles).

Of course the more virtual channel we have, the more chances we have to
make our invariant true.
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6 Experimental Results

In this Section we describe our verification experiments and show our experi-
mental results.

Our invariant has been defined in Section 5.
What remains to be defined is the constant TIME TO FAULT denoting the

maximum time by which all emergency messages have to be sent.
Taking TIME TO FAULT too large would make our verification uninteresting.

On the other hand, taking TIME TO FAULT too small would give us false positives
i.e. errors that indeed do not occur in the actual system.

We estimate a reasonable value for TIME TO FAULT as follows. Let v be the
vehicle suggested speed inside the CTI and let d be the minimum distance among
vehicles in the CTI. Suppose that a vehicle speed suddenly drops to 0 (stop).
The following vehicle will bump into such stopped vehicle after

Tbump = d/v

Assuming (our case) that v = 70Km/h and d = 150m, we have Tbump =
7.7 seconds. Considering some lead time the above calculation suggests us to set
TIME TO FAULT to 5 seconds. That is we ask that within 5 seconds all vehicles in
the CTI are reached by the emergency message broadcasted by the TCC.

Two parameters can (and do) lead to state explosion: the number of vehicles
and nondeterminism in the inter-arrival times between vehicles.

Thus, to avoid state explosion, we scale down our model as follows.

– We limit the number of vehicles in the tunnel area.
– We set the inter-arrival time (ENQUEUING TIME) to 5 seconds for 70% of all

vehicles. The remaining 30% vehicles have a non deterministic interarrival
time in the interval [ENQUEUING TIME - 1, ENQUEUING TIME + 1].

Figure 5 shows the experimental results we obtained with Murϕ.
Column Vehicles gives the total number n of vehicles in the CTI area (namely

we have n/2 vehicles per lane).
Column Channels gives the minimum number of virtual channels needed to

pass verification. For example with 10 vehicles we need at least 4 channels to
satisfy our invariant. If we use 3 channels our invariant fails.

Column Rules gives the number of rules fired by the Murϕ verifier during
verification.

Column Time gives the time (in seconds) needed to complete our verification.
Column Reach gives the number of reachable states.
Column State Size gives the number of bit used by Murϕ to represent each

state.
The results in Figure 5 have been obtained using Murϕ 4.2 [4] with 200 MB

RAM (option -m200) bit compression and hash compaction enabled (options -b
-c) on a 800 MHz Pentium 3 Linux PC. Note that computation times in Figure
5 depend on the size of the set of reachable states (column Reach). The latter,
in turn, depends on both number of vehicles and number of channels.
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Of course we may use Figure 5 to dimension our TLC network. It is interesting
to compare the dimensioning obtained from Figure 5 with that obtained from
the approximate worst case analysis of the TLC network.

Figure 6 plots our results from Figure 5 (bottom curve) as well as the curve
obtained from the TLC network dimensioning (top curve) suggested in [11]. On
the x axes we have the number of vehicles in the CTI area (column Vehicles of
Figure 5). On the y axes we have the minimum number of virtual channels that
the TLC network should have (column Channels of Figure 5).

The exact analysis via model checking shows (Figure 6) that we may save on
the virtual channel (and thus on the TLC network size) without compromising
safety. In other words, our analysis allows us to estimate the robustness of our
dimensioning, i.e. how many channel we may lose without compromising safety.

Vehicles Channels Rules
Time
(Sec) Reach

State
Size
(bits)

10 4 77942 1798 26332 2890
20 9 58312 4960 19702 4366
30 12 48477 8443 16379 6294
40 16 98730 31041 33354 8381
50 19 79100 37915 26724 10322
60 22 59470 40916 20094 12263
70 25 170875 152150 57735 14306
80 28 58730 65170 19844 16260
90 31 54085 77480 18273 18214

Fig. 5. Murphi TCS model experimen-
tal results
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Fig. 6. Comparison between Murphi
TCS model results from Figure 5 and
TLC dimensioning in [11]

7 Conclusions

Our experimental results (Section 6) show that the approach presented here
can be used to verify safeness of critical TLC network dimensioning parameters
(namely bandwidth) as well as robustness w.r.t. safety of the TLC network
dimensioning.

The main obstruction to be overcome is state explosion. Thus, in order to
verify larger hybrid systems more efficient model checking algorithms are needed.
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Abstract. We present a formal method based on graph rewriting sys-
tems for the specifications and the proofs of fault-tolerant distributed al-
gorithms. Our method deals with crash failures. In a crash failure system
the process can fail by crashing, i.e. by permanently halting. The faulty
processes are the processes contaminated by the crashes. The method-
ology is formalized in two phases. In the first phase, we build the set of
illegitimate configurations to specify the faults and the faulty processes.
The second phase is devoted to the addition of correction rules in the
initial graph rewriting system used to encode the distributed algorithm.
These rules are able to detect and eliminate the faults locally during the
computation. This method can be implemented under an asynchronous
message passing system which notifies the faults. To illustrate this ap-
proach, we present examples of fault-tolerant distributed spanning tree
algorithms.

Keywords: Distributed systems, Fault-tolerance, Graph rewriting sys-
tems, Local computations.

1 Introduction

Distributed computing systems are becoming larger and larger, heterogeneous
and complex. Since the applications running on these systems require the co-
operation of many components, they are prone to faults and errors of many
different types, leading to inconsistent executions. Most research works refer to
two paradigms that are self-stabilization and fault-tolerance. In the first one,
failures are transient [5,9] and can affect all the processes of the system. The
second paradigm deals with the permanent failures. In [9] we already presented
a method to design self-stabilizing distributed algorithms. In this study we focus
on the permanent failures, called crash failures. The process which crashes is
assumed to stop its execution. There are two principal approaches to improve
the reliability of a system. The first is called fault prevention [14] and the second
approach is fault-tolerance [2,18,3]. The aim of this approach is to provide a
service in spite of the presence of faults in the system.

In a distributed system modeled by a graph, where nodes represent processes
and edges communication links, a configuration is a pair (S, M), where S is a
set of states of all processes and M is a set of messages that are not delivered
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to their receivers. We say that a configuration is correct if it is reachable from
the initial states of all processes and all links are free. Informally, fault-tolerant
algorithms ensure that after any failure, the system will automatically recover
to reach a correct configuration in a finite time. An algorithm is called fault-
tolerant if it eventually starts to behave correctly regardless of the configuration
with fault components. Because the paradigm of designing fault-tolerant dis-
tributed algorithms is challenging and exciting, we are interested to study and
design fault-tolerant algorithms in our framework: local computations [15]. This
a powerful model to encode distributed algorithms.

The motivations of this work are on the one hand to formulate the prop-
erties of fault-tolerant algorithms by using those of rewriting systems yielding
simple and formal proofs. On the other hand, as locality is an important feature
of distributed computing, it is important to understand how to carry on local
computations in the presence of faults.

Many fault-tolerant algorithms have been already designed [1,8,17,11,12].
However, most of these works propose global solutions which require to involve
the entire system. As networks grow fast, detecting and correcting errors globally
is no longer feasible. The solutions that deal with local detection and correction
are rather essential because they are scalable and can be deployed even for large
and evolving networks. Moreover, it is useful to have the correct (non faulty)
parts of the network operating normally while recovering locally the faulty com-
ponents. An important result states that consensus is impossible in asynchronous
message passing system with one crashed process [7]. The basic approaches to
solve this problem are to introduce some weak forms of synchrony [6] or to limit
the number of crashes [13]. Therefore, such a system is improved by detection
service [4,10] and consensus problem can be solved in a fault-tolerant manner.

In this work, we deal with the problem of designing algorithms encoded by
local computations on a distributed computing with crash faults. We consider
an asynchronous system whose processes communicate by message passing. In
our approach, the properties of the program in the absence of faults are encoded
by a rewriting system, and the fault-tolerance properties of the program are de-
scribed with the behavior of the program when some faults occur. The faults are
specified as a set of illegitimate configurations that disturb the state of the pro-
gram after crashes of some component. We propose an operational and practical
methodology to construct fault-tolerant protocols. A fault-tolerant distributed
system is thus the system which encodes the distributed computation in a re-
liable system (without faults) improved by some correction rules. Those rules
consist to detect and eliminate all the illegitimate configurations. This method-
ology is illustrated by an example of a distributed spanning tree construction.

The paper is organized as follows. The model of distributed system and the
model to encode distributed algorithms are explained in Section 2. In Section 3
we present the local computations with illegitimate configurations, an extending
model to represent the faulty processes. Then, we describe our method to design
fault-tolerant systems. Section 4 presents example of fault-tolerant spanning tree
algorithm, an application of our approach. Finally Section 5 concludes the paper.
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2 Preliminaries

2.1 The Model of Distributed System

A distributed computing is modeled by a graph G = (V, E), where V is a set of
nodes and E is the set of edges. Nodes represent processes and edges represent
bidirectional communication links. The network is anonymous, processes com-
municate and synchronize by sending and receiving messages through the links.
The graph is unspecified and each node communicates only with its neighbors. A
process can fail by crashing, i.e. by permanently halting. Communication links
are assumed to be reliable. After a node fails, an underlying protocol notifies
all neighbors of this node about the failure. We assume the existence of a dis-
tinguished node which is usually not crashed. A graph is k − connected if the
graph remains connected after the deletion of any set of (k−1) nodes. The graph
required is assumed to remain connected during the whole execution, we allow
at most (k − 1) failing processes at the same time in the k − connected graph.
The connection of the graph guarantees that each no-crashed process can send
a message to all other no-crashed process. We are interested to study the fault-
tolerant distributed algorithms where the connection of the graph guarantees the
existence of solution. The parameter (k − 1) is the degree of fault-tolerance [1]
of these algorithms. We encode the fault-tolerant algorithms by graph relabeling
systems [15]. As we shall see, this will simplify the proofs of the algorithms.

2.2 Graph Rewriting Systems (GRS) to Encode Distributed
Algorithms

Local computations, and particularly graph relabeling systems [15] are a pow-
erful model which provides general tools to encode distributed algorithms, to
prove their correctness and to understand their power. In such a model we con-
sider a network of processes with arbitrary topology represented as a connected,
undirected graph where nodes denote processes, and edges denote communica-
tion links. Every time, each node and each edge is in some particular state and
this state will be encoded by a node label or an edge label. According to its
own state and to the states of its neighbors, each node may decide to realize
an elementary computation step. After this step, the states of this node, of its
neighbors and of the corresponding edges may have changed according to some
specific computation rules. Let us recall that graph relabeling systems satisfy the
following requirements:

(C1) they do not change the underlying graph but only the labeling of its com-
ponents (edges and/or nodes), the final labeling being the result,

(C2) they are local, that is, each relabeling changes only a connected subgraph
of a fixed size in the underlying graph,

(C3) they are locally generated, that is, the applicability condition of the rela-
beling only depends on the local context of the relabeled subgraph.
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Let L be an alphabet and let G be a graph. We denote by (G, λ) a graph
G with a relabeling function λ : V (G) ∪ E(G) → L. A graph relabeling system
is a triple  = (L, I, P ) where L is a set of labels, I is a subset of L called the
set of initial labels and P a finite set of relabeling rules. Consider an arbitrary
system  = (L, I, P ) and a labeling function λ. A relabeling step will be denoted
by (G, λ) −→

R
(G, λ′). The notion of computation then corresponds to the notion

of relabeling sequence. A relabeling sequence will be denoted by (G, λ) ∗−−−−→
R

(G, λ′). A graph relabeling system R is noetherian if there is no infinite R-
relabeling sequence starting from a graph with initial labels in I. We use the
following notations:

(i) λ(u) : the labels of node u
(ii) λ(u, v) : the labels of the edge connecting the node u and the node v

(iii) B(u) : the set of the neighbors of node u.

The program is encoded with graph relabeling system  = (L, I, P ). The
labels of each process represent the value of its variables. Each rule in the set P
is an action which has the following form:

R1 : RuleN{Precondition}{Relabeling}

The label R1 is the number of the rule and the label RuleN is the name of
the action. The component Precondition of a rule in the program of v0 is a
boolean expression involving the labels of v0 and the labels of its neighbors. The
Relabeling component of a rule of v0 updates one or more labels of v0 and its
neighbors. A rule can be executed only if its precondition evaluates true. The
rules are atomically executed, meaning that the evaluation of a precondition and
the execution of a corresponding relabeling, if the precondition is true, are done
in one atomic step.

3 Fault-Tolerant Graph Relabeling Systems

In our model, processes can fail by crashing. The crash failures are permanent.
After the crashes of some components in the distributed system, some other
components become transiently faulty. We use the following definitions:

(a) Crashed process: a process permanently stops after a crash. It does not follow
its algorithm.

(b) Faulty process: a process which is contaminated by a crashed process. It
follows its algorithm but may deviate from that prescribed by its algorithm.

(c) Correct process: a process which does not belong to the set of crashed pro-
cesses nor to set of faulty processes. It follows its algorithm.

From previous definitions, fault-tolerance is the mechanism to recover the faults
(errors) introduced after the crash of some components during the computation
in the distributed systems. The contamination processes are the processes which
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do not respect the specification of the system after the crashes occurred. These
processes are the neighbors of crashed processes and we are interested to elimi-
nate locally these bad (illegitimate) configurations.

A configuration is a pair (S, M) where S is the set of states of all processes
and M is a set of messages that are not delivered to their receivers. A local
configuration of a process is composed by its state, the states of its neighbors
and the states of its communication links. In this work, we will be interested in
local illegitimate configurations. To this end, we introduce a particular type of
graph relabeling systems.

3.1 Graph Relabeling Systems with Illegitimate
Configurations(GRSIC)

Local configurations will be defined on balls of radius 1. A star-graph is a rooted
tree where all nodes except perhaps the root have degree 1. The root will be
called the center of the star-graph. Since any ball of radius 1 is isomorphic to a
star-graph, illegitimate configurations will be described through their supports
(the labeled star-graphs). More precisely, an illegitimate configuration f is a
labeled star-graph, say (Bf , λf ), where Bf is a star-graph and λf a labeling
function defined on it. Sometimes, it is useful to express such a configuration by
a predicate on the edges, nodes and labels of the corresponding star-graph. For
instance, a graph consisting of two nodes, u labeled A and v labeled B which
are connected by an edge labeled C will be written:

λ(v) = A and ∃ u ∈ B(v) : λ(u, v) = C and λ(u) = B

For a labeled graph (G, λ), we say that a local configuration f = (Bf , λf ) is
illegitimate for (G, λ), if there is no subgraph in (G, λ) which is isomorphic to
f . In other words, there is no ball (neither sub-ball) of radius 1 in G which has
the same labeling as f . This will be denoted by (G, λ)¬ � f . Moreover, if F is
a set of illegitimate configurations, we extend the last notations to (G, λ)¬ � F
meaning that each element of F is an illegitimate configuration. It means that a
labeled graph (G, λ′) contains an illegitimate configuration if it does not exist a
labeled graph (G, λ) where:(G, λ) k−→

�
(G, λ′). The parameter k is a finite number

of relabeling rules’ application.
A graph relabeling system with illegitimate configuration is a quadruple

 = (L, I, P,F) where L is a set of labels, I is a subset of L called the set
of initial labels, P is a finite set of relabeling rules and F is a set of illegit-
imate configurations. Let us give two examples of illegitimate configurations.
Consider the following graph relabeling system given to encode a distributed
spanning tree.

Assume that a unique given process is in an “active” state (encoded by label
A), all other processes being in some “neutral” state (label N) . The tree initially
contains the unique active node. At any step of the computation, an active node
may activate one of its neutral neighbors. This computation stops as soon as all
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the processes have been activated. The spanning tree is then obtained by consid-
ering all the activated nodes and the edge between each node and its activated
node. Every process vi maintains two variables:

• span(vi): is a variable which can have two values:
A: vi is in the tree
N : vi is not yet in the tree

• par(vi): is the port number of the parent of vi in the spanning tree, i.e the
node which activated vi.

An elementary step in this computation may be depicted as a relabeling step by
means of the relabeling rule R1, given in the following, which describes the corre-
sponding label modifications (remember that labels describe process status):

R1 : Spanning rule
Precondition :
• λ(v0) = (span(v0), par(v0))
• span(v0) = N
• ∃ vi ∈ B(v0), span(vi) = A

Relabeling :
• span(v0) := A
• par(v0) := vi

T1 T2 T3

T4

A

N

N N

N

N

A

A N

N

NN

A

A N

N

AA

A A

A

A A

N A

A

A

A

AA

Fig. 1. Example of a distributed spanning tree’s computation

Whenever an N -labeled node finds one of its neighbors labeled A, then the
corresponding subgraph may rewrite itself according to the rule. After the ap-
plication of the relabeling rule, node v0 labeled (N, 0) changes its label to (A, vi)
where vi is its neighbor labeled A. A sample computation using this rule is given
in Fig 1. In this figure, the value of the variable span(u) is the label associ-
ated to the node. The value of the variable par(u) is shown by ↑. Relabeling
steps may occur concurrently on disjoint parts on the graph. The set Em is
the set of edges (vi, par(vi)) ∀ vi ∈ V . When the graph is irreducible, i.e no
rule can be applied, a spanning tree of a graph G = (V, E) is computed. This
tree is the graph Gt = (V, Em) consisting of the nodes of G and the set of the
marked edges.
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The previous algorithm can be encoded by the relabeling system 1 =
(L1, I1, P1) defined by L1 = {{N, A}× {N}}, I1 = {{N}× {0}} and P1 = {R1}.

A N

Crashed process

vi is a faulty proces

Fig. 2. The faulty process with the crashed process

Clearly, a node labeled A must have a parent, if span(vi) = A and vi is not
root, then there exists at least one neighbor of vi labeled A, or a parent of vi is
crashed and vi is a faulty process as shown in Fig 2. Formally, we deal with the
following predicate f1 : span(v) = A, v 
= root and ¬∃ u ∈ B(v) : span(u) = A.

3.2 Local Fault-Tolerant Graph Relabeling Systems (LFTGRS)

A local fault-tolerant graph relabeling system is a triple  = (L,P ,F) where L
is a set of labels, P a finite set of relabeling rules and F is a set of illegitimate
local configurations. A local fault-tolerant graph relabeling system must satisfy
the two following properties:

• Closure : ∀(G, λ) ∈ GL, if (G, λ)¬ � F then ∀(G, λ′)
/(G, λ) ∗−→

�
(G, λ′) : (G, λ′)¬ � F

• Convergence : ∀(G, λ) ∈ GL, ∃ an integer l :
(G, λ) l−→

�
(G, λ′) : (G, λ′)¬ � F

As for fault-tolerant algorithms, the closure property stipulates the correct-
ness of the relabeling system. A computation beginning in a correct state remains
correct until the terminal state. The convergence however provides the ability
of the relabeling system to recover automatically within a finite time (finite se-
quence of relabeling steps). The graph required is assumed to remain connected
during the whole execution, we allow at most (k − 1) failing processes at the
same time in the k − connected graph. The connection of the graph guarantees
the existence of a solution after the crashes in the graph. Consider a problem of
distributed spanning tree. In our example, the existence of a spanning tree of a
graph G is assured by the connection of the graph G.

As we shall see, the set of relabeling rules P is composed by the set of re-
labeling rules P used for the computation and some correction rules Pc that
are introduced in order to eliminate the illegitimate configurations. The latter
rules have higher priority than the former in order to eliminate faults before
continuing computation.
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Theorem 1. If  = (L, I, P,F) is a graph relabeling system with illegitimate
configurations (GRSIC) then it can be transformed into an equivalent local fault-
tolerant graph relabeling system (LFTGRS) s = (L, Ps,F).

Proof. We will show how to construct s = (L, Ps,F). It is a relabeling sys-
tem with priorities. To each illegitimate local configuration (Bf , λf ) ∈ F , we
add to the set of relabeling rules the rule Rc = (Bf , λf , λi) where λi is a
relabeling function associating an initial label to each node and edge of Bf .
The last relabeling function depends on the application; for example, the ini-
tial value of a node label is N in general, and the label of an edge is 0. The
rule Rc is, in fact, a correction rule. Thus the set of Ps consists of the set
P to which is added the set of all correction rules (one rule for each illegiti-
mate configuration). Finally, we give a higher priority to the correction rules
than those of P , in order to correct the configurations before applying the
rules of the main algorithm. It remains to prove that it is a fault-tolerant
system.

• Closure: Let (G, λ)¬ � F . If (G, λ′) is an irreducible graph obtained from
(G, λ) by applying only the rule of P , then (G, λ′) does not contain an ille-
gitimate configuration. This can be shown by induction on the sequences of
relabeling steps [16,15].

• Convergence: Let GL be the set of graphs G and h : GL −→ IN be an
application associating to each graph G, the number of its illegitimate con-
figurations, then for a graph (G, λ), we have the following properties:

. The application of a correction rule decreases h(G).

. The application of a rule in P does not increase h(G).

Since, the correction rules have higher priority than the rules in P , and since
the function h is decreasing, then it will reach 0 after a finite number of relabel-
ing steps. ��

Note that the last property of convergence can also be proved by using the
fact that the relabeling system induced by the correction rules is noetherian. Let
us note that the correction rules depend on the application. While the proofs
above are based on the local reset (to the initial state) which can be heavy
because it may induce a global reset by erasing all the computations, it is more
efficient for particular applications to choose suitable corrections as we shall see
in the following examples.

We present in the sequel a spanning tree computed by a local fault-tolerant
graph relabeling system. We start by defining some illegitimate configurations to
construct a set F1, then we improve the system by adding the correction rules to
detect and eliminate these configurations. For the present system, we deal with
the set F1 defined bellow.

Definition 1 (correct node (faulty)). A node v is correct (resp. faulty) if it
satisfies one (resp. it satisfies none) of the following properties:
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1. if v is labeled (A, 0) then v = root,
2. if v is labeled (A, u) then there exists one node u labeled (A, w),
3. if v is labeled (N, 0) then there does not exist node u labeled (A, v).

From Definition 1, F1 = {f1, f2}, where f1 and f2 are defined as :
f1 : ∃ v0 
= root, span(v0) = A and ¬∃ vi ∈ B(v0) : par(v0) = vi and
span(vi) = A.
f2 : ∃ v0, span(v0) = A, par(v0) = vi and span(vi) = N .

The correction rules are deduced from the previous configurations:

Rc1 : Crash of a parent rule

Precondition :

• v0 �= root
• λ(v0) = (span(v0), par(v0))
• span(v0) = A
• ¬∃ vi ∈ B(v0) : par(v0) = vi and span(vi) = A

Relabeling :

• span(v0) := N
• par(v0) := 0

Rc2 : Cleaning rule

Precondition :

• λ(v0) = (span(v0), par(v0))
• span(v0) = A
• par(v0) = vi

• span(vi) = N

Relabeling :

• span(v0) := N
• par(v0) := 0

We assume in this system the existence of a distinguished node called the root
which is initially labeled A and which is usually correct.

We define the relabeling system s1 = (L1, Ps1 ,F1), where Ps1 = {R1, Rc1,
Rc2} such that Rc1, Rc2 � R1. We now state the main result.

Theorem 2. The relabeling system s1 is locally fault-tolerant. It encodes a
fault-tolerant distributed algorithm to compute a spanning tree.

Proof. The proof of fault-tolerance results from Theorem 1. To show that the
result is a spanning tree, we use the following invariants which can be proved by
induction on the size of the relabeling sequences:

(I1) All N -labeled nodes are 0-parent.
(I2) Each parent is an A-labeled node.
(I3) The subgraph induced by the node-parent edges is a tree.
(I4) The obtained tree of the irreducible graph is a spanning tree. ��
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Fig. 3. Example of fault-tolerant spanning tree algorithm execution

Fig. 3 gives a sample computation of a spanning tree with a crash of a process after
the step T4. The steps T1, T2 and T3 represent the application of the main rule R1.
Theprocess corresponding to thenode shownbya star crashes after the stepT4,and
remains in a faulty state until the end of the execution. Since the edge incident to
this node belongs to the spanning tree (bold edge), it must be deleted from the tree
and the adjacentnode will be labeled N . That is done in step T5 which is an applica-
tion of Rc1 by the node in the square. Now, the latter node labeled N is a parent of
a node labeled A. In step T6, the node in the square applies the rule Rc2 by relabel-
ing itself to N . Note that since Rc1 and Rc2 have highest priority, it will be applied
on the context of the faulty node before R1. Then, in step T7, T8, T9, the rule R1 is
applied allowing to continue the computation of the spanning tree by avoiding the
faulty node.

4 Example: Spanning Tree with Termination Detection

Let us illustrate fault-tolerant distributed algorithm which computes a spanning
tree of a network with termination detection. We start with an algorithm in a
network without crashes.

Assume that a unique given process called the “root” is in an “active” state
(encoded by label (A,0)), all other processes being in some “neutral” state
(label (N,0)). The tree initially contains the unique active node. At any step
of the computation, an active node may activate one of its neutral neighbors.
Then the neutral neighbor becomes active and marks with the variable par its
activated neighbor. When node v0 cannot activate any neighbor because all of
these have already been activated by some other nodes, v0 transforms its state
into a “feedback” state. When all the activated nodes(“sons”) of v0 are in the
“feedback” state, it transforms its state into a “feedback” state. The root detects
the termination of the algorithm when it is in the “feedback” state. Every process
vi maintains two variables:
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• span(vi): is a variable which takes three values:
N : vi is not yet in the tree
A: vi is in the tree
F : vi is in the feedback state, it finds all its neighbors in the tree and all its
sons in the feedback state
T : the termination detection at the root

• pari: is the number of the port connected vi to its activated neighbors

We consider the following relabeling system which encodes a distributed al-
gorithm computing a spanning tree with termination detection, 2 = (L2, I2, P2)
defined as L2 = {{N, A, F, T }×{N}}, I2 = {{N}×{0}}, P2 = {R1, R2, R3, R4}.
The label of each node v0 is (span(v0), par(v0)). Now we present the set of rules:

R1 : Root diffusion rule

Precondition :

• λ(v0) = (span(v0), par(v0))
• v0 =root
• span(vi) = N

Relabeling :

• span(v0) := A

R2 : Node diffusion rule

Precondition :

• λ(v0) = (span(v0), par(v0))
• span(v0) = N
• ∃ vi ∈ B(v0), span(vi) = A

Relabeling :

• span(v0) := A
• par(v0) := vi

R3 : Node feedback rule

Precondition :

• λ(v0) = (span(v0), par(v0))
• v0 �= root
• span(v0) = A
• ∀ vi ∈ B(v0) : (span(vi) �= N) and (par(vi) �= v0 or span(vi) = F )

Relabeling :

• span(v0) := F

R4 : Root detection of termination rule

Precondition :

• λ(v0) = (span(v0), par(v0))
• v0 = root
• span(v0) = A
• ∀ vi ∈ B(v0) : span(vi) = F

Relabeling :

• span(v0) := T
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We present in the sequel a spanning tree with termination detection computed
by a local fault-tolerant relabeling system. We start by defining some illegitimate
configurations to construct a set F2, then we improve the system by adding the
correction rules to detect and eliminate these configurations.

Note that we distinguish between crashed node and faulty node as explained
in the previous section. A faulty node should be viewed as one which has to
reconstruct the computation because of the crash of some other nodes.

Definition 2 (correct node (faulty)). A node v is correct (resp. faulty) if it
satisfies one (resp. it satisfies none) of the following properties:

1. if span(v) ∈ {A, F, T } and par(v) = 0 then v = root,
2. if v is labeled (A, u) then there exists one node u labeled (A, w),
3. if v is labeled (F, u) then there exists one node u labeled (l, w), where l ∈

{A, F},
4. if v is labeled (N, 0) then there does not exist node u labeled (l, v), where

l ∈ {A, F}.
For the present system, we deal with the following set F2 = {f1, f2, f3} where

f1, f2 and f3 are:
f1 : ∃ v0 
= root, span(v0) = A and ¬∃ vi ∈ B(v0) : par(v0) = vi and
span(vi) = A.
f2 : ∃ v0 
= root, span(v0) = F and ¬∃ vi ∈ B(v0) : par(v0) = vi and
span(vi) ∈ {A, F}.
f3 : ∃ v0, span(v0) ∈ {A, F}, par(v0) = vi and span(vi) = N .

The correction rules are deduced from the previous configurations:

Rc1 : Crash of a parent rule 1

Precondition :

• v0 �= root
• λ(v0) = (span(v0), par(v0))
• span(v0) = A
• ¬∃ vi ∈ B(v0) : par(v0) = vi and span(vi) = A

Relabeling :

• span(v0) := N
• par(v0) := 0

Rc2 : Crash of a parent rule 2

Precondition :

• v0 �= root
• λ(v0) = (span(v0), par(v0))
• span(v0) = F
• ¬∃ vi ∈ B(v0) : par(v0) = vi and span(vi) ∈ {A, F, T}

Relabeling :

• span(v0) := N
• par(v0) := 0
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Rc3 : Cleaning rule
Precondition :
• λ(v0) = (span(v0), par(v0))
• span(v0) ∈ {A, F}
• par(v0) = vi

• span(vi) = N
Relabeling :
• span(v0) := N
• par(v0) := 0

We assume in this system that the “root” is usually correct. We define the
relabeling system s2 = (L2, Ps2 ,F2), where L2 = {{N, A, F, T } × {N}} and
Ps2 = {R1, R2, R3, Rc1, Rc2, Rc3} such that Rcj � Ri. We now state the main
result:

Theorem 3. The relabeling system s2 is locally fault-tolerant. It encodes a
fault-tolerant distributed algorithm to compute a spanning tree with termination
detection.

Proof. The proof of local fault-tolerant results from Theorem 1. To show that the
result is a spanning tree, it suffices to use invariants like those of the preceding
example. ��

5 Conclusion

We have presented a method to design fault-tolerant algorithms encoded by
local computations. The method consists of specifying a set of illegitimate con-
figurations to describe the faults that can occur during the computation, then
adding local correction rules to the corresponding algorithm which is designed
in a safe mode. These specific rules are of high priority and are performed in or-
der to eliminate the faults that are detected locally. We introduce and illustrate
this approach with a distributed spanning tree algorithms in k-connected graph
which allows to tolerate until (k − 1) crashed faulty processes.

Our approach can be applied in practical applications as a generic and au-
tomatic method to deal with faults in distributed systems. For instance, in a
very large network, assume that the diffusion of messages between sites is per-
formed using a spanning tree of the network. Now, if some central node crashes,
then our method allows to find a solution to continue the diffusion service. We
are currently working on applying our solution to particular architectures and
mainly web services.
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Abstract. Safety analysis techniques have traditionally been performed
manually by the safety engineers. Since these analyses are based on an
informal model of the system, it is unlikely that these analyses will be
complete, consistent, and error-free. Using precise formal models of the
system as the basis of the analysis may help reduce errors and provide a
more thorough analysis. Further, these models allow automated analysis,
which may reduce the manual effort required.

The process of creating system models suitable for safety analysis
closely parallels the model-based development process that is increasingly
used for critical system and software development. By leveraging the
existing tools and techniques, we can create formal safety models using
tools that are familiar to engineers and we can use the static analysis
infrastructure available for these tools. This paper reports our initial
experience in using model-based safety analysis on an example system
taken from the ARP Safety Assessment guidelines document.

1 Introduction

Traditionally, safety engineers manually perform analyses, such as fault tree anal-
ysis, based on informal design models and requirements documentation. Unfor-
tunately, these analyses are highly subjective and dependent on the skill of the
practitioner. We hypothesize that by redirecting the effort to build models of the
system under study and its fault model we can both reduce the effort involved
and increase the quality of the analysis. To this end, we propose a model-based
safety analysis process in which engineers create formal models for both the
system design and safety analysis, and use automated analysis tools to analyze
their behavior. We describe our early experience towards this goal in this paper.

Our approach is to adapt model-based development techniques using formal
modeling languages and tools such as SCADE [9] and Simulink [5] for safety
analysis. By integrating these tools into safety analysis, it is possible to cre-
ate system models that can be simulated and analyzed using a variety of static
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analysis techniques. This combination allows an analyst to quickly explore dif-
ferent “what-if” scenarios on combinations of faults using simulation, and also
allows formal verification of different aspects of fault tolerance and, potentially,
autogeneration of safety analysis artifacts such as fault trees.

We describe our preliminary experiences using model-based safety analysis
with a wheel brake system example adopted from ARP 4761 [1], a standards
document for safety analysis in the avionics industry. With the help of this
example, we illustrate how we can derive benefits from a model-based safety
analysis in a practical setting using existing tools. At the same time, this exercise
exposes several issues and shortcomings that need to be addressed to make formal
safety analysis acceptable in practice.

2 Safety Assessment Process

The overall safety assessment process that is followed in practice in the avionics
industry is described in the SAE standard ARP 4761 [1]. Our summary in this
section is largely adopted from ARP 4761.

PSSAs SSAs

System Requirements and
Objectives

Aircraft FHA

System FHAs

System FTAs

Derived Safety
Requirements

Design

System FMEAs

Aircraft FTA

System FTAs

Certification

Aircraft Integration Cross-check

System Integration Cross-check

FC&C

FC&C

FE&P

FE&P

Fig. 1. Traditional “V” Safety Assessment Process

Figure 1 shows an overview of the safety assessment process as recommended
in ARP 4761. The process includes safety requirements identification (the left
side of the “V” diagram) and verification (the right side of the “V” diagram), that
support the aircraft development activities. An aircraft level Functional Hazard
Analysis (FHA) is conducted at the beginning of the aircraft development cy-
cle, which is then followed by system level FHA for individual sub-systems. The
FHA is followed by Preliminary System Safety Assessment (PSSA), which de-
rives safety requirements for the subsystems, primarily using Fault Tree Analysis
(FTA). The PSSA process iterates with the design evolution, with design changes
necessitating changes to the derived system requirements (and also to the fault



124 A. Joshi and M.P.E. Heimdahl

trees) and potential safety problems identified through the PSSA leading to de-
sign changes. Once design and implementation are completed, the System Safety
Assessment (SSA) process verifies whether the safety requirements are met in the
implemented design. The system Failure Modes and Effects Analysis (FMEA)
is performed to compute the actual failure probabilities on the items. The ver-
ification is then completed through quantitative and qualitative analysis of the
fault trees created for the implemented design, first for the subsystems and then
for the integrated aircraft.

We propose to modify this traditional “V” process so that the lower level PSSA
and SSA activities are performed based on a formal model of the system under
consideration. Figure 2 shows the modified “V” diagram for model-based safety
analysis. The shaded blocks are those activities that will be modified or added.

System Requirements
and Objectives

Aircraft FHA

System FHAs

Qualitative
System FTAs

Formal
Model

System FMEAs

Aircraft FTA

System FTAs

Certification

Aircraft Integration Cross-check

System Integration Cross-check

FC&C

FC&C

FE&P

FE&P

Automated Fault Tree
Generation

Derived Safety
Requirements

Automated Requirements
Verification

Fault
Model

Formal Model
with Faults

Fault
Injection

Automated Fault
Tolerance Verification

Fig. 2. Modified “V” Safety Assessment Process

As we can observe from Figure 2, the parts of the analysis that are primarily
affected are at the bottom of the “V”. The biggest difference is that the safety
analysis activities at this level are now focused around a formal model of the
system behavior, and that many of the artifacts of the safety analysis can be
derived from this model. The idea is to try to pose the right verification questions
to formal tools (such as model checkers and theorem provers) so that it is possible
to derive the necessary safety analysis information. We then wish to turn the
results of these analyses back into artifacts that can be easily understood and
used by safety engineers.

3 Model-Based Safety Analysis Process

The primary step in a model-based safety analysis is creating a formal specifica-
tion of the system model. The behavior of the system can be specified in formal
specification languages supporting graphical and/or textual representation; e.g.,
synchronous (textual) languages like RSML−e [10] and Lustre [6], and graphical
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tools like Simulink [5] and SCADE [9]. The logical and physical architecture of
the system can be specified in an architecture description language.

The derived safety requirements are determined in the same way as in the
traditional “V” process. To support automated analysis, the safety properties
must be expressed in some formal notation. There are several candidate nota-
tions, including temporal logics like CTL/LTL or higher order predicate logics.
One can also specify safety requirements as small behavioral models in some
formal specification language.

To be able to apply formal verification tools to perform safety analysis, in ad-
dition to formalizing the system model, we also need to formalize the fault model.
The fault model, in addition to common failure modes like non-deterministic,
inverted, stuck at etc, could encode information regarding fault propagation,
simultaneous dependent faults and fault hierarchies, etc.

After specifying the fault model and composing it with the original system
model, the safety analysis involves verifying whether the safety requirements hold
in presence of the faults defined in the fault model. The safety engineer can per-
form exploratory analysis using formal verification tools, e.g., what is the largest
n such that the particular safety requirement holds in face of n faults?. The notion
could also be specialized to a specific combination of faults rather than random
combinations. With adequate tool support, the formal verification results could
be represented in the form of familiar safety artifacts like fault trees.

In the following sections, we illustrate some of our early results in applying
the model based safety analysis process on a wheel brake system (WBS) example
derived from the ARP safety analysis guidelines [1]. In section 4, we describe the
informal requirements of the example. Next, in Sections 5 and 6, we describe
how the system model without failures can be encoded in Simulink and how we
can verify safety properties of interest on the model. In section 7, we describe
a simple fault model for the WBS components and extend our system model
to include component faults. Section 8 briefly describes the exploratory safety
analysis performed on the extended model using the SCADE Design Verifier.

4 Wheel Brake System Example

We illustrate some of the basic activities involved in model based safety analysis
with the help of an example of a Wheel Brake System (WBS), as described in
ARP 4761 - Appendix L [1]. We chose this example primarily because the ARP
4761 document is used as the main reference for safety assessment by majority
of the safety engineers in the avionics community.

This section consists of excerpts from the ARP 4761 document giving the
informal requirements for WBS. The informal WBS diagram taken from the
ARP 4761 document is shown in Figure 3. The WBS is installed on the two
main landing gears. Braking on the main gear wheels is used to provide safe
retardation of the aircraft during taxiing and landing phases, and in the event of a
rejected take-off. Braking on the ground is either commanded manually, via brake
pedals, or automatically (autobrake) without the need for pedal application. The
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Fig. 3. Wheel Brake System as shown in ARP 47-61

Autobrake function allows the pilot to pre-arm the deceleration rate prior to
takeoff or landing. When the wheels have traction, the autobreak function will
control break pressure to provide a smooth and constant deceleration.

Based on the requirement that loss of all wheel braking is less probable than
5·10−7 per flight, a design decision was made that each wheel has a brake assembly
operated by two independent sets of hydraulic pistons. One set is operated from
the GREEN pump and is used in the NORMAL braking mode. The ALTERNATE brak-
ing system is on standby and is selected automatically when the NORMAL system
fails. The ALTERNATE system is supplied pressure by both the BLUE pump and an
ACCUMULATOR, both of which can be used to drive the brake. The accumulator is
the reserve pressure reservoir with built up pressure that can be reliably released if
both of the two primary pumps (the Blue and Green pumps) fail. The accumulator
drives the ALTERNATE system in the EMERGENCY braking mode.

Switch-over between the hydraulic pistons and the different pumps is auto-
matic under various failure conditions, or can be manually selected. Reduction
of GREEN pressure below a threshold value, either from loss of the GREEN pump
itself or from its removal by the Break System Control Unit (BSCU) due to the
presence of faults, causes an automatic selector to connect the BLUE supply to
the ALTERNATE brake system. If the BLUE pump fails, then the ACCUMULATOR is
used to supply hydraulic pressure.

An anti-skid facility is available in both the NORMAL and ALTERNATE system
modes. The anti-skid function is similar to the anti-lock brakes common on
passenger vehicles and operates largely in the same manner.

In the NORMAL mode, the brake pedal position is electronically provided to
a braking computer. This in turn produces corresponding control signals to the
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brakes. In addition, the braking computer monitors various signals that denote
certain critical aircraft and system states to provide correct brake functions
and improve system fault tolerance, and generates warnings, indications and
maintenance information to other systems.
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Fig. 4. Nominal Wheel Brake System in Simulink
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5 Nominal Wheel Brake System in Simulink

The informal requirements of the WBS as specified in the ARP document were
not found to be particularly rigorous. To implement a working model, we had
to make several assumptions about the system that still need to be confirmed
with the authors of ARP 4761. Figure 4 illustrates how we can model the WBS
in Simulink. The model captures both digital and mechanical components of the
system and reflects the informal structure of the system as given in the ARP
document.

WBS (the highest level component/system) consists of a digital control unit,
the BSCU, and two hydraulic pressure lines, NORMAL (pressured by the Green
Pump) and ALTERNATE (pressured by the Blue Pump and the Accumulator)
line. The system takes the following inputs from the environment - PedalPos1,
PedalPos2, AutoBrake, DecRate, ACSpeed, Skid, and MechPedal. All of the
above inputs, except MechPedal, are forwarded to the BCSU for computing the
brake commands. There are also a number of mechanical components along the
two hydraulic lines, for example different types of valves. We have defined a
library of common components such as the MeterValve, IsolationValve, Pump,
etc., which are then instantiated at various locations in the WBS. The outputs
of the WBS are Normal Pressure (hydraulic pressure at the end of the Normal
line), Alternate Pressure (hydraulic pressure at the end of the Alternate line)
and System Mode (computed by the BSCU).

Due to lack of space, we cannot describe the Simulink model in full detail1.
To illustrate some aspects of fault modelling, we explain the implementation of
the MeterValve component, which is used in three places in Figure 4: the CMD/AS
MeterValve on the Normal hydraulic line and the AS MeterValve and Manual
MeterValve on the Alternate hydraulic line. The meter valve implementation
takes two inputs, the incoming pipe pressure and the valve position command,
and generates an output pressure which depends on the valve position.

6 System Verification

After creating the system model, we would like to verify that some basic safety
properties hold on the nominal system, an idealized system containing no faults.
As a first step, we need to formalize the derived safety requirements as safety
properties. Simulink does not directly support any model-checking tools, so to
perform this step, we import the Simulink model into SCADE, which contains
the Design Verifier model checker. The properties can be formalized in Lustre,
which is the underlying textual notation for SCADE.

Throughout this paper, we use an example safety requirement that is given
in the ARP 4761 document,

Loss of all wheel braking (unannunciated or annunciated) during landing
or RTO shall be less than 5 · 10−7 per flight.

1 We will publish the complete Simulink model on our web site:
http://www.cs.umn.edu/crisys
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Since we are not considering annunciations in this model and we are not
considering any quantitative analysis at this stage, let us simplify this safety
requirement and state the undesirable event we are trying to prevent as simply,

Loss of all wheel braking during landing or RTO shall not occur.

We consider that the hydraulic pressure at the output should be above some
minimum constant threshold to have any effect on the braking. Recall from
Section 4 that we have variables PedalPos1, PedalPos2, and MechPedal, that
describe the electric and mechanical pedal positions, respectively. We can state
our safety property as,

When all pedals are pressed, then either the normal pressure or the al-
ternate pressure should be above the threshold.

We first define two intermediate variables in Lustre to represent whether all of
the pedals are being pressed (AllPed) and whether any pressure is being provided
to the brakes (SomePressure).

AllPed = (IS_PedalPressed(PedalPos1) and IS_PedalPressed(PedalPos2)

and IS_PedalPressed(MechPedal));

SomePressure = (Normal_Pressure > threshold) or

(Alternate_Pressure > threshold);

IS PedalPressed is a predicate that returns true when pedal is pressed. AllPed
and SomePressure are then used in the property SomePressure Property as

SomePressure_Property = Implies(AllPed,SomePressure);

We used Design Verifier in an attempt to verify this property, which was initially
found to be falsifiable. If the wheels do not have traction, the anti-skid function-
ality will be activated and the pressure at the wheels may indeed be lowered
below the threshold to allow the wheels to regain traction. Since this is expected
and acceptable behavior, we modify our safety property accordingly, by extend-
ing AllPed to AllPedNoSkid, where we require that the pedals are pressed and
that we are not skidding.

AllPedNoSkid = (IS_PedalPressed(PedalPos1) and IS_PedalPressed(PedalPos2)

and IS_PedalPressed(MechPedal) and not (Skid));

Now, the SomePressure property is verified by Design Verifier: if all pedals are
pressed and we are not skidding then we will have some pressure at the brakes.

7 Extension with a Fault Model

In Section 5, we created a model describing the nominal behavior of the system.
To perform the safety analysis on this model, we would like to extend it to
describe possible fault behavior. This section illustrates specification of the fault
model and extension of the nominal model with this fault behavior in Simulink.

Failure modes are introduced in the analysis to capture the various ways in
which the components of the system can malfunction. We want to be able to
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model both persistent and intermittent failures and also multiple simultaneous
failures. Traditionally, failure modes specify predefined ways in which compo-
nents can fail, e.g., the output from a digital component might be stuck at
a particular value, inverted, take on a nondeterministic value (unconstrained
value), etc. In the WBS example, the mechanical failures considered include
different variants of stuck valves corresponding to the different kinds of valves,
power failure to the BSCU, and pump failures. We also consider one digital fail-
ure mode for the BSCU component, an inverted signal for the Boolean Sel Alt
(select alternate system) output.
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Fig. 5. Binary Stuck at failure mode and MeterValve fault extension

Let us consider the notion of a valve stuck open or closed in more detail.
The manifestation of this failure must consider the original input pressure to
the component (in case the valve is stuck open) and override the normal output
of the valve. We create a simple fault model in which a component can either
be stuck open or closed in Figure 5. Binary Stuck at failure mode switches be-
tween the stuck value and the nominal value depending on the boolean Fail Flag
(fault trigger). The stuck value could be either Stuck Val 1 (open) or Stuck Val 0
(closed) depending on the boolean Stuck Choice. Thus, we define two ‘special’
outputs for the failure mode depending on whether the component is stuck open
or closed; if it is not stuck, we output the nominal value of the original com-
ponent. We then extend the MeterValve component to MeterValve Stuck using
this failure mode (Figure 5). When Stuck Choice is 1 the meter valve is stuck
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open and the input pressure is forwarded as is to the output, ignoring the valve
position command. When Stuck Choice is 0 the valve is stuck closed and the
output pressure is set to 0.

To extend the original model, the nominal mechanical components from the
original model (Figure 4) are replaced by the corresponding components ex-
tended with failure modes. To control the fault behavior of the extended model,
a number of fault inputs need to be added to the system. For example, all the
valve components, extended by the stuck at failure mode, have two additional
inputs: Stuck Flag and Stuck Val. The rest of the failure modes require a single
input signaling the occurrence of a fault. After extension, the model looks fairly
similar to Figure 4, but adds some complexity and clutter due to the number of
additional inputs necessary to describe the possible faults.

8 Exploratory Safety Analysis

After extending the model with the faults, we would like to check the fault
tolerance of our system, i.e., we want to check that the system is tolerant to a
certain maximum number of faults. More specifically, we would like to investigate
two types of faults using this approach—transient single step faults and faults
lasting over an arbitrary number of steps, which can simulate permanent faults.
For this example we again formalize our safety properties in Lustre and use the
SCADE Design Verifier for verification. To make it easier to specify properties,
we extend our model to compute the total number of fault inputs that are true
in the current step (this number given by NumFails).

First, let us verify if our safety requirement holds in the presence of one fault.

If there is one fault and all pedals are pressed in absence of skidding,
then either the normal pressure or the alternate pressure should be above
the threshold.

We can formalize this in Lustre as,

Prop_Orig = fby(Implies(((NumFails = 1) and AllPedNoSkid),

SomePressure), 1, true) ;

Lustre expressions always look at the current and past instants. Implies encodes
implication and pre operator examines values of variables from previous steps.
The fby operator looks at the n-th previous value of an expression (in this case,
the Implies expression). The second argument (1) of the fby expression is the
value for n. The third argument (true) describes the value of the fby operator
in the initial state.

When attempting to verify Prop Orig using Design Verifier, it returns a
counterexample. We realize that, due to some latency, the system cannot respond
to most faults in the same step in which they occur. Unfortunately, even after
extending the number of steps to respond, if our only constraint is on the number
of faults, the model checker finds a counterexample. It gives a scenario in which
the fault migrates: the system toggles between faults on the Normal line and the
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Alternate line and can never recover. Since this situation is highly unlikely, we
rule it out. We do so by stating that any transient fault will be followed by a
few steps in which no other transient fault occurs. In other words,

If there is one single step fault and in the next step all pedals are pressed
in absence of skidding, then in the next step either the normal pressure
or the alternate pressure should be above the threshold.

The encoding in Lustre is as follows:

Antecedent = pre(NumFails = 1) and AllPedNoSkid and (NumFails = 0);

Consequent = SomePressure ;

Prop_SingleStepSingleFail = fby(Implies(Antecedent, Consequent),2,true) ;

However, the Design Verifier still returns with a counterexample. We observe
that there is an additional step delay for the system to detect failures located
on the NORMAL system and switch to the ALTERNATE system. We deem this delay
acceptable and modify our property again. After allowing for an additional delay
in the property, the Deign Verifier verifies it. Thus, we can formally verify that
our system can recover from one transient fault in at most three steps.

Now, we want to investigate how our system responds to persistent faults.
To describe this fault scenario, we define a boolean variable, Changed, which
takes on the value true when one of more of the fault trigger inputs change their
values. Using this variable, we can describe persistent faults in which the same
fault occurs for an arbitrary number of steps. The following property is the same
as the earlier transient property, except that now we have not(Changed) instead
of (NumFails = 0) to encode that the same fault persists in the following two
steps.

Antecedent=pre(pre(NumFails = 1)) and pre(AllPedNoSkid and not(Changed))

and AllPedNoSkid and not(Changed) ;

Consequent=pre(SomePressure) or SomePressure ;

Prop_MultiStepSingleFail = fby(Implies(Antecedent,Consequent),3,true) ;

Design Verifier again finds a counterexample, and from this, we observe that
there is an additional delay required for the system to respond to some persistent
faults, in the situation when the system is switching back to the NORMAL hydraulic
system from the ALTERNATE system. In this instance, it takes an additional step
to check if a persistent fault on the NORMAL line is still present. To handle this
case, we add one additional step for the system to stabilize. Design verifier no
verifies that the system will behave as expected. Thus, we verify that the system
can recover from single transient or persistent faults within an acceptable time
frame.

However, we can easily observe that the system is not tolerant to two (or
more) simultaneous continuous failures. Design Verifier immediately comes back
with a counter-example where two meter valves fail along both the normal and
the alternate hydraulic lines. Note that, the safety engineer can explore different
combinations of faults that the system can tolerate. There will not be even a
glitch in the output pressure if all the components on the Alternate line fail when
no component along the Normal line fails.
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9 Related Work

Most of the work in automating safety analysis has been in automatically gener-
ating fault trees. FSAP/NuSMV-SA [4] is a tool, developed as part of the ESACS
project [3], for automating the generation of fault trees. The ESACS methodol-
ogy supports integrated design and safety analysis of systems. The FSAP tool
requires the system model to be specified in NuSMV and has support for failure
mode definition and model extension through automatic failure injection. FSAP
uses the NuSMV model checker to generate a fault tree given a top level event
in temporal logic. Though FSAP is a very powerful tool, it has disadvantages,
which might limit its applicability to practical systems. A fault tree generated
by FSAP has a flat structure; the structure of the generated fault trees is an
“or-and” structure, i.e., it is a disjunction of all the minimum cut sets, with
each minimum cut set being a product of basic events. A fault tree generated
by a traditional manual analysis is usually more intuitive to read as the analyst
creates the fault tree to correspond to the structure of the system. Also, we
observed that there isn’t a lot flexibility in defining the fault model - no good
way of specifying fault propagation, simultaneous/dependent faults, and persis-
tent/intermittent faults. Also, FSAP cannot describe even moderately complex
faults, such as stuck at, as it can only affect the output of a component.

HiP-HOPS (Hierarchically Performed Hazard Origin and Propagation Stud-
ies) [8] [7] is a method for safety analysis that enables integrated assessment of a
complex system from the functional level through to the low level of component
failure modes. The failure behavior of components in the model is analyzed using
a modification of classical FMEA called Interface Focused-FMEA (IF-FMEA).
One of the strong points of this approach is that the fault tree synthesis algo-
rithm neatly captures the hierarchical structure of the system in the fault tree.

The Altarica language was designed to formally specify the behavior of sys-
tems when faults occur [2]. An Altarica model can be assessed by means of
complementary tools such as fault tree generator and model-checker. In terms of
fault modeling, there seems to be no good support for simultaneous and depen-
dent failures. Altarica does not differentiate between transient and permanent
faults.

10 Summary and Conclusion

We describe Model-Based Safety Analysis, an approach for automating portions
of the safety analysis process using executable formal models of the system.
This approach is based on existing commercial tools and techniques that are
increasingly used for systems and software engineering for safety-critical systems.
We have modelled the Wheel Brake System example from ARP 4761 - Appendix
L [2]. We illustrated how this system can be modelled and investigated for safety
and fault tolerance. We believe that the model-based safety analysis approach
has several benefits to offer to a next-generation safety analysis process. For
instance,
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– A tighter integration between systems and safety analysis based on common
models of system architecture and failure modes.

– The ability to simulate the behavior of system architectures early in the
development process to explore potential hazards.

– The ability to exhaustively explore all possible behaviors of a system ar-
chitecture with respect to some safety property of interest using automated
analysis tools.

– The ability to automatically generate many of the artifacts that are man-
ually created during a traditional safety analysis such as fault trees and
FMEA/FMECA charts.

Although we have received positive feedback from our industry partners,
there are several research challenges that must be addressed before the full ben-
efits of model-based safety analysis can be fully realized. First, there are ques-
tions as to which languages and tools are most suitable and how much modeling
detail is necessary to perform useful analysis. Second, we observed that directly
composing the fault model with the system model clutters the ‘nominal’ model
with failure information, which obscures the nominal system functionality. This
complexity may make model evolution difficult, error prone, and costly. In our
opinion, the system model and the fault model should be defined separately and
some automatic composition mechanism should be created allowing the system
model and fault model to be easily merged for analysis. Third, although we were
able to successfully analyze a realistic example, there are serious questions about
the scalability of the analysis tools.
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Abstract. ‘Safety Critical Artificial Neural Networks’ (SCANNs) have been 
previously defined to perform nonlinear function approximation and learning. 
SCANN exploits safety constraints to ensure identified failure modes are miti-
gated for highly-dependable roles. It represents both qualitative and quantitative 
knowledge using fuzzy rules and is described as a ‘hybrid’ neural network. The 
‘Safety Lifecycle for Artificial Neural Networks’ (SLANN) has also previously 
defined the appropriate development and safety analysis tasks for these ‘hybrid’ 
neural networks. This paper examines the practicalities of using the SCANN 
and SLANN for Gas Turbine Aero-Engine control. The solution facilitates ad-
aptation to a changing environment such as engine degradation and offers extra 
cost efficiency over conventional approaches. A walkthrough of the SLANN is 
presented demonstrating the interrelationship of development and safety proc-
esses enabling product-based safety arguments. Results illustrating the benefits 
and safety of the SCANN in a Gas Turbine Engine Model are provided using 
the SCANN simulation tool.  

1   Introduction 

The application of Artificial Neural Networks (ANNs) within safety critical systems 
is highly desirable. One notable benefit includes the ability to learn and adapt to a 
changing environment. Another advantage is the ability to generalise outputs given 
novel data. The operational performance of ANNs can also exceed conventional 
methods in areas of pattern recognition and function approximation. These qualities 
enable applications to provide improved efficiency (in terms of reduced cost) and 
maximisation of performance in a changing operating context. Previous work has 
defined the “Safety Critical Artificial Neural Network” (SCANN) [1, 2]. One major 
benefit of the SCANN is that it provides a white-box view for its behaviour. It is a 
‘hybrid’ system that exploits both fuzzy and neural network paradigms for mutual 
benefit and overcomes many of the problems identified for ANNs [3]. Behaviour is 
described qualitatively using fuzzy rules whilst neural network learning algorithms 
are exploited to manipulate the quantitative representation. Through the use of safety 
constraints (and constrained learning) the behaviour of the SCANN can be guaranteed 
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to not lead to identified failure modes [1, 2] typically associated with control 
problems. 

A “Safety Lifecycle for Artificial Neural Networks” (SLANN) has also been pre-
viously defined [4]. The SLANN encapsulates the main development tasks involved 
in developing ‘hybrid’ ANNs. Also included are suitable processes that aim to deter-
mine safety requirements and systematically deal with partial prior knowledge. 
Throughout the lifecycle, safety requirements are determined, faults identified and 
mitigated.  The SLANN directly interfaces with the problem environment to capture 
an intentionally complete specification during design.  

Both SLANN and SCANN offer the possibility of using neural networks and fuzzy 
logical systems in highly dependable roles within safety critical systems. The Rolls 
Royce Spey Gas Turbine Aero-Engine (GTE) has been chosen as a real world prob-
lem to evaluate the practicality of both SLANN and SCANN. In particular, tradeoffs 
between safety and performance are examined to assess the degree of SCANN per-
formance impact (or advantage) in the presence of safety constraints. 

The motivation for using the GTE is the potential for improved performance for 
situations such as engine degradation. There is also the prospect to improve hazard 
detection through health monitoring - ultimately leading to enhanced efficiency. 

Section 2 describes the mechanism and schematic for the GTE. Section 3 dem-
onstrates effectiveness by presenting a stepwise walkthrough of the SLANN to 
generate a SCANN. The potential of SCANN learning in the GTE is examined in 
section 4. 

2   Gas Turbine Engine Mechanism 

Gas Turbine Engines (GTE) are internal combustion heat engines which convert 
heat energy into mechanical energy. There are three main elements within the 
GTE namely; compressor, combustion chamber and a turbine placed on a com-
mon shaft.  

The GTE illustrated in Fig. 1 describes the typical mechanism for producing thrust. 
The initial stage involves atmospheric air entering the engine body. Air then enters 
the compressor which is divided into the LP (Low Pressure) and HP (High Pressure) 
compressor units (twin-spool). Air pressure is first raised by the LP Compressor unit 
and then further increased by the HP Compressor unit. The Inlet Guide Vane (IGV) is 
used to match the air from the fan to the HP compressor characteristics. Pressurised 
air then reaches the combustion chamber where engine fuel is mixed with the com-
pressed air and ignited at constant pressure. This results in a rise in temperature and 
expansion of the gases. A percentage of the airflow is then mixed with the combusted 
gas from the turbine exit. This is then ejected through the jet pipe and variable nozzle 
area to produce a propulsive thrust.  

The GTE has been used for military and civilian applications and is known as an 
“air-breathing” engine since the engine airflow is 250 times its fuel flow rate. A 
‘Spey’ GTE nonlinear thermodynamic model (Matlab & Simulink) was acquired from 
our sponsors QinetiQ. Table 1 describes the main inputs and outputs of the system 
(for open-loop and closed-loop control). 
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Fig. 1. Typical Twin-Spool Gas Turbine Aero-Engine Mechanical Layout 

Previous work [5] has examined the potential to use fuzzy systems to replace sev-
eral controllers in the GTE. This resulted in fuzzy schedulers for fuel flow, IGV and 
nozzle controllers using Mamdani and Takagi-Sugeno [6] fuzzy rules. The work dem-
onstrated an unconventional approach for aerospace systems design to yield improved 
performance (such as thrust maximisation) over linear or non-linear polynomial 
schedulers. Although the study did make note of potential engine hazards the work 
focussed on performance issues instead of addressing hazards associated with each 
control function.  

Table 1. Main inputs and outputs for the Simulink ‘Spey’ GTE model 

Inputs of the GTE model 
 

Outputs of the GTE model 

Variable Description 
Vari-
able 

Description 

NHDem 

Thrust setting and fuel 
flow demand (%). Rate 
limited to prevent over 
acceleration. 

NH 
High pressure spool speed (%). Air 
data is used to correct this value for 
changes in flight conditions. 

WFE Fuel Flow (kg/s) NL Low pressure spool speed (%) 
HP IGV Inlet Guide Vane (°) DPUP Bypass duct mach number 
NOZZ Exhaust nozzle area (m²) XGN Gross thrust (kN) 

LPSM 
HPSM 

Low/High Pressure Surge Margin 
measures how close engine is to stall. 
Indirectly controlled against DPUP 
and NL (%) 

 

TBT, JPT Turbine and jet pipe temperatures (°C) 
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3   SCANN Development for the GTE IGV Scheduler Function 

The SLANN defined in [1, 2] has been refined and presented in Fig. 2 with steps 
denoted by circled numbers. The development phases focuses on inserting prior 
knowledge (which may be partial and inaccurate) to generate a SCANN. It then goes 
through a process of learning until suitable performance is reached (and safety condi-
tions satisfied). The refined knowledge is then inserted to generate a final SCANN. 
With further training (post-certification) this knowledge can be easily, completely and 
soundly extracted and analysed to learn about the problem domain [1]. Each step in 
the lifecycle is described and tackled in the following sub-sections. 
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Fig. 2. Development and Safety Lifecycle for Artificial Neural Networks (SLANN) [4] 

3.1   Problem Analysis 

There are several components within the GTE control model that can be replaced with 
the SCANN including WFE, IGV, NOZZ and BOV (Blow-Off Valve). For the pur-
pose of this paper, replacement of the conventional IGV scheduler is considered.  

The role of the IGVs is to control airflow and maintain efficient fan operation. As 
the air passes from the trailing edge of the IGVs, the air drawn into the engine is de-
flected in the direction of the rotating compressor. The airflow angle of entry onto the 
rotating compressor blades must be within a stall-free range. This is achieved with a 
variable geometry IGV which changes the angle of attack of the blades to prevent 
compressor stall. Air pressure or velocity is not changed as a result of this action and 
is maintained within acceptable limits (for low airflow conditions). It also permits 
high airflow with minimum restrictions.  
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There are a substantial number of guide vanes within a compressor assembly. To 
allow variable guide vane positions, vane bearing seats are formed by radial holes and 
counterbores through circumferential supporting ribs. Typically, the positioning of the 
IGV angle cannot be achieved with a high degree of precision [5]. For control, the 
IGV is positioned against an open-loop mapping which is determined either by NH or 
NL as a SISO system (Single-Input Single-Output). The conventional IGV function is 
set to 32 degrees below 78% NH, 10 degrees above 91%, and with proportional op-
eration between these ranges. This function ensures control between NH and NL and 
reduces risk of engine surge by maintaining a “working line”. However, the linear 
schedule may not be optimal according to engine performance requirements [5]. The 
problem is to use the SCANN for more appropriate scheduling. This will replace the 
existing IGV scheduler whilst ensuring that identified hazards are mitigated and 
prevented. 

3.2   Early Lifecycle Steps 

To begin systematic development of the SCANN, Step 1 of the SLANN involves the 
selection of input and output variables for the desired function. For the problem at 
hand, this task is simplified since a certified controller for the IGV already exists. 
Therefore the input for the IGV scheduler is NH with output IGV.  

Step 2 is a design task which determines the appropriate reasoning mechanism. In 
this case, the mechanism will be the SCANN as defined in [1]. The SCANN is based 
upon the FSOM [7] and consists of six layers.  

Layer 1 is the input layer and propagates inputs (from sensors) to layer 2. Layer 2 
is the fuzzy set membership (distance) function layer. This layer comprises of neurons 
for every input fuzzy set which perform the triangular function. Layer 3 performs 
fuzzy inference (min or product operator) and has no adaptable parameters. Layer 4 
normalises activations (memberships) of activated rules. Layer 5 computes crisp rule 
outputs using Takagi-Sugeno reasoning [6] described by (1). 

 ( )1 ,0 ,1 1 ,2 2 ,,..., ,..., .i i n i i i i n ny f x x a a x a x a x= = + + + +  (1) 

Where iy  is the thi  rule output, ,i na  are tunable parameters and nx  denotes the n 

input(s) into the SCANN. 
Layer 6 consists of a solitary neuron whose purpose is to determine a single output 

value from several firing rules using weighted averaging (where weights are rule 
activations). 

Step 3 determines the universe of discourse for each input and output variable. By 
examining the existing IGV function, the NH range is defined as [20, 115] and is rate 
limited.  

Following this design task, Preliminary Hazard Identification (PHA) is performed 
(Step 3a) as an initial investigation of the potentially hazardous effects of control 
variable anomalies (expressed as failure modes). There is a HAZOP table for each 
input and output variable (Table 1) in order to determine the existence of potential 
system level hazards (using a black-box view). This provides a thorough approach for 
examining variables associated with the problem domain (such as addressing omis-
sion or commission of variables). In this case, variables NH and IGV have been 
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clearly defined for existing schemes. Moreover, an argument can also be derived from 
this process about range and rate of change for each variable.  

This analysis is similar to the FHA (Functional Hazard Analysis) performed for 
controllers in modern engines [8] and contributes to the identification of required 
safety constraints. Table 2 presents an extract from a PHA HAZOP table for IGV 
(output). 

Table 2. Extract from a HAZOP table for the IGV output. The causes of each item include ice, 
wear or control. Remedies of each item are determined later. 

No. IGV G. Word Meaning Consequence 

1 Value MORE IGV value is too high 
Stall/Surge/ Excess TBT/ 
Shaft Over-speed 

2 Value LESS IGV value is too low Stall/Surge/Excess TBT 
3 Value NO Omission of IGV Stall/Surge/Excess TBT 
4 Value AS WELL AS Commission of IGV Stall/Surge/Excess TBT 
5 Value REVERSE Negative or positive Stall/Surge/Excess TBT 
6 Rate MORE Change is too high Stall/Surge/Excess TBT 
7 Rate LESS Change is too low Stall/Surge/Excess TBT 
8 Rate NO No rate change Stall/Surge/Excess TBT 

9 Rate REVERSE 
Change is decreasing or 
increasing 

Stall/Surge/Excess TBT 

10 Rate AS WELL AS Oscillations Stall/Surge/Excess TBT 

Although a similar table has also been generated for the input NH, constraining in-
puts lies outside the scope of the SCANN i.e. the SCANN output is ‘safe’ if the input 
is without hazards. 

Potential hazards associated with the control of the IGV (described in Table 2) in-
clude engine surge – resulting in loss of thrust or engine destruction. This is caused by 
excessive aerodynamic pulsations transmitted throughout the whole engine (oscilla-
tions). For typical GTEs there is a surge line which is used as a measure of aerody-
namic stability. This defines various surge points for different engine speeds. Another 
potential hazard is excessive Turbine blade temperature (TBT) leading to erosion of 
the turbine blades. 

