

Lecture Notes in Computer Science 3688
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Rune Winther Bjørn Axel Gran
Gustav Dahll (Eds.)

Computer Safety,
Reliability,
and Security

24th International Conference, SAFECOMP 2005
Fredrikstad, Norway, September 28-30, 2005
Proceedings

13

Volume Editors

Rune Winther
Østfold University College
Faculty of Computer Sciences
1757 Halden, Norway
E-mail: rune.winther@hiof.no

Bjørn Axel Gran
Gustav Dahll
Institute for Energy Technology
Software Engineering Laboratory
1761 Halden, Norway
E-mail: bjorn.axel.gran@hrp.no; g.dahll@halden.net

Library of Congress Control Number: 2005932842

CR Subject Classification (1998): D.1-4, E.4, C.3, F.3, K.6.5

ISSN 0302-9743
ISBN-10 3-540-29200-4 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-29200-5 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11563228 06/3142 5 4 3 2 1 0

I

E

W C

S

TC7R
eli ab i l i ty S af et y S e c u r i

t y

Table of Contents

CMMI RAMS Extension Based on CENELEC Railway Standard
Jose Antonio Fonseca, Jorge Rady de Almeida Júnior 1

The Importance of Single-Source Engineering of Emergency
and Process Shutdown Systems

Robert Martinez, Torgeir Enkerud . 13

Combining Extended UML Models and Formal Methods to Analyze
Real-Time Systems

Nawal Addouche, Christian Antoine, Jacky Montmain 24

Defining and Decomposing Safety Policy for Systems of Systems
Martin Hall-May, Tim P. Kelly . 37

Generalising Event Trees Using Bayesian Networks with a Case Study
of Train Derailment

George Bearfield, William Marsh . 52

Control and Data Flow Testing on Function Block Diagrams
Eunkyoung Jee, Junbeom Yoo, Sungdeok Cha . 67

Comparing Software Measures with Fault Counts Derived from
Unit-Testing of Safety-Critical Software

Wolfgang Herzner, Stephan Ramberger, Thomas Länger,
Christian Reumann, Thomas Gruber, Christian Sejkora 81

Automatic Analysis of a Safety Critical Tele Control System
Edoardo Campagnano, Ester Ciancamerla, Michele Minichino,
Enrico Tronci . 94

A Formal Model for Fault-Tolerance in Distributed Systems
Brahim Hamid, Mohamed Mosbah . 108

Model-Based Safety Analysis of Simulink Models Using SCADE Design
Verifier

Anjali Joshi, Mats P.E. Heimdahl . 122

Using Safety Critical Artificial Neural Networks in Gas Turbine
Aero-Engine Control

Zeshan Kurd, Tim P. Kelly . 136

XII Table of Contents

On the Effectiveness of Run-Time Checks
Meine J.P. van der Meulen, Lorenzo Strigini, Miguel A. Revilla 151

A Technique for Fault Tolerance Assessment of COTS Based Systems
Ruben Alexandersson, D. Krishna Chaitanya, Peter Öhman,
Yasir Siraj . 165

Finding Upper Bounds for Software Failure Probabilities – Experiments
and Results

Monica Kristiansen . 179

Justification of Smart Sensors for Nuclear Applications
Peter Bishop, Robin Bloomfield, Sofia Guerra, Kostas Tourlas 194

Evolutionary Safety Analysis: Motivations from the Air Traffic
Management Domain

Massimo Felici . 208

Public-Key Cryptography and Availability
Tage Stabell-Kulø, Simone Lupetti . 222

End-To-End Worst-Case Response Time Analysis for Hard Real-Time
Distributed Systems

Lei Wang, Mingde Zhao, Zengwei Zheng, Zhaohui Wu 233

Safety Interfaces for Component-Based Systems
Jonas Elmqvist, Simin Nadjm-Tehrani, Marius Minea 246

A Safety-Related PES for Task-Oriented Real-Time Execution Without
Asynchronous Interrupts

Martin Skambraks . 261

Are High-Level Languages Suitable for Robust Telecoms Software?
J.H. Nyström, P.W. Trinder, D.J. King . 275

Functional Apportioning of Safety Requirements on Railway Signalling
Systems

Ola Løkberg, Øystein Skogstad . 289

Automatic Code Generation for PLC Controllers
Krzysztof Sacha . 303

Table of Contents XIII

The TACO Approach for Traceability and Communication of
Requirements

Terje Sivertsen, Rune Fredriksen, Atoosa P-J Thunem,
Jan-Erik Holmberg, Janne Valkonen, Olli Ventä,
Jan-Ove Andersson . 317

An IEC 62061 Compliant Safety System Design Method for Machinery
Bengt Ljungquist, Thomas Thelin . 330

Design Evaluation: Estimating Multiple Critical Performance and Cost
Impacts of Designs

Tom Gilb . 344

The Application of an Object-Oriented Method in Information System
Security Evaluation

Qiang Yan, Hua-ying Shu . 357

Towards a Cyber Security Reporting System – A Quality Improvement
Process

Jose J. Gonzalez . 368

Security Research from a Multi-disciplinary and Multi-sectoral
Perspective

Atoosa P-J Thunem . 381

Problem Frames and Architectures for Security Problems
Denis Hatebur, Maritta Heisel . 390

Author Index . 405

R. Winther, B.A. Gran, and G. Dahll (Eds.): SAFECOMP 2005, LNCS 3688, pp. 1 – 12, 2005.
© Springer-Verlag Berlin Heidelberg 2005

CMMI RAMS Extension Based
on CENELEC Railway Standard

Jose Antonio Fonseca and Jorge Rady de Almeida Júnior

Computational and Digital Systems Engineering Department,
Polytechnic School, University of São Paulo, Brazil

Abstract. Railway systems are also dependable systems and, considering their
importance, it is vital to assure the application of adequate design techniques.
So, this work presents a RAMS (Reliability, Availability, Maintainability and
Safety) extension for CMMI SE-SW version 1.1 "Capability Maturity Model®
Integration" developed by SEI (Software Engineering Institute), based on
CENELEC 50126, 50128 and 50129 standards developed to normalize RAMS
aspects of railway control systems in European Community. This extension is
based on the inclusion of four new Process Areas into the CMMI SE-SW,
increasing its actual number from 22 to 26, without changes in the CMMI
model basic structure. The objective of this extension is to obtain a support tool
for design process applicable to enterprises that develop railway systems and
are adopting CMMI or migrating from other CMM models.

1 Introduction

This work represents an attempt to join two very important tendencies that are being
verified by the maturity models use and the railway applications design.
Considering the great capacity of CMM models to assist innumerous application
areas, the first trend can be observed through an increase in the use of maturity
models by industrial community. The focus of such models is represented by CMMI
(Capability Maturity Model Integration). The second trend is composed by
integration efforts to create a consensus about RAMS (Reliability, Availability,
Maintainability and Safety) criteria for railways applications between the European
Union members that is represented by CENELEC standards.

This work has also a very closely relationship with others efforts to incorporate
new specifics aspects to CMMI, such as the job sponsored by FAA (Federal
Aviation Administration) to include Safety and Security requirements in iCMM and
CMMI and the task headed by Australian Government’s Defense Material
Organization (DMO) in the creation of +Safe, a safety extension to CMMI.

The section 2 presents a brief description about the CMMI model, while section
3 presents the mains aspects of the CENELEC Standards. Section 4 contains the
proposed extension of RAMS extension for CMMI model. Finally, section 5
presents the mains conclusions of this paper.

2 J.A. Fonseca and J.R. de Almeida Júnior

2 The CMMI Model

The extensive use of the SW-CMM [9] (Capability Maturity Model for Software) by the
organizations promoted the creation of similar models to address other areas not directly
related with software development. Considering such aspect, many other models have
arisen to support production systems, subcontracting areas, etc. But, all of these models
were not created in order to facilitate integration among them, generating problems with
their simultaneous implementation in an organization.

This fact has revealed the need of creating an integrated model, aiming a uniform
view, besides the elimination of existing redundancies among the various maturity
models. We can say that the CMMI is a result of a great integration work, and that it
was elaborated to allow a convergence of the main existing maturity models. The
CMMI structure also allows integration of new areas, which reinforces its integration
capacity.

The CMMI SE/SW (Capability Maturity Model for Systems and Software
Engineering) model V1.1 [5] consists of 22 Process Areas. A Process Area is a group
of related practices that, when accomplished together, means that a set of important
objectives were achieved, obtaining a significant improvement in such area.

All the CMMI Process Areas are common to the stage representation and the
continuous representation. In the stage representation, the Process Areas are organized
through maturity levels. Considering one level, all of its Process Areas are in the same
maturity level. In the continuous representation, the maturity of a Process Area is called
capability level and each Process Area can be in any of the six capability levels
existents, independently of any other Process Area.

Thus, the name “maturity level” refers to a pre-defined group of Process Areas,
which are in the same maturity level, whereas “capability level” refers only to an
individual Process Area.

The continuous representation allows that one organization can choose the more
adequate improvement sequence to its business goals, making possible a reduction of
the risk areas.

The stage representation also offers a series of improvements, starting from basic
management practices and going through a predefined plan of successive levels where
each level is the basis for the next one.

To completely satisfy a Process Area, both generic and specific goals must be
accomplished. Specific goals are applied to a Process Area and refer to single
characteristics, which describe what has to be done to satisfy a Process Area.

The specific goals are supported by specific practices which are activities considered
important to achieve a specific goal. The specific practices describe the activities, which
must be accomplished in order to reach a specific goal of a Process Area.

Generic goals are called “generic” because a single goal can appear in multiple
Process Areas. Considering the staged representation, every Process Area has a single
specific goal. Generic goals are supported by common practices.

The CMMI continuous representation allows one organization to keep its capacity
on the improvement of a single Process Area, or on multiple specific Process Areas.
Each Process Area has its own specific goals associated similarly to the staged
representation. Each capability level (from 0 to 5) has a common goal and many
common practices.

 CMMI RAMS Extension Based on CENELEC Railway Standard 3

The staged representation does not have requirements for the first maturity level;
whereas, in the continuous representation there are specific and generic goals to be
accomplished in order to achieve capability level 1. This has increased the granularity
of the capability (process maturity), in such way that the organizations show early
progress. This can be important in organizations that are under pressure to present
immediate results.

The 22 Process Areas are divided into four categories, according to figure 1. In the
activity of selecting a Process Area or a single category, an organization can focus its
improvement efforts in such area. Each one of the 22 Process Areas can be
characterized individually by the CMMI as having a maturity level from 0 through 5,
as follows:

Capability Level 0 - Incomplete
An incomplete process is a partially accomplished or a non-accomplished process,
that is, at least one of the specific goals of the Process Area is not achieved.

Capability Level 1 – Executed
At this level, processes achieve the specific goals of the correspondent Process Area.
The process supports the necessary work to generate the required products from the
inputs, which are correctly identified during the process. The difference between an
incomplete process and an executed process is that an executed process achieves all
the specific goals of the Process Area.

Capability Level 2 – Managed
A managed process consists in an executed process (capacity level 1), which is also
planned and executed, according to a plan, which embraces qualified people, adequate
resources and appropriate participants. The process is monitored, controlled, revised
and evaluated according to its process description adherence and it can be instantiated
to a design, group or organizational function. The process management comprises the
Process Area institutionalization and the accomplishment of other specific objectives
defined for the process, such as cost, time schedule and quality goals.

Capability Level 3 – Defined
A defined process is a managed process (capacity level 2), which includes a group of
default processes according to the organization objectives, its metrics, and other
information on process improvement.

Capability Level 4 – Quantitatively Managed
A quantitatively managed process is a defined process (capacity level 3), which is
controlled through the use of statistics and other quantitative techniques. The
quantitative objectives of quality and process performance are established and used as
a criterion in the process management. The quality and process performance are
transformed into statistics expressions and managed through the process lifecycle.

Capability Level 5 – Optimized
An optimized process is a quantitatively managed process (capacity level 4), which is
modified and adapted to achieve the business and relevant goals in a specific moment.
An optimized process is focused on the continuous improvement of the process
performance through the use of technological improvement and innovative
technologies.

4 J.A. Fonseca and J.R. de Almeida Júnior

CMMI

Process
Management

Project
Management

Engineering Support

Organizational
Process Focus

(OPF)

Organizational
Process Definition

(OPD)

Organizational
Training
(OTR)

Organizational
Process Performance

(OPP)

Organizational
Innovation and

Resolutions (OIR)

Project
 Planning (PP)

Project
Monitoring and
Control (PMC)

Supplier
 Agreement

Management (SAM)

Integrated Project
Management

(IPM)

Risk
 Management

(RKM)

Quantitative
Project Management

(QPM)

Requirements
Management

(RM)

Requirements
Development

(RD)

Technical
Solution (TS)

Product
Integration

(PI)

Verification
(VER)

Validation
 (VAL)

Configuration
Management

(CM)

Process and
Product Q&A

(PPQA)

Measurement and
Analysis

(MA)

Decision Analysis
and Resolution

(DAR)

Causal Analysis
and Resolution

(CAR)

Process Areas Process Areas Process Areas Process Areas

Categories Categories

Fig. 1. CMMI Continuous Representation Process Areas

3 The CENELEC Standards

Since the first steps towards a single market of railway transport services in the
European Union, it became evident the existence of different regulations in the
safety issue.

The main reason for this situation can be explained by the fact that local national
operators, which have all the responsibility for the systems operation inside their
territories, perform the railway transport management of these countries. However,
considering the increasingly integration of the European railway systems, the safety
aspect should be considered in the most general ambit of the European Union [1].

At present, the railway industry is observing a process of developing appropriate
safety standards that can control the new devices created by the technology
development, seeking to ensure the adequate safety level for the systems. Railway

 CMMI RAMS Extension Based on CENELEC Railway Standard 5

suppliers are looking for standards that can aid them to show evidences about the
safety of their products. Railway owner/operators are also insecure about what they
can expect from suppliers, in order to make them feel more comfortable in accepting a
product [6], [7].

The European Union, through the European Committee for Electrotechnical
Standardization (CENELEC), has been developing standards for the safety issues
regulation for railway application [1]. All the European Union members desire to turn
possible the interoperability among the several existing systems, through the adoption
of such standards.

The main focus of the CENELEC standards is composed by a systematic hazard
identification followed by a risk reduction at an acceptable level. Considering the
necessary risk reduction, CENELEC standards “recommend” techniques and methods
that permit to demonstrate that the required RAMS targets levels are satisfied.

CENELEC standards consider the critical systems design according to the focus
shown in the figure 2. Some of the activities presented in that figure are described in a
simplified way.

The philosophy adopted by CENELEC Standards is based in systematic hazard
identification [8]. For each identified hazard there must be, at least, one requirement
to eliminate or mitigate the risk associated to that hazard.

Since the initial railway design phases, all RAMS related activities are made in
agreement with CENELEC standards, considering also the SIL (Safety Integrity
Level) required for the application, as defined by the operator [6] or by the supplier,
according to a National Safety Regulatory Office. This phase product is a Safety Plan
report that defines all design activities, including audits, responsibilities, roles and
design schedules.

The Hazard Identification and risk reduction are activities performed during all the
design lifecycle. In early phases, it is made a Preliminary Hazard Analyses (PHA),
whose objective is to define a basic set of safety requirements that must be detailed in
posterior phases. This activity must consider the Hazard Log contents. This
Hazard Log is constantly updated along the system design development with new
identified hazards.

The requirements identified in previous phases are refined in the design phase,
where the solutions needed to satisfy the identified requirements are developed. The
CENELEC Standards describes the main activities needed to demonstrate that the
RAMS principles were correctly applied during each development phase, always
considering the selected SIL [2], [3], [4].

For CENELEC, the SIL define the depth which the design should be analyzed, the
necessary evidences to demonstrate that all specified requirements are satisfied and
define the hierarchical constrains and the required personal skills to the design
development.

Audits are performed during system development, whose function is to verify the
compliance with directives contained in Plans for Quality Assurance, for
Configuration Management, for Safety and others. A report is generated for each
audit aspect, in order to demonstrate the design status.

6 J.A. Fonseca and J.R. de Almeida Júnior

Safety Case

Hazard Log

Hazard
identification

and risk
reduction

Safety
Activities
Planning

Safety
Aprovall

Project and
poject

management

Safety and
quality audits

Identified
hazards

Process Compliant
evidences

Audits reports

New hazards

New Hazards

RAMS requirements

Identified Harzards from
other projects

Process definition, planning,
tools, roles and
responsabilities

Fig. 2. CENELEC Basic Process

The set of evidences collected during system development and design deliverables
are used to elaborate a Safety Case, also known as Technical Safety Report (TSR). A
TSR is a dossier that demonstrates that RAMS requirements were correctly captured,
satisfied and traceable.

4 The RAMS Extension for CMMI

As previously mentioned, both CMMI model and CENELEC standards propose
concept unification in their application areas. But, organizations that are developing
safety-critical systems need to consider the concepts established in those two
frameworks in an integrated way, which is very difficult, considering that the their
structures does not consider such kind of integration.

The main problem in using both CMMI and CENELEC in the same application is
that CMMI does not attend the RAMS aspects. This fact makes necessary to apply
another specific standard, in order to supply such RAMS aspects. However,
CENELEC does not provide, itself, an evaluation system and a guide to its
implementation, like CMMI. On the other hand, the simultaneous application of the
CMMI and CENELEC standards, in a separate way, without a previous
harmonization, can generate problems such overlaps, different interpretations and
misunderstandings.

Thus, the proposal of this work is to make the unification of these two frameworks
into a single structure, flexible enough to support the necessary adaptations.

 CMMI RAMS Extension Based on CENELEC Railway Standard 7

CMMI

SupportEngineering
Project

Management
Process

Management

OPF,OPD,
OTR,OPP,

OIR

RAMS
Management

PP,PMC,
SAM,IPM

RKM,QPM

RM, RD,TS,
PI,

VER, VAL

CM, PPQA,
MA, DAR,

CAR

RAMS
Assurance

RAMS EOM

RAMS
Engineering

Categories Categories

CMMI -SE/SW
Standard
Process
Areas

CENELEC Additional
Process Areas

Fig. 3. RAMS Extension Structure

This paper proposes the addition of RAMS into the CMMI structure, without
modifying its fundamental structure, which is widely accepted. So, the CENELEC
standard arrangement is modified to attend the CMMI language. If we have tried the
inverse solution, that is, incorporate CMMI into CENELEC standards, there would be a
problem related to the great quantity of practices to be inserted into the CENELEC
standards, in order to cover all the CMMI aspects. This happens because CENELEC
standards are specific in their area and CMMI is a common model for systems. A
second problem would be the generation of unnecessary redundancies and the need of
generating a mapping between the model and the standard.

We believe that the introduction of the CENELEC concepts into CMMI will be more
natural for the most organizations, reducing implementation costs and time, when
considering the application of these concepts in a separate way.

Primarily the RAMS extension was implemented in CMMI SE-SW continuous
representation (presented in figure 1), because we believe that continuous representation
provide the necessary flexibility according to organizations needs, schedules and
budget, although staged representation can also be used.

To satisfy CENELEC Standards, besides the inclusion of new RAMS Process Areas,
it is necessary to implement the existent areas of CMMI. Note that these Process Areas
are distributed in levels 2 and 3 of the staged representation. Therefore it is necessary to
implement the level 3 for these representations to satisfy CENELEC standards. In

8 J.A. Fonseca and J.R. de Almeida Júnior

addition, some Process Areas of CMMI, above mentioned, exceed CENELEC
requirements, but this fact contribute with CENELEC process improvement.

The new Process Areas are included in CMMI SE-SW continuous representation as
show in figure 3. As shown, the four new Process Areas are distributed between three
CMMI categories, as follow:

Table 1. New Process Areas

CMMI Category Process Areas
Project Management RAMS Management

Engineering RAMS Engineering

Support RAMS Assurance
RAMS Environment Organization and Maintenance

The main objectives of the new Process Areas and their respective Specific Goals
(SG) are:

RAMS Management

Purpose
The aim of this Process Area is to monitor the product development process, checking
if the RAMS activities are performed as planned and tracking the design evolution.

Related Process Areas
There are many processes areas related with RAMS Management. These areas and their
respective connections with RAMS Management are:

• Requirements Development: acquisition of information about developing
requirements that define the product and product components;

• Requirements Management: acquisition of information about managing
requirements needed for planning and re-planning;

• Technical Solution: acquisition of information about transforming requirements
into product and product component solutions;

• Organizational Process Definition: acquisition of information about the design
lifecycle and basic guidelines; and

• RAMS Environment Organization and Maintenance: identification of
organization requirements, knowledge and skills.

Practice-to-Goal Relationship Table

SG 1. Develop a RAMS Plan
SP1.1-1 Establish Validation Strategy
SP1.2-1 Establish RAMS Organization, Roles and Responsibilities
SP1.3-1 Establish RAMS Lifecycle to the Design

 CMMI RAMS Extension Based on CENELEC Railway Standard 9

SP1.4-1 Establish Audits and Assessments Points
SP1.5-1 Plan for Data Management
SP1.6-1 Plan for Resources
SP1.7-1 Plan for Needed Knowledge and Skills
SP1.8-1 Plan Stakeholder Involvement
SP1.9-1 Plan Safety Reviews
SP1.10-1Establish the RAMS Plan

SG 2. Obtain Commitment to the Plans
SP 2.1-1 Review Plans that Affect the Design
SP 2.2-1 Reconcile Work and Resource Levels
SP 2.3-1 Obtain Plans Commitments

SG 3. Develop an Installation and Commissioning Plan
SP3.1-1 Establish Installation and Commissioning Strategy
SP3.2-1 Establish Roles and Responsibilities
SP3.3.1 Plan for Resources
SP3.4.1 Plan for Needed Knowledge and Skills
SP3.5.1 Plan Stakeholder Involvement
SP3.6.1 Establish the RAMS Plan

SG 4. Monitor Safety Incidents
SP4.1-1 Monitor Safety Incidents

RAMS Engineering

Purpose
The aim of the RAMS Engineering is to define the activities that must be
performed, in order to assure that the generated products have the desired and
adequate RAMS levels for the application.

Related Process Areas
There are many processes areas related with RAMS Engineering. These areas and
their respective connection with RAMS Engineering are:

• Requirements Development: decision on how to allocate or distribute
requirements among the product components;

• Technical Solution: acquisition of more information about RAMS decisions;

• Project Planning: how design plans reflect requirements and need to be
revised with changes in requirements;

• Configuration Management: obtain information about baselines and
controlling changes, considering configuration issues;

• Project Monitoring and Control: activities track and control, taking
appropriate corrective actions; and

• Requirements Management: get information about managing requirements.

10 J.A. Fonseca and J.R. de Almeida Júnior

Practice-to-Goal Relationship Table

SG 1. Identify Safety Requirements
SP1.1-1 Perform Hazard Analysis
SP1.2-1 Perform Risk Assessment
SP1.3.1 Define Risk Tolerance Criteria

SG 2. Develop Safety Requirements
SP2.1-1 Allocate Safety Requirements to Products
SP2.2-1 Apply Safety Principles to Safety Requirements
SP2.3-1 Justify Technical Safety Decisions

SG 3. Establish a Hazard Log
SP3.1-1 Establish a Hazard Log to the Design

SG 4. Identify RAM requirements
SP4.1-1 Perform Preliminary RAM Analysis
SP4.2-1 Identify External Influence over RAM Requirements

SG 5. Develop RAM Requirements
SP5.1-1 Allocate RAM Requirements to Products
SP5.2-1 Justify Technical RAM Decisions

SG 6. Demonstrate the Safety of the system
SP6.1-1 Perform Analysis about Effects of Faults
SP6.2-1 Perform Analysis about External Influences
SP6.3-1 Perform Analysis about Application Conditions
SP6.4-1 Perform Safety Qualification Tests
SP6.5-1 Develop a Technical Safety Report

RAMS Assurance

Purpose
The aim of the RAMS Assurance is to evaluate, continuously, the correct
accomplishment of design lifecycle activities and the related RAMS products, which
are generated by engineering activities, in order to assure the product integrity.

Related Process Areas
There are many processes areas related with RAMS Assurance. These areas and their
respective connection with RAMS Assurance are:

• Project Planning: identification of the processes and the associated products
that need to be evaluated;

• Verification: satisfaction of RAMS requirements;

• Process and Product Quality Assurance: audits on RAMS process and
evidences;

• RAMS Management: acquisition of safety management evidences

• RAMS Engineering: acquisition of evidences about functional/technical safety

• RAMS Environment Organization and Maintenance: identification of
knowledge and skills.

 CMMI RAMS Extension Based on CENELEC Railway Standard 11

Practice-to-Goal Relationship Table

SG 1. Develop an Assessment Plan
SP1.1-1 Establish Assessment Strategy
SP1.2-1 Establish Roles and Responsibilities
SP1.3-1 Plan for Resources
SP1.4-1 Plan for Needed Knowledge and Skills
SP1.5-1 Plan Stakeholder Involvement
SP1.6-1 Identify Design, Personnel or Documents Dependencies
SP1.7-1 Establish the Assessment Plan

SG 2. Perform evaluations
SP2.1-1 Perform Interviews with Design Personnel
SP2.2-1 Perform Examination of Design Documents
SP2.3-1 Perform Observation of Practices, Design Activities and Conditions
SP2.4-1 Re-work of Parts of the Safety Analysis if Necessary
SP2.5.1Demonstrations Arranged at the Assessor’s Request
 SP2.6.1Elaborate an Assessment Report

SG 3. Develop a Safety Case
SP3.1-1 Collect evidences of Quality Management
SP3.2-1 Collect Evidences of Safety Management
SP3.3-1 Collect Evidences about Functional/Technical Safety
SP3.4-1 Develop a Safety Case

RAMS Environment Organization and Maintenance

Purpose
The aim of the RAMS Environment Organization and Maintenance is to create a
suitable infrastructure to support RAMS activities, select RAMS specialists, and
define roles and responsibilities.

Related Process Areas
The Process Area related with RAMS Environment and Maintenance is the
Organizational Training that can be consulted for information about how to
creates skills.

Practice-to-Goal Relationship Table

SG 1. Establish environment and organization to RAMS Activities
SP1.2-1 Identify Overall RAMS Organization
SP1.1-1 Identify and Create Necessary Skills
SP1.3-1 Define Roles and Responsibilities
SP1.4-1 Identify Necessary Independence for Activities
SP1.5-1 Maintain the Qualification of Environment Components

 SP1.5-1 Plan for Continuity and Improvements

Final Remarks
To provide CMMI compatibility with CENELEC standard, some CMMI Process
Areas need modifications. For Verification and Validation Process Areas, it is

12 J.A. Fonseca and J.R. de Almeida Júnior

necessary to formalize Verification and Validation Plans and for the Organizational
Process Definition Process Area it is necessary to adopt CENELEC lifecycle
descriptions for software and system development.

5 Conclusions

This paper presented an extension for CMMI based on the CENELEC standards,
having the objective of aiding organizations that develop railway systems to work in
an integrated way with CMMI and CENELEC standards, enabling reduction of time
and its associated costs, when compared with an implementation using those two
frameworks in an isolated way.

After a careful refinement process, we believe that this work could come to be very
useful to the railway applications.

However, this extension does not include all the details of CENELEC standards
because it does not define, specifically, as the activities should be done. These details
should be defined for the organizations in accordance with the design needs of the
based on CENELEC.

In that way, the basic structure of the proposed extension is generic and could be
applied to other areas just needing the inclusion of the specific practices of that
new area.

In future works it will be detailed the specific practices for each specific objective
and will be analyzed the compatibility between Process Areas of this work and other
works such as +Safe and FAA-iCMM.

References

1. CEC – DIRECTIVE OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL,
Commission of the European Communities, Brussels, 2002.

2. CENELEC126- COMITÉ EUROPÉEN DE NORMALISATION ÉLECTROTECHNIQUE.
Railway applications: The specification and Demonstration of Reliability, Availability,
Maintainability and Safety – BS EN50126. Brussels, CENELEC, 1999.

3. CENELEC128- COMITÉ EUROPÉEN DE NORMALISATION ÉLECTROTECHNIQUE.
Railway applications: Software for railways control and protection systems – BS EN50128.
Brussels, CENELEC, 2001.

4. CENELEC129- COMITÉ EUROPÉEN DE NORMALISATION ÉLECTROTECHNIQUE.
Railway applications: Safety related electronic system for Signalling – BS EN50128.
Brussels, CENELEC, 2003.

5. CMMI SE-SW- The Capability Maturity Model Integration, ver. 1.1, December 2001
Software Engineering Institute.

6. McNICOL M. “Signalling systems, a view to the future”. Railsafe 99 26-27 jully, 1999
Sydney, Australy

7. NERA - Safety Regulation and Standards for European Railways February 2000, London.
8. SCHABE H. “The Safety Philosophy behind the CENELEC Railways Standards”, 2002.
9. SW-CMM – Capability Maturity Model for Software, version 2.0,1997, software

Engineering Institute.

R. Winther, B.A. Gran, and G. Dahll (Eds.): SAFECOMP 2005, LNCS 3688, pp. 13 – 23, 2005.
© Springer-Verlag Berlin Heidelberg 2005

The Importance of Single-Source Engineering
of Emergency and Process Shutdown Systems

Robert Martinez and Torgeir Enkerud

ABB AS, Corporate Research Center, Bergerveien 12, PO Box 90,
NO-1375 Billingstad, Norway

robert.martinez@no.abb.com, torgeir.enkerud@no.abb.com

Abstract. Emergency/Process ShutDown systems (ESD/PSD) involve large
numbers of signals, span many process units and have strict compliance
requirements. These factors increase the burden of engineering, operation and
reporting, and drive the search for techniques such as Cause & Effect Matrix
(CEM). By showing input signals as matrix rows and outputs as columns, CEM
provides an intuitive view of shutdown trip logic and is now common practice
in industry. This popularity has contributed to problems of data duplication and
transcription errors when multiple incarnations of the same CEM are used at
different lifecycle stages. Process engineers, programmers, operators and safety
managers each view the same CEM recreated in different formats.
 The authors show how the CEM paradigm can benefit from a standardised
syntax and visual representation so that all the different views of a CEM are
based on the same underlying data, increasing safety and productivity
throughout the lifecycle.

Keywords: Emergency shut down, cause and effect, single-source engineering.

1 Introduction

On the face of it, the design of ESD/PSD safety systems appears trivial. There are no
complex control algorithms to design and test, no parameters to tune, no troublesome
analog values to filter; just Boolean variables inputs setting Boolean outputs.

The Cause and Effect Matrix (CEM) visual paradigm, also known as Interlock
Logic Diagrams, was introduced many years ago to capture this clear signal flow
from cause to effect which is the hallmark of ESD/PSD systems. In its simplest form,
it is a matrix of gridlines where named tags occupy rows and columns. A symbol
placed at a row/column intersection cell indicates that a trip of that column effect will
occur when that row cause is active. The simple CEM interface evolved to make room
for shutdown levels, which allowed users to define a cascading shutdown hierarchy,
with many degrees between PSD and ESD.

The CEM paradigm was a visual success and CEM drawings made in Excel
became a de-facto standard. Some vendors followed with specialised CEM
programming tools to generate control code for their respective platforms. See Figure
1 for an example of the CEM format.

14 Robert Martinez and Torgeir Enkerud

Fig. 1. Sample from a typical early CE Matrix

1.1 Trends in ESD/PSD Systems

The CEM format became a popular representation but without the support of a formal
standard a variety of formats proliferated, even between different lifecycle stages of
the same project. Recreating the same CEM in different formats introduced delays
and increased the potential for misunderstandings and errors.

The Cause and Effect Matrix paradigm had become a victim of its own success.
In addition to the proliferation of data formats and visual formats, the CEM

paradigm has also been under growing pressure to cope with these important trends in
industry.

• Size and complexity: ESD/PSD systems comprise a large and ever-
increasing number of tags, arranged in an increasingly complex hierarchy of
cascading shutdown levels, with special cascade inhibit logic.

• Safety compliance: ESD/PSD programmable systems have high safety
integrity (SIL) and the accompanying compliance burden is increasing as

 The Importance of Single-Source Engineering of ESD/PSD Systems 15

regulatory demands become stricter Ref [IEC-61511]. In the operational
phase, periodic proof-testing reports of the ESD/PSD are also mandatory.

• Common Control Platforms: The trend toward using commercial off-the
shelf (COTS) hardware platforms and use of common control software
libraries even for ESD/PSD systems with high safety integrity (SIL)
requirements.

• Decision support: The need for operators to quickly trace backward to
determine the cause(s) of a trip in an ESD/PSD system.

• Additional signal processing: ESD/PSD programmers want the freedom re-
configure the input cause signals, add additional logic before setting the
outputs.

• Spanning process areas: ESD/PSD systems spans many more diverse
process areas, engineered by different contractors and teams.

2 Single Source Engineering

In their work with engineers responsible for large shutdown implementations, the
authors discovered the benefits of “single-source engineering” (SSE) as a way of
mitigating the problems created by the trends listed above. They offer the following
recommendations, whose application to those problems are discussed in the following
paragraphs of this paper.

• Single representation for CEM applications & visual displays: agree on a
single standard visual “language” for representing CE matrices, from which
the operator display and the 1131 code is co-generated.

• Single source of data for of CEM lifecycle activities: use a portable
document as a single source of data for all activities throughout the lifecycle.

2.1 Size and Complexity

ESD/PSD systems comprise a large and ever-increasing number of tags, arranged in
an increasingly complex hierarchy of cascading shutdown levels, with special cascade
inhibit logic.Ref [DNV1]

The size and complexity of ESD/PSD systems have dramatically increased the
effort of coding and maintaining such an application directly in one of the standard
1131 languages. A generative approach suggests itself, where 1131 code objects are
automatically created based on the visual layout in the CEM diagram. The authors
approve of vendors which offer such tools; programming at a higher level of
abstraction is an effective way to reduce implementation errors and ease application
maintenance.

The authors tool development layout is shown in the figure below. This matrix
view uses text, colour and shading patterns to show direct and indirect trips as the
result of cascading level logic. These indirect effects would be difficult to trace if the
logic were programmed directly in control code structured text, for example.

Generative techniques should not stop at the control code; re-creating the logic for
an operator display is also a very time-consuming and error-prone task. The author’s

16 Robert Martinez and Torgeir Enkerud

Fig. 2. A CEM editor using colour to show cascade logic

approach is to co-generate the display by linking display artifacts with the generated
code variables to provide an online view of current status.

2.2 Safety Compliance

ESD/PSD programmable systems have high safety integrity (SIL) and the
accompanying compliance burden is increasing as regulatory demands become
stricter Ref [IEC-61511]. In the operational phase, periodic proof-testing reports of
the ESD/PSD are also mandatory.

When the CEM drawing of the ESD/PSD system has become the subject of formal
integrity approval by national authorities, then there is strong motivation to preserve
its format throughout the engineering lifecycle. In this way, suppliers, operators and
engineers have a common understanding of the CEM shutdown behaviour, based on a
common visual representation. This approach assists “cognitive recognition” Ref
[HCI2].

In the operational phase, periodic proof-testing reports of the ESD/PSD are also
mandatory. Such reports are difficult to configure and maintain without access to the
original CEM data structures from the design phase.

 The Importance of Single-Source Engineering of ESD/PSD Systems 17

The solution to both of the above problems is to make the approved CEM drawing
the single source of engineering data for all engineering and operational activities

When the document is approved then it can be argued that all subsequent
transformations based on that document also inherit this approval. In the authors tool
development, a single document serves as the basis for all lifecycle activities,
including the operator display. This document can then be input to an editor/compiler
capable of generating IEC-61131 compliant control code objects Ref [IEC-61131]
and the operator display.

The advantages of having a “single source of truth” are many (Refs [CE1] , [CE2]),
and these assume an even greater importance for the development of safety-critical
systems. The authors suggest that this principle should be encouraged in future drafts
of both corporate and international safety standards.

Using a single document throughout the engineering process and then taking this
same document into the daily operational phase of a system will reduce
synchronisation problems. Version checking and inconsistency reporting between the
original documentation and the online operator display: By generating the control
logic from the master document, a version number can be introduced to the control
logic and later used online to check that the operator display has the same version
number as the code running in the controller. This will help to ensure that the operator
display is always up to date with the control logic: the display matches the plant “as
built”.

A single source approach enables printing of online status in a format that is
identical to the design documentation: This aids the task of tracing trip signals and
documenting shutdown situations in a consistent way. It is also very useful to be able
to include information like versions, build numbers, approvals and engineering and
operator notes in the online display.

2.3 Common Control Platforms

There is an industry-wide trend trend toward using commercial off-the shelf (COTS)
hardware platforms and the use of common control software libraries even for
ESD/PSD systems with high safety integrity (SIL) requirements. This trend will soon
extend to safety fieldbusses [CE1].

This trend means that modern safety solutions must conform to standard languages,
interoperate with standard device control software libraries and standard operator
displays. Most importantly, it means that ESD/PSD safety systems can no longer
assume exclusive ownership of the devices and must accommodate a wider and
“wilder” range of configurations. The downside of this trend has the potential to make
the engineering and operation of ESD/PSD systems more difficult and potentially
increase the chances of design errors.

The benefits of using a single platform for safety and non-safety applications can
be realised if the critical parts of that platform are safety certified. For control
software this means selecting a relevant subset of 1131 function blocks or control-
modules and ensuring that these are SIL-compliant. This subset should be sufficient to
cover the needs of ESD/PSD programming. These safety status of these types should
be clearly visible within the programming tool and that tool’s compiler should check
that their usage is consistent with the safety level of the entire application and the

18 Robert Martinez and Torgeir Enkerud

target controller. This approach allows safety engineering to flow together with the
basic process control system engineering.

Implicit in this recommendation is the use of pre-defined 1131 types or classes,
stored in tested and approved libraries. This type-based approach is especially
important for safety programming, whether it is manual or generative, since it builds
on approved and version-controlled code.

The benefits of standardisation can be extended by encapsulating all the variety of
device types (transmitters, valves, motors etc.) inside control object types which
expose their internal states in a standard way, for example in a bit pattern of a defined
32-bit variable. Ref [PCCUG]

2.4 Decision Support

As the complexity of ESD/PSD systems has increased, so has the need to assist
operators in quickly tracing backward to determine the cause(s) of a trip, without
having to deduce the cause from many different documents and inputs Ref: [HCI].
Operators find it increasingly difficult to understand a trip situation and trace
backward to the originating causes in real-time.

The solution to this problem is to provide the operators with online displays which
allow him/her to see the online status of the ESD/PSD system at any level of
aggregation, with the freedom to drill down to individual process areas or devices. At
the lowest device level, the operator is presented with an online “faceplate” display
showing the device signal pathway traced back to one or more input devices.

To achieve this desirable functionality requires that all the signal pathways from
output backward to input must be charted and embedded in the operator display logic.
Typically this signal flow information is hidden within the temporary data structures
of the 1131 code compiler and is not available to any other engineering tools.

The authors found that the most robust way to re-create this path information was
to adopt the approach pioneered by a team led by Alan Munns of ABB in the UK,
called the Priority Command Concept (PCC). The PCC is an open concept for 1131
type design. To be PCC-compliant, a control type (or “class”) must expose its
instance name and its internal state in data elements NAME and ACTION,
respectively. A further requirement is that each PCC type must propagate the name of
the PCC instances to which it is connected, both up- and down-stream. This
propagation is done via 1131 string operations performed once in the first scan after
start-up in the controller.

Each PCC instance knows its neighbors: this allows operator viewer tools to trace
the signal pathway from output to input device, regardless of the number of
intermediate control objects. These tools can automatically create a dynamic visual
display element which is inserted into the view of the output device (See Figure
below).

The operator can access any of the devices participating in the CEM matrix by
right-clicking on the display itself and choosing the “faceplate” item as shown in the
following figure.

 The Importance of Single-Source Engineering of ESD/PSD Systems 19

Fig. 3. Operator output signal faceplate showing signal pathway from input

Fig. 4. CEM display for operator showing quick access to signal object

20 Robert Martinez and Torgeir Enkerud

At the highest level, the user can navigate between the various process areas
represented as different parts of the CEM matrix. The navigation display (shown in
the figure below) shows these areas to the operator and are color-coded with the
current status of all their contained device signals. The operator can click on the area
“button” and be presented with the CEM matrix for that area, as shown in the
previous figure.

Fig. 5. Operator’s top-level CEM Navigation display

The relationships between the various displays are shown in the following Figure.

Fig. 6. Relationships between operator CEM displays

Navigation Display

Systen overview
Overall status

CEM Operator Display Effect Faceplates

Shows hierarchy from
effect to cause with
status

1::n

n::

Divided by
process area,
levels, etc.

Device Faceplates

Status and interaction with
specific device

1::n

 The Importance of Single-Source Engineering of ESD/PSD Systems 21

2.5 Additional Signal Processing

ESD/PSD programmers want the freedom re-configure the input cause signals, add
additional logic before setting the outputs. The previously clean and simple CEM grid
format sprouted many footnotes and comments as designers struggled to capture
special logic cases on the crowded matrix grid. An additional problem is the quality of
the generated code, which in most cases is custom IEC-61511 structured text.

The solution to this problem is three-fold: firstly, vendors and industry should
agree on a set of functionality which satisfies the needs of most CEM engineers. In
particular, voting arrangements should be a standard part of such a proposed CEM
language. The authors propose that the CEM language syntax be limited to these basic
functions:

• Signal Name & Description
• Trip (“X”)
• Inversion
• Normal & Cascade Inhibit
• Reset
• Time Delay
• Voting (NooM)
• Comments

Secondly, analog thresholding, boolean latching and other related configuration work
should be encapsulated in the signal device object, so that the CEM is freed to do
what it does best: show the routing cleanly and intuitively.

Custom textual coding nullifies one of the main benefits of single source
engineering. So the final recommendation here is to use a control library in which
even simple “routing” operations such as AND / OR / SPLIT are SIL- marked object
types. These can be configured safely by the CEM editor user and then instantiated by
the CEM editor’s generation function, thus ensuring higher quality executable code.
In the approach taken by the authors, these control object types simply route the
originating device data, packaged within a standardised bit pattern of a 32-bit variable
data element. This data type contains a data word (ACTION) with a standard bit
pattern for commanded action, inhibit, connected and a few other states. The simple
routing object type instances operate on this data.

2.6 Spanning Process Areas

ESD/PSD systems span many more diverse process areas, engineered by different
contractors and teams.

Single source engineering is challenging in a multi-disciplinary and geographically
dispersed engineering environment. Vendors who claim to support this principle offer
centralised database or object stores, but access to these are complicated by the need
for special client software and the ability to cross corporate firewalls.

The authors believe that the internet points the way to a more flexible architecture
based on exchange of a document in a standard format which contains its own
validation logic. This validation could be either in the form of an XML schema or via
a component (such as ActiveX) which is embedded in the document. Such a
document is highly portable: it can be exchanged via email between all the partners in

22 Robert Martinez and Torgeir Enkerud

a large project, without difficulties caused by firewalls, licensing, and installation and
setting up special access permissions.

A typical use case illustrating this solution is when a contractor can specify CEM
connections in a portable document without being forces to install any special
software by the control system supplier. He/She then sends the document via email to
the control system supplier who can then automatically generate the control code and
the operator display without modifying or translating the original CEM document.

Finally, automation vendors are urged to now agree on a common visual and
textual representation which should be submitted to a standards-setting body for
approval. Taken together, these are syntax rules for a proposed common CEM
“language”. The textual representation should be in the form of an XML schema. The
accompanying visual standard should reflect the contents of the XML representation
in a universally recognisable way, which is intelligible to CEM programmers and
operators.

3 Conclusion

Let us conclude by marking up our original list of problems with the recommend-
ations:

• Size and Complexity: ESD/PSD systems comprise a large and ever-
increasing number of tags, arranged in an increasingly complex hierarchy of
cascading shutdown levels, with special cascade inhibit logic.

o Program directly in the CEM matrix and use tools to generate both
the control code and the operator graphic displays.

• Safety Compliance: ESD/PSD programmable systems have high safety
integrity (SIL) and the accompanying compliance burden is increasing as
regulatory demands become stricter Ref [IEC-61511]. In the operational
phase, periodic proof-testing reports of the ESD/PSD are also mandatory.

o Use a single CEM data source for lifecycle compliance activities.
• Common Control Platforms: The trend toward using commercial off-the

sheflf (COTS) hardware platforms and use of common control software
libraries even for ESD/PSD systems with high safety integrity (SIL)
requirements.

o Use a single common library with a subset of SIL-approved types
which share a common interface with other types.

• Decision Support: The need for operators to quickly trace backward to
determine the cause(s) of a trip in an ESD/PSD system.

o Use object types which support upstream signal tracing and tools
which can generate displays showing the active device signal
pathways.

• Additional Signal Processing: ESD/PSD programmers want the freedom
re-configure the input cause signals, add additional logic before setting the
outputs.

o Use an approach which allows reconfiguration and additional
routing logic based on types, not loose code.

 The Importance of Single-Source Engineering of ESD/PSD Systems 23

• Spanning Process Areas: ESD/PSD systems spans many more diverse
process areas, engineered by different contractors and teams.

o Use a portable document which can be easily shared amongst
project teams.

o Use a single visual representation “language”; make it a standard
for programming by providing tools to generate the required 1131
code objects.

Acknowledgements

• Alan Munns, ABB UK, leader of the PCDeviceLib (PCC) development
team, for his permission to cover the benefits of PCDeviceLib concepts
in this paper.

• Steinar Engh , ABB Norway, for his valuable feedback as an
experienced cause and effect matrix designer and user.

References

[IEC-61511] International Standard IEC-61511 Functional safety –Safety instrumented
systems for the process industry sector, International Electrotechnical
Commission Geneva , Switzerland 2003

[IEC-61131] International Standard IEC-61131 Programmable controllers, International
Electrotechnical Commission Geneva , Switzerland 2003

[PCCUG] PCDeviceLib User Documentation , ABB document # 3BGB001947D0063,
ABB 2004 .

[CE1] Control Engineering Magazine “Safety Networks” , 1/12/2004
[DNV1] Offshore Standard DNV-OS-A101, “Safety Principles and Arrangements”,

2001, Det Norske Veritas (DNV).
[HCI1] Carroll, JM ; Human Computer Interaction in the New Millenium”, Addison

Wesley, New York, 2001
[HCI2] Preece, J ; Human Computer Interaction”, Addison Wesley, New York, 1999
[CE1] Control Engineering , Sept. 2003, " Maintaining a Single Source of Truth."
[CE2] ARC Insight Oct 2004, “Leverage Engineering & Design Information to

Improve Plant Performance”

R. Winther, B.A. Gran, and G. Dahll (Eds.): SAFECOMP 2005, LNCS 3688, pp. 24 – 36, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Combining Extended UML Models and Formal Methods
to Analyze Real-Time Systems

Nawal Addouche1, Christian Antoine2, and Jacky Montmain2

1 Ecole des mines d’Alès, Parc Scientifique Georges Besse,
30035 Nîmes, France

nawal.addouche@ema.fr
2 URC CEA-EMA, Parc Scientifique Georges Besse,

30035 Nîmes, France
{christian.antoine, jacky.montmain}@ema.fr

Abstract. In the paper, we present a methodology developed in order to verify
probabilistic temporal properties related to dependability of real-time systems.
The methodology is made of three essential steps. The first one is a UML pro-
file called DAMRTS (Dependability Analysis Models for Real-Time Systems)
designed using GME tool. The aim is to model a real-time system with qualita-
tive and quantitative information related to its quality of service. In this profile,
UML statecharts are used to represent the system behavior. An extension is in-
troduced with probabilities, real-time requirements and nondeterministic
choices. The second one proposes a translation from the extended UML state-
charts to probabilistic timed automata (PTAs). In this step, global clocks are
used to represent synchronization of concurrent UML statecharts in probabilis-
tic timed automata. The last one concerns a probabilistic model checking with
PRISM tool. This requires specification of dependability properties with a suit-
able temporal logic.

1 Introduction

Several approaches have already been explored to introduce quantitative information
in the dynamic UML models. A stochastic extension of UML statechart diagrams is
proposed in [7]. It is based on a set of stochastic clocks which can be used as guards
for transitions. The clock value is given by a random variable with specified distribu-
tion function. Other approaches are also proposed to formalize UML models which
are extended with quantitative information. Dynamic UML models are formalised
with stochastic Petri nets in [15], with stochastic process algebra in [5] or with con-
tinuous time Markov Chains such as we proposed it in [2]. This one is adequate for
the performance evaluation and the verification of some dependability properties.
However, the formal model contains only rates. Then, it is not suitable for modeling
real-time systems. Different models exist to describe real-time systems such as timed
automata [3] which have a clear semantics and for which a tool support for automatic
verification (Uppaal, Kronos) is available.

The Unified Modeling Language (UML) [16] which becomes an official standard
of the Object Management Group (OMG) is widely adopted in industry. This semi-

 Combining Extended UML Models and Formal Methods 25

formal language, easy-understood and well-established design notation in the soft-
ware engineering community, is extended to support the aspect-oriented design for a
system. UML support many application domains and provides a common notation
independent of the kind of systems that are developed.

To combine the advantages of intuitive modeling by UML with formal verification,
we chose the approach which consists to transform UML models into the input lan-
guage of an existing model checker. Input of a model checker is a formal description
of a system. For formal analysis, it is necessary to define what kind of semantic re-
quirements are implied by the domain and what kind of semantics that easily allows
translation into the formal model to be analyzed by the model checker. Our contribu-
tion includes:

− Definition of the profile DAMRTS [1] for modeling and analyzing real-time sys-
tems: a class diagram is proposed to represent static model with quality of service
of system components; the conventional UML statecharts are extended with prob-
abilities and real-time requirements,

− Specification of the nondeterminism in extended statecharts and synchronization of
concurrent statecharts,

− Métamodeling with the Generic modeling Environment (GME) to construct the
proposed profile,

− Translation of extended UML statecharts to probabilistic timed automata: global
clocks are defined to represent synchronization of UML statecharts.

In section 2, the methodology of real-time systems analysis is described. The dy-
namic view of UML models is presented in sections 3 and 4. We present in section 5,
real-time constraints of an assembly chain as well as their behavioral UML models as
defined in the profile DAMRTS. This one is designed using GME tool as presented in
section 6. The behavioral UML models are nondeterministic, with probabilistic transi-
tions and real-time aspects. That make possible to translate them into probabilistic
timed automata as given in section 7. The translation process of resulting models is
also described in this section. In section 8, we give an overview on the type of proper-
ties that can be checked. We conclude with section 9.

2 General Methodology

In order to have UML accepted by the real-time development community, the OMG
group has proposed a profile called “Schedulability, Performance and Time” [17] for
real-time systems. In this profile, some supports are introduced in UML to capture a
maximum of real-time requirements and to perform the real-time development tasks
directly on UML models. Beside the usual analysis and design stages, scheduling
analysis, performance evaluation and formal verification of critical properties are
included. However, the two last activities are partially covered because “quality of
service” requirements are introduced without a clear indication about the formal veri-
fication of this type of properties. Adapted tools to formal verification or performance
evaluation on these UML models are not yet available.

For the reasons indicated above, a new profile called DAMRTS is proposed to ana-
lyze and verify dependability properties of real-time systems [1]. It represents an

26 N. Addouche, C. Antoine, and J. Montmain

extension to the reference metamodels of the OMG profile “Schedulability, Perform-
ance and Time” [17]. The first aim is to be compliant with the standard OMG profile.
The second one is to provide concepts that enable to specify a real-time system with
its real-time constraints and probabilistic information. A behavioral UML models are
proposed with a formal semantics served to probabilistic model checking [10]. It is
developed with probabilities and real-time aspects, resulting in probabilistic timed
automata as semantics models. These models are used to verify probabilistic temporal
properties related to the dependability of real-time systems.

GME Tool

Metamodel

Profile DAMRTS

Models DAMRTS

XML

PRISM Tool

Probabilistic
Model checking

Probabilistic

timed automata

Temporal
probabilistic

properties

Automatic
translation

Fig. 1. Global methodology

As depicted in fig.1, the proposed approach is presented with the essential steps
that allow associating a formal method to UML models extended with probabilities
and time. The GME tool is used to construct metamodels specifying the modeling
paradigm (modeling language) of our application domain. The modeling paradigm
contains all syntactic, semantic and presentation information regarding the domain of
real-time systems dependability. This is developed in section 6.

Once the profile DAMRTS is built, we model the real-time system. The output of
GME tool is a file having an extended XML format. The DAMRTS models are then
exported in XML format for which an automatic translation is applied to transform
UML behavioral models into probabilistic timed automata as it is detailed in section
7.3. The PRISM tool is then used to verify the properties of real-time system.

3 Modeling with Extended UML

To represent dynamic aspects of the system, extended UML statecharts and collabora-
tion diagrams are used. Combination of these two diagrams allows representing all
system interactions. Indeed, the collaboration model describes external interactions
between objects whereas UML statecharts diagrams represent how an instance of a
class reacts to an event occurrence.

A collaboration diagram consists of objects and associations that describe how the
objects communicate. It represents the structural organisation of objects which ex-

 Combining Extended UML Models and Formal Methods 27

changes messages. In the DAMRTS profile, the signals and the orders are the two
types of messages taken into account. The first ones are sent from objects of Sensor
classes to objects of Controller class. The second ones are sent from instances of Con-
troller class to instances of Effector classes (see fig 3).

The proposed statecharts allow expressing events with probabilities and actions with
real-time constraints. The nondeterminism and synchronization are defined as follows:

Nondeterminism. Nondeterministic choices can be specified in transition systems by
having several transitions leaving from the same state. It is used when we wish to
incorporate several potential system behaviors in a model. Nondeterminism is used
for several purposes. As it is specified in [6] and [18], it is used to represent phenom-
ena such as:

Unknown scheduling in concurrent systems. When a system consists of several com-
ponents running in parallel, we often do not make any assumptions on the relative
speeds of the components, because we want the application to work no matter what
these relative speeds are. Therefore nondeterminism is essential to define the parallel
composition operator, where we model the choice of which system take the next step
as a nondeterministic choice.

External environment. A system interacts with its environment via its external actions.
When modeling a system, we can not predicate how the environment will behave
(failures, abnormal functioning). Therefore the possible interactions with the envi-
ronment are modeled by nondeterministic choices.

Uncertainty in probabilities and the expected times. Sometimes it is not possible to
obtain exact information about the system to be modeled. When the exact duration of
an action or the exact probability of an event is not known exactly but only with a
lower and upper bound. In this case, all possible values are incorporated by nonde-
terministic choices.

Synchronisation. The extended UML statecharts are allowed to communicate with
each other in well-defined manners. The communication and synchronization method
are presented as follow:

− One UML statechart may create an event as a result of a transition that is con-
sumed by another UML statechart.

− A guard may be used to test if another UML statechart is in a certain state before
allowing a transition to occur to the guarded state.

4 Extended UML Statecharts

In UML, each class has an optional statechart which describes the behavior of its
instances (the objects). This statechart receives events from other statecharts and
reacts to them. The reactions include sending of the new events to other objects and
executing of internal methods on the object. The communications between compo-
nents of the system are modeled as events. Exchanged signals and orders as well as
random events (e.g. undesired and lost signals) are represented as events associated to
a discrete probability distribution.

28 N. Addouche, C. Antoine, and J. Montmain

The syntax of UML statecharts, defined in the standard UML [16] is extended as
presented below. The operational semantics of UML statechart is inspired from [9]
and extended with real-time and probabilistic aspects as presented in [1]. The infor-
mal interpretation of extended UML statecharts is based on a set of nodes and a set of
edges. An edge is presented by the following syntax:

Edge: = Event [Guard] / Action
Event: = Event name (Probability)
Guard: = Boolean Expression
Action: = Operation name (Arguments) [Duration, deadline]

Event represents received signals, sent orders or random events with their associ-
ated probability. Guard is a boolean expression which represents either AND-
composition or OR-composition states related to degraded or failure states of other
objects. The compositions are excerpted from a faults tree analysis of the system [1].
Action expresses operation execution or sending messages to other objects. They are
not instantaneous but have duration or deadline. Transitions between states are prob-
abilistic. When two transitions are enabled, the choice is nondeterministic.

5 Example of an Assembly Chain

This example presents an automated chain assembly of electrical micro-motors. It is
excerpted from a European project named PABADIS (Plant Automation BAsed on
DIstributed Systems) [14]. This one deals with a flexible and a reconfigurable system
designed for production of different types of micro-motors. Fig 2 represents the con-
trolled system.

Fig. 2. Assembly chain of micro-motors

Micro-motors consist to stators and rotors. The first are transported to assembly
robots, on pallets via a conveyor system and seconds are available into stocks near
each robot. A set of pallets containing stators moves along the conveyor belt. These

W2 W1

PS3

PS1

PS2

Assembly Robot 2 Assembly Robot 1

Detection Stators

Output
flow

Input
flow

Conveyor
Sense

Elevator Main
Functions

Fault
Detector

Pallet
Sensor

 Combining Extended UML Models and Formal Methods 29

are detected by pallet sensors PSi at different levels of the conveyor system. When
assembly of micro-motors is completed, the pallets then move into a fault detection
station where a camera detects the possible assembly faults. Set of PLC (Programma-
ble Logic Controller) and PC composes the control system.

The assembly robots work in parallel. Let us consider a stators pallet arrives at the
level of assembly robots and detected by PS3. If the two robots are both idle, the
pallet is arbitrary send to one of the waiting areas w1 or w2 showed in fig 2. If the
robots are both busy, the controller send information request to robots. These send the
information about the assembly state. The pallet is then leaded to the robot which will
be the idle first. This behavior is modeled as given in the statecharts of fig 4 and fig 5.

5.1 Collaboration Diagram

In the collaboration diagram of fig 3, interactions between objects are presented. Ex-
changed messages describe the signals (S.PPi) and (S.Fault), respectively sent from
pallet sensors (PSi for sensor i) and Fault detector objects to the Controller. They
also represent orders sent from Controller to Robot 1, Robot 2 and Elevator objects.
Our example presents a distributed system such that several controllers (PLC) interact
to control the system functioning. To simplify, we represent in the collaboration dia-
gram one controller object.

Fig. 3. Collaboration diagram

5.2 Extended UML Statecharts

Robot and Controller objects behavior are respectively modeled in fig 4 and fig 5. In
Robot statechart (describes robot 1 or robot 2); assembly tasks as well as communica-
tion with controller are executed in parallel.

In substate A, the controller orders are modeled as events. In transition: “O.Ass
(0.10) [PS1.Ds OR PS2.Ds]/ Assembly()[10s]”, guard expresses that the edge is en-
abled if one of sensors PS2 or PS3 is in degraded state Ds. The probability of sending
an assembly order when one of sensors is in degraded state is evaluated to 0.10; the
execution of the assembly operation, Ass () lasts 10s. Otherwise, the robot performs a
correct assembly with probability 0.90. The guard “S.Active AND E.Active” repre-

O.Go down
O.Go up

O.Ass
O.Stop

S.Fault

S.PP1 Elevator

Robot 1Controller

PS 2

PS 3

S.PP2

S.PP3

PS 1

Send.Data

Robot 2

O.Ass
O.Stop

 Fault
detector

30 N. Addouche, C. Antoine, and J. Montmain

sents the condition to leave the state Emergency stop: sensors and elevator must be in
the state Active of their respective UML statecharts. When probability is not repre-
sented, it means it is equal to 1.

Nondeterminism is modeled at the level of the state, Idle. A probabilistic choice is
used to represent the possibility of performing a correct or a faulty assembly. It is also
possible that robot remains idle when there is absence of pallets (AP). Substate B,
describes the controller requests and sending of data from robot to controller.

Fig. 4. Robot statechart

Fig 5 describes controller behavior. When signal S.PP3 becomes true (sensor PS3
detects a pallet), the order Info.need is send to the robots. After receiving informa-
tion, the controller sends the order of assembly for one of the two robots (which will
be the idle first).

Fig. 5. Controller statechart

Fault (0.05)/ Order [5s]

Degraded state

S.PP2/
O.Go down () [5s]

S.PP1/
O.Go up () [5s]

S.Fault/
O.Stop () [5s]

Idle

S.PP3/
Info.need () [5s]

End.Order

Data/
O.Ass () [5s]

Robot

Inf.need (0.70)/ Send.data () [5s]

Sending
informationEnd.Send data

Idle

A

B

 Emergency
Stop

[S.Active
AND
E.Active]

O.Stop (0.95)/
Stop () [1s]

Faulty
Assembly Assembly

Idle

End.As

 O.Ass (0.90)/
 Ass () [10s]

O.Ass (0.10) [PS2.Ds OR
PS3.Ds] / Ass () [10s]

End.As

AP

 Combining Extended UML Models and Formal Methods 31

Among the malfunctions of controller, sending of undesired orders or lost orders
are modeled in Controller statechart as random events, e.g. “Fault (0.05)/ Order [5s]”.
The received sensor signals are presented as events and the sending of orders as ac-
tions with their associated deadlines. The edge “S.PP1/ O.Go up()[5s]”, expresses that
when PS1 detects a pallet, order to go up from controller to elevator is send.

6 Metamodeling Using GME Tool

The Generic Modeling Environment (GME) developed at the institute for Software
Integrated Systems at Vanderbilt University is a configurable toolkit for creating
domain-specific modeling and program synthesis environments [13].

There is a metamodeling paradigm defined that configures GME for creating
metamodels. These models are then automatically translated into GME configuration
information through model interpretation. Once the metamodeling interpreter is op-
erational, a meta-metamodel is created and the metamodeling paradigm is regenerated
automatically [13]. The metamodeling paradigm is based on UML notation. The syn-
tactic definitions are modeled using UML class diagrams and the static semantics are
specified with constraints using the Object Constraint Language (OCL).

6.1 Modeling Concepts

The vocabulary of the domain-specific languages implemented by different GME
configurations is based on a set of generic concepts built into GME itself. This one
supports various concepts for building complex models.

Folders, FCOs (Models, Atoms, Sets, References, and Connections), Roles, Con-
straints and Aspects are the main concepts that are used to define a modeling para-
digm. The First Class Objects (FCOs) used to represent entities and relations, form
the core of the GME concepts. These generic concepts are not generally used at the
same time. However, the choice is rather an important design decision. The concepts
used in our metamodel are: Aspects, Models, Atoms and connections. These latter and
the other quoted concepts are defined in [8] and [13].

6.2 Overview on the Metamodels of DAMRTS

The DAMRTS profile is a specific profile designed for dependability analysis of a
real-time system. It is based on concepts defined in the profile SPT [17] with new
stereotypes. Those are added to the metamodel in order to introduce particular de-
pendability information. The malfunctions considered as undesirable events and their
possible causes are modelled with stereotypes. The QoS is represented as attributes
when it is about actions of resource classes (e.g. duration of actions, response time for
a call action, etc.). It is also represented as a tagged value when it is about general
QoS, like reliability and maintainability of resources [1].

To build the profile DAMRTS, the metamodeling paradigm based on UML is used.
Three UML metamodels are created to represent class diagram, collaboration diagram
and extended UML statecharts of a real-time system. Such as presented in fig 6,
the metamodel of the class diagram contains the concept Atoms: sensor, effector

32 N. Addouche, C. Antoine, and J. Montmain

(all components in contact with raw material such robots, conveyor belt, etc.) and
controller.

The FCOs Resource and Dependability are defined to be hidden in the class dia-
gram. We use the concept Attributes (which does not necessarily represent attributes
in the class diagram) to define the QoS related to dependability of Resource as well as
the methods send signals, send orders and actions related to the Atoms sensor, con-
troller and effector (see fig 6). The Attributes of GME tool can have a set of specifica-
tions such as the data-type [8]. Then we specify the defined Attributes with integer or
double according to whether it is of real-time data (deadline and duration of methods)
or of probabilities assigned to undesired events.

Fig. 6. Class diagram metamodel of profile DAMRTS

Each entity Resource is associated the Atom Indicator which represent the unde-
sired events such failures. The Atom Cause has as attribute one or several logical
expressions composed by elementary logical conditions linked by conjunctive and
disjunctive connectors. This attribute is specified to be boolean. When one of the
expressions is true, it indicates that associated failure became true.

7 Translating Extended UML Statecharts to PTAs

Timed automata are automata extended with clocks, positive real valued variables
which increase uniformly with time, and whose nodes and edges are labeled with
clocks constraints, respectively called invariants and guards. The invariant dictate
when the automaton may remain in a node, letting time pass, and guards when the
corresponding edge can be taken [3]. Probabilistic timed automata are a variant of
timed automata extended with discrete probability distributions [11]. This type of

 Combining Extended UML Models and Formal Methods 33

automata has been chosen for formalizing extended UML statecharts because it takes
into account dense time, nondeterminism and probabilistic choice as defined in the
extended UML statecharts. They are also amenable to model check probabilistic tem-
poral properties.

7.1 Principle of Translation

To translate extended UML statecharts to probabilistic timed automata, real-time
constraints of actions are represented with clocks. Events are described with their
probabilities on edges. The guards defined in proposed UML statecharts describe the
active state of other objects.

In probabilistic timed automata, it is not really possible to observe the location of
another component directly as the principle defined in our extended UML statecharts.
However, a probabilistic timed automaton component A can check the location of
another component B in the following way: component B is equipped with self-loop
edges in all of its locations (or some of its locations), where the events of the self-loop
edges would be different for each location. Therefore, in location L1, the probabilistic
timed automaton B would have enabled a self-loop edge with an event which is
unique to L1: “in-L1”, for example. Then component A, when it want to know
whether B is in L1 or not, would try to synchronize on event “in-L1”. If synchroniza-
tion is possible, then A knows that B is in L1 and can act accordingly; otherwise, it
can do something else, knowing that B is not in L1.

7.2 Synchronization with Global Clocks

Synchronization between probabilistic timed automata components is done using
edge-labeling events, as defined in [12]. One manner to synchronize probabilistic
timed automata is to create a probabilistic timed automaton component which has a
single clock which is never reset during the execution of the system. Then this clock
could be regarded as a “global clock”. This component could then synchronize with
the other components when the value of the global clock reaches certain values.

In fig 7, we give probabilistic timed automaton describing a sub-system of the as-
sembly chain example: the robot behavior reacting to controller orders. The probabili-
ties used in the example should in practice be obtained from statistical analysis of
observed behavior.

In the probabilistic timed automaton, the sub-system consists to robot, controller
and two clocks x and y. Atomic propositions, related to probabilistic timed automata
of elevator and sensor, are included in nodes. “s:Ds, e:Active and s:Active” express
guards of UML statecharts in fig 4. In initial state, both clocks x and y set to 0. The
controller sends assembly order to robot in 5 time units. Then, the robot performs the
assembly tasks with probability 0.90. After assembly takes 10 time units, the robot
becomes idle. When one sensor is in degraded state, then robot performs a fault as-
sembly with probability 0.10. When an order stop is send by the controller, the robot
stop. It becomes idle when sensors and elevator are in active state.

34 N. Addouche, C. Antoine, and J. Montmain

7.3 Automatic Translation Process

Once the UML models are built with the profile DAMRTS, the different view of the
real-time system are presented including dependability information. The following
step consists to analyze the models. For lack of UML’s models analysis tools, we
chose a tool which allows analysis of models containing real-time and probabilistic
information such as in the extended UML statecharts. The probabilistic model
checker PRISM is then used [10].

Fig. 7. Probabilistic timed automaton

To allow verification of probabilistic temporal properties, it is necessary to trans-

late behavioral UML models from the GME tool to input model of PRISM tool. For
this, an automatic translation is performed using the parser Xerces [19].

The statecharts UML models are exported to XML format. Syntactic analysis is
applied on the XML files using the parser. Transformation rules are then defined to
rewrite the XML nodes to PRISM language based on the Reactive Modules formal-
ism [4]. This formal model is designed for concurrent systems and represents syn-
chronous and asynchronous components in a uniform framework that supports com-
positional and hierarchical design and verification.

8 Probabilistic Model Checking

To verify dependability properties, the model checker PRISM is adopted [10]. This
tool is designed for analysis of probabilistic models and supports various models such

5=x

∧≤ 10y

c : Active
r : Idle

10=y

c : Active
r : Faulty Ass
s: Ds

c : Active
r : Stop
e : Active
s : Active

c : Active
r : Assembly

5=x

0.95

0.10 0.90 10=y

{ }0:=x

1=y

{ }0:=x

{ }0:, =yx

5≤x

10≤y

1≤y

5≤x

{ }0:, =yx

0.05

{ }0:=x

0== yx

 Combining Extended UML Models and Formal Methods 35

as Markov decision processes, discrete time Markov chains and continuous time
Markov chains. The tool takes as input a description of a system written in PRISM
language. It constructs the model from this description and computes the set of reach-
able states. It accepts specification in either the logic PCTL or CSL [11] depending on
the model type. It then determines which states of the system satisfy each specification.

Some probabilistic properties related to our example are presented. Their informal
specifications are given as follows:

Property 1: “The probability the robot carries out a faulty assembly is less than 1%”.
Property 2: “In initial state, the probability that the robot remains in emergency stop

until the elevator and the sensors are reactivated is at least 0.95”.
Property 3: “Elevator remains in down position less than k units of time until the sensor

1 detects a pallet with a probability ≥ p”.

These dependability requirements are formally specified with PCTL. We use the
variables: r, e and si, to respectively represent the states of the robot, elevator and sen-
sors. The following are their PRISM specification language:

Property 1: P<0.1 [(r=2)]
Property 2: “init” P>0.95[(r=3) U (e=0) & (s1=0) & (s2=0) & (s3=0)]
Property 3: P=? [(e=0) U≥ K S.PP1= true].

The fundamental components of Prism language are modules and variables. A sys-
tem is modeled with a number of modules which can interact with each other. A module
contains a number of local variables. The values of these variables at any given time
constitute state of the module. Global state of the system is determined by local states of
all modules. Though the model checking method is automatic, it is confronted to the
explosion of system states number. In our case, the difficulty of handling the models
particularly depends of type of the local variables (integer, double, etc.) that we ma-
nipulate, combined with the number of these variables.

9 Conclusion

The approach used in our proposition is to enrich the UML model with the local quality
of services parameters relevant to a specific analysis objective (for instance, fail-
ure/repair rates are associated with elements of UML model) and to automatically trans-
form the relevant parts of the enriched UML models to probabilistic timed automata.

The advantage of the approach is that it is relatively easy to experienced UML users
to create extended UML models and automatic translation made it possible to apply
PRISM. The formal model is correct with respect to requirements of UML model. Writ-
ing properties with probabilistic temporal logic such as PCTL is not easy. In PRISM,
syntax is proposed to express properties. This one is easier than that of probabilistic
temporal logic.

Due to the denseness of time, the underlying semantic model of a probabilistic timed
automaton is infinite, and hence effective decision procedure rely on building a finite
quotient of the state space. In future works, the verification technique used, will be
based on the generation of the forward reachability graph with Kronos, and model
checking the obtained graph encoded as a Markov decision process with PRISM.

36 N. Addouche, C. Antoine, and J. Montmain

References

1. Addouche, N., Antoine, C., Montmain, J.: UML Models for Dependability Analysis of
Real-Time Systems. In: Proc of SMC'04, The Hague, The Netherlands (2004)

2. Addouche, N., Antoine, C., Montmain, J.:"Formalisation of Quantitative UML models Us-
ing Continuous Time Markov Chains", Third Conference on Management and Control of
Production and Logistics, Santiago, Chile (2004)

3. Alur, R., Dill, D.L.: A Theory of Timed Automata, Theoretical Computer Science,
126(2):183-235 (1994)

4. Alur, R., Henzinger, T.: Reactive Modules, In: Proc of LICS’96, IEEE Computer Society
Press, New Jersey (1996), 207-218

5. Canevet, C., Gimore, S., Hillston, J., Stevens, P.: Performance Modelling with UML and
Stochastic Process Algebra, In Proc of the Eighteenth Annual UK Performance Engineer-
ing Workshop (2002)

6. De Alfaro, L.: Formal Verification of Probabilistic Systems, PhD thesis, Standford Uni-
versity (1997)

7. Gnesi, S., Latella, D., Massink, M.: A Stochastic Extension of a Behavioural Subset of
UML Statechart Diagrams, In: Proc of HASE’00, Albuquerque, New Mexico (2000)

8. ISIS.: GME 4 User’s Manual, version 4.0, Institute for Software Integrated Systems, Van-
dertbilt University (2004), http://www.isis.vanderbilt.edu/Projects/gme/

9. Jansen, D.N., Hermanns, H., Katoen, J-P.: A Probabilistic Extension of UML Statecharts:
Specification and Verification, FTRTFT 02, Oldenburg, Germany (2002) 355-374

10. Kwiatkowska, M., Norman, G., Parker, D.: Prism: Probabilistic Model Checker, In
Proc.TOOLS 2002, volume 2324 of LNCS (2002), 200-204

11. Kwiatkowska, M.:Model Checking for Probability and Time: From Theory to Practice, In
LICS 03, IEEE Computer Society Press (2003) 351-360

12. Kwiatkowska, M., Norman, G., Sproston, J.: Model Checking of Deadline Properties in
the IEEE 1394 Fire Wire Root Contention Protocol, Formal Aspects of Computing (2003),
14(3), 295-318

13. Ledeczi, A., Maroti, M., Bakay, A., Karsai, G., Garrett, J., Thomason, C., Nordstrom, G.,
Sprinkle, J., Volgyesi, P.: The Generic Modeling Environment, Workshop on Intelligent
Signal Processing, Budapest, Hungary (2001)

14. Lüder, A., Peschke, J., Sauter, T., Deter, S., Diep, D.: Distributed Intelligence for Plant
Automation on Multi-agent Systems: the PABADIS approach, Production Planning and
Control (2004), 15(2), 201-212

15. Merseguer, J and J. Campos. (2002). A Compositional Semantics for UML State Machines
Aimed at Performance Evaluation. In: Proc of WODES’02, pp. 295-302, IEEE Computer
Society Press, Zaragoza, Spain.

16. OMG.: Unified Modeling Language Specification v.1.5, Formal / 03-03-01, (2003)
17. OMG.: UML Profile for Schedulability, Performance and Time v.1.1, Formal / 05-01-02,

(2005)
18. Segala, R.: Modeling and Verification of Randomized Distributed Real-Time Systems,

PhD thesis, Massachussetts Institute of Technology (1995)
19. XML.: The Apache XML Project. Xerces2 java parser 2.6.2 Release, The Apache Soft-

ware Foundation (2004), http://xml.apache.org/xerces2-j/

Defining and Decomposing Safety Policy
for Systems of Systems

Martin Hall-May and Tim Kelly

Department of Computer Science,
University of York, York, YO10 5DD, UK

{martin.hall-may, tim.kelly}@cs.york.ac.uk

Abstract. A ‘system of systems’ (SoS) comprises many other systems
operating collectively with a shared purpose. Individual system auton-
omy can give rise to unpredictable, and potentially undesirable, emergent
behaviour. A policy is a set of rules that bounds the behaviours of enti-
ties. Policy can be expressed at various levels of abstraction. By building
on existing goal-based decomposition approaches this paper proposes
policy as a means of achieving safety in SoS. The decomposition of pol-
icy to lower levels of abstraction must be carried out in a consistent,
complete and systematic manner. The approach is agent-oriented and
emphasises the recognition of contextual assumptions (such as knowl-
edge of other agents’ behaviour) in decomposing policy. To this end we
present patterns of decomposition based on KAOS tactics of refinement.
The application of these patterns, expressed in the Goal Structuring No-
tation, is illustrated using existing civil aerospace policy (the Rules of
the Air Regulations).

1 Introduction

There exist systems whose constituent components are sufficiently complex and
autonomous to be considered as systems in their own right and which operate
collectively with a shared purpose. Many real systems of systems are geograph-
ically distributed and some of its component systems are mobile. Examples are
numerous and include any permanent transport network (such as air, rail or
road) as well as more short-lived SoS which may arise in network-centric war-
fare.

In such SoS the interactions between component systems are not constrained
by physical design as in conventional monolithic systems. Since the SoS often
comprise systems designed, manufactured and operated by various organisa-
tions, the set of possible interactions between any of the entities in the whole
SoS cannot be known by any one individual. Such unpredictable interactions, if
left unchecked, can lead to undesirable emergent behaviour, which may lead to
accidents and loss of life. Some means is required to bound the behaviour of the
system entities in such a way that no accidents occur. Defining a safety policy
is the first step towards providing the necessary degree of control of interactions
and coordination of responsibility.

R. Winther, B.A. Gran, and G. Dahll (Eds.): SAFECOMP 2005, LNCS 3688, pp. 37–51, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

38 M. Hall-May and T. Kelly

Historically, interpretation of policy has relied upon human intelligence;
hence loose and possibly ambiguous guidelines have been acceptable. This has
not always been successful, as evidenced by the case in which two aircraft osten-
sibly operating according to policy were nevertheless involved in a fatal collision
[1]. In this case it seems that the policy was not constrictive enough. In contrast,
work-to-rule strikes expose flaws in overly conservative policies by reducing op-
erational effectiveness.

An increasing desire to deploy unmanned and highly autonomous systems
has brought to the fore the challenge of producing correct and complete safety
policies. With systems such as unmanned air vehicles (UAVs) entering service we
no longer have the luxury of relying on human flexibility and ingenuity to deal
with vague or over-constraining policies. A way must be found to decompose
high-level safety goals into policy ‘statements’ that are formulated in such a way
that they can be implemented by man or machine.

This paper puts forward a number of patterns for decomposition. Section 2
provides an overview of policy. Section 3 presents the challenges of developing
policy. Sections 4 and 5 describe the approach to supporting policy development.
Section 6 outline the problems of defining a resilient policy. Finally there is some
discussion of related and future work.

2 Overview of Policy

Policy describes the allowed envelope of an entity’s actions, in that it defines
behaviour that is both permitted and required from individual entities in order
to be able to operate in a given environment (as described by the assumed
context). To take a simple example as an illustration, consider a mother who
asks her child to go to the corner shop to buy a pint of milk. She may lay down
two rules with which the child must comply on this trip:

1. The child must not talk to strangers.
2. The child must use the pedestrian crossing when crossing the road.

The first of these rules defines what the child is allowed to do, specifically
it proscribes conversation with people with whom the child is not previously
acquainted. The second statement expresses the obligation that the child should
take a safe route across the road, namely by using the pedestrian crossing.

Together these rules form a policy that guides the behaviour of the child on
a journey to the corner shop. However the policy is orthogonal to the plan or
mission of the child. It still holds regardless of whether the child is going to buy
a loaf of bread or a dozen eggs, or not going to the corner shop at all.

Both rules are motivated by the desire that no harm should come to the child.
Perhaps we have identified being in the path of an oncoming car and being in
the company of untrustworthy (and hence potentially malevolent) individuals
as hazards. However, even this simple policy is fraught with problems. Indeed,
it demonstrates problems that face larger and technologically more complicated
SoS. That is, the need to constrain and permit interactions.

Defining and Decomposing Safety Policy for Systems of Systems 39

3 Challenges of Developing Safety Policy for SoS

There are a number of challenges to developing a safety policy for a system of
systems. The policy must take into account the following SoS characteristics:

– Wide variety of systems.
– Dynamic environment.
– Changing number of system entities.

The inability to address these issues fully leads to an assumed or implicit
context in expressed policy statements. Indeed, the challenges for developing
policy for SoS are in addition to the issues of formulating policy in a more
general sense:

– Ambiguous nature of policy statements.
– No structured process of generating policy.
– Statements expressed at various levels of abstraction with no clear relation-

ship between them.

All policy statements are expressed in the context of assumptions about the
capabilities of the systems they address. Therefore a policy places a restriction
on the type of systems that may form part of the SoS. For instance, the policy
above requires that the child be able to recognise and operate (where necessary)
a pedestrian crossing. For legacy systems this requirement may entail modifying
the way they operate to comply with policy, together with the attendant costs
this involves. In the case of human operated systems, it may involve retraining
people to be aware of the new policy. If, however, a capability is required that
is not already provided by an existing system, or new technology (e.g. UAVs) is
replacing old, the policy indirectly places constraints on the design of these new
systems.

Clearly, therefore, there is a relationship between safety policy and the re-
quirements on individual system design as well as the configuration of the SoS.
This relationship is not at first obvious and, what is more, the concepts are often
conflated in current policy documents. Similarly, the formulation and adherence
to safety policy can have a strong relationship with the safety arguments re-
quired within system safety cases. The details of this relationship is beyond the
scope of this paper but is discussed further in [2].

4 Supporting Policy Development

The Goal Structuring Notation (GSN) [3] — typically used to construct safety
cases — can be used to represent policy decomposition structures. In certain
respects GSN is similar to another graphical notation, KAOS.

KAOS is a goal-oriented notation for representing requirements refinement
hierarchies. However, KAOS adopts a more formal approach to the specifica-
tion of goals in that it employs temporal logic to formulate expressions about
requirements. Nevertheless, it is possible to adapt some of the methods from one

40 M. Hall-May and T. Kelly

technique to the other. Namely the work by Darimont and van Lamsweerde [4]
detailing patterns of refinement.

Refinements in KAOS can be formally proven, whereas GSN (owing to the
inductive nature of most safety arguments) does not attempt to formally prove
decompositions. However, it has been suggested that argumentation techniques
have a role to play in the engineering of emergent systems such as SoS [5]. Indeed,
classical refinement is still a process of trial and error (ibid.). Using GSN allows
documenting of the context under which the decomposition of the policy goals
takes place. This means that any assumptions can be contested and that the
decision processes are not hidden or implicit. They are therefore accountable
and subject to scrutiny and change should they be found inadequate, or in the
event of a change to the originally assumed context.

Policy cannot be formulated without consideration of the systems whose
behaviour it is expected to influence. That is, there must exist a model of expec-
tations about the agents and their environment. It is important to recognise and
capture these expectations in terms of the context in which policy is expressed.

The policy model that is assumed in this work allows for a hierarchical struc-
ture of policy. The decomposition progresses from high-level, often state-based,
goals down to action-oriented policy statements. GSN allows context to be cap-
tured at every level of the decomposition. It also explicitly documents the strat-
egy by which the decomposition takes place. It is features such as these that
KAOS lacks, and which we will make use of in the next section.

5 Patterns of Decomposition

In this section patterns are introduced that facilitate the process of decomposing
policy from high-level safety goals down to implementable rules. These patterns
are illustrated in GSN, however they have been inspired by work on tactics for
requirements elaboration in KAOS. The reuse of common structures in GSN
through the use of patterns has been recognised [6]. However, KAOS’ patterns
take advantage of the formal specification of requirements goals and can be
formally derived and proven. Every pattern is proven once for all, hence every
application of said pattern is correct.

Three tactics for developing patterns are identified by Darimont [7]:

– Agent-based decomposition
– Milestone-based decomposition
– Case-based decomposition

The patterns are described in more detail in the following sections and il-
lustrated with examples from the civil aerospace Rules of the Air Regulations
(RoA). The RoA [8] can be thought of as the policy that guides the behaviour
of aircraft that wish to operate in the civil aerospace system of systems. It is
expressed as a natural language document, which sets out a number of rules for
the safe inter-operation of aircraft and air traffic control (ATC).

The RoA document sets out rules without the principles on which they were
derived. The work shown in this paper represents an attempt to reverse engineer

Defining and Decomposing Safety Policy for Systems of Systems 41

the RoA and, in so doing, rediscover the rationale behind the rules. It is assumed
that all the rules in the RoA are motivated by the top-level safety goal that no
collisions shall occur in the civil aerospace SoS. Figure 1 shows the first few stages
of policy decomposition. All further examples refer to steps of the decomposition
below these policy goals1.

No collisions

No collisions shall
occur in the civil
aviation SoS

Collision strategy

Decomposition over all
entities with which an
aircraft can collide

Aircraft collision

An aircraft shall not
collide with other aircraft

Ground collision

An aircraft shall not collide
with the ground or fixed
objects

Awareness

The pilot of an aircraft shall maintain
his own awareness of other aircraft
as well as contribute to others'
awareness of his own

Control

The pilot of an aircraft shall
control his aircraft such that it can
be manoeuvred appropriately to
avoid collisions in a shared
airspace

Entities

Entities that should be
avoided are other aircraft,
the ground and fixed
objects

Collision factors

Decomposition over factors
to be maintained by pilot to
avoid collision with other
aircraft

FixedObjects

Fixed objects are
attached to the ground
and have some height

Factors

Factors affecting collision
are a pilot's awareness of
the environment and
control of the aircraft

Key to Symbols

Goal

Strategy

Context

Solved by

In context of

UndevelopedGoal

Decomposition
continues

Fig. 1. High Level Policy Decomposition for Rules of the Air

5.1 Agent-Based Decomposition

An agent-based decomposition concentrates on decomposing policies according
to specific agents or groups of agents.

Agent Capabilities. Often it is desirable for a set of heterogeneous agents to
adhere to a common policy. Clearly the way in which the policy must be broken
down is dependent on the capability of said agent. This pattern is a specialisation
of the case-based pattern, specifically each case represents a group of agents with
a particular capability (or lack thereof).

Figure 2 demonstrates how a policy to fly at an altitude that minimises the
chance of collision encounters can be decomposed over the ability of agents to
1 Alphanumerical references in the goal decomposition — e.g. 17(a) — denote a par-

ticular rule in the Rules of the Air.

42 M. Hall-May and T. Kelly

FlightLevel

A pilot must fly at an
appropriate altitude so as to
minimise the chance of
collision encounters

CanDetermineAltitude

Decomposition over
ability of aircraft to
determine altitude

AircraftWithInstruments

Aircraft with instruments must
fly at a flight level appropriate
to its magnetic track

AircraftWithoutInstruments

Aircraft without instruments fly at
an appropriate flight level so as
to minimise the chance of
collision encounters

QuadrantalRule

Aircraft flying below 24500
must determine their flight level
according to the Quadrantal
Rule

AircraftHeight

Decomposition over
altitude of aircraft

SemicircularRule

Aircraft flying below 24500
must determine their flight level
according to the Semicircular
Rule

Altimeter

Altitude is determined
through use of instruments -
an altimeter set to a
pressure of 1013.2
hectopascals

QRule

<<Definition of
Quadrantal
Rule>>

SCRule

<<Definition of
Semi-circular
Rule>>

MagneticTrack

Magnetic track is angle
of direction of the aircraft
with magnetic North

Fig. 2. Decomposition by Agent Capabilities

determine their altitude. There must be one policy for those systems able to
determine their own flight level accurately (i.e. those with instruments), and one
for those that cannot. Similarly, the policy could be decomposed over the ability
of the agent type to modify their altitude — for instance, a glider may not climb
in the same way as powered craft. Different ways of complying with the same
policy must be devised for both types of agent.

In fact figure 2 also demonstrates how this decomposition pattern can be ex-
tended beyond agent capabilities to encompass all agent properties. The second
strategy in the decomposition splits the policy according to the existing altitude
of the aircraft. In this way it approaches the more general case-based pattern
discussed later.

Agent Cooperation. This is a specialisation of the milestones pattern. How-
ever, in contrast with that pattern the milestones are assigned to different agents.

Consider figure 7. The policy that the conflict of right of way must be resolved
when overtaking can be decomposed into the responsibilities of the two systems
involved. One aircraft must cede to the other aircraft, which then has priority
and is allowed to pass. These requirements on the agents are shown in figure 3

Defining and Decomposing Safety Policy for Systems of Systems 43

Overtaking

Overtaking shall be
handled appropriately

OvertakingKeepOutOfWay

The pilot of an aircraft shall alter
his course to the right to keep out
of the way of the aircraft being
overtaken (17)(4)(a)

OvertakingRightOfWay

The pilot of an aircraft being
overtaken shall have right of
way (17)(4)(a)

Right of Way

OvertakingCooperation

Decomposition over parties
cooperating in deconflicting
right of way during
overtaking manoeuvre

OvertakingDefn

Overtaking involves one
faster moving aircraft
passing another aircraft
travelling in the same
direction

Fig. 3. Decomposition over Cooperating Agents

as two separate subgoals. The two policies are dependent on one another in that
they represent the cooperation of two agents.

5.2 Milestone-Based Decomposition

A milestone-based decomposition attempts to decompose a policy goal by iden-
tifying an intermediate state to be achieved that contributes to the satisfaction
of the policy goal. This is illustrated in figure 4. The milestone and the policy
goal are temporally related; that is, the achievement of the milestone precedes
the satisfaction of the final goal. The first subgoal states that the milestone be
achieved, while the second subgoal defines a policy goal that can be achieved as
a consequence of the milestone being achieved.

For example, a policy goal from the RoA identifies that to maintain good
visibility pilots must not fly in poor weather conditions. This goal can be achieved
by describing a milestone policy with two subgoals. The first subgoal requires
the pilot first to become aware of the weather conditions through acquiring the
latest weather forecast prior to take-off. A second subgoal requires that a pilot
may not take-off if the forecast predicts bad weather (in the context of ‘bad
weather’).

Variants of this particular example milestone occur frequently. An agent (hu-
man or machine) must first become aware of some state (be it troop movements
or the state of the weather) whereupon some restriction on its actions is made

44 M. Hall-May and T. Kelly

Weather

The pilot of an aircraft shall
not fly in poor weather
conditions (16)

PoorWeather

An aircraft is not permitted to take-off
if the forecasted weather indicates that
the destination aerodrome's conditions
will have a visibility < 10km or cloud
ceiling < 1500 feet on arrival.

ObtainForecast

The pilot of an aircraft must
obtain the weather forecast for
the proposed flight prior to take-
off 16(1)

KnowWeather

Decomposition by
achievement of
milestone 'know weather
conditions'

PoorWeather

Poor weather is defined
as being the presence of
low visibility conditions or
a low cloud ceiling

PredictWeather

A weather forecast
contains sufficient
information for a pilot to
predict weather conditions

PoorWeatherDefn

Visibility of < 10km or a cloud
ceiling < 1500 feet provides
an unacceptably poor visual
range for the pilot

Fig. 4. Decomposition over Achievement of Milestone

Weather2

The pilot of an aircraft shall
not fly in poor weather
conditions (16)

Poor Weather

An aircraft is not permitted to take-off
if the forecasted weather indicates that
the destination aerodrome's conditions
will have a visibility < 10km or cloud
ceiling < 1500 feet on arrival.

Obtain Forecast

The pilot of an aircraft must
obtain the weather forecast for
the proposed flight prior to take-
off 16(1)

Know Weather

Decomposition by
achievement and
maintenance of milestone
'know weather conditions'

NotTakeOffPoorWeather

An aircraft must not take off if the
weather forecast for its
destination predicts poor weather
on arrival

RespondToWeather

An aircraft must respond to
a change in the predicted
weather

UpToDateForecast

The pilot of an aircraft must
request an updated weather
forecast every two hours

LandASAP

An aircraft must land at the nearest
aerodrome as soon as possible if the
forecasted weather indicates that the
destination aerodrome's conditions will
have a visibility < 10km or cloud ceiling <
1500 feet on arrival.

ChangingWeather

Weather forecast may
change during flight
to destination

Forecast

Two hours is sufficient
to remain up to date
with current forecasts

Fig. 5. Decomposition over Achievement and Maintenance of Milestone

accordingly. This can be demonstrated by a standardised model of agent be-
haviour — such as OODA [9] — in that the observations made directly or indi-
rectly (e.g. through third party information) affect the agent’s actions.

Defining and Decomposing Safety Policy for Systems of Systems 45

All decomposition patterns are advisory; they guide the thoughts of the policy
maker rather than constrict them. The decomposition process is not automatic,
it is a creative process and the choice of a different pattern can lead to a different,
but nonetheless viable policy.

A subtle variation on the milestone policy demonstrates this. Consider, in-
stead of simply reaching the milestone once (treating it as a target), that the
milestone were maintained in some way. This pattern leads to a subtly different
decomposition of policy and hence affects the way the system operates. In this
example the pilot would have not only to obtain the weather forecast but also
to keep up to date with any changes (figure 5). This has non-trivial implications
for the policy decomposition. It is too late to forbid take-off if the weather fore-
cast predicts poor weather once the aircraft is in flight. The policy-maker then
has a number of options for the pilot’s behaviour: land at the next available
opportunity, return to origin, or simply contact ATC and await instructions.

Fig. 6. Decomposition into Disjoint Cases

VisualRange

The pilot of an aircraft shall
maintain a minimum visual
range from the cockpit

MinimumVisRange

Visual range such that
pilot can take evasive
action in time to avoid a
collision

VisAllAirspace

Decomposition over
nature of control of
airspace

VisRangeInContrAirspace

The pilot of an aircraft shall
maintain a minimum visual range
from the cockpit within controlled
airspace (25)

VisRangeOutContrAirspace

The pilot of an aircraft shall
maintain a minimum visual range
from the cockpit outside
controlled airspace (26)

ReportedVisibility

Visual range (visibility) is that
communicated to the pilot by
ATC upon landing or taking-
off from an aerodrome (24)(3)

VisRangeClassAirspa

ce

Decomposition over all
classes of airspace

AirspaceClasses

Controlled airspace is
either of class A, B,
C, D or E

VisRangeInClassBAirspace

The pilot of an aircraft shall
maintain a minimum visual range
from the cockpit within class B
airspace (25)(1)

VisRangeInClassCDEAirspace

The pilot of an aircraft shall
maintain a minimum visual range
from the cockpit within class C, D
and E airspace (25)(2)

ClassA

Flights in class A
airspace are assumed to
require no minimum
visibility

ATControl

Controlled airspace is
controlled by an air
traffic control unit

FlightLevel

Decomposition over
flight level of aircraft

Below1000

Aircraft flying below 1000
feet must maintain a
visibility > 5km

Above1000

Aircraft flying above 1000
feet must maintain a
visibility > 8km

VisibilityAtAltitude

Altitude of aircraft
affects visibility

46 M. Hall-May and T. Kelly

5.3 Case-Based Decomposition

A case-based decomposition attempts to break the policy down into a number
of cases, with each subgoal representing a case. Policy goals can be thought of as
consisting of two parts: the conditions under which the policy must apply and
the active part of the policy, i.e. the actions that are allowed or forbidden or
states that are to be maintained etc. It would seem natural that a policy would
‘always’ apply, but this is deceptive. The conditions include not only temporal
constraints but also the classes of systems the policy applies to as well as other
restrictions. A policy goal with no conditions would be truly universal and apply
always and to all things. The second part of the policy goal describes what the
policy is to achieve. In decomposing policies both of these parts can be considered
and broken down into simpler cases.

Decomposition into Condition Cases. The conditions in which a policy
applies may be decomposed into specific cases of these conditions. These cases
may overlap, i.e. the policies covering two or more cases can apply at the same
time, or they may be totally disjoint.

Figure 6 shows an example of breaking down the fulfilment of a policy goal
into a number of cases which do not overlap. Maintaining a sufficient visual range
in all airspace can be broken down into those regions of airspace within ATC
control and those outside. These two cases are obviously disjoint since there is
no region of airspace that is not either uncontrolled or controlled by ATC. By
applying the pattern again the policy that applies in controlled airspace can then
be decomposed according to regions of airspace denoted with particular classes.
In this case it must be asserted that the regions do not overlap, i.e. that there
is no region that has more than one class assigned to it.

RightOfWay

Conflicts of right of way
between two aircraft shall
be resolved

RightofWaySituations

Decomposition over all
situations in which two or
more aircraft need to
determine right of way

OnGround

The pilot of an aircraft shall
give way appropriately to other
vehicles on the ground (37)

Converging

The pilot of an aircraft shall
give way appropriately to
converging aircraft (17)(2)

HeadOn

The pilot of an aircraft shall alter his
course to the right when approaching
another aircraft head-on and a
collision is imminent (neither plane
has right of way) (17)(3)

Overtaking

Overtaking shall be
handled appropriately

Landing

The pilot of an aircraft that is
landing or on final approach
shall have right of way (17)(6)

RoWSituations

Situations identified that
require deconfliction of
aircraft priorities are
complete and overlapping

Fig. 7. Decomposition into Overlapping Cases

Defining and Decomposing Safety Policy for Systems of Systems 47

It is important to identify the type of case-based decomposition pattern be-
cause it has implications for how the child policies are formulated. Figure 7
illustrates the more tricky situation of decomposing the policy that right of way
conflicts be resolved. One way to address this is by identifying all the cases in
which a conflict can arise and generate a policy for each. Unfortunately it is not
feasible to guarantee that the situations are completely disjoint. Where overlap
between the cases occurs this implies that a resolution policy must be described
for the intersection.

Decomposition into Active Cases. In a manner similar to identifying sub-
cases of the conditions under which a policy applies, the active part of the policy
can also be decomposed into cases. The policies covering the individual cases may
be linked or convergent, where convergent means that any one of the policies in-
dividually fulfils the top-level policy and linked implies that all cases of the policy
interdependently fulfil it [10]. Convergence does not necessarily mean that some of
the policies are optional or that there is a choice. It means simply that each branch
of the policy hierarchy below a policy goal independently fulfils this goal.

Figure 8 shows how the policy of maintaining a pilot’s awareness can be bro-
ken down into two (linked) cases. On the one hand, the active case of observing
allows a pilot to maintain awareness of the current local environment. Similarly
the pilot must consider the case of passive observation, i.e. the fact that he is

Awareness

The pilot of an aircraft shall maintain
his own awareness of other aircraft
as well as contribute to others'
awareness of his own

See

The pilot of an aircraft shall
maintain his own awareness
of other aircraft

BeSeen

The pilot of an aircraft shall
contribute to others'
awareness of his aircraft

high level

LinkedDecomposition

Decomposition into
mutually dependent
(linked) activities

SharedAirspace

An aircraft shares the
airspace with other
aircraft

LinkedAwareness

The actions of one pilot
can affect other pilots'
awareness of his
aircraft

Fig. 8. Decomposition into Linked Cases

48 M. Hall-May and T. Kelly

being observed by other pilots. Policies facilitating both seeing and being seen
are required in order for awareness in general to be maintained.

To deviate from the RoA briefly, taking an example from road traffic; a
driver must signal the intention to turn or otherwise manoeuvre in good time.
The policy (highway code) stipulates two possible ways of doing this: Either with
mechanical indicators or using arm signals. These two policies are convergent in
the sense that either one can reasonably indicate a driver’s intention to turn.
However, it should be clear that the use of arm signals provides a lower level of
assurance [10] that the intention will be registered by other road users.

6 Problems of Defining a Resilient Policy

The very nature of the systems for which policy is being defined undermines
the resilience of that policy. Systems of systems have dynamic structures, are
distributed and consist of heterogeneous autonomous entities. It is these char-
acteristics which necessitate the use of policy in the first place. However, they
each present unique challenges.

Continual evolution of a dynamic SoS implies that systems are retired, re-
placed and upgraded and that the SoS has no well-defined ‘end state’. This has
implications for the resilience of policy because new systems can introduce new
capabilities that break the context in which the original policy decisions were
made. Similarly, systems that provide capabilities that were previously relied
upon by policy can be withdrawn. The temptation is to create a policy that
is liberal enough to accommodate such changes, whereas what is required is a
process of recognising and systematically dealing with change [11].

The fact that systems are heterogeneous and that they change in this way
means that any decomposition of policy that identifies a specific target system
(e.g. a specific make and model of aircraft) will inevitably be wrong for future
systems. To avoid such a ‘brittle’ policy implies that the lowest level of abstrac-
tion at which policy is expressed involves implementation by a target system.

Policy is therefore open to interpretation in the way it is implemented by
autonomous systems. This can lead to various implementations and potential
problems. Such misinterpretations must be, where possible, mitigated by an un-
ambiguous policy. Unfortunately, unlike the KAOS patterns, safety policy is not
afforded the luxury of an unambiguous refinement. It is clear that ‘policy failure
analysis’ will need to be undertaken in order to predict the possible misinter-
pretations in implementing policy. Indeed the problem of preempting failures in
decomposition has already been considered in [12].

So far, the issue of acceptable risk has remained implicit in our discussion.
It can be implied that adhering to a defined set of policy objectives leads to an
acceptable level of risk, while not following the policy leads to an unacceptable
level of risk. However, such thinking masks how adherence, or non-adherence,
to individual policy objectives contributes specifically to overall system risk.
Other issues, such as the level of trust an agent has in its peer agents, is also
masked.

Defining and Decomposing Safety Policy for Systems of Systems 49

Finally, because the systems are distributed means that coordinating policy
distribution and adherence is not a trivial problem. In fact, given these char-
acteristics, it would seem that the only reasonable way to evaluate policy is
through simulation of a SoS. That is, by using policy to modify the simulated
behaviour on a per-agent basis.

7 Related Work

This work draws on two areas of research: policy specification and goal decom-
position. The use of policies to curb the behaviour of system entities is well
established in the security and management domains. There are many notations
used to express policies for controlling organisational complexity. For example,
Ponder [13] is a language that attempts to present a unified approach to policy-
based management and security. Ponder expresses policies in terms of authorisa-
tions and obligations in both positive and negative modalities. Whilst languages
such as Ponder provide a means of expressing policy statements on agents, they
do not deal well with the problems of expressing high-level policy objectives and
their decomposition. Our work continues to look at how such policy languages
can be integrated into policy decomposition.

There is also precedent in the area for the classification of policy into hier-
archies of increasing abstraction [14,15,16]. It is suggested by Koch et al that
a refinement of policy can be accomplished through the unambiguous mapping
from one level of the hierarchy to the next. However, such an unambiguous map-
ping is not possible when considering safety policy goals for the reasons discussed
in this paper. The approach presented in this paper is not strictly refinement
(relying on deductive reasoning); instead it is a structured decomposition (rely-
ing on inductive reasoning). Other goal-directed decomposition approaches exist
such as KAOS, TROPOS [17] and intent specifications [18]. However, none of
these explicitly addresses the problems of systematising informal policy decom-
position.

8 Further Work

The work presented in this paper provides a basis for resolving the problems
of how to structure safety policy, however it is recognised that further work
is necessary in a number of areas. Further evaluation of the use of patterns
presented in this paper in defining new ‘top-down’ policy decompositions is re-
quired. Similarly, it is necessary to further define the context model of agents
and its refinement, which is required to support the structuring and improved
expression of policy goals. This improved expression of goals will aid in further
work on detecting the potential for conflicts within and between policies in a
multi-policy SoS. Finally, safety policy can be evaluated and improved by ap-
plying it to entities in a simulated SoS environment as discussed in a previous
paper [19].

50 M. Hall-May and T. Kelly

9 Conclusions

This paper has shown how it is possible to begin to structure policy using a
pattern-based decomposition approach. It is desirable to be able to produce a
safety policy, to which a system of systems can operate. This approach stresses
the importance of recognising the contextual assumptions and strategies of de-
composition often implicit in real-world policy documents. The Goal Structuring
Notation, which is typically used to structure safety cases, was used to organise
Rules of the Air into a hierarchy of policy goals at different levels of abstraction.

A number of patterns of decomposition based upon the KAOS tactics of
agent-, case- and milestone-based refinement have been presented. These pat-
terns have been adapted from the formal specification of KAOS since policy
goals are not represented formally.

It has also been shown that the intrinsic characteristics of SoS leads to chal-
lenges for developing safety policy. Given an ostensibly perfect set of policy
rules, the dynamic and heterogeneous nature of SoS means that interpretation
and implementation of the policy may lead to ‘failure’ of the policy.

It is clear that future work must also entail analysing how policy is affected
by changing scenarios. Simulation provides the basis for experimental validation
of policy.

References

1. German Federal Bureau of Aircraft Accidents Investigation: Investigation report
AX001-1-2/02 (2004)

2. Hall-May, M., Kelly, T.P.: Planes, trains and automobiles — an investigation
into safety policy for systems of systems. To appear in Proceedings of the 23rd
International System Safety Conference (2005)

3. Kelly, T.P.: Arguing Safety—A Systematic Approach to Managing Safety Cases.
DPhil thesis, University of York, Heslington, York, YO10 5DD, UK (1998)

4. Darimont, R., van Lamsweerde, A.: Formal refinement patterns for goal-driven
requirements elaboration. In: Proceedings of the 4th ACM Symposium on the
Foundation of Software Engineering, San Francisco, California, USA (1996) 179–
190

5. Polack, F., Stepney, S.: Emergent properties do not refine. In: Proceedings of the
REFINE 2005 Workshop. ENTCS, Guildford, UK, Elsevier (2005)

6. Kelly, T.P., McDermid, J.A.: Safety case construction and reuse using patterns. In:
Proceedings of the 16th International Conference on Computer Safety, Reliability
and Security (SAFECOMP ’97), York, UK, Springer-Verlag (1997)

7. Darimont, R.: Process Support for Requirements Elaboration. PhD thesis, Uni-
versité catholique de Louvain, Dépt. Ingénierie Informatique, Louvain-la-Neuve,
Belgium (1995)

8. Allan, R., ed.: Air Navigation: The Order and the Regulations. third edn. Civil
Aviation Authority (2003)

9. Boyd, J.R.: A discourse on winning and losing. Unpublished briefing, Air University
Library, Maxwell AFB, Alabama, Report No. MU43947 (1987)

10. Weaver, R.A.: The Safety of Software — Constructing and Assuring Arguments.
PhD thesis, University of York, Heslington, York, YO10 5DD, UK (2003)

Defining and Decomposing Safety Policy for Systems of Systems 51

11. Kelly, T.P., McDermid, J.A.: A systematic approach to safety case maintenance.
In: Proceedings of the 18th International Conference on Computer Safety, Relia-
bility and Security (SAFECOMP ’99). Volume 1698 of LNCS., Toulouse, France,
Springer-Verlag (1999) 13–26

12. Armstrong, J., Paynter, S.: The deconstruction of safety arguments through ad-
versarial counter-argument. In: Proceedings of the 23rd International Conference
on Computer Safety, Reliability, and Security (SAFECOMP ’04). Volume 3219 of
LNCS., Potsdam, Germany, Springer-Verlag (2004) 3–16

13. Damianou, N., Dulay, N., Lupu, E., Sloman, M.: Ponder: A language for spec-
ifying security and management policies for distributed systems. Research Re-
port DoC 2000/1, Imperial College, London (2000) http://www.doc.ic.ac.uk/
deptechrep/DTR00-1.pdf.

14. Masullo, M.J., Calo, S.B.: Policy management: An architecture and approach. In:
Proceedings of the 1st IEEE International Workshop on Systems Management, Los
Angeles, California, USA, IEEE Computer Society Press (1993) 13–26

15. Koch, T., Krell, C., Krämer, B.: Policy definition language for automated manage-
ment of distributed systems. In: Proceedings of the 2nd International Workshop
on Systems Management, Toronto, Canada, IEEE Computer Society (1996) 55–64

16. Wies, R.: Using a classification of management policies for policy specification and
policy transformation. In: Proceedings of the IFIP/IEEE International Symposium
on Integrated Network Management. Volume 4., Santa Barbara, California, USA,
Chapman & Hall (1995) 44–56

17. Bresciani, P., Giorgini, P., Giunchiglia, F., Mylopoulos, J., Perini, A.: Tropos: An
agent-oriented software development methodology. Journal of Autonomous Agents
and Multi-Agent Systems 8 (2004) 203–236

18. Leveson, N.G.: Intent specifications: An approach to building human-centered
specifications. IEEE Transactions on Software Engineering 26 (2000) 15–35

19. Alexander, R., Hall-May, M., Despotou, G., Kelly, T.: Towards using simulation
to evaluate safety policy for systems of systems. To appear in Proceedings of
the 2nd International Workshop on Safety and Security in Multi-Agent Systems
(SASEMAS ’05) (2005)

R. Winther, B.A. Gran, and G. Dahll (Eds.): SAFECOMP 2005, LNCS 3688, pp. 52 – 66, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Generalising Event Trees Using Bayesian Networks
with a Case Study of Train Derailment

George Bearfield1 and William Marsh2

1 Atkins Rail, Euston Tower, 286 Euston Road, London, NW1 3AT, UK
george.bearfield@atkinsglobal.com

2 Department of Computer Science, Queen Mary University of London, Mile End Road,
London, E1 4NS, UK

william@dcs.qmul.ac.uk

Abstract. Event trees are a popular technique for modelling accidents in system
safety analyses. Bayesian networks are a probabilistic modelling technique
representing influences between uncertain variables. Although popular in expert
systems, Bayesian networks are not used widely for safety. Using a train
derailment case study, we show how an event tree can be viewed as a Bayesian
network, making it clearer when one event affects a later one. Since this effect
needs to be understood to construct an event tree correctly, we argue that the
two notations should be used together. We then show how the Bayesian
Network enables the factors that influence the outcome of events to be
represented explicitly. In the case study, this allowed the train derailment
model to be generalised and applied in more circumstances. Although the
resulting model is no longer just an event tree, the familiar event tree notation
remains useful.

1 Introduction

Event trees are used in quantified risk analysis to analyse possible accidents occurring
as a consequence of hazardous events in a system. Event trees are often used together
with fault trees, which analyse the causes of the hazardous event that initiates the
accident sequence. Their origin goes back at least to the WASH-1400 reactor safety
study in 1975 [1].

The most serious accident may be quite improbable, so an accurate assessment of
the risk requires the probabilities of possible accident scenarios to be determined.
The analysis of accidents must consider both the state of the system and of its
environment when the hazardous event occurs. The analysis is made more difficult
when the environment of a system is complex or variable.

Event trees model an accident as a sequence of events: this is an intuitive approach
but it does not explicitly represent the state of the system and its environment, which
influences the evolution of events. In this paper, we propose to address this limitation
of event trees by using Bayesian Networks (BNs). We have applied this approach to
a case study, adapting an existing event tree modelling a train derailment accident.
The original author of the event tree was able to explain the system and
environmental factors that had been considered when preparing the event tree, but

 Generalising Event Trees Using Bayesian Networks 53

which could not be included explicitly in it. Using a BN, these factors can be made
explicit in the accident model, which can still be viewed as an event tree but is now
more general with a single BN-based model taking the place of a set of related event
trees.

We argue that the event tree and BN are complementary: an event tree can be
translated into a BN allowing two views of the accident model, each view showing
different properties of the model most clearly. The generalised model, with system
and environmental factors that influence the events made explicit, is a BN but it can
still be viewed using the event tree notation.

Event trees are supported by many software packages but are sufficiently simple to
be created with standard tools such as a spreadsheet. Perhaps because of this, the
notation used by different authors varies. Since we wish to translate between event
trees and BNs, the first step, in Section 2, is a precise description of an event tree.

In Section 3, we introduce BNs and show how to translate an event tree into a BN.
We first give a ‘generic’ translation based only on the number of events in the tree and
then we give rules for simplifying the resulting BN. Section 4 introduces the case study
and uses it to show that the combination of event trees and BNs allows a more general
model of possible accidents. Conclusions and related work are in Section 5.

2 Event Trees

In this section, we give an informal but precise description of event trees, which will
be the basis for the translation of event trees to BNs.

2.1 Events and Outcomes

The evolution of the system following the hazardous occurrence is divided into
discrete events, starting from the initiating event. Each event has a finite set of
outcomes; commonly there are just two outcomes – the event happens or does not
happen – but a greater number of outcomes can be distinguished.

initiating
event

i

event
e1

event
e2

o11

o12

o13

0.01

o22

o21

o22

consequence

c1

c2

c2

c1

c2

0.1

0.2

0.7

o21

0.99

0.7

0.3

Fig. 1. An example event tree. There are two events: event e1 has three possible outcomes o11,
o12 and o13 whereas e2 has only two outcomes o21 and o22. Two different consequences are
distinguished c1 and c2; c1 results both from the event sequence i → o11 → o21 and from the
event sequence i → o12 → o22.

54 G. Bearfield and W. Marsh

The events form a sequence in time: a tree of possible outcomes for all the events
is constructed and the consequence or loss evaluated for each path through the tree.
Some paths may be judged to lead to the same consequence. Fig. 1 shows an example
event tree.

2.2 Probabilities and Consequence

The event tree specifies a logical combination of the event outcomes for each
consequence. For the event tree in Fig. 1, the logical formulae for the consequences
are c1 = (o11 ∧ o21) ∨ (o12 ∧ o22) and c2 = (o11 ∧ o22) ∨ (o12 ∧ o21) ∨ o13.

The probability of each consequence is calculated from the event probabilities,
determined from data or experience. For example in Fig. 1, the probability of
outcome o11 of e1 event is 0.1. However, the probability of an outcome may depend
on the outcomes of events earlier on the path: in Fig. 1 the probability of outcome o21
of event e2 depends on the outcome of event e1. The probabilities labelling the
branches of the tree for e2 are therefore conditional probabilities, in this example:
p(o21 | o11), p(o22 | o11), p(o21 | o12), and p(o22 | o12).

The probabilities of the two consequences are calculated by multiplying the
probabilities along each path and then adding the probabilities of paths leading to the
same consequence. The calculation for Fig 1 is shown below.

Consequence Calculation Result
C1 0.1 × 0.01 + 0.2 × 0.3 0.061
C2 0.1 × 0.99 + 0.2 × 0.7 + 0.7 0.939

It is notable that the logical formulae for the consequences do not carry any
information about how the outcome of one event is influenced by earlier events or
even of how the events are ordered in time. The logical formulae are sufficient for
combining the probabilities of event outcomes to give the consequence probabilities.
On the other hand, understanding how the outcome of one event is influenced by
earlier events is crucial for judging the event probabilities and the event tree shows
only part of the information used during its construction:

• The time ordering of events shows the set of earlier events on which a
probability may be conditioned; later events cannot influence the outcome of
earlier events.

• However, some earlier events may have no influence and the event tree does not
show what subset of the earlier events actually conditions each probabilities.
Indeed, we have seen cases where inexperienced users of event trees are
unaware that the probabilities attached to branches in an event tree are
conditional probabilities at all.

In the example of Fig. 1, when event e1 has outcome o13 the tree does not branch
for the possible outcomes of event e2. We refer to this as a don’t care condition.
There is more than one reason why the event tree may contain such a condition:

• Only one of the outcomes of e2 is possible following the outcome of the earlier
event.

• Both outcomes of e2 are possible, but the consequence is the same for both.

 Generalising Event Trees Using Bayesian Networks 55

It is important to note that the event tree does not distinguish between these reasons –
there is no need to do so to calculate the consequence probabilities.

3 Translating an Event Tree to a Bayesian Network

In this section we first introduce BNs and describe a ‘generic’ representation of an
event tree as a BN before showing how it can be simplified for a specific event tree.

3.1 Bayesian Networks

A BN [2] is a graph with a set of probability tables. The nodes of the graph represent
uncertain variables and the arcs represent the causal relationships between the
variables. The arcs are directed from ‘parent’ to ‘child’ with, conventionally, the
parent as the cause and the child the effect. There is a probability table for each node,
providing the probabilities of each state of the variable, for each combination of the
states of parent variables. The model of cause is probabilistic rather than
deterministic and this makes it possible to include factors that influence the frequency
of events, but do not determine their occurrence.

Although the underlying theory (Bayesian probability) has been around for a long
time, executing realistic models was only first made possible in the late 1980s using
new algorithms. Methods for building large-scale BNs are even more recent [3] but it
is only such work that has made it possible to apply BNs to the problems of systems
engineering.

The RADAR group at QMUL, in collaboration with Agena Ltd, has built
applications based on BNs that have shown the technology to be effective. Several
such applications are for dependability assessment, notably the TRACS tool [4] used
to assess vehicle reliability by QinetiQ (on behalf of the MOD) and a tool used by
Philips to manage software quality [5].

3.2 A Generic Translation from ET to BN

Any event tree with three events e1, e2, and e3 can be represented by the BN shown in
Fig. 2. Two types of arc complete the network:

• Consequence arcs (shown as dotted lines in Fig. 2) connect each event node to
the consequence node. This relationship is deterministic: the probability table
for the consequence node encodes the logical relationship between the events
and the consequences. (An example is shown in Fig. 5.)

• Causal arcs (shown as solid lines in Fig. 2) connect each event node to all events
later in time. We say that e1 influences the probability of (or, equivalently, is a
causal factor for) event e2.

We call this representation generic since the nodes and arcs depend only on the
number of events. However, assuming that the BN is only used to determine the
consequence probabilities (i.e. just as the event tree), some of the arcs may not be
necessary allowing the BN to be simplified. In the next two sections we give rules for
eliminating unnecessary arcs.

56 G. Bearfield and W. Marsh

e1

e2

e3

consequence

Fig. 2. Generic BN representation of an event tree. Nodes e1, e2, and e3 represent the events;
each node has a state for each outcome. The node consequence has a state for each of the
consequences in the event tree.

3.3 Eliminating Consequence Arcs

The consequence arc from an event can be eliminated if the logical formulae for the
consequences do not refer to any outcome of the event. Fig. 3 shows an example: the
logical expression for c1 is (o11 ∧ o21) ∨ (o12 ∧ o21) but this can be simplified to o21;
since this expression (and the similar expression for c2) includes only the outcomes of
the e2 event, the BN node e1 is not needed as a parent of the consequence node. The
set of consequence arcs is not determined by the branching structure of the event tree
but by the assignment of consequences to each of the paths through the tree.

initiating
event

i

event
e1

event
e2

o11

o12

o21

o22

o21

o22

consequence

c1

c2

c1

c2

0.7

0.3

0.01

0.99

0.1

0.9

Fig. 3. Example of an event tree allowing a consequence arc to be eliminated, since e2
determines the consequence whatever the outcome of the first event: the first event influences
the relative probability of the two outcome of e2 but does not change the consequence

3.4 Eliminating Causal Arcs

A causal arc to an event et from an earlier event ef can be eliminated if and only if the
probabilities labelling branches for event et do not depend on the outcome of event ef.
We can see this in the event tree: are the probabilities labelling an outcome oxy the
same on all branches for this outcome or do they differ? An example of this is shown

 Generalising Event Trees Using Bayesian Networks 57

in Fig. 4, where both branches for o21 have probability 0.1 and both branches for o22
have probability 0.9:

p(e2 = o21 | e1 = o11) = p(e2 = o21 | e1 = o12) = 0.1
p(e2 = o22 | e1 = o11) = p(e2 = o22 | e1 = o12) = 0.9

Because the probabilities of the outcome of event e2 do not depend on the outcome of
event e1 no causal arc is needed from e1 to e2. More generally, if for all outcomes of
et the probability p(et | …, ef, …) does not depend on the outcome of ef (given the
outcome of the other events) then the two events are ‘conditionally independent’ and
the arc from ef to et is not needed.

The complete BNs, including the probability tables, for the event trees in Figs 4 &
5, showing the two types of elimination, are given in Fig. 5.

initiating
event

i

event
e1

event
e2

o11

o12

o21

o22

o21

o22

consequence

c1

c2

c1

c3

0.7

0.3

0.1

0.9

0.1

0.9

Fig 4. Example of an event tree allowing a causal arc to be eliminated: the probabilities of the
two outcomes of event e2 are the same whatever the outcome of event e1. Note that this figure
and Fig. 3 have the same shape but differ in the pattern of probabilities and consequences.

3.5 Handling ‘Don’t Care’ Conditions

The event trees in Figs. 3 and 4 are both complete: a path exists for all possible
combinations of outcomes of the two events. An event tree that is complete in this
way includes all the probabilities needed to complete the node probability tables for
the event nodes. However, this is not the case when there are don’t care conditions in
the event tree. In this section we show how the rules described above can be adapted
for don’t care conditions.

Consider the don’t care branch in the event tree of Fig. 1: suppose that it is instead
split into the two outcomes of event e2, the first given probability α and the other 1-α.
Any probability α could be used: since the two branches both lead to the same
consequence (or set of consequences) the value chosen has no effect on the
consequence probabilities. We are free to choose α to simplify the BN as far as
possible, so we choose α to create conditional independence whenever this is possible.

This procedure produces the fewest causal arcs but it does not distinguish between
the two reasons given at end of section 0 why a don’t care condition may occur. This
is satisfactory because the distinction doesn’t affect the calculation of the
consequence probabilities in either the event tree or the BN. However, by assuming
that event outcomes are conditionally independent except when the probabilities
shown in the event tree force the opposite conclusion we may have ignored causal

58 G. Bearfield and W. Marsh

relationships between events that really exist. If we use the BN model of the event
sequence for other calculations we may need to add the causal arcs modelling these
causal relationships to the BN. We could do this by determining the probabilities of
the outcomes of don’t care conditions and adding extra branches into the event tree.
The resulting BN has some interesting properties but we do not need it to calculate
consequence probabilities.

e1
e2

consequence

e1 o11 o12
e2 o21 o22 o21 o22

consq = c1 1 0 1 0
consq = c2 0 1 0 0
consq = c3 0 0 0 1

e1 = o11 0.7
e1 = o12 0.3

e2 = o21 0.1
e2 = o22 0.9

e1
e2

consequence

e1 o11 o12
e2 = o21 0.01 0.1
e2 = o22 0.99 0.9

e2 o21 o22
consq = c1 1 0
consq = c2 0 1

e1 = o11 0.7
e1 = o12 0.3

Causal Arc
Eliminated

Consequence
Arc Eliminated

Fig. 5. Complete BNs for event trees of Figs. 4 & 5, showing the two types of arc elimination

3.6 Using a Hierarchy of Nodes for Consequence

Rather than having a single BN ‘consequence’ node with a probability table
determined from the logical relationship between events and consequences, it is
possible to represent this relationship using a hierarchy of nodes, determined from the
event tree structure. A node can be introduced for each vertical line (representing a
branch or decision point) in the event tree provided that more than two sequences lead
from the branch. The parents of this node are the node representing the event and the
nodes from the decision points to the right. Using a hierarchy of nodes has two
potential advantages:

• more efficient propagation of the BN
• clearer representation (for the risk analyst) of the logical relationship between

events and consequences.

We do not consider the efficiency of propagation further in this paper. In section 4.2,
we assess whether the clarity of the model improves using this translation for a
realistic event tree.

4 Why Use Bayesian Networks to Model Event Sequences

The previous section showed how to construct a BN equivalent to an event tree;
however, if the two models are equivalent what purpose does the BN serve? We
examine this using a case study of train derailment, which is introduced in section 4.1.

 Generalising Event Trees Using Bayesian Networks 59

In the following sections, we first argue that an event tree and a BN provide
complementary views of the relationship between events. Secondly, we show how an
event tree expressed using a BN can usefully be generalised by making the factors
influencing the evolution of events explicit, producing a more widely applicable
model of the accident.

4.1 Case Study: Train Derailment

A ‘Derailment Study’ was carried out in 2001 as part of development studies for a
proposed upgrade to an urban railway. The objective of the study was to quantify the
risks to passengers and staff arising from derailment. This required the consequences
of derailment to be analysed and event trees were constructed for this. Other models
were used to analyse the frequency of derailment and, given the accident sequences,
the likely toll of injuries. Since the ultimate aim was to ensure that risks were
tolerable, some conservative assumptions were made.

derailment

1
contained

2
clear

yes 0%

yes 29%

derailment
accident

d1

d2

d3

d4

d5

d6

d7

d8

d9

d10

d11

d12

3
cess/adjacent

4
falls

5
hits structure

6
collapse

7
collision

cess 12.5%

no 95%

yes 5%

no 80%

yes 20%

yes 5%

no 95%

yes 5%

no 95%

no 75%

yes 25%

yes 10%

no 90%

yes 10%

no 90%

yes 5%

no 95%

adj 87.5%

no 71%

no 100%

Fig. 6. An event tree from the ‘Derailment Study’ covering derailment in open track areas. The
structure of the event tree, and the event probabilities, were adapted from a network-wide
model by considering factors specific to the local circumstances.

The analysis used separate event trees for six different infrastructure areas, each
with different characteristics including open track, in tunnels and on bridges. Here,
we consider only derailments on areas of open track, which is track not in tunnels or
carried on bridges. The analysis drew on a version of the ‘Safety Risk Model’ (SRM)

60 G. Bearfield and W. Marsh

[6], which analyses the risk arising from different hazards using historic accident data
and expert judgement for the UK rail network as a whole. The event trees for the
derailment study used the structure of the SRM but had to be tailored to the local
circumstances: for example, the maximum speed limit is 30 miles per hour, the trains
are electric multiple units with third-rail electrification. The original author of the
derailment study was available and assisted the authors with the case study.

The event tree for open track derailment is shown in Fig. 6. The events, all of
which have only two outcomes, are described in Table 1. Twelve consequences or
‘derailment accidents’ are distinguished: for example ‘d2’ is ‘minor derailment within
clearance’ and ‘d7’ is a ‘major derailment to cess, striking line-side structure’. Given
the frequency of the initiating ‘derailment’ event, the frequency of each accident can
be calculated. The ‘equivalent fatalities’ for each accident are estimated by a separate
method, which is not relevant here.

Table 1. Derailment Events

Event Description

1 Derailment containments
controls the train.

An extra raised ‘containment’ rail, if fitted, limits
movement sideways.

2 The train maintains
clearance.

The train remains within the lateral limits and does
not overlap adjacent lines or obtrude beyond the edge
of the track area.

3 Derails to cess or
adjacent line.

The train can derail to either side of the track:
derailing to the ‘cess’, or outside, may lead to a
collision with a structure beside the line, while
derailing to the ‘adjacent’ side brings a risk of
colliding with another train.

4 One or more carriages
fall on their side.

The carriages may remain upright or fall over.

5 Train hits a line-side
structure.

The train hits a structure beside the line.

6 The train structure
collapses.

Collision with a line-side structure causes the train
structure to collapse.

7 Secondary collision with
a passenger train.

A following or on-coming train collides with the
derailed train.

4.2 Causality in the Event Sequence

Fig. 7 shows the BN generated for the event tree, using the algorithm described
in section 3. Comparing the two notations – the BN of Fig. 7 and the event tree of
Fig. 6 – we see that:

1. The logical combination of events leading to each accident is most clearly
shown in the event tree.

2. The occurrence of conditional probabilities – arising from dependence between
the events – is shown more clearly in the BN.

 Generalising Event Trees Using Bayesian Networks 61

derailment
accident

contained

falls

collapse

collision

clear

cess /
adjacent

hits
structure

Fig. 7. Equivalent BN for open track derailment

The first point remains true even if the single ‘derailment accident’ node is
replaced by a hierarchy of nodes as described in section 0, producing the BN shown
in Fig. 8. Although this alternative translation may improve the efficiency of
Bayesian propagation, the logical relationship between events and consequence is still
more clearly shown in the original event tree.

derailment
accident

contained

falls

collapse

collision

clear

cess /
adjacent

hits
structure

structure1

structure1

fall2

fall1

clear1
cess/adj1

Fig. 8. Alternative translation of open track derailment event tree, using a hierarchy of nodes to
encode the logical relationship between events and consequences

It may seem surprising that there is only a single causal arc – from ‘falls’ to ‘hits
structure’ between the nodes representing events. This arc occurs because the
probability p(hits | falls = yes) ≠ p (hits | falls = no). For other events, the probability
of each outcome is the same on all the branches. The absence of other causal arcs
depends on our treatment of don’t care conditions. For example, a collision is only
possible following a derailment to the adjacent side, but we do not need to represent

62 G. Bearfield and W. Marsh

this relationship by a causal arc since it is captured by the branching structure of the
event tree. Since the two views of the event tree show different information most
clearly, we propose to use them together: the BN view is used to ensure that
conditional probabilities are handled correctly and the tree view is used for mapping
event sequences to consequences. The BN can be shown without the consequence
node and arcs, so this part of the BN can be chosen to optimise propagation.

4.3 Generalised Event Trees

As described above, the event tree was originally prepared from a network-wide event
tree for derailment accidents. To be applied to an analysis in a specific location, the
network-wide model has to be tailored. In this section, we show how a more general
model can be represented as a BN, which can be tailored automatically.

The author of the event tree was asked to identify the conditions of the
infrastructure and the operation of the railway that influence a derailment accident.
Table 2 shows the conditions identified. The causal relationships between these
conditions were then elicited together with the probability tables. Fig. 9 shows the
resulting BN, with the consequence node and arcs omitted for clarity.

Table 2. Derailment Operating and Infrastructure Conditions

Conditions Description
Fitted Whether the derailment containment is fitted: Yes, No

Curvature The curvature of the track: Severe, Mild, None

Number of tracks The number of adjacent tracks: 2, 4

Track Speed The running speed of the track (mph): 0-10, 10-30, 30-60, 60>

Derailment Speed The speed of the derailment (mph): >15, <15

Lineside Density The density of objects beside the line: High, Low

Lineside Type The type of equipment beside the line: Fixed, Anchored

Density of Traffic The traffic density: High, Low

Peak The time of day when the incident occurs: Peak, Off peak

Passenger Loading How full the coaches are: >50%, <50%

Crashworthiness The crashworthiness of the train: High, Low

Rolling Stock The type of rolling stock: High Speed Train, EMU

The relationships in the model are causal. For example, a train derailing on a tight
curve will be more likely to exceed its clearances while one travelling in a straight
line is more likely to maintain its clearances, as its momentum will tend to carry it
forward in the direction of travel. The probability table for the event ‘clear’ (whether
the train maintains clearance in a derailment) is:

Derailment Speed > 15 mph <15mph
Curvature None Mild Severe None Mild Severe
Yes 0.75 0.6 0.29 0.9 0.7 0.4
No 0.25 0.4 0.71 0.1 0.3 0.6

 Generalising Event Trees Using Bayesian Networks 63

The values 0.29 and 0.71 are taken from the original event tree (Fig. 6), since the
circumstance of the original study were ‘Derailment Speed’ > 15 mph and severe
track ‘Curvature’. The author of the original event trees judged the other
probabilities: although the generalised model requires more such judgements they are
similar to those needed to construct an event tree.

Fig. 9. Derailment BN generalised with the factors that determine the event probabilities.
Event nodes are shaded; the consequence node and arcs are not shown.

The generalised model can be used to calculate the accident probabilities in
different scenarios. We can compare the scenario in the original study (a dense urban
line) with a scenario more typical of an inter-city line:

 Urban Scenario Inter-city Scenario
Fitted ‘No’ ‘No’
Curvature ‘Severe’ ‘None’
Number of Tracks 4 2
Derailment Speed ‘> 15’ mph ‘> 15’ mph
Lineside Density ‘High’ ‘Low’
Lineside Type ‘Anchored Equipment’ ‘Fixed Equipment’
Rolling Stock ‘EMU’ ‘High Speed Train’
Density of Traffic ‘High’ ‘Low’

These data can be entered into the BN and new event probabilities calculated. The
probabilities (relative to the probability of the initial derailment event) of the
derailment accidents for the two scenarios are shown in Fig. 10. In the new scenario
the less severe accidents are more likely: this results mainly from the absence of
curvature. However, following the original study, we have considered only two
possible derailment speed ranges and this should be re-examined before drawing any
real conclusions. We also note that speed is a factor in the severities (equivalent
fatalities) of the accidents, which are estimated using another method.

64 G. Bearfield and W. Marsh

0% 20% 40% 60% 80%

1

3

5

7

9

11

A
cc

id
en

t

Probability

Inter-city

Urban

Fig. 10. Accident probabilities for two scenarios calculated using the BN. The ‘urban’ scenario
is identical to the original derailment study giving the same probabilities as the event tree; the
hypothetical scenario shows an example of the use of the generalised BN to adapt the accident
analysis to different circumstances.

5 Discussion

5.1 Summary

We have shown how a BN can represent an event tree. The translation from BN to
event tree is automatic (though we have not yet automated it) and reversible. We
argue that the two notations are complementary and should be used together. The
event tree shows the logical relationship of events, which is not shown clearly on the
BN diagram where it is encoded in a probability table. On the other hand, the BN
diagram shows clearly where event probabilities are conditioned on earlier events.

A greater advantage of using a BN is that the accident model can be generalised by
including the conditions that influence the evolution of the events in the accident.
This generalisation reverses the process used originally to analyse derailments in our
case study, where an event tree for a specific location was developed from a network-
wide model. The original author of the event tree remarked on the value of analysing
causal influences on the events and was lead to re-examine some of the allocated
probabilities.

It is advantageous to retain the familiar event tree notation when building the more
general accident model. In the case study we were easily able to explain our approach
to the author of the derailment event tree: only a short explanation of BNs was needed
for this analyst to identify influencing factors and the causal relationships between
them. Of course, generalising the accident model in the way we have shown is not
automatic. A rigorous elicitation process is needed to understand the influences:

 Generalising Event Trees Using Bayesian Networks 65

some remained unresolved in our case study, for example the influence of the train
weight on the probability of the train falling over in a derailment. The process of
judging probabilities for the BN, though time consuming, is similar to that required
for building an event tree though potentially many more probabilities are needed.

The validity of the network-wide SRM rests on its use of historic accident data and
it is desirable that an accident model for a specific location should have the same
basis. At present, the SRM does not include influencing factors although the potential
advantages of generalising it have been noted [7]. Clearly, further investigation of the
cost-benefit of building such a model is needed.

5.2 Related Work

Others have used BNs to analyse risk. The SCORE project [8] has applied a BN to
model accidents in an air-traffic control case study, based on a barrier model of
accidents. In [9], an influence diagram is used to model the occurrence of rail
breakage, also starting from a barrier model. In both cases the BN replaces the
accident model used as a starting point – a barrier model rather than an event tree –
rather than providing an alternative view as we have described.

Organisational and management causes of accidents are modelled using BNs in
[10] and [8]. Organisational and management causes are examples of ‘influencing
factors’ that could be included in our generalised event trees, so both are generalised
representations of accidents, but without the connection to an underlying accident
model such as an event tree, in the way we have proposed.

The SABINE emergency planning system [11] for accidents in nuclear power
plants uses BNs. Part of this system is an accident diagnosis BN, derived from event
trees constructed for level 2 PSA. Accident diagnosis requires back propagation from
effects to causes and this is prevented by our simple and automatic treatment of don’t
care conditions (section 3.5) which may hide further causal relationships between
event outcomes; rather than minimising the number of causal arcs in the BN, we
could maximise it, including a causal arc wherever this is possible. We have not
followed this approach because diagnosis is not required in our case study.

5.3 Further Work

The derailment study included six separate event trees for different areas of the
infrastructure: we are examining how to merge these models. Existing software tools
do not allow the event tree and BN views of the accident to be combined
conveniently: we would like to investigate how to automate this in practice.

More fundamentally, some of the operating and infrastructure conditions also
influence the causes of the initiating event: this is important because such factors
introduce correlations between the probability of the initial event and the probabilities
of different accident sequences. The present analysis does not capture such
correlation and this could lead to an incorrect estimate of the risk. We plan to
examine this in future.

Acknowledgement. We are grateful to Colin Howes of Atkins Rail for assistance
with the case study, and to the referees’ for their comments.

66 G. Bearfield and W. Marsh

References

1. US Nuclear Regulatory Commission: Reactor Safety Study. WASH-1400, NUREG 75/014
(1975)

2. Jensen, F.V.: An Introduction to Bayesian Networks. UCL Press, London (1996).
3. Neil M., Fenton N.: Building Large Scale Bayesian Networks. Knowledge Engineering

Review. 15(3) (2000) 257-284
4. Neil M., Fenton N., Forey S., Harris R.: Using Bayesian Belief Networks to Predict the

Reliability of Military Vehicles. IEE Computing and Control Engineering J 12(1) (2001)
11-20.

5. Fenton, N.E., Krause, P., Neil, M.: Software Measurement: Uncertainty and Causal
Modelling. IEEE Software 10(4) (2002), 116-122.

6. The Safety and Standards Directorate: Safety Risk Model (SRM), Report No. SP-RSK-
3.1.3.8 (1999) Rail Safety and Standards Board, UK.

7. Bedford, T., French, S., Quigley, J.: Statistical Review Of The Safety Risk Model (WP1),
Report T127 (WP1) (2004) Rail Safety and Standards Board, UK.

8. Neil, M., Malcolm B., Shaw R.: Modelling an Air Traffic Control Environment Using
Bayesian Belief Networks. In: Proc. 21st Systems Safety Conference, Ottawa, ISBN 0-
9721385-2-8.

9. Vatn, J., Svee, H. A.: Risk Based Approach to Determine Ultrasonic Inspection
Frequencies in Railway Applications. Proceedings of the 22nd ESReDA Seminar, Madrid,
Spain May 27-28, 2002

10. Roelen, A.L.C., Wever, R., Cooke, R.M., Lopuhaä, H.P., Hale, A.R., Goossens, L.H.J.:
Aviation Causal Model using Bayesian Belief Nets to Quantify Management Influence.
Safety and Reliability (Bedford & van Gelder eds.), Swets & Zeitlinger, Lisse, ISBN 90
5809 551 7, (2003) 1315-1320.

11. Zavisca M., Kahlert H., Khatib-Rahbar M., Grindon E., Ang M.: A Bayesian Network
Approach to Accident Management and Estimation of Source Terms for Emergency
Planning. In Proceedings of PSAM7/ESREL '04, Springer-Verlag (2004).

Control and Data Flow Testing on
Function Block Diagrams

Eunkyoung Jee, Junbeom Yoo, and Sungdeok Cha

Department of Electrical Engineering and Computer Science,
Korea Advanced Institute of Science and Technology(KAIST)

and AITrc/IIRTRC/SPIC,
373-1 Guseong-dong, Yuseong-gu, Daejeon, Republic of Korea

{ekjee, jbyoo, cha}@dependable.kaist.ac.kr

Abstract. As programmable logic controllers(PLCs) have been used in
safety-critical applications, testing of PLC applications has become im-
portant. The previous PLC-based software testing technique generates
intermediate code, such as C, from function block diagram(FBD) net-
works and uses the intermediate code for testing purposes. In this paper,
we propose a direct testing technique on FBD without generating in-
termediate code. In order to test FBD, we define testing granularity in
terms of function blocks and propose an algorithm that transforms an
FBD network to a flow graph. We apply existing control and data flow
testing coverage criteria to the flow graph in order to generate test cases.
To demonstrate the effectiveness of the proposed method, we use a trip
logic of BP(Bistable Processor) at RPS(Reactor Protection System) in
DPPS(Digital Plant Protection System) which is currently being devel-
oped at KNICS[1] in Korea.

1 Introduction

Software testing is the act of exercising software with test cases for the purpose of
finding failures [2]. Because failures of safety critical software can cause serious
damage to life or property, testing of safety critical software has become an
indispensable step required to assure software quality.

In the nuclear power plant control system, as existing analog systems have
been replaced by digital systems controlled by software, testing of digital control
systems has become more important. The control software is usually imple-
mented on PLCs which are widely used to implement safety critical real-time
systems. To test PLC applications, the characteristics of PLC programming lan-
guages should be considered. This work focuses on the FBD which is one of the
most widely used standard PLC programming languages.

A PLC application implemented by FBD is automatically compiled to PLC
machine code and executed on PLC. Testing of PLC machine code is difficult
due to its complexity. Although the behavior of FBD is similar to the proce-
dure or function of procedural program languages, there is no systematic way
to apply software testing techniques to FBD. In previous cases[3], FBD testing

R. Winther, B.A. Gran, and G. Dahll (Eds.): SAFECOMP 2005, LNCS 3688, pp. 67–80, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

68 E. Jee, J. Yoo, and S. Cha

has been done on intermediate C source code transformed from FBD networks.
Although this method can test FBD networks at some level, it cannot be ap-
plied to FBD networks from which intermediate C code cannot be generated.
Moreover, generating intermediate code leads to additional cost.

In this paper, we propose a direct cost-efficient testing method on FBD with-
out generating intermediate code. We assume that the transformation process
from FBD to PLC machine code has no errors. Because the transformation pro-
cess has been validated for several decades by many PLC vendors, this assump-
tion is reasonable. First, we define granularity of FBD testing. FBD is composed
of network of function blocks. We define unit and module of FBD from the per-
spective of a function block network. In this paper, we focus on unit testing of
FBD. To execute FBD unit testing, we propose an algorithm for the transforma-
tion of an FBD network to a flow graph. After generating a flow graph from an
FBD network, we apply existing control and data flow testing strategies to the
flow graph. To demonstrate the effectiveness of the proposed method, we use a
trip logic of BP at DPPS RPS which is being currently developed at KNICS[1]
in Korea.

The remainder of the paper is organized as follows: section 2 briefly introduces
FBD and software testing, and section 3 defines granularity of FBD testing. In
section 4, we propose an algorithm to transform an FBD network to a flow graph.
We apply control and data flow testing strategies to the flow graph transformed
from a real FBD example in section 5. Finally, conclusion and future works are
described in section 6.

2 Background

2.1 Function Block Diagram

A PLC[4] is an industrial computer widely used in control systems such as
chemical processing systems, nuclear power plants or traffic control systems.
A PLC is an integrated system that consists of a CPU, memory, and input- and
output-points.

IEC 61131-3[5] identifies PLC programming languages, which includes Struc-
tured Text(ST), Function Block Diagram(FBD), Ladder Diagram(LD), Instruc-
tion List(IL), and Sequential Function Chart(SFC). FBD is one of the most
widely used PLC languages. FBD is easy to understand and good for represent-
ing data flow between control blocks.

FBD represents system behaviors by means of signal flow among function
blocks. Functions between input variables and output variables are configured
by a network of function blocks in the form of a circuit. Function blocks figured by
rectangles are connected by input variables on the left side and output variables
on the right side. Function blocks are classified into several groups according to
their functions.

Figure 1 shows several function block groups and an example function block of
each group. RPS, which currently being developed at KNICS[1], is programmed
with function blocks which belong to the five function block groups in figure 1.

Control and Data Flow Testing on Function Block Diagrams 69

Fig. 1. Representative examples of function blocks

Fig. 2. An FBD program example

Figure 2 is an example of a function block network. The value of final out-
put th X Trip is generated from the combined execution of several function
blocks. The LT INT function block in the leftmost position receives f X and
h X Trip Setpoint as inputs and computes output. If f X is less than
h X Trip Setpoint, it emits 1, else it emits 0. This output is inverted and used as
an input to the TOF function block. The TOF function block is executed on the
inverted output of previous function and k Trip Delay which is a constant for
delay time. The output Q of the TOF function block is inputted into the next
SEL function block. The output of the SEL function block enters the next SEL
function block as input. If G is 0, the SEL function block selects and emits IN0
input, otherwise it selects and emits IN1 input. Finally, the AND BOOL func-
tion block computes value of th X Trip which is the AND-ed combination of the
output of SEL function block, inverted f Channel Error, inverted f Module Error
and inverted f X Valid.

2.2 Software Testing

Software testing is the act of exercising software with test cases. There are two
distinct goals of a test: to find failures, and to demonstrate correct execution
[2]. Because it is hard to test all possible behaviors of software, the essence of
software testing is to determine a set of test cases for the item being tested.

70 E. Jee, J. Yoo, and S. Cha

Each test case is the composition of inputs and expected output. Results of
executing test cases are compared to expected outputs which are extracted from
requirements specification.

There are two fundamental approaches to identifying test cases: functional
and structural testing. Functional testing is based on the view that any program
can be considered to be a function that maps values from its input domain
to values in its output range. The essential difference of structural testing with
functional testing is that the implementation of the black box is known and used
to identify test cases. Being able to see inside the black box allows the tester to
identify test cases based on how the function is actually implemented [2].

This work applies the structural testing approach. Structural testing can be
classified into two approaches. One is control flow testing that focuses on control
flow in software. The other is data flow testing that focuses on the points at
which variables receive values and the points at which these values are used. Both
these two testing techniques are necessary and can be combined to complement
each other.

Test coverage metrics are devices used to measure the extent to which a set
of test cases covers a program [2]. It is used to decide if testing is executed
adequately. Given a set of test cases, we execute test cases for the object pro-
gram and determine how much of the program is covered. Through this, we can
examine whether the test coverage criteria are satisfied.

In this paper, we propose FBD testing technique in which we transform an
FBD network to a flow graph and apply existing control and data flow testing
strategies to the flow graph. We consider All-Nodes, All-Edges and All-Paths
test coverage criteria in control flow testing, and All-Defs, All-Uses and All-DU-
Paths test coverage criteria in data flow testing.

3 FBD Testing Granularity

FBD is configured by a network of function blocks. Because established defi-
nitions of unit or module in procedural programming languages cannot be ap-
plied directly to FBD, we should define testing granularity from a view of func-
tion blocks.

If we define a unit as a function block in FBD, unit testing becomes unnec-
essary because we assumed that a function block always operates correctly. On
the other hand, if we define a unit as a set of several function blocks, we have
to consider the interaction between function blocks. This means that we should
deal with integration testing issues. Therefore, proper definition for FBD unit
and module is required.

We define a unit of FBD as ’a meaningful set of function blocks used to
compute a primary output’ [6]. The primary output is stored in the memory of
the PLC for external output or internal use in other units. If the output variable
is used just for programming conveniences, we do not consider it as a primary
output. Figure 2 shows a part of KNICS RPS BP trip logic. It is the pre-trip
set-point calculation part for manual reset variable set-point rising trip logic.

Control and Data Flow Testing on Function Block Diagrams 71

(a) FOD for g PZR PRS WR

(b) FOD for g BP

Fig. 3. FODs of KNICS RPS BP represented by NuEditor

This set of function blocks can be considered an individual unit because they
perform the computation of an external output th X Trip.

We define a module as ’a set of units used to perform a meaningful function’.
In KNICS RPS BP, each trip logic block can be defined as a module. Each
module consists of several units.

In KNICS, NuSCR[7] is used to specify software requirements. NuSCR is a
formal specification language that specializes in the nuclear power plant domain.

72 E. Jee, J. Yoo, and S. Cha

In NuSCR, the software system is specified by the combined use of FOD(Function
Overview Diagram), FSM(Finite State Machine), TTS(Timed Transition Sys-
tem) and SDT(Structured Decision Table). We can get guidelines to divide the
FBD into units and modules once the software requirement specification is writ-
ten by the NuSCR.

Figure 3(a) shows an FOD for g PZR PRS WR, a part of KNICS RPS BP,
drawn by NuEditor[8], which is a tool that supports the NuSCR specification.
An FOD represents relationship between various nodes using notation similar to
data-flow diagram. FODs can represent complex hierarchical structures system-
atically by enabling nodes in higher level FOD to be refined in lower level FOD.

In KNICS, software requirements specified by NuSCR are implemented by
FBD in the design step. In accordance with the definitions of unit and module
in FBD, each node in figure 3(a) becomes an individual unit in FBD. An FOD
in figure 3(a) corresponds to a module in FBD. This module is composed of 7
units with 6 inputs and 5 outputs. The higher level FOD for g PZR PRS WR
in figure 3(a) is the FOD for g BP in the upper part of figure 3(b). The lower
part of figure 3(b) shows an FOD with one node and several external inputs and
outputs. It is the higher level FOD of the upper part FOD in figure 3(b). Figure
3(b) shows the highest level FOD in the system.

In FBD, a software system can be defined as a collection of all the modules
of the system. A software system gets inputs from the outside of the system
and emits outputs to the outside of the system. The highest level node g BP,
described in the lower part of figure 3(b), corresponds to the definition of a
software system in FBD. Rectangles on the left side are external inputs, and
rectangles on the right side are external outputs.

In this section, we defined the concept of units, modules and software systems
in terms of function blocks for the testing of FBD. The division of units and
modules of the FBD program can be easily identified using formal specification
languages such as NuSCR.

4 Flow Graph Generation from FBD

To test FBD networks, we propose an algorithm to translate an FBD unit to
a flow graph. If a flow graph can be generated from FBD, we can apply exist-
ing control and data flow testing techniques based on flow graphs to the flow
graph[9,10,11]. Therefore, translation from FBD networks to flow graphs can be
considered as the most fundamental and important process for FBD testing.

Figure 4 is an FBD unit which computes the value of th Prev X Trip. This
unit FBD is a part of the g PZR PRS WR module presented in figure 3. It
receives the pre-trip set-point value as input and determines the pre-trip value.

To translate the FBD unit to a flow graph, we have to understand the char-
acteristics of the FBD execution. Every function block in FBD has its own
execution order. Function blocks are executed sequentially in each scan cycle
according to the corresponding execution order. In figure 4, the number inside
parentheses on the top of function block is its execution order. For example,

Control and Data Flow Testing on Function Block Diagrams 73

Fig. 4. FBD unit for th Prev X Trip

Fig. 5. Flow graph generated from FBD unit for th X Pretrip

in figure 4, the (14) AND BOOL function block is executed first and the (24)
MOVE function block is executed last. The translation process should reflect

74 E. Jee, J. Yoo, and S. Cha

execution order characteristics of FBD correctly. Figure 5 is the flow graph
translated from the FBD unit in figure 4. A flow graph is pictured by nodes
and arrows. Each node is identified by a number assigned to it by the algorithm.

Figure 6 shows an algorithm which describes the process of translating an
FBD to a flow graph. This algorithm does not cover all types of function blocks.
According to this algorithm, we can generate nodes of the flow graph from the
function blocks which belong to the arithmetic, bitwise Boolean, comparison, or
selection group.

We describe the process of applying this algorithm to the FBD in figure 4. In
lines 2–5, inputs needed to translate an FBD unit to a flow graph are described.
Lines 15–19 generate a node which reads all input variables used in the FBD
unit. The input variables of FBD in figure 4 are Cond a, Cond b, Cond c, Cond d,
status, th Prev X Trip and th Prev Trip. The node 0 in figure 5 is a node which
reads these input variables. After inserting the first node into the flow graph,
each function block is translated into nodes of the flow graph in the order of
execution. The first executed function block in figure 4 is the (11) AND BOOL.
Because the AND BOOL function block belongs to the bitwise Boolean function
group, fb.group in line 23 is BITWISE BOOLEAN and lines 28–33 are executed.
Function blocks of function groups of ARITHMETIC, BITWISE BOOLEAN
and COMPARISON follow the same translation mechanism. Node 1 is created
in lines 28–29 and variable v 11 is created in line 30.

In line 30, outVar := SetOutVariable(fb.executionNo, fb.outputVar) means
that the output variable name is decided by SetOutVariable function. The (23)
MUX INT in figure 4 has the output variable th Prev X Trip and the (24) MOVE
has the output variable th Prev Trip. If an output variable of a function block

Control and Data Flow Testing on Function Block Diagrams 75

Fig. 6. An algorithm for generating a flow graph from an FBD unit program

is identified in a fashion similar to these examples, the output variable name of
the function block will be assigned to the outVar variable. If output variable of

76 E. Jee, J. Yoo, and S. Cha

the function block is not identified, we generate new variable, such as v 11 or
v 12, and assign it to outVar.

In line 31, MakeContent(ASSIGN, outVar, fb.outputSpec) generates node
content where fb.outputSpec is assigned to outVar, which is then assigned to
contentString. The (11) AND BOOL function block receives two inputs Cond a
and Cond d and executes an AND operation. In this case, MakeContent can
generate a statement such as ”v 11 = Cond a ∧ Cond d”, which becomes the
content of node 1 in line 32. Because the (11) AND BOOL function block does
not have divided control flow, it becomes a single node in the flow graph.

The (12) SEL function block outputs th Prev X Trip or 0 according to the
conditional input Cond d. In this case, the SEL function block has two control
branches according to the input, so that it is translated into an if-then-else
structure, like nodes 2,3 and 4 in figure 5. Lines 37–42 describe the process
of making node 2 and lines 43–53 describe the process for node 3 and 4. The
(23) MUX INT function block is translated into a structure with multiple control
flows. Applying lines 34–53 to the (23) MUX INT function block results in nodes
29–34 in figure 5.

5 FBD Unit Testing

5.1 Control Flow Testing

After transforming the FBD unit program to a flow graph, we select proper test
coverage criteria and generate satisfying test cases.

Control flow testing coverage criteria include All-nodes, All-edges and All-
path [9]. To satisfy the All-nodes coverage criterion, all nodes in flow graph
should be executed at least once by test cases. All-edges coverage criterion re-
quires that all edges in flow graph should be executed at least once. All-edges
test coverage criterion subsumes All-nodes coverage criterion because test cases
by which all edges are visited are sure to visit all nodes. All-paths test cover-
age criterion requires that every possible complete path in the program should
be tested. All-paths coverage subsumes All-edges coverage, and therefore also
subsumes All-nodes coverage. It is difficult to satisfy All-paths test coverage
criterion due to its stringency.

Table 1 shows test cases that satisfy the All-edges test coverage criteria for
the flow graph in figure 5. The six columns Cond a, Cond b, Cond c, Cond d,
status and th Prev X Trip represent six input variables for the th X Pretrip unit
program. The rightmost column is the expected output for the th Prev X Trip
variable which is the final output of this unit program. After generating test
cases, we get actual output by executing test cases through the flow graph,
and then compare the actual output to the expected output. If two values are
different, it means that the program has some errors.

5.2 Data Flow Testing

Data flow testing refers to forms of structural testing that focus on the points
where variables receive values and the points where these values are used (or

Control and Data Flow Testing on Function Block Diagrams 77

Table 1. Test cases satisfying All-edges test coverage criterion

Test Case Cond a Cond b Cond c Cond d status th Prev X Trip Expected Output
CT1 1 0 1 0 0 1 1
CT2 1 1 0 1 1 0 0
CT3 0 0 0 0 2 1 1
CT4 0 1 1 1 3 0 1

referenced) [2]. Node n is a defining node of the variable v if and only if the value
of the variable v is defined at the statement fragment corresponding to node n.
There are two forms of definition nodes: definition by input and definition by
assignment. Node n is a usage node of the variable v if and only if the value
of the variable v is used at the statement fragment corresponding to node n.
Path from a definition node to a usage node is du-path. A definition-clear path
with respect to a variable v is du-path such that no other node in the path is a
defining node of v [10]. For example, the content of node 1 in figure 5 is ’v 11
= Cond a ∧Cond d ’. Node 1 is a definition node with respect to variable v 11,
and a usage node with respect to variable Cond a and Cond d.