Another hazard is engine over speed. This is when the NH or NL shaft speeds ex-
ceed 101% which can lead to engine surge and other destructive problems. In modern 
engines there are various speed limiting features including Over Speed Governor units 
(OSG) and electronic control logic systems. 

3.3   Steps 4 and 5: Fuzzy Variable Partitioning and Fuzzy Rule Formation 

Step 4 is a design task which determines fuzzy sets qualitatively and quantitatively 
for the input space. Having a large number of fuzzy sets may improve the generalisa-
tion performance but reduce interpretability. Previous work on psychology and fuzzy 
systems design [9] find that the optimal number of fuzzy sets for each dimension is 
7 2± . There are three main features of the IGV schedule and the fuzzy sets defined 
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 in Table 3 encapsulate the entire input range. To cater for partial knowledge, all de-
sired fuzzy sets do not have to be defined at this stage (this will be resolved later). 
Any fault or uncovered regions in this partitioning will be discovered in the later steps 
of the SLANN. 

Step 5 involves forming rules using the derived fuzzy sets. For SISO systems this 
is straight forward. If there are i fuzzy sets then i fuzzy rules are generated. In the case 
of MISO systems each fuzzy set in each input dimension are combined resulting in a 
rule for each possible combination. This provides input space coverage [1] or - 
completeness [10]. The initial set of rules for the IGV scheduler is shown in Table 3. 

Table 3. Incomplete fuzzy rules for the IGV scheduler. Values in brackets define ranges for 
input and output sets. 

 IF NH is (Antecedent Fuzzy Set) IGV is (Consequent) 
Rule No. SET SPREAD  SET IGV 

1 LOW [ ],Low Lowsl sr  = [19.9, 95] VHIGH is [20,40] 32° 

2 VHIGH [ ],VHigh VHighsl sr  = [80, 115.1] LOW is [0,10] 10° 

Since it is difficult to assign a linguistic term to the bilinear consequent, a crisp 
value is used to describe a constant output function in Table 3 [11]. To enhance inter-
pretability of the SCANN rules, the output space has also been partitioned. Therefore 
the consequent crisp value for each rule lies within a linguistically labelled set. 

The quantification of the spreads and output do not have to be ‘safe’ at this design 
step and will be tackled later. 

3.4   Step 5a: Functional Hazard Analysis (FHA) 

Step 5a exploits a divide-and-conquer approach for identifying potential failure 
modes associated with each rule. HAZOP style guide words are applied to each rule 
generated (which may be partial and incorrect). The HAZOP in Table 2 is used to 
identify hazards associated with each rule and provide suitable remedies in the form 
of safety constraints. Each rule has its own HAZOP table – detailing functional level 
hazards rather than system level hazards. The result of this approach is shown in 
Table 4 which identifies failures modes of concern for a rule and the relevant safety 
requirements. A summary of failure modes which may occur is as follows: 

• Failure Modes 1 & 2: IGV value is too high\low 
• Failure Modes 3 & 4: IGV value omission\commission 
• Failure Modes 5 & 6: IGV value change is increasing\decreasing 
• Failure Modes 7 & 8: IGV value change is too high\low 

Failure modes 1 and 2 relate to items 1, 2 and 5 in Table 2. The engine model tack-
les these failure modes by saturating the IGV output between 0 and 40 degrees. This 
is unacceptable for learning based systems since there are different bounds throughout 
the entire schedule (which can be dynamic). These can be prevented during normal 
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SCANN operation, learning and generalisation post-certification. Semantic con-
straints have been described in [2] which tackle this problem by providing pre-
conditions and post-conditions (bounds) for each rule (contributing to a stability ar-
gument). A summary of semantic constraints are as follows: 

1. Each fuzzy set spread edge is bounded between , ,[min ,max ]i j i jsl sr  

2. Rules outputs are bounded and saturated according to [min ,max ]i iy y  

3. All rules have at least one overlapping rule 
4. Rules with input set overlap must also have overlapping output bounds 

Failure modes 3 and 4 (relating to items 3 & 4 in Table 2) can be mitigated by pro-
viding input space coverage: 

1. Semantic constraints 1 to 4 above 
2. All values in the defined input space must be a member of an input fuzzy set  
3. Inputs beyond defined valid regions must not be members of fuzzy sets 

Finally, failure modes 5 to 8 relate to items 6-10 in Table 2 and are tackled as follows: 

1. Semantic constraints 1 to 4 above 
2. The gradient of each rule output function must be constrained according to 

desired maximum and minimum output changes over input changes 
3. Each rule must have at most one overlapping (input) rule and overlapping 

rules must have non-overlapping input regions 
4. No subsumed rules must exist – those whose input preconditions are a sub-

set of the preconditions of any other rule in the knowledge base 
5. If a minimum rate of change is defined then the output for each rule must be 

within output bounds at each spread edge (no saturation) 

6. For two rules l and r which overlap, the function *y  starting from ry  (at left 
side of overlap window) to ly  (at right side of overlap window) must abide 
by defined constraints 

7. Instead of weighted averaging, the final output is *y  as described above 

Safety constraints are exploited by the SCANN and the approach is more powerful 
and practical than safety ‘monitors’. For example, conventional safety monitors make 
little provision for adaptive functions. Instead, the constraints are tightly integrated 
with the approximated function allowing learning post-certification. 

Many of the engine parameters are cross-coupled. This means that any change in 
one will lead to disturbances with other control variables. The inherent non-linear 
dynamics and multi-variable nature presents an additional challenge to define suitable 
safety requirements for the IGV controller.  

Obtaining safety requirements in Table 4 is realistic since they are typically avail-
able in modern engines and incorporated into validation schemes for control laws 
within FADECs (Full Authority Digital Electronic Control). 

Indeed the initial rule base may be incomplete (prior knowledge). Nevertheless this 
safety process is performed at this stage as it helps provides an initial state for the 
next step and facilitates “design guidance”. 
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Table 4. Extract from the FHA performed for each rule where remedies are obtained from 
example safety requirements 

No IGV 
Attrib. 

Guide  
Word Meaning Cause Consequence Rem-

edy 

1 Value MORE Value is too high 
Ice/Control/

Wear 
Stall/Surge/E

xcess TBT 

32 
upper 
bound 

2 Value LESS Value is too low 
Ice/Control/

Wear 
Stall/Surge/E

xcess TBT 

25.3 
lower 
bound 

6 Rate MORE 
Output change is 

too high 
Ice/Control/

Wear 
Stall/Surge/E

xcess TBT 
Con-
stant 

3.5   Step 5b: Preliminary System Safety Assessment 

Preliminary System Safety Assessment (PSSA) is concerned with determining 
whether the SCANN parameter state is faulty. The approach compares the actual 
SCANN state with the safety constraints described in step 5a. There are two possible 
results arising from PSSA. The first requires further training if any safety constraints 
are violated (safety-based stopping condition). The second result is that there are no 
violations (hence no systematic faults) for the defined safety requirements.  

The dynamic learning phase in step 6 is flexible enough to not only mitigate faults 
through parameter tuning but also adapt the structure for new rules. If no further train-
ing is needed, it does not guarantee that the SCANN is ‘safe’. This is because new 
rules may have been discovered which also need to be constrained. This is tackled by 
the iterative approach to discover new knowledge (step 6), apply constraints (step 7) 
and mitigate systematic faults (step 6 and 7a) with clear stopping conditions. 

The SCANN simulation tool examined the state of the SCANN and determined if 
any conditions had been violated. Following the initial PSSA a number of faults were 
detected. Although a feature of the simulation includes the ability to automatically 
mitigate these faults, the identification of these faults was used to ‘guide’ the dynamic 
learning process (mitigation through training and assertion). The learning process can 
be focussed or directed to certain regions of the function. These areas may include 
unmapped regions of the input space, areas of identified faults, and rules where little 
is known about the outputs. Since the NH fuzzy set ‘Medium’ has been left unde-
fined, the dynamic learning parameters will be set to add a set with large width. The 
maximum number of rules was set to 4 (to maintain interpretability).  

3.6   Step 6: Dynamic Learning Phase 

The aim of this step is two fold; to maximise generalisation performance and remove 
all systematic faults for the identified safety requirements. The SCANN\FSOM 
(Fuzzy Self-Organising Map) offers several learning algorithms [7] typically used in 
neural networks. Static learning algorithm uses a two phase approach for providing 
small changes to the SCANN: 
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• Phase 1: Parameters defining fuzzy set spreads (antecedents) are frozen and 
rule output parameters are tuned using the gradient descent algorithm [12] 

• Phase 2: Consequent parameters are frozen and antecedent parameters tuned 
using a modified Least Vector Quantisation (LVQ) algorithm [7] 

A particularly attractive feature of the SCANN is its ability to self-generate. This 
means it can choose to add new rules (decision based on heuristics) by generating 
appropriate neurons and links. This self-generating property is termed the “Dynamic 
Learning algorithm” and enables ‘large’ changes to the rule base. For this lifecycle 
step, unconstrained versions of learning algorithms are used. This is because learning 
may be necessary and usefully applied to adapt an initially unsafe parameter state to a 
state without constraint violations. 

The training data consisted of 91 uniform samples which represent the standard 
non-optimal IGV scheduler described in section 3.1. The output functions were ini-
tially hand-tuned and learning was performed for 50 epochs using learning parameters 
which allow convergence. A performance-based stopping condition was defined and 
satisfied using Root Mean Square Error (RMSE). 

After performing dynamic learning, remaining faults were identified using SSA (step 
6a). No systematic faults remained for the defined safety requirements i.e. the dynamic 
learning phase safety-based stopping condition is satisfied. The state of the rule base 
after dynamic learning was extracted from the SCANN and is summarised in Table 5: 

Table 5. New fuzzy rules (3 & 4) after dynamic learning for the IGV function 

 IF (Antecedent) Consequent 
Rule No. NH SET IGV (d) 

1 LOW [19.9,77] 32° 
2 VHIGH [90,115.1] 10° 
3 MEDIUM [60,80] 31° 
4 HIGH [75,92] 29° 

3.7   Step 7: Functional Hazard Analysis 

Following the dynamic learning process, FHA was applied to each of the extracted 
rules and result of this is shown in Table 6. Since new rules and safety constraints 
have been added, there is possibility of potential faults (safety constraint violations) 
which are tackled by the following step. 

3.8   Step 7a: System Safety Assessment Revisited 

An additional phase of SSA was performed to identify any safety constraint violations 
by the rule base as a result of additional safety requirements (items 3 and 4 in Table 
6). In this case, additional systematic faults were identified and the process returned to 
step 6. After step 7a, assurance can be provided that the SCANN IGV function is in 
an initial safe state (and any future parameter states will also be safe). 
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Table 6. Summary of example safety requirements1 for the complete knowledge 

Rule 
No. 

Semantic  
Constraints for 

NH 

Semantic  
Constraints for 

IGV 

Dir. of Change  
Constraints 

Rate of 
Change 

Constraints 
1 [19.9, 77] [25.3, 32] None Constant 
3 [70, 83] [17,30] Decreasing (-) [1, 2] 
4 [80, 91] [9.87,20] Decreasing (-) [1, 2] 
2 [88, 115.1] [9.87,15] None Constant 

4   Results of Learning and Generalisation Post Certification 

Having developed a SCANN for IGV scheduling, the function (data set 1 in Table 7) 
learnt during the SLANN is without faults and all identified failure modes have been 
mitigated. Both the static and dynamic learning algorithms have been constrained to 
ensure that systematic faults are not incorporated (leading to failure modes) when 
adapting parameters. The constrained static learning algorithm (for on-line learning) 
is outlined below: 

Constrained Static Learning Algorithm Outline 
1. Let p(t) be the SCANN parameter state 
2. Feed in training sample pair (desired input and output) 
3. Perform centre, spread or output tuning using learning laws [7] on tp(t) – tem-

porary copy of the SCANN parameter state which when tuned does not affect 
actual SCANN behaviour 

4. Identify presence of any safety constraint violations (faults) 
5. If no violation then use tp(t) for the new tuned SCANN state 

a. Otherwise, reject tp(t) and preserve training sample (reuse when 
learning rate is more decayed) 

The dynamic learning algorithm needs to provide assurance that any new rule be-
ing added does not violate the current state of the SCANN. There are two approaches 
for adding new rules. The first is that any new rule which violates any of the safety 
constraints is not added. The second is that the algorithm analyses safety constraints 
of existing rules and inherits them for the new rule. Due to space constraints, the first 
approach is used for this example. 

Table 7. Summary of training data used for the SCANN 

Data Set Samples Distribution Inferred function Perf. Convergence 
1 91 Uniform Safe Sub-optimal Yes 
2 91 Uniform Safe Optimal Yes 
3 91 Arbitrary Hazardous Sub-optimal Yes 
4 91 Arbitrary Hazardous Sub-optimal No (unstable) 

                                                           
1 The actual values of these safety requirements are not representative of a real engine since 

they are based upon an engine model which features intentional inaccuracies. 
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SCANN learning can be exploited to maximise performance of the plant. In this 
case, a cost function is needed to generate suitable training samples and is difficult to 
determine due to cross-coupling of variables. For example, it has been identified that 
maximising thrust leads to degradation in other objectives (such as blade tempera-
tures) [5]. Table 8 describes a set of safety criteria for the ‘Spey’ GTE which if vio-
lated would lead to the hazards outlined in Table 2.  

The Multi-Objective Genetic Algorithm (MOGA) [5] has proved itself to be a ver-
satile tool for finding optimal fuzzy schedulers for the GTE. The MOGA is composed 
of three levels and uses genetic algorithms to search for an optimal parameter state. 
The first two levels generate and analyse performance (using criteria in [5]) of poten-
tial solutions at different operation points (such as 54, 65, 75, 85, 95% NH). The last 
level selects the best fuzzy solution (by making trade-offs between objectives) to 
maximise thrust (XGN). 

Although the MOGA algorithm could be used for the SCANN, hand-tuning of the 
IGV was performed to identify suitable cost function for SCANN learning (desired 
outputs for training samples). Training data acquired from the MOGA algorithm or 
other source can be of arbitrary integrity since the SCANN safety constraints provide 
assurance that hazards associated with the IGV schedule are prevented.  

For the SCANN to learn the new IGV solution, static learning used data set 2 for 
50 epochs. To analyse the effects of the SCANN on the GTE, safety criteria [5] in 
Table 8 was compared with the GTE state. The main requirements include preventing 
excessive TBT, avoiding surges and engine over-speed. This IGV solution (data set 2 
in Table 7) satisfied the safety criteria whilst providing improved thrust (Table 8).  

Table 8. Safety criteria typically used to determine hazards associated with the ‘Spey’ Engine 
obtained from [5] and the engine model. Results of the SCANN using four training sets are 
compared with the safety criteria for a non-degraded engine during worst-case NH change. 

The results show that the overall thrust has increased rising from an average of 
20.1 kN (data set 1) to 21.3 kN (data set 2) leading to improved performance. On the 
other hand, the TBT has exhibited an overall increase temperature and the working 
line has been reduced as expected. Excessive NH and NL shaft speeds which are used 
to determine engine over speed are prevented during the course of the engine run 
(including worst-case of large acceleration followed by large deceleration). Table 8 

Description Require-
ment Data 1 Data 2 Data 3 Data 4 

HPSM 5%  6.96%  5.19%  7.39%  5.17%  

LPSM 5%  10.6%  9.5%  
10.51%

 
9.48%  

TBT 1713 C  1558 C  
1559 C

 
1544 C

 
1559 C

 
NH Shaft 

Speed 
101%  100.5%  100.5%  100.6%  100.5%  

NL Shaft 
Speed 

101%  91.8%  91.8%  
89.29%

 
91.9%  
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also includes results of the GTE given arbitrary, hazardous training data which vio-
lated all safety requirements (data set 3). Data set 4 demonstrates ability of the 
SCANN to meet the criteria under unstable conditions by setting overly large learning 
rates. This was achieved by SCANN safety constraints which implicitly described 
conditions leading to the engine hazards. Results for data sets 3 and 4 (in Table 8) 
show that the safety criteria are met and Fig. 3 and Fig. 4 provide comparison of re-
sults for data sets 1 and 4. 
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Fig. 3. Approximation of IGV schedule after learning training data 4 under unstable conditions 
(left figure). Right figure is the results of Turbine Blade Temperature (TBT) for after learning 
data 1 (solid line) and 4 (dotted line). 
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Fig. 4. HPSM and LPSM (over time) after SCANN learning data set 1 (solid) and 4 (dotted) 

The SCANN can also contribute to health monitoring by making provision for haz-
ardous operating contexts. Health monitoring is a technique for analysing degradation 
of a plant to determine whether servicing or maintenance is required. As a real-world 
example, the role of learning can include detecting actuator failure instead of thrust 
maximising (for advisory purposes). In the conventional control scheme, the IGV 
output is a demand which is fed into the actuators. Actuators then produce the actual 
IGV position value into the engine model. The inputs and actual IGV values can be 
paired and used as training data. The safety constraints can be exploited to provide 
additional information about plant performance. For example, continued semantic 
constraint violations may infer that either the training data is poor or the demands 



 Using SCANNs in Gas Turbine Aero-Engine Control 149 

placed upon the scheduler have become hazardous (when actual moves too far from 
the desired IGV position). Logs of these attempted violations can be recorded and 
analysed to determine the state of the system as described in [1]. This provides addi-
tional exploitation of the SCANN learning algorithms for dynamic systems such as 
the GTE. This is an alternative approach for modern engine validation schemes which 
distinguishes itself by catering for the behaviour of intelligent adaptive systems. 

5   Conclusions 

This paper evaluates the practicality of using the SLANN and SCANN in a real-world 
problem. SCANN demonstrates the beneficial marriage of fuzzy logic systems and 
neural network paradigms. By exploiting a decompositional, analytical approach, the 
complete behaviour of the SCANN can be easily and soundly extracted and controlled 
through the use of safety constraints. 

Feasibility and effectiveness of the safety and development processes in the 
SLANN has been demonstrated. Design phases use theoretical and empirical knowl-
edge by directly interfacing and interacting with the environment. 

The only major challenge within the SLANN is the activity of determining appro-
priate safety requirements. However, this task is no different than for conventional 
software safety or controller development. 

The SCANN has established its ability to safely learn (post-certification) and thus 
improve GTE performance whilst maintaining safety requirements. Training data of 
arbitrary integrity is permitted (for post-certification learning) – allowing for more 
practical use of the SCANN in a real-world noisy environments. The advantages of 
generalisation and learning also include contributing to identifying plant degradation. 
Maintenance and servicing can also benefit (in terms of cost efficiency) through the 
use of logs generated during learning. This can contribute to maximising operating 
time for the plant before service is required leading cost efficiency. Both SLANN and 
SCANN enable product-based safety arguments to justify the use of neural networks 
and fuzzy logic systems in safety critical applications. 
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Abstract. Run-time checks are often assumed to be a cost-effective way
of improving the dependability of software components, by checking re-
quired properties of their outputs and flagging an output as incorrect if
it fails the check. However, evaluating how effective they are going to
be in a future application is difficult, since the effectiveness of a check
depends on the unknown faults of the program to which it is applied. A
programming contest, providing thousands of programs written to the
same specifications, gives us the opportunity to systematically test run-
time checks to observe statistics of their effects on actual programs. In
these examples, run-time checks turn out to be most effective for unreli-
able programs. For more reliable programs, the benefit is relatively low
as compared to the gain that can be achieved by other (more expensive)
measures, most notably multiple-version diversity.

1 Introduction

Run-time checks are often proposed as a means to improve the dependability
of software components. They are seen as cheap compared to other means of
increasing reliability by run-time redundancy, e.g. N-version programming.

Run-time checks (also called executable assertions and other names) can be
based on various principles (see e.g. Lee and Anderson [3] for a summary), and
have wide application. For instance, the concept of design by contract [5] enables
a check on properties of program behaviour.

Some run-time checks can detect all failures, for example checks that perform
an inverse operation on the result of a software component [1,2]. If the program
computes y = f(x), an error is detected if x 
= f−1(y). This is especially attrac-
tive when computing f(x) is complex, and the computation of the inverse f−1

relatively simple. The argument is then that because computing f−1 is simple,
the likelihood of failure of this run-time check is low. Also, it seems unlikely
that both the primary computation and the run-time check would fail on the
same invocation and in a consistent fashion. Together, these factors lead to a
high degree of confidence that program outputs that pass the check will be cor-
rect. However—as these authors readily admit—such theoretically perfect checks
do not exist in many cases, maybe even not in the majority of cases. Run-time
checks can then still be applied, but they will in general not be capable of finding
all failures. Examples of these partial run-time checks are given by e.g. [12].

R. Winther, B.A. Gran, and G. Dahll (Eds.): SAFECOMP 2005, LNCS 3688, pp. 151–164, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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Previous empirical evaluationof run-timecheckshave generallyused small sam-
ples of programs, or single programs [4,7,11]. Importantly, we run these measures
on a large population of programs. Indeed, if we wish to learn something general
about a run-time check, we need this statistical approach. Measuring the effective-
ness of a run-time check on a single program could, given a certain demand profile
and enough testing, determine the fraction of failures that the check is able to de-
tect (coverage) for that program, given that demand profile. But in practice, this
kind of precise knowledge would be of little value: if one could afford the required
amount of testing, at the end one wouldalso know which bugs the programhas, and
thus could correct them instead of using the run-time check. However, a software
designer wants to know whether a certain run-time check is worth the expense of
writing and running it, without the benefit of such complete knowledge. The run-
time check can detect certain failures caused by certain bugs: the coverage of the
check depends on which faults the program contains; and the designer does not usu-
ally know this. What matters are the statistics of the check’s coverage, given the
statistics of the bugs that may be present in the program. If a perfect check can-
not be had, a check that detects most of the failures caused by those bugs that are
likely to be in a program has great value. A check that detects many failures that
are possible but are not usually produced, because programmers do not make the
mistakes that would cause them, is much less useful. In conclusion, the coverage of
a check depends on the distribution of possible programs in which it is to be used.

Here, we choose three program specifications for which we have large numbers
of programs, and for each of the three we choose a few run-time checks, then study
their coverage. We thus intend to provide some example “data points” of how the
coverage can vary between populations of programs. In addition to such anecdotal
evidence—evidence that certain values or patterns of values may occur—such ex-
periments may contribute to software engineering knowledge if they reveal either
some behaviour that runs contrary to the common-sense expectations held about
run-time checks, and/or some apparent common trend among these few cases, al-
lowing us to conjecture general laws, to be tested by further research.

For lack of space, we onlydiscuss coverage, or equivalently the probability of un-
detected failure. We will also not discuss other dependability issues like availability
(possibly reduced by false alarms from run-time checks), although these should be
taken into account when selecting fault tolerance mechanisms.

2 The Experiment

2.1 The UVa Online Judge

The “UVa Online Judge”-Website [8] is an initiative of one of the authors (Re-
villa). It contains program specifications for which anyone may submit programs
in C, C++, Java or Pascal intended to implement them. The correctness of a
program is automatically judged by the “Online Judge”. Most authors submit
programs repeatedly until one is judged correct. Many thousands of authors con-
tribute and together they have produced more than 3,000,000 programs for the
approximately 1,500 specifications on the website.
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Table 1. Some statistics on the three problems

3n+1 Factovisors Prime Time
C C++ Pascal C C++ Pascal C C++ Pascal

Number of authors 5,897 6,097 1,581 212 582 71 467 884 183
First submission correct 2,479 2,434 593 112 294 41 345 636 125

We study the C, C++ and Pascal programs written to three different specifi-
cations (see Table 1 for some statistics, and http://acm.uva.es/problemset/
for more details on the specifications). We submit every program to a test set,
and compare the effectiveness of run-time checks in detecting their failures.

There are some obvious drawbacks from using these data as a source for
scientific analysis. First, these are not “real” programs: they solve small, mostly
mathematical, problems. Second, these programs are not written by professional
programmers, but typically by students, which may affect the amount and kind
of programming errors. We have to be careful not to overinterpret the results.

All three specifications specify programs that are memory-less (i.e. earlier
demands should not influence program behaviour on later ones), and for which
a demand consists of only two integer input values. Both restrictions are useful
to keep these initial experiments simple and the computing time within reason-
able bounds. The necessary preparatory calculations for the analysis of these
programs took between a day and two weeks, depending on the specification.

2.2 Running the Programs

For a given specification, all programs were run on the same set of demands.
Every program is restarted for every demand, to ensure the experiment is not
influenced by history, e.g. when a program crashes for certain demands or leaves
its internal state corrupted after execution of a demand (we accept the drawback
of not detecting bugs with history-dependent behaviour). We set a time limit
on the execution of each demand, and thus terminate programs that are very
slow, stall, or crash. We only use the first program submitted by each author
and discard all subsequent submissions by the same author. These subsequent
submissions have shown to have comparable fault behaviour and this dependence
between submissions would complicate any statistical analysis.

For each demand, the outputs generated by all the programs are compared.
Programs that produce exactly the same outputs on every demands form an
“equivalence class”. We evaluate the performance of each run-time check for
each equivalence class.

For all three specifications, we chose the equivalence class with the highest
frequency as the oracle, i.e. the version whose answers we consider correct. We
challenged each oracle in various ways, but never found any of them to have
failed. For each specification, the test data were chosen to exhaustively cover a
region in the demand space. In other words, we assume (arbitrarily) a demand
profile in which all demands that occur are equiprobable.
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2.3 Outcomes of Run-Time Checks

Run-time checks test properties of the output of a software component (the
primary), based on knowledge of its functionality. In the rest of this paper we
distinguish two types of run-time checks: plausibility checks and self-consistency
checks (SCCs). The latter, inspired by Blum’s “complex checkers” [12], use ad-
ditional calls to the primary to validate its results, by checking whether some
known mathematical relationship that must link its outputs on two or more
demands does hold.

Checks on the values output by the primary are only meaningful if the output
satisfies some minimal set of syntactic properties, one of which is that an output
exists. Other required properties will be described with each specification. We
call an output that satisfies this minimal set of properties “valid” (in principle
this validaty check also constitutes a run-time check). We separate the check for
“validity” from the “real” run-time checks, because it otherwise remains implicit
and a fair comparison of run-time checks is not possible.

Table 2 shows how we classify the effects of plausibility checks. There are
two steps: first, a check on the validity of the output of the primary; second, if
this output is valid, a plausibility check on the output. There is an undetected
failure (of the primary) if both the primary computes an incorrect valid output
and the checker fails to detect the failure. Our plausibility checks did not cause
any false alarms. Also note that a correct output cannot be invalid.

Table 2. Classification of execution results with plausibility checks

Output of Output Plausibility Effect from
primary valid check system viewpoint
Correct Yes Accept Success
Correct Yes Reject False alarm
Incorrect Yes Accept Undetected failure
Incorrect Yes Reject Detected failure
Incorrect No - Detected failure

Table 3. Classification of execution results with self-consistency checks

Output of Output Output of second call to primary Effect from
primary valid by self-consistency check system viewpoint
Correct Yes Consistent Success
Correct Yes Inconsistent False alarm
Correct Yes Invalid output Success
Incorrect Yes Consistent Undetected failure
Incorrect Yes Inconsistent Detected failure
Incorrect Yes Invalid output Undetected failure
Incorrect No - Detected failure
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With self-consistency checks, the classification is slightly more complex
(Table 3): we have to consider that one way the self-consistency check may fail is
because its additional calls to the primary do not elicit valid outputs (e.g., they
cause the primary to crash). We then assume that the self-consistency check
will fail to reject the primary’s output, i.e., that an undetected failure ensues.
We could have made the decision to reject the output of the primary if the self-
consistency check fails in this way; this would lead to slightly different results.
False alarms did occur, which we do not analyse here for lack of space.

3 Results for the “3n+1” Specification

Short Specification. A number sequence is built as follows: start with a given
number n; if it is odd, multiply by 3 and add 1; if it is even, divide by 2.
The sequence length is the number of required steps to arrive at a result of 1.
Determine the maximum sequence length (max) for all values of n between two
given integers i, j, with 0 < i, j ≤ 100, 000. The output of the program is the
triple: i, j, max.

We tested “3n+1” with 2500 demands (i, j ∈ 1..50). The outputs of the
programs were deemed correct if the first three numbers in the output exactly
matched those of the oracle. We consider an output “valid” if it contains at
least three numbers. In the experiment we discard non-numeric characters and
the fourth and following numbers in the output. The programs submitted to
“3n+1” have been analysed in detail in [9]; this paper provides a description of
the faults present in the equivalence classes.

3.1 Plausibility Checks

We use the following plausibility checks for the “3n+1”-problem:

1. The maximum sequence length should be larger than 0.
2. The maximum possible sequence length (given the range of inputs) is 476.
3. The maximum sequence length should be larger than log2(max(i, j)).
4. The first output should be equal to the first input.
5. The second output should be equal to the second input.

We measure the effectiveness of a run-time check as the improvement it
produces on the average probability of undetected failure on demand (pufd).
Without run-time checks, a program’s probability of undetected failure equals
its probability of failure per demand (pfd).

Figure 1 shows the improvement in average pufd given by these plausibility
checks, depending on the average pufd of a pool of programs. We manipulate
this average by removing, one by one, from the original pool of 13575 programs,
the programs with the highest pufd. The more programs have been removed, the
lower the average pufd of the remaining pool.

The graph clearly shows that many of these run-time check are very effective
for unreliable programs (the right-hand side of the graph). More surprising is
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Fig. 1. The improvement of the pufd of the primary for the various plausibility checks
for “3n+1”. The curves for “1st input = 1st output” and “2nd input = 2nd output”
are invisible because they coincide with the curve for “Valid output”.

that the impact is quite pronounced at a pufd of the pool around 10−4, while it
is much lower for the rest of the graph. Apparently, these checks are effective for
some equivalence classes that are dominant in the pool for that particular pufd
range. Upon inspection, it appears that these programs fail for i = j.

The gain in pufd is for most of the graph only about 20%, but the peak
reaches a factor of 3.2 for the plausibility check “Result > log2(max(i, j))”, a
significant improvement over a program without checks. The check “Result>0”
is mainly effective for programs that initialise the outcome of the calculation of
the maximum sequence length to 0 or −1, if they abort the calculation before
setting the result to a new value. This appears to be caused by an incorrect
“for”-loop which fails when i > j. The check “Result<477” is not very effective.
The failures it detects have mostly to do with integer overflow and uninitialised
variables.

The check “Result > log2(max(i, j))” is the most effective of all. It catches
a few more programming faults than “Result > 0”, especially of those programs
that do not cover the entire range between the two inputs i and j for the calcu-
lation of the maximum sequence length.

Figure 2(a) gives some more detail of the performance of this plausibility
check. It shows the percentage of failures detected for each equivalence class. We
can make various observations. First, for many equivalence classes there is no
effect (many crosses with a coverage of 0%). Second, since there are more crosses
in the right-hand side of the graph, this check seems to be more effective when
the primary programs tend to be less reliable (i.e., for development processes
that tend to deliver poor reliability). We must say “seem” here, because this
graph lacks information about the frequencies of the various programs (sizes of
the equivalence classes). Third, this plausibility check still detects faults in the
left-hand side of the graph, i.e. for the more reliable programs.
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Fig. 2. Values of the error detection coverage of (a) the plausibility check “Result ¿
log2(max(i, j))” for the equivalence classes of “3n+1” programs, and (b) the plausi-
bility check “i ≤ j” for the equivalence classes of “Factovisors” programs. Each cross
represents an equivalence class. The horizontal axis gives the average pfd of the equiv-
alence class, the vertical axis the percentage of its incorrect outputs that the check
detects.

The plausibility check “First output equals first input” mainly catches prob-
lems caused by incorrect reading of the specification: some programs do not
return the inputs, or not always in the correct order. These faults lead to very
unreliable programs, and the effects of this plausibility check are not visible in
Figure 1 because they manifest themselves (i.e. differ from the curve for “Valid
output”) for average pufds larger than 0.1.

The result of the plausibility check “Second output equals second input” is
almost equal to the previous one. There are a few exceptions, for example when
the program returns the first input twice.

3.2 Self-consistency Checks

If we denote the calculation of the maximum sequence length as f(i, j), then:

f(i, j) = f(j, i) (1)

and:
f(i, j) = max(f(i, k), f(k, j)) for k ∈ i..j (2)

and, if we combine these two properties:

f(i, j) = max(f(j, k), f(k, i)) for k ∈ i..j (3)

Figure 3 presents the effectiveness of these self-consistency checks (for the
experiment, we choose k = �(i + j)/2�). Like our plausibility checks, these self-
consistency checks appear to be very effective for unreliable programs.
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Fig. 3. Improvement in the average pufd of the primary for the various self-consistency
checks for “3n+1”

The first self-consistency check mainly detects failures of programs in which
the calculation of the maximum sequence length results in 0 or -1 for i > j. The
second mainly finds failures caused by incorrect calculations of the maximum
sequence length.

The third self-consistency check attains an improvement comparable to that
of the plausibility check “Result > log2(max(i, j))”, but with a shifted peak. It
appears that they catch different faults in the programs. As already stated, the
peak of “Result > log2(max(i, j))” is caused by programs failing for i = j (which
none of our self-consistency checks can detect) while this self-consistency check
detects failures caused by faults in the calculation of the maximum sequence
length as well as programs that systematically fail for i > j.
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Fig. 4. Improvement in the average pufd of the primary for combinations of run-time
checks for “3n+1”
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The fact that the plausibility checks and the self-consistency checks tend to
detect different faults is highlighted by Figure 4, which shows the performances
of the combined plausibility checks, the combined self-consistency checks and
the combination of all run-time checks.

4 Results for the “Factovisors” Specification

Short Specification. For two given integers 0 ≤ i, j ≤ 231, determine whether
j divides i! (factorial i) and output “j divides i!” or “j does not divide i!”.

We tested “Factovisors” with the 2500 demands (i, j ∈ 1..50). We consider
an output “valid” if it contains at least two strings and the second is “does” or
“divides”. The main reason for invalid outputs appears to be absence of outputs.

4.1 Plausibility Checks

We use the following plausibility check for “Factovisors”:

1. If i ≥ j, the result should be “j divides i!”.

Figure 2(b) shows the coverage of the run-time check “i ≥ j” for each equiv-
alence class. It is remarkable, again, that the crosses are spread over the entire
plane: this check has some effect for equivalence classes with a large range of
reliabilities. We also again observe the large number of crosses for a coverage of
0%, showing the check to detect no failure at all for that class of programs.

Figure 5 shows the pufd improvement caused by the plausibility check. As
for “3n+1”, we observe that the run-time check is very effective for unreliable
programs. For pools of programs with average pufd between 10−4 and 10−2 the
reliability improvement varies between 1 and 1.6.
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Fig. 5. The effectiveness of the run-time checks for “Factovisors”
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The graph shows a peculiarity for pufds smaller than 10−4: the improvement
approaches infinity. This is because as we remove programs from the pool, the
faulty programs in the pool eventually become a “monoculture”, a single equiv-
alence class, and the check happens to detect all the failures of this class of
incorrect programs. Here, the pool with the lowest non-zero average pufd con-
tains 447 correct programs and 21 incorrect ones in the same equivalence class;
the plausibility check detects the failures of these 21 incorrect programs.

4.2 Self-consistency Checks

If we call g(i, j) the Boolean representation of the output of the program, with
g(i, j) = true ≡ “j divides i!”, g(i, j) = false ≡ “j does not divide i!”, then:

g(i − 1, j) =⇒ g(i, j) with i 
= 1 (4)

As can be seen in Figure 5, the effect of this self-consistency check is minimal:
the reliability improvement is never substantially greater than that given by the
validity check.

5 Results for the “Prime Time” Specification

Short Specification. Euler discovered that the formula n2 + n + 41 produces
a prime for 0 ≤ n ≤ 40; it does however not always produce a prime. Calculate
the percentage of primes the formula generates for n between two integers i and
j with 0 ≤ i ≤ j ≤ 10, 000.

We tested “Prime Time” on 3240 demands (i ∈ 0..79, j ∈ i..79). The outputs
were deemed correct if they differed by most 0.01 from the output of the oracle,
allowing for round-off errors (the answer is to be given with two decimal digits).

The output is considered “valid” when it contains at least one number. We
discard all non-numeric characters and subsequent digits from the output.

5.1 Plausibility Checks

The programs for “Prime Time” calculate a percentage, therefore:

1. The result should be larger than or equal to zero.
2. The result should be smaller than or equal to a hundred.

Figure 6 presents the effectiveness of the plausibility checks for “Prime Time”.
The plausibility check “Result ≥ 0” appears to have virtually no effect. The
plausibility check “Result ≤ 100” has some effect, but not very large.

5.2 Self-consistency Checks

If we denote the result of the calculation of the percentage with h(i, j), then:

h(i, j) =
h(i, k) × (k − i + 1) + h(k + 1, j) × (j − k)

j − i + 1
for i ≤ k < j (5)
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Fig. 6. The effectiveness of the run-time checks for “Prime Time”. The curve for the
plausibility check “Result ≥ 0” is not visible, because it coincides with the one for
“Valid output”.

Obviously, this check is not available when i = j. It is quite elegant: the comput-
ing time will not be excessively more than computing h(i, j). For the experiment,
we choose k = �(i + j)/2�.

The effectiveness of the self-consistency check is shown in Figure 6. It is
much more effective than the plausibility check “Result ≤ 100”. We observe the
same phenomenon for low pufds as for “Factovisors”: the effectiveness of the self-
consistency check approaches infinity. When we combine the plausibility checks
and the self-consistency check, we observe that the two complement each other:
the combination is (slightly) more effective than the self-consistency check alone.

6 Run-Time Checks vs. Multiple-Version Diversity

A question that begs answering is: how do run-time checks compare to other
forms of run-time fault tolerance? Using results we reported previously [10], we
can compare our run-time checks against multiple-version diversity for “3n+1”.

We observed (see Figure 7) that two-version diversity would become more
effective with decreasing mean probability of failure on demand of the pool of
programs from which the pair is selected, until a “plateau” is reached (between
a pufd of 10−5 and 10−3) with an improvement factor of about a hundred (note
that the opposite trend—effectiveness decreasing with decreasing mean pfd—is
also possible, as proved by models and empirical results [6]). For run-time checks
the opposite occurs: their effectiveness decreases with decreasing average pufd of
the primary reaching a fairly low improvement factor. The improvement factor
of using diversity is significantly higher than that of applying run-time checks.

For these programs, it seems that these run-time checks could be the better
choice for testing in the early phases of development, when the pufd of programs
is still high, and multiple-version diversity when pufds of programs become low.
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Fig. 7. Improvement of the pufd of a pair of randomly chosen C programs for “3n+1”,
relative to a single version. The horizontal axis shows the average pufd of the pool from
which both C programs are selected. The vertical axis shows the pufd improvement
(pufdA/pufdAB). The diagonal represents the theoretical reliability improvement if the
programs fail independently, i.e. pufdAB = pufdA.pufdB . (This figure is based on [10].)

7 Conclusion

The results in this paper are of course specific to these three specifications,
the programs submitted by these anonymous authors, the run-time checks we
devised, and the demand profiles we used (uniform in a subset of the demand
space). There are however some commonalities among the three sets of results,
and we will tentatively discuss these here, while keeping in mind the limitations
of this research.

First, we observe that the majority of the run-time checks considered are
very effective for unreliable programs or have no effect at all.

Then, if we only look at pools of primaries with average pufd between 10−4

and 10−2, the pufd improvement factor of the primary-checker pair is compa-
rable for all three specifications: in the range 1–4. Over this range, the average
improvement is less than 2 for all run-time checks considered.

Some run-time checks provide almost no benefit. It would be of great impor-
tance to be able to predict which checks are effective and which are not, but for
the time being this seems not to be possible.

These plausibility checks appear to detect a different set of failures than the
self-consistency checks, so that combining them is more effective than applying
either one alone. So, the apparent “diversity” between the two kinds of checks
did bring the benefit of some complementarity.

For pools of primaries with an average pufd lower than 10−2, the pufd im-
provement achieved by the run-time checks considered for “3n+1” is far less
than would have been achieved by applying multiple-version redundancy. In
these analyses, the pufd improvement realised by multiple-version redundancy
is at least a factor of a hundred better.
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A natural comment on this work could be that since we have implemented
simple-minded checks, it is not surprising that they only catch the simple-minded
programming errors that cause highly unreliable programs. But this is actually a
non sequitur. It is true thatwe do not expect expert programmers to produce highly
unreliable programs, but our checks are “simple-minded” only in being based on
simple mathematical properties of these specifications. There is no a priori reason
why they should only catch simple-minded implementation errors: implementa-
tion errors are often caused by misunderstanding details of the specification or of
the program itself, not of some mathematical property of the specification that is
of little interest to the programmers. Likewise, there is no a priori reason for naive
errors normally to cause faults which cause very high failure rates.

A tempting conjecture generalising the results we observed is that for some
reason simple run-time checks tend (in some types of programs?) only to detect
the failures in very unreliable programs. This would be an attractive “natural
law” to believe and would simplify many decisions on applying run-time checks,
so that it may be worth exploring further, since without some solid, plausible
explanation (e.g. based on the psychology of programmers) or overwhelming
empirical evidence, it would appear wholly unjustified.

Our measure of effectiveness as average improvement in pufd may be ques-
tioned. It is such that even if a check C has 100% coverage for the failures
produced by a set of dangerous possible bugs, B, it will still be assessed as hav-
ing negligible effectiveness if the bugs in set B occur with negligible probability
in actual software development. Some may object that if C is the only check
that can detect the effects of B-type bugs, and given the uncertainty on the
probabilities of B these bugs being actually produced, a prudent designer will
still use C. This objection is certainly right if C has negligible cost (implementa-
tion cost, cost in run-time resources, risk of bugs in C causing false alarms, etc).
But whenever these costs are non-negligible, they must be weighted against C’s
potential benefits, as we do.
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Abstract. This paper investigates the feasibility of emulating source code soft-
ware faults directly in Java byte code. Experimental results show that software 
defects introduced in source code can be emulated in Java byte code with a high 
level of confidence. This makes it possible to validate the dependability of Java 
programs with respect to realistic software defects embedded within the COTS 
components used without the need to know the source code. It is first investi-
gated with good results how well the fault locations found at the byte code level 
map to the source code. The behaviors of the byte code level mutants are then 
compared with the corresponding source code mutant behavior. In a back-to-
back comparative study with mutants based on ten representative programming 
defects, no difference in the program behavior between source and byte code 
level mutants could be distinguished. 

1   Introduction 

With software development proceeding at an unprecedented speed, in-house devel-
opment of all system components will be too costly. Using commercial off-the-shelf 
(COTS) components reduces time-to-market, since the components are ready to be 
used, and saves money as the components are cheaper than developing from scratch. 
Quality and risk concerns currently limit the use of COTS components in safety and 
business critical applications. To increase the level of COTS usage in these applica-
tion areas the techniques for dependability assessment of COTS-based systems must 
be further improved. 

Software defects (also called faults or bugs) have been recognized as the major 
cause of computer outages [1]. It is however very difficult in practice to eliminate all 
software defects during development. Therefore, all non-trivial systems contain resid-
ual software defects that are activated when an appropriate input pattern is encoun-
tered during operation, which can lead to system failure and thus drastically affect 
system dependability. 

Furthermore, as larger systems are more and more often being built with COTS 
components, the residual software faults embedded within the COTS represent a 
growing risk as the quality level of COTS components is difficult to assess [2]. A 
critical system built on COTS components should thus have robustness against faults 
embedded within these components. Since the source codes of COTS components  
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are in most cases not available, it is not trivial to use fault injection techniques to  
experimentally verify the robustness of the system. Because of this, earlier efforts 
have focused on injecting errors at the interface between the COTS component and 
the rest of the system instead of injecting faults in the COTS, e.g. [3]. Although this is 
a useful technique, it can not be known how representative these errors are and 
whether they could actually have been generated by the activation of possible faults in 
the COTS. Thus, in order to generate error behavior that is representative of real 
software faults, we need a technique that can both determine the faults that could have 
been made within the COTS and inject them. We present a feasibility study of a muta-
tion-based fault injection technique that shows great promise in achieving exactly 
that. 

Fault injection is a well-known method for studying system behavior in the pres-
ence of faults. It is traditionally used to emulate external disturbances causing tran-
sient or permanent faults in the system under consideration. Residual faults like soft-
ware defects, on the other hand, are most often not covered when experimental 
validation techniques such as fault injection are used. However, some studies, e.g.  
[4, 5, 6, and 7], have discussed the concept of injecting software faults for dependabil-
ity evaluation. As residual software defects are difficult to activate (since they have 
passed the normal quality assurance process) they cannot be used to experimentally 
validate system dependability since the fault activation speed will be too low. Instead, 
representative software defects must be introduced into the system by fault injection 
in order to evaluate the capability of the system to cope with residual defects. This al-
lows a significant speed up of fault activation. 

The mutation technique was originally developed in the testing community as a 
means to assess test set quality. In fault tolerance evaluation, on the other hand, 
SWIFI has been the technique traditionally used for hardware related faults, e.g. [8]. 
This technique was extended by Costa and Madeira et al. [6, 7] to include software 
faults but was shown to have limitations. Because of this later work on software fault 
injection for fault tolerance evaluation purposes has taken up and used the technique 
of mutating program code [15]. 

Mutation-based fault injection of software defects is normally done by modifying 
elementary program components in the source code, which introduces small changes 
(faults) in the target program code, thus creating different versions of a program, and 
observing how each version behaves (each has one injected software fault) [9, 10]. 
The mutation testing community has long investigated the method of changing the 
source code. Modification of source code requires recompilation, re-linking and re-
loading, and this introduces a large overhead for fault injection experiments. Tradi-
tionally, this is somewhat enhanced by using interpretative tools. A method for avoid-
ing this and speeding up the process is mutant schemata [11], but this technique is 
highly intrusive, and therefore in many cases not suited for fault tolerance assessment, 
and also still requires knowledge of the source code.  Alternatively, modifying the 
machine code using low-level fault models would eliminate the time-consuming post 
injection process of compilation and linking without adding to the intrusiveness. This 
method is particularly useful when the source code is not available, which is the case 
with COTS components. Unfortunately this requires thorough analysis in order to be 
able to inject a set of low-level faults that corresponds to common high-level  
programming faults. 
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In a recent study, Madeira et al. [12] proposed a technique for emulating software 
faults through educated mutations introduced at the machine code level. The central 
idea is to find key programming structures at the machine code level where high-level 
software faults can be emulated. The results show that ODC classes [13] of faults, 
such as assignment, checking, interface and simple algorithm faults, can be directly 
emulated using this technique. 

We extend these principles to be applied to the byte code for virtual machines such 
as JVM (Java Virtual Machine). Java byte code is the machine level representation of 
Java programs, just as real machine language is the representation of C or C++ pro-
grams. Since the Java byte code preserves the object structure of the source code we 
have the benefit of being able to emulate object-oriented faults, which is not possible 
in mutating real machine code. Java byte code is also closer in other aspects to the 
source code, with more instructions that uniquely map to specific source code con-
structs. We are interested in whether this gives us the possibility to mimic a larger set 
of the actual faults made at the source code level than is possible in real machine 
code. This could be highly usable and give reliable dependability evaluations.  

The use of byte code level emulation was proposed by Ma et al. [10, 14] for mutant 
testing purposes. However, since their scope does not include the case in which the 
source code is unknown, they investigated a combination of mutant schemata and 
byte code translation for optimal performance.  

In this paper we show that representative software defects in Java source code can 
be mapped to corresponding structures in the Java byte code. We can thereby emulate 
realistic software defects in components when the source code is unknown. Further-
more, this allows a significant speed up.  

An alternative approach to the one presented in this paper would be to use an exist-
ing general purpose decompiler to get a source code representation of the COTS com-
ponent and then apply source code based techniques for fault injection. However, a 
decompiler only needs to generate a valid source code representation of the byte code, 
not necessarily the one closest to the original. Hence there are questions regarding 
how representative the injected faults would be. A decompiler build for generating a 
source code as close to the original as possible have the exact same limitations as are 
meet when applying byte code level fault injection. Hence, the decompiler approach 
has no advantages compared to byte code level fault injection. Because of the signifi-
cant performance benefit of injecting faults directly in the byte code this was the 
chosen approach. 

2   Defect Mapping 

2.1   Source Code Faults 

The purpose of this mutation based method of fault injection is to make it possible to 
emulate the actual faults that are normally introduced into software during develop-
ment and not like other methods, e.g. [3], to emulate the error behavior of such faults. 

Fault injection experiments using actual software faults should give better confi-
dence in the validity of the results obtained and should also be able to be used to ver-
ify the validity of error based methods. To define a fault model that can be considered 
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representative of common software faults, that model must be based on field data 
from actual software projects. To the best of our knowledge no such survey of com-
mon faults has been published for the Java language. Duraes et al. [15] made a survey 
for the C language and, although it is likely that the fault types found for C will also 
to a large extent be representative of Java faults, this is not known. Because of this we 
can not base this study on a set of known common faults and verify that these specific 
faults can be emulated in Java byte code; instead we must evaluate which classes of 
faults, with respect to code constructs and structure, can be successfully emulated. 
The source code faults have thus been selected according to an emphasis on the crite-
rion that they are suitable for testing the investigated method rather than their ability 
to stipulate a representative fault model for dependability evaluation. The criteria for 
selecting the faults have been: 

 
• All applicable ODC classes [13] should be represented among the faults ( i.e. As-

signment, Checking, Interface and Algorithm) 
• The set of faults should include the manipulation of variables, values, interfaces 

and program flow, spanning both classical procedural faults and object-oriented 
faults. 

• The faults should differ in structure and the language constructs involved. 
• The faults should be likely to occur from a programmer’s mistake. 

 
Using these criteria, a set of ten fault types that can be considered representative of 

the general case have been selected for the proof-of-concept experiments (see  
Table 1). Most of the fault types correspond to multiple source code patterns that are 
equivalent in complexity and structure. To speed up the experiment set-up phase, only 
a subset of patterns for each fault were considered in the experiments, which is ade-
quate for showing feasibility. For example, only the byte code mapping (i.e. key pro-
gramming structure) of two types of Wrong Logical Operator (WLO) faults, namely 
variable && variable and method-call && variable, were imple-
mented. However, the WLO and WEB fault types have inherently significant differ-
ences in their respective set of source code patterns. Consequently, the results of these 
faults cannot be directly applied to the general case, but a more detailed investigation 
must be conducted (see section 4). 

The detailed ODC classification suggested in [15] is used for the five classical 
procedural fault types (WVA, WLO, WEB, WPO and MBC). This detailed classifi-
cation is not applicable for most of the object-oriented fault types, with the exception 
of the MOI fault, and therefore only the original ODC classification is used. As can 
be seen in Table 1, several of the fault types belong to more than one ODC class. 
This is due to the fact that the classification is determined by the context in which 
the fault appears. It can be noted that two of the selected faults match the Inter-Class 
operators of Ma et al. [17]. The DHV fault is equal to the IHI operator and the WOM 
fault is very similar to the IOD operator. The difference between WOM and IOD lies 
in that the mutation pattern of WOM changes the name of the method to simulate a 
typo and the IOD operator deletes the method altogether. Since the changed method 
name is never called by the surrounding program, the effect of the two is practically 
the same. 
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Table 1. The selected fault types 

MOI – Missing Object Instantiation: The omission of instantiating an object 
variable when created. Can lead to failure if accessed prior to given a value 
ODC: Assignment (MVI) Limitation: Only unparameterized 

instantiations are considered. 
OCM - Object Changed by Method: An object given as input is altered by the 
method, although that was not intended. 
ODC: Assignment, Interface Limitation: Only int variables within the 

object are altered. 
WOM - Wrong Overriding Method name: A typo while writing an overriding 
method name will lead the compiler to treat it as a new one. 
ODC: Interface Limitation: No limitation 
WCT - Wrong Casting type: An object is being cast to a type that it does not 
have or is a subtype of. 
ODC: Assignment Limitation: No limitation 
DHV - Declaration of Hiding Variable: A variable is unintentionally given the 
same name as an instance variable in its own or an ancestor class, thus shadowing 
it. 
ODC: Assignment, Checking, Interface, 
Algorithm 

Limitation: Only int variables that are 
accessed for reading are considered. 

WVA - Wrong Variable Assignment: Variable is assigned to a wrong constant 
value. 
ODC: Assignment (WIDI)  Limitation: Only instance variables of 

type int are considered. 
WLO - Wrong Logical Operator:  Applying the wrong logical operator. For in-
stance using || when it should be &&. 
ODC: Assignment (WLEA), Checking 
(WLEC), Interface (WLEP) 

Limitation: Only method && vari-
able and variable && vari-
able expressions are considered. 

WEB - Wrong Else Body: Omission of curly brackets surrounding a multi state-
ment body of an else statement. 
ODC: Algorithm (MIEA), Checking 
(MIA) 

Limitation: Only simple unnested if-
else statements are considered. 

WPO - Wrong Parameter Order: The order of equal type parameters are mixed 
up when making a method call. 
ODC: Interface (WPFO) Limitation: Only int variables are 

considered. 
MBC - Missing Break in Case: A break statement is unintentionally omitted at 
the end of a case body. 
ODC: Algorithm (MBC) Limitation: No limitation 

2.2   Fault Emulation Technique 

The investigated technique is an adaptation of the G-SWFIT [12] method to Java pro-
grams. By introducing fault-specific changes directly into the byte code, the compiled 
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result of a defect source code is emulated (without the need of an actual compilation). 
This requires knowledge of how Java source code is translated into byte code, in par-
ticular how high-level programming errors translate into specific instruction patterns 
at the byte code level.  

The Missing Break in Case (MBC) fault is used as a running example throughout 
this section to explain the technique of finding (by the concept of key programming 
structures) and modeling  (by fault injection patterns) a source code fault at the byte 
code level. A non-faulty and a faulty source code example are shown in Figure 1. 

 

 
Fig. 1. Non-faulty and faulty source code for the MBC fault 

The part that requires the most effort is that of finding where the faults can actually 
be injected.  As a first step, an environment for the fault at the source code level is de-
fined. An environment is a specific set of source code statements where there is some 
room for programmers to make a mistake. For example, in the code given in Figure 2, 
a switch fall through occurs if the programmer forgets the break statement. Thus the 
Switch-Case statement as a whole forms the environment, thereby giving room for the 
programmer to introduce the fault, as shown in Figure 2. 

 

 

Fig. 2. Environment of non-faulty source code 

There can be more than one environment definition for a given fault type as there 
can be many such sequences/combinations/patterns that may lead to a fault of that 
particular type. For example, there are different environment definitions for the two 
types of WLO faults (see Table 1.) implemented. 

Once the environment at the source code level is defined, the comparison of the 
code generated for both variants (with and without faults) allows us to identify the 
specific instruction patterns at the byte code level that are used to locate each fault 
(called the key programming structure) and the instruction patterns used to mutate the 
fault-free byte code (called the fault injection pattern). 

This is illustrated in figure 3, which shows the set of correct and faulty byte codes 
for our running example. The key programming structure is highlighted in the  
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non-faulty code to the left. The faulty byte code to the right is what is generated when 
the fault is made in the source code and then compiled. To mimic the behavior of the 
code to the right (and thereby emulate the fault) the parameter for the highlighted 
goto at offset 36 can be changed from 47 to 39. The fault injection pattern is there-
fore defined as making that change.  

 
Fig. 3. Key programming structure at the byte code level 

All standard source code compilers contain compile time checking mechanisms 
that verify certain aspects of a program, e.g. a variable is declared prior to being as-
signed a value. Therefore some faults made at source code level cannot pass the com-
pilation and result in a faulty byte code executable. In conducting byte code fault 
emulation, these faults must be excluded by analyzing the mutant byte code.  

 In our running example with the switch fault we need to verify that the removal of 
the break statement does not lead to any unreachable statements that would have been 
recognized by the compiler. 

The key programming structures and fault injection patterns for each fault type are 
the fundamental information needed to conduct the fault injections, as described in 
section 3. 

3   Fault Injection and Evaluation 

The fault injection technique is divided into two phases: first, the fault analysis phase, 
which searches for fault-related information in the byte code and marks the fault loca-
tion, and, second, the fault emulation phase, which mutates the non-faulty byte code 
in a fault-specific way.  The technique takes the non-faulty byte code as input and 
generates the mutated byte code that emulates the fault. 

During the fault analysis phase the target application byte code is scanned for all 
the key programming structures defined for a fault. The search is based on a simple 
regular expression or a complex algorithm, depending on how the structure is defined. 
For each such hit, the corresponding fault location information is stored and passed on 
to the fault emulation phase. 
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During the fault emulation phase, the fault location information from the fault 
analysis phase is collected and mutated in a specific way defined by a fault injection 
pattern such that the resultant mutated byte code emulates the fault. 

3.1   Prototype Description 

A fault injection tool was developed for the proof-of-concept experiments using a 
pipe-and-filter architecture. This gives us the opportunity to collect and analyze the 
data output from the various components of the tool independently. 

 

 

Fig. 4. Architecture of the fault injection tool 

As can be seen in Figure 4, the tool consists of three main components. The fault 
library component is the container of the fault objects that holds information about the 
key programming structures and fault injection patterns for each fault type. The fault 
analysis component is responsible for analyzing the original byte code for faults and 
producing formatted fault location information (XML) by searching for possible fault 
locations in .class files (byte code) extracted from the jar file supplied. The fault 
emulation component performs fault-specific mutation on a given jar file according to 
the fault location information supplied by the analysis component and produces a mu-
tated jar file as the result. Along with the mutant, it also produces a status report con-
taining trace information about the mutations. The set of faults and fault locations 
used in the experiment can also be restricted with the aid of fault and fault location 
filters available in the tool. 

3.2   Experimental Feasibility Evaluation 

The experiment aims at determining the extent to which the byte code fault patterns 
emulate the corresponding source code defects. The fault injection process consists of 
both finding the correct locations (analysis phase) and manipulating the byte code 
(emulation phase). Consequently, the experiment is conducted in two parts. First it is 
investigated how well the fault locations found at the byte code level map to the 
source code. Next the behaviors of the byte code level mutants are compared with the 
corresponding source code mutant behavior. 
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Two target programs (named tp1 and tp2) are used in the experiment. The pro-
grams are selected on the criteria that it should be possible to manually find all possi-
ble source code fault locations and only a small number of test vectors should be 
needed for defect activation. The two target programs are thus fairly small (of a size 
of 20 and 70 KLOC) and sequential in structure so that the output is a strict function 
of the input. Both programs are implementations of a source code analysis tool and 
offer the same functionalities but employ different user interfaces (command line vs. 
graphical) and were implemented by different teams using different off-the-shelf 
parsers (with known source code). 

 

3.2.1   Fault Location Experiment 

Table 2. Byte code level fault location precision 

 

 

 

 

 

 

 

 

 

 

 

 

As can be seen in Table 2, all the potential locations can  be found, without any in-
correct hits, for a vast majority of the fault types investigated. This means that it is 
possible by only analyzing the byte code to determine the actual number (and loca-
tions) of possible programming errors at the source code level of the investigated 
types.  
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As pointed out in section 2.1, some fault types correspond to multiple source code 
structures. For the WLO and WEB fault types, only the basic and least complex struc-
ture has been considered. That might indicate that we will have less optimistic data 
for the general case for these two fault types. A more comprehensive discussion about 
the generalization is given in section 4. 

The missed and incorrect locations for the Missing Break in Case (MBC) fault type 
are the result of a fundamental difficulty with byte code level fault mapping.  Many of 
the basic language constructs such as switch-case, if-else, loops and logical operations 
are translated to the same byte codes and can in some cases not be distinguished (see 
section 4 for a detailed discussion).  

3.2.2   Fault Mutation Experiment 
As Java programs are executed on a virtual machine there are inherent run time 
mechanisms for fault detection (i.e. exception handling). Successful fault detection by 
these mechanisms is manifested by an error signal such as a message on the stderr 
stream. In addition to this, application specific fault detection mechanisms (e.g. 
boundary checking of variable values) also use error signaling such as stderr or alert 
dialogue screens for fault detection signaling. When a fault is not detected an applica-
tion can fail according to the well-known semantics of value and/or timing failures. 
Therefore it is natural to classify the application failure mode based on these three pa-
rameters (i.e. timing, output value and error signaling) as in Table 3. 

 

Table 3. Application failure mode classification 

Timing Output Error signal Classificaton
OK OK No Correct
OK OK Yes Tolerated  fault
OK NOK No Undetected value failure
OK NOK Yes Detected value failure
NOK OK No Undetected timing failure
NOK OK Yes Detected timing failure
NOK NOK No Undetected arbitrary failure
NOK NOK Yes Detected arbitrary failure  

Since there is no time constraint for the target programs the only possible timing 
failure will be when the programs do not terminate (i.e. they “hang”).  

The purpose of the experiment is to verify that the byte code mutants behave in the 
same way as the corresponding source code mutants. During the experiment, a de-
tailed comparison was conducted between the output of the byte code mutants and 
source code mutants. The outputs of the mutated program were also evaluated by 
comparison with a reference of correct outputs and the corresponding application 
failure mode was determined. The correct locations found in the earlier experiment 
were used in this experiment. For eight of the ten fault types, all locations found were 
mutated. Since a very large number of locations were found for the WCT and MBC 
fault types, only a subset corresponding to the average number of mutants for the 
other fault types was included in the experiment, resulting in a total number of 2224 
mutants. 
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Instead of using a large number of random test vectors, only one specifically se-
lected for utilizing a large proportion of the program functionality was used.  With 
this approach, a large number of fault activations were obtained with a minimum 
number of target program executions. 

In a back-to-back comparative study with these 2224 mutants obtained by the ten 
fault types injected into the target programs, no difference in the program behavior 
between source and byte code level mutants could be distinguished. Not only did they 
show the same application failure profile but they also had the exact same outputs. 
This strongly indicates that the byte code level is feasible for emulating the erroneous 
behaviors of programs containing residual programming defects. 

Table 4. Aggregated failure profile based on the proof-of-concept experiment 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

As an example of the type of results that can be obtained by using the proposed 
method, Table 4 shows the failure mode classification for the experiment conducted. 
Since the emulation of source code level faults is perfect, identical application failure 
modes are obtained for both source and byte code level mutants. Hence, only one set 
of data is presented in the table. 

The detection coverage for the value faults ranges between 50% and 100% depend-
ing on the fault type. This indicates that a large proportion of the faults are detected 
by exception handling mechanisms, as these were the only detection mechanisms 
available in the test programs. 

The large number of correct outputs (i.e. the fault has not been activated or has 
been masked) owes mainly to the use of off-the-shelf parsers in the test programs as 
they contain a large proportion of unused functionality. A separate investigation of 
the experimental results showed that only 4% of the faults injected into the parser 
code led to a program failure whereas the corresponding figure for the application 
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specific code was 53%. Fault activation is a well-known concern when conducting 
fault injection. The experiment conducted indicates that this problem is accentuated 
when using fault injection techniques on COTS- based software systems. However, 
static analysis of the target program code could determine which parts of the COTS 
components are never accessed and could be used to reduce the problem. Alterna-
tively, a trace mutant could be used to dynamically determine which parts of the pro-
grams are activated by each test case. 

4   Discussion 

As seen in the experimental results the object oriented fault types (MOI, OCM, 
WOM, WCT and DHV) are successfully found and emulated at the byte code level. 
The basic (non-object oriented) faults fall into three categories. The first is associated 
with data or data containers (WVA) and the second concerns the manipulation of in-
terfaces (WPO). Both containers and interfaces are very visible in Java byte code and 
the identification and modification of these have not presented any difficulties in this 
study. 

As mentioned we implemented only a specific subset of source patterns for each 
fault in this experiment. For all fault types discussed so far the subset that we used is 
representative of the general case; consequently the method has a general feasibility 
for these fault types. 

The case is somewhat more complicated for the third category of basic faults, 
namely the ones associated with program flow (i.e. WLO, WEB and MBC). The sub-
sets that are implemented for two of these (WLO and WEB) are the basic and least 
complex ones, and thus the experimental results for these can not automatically be 
scaled to the general case. However, the problems associated with the general case 
were identified from implementing these subsets and from the full implementation of 
the Missing Break in Case (MBC) fault type. It should be noted that the problems dis-
cussed below concern local program flow (not passing any interfaces). If a fault stipu-
lates mutation of program flow at the interface level it falls under the second category 
of basic faults and is easily achievable. 

When conditional statements such as logical operations, if-else, switch-case and 
loops are translated into byte code they all get a similar structure that makes it very 
difficult, and in many cases probably impossible, to distinguish them from one an-
other. The problem is further accentuated when these statements are nested together, 
which is very common in normal programs. This is a serious problem when working 
on real machine code and it seems to some extent to be a problem for Java byte code 
as well. However there are some constructs in Java byte code that we lack in real ma-
chine code that can be of aid in this process. As an example there is a unique code 
that is present whenever there is a switch statement. This is naturally helpful in dis-
tinguishing a switch-case from a series of if-else and it is the reason for the good re-
sults with the MBC fault type.  

Thus, for this class of faults, Java byte code is still better suited for fault injection 
than real machine code, but it is uncertain whether it is sufficiently suited. A further 
and more detailed study of this class of faults is needed to fully understand the limita-
tions of Java byte code in this regard. 
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5   Conclusions 

In this paper we investigate a mutation-based fault injection technique that can be 
used for dependability evaluations of COTS-based systems. We show that representa-
tive software defects at the Java source code level can be mapped to corresponding 
structures at the byte code, thereby emulating realistic software defects in components 
where the source code is unavailable.  

It is shown that byte code level mutants emulate source code level mutants for a set 
of ten representative programming source code defects with some minor restrictions 
in finding all fault locations in the byte code. 

It is first investigated how well the fault locations found at the byte code level map 
to the source code. The study shows that a one-to-one mapping in fault location can 
be obtained for fault types related to object orientation, data/data container and inter-
faces. The program flow related fault types, on the other hand, are difficult to locate at 
the byte code level in some situations. 

Second the behaviors of the byte code level mutants are compared with the corre-
sponding source code mutant behavior. In a back-to-back comparative study no dif-
ference in program behavior between source and byte code level mutants could be 
distinguished. Not only did they show the same application failure profile but they 
also had the exact same outputs. This strongly indicates that the byte code is feasible 
for emulating the erroneous behaviors of programs containing residual programming 
defects. 

The mutant-based fault injection technique investigated can therefore be used to 
validate the dependability of Java COTS-based systems with respect to realistic soft-
ware defects without the need to know the source code. This also gives a significant 
speed up compared to source code based methods. 