To apply data flow testing to the program, we first identify definition and
usage nodes for all the program variables. We also identify du-paths with respect
to each variable, and then apply All-Defs, All-Uses or All-DU-paths test coverage
criteria. If T is a set of paths in the flow graph, the set T satisfies the All-Defs
criterion for the program if and only if for every variable v, T contains definition-
clear paths from every defining node of v to a use of v. All-Uses and All-DU-paths
coverage criteria are defined similarly [11].

There are two types of variables in the flow graph generated from an FBD unit.
One is input and output variables of the FBD, and the other is temporary vari-
ables. Temporary variables typed as ’v number’ store outputs of function blocks
and are created during the transformation process. In data flow testing for FBD,
we have to consider both types of variables. We need to identify definition and
usage nodes for all variables and extract du-path information for each variable.

In comparison to other data flow testing, FBD data flow testing has several
defining characteristics. When transforming the FBD to a flow graph, we created
the first node of the flow graph with the content of reading all input variables of
the unit FBD program. The first node of flow graph becomes a definition node
for all input variables. For example, the FBD unit program in figure 4 has six
input and output variables - Cond a, Cond b, Cond c, Cond d, th Prev X Trip,
th Prev Trip and status. These variables are all read in the first node 0. Thus,
node 0 becomes the definition node for all input and output variables.

Temporary variables and an output variable of a unit FBD have definition
nodes only by assignment; they have no definitions by input. This is one of the
characteristics of FBD data flow testing. The variable th X Trip, used as an
output variable at (23) MUX INT in figure 4, is defined by assignment at node
30–33 of the flow graph in figure 5. The variable th X Trip has four definition
nodes - node 30, 31, 32 and 33.

78 E. Jee, J. Yoo, and S. Cha

The du-paths for temporary variables are all definition-clear paths because
each temporary variable has only one definition node and one usage node in a
path. Moreover, except for the timer function group, FBDs have no loop con-
struction; therefore we do not have to consider loop structure when generating
test cases.

Table 2 shows test cases satisfying All-DU-paths test coverage criteria. They
are generated with du-path information for all variables in the flow graph.

Table 2. Test cases satisfying All-DU-paths test coverage criteria

Test Case Cond a Cond b Cond c Cond d status th Prev X Trip Expected Output
DT1 0 0 0 0 0 1 1
DT2 1 0 0 1 1 1 0
DT3 1 1 0 0 0 1 1
DT4 0 0 0 0 1 0 0
DT5 0 1 0 0 2 0 0
DT6 1 1 1 0 2 0 1
DT7 1 1 1 0 3 0 0
DT8 0 0 0 1 3 1 1

5.3 Case Study

We applied the proposed approach to BP trip logic of DPPS RPS, which is being
developed in KNICS. This section explains how we can find various errors in FBD
program using the proposed FBD testing method. First, we seeded four different
errors to the th Prev X Trip FBD unit in figure 4. All these errors frequently
occur in FBD programming. More errors occurring in FBD programming are
explained and classified in [12]. The seeded faults were all found by test cases
satisfying All-edges test coverage criteria in table 1. Test cases satisfying All-
DU-paths test coverage criteria in table 2 could also find all seeded faults.

– Case 1 (Switched input): One of the frequently occurring mistakes in FBD
programming is switched input. While change of the input order in
AND BOOL function blocks is not a problem, switched input in SEL, MUX,
or GE INT function blocks can cause serious errors. For these kinds of func-
tion blocks, the correct order of inputs is important. We reversed inputs of
the (12) SEL function block. We assign IN0 ’0’ instead of ’th Prev X Trip’
and assign IN1 ’th Prev X Trip’ instead of ’0’. In control flow testing, this
fault was found by the CT1 test case in table 1. In data flow testing, it was
found by the DT1 test case in table 2. We found that the expected output of
th Prev X Trip is 1, but actual output of executing the test case is a different
value, namely 0.

– Case 2 (Misused inverter): The inverter, drawn by small circle, is often added
in unnecessary positions or omitted in necessary positions. Misused inverters
are also one of the frequently occurring errors in FBD programming. We

Control and Data Flow Testing on Function Block Diagrams 79

inserted an unnecessary inverter to IN0 input of the (18) SEL function block.
In control flow testing, this fault was found by the CT2 test case in table 1.
In data flow testing, it was found by the DT2 test case in table 2.

– Case 3 (Incorrect variable): Variable names are often written incorrectly.
Incorrect variable names result in wrong value assignments or computations.
We wrote an input of (20) SEL as th Prev Trip instead of th Prev X Trip.
This fault was found by the CT3 test case of table 1 in control flow testing
and by the DT5 test case of table 2 in data flow testing.

– Case 4 (Incorrect constant): Another case of input errors is incorrect con-
stant. We changed the original input of IN1 in the (22) SEL from 1 to 0.
Wrong descriptions between 0 and 1 occur frequently. This fault was found
by the CT4 test case of table 1 in control flow testing and by the DT8 test
case of table 2 in data flow testing.

6 Conclusion

We proposed a direct testing technique on FBD without generating intermediate
source code. A previous approach for FBD testing generates intermediate C code
and performs testing on the intermediate code. Because the previous approach
requires generating intermediate C code, it cannot be applied to FBD which
do not generate intermediate C code. Moreover, generating intermediate code
leads to additional cost. We proposed a cost-efficient testing method for FBD
by applying testing strategies to FBD directly.

We defined unit and module of FBD in the view of function blocks and pro-
posed an algorithm for translating an FBD unit to a flow graph. After generating
a flow graph from an FBD unit, we applied existing testing techniques to the flow
graph. In control flow testing, we generated test cases satisfying the All-edges
test coverage criteria. We also generated test cases satisfying the All-DU-paths
coverage criteria in data flow testing. To demonstrate the effectiveness of the
proposed method, we used a trip logic of BP in DPPS RPS which is currently
being developed at KNICS [1] in Korea. We seeded frequently occurring errors
into the example FBD. We were able to find all seeded faults by the test cases
generated by the proposed approach.

We have a plan to take timer function blocks into consideration. The trans-
formation algorithm from an FBD unit to a flow graph has to be supplemented
in order to cover FBD units with timer function block where we have to deal
with time and state as well as input variables. Integration testing of FBD
which focuses on interfaces and interactions between tested units should also be
considered.

Acknowledgments

This work was partially supported by the Korea Science and Engineering Foun-
dation(KOSEF) through the Advanced Information Technology Research Center
(AITrc). This work was also partially supported by the Information Technology

80 E. Jee, J. Yoo, and S. Cha

Research Center(ITRC), Software Process Improvement Center(SPIC) and In-
ternet Intrusion Response Technology Research Center(IIRTRC).

References

1. KNICS, Korea Nuclear Instrumentation and Control System Research and Devel-
opment Center,http://www.knics.re.kr/english/eindex.html.

2. Paul C. Jorgensen, ”Software testing: a craftsman’s approach”, CRC Press, 1995
3. http://www.framatome-anp.com
4. A. Mader, ”A Classification of PLC Models and Applications”, In Proc. WODES

2000: 5th Workshop on Discrete Event Systems, August 21-23, Gent, Belgium,
2000.

5. IEC, International Standard for Programmable Controllers: Programming Lan-
guages (Part 3), 1993.

6. J. Yoo, S. Park, H. Bang, T. Kim, S. Cha, ”Direct Control Flow Testing on Func-
tion Block Diagrams,” The 6th International Topical Meeting on Nuclear Reactor
Thermal Hydraulics, Operations and Safety (NUTHOS-6), Nara, JAPAN, Oct. 4-8,
2004

7. J. Yoo, T. Kim, S. Cha, J-S. Lee, H.S. Son, ”A Formal Software Requirements
Specification Method for Digital Nuclear Plants Protection Systems”, Journal of
Systems and Software, Vol.74, No.1, pp73-83, 2005.

8. J. Cho, J. Yoo, S. Cha, ”NuEditor - A Tool Suite for Specification and Verification
of NuSCR”, In proc. Second ACIS International Conference on Software Engineer-
ing Research, Management and Applications (SERA2004), pp298-304, LA, USA,
May 5-7, 2004.

9. E. F. Miller, ”Tutorial : Program Testing Techniques”, at COMPSAC ’77 IEEE
Computer Society, 1977.

10. P. G. Frankl, E. J. Weyuker, ”An applicable family of data flow testing criteria”,
IEEE Trans. Software Engineering, 14(10), pp1483-1498, Oct. 1988.

11. S. Rapps and E. J. Weyuker, ”Selecting software test data using data flow informa-
tion”, IEEE Transactions on Software Engineering, vol. SE-11, no. 4, pp.367-375,
April, 1985.

12. Y. Oh, J. Yoo, S. Cha, H.S. Son, ”Software Safety Analysis of Function Block
Diagrams using Fault Trees”, Reliability Engineering and System Safety, Vol.88,
No.3, pp215-228, 2005.

R. Winther, B.A. Gran, and G. Dahll (Eds.): SAFECOMP 2005, LNCS 3688, pp. 81 – 93, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Comparing Software Measures with Fault Counts
Derived from Unit-Testing of Safety-Critical Software

Wolfgang Herzner, Stephan Ramberger, Thomas Länger, Christian Reumann,
Thomas Gruber, and Christian Sejkora

Division Information Technologies, ARC Seibersdorf Research,
Tech Gate Vienna, Donau-City-Straße 1,

A-1220 Vienna, Austria
{wolfgang.herzner, stephan.ramberger, thomas.laenger,

christian.reumann, thomas.gruber, christian.sejkora}@arcs.ac.at

Abstract. Systematic validation and verification of safety-critical software is of
crucial importance. A key precaution is intensive testing at several levels, from
the entire system down to individual functional elements, the latter often carried
out as unit testing. This paper presents results from a unit test performed on a
C++ package from a testbed of a safety critical application at the ARC Seibers-
dorf research lab. After outlining the test environment and relevant characteris-
tics of the tested software package, a detailed analysis of the test results is
given. This analysis comprises fault categorization, fault distribution, relations
between software metrics (like McCabe’s cyclomatic complexity or the risk
categories of NASA SATC), software faults, and testing efforts, and yields
clues about the significance of these measures for fault probabilities. A sum-
mary of the findings and related work conclude the paper.

1 Introduction

Computer systems increasingly permeate our environment and become an indispensa-
ble part of our everyday life. Behind their most visible representatives – the PC, the
mobile phone, customer electronics and related gadgets, as well as the Internet and
mobile telecommunication networks – a vastly growing realm of extensively unno-
ticed electronic devices fly our airplanes, guide surgical operations, or control the
brakes in our cars. They all rely on software, making the high safety requirements
imposed by the authorities in areas where failures imply threats for human life, as for
instance in the aerospace or rail domains, almost obvious. But even if ‘only’ an irre-
coverable material loss in case of a system failure may be incurred, like in space tech-
nologies or industrial control, an extremely low failure probability is demanded. Ac-
cordingly, from the system level down to subsystems and components, quality man-
agement and software development process technologies have to be obeyed thor-
oughly, and especially systematic testing deserves a maximum of attention.

A well established means for fault detection is unit testing, where individual soft-
ware units (functions, procedures, methods) are exhaustively tested against their re-
quirements or specifications, under consideration of a complete as possible code or
even higher coverage like path coverage. Although unit testing repeatedly is criticized

82 W. Herzner et al.

due to the rather big effort it requires, as well as the fact that it does not cover integra-
tion aspects, it is also regarded as the most effective means to test individual software
components for boundary value behavior and ensure that all code has been exercised
adequately [4].

(We used the term ‘fault’ rather than ‘error’ in accordance with the terminology
common for safety-critical systems, where faults are defined as the sources of errors.
However, when discussing related work, we took over their terminology rather than
impress ours.)

This paper describes the results of a unit test carried out in the accredited software
test laboratory of ARC Seibersdorf research as part of overall software product assur-
ance measures within a large European space project. The SUT (software under test)
consisted of a set of C++ classes, and the task was to verify the documentation and the
code based on the European standard ISO/IEC 61508 [8]. The goal of the software
test was 100 % statement coverage with an appropriate set of test cases. The faults
encountered during the test were classified and extensively documented.

These documented details are – of course – confidential. But we also applied a
number of software measures to the SUT in order to investigate to what extent the
quality metrics determined by these measures correlate with the fault distributions we
found. And there are the results of these analyses which are at the focus of this paper.
On class level, fault counts have been put in relation to lines of code and cyclomatic
complexity [12], based on a mean fault rate per method of a class. On method level,
we first give an analysis of methods with and without faults in relation to these meas-
ures, considering the risk areas defined by the NASA SATC (Software Assurance
Test Center) [17], [18], as well as the effort (time spent) to carry out the tests. To
some degree, the latter could be regarded as a measure for the ‘readability’ or ‘under-
standability’ of software, and its relation to detected faults was also of interest.

Therefore, this paper is structured as follows. In chapter 2 the test setup is de-
scribed, including a quantitative description of the SUT as well as the test environ-
ment. Chapter 3 summarizes the test results and gives the chosen fault classification,
while chapter 4 comprises the analysis of the relation between several software meas-
ures and the test results. Chapter 5 shortly addresses related work, while chapter 6
concludes the paper giving a summary of the findings.

2 Test Setup

The SUT consisted of more than 580 different methods in about 50 classes with an
average of 12 methods per class. The total number of source code lines with state-
ments, so excluding blank and commentary lines, was more than 16,000. Therefore
each method consisted of 28 statement lines on the average.

As test tool, Cantata++ Version 2.2 of IPL was used [10], running on an Alpha sta-
tion with a Tru64 UNIX© operating system. Although the source code was written in
C++, the performed software tests did not focus on object oriented characteristics but
were white box unit tests on a method level with the goal of 100% statement
coverage.

 Comparing Software Measures with Fault Counts Derived from Unit-Testing 83

Fig. 1. Unit Test with IPL Cantata++

Figure 1 depicts the way Cantata++ handles a software unit test. Two different files
have to be created by the tester in order to get an instrumented code: One that creates
an instance of the class under test and another one that defines the different wrapper
functions. Wrappers are used to modify the environment, they replace current func-
tions by the system functions or other methods under test (MUT). The test file con-
tains valid C++ code creating an instance of the class to call the MUT with different
parameters and wrapper configurations to traverse different paths in the software.
After compiling all those files with Cantata++ an executable will be created that con-
tains the instrumented code, whose output is a text file, the report, listing all impor-
tant test results.

The overall time it took to perform all tests on the SUT was about 40.000 minutes
with an average of 67 min per method. In this context “time” considers the following
activities:

• Design and implementation of test cases
• Test execution and refinement of test cases to meet the acceptance criteria (e.g.

coverage)
• Configuration Management of several hundred items
• Documentation (e.g. justifications in case of non-fulfillment of acceptance cri-

teria)
• Software Problem Reporting using WWQM
• Performing quality measures (e.g. check test cases according to checklists)

test object
C++ classes

Cantata++
precompiler

make
(compile
& link)

C/C++
libraries

Cantata++
libraries

C++ frames
with check
statements

main

instrumented
code

C++

reports

C++

C++
C++

C++

C++

coverage,
black & white box

test cases

Cantata++
wrapper
classes

84 W. Herzner et al.

Less than 2.3% of the statements could not be reached due to defensive programming,
a fact that had to be reported since it is a deviation from the demanded 100% state-
ment coverage.

For each encountered fault in the software, we filed a software problem report
(SPR) using the web based tool WWQM (World Wide Quality Management), an in-
house development of ARC Seibersdorf research [13], [14], [19], providing workflow
management for system (in particular, software) maintenance. This was very helpful
for analyzing the results in detail and finding interesting facts about the correlation
between static measures of the particular software and the observed fault rate.

3 Fault Classification

The tests as described before revealed more than one hundred faults (or SPRs, respectively),
which can be categorized as documentation faults (49%), incomplete coverage (17%), cod-
ing (33%) and other faults (1%) [16]. That means, only a third of them had to be classified as
coding faults, while half of all faults were classified as documentation faults.

Since we performed testing at unit level, the specification of the MUT was pro-
vided in the form of a functional description of the MUT. This covered the:

• Expected output parameters
• Expected return value
• Expected exceptions

Therefore, testing revealed either real coding faults or documentation faults as de-
scribed below. Additionally, an acceptance criterion of 100% statement coverage was
given which was not always achieved as mentioned below.

Coding Faults

This category contains ‘real’ coding faults, which might cause fatal failures during
system operation.

Implementation dependencies (38%). These are semantic or implementation specific
faults, like variables that will not be initialized in every case.

Wrong pointer handling (23%). Typical C or C++ faults like NULL pointer derefer-
encing or invalid pointer assignment.

Inversion of ‘true’ and ‘false’ (13%). In an own structure, 0 has been used to encode
‘true’, while values greater 0 encoded various errors. However, for compari-
son, the Boolean constants ‘true’ and ’false’ have been used.

Other (26%). Various faults could not be assigned to one of the first three groups but
occurred too scarcely to be split into distinct groups.

Documentation Faults

In most cases, documentation faults refer to incomplete descriptions of methods, e.g.
in header files. Since, however, this may lead to erroneous usage and testing of the
methods, it has been considered as fault. In addition, the documentation served as
base for the test case generation. In detail, classification faults have been sub-
structured as follows:

 Comparing Software Measures with Fault Counts Derived from Unit-Testing 85

Value never returned (54%). A documented valid return value is never returned by
the method.

Value not documented (31%). A value returned by the method has not been defined as
a valid return value.

Documentation fault (10%). This relates to textual faults like quoting wrong OUT
values or describing used structures incorrectly.

Doc. not sufficient (5%). The provided information is incomplete or does not specify
the method properly.

Incomplete Coverage Faults

This category comprises all faults resulting from the fact that certain code lines could
not be executed. In most cases, this was caused by ‘defensive programming’, e.g. an
otherwise-branch in a switch-statement for a variable of an enumerative type, with all
possible values captured by case-branches.

Defensive programming (65%). Assertions which are always true due to prior checks.
Default or else branch (35%). The use of default or else branches that cannot be

reached due to checking every possible value before.

4 Fault Distribution Analysis

In this chapter the found faults are brought into relation with several measures in
order to estimate their expressivity with respect to fault density prediction. However,
documentation faults will not be considered, because it can hardly be argued that the
description of a method in e.g. its header file is a proof for the defectiveness of its
code. Also, the subcategories as presented in chapter 3 are not distinguished any fur-
ther, because some of them contained too few faults for being statistically relevant.

4.1 At Method Level

A common approach of unit test analysis is to look directly at the method level, be-
cause in general methods are the primary test objects. Therefore, several method
based analyses are presented here.

4.1.1 Risk Analysis
‘Lines of Code (LOC)’ is a simple measure which just counts the number of code
lines in a source code unit. We considered only the ‘net’ number of code lines, i.e. no
blank lines or pure commentary lines, for measuring LOC. Figure 2 shows the rela-
tionship of LOC and number of SPR per tested method. Since a unit test stops as soon
as a fault is detected, SPR values higher than 1 result from retesting of faulty meth-
ods, when another fault has been detected. Not more than two retests have been nec-
essary, which to a certain degree was caused by the fact that code has already been
tested by the developers before being provided to us for unit testing.

Although figure 2 shows that no method with a LOC value higher than 200 was
free of faults, it although illustrates that LOC is not a really good indicator for fault
risk, because the distribution of methods with one and two detected faults is pretty

86 W. Herzner et al.

similar to that of methods without detected faults. This observation coincides with
results from previous works, see chapter 5.

0

1

2

3

4

0 50 100 150 200 250 300 350

LOC

S
P

R

Fig. 2. Methods plotted with respect to their LOC and number of SPR

Therefore, we looked at other measures like the ‘Cyclomatic Complexity (CC)’,
which is the number of linear independent paths as a specialization of McCabe’s
measure (edges – nodes + (2 * connected regions)) [12] with only one connected
region. Based on LOC and CC, we derived an interesting metric developed by the
NASA SATC (Software Assurance Test Center) [17], [18], that assigns every single
method to one of seven ‘Risk Areas’ based on the lines of code and the cyclomatic
complexity measures. The SATC claims that the lower the number of the risk area a
method belongs to due its LOC and CC measures, the lower the probability of a po-
tential fault in that method. Figure 3 shows these risk areas, together with the distribu-
tion of the methods tested.

0

10

20

30

40

50

60

70

1 10 100 1000
LOC [log]

C
yc

lo
m

at
ic

 C
o

m
p

le
xi

ty

without
SPR
with SPR

3 2

0 1

6 54

Fig. 3. Methods plotted with respect to their LOC and CC values.
Numbers and lines within the diagram field denote the SATC risk areas.

 Comparing Software Measures with Fault Counts Derived from Unit-Testing 87

0,0%

10,0%

20,0%

30,0%

40,0%

50,0%

P
er

ce
n

ta
g

e
o

f F
au

lty

M
et

h
o

d
s

SATC Risk Areas

SPRs 6,1% 16,4 33,3 50,0

0 1 2 3 4 5 6

Fig. 4. Percentage of faulty methods of all per SATC risk area

What strikes one’s mind is the narrow band (which would be rather straight on a
linear LOC-scale) where the methods are located. But what also surprises is the ap-
parently even distribution of faulty methods over the whole band, which seems to
indicate that fault density is not correlated with risk areas. However, if the number of
faulty methods (with SPR) relative to non-faulty ones (i.e. without SPR) is consid-
ered, this correlation is clearly present, as indicated in figure 4.

4.1.2 Test Effort Analysis
Another interesting aspect addresses how strong the time effort for testing each me-
thod correlates with its LOC and CC, as shown in figure 5.

In general, the time effort for testing seems to depend fairly linearly on both LOC
and CC, with a – not surprising – higher amount of effort for methods with SPRs. For
methods with low complexity, i.e. below 10 or 15, the testing effort was almost con-
stant, namely approximately 50 minutes if no fault has been detected, and approxi-
mately 100 minutes if some fault has been detected.

It should be noted, that also methods with a minimal CC-value of 1 took time to be
tested, namely up to three hours, as indicated in the diagram on the right side of
figure 5.

0

100

200

300

400

500

600

1 10 100 1000

LOC [log]

T
im

e
[m

in
]

without SPR with SPR

0

100

200

300

400

500

600

1 10 100
CC [log]

T
im

e
[m

in
]

without SPR avg. without SPR with SPR

Fig. 5. Size (LOC) and complexity (CC) versus testing effort

88 W. Herzner et al.

4.2 At Class Level

Besides looking at correlations between fault distributions, LOC, CC, and test time
effort as discussed before, we also wanted to examine whether these correlations
remain significant at class level as well.

To enable comparison of classes based on the fault counts of their methods, a cer-
tain ‘normalization’ of these counts is necessary, in order to compensate the different
numbers of methods per class. This class fault rate is computed by CFrk = SPRk / Mk,
with k as the class index, CFrk the class fault rate of class k, SPRk the sum of all faults
found for its methods, and Mk the number of its methods.

We further categorized classes into eight categories according to their CFr as
shown in table 1.

Table 1. CFr categories and characteristic data

Category CFr-Range # Classes
0 0.0 19
1 (0.0, 0.1] 9
2 (0.1, 0.2] 11
3 (0.2, 0.3] 4
4 (0.3, 0.4] 2
5 (0.4, 0.5] 0
6 (0.5, 0.6] 0
7 (0.6, 0.7] 1

4.2.1 CFr versus LOC
When placing all classes, represented by their CFr, relative to their LOC, a distribu-
tion as shown in figure 6, results.

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14

100-199 200-299 300-399 400-499 500-599 600+

LOC per Class

N
u

m
b

er
 o

f C
la

ss
es 7

4

3

2

1

0

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

0-9 10-19 20-29 30-39 40-49 50+

Mean LOC per Method

N
u

m
b

er
 o

f C
la

ss
es 7

4

3

2

1

0

Fig. 6. Number of classes per LOC, presented by their CFr categories (0..7). Left: LOC in-
cludes all code lines of a class. Right: class LOCs divided by number of methods in class. CFr
categories 5 and 6 are not presented, because no classes are contained in these categories.

 Comparing Software Measures with Fault Counts Derived from Unit-Testing 89

Remarkably, when complete classes are considered (left diagram in figure 6), those
with highest CFr have the smallest LOC-values, while in the group with largest
LOCs, only classes with low CFr are present. When LOC-values are normalized with
respect to number of methods per class (right diagram in figure 6), a slightly stronger
correlation between LOC and CFr results, but still classes with high CFr have meth-
ods of rather small means size.

4.2.2 CFr versus CC
Figure 7 shows the relation between the mean CC per class and its CFr. It is claimed
that the higher the CC, the higher the fault probability, with values above 40 best to
avoid. Values up to 20 are considered ‘safe’ in general.

0

2

4

6

8

10

12

14

16

18

20

0.0-2.99 3.0-4.99 5.0-6.99 7.0-8.99 9.0+

Mean CC per Class

N
u

m
b

er
 o

f C
la

ss
es 7

4

3

2

1

0

1,71

1,50

1,18

1,00

0,67

0,00
0,20
0,40
0,60
0,80
1,00
1,20
1,40
1,60
1,80

0.0-2.99 3.0-4.99 5.0-6.99 7.0-8.99 9.0+

Mean CC per Class

M
ea

n
 F

au
lt

N
u

m
b

er
 p

er
 C

la
ss

Fig. 7. Left: number of classes ordered per mean CC, presented by their CFr categories (0..7).
Right: accumulated fault numbers, divided by number of classes. CFr categories 5 and 6 are not
presented, because no classes are contained in these categories.

Of course, since mean CC values over all methods of a class have been taken, the
abscissa range in figure 7 is smaller, since in general the majority of methods of a
class have rather small CC values. Nevertheless, figure 7 shows a notably closer cor-
relation between CFr and CC than can be found in figure 6 with respect to LOC. To
the left, although classes with CFr = 0 can be found in all mean CC categories, those
with higher CFr values clearly tend to lie in higher CC categories. If per CC category
the number of faults of those classes contained in the respective category is divided
by the number of classes in that category, an almost stunning linear correlation be-
tween CC and fault probability emerges, as shown in the right diagram of figure 7.

If mean CC values are replaced by a simpler measure, namely the maximum CC
over all methods per class, a similar though less significant distribution can be found,
as shown in figure 8. In this case, classes with CFr = 0 are not found with high CC
values (over 40), while below 20 only two with a remarkable CFr category are pre-
sented. Both are, however, those with the second highest CFr value. But if we con-
dense these values as before to mean fault rates per class as displayed on the right side
of figure 8, the correlation between CC and fault probability on class level shows up
clearly, although not as ‘linear’ as with mean CC values.

90 W. Herzner et al.

0

2

4

6

8

10

12

14

16

18

20

0-9 10-19 20-29 30-39 40+

Max. CC per Class

N
u

m
b

er
 o

f C
la

ss
es 7

4

3

2

1

0

0,14

0,89

1,67
1,40

3,00

0,00

0,50

1,00

1,50

2,00

2,50

3,00

3,50

0 - 9 10 - 19 20 - 29 30 - 39 40+

Max. CC per Class

M
ea

n
 F

au
lt

N
u

m
b

er
 p

er
 C

la
ss

Fig. 8. Left: number of classes ordered per maximum CC over their methods, presented by their
CFr categories (0..7) Right: accumulated fault numbers, divided by number of classes. CFr
categories 5 and 6 are not presented, because no classes are contained in these categories

These results are interesting because maximum CC is a measure simpler than mean
CC, but of comparable meaningfulness.

5 Related Work

In [4], it is stated that in contrast to a comprehensive body of theoretical work on
software testing methodology there are not many published results of empirical stud-
ies in real-world software projects available, because ‘Industrial staff rarely have the
time to analyze past projects before being moved to other projects, and academics
very rarely have access to statistically valid collections of data’. We largely share this
impression, what has also been a driving force behind this paper.

Not too surprisingly, the available studies vary significantly in their general ap-
proach and methodology, as well as in scope and abstraction of hypotheses to be sup-
ported or rejected by statistical evidence, often based on fairly small samples. Other
differences rendering comparison more difficult come from the tested software sys-
tems themselves, specifically from the unclear contribution of heterogeneous software
engineering techniques applied for development, from the use of different implemen-
tation languages, and from the undefined coding maturity of software implementers
from various academic institutions and industrial enterprises. But there are a couple of
papers with a sufficient thematic overlap with our work, which shall be outlined here.

In [5] eight hypotheses, partially subdivided into sub-hypotheses, were tested
against in two releases of a major commercial system. Concentrating on differences
between pre- and post-release fault densities, the authors found support for theses like
‘a small number of modules contain most of the faults discovered during pre-release
testing, as well as operational faults (the Pareto principle)’ or ‘fault densities at corre-
sponding phases of testing and operation remain roughly constant between major
releases of a software system’, while they found rather no support for theses like
‘higher incidence of faults in all pre-release testing implies higher incidence of faults
in post-release operation’ or ‘size metrics (such as LOC) are good predictors of num-
ber of pre-release faults in a module’, which for LOC on class-level is in alignment
with our observations. In contrast, we found that CC proves to be a simple and

 Comparing Software Measures with Fault Counts Derived from Unit-Testing 91

suitable predictor for fault probability, which again complies with findings previously
published in [15].

Based on observation on three related software projects from the embedded sys-
tems domain, Ellims et al. found out that beside detailed design (and review), unit
testing contributed most to the detection of faults [4].

[2] is, though published more than twenty years ago, still of interest. The authors
analyzed the distribution of errors in modules of a medium-scale software project
with respect to environmental factors like complexity, developer’s experience, and
reuse. Of greatest interest are the differences found between the prevalent errors in
modified and in new modules. At the first glance, modifying existing modules seemed
to reduce development costs but modified modules turned out to be more susceptible
to errors due to misunderstanding of specifications. After thorough analysis the au-
thors could show that there are ‘hidden costs’ due to the increased necessary effort for
correcting the specific faults of modified modules. Another result was that module
size did not account for error-proneness. The larger the modules, the less error-prone
they were, even if they were more complex. This fact can be substantiated with the
results of our study where modules with lower LOC count tended to exhibit a greater
probability for errors.

[1], another standard in the field of empirical software quality data, investigates the
distribution of error rates for design errors in product code. Based on his data on the
(great) mean time to discovery, the author doubted that all design errors could be
removed through testing. He assumed that any software product exhibits similar regu-
larities in the rate behavior, irrespective of the use of the product. Consequently, his
findings are appropriate for the estimation and planning of service effort a software
product will need after deployment.

[11] analyzes the defect data from several wide-distribution commercial software
releases in order to address the problem of quantifying the software products’ field
quality. The authors found out that the estimated number of defects remaining in the
code constitute a metric for the field quality, rather than the estimated reliability of the
product. The apparent number of defects is strongly related to the number of users of
that software, with new users having a greater probability to find new defects. Addi-
tionally, it became apparent that new releases of a software stimulate the discovery of
latent defects already present in the preceding release.

[3] is an analysis of typical issues related to empirical studies in the field of soft-
ware testing techniques. The authors address the topics: Fault seeding, academic v/s
industrial settings, need for replication of studies across different settings, and the
implications of human factors in the production of error seeded test sets. They pro-
pose topics for future research, like the establishment of a standardized benchmark for
testing techniques.

Common topics most authors want to shed light upon are relations between design
and code complexity measures, testing methods and testing intensity (coverage), and a
probability interval for the absolute number of faults in dedicated portions of the
software under test. Consequently, faults should be identifiable at an early develop-
ment stage, at significantly lower cost. [5] states that “(...) the various empirical stud-
ies have thrown up results which are counter-intuitive to the very basic and popular
software engineering beliefs”, and follows that this should be a warning to the soft-
ware engineering research community.

92 W. Herzner et al.

Examples for such results are: Simple complexity measures seem to be as useful as
more complicated measures ([15]). Modules where more defects are found by pre-
release test coincide with modules where customers find more defects ([6]). Larger
components are proportionally more reliable than smaller components ([7], cited in
[5]). The concerted establishment of a wide collection of empirical data would pro-
vide the foundation for a proper evaluation of different software engineering and
testing methods. We hope to be able to contribute a small part to this basis with the
data and analysis presented in this paper.

6 Conclusion

Primarily, our observations confirm CC as a good measure for fault probability: Al-
though the absolute density of faulty methods is rather constant over the CC-range of
approximately 5 to 50 (see figure 3), its density relative to methods without detected
faults rises significantly with increasing CC (see figures 7 and 8).

Since in our test set the ratio LOC/CC is almost constantly 6 (see figure 3), at
method level LOC can to some extent be seen as an indicator for fault probability,
although less significant than CC due to its higher variability (see also figure 2). How-
ever, this resemblance breaks down at class level; while CC turns out to be a remark-
able measure for fault probability at class level (figures 7 and 8), this does not apply
for LOC (figure 6). Perhaps, the strong, almost linear correlation between mean CC
per class and mean fault number per CC class as shown at the right side of figure 7
may turn out as one of the most surprising results of this study.

The risk areas concept of SATC proves to be reasonable and valid (see figure 3), in
particular, when fault probability is computed as ratio between non-faulty and faulty
methods (figure 4).

Furthermore, comparison of effort with LOC indicates that from a threshold about
40 or 50, the time spent for dealing with a method increases somewhat over-linearly
with LOC. Small CC values (below approximately 10) appear to have no visible ef-
fect on effort, while higher values do have, of course (figure 5).

Finally, we want to point out that within the Integrated Project DECOS (project nr.
IST-511764) “Dependable Embedded Components and Systems” in the sixth Euro-
pean Framework (www.decos.at), which is coordinated by ARC Seibersdorf research,
we are designing and implementing a Test Bench Framework, which includes unit
testing besides a set of other methods and tools to fulfill validation and verification of
distributed time-triggered, safety critical systems from the application system model
to deployment. We expect further experimental results for a variety of V&V methods
and metrics.

References

1. Adams, E. N.: Optimising Preventive Service of Software Products. IBM J. Res. Develop.,
Vol. 28, No. 1 (Jan. 1984)

2. Basili, V. R., Perricone, B. T.: Software Errors and Complexity: An Empirical Investiga-
tion. Communications of the ACM, Vol. 27, No. 1 (Jan. 1984)

 Comparing Software Measures with Fault Counts Derived from Unit-Testing 93

3. Briand, L. Labiche, Y.: Empirical Studies of Software Testing Techniques: Challenges,
Practical Strategies, and Future Research. Workshop on Empirical Research in Software
Testing (WERST'2004). Online [PDF Document.
http://www.sce.carleton.ca/squall/WERST2004/accepted_papers/LB-YL.pdf (16/02/2005)

4. Ellims, M., Bridges, J., Ince, D. C.: Unit Testing in Practice. In: Proceedings of the 15th In-
ternational Symposium on Software Reliability Engineering (ISSRE’04), 1071-9458/04
(2004).

5. Fenton, N. E., Ohlsson, N.: Quantitative Analysis of Faults and Failures in a Complex
Software System. In: IEEE Transactions on Software Engineering, Vol. 26, Nr. 8 (2000)
797-814

6. Gittens, M. Lutfiyya, H. Bauer, M. Godwin, D., Yong W. K., Gupta, P.: An Empirical
Evaluation of System and Regression Testing. University of Western Ontario and IBM.
Online (PDF Document) http://www.cleanscape.net/docs_lib/ibm_cas02.pdf (2/16/2005)

7. Hatton, L.: Software Failures: Follies and Fallacies. In: IEE Review, Vol. 43, No. 2 (Mar.
1997), 49-52

8. IEC 61508, Functional Safety of Electric/Electronic/Programmable Electronic Systems,
Part 1 – Part 7 (1998 – 2001)

9. IEEE 982.2-1988 “IEEE Guide for the Use of IEEE Standard Dictionary of Measures to
Produce Reliable Software”. IEEE Press (June 1989)

10. IPL, http://www.ipl.com/products/tools/pt400.uk.php. This web-page also provides links
to technical papers.

11. Kenney, G. Q., Vouk, M. A.: Measuring the Field Quality of Wide-Distribution Commer-
cial Software. In: Proc. of 3rd Int. Symposium on Software Reliability Engineering, Re-
search Triangle Park, NC, USA, (1992) pp. 351-357. Online (PDF-Document)
http://renoir.csc.ncsu.edu/Faculty/Vouk/Papers/Kenney/Kenney_ISSRE92.pdf (2/16/2005)

12. McCabe T. J.: Structural Testing: A Software Testing Methodology Using the Cyclomatic
Complexity Metric. National Bureau of Standards, Washington (1982)

13. Moschitz, M., Thuswald, M., Weber, E.: WWQM2 im Jahr 2000 (in German only). Inter-
nal report, ARC Seibersdorf research (2001)

14. Moschitz, M., Studer, M., Fuhrmann, S., Weber, E., Zoffmann, G.: WWQM im Jahr 2002
(in German only). Internal report, ARC Seibersdorf research (2003)

15. Ohlsson, N., Alberg, H.: Predicting Fault-Prone Software Modules in Telefone Switches.
In: IEEE Transactions on Software Engineering, Vol. 22, No. 12 (Dec. 1996)

16. Ramberger, S., Gruber, T., Herzner, W.: Experience Report: Fault Distribution in Safety-
Critical Software and Software Risk Analysis Based on Unit Tests. In: Dadam, S., Rei-
chert, M. (Hrsg.), INFORMATIK 2004, Band 1, vol.P-50 of Lecture Notes in Informatics
(LNI) - Proceedings, Series of the Gesellschaft für Informatik (GI). 2004.

17. Rosenberg L.H.: Applying and Interpreting Object Oriented Metrics. Software Technology
Conference, April 1998 (http://satc.gsfc.nasa.gov/metrics as of Feb.2003)

18. Software Assurance Technology Center. http://satc.gsfc.nasa.gov as of Feb.2003
19. Public WWQM test version at http:://www.wwqm.at, with "guest" account (no password)

Automatic Analysis of a Safety Critical Tele
Control System�

Edoardo Campagnano1, Ester Ciancamerla1,
Michele Minichino1, and Enrico Tronci2

1 ENEA CR Casaccia, Via Anguillarese, 301, S. Maria di Galeria,
00060, Roma, Italy

{ciancamerlae, minichino, edoardo.campagnano}@casaccia.enea.it
2 Dipartimento di Informatica, Università di Roma “La Sapienza”,

Via Salaria 113, 00198 Roma, Italy
tronci@di.uniroma1.it

Abstract. We show how the Murϕ model checker can be used to au-
tomatically carry out safety analysis of a quite complex hybrid system
tele-controlling vehicles traffic inside a safety critical transport infras-
tructure such as a long bridge or a tunnel. We present the Murϕ model
we developed towards this end as well as the experimental results we
obtained by running the Murϕ verifier on our model.

Our experimental results show that the approach presented here can
be used to verify safety of critical dimensioning parameters (e.g. band-
width) of the telecommunication network embedded in a safety
critical system.

1 Introduction

Because of technological as well as economical reasons, the number of systems
relying on wireless telecommunication (telco) networks is always increasing. This
is also happening for safety critical systems. This poses new challenges to the
safety analysis work. In fact, the telco network behaviour needs to be modeled in
a fairly accurate way in order to formalize the relationship between telco network
parameters (e.g. bandwidth) and the system safety property being investigated.

We show how the above is possible by presenting a case study on the analysis
of a safety property for a Tele Control System (TCS), developed in the frame of
the European project SAFETUNNEL [11].

The goal of TCS is to take active measures to improve safety in the Critical
Transport Infrastructure (CTI) it controls, namely a tunnel. More specifically,
TCS aims at reducing the number of accidents inside alpine road tunnels, ex-
ploiting GPRS (General Packet Radio Service)) communication between instru-
mented vehicles and a Tunnel Control Centre (TCC). TCS implements preven-
tive safety functions, namely: vehicle prognostics, vehicle tunnel access control,
vehicle speed and distance control, dissemination of emergency message.
� Contact Author: Michele Minichino, Tel.: +39 06 3048 3407, Fax: 06 3048 6511.

R. Winther, B.A. Gran, and G. Dahll (Eds.): SAFECOMP 2005, LNCS 3688, pp. 94–107, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Automatic Analysis of a Safety Critical Tele Control System 95

We present a model of TCS and an automatic analysis of it via model checking
[12]. Our goal is to show that TCS operates in a safe way, that is no dangerous
situation can arise from installation and usage of the TCS in our CTI.

More specifically, our analysis focuses on the interaction of TCS telco net-
work dimensioning with TCS preventive safety functions. We formally check,
via model checking, that the telco dimensioning, in terms of bandwidth, guar-
antees TCC ability to safely handle different tunnel scenarios. Namely: nor-
mal system operational mode (registrations, deregistrations, anomaly situations
and emergency situations), emergency scenarios (i.e. dissemination of emergency
information).

Basically, our presentwork is about TCS validation by modeling along the lines
of [1]. In fact, in our case, only a limited number of field tests can be run on the
actual system. This is because measures requiring long observation times inside the
infrastructure (that has to be closed to the ordinary vehicular traffic, with loss of
availability and money) should be kept to a minimum. Moreover measures which
would require irreproducible infrastructure scenarios (i.e occurrence of incidents
and emergency scenarios) cannot simply be done. From the above considerations
stem the importance safety and performance analysis on the system model.

TCS is a quite large hybrid system, that is a system with continuous as well as
discrete state variables. Automatic analysis of Hybrid Systems poses formidable
challenges both from a modeling as well as from a verification point of view. In
fact the simultaneous presence of continuous and discrete variables may lead very
quickly to state explosion, thus preventing completion of the verification process.

Many verification tools (model checkers) are available for automatic verifi-
cation of hybrid systems. Examples are: HyTech [9,3,2] and UPPAAL [10,18].
Also tools originally designed for hardware verification have been used for hybrid
systems verification. E.g. in [17] SMV [12,16] has been used for verification of
chemical processing systems.

In this case study we use the CMurϕ [5,4] verifier since both HyTech and
SMV could not complete the verification task because of state explosion. This is
in agreement with our previous experience in hybrid systems verification [14].

CMurϕ is the Murϕ verifier [6,13] extended with (finite precision) real num-
bers [14], caching and disk based algorithms [15,5].

Automatic timeliness verification with the Murϕ verifier and performability
analysis of TCS telco network has also been studied, respectively, in [8], [7].

Our main contributions here can be summarized as follows. We sketch TCS
features (Section 3), present our modeling of the TCS system (Sections 4, 4.1, 4.2,
4.3, 4.4), present a formalization of the main TCS safety requirement (Section
5) and finally give experimental results showing effectiveness of our approach
(Section 6). Lack of space prevents us from giving the Murϕ model of TCS.

2 Basic Notions

A Finite State System (FSS) S is a 4-tuple (S, I, A, R) where: S is a finite set
(of states), I ⊆ S is the set of initial states, A is a finite set (of transition labels

96 E. Campagnano et al.

or events or actions) and R is a relation on S × A × S. R is usually called the
transition relation of S. We define the set next(s) of successors of state s as
follows: next(s) = {s′|∃aR(s, a, s′)}.

The set of reachable states of S (notation Reach(S)) is the set of states of
S reachable in zero or more steps from I.

A trace π of S is a finite or infinite sequence π ≡ s0, a0, s1, a1, . . . s.t.: s0 ∈ I
and for i = 0, 1, . . . R(si, ai, si+1) holds. We also write π(i) for s(i).

In the following we will always refer to a given (once and for all) system S
= (S, I, A, R). Thus, e.g., we will write Reach for Reach(S). Also we may
speak about the set of initial states I as well as about the transition relation R
without explicitly mentioning S.

Let B = {0, 1} the set of boolean values. An invariant for S = (S, I, A,
R) is a map ϕ from S to B. We say that S satisfies invariant ϕ iff for all
s ∈ Reach ϕ(s) = 1. That is, if for all reachable states of S, ϕ holds.

Safety properties are modeled using invariants. That is, an error state or an
undesired state is a state that does not satisfy the given invariant.

Basically, using a suitable high level language, a model checker takes as input
the definitions of an FSS S and of an invariant ϕ for S an returns PASS if S
satisfies ϕ, FAIL otherwise. Moreover, when a model checker returns FAIL, it
also returns a finite trace π ≡ s0, a0, s1, a1, . . . sk, of S leading to an error state,
that is we have ϕ(π(k)) = ϕ(sk) = 0.

From the above follows that, given a system S and an invariant ϕ, a model
checker automatically carries out a a reachability analysis, i.e. the computation of
all reachable states, for S, looking for undesired states (i.e. states not satisfying
invariant ϕ).

We plan to use CMurϕ [5,4] extended with real numbers [14] to analyze hy-
brid systems. For this reason we model hybrid systems as Discrete Time Systems
(DTSs). We show the easy relationship between DTSs and FSSs using a toy ex-
ample. Let us consider the DTS x defined by Equation 1, where x(t) is the state
value at time t and d(t) is the disturbance value at time t.

x(t + 1) =
{

x(t) + d(t) if x(t) ≤ 3
x(t) − d(t) otherwise ∀t[d(t) ∈ {0, 1, 2}], x(0) = 0. (1)

ϕ1(v) = (v ≤ 5) ϕ2(v) = (v < 5) (2)

Fig. 1 shows the FSS corresponding to the DTS defined by Equation 1.
The initial state x(0) = 0 is shown with an arrow in Fig. 1, where nodes are
labeled with state values and edges are labeled with action (disturbance, in our
case) values.

Equation 2 defines possible invariants for system x in Equation 1. A model
checker taking as input the pair (x, ϕ1) will return PASS since all reachable states
of x are less than or equal to 5. On the other hand a model checker with input (x,
ϕ2) will return FAIL with the following trace (counterexample) 0, 1, 1, 2, 3, 2, 5.

Automatic Analysis of a Safety Critical Tele Control System 97

0

1

2

3

4

50

1

2

1

2

1

2

1

2

2

1

20 0

0 0

01

Fig. 1. FSS for the discrete time system in Equation 1

3 System Overview

In this Section we give a high level description of our TCS architecture. The
remaining Sections will gradually zoom in TCS components showing how our
Murϕ model is organized.

The goal of TCS is to monitor and control vehicle (mainly trucks) traf-
fic inside the CTI area. This is done by equipping each vehicle with suitable
sensors and actuators (e.g. to measure and control the distance from the pre-
ceding vehicle) and with telecommunication devices (to communicate with the
control center).

TCS consists of three main subsystems: Vehicles, Telecommunication network
(TLC) and, finally, the Tele Control Center (TCC).

The Tele Control Center (TCC) manages the vehicles in the CTI area. The
TCC-vehicle communication protocol is defined with Message Sequence Charts
(MSCs) which also define the telecommunication network load, since they define
the number of bytes traveling in the communication channels. In case of an
accident the TCC sends to all vehicles in the CTI suitable directives to escape
from the accident area.

This is the most stressful situation for the telecommunication network. Since
our main goal here is to verify the telecommunication network dimensioning, we
will just focus on the case in which, for some reason (e.g. an accident), the TCC
needs to send a given (emergency) message to all vehicles.

As far as we are concerned, vehicles are equipped as follows: 1) Fuel level
sensors, distance sensors, oil level sensors, etc; 2) GPRS telecommunication de-
vices; 3) Automatic Cruise Control (ACC), which takes from the TCC the max
speed and min distance and actuates vehicle throttle and brakes accordingly.

A vehicle equipped with the above devices is also called a mobile station.
For safety reasons a vehicle must be an autonomous system, i.e. it should work

safely also when the TCC or the telecommunication network are not working.
This is why vehicles are equipped with an Automatic Cruise Control (ACC) that
keeps the vehicle speed below a given threshold and the distance of the vehicle
from the preceding one above a given threshold.

98 E. Campagnano et al.

Communication between mobile stations (vehicles) and the TCC essentially
exploits the GPRS technology used to support communication between mobile
stations and TCC inside the whole CTI area.

CTI GPRS network consists of a set of Base Stations situated inside the
CTI. Each Base Station supports traffic for a certain number of Carriers. The
number of carriers per base station depends on the type and configuration of the
base station model.

Using Time Sharing policies each carrier, in turn, is split into 8 Time Slots.
This is the channel used for actual data transmission. The time slot channel has
a transmission speed of 10.22 kbps. Theoretically a GPRS terminal can use up
to 8 time slots in uplink (UL) plus 8 in downlink (DL). Typically, commercial
terminals use 6 time slots for uplink and downlink.

As an example, assuming we have a 3 carriers base station, we have available
3 ∗ 8 = 24 time slots for each installation.

The following alternative working hypothesis have been considered in the
GPRS dimensioning: 1) The max bit rate (UL + DL) for each mobile station is
5 kbps, thus 2 vehicles can share one time slot; 2) The max bit rate (UL + DL)
for each mobile station is 2 kbps, thus 5 vehicles can share one time slot. Of
course the first solution gives faster communication, but requires more carriers.
The second solution saves on the number of carriers, yielding however slower
communication.

4 TCS Model

We use the Murϕ programming language to define our model and the Murϕ
verification engine to check that our model meets given safety requirements.
Murϕ uses a Pascal-like programming language to define model dynamics. This
makes the definition of complex systems quite easy, since an object oriented
modeling approach can be followed.

Because of lack of space we cannot present the actual Murϕ code of our
model. We will just describe the main subsystems forming our systems as well
as their interactions.

Murϕ constants are our TCS model parameters. Some of our constants
are suggested by [11], others have been obtained from various (e.g. physical)
considerations.

Murϕ data structures are our TCS model objects (e.g. vehicles, etc). Murϕ
functions are used to define the dynamics of our TCS model.

As usual we follow the convention of ending function names with (). Function
names used in this section correspond exactly to those in the Murϕ model.

We model TCS as a discrete time system with sampling time T = 100ms [11].
A high level view of TCS consists of three main objects (Figure 2). Namely,

(an array of) mobile stations (i.e. vehicles), the Telecommunication Network
(TLC), the Tele Control Center (TCC).

Figure 2 shows some of the (Murϕ) functions (SendRequest(),
AssignChannel(), CheckBarrier() and BlueToothTrigger()) implementing

Automatic Analysis of a Safety Critical Tele Control System 99

Fig. 2. Model top view

the interaction between (top) TCS objects, namely Mobile Stations, TCC
and TLC.

Mobile Stations and TCC communicate via the TLC which consists of a
GPRS network and a system of antennas used to check vehicle parameters (e.g.
position) at the CTI barriers (CheckBarrier() in Figure 2) and possibly to send
messages to the TCC (BlueToothTrigger() in Figure 2).

For GPRS communication a channel must be assigned to the peers. This is
modeled as follows (Figure 2). The sender asks for a communication channel
SendRequest() to the Network Manager. Once such channel is assigned to the
sender (using AssignChannel()) the communication can take place. That is the
sender can send its message to the receiver (Data).

Note that the CTI itself does not appear in Figure 2. This is because the
CTI status does not change over time. Thus it can be simply modeled using its
physical constants.

For example, constant TUNNEL LENGTH defines the physical length of the CTI
under consideration. Constant APPROACHING LENGTH defines the distance out-
side CTI entrances that we still consider relevant for our modeling (CTI area).
Constant TOOTH DISTANCE gives the distance of the first Bluetooth barrier from
the CTI entrance (of course, on both sides of the CTI). As a result, position
(in meters) of the four CTI barriers can be easily computed. Thus, in our TCS
model, to formalize the fact that a vehicle has passed a certain barrier it suffices
to compare the vehicle position with the barrier position.

4.1 Vehicles

A single vehicle is modeled using a record (named Vehicle). Each record
Vehicle field models a vehicle feature (e.g. position, speed, etc) needed in
order to define the dynamics of our model. In other words, record Vehicle holds
the vehicle state information.

100 E. Campagnano et al.

Our CTI has one lane for each direction. Each lane is modeled with an array
of size NUMBER OF VEHICLES PER LANE of vehicle records.

A vehicle can be a car or a truck. Each vehicle is equipped with suitable
communication devices [11]. For this reason, in our context, vehicles are also
called mobile stations or terminals (when dealing with TLC network issues).

When modeling a vehicle dynamics we also take into account its acceleration
and deceleration characteristics.

4.2 The Tele Control Center

The TCC consists of four interacting subsystems: 1) Communication devices;
2) Constant directives (storing system parameters)p 3) Registered vehicle data
(storing information about registered vehicles); 4) Right monitoring devices
(handling the tight monitoring procedure to be describe din Section 4.4).

For example, among the TCC constants directives (parameters) we have
STANDARD RECOMMENDED SPEED (70 Km/h) STANDARD RECOMMENDED DISTANCE
(150 m). If an anomaly occurs in the monitored area TCC suitably recomputes
these values.

For each vehicle v, TCC stores information about v as well as information
about the messages exchanged between TCC and v.

Our model for the Tele Control Center consists of: 1) CTI Status Variables,
storing all information (directives) to be sent to vehicles (e.g. Recommended
Speed AND Recommended Distance); 2) The I/O system handling GPRS com-
munication with the mobile stations; 3) Administrative information to make
decisions about messages to be sent to vehicles.

4.3 The Telecommunication Network

The TLC network is one of the main target of our analysis. More specifically,
our goal is to check that TLC dimensioning guarantees TCC ability to safely
handle emergency situations. In fact, when an emergency occurs, TCS sets up
a particular emergency procedure involving the TCC as well as many vehicles.
This is the more demanding situation for the telco network.

Figure 3 shows our model for the telecommunication network. We view the
telecommunication network as a set of (virtual) channels and a manager that
handles virtual channel assignments and releases.

To save on the state space dimension, we only model the GPRS network and
ignore other components.

In the GPRS architecture each base station can have up to 12 carriers, al-
though typically a base station has 3 or 4 carriers. In our setting we can assume
that each base station can have at least 6 carriers because of the high expected
traffic volume. In the following we denote with C the number of carriers for each
each base station.

Each carrier can have up to 8 time slots to be used for communication.
However usually at most 6 are used. In the following we denote with Nslots the
number of time slots for each carrier.

Automatic Analysis of a Safety Critical Tele Control System 101

In the following we denote with Tspeed the number of bits per second that
a time slot can transmit. With the network configuration envisaged in [11] we
have: Tspeed = 10.22 kbps = 10465 bps.

The same time slot can be used by more than one terminal (vehicle). We
denote with Vehic the number of vehicles sharing the same Time Slot.

For example if the max bit rate per vehicle (UpLink + DownLink) is 5kbps
we can allocate 2 vehicles on the same time slot.

We define as Virtual Communication Channel or just channel the trans-
mission bandwidth ideally allocated to each terminal (vehicle). In the previous
example we have 2 channels with a transmission speed of 5kbps for each slot.

We denote with B the number of base stations available.
Given the network technology (e.g. GPRS for us) the number of channels

NUMBER OF CHANNELS and their speed CHANNEL CAPACITY are project require-
ments for the network design. The following relations hold:

NUMBER OF CHANNELS = BCNslots, CHANNEL CAPACITY = Tspeed/Vehic.

For example, with our data (Tspeed = 10.22 kbps, Vehic = 5) we have:
CHANNEL CAPACITY = Tspeed/Vehic = 10465/5 = 2093 bps.

Here we are only interested in transmission capacity. For this reason we
consider channels as basic elements of our modeling.

Communication channels, of course, can be implemented with many tech-
nologies. The only difference resides in the network architecture (e.g. number
of base stations, carriers, etc) needed to meet the given network specifications,
NUMBER OF CHANNELS, and CHANNEL CAPACITY for us.

In other words, NUMBER OF CHANNELS and CHANNEL CAPACITY define the ex-
ternal view of the telecommunication network and are indeed the design parame-
ters of the network itself. Since our goal is to study the interaction of the telecom-
munication network with the other TCS subsystems NUMBER OF CHANNELS and
CHANNEL CAPACITY are indeed a good abstraction of the network. That is, they
are what the other TCS subsystems see of the network.

Of course the above computation of B assumes that each base station covers
most of the area of our interest. This is a reasonable assumption in the case of
CTI area.

Communication set up is done, once and for all, from each vehicle upon en-
tering CTI area. This establishes a communication link between the terminal
(vehicle) and the TCC. During this setup the vehicle sends to the TCC admin-
istrative information such as vehicle identifier, etc. When a terminal (vehicle)
wants to communicate with the TCC it must look for an available channel, that
is a channel not in use by another vehicle. Only once such available channel is
found communication can take place. Thus each communication round is pre-
ceded by a channel search phase.

A terminal (vehicle) may loose its communication link with the TCC. In such
cases the interaction protocol with the TCC is such that the lost link cannot be
recovered. Thus if a vehicle looses its communication link, it is no more connected
to the TCC.

102 E. Campagnano et al.

Fig. 3. Telecommunication Network

4.4 Communication Protocols

The protocols used in the TCS are defined by using Message Sequence Charts
(MSCs). In particular we have a Vehicle Registration Procedure (VRP), a Vehicle
Deregistration Procedure (VDP), a Tele Control Application Procedure (TAP), a
CTI Exit Procedure (CEP), an Emergency Procedure (EP). To make our model
working we have to model all such procedures. For space reasons, however, here
we only show (Figure 4) the Emergency Procedure which is needed to define our
safety requirement.

Many different kind of emergencies, with different severity levels, each re-
quiring specific recovery procedures, are considered in CTI.

However, emergency ranking often requires a human intervention. This is
hard (if possible at all) to model in our framework. On the other hand our goal
here is to evaluate safety of the Tele Control System consisting of the TCC, the
TLC network and the vehicles. For this reason we just consider the emergency
situation that is more demanding for the TLC network. This happens when the
TCC has to broadcast an emergency message to all vehicles in the CTI area,
Figure 4.

Our goal here is to simulate an accident blocking traffic on both lanes. In this
case TCC sends to all vehicles a request to stop. Thus in our model we have a
procedure SimulateAccident() that stops (suddenly) a given vehicle at a given
point in the CTI. That vehicle then sends a DetectedAnomalyMessage to the
TCC. Such message send to the TCC the vehicle id, the kind of accident, etc.

Upon receiving the DetectedAnomalyMessagemessage the TCC, once it has
determined the nature of the emergency, starts the procedure in Figure 4. More
specifically, once the TCC has determined the nature of the emergency, it sends
a recovery strategy using the message ActivateRepairingPlanningRequest

Automatic Analysis of a Safety Critical Tele Control System 103

Vehicle
Communication
Module

Vehicle
Communication
Module

Detected Anomaly Message

set(Alarm = TRUE)

Activate Repairing Planning Request

Activate Repairing Planning Response

Start Timer

Timer = 0

Start Timer

Emergency Info Ack

Emergency Info Ack
Emergency Info Ack

Emergency Info Ack

Emergency Info Ack

Check Status Request

Check Status Response

G
PR

S

Dissemination Emergency Info

Start Invariant Timer

registering damaged vehicle

damaged vehicle other vehicles

Center
Control
Tele

Fig. 4. Emergency Procedure

(left side of Figure 4). At the same time TCC sets to true the TCC alarm
field and registers the vehicle involved in the emergency in order to activate
a Tight Monitoring (TM) procedure. The TM procedure tells TCC to check
the vehicles status with a higher frequency than usual. Moreover one (virtual)
channel is reserved for each vehicle under tight monitoring. The mobile sta-
tion (vehicle) answers the ActivateRepairingPlanningRequest message with
a ActivateRepairingPlanningResponse message.

The right side of Figure 4 shows that notice of a serious emergency (incident)
must be broadcasted to all vehicles in the CTI area. This, together with the
ongoing TM puts a nontrivial load on the TLC network. Checking that the
TLC network, under such condition, can deliver the emergency notification, to
ALL vehicles in the CTI area within an assigned time constraint, is the safety
requirement what we want to verify here.

Of course satisfaction of such requirement depends on the number of virtual
channels available, which in turn depends on the TLC network dimensioning.

Moreover we must consider that GPRS technology, used for our TCS, does
not allow one to many communications. Thus the broadcast needed in case of
the above mentioned emergency is simulated by the TCC by sending sequentially
to each vehicle in the CTI area the emergency message.

The message to be broadcast to all vehicles is Dissemination Of
Emergency Info and its length is 200 bytes (the longest message of all here).
This message transmit an updated version of the emergency exits map, a strategy
to leave the accident area as well as TCC notes (if any).

Summing up, we are going to analyze the scenario in which there is
one vehicle that requires tight monitoring and TCC that broadcasts the
Dissemination Of Emergency Info message. This is the most stressful situa-
tion (assuming single vehicle failure) for the TLC network.

104 E. Campagnano et al.

Note that, the case in which we have n channels and (k + 1) vehicles
requiring tight monitoring and (at the same time) broadcasting of the
Dissemination Of Emergency Info can be treated as the case in which we have
(n − k) channels and one vehicle requiring tight monitoring and broadcasting.
This is because each vehicle under tight monitoring reserves a channel which is
not released until the tight monitoring is over.

5 Requirements

Murϕ defines requirements by using invariants. An invariant is a condition that
all reachable states must satisfy. In other words, if a reachable state does not
satisfy the given invariant we have a reachable undesired (error) state. The ver-
ifications task is to check if it is possible for the given system to reach an error
state, i.e. to reach a state that does not satisfy the given invariant.

In general there are many invariants to check, one for each requirements.
Here we will discuss only the main invariant for our system.

Our invariant asks that the time needed by the TCC to broadcast the
Dissemination Of Emergency Info message (Section 4.4) be below given
threshold TIME TO FAULT.

The TCC, Upon receiving the Detected Anomaly Message from the vehicle:

– handles, if possible, vehicle involved in an accident;
– sends (broadcast) to all N registered vehicle a

Dissemination Of Emergency Info message;
– sets to 0 the value of our auxiliary variable ReceivedAcks counting the

number of ack’s (Emergency Info Ack) received in response to the
Dissemination Of Emergency Info message;

– initialize our timer timer to TIME TO FAULT.

Depending on channel availability some messages will get sent immediately,
some will have to wait accordingly to the rules described in Section 4.3.

Upon receiving message Dissemination Of Emergency Info, each mobile
station will send to the TCC a Emergency Info Ack message. The TCC, in turn,
increments by 1 counter ReceivedAcks for each Emergency Info Ack message
received.

At each sampling time, variable timer is decremented by SAMPLING TIME.
Our invariant asks that it does not take too much to broadcast the emergency

info to all vehicles in the CTI area. That is, (timer
= 0 or receivedAcks = N).
Using Murϕ syntax this is written as follows.

Invariant "Too much time to deliver"
!(timer = 0.0) | receivedAcks = registeredVehicles;

That is, not too much time is elapsed (!(timer = 0.0)) or all vehicles
have got the Dissemination Of Emergency Info message (receivedAcks =
registeredVehicles).

Of course the more virtual channel we have, the more chances we have to
make our invariant true.

Automatic Analysis of a Safety Critical Tele Control System 105

6 Experimental Results

In this Section we describe our verification experiments and show our experi-
mental results.

Our invariant has been defined in Section 5.
What remains to be defined is the constant TIME TO FAULT denoting the

maximum time by which all emergency messages have to be sent.
Taking TIME TO FAULT too large would make our verification uninteresting.

On the other hand, taking TIME TO FAULT too small would give us false positives
i.e. errors that indeed do not occur in the actual system.

We estimate a reasonable value for TIME TO FAULT as follows. Let v be the
vehicle suggested speed inside the CTI and let d be the minimum distance among
vehicles in the CTI. Suppose that a vehicle speed suddenly drops to 0 (stop).
The following vehicle will bump into such stopped vehicle after

Tbump = d/v

Assuming (our case) that v = 70Km/h and d = 150m, we have Tbump =
7.7 seconds. Considering some lead time the above calculation suggests us to set
TIME TO FAULT to 5 seconds. That is we ask that within 5 seconds all vehicles in
the CTI are reached by the emergency message broadcasted by the TCC.

Two parameters can (and do) lead to state explosion: the number of vehicles
and nondeterminism in the inter-arrival times between vehicles.

Thus, to avoid state explosion, we scale down our model as follows.

– We limit the number of vehicles in the tunnel area.
– We set the inter-arrival time (ENQUEUING TIME) to 5 seconds for 70% of all

vehicles. The remaining 30% vehicles have a non deterministic interarrival
time in the interval [ENQUEUING TIME - 1, ENQUEUING TIME + 1].

Figure 5 shows the experimental results we obtained with Murϕ.
Column Vehicles gives the total number n of vehicles in the CTI area (namely

we have n/2 vehicles per lane).
Column Channels gives the minimum number of virtual channels needed to

pass verification. For example with 10 vehicles we need at least 4 channels to
satisfy our invariant. If we use 3 channels our invariant fails.

Column Rules gives the number of rules fired by the Murϕ verifier during
verification.

Column Time gives the time (in seconds) needed to complete our verification.
Column Reach gives the number of reachable states.
Column State Size gives the number of bit used by Murϕ to represent each

state.
The results in Figure 5 have been obtained using Murϕ 4.2 [4] with 200 MB

RAM (option -m200) bit compression and hash compaction enabled (options -b
-c) on a 800 MHz Pentium 3 Linux PC. Note that computation times in Figure
5 depend on the size of the set of reachable states (column Reach). The latter,
in turn, depends on both number of vehicles and number of channels.

106 E. Campagnano et al.

Of course we may use Figure 5 to dimension our TLC network. It is interesting
to compare the dimensioning obtained from Figure 5 with that obtained from
the approximate worst case analysis of the TLC network.

Figure 6 plots our results from Figure 5 (bottom curve) as well as the curve
obtained from the TLC network dimensioning (top curve) suggested in [11]. On
the x axes we have the number of vehicles in the CTI area (column Vehicles of
Figure 5). On the y axes we have the minimum number of virtual channels that
the TLC network should have (column Channels of Figure 5).

The exact analysis via model checking shows (Figure 6) that we may save on
the virtual channel (and thus on the TLC network size) without compromising
safety. In other words, our analysis allows us to estimate the robustness of our
dimensioning, i.e. how many channel we may lose without compromising safety.

Vehicles Channels Rules
Time
(Sec) Reach

State
Size
(bits)

10 4 77942 1798 26332 2890
20 9 58312 4960 19702 4366
30 12 48477 8443 16379 6294
40 16 98730 31041 33354 8381
50 19 79100 37915 26724 10322
60 22 59470 40916 20094 12263
70 25 170875 152150 57735 14306
80 28 58730 65170 19844 16260
90 31 54085 77480 18273 18214

Fig. 5. Murphi TCS model experimen-
tal results

0

10

20

30

40

50

60

70

80

90

10 20 30 40 50 60 70 80 90

Safetunnel doc curve
Murphi curve

Fig. 6. Comparison between Murphi
TCS model results from Figure 5 and
TLC dimensioning in [11]

7 Conclusions

Our experimental results (Section 6) show that the approach presented here
can be used to verify safeness of critical TLC network dimensioning parameters
(namely bandwidth) as well as robustness w.r.t. safety of the TLC network
dimensioning.

The main obstruction to be overcome is state explosion. Thus, in order to
verify larger hybrid systems more efficient model checking algorithms are needed.

References

1. A. Bobbio, E. Ciancamerla, M.Minichino, and E. Tronci. Stochastic and functional
analysis of a public mobile network in a safety critical context. In European Safety
& Reliability Conference (ESREL’05), June 27-30 2005.

2. A user guide to hytech: http://www.eecs.berkeley.edu/∼tah/HyTech.
3. Rajeev Alur, Thomas A. Henzinger, and Pei-Hsin Ho. Automatic symbolic verifi-

cation of embedded systems. IEEE Trans. Softw. Eng., 22(3):181–201, 1996.
4. Cached murphi web page: http://www.dsi.uniroma1.it/∼tronci/cached.murphi.html.

Automatic Analysis of a Safety Critical Tele Control System 107

5. G. Della Penna, B. Intrigila, I. Melatti, E. Tronci, and M. Venturini Zilli. Exploit-
ing transition locality in automatic verification of finite state concurrent systems.
STTT, 6(4):320–341, 2004.

6. David L. Dill, Andreas J. Drexler, Alan J. Hu, and C. Han Yang. Protocol veri-
fication as a hardware design aid. In Proceedings of the 1991 IEEE International
Conference on Computer Design on VLSI in Computer & Processors, pages 522–
525. IEEE Computer Society, 1992.

7. E. Ciancamerla and M.Minichino. Performability measures of the public mobile
network of a tele control system. In 23rd International Conference on Computer
Safety, Reliability and Security (SAFECOMP’04), volume 3219 of Lecture Notes
in Computer Science, pages 142–154. Springer, September 21-24 2004.

8. E. Ciancamerla, M.Minichino, S. Serro, and E. Tronci. Automatic timeliness verifi-
cation of a public mobile network. In 22nd International Conference on Computer
Safety, Reliability and Security (SAFECOMP’03), volume 2788 of Lecture Notes
in Computer Science, pages 35–48. Springer, September 23-26 2003.

9. T.A. Henzinger, P.-H. Ho, and H. Wong-Toi. Hytech: A model checker for hybrid
systems. Software Tools for Technology Transfer, 1(1):110–122, dec 1997.

10. Kim G. Larsen, Paul Pettersson, and Wang Yi. Uppaal: Status and developments.
In Orna Grumberg, editor, Computer Aided Verification, 9th International Con-
ference, CAV ’97, Haifa, Israel, June 22-25, 1997, Proceedings, volume 1254 of
Lecture Notes in Computer Science, pages 456–459. Springer, 1997.

11. Project IST – 1999 – 28099 SAFETUNNEL. http://www.crfproject-eu.org.
12. Kenneth L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers,

1993.
13. Murphi web page: http://sprout.stanford.edu/dill/murphi.html.
14. G. Della Penna, B. Intrigila, I. Melatti, M. Minichino, E. Ciancamerla, A. Parisse,

E. Tronci, and M. V. Zilli. Automatic verification of a turbogas control system
with the murϕ verifier. In Oded Maler and Amir Pnueli, editors, Hybrid Systems:
Computation and Control, 6th International Workshop, HSCC 2003 Prague, Czech
Republic, April 3-5, 2003, Proceedings, volume 2623 of Lecture Notes in Computer
Science, pages 141–155. Springer, 2003.

15. G. Della Penna, B. Intrigila, I. Melatti, E. Tronci, and M. V. Zilli. Integrating
ram and disk based verification within the murϕ verifier. In Daniel Geist and
Enrico Tronci, editors, Correct Hardware Design and Verification Methods, 12th
IFIP WG 10.5 Advanced Research Working Conference, CHARME 2003, L’Aquila,
Italy, October 21-24, 2003, Proceedings, volume 2860 of Lecture Notes in Computer
Science, pages 277–282. Springer, 2003.

16. Smv web page: http://www.cs.cmu.edu/∼modelcheck/.
17. A. L. Turk, S. T. Probst, and G. J. Powers. In Oded Maler, editor, Hybrid and Real-

Time Systems, volume 1201 of Lecture Notes in Computer Science, pages 259–272.
Springer, 1997.

18. Uppaal web page: http://www.docs.uu.se/docs/rtmv/uppaal/.

A Formal Model for Fault-Tolerance in
Distributed Systems

Brahim Hamid and Mohamed Mosbah

LaBRI, ENSEIRB - University of Bordeaux-1,
F-33405 Talence Cedex, France
{hamid, mosbah}@labri.fr

Abstract. We present a formal method based on graph rewriting sys-
tems for the specifications and the proofs of fault-tolerant distributed al-
gorithms. Our method deals with crash failures. In a crash failure system
the process can fail by crashing, i.e. by permanently halting. The faulty
processes are the processes contaminated by the crashes. The method-
ology is formalized in two phases. In the first phase, we build the set of
illegitimate configurations to specify the faults and the faulty processes.
The second phase is devoted to the addition of correction rules in the
initial graph rewriting system used to encode the distributed algorithm.
These rules are able to detect and eliminate the faults locally during the
computation. This method can be implemented under an asynchronous
message passing system which notifies the faults. To illustrate this ap-
proach, we present examples of fault-tolerant distributed spanning tree
algorithms.

Keywords: Distributed systems, Fault-tolerance, Graph rewriting sys-
tems, Local computations.

1 Introduction

Distributed computing systems are becoming larger and larger, heterogeneous
and complex. Since the applications running on these systems require the co-
operation of many components, they are prone to faults and errors of many
different types, leading to inconsistent executions. Most research works refer to
two paradigms that are self-stabilization and fault-tolerance. In the first one,
failures are transient [5,9] and can affect all the processes of the system. The
second paradigm deals with the permanent failures. In [9] we already presented
a method to design self-stabilizing distributed algorithms. In this study we focus
on the permanent failures, called crash failures. The process which crashes is
assumed to stop its execution. There are two principal approaches to improve
the reliability of a system. The first is called fault prevention [14] and the second
approach is fault-tolerance [2,18,3]. The aim of this approach is to provide a
service in spite of the presence of faults in the system.

In a distributed system modeled by a graph, where nodes represent processes
and edges communication links, a configuration is a pair (S, M), where S is a
set of states of all processes and M is a set of messages that are not delivered

R. Winther, B.A. Gran, and G. Dahll (Eds.): SAFECOMP 2005, LNCS 3688, pp. 108–121, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

A Formal Model for Fault-Tolerance in Distributed Systems 109

to their receivers. We say that a configuration is correct if it is reachable from
the initial states of all processes and all links are free. Informally, fault-tolerant
algorithms ensure that after any failure, the system will automatically recover
to reach a correct configuration in a finite time. An algorithm is called fault-
tolerant if it eventually starts to behave correctly regardless of the configuration
with fault components. Because the paradigm of designing fault-tolerant dis-
tributed algorithms is challenging and exciting, we are interested to study and
design fault-tolerant algorithms in our framework: local computations [15]. This
a powerful model to encode distributed algorithms.

The motivations of this work are on the one hand to formulate the prop-
erties of fault-tolerant algorithms by using those of rewriting systems yielding
simple and formal proofs. On the other hand, as locality is an important feature
of distributed computing, it is important to understand how to carry on local
computations in the presence of faults.

Many fault-tolerant algorithms have been already designed [1,8,17,11,12].
However, most of these works propose global solutions which require to involve
the entire system. As networks grow fast, detecting and correcting errors globally
is no longer feasible. The solutions that deal with local detection and correction
are rather essential because they are scalable and can be deployed even for large
and evolving networks. Moreover, it is useful to have the correct (non faulty)
parts of the network operating normally while recovering locally the faulty com-
ponents. An important result states that consensus is impossible in asynchronous
message passing system with one crashed process [7]. The basic approaches to
solve this problem are to introduce some weak forms of synchrony [6] or to limit
the number of crashes [13]. Therefore, such a system is improved by detection
service [4,10] and consensus problem can be solved in a fault-tolerant manner.

In this work, we deal with the problem of designing algorithms encoded by
local computations on a distributed computing with crash faults. We consider
an asynchronous system whose processes communicate by message passing. In
our approach, the properties of the program in the absence of faults are encoded
by a rewriting system, and the fault-tolerance properties of the program are de-
scribed with the behavior of the program when some faults occur. The faults are
specified as a set of illegitimate configurations that disturb the state of the pro-
gram after crashes of some component. We propose an operational and practical
methodology to construct fault-tolerant protocols. A fault-tolerant distributed
system is thus the system which encodes the distributed computation in a re-
liable system (without faults) improved by some correction rules. Those rules
consist to detect and eliminate all the illegitimate configurations. This method-
ology is illustrated by an example of a distributed spanning tree construction.

The paper is organized as follows. The model of distributed system and the
model to encode distributed algorithms are explained in Section 2. In Section 3
we present the local computations with illegitimate configurations, an extending
model to represent the faulty processes. Then, we describe our method to design
fault-tolerant systems. Section 4 presents example of fault-tolerant spanning tree
algorithm, an application of our approach. Finally Section 5 concludes the paper.

110 B. Hamid and M. Mosbah

2 Preliminaries

2.1 The Model of Distributed System

A distributed computing is modeled by a graph G = (V, E), where V is a set of
nodes and E is the set of edges. Nodes represent processes and edges represent
bidirectional communication links. The network is anonymous, processes com-
municate and synchronize by sending and receiving messages through the links.
The graph is unspecified and each node communicates only with its neighbors. A
process can fail by crashing, i.e. by permanently halting. Communication links
are assumed to be reliable. After a node fails, an underlying protocol notifies
all neighbors of this node about the failure. We assume the existence of a dis-
tinguished node which is usually not crashed. A graph is k − connected if the
graph remains connected after the deletion of any set of (k−1) nodes. The graph
required is assumed to remain connected during the whole execution, we allow
at most (k − 1) failing processes at the same time in the k − connected graph.
The connection of the graph guarantees that each no-crashed process can send
a message to all other no-crashed process. We are interested to study the fault-
tolerant distributed algorithms where the connection of the graph guarantees the
existence of solution. The parameter (k − 1) is the degree of fault-tolerance [1]
of these algorithms. We encode the fault-tolerant algorithms by graph relabeling
systems [15]. As we shall see, this will simplify the proofs of the algorithms.