 The results furthermore indicate that a large proportion of the faults is detected by 
exception handling mechanisms. We also show that the fault activation level is sig-
nificantly lower in the off-the-shelf part than in the application specific part of the 
code. 
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Abstract. This paper looks into some aspects of using Bayesian hypothesis 
testing to find upper bounds for software failure probabilities, which consider 
prior information regarding the software component in addition to testing. The 
paper shows how different choices of prior probability distributions for a 
software component’s failure probability influence the number of tests required 
to obtain adequate confidence in a software component. In addition, it evaluates 
different choices of prior probability distributions based on their relevance in a 
software context. The interpretations of the different prior distributions are 
emphasised. As a starting point, this paper concentrates on assessment of single 
software components, but the proposed approach will later be extended to 
assess systems consisting of multiple software components. Software 
components include both general in-house software components, as well as pre-
developed software components (e.g. COTS, SOUP, etc). 

1 Introduction 

The use of software components in any kind of critical system requires evidence that 
the software component is dependable [13]. When focusing on reliability, which is 
one of the main attributes of dependability, this can be done by assessing the software 
component’s failure probability and by demonstrating adequate confidence in this 
calculation. 

In principle, a software component’s failure probability can be assessed through 
statistical testing. However, since critical software components usually need to have 
low failure probabilities [12], the number of tests required to obtain adequate 
confidence in this failure probability often becomes practically very difficult to 
execute. An alternative approach is therefore to use all available prior information to 
compensate for the enormous number of tests required. 

This paper studies the use of Bayesian theory [1, 4, 6, 18] and looks into Bayesian 
hypothesis testing [2, 19] as one possible approach to find upper bounds for failure 
probabilities in software components, which both takes prior information regarding 
the software component and testing into consideration. Different choices of prior 
probability distributions for a software component’s failure probability are evaluated 
in a software context, and their influence on the number of tests required to obtain 
adequate confidence in a software component is investigated. 
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This paper concentrates on assessment of single software components, but the 
motivation for the proposed approach is a belief that it can be further extended to 
assess systems consisting of multiple software components [7, 9, 10]. Of special 
interest is the challenge to find upper bounds for simultaneous failure probabilities [3, 
11, 12, 16]. Since the probability of simultaneous failures is likely to be significantly 
smaller than single failure probabilities, the number of tests required to obtain 
adequate confidence in these failure probabilities is practically impossible to execute. 
One of the main goals for further work is therefore to find upper bounds for 
simultaneous failure probabilities, and thus making it possible to include dependency 
aspects in software reliability models. 

Software components include both general in-house software components, as well 
as pre-developed software components. Reusing pre-developed software components 
have become a common approach in software development due to the fact that this 
has the potential of significantly reducing development costs. Although reusing 
software components might benefit reliability as well as reducing costs, it will in 
many cases be difficult to assess whether the reliability is actually improved or not. 
Currently there is no broadly accepted way of including and assessing pre-developed 
software components in critical systems. 

The rest of this paper is organized as follows. Chapter 2 presents some necessary 
notation, and describes the theory that forms the basis of the Bayesian hypothesis 
testing approach. In addition, some important definitions are included. In Chapter 3 
the influence of different choices of prior probability distributions for a software 
component’s failure probability is investigated. Chapter 4 discusses different choices 
of prior probability distributions for failure probabilities in a software context, and 
Chapter 5 concludes and describes further work. 

2 Background 

In this chapter a brief description of the theory that forms the basis of the Bayesian 
hypothesis testing approach is given. In addition some important definitions are 
outlined. Important notation used throughout this paper is listed in Table 1. 

Table 1. Notation 

Term Explanation 
n = numbers of tests 
r = numbers of failures in n tests 
θ = a software component’s failure probability 
θ0 = an accepted upper bound for a software component’s failure 

probability 
C0 = a given predefined confidence level 
π(θ) = prior distribution for a software component’s failure probability (θ) 
π(θ|D) = posterior distribution for a software components failure probability    

(θ) 
L(θ|D) = likelihood function 
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2.1   Definitions 

The terms random failure and systematic failure are often used for hardware failures 
and software failures, respectively [12], even though these terms are a bit misleading. 
Systematic failure refers to the fault mechanism where a fault reveals it self as a 
failure. So, if a software component failed once on a particular input it will always fail 
on that input until the fault has been successfully removed. 

However, interest really centres upon the component’s failure process: What 
happens when the component under study is used in its operational environment? 
Since there is uncertainty as to which input that will be selected on a particular 
occasion, there is uncertainty as to whether there will be a failure or not. In other 
words, a component’s failure process is a stochastic process. Systematic failures, in 
the presence of non-deterministic usage, are therefore in reality just as random as 
random failures, and both random failures and systematic failures are susceptible to 
statistical analysis. Even though systematic failures usually are used for software 
failures, it should be emphasised that systematic failures also can arise from certain 
design and construction faults in hardware. 

Statistical testing [5, 17] consists of exposing a piece of software to test cases 
drawn randomly according to some probability distribution defined over the 
program’s input space. Such testing can be used to assess a software component’s 
failure probability. Typical assumptions in statistical testing are (i) independent test 
runs, (ii) constant failure rate, (iii) all failures during testing are detected, and (iv) the 
operational profile is known. 

One benefit of statistical testing is that it requires no knowledge of the internal 
structure of the software component being tested. This is of great benefit when pre-
developed software components are used, for which one might not have all the 
required information available. Pre-developed software is in this paper defined as: 
“Software which already exists, is available as commercial or proprietary product 
and is being considered for use in a computer-based system” [8]. This definition 
encompasses any kind of reuse of software whether it is black box, commercially 
available, from an in-house library, or just happens to be available from another 
system. 

Let θ0 denote the accepted probability of failure for a given software component. 
The number of fault free tests, n, which must be carried out to satisfy the failure 
probability θ0 and the given predefined confidence level C0, using classical statistical 
testing, is given in equation (1), [15]. 

)1ln(

)C1ln(
n

0

0

θ−
−

=  (1) 

2.2   Bayesian Analysis 

Bayesian analysis [1] consists of combining prior information (π(θ)) and sample 
information (D) into a posterior distribution (π(θ|D)) for θ given D. It is from this 
posterior distribution all decisions and inferences are made in Bayesian analysis. 
Bayes theorem [1] is expressed in equation (2), where the prior distribution π(θ) 
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reflects beliefs about θ prior to testing, and the posterior distribution π(θ|D) reflects 
updated beliefs about θ after testing. 

θ

θθπθ

θπθ
=θπ

d)()D|(L

)()D|(L
)D|(  

(2) 

In hypothesis testing, a null hypothesis H0(θ) and an alternative hypothesis H1(θ) 
are specified. In classical statistics one decides between H0 and H1 by examining type 
I and type II error probabilities. These probabilities of error represent the chance that 
a sample is observed for which the test procedure will result in the wrong hypothesis 
being accepted. Type I error occurs when H0 is rejected when it is true, and type II 
error occurs when H0 is accepted when it is false. 

In Bayesian analysis, hypothesis testing is conceptually more straightforward. One 
calculates the posterior probabilities α0 = P(H0|D) and α1 = P(H1|D), which combine 
both test data and prior knowledge, and decide between H0 and H1 accordingly [1]. 
Often it is convenient to summarize the evidence in term of posterior odds. Saying 
that α0/α1 > R, clearly says that H0 is R times as likely to be true than H1. 

Although the posterior probabilities of the hypotheses are the primary measures in 
Bayesian hypothesis testing, the prior probabilities π0 = P(Ho) and π1 = P(H1) are also 
of interest. π0/π1 is called the prior odds ratio, and the Bayes factor can be expressed 
by combining the posterior and prior odds ratios, as shown in equation (3). 
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    The Bayes factor can be viewed as a weighted likelihood ratio of H0 to H1 [1]. A 
Bayes factor greater than one indicates evidence in favour of the null hypothesis, and 
the higher the Bayes factor is the more evidence one has in favour of H0. The Bayes 
factor forms the basis for finding the number of tests, required to satisfy a predefined 
upper bound θ0 and confidence level C0, in the proposed approach [2, 19]. This is 
outlined in more detail in the following chapters. 

2.3   Finding Upper Bounds for Software Failure Probabilities by Using Bayesian  
        Hypothesis Testing 

One possible approach to find upper bounds for software failure probabilities is to use 
Bayesian hypothesis testing [2, 19]. Assume for further reading that H0 and H1 are 
specified as: H0: θ≤θ0 and H1: θ>θ0, were θ0 is a probability in the interval (0, 1). θ0 
represents an upper bound for a software component’s failure probability and is 
assumed to be application specific and predefined (e.g. from standards, regulation 
authorities or customers). 

In this case the null hypothesis states that the probability of software component 
failure is lower than an upper bound θ0, whereas the alternative hypothesis states that 
the probability of software component failure is higher than an upper bound θ0. 

Often, it is convenient to express the prior belief in a software component’s failure 
probability (θ) as probability distributions over the following two intervals (0, θ0) and 
(θ0, 1) [1]. This is shown in equation (4). 
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The probability distributions; g0(θ) and g1(θ) describe how the prior mass is spread 
out over the two hypotheses. To reflect prior beliefs, the beta distribution is often 
chosen, since this distribution is a rich and tractable family that forms a conjugate 
family to the binominal distribution. The probability distribution for observing r 
failures during testing, given n independent trials and a constant failure probability 
(θ), is expressed by the binominal probability distribution. This is shown in  
equation (5). 
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Based on equation (4) and (5), the posterior odds ratio can be expressed as shown 
in equation (6). 
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Further, it can easily be shown that the Bayes factor can be given as shown in 
equation (7). 
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For acceptance, the posterior probability for H0 should be higher than a given 
predefined confidence level C0. Based on this acceptance criterion, it can easily be 
shown that the Bayes factor also can be expressed as shown in equation (8). 
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3   Experiments and Results 

In this chapter, three different prior probability distributions for a software 
component’s failure probability are investigated, and their influence on the number of 
tests required to obtain adequate confidence in a software component is studied. 
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The first case is based on earlier work done by Cukic et al. [2] and Smidts et al. 
[19], and assumes a uniform prior probability distribution both under the null 
hypothesis and the alternative hypothesis. Related to this prior probability 
distribution, there are some interesting aspects that need to be studied further. Two 
new cases are therefore used to investigate these aspects in Case 2 and Case3. 

Case 1: 
In papers [2, 19], two uniform probability distributions are used to describe how the 
prior mass is spread out over the two hypotheses. The prior information regarding θ is 
expressed in equation (9). 
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    In addition, it is assumed that no failures have been encountered during testing. 
Based on the binominal distribution in equation (5) and the prior belief about θ in 
equation (9), the Bayes factor, as defined in equation (7), can be calculated as shown 
in equation (10). 
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    The number of tests required to satisfy a given predefined confidence level C0 can 
be found by combining equations (8) and (10), and is given in equation (11). 
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    In the case where P(H0) = θ0 and P(H1) = (1-θ0) the same result as by assuming an 
uniform prior probability distribution for θ over the entire interval (0, 1) is achieved 
and, as shown in equation (12), the required number of tests turns out to be almost the 
same as by using classical statistical testing. 
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    Table 2 is extracted from [2] and shows the required number of tests for different 
choices of P(H0) and θ0. The predefined confidence level C0 is assumed to be constant 
equal to 0.99. 
    From Table 2 it can be seen that the number of tests, required to obtain adequate 
confidence in a software component, is greatly reduced when a uniform prior 
probability distribution is assumed both under H0 and H1. In addition, it can be seen 
that the higher the prior belief in H0 is the fewer tests are needed. However, there are 
some interesting aspects related to this prior probability distribution: 
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Table 2. Required number of tests for different choices of P(H0) and θ0, when a uniform prior 
probability distribution is assumed both under H0 and H1 

θ0 C0 No. of tests 
P(H0) = 0.01 

No. of tests 
P(H0) = 0.1 

No. of tests 
P(H0) = 0.6 

0.01 0.99 458 228 50
0.001 0.99 2378 636 63 
0.0001 0.99 6831 853 65 
0.00001 0.99 9349 886 65 
0.000001 0.99 9752 890 65 

− First of all, a flat probability distribution for θ is assumed both under the null 
hypothesis and the alternative hypothesis (see Figure 1). This corresponds to the 
view that it is just as likely that the failure probability is close to 1 as it is close to 
θ0 under the alternative hypothesis. In Case 2, this aspect is mitigated by allowing 
an expert to set a certain upper bound on the failure probability. 

− Secondly, the probability distribution for θ is discontinuous in θ0 (see Figure 1). 
This reflects a high prior belief that the failure probability is below θ0, but it also 
opens for a small possibility that there is an unknown failure mechanism with a 
non-informative prior failure distribution. This aspect is mitigated in Case 3, by 
using a continuous beta distribution. 

 

Fig. 1. The prior probability distribution used in Case 1 

In addition it can be shown that it is the choice of two separate uniform probability 
distributions under the null hypothesis and the alternative hypothesis that results in 
the extremely low number of required tests. The uniform probability distribution on 
the interval (a, b) is expressed in equation (13). 

<θ<
=θ

 elsewhere  ,0

 b a  ,
a-b

1
)(P  (13) 

From this expression it can easily be seen that the smaller the denominator is, the 
higher the probabilities are. Since the area under the null hypothesis usually is 

θ0 1 θ 

π (θ)

P(H0)*1/θ0 

P(H1)*1/(1-θ0) 
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extremely small compared to the area under the alternative hypothesis, the probability 
for failure probabilities less than θ0 is much higher then the probability for failure 
probabilities higher than θ0. This shows that the use of two separate uniform 
probability distributions under H0 and H1 not at all represents a conservative 
approach, even though the use of a uniform probability distribution over the entire 
interval usually is seen as an ignorance prior. 

A somewhat worrying observation is that the number of tests, required to obtain 
adequate confidence in a software component, increases significantly when other 
more realistic distributions for a software component’s failure probability are used. If 
an expert is allowed to set a certain upper bound on the failure probability or if a 
continuous probability distribution for the software component’s failure probability is 
assumed, experiments show that the number of required tests increases significantly. 
This is outlined in more detail in Case 2 and in Case 3. 

Case 2 
One possible way to mitigate the effect of using a flat distribution under the 
alternative hypothesis is to allow an expert to set a certain upper bound on the failure 
probability under H1, i.e. to state a value θ1 for which the probability of having a 
failure probability higher than this is zero (see Figure 2). By assuming a uniform 
probability distribution both under H0 and H1, the prior probability distribution for θ 
can be expressed as shown in equation (14). 
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    As in Case 1, it is assumed that no failures have been encountered during testing. 
Based on the binominal distribution in equation (5) and the prior belief about θ in 
equation (14), the Bayes factor, as defined in equation (7), can be calculated as shown 
in equation (15). 
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    By combining equation (8) and (15), the number of tests required to satisfy a given 
predefined confidence level C0, can be found. This is expressed in equation (16). 
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As in Case 1, a uniform probability distribution is assumed both under the null 
hypothesis and the alternative hypothesis. In addition, an upper bound on the failure 
probability (θ1) is defined under the alternative hypothesis. The required number of 
tests for different choices of P(H0), θ0 and θ1 are given in Table 3. The predefined 
confidence level C0 is assumed to be constant equal to 0.99. 
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Fig. 2. The prior probability distribution used in Case 2 

Table 3. Required number of tests for different choices of P(H0), θ0 and θ1, when a uniform 
prior probability distribution is assumed both under P(H0) and P(H1) 

θ0 θ1 No. of tests 
P(H0)=0.01 

No. of tests 
P(H0)=0.6 

0.01 0.05 776 284 
0.001 0.05 5300 852 
0.0001 0.05 30271 1242 
0.000001 0.05 179002 1319 
0.01 0.1 695 210 
0.001 0.1 4602 510 
0.0001 0.1 23804 639 
0.000001 0.1 93500 659 
0.01 0.25 598 131 
0.001 0.25 3696 235 
0.0001 0.25 15936 260 
0.000001 0.25 38455 263 
0.01 0.5 527 84 
0.001 0.5 3025 124 
0.0001 0.5 10853 131 
0.000001 0.5 19412 131 
0.01 1 458 50 
0.001 1 2378 63 
0.0001 1 6831 65 
0.000001 1 9753 65 

From Table 2 it can be seen that the number of tests, required to obtain adequate 
confidence in a software component, increases significantly when the upper bound for 
the failure probability decreases. Although the effect depends on the actual upper 
bound defined, some realistic test cases, where the upper bound was set to 0.1 and 
0.05, indicate an increase in the number of required tests with a factor of respectively 
10 and 20. These results can be explained by the Bayesian hypothesis testing 
approach, which uses the Bayes factor to find the number of tests required to satisfy 
the confidence level C0. From equation (15), it can easily be seen that when θ1 
decreases, the Bayes factor also decreases. This means that the evidence in favour of 

θ0 

π (θ) 

θ1 1

P(H0)*1/θ0 

P(H1)*1/(θ1-θ0) 
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the null hypothesis decreases, and that more tests must be conducted to satisfy the 
confidence level C0. 

Case 3: 
A possible way to mitigate the effect of discontinuity in the prior probability 
distribution in Case 1 is to use a continuous probability distribution for θ over the 
entire interval (0, 1). To reflect prior beliefs, the beta distribution is often chosen (see 
Figure 3), since this distribution is a rich and tractable family that forms a conjugate 
family to the binominal distribution. A prior probability distribution for θ based on 
the beta distribution is shown in equation (17). 
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As in the other two cases, it is assumed that no failures have been encountered 
during testing. Based on the binominal distribution in equation (5) and the prior belief 
about θ in equation (17), the Bayes factor, as defined in equation (7), can be 
calculated as shown in equation (18). 
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    By combining equation (8) and (18), the number of tests required to satisfy the 
given predefined confidence level C0, can be found. This is expressed in equation 
(19). 
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In situations were the prior belief regarding θ corresponds to the view that no 
failures have been detected during a hypothetical test, it is common to set the α-value 
in the prior beta distribution equal to 1. This is because the α-value in the beta 
distribution can be interpreted as the number of failures detected during testing, while 
the β-value can be interpreted as the total number of fault free tests performed during 
testing [1]. 

Table 4a shows the number of tests required to obtain adequate confidence in a 
software component, when  is constant equal to 1 and P(H0) varies between 0 and 
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0.99. The given predefined confidence level C0 and upper bound θ0 are assumed to be 
constant equal to 0.99 and 10-4, respectively. 

From Table 4a it can be seen that the number of required tests decreases towards 0 
when the -value increases. 

 
Fig. 3. Beta distribution with (a) α and β <1, (b) α<1 and β>1 and (c) α and β>1 

    This result can be explained by equation (19), were it easily can be seen that if the 
-value increases, the number of remaining tests, n, required to satisfy the confidence 

level C0 decreases accordingly. The first scenario in Table 4a, where β→0, represents 
classical statistical testing (black-box testing), while the second scenario represents 
using a uniform prior probability distribution for  over the entire interval [0, 1]. In 
the last scenario, the prior belief regarding θ is equal to the posterior belief, and zero 
tests are needed to reach the required confidence level C0. 

Table 4. Required number of tests for θ0 = 10-4 and C0 = 0.99 when a continuous beta 
distribution are used a) with α = 1 and P(H0) varying from 0 to 0.99 and b) with P(H0) = 0.8 
and α varying from 10-4 to 10 

P(H0) α β No. of tests  P(H0) α β No. of tests 
0.0 1  0 46050  0.80 10-4 4*10-4 16536 

10-4 1 1 46049 
 

0.80 
0.0
1 0.071 16805 

0.10 1 1054 44996  0.80 0.1 694 18993 
0.20 1 2231 43819  0.80 0.8 13073 28985 
0.30 1 3567 42483  0.80 1 16094 29956 
0.40 1 5108 40942  0.80 3 42787 44477 
0.50 1 6931 39119  0.80 10 125177 62645 
0.60 1 9163 36887  (b)    
0.70 1 12039 34011      
0.80 1 16094 29956      
0.90 1 23025 23025      
0.95 1 29956 16094      
0.98 1 39119 6931      
0.99 1 46050 0      
(a)         

Table 4b shows the required number of tests when P(H0) is constant equal to 0.8 
and  varies between 10-4 and 10. As in Table 4a, the given predefined confidence 
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level C0 and upper bound θ0 are assumed to be constant equal to 0.99 and 10-4, 
respectively. From Table 4b it can be seen that the number of tests, required to satisfy 
the confidence level C0, increases significantly when the -value increases. 
    In addition, it can be seen that the total number of tests required by using the 
Bayesian hypothesis testing approach both can result in fewer as well as even more 
tests compared to classical statistical testing. The total number of required tests is 
highly dependent on the choice of -value in the beta distribution. 

4   Discussion 

The results from the experiments in Chapter 3 show that the number of tests required 
to obtain adequate reliability in a software component is highly dependent on the 
choice of prior distribution in the Bayesian hypothesis testing approach. This prior 
distribution is an expression of prior belief in the reliability of a software component, 
and should be based on all existing information about the software component prior to 
testing. This chapter discusses how different evidences may influence this prior belief, 
and how this can be reflected in the prior distribution. 

Some typical evidences that influence the reliability of a software component are: 
the quality of the producer, the development process, programming language, the 
complexity of the software, the type of software (in-house, COTS etc.), operating 
experience, etc. The sum of these evidences may not only have impact on how much 
one believe in a software component, but the different types of evidences may also 
influence the shape of the prior distribution between zero and one. In the following 
this is discussed, with reference to some software examples. 

One aspect is that a software component can be correct, i.e. that it, in distinction 
from hardware components, can have a zero failure probability. This can be expressed 
by a θ0 equal to zero, and a P(H0) that expresses the belief one has in this upper 
bound. If for instance the program is developed using clean room programming, or 
formal development methods, P(H0) may be high (close to one). However, there 
might be a suspicion that even if the program is correct according to specification, 
there is a possibility that the specification is incorrect. This suspicion should be 
expressed in the prior distribution under H1. If there really is a specification error, this 
could lead to a failure at any moment of execution. It is therefore not unrealistic to 
assume that the failure probabilities under H1 are evenly distributed. Alternatively, 
one could assume that if there is a specification error, this would lead to an immediate 
failure after execution start. In this case, the failure probabilities under H1 should have 
a distribution that is large for θ near one, resulting in a kind of “bath-tub” curve for 
the distribution of θ (see Figure 3a). 

A similar argument could be used for reuse of software. If a software component 
has been frequently used in one environment, with no failure, one can assume a large 
value of P(H0) for a low value of θ0. However, if the same software component is 
used in another environment, there is a certain possibility for a systematic failure. One 
possible way to reflect this is by assuming a smaller value for P(H0) and a larger and 
more evenly distribution for the failure probabilities under H1. 
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A different case would be for an in-house component, tailor made for its purpose, 
where the development was made in an unsystematic way. It is assumed that the 
component has been tested and debugged during development, and finally passed an 
acceptance test. In this case it is reason to believe that no obvious failures occur, so 
that the distribution for θ will be close to zero. On the other hand, in particular if the 
component is large and complex, there is a significant probability that there are one or 
more bugs hidden in the code that can cause failures in more rare situations. This 
should be reflected in the distribution for θ. A reasonable choice could be a uniform 
distribution for θ below a fairly low θ0 and a fast decreasing distribution for θ above 
this value. The choice of θ0, P(H0) and P(H1) should in this case depend on the belief 
one has in the development process and the thoroughness of acceptance test. 

The intention of this chapter has been to stress the importance of selecting a prior 
distribution for θ on the basis of all available information, and give some ideas on 
how this can be done for different software components. Having chosen a reasonable 
shape of the distribution for θ, one could find a beta distribution that reflects this 
shape as well as possible. The use of beta distributions is, however, mainly chosen 
because of its computational convenience. Other more complex distributions may also 
be used. 

5   Conclusion and Further Work 

In this paper the use of Bayesian hypothesis testing, as one possible approach to find 
upper bounds for software failure probabilities, has been studied. Three different 
choices of prior probability distributions for a software component’s failure 
probability have been evaluated, and their influence on the number of tests required to 
obtain adequate reliability in a software component has been investigated. The results 
from the experiments show that the number of required tests is highly dependent on 
the choice of prior distribution in the Bayesian hypothesis testing approach. In 
addition, it is shown that the total number of tests required by using this approach 
both can result in fewer as well as even more tests compared to classical statistical 
testing. It should be emphasized that it is not the Bayesian hypothesis testing 
approach that results in fewer required tests, but the underlying prior distribution for 
the software component’s failure probability and the assumptions that are made. To 
choose a prior probability distribution for a software component’s failure probability 
that correctly reflects one’s prior belief is therefore of great importance. 

Further work includes extending this approach to assess systems consisting of 
multiple software components. Of particular interest is the challenge of finding upper 
bounds for simultaneous failure probabilities, and thus making it possible to include 
dependency aspects in software reliability models. 

Another important aspect, which needs to be studied further, is the difficulty of 
establishing descriptions of prior beliefs regarding single failure probabilities, as well 
as for simultaneous failure probabilities, where all available information prior to 
testing is taken into account. One approach to find these prior probability distributions 
that will be investigated is the application of Bayesian Belief Nets (BBN’s). 
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Abstract. This paper describes the results of a research study sponsored by the 
UK nuclear industry into methods of justifying smart sensors. Smart sensors are 
increasingly being used in the nuclear industry; they have potential benefits 
such as greater accuracy and better noise filtering, and in many cases their ana-
logue counterparts are no longer manufactured. However, smart sensors (as it is 
the case for most COTS) are sold as black boxes despite the fact that their 
safety justification might require knowledge of their internal structure and de-
velopment process. The study covered both management aspects of interacting 
with manufacturers to obtain the information needed, and the technical aspects 
of designing an appropriate safety justification approach and assessing feasibil-
ity of a range of technical analyses. The analyses performed include the meth-
ods we presented at Safecomp 2002 and 2003. 

1   Introduction 

Sensors for nuclear applications have been relatively simple analogue devices with 
known performance properties and known failure characteristics. However, the sensor 
industry is increasingly using microprocessor-based “smart sensors”. Smart sensors 
can achieve greater accuracy, better noise filtering together with in-built linearisation, 
and provide better on-line calibration and diagnostics features. So, given the difficulty 
in obtaining replacement analogue sensors, and the potential benefits of smart sensors, 
it is important that the nuclear industry develops a suitable approach for justifying the 
use of smart sensors in systems important to safety (SIS). 

Smart sensors are a specific form of COTS (commercial off-the-shelf) product. 
COTS products are normally sold as a “black box” where there is no knowledge of 
the internal structure. However, their safety justification might require knowledge of 
the internal structure and development process. The justification of sensors is an in-
creasing problem because the software constitutes a valuable intellectual investment, 
and the civil nuclear companies purchase sensors in small quantities. 

This paper presents the results of a research study sponsored by the UK nuclear in-
dustry into methods for justifying smart sensors. The project has covered both man-
agement and technical issues. 

• From a management perspective, we examined the issues involved in interacting 
with the suppliers to gain the information needed for the justification. We also 
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addressed the need for a sustainable long-term approach for the justification of 
smart sensors that is acceptable to both suppliers and customers. 

• From a technical perspective, we need an assessment approach that is both pro-
portionate and feasible to apply and is commensurate with the SIL of the in-
tended application(s). The approach should also be related to existing assurance 
requirements for computer-based systems in nuclear application (e.g. HSE SAPs 
[1] and the British Energy PES Guidelines [2]) and should address the concerns 
related to the black box assessment of smart sensors (and other COTS products). 

The paper is structured as follows. In Section 2 we describe the interactions with 
the manufacturers that took place in the scope of this project, as well as the main is-
sues identified during these interactions. Section 3 summarises three different view-
points of the safety justification of smart sensors, including a goal-based approach 
that is expanded in Section 4 and vulnerability assessment summarised in Section 5. 
Section 6 describes the analyses performed on one of the smart devices obtained, 
while Section 7 relates these analyses with the three approaches from Section 3. The 
conclusions are presented in Section 8. 

2   Relationships with Smart Sensor Manufacturers 

2.1   Obtaining Software, Supporting Data and Company Culture 

Obtaining the software was a lengthy process spread over many months, involving 
several contacts, phone calls and negotiation of conditions for non-disclosure of the 
results. However, once the relationship was established, there were fewer difficulties 
in providing further data on the devices or even the software of other devices.  

As a result of these negotiations, we successfully obtained smart sensor software 
from two manufacturers, and we were offered the possibility of obtaining another ex-
ample by a third manufacturer. In addition, the manufacturers supplied, to varying de-
grees, design documentation and additional data such as process and reliability data 
and certificates that could be used to support the safety justification of the devices. 

It must be borne in mind, however, that the software was provided on the under-
standing that it was a part of a research project undertaken by a specialist third party. 
Whether a similar level of access would be provided to end-users on a routine basis 
remains an open question. 

The nature of the relationships with the smart sensor manufacturers was quite dis-
tinct, probably as a result of the key markets they target and the management structure 
and particular characteristics of the companies. It is clear that smart sensor suppliers 
can have different company cultures, and this can have a major impact on the feasibil-
ity of gaining access to the source code and subsequently a successful assessment. 
Some pertinent questions to assess the likely success of the interaction might be: 

1. How does the organisation deal with this type of interaction? Are there prece-
dents in the past? 

2. Who is the gatekeeper and what is their role in the organisation? (a “gatekeeper” 
is an official point of contact in the company who decides whether to allow re-
quests to pass to higher management): 
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• Do they have access to design authority? 
• What are the lines of communication? 
• How frequently and with whom are meetings available to clarify issues? 

3. How difficult would access to management be? 
4. To what extent does the organisation see the relationship as benefiting them? 

• What are the main market sectors? 
• Is nuclear industry a main market, a niche or a distraction? 
• Are the benefits of engagement seen only in terms of future sales? 
• Does the organisation see benefits of interaction from a technical or process 

improvement point of view? 
5. What is the attitude to confidentiality? 

• Is a standard non-disclosure agreement sufficient? 
• Is the confidentiality agreement with the assessor company or with named 

people from the company? 

2.2   Long Term Issues 

Despite the differences between the supplier approaches, some common long-term is-
sues emerged: 

1. The suppliers expressed concerns about the effort and cost needed for routine 
justifications of smart sensors—the nuclear industry is a small market compared 
to other sectors, and the effort might be excessive relative to the potential sales. 

2. Both suppliers are generally in favour of an “assurance package” of additional 
information that is paid for by the customer. 

    The big issue is what this package should contain and whether it will be acceptable 
to a wide range of customers (e.g. the nuclear industry or beyond). There is a UK ini-
tiative to define a framework of IEC 61508-conformant documentation about the 
development processes for a device; this has the potential to form part of an assurance 
package. The SIREP sensor assessment could also be used in support of the functional 
and hardware performance of the sensor. Further work would be needed to describe 
the full content of such a package. The main area of weakness is the “black box” na-
ture of such evidence, and greater confidence could be obtained if there was some 
knowledge of the internal design and implementation of the device (e.g. “grey box” 
information like design documents, or white box information like source code). 

Independent certification is used to provide “black box” evidence for performance 
(e.g. accuracy) and environmental withstand (e.g. electrical isolation, temperature). 
Evidence also exists for hardware reliability and safe failure fraction (e.g. using 
hardware reliability models and FMEDA). But independent assessment of software 
(like a TUV assessment for compliance to IEC 61508) is not routinely performed. 
This is thought to be quite costly especially if it has to be updated with each revision. 

It is clear there is a perceived tension between the need for suppliers to maintain 
confidentiality and the user’s requirement to provide sufficient evidence to demon-
strate safety. In principle the licensee should always be able to check the evidence and 
the details of the analysis performed. This might not be feasible for a compliance cer-
tification approach where a certificate is provided but the rationale and detailed evi-
dence is not. By contrast “black box” system certification against test standards seems 
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less of a problem as the specific tests undertaken are clearly defined. Perhaps third 
party software evidence would be more acceptable if a common set of software analy-
ses and tests were defined that could be subjected to external audit. 

3   Safety Justification Approaches 

There are different strategies that can be deployed in the safety justification of smart 
sensors. The three main approaches can be characterised as a “triangle” of: 

• Justification via a set of claims about the system’s safety behaviour. 
• The use of accepted standards and guidelines. 
• An investigation of known potential vulnerabilities of the system. 

 

Fig. 1. Safety case approaches 

The first approach is goal-based—where specific safety goals for the systems are 
supported by arguments and evidence at progressively more detailed levels. The sec-
ond approach is based on demonstrating compliance to a known safety standard. The 
final approach is a vulnerability-based argument where it is demonstrated that poten-
tial vulnerabilities within a system do not constitute a problem—this is essentially a 
“bottom-up” approach as opposed to the “top-down” approach used in goal-based 
methods. These approaches are not mutually exclusive, and a combination can be 
used to support a safety justification, especially where the system consists of both off-
the-shelf (OTS) components and application-specific elements. 

In the past, safety justifications tended to be implicit and standards-based—
compliance to accepted practice was deemed to imply adequate safety. This approach 
works well in stable environments where best practice was supported by extensive 
experience, but with fast moving technologies, a more explicit goal-based approach 
has been advocated, which can accommodate change and alternative strategies to 
achieve the same goal. 

4   Goal-Based Safety Justification 

4.1   Goal-Based Justification of COTS Products 

Goal-based approaches are often used in safety justifications ([3], [4], [5], [6]). This is 
a flexible approach as it focuses directly on the safety requirements for the sensor and 
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can be related to a range of different safety standards by identifying how the stan-
dards’ requirements support the various claims. 

HSE guidance on COTS/SOUP ([7], [8]) recommends that the goals for a com-
puter-based system are related to factors that directly affect safety, e.g.: 

• functional behaviour 
• accuracy 
• reliability and availability 
• fail-safe behaviour 
• time response 

A similar set of attributes could be identified for a smart sensor component of a 
system. Moreover, we have to recognise that a smart sensor justification is part of a 
larger safety justification for a “System Important to Safety” (SIS). 

1. The justification of the component can be used to show that the component 
“does what it says on the tin”. This is application independent. 

2. The SIS safety justification has to show that the component is suitable for the 
application context and satisfies any constraints. 

For example, there could be a component claim that a smart sensor is accurate to 
10-3 and an application-level claim of 10-2 for the accuracy of some computation in-
volving the combination of several measured values. Alternatively, the sensor might 
explicitly include functionality that is not needed (e.g. support for different types of 
resistance thermometer). In this case we need to show in the SIS safety justification 
that the unwanted functions are not activated. In addition there may well be function-
ality that is not declared as part of the product. 

The extent of evidence to justify specific sensor properties will vary with the re-
quired integrity level, and the type of evidence required may also need to change with 
the integrity. At lower integrity levels there is greater emphasis on “black box” evi-
dence (externally observed behaviour) and evidence of development process. Yet, it is 
necessary to look “inside the box” for greater assurance and higher integrity applica-
tions. Indeed the public consultation on the HSE study showed a consensus that the 
assessment of critical SOUP should include white box assessment.  

4.2   Key Goals 

In a goal based approach we identify the key attributes required for a smart sensor, 
and then seek arguments and evidence to show these goals are met. Clearly many 
properties like environmental limits (temperature, humidity, supply voltage) and resis-
tance to interference (RFI, EMI, mains noise) are only dependent on the hardware and 
can be justified in the same way as conventional hardware. However, other properties 
will depend on a combination of hardware and software and may therefore require 
different or additional supporting evidence to address software concerns.  

We focused on the properties of the system that involve software. Based on the 
specifications of the two suppliers and more general consideration of smart sensor re-
quirements, the following set of goals was identified that are likely to involve soft-
ware in the smart sensor, where the values used correspond to those of the  
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temperature transmitter specification. This could be extended to include functional 
capabilities of the device. 

Table 1. Smart sensors properties for goal-based approach 

Ref Sensor property 
1 Output conversion accuracy better than 0.03% under stated conditions 
2 Sample rate < 128 ms, 10%-90% step response < 256 ms 
3 Safe failure fraction >0.72 
4 MTTF > 2.5 years (average) 
5 Configuration and calibration errors are minimised 
6 Smart sensor behaviour is predictable 
7 Smart sensor properties 1-6 can be maintained for next 10 years 

    Note these goals are application independent, i.e. defined by the supplier. The nu-
merical values will vary with the actual sensor, but these properties are directly rele-
vant to the safety justification of the SIS as a whole. The system implementor has to 
define higher-level system goals (e.g. timeliness and accuracy of the overall system) 
and demonstrate that the properties of the sensor support the SIS safety justification. 

5   Vulnerability Assessment 

The vulnerability assessment focused on a number of concerns with a purely black-
box based approach. Discussion of these concerns is not included in the paper, but in-
cluded adequacy of functional testing, software security vulnerabilities and malicious 
code among others. In subsequent analysis we expanded the final category of “non-
predictability” to consider specific sources of non-predictability, namely: 

• concurrent interaction problems (non-atomic updates, deadlocks, etc.) 
• non-initialisation of data 
• data overflow 
• variable time response (data dependent timing, infinite loops, etc.) 

The black box concerns identified above could result in unexpected behaviour even 
if the equipment appears to conform to specification when functional testing of the 
“black box” is performed. Such concerns can be used as a checklist to determine 
whether the risks of potential vulnerabilities have been addressed (e.g. using addi-
tional grey-box or white-box evidence). The fundamental limitation of black-box 
analysis is the extent to which the testing/field experience profile used mirrors the ac-
tual use in the new application. 

6   Analysis of a Smart Device 

In Section 3 we described different aspects of a safety justification of a smart sensor, 
but no supporting evidence was presented. In this section we describe the technical 
analyses performed in the project concerning a specific sensor product: a temperature 
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transmitter. The aim of this work was to assess the feasibility of a variety of tech-
niques and analyses to support the safety justification of the temperature sensor. 

The microprocessor is programmed in assembly language. The software comprises 

• 6000 lines of assembly code (including comments) 
• 7 kilobytes of binary code 

The source code has been subjected to a range of assessments to support its safety 
justification, namely: 

• Code criticality analysis. Identification of the code essential to operation and ob-
solescent code. 

• Code structure analysis. Identification of concurrent program threads and checks 
for safe exchange of data between threads and absence of deadlocks. 

• Code integrity assessment. Check for defective code constructs (e.g. array 
bound overflow, divided by zero, dead code, stack overflow). 

• Redundant code analysis. To identify if there is any unexpected code. 
• Failure integrity analysis. Assessment of the failure integrity features to check 

whether failures result in a safe state. 
• Predictable execution assessment. Assessment of whether the ordering of soft-

ware functions is well defined, of the input-output conversion accuracy and 
whether the execution time has a predictable upper execution time bound. 

• The development of a strategy for statistical testing (not described in this paper). 

    The feasibility of performing such analyses depends on the code size, structure, and 
programming language. There is more tool support for high level languages (like C) 
for performing analyses. However, we have made use of assembler level software 
simulators to perform direct testing of internal functions within the software and to 
evaluate the code coverage and code execution times. 

6.1   Code Criticality Analysis 

We performed software criticality analysis [9] to assess the importance to safety of 
various components within the software. This showed that the code is separated into 
the main conversion function and a calibration function. The calibration code can only 
modify the calibration parameters used by the main code, and hence could be viewed 
as less critical as it is not executed in normal operation. Most of the analysis effort 
(such as the timing analysis) was focused on the main conversion function. 

6.2   Structural Analysis and Concurrency Analysis 

In order to perform evaluations of the sensor software it was first necessary to under-
stand the overall software architecture. To gain an understanding of the structure, we 
reviewed both the software documentation and the source code.  

As part of the structural analysis, we identified concurrent program threads and 
checked for safe exchange of data between threads and absence of deadlocks. 

From the architecture analysis, we identified the variables that passed information 
between the threads. It is important that these updates are “atomic”, i.e. cannot be 
seen by another thread in a partially updated state. For example, if a two byte variable 
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is updated from “00, FF” to “01, 00”, it could transiently have the value “01, FF” or 
“00, 00” (depending on the update order of the bytes). Clearly it is undesirable that 
the variable can be seen in this transient state, and the software should ensure that all 
updates are atomic. The software was manually reviewed to check for this. 
We also verified that these atomic updates do not result in deadlock. Whenever inter-
rupts are set, they are always released. 

6.3   Code Integrity Assessment 

Integrity static analysis [10] focused on structural faults in the software, in particular 
the internal integrity of the code and the intra-component integrity. 

The extensive field experience of the device being analysed is likely to precipitate 
the detection of most large and obvious faults during typical execution of the pro-
gram. However, specific vulnerabilities of the languages used have a less frequent 
manifestation and are more likely to remain undetected. Integrity static analysis fo-
cuses on what we called intrinsic faults, i.e. faults that may be recognised as such in-
dependently of any requirements specification. This includes use of out of bound ar-
ray indexes, use of illegal pointers, use of non-initialised variables, violations of 
assertions, permanent loss of resources, insufficient resources, dead locks, non-
deterministic behaviour and non-controlled access to shared variables. 

Our approach to the analysis of the assembler code can be grouped into two main 
categories: 

• Direct analysis of the assembler code, including analysis of the control flow 
supported by model checking, dead code checks and semantic analysis. 

• Translation of the assembler code into C (by a Perl script combined with manual 
translation) and analysis of the translated code using CodeSurfer and Safer C. 

6.4   Redundant Software Analysis 

The software was reviewed for redundant functions. The only redundant function 
found was a display function that apparently drives a local LCD display on the sen-
sor—however the sensor supplied to us has no LCD display. We suspect that this is 
because the same code is used to drive a family of sensors including some with built-
in displays. From a configuration management and support perspective, it is desirable 
to use common code. There is no real objection to this apart from the fact that it must 
be demonstrated that the software does not “hang” waiting for a response from the 
display hardware and it conflicts with IEC 60880, a fundamental standard for reactor 
protection systems. We do not think this is a problem as the unit supplied to us func-
tions correctly without the LCD display yet a more formal safety justification would 
need to document this and to justify the non-compliance with IEC 60880. 

6.5   Failure Integrity Analysis 

It is important that failures of the hardware and the software result in a safe state. An 
analysis was performed to identify what fault detection and fault handling features 
were present in the software. Analysis showed that internal software failures and de-
lays were trapped by a hardware watchdog. An analysis of the software also showed 
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that it contained checks on the integrity of the hardware (as required in IEC 61508 
Part 2 Annex A1). These included software checks for breaks in probe wiring, mem-
ory integrity, and the integrity of the analogue to digital interface. Failure integrity 
was also enhanced by using a software-generated oscillating binary output to drive the 
analogue output circuit. If failures occurred in the processor, output interface, or soft-
ware, the output bit would become static and result in an out-of-range output signal. 

6.6   Functional Analysis-Accuracy Analysis 

The functional software analyses focused on checking whether the software maintains 
sufficient accuracy. The functional analyses were performed using the Cosmic suite 
of tools for assembling, simulated execution, debugging and profiling of the code for 
a micro-controller. 
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Fig. 2. Input vs. simulated output (mV operation, no linearisation) 

The smart sensor software can be configured to operate a number of different 
modes, or types of measurement. We configured the software to perform a simple lin-
ear scaling of the input, and then simulated the execution of the smart sensor code on 
a PC using the COSMIC simulator tool. 

Figure 2 plots the simulated input (X) alongside the converted output (Y). (The 
units along the horizontal axis count the samples.) The plot confirms a precise match 
between expected and actual behaviour: the output closely follows the overall enve-
lope of the input, albeit with its slope adjusted by a factor of 0.75, until the input is 
plunged to zero. The final drop in the input simulates an error condition such as a 
broken wire or other malfunction of the analogue input. When such errors occur, the 
output should be forced to the minimum output signal value of 75—and this behav-
iour is observed in the simulation. Figure 3 plots the magnitude of the rounding error 
for the first 15 samples in the input sequence. The rounding error is defined as the dif-
ference between the value produced by the conversion equation and the “ideal” value. 

The plot shows the rounding error to be bounded within +/-0.5 of one output unit. 
This represents an error in the order of 0.0125% compared to the output of an “ideal” 
analogue converter. This is in line with our expectations based on inspection of the 
code analysis, which showed that high precision arithmetic routines are used in the 
conversion calculation. 
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6.7   Timing Analysis 

It is important that the sensor has predictable timing, so the measurements are updated 
at the specified intervals. Inspection of the code showed that the input-output conver-
sion was performed in a simple cyclic loop. This helped to ensure that the sampling of 
the input and updating of the output occur at predictable rates. 

The overall strategy followed by the analysis was to: 

• Obtain simulated execution timings (using the COSMIC tool) for the software 
conversion. 

• Derive worst-case estimates for the amount of time the micro-controller spends 
communicating instructions and data with the ADC. These are derived based on 
timing data available on the serial interface between the micro-controller and the 
ADC, as well as the ADC’s internal operation.  

• Combine the two, bearing in mind potential overlaps of activity, and check the 
combined timings against the claimed targets.  

    The complete timing estimates were derived from the information above to sub-
stantiate the original claims, and it was concluded that the software performs within 
its timing specifications, even under conservative and pessimistic assumptions. 

7   How Evidence Fits the Safety Justification Approach 

This section relates the analysis evidence obtained from the sensor (Section 6) with 
the goal-based approach (Section 4) and black-box concerns (Section 5). Note that the 
overall “triangle” of safety justification also included an assessment of compliance to 
the British Energy PES guidelines [2]. However, standards compliance will not be 
discussed further in this paper. 

7.1   Goal-Based Approach 

A goal-based approach for a smart sensor would focus on demonstrating key proper-
ties of the sensor that are relevant to the safety justification of the system. In Section 4 
we identified a set of sensor properties that represent the top-level goals of the smart 
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sensor justification. This section discusses the evidence that can be used to show that 
the goals have been met. 

• Evidence for goals 1 and 2 (accuracy and response time) can be obtained from 
black-box functional tests (e.g. SIREP or statistical tests). However, it would also 
be possible to strengthen the justification by using diverse evidence from white box 
analyses. For example, the analyses of software accuracy and timing undertaken in 
Sections 6.6 and 6.7 could be part of an alternative white-box argument that the 
overall combination of hardware and software will satisfy the top-level goals.  

• Goals 3 and 4 (safe failure fraction and MTBF) can also be demonstrated by di-
verse means. With adequate reporting of operational defects by end users, it might 
be possible to analyse the field experience to directly measure the MTBF and safe 
failure fraction. However, it is recognised that there are many uncertainties in such 
estimates, and it is also possible to make an analysis of the hardware and diagnos-
tic features to make alternative estimates. In our particular example, the supplier 
provided a FMEDA assessment to support the claims.  

• Goal 5 (configuration and calibration integrity) is important as errors in configura-
tion and maintenance are a significant source of safety problems. Clearly the con-
figuration interface should seek to minimise errors. We have analysed the design 
features that protect against random corruption using evidence from the integrity 
analysis, but this does not cover aspects such as the usability of the interface. This 
might be addressed by a human factors assessment. 

• Goal 6 (predictable behaviour) is generally important within the safety justifica-
tion. If the behaviour is predictable, the results of black-box tests can be used with 
more confidence because the behaviour is likely to be repeatable. To some extent 
predictability can be justified by field experience, but most of the evidence is likely 
to be based on analysis of the architecture and source code. The structural analyses 
described in Section 6.2 give confidence that some known architectural problems 
(like deadlocks) do not exist, and the vulnerability assessment summaised in Sec-
tion 7.2 also help to demonstrate predictability. In addition, the integrity analyses 
we performed showed that certain types of source code faults were absent. These 
are however quite detailed analyses that may be impractical for lower integrity sen-
sors, so an alternative source of evidence might be grey-box knowledge of the de-
sign process. For example, the process might include rules about the design of the 
system for deadlock avoidance and predictable timing or procedures to perform 
static analysis to detect various types of software fault.  

• Goal 7 (long-term dependability) is also important for the long-term safety of the 
overall system. Smart sensor products are subject to change (e.g. of hardware com-
ponents and software functionality) and might also cease to be manufactured or 
supported. We need evidence of availability and support, but we also require assur-
ance that changes do not affect any of the other safety goals. This is partly ad-
dressed by the technical analysis given in Section 6, but knowledge of the sup-
plier’s process can give some confidence that the changes will do not affect the 
behaviour of the sensor.  

    It can be seen that a goal-based approach helps to identify what evidence helps to 
support the safety justification. We can also see that multiple forms of evidence could 
be deployed to support the same goal, and this gives flexibility in the justification ap-
proach. With higher integrity applications, we might expect greater use of diverse 
evidence and arguments. We also note that evidence about the process is only  
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indirectly related to the functional properties of the sensor, but is likely to be highly 
relevant in ensuring that the observed behaviour is predictable and will be maintained 
in subsequent upgrades. 

7.2   Vulnerability Assessment 

This section summarises how specific concerns have been or could be addressed to 
support the justification of a smart device. These would support goal 6 in Section 7.1. 

Table 2. Summary of vulnerability analysis 

Concern Activity/method Observation 
Adequacy of func-
tional testing 

Functional analysis Partially tested through simulation to establish 
functional requirements and accuracy were met. 

Housekeeping code Code inspection &  
structural analysis 

No problems identified. 

Detection of infea-
sible paths 

Dead-code analysis, 
simulation 

Dead-code analysis identified few cases of inac-
cessible code. Simulation uncovered no infeasible 
paths. 

Fault-detection code Code inspection and 
structural analysis 

Inspection revealed no problems. 

Fault-tolerance Code inspection and 
structural analysis 

The design of the product emphasises fail-safety 
over fault-tolerance. The software has good fault 
integrity behaviour. 

Time-based events Code inspection, 
timing analysis 

No calendar time-based events were found. 

Counters Structural analysis, 
code analysis 

No cases of potential counter overrun were found 
in the code.  

Malicious code Code inspection None found. 
Unwanted require-
ments 

Documentation re-
view, code analysis 

Some unused code was found, but it was used by 
other models in the same sensor family. 

Security vulnerabili-
ties 

Code inspection None found in the software running on the prod-
uct itself. 

Complexity Structural analysis, 
code inspection 

The software architecture is simple. Main sources 
of complexity are the relatively dense branching 
structure of the code and the bit-field encoding of 
configuration data. 

Concurrent interac-
tions 

Structural analysis, 
concurrency analy-
sis 

The sequence of functions performed is predict-
able. Concurrency analysis shows that data ex-
change between threads is limited and the data ex-
changes are atomic. 

Initialisation errors Structural analysis Not analysed in detail. 
Data overflow Structural analysis Not analysed in detail. However, most of the data 

used are fixed multi-byte variables, so overflows 
are unlikely. 

Variable time re-
sponse 

Structural analysis 
Timing analysis 

Analyses have shown the code will execute within 
the specified response time. 

8   Conclusions 

In this section we present the conclusions of the research study into methods for justi-
fying smart sensors that this paper is describing. While some of the conclusions  
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follow directly from the work here described, others have arisen from work not 
specifically mentioned in the paper. The conclusions of the project are given below. 

8.1   Relationship with Sensor Manufacturers 

• End users should expect different degrees of co-operation, both within a single 
manufacturer’s organisational hierarchy and across different manufacturers.  

• It remains an open question whether end users will be offered as much access to 
software as we have in the course of this project. However, the level of co-
operation might increase with the potential of a real order, which would not be the 
case in a research project.  

• We need to be specific about what needs to be demonstrated in an assurance pack-
age that is provided by a supplier. Some form of assurance about the product is 
needed, principally to confirm predictability of behaviour and integrity in the pres-
ence of hardware failures. This evidence would typically be a combination of “grey 
box” (e.g. documentation on the software design) and white box evidence (based 
on analysis of the actual software), as greater confidence could be obtained if there 
was some knowledge of the internal design and implementation of the device. 

8.2   Safety Justification Approaches 

• Justification may follow a goal-based approach, aim to demonstrate compliance of 
the product with industry guidelines, or seek specifically to address areas of con-
cern that a typical black box assessment would not cover. These three viewpoints 
should be considered simultaneously as they complement each other. 

• Goal-based approaches seem particularly suitable to smart sensor products as they 
focus directly on the safety requirements, can be tailored to standards and offer 
flexibility and a certain potential for reuse of arguments and evidence.  

• We have addressed specific concerns about the shortcomings of black-box assess-
ment by assessing their applicability to smart sensor products similar to the ones 
we have examined. Grey-box and white-box evidence can compensate for the limi-
tations of black-box assessment.  

8.3   Smart Sensor Evaluation Methods 

• We have undertaken a range of structural, accuracy and timing analysesbased on 
documentation and the source code, and these have proved to be “easy wins”. 

• Such analyses might be improved with appropriate tool support (e.g. code and data 
flow dependency analysis, worst case time analysis), although this might be 
problematic for assembler based systems. 

• We have shown that it is feasible to simulate execution to test specific attributes 
such as accuracy, test coverage and timing. However it is likely that these tests 
would have been easier to implement during development where there is no need 
to simulate the action of attached peripherals. 

• It was technically feasible to perform a range of evaluations on the smart sensor 
(even though it was written in assembler). This was largely due to the relatively 
small size of the software and simplicity of the design.  



 Justification of Smart Sensors for Nuclear Applications 207 

 

8.4   Further Work 

There are many pragmatic issues that have not been addressed within the current 
study (e.g. what evidence is needed for a given integrity level and who should per-
form the evaluation). However we hope that the feasibility studies performed in this 
project can contribute to the development of a common approach to the justification 
of smart sensors in the nuclear industry. 
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Abstract. In order realistically and cost-effectively to realize the ATM
(Air Traffic Management) 2000+ Strategy, systems from different suppli-
ers will be interconnected to form a complete functional and operational
environment, covering ground segments and aerospace. Industry will be
involved as early as possible in the lifecycle of ATM projects. EURO-
CONTROL manages the processes that involve the definition and vali-
dation of new ATM solutions using Industry capabilities (e.g., SMEs).
In practice, safety analyses adapt and reuse system design models (pro-
duced by third parties). Technical, organisational and cost-related rea-
sons often determine this choice, although design models are unfit for
safety analysis. Design models provide limited support to safety analy-
sis, because they are tailored for system designers. The definition of an
adequate model and of an underlying methodology for its construction
will be highly beneficial for whom is performing safety analyses. Limited
budgets and resources, often, constrain or inhibit the model definition
phase as an integral part of safety analysis. This paper is concerned with
problems in modeling ATM systems for safety analysis. The main objec-
tive is to highlight a model specifically targeted to support evolutionary
safety analysis.

1 Introduction

The future development of Air Traffic Management (ATM), set by the ATM
2000+ Strategy [9], involves a structural revision of ATM processes, a new ATM
concept and a systems approach for the ATM network. The overall objective
[9] is, for all phases of flight, to enable the safe, economic, expeditious and or-
derly flow of traffic through the provision of ATM services, which are adaptable
and scalable to the requirements of all users and areas of European airspace.
This requires ATM services to go through significant structural, operational and
cultural changes that will contribute towards the ATM 2000+ Strategy. More-
over, from a technology viewpoint, future ATM services will employ new systems
forming the emergent ATM architecture underlying and supporting the Euro-
pean Commission’s Single European Sky Initiative.

ATM services, it is foreseen, will need to accommodate an increasing traffic, as
many as twice number of flights, by 2020. This challenging target will require the
cost-effectively gaining of extra capacity together with the increase of safety lev-
els [28,29]. Enhancing safety levels affects the ability to accommodate increased
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traffic demand as well as the operational efficiency of ensuring safe separation be-
tween aircrafts. Suitable safe conditions shall precede the achievement of increased
capacity (in terms of accommodated flights). Therefore, it is necessary to foreseen
and mitigate safety issues in aviation where ATM can potentiality deliver safety
improvements. Introducing safety relevant systems in ATM contexts requires us
to understand the risk involved in order to mitigate the impact of possible failures.
Safety analysis involves the activities, i.e., definition and identification of system(s)
under analysis, risk analysis in terms of tolerable severity and frequency, definition
of mitigation actions, that allow the systematic identification of hazards, risk as-
sessment and mitigation processes in critical systems [24,37].

Diverse domains (e.g., nuclear, chemical or transportation) adopt safety anal-
yses that originate from a general approach [24,37]. Recent safety requirements,
defined by EUROCONTROL (European organization for the safety of air nav-
igation), imply the adoption of a similar safety analysis for the introduction
of new systems and their related procedures in the ATM domain [8]. Unfortu-
nately, ATM systems and procedures have distinct characteristics1 (e.g., open-
ness, volatility, etc.) that expose limitations of the approach. In particular, the
complete identification of the system under analysis [22] is crucial for its influ-
ence on the cost and the effectiveness of the safety analysis. Some safety-critical
domains (e.g., nuclear and chemical plants) allow the unproblematic applica-
tion of conventional safety analysis. Physical design structures constrain system
interactions and stress the separation of safety related components from other
system parts. This ensures the independence of failures. By contrast, ATM sys-
tems operate in open and dynamic environments where it is difficult completely
to identify system interactions. For instance, there exist complex interactions2

between aircraft systems and ATM safety relevant systems [31]. Unfortunately,
these complex interactions may give rise to catastrophic failures. The accident
(1 July 2002) between a BOEING B757-200 and a Tupolev TU154M [5], that
caused the fatal injuries of 71 persons, provides an instance of unforeseen com-
plex interactions. These interactions triggered a catastrophic failure, although all
aircraft systems were functioning properly [5]. Hence, safety analysis has to take
into account these complex interaction mechanisms (e.g., failure dependence, re-
liance in ATM, etc.) in order to guarantee and even increase the overall ATM
safety as envisaged by the ATM 2000+ Strategy.

This paper is concerned with limitations of safety analysis with respect to
evolution. The paper is structured as follows. Section 2 describes safety analysis

1 “There are some unique structural conditions in this industry that promote safety,
and despite complexity and coupling, technological fixes can work in some areas. Yet
we continue to have accidents because aircraft and the airways still remain somewhat
complex and tightly coupled, but also because those in charge continue to push the
system to its limits. Fortunately, the technology and the skilled pilots and air traffic
controllers remain a bit ahead of the pressures, and the result has been that safety
has continued to increase, though not as markedly as in early decades.”, p. 123, [31].

2 “Complex interactions are those of unfamiliar sequences, or unplanned and un-
expected sequences, and either not visible or not immediately comprehensible.”,
p. 78, [31].
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in the ATM domain. Unfortunately, ATM systems, procedures and interactions
expose limitations of safety analysis. Section 3 proposes a framework that en-
hances evolutionary safety analysis. Section 4, finally, draws some conclusions.

2 Safety Analysis in ATM

ATM services across Europe are constantly changing in order to fulfil the require-
ments identified by the ATM 2000+ Strategy [9]. Currently, ATM services are
going through a structural revision of processes, systems and underlying ATM
concepts. This highlights a systems approach for the ATM network. The delivery
and deployment of new systems will let a new ATM architecture to emerge. The
EUROCONTROL OATA project [35] intends to deliver the Concepts of Oper-
ation, the Logical Architecture in the form of a description of the interoperable
system modules, and the Architecture Evolution Plan. All this will form the
basis for common European regulations as part of the Single European Sky.

The increasing integration, automation and complexity of the ATM System
requires a systematic and structured approach to risk assessment and mitigation,
including hazard identification, as well as the use of predictive and monitoring
techniques to assist in these processes. Faults [23] in the design, operation or
maintenance of the ATM System or errors in the ATM System could affect the
safety margins (e.g., loss of separation) and result in, or contribute to, an in-
creased hazard to aircrafts or a failure (e.g., a loss of separation and an accident
in the worst case). Increasingly, the ATM System relies on the reliance (e.g., the
ability to recover from failures and accommodate errors) and safety (e.g., the
ability to guarantee failure independence) features placed upon all system parts.
Moreover, the increased interaction of ATM across State boundaries requires
that a consistent and more structured approach be taken to the risk assessment
and mitigation of all ATM System elements throughout the ECAC (European
Civil Aviation Conference) States [7]. Although the average trends show a de-
crease in the number of fatal accidents for Europe, the approach and landing
accidents are still the most safety pressing problems facing the aviation indus-
try [32,33,38]. Many relevant repositories3 report critical incidents involving the
ATM System. Unfortunately, even maintaining the same safety levels across the
European airspace would be insufficient to accommodate an increasing traffic
without affecting the overall safety of the ATM System [6].

The introduction of new safety relevant systems in ATM contexts requires
us to understand the risk involved in order to mitigate the impact of possible
failures. The EUROCONTROL Safety Regulatory Requirement [8], ESARR4,

3 Some repositories are: Aviation Safety Reporting Systems -
http://asrs.arc.nasa.gov/-; Aviation Safety Network - http://aviation-safety.net/-;
Flight Safety Foundation: An International Organization for Everyone Con-
cerned With Safety of Flight - http://www.flightsafety.org/-; Computer-Related
Incidents with Commercial Aircraft: A Compendium of Resources, Reports,
Research, Discussion and Commentary compiled by Peter B. Ladkin et al. -
http://www.rvs.uni-bielefeld.de/publications/Incidents/ -.
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requires the use of a risk based-approach in ATM when introducing and/or
planning changes to any (ground as well as onboard) part of the ATM System.
This concerns the human, procedural and equipment (i.e., hardware or software)
elements of the ATM System as well as its environment of operations at any
stage of the life cycle of the ATM System. The ESARR4 [8] requires that ATM
service providers systematically identify any hazard for any change into the
ATM System (parts). Moreover, they have to assess any related risk and identify
relevant mitigation actions. In order to provide guidelines for and standardise
safety analysis EUROCONTROL has developed the EATMP Safety Assessment
Methodology (SAM) [10] reflecting best practices for safety assessment of Air
Navigation Systems.

The SAM methodology provides a means of compliance to ESARR4. The
SAM methodology describes a generic process for the safety assessment of Air
Navigation Systems. The objective of the methodology is to define the means
for providing assurance that an Air Navigation System is safe for operational
use. The methodology describes a generic process for the safety assessment of
Air Navigation Systems. This process consists of three major steps: Functional
Hazard Assessment (FHA), Preliminary System Safety Assessment (PSSA) and
System Safety Assessment (SSA). Figure 1 shows how the SAM methodology
contributes towards system assurance.

The process covers the complete lifecycle of an Air Navigation System, from
initial system definition, through design, implementation, integration, transfer
to operations and maintenance. Although the SAM methodology describes the
underlying principles of the safety assessment process, it provides limited infor-
mation to applying these principles in specific projects. The hazard identification,
risk assessment and mitigation processes comprise a determination of the scope,
boundaries and interfaces of the constituent part being considered, as well as the
identification of the functions that the constituent part is to perform and the
environment of operations in which it is intended to operate. This supports the
identification and validation of safety requirements on the constituent parts.

System Defintion

Operation

Integration

System Implementation

System Design

LIFECYCLE

FHA

SSA

PSSA

ASSURANCE

How safe does the system need 
to be, to achieve tolerablre risk?

Is the proposed design able 
to achieve tolerable risk?

Does the system 
achieve tolerable risk?

SAM

Fig. 1. Contribution of the Safety Assessment Methodology towards system assurance
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2.1 Limitations

Conventional safety analysis is deemed acceptable in domains such as the nuclear
or the chemical sector. Nuclear or chemical plants are well-confined entities with
limited predictable interactions with the surroundings. In nuclear and chemical
plants design stresses the separation of safety related components from other
plant systems. This ensures the independence of failures. Therefore, in these
application domains it is possible to identify acceptable tradeoffs between com-
pleteness and manageability during the definition and identification of the system
under analysis. By contrast, ATM systems operate in open and dynamic envi-
ronments. Hence, it is difficult to identify the full picture of system interactions
in ATM contexts. In particular:

– There is a complex interaction between aircrafts and ATM safety functions.
Unfortunately, this complex interaction may give rise to catastrophic failures.
Hence, failure independence would increase the overall ATM safety.

– Humans [12,30] using complex language and procedures mediate this inter-
action. Moreover, most of the final decisions are still demanded to humans
whose behaviour is less predictable than that of automated systems. It is nec-
essary further to understand how humans use external artifacts (e.g., tools)
to mediate this interaction. This would allow the understanding of how hu-
mans adopt technological artifacts and adapt their behaviours in order to
accommodate ATM technological evolution. Unfortunately, the evolution of
technological systems often corresponds to a decrease in technology trust
affecting work practice.

– Work practice and systems evolve rapidly in response to demand and a cul-
ture of continuous improvements. A comprehensive account of ATM systems
would allow the modeling of evolution. This will enhance strategies for de-
ploying new system configurations or major system upgrades. On the one
hand, modeling and understanding system evolution support the engineering
of (evolving) ATM systems. On the other hand, modeling and understating
system evolution allow the communication of changes across different organ-
isational levels. This would enhance visibility of system evolution as well as
trust in transition to operations.

3 Evolutionary Safety Analysis

Capturing cycles of discoveries and exploitations during system design involves
the identification of mappings between socio-technical solutions and problems.
The proposed framework exploits these mappings in order to construct an evo-
lutionary model that enhances safety analysis. Figure 2 shows the proposed
framework, which captures these evolutionary cycles at different levels of ab-
straction and on diverse models. The framework consists of three different hier-
archical layers: System Modeling Transformation (SMT), Safety Analysis Model-
ing Transformation (SAMT) and Operational Modeling Transformation (OMT).
The remainder of this section describes the three hierarchical layers.
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Fig. 2. A framework for modelling evolutionary safety analyses

3.1 System Modeling Transformation

The definition and identification of the system under analysis is extremely crit-
ical in the ATM domain. System models used during the design phase provide
limited support to safety as well as risk analysis. This is because existing models
defined in the design phase are adapted and reused for safety and risk analy-
sis. Organizational and cost-related reasons often determine this choice, without
questioning whether models are suitable for the intended use. The main draw-
back is that design models are tailored to support the work of system designers.
Thus, system models capture characteristics that may be of primary importance
for design, but irrelevant for safety analysis. Models should be working-tools
that, depending on their intended use, ease and support specific activities and
cognitive operations of users.

Modeling methodologies and languages advocate different design strategies.
Although these strategies support different aspects of software development,
they originate in a common Systems Approach4 to solving complex problems
and managing complex systems. Modeling incorporates design concepts and for-
malities into system specifications. This enhances our ability to assess safety
4 “Practitioners and proponents embrace a holistic vision. They focus on the inter-

connections among subsystems and components, taking special note of the interfaces
among various parts. What is significant is that system builders include heteroge-
neous components, such as mechanical, electrical, and organizational parts, in a sin-
gle system. Organizational parts might be managerial structures, such as a military
command, or political entities, such as a government bureau. Organizational com-
ponents not only interact with technical ones but often reflect their characteristics.
For instance, a management organization for presiding over the development of an
intercontinental missile system might be divided into divisions that mirror the parts
of the missile being designed.”, INTRODUCTION, p. 3, [18].
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requirements. For instance, Software Cost Reduction (SCR) consists of a set of
techniques for designing software systems [14,15]. In order to minimise the im-
pact of changes, separate system modules have to implement those system fea-
tures that are likely to change. Although module decomposition reduces the cost
of system development and maintenance, it provides limited support for system
evolution. Intent Specifications provide another example of modeling that further
supports the analysis and design of evolving systems [25]. In accordance with
the notion of semantic coupling, Intent Specifications support strategies (e.g.,
eliminating tightly coupled mappings) to reduce the cascade effect of changes.
Although these strategies support the analysis and design of evolving systems,
they provide limited support to understand the evolution of high-level system
requirements5.