2.2 Graph Rewriting Systems (GRS) to Encode Distributed
Algorithms

Local computations, and particularly graph relabeling systems [15] are a pow-
erful model which provides general tools to encode distributed algorithms, to
prove their correctness and to understand their power. In such a model we con-
sider a network of processes with arbitrary topology represented as a connected,
undirected graph where nodes denote processes, and edges denote communica-
tion links. Every time, each node and each edge is in some particular state and
this state will be encoded by a node label or an edge label. According to its
own state and to the states of its neighbors, each node may decide to realize
an elementary computation step. After this step, the states of this node, of its
neighbors and of the corresponding edges may have changed according to some
specific computation rules. Let us recall that graph relabeling systems satisfy the
following requirements:

(C1) they do not change the underlying graph but only the labeling of its com-
ponents (edges and/or nodes), the final labeling being the result,

(C2) they are local, that is, each relabeling changes only a connected subgraph
of a fixed size in the underlying graph,

(C3) they are locally generated, that is, the applicability condition of the rela-
beling only depends on the local context of the relabeled subgraph.

A Formal Model for Fault-Tolerance in Distributed Systems 111

Let L be an alphabet and let G be a graph. We denote by (G, λ) a graph
G with a relabeling function λ : V (G) ∪ E(G) → L. A graph relabeling system
is a triple = (L, I, P) where L is a set of labels, I is a subset of L called the
set of initial labels and P a finite set of relabeling rules. Consider an arbitrary
system = (L, I, P) and a labeling function λ. A relabeling step will be denoted
by (G, λ) −→

R
(G, λ′). The notion of computation then corresponds to the notion

of relabeling sequence. A relabeling sequence will be denoted by (G, λ) ∗−−−−→
R

(G, λ′). A graph relabeling system R is noetherian if there is no infinite R-
relabeling sequence starting from a graph with initial labels in I. We use the
following notations:

(i) λ(u) : the labels of node u
(ii) λ(u, v) : the labels of the edge connecting the node u and the node v

(iii) B(u) : the set of the neighbors of node u.

The program is encoded with graph relabeling system = (L, I, P). The
labels of each process represent the value of its variables. Each rule in the set P
is an action which has the following form:

R1 : RuleN{Precondition}{Relabeling}

The label R1 is the number of the rule and the label RuleN is the name of
the action. The component Precondition of a rule in the program of v0 is a
boolean expression involving the labels of v0 and the labels of its neighbors. The
Relabeling component of a rule of v0 updates one or more labels of v0 and its
neighbors. A rule can be executed only if its precondition evaluates true. The
rules are atomically executed, meaning that the evaluation of a precondition and
the execution of a corresponding relabeling, if the precondition is true, are done
in one atomic step.

3 Fault-Tolerant Graph Relabeling Systems

In our model, processes can fail by crashing. The crash failures are permanent.
After the crashes of some components in the distributed system, some other
components become transiently faulty. We use the following definitions:

(a) Crashed process: a process permanently stops after a crash. It does not follow
its algorithm.

(b) Faulty process: a process which is contaminated by a crashed process. It
follows its algorithm but may deviate from that prescribed by its algorithm.

(c) Correct process: a process which does not belong to the set of crashed pro-
cesses nor to set of faulty processes. It follows its algorithm.

From previous definitions, fault-tolerance is the mechanism to recover the faults
(errors) introduced after the crash of some components during the computation
in the distributed systems. The contamination processes are the processes which

112 B. Hamid and M. Mosbah

do not respect the specification of the system after the crashes occurred. These
processes are the neighbors of crashed processes and we are interested to elimi-
nate locally these bad (illegitimate) configurations.

A configuration is a pair (S, M) where S is the set of states of all processes
and M is a set of messages that are not delivered to their receivers. A local
configuration of a process is composed by its state, the states of its neighbors
and the states of its communication links. In this work, we will be interested in
local illegitimate configurations. To this end, we introduce a particular type of
graph relabeling systems.

3.1 Graph Relabeling Systems with Illegitimate
Configurations(GRSIC)

Local configurations will be defined on balls of radius 1. A star-graph is a rooted
tree where all nodes except perhaps the root have degree 1. The root will be
called the center of the star-graph. Since any ball of radius 1 is isomorphic to a
star-graph, illegitimate configurations will be described through their supports
(the labeled star-graphs). More precisely, an illegitimate configuration f is a
labeled star-graph, say (Bf , λf), where Bf is a star-graph and λf a labeling
function defined on it. Sometimes, it is useful to express such a configuration by
a predicate on the edges, nodes and labels of the corresponding star-graph. For
instance, a graph consisting of two nodes, u labeled A and v labeled B which
are connected by an edge labeled C will be written:

λ(v) = A and ∃ u ∈ B(v) : λ(u, v) = C and λ(u) = B

For a labeled graph (G, λ), we say that a local configuration f = (Bf , λf) is
illegitimate for (G, λ), if there is no subgraph in (G, λ) which is isomorphic to
f . In other words, there is no ball (neither sub-ball) of radius 1 in G which has
the same labeling as f . This will be denoted by (G, λ)¬ � f . Moreover, if F is
a set of illegitimate configurations, we extend the last notations to (G, λ)¬ � F
meaning that each element of F is an illegitimate configuration. It means that a
labeled graph (G, λ′) contains an illegitimate configuration if it does not exist a
labeled graph (G, λ) where:(G, λ) k−→

�
(G, λ′). The parameter k is a finite number

of relabeling rules’ application.
A graph relabeling system with illegitimate configuration is a quadruple

 = (L, I, P,F) where L is a set of labels, I is a subset of L called the set
of initial labels, P is a finite set of relabeling rules and F is a set of illegit-
imate configurations. Let us give two examples of illegitimate configurations.
Consider the following graph relabeling system given to encode a distributed
spanning tree.

Assume that a unique given process is in an “active” state (encoded by label
A), all other processes being in some “neutral” state (label N) . The tree initially
contains the unique active node. At any step of the computation, an active node
may activate one of its neutral neighbors. This computation stops as soon as all

A Formal Model for Fault-Tolerance in Distributed Systems 113

the processes have been activated. The spanning tree is then obtained by consid-
ering all the activated nodes and the edge between each node and its activated
node. Every process vi maintains two variables:

• span(vi): is a variable which can have two values:
A: vi is in the tree
N : vi is not yet in the tree

• par(vi): is the port number of the parent of vi in the spanning tree, i.e the
node which activated vi.

An elementary step in this computation may be depicted as a relabeling step by
means of the relabeling rule R1, given in the following, which describes the corre-
sponding label modifications (remember that labels describe process status):

R1 : Spanning rule
Precondition :
• λ(v0) = (span(v0), par(v0))
• span(v0) = N
• ∃ vi ∈ B(v0), span(vi) = A

Relabeling :
• span(v0) := A
• par(v0) := vi

T1 T2 T3

T4

A

N

N N

N

N

A

A N

N

NN

A

A N

N

AA

A A

A

A A

N A

A

A

A

AA

Fig. 1. Example of a distributed spanning tree’s computation

Whenever an N -labeled node finds one of its neighbors labeled A, then the
corresponding subgraph may rewrite itself according to the rule. After the ap-
plication of the relabeling rule, node v0 labeled (N, 0) changes its label to (A, vi)
where vi is its neighbor labeled A. A sample computation using this rule is given
in Fig 1. In this figure, the value of the variable span(u) is the label associ-
ated to the node. The value of the variable par(u) is shown by ↑. Relabeling
steps may occur concurrently on disjoint parts on the graph. The set Em is
the set of edges (vi, par(vi)) ∀ vi ∈ V . When the graph is irreducible, i.e no
rule can be applied, a spanning tree of a graph G = (V, E) is computed. This
tree is the graph Gt = (V, Em) consisting of the nodes of G and the set of the
marked edges.

114 B. Hamid and M. Mosbah

The previous algorithm can be encoded by the relabeling system 1 =
(L1, I1, P1) defined by L1 = {{N, A}× {N}}, I1 = {{N}× {0}} and P1 = {R1}.

A N

Crashed process

vi is a faulty proces

Fig. 2. The faulty process with the crashed process

Clearly, a node labeled A must have a parent, if span(vi) = A and vi is not
root, then there exists at least one neighbor of vi labeled A, or a parent of vi is
crashed and vi is a faulty process as shown in Fig 2. Formally, we deal with the
following predicate f1 : span(v) = A, v
= root and ¬∃ u ∈ B(v) : span(u) = A.

3.2 Local Fault-Tolerant Graph Relabeling Systems (LFTGRS)

A local fault-tolerant graph relabeling system is a triple = (L,P ,F) where L
is a set of labels, P a finite set of relabeling rules and F is a set of illegitimate
local configurations. A local fault-tolerant graph relabeling system must satisfy
the two following properties:

• Closure : ∀(G, λ) ∈ GL, if (G, λ)¬ � F then ∀(G, λ′)
/(G, λ) ∗−→

�
(G, λ′) : (G, λ′)¬ � F

• Convergence : ∀(G, λ) ∈ GL, ∃ an integer l :
(G, λ) l−→

�
(G, λ′) : (G, λ′)¬ � F

As for fault-tolerant algorithms, the closure property stipulates the correct-
ness of the relabeling system. A computation beginning in a correct state remains
correct until the terminal state. The convergence however provides the ability
of the relabeling system to recover automatically within a finite time (finite se-
quence of relabeling steps). The graph required is assumed to remain connected
during the whole execution, we allow at most (k − 1) failing processes at the
same time in the k − connected graph. The connection of the graph guarantees
the existence of a solution after the crashes in the graph. Consider a problem of
distributed spanning tree. In our example, the existence of a spanning tree of a
graph G is assured by the connection of the graph G.

As we shall see, the set of relabeling rules P is composed by the set of re-
labeling rules P used for the computation and some correction rules Pc that
are introduced in order to eliminate the illegitimate configurations. The latter
rules have higher priority than the former in order to eliminate faults before
continuing computation.

A Formal Model for Fault-Tolerance in Distributed Systems 115

Theorem 1. If = (L, I, P,F) is a graph relabeling system with illegitimate
configurations (GRSIC) then it can be transformed into an equivalent local fault-
tolerant graph relabeling system (LFTGRS) s = (L, Ps,F).

Proof. We will show how to construct s = (L, Ps,F). It is a relabeling sys-
tem with priorities. To each illegitimate local configuration (Bf , λf) ∈ F , we
add to the set of relabeling rules the rule Rc = (Bf , λf , λi) where λi is a
relabeling function associating an initial label to each node and edge of Bf .
The last relabeling function depends on the application; for example, the ini-
tial value of a node label is N in general, and the label of an edge is 0. The
rule Rc is, in fact, a correction rule. Thus the set of Ps consists of the set
P to which is added the set of all correction rules (one rule for each illegiti-
mate configuration). Finally, we give a higher priority to the correction rules
than those of P , in order to correct the configurations before applying the
rules of the main algorithm. It remains to prove that it is a fault-tolerant
system.

• Closure: Let (G, λ)¬ � F . If (G, λ′) is an irreducible graph obtained from
(G, λ) by applying only the rule of P , then (G, λ′) does not contain an ille-
gitimate configuration. This can be shown by induction on the sequences of
relabeling steps [16,15].

• Convergence: Let GL be the set of graphs G and h : GL −→ IN be an
application associating to each graph G, the number of its illegitimate con-
figurations, then for a graph (G, λ), we have the following properties:

. The application of a correction rule decreases h(G).

. The application of a rule in P does not increase h(G).

Since, the correction rules have higher priority than the rules in P , and since
the function h is decreasing, then it will reach 0 after a finite number of relabel-
ing steps. ��

Note that the last property of convergence can also be proved by using the
fact that the relabeling system induced by the correction rules is noetherian. Let
us note that the correction rules depend on the application. While the proofs
above are based on the local reset (to the initial state) which can be heavy
because it may induce a global reset by erasing all the computations, it is more
efficient for particular applications to choose suitable corrections as we shall see
in the following examples.

We present in the sequel a spanning tree computed by a local fault-tolerant
graph relabeling system. We start by defining some illegitimate configurations to
construct a set F1, then we improve the system by adding the correction rules to
detect and eliminate these configurations. For the present system, we deal with
the set F1 defined bellow.

Definition 1 (correct node (faulty)). A node v is correct (resp. faulty) if it
satisfies one (resp. it satisfies none) of the following properties:

116 B. Hamid and M. Mosbah

1. if v is labeled (A, 0) then v = root,
2. if v is labeled (A, u) then there exists one node u labeled (A, w),
3. if v is labeled (N, 0) then there does not exist node u labeled (A, v).

From Definition 1, F1 = {f1, f2}, where f1 and f2 are defined as :
f1 : ∃ v0
= root, span(v0) = A and ¬∃ vi ∈ B(v0) : par(v0) = vi and
span(vi) = A.
f2 : ∃ v0, span(v0) = A, par(v0) = vi and span(vi) = N .

The correction rules are deduced from the previous configurations:

Rc1 : Crash of a parent rule

Precondition :

• v0 �= root
• λ(v0) = (span(v0), par(v0))
• span(v0) = A
• ¬∃ vi ∈ B(v0) : par(v0) = vi and span(vi) = A

Relabeling :

• span(v0) := N
• par(v0) := 0

Rc2 : Cleaning rule

Precondition :

• λ(v0) = (span(v0), par(v0))
• span(v0) = A
• par(v0) = vi

• span(vi) = N

Relabeling :

• span(v0) := N
• par(v0) := 0

We assume in this system the existence of a distinguished node called the root
which is initially labeled A and which is usually correct.

We define the relabeling system s1 = (L1, Ps1 ,F1), where Ps1 = {R1, Rc1,
Rc2} such that Rc1, Rc2 � R1. We now state the main result.

Theorem 2. The relabeling system s1 is locally fault-tolerant. It encodes a
fault-tolerant distributed algorithm to compute a spanning tree.

Proof. The proof of fault-tolerance results from Theorem 1. To show that the
result is a spanning tree, we use the following invariants which can be proved by
induction on the size of the relabeling sequences:

(I1) All N -labeled nodes are 0-parent.
(I2) Each parent is an A-labeled node.
(I3) The subgraph induced by the node-parent edges is a tree.
(I4) The obtained tree of the irreducible graph is a spanning tree. ��

A Formal Model for Fault-Tolerance in Distributed Systems 117

T1 T2

A N

NA

A N

AA

AA

AN

A

A

A

A N

N

N N

N

A N

N

N N

A T3 T4

T6

A

NA

A A

A

T8

T9

A

A

N

A

NA

A

N

T5

A

A

N

NA

A
T7

A N

N

N

A N

A

Fig. 3. Example of fault-tolerant spanning tree algorithm execution

Fig. 3 gives a sample computation of a spanning tree with a crash of a process after
the step T4. The steps T1, T2 and T3 represent the application of the main rule R1.
Theprocess corresponding to thenode shownbya star crashes after the stepT4,and
remains in a faulty state until the end of the execution. Since the edge incident to
this node belongs to the spanning tree (bold edge), it must be deleted from the tree
and the adjacentnode will be labeled N . That is done in step T5 which is an applica-
tion of Rc1 by the node in the square. Now, the latter node labeled N is a parent of
a node labeled A. In step T6, the node in the square applies the rule Rc2 by relabel-
ing itself to N . Note that since Rc1 and Rc2 have highest priority, it will be applied
on the context of the faulty node before R1. Then, in step T7, T8, T9, the rule R1 is
applied allowing to continue the computation of the spanning tree by avoiding the
faulty node.

4 Example: Spanning Tree with Termination Detection

Let us illustrate fault-tolerant distributed algorithm which computes a spanning
tree of a network with termination detection. We start with an algorithm in a
network without crashes.

Assume that a unique given process called the “root” is in an “active” state
(encoded by label (A,0)), all other processes being in some “neutral” state
(label (N,0)). The tree initially contains the unique active node. At any step
of the computation, an active node may activate one of its neutral neighbors.
Then the neutral neighbor becomes active and marks with the variable par its
activated neighbor. When node v0 cannot activate any neighbor because all of
these have already been activated by some other nodes, v0 transforms its state
into a “feedback” state. When all the activated nodes(“sons”) of v0 are in the
“feedback” state, it transforms its state into a “feedback” state. The root detects
the termination of the algorithm when it is in the “feedback” state. Every process
vi maintains two variables:

118 B. Hamid and M. Mosbah

• span(vi): is a variable which takes three values:
N : vi is not yet in the tree
A: vi is in the tree
F : vi is in the feedback state, it finds all its neighbors in the tree and all its
sons in the feedback state
T : the termination detection at the root

• pari: is the number of the port connected vi to its activated neighbors

We consider the following relabeling system which encodes a distributed al-
gorithm computing a spanning tree with termination detection, 2 = (L2, I2, P2)
defined as L2 = {{N, A, F, T }×{N}}, I2 = {{N}×{0}}, P2 = {R1, R2, R3, R4}.
The label of each node v0 is (span(v0), par(v0)). Now we present the set of rules:

R1 : Root diffusion rule

Precondition :

• λ(v0) = (span(v0), par(v0))
• v0 =root
• span(vi) = N

Relabeling :

• span(v0) := A

R2 : Node diffusion rule

Precondition :

• λ(v0) = (span(v0), par(v0))
• span(v0) = N
• ∃ vi ∈ B(v0), span(vi) = A

Relabeling :

• span(v0) := A
• par(v0) := vi

R3 : Node feedback rule

Precondition :

• λ(v0) = (span(v0), par(v0))
• v0 �= root
• span(v0) = A
• ∀ vi ∈ B(v0) : (span(vi) �= N) and (par(vi) �= v0 or span(vi) = F)

Relabeling :

• span(v0) := F

R4 : Root detection of termination rule

Precondition :

• λ(v0) = (span(v0), par(v0))
• v0 = root
• span(v0) = A
• ∀ vi ∈ B(v0) : span(vi) = F

Relabeling :

• span(v0) := T

A Formal Model for Fault-Tolerance in Distributed Systems 119

We present in the sequel a spanning tree with termination detection computed
by a local fault-tolerant relabeling system. We start by defining some illegitimate
configurations to construct a set F2, then we improve the system by adding the
correction rules to detect and eliminate these configurations.

Note that we distinguish between crashed node and faulty node as explained
in the previous section. A faulty node should be viewed as one which has to
reconstruct the computation because of the crash of some other nodes.

Definition 2 (correct node (faulty)). A node v is correct (resp. faulty) if it
satisfies one (resp. it satisfies none) of the following properties:

1. if span(v) ∈ {A, F, T } and par(v) = 0 then v = root,
2. if v is labeled (A, u) then there exists one node u labeled (A, w),
3. if v is labeled (F, u) then there exists one node u labeled (l, w), where l ∈

{A, F},
4. if v is labeled (N, 0) then there does not exist node u labeled (l, v), where

l ∈ {A, F}.
For the present system, we deal with the following set F2 = {f1, f2, f3} where

f1, f2 and f3 are:
f1 : ∃ v0
= root, span(v0) = A and ¬∃ vi ∈ B(v0) : par(v0) = vi and
span(vi) = A.
f2 : ∃ v0
= root, span(v0) = F and ¬∃ vi ∈ B(v0) : par(v0) = vi and
span(vi) ∈ {A, F}.
f3 : ∃ v0, span(v0) ∈ {A, F}, par(v0) = vi and span(vi) = N .

The correction rules are deduced from the previous configurations:

Rc1 : Crash of a parent rule 1

Precondition :

• v0 �= root
• λ(v0) = (span(v0), par(v0))
• span(v0) = A
• ¬∃ vi ∈ B(v0) : par(v0) = vi and span(vi) = A

Relabeling :

• span(v0) := N
• par(v0) := 0

Rc2 : Crash of a parent rule 2

Precondition :

• v0 �= root
• λ(v0) = (span(v0), par(v0))
• span(v0) = F
• ¬∃ vi ∈ B(v0) : par(v0) = vi and span(vi) ∈ {A, F, T}

Relabeling :

• span(v0) := N
• par(v0) := 0

120 B. Hamid and M. Mosbah

Rc3 : Cleaning rule
Precondition :
• λ(v0) = (span(v0), par(v0))
• span(v0) ∈ {A, F}
• par(v0) = vi

• span(vi) = N
Relabeling :
• span(v0) := N
• par(v0) := 0

We assume in this system that the “root” is usually correct. We define the
relabeling system s2 = (L2, Ps2 ,F2), where L2 = {{N, A, F, T } × {N}} and
Ps2 = {R1, R2, R3, Rc1, Rc2, Rc3} such that Rcj � Ri. We now state the main
result:

Theorem 3. The relabeling system s2 is locally fault-tolerant. It encodes a
fault-tolerant distributed algorithm to compute a spanning tree with termination
detection.

Proof. The proof of local fault-tolerant results from Theorem 1. To show that the
result is a spanning tree, it suffices to use invariants like those of the preceding
example. ��

5 Conclusion

We have presented a method to design fault-tolerant algorithms encoded by
local computations. The method consists of specifying a set of illegitimate con-
figurations to describe the faults that can occur during the computation, then
adding local correction rules to the corresponding algorithm which is designed
in a safe mode. These specific rules are of high priority and are performed in or-
der to eliminate the faults that are detected locally. We introduce and illustrate
this approach with a distributed spanning tree algorithms in k-connected graph
which allows to tolerate until (k − 1) crashed faulty processes.

Our approach can be applied in practical applications as a generic and au-
tomatic method to deal with faults in distributed systems. For instance, in a
very large network, assume that the diffusion of messages between sites is per-
formed using a spanning tree of the network. Now, if some central node crashes,
then our method allows to find a solution to continue the diffusion service. We
are currently working on applying our solution to particular architectures and
mainly web services.

References

1. E. Anagnostou and V. Hadzilacos. Tolerating transient and permanent failures. In
WDAG93: Distributed Algorithms 7th International Workshop Proceedings, volume
725 of Lecture Notes in Computer Science, pages 174–188. Springer-Verlag, 1993.

2. A. Arora and M. Gouda. Closure and convergence: A foundation of fault-tolerant
computing. IEEE Trans. Softw. Eng., 19(11):1015–1027, 1993.

A Formal Model for Fault-Tolerance in Distributed Systems 121

3. P. C. Attie, A. Arora, and E. A. Emerson. Synthesis of fault-tolerant concurrent
programs. ACM Trans. Program. Lang. Syst., 26(1):125–185, 2004.

4. T.D. Chandra and S. Toueg. Unreliable failure detectors for reliable distributed
system. Journal of the ACM, 43(2):225–267, July 1996.

5. E.W. Dijkstra. Self stabilizing systems in spite of distributed control. Communi-
cations of the ACM, 17(11):643–644, 1974.

6. M.J. Fischer, N. A. Lynch, and M. Merritt. Easy impossibility proofs for dis-
tributed consensus problems. In PODC ’85: Proceedings of the fourth annual ACM
symposium on Principles of distributed computing, pages 59–70. ACM Press, 1985.

7. M.J. Fisher, N.A. Lynch, and M.S. Paterson. Impossibility of distributed consensus
with one faulty process. Journal of the ACM, 32(2):374–382, 1985.

8. F. Gartner. Fundamentals of fault-tolerant distributed computing in asynchronous
environments. ACM Comput. Surv., 31(1):1–26, 1999.

9. B. Hamid and M. Mosbah. An automatic approach to self-stabilization. In 6th
ACIS International Conference on Software Engineering, Artificial Intelligence,
Networking, and Parallel/Distributed Computing (SNPD2005), Baltimore, USA
(to appear), pages 129–132, May 2005.

10. B. Hamid and M. Mosbah. An implementation of a failure detector for local
computations in graphs. In Proccedings of the 23rd IASTED International multi-
conference on parallel and distributed computing and networks, February 2005.

11. S.S. Kulkarni and A. Arora. Automating the addition of fault-tolerance. In Pro-
ceedings of the 6th International Symposium on Formal Techniques in Real-Time
and Fault-Tolerant Systems, pages 82–93. Springer-Verlag, 2000.

12. S. Kutten and D. Peleg. Tight fault locality. SIAM J. Comput., 30(1):247–268,
2000.

13. L. Lamport, R. Shostak, and M. Pease. The byzantine generals problem. ACM
Trans. Program. Lang. Syst., 4(3):382–401, 1982.

14. J. C. Laprie. Dependability—Basic Concepts and Terminology, volume 5 of De-
pendable Computing and Fault-tolerant Systems. Springer-Verlag, 1992. IFIP WG
10.4.

15. I. Litovsky, Y. Mtivier, and E. Sopena. Graph relabeling systems and distributed
algorithms. In World Scientific Publishing, editor, Handbook of graph grammars
and computing by graph transformation, volume Vol. III, Eds. H. Ehrig, H.J. Kre-
owski, U. Montanari and G. Rozenberg, pages 1–56, 1999.

16. Y. Mtivier, M. Mosbah, and A. Sellami. Proving distributed algorithmes by graph
relabeling systems: Example of tree in networks with processor identities. In applied
Graph Transformations (AGT2002), Grenoble, April 2002.

17. A. Porat. Maintenance of a spanning tree in dynamic networks. In PODC ’99:
Proceedings of the eighteenth annual ACM symposium on Principles of distributed
computing, page 282. ACM Press, 1999.

18. F. B. Schneider. Implementing fault-tolerant services using the state machine
approach: a tutorial. ACM Comput. Surv., 22(4):299–319, 1990.

Model-Based Safety Analysis of Simulink
Models Using SCADE Design Verifier�

Anjali Joshi and Mats P.E. Heimdahl

Department of Computer Science and Engineering,
University of Minnesota, 200 Union St SE,

Minneapolis, MN 55455, USA
Phone: 1 612 624 7590, Fax: 1 612 625 0572

{ajoshi, heimdahl}@cs.umn.edu

Abstract. Safety analysis techniques have traditionally been performed
manually by the safety engineers. Since these analyses are based on an
informal model of the system, it is unlikely that these analyses will be
complete, consistent, and error-free. Using precise formal models of the
system as the basis of the analysis may help reduce errors and provide a
more thorough analysis. Further, these models allow automated analysis,
which may reduce the manual effort required.

The process of creating system models suitable for safety analysis
closely parallels the model-based development process that is increasingly
used for critical system and software development. By leveraging the
existing tools and techniques, we can create formal safety models using
tools that are familiar to engineers and we can use the static analysis
infrastructure available for these tools. This paper reports our initial
experience in using model-based safety analysis on an example system
taken from the ARP Safety Assessment guidelines document.

1 Introduction

Traditionally, safety engineers manually perform analyses, such as fault tree anal-
ysis, based on informal design models and requirements documentation. Unfor-
tunately, these analyses are highly subjective and dependent on the skill of the
practitioner. We hypothesize that by redirecting the effort to build models of the
system under study and its fault model we can both reduce the effort involved
and increase the quality of the analysis. To this end, we propose a model-based
safety analysis process in which engineers create formal models for both the
system design and safety analysis, and use automated analysis tools to analyze
their behavior. We describe our early experience towards this goal in this paper.

Our approach is to adapt model-based development techniques using formal
modeling languages and tools such as SCADE [9] and Simulink [5] for safety
analysis. By integrating these tools into safety analysis, it is possible to cre-
ate system models that can be simulated and analyzed using a variety of static

� This work has been partially supported by NASA contract NCC-01-001.

R. Winther, B.A. Gran, and G. Dahll (Eds.): SAFECOMP 2005, LNCS 3688, pp. 122–135, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Model-Based Safety Analysis of Simulink Models 123

analysis techniques. This combination allows an analyst to quickly explore dif-
ferent “what-if” scenarios on combinations of faults using simulation, and also
allows formal verification of different aspects of fault tolerance and, potentially,
autogeneration of safety analysis artifacts such as fault trees.

We describe our preliminary experiences using model-based safety analysis
with a wheel brake system example adopted from ARP 4761 [1], a standards
document for safety analysis in the avionics industry. With the help of this
example, we illustrate how we can derive benefits from a model-based safety
analysis in a practical setting using existing tools. At the same time, this exercise
exposes several issues and shortcomings that need to be addressed to make formal
safety analysis acceptable in practice.

2 Safety Assessment Process

The overall safety assessment process that is followed in practice in the avionics
industry is described in the SAE standard ARP 4761 [1]. Our summary in this
section is largely adopted from ARP 4761.

PSSAs SSAs

System Requirements and
Objectives

Aircraft FHA

System FHAs

System FTAs

Derived Safety
Requirements

Design

System FMEAs

Aircraft FTA

System FTAs

Certification

Aircraft Integration Cross-check

System Integration Cross-check

FC&C

FC&C

FE&P

FE&P

Fig. 1. Traditional “V” Safety Assessment Process

Figure 1 shows an overview of the safety assessment process as recommended
in ARP 4761. The process includes safety requirements identification (the left
side of the “V” diagram) and verification (the right side of the “V” diagram), that
support the aircraft development activities. An aircraft level Functional Hazard
Analysis (FHA) is conducted at the beginning of the aircraft development cy-
cle, which is then followed by system level FHA for individual sub-systems. The
FHA is followed by Preliminary System Safety Assessment (PSSA), which de-
rives safety requirements for the subsystems, primarily using Fault Tree Analysis
(FTA). The PSSA process iterates with the design evolution, with design changes
necessitating changes to the derived system requirements (and also to the fault

124 A. Joshi and M.P.E. Heimdahl

trees) and potential safety problems identified through the PSSA leading to de-
sign changes. Once design and implementation are completed, the System Safety
Assessment (SSA) process verifies whether the safety requirements are met in the
implemented design. The system Failure Modes and Effects Analysis (FMEA)
is performed to compute the actual failure probabilities on the items. The ver-
ification is then completed through quantitative and qualitative analysis of the
fault trees created for the implemented design, first for the subsystems and then
for the integrated aircraft.

We propose to modify this traditional “V” process so that the lower level PSSA
and SSA activities are performed based on a formal model of the system under
consideration. Figure 2 shows the modified “V” diagram for model-based safety
analysis. The shaded blocks are those activities that will be modified or added.

System Requirements
and Objectives

Aircraft FHA

System FHAs

Qualitative
System FTAs

Formal
Model

System FMEAs

Aircraft FTA

System FTAs

Certification

Aircraft Integration Cross-check

System Integration Cross-check

FC&C

FC&C

FE&P

FE&P

Automated Fault Tree
Generation

Derived Safety
Requirements

Automated Requirements
Verification

Fault
Model

Formal Model
with Faults

Fault
Injection

Automated Fault
Tolerance Verification

Fig. 2. Modified “V” Safety Assessment Process

As we can observe from Figure 2, the parts of the analysis that are primarily
affected are at the bottom of the “V”. The biggest difference is that the safety
analysis activities at this level are now focused around a formal model of the
system behavior, and that many of the artifacts of the safety analysis can be
derived from this model. The idea is to try to pose the right verification questions
to formal tools (such as model checkers and theorem provers) so that it is possible
to derive the necessary safety analysis information. We then wish to turn the
results of these analyses back into artifacts that can be easily understood and
used by safety engineers.

3 Model-Based Safety Analysis Process

The primary step in a model-based safety analysis is creating a formal specifica-
tion of the system model. The behavior of the system can be specified in formal
specification languages supporting graphical and/or textual representation; e.g.,
synchronous (textual) languages like RSML−e [10] and Lustre [6], and graphical

Model-Based Safety Analysis of Simulink Models 125

tools like Simulink [5] and SCADE [9]. The logical and physical architecture of
the system can be specified in an architecture description language.

The derived safety requirements are determined in the same way as in the
traditional “V” process. To support automated analysis, the safety properties
must be expressed in some formal notation. There are several candidate nota-
tions, including temporal logics like CTL/LTL or higher order predicate logics.
One can also specify safety requirements as small behavioral models in some
formal specification language.

To be able to apply formal verification tools to perform safety analysis, in ad-
dition to formalizing the system model, we also need to formalize the fault model.
The fault model, in addition to common failure modes like non-deterministic,
inverted, stuck at etc, could encode information regarding fault propagation,
simultaneous dependent faults and fault hierarchies, etc.

After specifying the fault model and composing it with the original system
model, the safety analysis involves verifying whether the safety requirements hold
in presence of the faults defined in the fault model. The safety engineer can per-
form exploratory analysis using formal verification tools, e.g., what is the largest
n such that the particular safety requirement holds in face of n faults?. The notion
could also be specialized to a specific combination of faults rather than random
combinations. With adequate tool support, the formal verification results could
be represented in the form of familiar safety artifacts like fault trees.

In the following sections, we illustrate some of our early results in applying
the model based safety analysis process on a wheel brake system (WBS) example
derived from the ARP safety analysis guidelines [1]. In section 4, we describe the
informal requirements of the example. Next, in Sections 5 and 6, we describe
how the system model without failures can be encoded in Simulink and how we
can verify safety properties of interest on the model. In section 7, we describe
a simple fault model for the WBS components and extend our system model
to include component faults. Section 8 briefly describes the exploratory safety
analysis performed on the extended model using the SCADE Design Verifier.

4 Wheel Brake System Example

We illustrate some of the basic activities involved in model based safety analysis
with the help of an example of a Wheel Brake System (WBS), as described in
ARP 4761 - Appendix L [1]. We chose this example primarily because the ARP
4761 document is used as the main reference for safety assessment by majority
of the safety engineers in the avionics community.

This section consists of excerpts from the ARP 4761 document giving the
informal requirements for WBS. The informal WBS diagram taken from the
ARP 4761 document is shown in Figure 3. The WBS is installed on the two
main landing gears. Braking on the main gear wheels is used to provide safe
retardation of the aircraft during taxiing and landing phases, and in the event of a
rejected take-off. Braking on the ground is either commanded manually, via brake
pedals, or automatically (autobrake) without the need for pedal application. The

126 A. Joshi and M.P.E. Heimdahl

Fig. 3. Wheel Brake System as shown in ARP 47-61

Autobrake function allows the pilot to pre-arm the deceleration rate prior to
takeoff or landing. When the wheels have traction, the autobreak function will
control break pressure to provide a smooth and constant deceleration.

Based on the requirement that loss of all wheel braking is less probable than
5·10−7 per flight, a design decision was made that each wheel has a brake assembly
operated by two independent sets of hydraulic pistons. One set is operated from
the GREEN pump and is used in the NORMAL braking mode. The ALTERNATE brak-
ing system is on standby and is selected automatically when the NORMAL system
fails. The ALTERNATE system is supplied pressure by both the BLUE pump and an
ACCUMULATOR, both of which can be used to drive the brake. The accumulator is
the reserve pressure reservoir with built up pressure that can be reliably released if
both of the two primary pumps (the Blue and Green pumps) fail. The accumulator
drives the ALTERNATE system in the EMERGENCY braking mode.

Switch-over between the hydraulic pistons and the different pumps is auto-
matic under various failure conditions, or can be manually selected. Reduction
of GREEN pressure below a threshold value, either from loss of the GREEN pump
itself or from its removal by the Break System Control Unit (BSCU) due to the
presence of faults, causes an automatic selector to connect the BLUE supply to
the ALTERNATE brake system. If the BLUE pump fails, then the ACCUMULATOR is
used to supply hydraulic pressure.

An anti-skid facility is available in both the NORMAL and ALTERNATE system
modes. The anti-skid function is similar to the anti-lock brakes common on
passenger vehicles and operates largely in the same manner.

In the NORMAL mode, the brake pedal position is electronically provided to
a braking computer. This in turn produces corresponding control signals to the

Model-Based Safety Analysis of Simulink Models 127

brakes. In addition, the braking computer monitors various signals that denote
certain critical aircraft and system states to provide correct brake functions
and improve system fault tolerance, and generates warnings, indications and
maintenance information to other systems.

System_Mode

2
Alternate_Pressure

1
Normal_Pressure

z

1

z

1

z

1

S
el

ec
to

rO
ff

N
or

_P
re

ss
ur

e

A
lt_

P
re

ss
ur

e

N
or

_P
re

ss
ur

e_
O

ut

A
lt_

P
re

ss
ur

e_
O

ut

SelectorValve

ValidPower

ValidPower

PosCmd

MechanicalPedal

P
ip

eP
re

ss
ur

e_
In

C
m

dP
os

P
ip

eP
re

ss
ur

e_
O

ut

Manual
MeterValve

NOT

V
al

ve
S

hu
t

P
ip

eP
re

ss
ur

e
P

re
ss

ur
e_

O
utGreen Pump

IsolationValve

Green
Pump

[Green_P]

[Acc_P]

[Alt_Active]

[AltP_Feedback]
[NorP_Feedback]

[NorValveCmd]

[AltValveCmd]

[Nor_Out]

[Blue_P]

[Nor_Out]

[Acc_P]

[Alt_Active]

[AltP_Feedback]

[NorP_Feedback]

[NorValveCmd]

[AltValveCmd]

[Green_P]

[Blue_P]

P
ip

eP
re

ss
ur

e_
In

C
m

dP
os

P
ip

eP
re

ss
ur

e_
O

ut

CMD/AS
MeterValve

V
al

ve
S

hu
t

P
ip

eP
re

ss
ur

e
P

re
ss

ur
e_

O
utBlue Pump

IsolationValve

Blue
Pump

Pwr1

Pwr2

Pedal1

Pedal2

AutoBrakeOn

DecRate

AC_Speed

Skid

Nor_Pressure

Alt_Pressure

Green_Pressure

Blue_Pressure

Acc_Pressure

Out_NorP

Sel_Alt

Nor_Cmd

Alt_Cmd

SystemMode

BSCU

P
re

ss
ur

e_
In

R
es

P
re

ss
ur

e

A
ltA

ct
iv

e

P
re

ss
ur

e_
O

ut

AccumulatorValve

Accumulator
Pump

P
ip

eP
re

ss
ur

e_
In

C
m

dP
os

P
ip

eP
re

ss
ur

e_
O

ut

AS
MeterValve

AC_Speed

Skid

DecRate

AutoBrake

MechPedal

PedalPos2

PedalPos1

2

1

4

5

7

6

3

3

Fig. 4. Nominal Wheel Brake System in Simulink

128 A. Joshi and M.P.E. Heimdahl

5 Nominal Wheel Brake System in Simulink

The informal requirements of the WBS as specified in the ARP document were
not found to be particularly rigorous. To implement a working model, we had
to make several assumptions about the system that still need to be confirmed
with the authors of ARP 4761. Figure 4 illustrates how we can model the WBS
in Simulink. The model captures both digital and mechanical components of the
system and reflects the informal structure of the system as given in the ARP
document.

WBS (the highest level component/system) consists of a digital control unit,
the BSCU, and two hydraulic pressure lines, NORMAL (pressured by the Green
Pump) and ALTERNATE (pressured by the Blue Pump and the Accumulator)
line. The system takes the following inputs from the environment - PedalPos1,
PedalPos2, AutoBrake, DecRate, ACSpeed, Skid, and MechPedal. All of the
above inputs, except MechPedal, are forwarded to the BCSU for computing the
brake commands. There are also a number of mechanical components along the
two hydraulic lines, for example different types of valves. We have defined a
library of common components such as the MeterValve, IsolationValve, Pump,
etc., which are then instantiated at various locations in the WBS. The outputs
of the WBS are Normal Pressure (hydraulic pressure at the end of the Normal
line), Alternate Pressure (hydraulic pressure at the end of the Alternate line)
and System Mode (computed by the BSCU).

Due to lack of space, we cannot describe the Simulink model in full detail1.
To illustrate some aspects of fault modelling, we explain the implementation of
the MeterValve component, which is used in three places in Figure 4: the CMD/AS
MeterValve on the Normal hydraulic line and the AS MeterValve and Manual
MeterValve on the Alternate hydraulic line. The meter valve implementation
takes two inputs, the incoming pipe pressure and the valve position command,
and generates an output pressure which depends on the valve position.

6 System Verification

After creating the system model, we would like to verify that some basic safety
properties hold on the nominal system, an idealized system containing no faults.
As a first step, we need to formalize the derived safety requirements as safety
properties. Simulink does not directly support any model-checking tools, so to
perform this step, we import the Simulink model into SCADE, which contains
the Design Verifier model checker. The properties can be formalized in Lustre,
which is the underlying textual notation for SCADE.

Throughout this paper, we use an example safety requirement that is given
in the ARP 4761 document,

Loss of all wheel braking (unannunciated or annunciated) during landing
or RTO shall be less than 5 · 10−7 per flight.

1 We will publish the complete Simulink model on our web site:
http://www.cs.umn.edu/crisys

Model-Based Safety Analysis of Simulink Models 129

Since we are not considering annunciations in this model and we are not
considering any quantitative analysis at this stage, let us simplify this safety
requirement and state the undesirable event we are trying to prevent as simply,

Loss of all wheel braking during landing or RTO shall not occur.

We consider that the hydraulic pressure at the output should be above some
minimum constant threshold to have any effect on the braking. Recall from
Section 4 that we have variables PedalPos1, PedalPos2, and MechPedal, that
describe the electric and mechanical pedal positions, respectively. We can state
our safety property as,

When all pedals are pressed, then either the normal pressure or the al-
ternate pressure should be above the threshold.

We first define two intermediate variables in Lustre to represent whether all of
the pedals are being pressed (AllPed) and whether any pressure is being provided
to the brakes (SomePressure).

AllPed = (IS_PedalPressed(PedalPos1) and IS_PedalPressed(PedalPos2)

and IS_PedalPressed(MechPedal));

SomePressure = (Normal_Pressure > threshold) or

(Alternate_Pressure > threshold);

IS PedalPressed is a predicate that returns true when pedal is pressed. AllPed
and SomePressure are then used in the property SomePressure Property as

SomePressure_Property = Implies(AllPed,SomePressure);

We used Design Verifier in an attempt to verify this property, which was initially
found to be falsifiable. If the wheels do not have traction, the anti-skid function-
ality will be activated and the pressure at the wheels may indeed be lowered
below the threshold to allow the wheels to regain traction. Since this is expected
and acceptable behavior, we modify our safety property accordingly, by extend-
ing AllPed to AllPedNoSkid, where we require that the pedals are pressed and
that we are not skidding.

AllPedNoSkid = (IS_PedalPressed(PedalPos1) and IS_PedalPressed(PedalPos2)

and IS_PedalPressed(MechPedal) and not (Skid));

Now, the SomePressure property is verified by Design Verifier: if all pedals are
pressed and we are not skidding then we will have some pressure at the brakes.

7 Extension with a Fault Model

In Section 5, we created a model describing the nominal behavior of the system.
To perform the safety analysis on this model, we would like to extend it to
describe possible fault behavior. This section illustrates specification of the fault
model and extension of the nominal model with this fault behavior in Simulink.

Failure modes are introduced in the analysis to capture the various ways in
which the components of the system can malfunction. We want to be able to

130 A. Joshi and M.P.E. Heimdahl

model both persistent and intermittent failures and also multiple simultaneous
failures. Traditionally, failure modes specify predefined ways in which compo-
nents can fail, e.g., the output from a digital component might be stuck at
a particular value, inverted, take on a nondeterministic value (unconstrained
value), etc. In the WBS example, the mechanical failures considered include
different variants of stuck valves corresponding to the different kinds of valves,
power failure to the BSCU, and pump failures. We also consider one digital fail-
ure mode for the BSCU component, an inverted signal for the Boolean Sel Alt
(select alternate system) output.

1

Out

5

Stuck_Choice

4

Fail_Flag

3

Nominal_In

2

Stuck_Val_0

1

Stuck_Val_1

Binary_Stuck_at

1

Out

zero

ZERO

Stuck_Val_1

Stuck_Val_0

Nominal_In

Fail_Flag

Stuck_Choice

Out

Binary_Stuck_atPipePressure_In

CmdPos

PipePressure_Out

MeterValve

4

Cmd

3

Pressure

2

Stuck_at_Val

1

Stuck_Flag

Fig. 5. Binary Stuck at failure mode and MeterValve fault extension

Let us consider the notion of a valve stuck open or closed in more detail.
The manifestation of this failure must consider the original input pressure to
the component (in case the valve is stuck open) and override the normal output
of the valve. We create a simple fault model in which a component can either
be stuck open or closed in Figure 5. Binary Stuck at failure mode switches be-
tween the stuck value and the nominal value depending on the boolean Fail Flag
(fault trigger). The stuck value could be either Stuck Val 1 (open) or Stuck Val 0
(closed) depending on the boolean Stuck Choice. Thus, we define two ‘special’
outputs for the failure mode depending on whether the component is stuck open
or closed; if it is not stuck, we output the nominal value of the original com-
ponent. We then extend the MeterValve component to MeterValve Stuck using
this failure mode (Figure 5). When Stuck Choice is 1 the meter valve is stuck

Model-Based Safety Analysis of Simulink Models 131

open and the input pressure is forwarded as is to the output, ignoring the valve
position command. When Stuck Choice is 0 the valve is stuck closed and the
output pressure is set to 0.

To extend the original model, the nominal mechanical components from the
original model (Figure 4) are replaced by the corresponding components ex-
tended with failure modes. To control the fault behavior of the extended model,
a number of fault inputs need to be added to the system. For example, all the
valve components, extended by the stuck at failure mode, have two additional
inputs: Stuck Flag and Stuck Val. The rest of the failure modes require a single
input signaling the occurrence of a fault. After extension, the model looks fairly
similar to Figure 4, but adds some complexity and clutter due to the number of
additional inputs necessary to describe the possible faults.

8 Exploratory Safety Analysis

After extending the model with the faults, we would like to check the fault
tolerance of our system, i.e., we want to check that the system is tolerant to a
certain maximum number of faults. More specifically, we would like to investigate
two types of faults using this approach—transient single step faults and faults
lasting over an arbitrary number of steps, which can simulate permanent faults.
For this example we again formalize our safety properties in Lustre and use the
SCADE Design Verifier for verification. To make it easier to specify properties,
we extend our model to compute the total number of fault inputs that are true
in the current step (this number given by NumFails).

First, let us verify if our safety requirement holds in the presence of one fault.

If there is one fault and all pedals are pressed in absence of skidding,
then either the normal pressure or the alternate pressure should be above
the threshold.

We can formalize this in Lustre as,

Prop_Orig = fby(Implies(((NumFails = 1) and AllPedNoSkid),

SomePressure), 1, true) ;

Lustre expressions always look at the current and past instants. Implies encodes
implication and pre operator examines values of variables from previous steps.
The fby operator looks at the n-th previous value of an expression (in this case,
the Implies expression). The second argument (1) of the fby expression is the
value for n. The third argument (true) describes the value of the fby operator
in the initial state.

When attempting to verify Prop Orig using Design Verifier, it returns a
counterexample. We realize that, due to some latency, the system cannot respond
to most faults in the same step in which they occur. Unfortunately, even after
extending the number of steps to respond, if our only constraint is on the number
of faults, the model checker finds a counterexample. It gives a scenario in which
the fault migrates: the system toggles between faults on the Normal line and the

132 A. Joshi and M.P.E. Heimdahl

Alternate line and can never recover. Since this situation is highly unlikely, we
rule it out. We do so by stating that any transient fault will be followed by a
few steps in which no other transient fault occurs. In other words,

If there is one single step fault and in the next step all pedals are pressed
in absence of skidding, then in the next step either the normal pressure
or the alternate pressure should be above the threshold.

The encoding in Lustre is as follows:

Antecedent = pre(NumFails = 1) and AllPedNoSkid and (NumFails = 0);

Consequent = SomePressure ;

Prop_SingleStepSingleFail = fby(Implies(Antecedent, Consequent),2,true) ;

However, the Design Verifier still returns with a counterexample. We observe
that there is an additional step delay for the system to detect failures located
on the NORMAL system and switch to the ALTERNATE system. We deem this delay
acceptable and modify our property again. After allowing for an additional delay
in the property, the Deign Verifier verifies it. Thus, we can formally verify that
our system can recover from one transient fault in at most three steps.

Now, we want to investigate how our system responds to persistent faults.
To describe this fault scenario, we define a boolean variable, Changed, which
takes on the value true when one of more of the fault trigger inputs change their
values. Using this variable, we can describe persistent faults in which the same
fault occurs for an arbitrary number of steps. The following property is the same
as the earlier transient property, except that now we have not(Changed) instead
of (NumFails = 0) to encode that the same fault persists in the following two
steps.

Antecedent=pre(pre(NumFails = 1)) and pre(AllPedNoSkid and not(Changed))

and AllPedNoSkid and not(Changed) ;

Consequent=pre(SomePressure) or SomePressure ;

Prop_MultiStepSingleFail = fby(Implies(Antecedent,Consequent),3,true) ;

Design Verifier again finds a counterexample, and from this, we observe that
there is an additional delay required for the system to respond to some persistent
faults, in the situation when the system is switching back to the NORMAL hydraulic
system from the ALTERNATE system. In this instance, it takes an additional step
to check if a persistent fault on the NORMAL line is still present. To handle this
case, we add one additional step for the system to stabilize. Design verifier no
verifies that the system will behave as expected. Thus, we verify that the system
can recover from single transient or persistent faults within an acceptable time
frame.

However, we can easily observe that the system is not tolerant to two (or
more) simultaneous continuous failures. Design Verifier immediately comes back
with a counter-example where two meter valves fail along both the normal and
the alternate hydraulic lines. Note that, the safety engineer can explore different
combinations of faults that the system can tolerate. There will not be even a
glitch in the output pressure if all the components on the Alternate line fail when
no component along the Normal line fails.

Model-Based Safety Analysis of Simulink Models 133

9 Related Work

Most of the work in automating safety analysis has been in automatically gener-
ating fault trees. FSAP/NuSMV-SA [4] is a tool, developed as part of the ESACS
project [3], for automating the generation of fault trees. The ESACS methodol-
ogy supports integrated design and safety analysis of systems. The FSAP tool
requires the system model to be specified in NuSMV and has support for failure
mode definition and model extension through automatic failure injection. FSAP
uses the NuSMV model checker to generate a fault tree given a top level event
in temporal logic. Though FSAP is a very powerful tool, it has disadvantages,
which might limit its applicability to practical systems. A fault tree generated
by FSAP has a flat structure; the structure of the generated fault trees is an
“or-and” structure, i.e., it is a disjunction of all the minimum cut sets, with
each minimum cut set being a product of basic events. A fault tree generated
by a traditional manual analysis is usually more intuitive to read as the analyst
creates the fault tree to correspond to the structure of the system. Also, we
observed that there isn’t a lot flexibility in defining the fault model - no good
way of specifying fault propagation, simultaneous/dependent faults, and persis-
tent/intermittent faults. Also, FSAP cannot describe even moderately complex
faults, such as stuck at, as it can only affect the output of a component.

HiP-HOPS (Hierarchically Performed Hazard Origin and Propagation Stud-
ies) [8] [7] is a method for safety analysis that enables integrated assessment of a
complex system from the functional level through to the low level of component
failure modes. The failure behavior of components in the model is analyzed using
a modification of classical FMEA called Interface Focused-FMEA (IF-FMEA).
One of the strong points of this approach is that the fault tree synthesis algo-
rithm neatly captures the hierarchical structure of the system in the fault tree.

The Altarica language was designed to formally specify the behavior of sys-
tems when faults occur [2]. An Altarica model can be assessed by means of
complementary tools such as fault tree generator and model-checker. In terms of
fault modeling, there seems to be no good support for simultaneous and depen-
dent failures. Altarica does not differentiate between transient and permanent
faults.

10 Summary and Conclusion

We describe Model-Based Safety Analysis, an approach for automating portions
of the safety analysis process using executable formal models of the system.
This approach is based on existing commercial tools and techniques that are
increasingly used for systems and software engineering for safety-critical systems.
We have modelled the Wheel Brake System example from ARP 4761 - Appendix
L [2]. We illustrated how this system can be modelled and investigated for safety
and fault tolerance. We believe that the model-based safety analysis approach
has several benefits to offer to a next-generation safety analysis process. For
instance,

134 A. Joshi and M.P.E. Heimdahl

– A tighter integration between systems and safety analysis based on common
models of system architecture and failure modes.

– The ability to simulate the behavior of system architectures early in the
development process to explore potential hazards.

– The ability to exhaustively explore all possible behaviors of a system ar-
chitecture with respect to some safety property of interest using automated
analysis tools.

– The ability to automatically generate many of the artifacts that are man-
ually created during a traditional safety analysis such as fault trees and
FMEA/FMECA charts.

Although we have received positive feedback from our industry partners,
there are several research challenges that must be addressed before the full ben-
efits of model-based safety analysis can be fully realized. First, there are ques-
tions as to which languages and tools are most suitable and how much modeling
detail is necessary to perform useful analysis. Second, we observed that directly
composing the fault model with the system model clutters the ‘nominal’ model
with failure information, which obscures the nominal system functionality. This
complexity may make model evolution difficult, error prone, and costly. In our
opinion, the system model and the fault model should be defined separately and
some automatic composition mechanism should be created allowing the system
model and fault model to be easily merged for analysis. Third, although we were
able to successfully analyze a realistic example, there are serious questions about
the scalability of the analysis tools.

Acknowledgements

We would like to thank Dr. Steven Miller and Dr. Michael Whalen of Rockwell
Collins Inc. for their valuable insights and feedback in course of our collaboration
with them on this project.

References

1. SAE ARP4761. Guidelines and Methods for Conducting the Safety Assessment
Process on Civil Airborne Systems and Equipment. SAE International, December
1996.

2. Pierre Bieber, Charles Castel, and Christel Seguin. Combination of fault tree anal-
ysis and model checking for safety assessment of complex system. In In Proceedings
of the 4th European Dependable Computing Conference on Dependable Comput-
ing, pages 19–31. Springer-Verlag, 2002.

3. M. Bozzano, A. Villafiorita, O. Kerlund, P. Bieber, C. Bougnol, E. Bde, M.
Bretschneider, A. Cavallo, C. Castel, M. Cifaldi, A. Cimatti, A. Griffault, C.
Kehren, B. Lawrence, A. Ldtke, S. Metge, C. Papadopoulos, R. Passarello, T.
Peikenkamp, P. Persson, C. Seguin, L. Trotta, L. Valacca, and G. Zacco. Esacs:
an integrated methodology for design and safety analysis of complex systems. In
In Proceedings of ESREL 2003, pages 237–245. Balkema Publishers, June 15–18
2003.

Model-Based Safety Analysis of Simulink Models 135

4. Marco Bozzano and Adolfo Villafiorita. Improving system reliability via model
checking: the fsap / nusmv-sa safety analysis platform. In In Proceedings of SAFE-
COMP 2003, pages 49–62, Edinburgh, 2003. Springer.

5. James Dabney and Thomas Harmon. Mastering Simulink. Prentice Hall, Upper
Saddle River, NJ, 2004.

6. N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous dataflow
programming language lustre. Proceedings of the IEEE, 79(9):1305–1320, Septem-
ber 1991.

7. Yiannis Papadopoulos and Matthias Maruhn. Model-based synthesis of fault trees
from matlab-simulink models. In The International Conference on Dependable Sys-
tems and Networks (DSN’01), July 01–04 2001.

8. Yiannis Papadopoulos and John A. McDermid. Hierarchically performed hazard
origin and propagation studies. In In Proceedings of the 18th International Con-
ference, SAFECOMP’99, volume LNCS 1698. Springer-Verlag, 1999.

9. Esterel Technologies. Scade suite product description. http://www.esterel-
technologies.com/v2/scadeSuiteForSafetyCriticalSoftwareDevelopment/
index.html.

10. Michael W. Whalen. A formal semantics for RSML−e. Master’s thesis, University
of Minnesota, May 2000.

R. Winther, B.A. Gran, and G. Dahll (Eds.): SAFECOMP 2005, LNCS 3688, pp. 136 – 150, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Using Safety Critical Artificial Neural Networks
in Gas Turbine Aero-Engine Control

Zeshan Kurd and Tim P. Kelly

High Integrity Systems Engineering Group,
Department of Computer Science,

University of York, York, YO10 5DD, UK
{zeshan.kurd, tim.kelly}@cs.york.ac.uk

Abstract. ‘Safety Critical Artificial Neural Networks’ (SCANNs) have been
previously defined to perform nonlinear function approximation and learning.
SCANN exploits safety constraints to ensure identified failure modes are miti-
gated for highly-dependable roles. It represents both qualitative and quantitative
knowledge using fuzzy rules and is described as a ‘hybrid’ neural network. The
‘Safety Lifecycle for Artificial Neural Networks’ (SLANN) has also previously
defined the appropriate development and safety analysis tasks for these ‘hybrid’
neural networks. This paper examines the practicalities of using the SCANN
and SLANN for Gas Turbine Aero-Engine control. The solution facilitates ad-
aptation to a changing environment such as engine degradation and offers extra
cost efficiency over conventional approaches. A walkthrough of the SLANN is
presented demonstrating the interrelationship of development and safety proc-
esses enabling product-based safety arguments. Results illustrating the benefits
and safety of the SCANN in a Gas Turbine Engine Model are provided using
the SCANN simulation tool.

1 Introduction

The application of Artificial Neural Networks (ANNs) within safety critical systems
is highly desirable. One notable benefit includes the ability to learn and adapt to a
changing environment. Another advantage is the ability to generalise outputs given
novel data. The operational performance of ANNs can also exceed conventional
methods in areas of pattern recognition and function approximation. These qualities
enable applications to provide improved efficiency (in terms of reduced cost) and
maximisation of performance in a changing operating context. Previous work has
defined the “Safety Critical Artificial Neural Network” (SCANN) [1, 2]. One major
benefit of the SCANN is that it provides a white-box view for its behaviour. It is a
‘hybrid’ system that exploits both fuzzy and neural network paradigms for mutual
benefit and overcomes many of the problems identified for ANNs [3]. Behaviour is
described qualitatively using fuzzy rules whilst neural network learning algorithms
are exploited to manipulate the quantitative representation. Through the use of safety
constraints (and constrained learning) the behaviour of the SCANN can be guaranteed

 Using SCANNs in Gas Turbine Aero-Engine Control 137

to not lead to identified failure modes [1, 2] typically associated with control
problems.

A “Safety Lifecycle for Artificial Neural Networks” (SLANN) has also been pre-
viously defined [4]. The SLANN encapsulates the main development tasks involved
in developing ‘hybrid’ ANNs. Also included are suitable processes that aim to deter-
mine safety requirements and systematically deal with partial prior knowledge.
Throughout the lifecycle, safety requirements are determined, faults identified and
mitigated. The SLANN directly interfaces with the problem environment to capture
an intentionally complete specification during design.

Both SLANN and SCANN offer the possibility of using neural networks and fuzzy
logical systems in highly dependable roles within safety critical systems. The Rolls
Royce Spey Gas Turbine Aero-Engine (GTE) has been chosen as a real world prob-
lem to evaluate the practicality of both SLANN and SCANN. In particular, tradeoffs
between safety and performance are examined to assess the degree of SCANN per-
formance impact (or advantage) in the presence of safety constraints.

The motivation for using the GTE is the potential for improved performance for
situations such as engine degradation. There is also the prospect to improve hazard
detection through health monitoring - ultimately leading to enhanced efficiency.

Section 2 describes the mechanism and schematic for the GTE. Section 3 dem-
onstrates effectiveness by presenting a stepwise walkthrough of the SLANN to
generate a SCANN. The potential of SCANN learning in the GTE is examined in
section 4.

2 Gas Turbine Engine Mechanism

Gas Turbine Engines (GTE) are internal combustion heat engines which convert
heat energy into mechanical energy. There are three main elements within the
GTE namely; compressor, combustion chamber and a turbine placed on a com-
mon shaft.

The GTE illustrated in Fig. 1 describes the typical mechanism for producing thrust.
The initial stage involves atmospheric air entering the engine body. Air then enters
the compressor which is divided into the LP (Low Pressure) and HP (High Pressure)
compressor units (twin-spool). Air pressure is first raised by the LP Compressor unit
and then further increased by the HP Compressor unit. The Inlet Guide Vane (IGV) is
used to match the air from the fan to the HP compressor characteristics. Pressurised
air then reaches the combustion chamber where engine fuel is mixed with the com-
pressed air and ignited at constant pressure. This results in a rise in temperature and
expansion of the gases. A percentage of the airflow is then mixed with the combusted
gas from the turbine exit. This is then ejected through the jet pipe and variable nozzle
area to produce a propulsive thrust.

The GTE has been used for military and civilian applications and is known as an
“air-breathing” engine since the engine airflow is 250 times its fuel flow rate. A
‘Spey’ GTE nonlinear thermodynamic model (Matlab & Simulink) was acquired from
our sponsors QinetiQ. Table 1 describes the main inputs and outputs of the system
(for open-loop and closed-loop control).

138 Z. Kurd and T.P. Kelly

Fig. 1. Typical Twin-Spool Gas Turbine Aero-Engine Mechanical Layout

Previous work [5] has examined the potential to use fuzzy systems to replace sev-
eral controllers in the GTE. This resulted in fuzzy schedulers for fuel flow, IGV and
nozzle controllers using Mamdani and Takagi-Sugeno [6] fuzzy rules. The work dem-
onstrated an unconventional approach for aerospace systems design to yield improved
performance (such as thrust maximisation) over linear or non-linear polynomial
schedulers. Although the study did make note of potential engine hazards the work
focussed on performance issues instead of addressing hazards associated with each
control function.

Table 1. Main inputs and outputs for the Simulink ‘Spey’ GTE model

Inputs of the GTE model

Outputs of the GTE model

Variable Description
Vari-
able

Description

NHDem

Thrust setting and fuel
flow demand (%). Rate
limited to prevent over
acceleration.

NH
High pressure spool speed (%). Air
data is used to correct this value for
changes in flight conditions.

WFE Fuel Flow (kg/s) NL Low pressure spool speed (%)
HP IGV Inlet Guide Vane (°) DPUP Bypass duct mach number
NOZZ Exhaust nozzle area (m²) XGN Gross thrust (kN)

LPSM
HPSM

Low/High Pressure Surge Margin
measures how close engine is to stall.
Indirectly controlled against DPUP
and NL (%)

TBT, JPT Turbine and jet pipe temperatures (°C)

 Using SCANNs in Gas Turbine Aero-Engine Control 139

3 SCANN Development for the GTE IGV Scheduler Function

The SLANN defined in [1, 2] has been refined and presented in Fig. 2 with steps
denoted by circled numbers. The development phases focuses on inserting prior
knowledge (which may be partial and inaccurate) to generate a SCANN. It then goes
through a process of learning until suitable performance is reached (and safety condi-
tions satisfied). The refined knowledge is then inserted to generate a final SCANN.
With further training (post-certification) this knowledge can be easily, completely and
soundly extracted and analysed to learn about the problem domain [1]. Each step in
the lifecycle is described and tackled in the following sub-sections.

PHA

Guid
ed

 re
-tr

ain

EX
TR
AC
T

FHA

EX
TR
AC
T INSERT

INSERT

W
hite-box

Black-box

Fig. 2. Development and Safety Lifecycle for Artificial Neural Networks (SLANN) [4]

3.1 Problem Analysis

There are several components within the GTE control model that can be replaced with
the SCANN including WFE, IGV, NOZZ and BOV (Blow-Off Valve). For the pur-
pose of this paper, replacement of the conventional IGV scheduler is considered.

The role of the IGVs is to control airflow and maintain efficient fan operation. As
the air passes from the trailing edge of the IGVs, the air drawn into the engine is de-
flected in the direction of the rotating compressor. The airflow angle of entry onto the
rotating compressor blades must be within a stall-free range. This is achieved with a
variable geometry IGV which changes the angle of attack of the blades to prevent
compressor stall. Air pressure or velocity is not changed as a result of this action and
is maintained within acceptable limits (for low airflow conditions). It also permits
high airflow with minimum restrictions.

140 Z. Kurd and T.P. Kelly

There are a substantial number of guide vanes within a compressor assembly. To
allow variable guide vane positions, vane bearing seats are formed by radial holes and
counterbores through circumferential supporting ribs. Typically, the positioning of the
IGV angle cannot be achieved with a high degree of precision [5]. For control, the
IGV is positioned against an open-loop mapping which is determined either by NH or
NL as a SISO system (Single-Input Single-Output). The conventional IGV function is
set to 32 degrees below 78% NH, 10 degrees above 91%, and with proportional op-
eration between these ranges. This function ensures control between NH and NL and
reduces risk of engine surge by maintaining a “working line”. However, the linear
schedule may not be optimal according to engine performance requirements [5]. The
problem is to use the SCANN for more appropriate scheduling. This will replace the
existing IGV scheduler whilst ensuring that identified hazards are mitigated and
prevented.

3.2 Early Lifecycle Steps

To begin systematic development of the SCANN, Step 1 of the SLANN involves the
selection of input and output variables for the desired function. For the problem at
hand, this task is simplified since a certified controller for the IGV already exists.
Therefore the input for the IGV scheduler is NH with output IGV.

Step 2 is a design task which determines the appropriate reasoning mechanism. In
this case, the mechanism will be the SCANN as defined in [1]. The SCANN is based
upon the FSOM [7] and consists of six layers.

Layer 1 is the input layer and propagates inputs (from sensors) to layer 2. Layer 2
is the fuzzy set membership (distance) function layer. This layer comprises of neurons
for every input fuzzy set which perform the triangular function. Layer 3 performs
fuzzy inference (min or product operator) and has no adaptable parameters. Layer 4
normalises activations (memberships) of activated rules. Layer 5 computes crisp rule
outputs using Takagi-Sugeno reasoning [6] described by (1).

 ()1 ,0 ,1 1 ,2 2 ,,..., ,..., .i i n i i i i n ny f x x a a x a x a x= = + + + + (1)

Where iy is the thi rule output, ,i na are tunable parameters and nx denotes the n

input(s) into the SCANN.
Layer 6 consists of a solitary neuron whose purpose is to determine a single output

value from several firing rules using weighted averaging (where weights are rule
activations).

Step 3 determines the universe of discourse for each input and output variable. By
examining the existing IGV function, the NH range is defined as [20, 115] and is rate
limited.

Following this design task, Preliminary Hazard Identification (PHA) is performed
(Step 3a) as an initial investigation of the potentially hazardous effects of control
variable anomalies (expressed as failure modes). There is a HAZOP table for each
input and output variable (Table 1) in order to determine the existence of potential
system level hazards (using a black-box view). This provides a thorough approach for
examining variables associated with the problem domain (such as addressing omis-
sion or commission of variables). In this case, variables NH and IGV have been

 Using SCANNs in Gas Turbine Aero-Engine Control 141

clearly defined for existing schemes. Moreover, an argument can also be derived from
this process about range and rate of change for each variable.

This analysis is similar to the FHA (Functional Hazard Analysis) performed for
controllers in modern engines [8] and contributes to the identification of required
safety constraints. Table 2 presents an extract from a PHA HAZOP table for IGV
(output).

Table 2. Extract from a HAZOP table for the IGV output. The causes of each item include ice,
wear or control. Remedies of each item are determined later.

No. IGV G. Word Meaning Consequence

1 Value MORE IGV value is too high
Stall/Surge/ Excess TBT/
Shaft Over-speed

2 Value LESS IGV value is too low Stall/Surge/Excess TBT
3 Value NO Omission of IGV Stall/Surge/Excess TBT
4 Value AS WELL AS Commission of IGV Stall/Surge/Excess TBT
5 Value REVERSE Negative or positive Stall/Surge/Excess TBT
6 Rate MORE Change is too high Stall/Surge/Excess TBT
7 Rate LESS Change is too low Stall/Surge/Excess TBT
8 Rate NO No rate change Stall/Surge/Excess TBT

9 Rate REVERSE
Change is decreasing or
increasing

Stall/Surge/Excess TBT

10 Rate AS WELL AS Oscillations Stall/Surge/Excess TBT

Although a similar table has also been generated for the input NH, constraining in-
puts lies outside the scope of the SCANN i.e. the SCANN output is ‘safe’ if the input
is without hazards.

Potential hazards associated with the control of the IGV (described in Table 2) in-
clude engine surge – resulting in loss of thrust or engine destruction. This is caused by
excessive aerodynamic pulsations transmitted throughout the whole engine (oscilla-
tions). For typical GTEs there is a surge line which is used as a measure of aerody-
namic stability. This defines various surge points for different engine speeds. Another
potential hazard is excessive Turbine blade temperature (TBT) leading to erosion of
the turbine blades.

Another hazard is engine over speed. This is when the NH or NL shaft speeds ex-
ceed 101% which can lead to engine surge and other destructive problems. In modern
engines there are various speed limiting features including Over Speed Governor units
(OSG) and electronic control logic systems.

3.3 Steps 4 and 5: Fuzzy Variable Partitioning and Fuzzy Rule Formation

Step 4 is a design task which determines fuzzy sets qualitatively and quantitatively
for the input space. Having a large number of fuzzy sets may improve the generalisa-
tion performance but reduce interpretability. Previous work on psychology and fuzzy
systems design [9] find that the optimal number of fuzzy sets for each dimension is
7 2± . There are three main features of the IGV schedule and the fuzzy sets defined

142 Z. Kurd and T.P. Kelly

 in Table 3 encapsulate the entire input range. To cater for partial knowledge, all de-
sired fuzzy sets do not have to be defined at this stage (this will be resolved later).
Any fault or uncovered regions in this partitioning will be discovered in the later steps
of the SLANN.

Step 5 involves forming rules using the derived fuzzy sets. For SISO systems this
is straight forward. If there are i fuzzy sets then i fuzzy rules are generated. In the case
of MISO systems each fuzzy set in each input dimension are combined resulting in a
rule for each possible combination. This provides input space coverage [1] or -
completeness [10]. The initial set of rules for the IGV scheduler is shown in Table 3.

Table 3. Incomplete fuzzy rules for the IGV scheduler. Values in brackets define ranges for
input and output sets.

 IF NH is (Antecedent Fuzzy Set) IGV is (Consequent)
Rule No. SET SPREAD SET IGV

1 LOW [],Low Lowsl sr = [19.9, 95] VHIGH is [20,40] 32°

2 VHIGH [],VHigh VHighsl sr = [80, 115.1] LOW is [0,10] 10°

Since it is difficult to assign a linguistic term to the bilinear consequent, a crisp
value is used to describe a constant output function in Table 3 [11]. To enhance inter-
pretability of the SCANN rules, the output space has also been partitioned. Therefore
the consequent crisp value for each rule lies within a linguistically labelled set.

The quantification of the spreads and output do not have to be ‘safe’ at this design
step and will be tackled later.

3.4 Step 5a: Functional Hazard Analysis (FHA)

Step 5a exploits a divide-and-conquer approach for identifying potential failure
modes associated with each rule. HAZOP style guide words are applied to each rule
generated (which may be partial and incorrect). The HAZOP in Table 2 is used to
identify hazards associated with each rule and provide suitable remedies in the form
of safety constraints. Each rule has its own HAZOP table – detailing functional level
hazards rather than system level hazards. The result of this approach is shown in
Table 4 which identifies failures modes of concern for a rule and the relevant safety
requirements. A summary of failure modes which may occur is as follows:

• Failure Modes 1 & 2: IGV value is too high\low
• Failure Modes 3 & 4: IGV value omission\commission
• Failure Modes 5 & 6: IGV value change is increasing\decreasing
• Failure Modes 7 & 8: IGV value change is too high\low

Failure modes 1 and 2 relate to items 1, 2 and 5 in Table 2. The engine model tack-
les these failure modes by saturating the IGV output between 0 and 40 degrees. This
is unacceptable for learning based systems since there are different bounds throughout
the entire schedule (which can be dynamic). These can be prevented during normal

 Using SCANNs in Gas Turbine Aero-Engine Control 143

SCANN operation, learning and generalisation post-certification. Semantic con-
straints have been described in [2] which tackle this problem by providing pre-
conditions and post-conditions (bounds) for each rule (contributing to a stability ar-
gument). A summary of semantic constraints are as follows:

1. Each fuzzy set spread edge is bounded between , ,[min ,max]i j i jsl sr

2. Rules outputs are bounded and saturated according to [min ,max]i iy y

3. All rules have at least one overlapping rule
4. Rules with input set overlap must also have overlapping output bounds

Failure modes 3 and 4 (relating to items 3 & 4 in Table 2) can be mitigated by pro-
viding input space coverage:

1. Semantic constraints 1 to 4 above
2. All values in the defined input space must be a member of an input fuzzy set
3. Inputs beyond defined valid regions must not be members of fuzzy sets

Finally, failure modes 5 to 8 relate to items 6-10 in Table 2 and are tackled as follows:

1. Semantic constraints 1 to 4 above
2. The gradient of each rule output function must be constrained according to

desired maximum and minimum output changes over input changes
3. Each rule must have at most one overlapping (input) rule and overlapping

rules must have non-overlapping input regions
4. No subsumed rules must exist – those whose input preconditions are a sub-

set of the preconditions of any other rule in the knowledge base
5. If a minimum rate of change is defined then the output for each rule must be

within output bounds at each spread edge (no saturation)

6. For two rules l and r which overlap, the function *y starting from ry (at left
side of overlap window) to ly (at right side of overlap window) must abide
by defined constraints

7. Instead of weighted averaging, the final output is *y as described above

Safety constraints are exploited by the SCANN and the approach is more powerful
and practical than safety ‘monitors’. For example, conventional safety monitors make
little provision for adaptive functions. Instead, the constraints are tightly integrated
with the approximated function allowing learning post-certification.

Many of the engine parameters are cross-coupled. This means that any change in
one will lead to disturbances with other control variables. The inherent non-linear
dynamics and multi-variable nature presents an additional challenge to define suitable
safety requirements for the IGV controller.

Obtaining safety requirements in Table 4 is realistic since they are typically avail-
able in modern engines and incorporated into validation schemes for control laws
within FADECs (Full Authority Digital Electronic Control).

Indeed the initial rule base may be incomplete (prior knowledge). Nevertheless this
safety process is performed at this stage as it helps provides an initial state for the
next step and facilitates “design guidance”.

144 Z. Kurd and T.P. Kelly

Table 4. Extract from the FHA performed for each rule where remedies are obtained from
example safety requirements

No IGV
Attrib.

Guide
Word Meaning Cause Consequence Rem-

edy

1 Value MORE Value is too high
Ice/Control/

Wear
Stall/Surge/E

xcess TBT

32
upper
bound

2 Value LESS Value is too low
Ice/Control/

Wear
Stall/Surge/E

xcess TBT

25.3
lower
bound

6 Rate MORE
Output change is

too high
Ice/Control/

Wear
Stall/Surge/E

xcess TBT
Con-
stant

3.5 Step 5b: Preliminary System Safety Assessment

Preliminary System Safety Assessment (PSSA) is concerned with determining
whether the SCANN parameter state is faulty. The approach compares the actual
SCANN state with the safety constraints described in step 5a. There are two possible
results arising from PSSA. The first requires further training if any safety constraints
are violated (safety-based stopping condition). The second result is that there are no
violations (hence no systematic faults) for the defined safety requirements.

The dynamic learning phase in step 6 is flexible enough to not only mitigate faults
through parameter tuning but also adapt the structure for new rules. If no further train-
ing is needed, it does not guarantee that the SCANN is ‘safe’. This is because new
rules may have been discovered which also need to be constrained. This is tackled by
the iterative approach to discover new knowledge (step 6), apply constraints (step 7)
and mitigate systematic faults (step 6 and 7a) with clear stopping conditions.

The SCANN simulation tool examined the state of the SCANN and determined if
any conditions had been violated. Following the initial PSSA a number of faults were
detected. Although a feature of the simulation includes the ability to automatically
mitigate these faults, the identification of these faults was used to ‘guide’ the dynamic
learning process (mitigation through training and assertion). The learning process can
be focussed or directed to certain regions of the function. These areas may include
unmapped regions of the input space, areas of identified faults, and rules where little
is known about the outputs. Since the NH fuzzy set ‘Medium’ has been left unde-
fined, the dynamic learning parameters will be set to add a set with large width. The
maximum number of rules was set to 4 (to maintain interpretability).

3.6 Step 6: Dynamic Learning Phase

The aim of this step is two fold; to maximise generalisation performance and remove
all systematic faults for the identified safety requirements. The SCANN\FSOM
(Fuzzy Self-Organising Map) offers several learning algorithms [7] typically used in
neural networks. Static learning algorithm uses a two phase approach for providing
small changes to the SCANN:

 Using SCANNs in Gas Turbine Aero-Engine Control 145

• Phase 1: Parameters defining fuzzy set spreads (antecedents) are frozen and
rule output parameters are tuned using the gradient descent algorithm [12]

• Phase 2: Consequent parameters are frozen and antecedent parameters tuned
using a modified Least Vector Quantisation (LVQ) algorithm [7]

A particularly attractive feature of the SCANN is its ability to self-generate. This
means it can choose to add new rules (decision based on heuristics) by generating
appropriate neurons and links. This self-generating property is termed the “Dynamic
Learning algorithm” and enables ‘large’ changes to the rule base. For this lifecycle
step, unconstrained versions of learning algorithms are used. This is because learning
may be necessary and usefully applied to adapt an initially unsafe parameter state to a
state without constraint violations.