Heterogeneous engineering6 provides a different perspective that further ex-
plains the complex interaction between system (specification) and environment.
Heterogeneous engineering provides a convenient comprehensive viewpoint for
the analysis of the evolution of socio-technical systems. Heterogeneous engineer-
ing involves both the systems approach [18] as well as the social shaping of
technology [27]. According to heterogeneous engineering, system requirements
specify mappings between problem and solution spaces [3,4]. Both spaces are
socially constructed and negotiated through sequences of mappings between so-
lution spaces and problem spaces [3,4]. Therefore, system requirements emerge
as a set of consecutive solution spaces justified by a problem space of concerns
to stakeholders. Requirements, as mappings between socio-technical solutions
and problems, represent an account of the history of socio-technical issues aris-
ing and being solved within industrial settings [3,4,11]. The formal extension
of these mappings (or solution space transformations) identifies a framework to
model and capture evolutionary system features (e.g., requirements evolution,
evolutionary dependencies, etc.) [11].

System Modeling Transformation captures how solution models evolve in or-
der to accommodate design issues or evolving requirements. Therefore, an SMT
captures system requirements as mappings between socio-technical solutions and
problems. This allows the gathering of changes into design solutions. That is, it
is possible to identify how changes affect design solution. Moreover, This enables

5 Leveson in [25] reports the problem caused by Reversals in TCAS (Traffic Alert and
Collision Avoidance System): ”About four years later the original TCAS specifica-
tion was written, experts discovered that it did not adequately cover requirements
involving the case where the pilot of an intruder aircraft does not follow his or her
TCAS advisory and thus TCAS must change the advisory to its own pilot. This
change in basic requirements caused extensive changes in the TCAS design, some
of which introduced additional subtle problems and errors that took years to discover
and rectify.”

6 “People had to be engineered, too - persuaded to suspend their doubts, induced to
provide resources, trained and motivated to play their parts in a production process
unprecedented in its demands. Successfully inventing the technology, turned out to
be heterogeneous engineering, the engineering of the social as well as the physical
world.”, p. 28, [26].
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sensitivity analyses ofdesign changes. Inparticular, this allows the revisionof safety
requirements and the identification of hazards due to the introduction of a new sys-
tem.Therefore, the SMTsupports the gathering of safety requirements for evolving
systems. That is, it supports the main activities occurring during the top-down it-
erative process FHA in the SAM methodology [10]. The FHA in the SAM method-
ology then initiates another top-down iterative approach, i.e., the PSSA. Similarly,
the framework considers design solutions and safety objectives as input to Safety
Analysis. Safety analysis assesses whether the proposed design solution satisfies
the identified safety objectives. This phase involves different methodologies (e.g.,
Fault Tree Analysis, HAZOP, etc.) that produce diverse (system) models. System
usage or operational trials may give rise to unforeseen safety issues that invalidate
(part of) safety models. In order to take into account these issues, it is necessary to
modify safety analysis. Therefore, safety analysis models evolve too.

3.2 Safety Analysis Modeling Transformation

The failure of safety-critical systems highlights safety issues [19,24,31,37]. It is
often the case that diverse causes interacted and triggered particular unsafe con-
ditions. Although safety analysis (i.e., safety case) argues system safety, complex
interactions, giving rise to failures, expose the limits of safety arguments. There-
fore, it is necessary to take into account changes in safety arguments [13]. Figure 3
shows an enhanced safety-case lyfecyle [13].

The lifecycle identifies a general process for the revision of safety cases. Green-
well, Strunk and Knight in [13] motivate the safety-case lifecycle by evolutionary
(safety-case) examples drawn from the aviation domain. Figure 4 and 5 show sub-
sequent versions of a safety case. The graphical notation that represents the safety

Failure Analysis

System and Process Revision

Operation

Mishap

Revised
Safety case

Lessons &
Recommendations

Failure Evidence
Original

Safety case

Fig. 3. The Enhanced Safety-Case Lyfecyle [13]
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Fig. 4. Initial safety argument
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G3
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J

J1

Alert sufficient to notify
controller.

Fig. 5. Revised safety argument

cases is the Goal Structuring Notation (GSN) [21]. Although GSN addresses the
maintenance of safety cases, the approach provides limited support with respect
to complex dependencies (e.g., external to the safety argument) [20]. Moreover, it
lacks any interpretation of the relationships between subsequent safety cases.

Figure 4 shows the initial safety case arguing: “Controller aware of altitude
violations”. Unfortunately, an accident invalidates the justification J1. The sat-
isfaction of the subgoal G2 is insufficient for the satisfaction of the goal G1.
Figure 5 shows the revised safety case that addresses the issue occurred. Unfor-
tunately, another accident, again, invalidates the second safety case [13]. Hence,
the safety argument needs further revision in order to address the safety flaw
uncovered by the accident.

Figure 6 shows a safety space transformation that captures the safety case
changes [11]. The safety case transformation captures the changes from the initial
safety case Mt

i (see, Figure 4) to the revised safety case Mt+1
i (see, Figure 5). An

accident invalidates the justification J1. The satisfaction of the subgoal G2 is in-
sufficient for the satisfaction of the goal G1. The proposed safety problem space,
Pt, contains these problems, i.e., P t

j and P t
j+1. The safety space transformation

addresses the highlighted problems into the proposed safety case Mt+1
i . In order

to address the highlighted problems, it is necessary to change the initial safety
case. The proposed changes are taken into account in the proposed safety case.
Note that there might be different proposed safety cases addressing the proposed
safety problem space. The safety space transformation identifies the safety case
construction and judgement in terms of safety argumentations and constraints.
The safety case consists of the collections of mappings between safety cases and
problems. The first part of a safety case consists of the safety argumentations,
which capture the relationship that comes from safety cases looking for problems.
The second part of a safety case consists of the safety constraints, which capture
how future safety cases address given problems. Safety cases at any given time,
t, can be represented as the set of all the arcs, that reflect the contextualised
connections between the proble space and the current and future safety space.
The definition of safety case transformation enables us further to interpret and
understand safety case changes, hence safety case evolution [11].
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Fig. 6. A safety space transformation

Safety Analysis Modeling Transformation captures how safety analysis mod-
els evolve in order to accommodate emerging safety issues. Note that the formal
framework is similar to the one that captures SMT. Although design models
serve as a basis for safety models, they provide limited supports to capture
unforeseen system interactions. Therefore, SAMT supports those activities in-
volved in the PSSA process of the SAM methodology [10]. Note that although
the SAM methodology stresses that both FHA and PSSA are iterative process, it
provides little supports to manage process iterations as well as system evolution
in terms of design solution and safety requirements. The framework supports
these evolutionary processes.

3.3 Operational Modeling Transformation

Operational models (e.g., structured scenarios, patterns of interactions, struc-
tured procedures, workflows, etc.) capture heterogeneous system dynamics. Un-
fortunately, operational profiles often change with system usage (in order to
integrate different functionalities or to accommodate system failures). Table 1
shows the main problems areas identified in reported incidents: Controller Re-
ports [1] and TCAS II Incidents [2]. Both reports consist of the fifty most recent
relevant Aviation Safety Reporting System (ASRS) reports. The small samples
are insufficient to identify prevalent issues. However, the two reports highlight
the complexity and the coupling within the ATM domain [31]. The analysis of
the reports is in agreement with other studies [36,39] that analyse human errors
as organizational failures [16,24,34].

Technically, operational observations are reported anomalies (or faults),
which may trigger errors eventually resulting in failures. These observations cap-
ture erroneous actions [16]: “An erroneous action can be defined as an action
which fails to produce the expected result and/or which produces an unwanted
consequence”. In the context of heterogeneous systems (or man-machine systems,
or socio-technical systems), erroneous actions usually occur in the interfaces or
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Table 1. The main problem areas occuring in two sample incident reports

Problem Areas Controller Reports TCAS II Incidents

ATC Facility 2
ATC Human Performance 44 39
Flight Crew Human Performance 26 40
Cabin Crew Human Performance 1
Aircraft 3 10
Weather 4 3
Environmental Factor 8 6
Airspace Structure 5 18
Navigational Facility 6 4
Airport 5 5
FAA 3 5
Chart or Publication 1
Maintenance Human Performance 1
Company 1

interactions (e.g., man-machine interactions). The cause of erroneous actions can
logically lie with either human beings, systems and/or conditions when actions
were carried out. Erroneous actions can occur on all system levels and at any
stage of the lifecycle.

Capturing operational interactions and procedures allows the analysis of hu-
man reliability [16]. In a continuosly changing enviroment like ATM, adaption
enhances the coupling between man and machine [17]. Hollnagel in [17] identifies
three different adaption strategies: Adaption Through Design, Adaption through
Performance and Adaption through Management. Operational Modeling Trans-
formation captures how operational models change in order to accommodate
issues arising. The evolution of operation models informs safety analyses of new
hazards. Therefore, OMT supports the activities involved in the SSA process of
the SAM methodology.

4 Conclusions

This paper is concerned with problems in modeling ATM systems for safety anal-
ysis. The future development of ATM, set by the ATM 2000+ Strategy [9], in-
volves a structural revision of ATM processes, a new ATM concept and a systems
approach for the ATM network. This requires ATM services to go through sig-
nificant structural, operational and cultural changes that will contribute towards
the ATM 2000+ Strategy. Evolutionary safety analysis captures the judgement
of changes. Moreover, it supports the safety assessment of changes from system
as well as organisation7 viewpoints [22,24,34]. Industry (e.g., SMEs) will be in-
volved as early as possible in the lifecycle of ATM projects. The ATM lifecycle
7 “Change within an organisation can affect level of safety achieved by that organisa-

tion. Change in the institutional structure of an industry can affect the level of safety
achieved by the industry as a whole.”, p. 6, [22].
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involves various stakeholders (e.g., Institutional, Solution Providers, Society and
Other Industries) [22] assuming different roles with respect to safety judgement.
Unclear responsibilities and ownerships, with respect to safety cases, affect the
trustworthiness of safety analysis [22]. Evolutionary safety analysis, therefore,
requires the identification of responsibilities and ownerships in order to address
institutional issues (e.g., institutional changes, inappropriate ownerships, etc.).

In conclusion, this paper introduces a framework that supports evolutionary
safety analysis. Although existing processes emphasise the iterative nature of
safety analysis, they provide limited support to capture evolutionary transfor-
mations. The framework captures evolutionary safety analysis. Examples drawn
from the ATM domain show the different relationships between subsequent evo-
lutionary models. The systematic production of safety analysis (models) will
decrease the cost of conducting safety analysis by supporting reuse in future
ATM projects.
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Abstract. When the safety community designs their systems to also
maintain security properties, it is likely that public-key encryption will
be among the tools that are applied.

The security guarantees of this technology are based on a particular
model of computation. We present the properties of this model that are
relevant in the setting of distributed systems. Of particular importance
is that the model has no notion of time.

From this it follows that systems that need to be available must exer-
cise the utmost care before applying public-key encryption in any form.
We discuss the relation between public-key encryption and timeliness,
the tradeoffs that must be made at design time, and how the property
of (lack of) availability might very well contaminate other system com-
ponents.

1 Introduction

It is reasonable to expect that the safety community will be forced to deal
with an ever-increasing number of security issues (as opposed to only those
related to safety) [1]. To solve security problems it is likely that technology from
the security community will be applied. Shared-key and public-key encryption,
message digests, and digital signatures are all based on advanced mathematical
concepts, and these mechanisms are routinely used in security engineering [2].

As is probably the case in other communities, the world-view of the security
community is rarely discussed with outsiders. Among insiders this view is more or
less taken for granted, and when presenting to outsiders the technology that has
been developed there is no room for lengthy depositions on the inner workings
of the computational model.

In the world-view of the security community, the most important goal is often,
simply said, the prevention of “bad things” happening in and to the system. This
is often considered so important that it is permitted to achieve such prevention
in ways that also now and then prevent “good things” from happening. After
all, it is better to be secure than sorry, and anything less than perfect security is
sometimes taken to be equivalent to no security [3]. Availability is one of these
“good things”, and even though availability certainly is a security property,
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more often than not, security is only concerned with upholding other security
properties such as non-repudiation, integrity and confidentiality.

To shed light on some of the implications of security technology we will use
the approach of negative requirements [4]. As our example of a sophisticated
security technology that may negatively affect critical system properties, we
take public-key encryption [5]. Instead of presenting how public-key encryption
can for example be used to turn a channel with integrity into one with secrecy
without the exchange of secrets, we focus on what public-key encryption can-
not do. By demonstrating what properties can not be achieved with public-key
encryption, we can say that in systems where these properties are important,
public-key encryption should not be used, or at least great care should be taken
in the way it is applied.

It is intrinsic to public-key encryption to block in certain situations (and
hence become unavailable) [6]. Thus, any system that relies on public-key en-
cryption will be prone to blocking. In essence: The blocking behavior (and thus
the whole issue of unavailability) is closely related to certain security properties
of public-key encryption. The problem is that it can be impossible in advance
(at design time) to determine under which conditions blocking will occur. Fur-
thermore, when public-key encryption is used in the system, it contaminates
other components with its blocking behavior. The core of the issue is that if
a system for safety reasons can not tolerate blocking, it can not tolerate to be
contaminated by the blocking property of public-key encryption.

The outline of the rest of the paper is as follows. In Section 2 we present
terminology, and in Section 3 the model of computation used in the security
community in sufficient detail to enable us to facilitate a precise discussion.
Then, in Section 4 we discuss properties of public-key encryption with focus on
what can not be facilitated. Some alternatives are discussed in Secion 5. We
conclude in Section 6.

2 Terminology

Our terminology follows [7]; Please notice that it is slightly different from that
traditionally used in engineering.

Error: A design flaw. This can be a specification that is outright wrong, or a
lack of specification;

Availability: Readiness for correct service;
Reliability: Continuity of correct service;
Failure: The nonperformance or inability of the system or a single component

to performs its intended function;

Note that a failure is defined as an event, while an error is a static condition.
This means that a failure occurs, while an error remains in that it is part of the
system until it is removed (usually by human intervention). A design can have
provisions to counter failures, and those that are properly dealt with obviously
have no further consequences. Not doing so is an error.
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We further define a system-wide failure to be one where the system is not
only unable to operate, but where an extra-system intervention is required. For
example, if the power supply in a machine fails, no program on the stopped
machine is able to act and we have a system-wide failure (for this machine).

Denial of Service (dos) is an attack on (parts of) the system to interrupt
it’s normal mode of operation. Such an attack can take place as part of normal
operation (flooding a server with requests, for example), or as an extra-system
attack (blocking the flow of water to the air condition to ensure that machines
shut down due to over heating). The purpose is often of a secondary nature:
By interrupting one part of the system, some other parts are also negatively
affected. Well designed and engineered components should be able to recover
from a dos attack, but if the purpose is simply to deny service (for a period
of time), recovery does not help on the original problem (which is denial of
service) [8,9].

3 Models for Computer Security

The computer security community has two models of computation that are rele-
vant to us: The one used to represent a distributed system, and the one describing
encryption. We now discuss them in turn.

3.1 Distributed Systems

The design and implementation of public-key systems rest firmly on the model
that the computer security community use to describe distributed systems. It is
possible to describe most of the functional aspects of distributed systems using
this model. In order to understand the semantics of public-key technology it is
prudent to first discuss the model on which it is supposed to rest.

The fundamental abstractions of computer security is that the system con-
sists of a set of processes. Processes interact in order to create and keep a shared
state but also maintain an internal state, of which we can know nothing except
by asking them and analyzing the result.

A process can (and many times it does) fail: there are countless ways in which
this can happen. A comfortable assumption is that processes are either running,
or they are not; this is called crash fail [10]. The idea is that a process that has
failed remains in a blocked state, but, upon restart, is able to take the actions
necessary to restore (its part of) the shared state. If security is important at all,
this model is probably too simplistic and processes are instead assumed to poten-
tially fail also by being malicious; in this case we have a so-called Byzantine (or
arbitrary) failure [11]. Notice that assuming Byzantine failure also encompasses
insiders that for some reason try to harm the system. In fact, this is probably
the most common source of Byzantine failures. Evidently wrong (meaningless)
data generated by random failures (often called glitches) will in most cases be
detected by checksums and other mechanism, and automatically discarded. Ap-
parently legal (meaningful) data forged by an attacker can on the other hand
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be accepted as genuine unless provisions have been taken. Byzantine failure de-
scribes, for example, the kind of failures that we can expect in presence of Trojan
and viruses and in all other cases where authorization policies are circumvented.

Processes run logically separated from each other, and can communicate solely
by exchanging messages. Messages travel, independently, on communication links.
No interesting assumptions are usually made about these links. In particular, it is
not assumed that a message actually manages to traverse the link, that it does so
without being corrupted (with or without malice), that messages sent in order re-
tain their order upon arrival, or that no duplication takes place. Notice that not
making any of these assumptions is consistent with the failure model of the Inter-
net. In particular, links can fail completely by dropping all messages.

Links that have failed completely may create partitions. In general it is impos-
sible to know how many processes reside in a partitioned portion of a distributed
system and for how long the partition will last. The (lack of) assumptions about
communications implies also that it is impossible to know the difference between
a crashed process and a link that has failed completely. For the same reason it
is impossible to distinguish between a process that is acting in a Byzantine way
and a link that is modifying messages on the fly. Since interaction with a Byzan-
tine process is not fruitful, Byzantine failures can also be viewed as a failure that
creates a partition in the system.

The main implication of this is that, in this model, failures always manifest
themselves as communication problems. Any communication problems may cre-
ate (possibly temporary) partitions. This has profound effects on the notion of
progress: is the system constructed in such a way that progress is possible when
one (or more) nodes are left out (but not known to have stopped or crashed)?
What availability means in the specific system and how it is related to partitions
can only be answered by looking at the policies of the system (and, thus, can
not be answered in general).

For example, if progress of individual users is the goal of the service offered by
the system, it would not be wise to design the system in such a way that a par-
tition can stop a user from carrying on with his work [12]. Otherwise, some sort
of majority of processes taking responsibility for the global computation (enforc-
ing availability) could be found even if this implies to arbitrarily make decisions
about other processes’ state. In technical terms this last problem requires the
establishment of consensus that in turn can not be solved without blocking for
an unbounded length of time in the types of systems we consider [13].

The upshot of all of this is that there are two interesting objects to consider
in a distributed system, namely links and processes. Furthermore, there are two
modes of failure that concerns us, failure by crashing and Byzantine failure. Both
types, regardless of whether it happens in a process or in a link, may lead to
partitions. Partitions, by definition, are availability problems.

3.2 Encryption

We will assume “perfect encryption” [14]. We make this sweeping assumption in
order to confine the discussion to other aspects of public-key encryption than the
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encryption itself. Perfect encryption only makes sense under a certain technolog-
ical regime. Perfect encryptions emcompass the assumption that no fundamental
change in the traditional computational model takes place during the lifetime
of the system, such as if quantum cryptography becomes available, it is shown
that P = NP , or some other fundamenal property on which encryption rests is
changed. In this case, our assumption on perfect encryption does not hold and
all results must be examined again.

4 Public-Key Encryption

In this section we will discuss how and why public-key encryption gives rise to
a choice between availability and security.

Security mechanisms are designed under the assumption that system compo-
nents maintain their integrity. On one hand this lets us design sophisticated run-
time mechanisms that both provides security and high availability, on the other
handpractice has shown that alteration of the system state is the first goal of poten-
tial attacks. Since it is impossible to guarantee system integrity (for all its possible
definitions) it is often vital to have a clear view of the system’s failure model.

As our running example we will discuss one of the many possible disruptions in
a system where public-key encryption is in use: That of a key being compromized.
There are many ways a secret key can leak out, ranging from malice to negligence.
In any case, if a keyhas become known (or it is feared that a keyhas become known)
the key must immediately be revoked. The revocation demands that any holder of
the key should cease using it without delay, and in general we can expect a revoca-
tion to signal a serious security incident. Notice that we are not concerned with the
continuous revoking of old keys that is part of the normal operation of the system,
which in itself introduces a wide range for engineering issues.

We will discuss several aspects of revocation, but in any case, a solution to
the issue of revocation is an intrinsic part of the security properties of public key
encryption. A solution must be designed for each and every system even though
revocation has nothing to do with the cryptographic properties as such.

The following are well-known problems arising from the application of public-
key encryption (see for example [6]), but we have cast them in such a way that
the tradeoff between security and availability becomes evident.

4.1 Who Can Revoke a Key

It must be known in advance who is authorized to revoke a key.
Obviously, a malicious (or erroneously) revocation of some (or all!) of the keys

in the system will most likely be a system-wide failure. It is impossible to arrange
things so that this can not happen (if keys can be revoked at all), but one can
make it as unlikely as one desires. For example, by means of certificates we can
create a compound principal such as “Alice and Bob as Revoke Authority”[15].
When this regime is in place only Alice and Bob (in concert) can revoke a
key, and neither Alice nor Bob can revoke keys alone. However, revoking a key
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now requires both Alice and Bob to be available, and this creates a problem of
reliability. In concrete terms, from a security point of view there is now a single
point of failure in the system: A successful dos against either Alice or Bob (or
both) will paralyze the authority to revoke. In fact, any partition between Alice
and Bob will have this effect, regardless of how it comes about.

Because the principal having authority to revoke keys is very powerful, the
mechanisms put in place to control it should involve as many participants as
possible to guard against malicious attacks, while at the same time as few as
possible to ensure that a key can be revoked without delay.

From this we see that designing and implementing a policy for management
of authority to revoke keys involves mainly system-specific issues. The design
needs to take into consideration the general threat model of the system, the
potential costs of not revoking in a timely fashion, the reliability of the network
as a whole, the probability of a malicious entity revoking keys, and a host of
other issues. Most of these can not be calculated, and estimates must be made
on which to base the decision (be means of simulations, for example).

The design of the mechanisms that are to guard the authority to revoke keys
is an exercise in the tradeoff between security on one hand and availability on
the other.

4.2 How to Distribute a New Key

After a key has been revoked, a new key must be distributed in some pre-
determined manner.

Assume that Charlie’s key has been revoked. Until a new key has been dis-
seminated, Charlie is effectively silenced. No one will be able to send him data
without violating system security, and data coming from him will be discarded
for the same reason. Or, in other words, the part of the system controlled by
Charlie is disconnected and so unavailable. The need for security was deemed
higher than the need for availability.

One could lump together the authority to create new keys (and certify them)
with the authority to revoke keys, but there is no need to do so. In fact, for rea-
sons of security, you probably should not do so. The problem is that on the one
hand the message revoking the key should be spread as fast as possible while on
the other hand, (parts of) the system might be paralyzed before a new key can be
installed. The window can obviously be made to be zero by always issuing the new
key together with the certificate that revokes the old one, but this again requires a
co-location of the authority that revokes and the one that “restarts” the system.

It is most likely a system-wide failure if the (possibly combined) principal that
issues new keys fails by issuing unwarranted keys. As usual, one can make the
reliability of this service as high as one deems necessary at the cost of availability.

4.3 How to Spread the Revocation

The notification that a key has been revoked must be spread to all those that
potentially hold the key. One can assume that a key will not be revoked unless



228 T. Stabell-Kulø and S. Lupetti

there is a reasonable strong belief that the key constitutes a security problem.
That is, we can assume that the time from which the key becomes known and
until all participants has received the message to revoke the key constitutes a
window of vulnerability. The problem is that the nature of the task at hand
makes it possible for an attacker to make this window of vulnerability as long
as he wants. We will examine this issue below.

There are two means of spreading information (a revocation in this case) in
a distributed system: Either the information is pushed, or it is pulled [15].

Pushing the information is the simplest solution in that a message is sent
to all participants. However, there is no way of knowing that all participants
actually receive the message, and if the number of participants is large and
their physical distance great, the probability of success of this approach will be
rather low. The alternative, to engage in some protocol, is equivalent to creating
consensus. Such protocols can be blocking, and are at best probabilistic, where
the probability is a function of the characteristics of the physical network (over
which processes do not have control). In this state the system is particularly
vulnerable to denial of service attacks as security has been breached and the
window is open as long as messages are hindered. In other words, pushing is not
very secure.

The alternative to pushing is pulling. Each key is augmented with a certificate
that requires the one using it to verify that the key is still valid; the details of such
an on-line service for verification can be found in [15]. The problem is that in this
case the user is blocked if he can not reach the verification service. Again, this
service can be made as reliable as one wishes, at the cost of lowering security
(the more servers to update in case of a revocation the longer the window of
vulnerability).

Another tradeoff is to use a somewhat less reliable but more secure verifica-
tion service, but issue the verification certificates with a lifetime. But, again, how
long this timeout is, will again be a tradeoff between availability and security
that needs to be determined in advance.

4.4 Recovery from a Leaked Key

Assume that the principal authorized to revoke a key has decided that based
on the available information, a certain key must be revoked. In many cases this
only happens after the fact; it becomes known that at some time in the past
some event occurred that endangered (the secret part) of a public key. Let us
denote the time at which it is decided that the compromise occurred with t.

The compromise has two implications: Messages encrypted with the public
key after time t can no longer be assumed to be secret, and signatures made
with the key after time t can no longer be assumed to be authentic without
scrutinizing of the events leading up to where the signature being made.

If loss of secrecy and/or authenticity is a system-wide failure, a strategy
for recovery must be in place. This strategy will determine who has authority
to revoke the key, how to spread the revocation, but also how to deal with
all messages encrypted with the key since time t. This recovery procedure can
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be utterly complicated, and while it is in progress the system might be very
vulnerable against dos attacks, among other things.

To design and implement such a recovery mechanism, while maintaining all
other properties of the system, will require a sage tradeoff between security and
availability.

4.5 Public-Key Infrastructure (PKI)

We have on purpose avoided the term pki in our disposition. In the above ex-
amples it is evident that some means must be found to disseminate keys and
certificates, offer verification (and thus revocation) services, to coordinate the
activities of the certification authorities, and so on. We believe that whether
this is organized under the umbrella of a pki, or in some other way does not
alter any of the arguments we have presented.

4.6 Summary

We see from the examples above that they all reveal the need for a tradeoff
between security and availability. Although there are cases where one must surely
be selected before the other, this is in general a difficult task. In particular, in
most cases it is of prime importance to lower as far as possible the probability of
any system-wide failure. The problem is that even though it is obvious that the
system as a whole has a certain probability of failure, actually finding it might
not be feasible. In particular, due to the complexity of the system, the actual
tradeoff that has been done will often not be visible before recovery is necessary.

We believe that the examples we have shown demonstrates that including
public-key encryption in a system gives rise to a large set of issues that must be
addressed, and that all of them hinge on the probabilities of (a set of) events to
occur (or not occur).

In addition to the issues discussed here, public-key encryption introduces also
other security properties that need to be considered. For example, the holder of
a public key can anonymously send encrypted messages, and the presence of
public-key encryption gives rise to the need for authentication. Moreover, it is
impossible to know who holds a public key, and thus to know who will verify
signatures in the futures and possibly use the signature for a malign purpose.

5 Alternatives

In a system without full physical control over the communications links, encryp-
tion is the only means available to ensure authentication (and thus authorization)
and integrity. There are three technologies that are readily at hand: Symmetric
key (e.g., des), asymmetric key (public key, e.g., rsa), and hashing (digital fin-
gerprint, e.g., sha). The challenge is to use them in the most convenient manner.

In general we can say that public-key encryption excels in systems where the
participants have no prior knowledge of each others. This is seldom the case,
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electronic commerce with the general public aside. But most of the abstraction
it offers can be also obtained using other technologies. As an example, let us
demonstrate how to obtain digital signatures using shared keys only.

Assume the three parties Alice, Bob and a trusted Server. Assume further-
more that rather than being trusted to realize a pki, S shares a key with A
(KAS) and one with B (KBS), and that A and B has exchanged a session key
(KAB) by some means (for example in concert with establishing the Service
Level Agreement). The message

A → B : {{M}KAS , M}KAB

gives Bob all the evidence he needs to hold M against Alice, with the assistance
of S. This places the same responsibilities on S as would the combination of
implementing a pki and a ca. Notice that in both the solution for shared-key
and public-key encryption S must be trusted to be willing and able to do “the
right thing”. If S fails to be trustworthy, both technologies fail to provide a
solution. The only difference is precisely what this “the right thing” is. Or,
in other words: Establishing digital signatures is a matter of establishing and
maintaining trust rather than of cryptographic technology.

Another issue for concern is the ability to keep keys secret. In public-key
encryption there is also a key-component that must be kept secret, and the
engineering challenges are not smaller for this technology than for shared-key
encryption; keeping one key secret is not much more complicated than keeping
thousand keys secret. Also in this respect the tradeoff is more biased by trust
and belief in the ability of participants to uphold local security policies, than of
technology.

Taken together we can say that whether the management necessary to sup-
port shared-key encryption is a heavier burden to carry than that of public-key
encryption is system dependent. Providing universally valid guidelines is proba-
bly impossible.

6 Conclusions

The security community has an array of powerful technologies to offer systems
designers. We have discussed but one: Public-key encryption for secrecy (en-
crypting with the public key) and authentication (digital signatures).

Failures are inherit in the computational model of distributed systems, and
this creates problems. To uphold security properties, public-key encryption must
be supported by complex and distributed infrastructure. Taken together, when
public-key encryption is used, a tradeoff must be found between availability on
one hand, and security on the other. The availability of the system is heavily
affected by this decision.

Public-key encryption introduces many lanes that can lead to system-wide
failures, and that can lead to blocking (denial of service) in whole or parts of
the system. Unfortunately, there does not seem to be any structured manner in
which to proceed, as all tradeoffs must be made based on the actual network



Public-Key Cryptography and Availability 231

topology, the properties of the resources that must be protected, and so on. In
particular, it seems as if the tradeoffs must be made at the time of deployment.

All of this should be contrasted to the use of symmetric keys. The process
of exchanging keys can be complex, and shared keys must be protected; just
as the secret part of in the key-pair in a public-key system. But with a shared
key it is clear with whom you share a key, it is clear who can authenticate you,
anonymous receiver and senders are not feasible, and so on.

The lesson to be learned is that although the somewhat troublesome prop-
erties of public-key encryption is well known in the security community, this
might not be the case in the safety community. From this it should follow that
such powerful abstractions as digital signatures should only be applied if they
are fully understood. In particular, if blocking in any form is a problem in the
target system, authentication and integrity should be achieved by other means
than by using public-key encryption.

This does not necessarily mean to avoid public-key technologies in all cases
but to carefully examine all the possibilities not letting its recognized power to
mask its drawbacks: When valid alternatives are available the choice can not be
obvious.

Acknowledgments

This paper would not have been written had it not been for the IKTSoS workshop
arranged by the Norwegian Research Council in March 2005. Feico Dillema, Jon
Ølnes, Arne Helme and Dmitri Zagorodnov acted as catalyzators in crystalizing
our ideas.

References

1. Pfitzmann, A.: Why safety and security should and will merge. In Heisel, M.,
Liggesmeyer, P., Wittmann, S., eds.: Proceedings of Computer Safety, Reliabil-
ity, and Security (SAFECOMP’04). Volume 3219 of Lecture Notes in Computer
Science., Potsdam, Germany, Springer (2004) 1–2

2. Anderson, R.J.: Security Engineering. John Wiley & Sons, Inc. (2001)
3. Lampson, B.: Security in the real world. IEEE Computer 37 (2004) 37–46
4. Rushby, J.: Critical system properties: Survey and taxonomy. Reliability Engi-

neering and System Safety 43 (1994) 189–219
5. Nechvatal, J.: Public key cryptography. In Simmons, G.J., ed.: Contemporary

cryptology, the science of information integrity. IEEE Press (1992) 177–288
6. Roe, M.: Cryptography and evidence. PhD thesis, Clare College, University of

Cambridge, UK (1998)
7. Avizienis, A., Laprie, J.C., Randell, B., Landwehr, C.: Basic concepts and taxon-

omy of dependable and secure computing. IEEE Transactions on Dependable and
Secure Computing 1 (2004) 11–33

8. Needham, R.M.: Denial of service: an example. Communications of the ACM 37
(1994) 42–46

9. Mirkovic, J., Reiher, P.: A taxonomy of DDoS attack and DDoS defense mecha-
nisms. SIGCOMM Computer Communication Review 34 (2004) 39–53



232 T. Stabell-Kulø and S. Lupetti

10. Barborak, M., Dahbura, A., Malek, M.: The consensus problem in fault-tolerant
computing. ACM Comput. Surv. 25 (1993) 171–220

11. Lamport, L., Shostak, R., Pease, M.: The Byzantine generals problem. ACM
Transactions on Programming Languages and Systems 4 (1982) 382–401

12. Stabell-Kulø, T., Dillema, F., Fallmyr, T.: The open-end argument for private
computing. In Gellersen, H.W., ed.: Proceedings of the ACM First Symposium
on Handheld, Ubiquitous Computing. Number 1707 in Lecture Notes in Computer
Science, Springer Verlag (1999) 124–136

13. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus
with one faulty process. Journal of the ACM 32 (1985) 374–382

14. Blum, M., Goldwasser, S.: An efficient probabilistic public-key encryption scheme
which hides all partial information. In: Proceedings of Advances in Cryptology—
Crypto’84. Volume 196 of Lecture Noets in Computer Science., Springer verlag
(1984)

15. Lampson, B., Abadi, M., Burrows, M., Wobber, E.: Authentication in distribued
systems: theory and practice. ACM Transactions on Computer Systems 10 (1992)
265–310



 

R. Winther, B.A. Gran, and G. Dahll (Eds.): SAFECOMP 2005, LNCS 3688, pp. 233 – 245, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

End-To-End Worst-Case Response Time Analysis for 
Hard Real-Time Distributed Systems 

Lei Wang1, 2, Mingde Zhao1, Zengwei Zheng1, 3, and Zhaohui Wu1 

1 College of Computing Science, Zhejiang University, 310027 Hangzhou, P. R. China 
{alwaysbeing, zmdd48, zhengzw, wzh}@cs.zju.edu.cn 
2 UFSOFT School of Software, Jiangxi University of Finance & Economics, 

330013 Nanchang, R. P. China 
alwaysbeing@sohu.com 

3 City College, Zhejiang University, 310015 Hangzhou, P. R. China 
zhengzw@zucc.edu.cn 

Abstract. The verification of end-to-end response time for distributed hard real-
time systems is quite necessary for safety-critical applications. Although current 
time analysis techniques can precisely analyze the response time, the performance 
is not quite satisfying, especially for large size distributed systems. This paper 
presents a novel end-to-end worst-case response time analysis approach for hard 
real-time distributed systems. This technique is based on the critical instant 
analysis and the canonical form transformation. It extends the traditional holistic 
analysis technique by exploiting the precedence relations between tasks on both 
different processors and the same processor. Simulation results have shown that 
this algorithm can achieve accurate results and offers good performance for 
systems with wide range of CPU utilizations and task set size, and therefore is 
applicable to schedulability analysis of complex distributed systems. 

1   Introduction 

Distributed control systems are increasingly deployed in current industry and 
products, such as manufacturing plant, aircraft and vehicles, in which, many control 
systems are decentralized at different locations and interconnected through one or 
more buses or networks, over which data and control signals are transmitted. The 
distributed architecture is superior to the traditional centralized control systems in 
performance, capability and robustness, et al. The software in these systems is 
composed of concurrent tasks that are often statically allocated to processing nodes, 
and may exchange messages with other tasks on the same node or on different nodes. 
Control algorithms are usually designed and implemented with the assumption of a 
periodic behavior, which is often important in achieving the required control 
performance and stability. There are strict deadlines placed on the response times of 
control processes. Failure to meet the deadline may result in catastrophic 
consequences. In order to verify that a given control system is capable of providing 
the required quality of control, a means to predict end-to-end response times is 
required. Preferably, this information should be available at an early design stage. 
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Schedulability analysis of fixed priority preemptive tasks known as RMA (Rate 
Monotonic Analysis) has been well developed since Liu and Layland’s seminal paper 
in 1973 [1]. The set of analysis methods now handles a wide range of systems in 
which the original restricting assumptions of RMA have been successively removed. 
Systems that can be analyzed include systems with task synchronization [2], a mixture 
of periodic and aperiodic tasks [3] [4], tasks with arbitrary deadlines [5], etc. 

Even though RMA was initially formulated as a theory for analysis of tasks 
executing on a single processor, it is also extended to cover scheduling analysis in 
distributed systems. An approach to calculate end-to-end response times for 
distributed real-time systems is the holistic scheduling analysis proposed by Klein [6] 
and Tindell [7]. It makes all the tasks independent by introducing a jitter on release 
time due to the execution delay of preceding tasks and message delivery and 
computes worst-case response times for transactions by summing individual task and 
message response times. However, when precedence relations take place on the same 
processors, the holistic analysis may be pessimistic since it does not take into account 
this situation. To decrease the pessimism, Palencia et al. introduced offsets [8] and 
best-case response times [9] into the schedulability analysis. In [10] they extended the 
technique in order to exploit more accurately the precedence relations on the same 
processors. However, the algorithm based on this technique is time-consuming and 
can hardly obtain an accurate result within a human-tolerable period of time when 
analyzing complex distributed systems. 

In this paper, we extend the holistic analysis technique to deal with the precedence 
relations between tasks in the same processors. The analysis technique is based on the 
traditional critical instant analysis and the canonical form transformation proposed by 
Harbour et al. [11], in which tasks’ time behaviors are accurately calculated. 
Compared with the current techniques, this algorithm offers higher performance for 
systems with wide range of CPU utilizations and task set size on the condition that the 
accuracy is guaranteed, therefore it is applicable to the schedulability analysis of 
complex distributed real-time systems.  

The remainder of the paper is organized as follows: Section 2 describes the 
assumptions and computational model used in this paper. Section 3 proposes the 
methods to compute end-to-end response times and release jitters. Then an extended 
worst-case response time analyses algorithm and an integrated schedulability analysis 
algorithm are presented in Section 4. Simulations result is given in Section 5. Finally, 
we conclude the paper in Section 6. 

2   Assumptions and Computational Model 

In this paper we consider event-driven software systems. In these systems a set of 
external event sequences activate tasks. These tasks may generate internal events 
(signals as well as data) that activate other tasks, and so on. We assume that a task 
immediately activates its successors at the end of its execution. All tasks, which are in 
precedence relation by their activation, are grouped into entities that we called 
transactions. The assignment of the tasks to the processors is given and all the tasks of 
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the same transaction do not necessary assigned to the same processor. Each 
transaction has a period and deadline. We assume the deadline is less than or equal to 
their period. Tasks within the same transaction have the same period and deadline 
with the transaction. We exclude the possibility that the execution of multiple 
instances of a task can be underway, i.e., a task must complete before its next arrival. 
In the computational model referenced in this paper, each task has one direct 
predecessor at most, which may run on the same or different processor. A task may 
have one or more successors on the same or different processors. 

On each processor, tasks are statically assigned unique priority and scheduled 
under a fixed priority preemptive strategy. The assignment of priority is not the focus 
in this paper, but we assume that predecessors are always assigned higher priority 
than their successors on the same processor. This is reasonable since successors in a 
transaction are always released after their predecessors complete. To reduce the 
complexity of response time analysis, the communication costs between processors is 
neglected in this study. However, the response time of messages can be analyzed with 
the similar method by modeling each network as if it were a processor, and each 
message as if it were a task [12]. 

Let P be the set of processors. There is a set  =  {t1,…, tn} of n periodic tasks in 
the system. Each task ti is characterized by (Ti, C

W
i, Di, i, pi) where Ti is the period of 

ti, C
W

i are its worst-case execution times (WCET) respectively, Di is its deadline, i is 
its priority and pi ∈ P is the processor to which it is allocated. p denotes the task set 
allocated to the processor p ∈ P. 

Let k be the total number of transactions in the system. There is a set X = {x1,…, 
xk} of k transactions in the system. Each transaction xi is characterized by (Ti, TSi, Di) 
where Ti is the period of transaction xi, TSi is the set of all the tasks in xi and TSi ⊆ . 
Di is the deadline of xi and Di Ti. Each task in TSi has the same period Ti and 
deadline Di. 

If tasks do communicate with each other, they are said to be precedence 
constrained since a task is blocked until its direct predecessors activate it. Each 
transaction has one beginning task and or more terminative tasks. We denote end(x) 
the set of terminative tasks of transaction x∈X.  

3   End-to-End Response Time and Release Jitter 

The schedulability analysis for multiprocessor systems is based on the worst-case 
response time analysis of transactions. If the worst-case end-to-end response times of 
all the transactions in a system are less or equal to their deadlines, the system is then 
schedulable. To obtain the end-to-end response time of a transaction, we can calculate 
its individual task response times and sum them up [6]. 

We define local response time ri for ti which is measured from the local arrival 
time of ti, and define global response time Ri of ti in a transaction which is measured 
from the beginning of the complete transaction. The global worst-case response times 
of ti, R

W
i can be expressed as: 

    1
W W W
i i iR R r−= +  (1) 
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where ri
W is the worst-case local response time of ti, RW

i-1 is the worst-case global 
response time of its direct predecessor task and R0

W= 0.  
Obviously, the end-to-end response time of a transaction is its terminative tasks’ 

global response time. Thus, the worst-case end-to-end response time Rx
W of 

transaction x can be expressed as:  

( )
max ( )W W

x j
j end x

R R
∈

=  (2) 

In periodic multiprocessor systems, transactions composed of precedence-
constrained tasks will begin periodically. However, tasks except the first in a 
transaction will suffer variation in release time since they will inherit variants in 
response time (jitter) from predecessor tasks. The presence of jitter can affect the 
response times of lower priority tasks [4]. Therefore, we need to accurately compute 
the release jitter for each task. 

The release jitter of a task is defined as the maximum variation of its release time. 
Traditional analysis of distributed response time assumes that the release jitter of a 
task is the worst-case response time of the task which directly precedes it and the 
best-case response time of the predecessor task is assumed to be small and is ignored. 
However, this will lead to a pessimistic calculation of response times, since jitter may 
increase rapidly with each additional precedence step in a transaction. Given the 
global best-case response times of direct predecessors, the release jitter Ji of ti can be 
more accurately computed through the following equation:  

1 1
W B

i i iJ R R− −= −  (3) 

where RB
i-1 is the global best-case response times of direct predecessors of ti. The 

calculation of best-case response time is not the focus in this paper. Readers can refer 
to [13] [14] and [15] for details. 

Release jitters will be used in the calculation of response times of lower priority 
tasks on the same processor. In the following sections, we will describe the 
calculation of the worst-case response time of tasks in detail. 

4   Schedulability Analysis 

4.1   Traditional Worst-Case Analysis Technique 

Audsley [4] and others [7] have studied the schedulability analysis used to derive 
worst-case response times of fixed priority periodic tasks preemptively scheduled. 
The worst-case response time of a task is computed assuming that it is released at the 
same instant as all higher priority tasks on the same processor -- this known as the 
“critical instant”. If a task with higher priority suffers release jitter, the interval of its 
release time can be less than its period. This may lead to more preemption of tasks 
with lower priority. The local worst-case response time ri

W of ti can be expressed in 
the following iterative form: 
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*

( )

W
i jW W W

i i i j
j hp i j

r J
r C B C

T∈

+
= + +  (4) 

where hp(i) is the set of tasks with higher priority than ti, Tj and Ji are respectively the 
period and jitter of tj, Bi is the longest time that ti could be blocked by lower priority 
tasks, and is computed according to the concurrency control protocol, such as the 
priority ceiling protocol [2]. To calculate ri

W, the newly computed response time, ri
W*, 

replaces ri
W on each iteration. The expression must be iterated until convergence (ri

W* 

= ri
W) or the task is deemed unschedulable (ri

W > Di). An initial response time, ri
W = 

Ci
W, may be assumed. 

4.2   Worst-Case Analysis for Tasks with Precedence Relations 

When consider the precedence relations between tasks in the same processor, the 
above calculation may not provide the correct response time. Consider the task set on 
a processor p shown in Table 1. If the precedence constraints are not considered, r2 
and r4 are 4 and 15 respectively based on Equation 4. If we exclude the preemption 
from t2, r4 is 8 as shown in Fig.1(a). However, this is not the worst-case phasing of t4, 
since the precedence relations between tasks are not fully explored. The worst-case 
phasing of t4 is shown in Fig.1(b), its local worst-case response time r4 is 11. While 
the worst response time of t2 will remain the same. 

Table 1. The task set on processor p 

Task Transaction Period Direct predecessor WCET Priority 

t1 x1 8 None 2 4 

t2 x2 30 None 2 3 

t3 x1 8 t1 3 2 

t4 x2 30 t2 3 1 

 

r4=8

(a) (b)

r4=11

t1

t2

t3

t4

t1

t2

t3

t4

 

Fig. 1. The worst-case phasing of t4 
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From this example we can see that the precedence relation between two tasks does 
not affect the execution of the predecessor, this is because the predecessor always has 
a higher priority than its successors on the same processor. The precedence relations 
between tasks on different processors have been considered in the calculation of 
global response time (Equation 1). In order to extend the response time analysis for 
precedence relations between tasks on the same processor, we consider the following 
two cases on a processor p: 

Case 1: The calculated task ti has no direct predecessor on p. 

Case 2: The calculated task ti has a direct predecessor on p. 

Case 1: ti has no direct predecessor on p. Let’s consider the scheduling on p. When 
calculating ti’s response time, we do not consider the effects from its indirect 
predecessors on p, since they do not preempt the execution of ti. Although these 
indirect predecessors may affect the release time of ti, these effects are indirect and 
are transferred to ti’s direct predecessor, which is on other processor. The dependence 
on its direct predecessor has been taken into account in the calculation of global 
response time of ti (see Equation 1). As a result, ti’s execution is only affected by the 
tasks with higher priority in other transactions. We denote the set of these tasks as S, 
so S can be expressed as { | ( ) ( )}i i iS t t hp i t V i= ∈ ∧ ∉ , where hp(i) is the set of 

tasks on p which have higher priority than ti and V(i) is the set of tasks in the 
transaction of ti. If the tasks in S have no precedence relations among them (no two 
tasks belong to a common transaction), the precedence relations between tasks on p 
will not affect the execution of ti. The worst-case phasing for ti is the instant when it is 
released simultaneously with all the tasks in S.  

Consider the case that two tasks in S have a precedence relation. Let the two tasks 
be tj and tk, and tj is a predecessor of tk. tk may be released just when tj terminate its 
execution (directly released by tj) or released by successors of tj (indirectly released 
by tj). In the latter situation there is a delay between tj’s termination and the release of 
tk. Obviously, the former situation will contribute to the worst-case response time of 
lower priority tasks (task ti), since the interval between the executions of tj and tk is 
the least which leads to the tightest preemption of lower priority tasks. Thus we 
calculate ti’s response time in the former situation for the worst-case analysis.  

Theorem 1: In the task set of a processor, task tj is the direct predecessor of task tk 
and tk is released when tj terminates its execution. If tk’s release time is brought 
forward to the instant when tj is released, the execution of tk is not changed. 

Proof: According to our assumptions, tj and tk has a common period and tj has a 
higher priority than tk. Consider the situation illustrated in Fig.2 with j > k > i. The 
white arrow denotes the release instant of tasks when the precedence relations are 
considered. a2 is the instant when tj is terminated and tk is released. a1 is the instant 
when tj is released and is denoted by the first black arrow. We can see that if tk is 
released at a1, it will have no chance to execute before the termination of tj in the 
same instance of their transaction. This is because that tj and tk are released 
simultaneously at a1 and tj has a higher priority than tk. That is to say the execution of 
tk will not be different whether it is released at a1 or a2. Since tj and tk have the same 
period, this is true for all the following instance of tk.             
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tj

tk

ti

a1 a2

 

Fig. 2. Bringing forward tk’s release time to a1 dose not change tk’s execution 

According to Theorem 1, the calculation of ti’s worst-case response time can be 
performed as if all the tasks in S were released at its critical instant, since the release 
time of successor tasks can be brought forward to the critical instant without changing 
their executions. So the precedence relations between tasks in S will not affect the 
worst-case phasing of ti, which the instant when ti is released simultaneously with all 
the tasks in S.  

Thus, whether or no there are precedence relations between tasks in S, ti’s worst-
case local response time ri

W can be computed through the following iterative equation: 

             
*

( ) ( )

W
i jW W W

i i j
j hp i j V i j

r J
r C C

T∈ ∧ ∉

+
= + ⋅  (5) 

An initial response time, ri
W* = Ci

W may be assumed. The newly computed 
response time, ri

W*, replaces ri
W on each iteration. The expression must be iterated 

until convergence (ri
W* = ri

W) or the task is deemed unschedulable (ri
W > Di). Based on 

Equation 1, the worst-case global response time of ti can be achieved. 

Case 2: The calculated task ti has a direct predecessor on p. To calculate the worst-
case local response time of ti, we need to consider the effects from its predecessors. 
We introduce the consecutive sub-transaction to compute the response time of ti. 

Definition 1: The consecutive sub-transaction of a task t is the sub-transaction 
consists of all the consecutive tasks ended up with t on the same processor. 

In Fig.3, the consecutive sub-transaction of t5 and t6 are shown. We denote the 
consecutive sub-transaction of ti as ST(i). Obviously, ti and ST(i) have the same global 
response time. The worst-case global response time of ti can be expressed as: 

( ) 1 ( )
W W W
i fst i ST iR R r−= +                                              (6) 

where fst(i) is the first task in ST(i), rW
ST(i) is the worst-case local response time of 

ST(i) which is measured from the release time of the first task to the termination of 
the last task ti in ST(i). 
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t3 t4 t5 t6

t2 t1

Processor

ST(5)

ST(6)

 

Fig. 3. Consecutive sub-transaction 

To calculate rW
ST(i), we introduce the concept canonical form proposed by Harbour 

et al. [11]. A transaction or sub-transaction is said to be in canonical form if it consists 
of consecutive tasks that do not decrease in priority. Harbour et al. have proved that 
converting a precedence chain into a canonical form does not change its completion 
time. Therefore, we can calculate rST(i) by transforming ST(i) to a canonical form. We 
denote the canonical form of ST(i) as CST(i). The canonical transformation can be 
performed by applying the following algorithm: 

 
Algorithm 1. Canonical transformation 

ti is the last task in ST(i); 

while ti is not the first task of ST(i) 

If i-1 > i then i-1 = i ; 

i = i-1; 

end 
 
Since the consecutive tasks in a consecutive sub-transaction have descending 

priorities, after the canonical transformation, all the tasks in CST(i) have the same 
priority i. Due to the tasks in CST(i) also have the same period and each task is 
immediately released when its direct predecessor terminates its execution, CST(i) can 
be treated as a single task with priority i and period Ti when calculate its response 
time. According to the definition of ST(i), this assumed task has no direct predecessor 
on p. This is just the case indicated by case 1. Therefore, the worst-case local 
response time rCST(i) (equal to rST(i)) can be expressed in the following iterative form: 

           
( )*

( ) ( )
( ) ( )

W
CST i jW W W

CST i CST i j
j hp i j V i j

r J
r C C

T∈ ∧ ∉

+
= + ⋅  (7) 

where CW
CST(i) is the worst-case execution time of CST(i), it can be achieved by 

summing up the worst-case execution time of all the task in CST(i). This equation is 
deduced from Equation 6 by treating CST(i) as one task without direct predecessor. 
Please note that the preemptions from the predecessors of ST(i) are excluded from the 
interference time (the item on the right of the equation) since ST(i) are always 
released after their terminations and they have no chance to preempt it. 
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To calculate rW
CST(i), the newly computed response time, rW*CST(i), replaces rW

CST(i) 
on each iteration. The expression must be iterated until convergence (rW*CST(i)

 = 
rW

CST(i)) or the task is deemed unschedulable (rW
CST(i) > Di). An initial response time, 

rW
CST(i) = CW

CST(i), may be assumed. Since transforming ST(i) to CST(i) does not 
change its completion time, rW

ST(i) is equal to rW
CST(i). Based on Equation 6, the worst-

case global response time of ti can be achieved. 

4.3   An Integrated Schedulability Analysis Algorithm 

We extend the algorithm proposed by Henderson et al. [13] to test the schedulability 
of multiprocessor systems. The analysis is based on the computation of worst-case 
response time for end-to-end transactions, which essentially involves the two stages: 

1. Compute local response time for task or consecutive sub-transactions on all 
processors 

2. Compute global response times and jitter for tasks on all processors 

These stages are repeated until convergence is achieved. The second stage requires 
the traversal of precedence graphs to sum the delays along each end-to-end 
transaction. Because not all information is available when computing response times 
on each processor, the process has to proceed by iteration. The bounded response time 
of each transaction and the schedulability analysis of the system can be achieved 
using the following algorithm: 

 
Algorithm 2. SAPR (Schedulability analysis for task with precedence relations) 

begin  
Initialize global responses, R0

W = 0; 

Initialize jitter, J0 = 0; 

   do 

       for each pk ∈P do 

          for each ti ∈ pk do 

                 if ti has no direct predecessor on pk then 

Compute local task response time, ri
W (Eq. 5) 

                 else 
Compute local response time of ST(i), rW

ST(i); (Eq. 7) 

             end for 

       end for 
       for each transaction x do 

          for each task ti in x do 

Compute global response time, Ri
W; (Algorithm 3) 

Compute jitter, Ji; (Eq. 2) 

          end for 

      end for 
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      Test for convergence; 

   until convergence or not schedulable 

end 

 
Task Global response times can be calculated through the following nested 

algorithm: 
 

Algorithm 3. Task global response time calculation 

input: x, p, ti, ri
W, rW

ST(i); 

output: Ri
W; 

begin  
if ti is the beginning time of x then 

Ri
W = ri

W; 

else 
if ti has no direct predecessor on p then 

compute Ri-1
W; (Algorithm 3) 

compute Ri
W and Ri

B; (Eq. 1) 

else 
    compute Rfst(i)

W; (Algorithm 3) 
    compute Ri

W; (Eq. 6) 

end if 

end if 

end 
 
In the SAPR algorithm (Algorithm 2), the convergence test is satisfied when all 

response times remain the same from one iteration to the next. For many small-
medium sized systems, between 2 and 6 iterations appear sufficient to obtain a 
converged solution. 

5   Simulations 

In order to evaluate the performance of the proposed method, simulations were 
conducted on a Pentium 4 2.4GHz with different task sets whose execution times, 
periods and priorities were generated randomly. We have compared the SAPR 
algorithm with the dynamic offset algorithm proposed by Palencia and Harbour [10] 
through simulations and found that both the algorithms can achieve the same result 
for a given task set when BCET of tasks is considered to be zero. However, the 
dynamic offset algorithm consumes much more time than SAPR to obtain the results 
for medium or large size systems. Fig.4 shows the time cost of the dynamic offset 
algorithm to analyze a system with 5 transactions in 2 processors. It can be seen that 
the time cost of the dynamic offset algorithm grows quickly with the increase of task 
amount  and the  processor  utilization. Even  for a task set with 40 tasks and a normal 
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Fig. 4. Time cost of dynamic offset algorithm for 5 transactions on 2 processors 
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Fig. 5. Time cost of SAPR algorithm for 5 transactions on 2 processors 

utilization level of 0.7, it will take more than one minute to achieve the result. This 
performance cannot be tolerated in practice for many larger size systems. The SAPR 
algorithm has a higher performance than the dynamic offset algorithm. Fig.5 shows 
its time cost to analyze the systems with the same amount of transactions and 
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processors but much more tasks. For a task set with 1000 tasks, the analysis can be 
completed in less than 2 seconds even under very high processor utilization levels 
close to 1. It can also be noted that the time cost of the SAPR algorithm grows slowly 
with the increase of amount of tasks and the processor utilization. These features 
make it quite applicable to large size systems. 

6   Conclusion 

In this paper we have addressed the problem of schedulability analysis in hard real-
time distributed systems. In safety-critical control systems, periodic control actions 
are required with precise timing and accurate performance data is required to assure 
the behavior of these systems. To achieve an accurate analysis, the existing time 
analysis techniques are extended to exploring the precedence relations between tasks 
in the calculation of the worst-case response times. An integrated algorithm is also 
proposed to test the schedulability and compute the response time bounds of a system. 
A simulation study has shown that this algorithm can provide an accurate analysis and 
offer good performance for systems with wide range of CPU utilizations and task set 
size, and therefore is suitable for analysis of complex systems. Although the costs of 
message transmission is not taken into account, the present analysis technique can 
also be used for communications on networks by modeling each network as if it were 
a processor, and each message as if it were a task [12]. 

Our further work includes the optimization of scheduling for distributed systems 
based on the end-to-end response time analysis. This will help system designers to 
improve the performance and reliability of a complex system at an early design stage. 
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Abstract. This paper addresses the problems appearing in component-
based development of safety-critical systems. We aim at efficient reason-
ing about safety at system level while adding or replacing components.
For safety-related reasoning it does not suffice to consider functioning
components in their ”intended” environments but also the behaviour of
components in presence of single or multiple faults.

Our contribution is a formal component model that includes the no-
tion of a safety interface. It describes how the component behaves with
respect to violation of a given system-level property in presence of faults
in its environment. We also present an algorithm for deriving safety inter-
faces given a particular safety property and fault modes for the compo-
nent. Moreover, we present compositional proof rules that can be applied
to reason about the fault tolerance of the composed system by analyzing
the safety interfaces of the components. Finally, we evaluate the above
technique in a real aerospace application.

1 Introduction

Component-based software development [30,9] uses various models and methods
to capture different attributes of a system, or emphasise phases of the develop-
ment cycle [4,28,8,27,10]. This paper addresses efficient assurance of dependabil-
ity in a system built from components and with several upgrades in its life cycle,
an aspect not widely studied so far in the components literature [11].

Modifying a component or replacing it with another is an especially costly
process for safety-critical systems, as much of the analysis and review of the
safety arguments at the certification stage has to be repeated for every signifi-
cant change to the system. We believe that tool support in this sector needs to
make component changes cost-efficient by addressing safety-specific issues, e.g.
resilience of the system with respect to single and multiple faults as new com-
ponents are plugged in. The model we propose covers digital components, with
a built-in declaration of their behaviour under faults in assumed environments.
This component model captures the logic of the design at a high abstraction
level, and could be applied to software or (reconfigurable) hardware designs.

Traditional risk assessment techniques such as Fault-tree analysis (FTA) and
Failure modes and effects analysis (FMEA) [16] deal with the effect of inde-
pendent faults. Although assessing fault tolerance at system level is an impor-
tant part of safety analysis, rigorous methods are only in their infancy when
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it comes to systems with significant digital components [15,13]. Our goal is to
provide a formal means to support the system integrator. When acquiring a new
component for inclusion into a system, the integrator is informed whether the
component can potentially threaten the system-level safety (in the same spirit
as FMEA). The integrator is also supported in analysis of fault tolerance at
system level, the result of which will indicate all single or multiple component-
level faults that will necessarily lead to violation of safety (in the same vein as
FTA). Unlike functional correctness analysis, here the goal is to focus on risks
associated with external faults, not to eliminate design faults.

The contributions of this paper are as follows. We present a component model
that includes safety interfaces. These describe how a component behaves with
respect to a given system-level safety property in presence of (a defined set of)
faults in its environment. We show how to perform a system-level safety analysis
by using the safety interfaces of components. This goal is supported in two ways.
First, we provide an algorithm that derives the safety interface of a component
given a particular safety property and set of fault modes. The interface includes
the single and multiple faults that this component is resilient to, as well as
environment restrictions that can contain the faults. This analysis is intended
to be performed by the developer of the component. Second, we support the
system integrator to reason compositionally about safety in presence of single
and multiple faults at system level by referring to the safety interfaces. Once the
relevant fault-failure chains are rigorously identified, they can be handled using
standard assessment routines, fault forecasting and containment techniques [20].

1.1 Related Work

To our knowledge, there is no previous formal work on safety interfaces for
components.

Current engineering practice includes two parallel activities for safety-related
studies (hazard analysis, FTA and FMEA) and functional design and analysis.
Recent research efforts have tried to combine these separate tracks by augment-
ing the system design model with specific fault modes. Åkerlund et al. [2] have
to our knowledge the first attempt to integrate the separate activities of design
and safety analysis and support them by common formal models. Hammarberg
and Nadjm-Tehrani extend this work to models at a higher level of abstraction
and characterise patterns for safety analysis of digital modules [15]. That work,
however, does not build on a notion of encapsulation as in components. It verifies
the entire composed system in Esterel using a SAT model checker and iteratively
analyses all fault modes at system level. The ESACS project [7] applies a similar
approach to Statechart models using a BDD-based verification engine.

Papadopolous et. al. [24] extend a functional model of a design with Interface-
Focused FMEA. The approach follows a tabular (spread sheet) editor layout.
The formalised syntax of the failure classes allows an automatic synthesis of a
fault tree and incorporation of knowledge about the architectural support for
mitigation and containment of faults. However, it suffers from combinatorial
explosion in large fault trees and lacks formal verification support.
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Rauzy models the system in a version of mode automata and the failure of
each component by an event that takes the system into a failure mode [26]. The
formal model is compiled into Boolean equations and partial order techniques
are suggested for reducing the combinatorial explosion. However, it has not been
applied to component-based development or compositional reasoning.

Strunk and Knight define the system and its reconfiguration elements explic-
itly using RTL (temporal logic) notation and provide guidelines for reconfigura-
tion assurance. Reconfiguration is mainly used here when the system is adapting
to lower service levels that may in particular be due to failure scenarios [29].

Jürjens defines an extension of the UML syntax in which stereotypes, tags,
and values can be used to capture failure modes of components in a system (cor-
ruption, delay, loss) [19]. The merit of the model is to narrow the gap between a
system realised as a set of functions and a system realised as a set of components.

Li et al. [21] define feature-oriented interfaces for modules that encapsulate
crosscutting system properties. The focus of this work is feature interaction
including features that introduce a new vocabulary.

A recent approach for formal treatment of crosscutting concerns in recon-
figurable components is given by Tesanovic et al. [31] where extended timed
automata are used to capture models of components with an interface for char-
acterising the essential traces for supporting a given timing property.

Assume-guarantee-style compositional reasoning has a long history originat-
ing with the work by Misra and Chandy [23] and Jones [18] in the context of
concurrent systems. It has been applied to deductive reasoning about specifica-
tions [1] as well as model checking for various automata formalisms. Here, the
notion of refinement is usually trace inclusion, but can also be simulation [17].
Our rules are derived from those of Alur and Henzinger for reactive modules [3].

2 Components and Fault Models

A component is an independent entity that communicates through well-defined
interfaces. In most component models, the interfaces are only functional, defining
input and output ports at a syntactic level. For efficient safety analysis at system
level, these simple interfaces are insufficient. More behaviour information must
be provided to make interfaces usable for analysis of failures in presence of faults.

We propose a formal component model with two elements: its functional
behaviour and a safety interface, which describes the behaviour in presence of
faults in the environment. This safety interface can then be used to perform
safety analysis at system level, such as analysis for fault tolerance. We next
present the basic definitions, the fault modes and the employed formalism.

2.1 Modules and Basic Definitions

Our general formalism for modules is based on the notion of reactive modules [3],
of which we give only a brief overview. We present a special class of reactive
modules with synchronous composition, finite variable domains and non-blocking
transitions that we call synchronous modules (by default, simply modules).
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A module is defined by its input, output and private variables and the rules
for updating and initializing them. Variables are updated in a sequence of rounds,
each once per round. To model synchrony, each round is divided into subrounds,
and the system and the environment take turns in executing and updating vari-
ables. Events, such as a tick, can be modelled by toggling boolean variables.

Definition 1 (Module). A synchronous module M is a tuple (V, Q0, δ) where

– V = (Vi, Vo, Vp) is a set of typed variables, partitioned into sets of input
variables Vi, output variables Vo and private variables Vp. The controlled
variables are Vctrl = Vo ∪ Vp and the observable variables are Vobs = Vi ∪ Vo;

– A state over V is a function mapping variables to their values. The set of
controlled states over Vctrl is denoted Qctrl and the set of input states over
Vi as Qi. The set of states for M is QM = Qctrl × Qi;

– Q0 ⊆ Qctrl is the set of initial states;
– δ ⊆ Qctrl × Qi × Qctrl is the transition relation.

The successor of a state is obtained at each round by updating the controlled
variables of the module. The execution of a module produces a state sequence
q̄ = q0 . . . qn. A trace σ̄ is the corresponding sequence of observations on q̄, with
σ̄ = q0[Vobs] . . . qn[Vobs], where q[V ′] is the projection of q onto a set of variables
V ′ ∈ V . The trace language of M , denoted LM , is the set of traces of M .

A property ϕ on a set of variables V is defined as a set of traces on V . A
module M satisfies a property ϕ, written M |= ϕ, if all traces of M belong to ϕ.
This work focuses on safety properties [22,14] as opposed to liveness properties.

Composing two modules into a single module creates a new module whose
behaviour captures the interaction between the component modules.

Definition 2 (Parallel composition). Let M = (V M , QM
0 , δM ) and N =

(V N , QN
0 , δN) be two modules with V M

ctrl ∩ V N
ctrl = ∅. The parallel composition of

M and N , denoted by M ‖ N , is defined as

– Vp = V M
p ∪ V N

p

– Vo = V M
o ∪ V N

o

– Vi = (V M
i ∪ V N

i ) \ Vo

– Q0 = QM
0 × QN

0

– δ ⊆ Qctrl×Qi×Qctrl where (q, i, q′) ∈ δ if (q[V M
ctrl], (i∪q)[V M

i ], q′[V M
ctrl]) ∈ δM

and (q[V N
ctrl], (i ∪ q)[V N

i ], q′[V N
ctrl]) ∈ δN .

We extend Definition 2 to a pair of modules with shared outputs, provided
the resulting transition relation δ is nonblocking, i.e., has a next state for any
combination of current state and inputs. In this case, we call the two modules
compatible and distinguish nonblocking composition by denoting it ‖̂ .