The training data consisted of 91 uniform samples which represent the standard
non-optimal IGV scheduler described in section 3.1. The output functions were ini-
tially hand-tuned and learning was performed for 50 epochs using learning parameters
which allow convergence. A performance-based stopping condition was defined and
satisfied using Root Mean Square Error (RMSE).

After performing dynamic learning, remaining faults were identified using SSA (step
6a). No systematic faults remained for the defined safety requirements i.e. the dynamic
learning phase safety-based stopping condition is satisfied. The state of the rule base
after dynamic learning was extracted from the SCANN and is summarised in Table 5:

Table 5. New fuzzy rules (3 & 4) after dynamic learning for the IGV function

 IF (Antecedent) Consequent
Rule No. NH SET IGV (d)

1 LOW [19.9,77] 32°
2 VHIGH [90,115.1] 10°
3 MEDIUM [60,80] 31°
4 HIGH [75,92] 29°

3.7 Step 7: Functional Hazard Analysis

Following the dynamic learning process, FHA was applied to each of the extracted
rules and result of this is shown in Table 6. Since new rules and safety constraints
have been added, there is possibility of potential faults (safety constraint violations)
which are tackled by the following step.

3.8 Step 7a: System Safety Assessment Revisited

An additional phase of SSA was performed to identify any safety constraint violations
by the rule base as a result of additional safety requirements (items 3 and 4 in Table
6). In this case, additional systematic faults were identified and the process returned to
step 6. After step 7a, assurance can be provided that the SCANN IGV function is in
an initial safe state (and any future parameter states will also be safe).

146 Z. Kurd and T.P. Kelly

Table 6. Summary of example safety requirements1 for the complete knowledge

Rule
No.

Semantic
Constraints for

NH

Semantic
Constraints for

IGV

Dir. of Change
Constraints

Rate of
Change

Constraints
1 [19.9, 77] [25.3, 32] None Constant
3 [70, 83] [17,30] Decreasing (-) [1, 2]
4 [80, 91] [9.87,20] Decreasing (-) [1, 2]
2 [88, 115.1] [9.87,15] None Constant

4 Results of Learning and Generalisation Post Certification

Having developed a SCANN for IGV scheduling, the function (data set 1 in Table 7)
learnt during the SLANN is without faults and all identified failure modes have been
mitigated. Both the static and dynamic learning algorithms have been constrained to
ensure that systematic faults are not incorporated (leading to failure modes) when
adapting parameters. The constrained static learning algorithm (for on-line learning)
is outlined below:

Constrained Static Learning Algorithm Outline
1. Let p(t) be the SCANN parameter state
2. Feed in training sample pair (desired input and output)
3. Perform centre, spread or output tuning using learning laws [7] on tp(t) – tem-

porary copy of the SCANN parameter state which when tuned does not affect
actual SCANN behaviour

4. Identify presence of any safety constraint violations (faults)
5. If no violation then use tp(t) for the new tuned SCANN state

a. Otherwise, reject tp(t) and preserve training sample (reuse when
learning rate is more decayed)

The dynamic learning algorithm needs to provide assurance that any new rule be-
ing added does not violate the current state of the SCANN. There are two approaches
for adding new rules. The first is that any new rule which violates any of the safety
constraints is not added. The second is that the algorithm analyses safety constraints
of existing rules and inherits them for the new rule. Due to space constraints, the first
approach is used for this example.

Table 7. Summary of training data used for the SCANN

Data Set Samples Distribution Inferred function Perf. Convergence
1 91 Uniform Safe Sub-optimal Yes
2 91 Uniform Safe Optimal Yes
3 91 Arbitrary Hazardous Sub-optimal Yes
4 91 Arbitrary Hazardous Sub-optimal No (unstable)

1 The actual values of these safety requirements are not representative of a real engine since

they are based upon an engine model which features intentional inaccuracies.

 Using SCANNs in Gas Turbine Aero-Engine Control 147

SCANN learning can be exploited to maximise performance of the plant. In this
case, a cost function is needed to generate suitable training samples and is difficult to
determine due to cross-coupling of variables. For example, it has been identified that
maximising thrust leads to degradation in other objectives (such as blade tempera-
tures) [5]. Table 8 describes a set of safety criteria for the ‘Spey’ GTE which if vio-
lated would lead to the hazards outlined in Table 2.

The Multi-Objective Genetic Algorithm (MOGA) [5] has proved itself to be a ver-
satile tool for finding optimal fuzzy schedulers for the GTE. The MOGA is composed
of three levels and uses genetic algorithms to search for an optimal parameter state.
The first two levels generate and analyse performance (using criteria in [5]) of poten-
tial solutions at different operation points (such as 54, 65, 75, 85, 95% NH). The last
level selects the best fuzzy solution (by making trade-offs between objectives) to
maximise thrust (XGN).

Although the MOGA algorithm could be used for the SCANN, hand-tuning of the
IGV was performed to identify suitable cost function for SCANN learning (desired
outputs for training samples). Training data acquired from the MOGA algorithm or
other source can be of arbitrary integrity since the SCANN safety constraints provide
assurance that hazards associated with the IGV schedule are prevented.

For the SCANN to learn the new IGV solution, static learning used data set 2 for
50 epochs. To analyse the effects of the SCANN on the GTE, safety criteria [5] in
Table 8 was compared with the GTE state. The main requirements include preventing
excessive TBT, avoiding surges and engine over-speed. This IGV solution (data set 2
in Table 7) satisfied the safety criteria whilst providing improved thrust (Table 8).

Table 8. Safety criteria typically used to determine hazards associated with the ‘Spey’ Engine
obtained from [5] and the engine model. Results of the SCANN using four training sets are
compared with the safety criteria for a non-degraded engine during worst-case NH change.

The results show that the overall thrust has increased rising from an average of
20.1 kN (data set 1) to 21.3 kN (data set 2) leading to improved performance. On the
other hand, the TBT has exhibited an overall increase temperature and the working
line has been reduced as expected. Excessive NH and NL shaft speeds which are used
to determine engine over speed are prevented during the course of the engine run
(including worst-case of large acceleration followed by large deceleration). Table 8

Description Require-
ment Data 1 Data 2 Data 3 Data 4

HPSM 5% 6.96% 5.19% 7.39% 5.17%

LPSM 5% 10.6% 9.5%
10.51%

9.48%

TBT 1713 C 1558 C
1559 C

1544 C

1559 C

NH Shaft

Speed
101% 100.5% 100.5% 100.6% 100.5%

NL Shaft
Speed

101% 91.8% 91.8%
89.29%

91.9%

148 Z. Kurd and T.P. Kelly

also includes results of the GTE given arbitrary, hazardous training data which vio-
lated all safety requirements (data set 3). Data set 4 demonstrates ability of the
SCANN to meet the criteria under unstable conditions by setting overly large learning
rates. This was achieved by SCANN safety constraints which implicitly described
conditions leading to the engine hazards. Results for data sets 3 and 4 (in Table 8)
show that the safety criteria are met and Fig. 3 and Fig. 4 provide comparison of re-
sults for data sets 1 and 4.

20 30 40 50 60 70 80 90 100 110
8

10
12
14
16
18
20
22
24
26
28
30

IG
V

 [
°]

NH [%]

20 25 30 35 40 45 700

750

800

850

900

950

T
B

T
 [

°C
]

Time [sec.]

Fig. 3. Approximation of IGV schedule after learning training data 4 under unstable conditions
(left figure). Right figure is the results of Turbine Blade Temperature (TBT) for after learning
data 1 (solid line) and 4 (dotted line).

20 25 30 35 40 45
5

10
15
20
25
30
35
40
45

H
P

S
M

 [
%

]

Time [sec.]

20 25 30 35 40 45 5

10

15

20

25

30

35

L
P

S
M

 [
%

]

Time [sec.]

Fig. 4. HPSM and LPSM (over time) after SCANN learning data set 1 (solid) and 4 (dotted)

The SCANN can also contribute to health monitoring by making provision for haz-
ardous operating contexts. Health monitoring is a technique for analysing degradation
of a plant to determine whether servicing or maintenance is required. As a real-world
example, the role of learning can include detecting actuator failure instead of thrust
maximising (for advisory purposes). In the conventional control scheme, the IGV
output is a demand which is fed into the actuators. Actuators then produce the actual
IGV position value into the engine model. The inputs and actual IGV values can be
paired and used as training data. The safety constraints can be exploited to provide
additional information about plant performance. For example, continued semantic
constraint violations may infer that either the training data is poor or the demands

 Using SCANNs in Gas Turbine Aero-Engine Control 149

placed upon the scheduler have become hazardous (when actual moves too far from
the desired IGV position). Logs of these attempted violations can be recorded and
analysed to determine the state of the system as described in [1]. This provides addi-
tional exploitation of the SCANN learning algorithms for dynamic systems such as
the GTE. This is an alternative approach for modern engine validation schemes which
distinguishes itself by catering for the behaviour of intelligent adaptive systems.

5 Conclusions

This paper evaluates the practicality of using the SLANN and SCANN in a real-world
problem. SCANN demonstrates the beneficial marriage of fuzzy logic systems and
neural network paradigms. By exploiting a decompositional, analytical approach, the
complete behaviour of the SCANN can be easily and soundly extracted and controlled
through the use of safety constraints.

Feasibility and effectiveness of the safety and development processes in the
SLANN has been demonstrated. Design phases use theoretical and empirical knowl-
edge by directly interfacing and interacting with the environment.

The only major challenge within the SLANN is the activity of determining appro-
priate safety requirements. However, this task is no different than for conventional
software safety or controller development.

The SCANN has established its ability to safely learn (post-certification) and thus
improve GTE performance whilst maintaining safety requirements. Training data of
arbitrary integrity is permitted (for post-certification learning) – allowing for more
practical use of the SCANN in a real-world noisy environments. The advantages of
generalisation and learning also include contributing to identifying plant degradation.
Maintenance and servicing can also benefit (in terms of cost efficiency) through the
use of logs generated during learning. This can contribute to maximising operating
time for the plant before service is required leading cost efficiency. Both SLANN and
SCANN enable product-based safety arguments to justify the use of neural networks
and fuzzy logic systems in safety critical applications.

Acknowledgements

This work was funded by QinetiQ. The authors gratefully acknowledge the useful
comments and engine model provided by S. Shackerly and S. MacKenzie both of
QinetiQ (Farnborough).

References

1. Kurd, Z. and T.P. Kelly. Using Fuzzy Self-Organising Maps for Safety Critical Systems. in
23rd International Conference on Computer Safety, Reliability and Security
(SAFECOMP'04), 21-24 September. Potsdam, Germany (2004)

2. Kurd, Z., T.P. Kelly, and J. Austin. Exploiting Safety Constraints in Fuzzy Self-Organising
Maps for Safety Critical Applications. in 5th International Conference on Intelligent Data
Engineering and Automated Learning (IDEAL'04), 25-27 August. Exeter, UK (2004)

150 Z. Kurd and T.P. Kelly

3. Kurd, Z., Artificial Neural Networks in Safety-critical Applications, First Year Disserta-
tion, Department of Computer Science, University of York, 2002

4. Kurd, Z. and T.P. Kelly, Safety Lifecycle for Developing Safety-critical Artificial Neural
Networks. 22nd International Conference on Computer Safety, Reliability and Security
(SAFECOMP'03), 23-26 September, (2003).

5. Chipperfield, A.J., B. Bica, and P.J. Fleming, Fuzzy Scheduling Control of a Gas Turbine
Aero-Engine: A Multiobjective Approach. IEEE Trans. on Indus. Elec. 49(3) (2002).

6. Sugeno, M. and H. Takagi. Derivation of Fuzzy Control Rules from Human Operator's
Control Actions. in Proc. of the IFAC Symp. on Fuzzy Information, Knowledge Represen-
tation and Decision Analysis (1983)

7. Ojala, T., Neuro-Fuzzy Systems in Control, Masters Thesis, Department of Electrical
Engineering, Tampere University of Technology, Tampere, 1994

8. Wilkinson, P. and T.P. Kelly. Functional Hazard Analysis for Highly Integrated Aerospace
Systems. in IEE Seminar on Certification of Ground / Air Systems. London, UK (1998)

9. Miller, G.A., The magic number seven, plus or minus two: Some limits on our capacity for
processing information. Psychol. Rev. 63(81-97) (1956).

10. Lee, C.-C., Fuzzy Logic in Control Systems: Fuzzy Logic Controller- Parts 1 & 2. IEEE
Trans. on Systems, Man and Cybernetics. 20(2) (1990) 404-435.

11. Jang, J.S.R., ANFIS: adaptive-network-based fuzzy inference systems. IEEE Trans. Syst.
Man. Cybern. 23(3) (1993) 665-685.

12. Haykin, S., Neural Networks: A Comprehensive Foundation: Prentice-Hall (1999).

On the Effectiveness of Run-Time Checks

Meine J.P. van der Meulen1, Lorenzo Strigini1, and Miguel A. Revilla2

1 City University, Centre for Software Reliability, London, UK
http://www.csr.city.ac.uk

2 University of Valladolid, Valladolid, Spain
http://www.mac.cie.uva.es/∼revilla

Abstract. Run-time checks are often assumed to be a cost-effective way
of improving the dependability of software components, by checking re-
quired properties of their outputs and flagging an output as incorrect if
it fails the check. However, evaluating how effective they are going to
be in a future application is difficult, since the effectiveness of a check
depends on the unknown faults of the program to which it is applied. A
programming contest, providing thousands of programs written to the
same specifications, gives us the opportunity to systematically test run-
time checks to observe statistics of their effects on actual programs. In
these examples, run-time checks turn out to be most effective for unreli-
able programs. For more reliable programs, the benefit is relatively low
as compared to the gain that can be achieved by other (more expensive)
measures, most notably multiple-version diversity.

1 Introduction

Run-time checks are often proposed as a means to improve the dependability
of software components. They are seen as cheap compared to other means of
increasing reliability by run-time redundancy, e.g. N-version programming.

Run-time checks (also called executable assertions and other names) can be
based on various principles (see e.g. Lee and Anderson [3] for a summary), and
have wide application. For instance, the concept of design by contract [5] enables
a check on properties of program behaviour.

Some run-time checks can detect all failures, for example checks that perform
an inverse operation on the result of a software component [1,2]. If the program
computes y = f(x), an error is detected if x
= f−1(y). This is especially attrac-
tive when computing f(x) is complex, and the computation of the inverse f−1

relatively simple. The argument is then that because computing f−1 is simple,
the likelihood of failure of this run-time check is low. Also, it seems unlikely
that both the primary computation and the run-time check would fail on the
same invocation and in a consistent fashion. Together, these factors lead to a
high degree of confidence that program outputs that pass the check will be cor-
rect. However—as these authors readily admit—such theoretically perfect checks
do not exist in many cases, maybe even not in the majority of cases. Run-time
checks can then still be applied, but they will in general not be capable of finding
all failures. Examples of these partial run-time checks are given by e.g. [12].

R. Winther, B.A. Gran, and G. Dahll (Eds.): SAFECOMP 2005, LNCS 3688, pp. 151–164, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

152 M.J.P. van der Meulen, L. Strigini, and M.A. Revilla

Previous empirical evaluationof run-timecheckshave generallyused small sam-
ples of programs, or single programs [4,7,11]. Importantly, we run these measures
on a large population of programs. Indeed, if we wish to learn something general
about a run-time check, we need this statistical approach. Measuring the effective-
ness of a run-time check on a single program could, given a certain demand profile
and enough testing, determine the fraction of failures that the check is able to de-
tect (coverage) for that program, given that demand profile. But in practice, this
kind of precise knowledge would be of little value: if one could afford the required
amount of testing, at the end one wouldalso know which bugs the programhas, and
thus could correct them instead of using the run-time check. However, a software
designer wants to know whether a certain run-time check is worth the expense of
writing and running it, without the benefit of such complete knowledge. The run-
time check can detect certain failures caused by certain bugs: the coverage of the
check depends on which faults the program contains; and the designer does not usu-
ally know this. What matters are the statistics of the check’s coverage, given the
statistics of the bugs that may be present in the program. If a perfect check can-
not be had, a check that detects most of the failures caused by those bugs that are
likely to be in a program has great value. A check that detects many failures that
are possible but are not usually produced, because programmers do not make the
mistakes that would cause them, is much less useful. In conclusion, the coverage of
a check depends on the distribution of possible programs in which it is to be used.

Here, we choose three program specifications for which we have large numbers
of programs, and for each of the three we choose a few run-time checks, then study
their coverage. We thus intend to provide some example “data points” of how the
coverage can vary between populations of programs. In addition to such anecdotal
evidence—evidence that certain values or patterns of values may occur—such ex-
periments may contribute to software engineering knowledge if they reveal either
some behaviour that runs contrary to the common-sense expectations held about
run-time checks, and/or some apparent common trend among these few cases, al-
lowing us to conjecture general laws, to be tested by further research.

For lack of space, we onlydiscuss coverage, or equivalently the probability of un-
detected failure. We will also not discuss other dependability issues like availability
(possibly reduced by false alarms from run-time checks), although these should be
taken into account when selecting fault tolerance mechanisms.

2 The Experiment

2.1 The UVa Online Judge

The “UVa Online Judge”-Website [8] is an initiative of one of the authors (Re-
villa). It contains program specifications for which anyone may submit programs
in C, C++, Java or Pascal intended to implement them. The correctness of a
program is automatically judged by the “Online Judge”. Most authors submit
programs repeatedly until one is judged correct. Many thousands of authors con-
tribute and together they have produced more than 3,000,000 programs for the
approximately 1,500 specifications on the website.

On the Effectiveness of Run-Time Checks 153

Table 1. Some statistics on the three problems

3n+1 Factovisors Prime Time
C C++ Pascal C C++ Pascal C C++ Pascal

Number of authors 5,897 6,097 1,581 212 582 71 467 884 183
First submission correct 2,479 2,434 593 112 294 41 345 636 125

We study the C, C++ and Pascal programs written to three different specifi-
cations (see Table 1 for some statistics, and http://acm.uva.es/problemset/
for more details on the specifications). We submit every program to a test set,
and compare the effectiveness of run-time checks in detecting their failures.

There are some obvious drawbacks from using these data as a source for
scientific analysis. First, these are not “real” programs: they solve small, mostly
mathematical, problems. Second, these programs are not written by professional
programmers, but typically by students, which may affect the amount and kind
of programming errors. We have to be careful not to overinterpret the results.

All three specifications specify programs that are memory-less (i.e. earlier
demands should not influence program behaviour on later ones), and for which
a demand consists of only two integer input values. Both restrictions are useful
to keep these initial experiments simple and the computing time within reason-
able bounds. The necessary preparatory calculations for the analysis of these
programs took between a day and two weeks, depending on the specification.

2.2 Running the Programs

For a given specification, all programs were run on the same set of demands.
Every program is restarted for every demand, to ensure the experiment is not
influenced by history, e.g. when a program crashes for certain demands or leaves
its internal state corrupted after execution of a demand (we accept the drawback
of not detecting bugs with history-dependent behaviour). We set a time limit
on the execution of each demand, and thus terminate programs that are very
slow, stall, or crash. We only use the first program submitted by each author
and discard all subsequent submissions by the same author. These subsequent
submissions have shown to have comparable fault behaviour and this dependence
between submissions would complicate any statistical analysis.

For each demand, the outputs generated by all the programs are compared.
Programs that produce exactly the same outputs on every demands form an
“equivalence class”. We evaluate the performance of each run-time check for
each equivalence class.

For all three specifications, we chose the equivalence class with the highest
frequency as the oracle, i.e. the version whose answers we consider correct. We
challenged each oracle in various ways, but never found any of them to have
failed. For each specification, the test data were chosen to exhaustively cover a
region in the demand space. In other words, we assume (arbitrarily) a demand
profile in which all demands that occur are equiprobable.

154 M.J.P. van der Meulen, L. Strigini, and M.A. Revilla

2.3 Outcomes of Run-Time Checks

Run-time checks test properties of the output of a software component (the
primary), based on knowledge of its functionality. In the rest of this paper we
distinguish two types of run-time checks: plausibility checks and self-consistency
checks (SCCs). The latter, inspired by Blum’s “complex checkers” [12], use ad-
ditional calls to the primary to validate its results, by checking whether some
known mathematical relationship that must link its outputs on two or more
demands does hold.

Checks on the values output by the primary are only meaningful if the output
satisfies some minimal set of syntactic properties, one of which is that an output
exists. Other required properties will be described with each specification. We
call an output that satisfies this minimal set of properties “valid” (in principle
this validaty check also constitutes a run-time check). We separate the check for
“validity” from the “real” run-time checks, because it otherwise remains implicit
and a fair comparison of run-time checks is not possible.

Table 2 shows how we classify the effects of plausibility checks. There are
two steps: first, a check on the validity of the output of the primary; second, if
this output is valid, a plausibility check on the output. There is an undetected
failure (of the primary) if both the primary computes an incorrect valid output
and the checker fails to detect the failure. Our plausibility checks did not cause
any false alarms. Also note that a correct output cannot be invalid.

Table 2. Classification of execution results with plausibility checks

Output of Output Plausibility Effect from
primary valid check system viewpoint
Correct Yes Accept Success
Correct Yes Reject False alarm
Incorrect Yes Accept Undetected failure
Incorrect Yes Reject Detected failure
Incorrect No - Detected failure

Table 3. Classification of execution results with self-consistency checks

Output of Output Output of second call to primary Effect from
primary valid by self-consistency check system viewpoint
Correct Yes Consistent Success
Correct Yes Inconsistent False alarm
Correct Yes Invalid output Success
Incorrect Yes Consistent Undetected failure
Incorrect Yes Inconsistent Detected failure
Incorrect Yes Invalid output Undetected failure
Incorrect No - Detected failure

On the Effectiveness of Run-Time Checks 155

With self-consistency checks, the classification is slightly more complex
(Table 3): we have to consider that one way the self-consistency check may fail is
because its additional calls to the primary do not elicit valid outputs (e.g., they
cause the primary to crash). We then assume that the self-consistency check
will fail to reject the primary’s output, i.e., that an undetected failure ensues.
We could have made the decision to reject the output of the primary if the self-
consistency check fails in this way; this would lead to slightly different results.
False alarms did occur, which we do not analyse here for lack of space.

3 Results for the “3n+1” Specification

Short Specification. A number sequence is built as follows: start with a given
number n; if it is odd, multiply by 3 and add 1; if it is even, divide by 2.
The sequence length is the number of required steps to arrive at a result of 1.
Determine the maximum sequence length (max) for all values of n between two
given integers i, j, with 0 < i, j ≤ 100, 000. The output of the program is the
triple: i, j, max.

We tested “3n+1” with 2500 demands (i, j ∈ 1..50). The outputs of the
programs were deemed correct if the first three numbers in the output exactly
matched those of the oracle. We consider an output “valid” if it contains at
least three numbers. In the experiment we discard non-numeric characters and
the fourth and following numbers in the output. The programs submitted to
“3n+1” have been analysed in detail in [9]; this paper provides a description of
the faults present in the equivalence classes.

3.1 Plausibility Checks

We use the following plausibility checks for the “3n+1”-problem:

1. The maximum sequence length should be larger than 0.
2. The maximum possible sequence length (given the range of inputs) is 476.
3. The maximum sequence length should be larger than log2(max(i, j)).
4. The first output should be equal to the first input.
5. The second output should be equal to the second input.

We measure the effectiveness of a run-time check as the improvement it
produces on the average probability of undetected failure on demand (pufd).
Without run-time checks, a program’s probability of undetected failure equals
its probability of failure per demand (pfd).

Figure 1 shows the improvement in average pufd given by these plausibility
checks, depending on the average pufd of a pool of programs. We manipulate
this average by removing, one by one, from the original pool of 13575 programs,
the programs with the highest pufd. The more programs have been removed, the
lower the average pufd of the remaining pool.

The graph clearly shows that many of these run-time check are very effective
for unreliable programs (the right-hand side of the graph). More surprising is

156 M.J.P. van der Meulen, L. Strigini, and M.A. Revilla

Average pufd

pu
fd

 im
pr

ov
em

en
t

0.00001 0.0001 0.001 0.01 0.1

1
2

3
Valid output
Result larger than 0
Result smaller than 477
1st input = 1st output
2nd input = 2nd output
Result larger than 2log of max

Fig. 1. The improvement of the pufd of the primary for the various plausibility checks
for “3n+1”. The curves for “1st input = 1st output” and “2nd input = 2nd output”
are invisible because they coincide with the curve for “Valid output”.

that the impact is quite pronounced at a pufd of the pool around 10−4, while it
is much lower for the rest of the graph. Apparently, these checks are effective for
some equivalence classes that are dominant in the pool for that particular pufd
range. Upon inspection, it appears that these programs fail for i = j.

The gain in pufd is for most of the graph only about 20%, but the peak
reaches a factor of 3.2 for the plausibility check “Result > log2(max(i, j))”, a
significant improvement over a program without checks. The check “Result>0”
is mainly effective for programs that initialise the outcome of the calculation of
the maximum sequence length to 0 or −1, if they abort the calculation before
setting the result to a new value. This appears to be caused by an incorrect
“for”-loop which fails when i > j. The check “Result<477” is not very effective.
The failures it detects have mostly to do with integer overflow and uninitialised
variables.

The check “Result > log2(max(i, j))” is the most effective of all. It catches
a few more programming faults than “Result > 0”, especially of those programs
that do not cover the entire range between the two inputs i and j for the calcu-
lation of the maximum sequence length.

Figure 2(a) gives some more detail of the performance of this plausibility
check. It shows the percentage of failures detected for each equivalence class. We
can make various observations. First, for many equivalence classes there is no
effect (many crosses with a coverage of 0%). Second, since there are more crosses
in the right-hand side of the graph, this check seems to be more effective when
the primary programs tend to be less reliable (i.e., for development processes
that tend to deliver poor reliability). We must say “seem” here, because this
graph lacks information about the frequencies of the various programs (sizes of
the equivalence classes). Third, this plausibility check still detects faults in the
left-hand side of the graph, i.e. for the more reliable programs.

On the Effectiveness of Run-Time Checks 157

0.0 0.2 0.4 0.6 0.8 1.0

0
20

40
60

80
10

0

pfd of equivalence class

P
er

ce
nt

ag
e

of
 fa

ilu
re

s
de

te
ct

ed

0.0 0.2 0.4 0.6 0.8 1.0

0
20

40
60

80
10

0

pfd of equivalence class

P
er

ce
nt

ag
e

of
 fa

ilu
re

s
de

te
ct

ed
(a) (b)

Fig. 2. Values of the error detection coverage of (a) the plausibility check “Result ¿
log2(max(i, j))” for the equivalence classes of “3n+1” programs, and (b) the plausi-
bility check “i ≤ j” for the equivalence classes of “Factovisors” programs. Each cross
represents an equivalence class. The horizontal axis gives the average pfd of the equiv-
alence class, the vertical axis the percentage of its incorrect outputs that the check
detects.

The plausibility check “First output equals first input” mainly catches prob-
lems caused by incorrect reading of the specification: some programs do not
return the inputs, or not always in the correct order. These faults lead to very
unreliable programs, and the effects of this plausibility check are not visible in
Figure 1 because they manifest themselves (i.e. differ from the curve for “Valid
output”) for average pufds larger than 0.1.

The result of the plausibility check “Second output equals second input” is
almost equal to the previous one. There are a few exceptions, for example when
the program returns the first input twice.

3.2 Self-consistency Checks

If we denote the calculation of the maximum sequence length as f(i, j), then:

f(i, j) = f(j, i) (1)

and:
f(i, j) = max(f(i, k), f(k, j)) for k ∈ i..j (2)

and, if we combine these two properties:

f(i, j) = max(f(j, k), f(k, i)) for k ∈ i..j (3)

Figure 3 presents the effectiveness of these self-consistency checks (for the
experiment, we choose k = �(i + j)/2�). Like our plausibility checks, these self-
consistency checks appear to be very effective for unreliable programs.

158 M.J.P. van der Meulen, L. Strigini, and M.A. Revilla

Average pufd

pu
fd

 im
pr

ov
em

en
t

0.00001 0.0001 0.001 0.01 0.1

1
2

3

Valid output
f(i,j)=f(j,i)
f(i,j)=max(f(i,k), f(k,j))
f(i,j)=max(f(j,k), f(k,i))

Fig. 3. Improvement in the average pufd of the primary for the various self-consistency
checks for “3n+1”

The first self-consistency check mainly detects failures of programs in which
the calculation of the maximum sequence length results in 0 or -1 for i > j. The
second mainly finds failures caused by incorrect calculations of the maximum
sequence length.

The third self-consistency check attains an improvement comparable to that
of the plausibility check “Result > log2(max(i, j))”, but with a shifted peak. It
appears that they catch different faults in the programs. As already stated, the
peak of “Result > log2(max(i, j))” is caused by programs failing for i = j (which
none of our self-consistency checks can detect) while this self-consistency check
detects failures caused by faults in the calculation of the maximum sequence
length as well as programs that systematically fail for i > j.

Average pufd

pu
fd

 im
pr

ov
em

en
t

0.00001 0.0001 0.001 0.01 0.1

1
2

3
4

5
6

7 Valid output
All run−time checks
All SCCs
All checks

Fig. 4. Improvement in the average pufd of the primary for combinations of run-time
checks for “3n+1”

On the Effectiveness of Run-Time Checks 159

The fact that the plausibility checks and the self-consistency checks tend to
detect different faults is highlighted by Figure 4, which shows the performances
of the combined plausibility checks, the combined self-consistency checks and
the combination of all run-time checks.

4 Results for the “Factovisors” Specification

Short Specification. For two given integers 0 ≤ i, j ≤ 231, determine whether
j divides i! (factorial i) and output “j divides i!” or “j does not divide i!”.

We tested “Factovisors” with the 2500 demands (i, j ∈ 1..50). We consider
an output “valid” if it contains at least two strings and the second is “does” or
“divides”. The main reason for invalid outputs appears to be absence of outputs.

4.1 Plausibility Checks

We use the following plausibility check for “Factovisors”:

1. If i ≥ j, the result should be “j divides i!”.

Figure 2(b) shows the coverage of the run-time check “i ≥ j” for each equiv-
alence class. It is remarkable, again, that the crosses are spread over the entire
plane: this check has some effect for equivalence classes with a large range of
reliabilities. We also again observe the large number of crosses for a coverage of
0%, showing the check to detect no failure at all for that class of programs.

Figure 5 shows the pufd improvement caused by the plausibility check. As
for “3n+1”, we observe that the run-time check is very effective for unreliable
programs. For pools of programs with average pufd between 10−4 and 10−2 the
reliability improvement varies between 1 and 1.6.

Average pufd

pu
fd

 im
pr

ov
em

en
t

0.00001 0.0001 0.001 0.01 0.1

1
2

3

Valid output
i<=j
g(i−1,j) => g(i,j)

Fig. 5. The effectiveness of the run-time checks for “Factovisors”

160 M.J.P. van der Meulen, L. Strigini, and M.A. Revilla

The graph shows a peculiarity for pufds smaller than 10−4: the improvement
approaches infinity. This is because as we remove programs from the pool, the
faulty programs in the pool eventually become a “monoculture”, a single equiv-
alence class, and the check happens to detect all the failures of this class of
incorrect programs. Here, the pool with the lowest non-zero average pufd con-
tains 447 correct programs and 21 incorrect ones in the same equivalence class;
the plausibility check detects the failures of these 21 incorrect programs.

4.2 Self-consistency Checks

If we call g(i, j) the Boolean representation of the output of the program, with
g(i, j) = true ≡ “j divides i!”, g(i, j) = false ≡ “j does not divide i!”, then:

g(i − 1, j) =⇒ g(i, j) with i
= 1 (4)

As can be seen in Figure 5, the effect of this self-consistency check is minimal:
the reliability improvement is never substantially greater than that given by the
validity check.

5 Results for the “Prime Time” Specification

Short Specification. Euler discovered that the formula n2 + n + 41 produces
a prime for 0 ≤ n ≤ 40; it does however not always produce a prime. Calculate
the percentage of primes the formula generates for n between two integers i and
j with 0 ≤ i ≤ j ≤ 10, 000.

We tested “Prime Time” on 3240 demands (i ∈ 0..79, j ∈ i..79). The outputs
were deemed correct if they differed by most 0.01 from the output of the oracle,
allowing for round-off errors (the answer is to be given with two decimal digits).

The output is considered “valid” when it contains at least one number. We
discard all non-numeric characters and subsequent digits from the output.

5.1 Plausibility Checks

The programs for “Prime Time” calculate a percentage, therefore:

1. The result should be larger than or equal to zero.
2. The result should be smaller than or equal to a hundred.

Figure 6 presents the effectiveness of the plausibility checks for “Prime Time”.
The plausibility check “Result ≥ 0” appears to have virtually no effect. The
plausibility check “Result ≤ 100” has some effect, but not very large.

5.2 Self-consistency Checks

If we denote the result of the calculation of the percentage with h(i, j), then:

h(i, j) =
h(i, k) × (k − i + 1) + h(k + 1, j) × (j − k)

j − i + 1
for i ≤ k < j (5)

On the Effectiveness of Run-Time Checks 161

Average pufd

pu
fd

 im
pr

ov
em

en
t

0.00001 0.0001 0.001 0.01 0.1

1
2

3
4 Valid output

Result >= 0
Result <= 100
SCC
All Checks

Fig. 6. The effectiveness of the run-time checks for “Prime Time”. The curve for the
plausibility check “Result ≥ 0” is not visible, because it coincides with the one for
“Valid output”.

Obviously, this check is not available when i = j. It is quite elegant: the comput-
ing time will not be excessively more than computing h(i, j). For the experiment,
we choose k = �(i + j)/2�.

The effectiveness of the self-consistency check is shown in Figure 6. It is
much more effective than the plausibility check “Result ≤ 100”. We observe the
same phenomenon for low pufds as for “Factovisors”: the effectiveness of the self-
consistency check approaches infinity. When we combine the plausibility checks
and the self-consistency check, we observe that the two complement each other:
the combination is (slightly) more effective than the self-consistency check alone.

6 Run-Time Checks vs. Multiple-Version Diversity

A question that begs answering is: how do run-time checks compare to other
forms of run-time fault tolerance? Using results we reported previously [10], we
can compare our run-time checks against multiple-version diversity for “3n+1”.

We observed (see Figure 7) that two-version diversity would become more
effective with decreasing mean probability of failure on demand of the pool of
programs from which the pair is selected, until a “plateau” is reached (between
a pufd of 10−5 and 10−3) with an improvement factor of about a hundred (note
that the opposite trend—effectiveness decreasing with decreasing mean pfd—is
also possible, as proved by models and empirical results [6]). For run-time checks
the opposite occurs: their effectiveness decreases with decreasing average pufd of
the primary reaching a fairly low improvement factor. The improvement factor
of using diversity is significantly higher than that of applying run-time checks.

For these programs, it seems that these run-time checks could be the better
choice for testing in the early phases of development, when the pufd of programs
is still high, and multiple-version diversity when pufds of programs become low.

162 M.J.P. van der Meulen, L. Strigini, and M.A. Revilla

Average pufd

pu
fd

 im
pr

ov
em

en
t

0.00001 0.0001 0.001 0.01 0.1

1
10

10
0

10
00

Fig. 7. Improvement of the pufd of a pair of randomly chosen C programs for “3n+1”,
relative to a single version. The horizontal axis shows the average pufd of the pool from
which both C programs are selected. The vertical axis shows the pufd improvement
(pufdA/pufdAB). The diagonal represents the theoretical reliability improvement if the
programs fail independently, i.e. pufdAB = pufdA.pufdB . (This figure is based on [10].)

7 Conclusion

The results in this paper are of course specific to these three specifications,
the programs submitted by these anonymous authors, the run-time checks we
devised, and the demand profiles we used (uniform in a subset of the demand
space). There are however some commonalities among the three sets of results,
and we will tentatively discuss these here, while keeping in mind the limitations
of this research.

First, we observe that the majority of the run-time checks considered are
very effective for unreliable programs or have no effect at all.

Then, if we only look at pools of primaries with average pufd between 10−4

and 10−2, the pufd improvement factor of the primary-checker pair is compa-
rable for all three specifications: in the range 1–4. Over this range, the average
improvement is less than 2 for all run-time checks considered.

Some run-time checks provide almost no benefit. It would be of great impor-
tance to be able to predict which checks are effective and which are not, but for
the time being this seems not to be possible.

These plausibility checks appear to detect a different set of failures than the
self-consistency checks, so that combining them is more effective than applying
either one alone. So, the apparent “diversity” between the two kinds of checks
did bring the benefit of some complementarity.

For pools of primaries with an average pufd lower than 10−2, the pufd im-
provement achieved by the run-time checks considered for “3n+1” is far less
than would have been achieved by applying multiple-version redundancy. In
these analyses, the pufd improvement realised by multiple-version redundancy
is at least a factor of a hundred better.

On the Effectiveness of Run-Time Checks 163

A natural comment on this work could be that since we have implemented
simple-minded checks, it is not surprising that they only catch the simple-minded
programming errors that cause highly unreliable programs. But this is actually a
non sequitur. It is true thatwe do not expect expert programmers to produce highly
unreliable programs, but our checks are “simple-minded” only in being based on
simple mathematical properties of these specifications. There is no a priori reason
why they should only catch simple-minded implementation errors: implementa-
tion errors are often caused by misunderstanding details of the specification or of
the program itself, not of some mathematical property of the specification that is
of little interest to the programmers. Likewise, there is no a priori reason for naive
errors normally to cause faults which cause very high failure rates.

A tempting conjecture generalising the results we observed is that for some
reason simple run-time checks tend (in some types of programs?) only to detect
the failures in very unreliable programs. This would be an attractive “natural
law” to believe and would simplify many decisions on applying run-time checks,
so that it may be worth exploring further, since without some solid, plausible
explanation (e.g. based on the psychology of programmers) or overwhelming
empirical evidence, it would appear wholly unjustified.

Our measure of effectiveness as average improvement in pufd may be ques-
tioned. It is such that even if a check C has 100% coverage for the failures
produced by a set of dangerous possible bugs, B, it will still be assessed as hav-
ing negligible effectiveness if the bugs in set B occur with negligible probability
in actual software development. Some may object that if C is the only check
that can detect the effects of B-type bugs, and given the uncertainty on the
probabilities of B these bugs being actually produced, a prudent designer will
still use C. This objection is certainly right if C has negligible cost (implementa-
tion cost, cost in run-time resources, risk of bugs in C causing false alarms, etc).
But whenever these costs are non-negligible, they must be weighted against C’s
potential benefits, as we do.

Acknowledgement

This work was supported in part by the U.K. Engineering and Physical Sci-
ences Research Council via the Interdisciplinary Research Collaboration on the
Dependability of Computer Based Systems (DIRC), and via the Diversity with
Off-The-Shelf Components (DOTS) project, GR/N23912.

References

1. M. Blum and H. Wasserman. Software reliability via run-time result-checking.
Technical Report TR-94-053, International Computer Science Institute, October
1994.

2. A. Jhumka, F.C. Gärtner, C. Fetzer, and N. Suri. On systematic design of fast
and perfect detectors. Technical Report 200263, École Polytechnique Fédérale de
Lausanne (EPFDL), School of Computer and Communication Sciences, September
2002.

164 M.J.P. van der Meulen, L. Strigini, and M.A. Revilla

3. P.A. Lee and T. Anderson. Fault Tolerance; Principles and Practice, volume 3 of
Dependable Computing and Fault-Tolerant Systems. Springer, 2nd edition, 1981.

4. N.G. Leveson, S.S. Cha, J.C. Knight, and T.J. Shimeall. The use of self checks
and voting in software error detection: An empirical study. In IEEE Transactions
on Software Engineering, volume 16(4), pages 432–443, 1990.

5. B. Meyer. Design by contract. Computer (IEEE), 25(10):40–51, October 1992.
6. P. Popov and L. Strigini. The reliability of diverse systems: A contribution using

modelling of the fault creation process. DSN 2001, International Conference on
Dependable Systems and Networks, Göteborg, Sweden, July 2001.

7. M. Rela, H. Madeira, and J.G. Silva. Experimental evaluation of the fail-silent
behavior of programs with consistency checks. In FTCS-26, Sendai, Japan, pages
394–403, 1996.

8. S. Skiena and M. Revilla. Programming Challenges. Springer Verlag, March 2003.
9. M.J.P. van der Meulen, P.G. Bishop, and M. Revilla. An exploration of software

faults and failure behaviour in a large population of programs. In The 15th IEEE
International Symposium of Software Reliability Engineering, 2–5 November 2004,
St. Malo, France, pages 101–12, 2004.

10. M.J.P. van der Meulen and M. Revilla. The effectiveness of choice of programming
language as a diversity seeking decision. In EDCC-5, Fifth European Dependable
Computing Conference, Budapest, Hungary, 20–22 April, 2005, April 2005.

11. J. Vinter, J. Aidemark, P. Folkesson, and J. Karlsson. Reducing critical failures
for control algorithms using executable assertions and best effort recovery. In DSN
2001, International Conference on Dependable Systems and Networks, Goteborg,
Sweden, 2001.

12. H. Wasserman and M. Blum. Software reliability via run-time result-checking.
Journal of the ACM, 44(6):826–849, 1997.

R. Winther, B.A. Gran, and G. Dahll (Eds.): SAFECOMP 2005, LNCS 3688, pp. 165 – 178, 2005.
© Springer-Verlag Berlin Heidelberg 2005

A Technique for Fault Tolerance Assessment of COTS
Based Systems

Ruben Alexandersson, Krishna Chaitanya D., Peter Öhman, and Yasir Siraj

Dept. of Computer Engineering,
Chalmers University of Technology, SE-41296, Gothenburg, Sweden

Telephone: +46(0)31-7721685
Fax: +46(0)31-7723663

ruben@ce.chalmers.se

Abstract. This paper investigates the feasibility of emulating source code soft-
ware faults directly in Java byte code. Experimental results show that software
defects introduced in source code can be emulated in Java byte code with a high
level of confidence. This makes it possible to validate the dependability of Java
programs with respect to realistic software defects embedded within the COTS
components used without the need to know the source code. It is first investi-
gated with good results how well the fault locations found at the byte code level
map to the source code. The behaviors of the byte code level mutants are then
compared with the corresponding source code mutant behavior. In a back-to-
back comparative study with mutants based on ten representative programming
defects, no difference in the program behavior between source and byte code
level mutants could be distinguished.

1 Introduction

With software development proceeding at an unprecedented speed, in-house devel-
opment of all system components will be too costly. Using commercial off-the-shelf
(COTS) components reduces time-to-market, since the components are ready to be
used, and saves money as the components are cheaper than developing from scratch.
Quality and risk concerns currently limit the use of COTS components in safety and
business critical applications. To increase the level of COTS usage in these applica-
tion areas the techniques for dependability assessment of COTS-based systems must
be further improved.

Software defects (also called faults or bugs) have been recognized as the major
cause of computer outages [1]. It is however very difficult in practice to eliminate all
software defects during development. Therefore, all non-trivial systems contain resid-
ual software defects that are activated when an appropriate input pattern is encoun-
tered during operation, which can lead to system failure and thus drastically affect
system dependability.

Furthermore, as larger systems are more and more often being built with COTS
components, the residual software faults embedded within the COTS represent a
growing risk as the quality level of COTS components is difficult to assess [2]. A
critical system built on COTS components should thus have robustness against faults
embedded within these components. Since the source codes of COTS components

166 R. Alexandersson et al.

are in most cases not available, it is not trivial to use fault injection techniques to
experimentally verify the robustness of the system. Because of this, earlier efforts
have focused on injecting errors at the interface between the COTS component and
the rest of the system instead of injecting faults in the COTS, e.g. [3]. Although this is
a useful technique, it can not be known how representative these errors are and
whether they could actually have been generated by the activation of possible faults in
the COTS. Thus, in order to generate error behavior that is representative of real
software faults, we need a technique that can both determine the faults that could have
been made within the COTS and inject them. We present a feasibility study of a muta-
tion-based fault injection technique that shows great promise in achieving exactly
that.

Fault injection is a well-known method for studying system behavior in the pres-
ence of faults. It is traditionally used to emulate external disturbances causing tran-
sient or permanent faults in the system under consideration. Residual faults like soft-
ware defects, on the other hand, are most often not covered when experimental
validation techniques such as fault injection are used. However, some studies, e.g.
[4, 5, 6, and 7], have discussed the concept of injecting software faults for dependabil-
ity evaluation. As residual software defects are difficult to activate (since they have
passed the normal quality assurance process) they cannot be used to experimentally
validate system dependability since the fault activation speed will be too low. Instead,
representative software defects must be introduced into the system by fault injection
in order to evaluate the capability of the system to cope with residual defects. This al-
lows a significant speed up of fault activation.

The mutation technique was originally developed in the testing community as a
means to assess test set quality. In fault tolerance evaluation, on the other hand,
SWIFI has been the technique traditionally used for hardware related faults, e.g. [8].
This technique was extended by Costa and Madeira et al. [6, 7] to include software
faults but was shown to have limitations. Because of this later work on software fault
injection for fault tolerance evaluation purposes has taken up and used the technique
of mutating program code [15].

Mutation-based fault injection of software defects is normally done by modifying
elementary program components in the source code, which introduces small changes
(faults) in the target program code, thus creating different versions of a program, and
observing how each version behaves (each has one injected software fault) [9, 10].
The mutation testing community has long investigated the method of changing the
source code. Modification of source code requires recompilation, re-linking and re-
loading, and this introduces a large overhead for fault injection experiments. Tradi-
tionally, this is somewhat enhanced by using interpretative tools. A method for avoid-
ing this and speeding up the process is mutant schemata [11], but this technique is
highly intrusive, and therefore in many cases not suited for fault tolerance assessment,
and also still requires knowledge of the source code. Alternatively, modifying the
machine code using low-level fault models would eliminate the time-consuming post
injection process of compilation and linking without adding to the intrusiveness. This
method is particularly useful when the source code is not available, which is the case
with COTS components. Unfortunately this requires thorough analysis in order to be
able to inject a set of low-level faults that corresponds to common high-level
programming faults.

 A Technique for Fault Tolerance Assessment of COTS Based Systems 167

In a recent study, Madeira et al. [12] proposed a technique for emulating software
faults through educated mutations introduced at the machine code level. The central
idea is to find key programming structures at the machine code level where high-level
software faults can be emulated. The results show that ODC classes [13] of faults,
such as assignment, checking, interface and simple algorithm faults, can be directly
emulated using this technique.

We extend these principles to be applied to the byte code for virtual machines such
as JVM (Java Virtual Machine). Java byte code is the machine level representation of
Java programs, just as real machine language is the representation of C or C++ pro-
grams. Since the Java byte code preserves the object structure of the source code we
have the benefit of being able to emulate object-oriented faults, which is not possible
in mutating real machine code. Java byte code is also closer in other aspects to the
source code, with more instructions that uniquely map to specific source code con-
structs. We are interested in whether this gives us the possibility to mimic a larger set
of the actual faults made at the source code level than is possible in real machine
code. This could be highly usable and give reliable dependability evaluations.

The use of byte code level emulation was proposed by Ma et al. [10, 14] for mutant
testing purposes. However, since their scope does not include the case in which the
source code is unknown, they investigated a combination of mutant schemata and
byte code translation for optimal performance.

In this paper we show that representative software defects in Java source code can
be mapped to corresponding structures in the Java byte code. We can thereby emulate
realistic software defects in components when the source code is unknown. Further-
more, this allows a significant speed up.

An alternative approach to the one presented in this paper would be to use an exist-
ing general purpose decompiler to get a source code representation of the COTS com-
ponent and then apply source code based techniques for fault injection. However, a
decompiler only needs to generate a valid source code representation of the byte code,
not necessarily the one closest to the original. Hence there are questions regarding
how representative the injected faults would be. A decompiler build for generating a
source code as close to the original as possible have the exact same limitations as are
meet when applying byte code level fault injection. Hence, the decompiler approach
has no advantages compared to byte code level fault injection. Because of the signifi-
cant performance benefit of injecting faults directly in the byte code this was the
chosen approach.

2 Defect Mapping

2.1 Source Code Faults

The purpose of this mutation based method of fault injection is to make it possible to
emulate the actual faults that are normally introduced into software during develop-
ment and not like other methods, e.g. [3], to emulate the error behavior of such faults.

Fault injection experiments using actual software faults should give better confi-
dence in the validity of the results obtained and should also be able to be used to ver-
ify the validity of error based methods. To define a fault model that can be considered

168 R. Alexandersson et al.

representative of common software faults, that model must be based on field data
from actual software projects. To the best of our knowledge no such survey of com-
mon faults has been published for the Java language. Duraes et al. [15] made a survey
for the C language and, although it is likely that the fault types found for C will also
to a large extent be representative of Java faults, this is not known. Because of this we
can not base this study on a set of known common faults and verify that these specific
faults can be emulated in Java byte code; instead we must evaluate which classes of
faults, with respect to code constructs and structure, can be successfully emulated.
The source code faults have thus been selected according to an emphasis on the crite-
rion that they are suitable for testing the investigated method rather than their ability
to stipulate a representative fault model for dependability evaluation. The criteria for
selecting the faults have been:

• All applicable ODC classes [13] should be represented among the faults (i.e. As-

signment, Checking, Interface and Algorithm)
• The set of faults should include the manipulation of variables, values, interfaces

and program flow, spanning both classical procedural faults and object-oriented
faults.

• The faults should differ in structure and the language constructs involved.
• The faults should be likely to occur from a programmer’s mistake.

Using these criteria, a set of ten fault types that can be considered representative of

the general case have been selected for the proof-of-concept experiments (see
Table 1). Most of the fault types correspond to multiple source code patterns that are
equivalent in complexity and structure. To speed up the experiment set-up phase, only
a subset of patterns for each fault were considered in the experiments, which is ade-
quate for showing feasibility. For example, only the byte code mapping (i.e. key pro-
gramming structure) of two types of Wrong Logical Operator (WLO) faults, namely
variable && variable and method-call && variable, were imple-
mented. However, the WLO and WEB fault types have inherently significant differ-
ences in their respective set of source code patterns. Consequently, the results of these
faults cannot be directly applied to the general case, but a more detailed investigation
must be conducted (see section 4).

The detailed ODC classification suggested in [15] is used for the five classical
procedural fault types (WVA, WLO, WEB, WPO and MBC). This detailed classifi-
cation is not applicable for most of the object-oriented fault types, with the exception
of the MOI fault, and therefore only the original ODC classification is used. As can
be seen in Table 1, several of the fault types belong to more than one ODC class.
This is due to the fact that the classification is determined by the context in which
the fault appears. It can be noted that two of the selected faults match the Inter-Class
operators of Ma et al. [17]. The DHV fault is equal to the IHI operator and the WOM
fault is very similar to the IOD operator. The difference between WOM and IOD lies
in that the mutation pattern of WOM changes the name of the method to simulate a
typo and the IOD operator deletes the method altogether. Since the changed method
name is never called by the surrounding program, the effect of the two is practically
the same.

 A Technique for Fault Tolerance Assessment of COTS Based Systems 169

Table 1. The selected fault types

MOI – Missing Object Instantiation: The omission of instantiating an object
variable when created. Can lead to failure if accessed prior to given a value
ODC: Assignment (MVI) Limitation: Only unparameterized

instantiations are considered.
OCM - Object Changed by Method: An object given as input is altered by the
method, although that was not intended.
ODC: Assignment, Interface Limitation: Only int variables within the

object are altered.
WOM - Wrong Overriding Method name: A typo while writing an overriding
method name will lead the compiler to treat it as a new one.
ODC: Interface Limitation: No limitation
WCT - Wrong Casting type: An object is being cast to a type that it does not
have or is a subtype of.
ODC: Assignment Limitation: No limitation
DHV - Declaration of Hiding Variable: A variable is unintentionally given the
same name as an instance variable in its own or an ancestor class, thus shadowing
it.
ODC: Assignment, Checking, Interface,
Algorithm

Limitation: Only int variables that are
accessed for reading are considered.

WVA - Wrong Variable Assignment: Variable is assigned to a wrong constant
value.
ODC: Assignment (WIDI) Limitation: Only instance variables of

type int are considered.
WLO - Wrong Logical Operator: Applying the wrong logical operator. For in-
stance using || when it should be &&.
ODC: Assignment (WLEA), Checking
(WLEC), Interface (WLEP)

Limitation: Only method && vari-
able and variable && vari-
able expressions are considered.

WEB - Wrong Else Body: Omission of curly brackets surrounding a multi state-
ment body of an else statement.
ODC: Algorithm (MIEA), Checking
(MIA)

Limitation: Only simple unnested if-
else statements are considered.

WPO - Wrong Parameter Order: The order of equal type parameters are mixed
up when making a method call.
ODC: Interface (WPFO) Limitation: Only int variables are

considered.
MBC - Missing Break in Case: A break statement is unintentionally omitted at
the end of a case body.
ODC: Algorithm (MBC) Limitation: No limitation

2.2 Fault Emulation Technique

The investigated technique is an adaptation of the G-SWFIT [12] method to Java pro-
grams. By introducing fault-specific changes directly into the byte code, the compiled

170 R. Alexandersson et al.

result of a defect source code is emulated (without the need of an actual compilation).
This requires knowledge of how Java source code is translated into byte code, in par-
ticular how high-level programming errors translate into specific instruction patterns
at the byte code level.

The Missing Break in Case (MBC) fault is used as a running example throughout
this section to explain the technique of finding (by the concept of key programming
structures) and modeling (by fault injection patterns) a source code fault at the byte
code level. A non-faulty and a faulty source code example are shown in Figure 1.

Fig. 1. Non-faulty and faulty source code for the MBC fault

The part that requires the most effort is that of finding where the faults can actually
be injected. As a first step, an environment for the fault at the source code level is de-
fined. An environment is a specific set of source code statements where there is some
room for programmers to make a mistake. For example, in the code given in Figure 2,
a switch fall through occurs if the programmer forgets the break statement. Thus the
Switch-Case statement as a whole forms the environment, thereby giving room for the
programmer to introduce the fault, as shown in Figure 2.

Fig. 2. Environment of non-faulty source code

There can be more than one environment definition for a given fault type as there
can be many such sequences/combinations/patterns that may lead to a fault of that
particular type. For example, there are different environment definitions for the two
types of WLO faults (see Table 1.) implemented.

Once the environment at the source code level is defined, the comparison of the
code generated for both variants (with and without faults) allows us to identify the
specific instruction patterns at the byte code level that are used to locate each fault
(called the key programming structure) and the instruction patterns used to mutate the
fault-free byte code (called the fault injection pattern).

This is illustrated in figure 3, which shows the set of correct and faulty byte codes
for our running example. The key programming structure is highlighted in the

 A Technique for Fault Tolerance Assessment of COTS Based Systems 171

non-faulty code to the left. The faulty byte code to the right is what is generated when
the fault is made in the source code and then compiled. To mimic the behavior of the
code to the right (and thereby emulate the fault) the parameter for the highlighted
goto at offset 36 can be changed from 47 to 39. The fault injection pattern is there-
fore defined as making that change.

Fig. 3. Key programming structure at the byte code level

All standard source code compilers contain compile time checking mechanisms
that verify certain aspects of a program, e.g. a variable is declared prior to being as-
signed a value. Therefore some faults made at source code level cannot pass the com-
pilation and result in a faulty byte code executable. In conducting byte code fault
emulation, these faults must be excluded by analyzing the mutant byte code.

 In our running example with the switch fault we need to verify that the removal of
the break statement does not lead to any unreachable statements that would have been
recognized by the compiler.

The key programming structures and fault injection patterns for each fault type are
the fundamental information needed to conduct the fault injections, as described in
section 3.

3 Fault Injection and Evaluation

The fault injection technique is divided into two phases: first, the fault analysis phase,
which searches for fault-related information in the byte code and marks the fault loca-
tion, and, second, the fault emulation phase, which mutates the non-faulty byte code
in a fault-specific way. The technique takes the non-faulty byte code as input and
generates the mutated byte code that emulates the fault.

During the fault analysis phase the target application byte code is scanned for all
the key programming structures defined for a fault. The search is based on a simple
regular expression or a complex algorithm, depending on how the structure is defined.
For each such hit, the corresponding fault location information is stored and passed on
to the fault emulation phase.

172 R. Alexandersson et al.

During the fault emulation phase, the fault location information from the fault
analysis phase is collected and mutated in a specific way defined by a fault injection
pattern such that the resultant mutated byte code emulates the fault.

3.1 Prototype Description

A fault injection tool was developed for the proof-of-concept experiments using a
pipe-and-filter architecture. This gives us the opportunity to collect and analyze the
data output from the various components of the tool independently.

Fig. 4. Architecture of the fault injection tool

As can be seen in Figure 4, the tool consists of three main components. The fault
library component is the container of the fault objects that holds information about the
key programming structures and fault injection patterns for each fault type. The fault
analysis component is responsible for analyzing the original byte code for faults and
producing formatted fault location information (XML) by searching for possible fault
locations in .class files (byte code) extracted from the jar file supplied. The fault
emulation component performs fault-specific mutation on a given jar file according to
the fault location information supplied by the analysis component and produces a mu-
tated jar file as the result. Along with the mutant, it also produces a status report con-
taining trace information about the mutations. The set of faults and fault locations
used in the experiment can also be restricted with the aid of fault and fault location
filters available in the tool.

3.2 Experimental Feasibility Evaluation

The experiment aims at determining the extent to which the byte code fault patterns
emulate the corresponding source code defects. The fault injection process consists of
both finding the correct locations (analysis phase) and manipulating the byte code
(emulation phase). Consequently, the experiment is conducted in two parts. First it is
investigated how well the fault locations found at the byte code level map to the
source code. Next the behaviors of the byte code level mutants are compared with the
corresponding source code mutant behavior.

 A Technique for Fault Tolerance Assessment of COTS Based Systems 173

Two target programs (named tp1 and tp2) are used in the experiment. The pro-
grams are selected on the criteria that it should be possible to manually find all possi-
ble source code fault locations and only a small number of test vectors should be
needed for defect activation. The two target programs are thus fairly small (of a size
of 20 and 70 KLOC) and sequential in structure so that the output is a strict function
of the input. Both programs are implementations of a source code analysis tool and
offer the same functionalities but employ different user interfaces (command line vs.
graphical) and were implemented by different teams using different off-the-shelf
parsers (with known source code).

3.2.1 Fault Location Experiment

Table 2. Byte code level fault location precision

As can be seen in Table 2, all the potential locations can be found, without any in-
correct hits, for a vast majority of the fault types investigated. This means that it is
possible by only analyzing the byte code to determine the actual number (and loca-
tions) of possible programming errors at the source code level of the investigated
types.

N
r.

 o
f

co
rr

ec
t

lo
ca

ti
o
n

id
en

ti
fi
ca

ti
o
n
s

N
r

o
f
in

co
rr

ec
t

lo
ca

ti
o
n
s

N
r.

 o
f

m
is

se
d
 l
o
ca

ti
o
n
s

R
a
ti
o
 o

f
co

rr
ec

t
lo

ca
ti
o
n
s

tp1 73 0 0 100%

tp2 213 0 0 100%

tp1 34 0 0 100%

tp2 439 0 0 100%

tp1 84 0 0 100%

tp2 118 0 0 100%

tp1 270 0 0 100%

tp2 457 0 0 100%

tp1 552 0 0 100%

tp2 93 0 0 100%

tp1 15 0 0 100%

tp2 49 0 0 100%

tp1 1 0 0 100%

tp2 5 0 0 100%

tp1 4 0 0 100%

tp2 22 0 0 100%

tp1 21 0 0 100%

tp2 33 0 0 100%

tp1 306 20 38 84%

tp2 1043 0 64 94%

Missing Object InstantiationMOI

OCM

WOM

Wrong Variable Assignment

Wrong Logical Operator

Wrong Else Body

WCT

DHV

WVA

WLO

Wrong Parameter Order

Missing Break in Case

Fault

WEB

WPO

MBC

Object Changed by Method

Wrong Overriding Method name

Wrong Casting type

Declaration of Hiding Variable

174 R. Alexandersson et al.

As pointed out in section 2.1, some fault types correspond to multiple source code
structures. For the WLO and WEB fault types, only the basic and least complex struc-
ture has been considered. That might indicate that we will have less optimistic data
for the general case for these two fault types. A more comprehensive discussion about
the generalization is given in section 4.

The missed and incorrect locations for the Missing Break in Case (MBC) fault type
are the result of a fundamental difficulty with byte code level fault mapping. Many of
the basic language constructs such as switch-case, if-else, loops and logical operations
are translated to the same byte codes and can in some cases not be distinguished (see
section 4 for a detailed discussion).

3.2.2 Fault Mutation Experiment
As Java programs are executed on a virtual machine there are inherent run time
mechanisms for fault detection (i.e. exception handling). Successful fault detection by
these mechanisms is manifested by an error signal such as a message on the stderr
stream. In addition to this, application specific fault detection mechanisms (e.g.
boundary checking of variable values) also use error signaling such as stderr or alert
dialogue screens for fault detection signaling. When a fault is not detected an applica-
tion can fail according to the well-known semantics of value and/or timing failures.
Therefore it is natural to classify the application failure mode based on these three pa-
rameters (i.e. timing, output value and error signaling) as in Table 3.

Table 3. Application failure mode classification

Timing Output Error signal Classificaton
OK OK No Correct
OK OK Yes Tolerated fault
OK NOK No Undetected value failure
OK NOK Yes Detected value failure
NOK OK No Undetected timing failure
NOK OK Yes Detected timing failure
NOK NOK No Undetected arbitrary failure
NOK NOK Yes Detected arbitrary failure

Since there is no time constraint for the target programs the only possible timing
failure will be when the programs do not terminate (i.e. they “hang”).

The purpose of the experiment is to verify that the byte code mutants behave in the
same way as the corresponding source code mutants. During the experiment, a de-
tailed comparison was conducted between the output of the byte code mutants and
source code mutants. The outputs of the mutated program were also evaluated by
comparison with a reference of correct outputs and the corresponding application
failure mode was determined. The correct locations found in the earlier experiment
were used in this experiment. For eight of the ten fault types, all locations found were
mutated. Since a very large number of locations were found for the WCT and MBC
fault types, only a subset corresponding to the average number of mutants for the
other fault types was included in the experiment, resulting in a total number of 2224
mutants.

 A Technique for Fault Tolerance Assessment of COTS Based Systems 175

Instead of using a large number of random test vectors, only one specifically se-
lected for utilizing a large proportion of the program functionality was used. With
this approach, a large number of fault activations were obtained with a minimum
number of target program executions.

In a back-to-back comparative study with these 2224 mutants obtained by the ten
fault types injected into the target programs, no difference in the program behavior
between source and byte code level mutants could be distinguished. Not only did they
show the same application failure profile but they also had the exact same outputs.
This strongly indicates that the byte code level is feasible for emulating the erroneous
behaviors of programs containing residual programming defects.

Table 4. Aggregated failure profile based on the proof-of-concept experiment

As an example of the type of results that can be obtained by using the proposed
method, Table 4 shows the failure mode classification for the experiment conducted.
Since the emulation of source code level faults is perfect, identical application failure
modes are obtained for both source and byte code level mutants. Hence, only one set
of data is presented in the table.

The detection coverage for the value faults ranges between 50% and 100% depend-
ing on the fault type. This indicates that a large proportion of the faults are detected
by exception handling mechanisms, as these were the only detection mechanisms
available in the test programs.

The large number of correct outputs (i.e. the fault has not been activated or has
been masked) owes mainly to the use of off-the-shelf parsers in the test programs as
they contain a large proportion of unused functionality. A separate investigation of
the experimental results showed that only 4% of the faults injected into the parser
code led to a program failure whereas the corresponding figure for the application

C
or

re
ct

To
le

ra
te

d
Fa

ul
ts

D
et

ec
te

d
va

lu
e

fa
ilu

re
s

U
nd

et
ec

te
d

va
lu

e
fa

ilu
re

Ti
m

in
g

fa
ilu

re
 (h

an
g)

To
ta

l

MOI Missing Object Instantiation 150 0 132 4 0 286
OCM Object Changed by Method 469 0 3 1 0 47
WOM Wrong Overriding Method name 196 0 3 3 0 20
WCT Wrong Casting type 137 0 124 0 0 261
DHV Declaration of Hiding Variable 612 0 26 7 0 645
WVA Wrong Variable Assignment 48 0 11 5 0 64
WLO Wrong Logical Operator 4 0 1 1 0 6
WEB Wrong Else Body 26 0 0 0 0 2
WPO Wrong Parameter Order 48 0 5 1 0 5
MBC Missing Break in Case 144 0 62 1 0 207

Fault

3
2

6
4

176 R. Alexandersson et al.

specific code was 53%. Fault activation is a well-known concern when conducting
fault injection. The experiment conducted indicates that this problem is accentuated
when using fault injection techniques on COTS- based software systems. However,
static analysis of the target program code could determine which parts of the COTS
components are never accessed and could be used to reduce the problem. Alterna-
tively, a trace mutant could be used to dynamically determine which parts of the pro-
grams are activated by each test case.

4 Discussion

As seen in the experimental results the object oriented fault types (MOI, OCM,
WOM, WCT and DHV) are successfully found and emulated at the byte code level.
The basic (non-object oriented) faults fall into three categories. The first is associated
with data or data containers (WVA) and the second concerns the manipulation of in-
terfaces (WPO). Both containers and interfaces are very visible in Java byte code and
the identification and modification of these have not presented any difficulties in this
study.

As mentioned we implemented only a specific subset of source patterns for each
fault in this experiment. For all fault types discussed so far the subset that we used is
representative of the general case; consequently the method has a general feasibility
for these fault types.

The case is somewhat more complicated for the third category of basic faults,
namely the ones associated with program flow (i.e. WLO, WEB and MBC). The sub-
sets that are implemented for two of these (WLO and WEB) are the basic and least
complex ones, and thus the experimental results for these can not automatically be
scaled to the general case. However, the problems associated with the general case
were identified from implementing these subsets and from the full implementation of
the Missing Break in Case (MBC) fault type. It should be noted that the problems dis-
cussed below concern local program flow (not passing any interfaces). If a fault stipu-
lates mutation of program flow at the interface level it falls under the second category
of basic faults and is easily achievable.

When conditional statements such as logical operations, if-else, switch-case and
loops are translated into byte code they all get a similar structure that makes it very
difficult, and in many cases probably impossible, to distinguish them from one an-
other. The problem is further accentuated when these statements are nested together,
which is very common in normal programs. This is a serious problem when working
on real machine code and it seems to some extent to be a problem for Java byte code
as well. However there are some constructs in Java byte code that we lack in real ma-
chine code that can be of aid in this process. As an example there is a unique code
that is present whenever there is a switch statement. This is naturally helpful in dis-
tinguishing a switch-case from a series of if-else and it is the reason for the good re-
sults with the MBC fault type.

Thus, for this class of faults, Java byte code is still better suited for fault injection
than real machine code, but it is uncertain whether it is sufficiently suited. A further
and more detailed study of this class of faults is needed to fully understand the limita-
tions of Java byte code in this regard.

 A Technique for Fault Tolerance Assessment of COTS Based Systems 177

5 Conclusions

In this paper we investigate a mutation-based fault injection technique that can be
used for dependability evaluations of COTS-based systems. We show that representa-
tive software defects at the Java source code level can be mapped to corresponding
structures at the byte code, thereby emulating realistic software defects in components
where the source code is unavailable.

It is shown that byte code level mutants emulate source code level mutants for a set
of ten representative programming source code defects with some minor restrictions
in finding all fault locations in the byte code.

It is first investigated how well the fault locations found at the byte code level map
to the source code. The study shows that a one-to-one mapping in fault location can
be obtained for fault types related to object orientation, data/data container and inter-
faces. The program flow related fault types, on the other hand, are difficult to locate at
the byte code level in some situations.

Second the behaviors of the byte code level mutants are compared with the corre-
sponding source code mutant behavior. In a back-to-back comparative study no dif-
ference in program behavior between source and byte code level mutants could be
distinguished. Not only did they show the same application failure profile but they
also had the exact same outputs. This strongly indicates that the byte code is feasible
for emulating the erroneous behaviors of programs containing residual programming
defects.

The mutant-based fault injection technique investigated can therefore be used to
validate the dependability of Java COTS-based systems with respect to realistic soft-
ware defects without the need to know the source code. This also gives a significant
speed up compared to source code based methods.

 The results furthermore indicate that a large proportion of the faults is detected by
exception handling mechanisms. We also show that the fault activation level is sig-
nificantly lower in the off-the-shelf part than in the application specific part of the
code.

Acknowledgements

This research was conducted within the CEDES project, which is funded by the
Swedish industry and government joint research program IVSS - Intelligent Vehicle
Safety Systems.

References

1. U. D. Commerce. The Economic Impacts of Inadequate Infrastructure for Software Test-
ing. RTI, Research Triangle Park, NC 27709, US 2002.

2. S. Sedigh-Ali, A. Ghafoor, and R. A. Paul. Metrics and models for cost and quality of
component-based software. In Proceedings of the 6th IEEE International Symposium on
Object-Oriented Real-Time Distributed Computing, pages 149-155, May 2003.

178 R. Alexandersson et al.

3. J. Voas, F.Charron, and K.Miller. Robust Software Interfaces: Can COTS-based Systems
be Trusted Without Them?. In Proceedings of the 15th International Conference on Com-
puter Safety, Reliability, and Security (SAFECOMP’96), October 1996. Springer-Verlag.

4. J. Christmansson and R. Chillarege. Generation of an error set that emulates software
faults based on field data. Proceedings of Annual Symposium on Fault Tolerant Comput-
ing, pages 304-313, June 1996.

5. E. Voas, F. Charron, G. McGraw, K. Miller, and M. Friedman. Predicting how badly
"good" software can behave. IEEE Software, Volume 14(4), July-August 1997.

6. H. Madeira, D. Costa, and M. Vieira. On the emulation of software faults by software fault
injection. In Proceedings of the International Conference on Dependable Systems and Net-
works (DSN), pages 417-426, June 2000.

7. Diamantino Costa, Tiago Rilho, M. Vieira and Henrique Madeira. ESFFI – A novel tech-
nique for the emulation of software faults in COTS components. In Proceedings of the 8th
Annual IEEE International Conference and Workshop on the Engineering of Computer-
Based Systems (ECBS), pages 197-204, April 2001.

8. J. Aidemark, J. Vinter, P. Folkesson, and J. Karlsson. GOOFI: generic object-oriented fault
injection tool. In Proceedings of the International Conference on Dependable Systems and
Networks (DSN), page 668, June 2003.

9. R. A. DeMillio, R. J. Lipton, and F. G. Sayward. Hints on test data selection: Help for the
practicing programmer. IEEE Computer, Volume 11(4), pages 34-41, April 1978.

10. J. Offutt, Y.-S. Ma, and Y.-R. Kwon. An Experimental Mutation System for java. ACM
SIGSOFT Software Engineering Notes, Volume 29(5), pages 1-4, September 2004

11. R. H. Untch, A. J. Offutt, and M. J. Harrold. Mutation analysis using mutant schemata. In
Proceedings of the 1993 ACM SIGSOFT International Symposium on Software testing and
Analysis, July 1993.

12. J. Duraes and H. Madeira. Emulation of software faults by educated mutations at machine-
code level. In Proceedings of the 13th International Symposium on Software Reliability
Engineering (ISSRE’02), pages 329-340, November 2002.

13. R. Chillarege, I. S. Bhandari, J. K. Chaar, M. J. Halliday, D. S. Moebus, B. K. Ray, and M.
Y. Wong. Orthogonal defect classification - a concept for in-process measurements. IEEE
Transactions on Software Engineering, Volume 18(11), pages 943-956, November 1992.

14. Y.-S. Ma, A. J. Offutt, and Y.-R. Kwon. MuJava: An Automated Class Mutation System.
In The Journal of Software Testing, Verification, and Reliability, Volume 15(2), June 2005

15. J. Duraes and H. Madeira. Definition of software fault emulation operators: a field data
study. In Proceedings of the International Conference on Dependable Systems and Net-
works (DSN), pages 105-114, June 2003.

R. Winther, B.A. Gran, and G. Dahll (Eds.): SAFECOMP 2005, LNCS 3688, pp. 179 – 193, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Finding Upper Bounds for Software Failure
Probabilities – Experiments and Results

Monica Kristiansen1, 2

1Østfold University College, NO-1751 Halden, Norwa
2Institute for Energy technology, NO-1751 Halden, Norwa

monica.kristiansen@hiof.no

Abstract. This paper looks into some aspects of using Bayesian hypothesis
testing to find upper bounds for software failure probabilities, which consider
prior information regarding the software component in addition to testing. The
paper shows how different choices of prior probability distributions for a
software component’s failure probability influence the number of tests required
to obtain adequate confidence in a software component. In addition, it evaluates
different choices of prior probability distributions based on their relevance in a
software context. The interpretations of the different prior distributions are
emphasised. As a starting point, this paper concentrates on assessment of single
software components, but the proposed approach will later be extended to
assess systems consisting of multiple software components. Software
components include both general in-house software components, as well as pre-
developed software components (e.g. COTS, SOUP, etc).

1 Introduction

The use of software components in any kind of critical system requires evidence that
the software component is dependable [13]. When focusing on reliability, which is
one of the main attributes of dependability, this can be done by assessing the software
component’s failure probability and by demonstrating adequate confidence in this
calculation.

In principle, a software component’s failure probability can be assessed through
statistical testing. However, since critical software components usually need to have
low failure probabilities [12], the number of tests required to obtain adequate
confidence in this failure probability often becomes practically very difficult to
execute. An alternative approach is therefore to use all available prior information to
compensate for the enormous number of tests required.

This paper studies the use of Bayesian theory [1, 4, 6, 18] and looks into Bayesian
hypothesis testing [2, 19] as one possible approach to find upper bounds for failure
probabilities in software components, which both takes prior information regarding
the software component and testing into consideration. Different choices of prior
probability distributions for a software component’s failure probability are evaluated
in a software context, and their influence on the number of tests required to obtain
adequate confidence in a software component is investigated.

180 M. Kristiansen

This paper concentrates on assessment of single software components, but the
motivation for the proposed approach is a belief that it can be further extended to
assess systems consisting of multiple software components [7, 9, 10]. Of special
interest is the challenge to find upper bounds for simultaneous failure probabilities [3,
11, 12, 16]. Since the probability of simultaneous failures is likely to be significantly
smaller than single failure probabilities, the number of tests required to obtain
adequate confidence in these failure probabilities is practically impossible to execute.
One of the main goals for further work is therefore to find upper bounds for
simultaneous failure probabilities, and thus making it possible to include dependency
aspects in software reliability models.

Software components include both general in-house software components, as well
as pre-developed software components. Reusing pre-developed software components
have become a common approach in software development due to the fact that this
has the potential of significantly reducing development costs. Although reusing
software components might benefit reliability as well as reducing costs, it will in
many cases be difficult to assess whether the reliability is actually improved or not.
Currently there is no broadly accepted way of including and assessing pre-developed
software components in critical systems.

The rest of this paper is organized as follows. Chapter 2 presents some necessary
notation, and describes the theory that forms the basis of the Bayesian hypothesis
testing approach. In addition, some important definitions are included. In Chapter 3
the influence of different choices of prior probability distributions for a software
component’s failure probability is investigated. Chapter 4 discusses different choices
of prior probability distributions for failure probabilities in a software context, and
Chapter 5 concludes and describes further work.

2 Background

In this chapter a brief description of the theory that forms the basis of the Bayesian
hypothesis testing approach is given. In addition some important definitions are
outlined. Important notation used throughout this paper is listed in Table 1.

Table 1. Notation

Term Explanation
n = numbers of tests
r = numbers of failures in n tests
θ = a software component’s failure probability
θ0 = an accepted upper bound for a software component’s failure

probability
C0 = a given predefined confidence level
π(θ) = prior distribution for a software component’s failure probability (θ)
π(θ|D) = posterior distribution for a software components failure probability

(θ)
L(θ|D) = likelihood function

 Finding Upper Bounds for Software Failure Probabilities – Experiments and Results 181

2.1 Definitions

The terms random failure and systematic failure are often used for hardware failures
and software failures, respectively [12], even though these terms are a bit misleading.
Systematic failure refers to the fault mechanism where a fault reveals it self as a
failure. So, if a software component failed once on a particular input it will always fail
on that input until the fault has been successfully removed.