We relate modules via trace semantics: a module M refines a module N if N
has more behaviours than M , i.e., all possible traces of M are also traces of N .

Definition 3 (Refinement). Let M = (V M , QM
0 , δM ) and N = (V N , QN

0 , δN)
be two synchronous modules. M refines N , written M ≤ N , if (1) V N

o ⊆ V M
o ,

(2) V N
obs ⊆ V M

obs and (3) {σ̄[V N
obs] : σ̄ ∈ LM} ⊆ LN .
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2.2 Fault Mode Models

To analyse the behaviour of a component in presence of faults in its environ-
ment it is important to identify all possible ways that the environment can fail.
Low-level fault modes are generally application and platform dependent, how-
ever faults can be classified into high-level categories. Bondavalli and Simoncini
classify faults into omission faults, value faults and timing faults [6]. We adopt
a classification in which faults fall into the following categories [12,25,24]:

Omission failure i.e., absence of a signal when the signal was expected.
Commission failure i.e., unexpected emission of a signal.
Value failure i.e., failure in the value domain such as signal out of range or a

signal stuck at some value etc.
Timing failure i.e., failure in the time domain such as late or early delivery.

Timing properties have been addressed in other work, for example interfaces
to capture timing properties in the absence of faults are given by Tesanovic et
al. in timed automata [31] and could be further extended to cover resilience to
timing failures. In this work we focus on untimed models and value failures.

We model faults in the environment as delivery of faulty input to the com-
ponent and call each such faulty input a fault mode for the component. A value
failure is modelled by modifying the input signals that in turn might affect pri-
vate variables. A commission failure is modelled by unforced emission of signals
to the component. The input fault of one component thereby captures the output
fault of a component connecting to it, with the exception of “edge” components
that need to be treated separately, e.g. in accordance to earlier methods [15].

Definition 4 (Input Fault Mode). An input fault mode Fj of a module M

is a module with an input variable vf
j 
∈ V M , an output variable vj ∈ V M

i , both
of the same type D, and an unconstrained transition relation δ = D × D × D.

A fault mode Fj on the input vj from environment E to module M can be
viewed as replacing the original output vj of E with the input vf

j of Fj , which
produces the faulty output vj to M . We model this formally as a composition
of Fj and E, which has the same variables as E and can then be composed with
M . Free inputs to M are viewed as unconstrained outputs of E.

Definition 5 (Composition with Fault). Let E be a module with vj ∈ V E
o

and Fj a fault mode with output vj and input vf
j . Denote Fj ◦E = Fj ‖ E[vj/vf

j ]
where E[vj/vf

j ] is the module E with the variable substitution vf
j for vj .

Our fault modes are unrestricted and can affect their output in an arbitrary
way. Other types of fault modes can be modelled by appropriate logic in their
transition relation. We can naturally extend this definition to multiple faults.

2.3 Components and Safety Interfaces

Given a module, we wish to characterize its fault tolerance in an environment
that represents the remainder of the system together with any external con-
straints. Whereas a module represents an implementation, we wish to define an
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interface that provides all information about the component that the system in-
tegrator needs. Traditionally, these interfaces do not contain information about
safety of the component. In this paper we propose a safety interface that captures
the behaviour of the component in presence of faults in the environment.

Definition 6 (Safety Interface). Given a module M , a system-level safety
property ϕ, and a set of fault modes F for M , a safety interface SIϕ for M is
a tuple 〈Eϕ, single, double〉 where

– Eϕ is an environment in which M ‖ Eϕ |= ϕ.
– single = 〈F s, Es〉 where F s ⊆ P(F ) is the single fault resilience set and Es

is a module composable with M , such that ∀Fk ∈ F s, M ‖ (Fk ◦ Es) |= ϕ
– double = {〈F d

1 , Ed
1 〉, . . . , 〈F d

n , Ed
n〉} with F d

k =〈F 1
k , F 2

k 〉, F 1
k ,F 2

k ∈ F , F 1
k 
= F 2

k

such that M ‖ ((F 1
k ‖ F 2

k ) ◦ Ed
k) |= ϕ

The safety interface makes explicit which single and double faults the compo-
nent can tolerate, and the corresponding environments capture the assumptions
that M requires for resilience to these faults. For single faults, we specify one
environment assumption Es under which the component is resilient to any fault
from a given set of interest. For double faults, we are more fine-grained and
specify for each fault pair of interest an environment in which the module is re-
silient to their joint occurrence. Multiple faults could be handled similarly. The
safety interface need not cover all possible faults (and in fact could be empty):
the provider of a component only specifies what is explicitly known about it.

Definition 7 (Component). Let ϕ be a system-level safety property, M a mod-
ule and SIϕ a safety interface for M . A component C is the tuple 〈M, SIϕ〉.

We wish to deliver a component with precomputed information about the set
of tolerated fault modes. To check safe use of the component one verifies that the
actual environment satisfies the component assumptions which guarantee safety
under faults.

3 Deriving Safety Interfaces

In this section we provide guidelines for how a component developer creates the
safety interface. The developer needs to characterise environments in which a
module functions correctly in the presence of a given set of faults. We first derive
such an environment (in fact, the most general one) in the ideal case without
faults. Next, we use the obtained environment abstraction to determine more
restrictive environments under which the module is resilient, first to a chosen set
of single faults and then for the occurrence of fault pairs.

3.1 Generating a Constraining Environment

If M is a module such that M � ¬ϕ, the weakest (least restrictive) environment
Eϕ

w in order to satisfy ϕ can be generated as shown in Figure 1. The algorithm
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Fig. 1. The abstraction algorithm

uses a model checker to check whether the module M in parallel with an envi-
ronment E satisfies the safety property ϕ; i.e. M ‖ E |= ϕ.

Initially, the algorithm starts out with an empty constraint E0 on the envi-
ronment and at each iteration i, the algorithm strengthens the constraints Ei

by analysing the counter-example generated by the model checker and removing
the forbidden states. This corresponds to removing behaviour from (or strength-
ening) the environment. In the next iteration, the environment Ei+1 should at
least not exhibit the behaviour reflected by the counter-example at iteration i.
The algorithm stops at a fixpoint when Ei+1 = Ei = Eϕ

w.

Proposition 1. The environment Eϕ
w generated by the algorithm is the least

restrictive environment in which M satisifies the property ϕ. That is, for any
environment E, M ‖ E |= ϕ iff E ≤ Eϕ

w.

The proof can be done by adapting the reasoning by Halbwachs et. al. [14],
that synthesise a necessary and sufficient environment for an I/O machine M .

3.2 Identification of Fault Behaviours

Let M be a module that satisfies a safety property ϕ when placed in an environ-
ment E, assuming the ideal case without faults: M ‖ E |= ϕ. Let Fj be a fault
mode on variable vj which is an input to M from E. Denote by E′ = ∀vj E the
module with V E′

= V E \ vj , QE′
0 = ∀vj QE

0 and δE′
= ∀vj ∀v′j δE .

Proposition 2. If M ‖ E |= ϕ and ∀vi E exists, then M ‖ (Fi ◦ ∀vi E) |= ϕ,
i.e., M is resilient to fault Fi in the environment ∀vi E.

By definition of ∀vi E, any state can be extended to a state of E with an arbitrary
value of vi. Thus, Fi ◦∀vi E ≤ E and the result follows by composing with M . In
particular, if Eϕ

w is the least restrictive environment for M and ϕ, then ∀vi Eϕ
w

is the least restrictive environment in which module M is resilient to fault Fi.
This result gives an environment in which a module is resilient to a single

fault. For the safety interface, we need an environment Es which makes the
module resilient to any one fault from the single fault resilient set. The desired
environment must be at least as restrictive as the environment required for
resilience of each of the individual fault modes. This is ensured by their parallel
composition.
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Proposition 3. If M ‖ (Fi ◦ Ei) |= ϕ and M ‖ (Fj ◦ Ej) |= ϕ, and Ei, Ej are
compatible, then M ‖ (Ei ‖̂Ej) is resilient to any fault Fi or Fj individually.

This follows since any trace of Ei ‖̂Ej under fault Fi or Fj is either a trace
of Fi ◦ Ei or of Fj ◦ Ej . In particular, we can take Ei = ∀vi Eϕ

w with Eϕ
w the

least restrictive environment as determined in the previous section. Successive
application to each fault in the selected set yields Es = ∀vi Eϕ

w ‖̂ . . . ‖̂ ∀vn Eϕ
w as

the desired environment for the single element of the safety interface.
For resilience to double faults Fi and Fj , the environment must be restricted,

analogously to Proposition 2, to behaviours allowed for all values of vi and vj :

Proposition 4. If M ‖ E |= ϕ, and Fi, Fj are faults such that ∀vi∀vj E exists,
then M ‖ ((Fi ‖ Fj) ◦ ∀vi∀vj E) |= ϕ . That is, M is resilient to simultaneous
faults Fi and Fj in the environment ∀vi∀vj E.

Thus, if ∀vi∀vj E is nonempty, the pair 〈〈Fi, Fj〉, ∀vi∀vj E〉 can be included
in the double fault resilience portion of the safety interface. Moreover, if Eϕ

w is the
least restrictive environment for M and ϕ, then ∀vi∀vj Eϕ

w is the least restrictive
environment in which M is simultaneously resilient to Fi and Fj .

Example: Suppose module M guarantees the safety property ϕ if the environ-
ment E ensures that of the two boolean inputs v1 and v2, at least one is set to
1: v1 ∨ v2 = 1. Then, the faulty environments become E1 = F1 ◦ E ≡ ∀v1 E ≡
∀v1 . v1 ∨ v2 = 1 ≡ v2 = 1 and E2 = F2 ◦ E ≡ v1 = 1. The environment which
is resilient to either fault is E1 ‖̂E2 ≡ v1 = 1 ∧ v2 = 1. There is no environment
under which the module is resilient to a double fault.

4 Component-Based Analysis of Fault Tolerance

We next describe the methodology of applying the above component model in
system safety analysis. Unlike component models that capture functional con-
tracts as interfaces, and then apply assume-guarantee reasoning for ensuring that
the system behaves functionally correct when built from given components, our
model does not aim to prove the satisfaction of a property. Rather, the purpose
of our analysis is to focus on sensitive faults. In other words, both resilience and
non-resilience information are interesting in the follow-up decisions. If the sys-
tem safety is indeed threatened by a single fault, then the systems engineer may
or may not be required to remove the risk of that fault by additional actions.
This typically implies further qualitative analysis of the risk for the fault and its
consequence, and is outside the scope of this paper. Combinations of multiple
faults typically bear a lower risk probability but as important to quantify and
analyse. If the safety of the system is not sensitive to a fault (pair), then the
engineer can confidently concentrate on other combinations of potential faults
that are a threat. In general, it is likely that none of these faults appear in
actual operation, and the whole study is only hypothetical in order to provide
arguments in preparing the safety case for certification purposes.

With this introduction, we will now proceed to explain the steps needed to
ascertain the sensitivity of the system to single (respectively multiple) faults.
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4.1 General Setup

Consider a system safety property ϕ and a component with safety interface SIϕ.
As delivered by the component provider, SIϕ specifies an environment in which
the component is safe, assuming no faults; another environment in which the
component is resilient to a set of single faults, and a safe environment for each
considered pair of simultaneous faults. Consider proving M1 ‖ M2 ‖ ... ‖ Mn |= ϕ
in the presence of a fault Fj in M1. If a safety interface SIϕ of M1 is known, with
single = 〈F s

1 , Es
1〉, and Fj ∈ F s

1 , it suffices to show that M2 ‖ . . . ‖ Mn ≤ Es
1 .

However, composing all modules is against the idea of modular verification.
This can be overcome using circular assume-guarantee rules [3], for which we
first derive an n-module version. The rule requires that every module in its envi-
ronment (an abstraction of the other modules) refines each other environment.
We can then infer that the system refines the composition of the environments
without paying the price of an expensive overall composition, and without having
to redo the entire analysis each time a component changes.

Lemma 1. Let Mj and Ej, 1 ≤ j ≤ n be modules and environments such that
the compositions I = M1 ‖ . . . ‖ Mn and E = E1 ‖̂ . . . ‖̂En exist and V E

j ⊆ V I
obs.

Then, if ∀i∀j Mj ‖ Ej ≤ Ek we have M1 ‖ . . . ‖ Mn ≤ E1 ‖̂ . . . ‖̂En.

In concise rule form:
∀j∀k Mj ‖ Ej ≤ Ek

M1 ‖ . . . ‖ Mn ≤ E1 ‖̂ . . . ‖̂En

The proof follows that of Proposition 5 in [3], showing inductively that every
step of the implementation I can be extended to a step of the specification E.
Requiring nonblocking composition guarantees soundness despite circularity.

To reason compositionally about safety, we add n premises stating that each
module in its given environment satisfies the safety property: ∀i Mi ‖ Ei |= ϕ.
Together with the premises above, we can then prove safety for the composition:

Proposition 5. If Mj and Ej, 1 ≤ j ≤ n satisfy the conditions of Lemma 1 and
in addition Mj ‖ Ej |= ϕ for 1 ≤ j ≤ n then we have M1 ‖ M2 ‖ . . . ‖ Mn |= ϕ.

In concise form:
∀j Mj ‖ Ej |= ϕ ∀j∀k Mj ‖ Ej ≤ Ek

M1 ‖ M2 ‖ . . . ‖ Mn |= ϕ

Proof. Composing Mj ‖ Ej |= ϕ for j = 1...n we get I ‖̂E |= ϕ. By Lemma 1,
M1 ‖ . . . ‖ Mn ≤ E1 ‖̂ . . . ‖̂En, or I ≤ E. Thus I ‖̂ I |= ϕ or I |= ϕ.

This rule provides a generic assume-guarantee framework, independent of
faults. We need to discharge n2 premises to prove the global property ϕ, but each
of those involves only one module, and at most two environment abstractions,
assumed to be much smaller than the global composition. To use the rule, we
need to find appropriate environments Ei, and to apply it to system safety,
the environments must make the premises hold even with the analyzed fault(s)
occurring. We derive these environments from the component safety interfaces.



Safety Interfaces for Component-Based Systems 255

4.2 Single Faults

We assume that single faults affect only one component. Using the environments
Eϕ and Es, we check safety compositionally showing the premises of Prop. 5:

– a module in a faulty environment still provides an environment that guar-
antees the safety of each other module in absence of another fault

– a module in a non-faulty environment provides for each other module the
environment of the SI which makes it resilient to single faults.

Thus, we need to show premises (a) Mj ‖ F ◦ Es
j ≤ Eϕ

k and (b) Mk ‖ Eϕ
k ≤ Es

j ,
ranging over modules Mj with potential faults F , and non-faulty modules Mk.
If the interface provides the weakest environment Eϕ

w, the fault-specific premises
(a) can be jointly replaced by Mj ‖ Eϕ

j ≤ Eϕ
k , with fewer obligations to discharge.

4.3 Multiple Faults

Next we study whether two faults Fa and Fb appearing in different components
can, together, violate system safety. In Proposition 5 we use different environ-
ments for each component, depending on how they are affected by faults:

– for a module Mi affected by both faults, we check whether the double part
of the safety interface contains a tuple 〈〈Fa, Fb〉, Eab

i 〉, and use environment
Eab

i .
– for a module Mj with only one fault Fa, we use environment Ea = ∀vaEϕ

j .
– for a module Mk not affected by faults, we use the environment Eϕ

k .

Here, we have more fault-specific premises, but since environments for double
faults are more restrictive, some premises can subsume or be subsumed by those
for single faults. Thus, Mi ‖ Eab

i ≤ Eϕ
k follows from Mi ‖ Ea

i ≤ Eϕ
k , and checking

Mk ‖ Eϕ
k ≤ Eab

i subsumes checking for single faults Fa or Fb.

5 Application: JAS Leakage Detection Subsystem

As a proof of concept we have applied our method to the leakage detection sub-
system of the hydraulic system of the JAS 39 Gripen multi-role aircraft, obtained
from the Aerospace division of SAAB AB [15]. Both the original system model
and our component-based version are described in Esterel [5], a synchronous
language whose compiler ensures the nonblocking property upon composition.

5.1 Functionality and Safety

The system’s purpose is to detect and stop potential leakages in two hydraulic
systems (HS1 and HS2) that provide certain moving parts of the aircraft with
mechanical power. Leakages in the hydraulic system could in the worst case lead
to such a low hydraulic pressure that the aircraft becomes uncontrollable. To
avoid this, four shut-off valves protect some of the branching oil pipes to ensure
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that at least the other branches keep pressure and supply the moving parts with
power if a leakage is detected. However, closing more than one shut-off valve at
the same time could result in locking the flight control surfaces and the landing
gear which could have disastrous effects. Thus, overall aircraft safety depends
on the property ϕ: no more than one valve should be closed at the same time.

5.2 Architectural View

The electronic part of the leakage detection subsystem consists of three electronic
components (H-ECU, PLD1 and PLD2), four valves and two sets of sensors (see
Figure 2). The H-ECU continually reads the oil reservoir levels of the two hydraulic
systems, determines if there is a leakage, and if so, initialises a shut-off sequence
of the valves. To ensure that the overall property is satisfied, two programmable
logic devices, PLD1 and PLD2, continually read the status of the valves and send
signals to them as well. If the readings indicate that more than two valves will close,
PLD1 and PLD2 will disallow further closing of any valves. Thus, PLD1 and PLD2
increase the fault tolerance of the shut-off subsystem implemented in the H-ECU.

Each valve is controlled by two electrical signals, one signal on the high side
from the PLD2 and one on the low side from the H-ECU. Both of these signals
need to be present in order for the valve to close. In this study, we only consider
the three components H-ECU, PLD1 and PLD2. Thus, due to the functionality
of the valves, the property ϕ can be replaced by ϕ′: no more than one valve
should receive signals on both the high side and the low side at the same time.

Fig. 2. The hydraulic leakage detection system

5.3 Analysis of Fault Tolerance

Modules: PLD1, PLD2 and HECU are represented as synchronous modules.
Fault modes: A set of fault modes FPLD1, FPLD2 and FHECU for each component
has been identified. Every input to the components has been analysed and the
possible faults have been modelled as corresponding fault modes.
Safety interface generation: The least restrictive environments Eϕ

PLD1, Eϕ
PLD2,

Eϕ
HECU of the components were generated by the algorithm of Section 3.1 using

a SAT-based model checker (Prover plugin of the Esterel environment).
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The least restrictive environment Eϕ
PLD1 of PLD1 that makes the system

satisfy ϕ′ leaves all the inputs to PLD1 unconstrained. By Prop. 2, PLD1 in the
environment Eϕ

PLD1 is also resilient to all faults in FPLD1. Analysis shows that
due to their fault-tolerant design, HECU and PLD2 satisfy the property ϕ′ with
no constraints on their environment whatsoever, i.e., Eϕ

PLD2 = Eϕ
HECU = True.

Since none of Eϕ
PLD1, E

ϕ
PLD2 and Eϕ

HECU constrain any of the input variables
of their corresponding component, these components are resilient to all single
faults. Hence, the single fault resilience set of each safety interface will contain
every fault mode in the corresponding fault mode set. The generated minimal
environments also show that the components are resilient to all double faults,
creating a safety interface that includes all pairs of faults in the double fault
resilience portion of the safety interface.

Single-component faults: After computing the safety interfaces for the three com-
ponents in the application (w.r.t. single and double faults), the single component
fault analysis becomes trivial. No single or double fault of a single component
will cause a threat to system-level safety, since all faults are included in the
single fault resilience portion and all pairs of faults are included in the double
fault resilience portion of the safety interface.

Multiple-component faults: By checking ∀j Mi ‖ Fk ◦ Ei ≤ Ej for all module-
fault pairs (Mi, Fk) where Mi ∈ {PLD1, PLD2,HECU} and Fk ∈ FPLD1 ∪
FPLD2 ∪ FHECU we could conclude that no double fault on input signals would
make a threat to system-level safety.

5.4 Results

By generating safety interfaces as described in Section 3 and using the compo-
sitional techniques of Section 4 on the aerospace application we concluded that:

– All components in the system are resilient to single faults with respect to
the system level safety property ϕ′.

– All components in the system are resilient to double input value faults with
respect to the system level safety property ϕ′.

– No pair of faults in the system are a threat to system level safety.
– By analysing the components individually and generating the safety inter-

faces using Propositions 2-4, we were able to perform the fault tolerance
analysis without composing the whole system.

6 Conclusions

This paper extends component-based development, which has so far focused
on efficient system development, to efficient analysis of safety. Certification of
safety-critical systems includes providing evidence that a system satisfies certain
properties even in presence of undesired faults. This process is especially costly
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since it has to be repeated for every component change in a system with a long
life cycle. We have provided formal models and methods to support this process
while hopefully reducing the burden of proof on the system integrator.

Any system will break if there are sufficient numbers of faults in its com-
ponents at run-time, either due to environment effects or due to inconsistencies
in designing interfaces. Safety analyses for industrial products typically assume
a number of independent faults and consider the effects of single and poten-
tially double faults. Triple and higher number of faults are typically shown to
be unlikely and not studied routinely. Our component interfaces capture what
an integrator can assume about the resilience that a component offers with re-
spect to single and double faults. The model could be extended to multiple faults
(triple and more) but then the combinatoric complexity would hamper the auto-
matic support for formal analysis. Already with this granularity, we believe that
there are enough gains in efficiency for the analysis performed at system level.

This paper uses a general fault model that covers arbitrary value changes at
component inputs. While this model is a powerful, for some cases it may be too
general and modelling specific faulty behaviour may improve analysis efficiency.
The use of reactive modules as generic base allows for more specific models in
future studies, such as handling transient faults with given behaviours.

The entire approach has so far had a qualitative nature. Many safety-critical
systems have to estimate a quantitative (probabilistic) measure of reliance on
a particular analysis. The study of the extensions of this model to quantitative
analyses is a topic for future work.

We have assumed that the misbehaviour of a component’s environment can
be captured by a discrete model (based on value domains with finite range). An
extension could consider more specific fault modes arising from interactions with
a physical environment given a continuous model. Also common mode failures
were excluded at this stage. Another future direction is efficient generation of
environment models. The naive approach presented here can be used as a proof
of concept and can obviously be improved by more advanced techniques.
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Abstract. The architectural concept of a safety-related programmable
electronic system featuring task-oriented real-time execution is presented.
Itsmost essential characteristics are task executionwithout the use of asyn-
chronous interrupts, scheduling in direct reference to Universal Time Co-
ordinated, and an integrative hardware approach to detection and process-
ing of failures, forward recovery and non-intrusive monitoring. The archi-
tecture is based on physical separation of task execution and task adminis-
tration, which is realised in form of a digital logic circuit. Time is quantised
into Execution Intervals, and tasks are partitioned into Execution Blocks
matching these intervals. This concept lowers the complexity of both hard-
ware architecture and temporal behaviour and, thus, conformsparticularly
well with the safety standard IEC 61508.

1 Introduction

Employing Programmable Electronic Systems (PESs) in control applications in
which failures can endanger humans or the environment has become quite com-
mon in the last two decades. Nevertheless, safety-licensing of these combined
software and hardware systems is still problematic. The problems arise less due
to inevitable spontaneous physical failures that must be taken into account, as
rather from the complexity of such systems, which causes an enormous effort for
verification.

The safety standard IEC 61508 limits the complexity indirectly by restricting
the use of some conventional processing methods. As an example, its design
guidelines only permit limited use of interrupts and pointers in software for the
two highest safety integrity levels SIL 3 and SIL 4 (Part 3, Table B.1). For these
safety classes, the standard also states that the use of formal methods for software
verification as well as the avoidance of dynamic objects and variables is ‘Highly
Recommended’ (Part 3, Tables A.1 and B.1). The latter term denotes that ‘if
this technique . . . is not used then the rationale behind not using it should be
detailed during safety planning and agreed with the assessor’. These guidelines,
which at first glance sound incongruously fuzzy, denote indirectly that design
simplicity is the key to safety.
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The programable systems that are nowadays employed in safety-critical ap-
plications follow either the approach of Periodical Operation or of Task Orienta-
tion. The most common representatives of the first category are Programmable
Logic Controllers (PLCs). They suit the demands for safety-licensing best be-
cause of their inherently simple temporal behaviour. Unfortunately, their field
of application is limited to simple control tasks. Task-oriented systems, on the
contrary, have a less restricted field of application and a more problem-oriented
programming style, but they require far more effort for safety-licensing. But even
more significantly, conventional task-based systems use interrupts to control the
program flow. This clearly conflicts with the requirements of IEC 61508 for the
two highest safety integrity levels.

With the intention to combine the advantages of both the periodic and the
task-oriented approach, a novel architectural concept for a real-time PES has
been developed. The concept builds on strict separation of task administration,
which is realised in form of a digital logic circuit, from the application proces-
sor, which executes the application specific software in discrete intervals. This
operating principle renders the use of asynchronous interrupts superfluous, and
increases the conformity with IEC 61508. As a result, not only the temporal be-
haviour of the total system, but also the architecture of the embedded processor
are simplified. The proposed system incorporates a unified approach for error
detection, forward recovery, non-intrusive monitoring and recording of process
activities. In comparison to conventional systems, which typically incorporate a
combination of several techniques to realise these safety-related functions, this
results in a remarkable decrease of system complexity. Instead of processing re-
dundant information inside, the PES is designed to be redundantly configured
itself. Non-intrusive monitoring combined with forward recovery of error-affected
instances guarantees permanent availability of a redundant configuration.

The main part of this paper is structured as follows. Section 2 categorises con-
ventional PESs into two classes, and discusses their benefits and drawbacks with
regard to safety aspects. The task-processing strategy without asynchronous
interrupts and its advantages regarding safety-licensing are described in the
third section. The fourth one covers feasibility aspects of task-based applica-
tion software. Section 5 explains the structure and the operating principle of the
hardware-implemented task administration. This is followed by some remarks
regarding the integration into a holistic safety concept. A short summary at the
end recapitulates the most essential aspects, mentions the current state of our
work, and states open issues.

2 Categorisation of Existing Systems

The PESs currently employed in safety-critical applications can be categorised
into periodically operating and task-oriented ones, depending on the operating
policy they follow. For industrial automation, systems that follow a mixture of
both operating principles are available, but this is unfavourable for safety-related
technology.
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Periodically Operating PESs. This PES class executes application specific
programs in processing cycles of constant, fixed duration. It processes the pro-
gram code always completely within each cycle. The strictly cyclic operating
principle facilitates condition-controlled branching merely on a restricted scale;
completely process-controlled program flow is not realisable [1,2]. This operating
policy does not only limit the field of application to simple control tasks, it also
results in a not problem-oriented programming style. Typical representatives of
this category are the PLCs, which are mostly programmed following the function
block paradigm of IEC 61131-3.

All tasks must be implemented in a way that complies with a ‘global’ cycle
time; individual timing constraints are only considered at second instance. Ex-
tensive algorithms either cause long cycle periods, or they must be distributed
over consecutive cycles. The former increases the system response time, the lat-
ter the complexity of application programs. In addition to that, handling several
tasks with extremely different or varying response times is problematic. The pro-
gram code is typically not processed in direct relation to a global time base, such
as Universal Time Co-ordinated (UTC). Hence, additional effort is necessary for
synchronisation with external systems and to record all system activities relative
to UTC, which is fundamental to enable investigation of cause-and-effect chains
in case of nearly simultaneous outages of separate systems.

Nevertheless, the most essential advantage of this PES category is the re-
markably low complexity of its hardware architecture and its temporal be-
haviour. This does not only minimise the effort for safety-licensing, but also
makes, in principle, this PES class suitable for applications of the highest safety
class (SIL 4). However, the systems currently available off-the-shelf are only
certified up to SIL 3, e. g., SIMATIC S7-414H (www.siemens.com).

Task-Oriented PESs. This PES class uses interrupts to control software ex-
ecution, which allows the program flows to be arbitrarily controlled by the pro-
cesses, and which enables asynchronous processing of several tasks. On the one
hand, the asynchronous operating principle increases system complexity, since
special mechanisms for task synchronisation like, e. g., semaphores, are neces-
sary. On the other hand, the operating style makes this PES class more flexible
and suitable for extensive control applications [3]. Thus, although asynchronous,
task-based programming is more problem-oriented than cyclically processed pro-
gram code, this PES category causes more effort for safety-licensing. This is due
to the high complexity of the hardware, the need for a real-time operating system
(RTOS), and their interactions with the application software.

A hardware part of significant complexity is the interrupt logic of the proces-
sor. Interrupt handling usually involves a (stack) pointer and dynamic memory
usage. Thus, the use of interrupts actually contradicts IEC 61508, which restricts
the use of pointers and dynamic objects in highly safety-critical applications.

The complexity of the RTOS usually arises from performance reasons. In or-
der to keep the response time of real-time systems short, most RTOSs are sub-
divided into several layers [4]. The lowest layer serves time-critical functions of
low computational extent; more extensive functionalities are processed on higher
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layers. Minimising the computational load caused by the RTOS kernel functions
is another way to keep response times short. That is why mostly priority-based
scheduling policies are employed, although time-based strategies, which cause
higher computational load, suit the demands of real-time systems better. Pro-
vided time-based scheduling is carried out at all, the time representation usually
does not comply with the UTC standard. Thus, recording all system activities
in reference to UTC requires conversion of system time to UTC. The necessity
of such conversions as well as the layered structure mentioned above increase the
complexity of RTOSs considerably.

The complexity caused by the interaction of processor, RTOS and appli-
cation software results mainly from the dependence of execution times on the
process. For this reason, proving temporal feasibility of an application software is
a fundamental part of its development. Not only the use of mechanisms for task
synchronisation causes difficulties for feasibility analysis, but also the fact that
each interrupt induces a context-switch of the processor which, in turn, influences
the response times of all activated tasks. The distinction between interruptible
and non-interruptible program parts further aggravates the situation.

Although the use of interrupts does not perfectly comply with IEC 61508 for
the two highest safety integrity levels, there are task-based real-time operating
systems available that are certified for SIL 3, e. g., OSE RTOS (ww.ose.com).

3 Task Execution Without Asynchronous Interrupts

The concept introduced here combines the advantages of both PES categories
discussed above. This is realised by physical separation of task execution and
task administration. A Task Processing Unit (TPU) executes application spe-
cific program code. Due to the beneficial characteristics in terms of safety and
security, it contains a processor with the Harvard architecture. The Task Ad-
ministration Unit (TAU) is responsible for task state transitions and processor
scheduling. For the latter the policy Earliest-Deadline-First (EDF) is used. Sev-
eral proofs exist that this strategy always leads to feasible schedules, provided
timely execution is possible at all, e. g., [5,6].

Time is quantised into discrete Execution Intervals, and tasks are partitioned
into a number of Execution Blocks each. The Execution Intervals have a fixed
duration, and are defined for the physically separated TAU and TPU which
operate cyclically and in synchrony. They have the following characteristics.

– Each Execution Block is executable within a single Execution Interval.
– The execution of a block is not pre-emptable.
– Data exchange between blocks is only possible via the TPU memory; the

content of the processor registers is lost at the end of each interval.
– The Execution Blocks of a task are indexed for identification.
– The Execution Blocks of a task do not need to be executed in consecutive

order. For each task, the TAU stores a parameter called NextBlock in the
Task List, which identifies the subsequent Execution Block.
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Fig. 1. Illustration of the operating principle without interrupts

The operating principle can be roughly described as follows: At the beginning
of each Execution Interval, the TAU outputs the ID of Block to Execute, which
identifies the next Execution Block of the task that must be executed according
to the scheduling algorithm. The ID corresponds to the task’s NextBlock pa-
rameter stored in the task list. After the TPU has read this ID, it processes the
associated Execution Block. When the APU completes the block at the end of
the Execution Interval, it outputs the ID of Next Block identifying the task’s
Execution Block that needs to be executed next. The TAU reads the ID and
stores it in the task list as new NextBlock parameter. The flow chart in Fig. 1
illustrates this mode of operation in more detail.

If the executed block was a task’s last one, i. e., if a task has been executed
completely, the APU outputs the block ID ‘Nil’. This completion is taken into
account when the TAU determines the ID of Block to Execute for the next Exe-
cution Interval. That is why the TAU – while the TPU processes an Execution
Block – does not only determine the task with the earliest, but also the task with
the earliest-but-one deadline. This enables the TAU to immediately output the
NextBlock identifier of the task with the next-but-one deadline, in case the task
with the next deadline corresponds to the task just been processed and just been
completed by the APU. The actual state transfer that causes the completed task
to be no longer in the state Activated is carried out in the subsequent interval.

This operating principle renouncing the use of asynchronous interrupts makes
synchronisation mechanisms such as semaphores superfluous, since any task has
non-interrupted exclusive access to the processor during an Execution Interval.
Tasks can communicate with each other via the data memory without the dan-
ger of interruptions while writing messages. Using variables stored in the data
memory, mutually exclusive access to peripheral components can be realised by
simple means. Alternating access of several tasks can be realised in a similar
way, it only requires the capability to induce task suspension and continuation
by program. The absence of special synchronisation mechanisms results in fur-
ther design simplification.
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Typically, the parts of a processor supporting interrupts are the most com-
plex ones, and render formal verification to be either unacceptably expensive
or even impossible. Thus, task execution without asynchronous interrupts also
minimises the complexity of the TPU processor, as no interrupt logic is neces-
sary. This simplification eases proving correctness with formal means. Moreover,
since IEC 61508 restricts the use of pointers, dynamic objects and interrupts
in highly safety-critical applications, the proposed PES concept complies better
with the safety standard than conventional task-oriented systems.

In summary, this concept of task execution without the necessity of asyn-
chronous interrupts significantly simplifies the temporal behaviour as well as
the hardware structure, eases formal verification, and increases conformity with
IEC 61508 for systems of highest safety criticality (SIL 3/SIL 4). Of course,
the proposed operating principle requires special compilation of the application
software.

4 Schedulability Aspect

The proposed operating principle does not restrict the field of application as
the paradigm of periodical operation does. Without the use of asynchronous
interrupts, it features completely process-dependent program flows. As for any
task-based real-time system, this capability of arbitrary program flows necessi-
tates to check whether the application software can run in a timely fashion under
any circumstances.

Intended to ease this feasibility analysis, the proposed concept supports a
particularly simple task state model on the lowest possible level – the hardware
level. The model bases on three characteristics: Worst Case Execution Time tC ,
Maximum Response Time tB, and Minimum Activation Period tT . Following the
definitions in [7], these Execution Characteristics allow to specify the temporal
behaviour of any hybrid task set, consisting of both periodic and sporadic tasks.
Fig. 2 illustrates the model. It differs from other ones (cf., e. g., [8]) by the state
Suppressed.

The Minimum Activation Period equals the minimum duration between two
consecutive activations of the same task. Thus, this parameter limits the compu-
tational load indirectly. Only tasks in the state Known can be activated. In case
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a task is completely processed before the time frame TAct . . . TAct + tT elapses,
it is transferred to the state Suppressed. The transition back to the state Known
is carried out at TAct + tT , enabling further activations. The state Suspended is
provided for synchronisation purposes.

All transitions are under full control of the TAU, except the transitions Fin-
ish, Suspend and Continue, which are performed by the TAU, but induced by
the application software. A task automatically induces the state transition Fin-
ish when its execution completes. Since the application software is processed
in non-pre-emptable intervals, state transitions can occur at interval ends, only.
Thus, in case a task induces the state transition Suspend by its program, the
suspension will take place at the end of the interval. A task can only suspend
itself, but it can induce Continue transitions for all other tasks. In combina-
tion with the cyclic operating policy, this allows to enforce precedence relations
between tasks, which are necessary to realise, e. g., alternating access.

Since the task state model is supported by hardware, the activation of a task
is restricted to one instance at a time on the lowest possible level. This complies
perfectly well with the safety standard IEC 61508, which prohibits dynamic
instantiation of objects for applications of highest safety criticality.

Taking this behaviour into account, the hardware-supported Execution Char-
acteristics tC , tB and tT allow to formally prove the feasibility of application
software. Suitable feasibility conditions have already been developed and are dis-
cussed in various publications, e. g., [8,9,10,11]. A comprehensive presentation of
appropriate analysis methods can be found in [7].

5 Hardware-Implemented Real-Time Scheduler

In contrast to various other real-time systems, the PES concept introduced here
processes all internal actions in reference to UTC, which is the internationally
standardised sole legal time reference. Appropriate synchronisation signals are
available worldwide via, for instance, GPS, GLONASS and – in the future –
GNSS. The synchronisation to global time reduces the complexity of distributed
systems significantly, since the problems related to varying time bases are pre-
vented. Of course, deviations from UTC (e. g., due to temporary reception out-
ages) need to be taken into account.

The TAU follows the task scheduling concept of the Process and Experi-
ment Automation Realtime Language (PEARL), which was standardised in
DIN 66253-2. One of the interesting features of this language is its direct notion
of time [12]. This enables exact and problem-oriented specification of temporal
conditions to activate, terminate, suspend, continue or resume tasks [13]. A pe-
riodic task activation during a given time-frame is specified by

AT {clock-expression | [asynchronous-event-expression] + duration1}
EVERY duration2 DURING duration3 ACTIVATE task-name.

This is the most general form of a task activation schedule [8]. The hardware
implementation of the TAU inherently supports such activation plans. There-
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fore, each task is assigned a set of parameters, which facilitates configuration
for various different activation conditions, e. g., at a predefined delay after the
occurrence of an asynchronous signal.

Most real-time systems follow the approach of rate-monotonic, fixed-priority
scheduling (cf., [14]). This ‘timeless’ scheduling policy is merely advantageous for
systems that do not provide explicit support for timing constraints, such as pe-
riods and deadlines [15]. Thus, rate-monotonic scheduling is actually inadequate
for safety-related systems, for which hard real-time constraints always must be
specified exactly. It potentially causes unnecessary task switches, since only the
current system state is taken into account to make resource assignments; the
instant of a task’s activation is neglected. The proposed PES implements the
EDF algorithm in hardware, rendering the differences between priority-based
and EDF scheduling to be irrelevant in terms of computing time. Thus, there is
no need for task priorities, and the time-based scheduling policy can be applied.

A perfect real-time operating system would permanently check the activation
conditions of all tasks, and uninterruptedly inform about the task to be executed
according to the scheduling policy. This demand for a continuous working pattern
leads to the objective of implementing the TAU in form of a digital logic cir-
cuit that processes the kernel algorithms for all tasks in parallel. Unfortunately,
considering the EDF algorithm and the fact, that a typical real-time application
consists of some 10 to 50 tasks, it is obvious that a completely parallel operating
logic circuit implementation of the TAU would require an unacceptably high
amount of logic gates.

For this reason, the hardware architecture of the TAU combines parallel and
sequential processing. The kernel algorithms are structured in a way as to al-
low for parallel processing of the operations related to a single task, whereas all
tasks are sequentially subjected to these operations. Fig. 3 illustrates this pro-
cessing pattern. It shows the main parts of the Task Administration Unit (TAU),
viz., Task Data Administration (TDA) and the unit for Activation Control and
Scheduling (ACS).

The TDA administrates a Task List, which contains a set of parameters
for each task such as its current state and its execution characteristics. The
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Fig. 3. The STA consists of the TDA and the ACS. While they do the Sequential Task
Administration (STA), a 3-phase process is carried out once for each task.
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task list has a static size, i. e., all tasks a certain application is consisting of
must be registered with the TAU at set-up time. Thus, in conformance with the
requirements of IEC 61508 for SIL 4 applications, dynamic instantiation of tasks
(resp. objects) is not supported. Instead, the activation characteristics of a task
can be modified.

The TDA co-operates closely with the ACS while sequentially processing all
tasks within each Execution Interval. During this Sequential Task Administration
(STA), the TDA initiates for each task a three-phase process:

1. First, the TDA accesses the Task List and transfers the task’s entire data
set to dedicated input registers of the ACS.

2. Then, the ACS processes the task data and outputs an updated data set.
This is done by combinational logic within one clock cycle.

3. During the last phase, the TDA transfers the updated task data from the
ACS back to the Task List.

This way, the ACS carries out the following operations in the course of the STA:

1. Checking the activation characteristics (e. g., checking time schedules or
asynchronous occurrences)

2. Supervising task state transitions
3. Computing deadlines
4. Generating updated task parameters
5. Identifying the task with the earliest deadline and the one next in line
6. Output of the ID of Block to Execute

The first four operations are separately executable for each task. Therefore, they
are performed in parallel by a combinational digital circuit. The fifth item re-
quires comparing the deadlines of all activated tasks. This is carried out sequen-
tially, while the IDs of the two most urgent tasks are temporarily stored within
the iterations of the 3-phase process. The ID of the Execution Block that needs
to be processed in the subsequent interval is output at the end of an Execution
Interval, after the TPU submitted an ID to the TAU.

Since the TDA and the ACS are implementable in form of a digital logic
circuit, extremely short response times are realisable without the use of a multi-
layered operating system structure and without minimising the computational
effort by applying a priority-based scheduling algorithm, as it is usually done
in conventional real-time systems. Therefore, the proposed hardware scheduling
concept has a significant lower complexity than a conventional task-oriented
real-time operating system with an equally short response time.

6 Integration into a Holistic Safety Concept

Hitherto, merely the avoidance of design faults through Design Simplicity has
been considered. In order to guarantee safe and reliable operation, a holistic
safety concept is necessary, which also takes spontaneous hardware failures into
account, but does not ruin simplicity. This is achieved by exchanging Serial Data
Streams via a particularly tightly integrated Communication Interface.
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The Concept of Serial Data Streams. IEC 61508 recommends various tech-
niques to reduce the influence of hardware failures. Some of them are, e. g.,
redundant memory banks or multiple processors combined by majority voting.
However, most techniques take few failure sources into account, only, and a com-
bination of several techniques is necessary to cope with all possible failures. Thus,
a single approach covering all failure sources is desirable in order to minimise
system complexity.

That is why a rather exceptional but more integrative approach was taken
to reduce the influence of hardware failures. Instead of processing redundant in-
formation inside, the PES itself is designed to be redundantly configured. Each
PES instance outputs a Serial Data Stream (SDS) that provides full informa-
tion about internal processing. In a redundant configuration, these SDSs are
exchanged between PES instances to serve the following four safety functions.

Non-intrusive monitoring: Since the SDSs inform about the internal pro-
cessing, they enable non-intrusive monitoring by external devices.

Recording process activities: The SDSs can be utilised to externally record
the system behaviour for later program flow analysis.

Detecting processing errors: Each PES can detect processing errors by com-
paring its SDS with the SDSs of other PESs.

Forward recovery at runtime: In case a PES is affected by a transient hard-
ware fault, the SDSs of redundant PESs enable to copy the internal state
and to resume processing at runtime.

The SDS concept bases on the fact that the maximum amount of data changes
inside a PES is indirectly limited by the execution characteristics discussed in
Section 4. The SDS is organised in transfer cycles that match the Execution
Intervals. Within each cycle, the SDS transfers information about a fixed number
of internal data changes. This number sets the limit of data changes permitted.

Data changes can be categorised into TAU Data Changes (TAUDCs) and
TPU Data Changes (TPUDCs). The frequency of TPUDCs is limited by re-
stricting the amount of an Execution Block’s write accesses to a number that is
transferable via SDS within each transfer cycle. The number of TAUDCs depends
on the frequency of task state changes and modifications of the task parameters
(e. g., activation characteristics). This number is directly limited by the execu-
tion characteristics of all tasks. In contrast to the TPUDCs, the TAUDCs of
one Execution Interval are not necessarily transferable within one cycle. This
is because, in theory, it is possible that all tasks perform a state transition si-
multaneously. This would cause a huge amount of data changes inside the TAU
(e. g., storing the activation time of each task), and the capability to transfer
them within each Execution Interval would require an undesirably high band-
width. That is why an integer number is assigned to each TAU data word that
represents the Age of the stored value. By default, each Age parameter is set
to ‘0’. Any time a data word is modified, the associated Age integer is set to
the maximum representable value. If an Age value does not equal ‘0’ or ‘1’, it
is decremented by one at the beginning of every Execution Interval. Thus, the
lowest integer values (except ‘0’) identify the ‘oldest’ modified data words. By
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restricting to the oldest data words, the amount of data that must be transferred
within each interval can be bounded.

The previous paragraph describes only how the transfer of data changes in-
side the TAU and the TPU is realised via SDS. In order to enable copying the
internal PES state completely by observing its SDS over a pre-defined period of
time, it is also necessary to transfer the data that were not modified recently
(e. g. RAM data words that were written a few minutes ago). A small exten-
sion of the concepts described above realises this complete state transfer. Fig. 4
illustrates the data transfer via SDS.

STA: Sequential Task Administration
D: Determination of next execution

STDT: Sequential TPU Data Transfer
TA: Transfer of Additional status
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Fig. 4. Illustration of the data transfer via SDS

While the TAU performs the STA, the SDS transfers a subset of the TPU’s
RAM content. The entire RAM content is transferred within a number of con-
secutive Execution Intervals, and in synchrony with UTC. When the STA has
been finished, the TAUDCs are transferred. Therefore, the TAU inserts a subset
of its oldest data words in the SDS and sets the associated Age integers to ‘0’.
Complete transfer of the TAU data is achieved by changing the ‘Ages’ of all data
words at UTC-synchronous instants. After the TPU completes the current Ex-
ecution Block, the SDS transfers all its write accesses. Finally, some additional
status information like, e. g., the ID of Block to Execute is transferred via SDS.

By observing the SDSs of redundant PES instances, this technique does not
only allow to detect errors simply by majority voting, but also to copy the
internal state from one PES to another at runtime. Thus, in case a PES is affected
by a transient failure, it can resume its processing by evaluating the SDSs of the
PES instances that remain running. Realising this technique of Forward Recovery
at Runtime without affecting the minimum achievable response time was only
possible by implementing its algorithms – together with the TAU – as digital
logic circuit.

Obviously, the performance achievable with the proposed PES concept is
strongly limited by the data transfer bandwidth of the communication interface.
However, computational performance is not the major concern for safety-related
systems, and the high bandwidths of modern transfer technologies allow for a
performance more than sufficient for most safety-critical applications.

Communication Interface. For communication one interface is used which
does not only suit the needs to interconnect multiple PES instances of a redun-
dant configuration, but also supports data exchange with the process peripherals
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(e. g., sensors, actuators). This results in low wiring expenses. The communica-
tion technique bases on the field bus ‘Interbus S’, because of its low hardware
requirements and inherent simplicity [16]. All system nodes, i. e., the redundant
PES instances as well as sensors and actuators, are connected to a ring, and
data are transferred from node to node as in a shift register. Like the SDS trans-
fer, the I/O data transfer is cyclic: Before a data word is accessible for further
processing, it passes all nodes within one Execution Interval.

Conventional ring-based communication techniques increase safety by using
both possible transfer directions. This approach cannot guarantee system avail-
ability in case of more than one ring interruption or device outage. That is why
the proposed PES follows a different approach, which is illustrated in Fig. 5.
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Fig. 5. Illustration of the multi-ring connection scheme with three redundant PESs

Each node’s outgoing interface is connected via multiple, physically sepa-
rated communication rings to multiple recipients. The first communication ring
defines the ring order, the second communication ring directly connects nodes
which are ordered as next-but-one in the first ring, and so on. This ‘multi-ring’
technique allows scalable safety by adding further rings and, moreover, can even
be combined with the bi-directional method.

7 Conclusion

A novel architectural concept for safety-related PESs was designed following
the policy ‘Progress is the road from the primitive via the complicated to the
simple’, stated by Biedenkopf in 1994 [17]. Both the PES’s architecture as well
as its operating principle are of remarkable simplicity, which eases verification
and – even more importantly – lowers the cost for safety-licensing.



A Safety-Related PES for Task-Oriented Real-Time Execution 273

Simplicity of design is achieved by physically separating task administration
and task execution. The application software is organised in tasks, but – contrary
to conventional task-oriented systems – the tasks are subdivided into a number
of blocks which are executed in discrete intervals of constant duration. This
operating principle renders the use of asynchronous interrupts superfluous. As
a result, not only the hardware architecture is simplified, but also the temporal
behaviour of the total system. Task administration is carried out by a special-
purpose logic circuit. This enables task scheduling in direct relation to Universal
Time Co-ordinated. Moreover, the hardware-implemented task administration
ensures short response times without utilising a complex multi-layered structure
nor minimising the computational effort by applying a primitive and inadequate
priority-based scheduling algorithm. Instead, tasks are scheduled according to
the time-based Earliest-Deadline-First policy.

Many techniques were developed in the past to increase the reliability and
availability of programmable electronic systems. Unfortunately, most of them
cover a small amount of failure sources, only, and various techniques need to
be combined to achieve safety, causing design complexity to increase signifi-
cantly. The proposed system integrates error detection, forward recovery and
non-intrusive monitoring in a unified way. This functional unification, which
bases on exchanging Serial Data Streams between redundant PES instances,
results in a hardware design of minimum complexity and especially low cost.
Moreover, it combines the capability of forward recovery at runtime with an
remarkably low achievable minimum response time.

The proposed PES concept is completed by an inherently simple communica-
tion strategy which serves data exchange between redundant PES instances and
with the process peripherals. A ‘multi-ring’ technique combines high, scalable
reliability and low wiring expenses with an especially simple structure. Like the
application processing, communication is performed in discrete intervals, too.

All system components operate cyclically and in synchrony, leading to a sim-
ple and easy-to-model temporal behaviour of the entire system. As a result,
formal verification of application-specific software is simplified. In comparison
to conventional periodically operating PESs, the proposed PES’s field of appli-
cation is larger, since it is capable of task-based software execution with process-
dependent program flows.

So far, a VHDL description has been prepared that realises the proposed PES
concept as a System-on-Chip. The TPU is based on a soft-processor version of
the well-known processor Intel 8051, which is provided by Oregano Systems. The
VHDL design has extensively been tested by simulation and, then, implemented
in an FPGA. A software that automatically divides the task’s program code into
Execution Blocks has also been created. Unfortunately, the splitting of program
code into blocks could not be discussed in this document due to page limitations.
Currently, we investigate performance aspects of subdividing software into Exe-
cution Blocks to find the optimum length for Execution Intervals.

Throughout our work, we considered ‘Design for simplicity’ as a key factor to
achieve safety. The question remaining open is: What characteristics make a de-
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sign simple? Obviously, design simplicity conflicts with computing performance
and resource efficiency, just as these two design constraints conflict with each
other. But in times in which ’dealing with complexity of large systems’ is con-
sidered as a major problem, simplicity is of equal importance. Thus, our future
work focuses on the questions: What general guidelines can be used to simplify
the design of a safety-related real-time system? How do they affect the operating
principle, the computing performance, and the resource efficiency? What mea-
sures should be taken into account in order to find an optimum balance between
these design constraints?

This article covered only the fundamental concepts of the proposed PES
architecture; various aspects could not be discussed due to page limitations. The
interested reader is invited to contact the author for further information.
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11. Sha, L., Abdelzaher, T., Årzén, K.E., Cervin, A., Baker, T., Burns, A., Buttazzo,
G., Caccamo, M., Lehoczky, J., Mok, A.K.: Real-time scheduling theory: A histor-
ical perspective. Real-Time Systems 28 (2004) 101–155

12. Hamuda, G., Tsai, G.: Formal specification of a real-time operating systems’s
component. In: Real-Time Programming 2003, WRTP Conference Proceedings,
Elsevier Science Ltd (2003)

13. GI: PEARL90 Language Report. 2.2. edn. Technical Commitee 4.4.2 (Realtime
programming, PEARL), Bonn (1998)

14. Burns, A., Wellings, A.: Real-Time Systems and Programming Languages. 3rd
edn. Pearson Addison Wesley, Harlow, England (2001)

15. Buttazzo, G.C.: Rate monotonic vs. edf: Judgement day. Real-Time Systems 29
(2005) 5–26

16. Baginski, A., Müller, M.: Interbus. Hüthig Verlag, Heidelberg (1998)
17. Biedenkopf, K.: Komplexität und kompliziertheit (complexity and complicateness).

Informatik Spektrum 17 (1994) 82–86



R. Winther, B.A. Gran, and G. Dahll (Eds.): SAFECOMP 2005, LNCS 3688, pp. 275–288, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Are High-Level Languages Suitable for Robust
Telecoms Software?�



276 J.H. Nyström, P.W. Trinder, and D.J. King



Are High-Level Languages Suitable for Robust Telecoms Software? 277

The DCC Model



278 J.H. Nyström, P.W. Trinder, and D.J. King



Test Management System Management

Service Port

Traffic Generator

Worker Worker

Leader

Processing Element

Controll

Communication

Are High-Level Languages Suitable for Robust Telecoms Software? 279



 0

 500

 1000

 1500

 2000

kill kill kill kill kill kill kill kill kill

Is
su

ed
 p

er
 1

5s

One worker killed every 5 minutes

Calls
Rejected Calls

Acknowledged Calls

 0

 500

 1000

 1500

 2000

kill kill kill kill kill leader kill kill leader kill kill

Is
su

ed
 p

er
 1

5s

One worker killed every 5 minutes

Calls
Acknowledged Calls

Rejected Calls

280 J.H. Nyström, P.W. Trinder, and D.J. King



 0

 500

 1000

 1500

 2000

kill 1 node kill 2 nodes kill 3 nodes kill 4 nodes kill 5 nodes

Is
su

ed
 p

er
 1

5s

One worker killed every 5 minutes

Calls
Acknowledged Calls

Rejected Calls

 0

 500

 1000

 1500

 2000

10m 20m 30m 40m 50m

Is
su

ed
 p

er
 1

5s

0.01% of messages crash the handler

Calls without fails
Rejected Calls without fails

Calls with fails
Rejected Calls with fails

50

100

150

1 2 4 6 8

C
al

l /
 s

Number of workers

Ideal
100% Load
200% Load

1000% Load

Are High-Level Languages Suitable for Robust Telecoms Software? 281



282 J.H. Nyström, P.W. Trinder, and D.J. King



Are High-Level Languages Suitable for Robust Telecoms Software? 283

Telecoms Characteristics

Dynamic Adaptability



 0

 500

 1000

 1500

 2000

remove remove remove remove add add add add

Is
su

ed
 p

er
 1

5s

Calls Acknowledged Calls Rejected Calls

284 J.H. Nyström, P.W. Trinder, and D.J. King



Are High-Level Languages Suitable for Robust Telecoms Software? 285



286 J.H. Nyström, P.W. Trinder, and D.J. King



Are High-Level Languages Suitable for Robust Telecoms Software? 287



288 J.H. Nyström, P.W. Trinder, and D.J. King



 

R. Winther, B.A. Gran, and G. Dahll (Eds.): SAFECOMP 2005, LNCS 3688, pp. 289 – 302, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

Functional Apportioning of Safety Requirements on 
Railway Signalling Systems 

Ola Løkberg and Øystein Skogstad 

SINTEF ICT, Information Security and Safety, NO-7465 Trondheim, Norway 
{ola.lokberg, oystein.skogstad} @sintef.no  

Abstract. A method for apportioning of Tolerable Hazard Rates (THR) on 
railway signalling equipment through a defined set of related safety critical 
functions is presented. For this approach to be effective, a number of steps have 
to be taken, involving political, economical as well as technical considerations: 
How many casualties pr. year (TLL – Tolerable Loss of Life)  due to railway 
operations shall be accepted  by the society? How many of these casualties shall 
be allowed attributed to the signalling systems? How can this signalling quota 
be apportioned onto a set of safety critical functions? How can the safety 
requirements of these functions be further apportioned onto the physical 
equipment realizing the functions, eventually making it possible to specify and 
validate the actual equipment being installed: What is the expected Hazard Rate 
(HR) of the defined safety critical functions and what are the consequences if 
they fail, i.e. if a hazard occurs?  
    The underlying study of this paper has been carried out as part of a contract 
with the Norwegian railway authority Jernbaneverket. 

1   Introduction 

Currently, there is a shift to imposing safety requirements on railway functions rather 
than railway equipment. This view is advocated by the European Standards EN50126 
[5], EN50128 [6] and EN50129 [7] (the railway sector implementation of the IEC 
61508). A functional decomposition approach has also been adopted by the 
SAMNET/SAMRAIL consortium preparing the ground for the European Railway 
Agency (ERA) and the specification of Common Safety Targets (CST) in the new 
European Railway Safety Directive (2004/49/EC) [8]. 

2   European Railway Safety Standardization 

In Europe at the beginning of year 2005, a lot of railway safety standardization 
activities are taking place, or are about to start. The main objectives of these activities 
include: 

• Implementation of a new Railway Safety Directive [8], including development 
of the safety indicators, methods and targets required to have a common way of 
specifying and measuring safety. 

• Get the European Railway Agency up and running (see Sect. 0) 
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2.1   Railway Safety Directive (2004/49/EC) 

Requirements on safety of the different subsystems of the trans-European rail 
networks are laid down in the directives 96/48/EC (high-speed), 2001/16/EC 
(conventional) and 2004/50/EC (amendments to the previous two). However, those 
directives do not define common requirements at system level and do not deal in 
detail with the regulation, management and supervision of safety. 

Directive 2004/49/EC [8], hereafter called the Railway Safety Directive, was 
established as an acknowledgement to the need of satisfying these requirements by 
establishing a common regulatory framework for railway safety within the European 
Union. Of particular interest in this context was to harmonise the development and 
management of safety, including the development of Common Safety Targets, CSTs. 

Common safety targets (CSTs) shall define the minimum safety levels that must be 
reached by the different parts of the railway system and by the system as a whole in 
each Member State, expressed in risk acceptance criteria for: 

• individual risks relating to passengers, staff (including the staff of contractors), 
level crossing users, unauthorised persons on railway premises 

• societal risks 

2.2   European Railway Agency (ERA) 

The European Railway Agency ERA (hereafter called the Agency) was proposed by 
the European Commission in connection with the “Second Railway package” on 
January 23. 2002 and later entered into force on May 1. 2004. The Agency has been 
established to provide the Member States and the Commission with technical 
assistance within the fields of railway safety and interoperability. 

The Agency will provide the technical assistance necessary to implement Directive 
2004/49/EC, the Railway Safety Directive. This implies that the Agency shall: 

• prepare and propose Common Safety Methods (CSM) and Common Safety 
Targets (CST) 

• finalise the definition of the Common Safety Indicators, CSI, and perform 
continuous monitoring of safety performance through these indicators  

2.3   SAMNET/SAMRAIL 

The SAMNET and SAMRAIL projects are both financed under the “Competitive and 
Sustainable Growth” area of the 5th Frame Programme. The two projects are closely 
linked: The partners in the SAMRAIL project are also members of SAMNET, and the 
managerial and technical activities of the two projects are coordinated. The tasks of 
SAMNET/SAMRAIL are closely related to the tasks of the European Railway 
Agency, the work performed within projects is also to be continued by the agency. 

The most interesting aspect of the SAMNET/SAMRAIL work in this context is the 
work on functional apportionment of safety requirements. This work is based on a 
functional decomposition scheme proposed by AEIF, the European Association for 
Railway Interoperability. This scheme divides (total) railway operation into a total of 
12 [9] first level functions.  Function “Operate a train” is applicable to the railway 
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signalling system and is the umbrella under which the signalling system safety critical 
functions SCF1 and SCF2 presented in Sect. 0 can be located. 

3   CENELEC Norms 

The CENELEC norms EN 50126 [5] and EN 50129 [7] contain nomenclature and 
recommendations of processes with respect to safety and risk analysis and the 
compilation of accept criteria. In addition, the CENELEC norm EN 50128 [6] deals 
with software included in safety critical applications. 

The purpose of this paper is to present a method of assigning safety requirements 
in the form of THR (Tolerable Hazard Rates) to functions. A function in this context 
encompasses the required collection of hardware, software and operational procedures 
to implement the specified functionality. Software is not distinguished as a separate 
unit, the system perspective taken by EN 50129 is therefore sufficient in this context. 

3.1   Railway Authority vs. Supplier 

The distribution of responsibility between the Railway Authority1 on one hand and 
the Supplier of railway equipment on the other hand is illustrated by the following 
figure from EN 50129 Annex A: 

 

Fig. 1. Global process overview (from EN 50129 [7], Annex A) 
 

                                                           
1 A Railway Authority may in general be an (infrastructure) owner of one or more parts of the 

railway system, an operator, a maintainer of one or more parts of the railway system. 
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    Based on this figure the essence of EN 50129 with respect to determination of THR 
and SIL requirements can be summarized as follows: 

Responsibility of Railway Authority: 

• Define a set of safety critical functions for the signalling system. 
• For each defined safety critical function: Define a set of safety integrity 

requirements. 
The definition of safety integrity requirements is a systematic process including 
the identification of hazards, consequence analysis and risk estimation. 

• The result of this process is a set of Tolerable Hazard Rates for the set of 
defined safety critical functions. 

Responsibility of Supplier: 

• Define the system architecture as well as allocate system functions to the 
different parts of this architecture to meet the safety requirements. 

• Apportioning function related THR (received from the Railway Authority) to 
the subsystems/components required to implement the corresponding functions. 

• Determine corresponding SIL classes from the apportioned THR values. 

4   Safety Critical Functions 

4.1   Why Safety Critical Functions 

Currently, THR safety requirements to signalling systems are often imposed on 
signalling systems as a whole. This makes it more difficult for large systems to fulfil 
the requirements, simply because the determined THR value (being equal to all 
signalling systems irrespective of size) must be apportioned on more equipment in a 
large system. Every component in a large system must then individually be safer than 
if it has been used in a smaller system. 

Basically, it is the safety level of functions which is important for the Railway 
Authority, not how these functions are realized. When imposing safety requirements 
on functions (in contrast to equipment), the safety requirements better reflect what’s 
important in addition to that they are more robust with respect to changes in 
technology. 

According to EN 50129, safety requirements in railway signalling systems shall be 
set to functions. The actual definition of these functions, and on which level they shall 
be defined, is however not determined by the standard. 

4.2   Top Events 

There is a close connection between safety critical functions on one hand and top 
events (accident categories) on the other: The total set of safety critical functions shall 
cover all relevant top events. 
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Related to the signalling system this means that the defined set of safety critical 
functions must cover all top events caused by faults in the signalling system. 

The following set of top events (accidents) can be caused by faults in the signalling 
system: 

• Collision train–train (head to head, head to tail, head to flank) 
• Derailment 

Collision train-object accidents are usually not concerned with faults in the signalling 
system and are therefore not considered in our context. 

4.3   Defined Safety Critical Functions 

According to the selected top events presented in Sect. 0, a set of safety critical 
functions covering both train – train collisions and derailments must be determined. 

Basically, a signalling system has the following main function: Ensure that a train 
can move from A to B in a way that accidents are avoided. For this main function to 
be realized, two corresponding sub functions must operate correctly: 

1. All signal aspects being part of the route from A to B are set up correctly so that 
the train driver receives the correct and required information. 

2. All points being part of the route from A to B are set up correctly and stay in the 
correct position until the train has passed by. 

The automatic train protection aspects (ATP, ATC) defending the train from passing 
signals at danger and from over speed are not considered in this paper. 

Correspondingly, the following types of signalling system safety critical functions 
have been defined: 

− SCF1: The function of providing signal aspects according to the current 
conditions for train movement. 

− SCF2: The function of maintaining correct position of points within the time 
interval when a faulty position can not be signalled to the driver in time. 

While the wording of SCF1 is fairly straight-forward, an explanatory comment should 
be made concerning SCF2: The mechanisms for detecting the actual physical rail 
position within a point is an integral part of the signalling system and interlocked with 
the signal. This means that if a point for some reason does not obtain the correct 
physical position, this will be reflected in the signal related to that point (SCF1). If, 
however, the train is within braking distance of the point or is actually passing the 
point, the information about a changed position within a point is received too late to 
be of any use, SCF2 has therefore been defined to cover this situation without 
overlapping SCF1. 

To verify that the apportionment of THR to the defined types of safety critical 
functions SCFx is appropriate irrespective of technology, operational procedures etc., 
it is important to have suitable monitoring- and logging mechanisms making it 
possible to connect fault and accident situations to the appropriate SCFx. 
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5   From TLL to THR for SCF 

One of the goals of the study behind this paper was to examine how equipment related 
THR requirements can be in accordance with national objectives for accident risks 
related to all railway activity in Norway. This objective is often designated as PLL, 
Potential Loss of Life, indicating the maximum number of casualties caused by 
railway activity per year which can be accepted. However, to be more in harmony 
with the corresponding designation THR (Tolerable Hazard Rate), we will instead 
use the designation TLL (Tolerable Loss of Life). In addition to being symmetric to 
THR, the designation “TLL” also has the property that it through the word “tolerable” 
clearly indicates that it is not a computed, but a “politically determined” value. 

5.1   THR for Safety Critical Functions 

Assuming that the national safety objective is expressed as a politically determined 
maximum casualty value, TLLNational, the question is: 

How can this objective be transferred into safety requirements for the 
corresponding set of Safety Critical Functions, SCF1 and SCF2? 

    The process of determining safety requirements for SCF1 and SCF2 for the 
signalling systems from the TLLNational value goes through a number of steps. These 
are: 

1. Determine the effect of signalling system failures 
2. Determine the amount of hazards caused by the signalling systems 
3. Determine the probability of an accident to occur given a hazard in the 

signalling system  
4. For each specific signalling system application: Apportion the safety 

requirements on the individual instances of SCF1 and SCF2. 

As we are lacking data to proceed systematically along this way, we have to use “bold 
questimates” to establish a first set of overall THR values. The reasoning behind this 
estimation is explained in the sequel.  

The Effect of Signalling System Failures. There is a comprehensive statistical 
material for Norwegian railway accidents. However, none of these accidents are with 
certainty caused by the signalling system. There is therefore no available statistics 
known to the authors showing any contribution to top events from signalling system 
failures.  

Consequences of accidents can be grouped into consequence classes, distinguished 
by the number of casualties caused by the accident. The risk analysis performed in [1] 
shows that for many of the analyzed scenarios, failures in SCF may be catastrophic 
(more than 10 casualties, highest consequence class) given that a fault has occurred. 
Using the ALARP (As Low As Reasonably Practical)-principle on the risk matrix 
presented in [2] gives an acceptable maximum number of 0.1 signalling system 
failures in the highest consequence class for the Norwegian railway per year. 
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Hazards Caused by the Signalling Systems. All railway authorities maintain a 
comprehensive statistical material for failures related to the railway infrastructure, 
including a classification of whether these failures were safety critical or not. 
However, this large amount of data has usually not been analysed with respect to 
creating a statistic for safety critical failures. From the available material it is 
therefore some way to go to determine how many of the total number of failures were 
hazards.  