However, interest really centres upon the component’s failure process: What
happens when the component under study is used in its operational environment?
Since there is uncertainty as to which input that will be selected on a particular
occasion, there is uncertainty as to whether there will be a failure or not. In other
words, a component’s failure process is a stochastic process. Systematic failures, in
the presence of non-deterministic usage, are therefore in reality just as random as
random failures, and both random failures and systematic failures are susceptible to
statistical analysis. Even though systematic failures usually are used for software
failures, it should be emphasised that systematic failures also can arise from certain
design and construction faults in hardware.

Statistical testing [5, 17] consists of exposing a piece of software to test cases
drawn randomly according to some probability distribution defined over the
program’s input space. Such testing can be used to assess a software component’s
failure probability. Typical assumptions in statistical testing are (i) independent test
runs, (ii) constant failure rate, (iii) all failures during testing are detected, and (iv) the
operational profile is known.

One benefit of statistical testing is that it requires no knowledge of the internal
structure of the software component being tested. This is of great benefit when pre-
developed software components are used, for which one might not have all the
required information available. Pre-developed software is in this paper defined as:
“Software which already exists, is available as commercial or proprietary product
and is being considered for use in a computer-based system” [8]. This definition
encompasses any kind of reuse of software whether it is black box, commercially
available, from an in-house library, or just happens to be available from another
system.

Let θ0 denote the accepted probability of failure for a given software component.
The number of fault free tests, n, which must be carried out to satisfy the failure
probability θ0 and the given predefined confidence level C0, using classical statistical
testing, is given in equation (1), [15].

)1ln(

)C1ln(
n

0

0

θ−
−

= (1)

2.2 Bayesian Analysis

Bayesian analysis [1] consists of combining prior information (π(θ)) and sample
information (D) into a posterior distribution (π(θ|D)) for θ given D. It is from this
posterior distribution all decisions and inferences are made in Bayesian analysis.
Bayes theorem [1] is expressed in equation (2), where the prior distribution π(θ)

182 M. Kristiansen

reflects beliefs about θ prior to testing, and the posterior distribution π(θ|D) reflects
updated beliefs about θ after testing.

θ

θθπθ

θπθ
=θπ

d)()D|(L

)()D|(L
)D|(

(2)

In hypothesis testing, a null hypothesis H0(θ) and an alternative hypothesis H1(θ)
are specified. In classical statistics one decides between H0 and H1 by examining type
I and type II error probabilities. These probabilities of error represent the chance that
a sample is observed for which the test procedure will result in the wrong hypothesis
being accepted. Type I error occurs when H0 is rejected when it is true, and type II
error occurs when H0 is accepted when it is false.

In Bayesian analysis, hypothesis testing is conceptually more straightforward. One
calculates the posterior probabilities α0 = P(H0|D) and α1 = P(H1|D), which combine
both test data and prior knowledge, and decide between H0 and H1 accordingly [1].
Often it is convenient to summarize the evidence in term of posterior odds. Saying
that α0/α1 > R, clearly says that H0 is R times as likely to be true than H1.

Although the posterior probabilities of the hypotheses are the primary measures in
Bayesian hypothesis testing, the prior probabilities π0 = P(Ho) and π1 = P(H1) are also
of interest. π0/π1 is called the prior odds ratio, and the Bayes factor can be expressed
by combining the posterior and prior odds ratios, as shown in equation (3).

01

10

10

10

/

/
B

πα
πα

=
ππ
αα

= (3)

 The Bayes factor can be viewed as a weighted likelihood ratio of H0 to H1 [1]. A
Bayes factor greater than one indicates evidence in favour of the null hypothesis, and
the higher the Bayes factor is the more evidence one has in favour of H0. The Bayes
factor forms the basis for finding the number of tests, required to satisfy a predefined
upper bound θ0 and confidence level C0, in the proposed approach [2, 19]. This is
outlined in more detail in the following chapters.

2.3 Finding Upper Bounds for Software Failure Probabilities by Using Bayesian
 Hypothesis Testing

One possible approach to find upper bounds for software failure probabilities is to use
Bayesian hypothesis testing [2, 19]. Assume for further reading that H0 and H1 are
specified as: H0: θ≤θ0 and H1: θ>θ0, were θ0 is a probability in the interval (0, 1). θ0
represents an upper bound for a software component’s failure probability and is
assumed to be application specific and predefined (e.g. from standards, regulation
authorities or customers).

In this case the null hypothesis states that the probability of software component
failure is lower than an upper bound θ0, whereas the alternative hypothesis states that
the probability of software component failure is higher than an upper bound θ0.

Often, it is convenient to express the prior belief in a software component’s failure
probability (θ) as probability distributions over the following two intervals (0, θ0) and
(θ0, 1) [1]. This is shown in equation (4).

 Finding Upper Bounds for Software Failure Probabilities – Experiments and Results 183

θ>θθ
θ≤θθ

=θπ
011

000

),(g)H(P

),(g)H(P
)((4)

The probability distributions; g0(θ) and g1(θ) describe how the prior mass is spread
out over the two hypotheses. To reflect prior beliefs, the beta distribution is often
chosen, since this distribution is a rich and tractable family that forms a conjugate
family to the binominal distribution. The probability distribution for observing r
failures during testing, given n independent trials and a constant failure probability
(θ), is expressed by the binominal probability distribution. This is shown in
equation (5).

rnr)1(
r

n
)n,|r(f −θ−θ=θ (5)

Based on equation (4) and (5), the posterior odds ratio can be expressed as shown
in equation (6).

θ

θ

θθθ

θθθ

==
α
α

1

11

0

00

1

0

1

0

0

0

d)(g)H(P)n,|r(f

d)(g)H(P)n,|r(f

)n,r|H(P

)n,r|H(P
 (6)

Further, it can easily be shown that the Bayes factor can be given as shown in
equation (7).

θ

θ

θθθ

θθθ

=
1

1

0

0

0

0

d)(g)n,|r(f

d)(g)n,|r(f

B (7)

For acceptance, the posterior probability for H0 should be higher than a given
predefined confidence level C0. Based on this acceptance criterion, it can easily be
shown that the Bayes factor also can be expressed as shown in equation (8).

)H(P)C1(

)H(PC
B

00

10

−
= (8)

3 Experiments and Results

In this chapter, three different prior probability distributions for a software
component’s failure probability are investigated, and their influence on the number of
tests required to obtain adequate confidence in a software component is studied.

184 M. Kristiansen

The first case is based on earlier work done by Cukic et al. [2] and Smidts et al.
[19], and assumes a uniform prior probability distribution both under the null
hypothesis and the alternative hypothesis. Related to this prior probability
distribution, there are some interesting aspects that need to be studied further. Two
new cases are therefore used to investigate these aspects in Case 2 and Case3.

Case 1:
In papers [2, 19], two uniform probability distributions are used to describe how the
prior mass is spread out over the two hypotheses. The prior information regarding θ is
expressed in equation (9).

θ>θ
θ−

θ≤θ
θ

=θπ

0
0

1

0
0

0

 ,
)1(

1
)H(P

 ,
1

)H(P

)((9)

 In addition, it is assumed that no failures have been encountered during testing.
Based on the binominal distribution in equation (5) and the prior belief about θ in
equation (9), the Bayes factor, as defined in equation (7), can be calculated as shown
in equation (10).

1n
00

1n
00

)1(

))1(1)(1(
B

+

+

θ−θ
θ−−θ−

= (10)

 The number of tests required to satisfy a given predefined confidence level C0 can
be found by combining equations (8) and (10), and is given in equation (11).

1
)1ln(

1
)H(P)1)(C1(

)H(PC
ln

n
0

000

100

−
θ−

+
θ−−

θ
−

=
(11)

 In the case where P(H0) = θ0 and P(H1) = (1-θ0) the same result as by assuming an
uniform prior probability distribution for θ over the entire interval (0, 1) is achieved
and, as shown in equation (12), the required number of tests turns out to be almost the
same as by using classical statistical testing.

1
)1ln(

)C1ln(
n

0

0 −
θ−

−
= (12)

 Table 2 is extracted from [2] and shows the required number of tests for different
choices of P(H0) and θ0. The predefined confidence level C0 is assumed to be constant
equal to 0.99.
 From Table 2 it can be seen that the number of tests, required to obtain adequate
confidence in a software component, is greatly reduced when a uniform prior
probability distribution is assumed both under H0 and H1. In addition, it can be seen
that the higher the prior belief in H0 is the fewer tests are needed. However, there are
some interesting aspects related to this prior probability distribution:

 Finding Upper Bounds for Software Failure Probabilities – Experiments and Results 185

Table 2. Required number of tests for different choices of P(H0) and θ0, when a uniform prior
probability distribution is assumed both under H0 and H1

θ0 C0 No. of tests
P(H0) = 0.01

No. of tests
P(H0) = 0.1

No. of tests
P(H0) = 0.6

0.01 0.99 458 228 50
0.001 0.99 2378 636 63
0.0001 0.99 6831 853 65
0.00001 0.99 9349 886 65
0.000001 0.99 9752 890 65

− First of all, a flat probability distribution for θ is assumed both under the null
hypothesis and the alternative hypothesis (see Figure 1). This corresponds to the
view that it is just as likely that the failure probability is close to 1 as it is close to
θ0 under the alternative hypothesis. In Case 2, this aspect is mitigated by allowing
an expert to set a certain upper bound on the failure probability.

− Secondly, the probability distribution for θ is discontinuous in θ0 (see Figure 1).
This reflects a high prior belief that the failure probability is below θ0, but it also
opens for a small possibility that there is an unknown failure mechanism with a
non-informative prior failure distribution. This aspect is mitigated in Case 3, by
using a continuous beta distribution.

Fig. 1. The prior probability distribution used in Case 1

In addition it can be shown that it is the choice of two separate uniform probability
distributions under the null hypothesis and the alternative hypothesis that results in
the extremely low number of required tests. The uniform probability distribution on
the interval (a, b) is expressed in equation (13).

<θ<
=θ

 elsewhere ,0

 b a ,
a-b

1
)(P (13)

From this expression it can easily be seen that the smaller the denominator is, the
higher the probabilities are. Since the area under the null hypothesis usually is

θ0 1 θ

π (θ)

P(H0)*1/θ0

P(H1)*1/(1-θ0)

186 M. Kristiansen

extremely small compared to the area under the alternative hypothesis, the probability
for failure probabilities less than θ0 is much higher then the probability for failure
probabilities higher than θ0. This shows that the use of two separate uniform
probability distributions under H0 and H1 not at all represents a conservative
approach, even though the use of a uniform probability distribution over the entire
interval usually is seen as an ignorance prior.

A somewhat worrying observation is that the number of tests, required to obtain
adequate confidence in a software component, increases significantly when other
more realistic distributions for a software component’s failure probability are used. If
an expert is allowed to set a certain upper bound on the failure probability or if a
continuous probability distribution for the software component’s failure probability is
assumed, experiments show that the number of required tests increases significantly.
This is outlined in more detail in Case 2 and in Case 3.

Case 2
One possible way to mitigate the effect of using a flat distribution under the
alternative hypothesis is to allow an expert to set a certain upper bound on the failure
probability under H1, i.e. to state a value θ1 for which the probability of having a
failure probability higher than this is zero (see Figure 2). By assuming a uniform
probability distribution both under H0 and H1, the prior probability distribution for θ
can be expressed as shown in equation (14).

θ>θ
θ>≤θ<θθθ

θ≤θθ
=θπ

 ,0

 ,)-)1/(P(H

 ,)1/P(H

)(

1

00011

000

 (14)

 As in Case 1, it is assumed that no failures have been encountered during testing.
Based on the binominal distribution in equation (5) and the prior belief about θ in
equation (14), the Bayes factor, as defined in equation (7), can be calculated as shown
in equation (15).

))1()1((

))1(1)((
B

1n
1

1n
00

1n
001

++

+

θ−−θ−θ
θ−−θ−θ

= (15)

 By combining equation (8) and (15), the number of tests required to satisfy a given
predefined confidence level C0, can be found. This is expressed in equation (16).

)H(P)C1)((

)H(PC

)1()1(

)1(1

0001

100
1n

1
1n

0

1n
0

−θ−θ
θ

=
θ−−θ−

θ−−
++

+
 (16)

As in Case 1, a uniform probability distribution is assumed both under the null
hypothesis and the alternative hypothesis. In addition, an upper bound on the failure
probability (θ1) is defined under the alternative hypothesis. The required number of
tests for different choices of P(H0), θ0 and θ1 are given in Table 3. The predefined
confidence level C0 is assumed to be constant equal to 0.99.

 Finding Upper Bounds for Software Failure Probabilities – Experiments and Results 187

Fig. 2. The prior probability distribution used in Case 2

Table 3. Required number of tests for different choices of P(H0), θ0 and θ1, when a uniform
prior probability distribution is assumed both under P(H0) and P(H1)

θ0 θ1 No. of tests
P(H0)=0.01

No. of tests
P(H0)=0.6

0.01 0.05 776 284
0.001 0.05 5300 852
0.0001 0.05 30271 1242
0.000001 0.05 179002 1319
0.01 0.1 695 210
0.001 0.1 4602 510
0.0001 0.1 23804 639
0.000001 0.1 93500 659
0.01 0.25 598 131
0.001 0.25 3696 235
0.0001 0.25 15936 260
0.000001 0.25 38455 263
0.01 0.5 527 84
0.001 0.5 3025 124
0.0001 0.5 10853 131
0.000001 0.5 19412 131
0.01 1 458 50
0.001 1 2378 63
0.0001 1 6831 65
0.000001 1 9753 65

From Table 2 it can be seen that the number of tests, required to obtain adequate
confidence in a software component, increases significantly when the upper bound for
the failure probability decreases. Although the effect depends on the actual upper
bound defined, some realistic test cases, where the upper bound was set to 0.1 and
0.05, indicate an increase in the number of required tests with a factor of respectively
10 and 20. These results can be explained by the Bayesian hypothesis testing
approach, which uses the Bayes factor to find the number of tests required to satisfy
the confidence level C0. From equation (15), it can easily be seen that when θ1
decreases, the Bayes factor also decreases. This means that the evidence in favour of

θ0

π (θ)

θ1 1

P(H0)*1/θ0

P(H1)*1/(θ1-θ0)

188 M. Kristiansen

the null hypothesis decreases, and that more tests must be conducted to satisfy the
confidence level C0.

Case 3:
A possible way to mitigate the effect of discontinuity in the prior probability
distribution in Case 1 is to use a continuous probability distribution for θ over the
entire interval (0, 1). To reflect prior beliefs, the beta distribution is often chosen (see
Figure 3), since this distribution is a rich and tractable family that forms a conjugate
family to the binominal distribution. A prior probability distribution for θ based on
the beta distribution is shown in equation (17).

θ>θθθ
βτατ
β+ατ

θ≤θθθ
βτατ
β+ατ

=θπ
βα

βα

 ,)-(1
)()(

)(

)P(H

1
)P(H

 ,)-(1
)()(

)(

)P(H

1
)P(H

)(

0
1-.1-

1
1

0
1-.1-

0
0

 (17)

As in the other two cases, it is assumed that no failures have been encountered
during testing. Based on the binominal distribution in equation (5) and the prior belief
about θ in equation (17), the Bayes factor, as defined in equation (7), can be
calculated as shown in equation (18).

θ

+βα

θ
+βα

θθθ

θθθ

=
1

1-n1-
0

0

1-n1-
1

0

0

d)-(1)H(P

d)-(1)H(P

B (18)

 By combining equation (8) and (18), the number of tests required to satisfy the
given predefined confidence level C0, can be found. This is expressed in equation
(19).

0

0
1

1-n1-

0

1-n1-

C1

C

d)-(1

d)-(1

0

0

−
=

θθθ

θθθ

θ

+βα

θ
+βα

 (19)

In situations were the prior belief regarding θ corresponds to the view that no
failures have been detected during a hypothetical test, it is common to set the α-value
in the prior beta distribution equal to 1. This is because the α-value in the beta
distribution can be interpreted as the number of failures detected during testing, while
the β-value can be interpreted as the total number of fault free tests performed during
testing [1].

Table 4a shows the number of tests required to obtain adequate confidence in a
software component, when is constant equal to 1 and P(H0) varies between 0 and

 Finding Upper Bounds for Software Failure Probabilities – Experiments and Results 189

0.99. The given predefined confidence level C0 and upper bound θ0 are assumed to be
constant equal to 0.99 and 10-4, respectively.

From Table 4a it can be seen that the number of required tests decreases towards 0
when the -value increases.

Fig. 3. Beta distribution with (a) α and β <1, (b) α<1 and β>1 and (c) α and β>1

 This result can be explained by equation (19), were it easily can be seen that if the
-value increases, the number of remaining tests, n, required to satisfy the confidence

level C0 decreases accordingly. The first scenario in Table 4a, where β→0, represents
classical statistical testing (black-box testing), while the second scenario represents
using a uniform prior probability distribution for over the entire interval [0, 1]. In
the last scenario, the prior belief regarding θ is equal to the posterior belief, and zero
tests are needed to reach the required confidence level C0.

Table 4. Required number of tests for θ0 = 10-4 and C0 = 0.99 when a continuous beta
distribution are used a) with α = 1 and P(H0) varying from 0 to 0.99 and b) with P(H0) = 0.8
and α varying from 10-4 to 10

P(H0) α β No. of tests P(H0) α β No. of tests
0.0 1 0 46050 0.80 10-4 4*10-4 16536

10-4 1 1 46049

0.80
0.0
1 0.071 16805

0.10 1 1054 44996 0.80 0.1 694 18993
0.20 1 2231 43819 0.80 0.8 13073 28985
0.30 1 3567 42483 0.80 1 16094 29956
0.40 1 5108 40942 0.80 3 42787 44477
0.50 1 6931 39119 0.80 10 125177 62645
0.60 1 9163 36887 (b)
0.70 1 12039 34011
0.80 1 16094 29956
0.90 1 23025 23025
0.95 1 29956 16094
0.98 1 39119 6931
0.99 1 46050 0
(a)

Table 4b shows the required number of tests when P(H0) is constant equal to 0.8
and varies between 10-4 and 10. As in Table 4a, the given predefined confidence

190 M. Kristiansen

level C0 and upper bound θ0 are assumed to be constant equal to 0.99 and 10-4,
respectively. From Table 4b it can be seen that the number of tests, required to satisfy
the confidence level C0, increases significantly when the -value increases.
 In addition, it can be seen that the total number of tests required by using the
Bayesian hypothesis testing approach both can result in fewer as well as even more
tests compared to classical statistical testing. The total number of required tests is
highly dependent on the choice of -value in the beta distribution.

4 Discussion

The results from the experiments in Chapter 3 show that the number of tests required
to obtain adequate reliability in a software component is highly dependent on the
choice of prior distribution in the Bayesian hypothesis testing approach. This prior
distribution is an expression of prior belief in the reliability of a software component,
and should be based on all existing information about the software component prior to
testing. This chapter discusses how different evidences may influence this prior belief,
and how this can be reflected in the prior distribution.

Some typical evidences that influence the reliability of a software component are:
the quality of the producer, the development process, programming language, the
complexity of the software, the type of software (in-house, COTS etc.), operating
experience, etc. The sum of these evidences may not only have impact on how much
one believe in a software component, but the different types of evidences may also
influence the shape of the prior distribution between zero and one. In the following
this is discussed, with reference to some software examples.

One aspect is that a software component can be correct, i.e. that it, in distinction
from hardware components, can have a zero failure probability. This can be expressed
by a θ0 equal to zero, and a P(H0) that expresses the belief one has in this upper
bound. If for instance the program is developed using clean room programming, or
formal development methods, P(H0) may be high (close to one). However, there
might be a suspicion that even if the program is correct according to specification,
there is a possibility that the specification is incorrect. This suspicion should be
expressed in the prior distribution under H1. If there really is a specification error, this
could lead to a failure at any moment of execution. It is therefore not unrealistic to
assume that the failure probabilities under H1 are evenly distributed. Alternatively,
one could assume that if there is a specification error, this would lead to an immediate
failure after execution start. In this case, the failure probabilities under H1 should have
a distribution that is large for θ near one, resulting in a kind of “bath-tub” curve for
the distribution of θ (see Figure 3a).

A similar argument could be used for reuse of software. If a software component
has been frequently used in one environment, with no failure, one can assume a large
value of P(H0) for a low value of θ0. However, if the same software component is
used in another environment, there is a certain possibility for a systematic failure. One
possible way to reflect this is by assuming a smaller value for P(H0) and a larger and
more evenly distribution for the failure probabilities under H1.

 Finding Upper Bounds for Software Failure Probabilities – Experiments and Results 191

A different case would be for an in-house component, tailor made for its purpose,
where the development was made in an unsystematic way. It is assumed that the
component has been tested and debugged during development, and finally passed an
acceptance test. In this case it is reason to believe that no obvious failures occur, so
that the distribution for θ will be close to zero. On the other hand, in particular if the
component is large and complex, there is a significant probability that there are one or
more bugs hidden in the code that can cause failures in more rare situations. This
should be reflected in the distribution for θ. A reasonable choice could be a uniform
distribution for θ below a fairly low θ0 and a fast decreasing distribution for θ above
this value. The choice of θ0, P(H0) and P(H1) should in this case depend on the belief
one has in the development process and the thoroughness of acceptance test.

The intention of this chapter has been to stress the importance of selecting a prior
distribution for θ on the basis of all available information, and give some ideas on
how this can be done for different software components. Having chosen a reasonable
shape of the distribution for θ, one could find a beta distribution that reflects this
shape as well as possible. The use of beta distributions is, however, mainly chosen
because of its computational convenience. Other more complex distributions may also
be used.

5 Conclusion and Further Work

In this paper the use of Bayesian hypothesis testing, as one possible approach to find
upper bounds for software failure probabilities, has been studied. Three different
choices of prior probability distributions for a software component’s failure
probability have been evaluated, and their influence on the number of tests required to
obtain adequate reliability in a software component has been investigated. The results
from the experiments show that the number of required tests is highly dependent on
the choice of prior distribution in the Bayesian hypothesis testing approach. In
addition, it is shown that the total number of tests required by using this approach
both can result in fewer as well as even more tests compared to classical statistical
testing. It should be emphasized that it is not the Bayesian hypothesis testing
approach that results in fewer required tests, but the underlying prior distribution for
the software component’s failure probability and the assumptions that are made. To
choose a prior probability distribution for a software component’s failure probability
that correctly reflects one’s prior belief is therefore of great importance.

Further work includes extending this approach to assess systems consisting of
multiple software components. Of particular interest is the challenge of finding upper
bounds for simultaneous failure probabilities, and thus making it possible to include
dependency aspects in software reliability models.

Another important aspect, which needs to be studied further, is the difficulty of
establishing descriptions of prior beliefs regarding single failure probabilities, as well
as for simultaneous failure probabilities, where all available information prior to
testing is taken into account. One approach to find these prior probability distributions
that will be investigated is the application of Bayesian Belief Nets (BBN’s).

192 M. Kristiansen

Acknowledgement

This study is part of my PhD work at Østfold University College and the University
of Oslo. I want to acknowledge: Rune Winther from Østfold University College,
Gustav Dahll and Bjørn Axel Gran from Institute for Energy Technology for valuable
comments and ideas.

References

1. Berger J. O.: Statistical Decision Theory and Bayesian Analysis. Springer verlag, 2nd
edition, ISBN 0-387-96098-8, pp 118-166, 1980.

2. Cukic B., Gunel E., Singh H., Guo L.: The Theory of Software Reliability Corroboration.
IEICE Trans. on Information and Systems, Vol. E86-D, No. 10, pp 2121-2129, Oct. 2003.

3. Eckhardt D. E., Lee L. D.: A theoretical basis for the analysis of redundant software
subject to coincident errors. NASA tech. Memo, 86369, Jan. 1985.

4. Fenton N., Krause P., Neil M.: Software Measurement: Uncertainty and Causal Modeling.
IEEE software, Vol. 19, No. 4, pp 116-122, July/Aug. 2002.

5. Frankl P., Hamlet D., Littlewood B., Strigini L.: Choosing Testing Method to Deliver
Reliability. Proc. of the 19th International Conference on Software engineering, pp 68-78,
May 1997.

6. Gran B. A.: The use of Bayesian Belief Networks for combining disparate sources of
information in the safety assessment of software based systems. Thesis 2002:35, NTNU,
Trondheim, Norway, 2002.

7. Hamlet D., Mason D., Woit D.: Theory of Software Reliability Based on Components,
International Conference on Software Engineering, Vol. 23, pp. 361-370, 2001.

8. IEC 60880-2: Software for Computers Important to Safety for Nuclear Power Plants –
Part 2: Software aspects of defense against common cause failures, use of software tools
and of pre-developed software, December 2000.

9. Krishnamurthy S., Mathur A.: On the Estimation of Reliability of a Software System
Using Reliabilities of its Components. Proc. of the 8th International Symposium on
Software Reliability Engineering (ISSRE), Nov. 1997.

10. Kuball S., May J., Hughes G.: Building a system failure rate estimator by identifying
component failure rates. Proc. of the 10th International Symposium on Software Reliability
Engineering (ISSRE’99), pp 32-41, Nov. 1999.

11. Littlewood B., Miller D. R.: Conceptual Modeling of Coincident Failures in Multiversion
Software. IEEE Trans. on Software Engineering, Vol. 15(12), pp 1596-1614, Dec.1989.

12. Littlewood B., Popov P., Strigini L.: Modelling software design diversity: a review. ACM
Computing Surveys, Vol. 33, No. 2, pp 177-208, June 2001.

13. Lyu M. R. (editor): Handbook of Software Reliability Engineering, IEEE Computer
Society Press, ISBN 0-07-039400-8, 1995.

14. Miller K., Morell L. J., Noonan R. E., Park S. K., Nicol D. M., Murrill B. W., Voas J. W.:
Estimating the probability of failure when testing reveals no failures. IEEE Trans. on
Software Engineering, Vol. 18, No. 1, pp 33-43, Jan. 1992.

15. Poore J. H., Mills H. D., Mutchler D.: Planning and Certifying Software System
Reliability. IEEE software, Jan. 1993.

16. Popov P., Strigini L., May J., Kuball S.: Estimating Bounds on the Reliability of Diverse
Systems. IEEE trans. on Software Engineering, April 2003

 Finding Upper Bounds for Software Failure Probabilities – Experiments and Results 193

17. Scott J. A., Lawrence J. D.: Testing Existing Software for Safety-Related Applications.
Lawrence Livermore National Laboratory, prepared for U.S Nuclear Regulatory
Commission, 1995.

18. Singh H., Cortellessa V., Cukic B., Gunel E., Bharadwaj V.: A Bayesian Approach to
Reliability Prediction and Assessment of Component Based Systems. Proc. of the 12th
International Symposium on Software Reliability Engineering (ISSRE), 2001.

19. Smidts C., Cukic B., Gunel E., Li M., Singh H.: Software Reliability Corroboration. Proc.
of the 27’th Annual NASA Goddard Software Engineering Workshop (SEW-27’02), 2002.

R. Winther, B.A. Gran, and G. Dahll (Eds.): SAFECOMP 2005, LNCS 3688, pp. 194 – 207, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Justification of Smart Sensors for Nuclear Applications

Peter Bishop1,2, Robin Bloomfield1,2, Sofia Guerra2, and Kostas Tourlas2

1 CSR, City University
2 Adelard, Drysdale Building, 10 Northampton Square, London,

EV1V 0HB, UK
{pgb, reb, aslg, kt}@adelard.com

Abstract. This paper describes the results of a research study sponsored by the
UK nuclear industry into methods of justifying smart sensors. Smart sensors are
increasingly being used in the nuclear industry; they have potential benefits
such as greater accuracy and better noise filtering, and in many cases their ana-
logue counterparts are no longer manufactured. However, smart sensors (as it is
the case for most COTS) are sold as black boxes despite the fact that their
safety justification might require knowledge of their internal structure and de-
velopment process. The study covered both management aspects of interacting
with manufacturers to obtain the information needed, and the technical aspects
of designing an appropriate safety justification approach and assessing feasibil-
ity of a range of technical analyses. The analyses performed include the meth-
ods we presented at Safecomp 2002 and 2003.

1 Introduction

Sensors for nuclear applications have been relatively simple analogue devices with
known performance properties and known failure characteristics. However, the sensor
industry is increasingly using microprocessor-based “smart sensors”. Smart sensors
can achieve greater accuracy, better noise filtering together with in-built linearisation,
and provide better on-line calibration and diagnostics features. So, given the difficulty
in obtaining replacement analogue sensors, and the potential benefits of smart sensors,
it is important that the nuclear industry develops a suitable approach for justifying the
use of smart sensors in systems important to safety (SIS).

Smart sensors are a specific form of COTS (commercial off-the-shelf) product.
COTS products are normally sold as a “black box” where there is no knowledge of
the internal structure. However, their safety justification might require knowledge of
the internal structure and development process. The justification of sensors is an in-
creasing problem because the software constitutes a valuable intellectual investment,
and the civil nuclear companies purchase sensors in small quantities.

This paper presents the results of a research study sponsored by the UK nuclear in-
dustry into methods for justifying smart sensors. The project has covered both man-
agement and technical issues.

• From a management perspective, we examined the issues involved in interacting
with the suppliers to gain the information needed for the justification. We also

 Justification of Smart Sensors for Nuclear Applications 195

addressed the need for a sustainable long-term approach for the justification of
smart sensors that is acceptable to both suppliers and customers.

• From a technical perspective, we need an assessment approach that is both pro-
portionate and feasible to apply and is commensurate with the SIL of the in-
tended application(s). The approach should also be related to existing assurance
requirements for computer-based systems in nuclear application (e.g. HSE SAPs
[1] and the British Energy PES Guidelines [2]) and should address the concerns
related to the black box assessment of smart sensors (and other COTS products).

The paper is structured as follows. In Section 2 we describe the interactions with
the manufacturers that took place in the scope of this project, as well as the main is-
sues identified during these interactions. Section 3 summarises three different view-
points of the safety justification of smart sensors, including a goal-based approach
that is expanded in Section 4 and vulnerability assessment summarised in Section 5.
Section 6 describes the analyses performed on one of the smart devices obtained,
while Section 7 relates these analyses with the three approaches from Section 3. The
conclusions are presented in Section 8.

2 Relationships with Smart Sensor Manufacturers

2.1 Obtaining Software, Supporting Data and Company Culture

Obtaining the software was a lengthy process spread over many months, involving
several contacts, phone calls and negotiation of conditions for non-disclosure of the
results. However, once the relationship was established, there were fewer difficulties
in providing further data on the devices or even the software of other devices.

As a result of these negotiations, we successfully obtained smart sensor software
from two manufacturers, and we were offered the possibility of obtaining another ex-
ample by a third manufacturer. In addition, the manufacturers supplied, to varying de-
grees, design documentation and additional data such as process and reliability data
and certificates that could be used to support the safety justification of the devices.

It must be borne in mind, however, that the software was provided on the under-
standing that it was a part of a research project undertaken by a specialist third party.
Whether a similar level of access would be provided to end-users on a routine basis
remains an open question.

The nature of the relationships with the smart sensor manufacturers was quite dis-
tinct, probably as a result of the key markets they target and the management structure
and particular characteristics of the companies. It is clear that smart sensor suppliers
can have different company cultures, and this can have a major impact on the feasibil-
ity of gaining access to the source code and subsequently a successful assessment.
Some pertinent questions to assess the likely success of the interaction might be:

1. How does the organisation deal with this type of interaction? Are there prece-
dents in the past?

2. Who is the gatekeeper and what is their role in the organisation? (a “gatekeeper”
is an official point of contact in the company who decides whether to allow re-
quests to pass to higher management):

196 P. Bishop et al.

• Do they have access to design authority?
• What are the lines of communication?
• How frequently and with whom are meetings available to clarify issues?

3. How difficult would access to management be?
4. To what extent does the organisation see the relationship as benefiting them?

• What are the main market sectors?
• Is nuclear industry a main market, a niche or a distraction?
• Are the benefits of engagement seen only in terms of future sales?
• Does the organisation see benefits of interaction from a technical or process

improvement point of view?
5. What is the attitude to confidentiality?

• Is a standard non-disclosure agreement sufficient?
• Is the confidentiality agreement with the assessor company or with named

people from the company?

2.2 Long Term Issues

Despite the differences between the supplier approaches, some common long-term is-
sues emerged:

1. The suppliers expressed concerns about the effort and cost needed for routine
justifications of smart sensors—the nuclear industry is a small market compared
to other sectors, and the effort might be excessive relative to the potential sales.

2. Both suppliers are generally in favour of an “assurance package” of additional
information that is paid for by the customer.

 The big issue is what this package should contain and whether it will be acceptable
to a wide range of customers (e.g. the nuclear industry or beyond). There is a UK ini-
tiative to define a framework of IEC 61508-conformant documentation about the
development processes for a device; this has the potential to form part of an assurance
package. The SIREP sensor assessment could also be used in support of the functional
and hardware performance of the sensor. Further work would be needed to describe
the full content of such a package. The main area of weakness is the “black box” na-
ture of such evidence, and greater confidence could be obtained if there was some
knowledge of the internal design and implementation of the device (e.g. “grey box”
information like design documents, or white box information like source code).

Independent certification is used to provide “black box” evidence for performance
(e.g. accuracy) and environmental withstand (e.g. electrical isolation, temperature).
Evidence also exists for hardware reliability and safe failure fraction (e.g. using
hardware reliability models and FMEDA). But independent assessment of software
(like a TUV assessment for compliance to IEC 61508) is not routinely performed.
This is thought to be quite costly especially if it has to be updated with each revision.

It is clear there is a perceived tension between the need for suppliers to maintain
confidentiality and the user’s requirement to provide sufficient evidence to demon-
strate safety. In principle the licensee should always be able to check the evidence and
the details of the analysis performed. This might not be feasible for a compliance cer-
tification approach where a certificate is provided but the rationale and detailed evi-
dence is not. By contrast “black box” system certification against test standards seems

 Justification of Smart Sensors for Nuclear Applications 197

less of a problem as the specific tests undertaken are clearly defined. Perhaps third
party software evidence would be more acceptable if a common set of software analy-
ses and tests were defined that could be subjected to external audit.

3 Safety Justification Approaches

There are different strategies that can be deployed in the safety justification of smart
sensors. The three main approaches can be characterised as a “triangle” of:

• Justification via a set of claims about the system’s safety behaviour.
• The use of accepted standards and guidelines.
• An investigation of known potential vulnerabilities of the system.

Fig. 1. Safety case approaches

The first approach is goal-based—where specific safety goals for the systems are
supported by arguments and evidence at progressively more detailed levels. The sec-
ond approach is based on demonstrating compliance to a known safety standard. The
final approach is a vulnerability-based argument where it is demonstrated that poten-
tial vulnerabilities within a system do not constitute a problem—this is essentially a
“bottom-up” approach as opposed to the “top-down” approach used in goal-based
methods. These approaches are not mutually exclusive, and a combination can be
used to support a safety justification, especially where the system consists of both off-
the-shelf (OTS) components and application-specific elements.

In the past, safety justifications tended to be implicit and standards-based—
compliance to accepted practice was deemed to imply adequate safety. This approach
works well in stable environments where best practice was supported by extensive
experience, but with fast moving technologies, a more explicit goal-based approach
has been advocated, which can accommodate change and alternative strategies to
achieve the same goal.

4 Goal-Based Safety Justification

4.1 Goal-Based Justification of COTS Products

Goal-based approaches are often used in safety justifications ([3], [4], [5], [6]). This is
a flexible approach as it focuses directly on the safety requirements for the sensor and

198 P. Bishop et al.

can be related to a range of different safety standards by identifying how the stan-
dards’ requirements support the various claims.

HSE guidance on COTS/SOUP ([7], [8]) recommends that the goals for a com-
puter-based system are related to factors that directly affect safety, e.g.:

• functional behaviour
• accuracy
• reliability and availability
• fail-safe behaviour
• time response

A similar set of attributes could be identified for a smart sensor component of a
system. Moreover, we have to recognise that a smart sensor justification is part of a
larger safety justification for a “System Important to Safety” (SIS).

1. The justification of the component can be used to show that the component
“does what it says on the tin”. This is application independent.

2. The SIS safety justification has to show that the component is suitable for the
application context and satisfies any constraints.

For example, there could be a component claim that a smart sensor is accurate to
10-3 and an application-level claim of 10-2 for the accuracy of some computation in-
volving the combination of several measured values. Alternatively, the sensor might
explicitly include functionality that is not needed (e.g. support for different types of
resistance thermometer). In this case we need to show in the SIS safety justification
that the unwanted functions are not activated. In addition there may well be function-
ality that is not declared as part of the product.

The extent of evidence to justify specific sensor properties will vary with the re-
quired integrity level, and the type of evidence required may also need to change with
the integrity. At lower integrity levels there is greater emphasis on “black box” evi-
dence (externally observed behaviour) and evidence of development process. Yet, it is
necessary to look “inside the box” for greater assurance and higher integrity applica-
tions. Indeed the public consultation on the HSE study showed a consensus that the
assessment of critical SOUP should include white box assessment.

4.2 Key Goals

In a goal based approach we identify the key attributes required for a smart sensor,
and then seek arguments and evidence to show these goals are met. Clearly many
properties like environmental limits (temperature, humidity, supply voltage) and resis-
tance to interference (RFI, EMI, mains noise) are only dependent on the hardware and
can be justified in the same way as conventional hardware. However, other properties
will depend on a combination of hardware and software and may therefore require
different or additional supporting evidence to address software concerns.

We focused on the properties of the system that involve software. Based on the
specifications of the two suppliers and more general consideration of smart sensor re-
quirements, the following set of goals was identified that are likely to involve soft-
ware in the smart sensor, where the values used correspond to those of the

 Justification of Smart Sensors for Nuclear Applications 199

temperature transmitter specification. This could be extended to include functional
capabilities of the device.

Table 1. Smart sensors properties for goal-based approach

Ref Sensor property
1 Output conversion accuracy better than 0.03% under stated conditions
2 Sample rate < 128 ms, 10%-90% step response < 256 ms
3 Safe failure fraction >0.72
4 MTTF > 2.5 years (average)
5 Configuration and calibration errors are minimised
6 Smart sensor behaviour is predictable
7 Smart sensor properties 1-6 can be maintained for next 10 years

 Note these goals are application independent, i.e. defined by the supplier. The nu-
merical values will vary with the actual sensor, but these properties are directly rele-
vant to the safety justification of the SIS as a whole. The system implementor has to
define higher-level system goals (e.g. timeliness and accuracy of the overall system)
and demonstrate that the properties of the sensor support the SIS safety justification.

5 Vulnerability Assessment

The vulnerability assessment focused on a number of concerns with a purely black-
box based approach. Discussion of these concerns is not included in the paper, but in-
cluded adequacy of functional testing, software security vulnerabilities and malicious
code among others. In subsequent analysis we expanded the final category of “non-
predictability” to consider specific sources of non-predictability, namely:

• concurrent interaction problems (non-atomic updates, deadlocks, etc.)
• non-initialisation of data
• data overflow
• variable time response (data dependent timing, infinite loops, etc.)

The black box concerns identified above could result in unexpected behaviour even
if the equipment appears to conform to specification when functional testing of the
“black box” is performed. Such concerns can be used as a checklist to determine
whether the risks of potential vulnerabilities have been addressed (e.g. using addi-
tional grey-box or white-box evidence). The fundamental limitation of black-box
analysis is the extent to which the testing/field experience profile used mirrors the ac-
tual use in the new application.

6 Analysis of a Smart Device

In Section 3 we described different aspects of a safety justification of a smart sensor,
but no supporting evidence was presented. In this section we describe the technical
analyses performed in the project concerning a specific sensor product: a temperature

200 P. Bishop et al.

transmitter. The aim of this work was to assess the feasibility of a variety of tech-
niques and analyses to support the safety justification of the temperature sensor.

The microprocessor is programmed in assembly language. The software comprises

• 6000 lines of assembly code (including comments)
• 7 kilobytes of binary code

The source code has been subjected to a range of assessments to support its safety
justification, namely:

• Code criticality analysis. Identification of the code essential to operation and ob-
solescent code.

• Code structure analysis. Identification of concurrent program threads and checks
for safe exchange of data between threads and absence of deadlocks.

• Code integrity assessment. Check for defective code constructs (e.g. array
bound overflow, divided by zero, dead code, stack overflow).

• Redundant code analysis. To identify if there is any unexpected code.
• Failure integrity analysis. Assessment of the failure integrity features to check

whether failures result in a safe state.
• Predictable execution assessment. Assessment of whether the ordering of soft-

ware functions is well defined, of the input-output conversion accuracy and
whether the execution time has a predictable upper execution time bound.

• The development of a strategy for statistical testing (not described in this paper).

 The feasibility of performing such analyses depends on the code size, structure, and
programming language. There is more tool support for high level languages (like C)
for performing analyses. However, we have made use of assembler level software
simulators to perform direct testing of internal functions within the software and to
evaluate the code coverage and code execution times.

6.1 Code Criticality Analysis

We performed software criticality analysis [9] to assess the importance to safety of
various components within the software. This showed that the code is separated into
the main conversion function and a calibration function. The calibration code can only
modify the calibration parameters used by the main code, and hence could be viewed
as less critical as it is not executed in normal operation. Most of the analysis effort
(such as the timing analysis) was focused on the main conversion function.

6.2 Structural Analysis and Concurrency Analysis

In order to perform evaluations of the sensor software it was first necessary to under-
stand the overall software architecture. To gain an understanding of the structure, we
reviewed both the software documentation and the source code.

As part of the structural analysis, we identified concurrent program threads and
checked for safe exchange of data between threads and absence of deadlocks.

From the architecture analysis, we identified the variables that passed information
between the threads. It is important that these updates are “atomic”, i.e. cannot be
seen by another thread in a partially updated state. For example, if a two byte variable

 Justification of Smart Sensors for Nuclear Applications 201

is updated from “00, FF” to “01, 00”, it could transiently have the value “01, FF” or
“00, 00” (depending on the update order of the bytes). Clearly it is undesirable that
the variable can be seen in this transient state, and the software should ensure that all
updates are atomic. The software was manually reviewed to check for this.
We also verified that these atomic updates do not result in deadlock. Whenever inter-
rupts are set, they are always released.

6.3 Code Integrity Assessment

Integrity static analysis [10] focused on structural faults in the software, in particular
the internal integrity of the code and the intra-component integrity.

The extensive field experience of the device being analysed is likely to precipitate
the detection of most large and obvious faults during typical execution of the pro-
gram. However, specific vulnerabilities of the languages used have a less frequent
manifestation and are more likely to remain undetected. Integrity static analysis fo-
cuses on what we called intrinsic faults, i.e. faults that may be recognised as such in-
dependently of any requirements specification. This includes use of out of bound ar-
ray indexes, use of illegal pointers, use of non-initialised variables, violations of
assertions, permanent loss of resources, insufficient resources, dead locks, non-
deterministic behaviour and non-controlled access to shared variables.

Our approach to the analysis of the assembler code can be grouped into two main
categories:

• Direct analysis of the assembler code, including analysis of the control flow
supported by model checking, dead code checks and semantic analysis.

• Translation of the assembler code into C (by a Perl script combined with manual
translation) and analysis of the translated code using CodeSurfer and Safer C.

6.4 Redundant Software Analysis

The software was reviewed for redundant functions. The only redundant function
found was a display function that apparently drives a local LCD display on the sen-
sor—however the sensor supplied to us has no LCD display. We suspect that this is
because the same code is used to drive a family of sensors including some with built-
in displays. From a configuration management and support perspective, it is desirable
to use common code. There is no real objection to this apart from the fact that it must
be demonstrated that the software does not “hang” waiting for a response from the
display hardware and it conflicts with IEC 60880, a fundamental standard for reactor
protection systems. We do not think this is a problem as the unit supplied to us func-
tions correctly without the LCD display yet a more formal safety justification would
need to document this and to justify the non-compliance with IEC 60880.

6.5 Failure Integrity Analysis

It is important that failures of the hardware and the software result in a safe state. An
analysis was performed to identify what fault detection and fault handling features
were present in the software. Analysis showed that internal software failures and de-
lays were trapped by a hardware watchdog. An analysis of the software also showed

202 P. Bishop et al.

that it contained checks on the integrity of the hardware (as required in IEC 61508
Part 2 Annex A1). These included software checks for breaks in probe wiring, mem-
ory integrity, and the integrity of the analogue to digital interface. Failure integrity
was also enhanced by using a software-generated oscillating binary output to drive the
analogue output circuit. If failures occurred in the processor, output interface, or soft-
ware, the output bit would become static and result in an out-of-range output signal.

6.6 Functional Analysis-Accuracy Analysis

The functional software analyses focused on checking whether the software maintains
sufficient accuracy. The functional analyses were performed using the Cosmic suite
of tools for assembling, simulated execution, debugging and profiling of the code for
a micro-controller.

0

1 0 0

2 0 0

3 0 0

4 0 0

5 0 0

6 0 0

7 0 0

8 0 0

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9

in p u t fro m A D C

o u t p u t t o D A C

Fig. 2. Input vs. simulated output (mV operation, no linearisation)

The smart sensor software can be configured to operate a number of different
modes, or types of measurement. We configured the software to perform a simple lin-
ear scaling of the input, and then simulated the execution of the smart sensor code on
a PC using the COSMIC simulator tool.

Figure 2 plots the simulated input (X) alongside the converted output (Y). (The
units along the horizontal axis count the samples.) The plot confirms a precise match
between expected and actual behaviour: the output closely follows the overall enve-
lope of the input, albeit with its slope adjusted by a factor of 0.75, until the input is
plunged to zero. The final drop in the input simulates an error condition such as a
broken wire or other malfunction of the analogue input. When such errors occur, the
output should be forced to the minimum output signal value of 75—and this behav-
iour is observed in the simulation. Figure 3 plots the magnitude of the rounding error
for the first 15 samples in the input sequence. The rounding error is defined as the dif-
ference between the value produced by the conversion equation and the “ideal” value.

The plot shows the rounding error to be bounded within +/-0.5 of one output unit.
This represents an error in the order of 0.0125% compared to the output of an “ideal”
analogue converter. This is in line with our expectations based on inspection of the
code analysis, which showed that high precision arithmetic routines are used in the
conversion calculation.

 Justification of Smart Sensors for Nuclear Applications 203

- 0 . 6

- 0 . 5

- 0 . 4

- 0 . 3

- 0 . 2

- 0 . 1

0

0 . 1

0 . 2

0 . 3

Fig. 3. Magnitude of rounding error

6.7 Timing Analysis

It is important that the sensor has predictable timing, so the measurements are updated
at the specified intervals. Inspection of the code showed that the input-output conver-
sion was performed in a simple cyclic loop. This helped to ensure that the sampling of
the input and updating of the output occur at predictable rates.

The overall strategy followed by the analysis was to:

• Obtain simulated execution timings (using the COSMIC tool) for the software
conversion.

• Derive worst-case estimates for the amount of time the micro-controller spends
communicating instructions and data with the ADC. These are derived based on
timing data available on the serial interface between the micro-controller and the
ADC, as well as the ADC’s internal operation.

• Combine the two, bearing in mind potential overlaps of activity, and check the
combined timings against the claimed targets.

 The complete timing estimates were derived from the information above to sub-
stantiate the original claims, and it was concluded that the software performs within
its timing specifications, even under conservative and pessimistic assumptions.

7 How Evidence Fits the Safety Justification Approach

This section relates the analysis evidence obtained from the sensor (Section 6) with
the goal-based approach (Section 4) and black-box concerns (Section 5). Note that the
overall “triangle” of safety justification also included an assessment of compliance to
the British Energy PES guidelines [2]. However, standards compliance will not be
discussed further in this paper.

7.1 Goal-Based Approach

A goal-based approach for a smart sensor would focus on demonstrating key proper-
ties of the sensor that are relevant to the safety justification of the system. In Section 4
we identified a set of sensor properties that represent the top-level goals of the smart

204 P. Bishop et al.

sensor justification. This section discusses the evidence that can be used to show that
the goals have been met.

• Evidence for goals 1 and 2 (accuracy and response time) can be obtained from
black-box functional tests (e.g. SIREP or statistical tests). However, it would also
be possible to strengthen the justification by using diverse evidence from white box
analyses. For example, the analyses of software accuracy and timing undertaken in
Sections 6.6 and 6.7 could be part of an alternative white-box argument that the
overall combination of hardware and software will satisfy the top-level goals.

• Goals 3 and 4 (safe failure fraction and MTBF) can also be demonstrated by di-
verse means. With adequate reporting of operational defects by end users, it might
be possible to analyse the field experience to directly measure the MTBF and safe
failure fraction. However, it is recognised that there are many uncertainties in such
estimates, and it is also possible to make an analysis of the hardware and diagnos-
tic features to make alternative estimates. In our particular example, the supplier
provided a FMEDA assessment to support the claims.

• Goal 5 (configuration and calibration integrity) is important as errors in configura-
tion and maintenance are a significant source of safety problems. Clearly the con-
figuration interface should seek to minimise errors. We have analysed the design
features that protect against random corruption using evidence from the integrity
analysis, but this does not cover aspects such as the usability of the interface. This
might be addressed by a human factors assessment.

• Goal 6 (predictable behaviour) is generally important within the safety justifica-
tion. If the behaviour is predictable, the results of black-box tests can be used with
more confidence because the behaviour is likely to be repeatable. To some extent
predictability can be justified by field experience, but most of the evidence is likely
to be based on analysis of the architecture and source code. The structural analyses
described in Section 6.2 give confidence that some known architectural problems
(like deadlocks) do not exist, and the vulnerability assessment summaised in Sec-
tion 7.2 also help to demonstrate predictability. In addition, the integrity analyses
we performed showed that certain types of source code faults were absent. These
are however quite detailed analyses that may be impractical for lower integrity sen-
sors, so an alternative source of evidence might be grey-box knowledge of the de-
sign process. For example, the process might include rules about the design of the
system for deadlock avoidance and predictable timing or procedures to perform
static analysis to detect various types of software fault.

• Goal 7 (long-term dependability) is also important for the long-term safety of the
overall system. Smart sensor products are subject to change (e.g. of hardware com-
ponents and software functionality) and might also cease to be manufactured or
supported. We need evidence of availability and support, but we also require assur-
ance that changes do not affect any of the other safety goals. This is partly ad-
dressed by the technical analysis given in Section 6, but knowledge of the sup-
plier’s process can give some confidence that the changes will do not affect the
behaviour of the sensor.

 It can be seen that a goal-based approach helps to identify what evidence helps to
support the safety justification. We can also see that multiple forms of evidence could
be deployed to support the same goal, and this gives flexibility in the justification ap-
proach. With higher integrity applications, we might expect greater use of diverse
evidence and arguments. We also note that evidence about the process is only

 Justification of Smart Sensors for Nuclear Applications 205

indirectly related to the functional properties of the sensor, but is likely to be highly
relevant in ensuring that the observed behaviour is predictable and will be maintained
in subsequent upgrades.

7.2 Vulnerability Assessment

This section summarises how specific concerns have been or could be addressed to
support the justification of a smart device. These would support goal 6 in Section 7.1.

Table 2. Summary of vulnerability analysis

Concern Activity/method Observation
Adequacy of func-
tional testing

Functional analysis Partially tested through simulation to establish
functional requirements and accuracy were met.

Housekeeping code Code inspection &
structural analysis

No problems identified.

Detection of infea-
sible paths

Dead-code analysis,
simulation

Dead-code analysis identified few cases of inac-
cessible code. Simulation uncovered no infeasible
paths.

Fault-detection code Code inspection and
structural analysis

Inspection revealed no problems.

Fault-tolerance Code inspection and
structural analysis

The design of the product emphasises fail-safety
over fault-tolerance. The software has good fault
integrity behaviour.

Time-based events Code inspection,
timing analysis

No calendar time-based events were found.

Counters Structural analysis,
code analysis

No cases of potential counter overrun were found
in the code.

Malicious code Code inspection None found.
Unwanted require-
ments

Documentation re-
view, code analysis

Some unused code was found, but it was used by
other models in the same sensor family.

Security vulnerabili-
ties

Code inspection None found in the software running on the prod-
uct itself.

Complexity Structural analysis,
code inspection

The software architecture is simple. Main sources
of complexity are the relatively dense branching
structure of the code and the bit-field encoding of
configuration data.

Concurrent interac-
tions

Structural analysis,
concurrency analy-
sis

The sequence of functions performed is predict-
able. Concurrency analysis shows that data ex-
change between threads is limited and the data ex-
changes are atomic.

Initialisation errors Structural analysis Not analysed in detail.
Data overflow Structural analysis Not analysed in detail. However, most of the data

used are fixed multi-byte variables, so overflows
are unlikely.

Variable time re-
sponse

Structural analysis
Timing analysis

Analyses have shown the code will execute within
the specified response time.

8 Conclusions

In this section we present the conclusions of the research study into methods for justi-
fying smart sensors that this paper is describing. While some of the conclusions

206 P. Bishop et al.

follow directly from the work here described, others have arisen from work not
specifically mentioned in the paper. The conclusions of the project are given below.

8.1 Relationship with Sensor Manufacturers

• End users should expect different degrees of co-operation, both within a single
manufacturer’s organisational hierarchy and across different manufacturers.

• It remains an open question whether end users will be offered as much access to
software as we have in the course of this project. However, the level of co-
operation might increase with the potential of a real order, which would not be the
case in a research project.

• We need to be specific about what needs to be demonstrated in an assurance pack-
age that is provided by a supplier. Some form of assurance about the product is
needed, principally to confirm predictability of behaviour and integrity in the pres-
ence of hardware failures. This evidence would typically be a combination of “grey
box” (e.g. documentation on the software design) and white box evidence (based
on analysis of the actual software), as greater confidence could be obtained if there
was some knowledge of the internal design and implementation of the device.

8.2 Safety Justification Approaches

• Justification may follow a goal-based approach, aim to demonstrate compliance of
the product with industry guidelines, or seek specifically to address areas of con-
cern that a typical black box assessment would not cover. These three viewpoints
should be considered simultaneously as they complement each other.

• Goal-based approaches seem particularly suitable to smart sensor products as they
focus directly on the safety requirements, can be tailored to standards and offer
flexibility and a certain potential for reuse of arguments and evidence.

• We have addressed specific concerns about the shortcomings of black-box assess-
ment by assessing their applicability to smart sensor products similar to the ones
we have examined. Grey-box and white-box evidence can compensate for the limi-
tations of black-box assessment.

8.3 Smart Sensor Evaluation Methods

• We have undertaken a range of structural, accuracy and timing analysesbased on
documentation and the source code, and these have proved to be “easy wins”.

• Such analyses might be improved with appropriate tool support (e.g. code and data
flow dependency analysis, worst case time analysis), although this might be
problematic for assembler based systems.

• We have shown that it is feasible to simulate execution to test specific attributes
such as accuracy, test coverage and timing. However it is likely that these tests
would have been easier to implement during development where there is no need
to simulate the action of attached peripherals.

• It was technically feasible to perform a range of evaluations on the smart sensor
(even though it was written in assembler). This was largely due to the relatively
small size of the software and simplicity of the design.

 Justification of Smart Sensors for Nuclear Applications 207

8.4 Further Work

There are many pragmatic issues that have not been addressed within the current
study (e.g. what evidence is needed for a given integrity level and who should per-
form the evaluation). However we hope that the feasibility studies performed in this
project can contribute to the development of a common approach to the justification
of smart sensors in the nuclear industry.

Acknowledgements

This work was partly funded under the HSE Generic Nuclear Safety Research Pro-
gramme under contract 40072849. The views expressed in this report are those of the
authors and do not necessarily represent the views of the members of the CINIF or the
Health and Safety Commission/Executive. The CINIF does not accept liability for any
damage or loss incurred as a result of the information contained in this paper.

References

[1] Nuclear Safety Directorate, “Safety assessment principles for nuclear plants”,
http://www.hse.gov.uk/nsd/saps.htm

[2] L.A. Winsborrow, A.R. Lawrence, “Guidelines for Using Programmable Electronic Sys-
tems in Nuclear Safety and Nuclear Safety-Related Applications”, British Energy 2002.

[3] P.G. Bishop and R.E. Bloomfield, “The SHIP Safety Case—A Combination of System
and Software Methods”, SRSS95, Proc. 14th IFAC Conf. on Safety and Reliability of
Software-based Systems, Brugge, Belgium, 12-15 September 1995.

[4] P.G. Bishop and R.E Bloomfield, “A Methodology for Safety Case Development”,
Safety-critical Systems Symposium, Birmingham, UK, Feb 1998.

[5] CEMSIS project, http://www.cemsis.org
[6] J.A. McDermid, “Support for safety cases and safety argument using SAM”, Reliability

Engineering and Safety Systems, Vol. 43, No. 2, 111-127, 1994
[7] C.C.M. Jones, R.E. Bloomfield, P.K.D. Froome and P.G. Bishop, “Methods for assessing

the safety integrity of safety-related software of uncertain pedigree (SOUP)”, Report No:
CRR337 HSE Books 2001 ISBN 0 7176 2011 5
http://www.hse.gov.uk/research/crr_pdf/2001/crr01337.pdf

[8] P.G. Bishop, R.E. Bloomfield and P.K.D. Froome, “Justifying the use of software of un-
certain pedigree (SOUP) in safety-related applications”, Report No: CRR336 HSE Books
2001 ISBN 0 7176 2010 7 http://www.hse.gov.uk/research/crr_pdf/2001/crr01336.pdf

[9] P.G. Bishop, R.E. Bloomfield, T.P. Clement and A.S.L. Guerra, “Software Criticality
Analysis of COTS/SOUP” Safecomp 2002, Catania, September 2002.

[10] P.G. Bishop, R.E. Bloomfield, T.P. Clement, A.S.L. Guerra, and C.C.M. Jones, “Integrity
Static Analysis of COTS/SOUP” Safecomp 2003, Edinburgh, September 2003.

Evolutionary Safety Analysis: Motivations from
the Air Traffic Management Domain

Massimo Felici

LFCS, School of Informatics, The University of Edinburgh, Edinburgh EH9 3JZ, UK
mfelici@inf.ed.ac.uk

http://homepages.inf.ed.ac.uk/mfelici/

Abstract. In order realistically and cost-effectively to realize the ATM
(Air Traffic Management) 2000+ Strategy, systems from different suppli-
ers will be interconnected to form a complete functional and operational
environment, covering ground segments and aerospace. Industry will be
involved as early as possible in the lifecycle of ATM projects. EURO-
CONTROL manages the processes that involve the definition and vali-
dation of new ATM solutions using Industry capabilities (e.g., SMEs).
In practice, safety analyses adapt and reuse system design models (pro-
duced by third parties). Technical, organisational and cost-related rea-
sons often determine this choice, although design models are unfit for
safety analysis. Design models provide limited support to safety analy-
sis, because they are tailored for system designers. The definition of an
adequate model and of an underlying methodology for its construction
will be highly beneficial for whom is performing safety analyses. Limited
budgets and resources, often, constrain or inhibit the model definition
phase as an integral part of safety analysis. This paper is concerned with
problems in modeling ATM systems for safety analysis. The main objec-
tive is to highlight a model specifically targeted to support evolutionary
safety analysis.

1 Introduction

The future development of Air Traffic Management (ATM), set by the ATM
2000+ Strategy [9], involves a structural revision of ATM processes, a new ATM
concept and a systems approach for the ATM network. The overall objective
[9] is, for all phases of flight, to enable the safe, economic, expeditious and or-
derly flow of traffic through the provision of ATM services, which are adaptable
and scalable to the requirements of all users and areas of European airspace.
This requires ATM services to go through significant structural, operational and
cultural changes that will contribute towards the ATM 2000+ Strategy. More-
over, from a technology viewpoint, future ATM services will employ new systems
forming the emergent ATM architecture underlying and supporting the Euro-
pean Commission’s Single European Sky Initiative.

ATM services, it is foreseen, will need to accommodate an increasing traffic, as
many as twice number of flights, by 2020. This challenging target will require the
cost-effectively gaining of extra capacity together with the increase of safety lev-
els [28,29]. Enhancing safety levels affects the ability to accommodate increased

R. Winther, B.A. Gran, and G. Dahll (Eds.): SAFECOMP 2005, LNCS 3688, pp. 208–221, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Evolutionary Safety Analysis 209

traffic demand as well as the operational efficiency of ensuring safe separation be-
tween aircrafts. Suitable safe conditions shall precede the achievement of increased
capacity (in terms of accommodated flights). Therefore, it is necessary to foreseen
and mitigate safety issues in aviation where ATM can potentiality deliver safety
improvements. Introducing safety relevant systems in ATM contexts requires us
to understand the risk involved in order to mitigate the impact of possible failures.
Safety analysis involves the activities, i.e., definition and identification of system(s)
under analysis, risk analysis in terms of tolerable severity and frequency, definition
of mitigation actions, that allow the systematic identification of hazards, risk as-
sessment and mitigation processes in critical systems [24,37].

Diverse domains (e.g., nuclear, chemical or transportation) adopt safety anal-
yses that originate from a general approach [24,37]. Recent safety requirements,
defined by EUROCONTROL (European organization for the safety of air nav-
igation), imply the adoption of a similar safety analysis for the introduction
of new systems and their related procedures in the ATM domain [8]. Unfortu-
nately, ATM systems and procedures have distinct characteristics1 (e.g., open-
ness, volatility, etc.) that expose limitations of the approach. In particular, the
complete identification of the system under analysis [22] is crucial for its influ-
ence on the cost and the effectiveness of the safety analysis. Some safety-critical
domains (e.g., nuclear and chemical plants) allow the unproblematic applica-
tion of conventional safety analysis. Physical design structures constrain system
interactions and stress the separation of safety related components from other
system parts. This ensures the independence of failures. By contrast, ATM sys-
tems operate in open and dynamic environments where it is difficult completely
to identify system interactions. For instance, there exist complex interactions2

between aircraft systems and ATM safety relevant systems [31]. Unfortunately,
these complex interactions may give rise to catastrophic failures. The accident
(1 July 2002) between a BOEING B757-200 and a Tupolev TU154M [5], that
caused the fatal injuries of 71 persons, provides an instance of unforeseen com-
plex interactions. These interactions triggered a catastrophic failure, although all
aircraft systems were functioning properly [5]. Hence, safety analysis has to take
into account these complex interaction mechanisms (e.g., failure dependence, re-
liance in ATM, etc.) in order to guarantee and even increase the overall ATM
safety as envisaged by the ATM 2000+ Strategy.

This paper is concerned with limitations of safety analysis with respect to
evolution. The paper is structured as follows. Section 2 describes safety analysis

1 “There are some unique structural conditions in this industry that promote safety,
and despite complexity and coupling, technological fixes can work in some areas. Yet
we continue to have accidents because aircraft and the airways still remain somewhat
complex and tightly coupled, but also because those in charge continue to push the
system to its limits. Fortunately, the technology and the skilled pilots and air traffic
controllers remain a bit ahead of the pressures, and the result has been that safety
has continued to increase, though not as markedly as in early decades.”, p. 123, [31].

2 “Complex interactions are those of unfamiliar sequences, or unplanned and un-
expected sequences, and either not visible or not immediately comprehensible.”,
p. 78, [31].

210 M. Felici

in the ATM domain. Unfortunately, ATM systems, procedures and interactions
expose limitations of safety analysis. Section 3 proposes a framework that en-
hances evolutionary safety analysis. Section 4, finally, draws some conclusions.

2 Safety Analysis in ATM

ATM services across Europe are constantly changing in order to fulfil the require-
ments identified by the ATM 2000+ Strategy [9]. Currently, ATM services are
going through a structural revision of processes, systems and underlying ATM
concepts. This highlights a systems approach for the ATM network. The delivery
and deployment of new systems will let a new ATM architecture to emerge. The
EUROCONTROL OATA project [35] intends to deliver the Concepts of Oper-
ation, the Logical Architecture in the form of a description of the interoperable
system modules, and the Architecture Evolution Plan. All this will form the
basis for common European regulations as part of the Single European Sky.

The increasing integration, automation and complexity of the ATM System
requires a systematic and structured approach to risk assessment and mitigation,
including hazard identification, as well as the use of predictive and monitoring
techniques to assist in these processes. Faults [23] in the design, operation or
maintenance of the ATM System or errors in the ATM System could affect the
safety margins (e.g., loss of separation) and result in, or contribute to, an in-
creased hazard to aircrafts or a failure (e.g., a loss of separation and an accident
in the worst case). Increasingly, the ATM System relies on the reliance (e.g., the
ability to recover from failures and accommodate errors) and safety (e.g., the
ability to guarantee failure independence) features placed upon all system parts.
Moreover, the increased interaction of ATM across State boundaries requires
that a consistent and more structured approach be taken to the risk assessment
and mitigation of all ATM System elements throughout the ECAC (European
Civil Aviation Conference) States [7]. Although the average trends show a de-
crease in the number of fatal accidents for Europe, the approach and landing
accidents are still the most safety pressing problems facing the aviation indus-
try [32,33,38]. Many relevant repositories3 report critical incidents involving the
ATM System. Unfortunately, even maintaining the same safety levels across the
European airspace would be insufficient to accommodate an increasing traffic
without affecting the overall safety of the ATM System [6].

The introduction of new safety relevant systems in ATM contexts requires
us to understand the risk involved in order to mitigate the impact of possible
failures. The EUROCONTROL Safety Regulatory Requirement [8], ESARR4,

3 Some repositories are: Aviation Safety Reporting Systems -
http://asrs.arc.nasa.gov/-; Aviation Safety Network - http://aviation-safety.net/-;
Flight Safety Foundation: An International Organization for Everyone Con-
cerned With Safety of Flight - http://www.flightsafety.org/-; Computer-Related
Incidents with Commercial Aircraft: A Compendium of Resources, Reports,
Research, Discussion and Commentary compiled by Peter B. Ladkin et al. -
http://www.rvs.uni-bielefeld.de/publications/Incidents/ -.

Evolutionary Safety Analysis 211

requires the use of a risk based-approach in ATM when introducing and/or
planning changes to any (ground as well as onboard) part of the ATM System.
This concerns the human, procedural and equipment (i.e., hardware or software)
elements of the ATM System as well as its environment of operations at any
stage of the life cycle of the ATM System. The ESARR4 [8] requires that ATM
service providers systematically identify any hazard for any change into the
ATM System (parts). Moreover, they have to assess any related risk and identify
relevant mitigation actions. In order to provide guidelines for and standardise
safety analysis EUROCONTROL has developed the EATMP Safety Assessment
Methodology (SAM) [10] reflecting best practices for safety assessment of Air
Navigation Systems.

The SAM methodology provides a means of compliance to ESARR4. The
SAM methodology describes a generic process for the safety assessment of Air
Navigation Systems. The objective of the methodology is to define the means
for providing assurance that an Air Navigation System is safe for operational
use. The methodology describes a generic process for the safety assessment of
Air Navigation Systems. This process consists of three major steps: Functional
Hazard Assessment (FHA), Preliminary System Safety Assessment (PSSA) and
System Safety Assessment (SSA). Figure 1 shows how the SAM methodology
contributes towards system assurance.

The process covers the complete lifecycle of an Air Navigation System, from
initial system definition, through design, implementation, integration, transfer
to operations and maintenance. Although the SAM methodology describes the
underlying principles of the safety assessment process, it provides limited infor-
mation to applying these principles in specific projects. The hazard identification,
risk assessment and mitigation processes comprise a determination of the scope,
boundaries and interfaces of the constituent part being considered, as well as the
identification of the functions that the constituent part is to perform and the
environment of operations in which it is intended to operate. This supports the
identification and validation of safety requirements on the constituent parts.

System Defintion

Operation

Integration

System Implementation

System Design

LIFECYCLE

FHA

SSA

PSSA

ASSURANCE

How safe does the system need
to be, to achieve tolerablre risk?

Is the proposed design able
to achieve tolerable risk?

Does the system
achieve tolerable risk?

SAM

Fig. 1. Contribution of the Safety Assessment Methodology towards system assurance

212 M. Felici

2.1 Limitations

Conventional safety analysis is deemed acceptable in domains such as the nuclear
or the chemical sector. Nuclear or chemical plants are well-confined entities with
limited predictable interactions with the surroundings. In nuclear and chemical
plants design stresses the separation of safety related components from other
plant systems. This ensures the independence of failures. Therefore, in these
application domains it is possible to identify acceptable tradeoffs between com-
pleteness and manageability during the definition and identification of the system
under analysis. By contrast, ATM systems operate in open and dynamic envi-
ronments. Hence, it is difficult to identify the full picture of system interactions
in ATM contexts. In particular:

– There is a complex interaction between aircrafts and ATM safety functions.
Unfortunately, this complex interaction may give rise to catastrophic failures.
Hence, failure independence would increase the overall ATM safety.

– Humans [12,30] using complex language and procedures mediate this inter-
action. Moreover, most of the final decisions are still demanded to humans
whose behaviour is less predictable than that of automated systems. It is nec-
essary further to understand how humans use external artifacts (e.g., tools)
to mediate this interaction. This would allow the understanding of how hu-
mans adopt technological artifacts and adapt their behaviours in order to
accommodate ATM technological evolution. Unfortunately, the evolution of
technological systems often corresponds to a decrease in technology trust
affecting work practice.

– Work practice and systems evolve rapidly in response to demand and a cul-
ture of continuous improvements. A comprehensive account of ATM systems
would allow the modeling of evolution. This will enhance strategies for de-
ploying new system configurations or major system upgrades. On the one
hand, modeling and understanding system evolution support the engineering
of (evolving) ATM systems. On the other hand, modeling and understating
system evolution allow the communication of changes across different organ-
isational levels. This would enhance visibility of system evolution as well as
trust in transition to operations.

3 Evolutionary Safety Analysis

Capturing cycles of discoveries and exploitations during system design involves
the identification of mappings between socio-technical solutions and problems.
The proposed framework exploits these mappings in order to construct an evo-
lutionary model that enhances safety analysis. Figure 2 shows the proposed
framework, which captures these evolutionary cycles at different levels of ab-
straction and on diverse models. The framework consists of three different hier-
archical layers: System Modeling Transformation (SMT), Safety Analysis Model-
ing Transformation (SAMT) and Operational Modeling Transformation (OMT).
The remainder of this section describes the three hierarchical layers.

Evolutionary Safety Analysis 213

Operational
Models

Operational
Issues

Future
Operational

Models

Safety
Analysis
Models

Safety
Issues

Future
Safety

Analysis
Models

Current
Solution
Models

Solution
Issues

Future
Solution
Models

System Modeling Transformation

Operational Modeling Transformation

Safety Analysis Modeling Transformation

Fig. 2. A framework for modelling evolutionary safety analyses

3.1 System Modeling Transformation

The definition and identification of the system under analysis is extremely crit-
ical in the ATM domain. System models used during the design phase provide
limited support to safety as well as risk analysis. This is because existing models
defined in the design phase are adapted and reused for safety and risk analy-
sis. Organizational and cost-related reasons often determine this choice, without
questioning whether models are suitable for the intended use. The main draw-
back is that design models are tailored to support the work of system designers.
Thus, system models capture characteristics that may be of primary importance
for design, but irrelevant for safety analysis. Models should be working-tools
that, depending on their intended use, ease and support specific activities and
cognitive operations of users.

Modeling methodologies and languages advocate different design strategies.
Although these strategies support different aspects of software development,
they originate in a common Systems Approach4 to solving complex problems
and managing complex systems. Modeling incorporates design concepts and for-
malities into system specifications. This enhances our ability to assess safety
4 “Practitioners and proponents embrace a holistic vision. They focus on the inter-

connections among subsystems and components, taking special note of the interfaces
among various parts. What is significant is that system builders include heteroge-
neous components, such as mechanical, electrical, and organizational parts, in a sin-
gle system. Organizational parts might be managerial structures, such as a military
command, or political entities, such as a government bureau. Organizational com-
ponents not only interact with technical ones but often reflect their characteristics.
For instance, a management organization for presiding over the development of an
intercontinental missile system might be divided into divisions that mirror the parts
of the missile being designed.”, INTRODUCTION, p. 3, [18].

214 M. Felici

requirements. For instance, Software Cost Reduction (SCR) consists of a set of
techniques for designing software systems [14,15]. In order to minimise the im-
pact of changes, separate system modules have to implement those system fea-
tures that are likely to change. Although module decomposition reduces the cost
of system development and maintenance, it provides limited support for system
evolution. Intent Specifications provide another example of modeling that further
supports the analysis and design of evolving systems [25]. In accordance with
the notion of semantic coupling, Intent Specifications support strategies (e.g.,
eliminating tightly coupled mappings) to reduce the cascade effect of changes.
Although these strategies support the analysis and design of evolving systems,
they provide limited support to understand the evolution of high-level system
requirements5.

Heterogeneous engineering6 provides a different perspective that further ex-
plains the complex interaction between system (specification) and environment.
Heterogeneous engineering provides a convenient comprehensive viewpoint for
the analysis of the evolution of socio-technical systems. Heterogeneous engineer-
ing involves both the systems approach [18] as well as the social shaping of
technology [27]. According to heterogeneous engineering, system requirements
specify mappings between problem and solution spaces [3,4]. Both spaces are
socially constructed and negotiated through sequences of mappings between so-
lution spaces and problem spaces [3,4]. Therefore, system requirements emerge
as a set of consecutive solution spaces justified by a problem space of concerns
to stakeholders. Requirements, as mappings between socio-technical solutions
and problems, represent an account of the history of socio-technical issues aris-
ing and being solved within industrial settings [3,4,11]. The formal extension
of these mappings (or solution space transformations) identifies a framework to
model and capture evolutionary system features (e.g., requirements evolution,
evolutionary dependencies, etc.) [11].

System Modeling Transformation captures how solution models evolve in or-
der to accommodate design issues or evolving requirements. Therefore, an SMT
captures system requirements as mappings between socio-technical solutions and
problems. This allows the gathering of changes into design solutions. That is, it
is possible to identify how changes affect design solution. Moreover, This enables

5 Leveson in [25] reports the problem caused by Reversals in TCAS (Traffic Alert and
Collision Avoidance System): ”About four years later the original TCAS specifica-
tion was written, experts discovered that it did not adequately cover requirements
involving the case where the pilot of an intruder aircraft does not follow his or her
TCAS advisory and thus TCAS must change the advisory to its own pilot. This
change in basic requirements caused extensive changes in the TCAS design, some
of which introduced additional subtle problems and errors that took years to discover
and rectify.”

6 “People had to be engineered, too - persuaded to suspend their doubts, induced to
provide resources, trained and motivated to play their parts in a production process
unprecedented in its demands. Successfully inventing the technology, turned out to
be heterogeneous engineering, the engineering of the social as well as the physical
world.”, p. 28, [26].

Evolutionary Safety Analysis 215

sensitivity analyses ofdesign changes. Inparticular, this allows the revisionof safety
requirements and the identification of hazards due to the introduction of a new sys-
tem.Therefore, the SMTsupports the gathering of safety requirements for evolving
systems. That is, it supports the main activities occurring during the top-down it-
erative process FHA in the SAM methodology [10]. The FHA in the SAM method-
ology then initiates another top-down iterative approach, i.e., the PSSA. Similarly,
the framework considers design solutions and safety objectives as input to Safety
Analysis. Safety analysis assesses whether the proposed design solution satisfies
the identified safety objectives. This phase involves different methodologies (e.g.,
Fault Tree Analysis, HAZOP, etc.) that produce diverse (system) models. System
usage or operational trials may give rise to unforeseen safety issues that invalidate
(part of) safety models. In order to take into account these issues, it is necessary to
modify safety analysis. Therefore, safety analysis models evolve too.

3.2 Safety Analysis Modeling Transformation

The failure of safety-critical systems highlights safety issues [19,24,31,37]. It is
often the case that diverse causes interacted and triggered particular unsafe con-
ditions. Although safety analysis (i.e., safety case) argues system safety, complex
interactions, giving rise to failures, expose the limits of safety arguments. There-
fore, it is necessary to take into account changes in safety arguments [13]. Figure 3
shows an enhanced safety-case lyfecyle [13].

The lifecycle identifies a general process for the revision of safety cases. Green-
well, Strunk and Knight in [13] motivate the safety-case lifecycle by evolutionary
(safety-case) examples drawn from the aviation domain. Figure 4 and 5 show sub-
sequent versions of a safety case. The graphical notation that represents the safety

Failure Analysis

System and Process Revision

Operation

Mishap

Revised
Safety case

Lessons &
Recommendations

Failure Evidence
Original

Safety case

Fig. 3. The Enhanced Safety-Case Lyfecyle [13]

216 M. Felici

G1

Controller aware of
altitude violations.

G2

ARTS provides timely,
accurate information
concerning tracked aircraft.

J

J1

Controller aware of terrain
and manually identifies violations.

Fig. 4. Initial safety argument

G1

Controller aware of
altitude violations.

G2

MSAW raises alert when an
altitude violation occurs.

G4

MSAW raises alarm when
altitude violation detected.

G3

MSAW detects
altitude violations.

J

J1

Alert sufficient to notify
controller.

Fig. 5. Revised safety argument

cases is the Goal Structuring Notation (GSN) [21]. Although GSN addresses the
maintenance of safety cases, the approach provides limited support with respect
to complex dependencies (e.g., external to the safety argument) [20]. Moreover, it
lacks any interpretation of the relationships between subsequent safety cases.

Figure 4 shows the initial safety case arguing: “Controller aware of altitude
violations”. Unfortunately, an accident invalidates the justification J1. The sat-
isfaction of the subgoal G2 is insufficient for the satisfaction of the goal G1.
Figure 5 shows the revised safety case that addresses the issue occurred. Unfor-
tunately, another accident, again, invalidates the second safety case [13]. Hence,
the safety argument needs further revision in order to address the safety flaw
uncovered by the accident.

Figure 6 shows a safety space transformation that captures the safety case
changes [11]. The safety case transformation captures the changes from the initial
safety case Mt

i (see, Figure 4) to the revised safety case Mt+1
i (see, Figure 5). An

accident invalidates the justification J1. The satisfaction of the subgoal G2 is in-
sufficient for the satisfaction of the goal G1. The proposed safety problem space,
Pt, contains these problems, i.e., P t

j and P t
j+1. The safety space transformation

addresses the highlighted problems into the proposed safety case Mt+1
i . In order

to address the highlighted problems, it is necessary to change the initial safety
case. The proposed changes are taken into account in the proposed safety case.
Note that there might be different proposed safety cases addressing the proposed
safety problem space. The safety space transformation identifies the safety case
construction and judgement in terms of safety argumentations and constraints.
The safety case consists of the collections of mappings between safety cases and
problems. The first part of a safety case consists of the safety argumentations,
which capture the relationship that comes from safety cases looking for problems.
The second part of a safety case consists of the safety constraints, which capture
how future safety cases address given problems. Safety cases at any given time,
t, can be represented as the set of all the arcs, that reflect the contextualised
connections between the proble space and the current and future safety space.
The definition of safety case transformation enables us further to interpret and
understand safety case changes, hence safety case evolution [11].

Evolutionary Safety Analysis 217

Fig. 6. A safety space transformation

Safety Analysis Modeling Transformation captures how safety analysis mod-
els evolve in order to accommodate emerging safety issues. Note that the formal
framework is similar to the one that captures SMT. Although design models
serve as a basis for safety models, they provide limited supports to capture
unforeseen system interactions. Therefore, SAMT supports those activities in-
volved in the PSSA process of the SAM methodology [10]. Note that although
the SAM methodology stresses that both FHA and PSSA are iterative process, it
provides little supports to manage process iterations as well as system evolution
in terms of design solution and safety requirements. The framework supports
these evolutionary processes.

3.3 Operational Modeling Transformation

Operational models (e.g., structured scenarios, patterns of interactions, struc-
tured procedures, workflows, etc.) capture heterogeneous system dynamics. Un-
fortunately, operational profiles often change with system usage (in order to
integrate different functionalities or to accommodate system failures). Table 1
shows the main problems areas identified in reported incidents: Controller Re-
ports [1] and TCAS II Incidents [2]. Both reports consist of the fifty most recent
relevant Aviation Safety Reporting System (ASRS) reports. The small samples
are insufficient to identify prevalent issues. However, the two reports highlight
the complexity and the coupling within the ATM domain [31]. The analysis of
the reports is in agreement with other studies [36,39] that analyse human errors
as organizational failures [16,24,34].

Technically, operational observations are reported anomalies (or faults),
which may trigger errors eventually resulting in failures. These observations cap-
ture erroneous actions [16]: “An erroneous action can be defined as an action
which fails to produce the expected result and/or which produces an unwanted
consequence”. In the context of heterogeneous systems (or man-machine systems,
or socio-technical systems), erroneous actions usually occur in the interfaces or

218 M. Felici

Table 1. The main problem areas occuring in two sample incident reports

Problem Areas Controller Reports TCAS II Incidents

ATC Facility 2
ATC Human Performance 44 39
Flight Crew Human Performance 26 40
Cabin Crew Human Performance 1
Aircraft 3 10
Weather 4 3
Environmental Factor 8 6
Airspace Structure 5 18
Navigational Facility 6 4
Airport 5 5
FAA 3 5
Chart or Publication 1
Maintenance Human Performance 1
Company 1

interactions (e.g., man-machine interactions). The cause of erroneous actions can
logically lie with either human beings, systems and/or conditions when actions
were carried out. Erroneous actions can occur on all system levels and at any
stage of the lifecycle.

Capturing operational interactions and procedures allows the analysis of hu-
man reliability [16]. In a continuosly changing enviroment like ATM, adaption
enhances the coupling between man and machine [17]. Hollnagel in [17] identifies
three different adaption strategies: Adaption Through Design, Adaption through
Performance and Adaption through Management. Operational Modeling Trans-
formation captures how operational models change in order to accommodate
issues arising. The evolution of operation models informs safety analyses of new
hazards. Therefore, OMT supports the activities involved in the SSA process of
the SAM methodology.

4 Conclusions

This paper is concerned with problems in modeling ATM systems for safety anal-
ysis. The future development of ATM, set by the ATM 2000+ Strategy [9], in-
volves a structural revision of ATM processes, a new ATM concept and a systems
approach for the ATM network. This requires ATM services to go through sig-
nificant structural, operational and cultural changes that will contribute towards
the ATM 2000+ Strategy. Evolutionary safety analysis captures the judgement
of changes. Moreover, it supports the safety assessment of changes from system
as well as organisation7 viewpoints [22,24,34]. Industry (e.g., SMEs) will be in-
volved as early as possible in the lifecycle of ATM projects. The ATM lifecycle
7 “Change within an organisation can affect level of safety achieved by that organisa-

tion. Change in the institutional structure of an industry can affect the level of safety
achieved by the industry as a whole.”, p. 6, [22].

Evolutionary Safety Analysis 219

involves various stakeholders (e.g., Institutional, Solution Providers, Society and
Other Industries) [22] assuming different roles with respect to safety judgement.
Unclear responsibilities and ownerships, with respect to safety cases, affect the
trustworthiness of safety analysis [22]. Evolutionary safety analysis, therefore,
requires the identification of responsibilities and ownerships in order to address
institutional issues (e.g., institutional changes, inappropriate ownerships, etc.).

In conclusion, this paper introduces a framework that supports evolutionary
safety analysis. Although existing processes emphasise the iterative nature of
safety analysis, they provide limited support to capture evolutionary transfor-
mations. The framework captures evolutionary safety analysis. Examples drawn
from the ATM domain show the different relationships between subsequent evo-
lutionary models. The systematic production of safety analysis (models) will
decrease the cost of conducting safety analysis by supporting reuse in future
ATM projects.

Acknowledgements. This work has been supported by the UK EPSRC Inter-
disciplinary Research Collaboration in Dependability, DIRC - http://
www.dirc.org.uk - grant GR/N13999.

References

1. Aviation Safety Reporting System. Controller Reports, 2003.
2. Aviation Safety Reporting System. TCAS II Incidents, 2004.
3. Mark Bergman, John Leslie King, and Kalle Lyytinen. Large-scale requirements

analysis as heterogeneous engineering. Social Thinking - Software Practice, pages
357–386, 2002.

4. Mark Bergman, John Leslie King, and Kalle Lyytinen. Large-scale requirements
analysis revisited: The need for understanding the political ecology of requirements
engineering. Requirements Engineering, 7(3):152–171, 2002.

5. BFU. Investigation Report, AX001-1-2/02, 2002.
6. John H. Enders, Robert S. Dodd, and Frank Fickeisen. Continuing airworthiness

risk evaluation (CARE): An exploratory study. Flight Safety Digest, 18(9-10):1–51,
September-October 1999.

7. EUROCONTROL. EUROCONTROL Airspace Strategy for the ECAC States,
ASM.ET1.ST03.4000-EAS-01-00, 1.0 edition, 2001.

8. EUROCONTROL. EUROCONTROL Safety Regulatory Requirements (ESARR).
ESARR 4 - Risk Assessment and Mitigation in ATM, 1.0 edition, 2001.

9. EUROCONTROL. EUROCONTROL Air Traffic Management Strategy for the
years 2000+, 2003.

10. EUROCONTROL. EUROCONTROL Air Navigation System Safety Assessment
Methodology, 2.0 edition, 2004.

11. Massimo Felici. Observational Models of Requirements Evolution. PhD thesis, Lab-
oratory for Foundations of Computer Science, School of Informatics, The University
of Edinburgh, 2004.

12. Flight Safety Fundation. The Human Factors Inplication for Flight Safety of Recent
Developments In the Airline Industry, number (22)3-4 in Flight Safety Digest,
March-April 2003.

220 M. Felici

13. William S. Greenwell, Elisabeth A. Strunk, and John C. Knight. Failure analysis
and the safety-case lifecycle. In Proceedings of the IFIP Working Conference on
Human Error, Safety and System Development (HESSD), pages 163–176, 2004.

14. Constance L. Heitmeyer. Software cost reduction. In John J. Marciniak, editor,
Encyclopedia of Software Engineering. John Waley & Sons, 2nd edition, 2002.

15. Daniel M. Hoffman and David M. Weiss, editors. Software Fundamentals: Collected
Papers by David L. Parnas. Addison-Wesley, 2001.

16. Erik Hollnagel. Human Reliability Analysis: Context and Control. Academic Press,
1993.

17. Erik Hollnagel. The art of efficient man-machine interaction: Improving the cou-
pling between man and machine. In Expertise and Technology: Cognition & Human-
Computer Cooperation, pages 229–241. Lawrence Erlbaum Associates, 1995.

18. Agatha C. Hughes and Thomas P. Hughes, editors. Systems, Experts, and Comput-
ers: The Systems Approach in Management and Engineering, World War II and
After. The MIT Press, 2000.

19. Chris W. Johnson. Failure in Safety-Critical Systems: A Handbook of Accident
and Incident Reporting. University of Glasgow Press, Glasgow, Scotland, October
2003.

20. T. P. Kelly and J. A. McDermid. A systematic approach to safety case maintenance.
In Massimo Felici, Karama Kanoun, and Alberto Pasquini, editors, Proceedings of
the 18th International Conference on Computer Safety, Reliability and Security,
SAFECOMP’99, number 1698 in LNCS, pages 13–26. Springer-Verlag, 1999.

21. Timothy Patrik Kelly. Arguing Safety - A Systematic Approach to Managing Safety
Cases. PhD thesis, Department of Computer Science, University of York, 1998.

22. Steve Kinnersly. Whole airspace atm system safety case - preliminary study. Tech-
nical Report AEAT LD76008/2 Issue 1, AEA Technology, 2001.

23. Jean-Claude Laprie et al. Dependability handbook. Technical Report LAAS Re-
port no 98-346, LIS LAAS-CNRS, August 1998.

24. Nancy G. Leveson. SAFEWARE: System Safety and Computers. Addison-Wesley,
1995.

25. Nancy G. Leveson. Intent specifications: An approach to building human-centered
specifications. IEEE Transactions on Software Engineering, 26(1):15–35, January
2000.

26. Donald A. MacKenzie. Inventing Accuracy: A Historical Sociology of Nuclear Mis-
sile Guidance. The MIT Press, 1990.

27. Donald A. MacKenzie and Judy Wajcman, editors. The Social Shaping of Tech-
nology. Open University Press, 2nd edition, 1999.

28. Stuart Matthews. Future developments and challenges in aviation safety. Flight
Safety Digest, 21(11):1–12, November 2002.

29. Michael Overall. New pressures on aviation safety challenge safety management
systems. Flight Safety Digest, 14(3):1–6, March 1995.

30. Alberto Pasquini and Simone Pozzi. Evaluation of air traffic management proce-
dures - safety assessment in an experimental environment. Reliability Engineering
& System Safety, 89(1):105–117, July 2005.

31. Charles Perrow. Normal Accidents: Living with High-Risk Technologies. Princeton
University Press, 1999.

32. Harro Ranter. Airliner accident statistics 2002: Statistical summary of fatal multi-
engine airliner accidents in 2002. Technical report, Aviation Safety Network, Jan-
uary 2003.

Evolutionary Safety Analysis 221

33. Harro Ranter. Airliner accident statistics 2003: Statistical summary of fatal multi-
engine airliner accidents in 2003. Technical report, Aviation Safety Network, Jan-
uary 2004.

34. James Reason. Managing the Risks of Organizational Accidents. Ashgate Publish-
ing Limited, 1997.

35. Review. Working towards a fully interoperable system: The EUROCONTROL
overall ATM/CNS target architecture project (OATA). Skyway, 32:46–47, Spring
2004.

36. Scott A. Shappell and Douglas A. Wiegmann. The human factors analysis and clas-
sification system - HFACS. Technical Report DOT/FAA/AM-00/7, FAA, February
2000.

37. Neil Storey. Safety-Critical Computer Systems. Addison-Wesley, 1996.
38. Gerard W.H. van Es. A review of civil aviation accidents - air traffic management

related accident: 1980-1999. In Proceedings of the 4th International Air Traffic
Management R&D Seminar, New-Mexico, December 2001.

39. Douglas A. Wiegmann and Scott A. Shappell. A human error analysis of commer-
cial aviation accidents using the human factors analysis and classification system
(HFACS). Technical Report DOT/FAA/AM-01/3, FAA, February 2001.

Public-Key Cryptography and Availability�

Tage Stabell-Kulø and Simone Lupetti

Department of Computer Science, University of Tromsø, Norway
pesto@pasta.cs.uit.no

Abstract. When the safety community designs their systems to also
maintain security properties, it is likely that public-key encryption will
be among the tools that are applied.

The security guarantees of this technology are based on a particular
model of computation. We present the properties of this model that are
relevant in the setting of distributed systems. Of particular importance
is that the model has no notion of time.

From this it follows that systems that need to be available must exer-
cise the utmost care before applying public-key encryption in any form.
We discuss the relation between public-key encryption and timeliness,
the tradeoffs that must be made at design time, and how the property
of (lack of) availability might very well contaminate other system com-
ponents.

1 Introduction

It is reasonable to expect that the safety community will be forced to deal
with an ever-increasing number of security issues (as opposed to only those
related to safety) [1]. To solve security problems it is likely that technology from
the security community will be applied. Shared-key and public-key encryption,
message digests, and digital signatures are all based on advanced mathematical
concepts, and these mechanisms are routinely used in security engineering [2].

As is probably the case in other communities, the world-view of the security
community is rarely discussed with outsiders. Among insiders this view is more or
less taken for granted, and when presenting to outsiders the technology that has
been developed there is no room for lengthy depositions on the inner workings
of the computational model.

In the world-view of the security community, the most important goal is often,
simply said, the prevention of “bad things” happening in and to the system. This
is often considered so important that it is permitted to achieve such prevention
in ways that also now and then prevent “good things” from happening. After
all, it is better to be secure than sorry, and anything less than perfect security is
sometimes taken to be equivalent to no security [3]. Availability is one of these
“good things”, and even though availability certainly is a security property,
� This work has been generously supported by the Research Council of Norway by

means of the Arctic Bean project (IKT 2010, project number 146986/431) and the
Penne project (IKTSoS project number 158569/431).

R. Winther, B.A. Gran, and G. Dahll (Eds.): SAFECOMP 2005, LNCS 3688, pp. 222–232, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Public-Key Cryptography and Availability 223

more often than not, security is only concerned with upholding other security
properties such as non-repudiation, integrity and confidentiality.

To shed light on some of the implications of security technology we will use
the approach of negative requirements [4]. As our example of a sophisticated
security technology that may negatively affect critical system properties, we
take public-key encryption [5]. Instead of presenting how public-key encryption
can for example be used to turn a channel with integrity into one with secrecy
without the exchange of secrets, we focus on what public-key encryption can-
not do. By demonstrating what properties can not be achieved with public-key
encryption, we can say that in systems where these properties are important,
public-key encryption should not be used, or at least great care should be taken
in the way it is applied.

It is intrinsic to public-key encryption to block in certain situations (and
hence become unavailable) [6]. Thus, any system that relies on public-key en-
cryption will be prone to blocking. In essence: The blocking behavior (and thus
the whole issue of unavailability) is closely related to certain security properties
of public-key encryption. The problem is that it can be impossible in advance
(at design time) to determine under which conditions blocking will occur. Fur-
thermore, when public-key encryption is used in the system, it contaminates
other components with its blocking behavior. The core of the issue is that if
a system for safety reasons can not tolerate blocking, it can not tolerate to be
contaminated by the blocking property of public-key encryption.

The outline of the rest of the paper is as follows. In Section 2 we present
terminology, and in Section 3 the model of computation used in the security
community in sufficient detail to enable us to facilitate a precise discussion.
Then, in Section 4 we discuss properties of public-key encryption with focus on
what can not be facilitated. Some alternatives are discussed in Secion 5. We
conclude in Section 6.

2 Terminology

Our terminology follows [7]; Please notice that it is slightly different from that
traditionally used in engineering.

Error: A design flaw. This can be a specification that is outright wrong, or a
lack of specification;

Availability: Readiness for correct service;
Reliability: Continuity of correct service;
Failure: The nonperformance or inability of the system or a single component

to performs its intended function;

Note that a failure is defined as an event, while an error is a static condition.
This means that a failure occurs, while an error remains in that it is part of the
system until it is removed (usually by human intervention). A design can have
provisions to counter failures, and those that are properly dealt with obviously
have no further consequences. Not doing so is an error.

224 T. Stabell-Kulø and S. Lupetti

We further define a system-wide failure to be one where the system is not
only unable to operate, but where an extra-system intervention is required. For
example, if the power supply in a machine fails, no program on the stopped
machine is able to act and we have a system-wide failure (for this machine).

Denial of Service (dos) is an attack on (parts of) the system to interrupt
it’s normal mode of operation. Such an attack can take place as part of normal
operation (flooding a server with requests, for example), or as an extra-system
attack (blocking the flow of water to the air condition to ensure that machines
shut down due to over heating). The purpose is often of a secondary nature:
By interrupting one part of the system, some other parts are also negatively
affected. Well designed and engineered components should be able to recover
from a dos attack, but if the purpose is simply to deny service (for a period
of time), recovery does not help on the original problem (which is denial of
service) [8,9].

3 Models for Computer Security

The computer security community has two models of computation that are rele-
vant to us: The one used to represent a distributed system, and the one describing
encryption. We now discuss them in turn.

3.1 Distributed Systems

The design and implementation of public-key systems rest firmly on the model
that the computer security community use to describe distributed systems. It is
possible to describe most of the functional aspects of distributed systems using
this model. In order to understand the semantics of public-key technology it is
prudent to first discuss the model on which it is supposed to rest.

The fundamental abstractions of computer security is that the system con-
sists of a set of processes. Processes interact in order to create and keep a shared
state but also maintain an internal state, of which we can know nothing except
by asking them and analyzing the result.

A process can (and many times it does) fail: there are countless ways in which
this can happen. A comfortable assumption is that processes are either running,
or they are not; this is called crash fail [10]. The idea is that a process that has
failed remains in a blocked state, but, upon restart, is able to take the actions
necessary to restore (its part of) the shared state. If security is important at all,
this model is probably too simplistic and processes are instead assumed to poten-
tially fail also by being malicious; in this case we have a so-called Byzantine (or
arbitrary) failure [11]. Notice that assuming Byzantine failure also encompasses
insiders that for some reason try to harm the system. In fact, this is probably
the most common source of Byzantine failures. Evidently wrong (meaningless)
data generated by random failures (often called glitches) will in most cases be
detected by checksums and other mechanism, and automatically discarded. Ap-
parently legal (meaningful) data forged by an attacker can on the other hand

Public-Key Cryptography and Availability 225

be accepted as genuine unless provisions have been taken. Byzantine failure de-
scribes, for example, the kind of failures that we can expect in presence of Trojan
and viruses and in all other cases where authorization policies are circumvented.

Processes run logically separated from each other, and can communicate solely
by exchanging messages. Messages travel, independently, on communication links.
No interesting assumptions are usually made about these links. In particular, it is
not assumed that a message actually manages to traverse the link, that it does so
without being corrupted (with or without malice), that messages sent in order re-
tain their order upon arrival, or that no duplication takes place. Notice that not
making any of these assumptions is consistent with the failure model of the Inter-
net. In particular, links can fail completely by dropping all messages.

Links that have failed completely may create partitions. In general it is impos-
sible to know how many processes reside in a partitioned portion of a distributed
system and for how long the partition will last. The (lack of) assumptions about
communications implies also that it is impossible to know the difference between
a crashed process and a link that has failed completely. For the same reason it
is impossible to distinguish between a process that is acting in a Byzantine way
and a link that is modifying messages on the fly. Since interaction with a Byzan-
tine process is not fruitful, Byzantine failures can also be viewed as a failure that
creates a partition in the system.

The main implication of this is that, in this model, failures always manifest
themselves as communication problems. Any communication problems may cre-
ate (possibly temporary) partitions. This has profound effects on the notion of
progress: is the system constructed in such a way that progress is possible when
one (or more) nodes are left out (but not known to have stopped or crashed)?
What availability means in the specific system and how it is related to partitions
can only be answered by looking at the policies of the system (and, thus, can
not be answered in general).

For example, if progress of individual users is the goal of the service offered by
the system, it would not be wise to design the system in such a way that a par-
tition can stop a user from carrying on with his work [12]. Otherwise, some sort
of majority of processes taking responsibility for the global computation (enforc-
ing availability) could be found even if this implies to arbitrarily make decisions
about other processes’ state. In technical terms this last problem requires the
establishment of consensus that in turn can not be solved without blocking for
an unbounded length of time in the types of systems we consider [13].

The upshot of all of this is that there are two interesting objects to consider
in a distributed system, namely links and processes. Furthermore, there are two
modes of failure that concerns us, failure by crashing and Byzantine failure. Both
types, regardless of whether it happens in a process or in a link, may lead to
partitions. Partitions, by definition, are availability problems.

3.2 Encryption

We will assume “perfect encryption” [14]. We make this sweeping assumption in
order to confine the discussion to other aspects of public-key encryption than the

226 T. Stabell-Kulø and S. Lupetti

encryption itself. Perfect encryption only makes sense under a certain technolog-
ical regime. Perfect encryptions emcompass the assumption that no fundamental
change in the traditional computational model takes place during the lifetime
of the system, such as if quantum cryptography becomes available, it is shown
that P = NP , or some other fundamenal property on which encryption rests is
changed. In this case, our assumption on perfect encryption does not hold and
all results must be examined again.

4 Public-Key Encryption

In this section we will discuss how and why public-key encryption gives rise to
a choice between availability and security.

Security mechanisms are designed under the assumption that system compo-
nents maintain their integrity. On one hand this lets us design sophisticated run-
time mechanisms that both provides security and high availability, on the other
handpractice has shown that alteration of the system state is the first goal of poten-
tial attacks. Since it is impossible to guarantee system integrity (for all its possible
definitions) it is often vital to have a clear view of the system’s failure model.

As our running example we will discuss one of the many possible disruptions in
a system where public-key encryption is in use: That of a key being compromized.
There are many ways a secret key can leak out, ranging from malice to negligence.
In any case, if a keyhas become known (or it is feared that a keyhas become known)
the key must immediately be revoked. The revocation demands that any holder of
the key should cease using it without delay, and in general we can expect a revoca-
tion to signal a serious security incident. Notice that we are not concerned with the
continuous revoking of old keys that is part of the normal operation of the system,
which in itself introduces a wide range for engineering issues.

We will discuss several aspects of revocation, but in any case, a solution to
the issue of revocation is an intrinsic part of the security properties of public key
encryption. A solution must be designed for each and every system even though
revocation has nothing to do with the cryptographic properties as such.

The following are well-known problems arising from the application of public-
key encryption (see for example [6]), but we have cast them in such a way that
the tradeoff between security and availability becomes evident.

4.1 Who Can Revoke a Key

It must be known in advance who is authorized to revoke a key.
Obviously, a malicious (or erroneously) revocation of some (or all!) of the keys

in the system will most likely be a system-wide failure. It is impossible to arrange
things so that this can not happen (if keys can be revoked at all), but one can
make it as unlikely as one desires. For example, by means of certificates we can
create a compound principal such as “Alice and Bob as Revoke Authority”[15].
When this regime is in place only Alice and Bob (in concert) can revoke a
key, and neither Alice nor Bob can revoke keys alone. However, revoking a key

Public-Key Cryptography and Availability 227

now requires both Alice and Bob to be available, and this creates a problem of
reliability. In concrete terms, from a security point of view there is now a single
point of failure in the system: A successful dos against either Alice or Bob (or
both) will paralyze the authority to revoke. In fact, any partition between Alice
and Bob will have this effect, regardless of how it comes about.

Because the principal having authority to revoke keys is very powerful, the
mechanisms put in place to control it should involve as many participants as
possible to guard against malicious attacks, while at the same time as few as
possible to ensure that a key can be revoked without delay.

From this we see that designing and implementing a policy for management
of authority to revoke keys involves mainly system-specific issues. The design
needs to take into consideration the general threat model of the system, the
potential costs of not revoking in a timely fashion, the reliability of the network
as a whole, the probability of a malicious entity revoking keys, and a host of
other issues. Most of these can not be calculated, and estimates must be made
on which to base the decision (be means of simulations, for example).

The design of the mechanisms that are to guard the authority to revoke keys
is an exercise in the tradeoff between security on one hand and availability on
the other.

4.2 How to Distribute a New Key

After a key has been revoked, a new key must be distributed in some pre-
determined manner.

Assume that Charlie’s key has been revoked. Until a new key has been dis-
seminated, Charlie is effectively silenced. No one will be able to send him data
without violating system security, and data coming from him will be discarded
for the same reason. Or, in other words, the part of the system controlled by
Charlie is disconnected and so unavailable. The need for security was deemed
higher than the need for availability.

One could lump together the authority to create new keys (and certify them)
with the authority to revoke keys, but there is no need to do so. In fact, for rea-
sons of security, you probably should not do so. The problem is that on the one
hand the message revoking the key should be spread as fast as possible while on
the other hand, (parts of) the system might be paralyzed before a new key can be
installed. The window can obviously be made to be zero by always issuing the new
key together with the certificate that revokes the old one, but this again requires a
co-location of the authority that revokes and the one that “restarts” the system.

It is most likely a system-wide failure if the (possibly combined) principal that
issues new keys fails by issuing unwarranted keys. As usual, one can make the
reliability of this service as high as one deems necessary at the cost of availability.

4.3 How to Spread the Revocation

The notification that a key has been revoked must be spread to all those that
potentially hold the key. One can assume that a key will not be revoked unless

228 T. Stabell-Kulø and S. Lupetti

there is a reasonable strong belief that the key constitutes a security problem.
That is, we can assume that the time from which the key becomes known and
until all participants has received the message to revoke the key constitutes a
window of vulnerability. The problem is that the nature of the task at hand
makes it possible for an attacker to make this window of vulnerability as long
as he wants. We will examine this issue below.

There are two means of spreading information (a revocation in this case) in
a distributed system: Either the information is pushed, or it is pulled [15].

Pushing the information is the simplest solution in that a message is sent
to all participants. However, there is no way of knowing that all participants
actually receive the message, and if the number of participants is large and
their physical distance great, the probability of success of this approach will be
rather low. The alternative, to engage in some protocol, is equivalent to creating
consensus. Such protocols can be blocking, and are at best probabilistic, where
the probability is a function of the characteristics of the physical network (over
which processes do not have control). In this state the system is particularly
vulnerable to denial of service attacks as security has been breached and the
window is open as long as messages are hindered. In other words, pushing is not
very secure.

The alternative to pushing is pulling. Each key is augmented with a certificate
that requires the one using it to verify that the key is still valid; the details of such
an on-line service for verification can be found in [15]. The problem is that in this
case the user is blocked if he can not reach the verification service. Again, this
service can be made as reliable as one wishes, at the cost of lowering security
(the more servers to update in case of a revocation the longer the window of
vulnerability).

Another tradeoff is to use a somewhat less reliable but more secure verifica-
tion service, but issue the verification certificates with a lifetime. But, again, how
long this timeout is, will again be a tradeoff between availability and security
that needs to be determined in advance.

4.4 Recovery from a Leaked Key

Assume that the principal authorized to revoke a key has decided that based
on the available information, a certain key must be revoked. In many cases this
only happens after the fact; it becomes known that at some time in the past
some event occurred that endangered (the secret part) of a public key. Let us
denote the time at which it is decided that the compromise occurred with t.

The compromise has two implications: Messages encrypted with the public
key after time t can no longer be assumed to be secret, and signatures made
with the key after time t can no longer be assumed to be authentic without
scrutinizing of the events leading up to where the signature being made.

If loss of secrecy and/or authenticity is a system-wide failure, a strategy
for recovery must be in place. This strategy will determine who has authority
to revoke the key, how to spread the revocation, but also how to deal with
all messages encrypted with the key since time t. This recovery procedure can

Public-Key Cryptography and Availability 229

be utterly complicated, and while it is in progress the system might be very
vulnerable against dos attacks, among other things.

To design and implement such a recovery mechanism, while maintaining all
other properties of the system, will require a sage tradeoff between security and
availability.

4.5 Public-Key Infrastructure (PKI)

We have on purpose avoided the term pki in our disposition. In the above ex-
amples it is evident that some means must be found to disseminate keys and
certificates, offer verification (and thus revocation) services, to coordinate the
activities of the certification authorities, and so on. We believe that whether
this is organized under the umbrella of a pki, or in some other way does not
alter any of the arguments we have presented.

4.6 Summary

We see from the examples above that they all reveal the need for a tradeoff
between security and availability. Although there are cases where one must surely
be selected before the other, this is in general a difficult task. In particular, in
most cases it is of prime importance to lower as far as possible the probability of
any system-wide failure. The problem is that even though it is obvious that the
system as a whole has a certain probability of failure, actually finding it might
not be feasible. In particular, due to the complexity of the system, the actual
tradeoff that has been done will often not be visible before recovery is necessary.

We believe that the examples we have shown demonstrates that including
public-key encryption in a system gives rise to a large set of issues that must be
addressed, and that all of them hinge on the probabilities of (a set of) events to
occur (or not occur).

In addition to the issues discussed here, public-key encryption introduces also
other security properties that need to be considered. For example, the holder of
a public key can anonymously send encrypted messages, and the presence of
public-key encryption gives rise to the need for authentication. Moreover, it is
impossible to know who holds a public key, and thus to know who will verify
signatures in the futures and possibly use the signature for a malign purpose.

5 Alternatives

In a system without full physical control over the communications links, encryp-
tion is the only means available to ensure authentication (and thus authorization)
and integrity. There are three technologies that are readily at hand: Symmetric
key (e.g., des), asymmetric key (public key, e.g., rsa), and hashing (digital fin-
gerprint, e.g., sha). The challenge is to use them in the most convenient manner.

In general we can say that public-key encryption excels in systems where the
participants have no prior knowledge of each others. This is seldom the case,

230 T. Stabell-Kulø and S. Lupetti

electronic commerce with the general public aside. But most of the abstraction
it offers can be also obtained using other technologies. As an example, let us
demonstrate how to obtain digital signatures using shared keys only.

Assume the three parties Alice, Bob and a trusted Server. Assume further-
more that rather than being trusted to realize a pki, S shares a key with A
(KAS) and one with B (KBS), and that A and B has exchanged a session key
(KAB) by some means (for example in concert with establishing the Service
Level Agreement). The message

A → B : {{M}KAS , M}KAB

gives Bob all the evidence he needs to hold M against Alice, with the assistance
of S. This places the same responsibilities on S as would the combination of
implementing a pki and a ca. Notice that in both the solution for shared-key
and public-key encryption S must be trusted to be willing and able to do “the
right thing”. If S fails to be trustworthy, both technologies fail to provide a
solution. The only difference is precisely what this “the right thing” is. Or,
in other words: Establishing digital signatures is a matter of establishing and
maintaining trust rather than of cryptographic technology.

Another issue for concern is the ability to keep keys secret. In public-key
encryption there is also a key-component that must be kept secret, and the
engineering challenges are not smaller for this technology than for shared-key
encryption; keeping one key secret is not much more complicated than keeping
thousand keys secret. Also in this respect the tradeoff is more biased by trust
and belief in the ability of participants to uphold local security policies, than of
technology.

Taken together we can say that whether the management necessary to sup-
port shared-key encryption is a heavier burden to carry than that of public-key
encryption is system dependent. Providing universally valid guidelines is proba-
bly impossible.

6 Conclusions

The security community has an array of powerful technologies to offer systems
designers. We have discussed but one: Public-key encryption for secrecy (en-
crypting with the public key) and authentication (digital signatures).

Failures are inherit in the computational model of distributed systems, and
this creates problems. To uphold security properties, public-key encryption must
be supported by complex and distributed infrastructure. Taken together, when
public-key encryption is used, a tradeoff must be found between availability on
one hand, and security on the other. The availability of the system is heavily
affected by this decision.

Public-key encryption introduces many lanes that can lead to system-wide
failures, and that can lead to blocking (denial of service) in whole or parts of
the system. Unfortunately, there does not seem to be any structured manner in
which to proceed, as all tradeoffs must be made based on the actual network

Public-Key Cryptography and Availability 231

topology, the properties of the resources that must be protected, and so on. In
particular, it seems as if the tradeoffs must be made at the time of deployment.

All of this should be contrasted to the use of symmetric keys. The process
of exchanging keys can be complex, and shared keys must be protected; just
as the secret part of in the key-pair in a public-key system. But with a shared
key it is clear with whom you share a key, it is clear who can authenticate you,
anonymous receiver and senders are not feasible, and so on.

The lesson to be learned is that although the somewhat troublesome prop-
erties of public-key encryption is well known in the security community, this
might not be the case in the safety community. From this it should follow that
such powerful abstractions as digital signatures should only be applied if they
are fully understood. In particular, if blocking in any form is a problem in the
target system, authentication and integrity should be achieved by other means
than by using public-key encryption.

This does not necessarily mean to avoid public-key technologies in all cases
but to carefully examine all the possibilities not letting its recognized power to
mask its drawbacks: When valid alternatives are available the choice can not be
obvious.

Acknowledgments

This paper would not have been written had it not been for the IKTSoS workshop
arranged by the Norwegian Research Council in March 2005. Feico Dillema, Jon
Ølnes, Arne Helme and Dmitri Zagorodnov acted as catalyzators in crystalizing
our ideas.

References

1. Pfitzmann, A.: Why safety and security should and will merge. In Heisel, M.,
Liggesmeyer, P., Wittmann, S., eds.: Proceedings of Computer Safety, Reliabil-
ity, and Security (SAFECOMP’04). Volume 3219 of Lecture Notes in Computer
Science., Potsdam, Germany, Springer (2004) 1–2

2. Anderson, R.J.: Security Engineering. John Wiley & Sons, Inc. (2001)
3. Lampson, B.: Security in the real world. IEEE Computer 37 (2004) 37–46
4. Rushby, J.: Critical system properties: Survey and taxonomy. Reliability Engi-

neering and System Safety 43 (1994) 189–219
5. Nechvatal, J.: Public key cryptography. In Simmons, G.J., ed.: Contemporary

cryptology, the science of information integrity. IEEE Press (1992) 177–288
6. Roe, M.: Cryptography and evidence. PhD thesis, Clare College, University of

Cambridge, UK (1998)
7. Avizienis, A., Laprie, J.C., Randell, B., Landwehr, C.: Basic concepts and taxon-

omy of dependable and secure computing. IEEE Transactions on Dependable and
Secure Computing 1 (2004) 11–33

8. Needham, R.M.: Denial of service: an example. Communications of the ACM 37
(1994) 42–46

9. Mirkovic, J., Reiher, P.: A taxonomy of DDoS attack and DDoS defense mecha-
nisms. SIGCOMM Computer Communication Review 34 (2004) 39–53

232 T. Stabell-Kulø and S. Lupetti

10. Barborak, M., Dahbura, A., Malek, M.: The consensus problem in fault-tolerant
computing. ACM Comput. Surv. 25 (1993) 171–220

11. Lamport, L., Shostak, R., Pease, M.: The Byzantine generals problem. ACM
Transactions on Programming Languages and Systems 4 (1982) 382–401

12. Stabell-Kulø, T., Dillema, F., Fallmyr, T.: The open-end argument for private
computing. In Gellersen, H.W., ed.: Proceedings of the ACM First Symposium
on Handheld, Ubiquitous Computing. Number 1707 in Lecture Notes in Computer
Science, Springer Verlag (1999) 124–136

13. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus
with one faulty process. Journal of the ACM 32 (1985) 374–382

14. Blum, M., Goldwasser, S.: An efficient probabilistic public-key encryption scheme
which hides all partial information. In: Proceedings of Advances in Cryptology—
Crypto’84. Volume 196 of Lecture Noets in Computer Science., Springer verlag
(1984)

15. Lampson, B., Abadi, M., Burrows, M., Wobber, E.: Authentication in distribued
systems: theory and practice. ACM Transactions on Computer Systems 10 (1992)
265–310

R. Winther, B.A. Gran, and G. Dahll (Eds.): SAFECOMP 2005, LNCS 3688, pp. 233 – 245, 2005.
© Springer-Verlag Berlin Heidelberg 2005

End-To-End Worst-Case Response Time Analysis for
Hard Real-Time Distributed Systems

Lei Wang1, 2, Mingde Zhao1, Zengwei Zheng1, 3, and Zhaohui Wu1

1 College of Computing Science, Zhejiang University, 310027 Hangzhou, P. R. China
{alwaysbeing, zmdd48, zhengzw, wzh}@cs.zju.edu.cn
2 UFSOFT School of Software, Jiangxi University of Finance & Economics,

330013 Nanchang, R. P. China
alwaysbeing@sohu.com

3 City College, Zhejiang University, 310015 Hangzhou, P. R. China
zhengzw@zucc.edu.cn

Abstract. The verification of end-to-end response time for distributed hard real-
time systems is quite necessary for safety-critical applications. Although current
time analysis techniques can precisely analyze the response time, the performance
is not quite satisfying, especially for large size distributed systems. This paper
presents a novel end-to-end worst-case response time analysis approach for hard
real-time distributed systems. This technique is based on the critical instant
analysis and the canonical form transformation. It extends the traditional holistic
analysis technique by exploiting the precedence relations between tasks on both
different processors and the same processor. Simulation results have shown that
this algorithm can achieve accurate results and offers good performance for
systems with wide range of CPU utilizations and task set size, and therefore is
applicable to schedulability analysis of complex distributed systems.

1 Introduction

Distributed control systems are increasingly deployed in current industry and
products, such as manufacturing plant, aircraft and vehicles, in which, many control
systems are decentralized at different locations and interconnected through one or
more buses or networks, over which data and control signals are transmitted. The
distributed architecture is superior to the traditional centralized control systems in
performance, capability and robustness, et al. The software in these systems is
composed of concurrent tasks that are often statically allocated to processing nodes,
and may exchange messages with other tasks on the same node or on different nodes.
Control algorithms are usually designed and implemented with the assumption of a
periodic behavior, which is often important in achieving the required control
performance and stability. There are strict deadlines placed on the response times of
control processes. Failure to meet the deadline may result in catastrophic
consequences. In order to verify that a given control system is capable of providing
the required quality of control, a means to predict end-to-end response times is
required. Preferably, this information should be available at an early design stage.

234 L. Wang et al.

Schedulability analysis of fixed priority preemptive tasks known as RMA (Rate
Monotonic Analysis) has been well developed since Liu and Layland’s seminal paper
in 1973 [1]. The set of analysis methods now handles a wide range of systems in
which the original restricting assumptions of RMA have been successively removed.
Systems that can be analyzed include systems with task synchronization [2], a mixture
of periodic and aperiodic tasks [3] [4], tasks with arbitrary deadlines [5], etc.

Even though RMA was initially formulated as a theory for analysis of tasks
executing on a single processor, it is also extended to cover scheduling analysis in
distributed systems. An approach to calculate end-to-end response times for
distributed real-time systems is the holistic scheduling analysis proposed by Klein [6]
and Tindell [7]. It makes all the tasks independent by introducing a jitter on release
time due to the execution delay of preceding tasks and message delivery and
computes worst-case response times for transactions by summing individual task and
message response times. However, when precedence relations take place on the same
processors, the holistic analysis may be pessimistic since it does not take into account
this situation. To decrease the pessimism, Palencia et al. introduced offsets [8] and
best-case response times [9] into the schedulability analysis. In [10] they extended the
technique in order to exploit more accurately the precedence relations on the same
processors. However, the algorithm based on this technique is time-consuming and
can hardly obtain an accurate result within a human-tolerable period of time when
analyzing complex distributed systems.

In this paper, we extend the holistic analysis technique to deal with the precedence
relations between tasks in the same processors. The analysis technique is based on the
traditional critical instant analysis and the canonical form transformation proposed by
Harbour et al. [11], in which tasks’ time behaviors are accurately calculated.
Compared with the current techniques, this algorithm offers higher performance for
systems with wide range of CPU utilizations and task set size on the condition that the
accuracy is guaranteed, therefore it is applicable to the schedulability analysis of
complex distributed real-time systems.

The remainder of the paper is organized as follows: Section 2 describes the
assumptions and computational model used in this paper. Section 3 proposes the
methods to compute end-to-end response times and release jitters. Then an extended
worst-case response time analyses algorithm and an integrated schedulability analysis
algorithm are presented in Section 4. Simulations result is given in Section 5. Finally,
we conclude the paper in Section 6.

2 Assumptions and Computational Model

In this paper we consider event-driven software systems. In these systems a set of
external event sequences activate tasks. These tasks may generate internal events
(signals as well as data) that activate other tasks, and so on. We assume that a task
immediately activates its successors at the end of its execution. All tasks, which are in
precedence relation by their activation, are grouped into entities that we called
transactions. The assignment of the tasks to the processors is given and all the tasks of

 End-To-End Worst-Case Response Time Analysis 235

the same transaction do not necessary assigned to the same processor. Each
transaction has a period and deadline. We assume the deadline is less than or equal to
their period. Tasks within the same transaction have the same period and deadline
with the transaction. We exclude the possibility that the execution of multiple
instances of a task can be underway, i.e., a task must complete before its next arrival.
In the computational model referenced in this paper, each task has one direct
predecessor at most, which may run on the same or different processor. A task may
have one or more successors on the same or different processors.

On each processor, tasks are statically assigned unique priority and scheduled
under a fixed priority preemptive strategy. The assignment of priority is not the focus
in this paper, but we assume that predecessors are always assigned higher priority
than their successors on the same processor. This is reasonable since successors in a
transaction are always released after their predecessors complete. To reduce the
complexity of response time analysis, the communication costs between processors is
neglected in this study. However, the response time of messages can be analyzed with
the similar method by modeling each network as if it were a processor, and each
message as if it were a task [12].

Let P be the set of processors. There is a set = {t1,…, tn} of n periodic tasks in
the system. Each task ti is characterized by (Ti, C

W
i, Di, i, pi) where Ti is the period of

ti, C
W

i are its worst-case execution times (WCET) respectively, Di is its deadline, i is
its priority and pi ∈ P is the processor to which it is allocated. p denotes the task set
allocated to the processor p ∈ P.

Let k be the total number of transactions in the system. There is a set X = {x1,…,
xk} of k transactions in the system. Each transaction xi is characterized by (Ti, TSi, Di)
where Ti is the period of transaction xi, TSi is the set of all the tasks in xi and TSi ⊆ .
Di is the deadline of xi and Di Ti. Each task in TSi has the same period Ti and
deadline Di.

If tasks do communicate with each other, they are said to be precedence
constrained since a task is blocked until its direct predecessors activate it. Each
transaction has one beginning task and or more terminative tasks. We denote end(x)
the set of terminative tasks of transaction x∈X.

3 End-to-End Response Time and Release Jitter

The schedulability analysis for multiprocessor systems is based on the worst-case
response time analysis of transactions. If the worst-case end-to-end response times of
all the transactions in a system are less or equal to their deadlines, the system is then
schedulable. To obtain the end-to-end response time of a transaction, we can calculate
its individual task response times and sum them up [6].

We define local response time ri for ti which is measured from the local arrival
time of ti, and define global response time Ri of ti in a transaction which is measured
from the beginning of the complete transaction. The global worst-case response times
of ti, R

W
i can be expressed as:

 1
W W W
i i iR R r−= + (1)

236 L. Wang et al.

where ri
W is the worst-case local response time of ti, RW

i-1 is the worst-case global
response time of its direct predecessor task and R0

W= 0.
Obviously, the end-to-end response time of a transaction is its terminative tasks’

global response time. Thus, the worst-case end-to-end response time Rx
W of

transaction x can be expressed as:

()
max ()W W

x j
j end x

R R
∈

= (2)

In periodic multiprocessor systems, transactions composed of precedence-
constrained tasks will begin periodically. However, tasks except the first in a
transaction will suffer variation in release time since they will inherit variants in
response time (jitter) from predecessor tasks. The presence of jitter can affect the
response times of lower priority tasks [4]. Therefore, we need to accurately compute
the release jitter for each task.

The release jitter of a task is defined as the maximum variation of its release time.
Traditional analysis of distributed response time assumes that the release jitter of a
task is the worst-case response time of the task which directly precedes it and the
best-case response time of the predecessor task is assumed to be small and is ignored.
However, this will lead to a pessimistic calculation of response times, since jitter may
increase rapidly with each additional precedence step in a transaction. Given the
global best-case response times of direct predecessors, the release jitter Ji of ti can be
more accurately computed through the following equation:

1 1
W B

i i iJ R R− −= − (3)

where RB
i-1 is the global best-case response times of direct predecessors of ti. The

calculation of best-case response time is not the focus in this paper. Readers can refer
to [13] [14] and [15] for details.

Release jitters will be used in the calculation of response times of lower priority
tasks on the same processor. In the following sections, we will describe the
calculation of the worst-case response time of tasks in detail.

4 Schedulability Analysis

4.1 Traditional Worst-Case Analysis Technique

Audsley [4] and others [7] have studied the schedulability analysis used to derive
worst-case response times of fixed priority periodic tasks preemptively scheduled.
The worst-case response time of a task is computed assuming that it is released at the
same instant as all higher priority tasks on the same processor -- this known as the
“critical instant”. If a task with higher priority suffers release jitter, the interval of its
release time can be less than its period. This may lead to more preemption of tasks
with lower priority. The local worst-case response time ri

W of ti can be expressed in
the following iterative form:

 End-To-End Worst-Case Response Time Analysis 237

*

()

W
i jW W W

i i i j
j hp i j

r J
r C B C

T∈

+
= + + (4)

where hp(i) is the set of tasks with higher priority than ti, Tj and Ji are respectively the
period and jitter of tj, Bi is the longest time that ti could be blocked by lower priority
tasks, and is computed according to the concurrency control protocol, such as the
priority ceiling protocol [2]. To calculate ri

W, the newly computed response time, ri
W*,

replaces ri
W on each iteration. The expression must be iterated until convergence (ri

W*

= ri
W) or the task is deemed unschedulable (ri

W > Di). An initial response time, ri
W =

Ci
W, may be assumed.

4.2 Worst-Case Analysis for Tasks with Precedence Relations

When consider the precedence relations between tasks in the same processor, the
above calculation may not provide the correct response time. Consider the task set on
a processor p shown in Table 1. If the precedence constraints are not considered, r2
and r4 are 4 and 15 respectively based on Equation 4. If we exclude the preemption
from t2, r4 is 8 as shown in Fig.1(a). However, this is not the worst-case phasing of t4,
since the precedence relations between tasks are not fully explored. The worst-case
phasing of t4 is shown in Fig.1(b), its local worst-case response time r4 is 11. While
the worst response time of t2 will remain the same.

Table 1. The task set on processor p

Task Transaction Period Direct predecessor WCET Priority

t1 x1 8 None 2 4

t2 x2 30 None 2 3

t3 x1 8 t1 3 2

t4 x2 30 t2 3 1

r4=8

(a) (b)

r4=11

t1

t2

t3

t4

t1

t2

t3

t4

Fig. 1. The worst-case phasing of t4

238 L. Wang et al.

From this example we can see that the precedence relation between two tasks does
not affect the execution of the predecessor, this is because the predecessor always has
a higher priority than its successors on the same processor. The precedence relations
between tasks on different processors have been considered in the calculation of
global response time (Equation 1). In order to extend the response time analysis for
precedence relations between tasks on the same processor, we consider the following
two cases on a processor p:

Case 1: The calculated task ti has no direct predecessor on p.

Case 2: The calculated task ti has a direct predecessor on p.

Case 1: ti has no direct predecessor on p. Let’s consider the scheduling on p. When
calculating ti’s response time, we do not consider the effects from its indirect
predecessors on p, since they do not preempt the execution of ti. Although these
indirect predecessors may affect the release time of ti, these effects are indirect and
are transferred to ti’s direct predecessor, which is on other processor. The dependence
on its direct predecessor has been taken into account in the calculation of global
response time of ti (see Equation 1). As a result, ti’s execution is only affected by the
tasks with higher priority in other transactions. We denote the set of these tasks as S,
so S can be expressed as { | () ()}i i iS t t hp i t V i= ∈ ∧ ∉ , where hp(i) is the set of

tasks on p which have higher priority than ti and V(i) is the set of tasks in the
transaction of ti. If the tasks in S have no precedence relations among them (no two
tasks belong to a common transaction), the precedence relations between tasks on p
will not affect the execution of ti. The worst-case phasing for ti is the instant when it is
released simultaneously with all the tasks in S.

Consider the case that two tasks in S have a precedence relation. Let the two tasks
be tj and tk, and tj is a predecessor of tk. tk may be released just when tj terminate its
execution (directly released by tj) or released by successors of tj (indirectly released
by tj). In the latter situation there is a delay between tj’s termination and the release of
tk. Obviously, the former situation will contribute to the worst-case response time of
lower priority tasks (task ti), since the interval between the executions of tj and tk is
the least which leads to the tightest preemption of lower priority tasks. Thus we
calculate ti’s response time in the former situation for the worst-case analysis.

Theorem 1: In the task set of a processor, task tj is the direct predecessor of task tk
and tk is released when tj terminates its execution. If tk’s release time is brought
forward to the instant when tj is released, the execution of tk is not changed.

Proof: According to our assumptions, tj and tk has a common period and tj has a
higher priority than tk. Consider the situation illustrated in Fig.2 with j > k > i. The
white arrow denotes the release instant of tasks when the precedence relations are
considered. a2 is the instant when tj is terminated and tk is released. a1 is the instant
when tj is released and is denoted by the first black arrow. We can see that if tk is
released at a1, it will have no chance to execute before the termination of tj in the
same instance of their transaction. This is because that tj and tk are released
simultaneously at a1 and tj has a higher priority than tk. That is to say the execution of
tk will not be different whether it is released at a1 or a2. Since tj and tk have the same
period, this is true for all the following instance of tk.

 End-To-End Worst-Case Response Time Analysis 239

tj

tk

ti

a1 a2

Fig. 2. Bringing forward tk’s release time to a1 dose not change tk’s execution

According to Theorem 1, the calculation of ti’s worst-case response time can be
performed as if all the tasks in S were released at its critical instant, since the release
time of successor tasks can be brought forward to the critical instant without changing
their executions. So the precedence relations between tasks in S will not affect the
worst-case phasing of ti, which the instant when ti is released simultaneously with all
the tasks in S.

Thus, whether or no there are precedence relations between tasks in S, ti’s worst-
case local response time ri

W can be computed through the following iterative equation:

*

() ()

W
i jW W W

i i j
j hp i j V i j

r J
r C C

T∈ ∧ ∉

+
= + ⋅ (5)

An initial response time, ri
W* = Ci

W may be assumed. The newly computed
response time, ri

W*, replaces ri
W on each iteration. The expression must be iterated

until convergence (ri
W* = ri

W) or the task is deemed unschedulable (ri
W > Di). Based on

Equation 1, the worst-case global response time of ti can be achieved.

Case 2: The calculated task ti has a direct predecessor on p. To calculate the worst-
case local response time of ti, we need to consider the effects from its predecessors.
We introduce the consecutive sub-transaction to compute the response time of ti.

Definition 1: The consecutive sub-transaction of a task t is the sub-transaction
consists of all the consecutive tasks ended up with t on the same processor.

In Fig.3, the consecutive sub-transaction of t5 and t6 are shown. We denote the
consecutive sub-transaction of ti as ST(i). Obviously, ti and ST(i) have the same global
response time. The worst-case global response time of ti can be expressed as:

() 1 ()
W W W
i fst i ST iR R r−= + (6)

where fst(i) is the first task in ST(i), rW
ST(i) is the worst-case local response time of

ST(i) which is measured from the release time of the first task to the termination of
the last task ti in ST(i).

240 L. Wang et al.

t3 t4 t5 t6

t2 t1

Processor

ST(5)

ST(6)

Fig. 3. Consecutive sub-transaction

To calculate rW
ST(i), we introduce the concept canonical form proposed by Harbour

et al. [11]. A transaction or sub-transaction is said to be in canonical form if it consists
of consecutive tasks that do not decrease in priority. Harbour et al. have proved that
converting a precedence chain into a canonical form does not change its completion
time. Therefore, we can calculate rST(i) by transforming ST(i) to a canonical form. We
denote the canonical form of ST(i) as CST(i). The canonical transformation can be
performed by applying the following algorithm:

Algorithm 1. Canonical transformation

ti is the last task in ST(i);

while ti is not the first task of ST(i)

If i-1 > i then i-1 = i ;

i = i-1;

end

Since the consecutive tasks in a consecutive sub-transaction have descending

priorities, after the canonical transformation, all the tasks in CST(i) have the same
priority i. Due to the tasks in CST(i) also have the same period and each task is
immediately released when its direct predecessor terminates its execution, CST(i) can
be treated as a single task with priority i and period Ti when calculate its response
time. According to the definition of ST(i), this assumed task has no direct predecessor
on p. This is just the case indicated by case 1. Therefore, the worst-case local
response time rCST(i) (equal to rST(i)) can be expressed in the following iterative form:

()*

() ()
() ()

W
CST i jW W W

CST i CST i j
j hp i j V i j

r J
r C C

T∈ ∧ ∉

+
= + ⋅ (7)

where CW
CST(i) is the worst-case execution time of CST(i), it can be achieved by

summing up the worst-case execution time of all the task in CST(i). This equation is
deduced from Equation 6 by treating CST(i) as one task without direct predecessor.
Please note that the preemptions from the predecessors of ST(i) are excluded from the
interference time (the item on the right of the equation) since ST(i) are always
released after their terminations and they have no chance to preempt it.

 End-To-End Worst-Case Response Time Analysis 241

To calculate rW
CST(i), the newly computed response time, rW*CST(i), replaces rW

CST(i)
on each iteration. The expression must be iterated until convergence (rW*CST(i)

 =
rW

CST(i)) or the task is deemed unschedulable (rW
CST(i) > Di). An initial response time,

rW
CST(i) = CW

CST(i), may be assumed. Since transforming ST(i) to CST(i) does not
change its completion time, rW

ST(i) is equal to rW
CST(i). Based on Equation 6, the worst-

case global response time of ti can be achieved.

4.3 An Integrated Schedulability Analysis Algorithm

We extend the algorithm proposed by Henderson et al. [13] to test the schedulability
of multiprocessor systems. The analysis is based on the computation of worst-case
response time for end-to-end transactions, which essentially involves the two stages:

1. Compute local response time for task or consecutive sub-transactions on all
processors

2. Compute global response times and jitter for tasks on all processors

These stages are repeated until convergence is achieved. The second stage requires
the traversal of precedence graphs to sum the delays along each end-to-end
transaction. Because not all information is available when computing response times
on each processor, the process has to proceed by iteration. The bounded response time
of each transaction and the schedulability analysis of the system can be achieved
using the following algorithm:

Algorithm 2. SAPR (Schedulability analysis for task with precedence relations)

begin
Initialize global responses, R0

W = 0;

Initialize jitter, J0 = 0;

 do

 for each pk ∈P do

 for each ti ∈ pk do

 if ti has no direct predecessor on pk then

Compute local task response time, ri
W (Eq. 5)

 else
Compute local response time of ST(i), rW

ST(i); (Eq. 7)

 end for

 end for
 for each transaction x do

 for each task ti in x do

Compute global response time, Ri
W; (Algorithm 3)

Compute jitter, Ji; (Eq. 2)

 end for

 end for

242 L. Wang et al.

 Test for convergence;

 until convergence or not schedulable

end

Task Global response times can be calculated through the following nested

algorithm:

Algorithm 3. Task global response time calculation

input: x, p, ti, ri
W, rW

ST(i);

output: Ri
W;

begin
if ti is the beginning time of x then

Ri
W = ri

W;

else
if ti has no direct predecessor on p then

compute Ri-1
W; (Algorithm 3)

compute Ri
W and Ri

B; (Eq. 1)

else
 compute Rfst(i)

W; (Algorithm 3)
 compute Ri

W; (Eq. 6)

end if

end if

end

In the SAPR algorithm (Algorithm 2), the convergence test is satisfied when all

response times remain the same from one iteration to the next. For many small-
medium sized systems, between 2 and 6 iterations appear sufficient to obtain a
converged solution.

5 Simulations

In order to evaluate the performance of the proposed method, simulations were
conducted on a Pentium 4 2.4GHz with different task sets whose execution times,
periods and priorities were generated randomly. We have compared the SAPR
algorithm with the dynamic offset algorithm proposed by Palencia and Harbour [10]
through simulations and found that both the algorithms can achieve the same result
for a given task set when BCET of tasks is considered to be zero. However, the
dynamic offset algorithm consumes much more time than SAPR to obtain the results
for medium or large size systems. Fig.4 shows the time cost of the dynamic offset
algorithm to analyze a system with 5 transactions in 2 processors. It can be seen that
the time cost of the dynamic offset algorithm grows quickly with the increase of task
amount and the processor utilization. Even for a task set with 40 tasks and a normal

 End-To-End Worst-Case Response Time Analysis 243

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

20

40

60

80

100

T
im

e
C

os
t (

s)

Utilization

 30tasks
 40tasks
 50tasks
 60tasks

Fig. 4. Time cost of dynamic offset algorithm for 5 transactions on 2 processors

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

10

20

30

40

50

60

70

80

90

T
im

e
C

os
t (

s)

Utilization

 1000tasks
 2000tasks
 4000tasks
 6000tasks
 8000tasks

Fig. 5. Time cost of SAPR algorithm for 5 transactions on 2 processors

utilization level of 0.7, it will take more than one minute to achieve the result. This
performance cannot be tolerated in practice for many larger size systems. The SAPR
algorithm has a higher performance than the dynamic offset algorithm. Fig.5 shows
its time cost to analyze the systems with the same amount of transactions and

244 L. Wang et al.

processors but much more tasks. For a task set with 1000 tasks, the analysis can be
completed in less than 2 seconds even under very high processor utilization levels
close to 1. It can also be noted that the time cost of the SAPR algorithm grows slowly
with the increase of amount of tasks and the processor utilization. These features
make it quite applicable to large size systems.

6 Conclusion

In this paper we have addressed the problem of schedulability analysis in hard real-
time distributed systems. In safety-critical control systems, periodic control actions
are required with precise timing and accurate performance data is required to assure
the behavior of these systems. To achieve an accurate analysis, the existing time
analysis techniques are extended to exploring the precedence relations between tasks
in the calculation of the worst-case response times. An integrated algorithm is also
proposed to test the schedulability and compute the response time bounds of a system.
A simulation study has shown that this algorithm can provide an accurate analysis and
offer good performance for systems with wide range of CPU utilizations and task set
size, and therefore is suitable for analysis of complex systems. Although the costs of
message transmission is not taken into account, the present analysis technique can
also be used for communications on networks by modeling each network as if it were
a processor, and each message as if it were a task [12].

Our further work includes the optimization of scheduling for distributed systems
based on the end-to-end response time analysis. This will help system designers to
improve the performance and reliability of a complex system at an early design stage.

Acknowledgements

This research was supported by 863 National High Technology Program under Grant
No. 2004AA1Z2180, No. 2003AA1Z2080 and No. 2003AA1Z2140.

References

1. C. L. Liu, and J. W. Layland: Scheduling Algorithms for Multiprogramming in a Hard
Real-Time Environment. 20(1), Journal of the ACM (1973) 46-6

2. L. Sha, R. Rajkumar, and S. Sathaye: Priority inheritance protocols: An approach to real-
time synchronization. IEEE Transactions on Computers, Vol.39, (1990) 1175-1185

3. N. C. Audsley, A. Burns, M. F. Richardson, A. J. Wellings: Hard Real-Time Scheduling:
The Deadline Monotonic Approach. Proceedings 8th IEEE Workshop on Real-Time
Operating Systems and Software, (1991) 15-17

4. N. C. Audsley, A. Burns, K. Tindell, M. Richardson, A. Wellings: Applying New
Scheduling Theory To Static Priority Pre-emptive Scheduling. Software Engineering
Journal, 8(5), (1993) 284-292

5. J. P. Lehoczky: Fixed Priority Scheduling of Periodic Task Sets With Arbitrary Deadlines.
Proceedings 11th IEEE Real-Time Systems Symposium, (1990) 201-209

 End-To-End Worst-Case Response Time Analysis 245

6. M. Klein, T. Ralya, B. Pollack, R. Obenza andM. González Harbour: A Practitioners
Handbook for Real-Time Systems Analysis. Kluwer Academic Publishers, (1993)

7. K. Tindell and J. Clark: Holistic Schedulability Analysis for Distributed Hard Real-Time
Systems. Microprocessing & Microprogramming, 50(2-3), (1994) 117-134

8. J. C. Palencia and M. Gonzalez Harbour: Schedulability analysis for tasks with static and
dynamic offsets. In Proc. of IEEE Real-time Systems Symposium, (1998) 26-37

9. J.C. Palencia Gutiérrez, J.J. Gutiérrez García and M. González Harbour: Best-Case
Analysis for Improving the Worst-Case Schedulability Test for Distributed Hard Real-
Time Systems. Proceeding Of tenth Euromicro Workshop on Real-Time Systems, (1998)
35-44

10. J. C. Palencia and M. Gonzalez Harbour: Exploiting precedence relations in the
schedulability analysis of distributed real-time systems. In Proc. of IEEE Real-time
Systems Symposium, (1999) 328-339

11. M.G. Harbour, M.H. Klein, and J.P. Lehoczky: Fixed Priority Scheduling of Periodic
Tasks with Varying Execution Priority. In Proc. of Real-Time Systems Symposium, San
Antonio, (1991) 116-128

12. Tindell, K., Burns, A., and Wellings, A. J.: Analysis of hard real-time communications.
Real-Time Systems, Vol.9, (1995) 147–171

13. W. Henderson, D. Kendall and A. Robson: Improving the Accuracy of Scheduling
Analysis Applied to Distributed Systems. Journal of Real-Time Systems, Kluwer, 20(1),
(2001) 5-25

14. O. Redell and M. Sanfridson: Exact Best-Case Response Time Analysis of Fixed Priority
Scheduled Tasks. In the 14th Euromicro Conference on Real-Time Systems, Vienna
(Austria), (2002) 165-172

15. P. E. Hladik and A. M. Deplanche: Best-Case Response Time Analysis for Precedence
Relations in Hard Real-Time Systems. Real-Time Systems Symposium Work-in-Progress
Session, (2003), Available: http://www.cs.virginia.edu/~zaher/rtss-wip/22.pdf

Safety Interfaces for Component-Based Systems

Jonas Elmqvist1, Simin Nadjm-Tehrani1, and Marius Minea2

1 Department of Computer and Information Science, Linköping University
{jonel, simin}@ida.liu.se

2 “Politehnica” University of Timişoara and Institute e-Austria Timişoara
marius@cs.utt.ro

Abstract. This paper addresses the problems appearing in component-
based development of safety-critical systems. We aim at efficient reason-
ing about safety at system level while adding or replacing components.
For safety-related reasoning it does not suffice to consider functioning
components in their ”intended” environments but also the behaviour of
components in presence of single or multiple faults.

Our contribution is a formal component model that includes the no-
tion of a safety interface. It describes how the component behaves with
respect to violation of a given system-level property in presence of faults
in its environment. We also present an algorithm for deriving safety inter-
faces given a particular safety property and fault modes for the compo-
nent. Moreover, we present compositional proof rules that can be applied
to reason about the fault tolerance of the composed system by analyzing
the safety interfaces of the components. Finally, we evaluate the above
technique in a real aerospace application.

1 Introduction

Component-based software development [30,9] uses various models and methods
to capture different attributes of a system, or emphasise phases of the develop-
ment cycle [4,28,8,27,10]. This paper addresses efficient assurance of dependabil-
ity in a system built from components and with several upgrades in its life cycle,
an aspect not widely studied so far in the components literature [11].

Modifying a component or replacing it with another is an especially costly
process for safety-critical systems, as much of the analysis and review of the
safety arguments at the certification stage has to be repeated for every signifi-
cant change to the system. We believe that tool support in this sector needs to
make component changes cost-efficient by addressing safety-specific issues, e.g.
resilience of the system with respect to single and multiple faults as new com-
ponents are plugged in. The model we propose covers digital components, with
a built-in declaration of their behaviour under faults in assumed environments.
This component model captures the logic of the design at a high abstraction
level, and could be applied to software or (reconfigurable) hardware designs.

Traditional risk assessment techniques such as Fault-tree analysis (FTA) and
Failure modes and effects analysis (FMEA) [16] deal with the effect of inde-
pendent faults. Although assessing fault tolerance at system level is an impor-
tant part of safety analysis, rigorous methods are only in their infancy when

R. Winther, B.A. Gran, and G. Dahll (Eds.): SAFECOMP 2005, LNCS 3688, pp. 246–260, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Safety Interfaces for Component-Based Systems 247

it comes to systems with significant digital components [15,13]. Our goal is to
provide a formal means to support the system integrator. When acquiring a new
component for inclusion into a system, the integrator is informed whether the
component can potentially threaten the system-level safety (in the same spirit
as FMEA). The integrator is also supported in analysis of fault tolerance at
system level, the result of which will indicate all single or multiple component-
level faults that will necessarily lead to violation of safety (in the same vein as
FTA). Unlike functional correctness analysis, here the goal is to focus on risks
associated with external faults, not to eliminate design faults.

The contributions of this paper are as follows. We present a component model
that includes safety interfaces. These describe how a component behaves with
respect to a given system-level safety property in presence of (a defined set of)
faults in its environment. We show how to perform a system-level safety analysis
by using the safety interfaces of components. This goal is supported in two ways.
First, we provide an algorithm that derives the safety interface of a component
given a particular safety property and set of fault modes. The interface includes
the single and multiple faults that this component is resilient to, as well as
environment restrictions that can contain the faults. This analysis is intended
to be performed by the developer of the component. Second, we support the
system integrator to reason compositionally about safety in presence of single
and multiple faults at system level by referring to the safety interfaces. Once the
relevant fault-failure chains are rigorously identified, they can be handled using
standard assessment routines, fault forecasting and containment techniques [20].

1.1 Related Work

To our knowledge, there is no previous formal work on safety interfaces for
components.

Current engineering practice includes two parallel activities for safety-related
studies (hazard analysis, FTA and FMEA) and functional design and analysis.
Recent research efforts have tried to combine these separate tracks by augment-
ing the system design model with specific fault modes. Åkerlund et al. [2] have
to our knowledge the first attempt to integrate the separate activities of design
and safety analysis and support them by common formal models. Hammarberg
and Nadjm-Tehrani extend this work to models at a higher level of abstraction
and characterise patterns for safety analysis of digital modules [15]. That work,
however, does not build on a notion of encapsulation as in components. It verifies
the entire composed system in Esterel using a SAT model checker and iteratively
analyses all fault modes at system level. The ESACS project [7] applies a similar
approach to Statechart models using a BDD-based verification engine.

Papadopolous et. al. [24] extend a functional model of a design with Interface-
Focused FMEA. The approach follows a tabular (spread sheet) editor layout.
The formalised syntax of the failure classes allows an automatic synthesis of a
fault tree and incorporation of knowledge about the architectural support for
mitigation and containment of faults. However, it suffers from combinatorial
explosion in large fault trees and lacks formal verification support.

248 J. Elmqvist, S. Nadjm-Tehrani, and M. Minea

Rauzy models the system in a version of mode automata and the failure of
each component by an event that takes the system into a failure mode [26]. The
formal model is compiled into Boolean equations and partial order techniques
are suggested for reducing the combinatorial explosion. However, it has not been
applied to component-based development or compositional reasoning.

Strunk and Knight define the system and its reconfiguration elements explic-
itly using RTL (temporal logic) notation and provide guidelines for reconfigura-
tion assurance. Reconfiguration is mainly used here when the system is adapting
to lower service levels that may in particular be due to failure scenarios [29].

Jürjens defines an extension of the UML syntax in which stereotypes, tags,
and values can be used to capture failure modes of components in a system (cor-
ruption, delay, loss) [19]. The merit of the model is to narrow the gap between a
system realised as a set of functions and a system realised as a set of components.

Li et al. [21] define feature-oriented interfaces for modules that encapsulate
crosscutting system properties. The focus of this work is feature interaction
including features that introduce a new vocabulary.

A recent approach for formal treatment of crosscutting concerns in recon-
figurable components is given by Tesanovic et al. [31] where extended timed
automata are used to capture models of components with an interface for char-
acterising the essential traces for supporting a given timing property.

Assume-guarantee-style compositional reasoning has a long history originat-
ing with the work by Misra and Chandy [23] and Jones [18] in the context of
concurrent systems. It has been applied to deductive reasoning about specifica-
tions [1] as well as model checking for various automata formalisms. Here, the
notion of refinement is usually trace inclusion, but can also be simulation [17].
Our rules are derived from those of Alur and Henzinger for reactive modules [3].

2 Components and Fault Models

A component is an independent entity that communicates through well-defined
interfaces. In most component models, the interfaces are only functional, defining
input and output ports at a syntactic level. For efficient safety analysis at system
level, these simple interfaces are insufficient. More behaviour information must
be provided to make interfaces usable for analysis of failures in presence of faults.

We propose a formal component model with two elements: its functional
behaviour and a safety interface, which describes the behaviour in presence of
faults in the environment. This safety interface can then be used to perform
safety analysis at system level, such as analysis for fault tolerance. We next
present the basic definitions, the fault modes and the employed formalism.

2.1 Modules and Basic Definitions

Our general formalism for modules is based on the notion of reactive modules [3],
of which we give only a brief overview. We present a special class of reactive
modules with synchronous composition, finite variable domains and non-blocking
transitions that we call synchronous modules (by default, simply modules).

Safety Interfaces for Component-Based Systems 249

A module is defined by its input, output and private variables and the rules
for updating and initializing them. Variables are updated in a sequence of rounds,
each once per round. To model synchrony, each round is divided into subrounds,
and the system and the environment take turns in executing and updating vari-
ables. Events, such as a tick, can be modelled by toggling boolean variables.

Definition 1 (Module). A synchronous module M is a tuple (V, Q0, δ) where

– V = (Vi, Vo, Vp) is a set of typed variables, partitioned into sets of input
variables Vi, output variables Vo and private variables Vp. The controlled
variables are Vctrl = Vo ∪ Vp and the observable variables are Vobs = Vi ∪ Vo;

– A state over V is a function mapping variables to their values. The set of
controlled states over Vctrl is denoted Qctrl and the set of input states over
Vi as Qi. The set of states for M is QM = Qctrl × Qi;

– Q0 ⊆ Qctrl is the set of initial states;
– δ ⊆ Qctrl × Qi × Qctrl is the transition relation.

The successor of a state is obtained at each round by updating the controlled
variables of the module. The execution of a module produces a state sequence
q̄ = q0 . . . qn. A trace σ̄ is the corresponding sequence of observations on q̄, with
σ̄ = q0[Vobs] . . . qn[Vobs], where q[V ′] is the projection of q onto a set of variables
V ′ ∈ V . The trace language of M , denoted LM , is the set of traces of M .

A property ϕ on a set of variables V is defined as a set of traces on V . A
module M satisfies a property ϕ, written M |= ϕ, if all traces of M belong to ϕ.
This work focuses on safety properties [22,14] as opposed to liveness properties.

Composing two modules into a single module creates a new module whose
behaviour captures the interaction between the component modules.

Definition 2 (Parallel composition). Let M = (V M , QM
0 , δM) and N =

(V N , QN
0 , δN) be two modules with V M

ctrl ∩ V N
ctrl = ∅. The parallel composition of

M and N , denoted by M ‖ N , is defined as

– Vp = V M
p ∪ V N

p

– Vo = V M
o ∪ V N

o

– Vi = (V M
i ∪ V N

i) \ Vo

– Q0 = QM
0 × QN

0

– δ ⊆ Qctrl×Qi×Qctrl where (q, i, q′) ∈ δ if (q[V M
ctrl], (i∪q)[V M

i], q′[V M
ctrl]) ∈ δM

and (q[V N
ctrl], (i ∪ q)[V N

i], q′[V N
ctrl]) ∈ δN .

We extend Definition 2 to a pair of modules with shared outputs, provided
the resulting transition relation δ is nonblocking, i.e., has a next state for any
combination of current state and inputs. In this case, we call the two modules
compatible and distinguish nonblocking composition by denoting it ‖̂ .

We relate modules via trace semantics: a module M refines a module N if N
has more behaviours than M , i.e., all possible traces of M are also traces of N .

Definition 3 (Refinement). Let M = (V M , QM
0 , δM) and N = (V N , QN

0 , δN)
be two synchronous modules. M refines N , written M ≤ N , if (1) V N

o ⊆ V M
o ,

(2) V N
obs ⊆ V M

obs and (3) {σ̄[V N
obs] : σ̄ ∈ LM} ⊆ LN .

250 J. Elmqvist, S. Nadjm-Tehrani, and M. Minea

2.2 Fault Mode Models

To analyse the behaviour of a component in presence of faults in its environ-
ment it is important to identify all possible ways that the environment can fail.
Low-level fault modes are generally application and platform dependent, how-
ever faults can be classified into high-level categories. Bondavalli and Simoncini
classify faults into omission faults, value faults and timing faults [6]. We adopt
a classification in which faults fall into the following categories [12,25,24]:

Omission failure i.e., absence of a signal when the signal was expected.
Commission failure i.e., unexpected emission of a signal.
Value failure i.e., failure in the value domain such as signal out of range or a

signal stuck at some value etc.
Timing failure i.e., failure in the time domain such as late or early delivery.

Timing properties have been addressed in other work, for example interfaces
to capture timing properties in the absence of faults are given by Tesanovic et
al. in timed automata [31] and could be further extended to cover resilience to
timing failures. In this work we focus on untimed models and value failures.

We model faults in the environment as delivery of faulty input to the com-
ponent and call each such faulty input a fault mode for the component. A value
failure is modelled by modifying the input signals that in turn might affect pri-
vate variables. A commission failure is modelled by unforced emission of signals
to the component. The input fault of one component thereby captures the output
fault of a component connecting to it, with the exception of “edge” components
that need to be treated separately, e.g. in accordance to earlier methods [15].

Definition 4 (Input Fault Mode). An input fault mode Fj of a module M

is a module with an input variable vf
j
∈ V M , an output variable vj ∈ V M

i , both
of the same type D, and an unconstrained transition relation δ = D × D × D.

A fault mode Fj on the input vj from environment E to module M can be
viewed as replacing the original output vj of E with the input vf

j of Fj , which
produces the faulty output vj to M . We model this formally as a composition
of Fj and E, which has the same variables as E and can then be composed with
M . Free inputs to M are viewed as unconstrained outputs of E.

Definition 5 (Composition with Fault). Let E be a module with vj ∈ V E
o

and Fj a fault mode with output vj and input vf
j . Denote Fj ◦E = Fj ‖ E[vj/vf

j]
where E[vj/vf

j] is the module E with the variable substitution vf
j for vj .

Our fault modes are unrestricted and can affect their output in an arbitrary
way. Other types of fault modes can be modelled by appropriate logic in their
transition relation. We can naturally extend this definition to multiple faults.

2.3 Components and Safety Interfaces

Given a module, we wish to characterize its fault tolerance in an environment
that represents the remainder of the system together with any external con-
straints. Whereas a module represents an implementation, we wish to define an

Safety Interfaces for Component-Based Systems 251

interface that provides all information about the component that the system in-
tegrator needs. Traditionally, these interfaces do not contain information about
safety of the component. In this paper we propose a safety interface that captures
the behaviour of the component in presence of faults in the environment.