As discussed in the previous paragraph, available statistics contain no accidents 
which by a high probability can be attributed to the signalling system. Reference [4] 
suggests that signalling systems could be assumed to cause 1% of total railway system 
hazards. In the lack of available statistics we will use this figure. As already 
mentioned, the risk analysis [1] shows that SCF failures may be catastrophic. 
Conservatively it is therefore correct to attribute all signalling system failures to the 
highest consequence class (more than 10 casualties). 

Probability for an Accident to Occur. The risk analysis presented in [1] shows that 
faults in a safety critical function SCF will with a high degree of probability cause an 
accident. An erroneous (too) liberal signal aspect will most often occur in situations 
where trains are present. The conservative estimate for the probability of an accident 
to occur given a hazard of the signalling system is therefore 1. Our first estimate of 
this probability is 10%.  

Altogether, the reasoning in this section leads to a resulting THR for the 
Norwegian railway signalling system of 0.01 highest consequence failures per year. 
This is shown in the Table 2.  

It must be emphasized that the figures in the table are estimates, derived from the 
discussions in this and the preceding paragraphs. 

Table 1. THR for the Norwegian railway signalling systems 

Factor Value Corresponding THR 
[failures/year] 

Maximum rate for accidents 
of highest consequence class 

 0.1 

Hazards due to the signalling 
systems 

1% 0.001 

Probability for an accident to 
occur given fault in SCF 

10% 0.01 

 

THR Apportioned on Total Set of SCFs. We have previously assumed that the 
defined set of SCFs cover all safety critical functionality of a signalling system. 
Consequently, the THR requirement of 0.01 failures per year applies to all 
implementation instances of the defined set of SCFs in the Norwegian railway 
infrastructure (i.e. all signalling systems). 

This total THR should not be equally apportioned on SCF1 and SCF2. The risk 
analysis presented in [1] shows that there are different accident scenarios for the two 
SCFs: When failing, SCF1 is likely to have more severe consequences than SCF2. We 
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therefore set THR for SCF1 equal to the total THR value above: 0.01 failures per year. 
As far as SCF2 is concerned, less severe consequence when failing implies that the 
THR requirement to this safety critical function can be weakened. As an initial 
estimate, two decades down, i.e. 1 failure per year are regarded a suitable value here. 

To summarize, the following THR requirements should be set to (all instances of) 
the two defined safety critical function of the signalling systems of Norway: 

SCF1 (all instances) : THR = 0.01 failure per year  
SCF2 (all instances) : THR = 1      failure per year 

THR Apportioned on Individual Instances of SCF. By estimating the total amount 
of signals and points contained in the Norwegian railway signalling systems as well as 
their number of possible states, a total of 10000 instances of SCF1 and 5000 instances 
of SCF2 have been estimated. This gives the following individual THR values: 

SCF1 (per instance) : THR = 10-6 failure per year  10-10 [h-1] 
SCF2 (per instance) : THR =  2*10-4 failure per year  2*10-8 [h-1] 

It must be emphasized that the calculated requirements presented in this section are 
based on estimates. However, we believe that the precision is good enough to claim 
that the requirements are anchored in the national safety objectives, expressed as a 
maximum number of fatalities per year caused by total railway operation. We also 
believe that the calculations in a clear and understandable way show how large a 
portion of the total safety requirements should be attributed to the signalling systems. 

Comparison with Today’s Equipment Based Safety Requirements. Reference [3] 
contains today’s safety requirements for Norwegian railway signalling systems. 
Although the requirements included in [3] are equipment based and expressed for a 
complete signalling system, they are in the same order of magnitude as the function-
based set of requirements presented in this paper. From this we may draw the 
conclusions that the THR requirements presented in this paper both may be realized 
with available technology as well as does not represent a degradation of today’s safety 
level of signalling systems. An actual case study is however required to verify this 
hypothesises.  

5.2   THR’s Relations to Other Railway System Parameters 

Basically, trains can be guided or controlled in two ways: Automatically, when the 
signalling system is operational, or manually, when the signalling system is down. 
The two safety critical functions SCF1 and SCF2 defined in Sect. 0 both apply to 
automatic train control. Further, THR requirements are always related to random 
faults. However, statistical data show that systematic faults contribute significantly to 
accidents and hazard. Consequently, system safety can not be characterized by THR 
requirements alone without regarding other system parameters.  

System Availability. A system’s availability is a measure of whether it can be 
expected to be operational. [5] defines the term “Availability” as 
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the ability of a product to be in a state to perform a required function under 
the given conditions at a given instant of time or over a given time interval 
assuming that the required external resources are provided. 

    Note that a system’s availability is not dealing with safety: A system can be 
unavailable due to a variety of reasons, not only because the system’s safety functions 
are not operational. When a railway signalling system is unavailable, all signal 
aspects are set to red (“stop”) which is considered a safe state as seen from the 
signalling system.  

Some sources (e.g. ref. [4]), claim that manual and automatic train control (through 
the signalling system) contribute equally to the total risk of railway operation. If that 
is the case, and the availability value for signalling systems is 99.5 % (ref. [4]), the 
hazard rate during periods of manual train control is 200 times larger than the 
corresponding rate with automatic control. This illustrates that there is obviously a 
trade-off whether to use resources to improve THR values of the signalling systems, 
effective during normal automatic train control, or to improve the system’s 
availability to reduce the risks imposed through manual control.  

Random vs. Systematic Faults. THR reflects the expected rate of hazards due to 
safety related, random equipment faults. Such faults are random because they are 
triggered by random events as a malfunctioning component. 

Systematic faults are faults which will re-occur if the situation producing the fault 
is recreated. Examples of systematic faults are faults in specification, design, software 
coding as well as operational procedures. Generally for the PES (Programmable 
Electronic System) type of technology, systematic faults are claimed to occur as often 
as random faults. 

However,  it is of minor importance to the public whether a number of people have 
been killed in a railway accident due to a random or a systematic fault. Taken 
together, signalling system THR values may therefore be applicable to only one forth 
of the total risk (random faults occurring during automatic train control). Even so, we 
choose not to change the THR values for the signalling systems since the correction 
would be minor compared to the decadic approximations used to arrive at these 
figures. 

Size of Installation. In this paper, THR is apportioned on safety critical functions, 
SCFs. A large installation will have a larger number of SCFs than a smaller 
installation. Because the number of SCFs is directly related to the number of signals 
and points, it can be argued that the number of SCFs is directly proportional to the 
size of the installation. It will thus scale very well with installation size. 

Therefore, with respect to safety requirements, the same equipment can be used 
both for large and small installations. This makes it easier for the railway authority to 
standardize on specific types of equipment, in turn reducing costs with respect to 
maintenance, spare parts storage and personnel training.  
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6   From THR for SCF to THR for Equipment 

We have in Sect. 0 shown how a TLL (Tolerable Loss of Life) national railway safety 
requirement value can be distributed onto a set of safety critical functions, SCF. 

The next step is to distribute this further onto the collection of equipment required 
to implement the SCFs. The method for this is shown in the following figure: 

 

Fig. 2. Function vs. implementation 

6.1   Duality Between Function and Equipment 

Generally speaking, any technical construction or mechanism can be represented by a 
dual view: Either by the functions it performs, or by the equipment by which it is 
realized. For a system, both function and equipment are hierarchical in nature and can 
thus be illustrated as a pyramid as shown in Figure 2. 

Applied to the topic of this paper, a railway Infrastructure can thus be viewed as 
a duality between its Main Function (Operation of signal aspects, points) and the 
Installation (Railway signalling system) realizing this function. 

The concrete structure of these pyramids and the mapping between them depend on 
the actual system solutions being selected. Without such knowledge, only the 
relationships/proportions between the different THR/HR values can be given, not 
their absolute values.  
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Function Pyramid. As described in Sect. 0 the safety critical functionality Operation 
of signal aspects, points will be represented by two safety critical functions, SCF1 and 
SCF2. All safety critical functionality within the scope of an interlocking system is 
covered by these two safety critical functions.  

Further, within an infrastructure there will generally be several instances of an 
SCF. These instances are not necessarily realized identically, this will often depend 
on where in the infrastructure they are located. The method therefore supports that the 
infrastructure contains N instances of SCF1 (denoted SCF1i, i = 1...N) and M instances 
of SCF2 (denoted SCF2i, i = 1...M).  

Due to the effect of any barriers and/or safety redundancy, the resulting Hazard 
Rate HR of any given instance of an SCF (denoted SCFxi) will always be less than or 
equal to the sum of Hazard Rates of the equipment required to realize the instance: 

HRSCFxi      HREquipment     (all eq. realizing SCFxi)           (1) 

    Any instance SCFxi of an SCF must be apportioned a corresponding safety 
requirement in form of a Tolerable Hazard Rate value, THRSCFxi. For the safety 
requirement to be fulfilled, this THR value must be greater or equal to the 
corresponding (calculated) HR value, i.e.: 

   THRSCFxi   HRSCFxi                           (2) 

    The defined types of safety critical functions SCF1 and SCF2 may use the same 
equipment parts and are thus not statistically independent. In addition, the same 
equipment may be a part of the realization of several instances of the same type of 
SCF (SCFx), typically this will be the case for the central interlocking system. 
Consequently, the sum of HR for all instances of SCF1 and SCF2 in the installation 
will be higher than the HR of the total installation: 

HRInstallation  <    HREquipment     (all eq. realizing all instances of 
                     SCF1 and SCF2)       (3) 

Safety Critical Sub Functions (SCSF). It may be necessary (e.g. in case the 
equipment realizing one SCFx come from several suppliers) to further divide SCFx 
into safety critical sub functions SCSFx. These can in principle again be divided into 
new sub functions (SCSSFx) and so forth. In general, the same sub function (e.g. train 
location detection) may be a part of both SCF1 and SCF2.  

If it is required to divide SCFx into sub functions SCSFxy, the sum of THR for all 
SCSFxy will be equal to the THR for the corresponding SCFx: 

THRSCFx =  THRSCSFxy  (for all SCSFxy of SCFx)            (4) 

    However, because the same sub-function SCSC can be a part of both SCF1 and 
SCF2,. the sum of THRs for all SCFx will always be less or equal to the sum of THRs 
for all sub-functions SCSFxy: 

THRSCFx (in total for all x)   THRSCSFxy (in total for all x and y)           (5) 

    This division into sub functions SCSF, and if required sub-sub functions SCSSF, 
may be performed until one and only one supplier supplies equipment to one 
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SCF/SCSF/SCSSF. When so, there will be a pure function-equipment interface 
between the Railway Authority and the suppliers. 

Equipment Pyramid. The safety critical main function Operation of signal aspects, 
points is realized by a Railway signalling system. The Railway signalling system is in 
turn realized by a number of Subsystems, in Figure 2 denoted D1 to D3. The 
subsystems may be overlapping in the way that several subsystems rely on some 
common service (e.g. central logic). Subsystems D1 and D2 are in Figure 2 shown as 
overlapping. 

Every subsystem is in turn realized as one or more Modules. Because subsystems 
may be overlapping, one module may belong to several subsystems. Module 2 in 
Figure 2 is an example of this.  

Each module is further realized by one or more Components. Each component 
will belong to one and only one module. Generally speaking, a number of components 
from different modules (but not necessarily all components within one module) will 
be a part of the realization of one SCF. Because one component can be a part of the 
realization of both SCF1 and SCF2 as well as due to barrier/redundancy effects, the 
sum of the hazard rates HR for all components C used to realize SCFx will always be 
equal to or larger than HR for SCFx, that is 

HRSCFx   HRC,      in total for all components C included         (6) 
                                        in the realization of SCFx 

6.2   Method for Apportioning THR on Equipment 

The method for determination and verification of safety requirements based on THR 
to safety critical functions is based on the duality between the function and equipment 
pyramids as shown in Figure 2. The method can be described as follows: 

1. Starting point. THR requirements are apportioned to all instances of SCFs 
within the actual infrastructure. This can either be done on a generic basis as 
shown in Sect. 0, or on a installation specific basis facilitating special treatment 
of the individual installation, taking other factors than the actual number of 
SCFs into consideration. 

2. Transform SCF THR requirements to THR requirements to equipment. 
The actual method is indifferent to whether there are one or several suppliers of 
equipment realizing the SCF. However, with only one supplier the SCF itself 
constitutes the interface between the Railway Authority and the supplier. With 
several suppliers, the SCF and the corresponding THR requirement must be 
apportioned (by the Railway Authority) into sub functions SCSF before handed 
over to the supplier. 

3. Verification of selected equipment against THR requirement to SCF. This is 
done by computing the resulting HR for the SCFs (see Sect. 0). If the specified 
THR requirements are not satisfied, the realization of the SCF must be changed, 
either by using other (and less error prone) components, or by changing the 
architecture, e.g. by incorporating a higher degree of redundancy. 
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7   Verification of THR Requirement 

Normally it is the task of the supplier to prove that his selection of equipment satisfies 
the THR requirement for SCFx. It is generally acceptable that this is done as an 
analytical computation based on reliability theory. Such a computation must include 
the following elements: 

1. Identify the individual equipment (Figure 2: Subsystems, Modules, 
Components) required to realize the relevant instance of SCFx. 

2. Determine the failure rate for this equipment from the manufacturer’s 
specifications.  

3. Determine the Hazard Rate (HR) for the same equipment, e.g. by carrying out 
an FMEA (Failure Mode and Effect Analysis). Normally the HR will be 
significantly lower than the failure rate (not all failure modes will be safety 
critical, redundancy). 

4. The corresponding Hazard Rate for the different realizations of SCF1 and SCF2    
are computed using the equipment HR as input. The effect of any barriers (e.g. 
human) must be included. 

    If the analysis shows that the resulting Hazard Rate for SCFx is in the same order as 
the corresponding THR, the requirement should be considered as satisfied. Due to the 
uncertainty in the input data a sensitivity analysis may be requested if the THR 
requirement is not completely satisfied. Factors as system availability and the effect 
of systematic faults (see Sect. 0) should also be taken into consideration if the result is 
close to the requirement. 

8   Conclusion 

This paper has presented a method of imposing safety requirements on safety critical 
functions, SCFs, rather than directly on equipment. By doing this, the requirement of 
the individual SCF will be independent of installation topography as well as 
implementation technology. In the longer term, the confidence in railway safety 
should also be improved by the fact that going through SCFs forces the railway safety 
management to focus directly on safety critical functions. 

It can be argued whether going through safety critical functions rather than directly 
on equipment makes it more easy or difficult to verify safety requirements. 
Experience indicates that there is no difference: In both cases, traditional safety and 
reliability analyses techniques for electronic/electromechanical systems must be 
applied.   
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Abstract. The paper describes a formal method for automatic generation of 
programs for PLC controllers. The method starts from modeling the desired be-
havior of the system under design by means of a state machine with the ability 
to measure time and ends-up with a complete program written in a ladder dia-
gram language. The model is formal, yet readable, and can be verified against 
the behavioral and safety requirements. The conversion of the model into a pro-
gram is done automatically, which reduces the need for further program  
verification. 

1   Introduction 

Computerized control systems are used in many industrial applications in which a mal-
function of the system can endanger the environment or human life. The systems that 
are used in such application areas are expected to exhibit always an acceptable behavior. 
Such a property, often referred to as dependability, is a system-level attribute, which 
must be considered at hardware as well as software level. The typical hardware devices 
used in industrial control are Programmable Logic Controllers (PLC) that are designed 
in such a way that promotes reliability and predictability of the controller operation, and 
makes the design of time- and safety-critical systems easier. 

PLC is a specialized computer, which has a set of input interfaces to sensors, a set 
of output interfaces to actuators and an operating system that manages the repeated 
execution of the following cycle: 

• Reading all input sensors and storing the read data as values of input variables. 
• Processing the inputs and computing the new values of the output variables. 
• Updating all outputs with the current values of output variables. 

    The maximum duration of each execution cycle is bounded and guaranteed by the 
operating system. This introduces an explicit granularity of time: An input signal that 
does not hold for at least the maximum duration of the cycle can remain unnoticed by 
the PLC. Moreover, a response to an input signal cannot be expected earlier than in 
the next consecutive cycle of execution. 

Programming of a PLC deals with the computing phase of the execution cycle 
only. The core part of the computation relates to calculations of Boolean conditions 
that define the current state of the controller and the current values of two-state output 
variables. The programming languages, standardized in [1], include: Instruction List 
(IL), Structured Text (ST), Ladder Diagram (LD) and Function Block Diagram 
(FBD).  
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A PLC can be used alone, but in many real applications it is a part of a bigger sys-
tem that consists of several PLCs and computers coupled and working together. The 
development of such a system can be driven by a set of UML-based models [2] that 
describe the required behavior of the system as a whole, and of all of its components. 
The conceptual tool that is offered by UML to model this type of processing that is 
done by a PLC is state diagram – a model that describes the states an object can have 
and how events (input signals) affect those states over time. 

The goal of this paper is to describe a formal method for automatic programming 
of PLCs, which uses a subset of UML-based state diagram model to define a correct 
control algorithm, and to implement the algorithm automatically using the ladder dia-
gram language. The choice of the target language (LD) has been motivated by the 
widespread use of certified programming environments offered by the majority of 
PLC manufacturers. Nevertheless, generation of a program in C language executed 
under a POSIX-type operating system is also possible. The advantages of the method 
are simplicity that has been verified in student labs, easy interfacing to UML-based 
software development process and tools, and the possibility of automatic code genera-
tion. The verification of the program correctness can be performed at the model level. 

The paper is organized as follows. Section 2 provides the reader with a short over-
view of the subset of UML-based state diagram model that is used in the paper. Sec-
tion 3 introduces a formal definition of the finite state time machine that defines the 
semantics of the state diagram model. The process of converting a finite state time 
machine into a program, written in the ladder diagram language, is described in Sec-
tion 4. The description is illustrated using a case study of a bottling line controller. Fi-
nal remarks and plans for future work are given in Conclusions. 

2   State Diagram 

Basically, state diagram is a graph that shows how an object reacts to events that 
originate in the outside world. It consists of states that capture distinct modes of the 
object behavior and transitions between states that are caused by events and accom-
panied with actions. Relating the model to the structure of PLCs one can note that 
events correspond to the occurrences of input signals, and actions correspond to 
changes of the output signals. The modeling concept is simple and consistent with the 
mathematical theory of finite state machines. UML adds further elements to this 
model: 

• Entry and exit actions of a state that are executed on entering and exiting the state. 
• Guards, i.e. Boolean conditions that enable or disable transitions. 
• Internal transitions that are handled without causing a change in state. 
• Deferred events that are memorized for handling in another state. 
• Time events that correspond to the expirations of predefined periods of time. 

Entry and exit actions of a state do not add any new semantics to the model as they 
can easily be reassigned to transitions that input or output the state. Guards deal with 
the attributes of an object and do not apply to modeling of PLCs. Internal transitions 
and deferred events violate the rule that the only memory of an object is state, and  
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therefore are excluded of the model that is used in this paper. If an event could make a 
permanent change to an output or had to be memorized, an explicit change to the ob-
ject state must be shown. 

A substantial extension to the model of a finite state machine is the introduction of 
time events. Such an event originates inside the modeled object, and breaks the rule 
that the reaction of the object to an external event depends on the current state only. 
An additional memory of timers that measure the flow of time is needed. An attempt 
to describe the extension is given by the theory of timed automata [3]. Still another 
formal model of a finite state time machine is introduced in Sect. 3. 

A disadvantage of a state diagram, as described above, is the lack of tools for man-
aging complexity of real systems that can have hundreds or even thousands of states 
reflecting very general or very detailed properties of the modeled objects. One way to 
capture the behavior of such a complex system is to describe its behavior using many 
levels of abstraction. UML offers hierarchical state diagrams, in which a state can 
have sub-states, each of which can be shown in another state diagram. A transition 
that leads to a super-state activates the internal state diagram in its initial state. A tran-
sition that roots in a super-state can occur in each of its internal sub-states. 

The presence of nested states leads to quite a new concept of a history indicator 
that is used to memorize the last sub-state on exit of a super-state, so that it’s possible 
to go back to this sub-state at a later time. History indicator adds memory to the 
model – a discussion of this feature is given in Sect. 4.2. 

3   Finite State Time Machine 

Finite state machine is a recognized tool for defining the algorithms of processing the 
enumerative sets of events. The automaton-like graphical models are formal, as well 
as understandable to engineers and computer programmers. What is missing to a clas-
sical finite state machine is the ability to model time. In this section we define a new 
model of a finite state time machine that adds time to the classical Moore automaton. 

Definition. A finite state time machine is a tuple A = ( S, Σ, Γ, τ , δ, s0 , ε, Ω, ω ), 
where  

S is a finite set of states, 
Σ is a finite set of input symbols, 
Ω is a finite set of output symbols, 
Γ is a finite set of timer symbols, 
τ : Γ → S × R+ is an injective function, called timer function, 
δ : (S × Σ ∪ S × Σ × Γ ) → S is a function, called transition function, which is total 

on S × Σ and partial on S × Σ × Γ: (s,a,t)∈Dom(δ ) ⇔ (∃ r∈R+)[τ ( t )= (s,r)] 
s0 ∈ S is the initial state, 
ε ∈ R

+ is the granularity of time, 
ω : S → Ω is an output function. 

Notation: R+ is the set of positive real numbers, Dom(δ ) is the domain of function δ. 
Cardinality of a set X will be denoted card(X). 
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It can be noted from the above definition that a finite state time machine is finite, 
and looks much like a Moore automaton with three additional elements: Γ, τ , ε. The 
rationale that stands behind the timer symbols can be explained as follows. The only 
memory of a Moore automaton is state. Adding time to such an automaton adds an 
additional kind of memory that stores durations of time intervals. This additional kind 
of memory is explicitly shown as a set of timer symbols. Each timer symbol will be 
converted in the implementation process into a timer device that measures time. 

For an example, consider a train-detecting sensor [4] that signals ‘a’ if a train is 
approaching, ‘b’ if not, and ‘Error’ if a failure of the device has been detected. The 
sensor can stutter for a time Δt after a train has passed the sensor. The control system 
is expected to filter the stuttering and to react on the ‘Error’ signal immediately. 

The behavior of the required system can be described precisely using an automaton 
that could measure time (Fig. 1). The automaton starts in state N and reads the input. 
If the train approaches, the input reads ‘a’ and the automaton moves to state T. Now 
the input can stutter, but the automaton does not react to signal ‘b’, until it has contin-
ued to be in state T at least through the period Δt. Afterwards, if ‘b’ still holds, the 
automaton returns back to state N and continues as before. If the input reads ‘Error’, 
the automaton moves to state X.  

 
 
 
 
 
 

Fig. 1. Filtering device with detection of errors 

The notation in Fig. 1 suggests that period Δt is attributed to a transition between 
states, rather than to a state. This is because a transition is enabled by a combination 
of an input symbol and a timer symbol. 

Formal definition of the filtering device can be written as follows: 

 S = { N, T, X } 
Σ = { a, b, Error } 
Ω = { no approach, approach, don’t know } 
Γ = { t1 } 
τ : τ ( t1 ) = ( T, Δt ) 
δ: δ (N, a)= T δ (N, b)= N δ (N, Error)= X 
 δ (T, a)= T δ (T, b)= T δ (T, Error)= X 
 δ (T, a, t1 )= T δ (T, b, t1 )= N δ (T, Error, t1 )= X 
 δ (X, a)= X δ (X, b)= X δ (X, Error)= X 
s0 = N 
ω : ω (N) = no approach ω (T) = approach ω (X) = don’t know 

    The granularity of time ε has not been defined in [4]. 

a

N

T

b⋅ Δt 
Error

Error
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3.1   Execution of a Finite State Time Machine 

Moore automaton models a device that cooperates with its environment. The execu-
tion of an automaton starts in state s0. The environment generates a sequence of input 
symbols a0 , a1 ,…, ak ,… and the automaton moves through a sequence of states s0 , 
s1 ,…, sk ,… such that sk+1= δ (sk, ak) for k= 0,1,…. Each state sk of the automaton corre-
sponds to an output symbol qk= ω (sk ). This way the automaton responds to a se-
quence of input symbols a0 , a1 ,…, ak ,… with a sequence of output symbols q0 , q1 ,…, 
qk ,…. 

A finite state time machine adds to the model the dimension of time. The function 
τ defines for each state s∈S a set of timers T(s), such that: 

T(s)= { t∈Γ: (∃ r∈R+)[τ ( t )= (s,r)] } 

A timer t, such that τ ( t ) = (s,r), will be denoted ts,r. The same symbol will be used 
for the value of r, rounded up to the nearest multiplicity of ε. This will not lead to a 
misunderstanding, as the actual meaning of  ts,r will always be clear from the context. 

A nonempty set T(s) can be ordered with respect to the value of ts,r:  

T(s)= { ts,r1 , …ts,rp } 

The sequence { ts,r1, … ts,rp } defines a partition of time into p+ 1 intervals: 

[0, ts,r1) … , [ts,rp ,∞) 

    There is only one interval [0,∞) if the set T(s) was empty. The execution of a finite 
state time machine starts in state s0. When it enters a state s∈S, it enters the first time 
interval [0, ts,r1) as well. The machine executes in this interval by taking an input sym-
bol a and moving from the current state s to the next state s’∈S, such that s’=δ(s,a).  

If the machine has continued to be in state s at least through ts,r1 time units, then it 
moves to the time interval [ts,r1 , ts,r2), then to [ts,r2 , ts,r3) and so on. The machine exe-
cutes in a time interval [ts,rj , ts,r(j+1)) by taking an input symbol a and moving from the 
current state s to the next state s’∈ S, such that s’= δ(s,a,ts,rj). The flow of time does 
not depend on the sequence of input symbols. Therefore, unlike in a Moore automa-
ton, there is no deterministic mapping from an input sequence a0 , a1 ,…, ak ,… to an 
output sequence q0 , q1 ,…, qk ,…. The response of a finite state time machine depends 
on the time intervals within the sequence of input symbols. 

3.2   Relation to Other Models 

Moore automaton is equivalent to a finite state time machine with no timers, i.e.: 

• (∀s∈S) [card( T(s) ) = 0] 

If the above condition holds, then no partitioning of time exists and there is a single 
time interval [0,∞) for each state of the automaton. 

PLC-automaton [4] can be converted into a finite state time machine such that: 

• (∀s∈S) [card( T(s) ) ≤ 1] 
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Let P= ( S, Σ, δ, s0, ε, St, Se, Ω, ω ) be a PLC-automaton. The equivalent finite state 
time machine A= ( S, Σ, Γ, τ, δ, s0, ε, Ω, ω ) can be constructed as follows: 

• The elements S, Σ, s0, ε, Ω, ω  of A are equal to S, Σ, s0, ε, Ω, ω  of P, respectively. 
• The other three elements of A are the following: 

Γ = s∈S: St(s)>0 { ts,St(s) }  − note that this defines the timer function τ, as well. 
  

δ (s,a) =  
  

δ (s,a,ts,St(s) ) = δ (s,a) 

Timed automaton [3] represents a broader class of models than finite state time ma-
chine. This is because a clock of a timed automaton can measure time between two 
arbitrary transitions in a state transition graph, while the life of a timer of a finite state 
time machine is limited to the period of time, in which the machine continues being in 
a single state. A minor drawback of timed automaton is the lack of output symbols. 

The advantages of the model of a finite state time machine are simplicity, expres-
siveness and ease of implementation. The limitation on the life of timers helps in 
keeping the size of the state space small. To demonstrate the expressive power of the 
model, consider a requirement to measure the time period between two events: ‘a’ 
and ‘b’, and to classify the delay as: Short, middle, long or infinite. The problem can-
not be represented directly as a PLC-automaton [4]. Finite state time machine model 
(Fig. 2) is simple and understandable. 

 
 
 
 
 
 
 
 
 

Fig. 2. Measurement and classification of time periods (0 < Δt1 < Δt2 < Δt3) 

The semantics of a finite state machine can be defined formally using the Duration 
Calculus [5], which is a real-time extension to the discrete interval temporal logic. 
Such a definition allows formal reasoning and proving correctness of the model. This 
topic is not covered by this paper. 

4   Code Generation 

A developer defines the algorithm of processing input signals into output signals of a 
PLC by means of a state diagram. The semantics of this model is defined formally by 

 
  
s if St(s)> 0 and a∈Se(s)  
δ (s,a) otherwise  

start b⋅Δt1
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— duration < Δt1

— Δt1 ≤ duration < Δt2 

— Δt2 ≤ duration < Δt3 
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a 
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a finite state time machine. Input and output symbols of the machine correspond to 
particular combinations of input or output signals of the PLC, respectively. Timer 
symbols correspond to timers, i.e. program elements that can measure time and signal 
the expiration of time periods that are defined by the timer function. 

The states of the finite state time machine are stored within the controller as states 
of flip-flops, used by a program. Using n flip-flops one can store at most 2n states. 
The mapping of states into the states of flip-flops (coding of states) is not unique, and 
can be a result of a design decision or an optimization procedure. A program of the 
controller implements the transition function in such a way that each pass through the 
program fires a single transition between the states of the finite state time machine.  

PLC program takes the form of a ladder diagram [1] and is structured into a se-
quence of lines, each of which describes a Boolean condition to set or reset a flip-flop, 
a timer or an output signal, according to the values of input signals, states of flip-flops 
and timers. The Boolean conditions reflect the selected coding of states and imple-
ment the transition function, the output function and the timer function. 

The development process of a PLC program consists of two phases. The first phase, 
which corresponds to the requirements modeling and analysis, followed by a safety 
analysis, requires creativity of the developer and must be performed manually. The 
second phase, which corresponds to program design and implementation, can be per-
formed automatically. The first phase is not covered by this paper, but a detailed dis-
cussion can be found in [6,7]. 

Design and implementation phase starts with the verified model of a state diagram 
developed previously. The phase consists of the six basic steps: 

1. Coding states. 
2. Implementing the timer function. 
3. Implementing the transition function. 
4. Filling up the state space (error recovery). 
5. Implementing the output function. 
6. Building a program. 

A description of the conversion process from a state diagram to a ladder diagram, 
given in the reminder of Sect. 4, will be illustrated using a case study of a simple bot-
tling line. Although simply stated, the problem contains many of the elements of ac-
tual control systems. 

4.1   Case Study 

A bottling line (Fig. 3) consists of a bottle supply with a gate, a conveyor system, a 
scale platform and a bottle-filling pipe with a valve. Bottles to be filled are drawn one 
by one from the supply of bottles and moved to the scale platform by the conveyor. 
As soon as the bottle is at required position, a contact sensor attached to the platform 
is depressed and the bottle-filling valve is opened. The scale platform measures the 
weight of the bottle with its contents. When the bottle is full, the bottle-filling valve is 
shut off, and an operator manually removes the bottle from the line. Removing the 
bottle releases the contact sensor, and the entire cycle repeats automatically. 
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The current line status is described by a set of two-state signals issued by the plant 
sensors and switches: 

S start the line: A manual signal that enables the repetitive line operation; 
P suspend the line: A manual signal that suspends temporarily the bottling process; 
R bottle ready: A signal from the electrical contact of the platform sensor; 
F bottle full: A signal issued by the scale. 

The controller reads the current line status and yields the three control signals: 

G open the gate of the bottle supply (a pulse signal of the length Δt1), 
T start the conveyor, 
Z open the bottle-filling valve. 

 
 
 
 
 
 
 
 
 
 
 

Fig. 3. Bottling line 

There are three different modes of control of the bottling line: Working (regular 
line operation), Blocked (when something went wrong) and Suspended (a mainte-
nance mode). Different modes of control are modeled as different states in a state dia-
gram (Fig. 4). Working mode is modeled as a super-state, which has four sub-states 
nested that correspond to the particular phases of the bottling process.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. Optimized state diagram of a bottling-line 
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do: T=0, G=0, Z=0 
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The model defines the desired behavior of the bottling line. It implements a safety 
feature that the line is blocked until a manual intervention (confirmed by depressing 
of S), if the bottle on the scale platform was broken or the bottle-filling phase has not 
been finished within the period of Δt2. The process of building the requirements speci-
fication, safety analysis and the optimization of the model, has been described and 
discussed in detail in [7]. 

4.2   Coding States 

The algorithm for coding states in a hierarchical state diagram traverses the hierarchy 
in a top-down manner and assigns a separate group of flip-flops to code the sub-states 
of each super-state. This way, at least two flip-flops are needed to code the three 
states at the top level in Fig. 4, and the next two flip-flops are used to code the sub-
states within the state Working. A selected coding of states is shown in Table 1.  

Table 1. The coding of states (flip-flops: M1, M2, M3, M4) 

M1 M2 M3 M4 Bottling line state 
0 0   Blocked 
1 0 0 0 Stopped 
1 0 0 1 Gate Open 
1 0 1 1 Moving 
1 0 1 0 Bottle Filling 
1 1 ∗ ∗ Suspended 

There are six states at the lowest level of nesting shown explicitly in Fig. 4 and 
listed in Table 1. However, the history indicator adds an additional implicit memory 
of the former sub-states of the state Working that are to be re-entered from Suspended. 
Hence, there are in fact four sub-states nested in the state Suspended that correspond 
to sub-states of the state Working. These sub-states preserve the same coding of M3 
and M4. The two transitions between Working and Suspended in Fig. 4 are then trans-
formed into a set of four pairs of transitions between the corresponding sub-states. 
The semantics of history indicator and the transformation described above is defined 
formally in Sect. 4.3. One can note that the coding of states presented in Table 1 is 
more economical than the one-hot coding used routinely for hardwired controllers. 

4.3   Formal Model 

There are nine states, sixteen input symbols and two timers in the finite state time ma-
chine, which defines the semantics of the state diagram in Fig. 4. These sets together 
with the timer function and the transition function are defined below: 

S = { Blocked, Stopped, GateOpen, Moving, BottleFilling,  
Suspended-Stopped, Suspended-Open, Suspended-Moving, Suspended-Filling } 

Σ = { S⋅ P⋅ R⋅ F , S⋅ P⋅ R⋅ F , S⋅ P⋅ R⋅ F , S⋅ P⋅ R⋅ F , ..., S⋅ P⋅ R⋅ F } 
Γ = { t1, t2 } 
τ : τ ( t1 )= (GateOpen, Δt1 ) τ ( t2 )= (BottleFilling, Δt2 ) 
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δ: δ (Blocked, S )= Stopped 
 δ (Stopped, P )= Suspended-Stopped δ (Stopped, S⋅ P⋅ R )= GateOpen 
 δ (GateOpen, P )= Suspended-Open δ (GateOpen, P, t1 )= Suspended-Open 
 δ (GateOpen, P, t1 )= Moving 
 δ (Moving, P )= Suspended-Moving δ (Moving, P⋅ R )= BottleFilling 
 δ (BottleFilling, P)= Suspended-Filling δ (BottleFilling, P, t2 )= Suspended-Filling 
 δ (BottleFilling, P⋅ R⋅ F )= Stopped 
 δ (BottleFilling, P⋅ R )= Blocked δ (BottleFilling, P, t2 )= Blocked 
 δ (Suspended-Stopped, P )= Stopped δ (Suspended-Open, P )= GateOpen 
 δ (Suspended- Moving, P )= Moving δ (Suspended-Filling, P )= BottleFilling 

    In all other cases δ (s, a)= s and δ (s, a, t)= s. These transitions are not shown in Fig 
4. The usual Boolean notation for the subsets of input symbols is used in the above 
definition of the function δ, e.g.: S⋅ P⋅ R represents the set { S⋅ P⋅ R⋅ F , S⋅ P⋅ R⋅ F }. 

4.4   Implementing Timers 

Each timer symbol of a finite state time machine is implemented within a PLC con-
troller by a separate timer block of a ladder diagram. A timer block is a conceptual 
device that has one input signal, which can set (enable) the timer, and one output sig-
nal. As long as the input signal equals 0, the timer is reset with the output equal to 0. 
When the input signal changes to 1, the timer is set and starts counting time. The out-
put signal changes to 1 as soon as the input signal has continued to be 1 for a prede-
fined period of time. Such type of a timer block is called a delay on make flip-flop. 

A Boolean condition that sets a timer depends on the coding of this state, which is 
assigned to the timer by the timer function. For example, timers t1 and t2 (See Sect. 
4.2), are assigned to states Gate Open and Bottle Filling, respectively. Hence, the 
conditions to set the timers can be read from Table 1: 

 
 
 
Each time the above two expressions are executed by a PLC, time is counted and 

the outputs of the timers are set appropriately. 

4.5   Implementing the Transition Function 

The transition function of a finite state time machine defines conditions to set or reset 
flip-flops. It is implemented by a sequence of Boolean expressions that depend on the 
coding of states, input signals and timers. 

Consider the transition from Blocked to Stopped in Fig. 4, described formally as: 
δ (Blocked, S)= Stopped. The transition occurs in a state such that M1= 0 and M2= 0 
(Table 1), when S= 0. After the transition has occurred, the state changes to the one, in 
which M1= 1 and M2= 0 and M3= 0 and M4= 0. So, the transition is implemented by 
setting M1 flip-flop and resetting M3, M4: 
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Similarly, to implement the transition from Bottle Filling to Blocked one must reset 
M1 (M2 is reset in Bottle Filling, the values of M3 and M4 are insignificant). Hence: 
 
 

Boolean expressions that implement the other transitions by setting and resetting 
particular flip-flops can be defined similarly.  

In order to ensure the atomicity of transitions, a set of secondary flip-flops can be 
used, assigned on a one-to-one basis to the primary flip-flops that are used to encode 
the system states. The secondary flip-flops store the next state of the system, calcu-
lated by the execution of Boolean expressions, until the computation of all the expres-
sions has been finished. The next state is then converted into the current state by 
copying the state of secondary flip-flops to the primary flip-flops [6]. 

There are four flip-flops in Table 1. Denote the secondary flip-flops: M11 … M14, 
respectively. A complete sequence of Boolean expressions that implement the transi-
tion function can be defined as follows: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

It can be noted that the expressions to set timers have been placed in the sequence 
before the expressions that implement the transition function. A PLC controller sam-
ples all the input signals at the beginning of each program cycle, before executing any 
Boolean expressions. This way the input signals are up-to-date, but stable during the 
entire program execution. The output of a timer can also be used as an input to ex-
pressions. Therefore the timers are processed before the computation of expressions 
that implement the transition function can start. 

The functions can be minimized using the standard rules of Boolean algebra, e.g.: 

 

4.6   Filling Up the State Space 

The requirement for high dependability of a control program cannot be fulfilled with-
out a planned reaction to faults that can develop during the program execution. 
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Consider a failure that sets an improper value of a primary flip-flop and leads to a 
faulty combination that does not correspond to any valid state of the system [6]. Such 
a combination of flip-flops that is not a valid system state can be detected automati-
cally. Then, a policy of state recovery must exist, which returns the system to a valid 
and safe state. One choice of such a policy is entering a safe stop position, if the one 
exists in the application domain. To implement such a policy, the next state of the sys-
tem must be verified before becoming the current state. If the computed next state ap-
pears invalid, it is discarded, and the system is stopped in a safe position. 

In order to implement such a fail-stop strategy an auxiliary flip-flop can be set tem-
porarily if a faulty next state was observed. If this is the case, the primary flip-flops 
are reset to the safe stop position, in which the automaton waits for being restarted. 

In the bottling line example, all the combinations of flip-flops such that M1= 0 and 
M2= 1 are not used and do not correspond to any valid state. On the other hand, a safe 
stop position exists and corresponds to the state Blocked. A sequence of Boolean ex-
pressions that implement the fail-stop strategy can be written as follows: 

 
 
 
 

 

4.7   Implementing the Output Function 

The output function defines conditions to set or reset the output signals in relation to 
the current state of the finite state time machine. It is implemented by a sequence of 
Boolean expressions that depend on the coding of states. These expressions must be 
computed at the end of the program cycle, after copying the state of secondary flip-
flops to the primary flip-flops – this way the physical outputs of a PLC will be set 
consistently with the computed current state of the system as soon as possible. 

A complete sequence of Boolean expressions that implement the output function of 
the bottling line controller can be defined as follows: 

 

 
 

4.8   Building a Program 

The sequence of Boolean expressions, generated by an automatic tool from a state 
diagram, or a set of state diagrams, defines in all detail a program for a PLC. Such a 
program can be expressed in the language of a ladder diagram or an instruction list 
[1,8]. Each expression is converted into a single line of the ladder. Disjunction of 
terms is represented by parallel branches within the line, while conjunction of sym-
bols is represented by serial elements within a given branch. Negation of an argument 
is implemented by a normally closed contact. Each timer symbol is implemented by a 
separate timer provided by the language. A part of the program for a bottling-plant 
controller is shown in Figure 5. 
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Fig. 5. A part of the program of a bottling line controller 

Finite state time machine can also be implemented using a procedural language, 
e.g. C. A description of the conversion process is outside the scope of this paper. 

5   Conclusions 

This paper describes a method for automatic generation of code for PLC controllers. 
The process of converting a specification into a program code is defined formally, us-
ing a model of finite state time machine. The method has the following advantages: 

• Graphical requirements specification, based on a subset of UML state diagrams. 
• Formal model of the specification with formally defined meaning and behavior.  
• Formal definition of the conversion process. 
• The potential for formal analysis using a temporal logic of Duration Calculus. 

    A disadvantage is complexity that results from exponential growth of the sets of in-
put symbols and states. However, the concept of input symbol helps in making the 
specification unambiguous, and the concepts of hierarchical state diagram and history 
indicator make part of the state space invisible to the modeler. The full size of the 
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state space appears only at the level of a finite state time machine. Appropriate repre-
sentation can make automatic verification of systems of 1020 states feasible [9].  

Models and methods that are based on the theory of finite state machines are rec-
ommended by IEC for modeling and developing safety related systems [10]. 

The method has been tested manually in a student lab, where the students had to 
develop programs (ladder diagrams) executed finally by Siemens S7 PLC controllers. 
The method worked well, and the model of a state diagram proved to be well suited to 
the education profile of the software engineering students working in the lab.  

A version of an automatic tool for program generation is currently being tested. 
The tool inputs UML state diagrams, generated by Rational Rose [11], and outputs the 
ladder diagrams for Siemens Step 7 programming environment [8]. A huge advantage 
of the tool over the prototype generation feature of Rational Rose itself, is simplicity – 
once a state diagram has been developed and validated, the generation process re-
quires virtually no effort of the developer. 

The plans for future work are aimed at the application of Duration Calculus formu-
lae for proving real-time properties of finite state time machines. The other goal is to 
cover concurrent operations that are allowed in the UML-based state diagrams. 
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Abstract. This paper outlines the main achievements of the TACO project. The 
overall objective of the TACO project was to improve the knowledge about 
principles and best practices related to the issues concretised in the TACO 
preproject. On the basis of experiences in the Nordic countries, the project 
aimed at identifying the best practices and most important criteria for ensuring 
effective communication in relation to requirements elicitation and analysis, 
understandability of requirements to all parties, and traceability of requirements 
through the different design phases. It is expected that the project will provide 
important input to the development of guidelines and establishment of 
recommended practices related to these activities. 

1   Introduction 

The title of the reported project is “Traceability and Communication of Requirements 
in Digital I&C Systems Development”, abbreviated TACO. The project was funded 
by Nordic nuclear safety research (NKS) and the project number was 
NKS_R_2002_16. 

The overall objective of the TACO project was to improve the knowledge on 
principles and best practices related to the issues concretised in the preproject. On the 
basis of experiences in the Nordic countries, the project aimed at identifying the best 
practices and most important criteria for ensuring effective communication in relation 
to requirements elicitation and analysis, understandability of requirements to all 
parties, and traceability of requirements through the different design phases. It is 
expected that the project will provide important input to the development of 
guidelines and establishment of recommended practices related to these activities. 

The overall aim of the first phase of the project, the TACO preproject, which was 
carried out in the second half of 2002, was to identify the main issues related to 
traceability and communication of requirements in digital I&C systems 
development. By focusing on the identification of main issues, the preproject 
provided a basis for prioritising further work, while at the same time providing some 
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initial recommendations related to these issues. The establishment of a Nordic expert 
network within the subject was another important result of the preproject. 

The project activities in 2003 constituted a natural continuation of the preproject, 
and focused on the technical issues concretised in the preproject report. The work 
concentrated on four central and related issues, viz. 

• Representation of requirements origins 
• Traceability techniques 
• Configuration management and the traceability of requirements 
• Identification and categorisation of system aspects and their models 

The results from the preproject and the activities in 2003 were presented at the first 
TACO Industrial Seminar, which took place in Stockholm on the 12th of December 
2003. The seminar was hosted by the Swedish Nuclear Power Inspectorate (SKI). 

In 2004, the work has focused on providing a unified exposition on the issues 
studied and thereby facilitating a common approach to requirements handling, from 
their origins and through the different development phases. Emphasis has been put on 
the development of the TACO Traceability Model. The model supports 
understandability, communication and traceability by providing a common basis, in 
the form of a requirements change history, for different kinds of analysis and 
presentation of different requirements perspectives. Traceability is facilitated through 
the representation of requirements changes in terms of a change history tree built up 
by composition of instances of a number of change types, and by providing analysis 
on the basis of this representation. Much of the strength of the TACO Traceability 
Model is that it aims at forming the logic needed for formalising the activities related 
to change management and hence their further automation. 

The work was presented at the second TACO Industrial Seminar, which took place 
in Helsinki on the 8th of December 2004. The seminar was hosted by the Finnish 
Radiation and Nuclear Safety Authority (STUK). 

2 The TACO Approach 

The present chapter introduces the TACO common approach to requirements 
handling, called the TACO Shell. The idea is that the shell is a framework for 
traceability and communication of requirements, which can be filled with different 
contents to reflect the needs in different application areas. To facilitate its practical 
use, the TACO Shell is provided with guidelines, comprising ingredients and recipes, 
for filling and utilizing the TACO Shell. The TACO approach to requirements change 
management is based on a mathematically well-founded traceability model, called the 
TACO Traceability Model, where the introduction, changes, and relationships 
between different requirements, design steps, implementations, documentation, etc. 
are represented in terms of an extended change history tree. The traceability model 
adopted aims at forming the logic needed for formalising the activities related to 
change management and hence their further automation. By complementing the 
model with appropriate terminology, data structures and guidelines for use, the model 
can be adapted to the different needs related to management of changes in computer-
based systems, including safety-critical and security-critical systems. 
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2.1   The TACO Shell 

The TACO Shell is the overall TACO framework for requirements handling, and 
represents a generic approach to lifecycle-oriented, traceability-based requirements 
management. The TACO Shell comprises the overall methodology, the TACO 
Traceability Model, and the different guidelines related to its contents (ingredients) 
and use (recipes). By varying the ingredients and recipes, the shell can be used for the 
development of different kinds of target systems, with different requirements origins, 
different emphasis on quality attributes, and different selection of dependability 
factors. 

2.2   The TACO Traceability Model 

The TACO Traceability Model adopts several of the ideas to fine-grained traceability 
presented in [3]. Accordingly, traceability is facilitated by representing the 
requirements changes in terms of a change history tree built up by composition of 
instances of seven different change types, and to provide analysis on the basis of this 
representation. The change types correspond to the following generic actions 
performed on requirements, or more generally, paragraphs (from [3]): 

• Creating a new paragraph with no prior history. 
• Deleting an existing paragraph. 
• Splitting an existing paragraph, thereby creating a number of new paragraphs. 
• Combining existing paragraphs by a new paragraph. 
• Replacing existing paragraphs by a new paragraph. 
• Deriving a new paragraph from existing paragraphs. 
• Modifying a paragraph without changing its meaning. 

The change history can be represented by a tree where the paragraphs constitute 
the nodes. The tree representation constitutes an appropriate basis for different kinds 
of analysis, including finding 

• all initial paragraphs; 
• all deleted paragraphs; 
• all applicable paragraphs; 
• the complete history of a paragraph; 
• the complete backwards traceability from a set of paragraphs; 
• the complete forwards traceability from a set of paragraphs; 
• the legality of a proposed requirements change. 

The possibility to find the backwards or forwards traceability from a set of 
requirements facilitates backwards and forwards branch isolation and analysis of the 
change history. The versatility of the representation can be further improved by 
extending the representation of the paragraphs to include different parameters that 
classify the requirements, provide additional information, etc. Possible parameters are 
discussed later in the report. 

When it comes to the representation of the actual parameters, it is important to 
distinguish between (1) the information that is essential to identify the paragraph, and 
(2) the various information associated to this parameter. Conceptually, and from a 
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perspective of modularity, it is useful to let the nodes in the change history tree 
represent the necessary and sufficient information related to the identity of a 
paragraph. In the TACO Traceability Model, a paragraph is represented by the 
combination of a unique identifier for this paragraph and a version number to 
distinguish several versions of the same paragraph. At any time, only the latest 
version of a paragraph can be an applicable paragraph. That is, a new version of a 
paragraph is introduced only if this replaces old versions. In any case, it is possible to 
make duplicates of a paragraph when these are treated as different paragraphs. This 
can also be used for representing different variants of the same requirement, possibly 
with “application conditions” attached as guidelines to every single variant. Each 
variant will however be represented with a separate paragraph. 

It is important to note that concepts similar to those described above for the TACO 
Traceability Model can be found in commercial tools for version control and 
configuration management. Although the change types might have other names, they 
typically resemble those defined here. In general, however, these tools do not offer an 
identifiable, formally defined traceability model, and leave to the user to define the 
actual semantics underlying the different change types. The strength of the TACO 
Traceability Model is that it aims at forming the logic needed for formalising the 
activities related to change management and hence their further automation. 

Conceptually, we can think of a node of the change history tree as a versioned 
paragraph, represented by a pair of a paragraph identifier and a version number. In the 
following we will use the change history in Figure 1 as an example. 

The development of the requirements in Figure 1 starts with the introduction of the 
paragraphs p1, p2, and p3. At later stages, another two new paragraphs are 
introduced, viz. p5 and p11. All the other paragraphs are developed on basis of these 
five paragraphs. Paragraphs p1 and p2 are first modified and then combined into a 
new paragraph p4. After a modification, this paragraph is split into four separate 
paragraphs p7 to p10. The latter of these paragraphs is modified and then combined 
with p6, originally derived from paragraphs p3 and p5, giving paragraph p12. Note 
that, at any point in the development of the paragraphs, at most one version of a 
paragraph is applicable (in the sense that it is the valid version of the paragraph). It is 
certainly possible to represent the change history tree textually in such a way that the 
temporal relationships between the different changes are maintained. 

Let us now consider the other information attached to a paragraph. As has been 
argued in the foregoing, it is not necessary to represent this information in the change 
history tree. The purpose of the tree is to give a complete representation of the 
changes and how they are related to each other. What about the other information, 
including the actual text of the paragraph? Formally, we can think of these relations in 
terms of some basic mathematical concepts: 

• Sets: These are finite collections of objects of some type, and can be used for 
representing subsets of the paragraphs. By way of example, the classification of 
paragraphs with respect to Business plan, Requirements document, Design 
specification, etc, can be represented by means of separate, maybe overlapping sets 
corresponding to the different classification terms. Finding, say, all Business plan 
related requirements is then trivial, since they are given by the corresponding set. 
Checking whether a requirement belongs to the Business  plan is also easy  and can 
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Fig. 1. The example change history 

 

     be done simply by checking whether the given paragraph is a member of the 
corresponding set. On the other hand, finding the class of a given paragraph cannot 
be done by simple look-up but involves checking all the different sets for 
membership. 

• Mappings: These are functions from a source set to a target set, and can be used for 
assigning information to the paragraphs in a simple look-up fashion. With this 
solution, e.g. the classification of paragraphs can be represented by mappings from 
the paragraphs to their classification. Finding the classification of a requirement is 
then simple, since it reduces to looking up the classification of that requirement. 
Finding all requirements is possible, but less trivial than for sets, as it involves 
selecting all requirements that are mapped to a certain term. On the other hand, the 
concept of relation is more convenient if there may be more than one class for a 
requirement. 

• Relations: These are more general than mappings, since they allow an element in 
the source set to be associated to more than one element in the target set. With this 
solution, finding the classification of a requirement involves finding all elements in 
the target set (the classes) that are related to the given requirement. Finding all 
requirements related to a certain class can alternatively be understood as the 
inverse relation. 
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Sets can be considered as being implemented as simple lists. Mappings and 
relations can be considered as being implemented as tables. As we will see in the 
continued discussion, these representation concepts will suffice for representing all 
information associated to the requirements. It is of course possible to represent the 
same information in other ways as well, as long as consistency is maintained. 

A basic piece of information related to a requirement is certainly the statement 
(phrasing) of the requirement. Assuming that (at most) one statement is associated to 
each requirement, we may think of this information as being available by means of a 
mapping from versioned requirements to their statements, see Figure 2. 

Table 1. Mapping from requirements to their statements 

Requirement Statement 
(p1,v0) <Statement of version v0 of 

paragraph p1> 
(p1,v1) <Statement of version v1 of 

paragraph p1> 
(p2,v0) <Statement of version v0 of 

paragraph p2> 
... ... 

(p13,v0) <Statement of version v0 of 
paragraph p13> 

As is evident from Table 1, the statement of a given requirement can be found by 
simple look-up in the table implementing the mapping. The table can be utilized in 
different ways. By way of example, finding all relevant requirements can be found by 
filtering the mapping with respect to the applicable paragraphs to find the subset of 
the mapping that relates to applicable paragraphs only. Filling in the relevant 
information is an obvious task of an information system designed to support the use 
of the model. 

Other useful information can be represented in the same way. By way of example, 
a recurrent problem with modernization projects is the difficulties of recapturing both 
the “what” and the “why” of a requirement. In the TACO Traceability Model, the 
“what” is covered by Table 1. In a similar way, the “why” of the requirements can be 
covered by a similar mapping from requirements to comments giving information on 
the background, motivation, reasons, etc. for including the requirements. 

2.3   Utilization 

A possible utilization of the TACO Traceability Model is in the identification of 
relative influences, correlations, and conflicts between safety/security 
countermeasures and other dependability factors. On this basis, guidelines to the use, 
implementation, and verification of the different change types can be developed. 
These guidelines would have to reflect the identified relative influences, correlations, 
and conflicts in the sense that they provide a better basis for controlling the effects of 
changes. The guidelines should include descriptions on how different techniques can 
be applied for this purpose, such as the use of formal specification and proof for 
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demonstrating the correct derivation of requirements, coding standards for 
implementation of specific design features, etc. 

The utilization and applicability of the TACO Traceability Model will be further 
explored and documented by cooperation with other projects and partners. The results 
will be collected within the framework of the Nordic project MORE (Management of 
Requirements in NPP Modernization Projects). 

On basis of compiled experiences on the problem of handling large amounts of 
information in relation to Nordic modernization projects, the MORE project will 
investigate how the approach to requirements management developed in the TACO 
project can be utilised to handle large amounts of evolving requirements in NPP 
modernization projects. It is expected that the activity will provide important input to 
the development of guidelines and establishment of recommended practices related to 
the management of requirements in such projects. This kind of input is of high 
importance to a common understanding between vendors, utilities, and regulators 
about the proper handling of requirements in the digital I&C systems development 
process, and consequently to the successful introduction of such systems in NPPs. 

3   TACO Guidelines 

The TACO project aims at providing input to the development of guidelines and 
establishment of recommended practices related to requirements elicitation and 
analysis, understandability of requirements to all parties, and traceability of 
requirements through the different design phases. In this chapter, guidelines will be 
presented to the practical use of the TACO Shell in activities related to the different 
lifecycle phases. The guidelines can be seen as comprising ingredients and recipes for 
filling and utilizing the TACO Shell. By gradually complementing the TACO Shell 
and the TACO Traceability Model with appropriate terminology, data structures and 
guidelines for use, the model can be adapted to the different needs related to 
management of changes in computer-based systems, including safety-critical and 
security-critical systems. By way of example, the model can organize communication 
and analysis of requirements by generating subsets of the change history showing the 
backwards or forwards traceability of given requirements. The TACO guidelines help 
to utilize these possibilities in practical work. 

By varying the ingredients and recipes, the TACO Shell can be used for the 
development of different kinds of target systems, with different requirements origins, 
different emphasis on quality attributes, and different selection of dependability 
factors. The TACO guidelines can be developed on a continual basis to fit the use, 
implementation, and verification of the different change types. The guidelines should 
include descriptions on how different techniques can be applied, such as the use of 
formal specification and proof for demonstrating the correct derivation of 
requirements, coding standards for implementation of specific design features, etc. 

The mathematical underpinnings of the TACO Guidelines is described in Sivertsen 
et al. [4] in terms of a functional specification of the change history tree, the different 
change types and different kinds of analysis that can be performed on basis of this 
representation. The TACO Traceability Model is specified in two layers, reflected in a 
hierarchy of two specifications. In the “lower” specification, the different change 
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types are specified inductively as generators, thus providing a data structure for the 
change history. At the top of this specification, the different change types are 
specified as operators, checking that the given change is legal and producing a lower 
layer representation together with the set of applicable paragraphs. By applying these 
operators, only legal change histories are represented. 

3.1 Validity of Requirements Changes 

Software development needs to deal with changes to the requirements, also after the 
requirements specification phase ideally is completed and the requirements frozen. 
The evolutionary nature of software implies that changes will have to be anticipated. 
Other changes may be necessary due to our evolving understanding about the 
application under development.  

One of the lessons learned in the software engineering area is that software should 
be designed for change. The focus in the present report is on how to manage the 
evolution of the requirements in this situation. The present section deals with how the 
TACO Traceability Model can be utilized in the validation of the changes 
representing this evolution. 

The TACO Traceability Model is based on a number of change types that can be 
employed to manage requirements changes throughout the life cycle of a system. 
Each change introduced in the life cycle should in principle be validated. Depending 
on the level of rigidity or formality employed, the validity of a change can be done in 
a variety of ways, from a simple inspection to a formal mathematical proof. 
Notwithstanding these differences, we will in the following concentrate on what 
validity in general means for the different change types. Validity should not be 
confused with the legality of changes. While validation concerns the semantics of the 
changes, the legality of a change can be checked mechanically from the structure of 
the change history tree. 

Creating: Applied on requirements, creating a new paragraph with no prior history 
involves introducing a new requirement. The validity of the requirement involves 
both its correctness with respect to its intended meaning, its completeness with 
respect to its coverage of its intended meaning, and its consistency with other 
requirements. In short, the validity of a new requirement requires that it faithfully 
reflects the intended meaning and that it is not in conflict with other requirements. 
This is the only change type that is allowed to introduce new requirements or new 
aspects of requirements that are not already covered by existing paragraphs. 

Deleting: Deleting an existing paragraph involves that a requirement in fact is 
withdrawn from the set of requirements. A requirement can be deleted if either the 
requirement in itself is no longer valid, or it is covered by other requirements. To 
demonstrate the validity of the change therefore either involves showing that it is the 
intention to withdraw the requirement as such or showing that it can be derived from 
other requirements. 

Splitting: Splitting an existing paragraph involves creating a number of new 
paragraphs that collectively replaces the given one. Applied on requirements, a 
paragraph split is valid only if the requirements given in the new paragraphs together 
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cover the replaced requirement, but not more. In other words, splitting a paragraph is 
not valid if the new paragraphs require more or less than the replaced paragraph. 

Combining: Combining a set of existing paragraphs involves creating a new 
paragraph on basis of the existing ones, without deleting any of the existing 
paragraphs. Applied on requirements, a combination of paragraphs is valid only if the 
new paragraph covers the given paragraphs, but not more. In other words, combining 
a set of paragraphs is not valid if the new paragraph requires more or less than the 
given paragraphs. 

Replacing: Replacing a set of existing paragraphs involves creating a new paragraph 
that replaces the existing ones. The validity criterion is identical to that of 
combination. Replacing a set of paragraphs and splitting an existing paragraph are 
inverse changes. 

Deriving: Deriving a new paragraph from a set of existing paragraphs involves 
creating a new paragraph on the basis of the existing ones, without deleting any of the 
existing paragraphs. Applied on requirements, deriving a new paragraph is valid only 
if the requirement is one of the possible results/consequences of the requirements it is 
derived from. 

Modifying: Modifying a paragraph should involve no changes to its meaning. The 
new requirement should therefore cover the replaced requirement, but not more. 

Attempts on demonstrating the validity of individual changes may reveal flaws in 
the requirements management, such as introducing new paragraphs in a paragraph 
split that actually adds new requirements that are not covered by the replaced 
requirement. Detecting such flaws can be utilized in the requirements change process 
to produce an appropriate requirements change history, such as specifying such added 
requirements in terms of separate changes of type creating new paragraphs with no 
prior history. Similarly, insufficient coverage of the replaced requirement in a split 
change can be made “clean” by complementing the split with separate changes of type 
deleting an existing paragraph. In this way, an invalid change can be replaced by a 
set of valid changes, and the need for demonstrating the validity of the different 
changes can be made explicit. 

3.2 Formal Review and Test of Requirements 

Due to the high costs associated with defects slipping through the requirements 
specification phase, formal review and test of the requirements documents are usually 
highly prioritised activities. Industrial experience shows that very often a significant 
fraction of the most critical software defects are introduced already in the 
requirements specification. Of this reason, it is generally recommended to carry out 
tests on this specification that are as near as exhaustive as possible, and for this 
purpose, the use of a formal approach is often advocated. 

Requirements analysis and requirements validation have much in common, but the 
latter type of activity is more concerned with checking a final draft of the 
requirements document which includes all system requirements and where known 
incompleteness and inconsistency has been removed, see [1]. As such, it should be 
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planned and scheduled in the quality plan for the project, and be carried out in 
accordance with good quality assurance practice. 

One of the theses behind the present report is that the TACO Traceability Model 
can be used for revealing and correcting several kinds of shortcomings discovered 
during the validation of the requirements document. This is true in particular for 
problems related to lack of conformance with the standards employed. The validation 
of the requirements against a given standards can be carried out by utilizing the 
information included about the origins of the requirements. 

Such a validation could include the following steps: 

1. Add all the requirements from the given standard by creating new paragraphs. If 
certain requirements are found irrelevant, the exclusion of these can be made 
explicit by deleting these paragraphs. This also makes explicit the need to validate 
their exclusion. 

2. Check that the applicable and deleted paragraphs together constitute the complete 
set of requirements given in the standard. This can partly be automated by keeping 
these requirements on file. 

3. Validate the change history related to the applicable paragraphs originating from 
the standard, utilizing the guidelines listed in section 3.1. 

4. Validate the deletion of paragraphs originating from the standard, utilizing the 
guidelines listed in section 3.1. 

Using the TACO Traceability Model in validating the requirements document may 
be done in the context of a formal requirements review meetings, in accordance with 
general guidelines to such meetings. Requirements validation may also take other 
forms, like prototyping, model validation, and requirements testing, but the focus in 
the TACO project has been on the utilization of the requirements change history in 
the review meetings. For further reading on formal review meetings, see [1]. 

Requirements reviews are conventionally carried out as a formal meeting involving 
a group representing the stakeholders. The general idea is that the system 
stakeholders, requirements engineers and system designers together check the 
requirements to verify that they adequately describe the system to be implemented. 
Traceability and requirements changes are of course only part of the concern at such a 
meeting. The TACO Traceability Model may however provide important assistance 
for discovering requirements problems related to requirements conflicts or lack of 
conformance to standards and other requirements origins. 

In the end, the requirements traceability is itself a concern of the requirements 
review. As discussed in [1], the requirements should be unambiguously identified, 
include links to related requirements and to the reasons why these requirements have 
been included. Furthermore, there should be a clear link between software 
requirements and more general systems engineering requirements. This relates to the 
obvious fact that the software engineering activity is part of the much larger systems 
development process in which the requirements of the software are balanced against 
the requirements of other parts of the system being developed [2]. Furthermore, the 
software requirements are usually developed from the more general system 
requirements, and thus the traceability and consistency with these requirements is a 
basic premise for a successful process and its resulting product. 
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3.3 Correctness of Implementation 

The correctness of implementation is a quality that characterizes the ability of the 
application to perform its function as expected [2]. Reasoning about correctness 
therefore requires the availability of the functional requirements, and we say that the 
application is functionally correct if it behaves according to the specification of these 
requirements. 

In principle, correctness is in this context a mathematical property that establishes 
the equivalence between the software and its specification. In practice, the assessment 
of correctness is done in a more or less systematic manner, depending on how 
rigorously the requirements are specified and the software developed. In any case, the 
assessment requires that the requirements can be traced forward to their 
implementation, and vice versa.  

The TACO Traceability Model supports the assessment of correctness by relating 
the requirements and their implementation through the change history tree. This 
relationship can be utilized in both a forwards and backwards fashion. The TACO 
shell provides both forwards and backwards traceability analysis, without requiring 
separate links for forwards and backwards traceability. The different types of analysis 
can be defined on the basis of one and the same representation of the change history 
tree. 

In general, a forward traceability approach to assessment of correctness would take 
the specified requirements as starting point, and then demonstrate that all the 
requirements have been correctly implemented. Analogously, a backward traceability 
approach would take the implementation as starting point and check the consistency 
with the requirements. Of these two, the forward approach probably fits better with 
respect to a conventional approach to correctness assessment. 

In practice, using the TACO Traceability Model for assessment of functional 
correctness can be done in terms of the following steps. 

1. For each requirement introduced, indicate whether it is a functional requirement. 
This can be done by means of mappings.  

2. For each implementation of a requirement, indicate - by means of mappings - that 
it is an implementation. 

3. For each functional requirement introduced, check that the forward traceability 
leads up to an implementation of this requirement. This can be done by: 

4. For each functional requirement, check that the requirement is correctly 
implemented by validating the sequence of changes leading from the requirement 
to its implementation. 

3.4 Requirements Understanding 

One important aspect of the requirements understandability relates to the 
understanding of the interface between the application to be developed and its 
external environment (such as the physical plant). This requires that the software 
engineers understand the application domain and communicate well with the different 
stakeholders. To facilitate this communication, it might be necessary to specify the 
requirements in accordance with the different viewpoints the stakeholders have to the 
system, where each viewpoint provides a partial view of what the system is expected 
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to provide. As a consequence, the requirements specification will cover different 
views on the same system, giving an additional dimension to the question of 
consistency between the different requirements. An important task of the software 
engineers is to integrate and reconcile the different views in such a way that 
contradictions are revealed and corrected. 

In order to cope with the complexity of the resulting set of requirements, it is 
advisable to classify and document the requirements in accordance with the views 
they represent. This way of separating the concerns can provide a horizontal, modular 
structure to the requirements. Modularity provides several benefits in the 
requirements engineering process, including the capability to understand the system in 
terms of its pieces. This first of all relates to the fact that modularity allows separation 
of concerns, both with respect to the different views represented by the different 
stakeholders’ expectations to the system and to different levels of abstraction. This 
makes it easier for the different stakeholders to verify their requirements, while at the 
same time providing a means for handling the complexity of the full set of 
requirements. The TACO Traceability Model can be adopted to facilitate this 
separation of concerns by relating requirements to the views they reflect. This can be 
utilized in different kinds of analysis of the requirements throughout the development 
of the system. 

Some of the stakeholders may be unable to read the types of specifications 
preferred by the software engineers or mandated for the application. In such cases, the 
needs of the different stakeholders can be reconciled by providing (horizontal) 
traceability links between the, possibly formal, specifications used by the software 
engineers and more informal, natural language based expression of the same 
requirements. One could even consider providing links between the requirements and 
the user manual within the same traceability model. This could be utilized both for 
communication purposes and for the purpose of developing the user manual in 
parallel to the engineering of the requirements, which in some cases may be a 
recommended practice. 

3.5   Implementation 

The TACO Guidelines can be implemented in a variety of commercial or non-
commercial tools extending the tools’ capabilities by supporting relationship to 
diverse requirements sources in a formalized way and not only support the software 
development process from the specified requirements. 

4   The TACO Network 

The TACO project organisation is intended to constitute a Nordic expert network on 
requirements elicitation, specification, and assessment for digital I&C. The network 
provides a forum for exchanging experiences and research results on the questions to 
be addressed by the project, and provides a basis for evaluating the relative merits of 
the different practices, the relative importance of identified criteria, etc. A related 
concern is to facilitate knowledge transfer from other areas applying equipment that 
are used in NPPs. 
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The emphasis on best practices and identified success criteria means that the 
project needs to deal with real cases involving the development of a digital I&C 
system. By organising the project on basis of a Nordic expert network, the project 
contributes to the synthesis of knowledge and experiences, enhancement of 
competence on requirements elicitation, specification, and assessment, improved 
awareness of alternative practices, a basis for assessing current practices, and an 
incentive to search for best practice. 

5 Further Work 

The results from the TACO project will be utilized in the Nordic project MORE 
(Management of Requirements in NPP Modernization Projects, NKS project number 
NKS_R_2005_47). The overall objective of MORE is to improve the means for 
managing the large amounts of evolving requirements in NPP modernization projects. 
On basis of compiled experiences on the problem of handling large amounts of 
information in relation to Nordic modernization projects, the project will investigate 
how the approach to requirements management developed in the TACO project can 
be utilised to handle large amounts of evolving requirements in NPP modernization 
projects. While configuration management typically is file based, the TACO 
Traceability Model is paragraph based and therefore possibly more adequate for 
handling requirements (i.e., a requirement, or a composition of requirements, is 
treated as a single paragraph). The research will study how requirements can be 
grouped into concepts, and how design patterns can help to achieve this. One 
possibility is to utilise requirements (or design) templates, with guidance on how 
requirements can be decomposed or composed. The research will clarify how design 
patterns and requirements templates can be generated by utilizing the change history 
trees of the TACO Traceability Model. 
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Abstract. The purpose of safety systems is to reduce dangers to hu-
man life or environment to acceptable levels. In order to aid companies
in this when developing safety systems for functional safety of machin-
ery, the standard IEC 62061 has recently been released. The standard
proposes an outlined design method to follow requirements specification.
However, companies that use the standard have to implement a design
method on their own. This paper presents an implementation and en-
hancements to the design method in terms of using state machines and
function block analysis documentation. The state machine connects the
functional safety requirements with ordinary behaviour for equipment
under control. The proposed method is evaluated in an industrial case
and the main results from this indicate that the method works well, but
needs tool support. Hence, the paper presents requirements for such a
tool and discusses how it could be used to develop safety systems.

1 Introduction

Safety means absence from catastrophic consequences on the user(s) and the en-
vironment [1]. A safety-critical system is one by which the safety of equipment
or a plant is assured. Examples of such systems are aeroplanes, nuclear plants
and machinery systems. In order to develop safety-critical systems, structured
methods are needed. Safety-critical development includes all project phases, from
requirements specification with risk analysis, design, implementation, to verifica-
tion and validation of the system. The development often involves both hardware
and software (embedded systems).

This work is performed in a Swedish research project, SafeProd [8], which
purpose is to develop guidelines aiding companies to interpret different safety
standards. The paper describes application of the standard for functional safety
of machinery IEC 62061 [2], which is based on the more general standard IEC
61508 [3]. IEC 62061 addresses both hardware and software safety issues.

There are three objectives of this paper:

– elaborate the design method for safety-related control functions in IEC 62061
– evaluate the proposed design method in an industrial case study
– define features for a tool that aim to help engineers to use the design method.

R. Winther, B.A. Gran, and G. Dahll (Eds.): SAFECOMP 2005, LNCS 3688, pp. 330–343, 2005.
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After the requirements have been specified and before the actual implemen-
tation of the system, the standard points out what should be done, but does not
describe how. Hence, a company that implements the IEC 62061 is not aided on
how to perform the design of the safety-related control functions. Additionally,
the design method is very important in order to achieve the desired quality of
the system. In this paper, we propose and clarify a design method to be ap-
plied when IEC 62061 is used in an industrial safety project. Furthermore, the
method is evaluated in an industrial case and experiences from the evaluation
are discussed. The main result of the evaluation is that the design method is ap-
propriate to use and aid the implementation of safety-related control functions.
However, in order to use it in a large scale, tool support is needed. No such tool
exist today, but this paper outline some tool features.

The outline of the paper is as follows. In Section 2, the IEC 62061 standard
for functional safety of machinery is described briefly including background and
objectives, as well as basic terminology together with process and artefact re-
quirements. Section 3 details the implementation of a design and development
process according to the standard and also provides an example with a result-
ing artefact structure. Section 4 reports from an industrial case study in which
the method was applied and executed. In Section 5 possible features of a tool
supporting the design and development process are outlined. Section 6 then
summarizes the paper with a discussion of results and further work.

2 The IEC 62061 Standard for Functional Safety of
Machinery

2.1 Background

Automation together with requirements for larger production volumes and re-
duced physical effort have resulted in increased demands for Safety-Related Elec-
trical Control Systems (SRECS) in order to achieve machine safety. Development
of these SRECS employing complex electronic technology may be a difficult task
requiring a considerable share of the total machinery development effort. As
a response to these problems, IEC 62061 [2], a standard for safety of machin-
ery and specifically functional safety of safety-related electrical, electronic and
programmable electronic control systems, has been developed.

2.2 Objectives and Scope

IEC 62061 is a standard specific for machinery within the framework of IEC
61508 [3] and it was published in January 2005. It intends to facilitate the perfor-
mance specification of safety-related electrical control systems in relation to the
significant hazards of machines. Furthermore, it defines an approach and provides
requirements to achieve the necessary performance of SRECS. The standard is
intended to be used by machinery designers, control system manufacturers, in-
tegrators and others involved in the specification, design and validation of a
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SRECS. The approach and requirements address assigning safety integrity lev-
els, enabling SRECS design, integration of safety-related subsystems and SRECS
validation. Requirements are also provided for information for safe use of SRECS
of machines that can also be relevant to later SRECS life phases.

IEC 62061 provides safety by means of employing SRECS as parts of safety
measures that have been provided to achieve risk reduction and thereby avoid-
ing faults [1]. Additionally, the electrical control system that is used to achieve
correct operation of the machine process contributes to safety by mitigating
risks associated with hazards arising directly from control system failures, i.e.,
tolerating faults [1].

2.3 Basic IEC 62061 Terminology [2]

IEC 62061 has a detailed list of terminology from which we here present only
the most essential for understanding this paper in Table 1.

Table 1. IEC 62061 Terms

Term Description
Safety-Related
Electrical Control
System (SRECS)

Electrical control system of a machine whose failure can result in
an immediate increase of the risk(s)

Safety-Related
Control Function
(SRCF)

Control function with a specified integrity level that is intended to
maintain the safe condition of the machine or prevent an immediate
increase of the risk(s)

Subsystem Entity of the top-level architectural design of the SRECS where a
failure of any subsystem will result in a failure of an SRCF

Function block Smallest element of a SRCF whose failure can result in a failure of
the SRCF. Note that this definition is not equivalent to the function
block as a programmatic concept described in IEC 61131-3 [11]

Electrical control
system

All the electrical, electronic and programmable electronic parts of
the machine control system used to provide, for example, opera-
tional control, monitoring, interlocking, communications, protection
and SRCFs

Safety Integrity
Level (SIL)

Discrete level (one out of a possible three) for specifying the safety
integrity requirements of the SRCFs to be allocated to the SRECS,
where SIL three has the highest level of safety integrity and SIL one
has the lowest. Note that this definition differs from IEC 61508

2.4 Standard Process Requirements

In order to support SRECS design and development, the IEC 62061 standard
imposes a structured development method to be used for design and architecture
elicitation. However, it does not provide detailed guidance of the composition
of such a method but outlines it to include ten steps and provides detailed
requirements for which information to be produced. It is up to the user of the
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standard to implement a method fulfilling these requirements. The first steps
are as follows according to the standard [2]:

1. Identify the proposed SRECS for each SRCF from the safety requirements
specification (SRS)

2. For each function decompose the SRCF into function blocks and create an
initial concept for an architecture of the SRECS

3. Detail the safety requirements of each function block
4. Allocate the function blocks to SRECS subsystems
5. Verification

This paper focuses on these steps since these, this far, have been the scope of
the research project (see Chapter 4) in which this paper has been produced.
However, the standard also outlines a five-step procedure following these steps
concerning subsystem realisation and design.

2.5 Artefact Structure Requirements

IEC 62061 requires that the SRS shall describe the functional safety and safety
integrity requirements of each SRCF to be performed. This includes the condi-
tions of the machine in which the SRCF shall be active. The functional safety
requirements of the SRCF shall then be further decomposed into so called func-
tion blocks forming a logical AND of the SRCF. A function block is defined
as the smallest element of an SRCF whose failure can result in a failure of the
SRCF. They are thus an abstraction of the functional components and should
not be confused with its physical structure. The standard then requires that the
function blocks structure should be documented in terms of:

– A description of the structure
– The safety requirements for each function block
– Inputs and outputs and internal logic of each function block

Furthermore, the standard requires that function blocks shall be allocated to
subsystems, realizing functional safety requirements. Non-functional safety re-
quirements like maintainability and integrity [1] are then captured in the de-
scription of the subsystems. If the safety requirements of the subsystem cannot
be realized with a single component, then the subsystems must be further de-
composed into subsystem elements. When this structure is clear at an element
level, the function blocks are decomposed into function block elements. These
are then mapped onto subsystem elements in a many-to-one relationship with
many function block elements with similar functionality in different SRCFs being
allocated to a single subsystem element. For example, motion sensing in differ-
ent SRCFs is mapped to an inductive motion sensor subsystem. In Fig. 1, an
example artefact structure is provided. For simplicity, the function blocks and
subsystems consisting of only one element have not been illustrated as being
composed of single elements. Hence, the standard provides a structured design
framework in which each part of the safety related electrical control system is
traceable from hazard analysis to physical components of the SRECS.
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Fig. 1. Example of a design artefact structure according to the IEC 62061 standard

3 Design and Development Method Implementation

3.1 Process

In Fig. 2, a suggested process implementing the requirements stated in Section
2.4 is shown. This process follows the same basic outline as prescribed by the
standard and have been used in the research project. Below follows step-by-step
details on how these requirements may be implemented. Also, an overview which
artefacts that are related to which documents is provided in Fig. 3.

Step 1 - Refine SRS. The system analyst revises the SRS specified by the
requirements specifier. He/She relates the SRCFs to the behaviour of the EUC
(Equipment Under Control) by using a state machine denoting in which states of
the normal equipment behaviour that the SRCF is active. The IEC 62061 does
not prescribe the SRS to include such a state machine, but it proved important
for method success as described in Section 3.2.

Step input: FBSD
Step output: Refined SRS
Steps 2-3 - Function block analysis and architecture prototyping.

The architecture and design phase starts with the system analyst breaking down
the functional safety requirements into function blocks and documenting them
as required. In this step the system analyst should communicate with system
developers implementing a prototype according to the suggested function block
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Fig. 2. The implemented design process

structure. By this early prototype implementation, it is possible to validate that
the suggested architecture is feasible to implement. The function blocks structure
shall be captured in a function block structure document. In this document,
it shall be specified to which SRCF that each function block is traced. This
facilitates verification since it is possible to trace a safety requirement from
specification to implementation. Furthermore, the function blocks inherit the
SIL of the SRCF they are traced to.

Step input: Refined SRS
Step output: Function Block Structure Document (FBSD)
Step 4 - Allocation of function blocks to subsystems. Finally, the sys-

tem analyst identifies, in terms of physical components, the subsystems needed
to implement allocated function blocks processing their inputs and outputs. Typ-
ically, a subsystem implements many function blocks with similar functionality.
For example logic function blocks of the different safety related control functions
are likely implemented by the same PLC subsystem. This is documented in a
subsystem definition document. For this step it is enough to name the different
subsystems since these will be specified and documented in detail in later steps
(that is steps 6-10).

Step input: FBSD
Step output: Outlined subsystem definition document (SDD) with subsys-

tems named and traced to function blocks.
Step 5 - Verification. A review meeting then takes place together with

the safety requirements specifier and system developers in order to verify safety
requirements and to ensure that the suggested solution is possible to implement.
If the review meeting does not approve the suggested solution, then steps 2-4 are
iterated until the solution is acceptable and approved in a new review meeting.

Step input: Refined SRS, FBSD, Outlined SDD
Step output: Verified SRS, verified FBSD,verified SDD.

3.2 Example SRECS Design - Rotation Speed Supervision

In order to further illustrate the method, a short example is provided below.
This example is partly fictional and partly using some safety functionality as
discovered during the industrial case study described in Section 4.

In the example the EUC, a machine in an automation environment, has a
rotating part normally moving at high speed. In order to specify its behaviour,
the EUC has been implemented according to the ANSI/ISA S88 standard state
transition model [9]. However, the machine is currently running without any
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Fig. 3. Artefact-to-document mapping in method implementation

protections. If operators are caught by this part while it is moving, result may
be severe injuries. There is a need to reduce the risk for this during normal
operation. However, there is also a need to maintain and clean the machine
with power enabled in order to shorten machine down times. In addition to a
safe stand still under these conditions, there is a need for the rotating part to
move at low speed during maintenance and cleaning in order to access the entire
part easily. For the purpose of reducing risks to acceptable levels, three different
SRCFs are used:

– Guard Door - active during normal machine operation. If guard door is not
closed, it is not possible to empower the EUC, except for when one of the
other two safety functions is active.

– Safe Stand Still - active during cleaning and maintenance. Rotating part
must not move, but power to electrical drives is enabled.

– Safe Low Speed - active during cleaning and maintenance. Rotating part
speed must be less than a specific value if low speed is requested.

In accordance with Step 1 of the method described above, a state machine is
then elicited for the example, see Fig. 4.

To improve diagram clarity, the transient states (states specifying the ma-
chine is under way to another state) that the ANSI/ISA S88 standard suggests
for machine behaviour have not been accounted for in Fig. 4 above. The state
machine thus relates the safety functions to the ordinary EUC behaviour. In the
diagram it is indicated that the SRCF guard door is active during the states
HELD and RUNNING and then leaves the task of keeping the system safe to
the SRCFs Safe Stand Still and Safe Low Speed if the guard door is opened.
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Fig. 4. State machine diagram example relating EUC behaviour to SRCFs

It then follows from steps 2-3 of the method that the SRCFs should be broken
down into function blocks specifying input and output relationships. The guard
door SRCF is broken down into function blocks door sensing, logic and power
switching. Furthermore, the Safe Stand Still and the Safe Low Speed SRCFs are
then broken down into function blocks speed sensing, logic and power switching.
The next step, allocation of these function blocks to subsystems (step 4), is then
done as follows:

– Door sensing → Electromechanical door position sensor
– Speed sensing → Encoder signal sensor
– Power switching → Contactor and server drive

In this example neither details of each function block, function block diagrams
nor subsystems details are provided due to the limited space. We do though
provide an artefact overview in order to illustrate the artefact relationship, see
Fig. 5. In this figure we also see that the door position sensor is duplicated. This
illustrates the concept of duplicating sensors due to IEC 62061 requirements on
number of tolerated hardware failures on a subsystem for a specific safe failure
fraction [2] and required SIL.

4 Industrial Evaluation

4.1 Project Characteristics

The standard and the suggested enhancements were applied in a currently running
research project, SafeProd [8]. The project includes the following participants:

– Software experts and system analysts - Lund University
– Hardware experts - Swedish National Testing and Research Institute
– Machinery manufacturer where EUC development project is sited
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Fig. 5. Resulting example artefacts relationship

The objectives of SafeProd are to apply the IEC 62061, IEC 61508 and IEC
61511 (process industry sector specific safety standard) standards to industrial
problems in three separate sub projects and publish guidelines which aim at
faciliting the application of these standards in Swedish industry.

4.2 Method Execution

The SRS was created according to a template, which has been elicited in the
project using MS Word. Initially there was no state machine present in the SRS
produced. This had the effect that the system analyst did not know when the
SRCFs was supposed to be active, since the requirements did not address this.
In the light of this hindsight, a state machine model of the EUC was elicited
using the tool Omondo EclipseUML Studio [10] and UML [13] state diagrams in
which the SRCFs were denoted as either new states or actions during transitions
between states. These diagrams were then added to the specification. A function
block analysis was then made of the SRS, resulting in a function block structure
document written in MS Word in accordance with the method. In this document,
information according to the IEC 62061 requirements for function blocks (see
Section 2.5) was made available.

The document was elaborated iteratively using project meetings for approval
of the documentation that the system analyst had elicited. The function blocks
with similar functionality in different SRCFs were then allocated to common
subsystems (e.g. sensors sensing the same type of data, like torque sensors and
safety PLCs realizing logic function blocks). Implementation of an architectural
proof of concept according to this function block structure is currently just about
to begin in the project. Also, the project currently is documenting these sub-
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systems into a subsystem definition document written in MS Word, in which
requirements according to the standard are collected for each of the subsystems.

4.3 Experiences

The system analyst, who performed most of the design analysis, experienced that
the state diagram notation facilitated communication of the ordinary behaviour
of the EUC state model, based on that of the ANSI/ISA S88 standard [9] and
assisted understanding and communication when the SRCFs should be active.
The system analyst was unable to functionally decompose the SRCFs to function
blocks until state diagrams were available.

The function blocks analysis allowed the SRECS functional requirements to
be specified precisely and correctly. The ambiguities related to what information
that was to be recorded was dealt with and the input and output to the SR-
CFs were identified. Furthermore, specifying the functional requirements of the
SRECS in function blocks and the non-functional (except for safety requirements
which were stated at a function block level) requirements at subsystem level
proved to be an effective way of structuring the system requirements. This had
previously been experienced as a problem by the industrial project. The func-
tional requirements are typically derived from scenarios of SRCF behaviour and
the non-functional requirements are more likely derived from expected hardware
behaviour. Separation of these into an abstract functional layer and a physical
non-functional layer thus benefited SRECS development greatly.

In addition to the system analyst experiences, separate follow-up interviews
with a project leader as well as a advisor for product safety of the machinery
manufacturer organisation were conducted separately. These interviews provided
the following information:

– Regarding formerly used design methods, these have previously been of lesser
complexity. Risk analysis has provided sufficient information for direct imple-
mentation. Furthermore, safety systems have been mostly in form of COTS
safety components. There is however increasing needs of customising safety
functions, which may not be offered by these.

– When it comes to the terms of expectations upon the standard before the
project, the respondents expected more sophisticated safety functions allow-
ing increased production time with adequate safety. Previous standards like
EN954-1 [12] have provided more primitive safety functions like powerless
machine states, disturbing production flow when active. This has sometimes
made users deliberately by-passing safety functions in order to increase pro-
duction. There are also expectations of being able to handle complexity and
modularisation better; by component and block structures in safety, equip-
ment components that have been analysed individually may be put together
with a minimum of effort for safety integration testing. Both respondents
felt that it was too early in the project to consider the standard as a success
regarding meeting these expectations, but the result this far was felt to be
promising.
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– Concerning the techniques used, the state machine diagramming approach
felt natural to use when describing the ordinary EUC behaviour and the
extension of this using SRCFs. In development of the EUC ordinary control
system using a state machine together with naming conventions have been
key success factors and it seems natural to use these also for the derivation
of the SRECS.

– The function block analysis technique appeared to clarify the structure of
the SRECS and it was concluded that the function block structure document
may be used for verification purposes checking that no ”extra” functions
have been added, which sometimes have been the case in some previous
system development projects. However, one of the respondents meant that
the function block analysis seemed like a little bit overhead effort, and would
like to get to realisation quicker.

– The concept of requirements layering, that is, mapping functional require-
ments to function blocks and non-functional requirements to subsystems,
was also perceived as natural. The respondents felt as if non-functional re-
quirements must be solved at physical level. The structure is in alignment
with and may support the iterative hazard analysis that currently is carried
out in the organisation with an up-front analysis finding hazards at a system
level and then detailed analysis at a component level finding failures related
to components and applications.

In addition to the findings described above, it was discovered that there was
a need for a tool supporting the design development process. This is mainly
motivated by the following problems encountered during the project:

– Automated development tasks provide shorter SRECS development and doc-
umentation time and thus implies cheaper projects and provides argument
for justification of implementing safety even with a limited budget.

– Automated development tasks provide better quality and thus better safety.
Examples of such tasks are artefact traceability management, state machine
documentation and IEC 62061 standard compliance checks.

– In order to be able to verify requirements and manage change reports (e.g. in-
cident reports indicating flaws in SRECS implementation) traceability man-
agement is needed. Traceability is easily corrupted if performed manually,
e.g. an update of a document in one section must be followed up by updating
dependent sections in other documents.

– State machine modelling is best done graphically. Capturing graphical mod-
els is best done with a tool.

– Communication problems. A common model accessible for all project mem-
bers helps settling disagreement occurring due to knowledge being in people’s
heads and not in the organisation. This could be achieved by a tool.

– Problem with grasping the entire standard and remembering to use standard
requirements in the development process at the right time. Knowledge should
be in the tool and not required to be in peoples heads [4]. The organisation
using the IEC 62061 in a development project would then have a much flatter
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learning-curve. Using similar arguments, an example of a tool facilitating
implementation of IEC 61508 have been provided by Faller [5].

– IEC 62061 requires documentation which has to be captured in some way.
A tool (more advanced than a word processor) could provide a structure for
this. If using a tool not more advanced than a word processor, it is much up
to the analyst to maintain the document structure.

5 Design Process Tool Support

As mentioned and motivated in previous section, there is a need for a tool fa-
cilitating the development process outlined in Section 3. Implementing such a
tool is out of scope of this paper, but we do provide a feature overview below,
including a screen shot from a tool prototype.

– A tool that is used for supporting standards must be able to change as
standards change. Therefore, it should support changing development pro-
cess requirements reflecting different versions of standards by taking pro-
cess definition as input. This could be done in suitable XML-format[14] like
SPEM[7].

– Regarding documentation, the tool should support making state machine
diagram modelling SRCFs to be active during either states (either in existent
EUC states or being states on their own) or in transitions. This feature is
shown in the screen shot in Fig. 6.

– Function block and subsystem documentation (that is the documents FBSD
and SDD) could be in form of a requirements database helping the user by
requiring specific input data for each artefact.

– The tool should support collaborative and distributed development.

Fig. 6. Prototype screenshot of State machine diagram feature
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– To support reporting to management and handouts of system models to be
discussed at meetings, the tool should have documentation export function-
ality to proper document formats.

– To reduce the burden of the engineer of having the whole standard in mind
when developing systems, the tool should have development process decision
support (i.e. ”what to do next”). This can be used for driving the project in
terms of feedback e.g. on not yet produced artefacts.

– One experience during the research project was that graphical models of
the artefact model facilitated the process of understanding it. Therefore, the
tool should support graphical function block structure modelling, in order
to visualize function block input-output relationships. Another process that
could be supported by graphical modelling is traceability management with
graphical function block-to-subsystem mapping.

– The tool should have querying capabilities to support finding the right in-
formation in a large system model, like finding functional requirements of
subsystems from assigned function blocks.

6 Discussion

Where previously method requirements of standards have been poor or not ex-
isting at all, the IEC 62061 standard shows a possible way of filling this gap by
stating requirements and providing guidelines for the system design process of a
SRECS. This paper has taken the method of this standard further and provided
a more hands-on method for implementation of a design process according to
the standard. It defines a step-by-step method which could be used in a SRECS
development project for functional safety of machinery and clearly defines the
input and output documentation of each step, which the standard does not.

The state machine approach of modelling when SRCFs should be active
turned out to integrate well with the existent way of specifying EUC behaviour
by extending already existent specifications in form of state machines. It was
perceived as clarifying by project members when the SRCFs should be active,
which was hard to define in natural language, even if this technique was ap-
propriate according to the standard. Furthermore, the function block analysis
facilitated structuring of information by requirements layering as prescribed by
the standard. Performing this had previously been perceived as a problem by
the machinery manufacturer. However, some project members perceived it as
overhead analysis.

However, it remains to show in the future whether the method prescribed
by the standard at large is valid. The focus of this paper is to report from the
design method. Furthermore, the general validity of the design method suggested
by this paper should be studied in other projects independent from this.

The paper presents some basic features of a tool, which currently is being
developed in the research project. Furthermore, case studies regarding the effects
of using the tool in development projects should be performed. One of the major
research questions of these studies will be demonstrating the feasibility of the
concept of transforming standards to guiding tools.
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It has also been indicated in the project that the suggested method could
be improved. One thing that would be interesting to model is SRFCs overriding
each other by modelling them as a hierarchy of state machines. For example,
an emergency stop would override all other functions of a SRECS. This cannot
be captured by a single level state machine diagram. A similar technique of
applying hierarchies of state machine is shown by Papadopoulos [6], but has
there been applied for purposes of safety monitoring, whereas the improvements
of the model suggested in this paper would be regarding hierarchies of safety
functions.
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Abstract. How should we evaluate someone’s design suggestion? Is gut feel 
and experience enough for most cases? Is anything more substantial and 
systematic possible? This paper outlines a process for design evaluation, which 
assesses the impacts of designs towards meeting quantified requirements. The 
design evaluation process is viewed as consisting of a series of design filters. 

1   Introduction 

This paper proposes that: (1) Design evaluation is primarily a matter of understanding 
the ‘performance and cost’ impacts of the design(s) numerically, in relation to 
quantified performance and cost requirements; and (2) Design evaluation needs to go 
through several maturity stages, but remains fundamentally the same question: what 
does the design contribute to meeting our requirements? 

Prior to design evaluation, the requirements must be specified. All the performance 
and cost requirements must be specified quantitatively. The requirements should be 
subject to specification quality control (SQC). An entry condition into the design 
evaluation process should be that the requirement specification has successfully 
exited quality control with an acceptable level of remaining defects per logical page 
(for example, less than one remaining defect per 300 words). The design evaluation 
process consists of several maturity stages, which can be viewed as design filters. 
These maturity stages include: 

• Value-based selection: Select the requirements with the highest stakeholder value; 
• Constraint-based elimination: Delete designs that violate constraints; 
• Performance-based selection: Pick the most effective remaining designs; 
• Resource-based optimization: Select the effective designs that are most efficient 

– effect/cost; 
• Risk-based elimination: Evaluate designs based on performance and cost risks. 

Each of these evaluation filters requires specification and estimation tools that 
are common sense, but are not commonly taught or employed. These tools are 
based on the defined Planning Language (‘Planguage’), developed by the author for 
practical industrial use through many years [1]. Let’s now go through the design 
evaluation process in greater detail. The main points will be summarized as a set of 
principles. 
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2   Clear Specification of Requirements 

Principle 1: A design can only be evaluated with respect to specific clear 
requirements. 

The foundation of design evaluation is a set of clear requirements. Any evaluation of 
any design to try to ensure meeting vague requirements is going to be imprecise1. If 
you look around you, both inside the systems engineering community and outside it, 
you will observe that people commonly evaluate designs ‘in general terms’ (for 
example, “that design is the most user-friendly…”), rather than with respect to 
specific immediate, and residual2 project or product requirements. 

One of several reasons for this generalizing about ‘good designs,’ is that we are very 
vague with requirements specification. Our most critical requirements are typically 
unclear, and not quantified. In my consulting and teaching practice I see this happening 
worldwide. When I evaluate such requirements using SQC, there are invariably 
approximately 100 defects present per page, unless special effort has been made to 
eliminate them [2]. To the degree that is the case, we cannot readily expect anyone to 
perform a logical evaluation of the suitability of a given design for a fuzzy requirement. 
Consider the following questions: How good is a ‘Mac interface’ for getting ‘higher 
usability’? And how good is ‘MAC OS X’ compared to ‘Windows’ for ‘higher security’? 

These are silly questions because the requirements are not clearly defined (Note 
also that the other security designs that will co-exist are not listed and analyzed). 
Now, requirements are not the primary subject of this paper3. So we need to be brief 
on them, so as to concentrate on design itself. 

But here are some of the things I would insist are necessary pre-requisites for being 
able to evaluate a design: 

• All performance (including all qualities) and cost requirements are expressed 
quantitatively (with defined scales of measure). Not just nice sounding words. 

Scale: Minutes for defined [Tasks] done by defined [People]. 

• All performance requirements must include at least one target (A target is a level 
we aim for) and at least one constraint (A constraint is a level we aim to avoid with 
our design). 

Goal: 3 minutes. 

Fail: 10 minutes. 

                                                           
1 This is not the same as demanding that the requirements are known upfront: requirements 

should not be ‘frozen’ and they should be allowed to evolve over time. The issue here is that 
the known or predicted requirements are expressed clearly.  

2 Residual requirements: Residual: Concept *359: The remaining distance to a target level 
from a benchmark or current level (From Planguage Glossary in [1]). The point being that 
design is a sequential process of evaluating necessary designs, to add onto the current set of 
designs – and the only designs necessary at any point in the process, are designs that will 
move us from the performance levels we estimate we have reached, with the current set of 
designs, towards our required Goal levels of performance. A good analogy is the ‘next 
chess move’. 

3 See [2] for further discussion on requirements. 
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•  All performance requirements must include explicit and detailed information 
regarding the short-term and the long-term timescales of expectation. 

Goal [Release 1.0]: 3 minutes. 

Fail [Release 1.0]: 10 minutes. 

• All relevant constraints on solving the design problem are specified complete, 
officially, explicitly, unambiguously, and clearly. This includes all notions of 
restrictions such as legal, policy, and cultural constraints. It also includes any 
known design constraints (such as from our own architecture specification). 
Constraints will consider all necessary aspects of development, operations, and 
decommissioning resources. 

    Clear and complete requirements are a set of basic entry conditions to any design or 
architecture process. Without it a design process is like a fighter plane with no known 
enemy, like a passenger ship at sea with no destination port identified, or like a great 
invention with no market. Design evaluation is quite simply about deciding how well 
a design meets the total set of requirements. 

Principle 2: All designs have performance and cost attributes, but not necessarily 
the ones you require. 
 

Fig. 1. A map of the requirements concepts, which includes a variety of constraints. The *nnn 
are references to detailed definitions of these concepts in the Planguage Glossary [1]. 
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3   Value-Based Selection 

Principle 3: The real value of a design to a stakeholder depends partly on the 
technical characteristics of the design, and partly on the planned, perceived and 
actual use of those characteristics in practice, over time. 

    The value of a design depends on the stakeholder view taken. The producer of a 
product has one view. The users of a product have another view. It is going to be the 
producer of a product who will directly and primarily evaluate designs from their 
point of view. They ideally will try to maximize their profitability or service delivery. 
The commercial producers will do this by maximizing the value delivered to their 
customers, so that their customers will ‘return the favor’ by paying well, in terms of 
price and volume. It should be possible to evaluate a design market, segment by 
market segment, for estimated sales or profit as a result of it. Ideally your marketing 
people would make such an evaluation. The service providers (such as military, space, 
government) will worry about value to their stakeholders for money spent. 

 
 
<Name tag of the performance requirement or cost requirement>: 
 
Ambition: <Give overall real ambition level in 5-20 words>. 
Version: <Each requirement specification should have a version, at least a date, yymmdd>. 
Owner: <The person or instance allowed to make official changes to this requirement>. 
Type: <Performance|Cost Requirement>. 
Stakeholder: {   ,   ,   }. “Who can influence your profit, success or failure?” 
Scale: <Defined units of measure, with [parameters] if you like>. 
Meter [<qualify which version and level>]: <Specify how you will measure>. 
==== Benchmarks ============ the Past ================================== 
Past [<time>, <place>, <event>]: <Actual or estimate of past level> <- <Source of past data>. 
Record [<time>, <place>, <event>]: <Actual or estimate of record level>] <- <Source of 
record data>. 
Trend [<time>, <place>, <event>]: <Prediction of level> <- <Source of prediction>. 
==== Targets ============= Future Needs ================================== 
Wish [<time>, <place>, <event>]: <- <Source of wish>. 
 
For Performance Requirements Only – Use ‘Goal’ 
Goal [<time>, <place>, <event>]: <Target level> <- <Source of goal>. 
Value [<stakeholder>]: <Refer to what this impacts or how much it creates of value>. 
 
For Cost Requirements Only – Use ‘Budget’ 
Budget [<time>, <place>, <event>]: <Target level> <- <Source of budget>. 
Stretch [<time>, <place>, <event>]: <Motivating target level> <- <Source of stretch>. 
==== Constraints ======================================================= 
Fail [<time>, <place>, <event>]: <- <Source of fail>.  “Failure Point” 
Survival [<time>, <place>, <event>]: <- <Source of survival>. “Survival Point” 

Fig. 2. This figure shows a Planguage requirement template with hints. This gives some idea of 
the basic parameters that should be used to describe a performance or cost requirement 
quantitatively [1]. 
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Table 1. A symbolic example of evaluating two different ‘designs’ for ‘which fruit to buy’. 
This is a simple Impact Estimation table application. The % estimated impact of a design is on 
a scale where 100% means the design brings us to the Goal level on time. 0% means there is no 
impact compared to some defined benchmark level, such as the previous system state. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
If the marketing people are not involved or helpful, the technologist is left to look at the 

contribution of a given design to the performance requirement levels. Designs have value 
primarily as long as they help us move to the Goal levels, and perhaps to the degree they 
help us move to the Stretch levels (see Figure 2). Beyond those target levels, a design does 
not have any formally agreed value, because it is not formally required. 

So we need to find the designs that satisfy the prioritized agreed target levels, at the 
lowest costs and risks available. I have developed an Impact Estimation (IE) method 
to help us see the contribution of design ideas to the requirement levels, the degree of 
risk involved and the corresponding development costs (See later, Table 1). So we can 
make a rational decision and present it to others. 

4   Constraint-Based Elimination 

Principle 4: It doesn’t matter how good or how cheap a design is, if constraints 
forbid it. 

    We are assuming that there is a flow of one or more design ideas to be evaluated. 
The question of how we identify these design ideas is a separate topic. Before we go 

Strategy  Comparison: Apples and Oranges
Alternative Strategies

Performance to Cost Ratio

Sum of Performance

Sum of Costs

Apples Oranges

Eater Acceptance
From 50% to 80% of People

Pesticide Measurement
Reduce from 5% to1%

Relative Cost 
Local currency

Vitamin C
Increase from 50mg to 100mg per day

Carbohydrates
Increase from 100mg to 200mg per day

Shelf-Life
Increase from 1 week to 1 month

70% 85%

50% 100%

70% 200%

50% 80%

20% 5%

260% 470%

0.50 3.00

3.000.50

1.571.575.25.2

 EvidenceÓ
for these numbers
should, of course,

be available
on a separate sheet

( but not shown here)

Objectives

Resources

 



 Design Evaluation: Estimating Multiple Critical Performance and Cost Impacts 349 

deeper into the design, we need to assess if any design idea is disqualified by any 
requirement. 

We need to pass the design through the set of design filters known as constraints. 
The questions to be asked include: 

• Does the design violate any specified design constraint? 
• Does the design violate any condition constraint? 
• Does the design violate any performance constraint or cost constraint? 
• Does the design in combination with other design elements, adopted or projected, 

threaten to violate any constraint? 

Because if a design violates, or threatens to violate, any defined constraint, a 
design needs to be set aside in favor of designs that do not. Later we could, if 
necessary, discuss relaxing a constraint, or risking or tolerating a constraint violation, 
in order to make use of an otherwise superior design, so we need to be careful about 
permanently discarding designs that initially violate some constraint. They might turn 
out to be the best design of all. So, ‘set aside’, preferably with annotation about the 
constraint violation. 

Design X: <Detailed description>. 
Status: Set Aside <- Tom, November 13, 2004. 

Rationale: Threatens to violate cost constraints as it alone 
takes 90% of the budget. 

I seriously suggest that all rejected designs be formally kept in the systems 
engineering documentation, with their status and rationale for rejection. 

Principle 5: Designs should not be rejected permanently. The reasons for 
rejection should be clearly documented, the design specification kept; and the 
rejection possibly re-evaluated later. 

5   Performance-Based Selection 

For the set of proposed designs that survive constraint evaluation, the next step is to 
evaluate which ones have the best set of impacts on our required performance target 
levels. 

Principle 6: The major capability of a design is its ability to contribute to 
required residual performance levels. 

We fail to evaluate designs in all critical dimensions. I find that systems and software 
engineers, in too many cases, do not even do a systematic evaluation of a design along a 
single performance dimension (such as ‘Reliability’). But, even if they did do that, there 
is another evaluation problem to confront. Designs have potential impacts on many of 
our most critical performance requirement dimensions. Real systems seem to have about 
20 to 40 performance dimensions that people are willing to set quantified requirements 
for, and to evaluate. One dimension is not enough. We need to look at: 

• Other major secondary contributions to critical requirements; 
• Possible negative side effects on the critical requirements. 
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We usually do not have good enough facts about the design impacts. Anything less than 
a thorough examination of the potential impacts of a design in all critical performance 
requirement dimensions, is irresponsible design engineering. The major initial outcome of 
any systematic quantitative evaluation in these many dimensions is, initially, ‘shocking’. 

It turns out that even our most expert designers do not even claim to have any 
factual knowledge about most of the performance impacts of a design specification, in 
all our specified requirement dimensions! This may seem hopeless: ‘Knowing that we 
do not know’. But in a sense it is the beginning of wisdom, and there is a systematic 
approach to dealing with this ignorance – that is the subject of this paper. But we 
would do well to recognize this ignorance initially, clearly, and publicly, in our design 
engineering processes. Recognize the initial level of knowledge about a design, and 
then act cautiously as we progress the design towards serious commitment. 

What is the alternative to a systematic initial design impact evaluation process? We 
do not have to ‘act like engineers’ and evaluate designs in a systematic and 
quantitative way. We can just ‘decide to implement them and see what happens’. The 
problem there is that it may be too late to use better designs, and it would perhaps 
have paid off to do more engineering evaluation earlier. 

There are interesting options between the extremes of ‘full ignorance/high risk’, 
and ‘expecting perfect research data for all impacts of all design candidates’. For 
example evolutionary methods [1], [4], [5], [6] may allow us to remove some of our 
ignorance about a design, at relatively low risk (By designing and implementing small 
Evo steps, we can ensure the maximum potential project loss 2% for a design that is a 
total failure). The fact that we rarely have the facts we need, in order to evaluate 
designs properly, is not a good reason to avoid trying to evaluate them quantitatively, 
before final commitment to using them. The lack of facts is a warning signal about 
risks. It can lead directly to more realistic expectations. It can also lead to risk 
mitigation tactics in contracting, alternative conservative design specifications, or lead 
to doing experimental steps to get needed data before scaling up – all traditional good 
engineering tactics. 

Principle 7: A design will be best understood in terms of its multiple quantified 
impacts on your residual requirements. 

    How far should we go in evaluating a design? It is not enough, in my opinion to let 
your in-house expert loose, to make estimates of a design’s impact on performance 
levels. They should be asked (in your systems engineering standards!) to document 
the basis for the estimates, and the basis for the uncertainty of their estimates. An 
example of doing this is given in Table 2 using the Impact Estimation method. 

Notice that for each estimate we ask for the uncertainty boundaries (worst 
case/best case). We ask for evidence –the facts backing the estimate. We ask for the 
source of the evidence – a person or document for example. A reviewer of such 
estimates might be a skeptic, and want to check the evidence first hand. We can even 
rate the quality of the basis for the estimate using the ‘credibility index’ (say 0 for no 
credibility at all, and 1.0 for 100% credibility). Notice we can use the credibility-
rating number to modify, by multiplication, the initial estimate, in the direction of a 
more pessimistic estimate. Better to be safe. 

Principle 8: Designs must be evaluated with respect to uncertainty, and the level 
of risk you want to take. 
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    I also like to get a simple estimate of the cost of the design, at least to become 
conscious of cost extremes. 

Table 2. A simplified example of using an impact estimation table to collect data about a single 
performance attributes. In this case, the performance attribute is ‘Learning’, which has a target 
level of 10 minutes. There are four design idea candidates (For example, ‘On-line Support’ is 
the tag of one design idea). We need to repeat this process for all other critical performance 
requirements. This is difficult because of lack of facts about most designs, in most dimensions. 
But the difficulty usefully makes us formally aware of design risks, and consequent project 
risks – which we can decide to mitigate by investigation, contracting, design or re-design. 
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Past: 60 minutes 
<-> Goal: 10 minutes

Scale Impact

Scale Uncertainty
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25K
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6   Resource-Based Optimization 

Of course, you do not understand a design idea, if you do not understand its costs. I 
mean the entire range of cost types (for example, effort, time, and money). I mean for 
the entire system lifespan. 

Why do projects consistently run over time and budget, and you never seem to 
have enough people to do the job? [7]. One reason is that people fail to evaluate the 
costs of their designs. We do not practice ‘design to cost’. 

At least, if you have two or more promising design idea alternatives, you should 
consider using the one with the least impact on your resource budgets. 

Principle 9: Design ideas must also be evaluated with respect to the design costs’ 
relation to our finite resources. Don’t design what you can’t afford. 

But, I don’t see people doing this in practice. I just see them running out of 
resources and instead of understanding that it might come from poor design practices, 
they blame other causes (such as too few resources). 

7   Risk-Based Elimination 

So, at this point, if you have followed the advice above, you might feel you have 
picked a winner set of design ideas with high performance impacts at low costs. But 
this is probably all based on estimates. Maybe those estimates are based on thin ice, 
such as rumor? Maybe experience data says the spread of possible actual design 
impacts on requirement levels is quite wide (like 10 minutes ± 9.9 minutes)? Maybe 
the ‘technology behind the design’ is not that new, but it has never been tried in your 
‘space vehicle’, only in ‘bicycles’? Enter the idea of ‘risk evaluation’. What is the risk 
that your design idea, however hot it looks on paper, will not really work, or worse 
will ruin your entire project? 

 
 

Twelve Tough Questions 
1.  NUMBERS: Why isn’t the improvement quantified? 
2.  RISK: What’s the risk or uncertainty and why? 
3.  DOUBT: Are you sure? If not, why not? 
4.  SOURCE: Where did you get that information from?  How can I check it out? 
5.  IMPACT: How does your idea affect my goals? 
6.  ALL CRITICAL FACTORS: Did we forget anything critical? 
7.  EVIDENCE: How do you know it works that way? 
8.  ENOUGH: Have we got a complete solution? 
9.  PROFITABILITY FIRST: Are we going to do the profitable things first? 
10. COMMITMENT: Who’s responsible? 
11. PROOF: How can we be sure the plan is working? 
12. NO CURE: Is it no cure, no pay? 

Fig. 3. Twelve Tough Questions to help strengthen plans. A more detailed treatment of these 
questions is in a paper at http://www.gilb.com. 
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So, we need to ask the risk questions about each design idea. My favorite set of 
risk questions is my ‘Twelve Tough Questions’, given in Figure 3. 

 
 

List of Principles 

1. A design can only be evaluated with respect to specific clear requirements. 
2. All designs have performance and cost attributes, but not necessarily the ones you 
require. 
3. The real value of a design to a stakeholder depends partly on the technical 
characteristics of the design, and partly on the planned, perceived and actual use of 
those characteristics in practice, over time. 
4. It doesn’t matter how good or how cheap a design is, if constraints forbid it. 
5. Designs should not be rejected permanently. The reasons for rejection should be 
clearly documented, the design specification kept; and the rejection possibly re-
evaluated later. 
6. The major capability of a design is its ability to contribute to required residual 
performance levels. 
7. A design will be best understood in terms of its multiple quantified impacts on your 
residual requirements. 
8. Designs must be evaluated with respect to uncertainty, and the level of risk you 
want to take. 
9. Design ideas must also be evaluated with respect to the design costs’ relation to our 
finite resources. Don’t design what you can’t afford. 
10. The evaluation of a design idea is a continuous process over a series of estimation 
and validation events. A lot of questions need asking, by a lot of people, and we need 
many good answers to evaluate a design. 
11. The best practical evaluation of design risks is by practical small step integration 
of the design, with measurement, feedback and analysis of its real performance and 
costs. Evolutionary evaluation helps us make better decisions about designs than any 
review committee will ever be able to make. 

Fig. 4. A list of the principles presented in this paper 
 
 

Curiosità: Insatiably curious, unrelenting quest for continuous learning 
Dimostrazione:  
      Commitment to test knowledge through experience, willingness to learn from mistakes. 
      Learning for ones self, through practical experience 
Sensazione: Continual refinement of senses. As means to enliven experience. 
Sfumato: Willingness to embrace ambiguity, paradox, uncertainty 
Arte/Scienza: Balance science/art, logic & imagination, whole brain thinking 
Corporalità: Cultivation of grace, ambidexterity, fitness, poise 
Connessione: Recognition & appreciation for interconnectedness of all things and phenomena. 
      Systems thinking 

Fig. 5. Da Vinci’s Principles from How to Think Like Leonardo da Vinci by Michael Gelb. 
They describe the evolutionary principles for handling risk. 
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Fig. 6. The step-by-step evolution of designs delivering impact to performance requirements 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 7. Relevance Control filters start after the QC filters of Rules and Exit make sure we have 
good presentation. The Relevance Control filters deal with questions of substance: how good is 
the plan in practice? The QC filters deal with the question, how well is the plan presented? The 
downstream plan improvements can come from any source, any reason, at any time, or any 
stage downstream (See also [1] for details of SQC). 

We have been asking some of these twelve analytical questions earlier in the 
design evaluation process above. But some are new. Who is responsible for making it 
work? Who is responsible if it does not work? Is their money where their mouth is? 

I believe, in sharp contrast with the papers and textbooks that I have seen on risk 
management, that the risk analysis process is something that needs to be intimately 
pervasive in every single specification, in every detail of it. It must be part of what all 
systems engineers do every minute of their working life. Live it and breathe it. Every 
systems engineering specification has an element of risk – or it would not be termed 
‘engineering’ [8]. 
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We need, not to minimize risk, nor to reduce it to zero, but to be constantly aware 
of risks. We need to be constantly looking, waiting to pounce on risk if it shows signs 
of giving us trouble [9]. 

Principle 10: The evaluation of a design idea is a continuous process over a series 
of estimation and validation events. A lot of questions need asking, by a lot of 
people, and we need many good answers to evaluate a design. 

    Our systems engineering work should be totally robust so that no matter what 
happens we have a backup. We have a reasonable way out. We need to be so sensitive 
to the impacts of our designs that we know when we are threatened. We know early, 
because we worry early. We try things out early. We keep on measuring early as we 
make changes and add new designs cumulatively into the system. 

We need above all not to trust a probability model of risk analysis. We need to take 
da Vinci’s advice and try things out. See Figure 4. Much of his advice can be seen in 
the Evolutionary project management model, with its 2% increments, required for 
measurement, use of feedback, analysis of the feedback, and concept of changing the 
plan as necessary. We need to use evolutionary step planning to consciously sequence 
the riskiest elements for early integration and field trialing. Then if there is something 
wrong, we have lots of time to fix it. 

Evolutionary project management (Evo) [1], [4], [5], [10] is one of the greatest 
devices for risk management and for design evaluation with respect to risk, but Evo 
never, as far as I can see, made it into a paper or book on risk management, other than 
my own [9]! Evo allows you to evaluate one design at a time, and to evaluate them 
cumulatively, one at a time [6]. 

In fact too many project management people have no clue what Evo really is. 
However, the US Department of Defense (DoD) finally understood it and adopted it 
(in 1995 with Mil Std 498 and on), calling it ‘Evolutionary Acquisition’. 

Principle 11: The best practical evaluation of design risks is by practical small 
step integration of the design, with measurement, feedback and analysis of its 
real performance and costs. Evolutionary evaluation helps us make better 
decisions about designs than any review committee will ever be able to make. 

8   Summary 

Design evaluation needs a series of processes to determine the best-known design for 
a specific project. The foundation is a complete, clear and quantified set of 
requirements, against which to judge the design ideas. The second is a detailed design 
specification including justifications, assumptions, sources, and expected impacts. 
The third is the ability to see the expected effects of a set of design ideas, and their 
total impact on requirements. This initially can be achieved using an Impact 
Estimation (IE) table. However ultimately a design needs to be proven in practice by 
evolutionary implementation of the design ideas, while measuring their real 
cumulative impacts. 
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Abstract. It's essential for critical systems to measure their security status. 
However, the research on the information system security evaluation still faces 
many difficulties which are caused by the complexity of the system and the 
inexplicit relation between the component security and the system security. In 
this paper, an object-oriented information system security evaluation method is 
introduced, the security context object model and security evaluation object 
model are established. These models resolve the current problems and a set of 
information system security evaluation tools are developed according to these 
works. The application of the tools is introduced and the deficiencies which 
need further improvement are also pointed out. 

1   Introduction 

Information system security evaluation provides the basis of confidence to users. The 
evaluation results help users to make sure whether the information system is secure 
enough or the potential risk in operation is acceptable. 

China published “Computer Information System Security Protection Classifying 
Criteria” (GB 17859) [1] in 1999 and adopted Common Criteria (CC) as GB/T 18336. 
These criteria, including CC, define standards to be used as the basis for evaluation of 
security properties of IT products and systems. However, the research on information 
system security evaluation method still faces many difficulties, which include: 

• Complexity of information system per se. Information system is the integration of 
computer or communication hardware, software and firmware for information 
processing. It includes not only local computing environment and enclave 
boundary, but also remote terminals and network infrastructure. The topology and 
application vary from one system to another. The uncertainty of system boundary, 
complexity of topology and the variety of applications lead to the complexity of 
security evaluation. 

• The relationship between the security of components and the whole system. 
Information system often comprises components that are developed and evaluated 
independently. During the evaluation of the system, the relationship between the 
security of components and the whole system must be clarified firstly. However, 
current evaluation criteria didn’t explain the problem of combination [2, 3]. 
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• The lack of testing methods and tools for security functions. Penetration testing is 
the mostly used method to evaluate the security of information systems at present. 
However, unlike security functional testing, which demonstrates correct behavior 
of the system’s advertised security controls, penetration testing is a form of stress 
testing, which exposes weaknesses in the TCB. Penetration testing is the 
complement of security functional testing [4] and can’t by itself reflect the overall 
security posture of the information system. Moreover, there still exist controversies 
about the form of penetration testing results [2, 5]. 

This paper introduces an object-oriented information system security evaluation 
method that takes advantage of class, encapsulation and inheritance mechanism of 
object-oriented technology to solve the above problems. 

The remainder of this paper is organized as follow. Section 2 introduces object 
model of information system security context. Section 3 introduces object model of 
information system security evaluation. Section 4 describes the realization and 
application of our method. Discussion about our method and related work are 
presented in Section 5. Finally our conclusions are outlined in Section 6. 

2   Object Model of Information System Security Context 

2.1   Security Concepts and Relationships Defined in CC 

According to the description of CC [6], information system and its components are 
assets of their owner. Vulnerabilities may exist in these assets and may be exploited 
or abused by threats, which cause risk to assets. Countermeasures are imposed to 
reduce vulnerabilities while they may possess vulnerabilities. Residual risk may 
remain after the imposition of countermeasures. Periodic risk evaluation is necessary 
to keep the risk at an acceptable level. Figure 1 illustrates the security concepts and 
relationships defined in CC. 

2.2   Object Model of Information System Security Context 

This paper establishes object model of information system security context based on 
the security concepts and relationships defined in CC. In this model, as illustrated by 
figure 2, class Asset, Vulnerability, Countermeasure and Threat are corresponding to 
the concepts in CC. Class Risk_State extends the concept of risk based on the 
definition of information system security levels in GB 17859. 

2.2.1   Class, Attribute and Method  
As illustrated in figure 3, two classes inherit from Asset: Component and 
Application_Service. Component includes software and hardware such as OS, DBMS, 
firewall and etc. Application_Service denotes the services that system provides to 
users such as email service, web service and etc. Since application services need the 
cooperation of multiple components, their security depends not only on the security of 
components but also on the security of the combination of components. So we create 
class Application_Service to distinguish application services from components. 
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GB 17859 defines ten security elements and five security levels. These ten security 
elements are integrity, authentication, discretionary access control, object reuse, audit, 
label, mandatory access control, trusted recovery, trusted path and covert channel 
analysis. Attributes of class Asset denote the security levels of security elements of 
asset according to GB 17859. Component and Application_Service inherit the 
attributes of Asset. These attributes of Component are set by the evaluation results of 
constituent software and hardware, while attributes of Application_Service are set 
during the process of information system evaluation. Besides the inherited attributes, 
class Component adds a new attribute location, which points out whether a 
component belongs to system boundary, computing environment or network. Class 
Application_Service adds two attributes: components and type. Components denote 
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Fig. 3. Inheritance relationship between Asset and Component, Application_Service 

those involved in the application service and type denotes the type of application such 
as email service, web service and etc.  

Class Risk_State extends the concept of risk based on the definition of information 
system security levels in GB 17859. Traditional risk, including the concept in security 
context of CC, means the economic losses caused by the damage to assets. It is 
determined both by the possibility of the occurrence of threats and the consequences 
caused by the threats. But in the IT field, it is hard to estimate the possibility of the 
occurrence of threats and the losses caused by the threats can’t always be figured by 
money. For instance, the exposure of cipher may endanger the security of the nation 
and the occurrence of DoS attack may degrade the reputation of an organization.  In 
GB 17859, different security levels represent the different security states of the 
security elements as well as of the information system. In our object model of 
information system security context, security levels reflect the risk state of the 
information system. The higher the level, the lower the risk. But even the system of 
highest level doesn’t eliminate all security risks. It is just of higher protection 
capability and lower risk compared with the systems of lower levels. 

Class Risk_State, Vulnerability and Countermeasure all have ten attributes 
corresponding to the ten security elements. In Risk_State, these attributes denote the 
final security levels of security elements of the information system. In Vulnerability, 
these attributes denote vulnerabilities’ effects on security elements. While in 
Countermeasure, these attributes mean to which security element countermeasures 
can provide protection. Moreover, attributes of Countermeasure also include the 
implementing cost to support the cost-benefit analysis during the process of risk 
evaluation. Attributes of class Threat include the possibility of occurrence, the 
capability, motivation and effect on security elements of threat. 

Class Risk_State provides method evaluation(), which judges the overall security 
level of information system according to the attributes of Risk_State. Besides, all the 
classes in the object model provide methods to read and write their attributes. 

Class Asset and Countermeasure are both assets of the system owner. Asset is the 
initial evaluation target. Countermeasure is the security control adopted later with the 
perceiving of risks. But just as described in CC, risk evaluation is a periodic activity; 
the Countermeasure in the first evaluating process will be treated as Asset in next 
turn. 
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2.2.2.   Instance Connection  
The instance connections in the object model reflect the following relationships 
between entities in the real world: 

− Assets may possess none or more vulnerabilities; 
− A vulnerability may have effect on one ore more assets; 
− A vulnerability may be eliminated by none or more countermeasures; 
− A countermeasure can eliminate one ore more vulnerabilities; 
− Assets may encounter none or more threats; 
− A threat may aim at one or more assets; 
− A vulnerability may be exploited by none or more threats; 
− A threat may exploit one or more vulnerabilities; 
− Risk state represents the overall security posture of the information system. Any 

changes of the entities in the system will cause the changes of the risk state.  

3   Object Model of Information System Security Evaluation 

Object model of information system security context provides information about the 
target of evaluation and its environment. This section will introduce object model of 
information system security evaluation to describe the evaluation actions utilizing the 
object-oriented technology. 

3.1   Class, Attribute and Method 

Current security evaluation criteria demand not only vulnerability testing and 
penetration testing but also security function testing. So we establish six classes: 
Correlation_Testing, Dependency_Testing, Scan, Attack, Questionnaire and Criteria. 

Class Correlation_Testing and Dependency_Testing analyze the compositional 
security of components from the aspects of correlation and dependency. Correlation 
means that components in the information system should keep consistent and 
cooperative with each other and comply with the unified security policy of the whole 
system when they enforce their functions. Dependency means that the security of a 
component, which is deficient in security per se, can be enhanced by other 
components. During the process of information system security evaluation, the 
function testing mainly focuses on correlation and dependency between components, 
while the function testing of components themselves is carried out during the process 
of products evaluation. Correlation and dependency are dynamic relationships 
between components and take place when system provides application services to 
users. Focusing on the process of application services, the testing of correlation and 
dependency is a supplement of penetration testing and distinguishes the security 
evaluation of information systems from that of products. To discriminate the 
correlation and dependency between components locating at different parts of the 
system topology, class Correlation_Testing and Dependency_Testing include three 
categories of attributes: 

− Computing environment correlation/ dependency rules 
− Boundary correlation/dependency rules 
− Network correlation/dependency rules 
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Each of these categories includes ten attributes corresponding to the correlation and 
dependency rules of the ten security elements. The methods of class 
Correlation_Testing and Dependency_Testing include: 

− rule_substitute() 
− testing_navigate() 
− assess() 

When testing the application service, correlation and dependency rules are 
substituted according to the attribute location of the components involved. Final 
verdict is obtained through the testing navigation. 

The methods of class Scan and Attack are scan() and attack(), which carry out 
penetration testing on Component and Application_Service objects. Attribute of class 
Scan and Attack is type, which indicates the types of scan and attack such as network 
scan, system scan, cache overflow and so on. 

The methods of class Questionnaire include investigate() and assess(), which 
investigate the internal and external environments to find out the potential threats to 
information system by well-designed questionnaire and assess the impact of these 
threats on the security state of the system. The attribute of class Questionnaire, 
coverage, identifies the depth and breadth of investigation, the value of which falls in 
set {1,2,3,4,5} corresponding to the five security levels of GB 17859. 

Class Criteria represents the standards for correlation testing, dependency testing, 
scan, attack and investigating. The attributes of class Criteria indicate the security 
requirements and the methods of Criteria provide means to read and write these 
requirements. 

3.2   Instance Connection 

During the process of evaluation, class Correlation_Testing, Dependency_Testing, 
Scan, Attack and Questionnaire read security requirements from class Criteria. 
Correlation_Testing and Dependency_Testing send messages to Application_Service 
and Component to get the types of application services, the location of constituent 
components in the system topology and the evaluation results of components 
themselves. According to the corresponding rules, correlation and dependency 
between components located at system boundary, computing environment and 
network are tested respectively and the security of the application services is 
evaluated. The results are sent to class Risk_State and thus the later adjusts the 
security status of the information system. 

Class Scan and Attack carry out penetration testing to find out the vulnerabilities of 
the system. Scan and Attack synthesize the information of vulnerabilities with 
corresponding impacts and security requirements, which are read from class 
Vulnerability and Criteria separately, and send the results to Risk_State. Class 
Risk_State adjusts the security status of the information system according to these 
messages. 

During the process of evaluation, the possibility, motivation and the source of 
threats are investigated in the form of questionnaire and the results are sent to 
Risk_State. Class Risk_State adjusts the security status of the information system 
according to these messages. 
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Class Risk_State receives messages from class Correlation_Testing, 
Dependency_Testing, Scan, Attack and Questionnaire and makes the final verdict of 
the security of information system. 

Class Countermeasure reads the security state of the information system from class 
Risk_State. According to the protection countermeasures can provide and 
corresponding implementation costs, class Countermeasure recommends security 
controls to system owner during the process of security improvement. 

Figure 4 illustrates the object model of information system security evaluation. 

Fig. 4. Object model of information system security evaluation 

4   Realization and Application 

Based on the object models of information system security context and security 
evaluation, we developed a toolkit for information system security evaluation. The 
toolkit now includes eight Application_Service objects, i.e. database service, file 
service, email service, web service, print service, disk service, domain name service 
and security application service. Component objects include most products in market 
such as firewall, IDS, OS, DBMS, router and etc. Correlation_Testing and 
Dependency_Testing objects provide methods, i.e. rule_substitute(), 
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testing_navigate() and assess(), for currently included Application_Service and 
Component objects. For example, in a network consisting of a firewall, a database 
server and other necessary components, the firewall and the DBMS both provide 
auditing function. The firewall can record the IP addresses of the accessing machines 
and the DBMS logs the user IDs performing the database operations. When 
performing Correlation_Testing, testing_navigate() and rule_substitute() will indicate 
the evaluators to set up rules about how to check if the logs of the firewall and the 
DBMS can be correlated to depict the complete traces of the user access. Then 
assess() performs the check according to the rules created in the previous step. 

Vulnerability objects include information about more than 4,000 vulnerabilities 
known at present. The severity of these vulnerabilities is often denoted qualitatively 
such as low, medium and high [7]. However, there are no direct relations between the 
severity of vulnerabilities and security elements in GB 17859. Vulnerabilities with 
high severity usually affect more than one security elements, and those with low 
severity usually affect single one security element while those with medium severity 
affect from one to more security elements. According to the analysis of 
vulnerabilities, we associated vulnerabilities with security elements. If any 
vulnerability has effect on security element n, the attribute of the corresponding 
Vulnerability object, effect_on_SEn, is set to one; otherwise the attribute is set to zero. 
Scan and Attack objects include the most popular tools available on the INTERNET. 
With their extensibility, Scan and Attack objects can verify the survivability of target 
system under the threat environment of the time. Attributes of Criteria object denote 
the security requirements of GB 17859. The coverage of Questionnaire object is 
corresponding to the requirements of security level one to three of GB 17859. 
Instances of Threat and Countermeasure are created during the process of 
evaluations. We didn’t take account of the cost of Countermeasure objects for 
simplicity in this toolkit at present. As a representation of system security states, 
Risk_State object reflects the security level of the system. The higher the security 
level, the lower the security risk. 

This toolkit is used in the security evaluations of several companies in Beijing and 
Hunan province in China. During the testing, we launched the tests from both the 
internal and the external of the target systems so that we could examine the security of 
the boundary and the computing environment. Figure 5 illustrates the testing 
environment. 
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Fig. 5. Testing Environment 
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The testing shows that: 

− The Application Services in the model cover the most conditions during the tests. 
− The Attack and the Scan objects meet the testing requirements in the main. 
− The correlation and dependency rules need further improvement. Since the network 

environments vary from case to case, it's hard to figure out all the correlation and 
dependency rules at present. This work can be improved in the future evaluation 
experiences. 

− The Object-Oriented method is practical in the information system security 
evaluation. 

5   Discussion and Related Work 

This paper established object models of information system security context and 
security evaluation, introduced an object-oriented information system security 
evaluation method. The main contributions of this method include the following: 

• The object model of security context represents the structure and characters of 
information systems clearly. OO technology simplifies the analysis process and 
improves the efficiency of security evaluation for complex information systems. 

• The object model of security evaluation introduces class Correlation_Testing and 
Dependency_Testing to assess the compositional security of components at system 
boundary, computing environment and network. Focusing on security functions, 
the testing of correlation and dependency is a supplement of penetration testing and 
distinguishes the security evaluation of information systems from that of products.  

• Class Scan and Attack encapsulate penetration testing and eliminate the diversity of 
testing results caused by the diversity of evaluators’ experiences. Vulnerability 
associates the results of penetration testing with security elements. 

• The object model of security evaluation associates risk management with the 
evaluation of security levels. It extends the concept of traditional risk and denotes 
risk state of system by security levels defined in GB 17859. 

There are also many other researchers who work on object-oriented security 
analysis and evaluation methods. Peter Herrmann introduced an object-oriented 
security analysis and modeling method [8]; J. L. Bramlage proposed an object-
oriented risk analysis model [9]; M S Olivier described an object-based version of the 
path context model [10] to analyze the security of component system. However these 
methods focus on the analysis of security requirements but not on the evaluation of 
systems in operation. Bruce Barnett developed a networked object-oriented security 
examiner, NOOSE [11]. It was used to examine the security of UNIX. Table 1 
compares our work with the others. 

Although object-oriented analysis and design have been widely adopted in the field 
of software engineering, the researches on object-oriented security analysis and 
evaluation are still in their infancy. We hope to establish a practical security 
evaluation method and corresponding tools and procedures by adopting the object-
oriented technology. 
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Table 1. Comparison between the different models 

Model Application Area Research Object 
Peter Herrmann CORBA based distributed 

application 
Define the evaluation 
method 

J. L. Bramlage Risk management of information 
resources 

Risk management method 

M S Olivier Access control of the network 
resources 

Security requirements 
analysis 

Bruce Barnett UNIX system Create an object model to 
support multiple algorithm 

Our work Information system security 
evaluation 

Establish the evaluation 
procedures and tools 

6   Conclusion 

This paper introduced an object-oriented information system security evaluation 
method, established security context object model and security evaluation object 
model and developed a set of information system security evaluation tools according 
to these models. 

Based on the current research, the future work includes: 

• Establish more Application_Service and Component objects to meet the evaluation 
requirements of all kinds of information systems. 

• Formally describe the correlation and dependency rules. 
• Improve the method in practice and develop special object models and tools for 

typical systems such as E-commerce systems and E-government systems. 
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Abstract. IT-security lacks the equivalent of an Air Safety Reporting System. 
Yet, the current trend to outsource security processes might be the birth of a 
Cyber Security Reporting System – CSRS. A necessary condition for providers 
of security services to evolve toward a CSRS is successful quality management. 
The increasing demand for “fire-fighting” – deriving from the growth in 
number and sophistication of attacks and the decline in the expertise of the 
average system administrator – pushes farther and farther away from “fire-
prevention.” But growth of insight, and its codification and communication are 
prerequisites for even the most rudimentary CSRS. Studies show that few 
attempts to implement quality improvement processes succeed; yet, successful 
quality management provides decisive competitive advantage. System 
dynamics studies of quality management have identified causes of 
implementation failure and provided guidance for success. Transferring these 
lessons to security service organizations is a promising path toward the vision 
of a CSRS. 

1   Introduction 

Evidence for the benefits of safety and security reporting systems is found in many 
references. In his seminal book about organizational accidents, Reason states that 
«many highly effective reporting programmes [do] exist». Reason describes in detail 
two instances of an ‘Air Safety Reporting System’1 followed by a discussion of 
successful reporting programs in other domains that have used aviation reporting 
systems as point of departure and template (cf. [2] p. 196ff). Unfortunately, cyber 
security (including cyber security in IT-dependent critical infrastructures) are not 
examples of successful reporting programs. One could quote many papers and books 
lamenting that the scarcity and incompleteness of (most) security incident data are 

                                                           
1 The name Air Safety Reporting System is generic; instances of it are e.g. NASA’s Aviation 

Safety Reporting System (ASRS) or the British Airways Safety Information System (BASIS). 
For one of the first discussions of the benefits Air Safety Reporting Systems see ref. [1], p. 
168-169. 
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hampering progress. A particular and passionate statement (ref. [3], p. 391ff.) 
compares the frustrating situation for cyber data reporting with the success of ‘Air 
Safety Reporting Systems’. 

There should be little doubt about the need to improve reporting of cyber security 
data – intrusion attempts, successful intrusions, incidents of all kinds, DDoS, etc –, 
followed by analysis and sharing of insights. True, the numerous computer emergency 
teams (CERTs) and computer security incident response teams (CSIRTs) around the 
world have established cyber security reporting systems of sorts. But nearly two 
decades after their emergence, distinguished experts from the nestor organization 
among them, the CERT® Coordination Center, acknowledge that systematically 
collected data on cyber attacks is not generally available (cf. §1.3 Cyber Data 
Restrictions of ref. [4]). 2  

Reason (op. cit. p. 197) acknowledges that the implementation of critical incident 
and near-miss reports is not easy. Such task is indeed of daunting difficulty for cyber 
security. This lack of availability stems from three basic causes: Attackers generally 
act to conceal their attacks; defenders gather data on attacks for narrow purposes; 
organizations controlling information assets rarely share data on attacks. First, cyber 
attacks are in general the more successful, the more unexpected they are. Hence, 
attackers conceal as much information as possible in order to preserve the utility of 
their tools; as a result defenders only capture incomplete information on the methods 
and objectives of the attackers. (An exception are honeypots and honeynets, cf. [5, 
6].) Second, defenders of information assets rarely have the capacity and the know-
how to collect detailed attack information; in addition, they often are overburdened. 
Data are only collected if needed for a specific purpose, such as forensic needs or for 
legal proceedings. Also, collected data is normally stored in ad-hoc formats for the 
intended purpose – it is rarely stored in generally accessible databases. Third, attack 
data is rarely shared, and if so, often only in vague terms. Sharing of information may 
be precluded by the rules of evidence in a criminal prosecution. Often, data is 
withheld for fear of bad publicity, etc. When detailed data are shared, in most cases 
restricted use agreements hamper their availability to the research community. 

Unfortunately, recent trends seem to indicate a worsening of the situation: 
Intruders have progressively improved their tools and it has become more difficult to 
detect an attack. This has a direct negative impact on the availability of cyber data. 
But there is an indirect negative effect on availability (both of quantity and quality) 
stemming from the huge increase in quantity and sophistication of the attacks. 
Defenders are increasingly overburdened, damage amount is increasing and neither 
data collection nor smart prevention and detection are becoming easier. 

Accordingly, the vision of a Cyber Security Reporting System – CSRS for short – of 
a scope comparable to an ‘Air Safety Reporting System’ would appear very distant, 
nearly utopian. This paper argues that a CSRS might be a realistic vision nevertheless, 
provided more attention is given to quality improvement processes in entities dealing 
with incident prevention and handling. It is argued that there are some key elements that 
– if combined – could lead to more comprehensive and effective cyber data collection 
and analysis, gradually approaching a CSRS of scope comparable to an Air Safety 

                                                           
2 The description of cyber data restrictions in ref. [4] was provided by CERT/CC co-authors 

Dawn Cappelli, Andy Moore and Tim Shimeall. 
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Reporting System. The most important is that cyber security agents, whether individuals 
(CISO, CIO) or teams (e.g. CSIRTs), find the right balance between responding to 
incidents and learning from incidents – this requires a successful quality improvement 
process to manage the process, as well as improved data collection and analysis to 
permit learning from incidents. With quality improvement and learning from incidents 
in place, the trend to outsource security processes will create larger arenas for sharing 
data and insight, including the development of new methods and tools. For specificity, 
this paper uses (external) CSIRTs as focal point. First, it is argued that external CSIRTs 
are good candidates for discussing outsourced security processes from this paper’s 
perspective. Second, evidence is provided that attack and defend trends inhibit the 
performance of CSIRTs. Third, a simple conceptual model suggests that the 
performance stress on CSIRTs might force CSIRTs to work hard to the detriment of 
working smart (“learning from incidents”). The model also shows that CSIRTs can be 
locked into a “capability trap” – that is a stable underperforming mode. Decisions 
leading to an underperforming CSIRT are likely to yield a deceitful, transient 
improvement to begin with (a “better-before-worse” situation). Conversely, the model 
indicates that the desired mode of a well-performing CSIRT is likely to require a 
“worse-before-better” stage. Even when managers persevere through the initial “worse” 
stage to achieve superior performance, shortcuts during stress situations might 
destabilize CSIRTs toward an underperforming mode.  

The perspective of a CSRS is in the sustained operation of working smart and in 
the diffusion of insights to ever growing circles.  

1.1   Outsourcing Security Processes 

Cyber security is a very complex field and experts are in great demand. With more 
and more aspects of our life occurring in cyberspace the demand for security expertise 
is rapidly growing. Very few organizations have sufficient resources or motivation to 
have a full cyber defence capacity in-house. Thus, organizations find it necessary to 
outsource security processes. The constantly changing threat – with the number and 
sophistication of email, virus, and network-based attacks growing each year – will 
probably reinforce the current trend to outsource security processes. 

Outsourcing of security processes triggers the appearance of informal arenas for 
sharing of cyber security information. After some transitory phase the arenas develop to 
fora or institutions. Their very existence and ubiquity promotes sharing of information – 
within limits – but the constraints will become less restrictive as progress on protocols 
and data processing activities increases the utility of data for improving security, while 
protecting the legitimate interest of owners of information sources. Expertise will be 
shared too – in workshops and conferences (often dedicated to specific security 
processes, such as the annual FIRST3 conferences). Generic tools for categories of 
security processes will be developed – the advantage that the tools provide will facilitate 
standardization and availability of security data on which they operate. The increasing 
benefits of the outsourcing security processes (and the accompanying sharing of data) 
are likely to promote trust as well as further outsourcing and sharing of cyber security 
data. It is a slow process, but it is happening already.  

                                                           
3 FIRST is the global Forum for Incident Response and Security Teams. 
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CSIRTs (Computer Security Incident Response Teams) are of particular interest, 
since they are probably the most ubiquitous category of outsourced security processes 
with an arena for diffusion of knowledge to a larger community. The goal of a CSIRT is 
to control and minimize any damage, preserve evidence, provide quick and efficient 
recovery, prevent similar future events, and gain insight into cyber threats against a 
“constituency” of independent organizations.4 A CSIRT is by definition a clearinghouse 
for security incident data within the scope defined by its constituency. The TERENA 
Technical Programme has established the TF-CSIRT Task Force with goals that include 
providing a forum for exchanging experiences and knowledge and promoting common 
standards and procedures for responding to security incidents.5 With such auspices 
CSIRTs might be seen in retrospect as a significant step towards a future Cyber Security 
Reporting System – CSRS. Because of this, and for specificity, the remainder of this 
paper is dedicated to CSIRTs.6  

Note that a recent CERT/CC study on the state of practice of CSIRTs [7] supports 
our expectations, at least for a particular domain of cyber security (incident handling): 
1) A large increase in the number of incident response teams over the past four to five 
years before the study (i.e. since 1998) – i.e. a growth in outsourced security services 
(op. cit. p. 131); 2) the goal to establish standards, and to develop and utilize a common 
and easy-to-use mechanism for sharing of data between teams and the synthesis of 
collected data (op. cit. p. 133); 3) the intention to develop generic tools for use in 
incident handling (op. cit. p. 135.). 

2   Attack and Defence Trends 

Trends since the early 1990s indicate that the sophistication of attack tools is increasing 
while the required individual know-how to deploy those tools is decreasing (Fig. 1). 7  

In the 1980s intruders were system experts with a high level of expertise and they 
personally constructed the methods for breaking into systems. Today, anyone can 
attack a network using intrusion tools and exploit scripts from the “public domain” 
that capture known methods of attack. While experienced intruders are getting 
smarter, as demonstrated by the increased sophistication in the types of attacks, the 
knowledge required on the part of novice intruders to copy and launch known 
methods of attack is decreasing.  

In the early era of cyber attacks, intruders manually entering commands on 
computers could access tens to hundreds of systems; today, intruders use automated 
tools to attack thousands to tens of thousands of systems – and nothing prohibits the 
access to hundreds of thousands or even millions of sites. In 1980s, it was relatively 

                                                           
4 Strictly speaking, this statement concerns external CSIRTs. Broadly speaking there are two 

kinds of CSIRTs, internal and external. An internal CSIRT is a unit within an organization.  
5 TERENA stands for Trans-European Research and Education Networking Association. For 

details about the task-force, cf. http://www.terena.nl/tech/task-forces/tf-csirt/. 
6 CSIRT is a generic name; cf. http://www.first.org/about/organization/teams/ for examples of 

existing CSIRTs.  
7 Graphic © Copyright 2004 Carnegie Mellon University. Reprinted with kind permission of 

CERT®/CC. CERT®/CC is a registered trademark and service mark of Carnegie Mellon 
University.  
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straightforward to determine if an intruder had penetrated the system and understand 
the damage done. Today, intruders are able to totally hide their presence by, for 
example, disabling commonly used services and reinstalling their own versions, and 
erasing their tracks in audit and log files. In the beginning of the cyber attack era, 
denial-of-service attacks were rare and not considered serious. Today, for an 
increasing number of organizations that operate electronically, a successful denial-of-
service attack can put them out of business. Unfortunately, these types of attacks are 
becoming more frequent. For more details, cf. [7] §3.8 Changes in Intruder Attacks 
and Tools, p. 107ff. Note also that the rate at which new vulnerabilities are discovered 
continues to increase (op. cit. p. 111). 

 

Fig. 1. Attack sophistication vs Intruder Knowledge. © Copyright 2004 Carnegie Mellon 
University. Reprinted with permission of the CERT® Coordination Center. 

Not surprisingly, CSIRTs have problems in coping with the increasing flood of 
incidents. Killcrece et al. state in the seminal CERT/CC study (ref. [7], p. 77): 
«Because of the amount of detailed work done by incident handlers and the increasing 
work loads, many of the authors of the books and articles reviewed in the literature 
identified staff burnout as a problem for CSIRTs.» Further: «As the volume of 
incident and vulnerability reports continue to rise, and the automation and speed of 
many attack tools continue to increase, CSIRT and information security staff 
members now have less time to react to new threats.» (Op. cit. p. 112). 

Summarizing: The increasing number of attacks and their sophistication has 
increased the workload in CSIRTs and it is becoming overwhelming, implying a wide 
range of internal problems, such as insufficient funding, inadequate management 
support, shortage of trained incident handling staff, lack of clearly defined mission 
and authority, and lack of coordination mechanisms. (Op. cit. p. 126). 
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In the following section it is argued that this stressful situation is a main obstacle 
for the reporting of cyber security data, learning from incidents and for sharing of 
insights. 

3   CSIRT Services – Status and Shortcomings 

The CERT/CC report on organizational models for CSIRTs classifies services 
provided by Computer Security Incident Response Teams as reactive services, 
proactive services and security quality management services. Reactive services are the 
core component of CSIRT work; they are triggered by incidents events or requests – 
those services can be compared to fire-fighting activities. Proactive services target 
preparation, protection and securing constituent systems. Security quality 
management services «augment existing and well-established services that are 
independent of incident handling and traditionally performed by other areas of an 
organization such as the IT, audit, or training departments.» (Ref. [7] p. 65.) While 
proactive services directly reduce the number of incidents, security management 
services do indirectly so (cf. [8] p. 14-15.) Proactive services and security quality 
management processes can be compared to fire-preventing activities. 

The CERT/CC report on the state of the practice of CSIRTs [7] gives much 
evidence that most current CSIRTs still are incipient, that their services are reactive in 
nature or still striving to achieve maturity: Computer security must be proactive to be 
successful – being reactive is no longer sufficient (p. 131); incident response is still an 
immature field and there are few standards (p. 131-132, 133); there are no consistent 
structure or set of services for a CSIRT (p. 132); There is no commonly used 
taxonomy for incident response and computer security terminology (p. 132); 
employees who are trained and experienced in incident response techniques and 
practices are difficult to find (p. 132); few tools addressing the specific needs of 
CSIRTs are readily available (p. 132); shortcomings in best practices (p. 132); etc.  

One might safely conclude that in many CSIRTs reactive fire-fighting dominates to 
the detriment of proactive work and security quality management services. To release 
the potential of CSIRTs in security prevention and their ability to evolve toward 
Cyber Security Reporting Systems a paradigm shift is needed. In the next section it is 
argued that the clue is a successful quality improvement program in CSIRTs. 

4   The Need for Quality Improvement Processes in CSIRTs 

A very interesting parallel to the situation in CSIRTs occurs in quality improvement 
programs: Despite vast investments – in the USA in the order of hundreds of billions 
USD per annum – few efforts to implement such programs yield significant results. 
But enterprises that succeed to implement total quality management programs 
outperform their competitors [9-12]. A team at MIT’s Sloan School of Management 
led by professors Nelson Repenning and John Sterman has conducted about a dozen 
brilliant in depth studies of the “quality improvement paradox” in several sectors 
(telecommunication, semiconductors, recreational products, chemicals, oil, auto-
mobiles). System dynamics models based on detailed data are able to capture the 
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essentials of the quality improvement process (see the award-winning paper [13] and 
references given in endnotes 4-5 therein). If the methods and lessons from the MIT 
studies can be applied to CSIRTs, a major improvement in their performance might 
be achieved. 

Several projects in our research cell “Security and Quality in Organizations” are 
concerned with the dynamics of CSIRT management (refs. [14, 15] are results from 
two of them; in addition there is a recently begun project, AMBASEC,8 related to 
incident response and management in the context of eOperation in offshore oil and 
gas fields). Of particular interest is the PhD project of Johannes Wiik, which is 
concerned with the management of CNF-CERT, a state-of-the art external CSIRT. 
Preliminary results with data provided by K.-P. Kossakoswki from CNF-CERT 
suggest indeed that the MIT approach to quality improvement processes is relevant 
for CSIRT management as well [14, 16]. The ultimate goal is to derive best practice 
recommendations in order to improve a generic CSIRT’s ability to provide processes 
and security quality management services. The potential of the approach can be 
illustrated with an adapted version of a basic, qualitative system dynamics model 
developed by Repenning and Sterman. The model explains the core behaviour of the 
dynamics of quality improvement processes; it has four feedback loops depicting the 
trade-offs between working hard vs. working smart (op. cit., section The Structure of 
Improvement, p. 66 ff). In the case of CSIRTs, “working hard” corresponds to routine 
coping with the flood of incidents, while “working smart” is tantamount to learning 
from incidents – i.e. distilling lessons; proactive work leading to preventive measures; 
developing tools that improve performance; sharing of insights; promoting better 
security management; etc.  

Figure 2 shows the CSIRT version of Repenning and Sterman’s basic model. The 
four feedback loops determining the performance of the CSIRT are: 

• ‘B1: COPING WITH INCIDENTS.’ This is a balancing loop consisting of the variables 
‘Performance gap’, ‘Pressure to handle incidents’, ‘Time spent on incident 
response’ and ‘Actual CSIRT performance’;  

• ‘B2: LEARNING FROM INCIDENTS.’ This is a balancing loop consisting of the 
variables ‘Performance gap’, ‘Pressure to improve CSIRT capability’, ‘Time spent 
on improvement’, ‘Development of CSIRT capability’, ‘CSIRT's capability’, 
‘Prevented incidents’ and ‘Actual CSIRT performance’; 

• ‘B3: SHORTCUTS.’ This is a balancing loop consisting of the variables 
‘Performance gap’, ‘Pressure to handle incidents’, ‘Time spent on improvement’, 
‘Time spent on incident response’ and ‘Actual CSIRT performance’; 

• ‘R1: REINVESTMENT.’ This is a reinforcing loop consisting of the variables 
‘Performance gap’, ‘Pressure to improve CSIRT capability’, ‘Time spent on 
improvement’, ‘Development of CSIRT capability’, ‘CSIRT's capability’, 
‘Prevented incidents’ and ‘Actual CSIRT performance’. 

The plus and minus signs in the diagram refer to the polarity of the causal 
influence: A plus sign indicates a causal influence in the same direction; a minus sign 
indicates an influence in the opposite direction.9  

                                                           
8 AMBASEC (A Model-based Approach to Security Culture).  
9 For a more accurate definition of causal link polarity, see ref. [14] p. 139. 
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A rising number of security incidents (Attacks) widens the ‘Performance gap’ (the 
difference between desired and actual CSIRT performance). CSIRT management has 
to choose the right balance between two options, COPING WITH INCIDENTS and 
LEARNING FROM INCIDENTS. LEARNING FROM INCIDENTS is in principle the smarter 
option because preventive measures, better tools, improved security culture, etc., yield 
enduring change and enhance the power of direct efforts. COPING WITH INCIDENTS is 
constrained by available staff time and resources, but it has the (dangerous) attraction 
of yielding immediate results. Unfortunately, the better option LEARNING FROM 

INCIDENTS, involving development and deployment of smart solutions, takes time to 
develop and to come into play (the time delay is shown by the delay mark //). There is 
a trade-off between both options, since ‘Time spent on incident response’ and ‘Time 
spent on improvement’ add up to total available time.  

Working under the pressure to respond to an increasing stream of incidents, most 
managers of CSIRTs would react by increasing ‘Pressure to handle incidents’. The 
resulting balancing feedback loop ‘B1: COPING WITH INCIDENTS’ counteracts the 
widening performance gap and some transient improvement is seen. 

CSIRT management could opt to increase ‘Pressure to improve CSIRT capability’. 
There is a dilemma, because ‘Time spent on improvement’ does not yield immediate 
results; it takes time for piecemeal improvements (depicted as the flow variable 
‘Development of CSIRT capability’) to add up to sizable ‘CSIRT's capability’ that 
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tends to persist. (The persistence of ‘CSIRT's capability’ means that it is a stock 
variable – shown as a rectangle – that cumulates the flow, the improvements over 
time.) Ultimately, capability does erode over time (as knowledge, routines, tools, etc. 
become obsolete); this is depicted by the flow variable ‘Capability erosion’. 
Improved ‘CSIRT’s capability’ rises ‘Prevented incidents’ and so does ‘Actual CSIRT 
performance’. Summarizing: The balancing feedback loop ‘B2: LEARNING FROM 

INCIDENTS’ acts also to close the ‘Performance gap’, it gives quite persistent results, 
but it takes time.  

The feedback loop ‘R: REINVESTMENT’ is reinforcing; the conundrum is that it 
reinforces whichever strategy management chooses. If management gives too much 
priority to reactive work, perhaps because the swelling flood of security incidents 
forces them to, the REINVESTMENT loop increases ‘Pressure to handle incidents’ even 
more at the expense of CSIRT’s capability (in other words the REINVESTMENT loop 
makes the COPING WITH INCIDENTS feedback loop the dominant one, i.e. the CSIRT is 
likely to lock into reactive fire-fighting at the expense of becoming smarter). If 
management instead decides to increase ‘Pressure to improve CSIRT capability’, the 
REINVESTMENT loop facilitates further improvements of ‘CSIRT's capability’ (i.e. the 
REINVESTMENT loop makes the LEARNING FROM INCIDENTS loop the dominant one 
and the CSIRT becomes more effective at handling and preventing incidents).  

Figure 3 shows the results of two simulations showing how a hypothetical CSIRT 
would react to management opting for more “Coping with Incidents” vs. more 
“Learning from Incidents” (working harder vs. working smarter). In both cases the 
CSIRT begins in the same stationary state, but a sudden increase in intrusions forces 
management to either handle more incidents or to invest in more capability 
development (via “Learning from Incidents”). The first simulation shows the CSIRT’s 
response to emphasis on “Coping with Incidents.” As more pressure on handling 
incidents increases, effort to handle incidents does so too. Time spent on improving 
CSIRT capability falls quickly, but CSIRT capability stays the same for a while. 
Hence, the actual CSIRT performance, in terms of how many incidents are handled 
per time unit, rises without delay. But the gain of working harder to cope with 
incidents is transitory. In contrast, if management decides to invest in CSIRT 
capability development through learning from incidents, CSIRT performance falls 
transiently until the gain from enhanced capability results in sustained superior 
performance.10 Choosing working harder (more coping with incidents) gives a 
“better-before-worse” response; opting for working smarter (more capability 
development through learning from incidents) yields a “worse-before-better” 
situation. CSIRT management can be lured by short-lived gains and become locked in 
an underperforming situation, or it can prematurely give up developing sustainable 
CSIRT capability. The term “capability trap” (coined by Repenning and Sterman – 
op. cit.) is a metaphor for this double peril. 

But there is more to it. Even when management has opted for more LEARNING 

FROM INCIDENTS, there is a substantial risk that emergency would force the staff to 
temporarily reduce ‘Time spent on improvement’ and to increase ‘Time spent on 

                                                           
10 In the conceptual model behind Figure 3 it is also assumed a smooth transition to more effort 

on capability improvement (r.h.s.), whereas it is assumed that the transition to more incident 
handling can be implemented very fast (l.h.s.).  
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incident response’. The resulting ‘B3: SHORTCUTS’ loop is again a balancing loop that 
helps meet short time objectives – but the time won by cutting corners reduces the 
capability of the CSIRT. In other words, the SHORTCUTS loop can in a subtle way lead 
away from the best strategy and lock CSIRT performance in the “capability trap.” 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3 Simulations of CSIRT response to emphasis on Coping with Incidents vs. Learning from 
Incidents (Time scale is arbitrary) 

5   Concluding Remarks 

At first sight, the vision to establish a Cyber Security Reporting System (CSRS) in the 
spirit of ‘Air Safety Reporting Systems’ seems too distant to be a guide for current 
endeavours. But the vision might not be that distant: In this paper it is argued that the 
outsourcing of security processes – particularly of incident response handling – might 
be a first step toward a CSRS. A necessary condition for this to happen is that 
providers of outsourced security services improve their capability to do proactive 
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work and to deliver security quality management services. The challenge is analogous 
to quality improvement processes. This paper suggests that CSIRTs are a promising 
first venue for quality improvement. 

The analysis derived from the pioneering work on quality improvement processes 
lead by Repenning and Sterman at MIT’s Sloan School of Management makes it 
promising to transfer the methods and to transfer their approach to quality 
improvement processes in CSIRTs: If the capability of CSIRTs (of which there are 
hundreds in the world) improves significantly, there would be a multiplier effect 
concerning better data mining and use of incident data to improve organizational 
security and survivability. Thus, directing the performance of CSIRTs toward more 
proactive work and improved security services would have strong leverage when it 
comes for progress in data mining and downstream activities from cyber security data 
(analysis, modelling, insight, dissemination of results, etc). 

To find out the right balance between reactive work and learning from incidents is 
not a trivial task; nor is the implementation of the right strategy – once found – trivial. 
Among the problems facing management is the dilemma that – in order to achieve 
sustainable gains in CSIRT capability – the CSIRT’s performance is likely to 
decrease before it improves. Indeed, to improve CSIRT capability one must invest the 
existing limited resources into learning from incidents, i.e. to redirect efforts from 
response to quality improvement – an investment that takes time to yield visible 
results. And vice versa: Performance improves transiently if management enforces 
more reactive work to cope with the swelling flood of security incidents – in the 
meantime CSIRT capability erodes and a strong negative outcome in performance 
ensues. Management can fall into the capability trap in two ways: 1) Emphasis on 
coping with incidents yields initially deceitful promising results, but subsequently 
CSIRT performance gets locked in an underperforming mode; 2) emphasis on 
learning from incidents does establish superior and sustained performance, but 
inadvertent recourse to more and more shortcuts during stressful periods of incident 
response destabilizes performance.  

The capability trap is hard enough to avoid in enterprises under tough competition 
pressure; the exponential rise of security incidents and the growing sophistication of 
attacks puts CSIRTs (and probably most other organizations providing security 
services) under an even greater pressure; the basic, conceptual system dynamic model 
discussed above would suggest that avoiding the capability trap in the cyber security 
case is an even tougher task than in, say, manufacturing companies. A central target in 
the projects of our research cell Security and Quality in Organizations is to suggest 
specific CSIRT management policies that prevent the capability trap and, hence, a  
degrading effectiveness of such organisations. Achieving sustainable superior CSIRT 
performance is expected to promote better security data mining and learning from 
such data.  

CSIRT is a generic name and instances of CSIRTs are found in critical infrastructure 
(defence, finance, energy sector, etc.). The PhD project of Johannes Wiik and the 
AMBASEC project are just a beginning – though a promising one. More studies will be 
needed, since the topic is complex and CSIRTs occur in many shapes and 
configurations. For further progress to occur it is crucial that incident response teams 
engage in quality improvement processes – a modest first step would be to interact with 
our team (i.e. comment and criticize our approach, to discuss cooperative projects, etc.). 
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Although this paper has selected external CSIRTs as specific case for the vision to 
CSRS through quality process improvement, much of the arguments presented should 
be of generic validity for other kinds of outsourced security processes. 

Improved cyber security is closely related to dependability of infrastructures that 
depend critically on information technology. This perspective is beyond the scope of 
this paper but it is a central aspect of the collaboration of the AMBASEC project of 
our research cell Security and Quality in Organizations with SINTEF’s IRMA project. 
The target of the collaboration is to improve information security in the oil and gas 
industry, for individual enterprises and as part of critical infrastructure, by improving 
incident response management. 
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Abstract. During the era of information technology and within the domain, the 
topic of security has for many years been perceived of as a “goodness” factor 
particularly relevant to IT in general and Telecommunications in particular. 
Nevertheless, rapid application growth of complex Information and 
Communication Technologies (ICT) in every society and state infrastructure 
has revealed vulnerabilities that eventually have given rise to serious security 
breaches. These vulnerabilities together with the course of the breaches from 
cause to consequence have gradually convinced the field experts that ensuring 
the security is no longer possible by only relying on the fundaments of the 
computer science, IT, or Telecommunications. Appropriating knowledge from 
other domains of science is not only beneficial, but indeed very necessary. At 
the same time, it is a common observation today that ICT-systems are used 
everywhere, from the aviation, nuclear, commerce and healthcare domains to 
camera-equipped web-enabled cellular phones used by your next door 
teenagers. There ought to be common mechanisms on security analysis and 
countermeasures against the possible breaches, which are valid for all these 
domains. This paper advocates the importance of a multi-disciplinary and multi-
sectoral security research and analysis, and highlights the European and 
Norwegian initiatives in that direction. 

1 Introduction 

During the recent years, technological research within security has evolved from 
computer and IT security, through cyber and information security and now to the 
rapidly growing scope of ICT security. During the era of IT and within the domain, 
the topic of security has for many years been perceived of as a “goodness” factor 
particularly relevant to IT in general and Telecommunications in particular. In the 
light of this, the topic of security from a pure technological point of view has been 
believed to be a function of mainly three variables, the notorious CIA 
(Confidentiality, Integrity and Availability). In accordance with the increasing 
complexity of information and communication technologies and their applications and 
especially within computer security, Accountability1 is also believed to be the fourth 

                                                           
1 A system’s accountability is usually used to address a quality of a system that makes it 

possible to trace a security breach (related to one or several from CIA ) caused by an artefact 
uniquely to that artefact. 
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deciding variable [1]. All four variables are mutually related. Nevertheless, the 
integration of ICT systems into all groups of society infrastructure has seriously 
challenged the validity of the CIAA belief. Within the ICT community, a common 
consensus today is that the deciding CIA variables are closely related to factors, 
which traditionally have not been regarded as of technological nature. The most 
compelling evidence is the issue of safety: While security in the context of safety has 
so far been an issue only within certain industrial domains such as the nuclear field, it 
has become more relevant today for other areas, e.g., eHealth. Examples of other 
factors increasing in their importance are trust, (data) protection of personal privacy, 
user-friendliness [2][3], robustness, maintainability, flexibility, and mobility. 

One of the oldest non-technological perceptions of security is from the banking 
domain. For many years, sociological, financial, political, defence-political, 
jurisprudential and environmental observations and analyses have been contributing 
to a non-technological understanding of security. Then again, the observations and 
analyses made by these areas today cannot deny the major role of insight into 
technological trends such as the advance of ICT systems on how to understand and 
deal with security. 

The above indicates the inevitable: Ongoing and future security research efforts 
within various disciplines and application areas cannot be mutually exclusive, if 
wished to achieve an acceptable level of success. In other words, security research is 
by nature a multi-disciplinary and multi-sectoral research area. 

2 Security as a Dependability Factor and the Related Challenges 

Based on the above, it is not far from the (relative) truth to claim that competence in 
technological pillars of the ICT domain and dependability analysis, gained knowledge 
and experience within other domains that are relying on and applying ICT systems, 
and focus on continuously learning from, exploiting and engaging other disciplines 
and application areas in the efforts within security research all contribute to better 
understanding of the relationships between the security in one side and other 
dependability factors in the other side, and hence to more effective and long-lasting 
countermeasures against possible threats eventually resulting in serious security 
breaches [4]. 

To begin with understanding such relationships, the following provides detailed 
definition of safety and security and their associated risk. The definitions are not only 
in agreement with the corresponding definitions offered by applied international 
standards (e.g., IEC 61508), but also are more advanced, as far as the level of detail 
and clarity of involved terms are concerned. 

2.1   Safety, Security and Their Associated Risk 

The term safety is associated with a system’s2 physical condition not being harmed or 
damaged by its outside environment (including humans). At the same time, a system 

                                                           
2 A system is a compound of interrelated and interconnected entities that function together in 

order to attain a set of overall goals for the system. Scientifically, a system can be of natural 
character (e.g., a human being) or human-made (e.g., an oven, a television set, or the nation-
wide electricity power network). 
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contributes to the safety of its outside environment, when the system is able to 
function and to be used as intended or expected without harming or damaging this 
environment. Thus, safety is used to express the prevention of unacceptable risk of 
harm. Harm and risk are defined as follows [5]: 
 

• Harm is the physical injury, or the physical damage to condition or property 
of a system or its outside environment, caused by an intended or unintended 
action or an event. 

• Risk is a collective effect (qualitative or quantitative) of the occurrence 
likelihood of a hazard causing harm and the degree of severity of the harm, 
given the degree of vulnerability of the system or its environment subject to 
that harm. 

 
    The perception of failure of a safety-related system can vary considerably 
depending on the application in focus. It is this variation that leads to concepts such as 
the "level of safety", the "Safety Integrity Level" (SIL), and the “As Low As 
Reasonably Possible” (ALARP) for a system.  

In general, the term safety is more often applied for living beings than, e.g., pure 
technological systems. Bearing the physical condition and protection of a system in 
mind, however, the term is equally applicable for all systems. 

The term security is associated with the protection of a system’s assets such as the 
information3 and information processing resources, from being threatened to 
unintended or intended damage by the system’s outside environment. Thus, a 
system’s level of security may decline without affecting the system’s level of safety. 
As an example, the confidentiality of a nuclear scientist’s knowledge carried by its 
brain may be intentionally disclosed, hence causing the scientist’s security level to 
decline, without affecting the scientist’s level of safety in any manner. 

Of course, a security breach for a system might affect the safety of its outside 
environment, both in a positive and negative manner. In the context of security, threat 
and risk are defined as follows [6]: 
 

• Threat is defined as an intended or unintended action or an event that might 
jeopardise the security of a system. 

• A risk is defined as the collective effect of the occurrence likelihood of a 
particular threat and the degree of severity of the threat (i.e., the potential 
consequences of the threat, if it did occur), given the degree of vulnerability 
of the system subject to that threat. 

 
    In general, the term security is more often applied for technological systems than 
living beings. Bearing the assets of a system in mind (i.e., its information and 
information processing resources), however, the term is equally applicable for all 
systems that possess information. 

Nevertheless, the tradition of relating safety to the living beings and security to 
technological systems (or “machines”) is still helpful, when addressing the 

                                                           
3 Thus, the asset can also include knowledge, which is a piece of information already declared 

to have a certain value of use. 
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relationship between safety and security (such as “security in the context of safety”). 
The best illustration existing today is perhaps the three laws of Robotics4: 
 

1. A robot may not injure a human being or, through inaction, allow a human 
being to come to harm. 

2. A robot must obey orders given it by human beings except where such orders 
would conflict with the First Law. 

3. A robot must protect its own existence as long as such protection does not 
conflict with the First or Second Law. 

2.2   Pertinent Security-Related Issues Subject to Deeper Exploitation 

Assuming that the conditions described in the beginning of this chapter are fulfilled, 
one is able to identify issues that need further exploitation. Four of these are explained 
bellow. 
 

1. Identification of technological and non-technological factors defining, 
deciding or relating to the level of security in security-critical systems, 
society and state infrastructures and processes. A society infrastructure can 
be the nationwide electricity network, where the relationships among factors 
such as availability, integrity, maintainability and safety are crucial to 
identify in order to ensure an acceptable level of security. A state process can 
be a continuously updated collection of guidelines and means to implement 
actions to protect the society against the threat caused by international 
terrorism. Here, it is of paramount importance to clarify factors such as trust, 
(data) protection of personal privacy, user-friendliness (e.g., of instructions) 
and robustness (e.g., against vulnerability sources), in order to establish a 
certain level of belief in security countermeasures. 

2. Identification of both overlaps and discrepancies across involving sectors, so 
that it becomes easier to develop common methodologies and models to deal 
with security in present and future complex systems, infrastructures and 
processes, without causing the tailor-made methodologies and models in 
each sector to become invalid or ineffective. 

3. Integration of risk factors into the established security affecting and security 
related factors addressed above, so that the entire risk management process, 
including risk analysis, assessment and treatment can be mapped into the 
development process (lifecycle) of security-critical systems, infrastructures 
and processes, hence resulting in risk-informed development processes with 
security as their core focus. In practice, this means that there should be a risk 
model involved as an integrated part of a certain security related factor for, 
e.g., a modernised ICT system, an updated guideline, or a modified state 
decision. This factor could be the “accepted” level of data protection of 

                                                           
4 The three laws of Robotics were established by the father of Robotics, Isaac Asimov whose 

thoughts and theories on possible patterns of relationships between humans and machines 
have highly inspired the masters of information and communication engineering as well as 
human factors engineering. 
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personal privacy, so that the consequence of its change to other levels in the 
future can be viewed and studied. 

4. Intensified focus on research within communication and traceability of 
security affecting and security related requirements for all systems and 
processes used in technological/industrial, sociological, financial, political, 
defence-political, jurisprudential and environmental applications and sectors, 
in addition to society and state infrastructures. Joint efforts from different 
disciplines within this particular area are central in dealing with continuous 
changes in the requirements for such complex systems, processes and 
infrastructures, as a response to modernisation and improvement needs, as 
well as social, economical, environmental, technological and political 
influences from the world. 

3 European and Norwegian Initiatives Towards Security  
       Research 

The European Commission’s movements and actions in progress indicate a clearly 
increasing focus on the topic of security. In that respect, a dedicated programme for 
security research as a part of the 7th Framework Programme is about to form [7]. The 
prime rationale behind the programme is in fact to better and more efficiently 
conform to the multi-disciplinary and multi-sectoral requirements for giving a boost 
to Europe’s security research. 

In accordance with the above, the Research Council of Norway has launched 
several initiatives to prepare the research and education community in Norway for 
better compliance with the requirements set up by the EC.  

3.1   The European Security Research Programme (ESRP) 

The major difference between the new programme and the EC’s security-related 
activities within the previous and current framework programmes is the programme’s 
particular focus on joint civil-defence research. The aim is to establish an 
environment for more coherent research towards security for society and 
infrastructure, so that the risk for terrorism, organised crime, large-scale accidents and 
natural disasters can be reduced in a more effective manner. The research programme 
will therefore be multidisciplinary and multi-industrial of nature. The EC undertook 
in that regard two concrete actions: 

• Launching a Preparatory Action in the field of Security Research (PASR), 
http://europa.eu.int/eur-lex/en/com/cnc/2004/com2004_0072en01.pdf  

• Asking a high level Group of Personalities (GoP) to advise on a long-term 
strategy for European Security Research Programme (ESRP) within the 
European Union 

 
    The PASR has been launched with the first call closed on June 2004 and the second 
call closing on May 2005. The main objective of the PASR exercise is to bring 
together the greatest possible number of interested parties, so that a robust community 
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accustomed to working together is established by the time the comprehensive ESRP is 
launched in 2007. 

The GoP’s report, http://europa.eu.int/comm/research/security/pdf/gop_en.pdf, was 
published in March 2004. This report recommends the following: 

1. A Community-funded ESRP ensuring the involvement of all Member States 
should be launched as early as 2007. Its minimum funding should be €1 
billion per year, additional to existing funding. This spending level should be 
reached rapidly, with the possibility to progressively increase it further, if 
appropriate, to bring the combined EU (Community, national and 
intergovernmental) security research investment level close to that of the 
U.S. 

2. An ESRP should fund capability-related research projects up to the level of 
demonstrators that are useful in particular for Internal Security in the EU and 
for CFSP/ESDP-missions. 

3. In closing the gap between civil and defence research, an ESRP should seek 
to maximize the benefits of multi-purpose aspects of technology. In order to 
stimulate synergies, it should encourage transformation, integration of 
applications and technology transfer from one sector to the other. 

4. An ESRP should focus on interoperability and connectivity as key elements 
of cross-border and inter-service cooperation. In this context, a kernel of 
architectural design rules and standards should be worked out at an early 
stage. 

5. The rules governing an ESRP must suit the specificities of security research. 
The Commission should, in consultation with all relevant stakeholders, 
develop the necessary rules for IPR and technology transfer. 

6. Recognizing that many requirements will be government-specified, new 
financing instruments should be created to enable research funding to be 
disbursed, if justified, at up to 100% of cost. 

7. A ‘Security Research Advisory Board’ should be established to draw 
strategic lines of action to prepare the research agenda of an ESRP as well as 
to advise on the principles and mechanisms for its implementation. 
Moreover, it should identify critical technology areas where Europe should 
aim for an indigenous competitive capability. The Board should consist of 
high-level experts from public and private customers, industry, research 
organizations and any other relevant stakeholders. 

8. Definition of customer needs will be key for the successful implementation 
of an ESRP. A mechanism should therefore be established at EU level to 
identify in consultation with potential customers, future capability needs for 
Internal Security missions. 

9. Effective coordination must make sure that the ESRP does not duplicate but 
complements other European research activities whether funded at 
Community, national or intergovernmental level. 

10. The Commission and the Council should ensure an effective and efficient 
liaison between an ESRP and the future ‘Agency in the field of defence 
capabilities development, research, acquisition and armaments’. 
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11. The ESRP should take into account and, where appropriate, coordinate with 
research efforts of international organizations with responsibilities for global 
or regional security issues. 

12. An ESRP should aim at fostering the competitiveness of the European 
security industries and stimulating the development of the market (public and 
private) for security products and systems. Implementing the Proposals for 
Action put forward in the Commission’s Communication ‘Towards a 
European defence equipment market’ would greatly help to achieve this 
objective and to maximize the benefits of an ESRP. 

    Based on this report, the EC chose to highlights the following four domains, 
through http://europa.eu.int/eur-lex/en/com/cnc/2004/com2004_0590en01.pdf: 

1. Consultation and co-operation among all stakeholders through a ‘European 
Security Research Advisory Board’ (ESRAB, which is now being set up) 

2. Development of a European Security Research Programme (ESRP) as a part 
of the 7th EU Research Framework Programme, to commence in 2007 

3. Creation of an effective institutional framework that takes into account the 
Union's relevant policies, namely the Common Foreign and Security Policy 
(CFSP), European Security and Defence Policy (ESDP), and the new 
European Defence Agency (EDA) 

4. Specific measures for the allocation of contracts and funding in security 
research 

 
    The next step was then the identification of the elements of the PASR 2005: 

• Optimising security and protection of networked systems 
• Protecting against terrorism (including bio-terrorism and incidents with 

biological, chemical and other substances) 
• Enhancing crisis management (including evacuation, search and rescue 

operations, control and remediation) 
• Achieving interoperability and integration of systems for information and 

communication 
• Improving situation awareness (e.g. in crisis management, anti-terrorism 

activities, or border control) 

3.2   The Norwegian Efforts Towards Security Research 

In response to EC’s plans on a security research programme, the Research Council of 
Norway (RCN) newly launched the “insight” project UTSIKT (Development 
Possibilities and Choice of Strategy within ICT) and its first outcome, in terms of the 
research programme VERDIKT (Core Competence and Added Value within ICT). A 
significant difference between RCN’s initiatives UTSIKT and VERDIKT compared 
to the previous efforts within the ICT domain is the considerably increased focus on 
multi-disciplinary and multi-sectoral aspects of ICT research [8]. 

At the same time, an increased focus on security in the context of safety and the 
related risks is to observe within current sector-oriented research programmes, 
especially towards the transport and oil/energy sectors. The following gathers 
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important conclusions drawn from the strategy and the topics of the funded projects 
related to the transport sector, in terms of the corresponding research programme 
RISIT:  
 

1. There is a shift from the traditional deductive manner of research to a more 
holistic form, demonstrating more awareness about the potentials of a 
multidisciplinary research on particularly transport safety and security and 
related risk analysis. 

2. The focus on experienced risk, as opposed to calculated (or “objective”) risk 
is growing, among others, as a result of the shift explained above. 

3. There is a new view on risk analysis; no longer as a single activity, but as a 
dynamic process that includes defining risk indicators as a function of both 
scenario-based data (involving analysis of future tendencies) and historical 
data, providing better models for risk communications, and more clarified 
representations of risk acceptance or rejection criteria. Additionally, this risk 
analysis process is now advocated for becoming an integrated part of the 
entire development process, including planning, construction and 
deployment of the systems/infrastructures subject to risk. 

4. There is an increasing focus on decision analysis, which includes analysis 
and assessment of other alternative solutions for handling risks, as a 
decision’s elements are usually based on the underlying risk analysis 
process, its resulting risk indicators and the suggested risk elimination, 
mitigation and containment/control mechanisms. 

5. There is a growing concern about the risk compensation mechanisms and 
their consequences. These are basically caused by the unintended result from 
the implementation of safety countermeasures, namely the increased 
conviction and feeling of being safe amongst the public, leading many to 
take risks that are evaluated to be unacceptable by the same safety 
countermeasures. 

6. In spite of the rapidly growing application of ICT systems for building and 
modernising the Norwegian transport infrastructures, the focus on research 
towards analysing the role of ICT systems and/or assuring their security has 
so far been negligible within the RISIT programme. On the basis of the 
recent granting of funds to several projects, however, there is a clear 
indication that this trend is about to change. 

 
    Finally, the RCN is planning to launch a new programme on Society Security 
(SAMRISK), where the multi-disciplinary and multi-sectoral nature of the research 
topics subject to granting funds is an absolute requirement for participation. 

4 Conclusions 

This paper has advocated the importance of a multi-disciplinary and multi-sectoral 
security research, and highlighted the European and Norwegian initiatives in that 
direction. The rationale for such a research is covered by addressing the recognised 
problems and ways of solutions from various technological and non-technological 
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research fields and the corresponding customers from industrial, sociological, 
financial, political, defence-political, jurisprudential and environmental sectors. In 
that regard, some issues for further exploitation are brought to light. Next, the paper 
provides valuable information about the European and Norwegian initiatives towards 
security research of the nature stressed in the paper. For the prospective applicants 
and partners, the information would otherwise have been difficult to gather and use, 
as it is spread over numerous sites and documents. 
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Abstract. We present several problem frames that serve to structure, character-
ize and analyze software development problems in the area of software and sys-
tem security. These problem frames constitute patterns for representing security
problems, variants of which occur frequently in practice. Solving such problems
starts with the development of an appropriate software architecture. To support
that process, we furthermore present architectural patterns associated with the
problem frames. We illustrate our approach by the example of an electronic purse
card.

1 Introduction

Problem frames were developed by Michael Jackson [6]. He describes them as fol-
lows (emphasis ours): “A problem frame is a kind of pattern. It defines an intuitively
identifiable problem class in terms of its context and the characteristics of its domains,
interfaces and requirement.”

Patterns are a means to reuse software development knowledge on different levels of
abstraction. They classify sets of software development problems or solutions that share
the same structure. Patterns are defined for different activities at different stages of the
software life cycle. Problem Frames [6] are patterns that classify software development
problems. Architectural styles are patterns that characterize software architectures [1,
11]. They are also called “architectural patterns” (see Section 2.2). Design Patterns [5]
are used for finer-grained software design1, while idioms are low-level patterns related
to specific programming languages [3].

Using patterns, we can hope to construct software in a systematic way, making
use of a body of accumulated knowledge, instead of starting from scratch each time.
The problem frames defined by Jackson cover a large number of software development
problems, because they are quite general in nature. To support software development in
more specific areas, however, specialized problem frames are needed.

In this paper, we present four problem frames that capture software development
problems occurring frequently in the area of software and system security. We call these
problem frames security frames. Two of our security frames concern authentication. The
third one deals with the secure (i.e., encrypted) transmission of data, and the fourth one

1 Design patterns for security have also been defined, see Section 5.
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is suitable for generating and storing security information (such as public and private
keys, PINs).

Architectural patterns are suitable solution structures for problem frames, because
architectural design is one of the first activities in solving software development prob-
lems. Hence, the gap between the problem description and the software architecture
is not too large, and we can establish direct relations between problem structures and
solution structures. As we have shown in [4], one can define architectural patterns that
reflect the characteristics of the different problem frames. In much the same way, we
equip our security frames with corresponding architectural patterns.

Section 2 describes the basics of our work, while the security frames and corre-
sponding architectures are presented in Section 3. We illustrate our approach by devel-
oping a secure electronic purse card in Section 4. Section 5 discusses related work, and
we conclude in Section 6.

2 Problem Frames and Architectural Patterns

In this paper, we present new problem frames for security problems and the correspond-
ing architectural patterns. As a notation for our architectural patterns, we use composite
structure diagrams of UML 2.0 [12]. In the following, we give brief descriptions of
these basic concepts of our work.

2.1 Problem Frames

Problem frames are described by frame diagrams, which basically consist of rectangles
and links between these, see left-hand side of Fig. 1. The task is to construct a machine
that improves the behavior of the environment it is integrated in.

Plain rectangles denote application domains (that already exist), a rectangle with
a double vertical stripe denotes the machine to be developed, and requirements are
denoted with a dashed oval. The connecting lines represent interfaces that consist of
shared phenomena. A dashed line represents a requirements reference, and the arrow
shows that it is a constraining reference.
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Jackson distinguishes causal domains that comply with some laws, lexical domains
that are data representations, and biddable domains that are usually people. Jackson
defines five basic problem frames (Required Behaviour, Commanded Behaviour, Infor-
mation Display, Workpieces and Transformation). As an example, we present the Work-
pieces frame in more detail. The following problems fit to that problem frame [6]: “A
tool is needed to allow a user to create and edit a certain class of computer processable
text or graphic objects, or similar structures, so that they can be subsequently copied,
printed, analyzed or used in other ways. The problem is to build a machine that can
act as this tool.” The “X” indicates that the Workpieces domain of the frame diagram
shown on the left-hand side of Fig. 1 is a lexical domain. The notation “U!E3” means
that the user commands E3 are controlled by the (biddable) User domain. Similarly, the
phenomena E1 are the commands used by the Editor to change the Workpieces domain.
The shared phenomena Y2 represent the state of a workpiece; they are controlled by
the Workpieces domain. The shared phenomena Y4 need not be the same as Y2. They
will often have some meaning to the user, whereas the phenomena Y2 are phenomena
accessible by the machine.

Software development with problem frames proceeds as follows: first, the environ-
ment in which the machine will operate is represented by a context diagram. Like a
frame diagram, a context diagram consists of domains and interfaces. However, a con-
text diagram contains no requirements, and it is not shown who is in control of the
shared phenomena. An example of a context diagram is shown in Fig. 8. Then, the
problem is decomposed into subproblems. If ever possible, the decomposition is done
in such a way that the subproblems fit to given problem frames. To fit a subproblem
to a problem frame, one must instantiate its frame diagram, i.e., provide instances for
its domains, phenomena, interfaces and requirements. The instantiated frame diagram
is called a problem diagram (for an example, see Fig. 9). It describes the problem as
a whole. Since the requirements refer to the environment in which the machine must
operate, the next step consists in deriving a specification for the machine, using domain
knowledge. In that process, non-implementable requirements are transformed into im-
plementable ones. (For a more detailed description, see [7].) The specification is the
starting point for the development of the machine.

Successfully fitting a problem to a given problem frame means that the concrete
problem indeed exhibits the properties that are characteristic for the problem class de-
fined by the problem frame. Since all problems fitting in a problem frame share the
same characteristic properties, their solutions will have common characteristic prop-
erties, too. Therefore, it is worthwhile to look for solution structures that match the
problem structures defined by problem frames.

2.2 Architectural Styles

According to Bass, Clements, and Kazman [1], “the software architecture of a pro-
gram or computing system is the structure or structures of the system, which comprise
software components, the externally visible properties of those components, and the
relationships among them.” Architectural styles are patterns for software architectures.

When choosing an architecture for a system, usually several architectural styles are
possible. However, instead of considering all possible architectures, we propose specific
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architectural patterns for our security frames in order to provide a concrete starting point
for the further development of the machine. The architectural patterns we have defined
for Jackson’s problem frames (see [4]) and the ones we will define for security frames
are based on a layered architecture. The components in this layered architecture are
either communicating processes (active components), or they are used with a call-and-
return mechanism (passive components). That design decision is taken in a later step
of the development. In [4], we also show how the repository and the pipe-and-filter
architectural styles can be integrated into the layered architecture. We use UML 2.0
composite structure diagrams (see Section 2.3) to represent architectural patterns as
well as concrete architectures.

The architectural pattern shown on the right-hand side of Fig. 1 contains a user
interface component, because the problem frame diagram contains a user. The data
storage component of the architecture corresponds to the Workpieces domain of the
frame diagram. The Editor Application component is responsible for manipulating the
data storage according to the user commands. Note that there is only one interface with
the environment – namely the interface with the user – because the lexical Workpieces
domain is part of the machine.

2.3 Composite Structure Diagrams

Composite structure diagrams [12] are a means to describe architectures. They contain
named rectangles, called parts. These parts are components of the software. Each com-
ponent may contain other (sub-) components. Atomic components can be described by
state machines and operations for accessing internal data. In our architectures, compo-
nents for data storage are only included if the data are stored persistently. Otherwise
they are assumed to be part of some other component. Parts may have ports, denoted
by small rectangles. Ports may have interfaces associated to them. Provided interfaces
are denoted using the “lollipop” notation, and required interfaces using the “socket”
notation.

Fig. 2 shows how interfaces in problem diagrams are transformed into interfaces
in composite structure diagrams. The partial problem diagram shown on the left-hand
side of Fig. 2 states that the phenomena phen1 and phen2 shared between the machine
and a domain are controlled by the machine. In the composite structure diagram (with
associated interface class) shown in the middle of Fig. 2, this is expressed by a required
interface P1 if of the part component of the machine, which is the same as for the whole
machine. Shared phenomena controlled by a domain correspond to provided instead of

P1:  {phen1, phen2}

Machine
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M!P1

Machine

Part

Domain (P1)

<<interface>>
P1_if

phen1()
phen2()

Machine

Part

P1_if

=̂

Domain (P1)

P1_if

Fig. 2. Notation for Architectures
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required interfaces of the part and the machine, respectively. Because of this direct
correspondence, we do not use the socket and lollipop notation in the following, but use
connectors between ports, as shown on the right-hand side of Fig. 2. These connectors
can be implemented e.g. as data streams, function calls, asynchronous messages or
hardware access.

3 Security Frames and Architectural Patterns

We now present the four security frames we have developed, together with the corre-
sponding architectural patterns that define structures for the machine domains of the
security frames.

The first two security frames are concerned with authentication. We distinguish
two authentication frames. In the first frame, a subject must authenticate itself to the
machine to be constructed. In the second frame, the machine to be constructed must
authenticate itself to some other subject. The third security frame deals with the secure
transmission of data over an insecure channel, and the fourth frame is applicable when
common security knowledge must be distributed with the help of a trust center. None
of these problem classes is addressed by Jackson’s problem frames.

3.1 Accept Authentication Frame

For security systems, authentication of users and other components is an important
concern. Authentication is necessary to allow access to some other information. That
information is not part of the problem and hence not part of the frame diagram shown
on the left-hand side of Fig. 3.

The Subject in the frame diagram can be a user or another machine. To make au-
thentication possible, there must be a common knowledge between subject to be authen-
ticated and the machine. If the authentication information S2 provided by the subject
matches the common knowledge S1 stored in the machine, then the authentication is
successful. Otherwise, it fails. That information is represented by the domain Security
state.

In the corresponding architectural pattern on the right-hand side of Fig. 3, we in-
clude the Common knowledge, but we do not include the Security state because it should
not be stored persistently and hence does not correspond to an architectural component.
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Fig. 3. Accept Authentication Information Frame Diagram and Architectural Pattern
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Instead, it is reflected in the internal state of the part AcceptAuth Application that is
responsible for enabling or disabling other functionality.

3.2 Submit Authentication Frame

Because the subject might be a system, there exists the problem Submit Authentication.
The frame diagram and the corresponding architectural pattern are shown in
Fig. 4. For this problem, the Security state is part of the subject to which the machine
to be built wants to authenticate itself. Therefore the Security State it is not part of the
frame diagram. The machine has to use the Common knowledge to generate matching
Identification Data for the subject.

3.3 Secure Data Transmission Frames

Another important security problem is the secure transmission of data. We need to build
a security component that receives data from another component or sends data to an-
other component over an insecure channel. That situation is depicted in Fig. 5 on the
left-hand side for receiving data and on the right-hand side for sending data.

The security component at the bottom of the figure wants to send data (domain
SntData, phenomena D2) to the security component at the top of the figure. Because
the transmission channel is insecure, the data is encrypted (phenomena EncrData).
It is possible that the insecure channel transmits some intruder data IntrData instead
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of the original encrypted data. The encrypted data or intruder data will be decrypted
by the security component shown on the top of the figure, yielding D1. The require-
ment for receiving data states that either the data D1 and D2 match, or the intru-
sion will be detected (integrity). The requirement for sending data states that the data
D1 and D2 match, and that the D1 cannot be derived from EncrData (integrity and
confidentiality).

For this class of problems, we propose the architectural patterns shown in Fig. 6. In
this architecture, a storage for a secret is necessary in addition to the data storage. If this
storage is persistent it is an additional part in the architecture. Otherwise, the storage
component is not included, as indicated by the notation [0..1].

3.4 Distribute Security Information Frame

For the architecture shown in Fig. 6, it is necessary that each machine has some common
knowledge. This raises the problem of how to distribute that common knowledge. Fig. 7
shows the frame diagram. The common (secret) knowledge is transferred to the machine
by a trusted component, the Trust Center, over a secure channel. The requirement states
that indeed the correct common knowledge is stored in the machine.

The corresponding architectural pattern contains a part ManageSecretApplication
that has to store the secret (or common knowledge) and restrict the access to it. Its
purpose is to manage the secret.
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4 Case Study: Electronic Purse Card

The illustrate the usage of security frames, we consider a smart card with a simplified
electronic purse application using asymmetric encryption. This smart card is used to
ensure secure payment. To pay with the card, the user has to enter a PIN at a card
reader. The authorization of the card is checked via a website. The card also has to
check the authorization of the website. The transmitted data have to be protected against
unauthorized read and change access. To allow payment, money must be loaded on the
card. This is only possible if the the account information allows this transaction (the
card can be locked).

4.1 Requirements and Context Diagram

The following requirements must be met. We number them in order to reference them
in the description of the different subproblems.

R1 Loading money on the card is possible if the account information allows to do this
transaction.

R2 Paying with the card is possible if there is enough money on the card.
R3 Authentication of the card is necessary for paying and loading money.
R4 Authentication of the website is necessary for paying and loading money.
R5 Authentication of the user using a PIN is necessary for paying.
R6 The card should prevent replay-intrusion and even prevent somebody else from

reading transmitted information (man-in-the-middle attack).
R7 It should not be possible to copy the card.
R8 Only a card and a website personalized by a trust center should be usable for trans-

actions.
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Fig. 8. Context diagram for Electronic Purse Card

Fig. 8 shows the context diagram corresponding to this problem. It contains the
relevant domains and shared phenomena. The domains SmartCard, Website and Ac-
count occur only once in the diagram. However, the system will work with different
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instances of these domains. It will be able to handle different smart cards, and it will be
connected via different websites to different accounts. Moreover, the interface between
the CardReader and the User has been simplified. The domain PC, Internet, Intruder
denotes the insecure channel that involves a PC, the Internet, and possibly an intruder.

The following table shows the subproblems that can be identified, the problem/
security frame the subproblem fits to, and the requirements that are covered. In the fol-
lowing, we present one instantiation for each of the introduced problem/security frames.

Subproblem Frame Reqs.

Load Money Workpieces R1
Pay Workpieces R2
Authenticate Card Submit Authentication R3
Authenticate Website Accept Authentication R4
PIN Authentication Accept Authentication R5
Receive Secure Data Secure Data Transmission R6
Send Secure Data Secure Data Transmission R6
Distribute Keys Distribute Security Information R7, R8
Distribute PIN Distribute Security Information R7, R8

4.2 Subproblem: Load Money

This subproblem is concerned with loading money on the card (R1). It fits to a variant
of Jackson’s Workpieces problem frame. It is extended with the constraint that only
if the account information allows it, the amount of money can be loaded onto card.
The problem shown in Fig. 9 states that the CardAmount should change according to
EnterAmountToLoad and AccountInformation.

The problem diagram of Fig. 9 is derived from the context diagram of Fig. 8 as fol-
lows: the domain Trust Center is not relevant for this subproblem. The connection do-
mains2 Card Reader and PC, Internet, Intruder are left out in this subproblem, because
the connection is assumed to be secure, the security of the connection being covered
by other subproblems. To describe this problem, we split the domain SmartCard into
Money on Card and Load Money.

The problem of Fig. 9 shows the requirements the machine must achieve when in-
tegrated into its environment. As noted earlier, the requirements must be transformed
into a specification that describes the behavior of the machine. In the area of security,
protocols [9] exist that make it possible to transform requirements such as “secure trans-
mission” of “authentication” into sequences of messages exchanged between different
partners.

Fig. 10 shows a UML 2.0 sequence diagram that represents the specification of
the machine Load Money. When the User enters the amount of money (EnterAmount-
ToLoad) the message RequestedAmountToLoadEncr will be sent to the Website. The
Website will check the AccountInformation. The sequence diagram in Fig. 10 describes

2 These are domains that serve to connect two other domains. If a connection domain is reliable
and does not cause significant delays, it may be ignored, see [6].
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the following two alternatives, marked with the keyword ALT. If the AccountInforma-
tion allows to load the requested amount of money on card, the amount of money on
the Account will be updated (UpdateAccountInformation), the amount will be transmit-
ted (TransferAmountEncr), and Money on Card will be updated (UpdateCardAmount3).
Otherwise the phenomenon DenyTransferEncr occurs. For reasons of space, we do not
give the sequence diagrams for the other subproblems. For this subproblem, the Website
is the website of the user’s bank, and the Account is the user’s account, which is debited
with the account loaded onto the card.

The right-hand side of Fig. 9 shows the corresponding architecture, which is an
instantiation of the pattern given in Fig. 1. Here, User and Website are connected to the
machine via a Secure Data Transmission Interface.

4.3 Subproblem: Authenticate Website

An authentication of the website is required in R4. Here, we instantiate the “Accept
Authentication” frame as shown in Fig. 11. For this authentication, a Random Num-
ber should be used to prevent replay intrusion. Therefore, we need to add the random
number RN as a shared phenomenon between the Auth Website machine and Website,
controlled by the machine.

3 With the new domain Money on Card the shared phenomenon UpdateCardAmount has to be
added.
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The part Auth Website of the architecture shown in Fig. 11 must contain a part Ran-
domNo PublicSignatureKey that can generate random numbers with sufficient quality.
To check the authenticity of the website, the website encrypts the random number pro-
vided by the card with its private key (it generates the signature of the random number
(SignatureRN). This signature can be checked using the public key of the website. To
make it possible that new websites can be added to the system without replacing all
cards, the website has to provide its own public key. The card can check the provided
public key using a signature of a Trust Center. The interaction for a combination of
submitting and accepting authentications can be found in [10].

4.4 Subproblem: Receive Secure Data

To prevent replay intrusion and read access on transmitted data, we define the subprob-
lem shown in Fig. 12. The Card Reader and the Trust Center are not directly relevant
for this subproblem. Moreover, is not relevant what data are transmitted. Therefore we
take an abstraction from Load Money and Pay. Also the messages TransmitAmountEn-
crMessage and CheckAmountEncrMessage are merged to AccessAmountEncr.

A common secret as described in the architectural pattern of Fig. 6 is not stored
persistently on the card. It can be derived from the random number and can be changed
for each transmission. Hence, the architecture of Fig. 12 (derived from the pattern given
in Fig. 6) does not contain a corresponding component.
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4.5 Subproblem: Distribute Keys

Requirements R7 and R8 express that only the trust center may generate a valid card.
Important for a valid card are the PIN and the keys. In this subproblem, we focus on the
keys. The requirements are covered partly in the subproblem shown in Fig. 13, where
the Common Secret domain that is part of the Trust Center is shown separately. That
subproblem is an instance of the “Distribute Security Information” frame.

The trust center has to generate an individual public/private key pair for each card
and write it onto the card. To guarantee that this key pair is valid and originated from
the trust center, it is signed with the private key of the trust center. To allow the card
to authenticate other systems, it needs the public key of the trust center. This also is
written onto the card.

The subproblem the machine Manage Secrets has to solve is to manage the access to
the security information. After producing the card, everybody owning an uninitialized
card can initialize it. But only the trust center is able to generate a signature with its
private key that allows the key to be used in the payment system. The machine has to
manage the access to the secrets. After initializing the card, the functionality to change
the security information is disabled. The private part of the key pair must also be pro-
tected against read access. Moreover, all other functionality has to be disabled as long
as the card is not yet initialized.

The architecture of Fig. 13 is an instantiation of the pattern given in Fig. 7.

4.6 Composed Architecture

We now must compose the architectures developed for the subproblems to obtain an
architecture for the whole Smart Card. For doing this, we must find the parts occurring
in different subproblem architectures that must be mapped to the same component in
the composed architecture.

The composed architecture for the Smart Card is shown in Fig. 14. The component
Amount Of Money combines the persistent storage of the subproblems Pay and Load
Money. The Load Money/Pay-Application combines the behavior of the machines Load
Money and Pay. The component Secure Data Transmission Interface is replaced by
the components of the security subproblem architectures (including the ones given in
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Figs. 11–13). The Card Reader Driver is the same in all security subproblem architec-
tures and can be used directly in the composed architecture. The functionality of the
remaining two components have to be derived from those in the security subproblem
architectures.

For all components, their exact specifications must be set up, and it must be shown
that the components work together in such a way that they fulfill the specifications
of all machines corresponding to the different subproblems. The functionalities of the
different architectural parts are now clear, as well as the interfaces between them. Thus,
we have established an appropriate starting point for the further development of the
smart card system in a systematic way.

5 Related Work

Our security frames are related to abuse frames on the one hand and to security patterns
on the other hand.

Security frames treat security requirements in the same way as other (functional) re-
quirements, and the goal is to construct a machine that fulfills the security requirements.
Lin et al. [8] take another approach to use the ideas underlying problem frames in secu-
rity. They define so-called anti-requirements and the corresponding abuse frames. An
anti-requirement expresses the intentions of a malicious user, and an abuse frame repre-
sents a security threat. The purpose of anti-requirements and abuse frames is to analyze
security threats and derive security requirements. Thus, the two approaches comple-
ment each other. Abuse frames can be used to derive the security requirements that can
then be addressed with security frames.

While abuse frames can be used earlier in the software development process than
security frames, security patterns [2] are applied in a later phase, namely the phase of
detailed design. The relation between security frames and security patterns is much the
same as the relation between problem frames and design patterns: the frames describe
problems, whereas the design/security patterns describe solutions on a fairly detailed
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level of abstraction. Moreover, design and security patterns are applicable only in an
object-oriented setting, while problem and security frames are independent of a partic-
ular programming paradigm.

6 Conclusion

In this paper, we have presented a new kind of problem frames tailored for represent-
ing security problems, called security frames. Security frames are patterns for software
development problems occurring frequently when security-critical software has to be
developed.

The security frames presented in this paper are intended to be the first in a more
complete collection. Once a (relatively) complete collection of security frames is de-
fined, it is of considerable help for developers. For a new security-critical system to be
constructed, the security frame catalogue can be inspected in order to find the frames
that apply for the given problem. Thus, a security frame catalogue helps to avoid omis-
sions and to cover all security aspects that are relevant for the given problem.

Furthermore, the security frames help to decompose complex security problems to
simpler ones that can be handled by standard mechanisms. Like design and security
patterns, security frames can establish a common vocabulary and shared knowledge
between developers of security-critical systems.

While the security frames themselves “only” help to comprehend, locate and rep-
resent problems, our architectural patterns associated with the different security frames
propose concrete structures for solving the problems fitted to security frames. The ar-
chitectural patterns also help to compose the solutions of the different subproblems in
order to construct the complete system, as is shown in more detail in [4].

With the concept of security frames and corresponding architectural patterns (in
addition to abuse frames and security patterns), one can hope to cover large parts the
development of security-critical software with a pattern-based approach.
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