Definition 6 (Safety Interface). Given a module M , a system-level safety
property ϕ, and a set of fault modes F for M , a safety interface SIϕ for M is
a tuple 〈Eϕ, single, double〉 where

– Eϕ is an environment in which M ‖ Eϕ |= ϕ.
– single = 〈F s, Es〉 where F s ⊆ P(F) is the single fault resilience set and Es

is a module composable with M , such that ∀Fk ∈ F s, M ‖ (Fk ◦ Es) |= ϕ
– double = {〈F d

1 , Ed
1 〉, . . . , 〈F d

n , Ed
n〉} with F d

k =〈F 1
k , F 2

k 〉, F 1
k ,F 2

k ∈ F , F 1
k
= F 2

k

such that M ‖ ((F 1
k ‖ F 2

k) ◦ Ed
k) |= ϕ

The safety interface makes explicit which single and double faults the compo-
nent can tolerate, and the corresponding environments capture the assumptions
that M requires for resilience to these faults. For single faults, we specify one
environment assumption Es under which the component is resilient to any fault
from a given set of interest. For double faults, we are more fine-grained and
specify for each fault pair of interest an environment in which the module is re-
silient to their joint occurrence. Multiple faults could be handled similarly. The
safety interface need not cover all possible faults (and in fact could be empty):
the provider of a component only specifies what is explicitly known about it.

Definition 7 (Component). Let ϕ be a system-level safety property, M a mod-
ule and SIϕ a safety interface for M . A component C is the tuple 〈M, SIϕ〉.

We wish to deliver a component with precomputed information about the set
of tolerated fault modes. To check safe use of the component one verifies that the
actual environment satisfies the component assumptions which guarantee safety
under faults.

3 Deriving Safety Interfaces

In this section we provide guidelines for how a component developer creates the
safety interface. The developer needs to characterise environments in which a
module functions correctly in the presence of a given set of faults. We first derive
such an environment (in fact, the most general one) in the ideal case without
faults. Next, we use the obtained environment abstraction to determine more
restrictive environments under which the module is resilient, first to a chosen set
of single faults and then for the occurrence of fault pairs.

3.1 Generating a Constraining Environment

If M is a module such that M � ¬ϕ, the weakest (least restrictive) environment
Eϕ

w in order to satisfy ϕ can be generated as shown in Figure 1. The algorithm

252 J. Elmqvist, S. Nadjm-Tehrani, and M. Minea

Fig. 1. The abstraction algorithm

uses a model checker to check whether the module M in parallel with an envi-
ronment E satisfies the safety property ϕ; i.e. M ‖ E |= ϕ.

Initially, the algorithm starts out with an empty constraint E0 on the envi-
ronment and at each iteration i, the algorithm strengthens the constraints Ei

by analysing the counter-example generated by the model checker and removing
the forbidden states. This corresponds to removing behaviour from (or strength-
ening) the environment. In the next iteration, the environment Ei+1 should at
least not exhibit the behaviour reflected by the counter-example at iteration i.
The algorithm stops at a fixpoint when Ei+1 = Ei = Eϕ

w.

Proposition 1. The environment Eϕ
w generated by the algorithm is the least

restrictive environment in which M satisifies the property ϕ. That is, for any
environment E, M ‖ E |= ϕ iff E ≤ Eϕ

w.

The proof can be done by adapting the reasoning by Halbwachs et. al. [14],
that synthesise a necessary and sufficient environment for an I/O machine M .

3.2 Identification of Fault Behaviours

Let M be a module that satisfies a safety property ϕ when placed in an environ-
ment E, assuming the ideal case without faults: M ‖ E |= ϕ. Let Fj be a fault
mode on variable vj which is an input to M from E. Denote by E′ = ∀vj E the
module with V E′

= V E \ vj , QE′
0 = ∀vj QE

0 and δE′
= ∀vj ∀v′j δE .

Proposition 2. If M ‖ E |= ϕ and ∀vi E exists, then M ‖ (Fi ◦ ∀vi E) |= ϕ,
i.e., M is resilient to fault Fi in the environment ∀vi E.

By definition of ∀vi E, any state can be extended to a state of E with an arbitrary
value of vi. Thus, Fi ◦∀vi E ≤ E and the result follows by composing with M . In
particular, if Eϕ

w is the least restrictive environment for M and ϕ, then ∀vi Eϕ
w

is the least restrictive environment in which module M is resilient to fault Fi.
This result gives an environment in which a module is resilient to a single

fault. For the safety interface, we need an environment Es which makes the
module resilient to any one fault from the single fault resilient set. The desired
environment must be at least as restrictive as the environment required for
resilience of each of the individual fault modes. This is ensured by their parallel
composition.

Safety Interfaces for Component-Based Systems 253

Proposition 3. If M ‖ (Fi ◦ Ei) |= ϕ and M ‖ (Fj ◦ Ej) |= ϕ, and Ei, Ej are
compatible, then M ‖ (Ei ‖̂Ej) is resilient to any fault Fi or Fj individually.

This follows since any trace of Ei ‖̂Ej under fault Fi or Fj is either a trace
of Fi ◦ Ei or of Fj ◦ Ej . In particular, we can take Ei = ∀vi Eϕ

w with Eϕ
w the

least restrictive environment as determined in the previous section. Successive
application to each fault in the selected set yields Es = ∀vi Eϕ

w ‖̂ . . . ‖̂ ∀vn Eϕ
w as

the desired environment for the single element of the safety interface.
For resilience to double faults Fi and Fj , the environment must be restricted,

analogously to Proposition 2, to behaviours allowed for all values of vi and vj :

Proposition 4. If M ‖ E |= ϕ, and Fi, Fj are faults such that ∀vi∀vj E exists,
then M ‖ ((Fi ‖ Fj) ◦ ∀vi∀vj E) |= ϕ . That is, M is resilient to simultaneous
faults Fi and Fj in the environment ∀vi∀vj E.

Thus, if ∀vi∀vj E is nonempty, the pair 〈〈Fi, Fj〉, ∀vi∀vj E〉 can be included
in the double fault resilience portion of the safety interface. Moreover, if Eϕ

w is the
least restrictive environment for M and ϕ, then ∀vi∀vj Eϕ

w is the least restrictive
environment in which M is simultaneously resilient to Fi and Fj .

Example: Suppose module M guarantees the safety property ϕ if the environ-
ment E ensures that of the two boolean inputs v1 and v2, at least one is set to
1: v1 ∨ v2 = 1. Then, the faulty environments become E1 = F1 ◦ E ≡ ∀v1 E ≡
∀v1 . v1 ∨ v2 = 1 ≡ v2 = 1 and E2 = F2 ◦ E ≡ v1 = 1. The environment which
is resilient to either fault is E1 ‖̂E2 ≡ v1 = 1 ∧ v2 = 1. There is no environment
under which the module is resilient to a double fault.

4 Component-Based Analysis of Fault Tolerance

We next describe the methodology of applying the above component model in
system safety analysis. Unlike component models that capture functional con-
tracts as interfaces, and then apply assume-guarantee reasoning for ensuring that
the system behaves functionally correct when built from given components, our
model does not aim to prove the satisfaction of a property. Rather, the purpose
of our analysis is to focus on sensitive faults. In other words, both resilience and
non-resilience information are interesting in the follow-up decisions. If the sys-
tem safety is indeed threatened by a single fault, then the systems engineer may
or may not be required to remove the risk of that fault by additional actions.
This typically implies further qualitative analysis of the risk for the fault and its
consequence, and is outside the scope of this paper. Combinations of multiple
faults typically bear a lower risk probability but as important to quantify and
analyse. If the safety of the system is not sensitive to a fault (pair), then the
engineer can confidently concentrate on other combinations of potential faults
that are a threat. In general, it is likely that none of these faults appear in
actual operation, and the whole study is only hypothetical in order to provide
arguments in preparing the safety case for certification purposes.

With this introduction, we will now proceed to explain the steps needed to
ascertain the sensitivity of the system to single (respectively multiple) faults.

254 J. Elmqvist, S. Nadjm-Tehrani, and M. Minea

4.1 General Setup

Consider a system safety property ϕ and a component with safety interface SIϕ.
As delivered by the component provider, SIϕ specifies an environment in which
the component is safe, assuming no faults; another environment in which the
component is resilient to a set of single faults, and a safe environment for each
considered pair of simultaneous faults. Consider proving M1 ‖ M2 ‖ ... ‖ Mn |= ϕ
in the presence of a fault Fj in M1. If a safety interface SIϕ of M1 is known, with
single = 〈F s

1 , Es
1〉, and Fj ∈ F s

1 , it suffices to show that M2 ‖ . . . ‖ Mn ≤ Es
1 .

However, composing all modules is against the idea of modular verification.
This can be overcome using circular assume-guarantee rules [3], for which we
first derive an n-module version. The rule requires that every module in its envi-
ronment (an abstraction of the other modules) refines each other environment.
We can then infer that the system refines the composition of the environments
without paying the price of an expensive overall composition, and without having
to redo the entire analysis each time a component changes.

Lemma 1. Let Mj and Ej, 1 ≤ j ≤ n be modules and environments such that
the compositions I = M1 ‖ . . . ‖ Mn and E = E1 ‖̂ . . . ‖̂En exist and V E

j ⊆ V I
obs.

Then, if ∀i∀j Mj ‖ Ej ≤ Ek we have M1 ‖ . . . ‖ Mn ≤ E1 ‖̂ . . . ‖̂En.

In concise rule form:
∀j∀k Mj ‖ Ej ≤ Ek

M1 ‖ . . . ‖ Mn ≤ E1 ‖̂ . . . ‖̂En

The proof follows that of Proposition 5 in [3], showing inductively that every
step of the implementation I can be extended to a step of the specification E.
Requiring nonblocking composition guarantees soundness despite circularity.

To reason compositionally about safety, we add n premises stating that each
module in its given environment satisfies the safety property: ∀i Mi ‖ Ei |= ϕ.
Together with the premises above, we can then prove safety for the composition:

Proposition 5. If Mj and Ej, 1 ≤ j ≤ n satisfy the conditions of Lemma 1 and
in addition Mj ‖ Ej |= ϕ for 1 ≤ j ≤ n then we have M1 ‖ M2 ‖ . . . ‖ Mn |= ϕ.

In concise form:
∀j Mj ‖ Ej |= ϕ ∀j∀k Mj ‖ Ej ≤ Ek

M1 ‖ M2 ‖ . . . ‖ Mn |= ϕ

Proof. Composing Mj ‖ Ej |= ϕ for j = 1...n we get I ‖̂E |= ϕ. By Lemma 1,
M1 ‖ . . . ‖ Mn ≤ E1 ‖̂ . . . ‖̂En, or I ≤ E. Thus I ‖̂ I |= ϕ or I |= ϕ.

This rule provides a generic assume-guarantee framework, independent of
faults. We need to discharge n2 premises to prove the global property ϕ, but each
of those involves only one module, and at most two environment abstractions,
assumed to be much smaller than the global composition. To use the rule, we
need to find appropriate environments Ei, and to apply it to system safety,
the environments must make the premises hold even with the analyzed fault(s)
occurring. We derive these environments from the component safety interfaces.

Safety Interfaces for Component-Based Systems 255

4.2 Single Faults

We assume that single faults affect only one component. Using the environments
Eϕ and Es, we check safety compositionally showing the premises of Prop. 5:

– a module in a faulty environment still provides an environment that guar-
antees the safety of each other module in absence of another fault

– a module in a non-faulty environment provides for each other module the
environment of the SI which makes it resilient to single faults.

Thus, we need to show premises (a) Mj ‖ F ◦ Es
j ≤ Eϕ

k and (b) Mk ‖ Eϕ
k ≤ Es

j ,
ranging over modules Mj with potential faults F , and non-faulty modules Mk.
If the interface provides the weakest environment Eϕ

w, the fault-specific premises
(a) can be jointly replaced by Mj ‖ Eϕ

j ≤ Eϕ
k , with fewer obligations to discharge.

4.3 Multiple Faults

Next we study whether two faults Fa and Fb appearing in different components
can, together, violate system safety. In Proposition 5 we use different environ-
ments for each component, depending on how they are affected by faults:

– for a module Mi affected by both faults, we check whether the double part
of the safety interface contains a tuple 〈〈Fa, Fb〉, Eab

i 〉, and use environment
Eab

i .
– for a module Mj with only one fault Fa, we use environment Ea = ∀vaEϕ

j .
– for a module Mk not affected by faults, we use the environment Eϕ

k .

Here, we have more fault-specific premises, but since environments for double
faults are more restrictive, some premises can subsume or be subsumed by those
for single faults. Thus, Mi ‖ Eab

i ≤ Eϕ
k follows from Mi ‖ Ea

i ≤ Eϕ
k , and checking

Mk ‖ Eϕ
k ≤ Eab

i subsumes checking for single faults Fa or Fb.

5 Application: JAS Leakage Detection Subsystem

As a proof of concept we have applied our method to the leakage detection sub-
system of the hydraulic system of the JAS 39 Gripen multi-role aircraft, obtained
from the Aerospace division of SAAB AB [15]. Both the original system model
and our component-based version are described in Esterel [5], a synchronous
language whose compiler ensures the nonblocking property upon composition.

5.1 Functionality and Safety

The system’s purpose is to detect and stop potential leakages in two hydraulic
systems (HS1 and HS2) that provide certain moving parts of the aircraft with
mechanical power. Leakages in the hydraulic system could in the worst case lead
to such a low hydraulic pressure that the aircraft becomes uncontrollable. To
avoid this, four shut-off valves protect some of the branching oil pipes to ensure

256 J. Elmqvist, S. Nadjm-Tehrani, and M. Minea

that at least the other branches keep pressure and supply the moving parts with
power if a leakage is detected. However, closing more than one shut-off valve at
the same time could result in locking the flight control surfaces and the landing
gear which could have disastrous effects. Thus, overall aircraft safety depends
on the property ϕ: no more than one valve should be closed at the same time.

5.2 Architectural View

The electronic part of the leakage detection subsystem consists of three electronic
components (H-ECU, PLD1 and PLD2), four valves and two sets of sensors (see
Figure 2). The H-ECU continually reads the oil reservoir levels of the two hydraulic
systems, determines if there is a leakage, and if so, initialises a shut-off sequence
of the valves. To ensure that the overall property is satisfied, two programmable
logic devices, PLD1 and PLD2, continually read the status of the valves and send
signals to them as well. If the readings indicate that more than two valves will close,
PLD1 and PLD2 will disallow further closing of any valves. Thus, PLD1 and PLD2
increase the fault tolerance of the shut-off subsystem implemented in the H-ECU.

Each valve is controlled by two electrical signals, one signal on the high side
from the PLD2 and one on the low side from the H-ECU. Both of these signals
need to be present in order for the valve to close. In this study, we only consider
the three components H-ECU, PLD1 and PLD2. Thus, due to the functionality
of the valves, the property ϕ can be replaced by ϕ′: no more than one valve
should receive signals on both the high side and the low side at the same time.

Fig. 2. The hydraulic leakage detection system

5.3 Analysis of Fault Tolerance

Modules: PLD1, PLD2 and HECU are represented as synchronous modules.
Fault modes: A set of fault modes FPLD1, FPLD2 and FHECU for each component
has been identified. Every input to the components has been analysed and the
possible faults have been modelled as corresponding fault modes.
Safety interface generation: The least restrictive environments Eϕ

PLD1, Eϕ
PLD2,

Eϕ
HECU of the components were generated by the algorithm of Section 3.1 using

a SAT-based model checker (Prover plugin of the Esterel environment).

Safety Interfaces for Component-Based Systems 257

The least restrictive environment Eϕ
PLD1 of PLD1 that makes the system

satisfy ϕ′ leaves all the inputs to PLD1 unconstrained. By Prop. 2, PLD1 in the
environment Eϕ

PLD1 is also resilient to all faults in FPLD1. Analysis shows that
due to their fault-tolerant design, HECU and PLD2 satisfy the property ϕ′ with
no constraints on their environment whatsoever, i.e., Eϕ

PLD2 = Eϕ
HECU = True.

Since none of Eϕ
PLD1, E

ϕ
PLD2 and Eϕ

HECU constrain any of the input variables
of their corresponding component, these components are resilient to all single
faults. Hence, the single fault resilience set of each safety interface will contain
every fault mode in the corresponding fault mode set. The generated minimal
environments also show that the components are resilient to all double faults,
creating a safety interface that includes all pairs of faults in the double fault
resilience portion of the safety interface.

Single-component faults: After computing the safety interfaces for the three com-
ponents in the application (w.r.t. single and double faults), the single component
fault analysis becomes trivial. No single or double fault of a single component
will cause a threat to system-level safety, since all faults are included in the
single fault resilience portion and all pairs of faults are included in the double
fault resilience portion of the safety interface.

Multiple-component faults: By checking ∀j Mi ‖ Fk ◦ Ei ≤ Ej for all module-
fault pairs (Mi, Fk) where Mi ∈ {PLD1, PLD2,HECU} and Fk ∈ FPLD1 ∪
FPLD2 ∪ FHECU we could conclude that no double fault on input signals would
make a threat to system-level safety.

5.4 Results

By generating safety interfaces as described in Section 3 and using the compo-
sitional techniques of Section 4 on the aerospace application we concluded that:

– All components in the system are resilient to single faults with respect to
the system level safety property ϕ′.

– All components in the system are resilient to double input value faults with
respect to the system level safety property ϕ′.

– No pair of faults in the system are a threat to system level safety.
– By analysing the components individually and generating the safety inter-

faces using Propositions 2-4, we were able to perform the fault tolerance
analysis without composing the whole system.

6 Conclusions

This paper extends component-based development, which has so far focused
on efficient system development, to efficient analysis of safety. Certification of
safety-critical systems includes providing evidence that a system satisfies certain
properties even in presence of undesired faults. This process is especially costly

258 J. Elmqvist, S. Nadjm-Tehrani, and M. Minea

since it has to be repeated for every component change in a system with a long
life cycle. We have provided formal models and methods to support this process
while hopefully reducing the burden of proof on the system integrator.

Any system will break if there are sufficient numbers of faults in its com-
ponents at run-time, either due to environment effects or due to inconsistencies
in designing interfaces. Safety analyses for industrial products typically assume
a number of independent faults and consider the effects of single and poten-
tially double faults. Triple and higher number of faults are typically shown to
be unlikely and not studied routinely. Our component interfaces capture what
an integrator can assume about the resilience that a component offers with re-
spect to single and double faults. The model could be extended to multiple faults
(triple and more) but then the combinatoric complexity would hamper the auto-
matic support for formal analysis. Already with this granularity, we believe that
there are enough gains in efficiency for the analysis performed at system level.

This paper uses a general fault model that covers arbitrary value changes at
component inputs. While this model is a powerful, for some cases it may be too
general and modelling specific faulty behaviour may improve analysis efficiency.
The use of reactive modules as generic base allows for more specific models in
future studies, such as handling transient faults with given behaviours.

The entire approach has so far had a qualitative nature. Many safety-critical
systems have to estimate a quantitative (probabilistic) measure of reliance on
a particular analysis. The study of the extensions of this model to quantitative
analyses is a topic for future work.

We have assumed that the misbehaviour of a component’s environment can
be captured by a discrete model (based on value domains with finite range). An
extension could consider more specific fault modes arising from interactions with
a physical environment given a continuous model. Also common mode failures
were excluded at this stage. Another future direction is efficient generation of
environment models. The naive approach presented here can be used as a proof
of concept and can obviously be improved by more advanced techniques.

Acknowledgements. This work was supported by the Swedish strategic re-
search foundation project (SSF), and the national aerospace research program
NFFP. Many thanks are due to our industrial partners from Saab AB for nu-
merous discussions.

References

1. M. Abadi and L. Lamport. Composing specifications. ACM Transactions on Pro-
gramming Languages and Systems, 15(1):73–132, 1993.

2. O. Åkerlund, S. Nadjm-Tehrani, and G. St̊almarck. Integration of formal methods
into system safety and reliability analysis. In Proceedings of 17th International
Systems Safety Conference, pp. 326–336, 1999.

3. R. Alur and T. A. Henzinger. Reactive modules. In Proc. 11th Symposium on
Logic in Computer Science, pp. 207–218. IEEE Computer Society, 1996.

4. U. Aßman. Invasive Software Composition. Springer Verlag, 2003.

Safety Interfaces for Component-Based Systems 259

5. G. Berry. The Esterel v5 Language Primer. CMA, Sophia Antipolis, 2000.
6. A. Bondavalli and L. Simoncini. Failures classification with respect to detection. In

Proc. of 2nd IEEE Workshop on Future Trends in Distributed Computing Systems,
pp. 47–53. IEEE Computer Society, 1990.

7. M. Bozzano and et al. ESACS: an integrated methodology for design and safety
analysis of complex systems. In ESREL 2003, pp. 237–245. Balkema, June 2003.

8. A. Burns and A. J. Wellings. HRT-HOOD: a structured design method for hard
real-time systems. Real-Time Systems, 6(1):73–114, 1994.

9. I. Crnkovic, J. Stafford, H. Schmidt, and K. Wallnau, editors. Proc. of 7th Int. Sym-
posium on Component-Based Software Engineering, LNCS 3054. Springer, 2004.

10. F. S. de Boer, M. M. Bonsangue, S. Graf, and W.-P. de Roever, editors. 3rd Int.
Symp. on Formal Methods for Components and Objects, LNCS. Springer, 2004.

11. J. Elmqvist and S. Nadjm-Tehrani. Intents and upgrades in component-based
high-assurance systems. In Model-driven Software Development. Springer, 2005.

12. P. Fenelon, J. A. McDermid, M. Nicolson, and D. J. Pumfrey. Towards integrated
safety analysis and design. SIGAPP Applied Computing Review, 2(1):21–32, 1994.

13. L. Grunske, B. Kaiser, and R. H. Ruessner. Specification and evaluation of safety
properties in a component-based software engineering process. In Embedded system
development with components. Springer Verlag, 2005. to appear.

14. N. Halbwachs, F. Lagnier, and P. Raymond. Synchronous observers and the veri-
fication of reactive systems. In Proc. AMAST’93, pp. 83–96. Springer, 1994.

15. J. Hammarberg and S. Nadjm-Tehrani. Formal verification of fault tolerance in
safety-critical configurable modules. International Journal of Software Tools for
Technology Transfer, Online First Issue, Dec. 14, 2004. Springer Verlag.

16. E. Henley and H. Kumamoto. Reliability Engineering and Risk Assessment. Pren-
tice Hall, 1981.

17. T. A. Henzinger, S. Qadeer, S. K. Rajamani, and S. Taşiran. An assume-guarantee
rule for checking simulation. In Proc. 2nd Int. Conf. FMCAD, pp. 421–432, 1998.

18. C. B. Jones. Development Methods for Computer Programs Including a Notion of
Interference. PhD thesis, Oxford University, 1981.

19. J. Jürjens. Developing safety-critical systems with UML. In Proc. 6th Int. Conf.
UML 2003, LNCS 2863, pp. 360–372. Springer, 2003.

20. J. H. Lala and R. E. Harper. Architectural principles for safety-critical real-time
applications. Proc. of the IEEE, 82(1):25–40, Jan. 1994.

21. H. C. Li, S. Krishnamurthi, and K. Fisler. Interfaces for modular feature verifi-
cation. In Proc. of the 17th IEEE Int. Conf. on Automated Software Engineering,
pp. 195–204. IEEE Computer Society, 2002.

22. Z. Manna and A. Pnueli. The temporal logic of reactive and concurrent systems:
Specification. Springer-Verlag, 1992.

23. J. Misra and K. M. Chandy. Proofs of networks of processes. IEEE Transactions
on Software Engineering, 7(4):417–426, 1981.

24. Y. Papadopoulos, J. A. McDermid, R. Sasse, and G. Heiner. Analysis and synthesis
of the behaviour of complex programmable electronic systems in conditions of
failure. Reliability Engineering and System Safety, 71(3):229–247, 2001.

25. D. J. Pumfrey. The Principled Design of Computer System Safety Analyses. PhD
thesis, Department of Computer Science, University of York, 2000.

26. A. Rauzy. Mode automata and their compilation into fault trees. Reliability Engi-
neering and System Safety, 78:1–12, 2002.

27. J. A. Stankovic. Vest - a toolset for constructing and analyzing component based
embedded systems. In Proc. EMSOFT’01, LNCS 2211, pp. 390–402. Springer, 2001.

260 J. Elmqvist, S. Nadjm-Tehrani, and M. Minea

28. D. B. Stewart, R. A. Volpe, and P. K. Khosla. Design of dynamically reconfigurable
real-time software using port-based objects. IEEE Transactions on Software En-
gineering, 23(12):759–776, 1997.

29. E. A. Strunk and J. C. Knight. Assured reconfiguration of embedded real-time
software. In Proc. International Conference on Dependable Systems and Networks,
pp. 367–376. IEEE Computer Society, 2004.

30. C. Szyperski. Component Software: Beyond Object-Oriented Programming.
Addison-Wesley, 2nd edition, 2002.

31. A. Tesanovic, S. Nadjm-Tehrani, and J. Hansson. Modular verification of reconfig-
urable components. In Embedded System Development with Components. Springer,
2005. to appear.

A Safety-Related PES
for Task-Oriented Real-Time Execution

Without Asynchronous Interrupts

Martin Skambraks

Faculty of Electrical and Computer Engineering,
Fernuniversität, 58084 Hagen, Germany
martin.skambraks@fernuni-hagen.de

Abstract. The architectural concept of a safety-related programmable
electronic system featuring task-oriented real-time execution is presented.
Itsmost essential characteristics are task executionwithout the use of asyn-
chronous interrupts, scheduling in direct reference to Universal Time Co-
ordinated, and an integrative hardware approach to detection and process-
ing of failures, forward recovery and non-intrusive monitoring. The archi-
tecture is based on physical separation of task execution and task adminis-
tration, which is realised in form of a digital logic circuit. Time is quantised
into Execution Intervals, and tasks are partitioned into Execution Blocks
matching these intervals. This concept lowers the complexity of both hard-
ware architecture and temporal behaviour and, thus, conformsparticularly
well with the safety standard IEC 61508.

1 Introduction

Employing Programmable Electronic Systems (PESs) in control applications in
which failures can endanger humans or the environment has become quite com-
mon in the last two decades. Nevertheless, safety-licensing of these combined
software and hardware systems is still problematic. The problems arise less due
to inevitable spontaneous physical failures that must be taken into account, as
rather from the complexity of such systems, which causes an enormous effort for
verification.

The safety standard IEC 61508 limits the complexity indirectly by restricting
the use of some conventional processing methods. As an example, its design
guidelines only permit limited use of interrupts and pointers in software for the
two highest safety integrity levels SIL 3 and SIL 4 (Part 3, Table B.1). For these
safety classes, the standard also states that the use of formal methods for software
verification as well as the avoidance of dynamic objects and variables is ‘Highly
Recommended’ (Part 3, Tables A.1 and B.1). The latter term denotes that ‘if
this technique . . . is not used then the rationale behind not using it should be
detailed during safety planning and agreed with the assessor’. These guidelines,
which at first glance sound incongruously fuzzy, denote indirectly that design
simplicity is the key to safety.

R. Winther, B.A. Gran, and G. Dahll (Eds.): SAFECOMP 2005, LNCS 3688, pp. 261–274, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

262 M. Skambraks

The programable systems that are nowadays employed in safety-critical ap-
plications follow either the approach of Periodical Operation or of Task Orienta-
tion. The most common representatives of the first category are Programmable
Logic Controllers (PLCs). They suit the demands for safety-licensing best be-
cause of their inherently simple temporal behaviour. Unfortunately, their field
of application is limited to simple control tasks. Task-oriented systems, on the
contrary, have a less restricted field of application and a more problem-oriented
programming style, but they require far more effort for safety-licensing. But even
more significantly, conventional task-based systems use interrupts to control the
program flow. This clearly conflicts with the requirements of IEC 61508 for the
two highest safety integrity levels.

With the intention to combine the advantages of both the periodic and the
task-oriented approach, a novel architectural concept for a real-time PES has
been developed. The concept builds on strict separation of task administration,
which is realised in form of a digital logic circuit, from the application proces-
sor, which executes the application specific software in discrete intervals. This
operating principle renders the use of asynchronous interrupts superfluous, and
increases the conformity with IEC 61508. As a result, not only the temporal be-
haviour of the total system, but also the architecture of the embedded processor
are simplified. The proposed system incorporates a unified approach for error
detection, forward recovery, non-intrusive monitoring and recording of process
activities. In comparison to conventional systems, which typically incorporate a
combination of several techniques to realise these safety-related functions, this
results in a remarkable decrease of system complexity. Instead of processing re-
dundant information inside, the PES is designed to be redundantly configured
itself. Non-intrusive monitoring combined with forward recovery of error-affected
instances guarantees permanent availability of a redundant configuration.

The main part of this paper is structured as follows. Section 2 categorises con-
ventional PESs into two classes, and discusses their benefits and drawbacks with
regard to safety aspects. The task-processing strategy without asynchronous
interrupts and its advantages regarding safety-licensing are described in the
third section. The fourth one covers feasibility aspects of task-based applica-
tion software. Section 5 explains the structure and the operating principle of the
hardware-implemented task administration. This is followed by some remarks
regarding the integration into a holistic safety concept. A short summary at the
end recapitulates the most essential aspects, mentions the current state of our
work, and states open issues.

2 Categorisation of Existing Systems

The PESs currently employed in safety-critical applications can be categorised
into periodically operating and task-oriented ones, depending on the operating
policy they follow. For industrial automation, systems that follow a mixture of
both operating principles are available, but this is unfavourable for safety-related
technology.

A Safety-Related PES for Task-Oriented Real-Time Execution 263

Periodically Operating PESs. This PES class executes application specific
programs in processing cycles of constant, fixed duration. It processes the pro-
gram code always completely within each cycle. The strictly cyclic operating
principle facilitates condition-controlled branching merely on a restricted scale;
completely process-controlled program flow is not realisable [1,2]. This operating
policy does not only limit the field of application to simple control tasks, it also
results in a not problem-oriented programming style. Typical representatives of
this category are the PLCs, which are mostly programmed following the function
block paradigm of IEC 61131-3.

All tasks must be implemented in a way that complies with a ‘global’ cycle
time; individual timing constraints are only considered at second instance. Ex-
tensive algorithms either cause long cycle periods, or they must be distributed
over consecutive cycles. The former increases the system response time, the lat-
ter the complexity of application programs. In addition to that, handling several
tasks with extremely different or varying response times is problematic. The pro-
gram code is typically not processed in direct relation to a global time base, such
as Universal Time Co-ordinated (UTC). Hence, additional effort is necessary for
synchronisation with external systems and to record all system activities relative
to UTC, which is fundamental to enable investigation of cause-and-effect chains
in case of nearly simultaneous outages of separate systems.

Nevertheless, the most essential advantage of this PES category is the re-
markably low complexity of its hardware architecture and its temporal be-
haviour. This does not only minimise the effort for safety-licensing, but also
makes, in principle, this PES class suitable for applications of the highest safety
class (SIL 4). However, the systems currently available off-the-shelf are only
certified up to SIL 3, e. g., SIMATIC S7-414H (www.siemens.com).

Task-Oriented PESs. This PES class uses interrupts to control software ex-
ecution, which allows the program flows to be arbitrarily controlled by the pro-
cesses, and which enables asynchronous processing of several tasks. On the one
hand, the asynchronous operating principle increases system complexity, since
special mechanisms for task synchronisation like, e. g., semaphores, are neces-
sary. On the other hand, the operating style makes this PES class more flexible
and suitable for extensive control applications [3]. Thus, although asynchronous,
task-based programming is more problem-oriented than cyclically processed pro-
gram code, this PES category causes more effort for safety-licensing. This is due
to the high complexity of the hardware, the need for a real-time operating system
(RTOS), and their interactions with the application software.

A hardware part of significant complexity is the interrupt logic of the proces-
sor. Interrupt handling usually involves a (stack) pointer and dynamic memory
usage. Thus, the use of interrupts actually contradicts IEC 61508, which restricts
the use of pointers and dynamic objects in highly safety-critical applications.

The complexity of the RTOS usually arises from performance reasons. In or-
der to keep the response time of real-time systems short, most RTOSs are sub-
divided into several layers [4]. The lowest layer serves time-critical functions of
low computational extent; more extensive functionalities are processed on higher

264 M. Skambraks

layers. Minimising the computational load caused by the RTOS kernel functions
is another way to keep response times short. That is why mostly priority-based
scheduling policies are employed, although time-based strategies, which cause
higher computational load, suit the demands of real-time systems better. Pro-
vided time-based scheduling is carried out at all, the time representation usually
does not comply with the UTC standard. Thus, recording all system activities
in reference to UTC requires conversion of system time to UTC. The necessity
of such conversions as well as the layered structure mentioned above increase the
complexity of RTOSs considerably.

The complexity caused by the interaction of processor, RTOS and appli-
cation software results mainly from the dependence of execution times on the
process. For this reason, proving temporal feasibility of an application software is
a fundamental part of its development. Not only the use of mechanisms for task
synchronisation causes difficulties for feasibility analysis, but also the fact that
each interrupt induces a context-switch of the processor which, in turn, influences
the response times of all activated tasks. The distinction between interruptible
and non-interruptible program parts further aggravates the situation.

Although the use of interrupts does not perfectly comply with IEC 61508 for
the two highest safety integrity levels, there are task-based real-time operating
systems available that are certified for SIL 3, e. g., OSE RTOS (ww.ose.com).

3 Task Execution Without Asynchronous Interrupts

The concept introduced here combines the advantages of both PES categories
discussed above. This is realised by physical separation of task execution and
task administration. A Task Processing Unit (TPU) executes application spe-
cific program code. Due to the beneficial characteristics in terms of safety and
security, it contains a processor with the Harvard architecture. The Task Ad-
ministration Unit (TAU) is responsible for task state transitions and processor
scheduling. For the latter the policy Earliest-Deadline-First (EDF) is used. Sev-
eral proofs exist that this strategy always leads to feasible schedules, provided
timely execution is possible at all, e. g., [5,6].

Time is quantised into discrete Execution Intervals, and tasks are partitioned
into a number of Execution Blocks each. The Execution Intervals have a fixed
duration, and are defined for the physically separated TAU and TPU which
operate cyclically and in synchrony. They have the following characteristics.

– Each Execution Block is executable within a single Execution Interval.
– The execution of a block is not pre-emptable.
– Data exchange between blocks is only possible via the TPU memory; the

content of the processor registers is lost at the end of each interval.
– The Execution Blocks of a task are indexed for identification.
– The Execution Blocks of a task do not need to be executed in consecutive

order. For each task, the TAU stores a parameter called NextBlock in the
Task List, which identifies the subsequent Execution Block.

A Safety-Related PES for Task-Oriented Real-Time Execution 265

Task
Administration
Unit
(TAU)

Task
Processing

Unit
(TPU)

Input

Begin

End

Output

Storing block ID in task list

Determination of the execution block that
needs to be executed in the next interval.

Begin

Input

Output

Synchronous begin of Execution Intervals

IDs of Task and Execution Block to process

Either task completion notification or
ID of tasks´ next Execution Block

Task-Administration:
- Control of task-states (reading event inputs, checking

activation characteristics, inducing state transitions)
- Computation of deadlines
- Determination of the two tasks with the most urgent

deadlines

Task-Execution:
- Processing the Execution Block identified by the IDs

submitted
- In case this block does not complete this tasks’

execution, the block that needs to be executed next
is determined

Fig. 1. Illustration of the operating principle without interrupts

The operating principle can be roughly described as follows: At the beginning
of each Execution Interval, the TAU outputs the ID of Block to Execute, which
identifies the next Execution Block of the task that must be executed according
to the scheduling algorithm. The ID corresponds to the task’s NextBlock pa-
rameter stored in the task list. After the TPU has read this ID, it processes the
associated Execution Block. When the APU completes the block at the end of
the Execution Interval, it outputs the ID of Next Block identifying the task’s
Execution Block that needs to be executed next. The TAU reads the ID and
stores it in the task list as new NextBlock parameter. The flow chart in Fig. 1
illustrates this mode of operation in more detail.

If the executed block was a task’s last one, i. e., if a task has been executed
completely, the APU outputs the block ID ‘Nil’. This completion is taken into
account when the TAU determines the ID of Block to Execute for the next Exe-
cution Interval. That is why the TAU – while the TPU processes an Execution
Block – does not only determine the task with the earliest, but also the task with
the earliest-but-one deadline. This enables the TAU to immediately output the
NextBlock identifier of the task with the next-but-one deadline, in case the task
with the next deadline corresponds to the task just been processed and just been
completed by the APU. The actual state transfer that causes the completed task
to be no longer in the state Activated is carried out in the subsequent interval.

This operating principle renouncing the use of asynchronous interrupts makes
synchronisation mechanisms such as semaphores superfluous, since any task has
non-interrupted exclusive access to the processor during an Execution Interval.
Tasks can communicate with each other via the data memory without the dan-
ger of interruptions while writing messages. Using variables stored in the data
memory, mutually exclusive access to peripheral components can be realised by
simple means. Alternating access of several tasks can be realised in a similar
way, it only requires the capability to induce task suspension and continuation
by program. The absence of special synchronisation mechanisms results in fur-
ther design simplification.

266 M. Skambraks

Typically, the parts of a processor supporting interrupts are the most com-
plex ones, and render formal verification to be either unacceptably expensive
or even impossible. Thus, task execution without asynchronous interrupts also
minimises the complexity of the TPU processor, as no interrupt logic is neces-
sary. This simplification eases proving correctness with formal means. Moreover,
since IEC 61508 restricts the use of pointers, dynamic objects and interrupts
in highly safety-critical applications, the proposed PES concept complies better
with the safety standard than conventional task-oriented systems.

In summary, this concept of task execution without the necessity of asyn-
chronous interrupts significantly simplifies the temporal behaviour as well as
the hardware structure, eases formal verification, and increases conformity with
IEC 61508 for systems of highest safety criticality (SIL 3/SIL 4). Of course,
the proposed operating principle requires special compilation of the application
software.

4 Schedulability Aspect

The proposed operating principle does not restrict the field of application as
the paradigm of periodical operation does. Without the use of asynchronous
interrupts, it features completely process-dependent program flows. As for any
task-based real-time system, this capability of arbitrary program flows necessi-
tates to check whether the application software can run in a timely fashion under
any circumstances.

Intended to ease this feasibility analysis, the proposed concept supports a
particularly simple task state model on the lowest possible level – the hardware
level. The model bases on three characteristics: Worst Case Execution Time tC ,
Maximum Response Time tB, and Minimum Activation Period tT . Following the
definitions in [7], these Execution Characteristics allow to specify the temporal
behaviour of any hybrid task set, consisting of both periodic and sporadic tasks.
Fig. 2 illustrates the model. It differs from other ones (cf., e. g., [8]) by the state
Suppressed.

The Minimum Activation Period equals the minimum duration between two
consecutive activations of the same task. Thus, this parameter limits the compu-
tational load indirectly. Only tasks in the state Known can be activated. In case

Time of activation:

‘Finish’ within time frame:

‘Release’ at time:

T

T ... T + t

T + t

Act

Act Act B

Act T

tC

TAct
t

tT

tB

Task
Activation

Task
Release

State-transition
under full control
of the TAU

State-transition in-
duced by the appli-
cation software that
is run on the TPU

Known

Activate

Activated Executing

R
elease Fi

ni
sh

Sup-
pressed

C
ontinue

S
uspend

Sus-
pended

Fig. 2. The applied task state model

A Safety-Related PES for Task-Oriented Real-Time Execution 267

a task is completely processed before the time frame TAct . . . TAct + tT elapses,
it is transferred to the state Suppressed. The transition back to the state Known
is carried out at TAct + tT , enabling further activations. The state Suspended is
provided for synchronisation purposes.

All transitions are under full control of the TAU, except the transitions Fin-
ish, Suspend and Continue, which are performed by the TAU, but induced by
the application software. A task automatically induces the state transition Fin-
ish when its execution completes. Since the application software is processed
in non-pre-emptable intervals, state transitions can occur at interval ends, only.
Thus, in case a task induces the state transition Suspend by its program, the
suspension will take place at the end of the interval. A task can only suspend
itself, but it can induce Continue transitions for all other tasks. In combina-
tion with the cyclic operating policy, this allows to enforce precedence relations
between tasks, which are necessary to realise, e. g., alternating access.

Since the task state model is supported by hardware, the activation of a task
is restricted to one instance at a time on the lowest possible level. This complies
perfectly well with the safety standard IEC 61508, which prohibits dynamic
instantiation of objects for applications of highest safety criticality.

Taking this behaviour into account, the hardware-supported Execution Char-
acteristics tC , tB and tT allow to formally prove the feasibility of application
software. Suitable feasibility conditions have already been developed and are dis-
cussed in various publications, e. g., [8,9,10,11]. A comprehensive presentation of
appropriate analysis methods can be found in [7].

5 Hardware-Implemented Real-Time Scheduler

In contrast to various other real-time systems, the PES concept introduced here
processes all internal actions in reference to UTC, which is the internationally
standardised sole legal time reference. Appropriate synchronisation signals are
available worldwide via, for instance, GPS, GLONASS and – in the future –
GNSS. The synchronisation to global time reduces the complexity of distributed
systems significantly, since the problems related to varying time bases are pre-
vented. Of course, deviations from UTC (e. g., due to temporary reception out-
ages) need to be taken into account.

The TAU follows the task scheduling concept of the Process and Experi-
ment Automation Realtime Language (PEARL), which was standardised in
DIN 66253-2. One of the interesting features of this language is its direct notion
of time [12]. This enables exact and problem-oriented specification of temporal
conditions to activate, terminate, suspend, continue or resume tasks [13]. A pe-
riodic task activation during a given time-frame is specified by

AT {clock-expression | [asynchronous-event-expression] + duration1}
EVERY duration2 DURING duration3 ACTIVATE task-name.

This is the most general form of a task activation schedule [8]. The hardware
implementation of the TAU inherently supports such activation plans. There-

268 M. Skambraks

fore, each task is assigned a set of parameters, which facilitates configuration
for various different activation conditions, e. g., at a predefined delay after the
occurrence of an asynchronous signal.

Most real-time systems follow the approach of rate-monotonic, fixed-priority
scheduling (cf., [14]). This ‘timeless’ scheduling policy is merely advantageous for
systems that do not provide explicit support for timing constraints, such as pe-
riods and deadlines [15]. Thus, rate-monotonic scheduling is actually inadequate
for safety-related systems, for which hard real-time constraints always must be
specified exactly. It potentially causes unnecessary task switches, since only the
current system state is taken into account to make resource assignments; the
instant of a task’s activation is neglected. The proposed PES implements the
EDF algorithm in hardware, rendering the differences between priority-based
and EDF scheduling to be irrelevant in terms of computing time. Thus, there is
no need for task priorities, and the time-based scheduling policy can be applied.

A perfect real-time operating system would permanently check the activation
conditions of all tasks, and uninterruptedly inform about the task to be executed
according to the scheduling policy. This demand for a continuous working pattern
leads to the objective of implementing the TAU in form of a digital logic cir-
cuit that processes the kernel algorithms for all tasks in parallel. Unfortunately,
considering the EDF algorithm and the fact, that a typical real-time application
consists of some 10 to 50 tasks, it is obvious that a completely parallel operating
logic circuit implementation of the TAU would require an unacceptably high
amount of logic gates.

For this reason, the hardware architecture of the TAU combines parallel and
sequential processing. The kernel algorithms are structured in a way as to al-
low for parallel processing of the operations related to a single task, whereas all
tasks are sequentially subjected to these operations. Fig. 3 illustrates this pro-
cessing pattern. It shows the main parts of the Task Administration Unit (TAU),
viz., Task Data Administration (TDA) and the unit for Activation Control and
Scheduling (ACS).

The TDA administrates a Task List, which contains a set of parameters
for each task such as its current state and its execution characteristics. The

: Latch for temporary
storage within
Execution Interval

[]

ID of Block to ExecuteUTC-Time

ID of tasks’ next Execution Block

Asynchronous Event Signals

Load
ACS
Input

Registers

Read
ACS
Output
Registers

TDA

ACS

Task List

[]

[]

[]

STA: 3-phase process for each task

RTOS algorithms implemented
as combinational logic circuit

Operations related to one task are executed in parallel;
the two most urgent tasks are determinedsequentially

Fig. 3. The STA consists of the TDA and the ACS. While they do the Sequential Task
Administration (STA), a 3-phase process is carried out once for each task.

A Safety-Related PES for Task-Oriented Real-Time Execution 269

task list has a static size, i. e., all tasks a certain application is consisting of
must be registered with the TAU at set-up time. Thus, in conformance with the
requirements of IEC 61508 for SIL 4 applications, dynamic instantiation of tasks
(resp. objects) is not supported. Instead, the activation characteristics of a task
can be modified.

The TDA co-operates closely with the ACS while sequentially processing all
tasks within each Execution Interval. During this Sequential Task Administration
(STA), the TDA initiates for each task a three-phase process:

1. First, the TDA accesses the Task List and transfers the task’s entire data
set to dedicated input registers of the ACS.

2. Then, the ACS processes the task data and outputs an updated data set.
This is done by combinational logic within one clock cycle.

3. During the last phase, the TDA transfers the updated task data from the
ACS back to the Task List.

This way, the ACS carries out the following operations in the course of the STA:

1. Checking the activation characteristics (e. g., checking time schedules or
asynchronous occurrences)

2. Supervising task state transitions
3. Computing deadlines
4. Generating updated task parameters
5. Identifying the task with the earliest deadline and the one next in line
6. Output of the ID of Block to Execute

The first four operations are separately executable for each task. Therefore, they
are performed in parallel by a combinational digital circuit. The fifth item re-
quires comparing the deadlines of all activated tasks. This is carried out sequen-
tially, while the IDs of the two most urgent tasks are temporarily stored within
the iterations of the 3-phase process. The ID of the Execution Block that needs
to be processed in the subsequent interval is output at the end of an Execution
Interval, after the TPU submitted an ID to the TAU.

Since the TDA and the ACS are implementable in form of a digital logic
circuit, extremely short response times are realisable without the use of a multi-
layered operating system structure and without minimising the computational
effort by applying a priority-based scheduling algorithm, as it is usually done
in conventional real-time systems. Therefore, the proposed hardware scheduling
concept has a significant lower complexity than a conventional task-oriented
real-time operating system with an equally short response time.

6 Integration into a Holistic Safety Concept

Hitherto, merely the avoidance of design faults through Design Simplicity has
been considered. In order to guarantee safe and reliable operation, a holistic
safety concept is necessary, which also takes spontaneous hardware failures into
account, but does not ruin simplicity. This is achieved by exchanging Serial Data
Streams via a particularly tightly integrated Communication Interface.

270 M. Skambraks

The Concept of Serial Data Streams. IEC 61508 recommends various tech-
niques to reduce the influence of hardware failures. Some of them are, e. g.,
redundant memory banks or multiple processors combined by majority voting.
However, most techniques take few failure sources into account, only, and a com-
bination of several techniques is necessary to cope with all possible failures. Thus,
a single approach covering all failure sources is desirable in order to minimise
system complexity.

That is why a rather exceptional but more integrative approach was taken
to reduce the influence of hardware failures. Instead of processing redundant in-
formation inside, the PES itself is designed to be redundantly configured. Each
PES instance outputs a Serial Data Stream (SDS) that provides full informa-
tion about internal processing. In a redundant configuration, these SDSs are
exchanged between PES instances to serve the following four safety functions.

Non-intrusive monitoring: Since the SDSs inform about the internal pro-
cessing, they enable non-intrusive monitoring by external devices.

Recording process activities: The SDSs can be utilised to externally record
the system behaviour for later program flow analysis.

Detecting processing errors: Each PES can detect processing errors by com-
paring its SDS with the SDSs of other PESs.

Forward recovery at runtime: In case a PES is affected by a transient hard-
ware fault, the SDSs of redundant PESs enable to copy the internal state
and to resume processing at runtime.

The SDS concept bases on the fact that the maximum amount of data changes
inside a PES is indirectly limited by the execution characteristics discussed in
Section 4. The SDS is organised in transfer cycles that match the Execution
Intervals. Within each cycle, the SDS transfers information about a fixed number
of internal data changes. This number sets the limit of data changes permitted.

Data changes can be categorised into TAU Data Changes (TAUDCs) and
TPU Data Changes (TPUDCs). The frequency of TPUDCs is limited by re-
stricting the amount of an Execution Block’s write accesses to a number that is
transferable via SDS within each transfer cycle. The number of TAUDCs depends
on the frequency of task state changes and modifications of the task parameters
(e. g., activation characteristics). This number is directly limited by the execu-
tion characteristics of all tasks. In contrast to the TPUDCs, the TAUDCs of
one Execution Interval are not necessarily transferable within one cycle. This
is because, in theory, it is possible that all tasks perform a state transition si-
multaneously. This would cause a huge amount of data changes inside the TAU
(e. g., storing the activation time of each task), and the capability to transfer
them within each Execution Interval would require an undesirably high band-
width. That is why an integer number is assigned to each TAU data word that
represents the Age of the stored value. By default, each Age parameter is set
to ‘0’. Any time a data word is modified, the associated Age integer is set to
the maximum representable value. If an Age value does not equal ‘0’ or ‘1’, it
is decremented by one at the beginning of every Execution Interval. Thus, the
lowest integer values (except ‘0’) identify the ‘oldest’ modified data words. By

A Safety-Related PES for Task-Oriented Real-Time Execution 271

restricting to the oldest data words, the amount of data that must be transferred
within each interval can be bounded.

The previous paragraph describes only how the transfer of data changes in-
side the TAU and the TPU is realised via SDS. In order to enable copying the
internal PES state completely by observing its SDS over a pre-defined period of
time, it is also necessary to transfer the data that were not modified recently
(e. g. RAM data words that were written a few minutes ago). A small exten-
sion of the concepts described above realises this complete state transfer. Fig. 4
illustrates the data transfer via SDS.

STA: Sequential Task Administration
D: Determination of next execution

STDT: Sequential TPU Data Transfer
TA: Transfer of Additional status

tExecution Interval

N
ex

tE
xe

cu
tio

n
In

te
rv

al

SDS content

TAU activity

TPU activity

STA

UTC synchronous
interval begin

D

TATPUDC Transfer

Processing of an execution block

TAUDC TransferSTDT

Fig. 4. Illustration of the data transfer via SDS

While the TAU performs the STA, the SDS transfers a subset of the TPU’s
RAM content. The entire RAM content is transferred within a number of con-
secutive Execution Intervals, and in synchrony with UTC. When the STA has
been finished, the TAUDCs are transferred. Therefore, the TAU inserts a subset
of its oldest data words in the SDS and sets the associated Age integers to ‘0’.
Complete transfer of the TAU data is achieved by changing the ‘Ages’ of all data
words at UTC-synchronous instants. After the TPU completes the current Ex-
ecution Block, the SDS transfers all its write accesses. Finally, some additional
status information like, e. g., the ID of Block to Execute is transferred via SDS.

By observing the SDSs of redundant PES instances, this technique does not
only allow to detect errors simply by majority voting, but also to copy the
internal state from one PES to another at runtime. Thus, in case a PES is affected
by a transient failure, it can resume its processing by evaluating the SDSs of the
PES instances that remain running. Realising this technique of Forward Recovery
at Runtime without affecting the minimum achievable response time was only
possible by implementing its algorithms – together with the TAU – as digital
logic circuit.

Obviously, the performance achievable with the proposed PES concept is
strongly limited by the data transfer bandwidth of the communication interface.
However, computational performance is not the major concern for safety-related
systems, and the high bandwidths of modern transfer technologies allow for a
performance more than sufficient for most safety-critical applications.

Communication Interface. For communication one interface is used which
does not only suit the needs to interconnect multiple PES instances of a redun-
dant configuration, but also supports data exchange with the process peripherals

272 M. Skambraks

(e. g., sensors, actuators). This results in low wiring expenses. The communica-
tion technique bases on the field bus ‘Interbus S’, because of its low hardware
requirements and inherent simplicity [16]. All system nodes, i. e., the redundant
PES instances as well as sensors and actuators, are connected to a ring, and
data are transferred from node to node as in a shift register. Like the SDS trans-
fer, the I/O data transfer is cyclic: Before a data word is accessible for further
processing, it passes all nodes within one Execution Interval.

Conventional ring-based communication techniques increase safety by using
both possible transfer directions. This approach cannot guarantee system avail-
ability in case of more than one ring interruption or device outage. That is why
the proposed PES follows a different approach, which is illustrated in Fig. 5.

physical
separation

Primary
Communication
Ring

Reserve
Communication
Ring

PCR:

RCR:

PES

2

PES

1

PES

3

Sensor
1

Sensor
2

Actuator
1

Actuator
2

PCR

RCR

Fig. 5. Illustration of the multi-ring connection scheme with three redundant PESs

Each node’s outgoing interface is connected via multiple, physically sepa-
rated communication rings to multiple recipients. The first communication ring
defines the ring order, the second communication ring directly connects nodes
which are ordered as next-but-one in the first ring, and so on. This ‘multi-ring’
technique allows scalable safety by adding further rings and, moreover, can even
be combined with the bi-directional method.

7 Conclusion

A novel architectural concept for safety-related PESs was designed following
the policy ‘Progress is the road from the primitive via the complicated to the
simple’, stated by Biedenkopf in 1994 [17]. Both the PES’s architecture as well
as its operating principle are of remarkable simplicity, which eases verification
and – even more importantly – lowers the cost for safety-licensing.

A Safety-Related PES for Task-Oriented Real-Time Execution 273

Simplicity of design is achieved by physically separating task administration
and task execution. The application software is organised in tasks, but – contrary
to conventional task-oriented systems – the tasks are subdivided into a number
of blocks which are executed in discrete intervals of constant duration. This
operating principle renders the use of asynchronous interrupts superfluous. As
a result, not only the hardware architecture is simplified, but also the temporal
behaviour of the total system. Task administration is carried out by a special-
purpose logic circuit. This enables task scheduling in direct relation to Universal
Time Co-ordinated. Moreover, the hardware-implemented task administration
ensures short response times without utilising a complex multi-layered structure
nor minimising the computational effort by applying a primitive and inadequate
priority-based scheduling algorithm. Instead, tasks are scheduled according to
the time-based Earliest-Deadline-First policy.

Many techniques were developed in the past to increase the reliability and
availability of programmable electronic systems. Unfortunately, most of them
cover a small amount of failure sources, only, and various techniques need to
be combined to achieve safety, causing design complexity to increase signifi-
cantly. The proposed system integrates error detection, forward recovery and
non-intrusive monitoring in a unified way. This functional unification, which
bases on exchanging Serial Data Streams between redundant PES instances,
results in a hardware design of minimum complexity and especially low cost.
Moreover, it combines the capability of forward recovery at runtime with an
remarkably low achievable minimum response time.

The proposed PES concept is completed by an inherently simple communica-
tion strategy which serves data exchange between redundant PES instances and
with the process peripherals. A ‘multi-ring’ technique combines high, scalable
reliability and low wiring expenses with an especially simple structure. Like the
application processing, communication is performed in discrete intervals, too.

All system components operate cyclically and in synchrony, leading to a sim-
ple and easy-to-model temporal behaviour of the entire system. As a result,
formal verification of application-specific software is simplified. In comparison
to conventional periodically operating PESs, the proposed PES’s field of appli-
cation is larger, since it is capable of task-based software execution with process-
dependent program flows.

So far, a VHDL description has been prepared that realises the proposed PES
concept as a System-on-Chip. The TPU is based on a soft-processor version of
the well-known processor Intel 8051, which is provided by Oregano Systems. The
VHDL design has extensively been tested by simulation and, then, implemented
in an FPGA. A software that automatically divides the task’s program code into
Execution Blocks has also been created. Unfortunately, the splitting of program
code into blocks could not be discussed in this document due to page limitations.
Currently, we investigate performance aspects of subdividing software into Exe-
cution Blocks to find the optimum length for Execution Intervals.

Throughout our work, we considered ‘Design for simplicity’ as a key factor to
achieve safety. The question remaining open is: What characteristics make a de-

274 M. Skambraks

sign simple? Obviously, design simplicity conflicts with computing performance
and resource efficiency, just as these two design constraints conflict with each
other. But in times in which ’dealing with complexity of large systems’ is con-
sidered as a major problem, simplicity is of equal importance. Thus, our future
work focuses on the questions: What general guidelines can be used to simplify
the design of a safety-related real-time system? How do they affect the operating
principle, the computing performance, and the resource efficiency? What mea-
sures should be taken into account in order to find an optimum balance between
these design constraints?

This article covered only the fundamental concepts of the proposed PES
architecture; various aspects could not be discussed due to page limitations. The
interested reader is invited to contact the author for further information.

References

1. Bolton, W.: Programmable Logic Controllers. Elsevier Books, Oxford (2003)
2. Rabiee, M.: Programmable Logic Controllers: Hardware and Programming. In-

gram, New Orleans (2002)
3. Shaw, A.C.: Real-Time Systems and Software. John Wiley, New York (2001)
4. VDI: Richtlinie VDI/VDE 3554: Funktionelle Beschreibung von Prozessrechner-

Betriebssystemen. Beuth Verlag, Berlin-Cologne (1982)
5. Dertouzos, M.L.: Control robotics: the procedural control of physical processes.

Information Processing 74 (1974)
6. Henn, R.: Feasible processor allocation in a hard-real-time environment. Real-Time

Systems 1 (1989) 77 – 93
7. Stankovic, J.A., Spuri, M., Ramamritham, K., Buttazzo, G.C.: Deadline Scheduling

for Real-Time Sytems, EDF and Related Algorithms. Kluwer Academic Publishers,
Boston (1998)

8. Halang, W.A., Stoyenko, A.D.: Constructing Predictable Real Time Systems.
Kluwer Academic Publishers, Boston (1991)

9. Spuri, M.: Analysis of deadline scheduled real-time systems. In: Rapport the
Recherche RR-2873, Le Chesnay Cedex, France, INRIA (1996)

10. Buttazzo, G.C.: Hard Real Time Systems, Predictable Scheduling Algorithms and
Applications. Kluwer Academic Publishers, Boston (2002)

11. Sha, L., Abdelzaher, T., Årzén, K.E., Cervin, A., Baker, T., Burns, A., Buttazzo,
G., Caccamo, M., Lehoczky, J., Mok, A.K.: Real-time scheduling theory: A histor-
ical perspective. Real-Time Systems 28 (2004) 101–155

12. Hamuda, G., Tsai, G.: Formal specification of a real-time operating systems’s
component. In: Real-Time Programming 2003, WRTP Conference Proceedings,
Elsevier Science Ltd (2003)

13. GI: PEARL90 Language Report. 2.2. edn. Technical Commitee 4.4.2 (Realtime
programming, PEARL), Bonn (1998)

14. Burns, A., Wellings, A.: Real-Time Systems and Programming Languages. 3rd
edn. Pearson Addison Wesley, Harlow, England (2001)

15. Buttazzo, G.C.: Rate monotonic vs. edf: Judgement day. Real-Time Systems 29
(2005) 5–26

16. Baginski, A., Müller, M.: Interbus. Hüthig Verlag, Heidelberg (1998)
17. Biedenkopf, K.: Komplexität und kompliziertheit (complexity and complicateness).

Informatik Spektrum 17 (1994) 82–86

R. Winther, B.A. Gran, and G. Dahll (Eds.): SAFECOMP 2005, LNCS 3688, pp. 275–288, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Are High-Level Languages Suitable for Robust
Telecoms Software?�

276 J.H. Nyström, P.W. Trinder, and D.J. King

Are High-Level Languages Suitable for Robust Telecoms Software? 277

The DCC Model

278 J.H. Nyström, P.W. Trinder, and D.J. King

Test Management System Management

Service Port

Traffic Generator

Worker Worker

Leader

Processing Element

Controll

Communication

Are High-Level Languages Suitable for Robust Telecoms Software? 279

 0

 500

 1000

 1500

 2000

kill kill kill kill kill kill kill kill kill

Is
su

ed
 p

er
 1

5s

One worker killed every 5 minutes

Calls
Rejected Calls

Acknowledged Calls

 0

 500

 1000

 1500

 2000

kill kill kill kill kill leader kill kill leader kill kill

Is
su

ed
 p

er
 1

5s

One worker killed every 5 minutes

Calls
Acknowledged Calls

Rejected Calls

280 J.H. Nyström, P.W. Trinder, and D.J. King

 0

 500

 1000

 1500

 2000

kill 1 node kill 2 nodes kill 3 nodes kill 4 nodes kill 5 nodes

Is
su

ed
 p

er
 1

5s

One worker killed every 5 minutes

Calls
Acknowledged Calls

Rejected Calls

 0

 500

 1000

 1500

 2000

10m 20m 30m 40m 50m

Is
su

ed
 p

er
 1

5s

0.01% of messages crash the handler

Calls without fails
Rejected Calls without fails

Calls with fails
Rejected Calls with fails

50

100

150

1 2 4 6 8

C
al

l /
 s

Number of workers

Ideal
100% Load
200% Load

1000% Load

Are High-Level Languages Suitable for Robust Telecoms Software? 281

282 J.H. Nyström, P.W. Trinder, and D.J. King

Are High-Level Languages Suitable for Robust Telecoms Software? 283

Telecoms Characteristics

Dynamic Adaptability

 0

 500

 1000

 1500

 2000

remove remove remove remove add add add add

Is
su

ed
 p

er
 1

5s

Calls Acknowledged Calls Rejected Calls

284 J.H. Nyström, P.W. Trinder, and D.J. King

Are High-Level Languages Suitable for Robust Telecoms Software? 285

286 J.H. Nyström, P.W. Trinder, and D.J. King

Are High-Level Languages Suitable for Robust Telecoms Software? 287

288 J.H. Nyström, P.W. Trinder, and D.J. King

R. Winther, B.A. Gran, and G. Dahll (Eds.): SAFECOMP 2005, LNCS 3688, pp. 289 – 302, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Functional Apportioning of Safety Requirements on
Railway Signalling Systems

Ola Løkberg and Øystein Skogstad

SINTEF ICT, Information Security and Safety, NO-7465 Trondheim, Norway
{ola.lokberg, oystein.skogstad} @sintef.no

Abstract. A method for apportioning of Tolerable Hazard Rates (THR) on
railway signalling equipment through a defined set of related safety critical
functions is presented. For this approach to be effective, a number of steps have
to be taken, involving political, economical as well as technical considerations:
How many casualties pr. year (TLL – Tolerable Loss of Life) due to railway
operations shall be accepted by the society? How many of these casualties shall
be allowed attributed to the signalling systems? How can this signalling quota
be apportioned onto a set of safety critical functions? How can the safety
requirements of these functions be further apportioned onto the physical
equipment realizing the functions, eventually making it possible to specify and
validate the actual equipment being installed: What is the expected Hazard Rate
(HR) of the defined safety critical functions and what are the consequences if
they fail, i.e. if a hazard occurs?
 The underlying study of this paper has been carried out as part of a contract
with the Norwegian railway authority Jernbaneverket.

1 Introduction

Currently, there is a shift to imposing safety requirements on railway functions rather
than railway equipment. This view is advocated by the European Standards EN50126
[5], EN50128 [6] and EN50129 [7] (the railway sector implementation of the IEC
61508). A functional decomposition approach has also been adopted by the
SAMNET/SAMRAIL consortium preparing the ground for the European Railway
Agency (ERA) and the specification of Common Safety Targets (CST) in the new
European Railway Safety Directive (2004/49/EC) [8].

2 European Railway Safety Standardization

In Europe at the beginning of year 2005, a lot of railway safety standardization
activities are taking place, or are about to start. The main objectives of these activities
include:

• Implementation of a new Railway Safety Directive [8], including development
of the safety indicators, methods and targets required to have a common way of
specifying and measuring safety.

• Get the European Railway Agency up and running (see Sect. 0)

290 O. Løkberg and Ø. Skogstad

2.1 Railway Safety Directive (2004/49/EC)

Requirements on safety of the different subsystems of the trans-European rail
networks are laid down in the directives 96/48/EC (high-speed), 2001/16/EC
(conventional) and 2004/50/EC (amendments to the previous two). However, those
directives do not define common requirements at system level and do not deal in
detail with the regulation, management and supervision of safety.

Directive 2004/49/EC [8], hereafter called the Railway Safety Directive, was
established as an acknowledgement to the need of satisfying these requirements by
establishing a common regulatory framework for railway safety within the European
Union. Of particular interest in this context was to harmonise the development and
management of safety, including the development of Common Safety Targets, CSTs.

Common safety targets (CSTs) shall define the minimum safety levels that must be
reached by the different parts of the railway system and by the system as a whole in
each Member State, expressed in risk acceptance criteria for:

• individual risks relating to passengers, staff (including the staff of contractors),
level crossing users, unauthorised persons on railway premises

• societal risks

2.2 European Railway Agency (ERA)

The European Railway Agency ERA (hereafter called the Agency) was proposed by
the European Commission in connection with the “Second Railway package” on
January 23. 2002 and later entered into force on May 1. 2004. The Agency has been
established to provide the Member States and the Commission with technical
assistance within the fields of railway safety and interoperability.

The Agency will provide the technical assistance necessary to implement Directive
2004/49/EC, the Railway Safety Directive. This implies that the Agency shall:

• prepare and propose Common Safety Methods (CSM) and Common Safety
Targets (CST)

• finalise the definition of the Common Safety Indicators, CSI, and perform
continuous monitoring of safety performance through these indicators

2.3 SAMNET/SAMRAIL

The SAMNET and SAMRAIL projects are both financed under the “Competitive and
Sustainable Growth” area of the 5th Frame Programme. The two projects are closely
linked: The partners in the SAMRAIL project are also members of SAMNET, and the
managerial and technical activities of the two projects are coordinated. The tasks of
SAMNET/SAMRAIL are closely related to the tasks of the European Railway
Agency, the work performed within projects is also to be continued by the agency.

The most interesting aspect of the SAMNET/SAMRAIL work in this context is the
work on functional apportionment of safety requirements. This work is based on a
functional decomposition scheme proposed by AEIF, the European Association for
Railway Interoperability. This scheme divides (total) railway operation into a total of
12 [9] first level functions. Function “Operate a train” is applicable to the railway

 Functional Apportioning of Safety Requirements on Railway Signalling Systems 291

signalling system and is the umbrella under which the signalling system safety critical
functions SCF1 and SCF2 presented in Sect. 0 can be located.

3 CENELEC Norms

The CENELEC norms EN 50126 [5] and EN 50129 [7] contain nomenclature and
recommendations of processes with respect to safety and risk analysis and the
compilation of accept criteria. In addition, the CENELEC norm EN 50128 [6] deals
with software included in safety critical applications.

The purpose of this paper is to present a method of assigning safety requirements
in the form of THR (Tolerable Hazard Rates) to functions. A function in this context
encompasses the required collection of hardware, software and operational procedures
to implement the specified functionality. Software is not distinguished as a separate
unit, the system perspective taken by EN 50129 is therefore sufficient in this context.

3.1 Railway Authority vs. Supplier

The distribution of responsibility between the Railway Authority1 on one hand and
the Supplier of railway equipment on the other hand is illustrated by the following
figure from EN 50129 Annex A:

Fig. 1. Global process overview (from EN 50129 [7], Annex A)

1 A Railway Authority may in general be an (infrastructure) owner of one or more parts of the

railway system, an operator, a maintainer of one or more parts of the railway system.

292 O. Løkberg and Ø. Skogstad

 Based on this figure the essence of EN 50129 with respect to determination of THR
and SIL requirements can be summarized as follows:

Responsibility of Railway Authority:

• Define a set of safety critical functions for the signalling system.
• For each defined safety critical function: Define a set of safety integrity

requirements.
The definition of safety integrity requirements is a systematic process including
the identification of hazards, consequence analysis and risk estimation.

• The result of this process is a set of Tolerable Hazard Rates for the set of
defined safety critical functions.

Responsibility of Supplier:

• Define the system architecture as well as allocate system functions to the
different parts of this architecture to meet the safety requirements.

• Apportioning function related THR (received from the Railway Authority) to
the subsystems/components required to implement the corresponding functions.

• Determine corresponding SIL classes from the apportioned THR values.

4 Safety Critical Functions

4.1 Why Safety Critical Functions

Currently, THR safety requirements to signalling systems are often imposed on
signalling systems as a whole. This makes it more difficult for large systems to fulfil
the requirements, simply because the determined THR value (being equal to all
signalling systems irrespective of size) must be apportioned on more equipment in a
large system. Every component in a large system must then individually be safer than
if it has been used in a smaller system.

Basically, it is the safety level of functions which is important for the Railway
Authority, not how these functions are realized. When imposing safety requirements
on functions (in contrast to equipment), the safety requirements better reflect what’s
important in addition to that they are more robust with respect to changes in
technology.

According to EN 50129, safety requirements in railway signalling systems shall be
set to functions. The actual definition of these functions, and on which level they shall
be defined, is however not determined by the standard.

4.2 Top Events

There is a close connection between safety critical functions on one hand and top
events (accident categories) on the other: The total set of safety critical functions shall
cover all relevant top events.

 Functional Apportioning of Safety Requirements on Railway Signalling Systems 293

Related to the signalling system this means that the defined set of safety critical
functions must cover all top events caused by faults in the signalling system.

The following set of top events (accidents) can be caused by faults in the signalling
system:

• Collision train–train (head to head, head to tail, head to flank)
• Derailment

Collision train-object accidents are usually not concerned with faults in the signalling
system and are therefore not considered in our context.

4.3 Defined Safety Critical Functions

According to the selected top events presented in Sect. 0, a set of safety critical
functions covering both train – train collisions and derailments must be determined.

Basically, a signalling system has the following main function: Ensure that a train
can move from A to B in a way that accidents are avoided. For this main function to
be realized, two corresponding sub functions must operate correctly:

1. All signal aspects being part of the route from A to B are set up correctly so that
the train driver receives the correct and required information.

2. All points being part of the route from A to B are set up correctly and stay in the
correct position until the train has passed by.

The automatic train protection aspects (ATP, ATC) defending the train from passing
signals at danger and from over speed are not considered in this paper.

Correspondingly, the following types of signalling system safety critical functions
have been defined:

− SCF1: The function of providing signal aspects according to the current
conditions for train movement.

− SCF2: The function of maintaining correct position of points within the time
interval when a faulty position can not be signalled to the driver in time.

While the wording of SCF1 is fairly straight-forward, an explanatory comment should
be made concerning SCF2: The mechanisms for detecting the actual physical rail
position within a point is an integral part of the signalling system and interlocked with
the signal. This means that if a point for some reason does not obtain the correct
physical position, this will be reflected in the signal related to that point (SCF1). If,
however, the train is within braking distance of the point or is actually passing the
point, the information about a changed position within a point is received too late to
be of any use, SCF2 has therefore been defined to cover this situation without
overlapping SCF1.

To verify that the apportionment of THR to the defined types of safety critical
functions SCFx is appropriate irrespective of technology, operational procedures etc.,
it is important to have suitable monitoring- and logging mechanisms making it
possible to connect fault and accident situations to the appropriate SCFx.

294 O. Løkberg and Ø. Skogstad

5 From TLL to THR for SCF

One of the goals of the study behind this paper was to examine how equipment related
THR requirements can be in accordance with national objectives for accident risks
related to all railway activity in Norway. This objective is often designated as PLL,
Potential Loss of Life, indicating the maximum number of casualties caused by
railway activity per year which can be accepted. However, to be more in harmony
with the corresponding designation THR (Tolerable Hazard Rate), we will instead
use the designation TLL (Tolerable Loss of Life). In addition to being symmetric to
THR, the designation “TLL” also has the property that it through the word “tolerable”
clearly indicates that it is not a computed, but a “politically determined” value.

5.1 THR for Safety Critical Functions

Assuming that the national safety objective is expressed as a politically determined
maximum casualty value, TLLNational, the question is:

How can this objective be transferred into safety requirements for the
corresponding set of Safety Critical Functions, SCF1 and SCF2?

 The process of determining safety requirements for SCF1 and SCF2 for the
signalling systems from the TLLNational value goes through a number of steps. These
are:

1. Determine the effect of signalling system failures
2. Determine the amount of hazards caused by the signalling systems
3. Determine the probability of an accident to occur given a hazard in the

signalling system
4. For each specific signalling system application: Apportion the safety

requirements on the individual instances of SCF1 and SCF2.

As we are lacking data to proceed systematically along this way, we have to use “bold
questimates” to establish a first set of overall THR values. The reasoning behind this
estimation is explained in the sequel.

The Effect of Signalling System Failures. There is a comprehensive statistical
material for Norwegian railway accidents. However, none of these accidents are with
certainty caused by the signalling system. There is therefore no available statistics
known to the authors showing any contribution to top events from signalling system
failures.

Consequences of accidents can be grouped into consequence classes, distinguished
by the number of casualties caused by the accident. The risk analysis performed in [1]
shows that for many of the analyzed scenarios, failures in SCF may be catastrophic
(more than 10 casualties, highest consequence class) given that a fault has occurred.
Using the ALARP (As Low As Reasonably Practical)-principle on the risk matrix
presented in [2] gives an acceptable maximum number of 0.1 signalling system
failures in the highest consequence class for the Norwegian railway per year.

 Functional Apportioning of Safety Requirements on Railway Signalling Systems 295

Hazards Caused by the Signalling Systems. All railway authorities maintain a
comprehensive statistical material for failures related to the railway infrastructure,
including a classification of whether these failures were safety critical or not.
However, this large amount of data has usually not been analysed with respect to
creating a statistic for safety critical failures. From the available material it is
therefore some way to go to determine how many of the total number of failures were
hazards.

As discussed in the previous paragraph, available statistics contain no accidents
which by a high probability can be attributed to the signalling system. Reference [4]
suggests that signalling systems could be assumed to cause 1% of total railway system
hazards. In the lack of available statistics we will use this figure. As already
mentioned, the risk analysis [1] shows that SCF failures may be catastrophic.
Conservatively it is therefore correct to attribute all signalling system failures to the
highest consequence class (more than 10 casualties).

Probability for an Accident to Occur. The risk analysis presented in [1] shows that
faults in a safety critical function SCF will with a high degree of probability cause an
accident. An erroneous (too) liberal signal aspect will most often occur in situations
where trains are present. The conservative estimate for the probability of an accident
to occur given a hazard of the signalling system is therefore 1. Our first estimate of
this probability is 10%.

Altogether, the reasoning in this section leads to a resulting THR for the
Norwegian railway signalling system of 0.01 highest consequence failures per year.
This is shown in the Table 2.

It must be emphasized that the figures in the table are estimates, derived from the
discussions in this and the preceding paragraphs.

Table 1. THR for the Norwegian railway signalling systems

Factor Value Corresponding THR
[failures/year]

Maximum rate for accidents
of highest consequence class

 0.1

Hazards due to the signalling
systems

1% 0.001

Probability for an accident to
occur given fault in SCF

10% 0.01

THR Apportioned on Total Set of SCFs. We have previously assumed that the
defined set of SCFs cover all safety critical functionality of a signalling system.
Consequently, the THR requirement of 0.01 failures per year applies to all
implementation instances of the defined set of SCFs in the Norwegian railway
infrastructure (i.e. all signalling systems).

This total THR should not be equally apportioned on SCF1 and SCF2. The risk
analysis presented in [1] shows that there are different accident scenarios for the two
SCFs: When failing, SCF1 is likely to have more severe consequences than SCF2. We

296 O. Løkberg and Ø. Skogstad

therefore set THR for SCF1 equal to the total THR value above: 0.01 failures per year.
As far as SCF2 is concerned, less severe consequence when failing implies that the
THR requirement to this safety critical function can be weakened. As an initial
estimate, two decades down, i.e. 1 failure per year are regarded a suitable value here.

To summarize, the following THR requirements should be set to (all instances of)
the two defined safety critical function of the signalling systems of Norway:

SCF1 (all instances) : THR = 0.01 failure per year
SCF2 (all instances) : THR = 1 failure per year

THR Apportioned on Individual Instances of SCF. By estimating the total amount
of signals and points contained in the Norwegian railway signalling systems as well as
their number of possible states, a total of 10000 instances of SCF1 and 5000 instances
of SCF2 have been estimated. This gives the following individual THR values:

SCF1 (per instance) : THR = 10-6 failure per year 10-10 [h-1]
SCF2 (per instance) : THR = 2*10-4 failure per year 2*10-8 [h-1]

It must be emphasized that the calculated requirements presented in this section are
based on estimates. However, we believe that the precision is good enough to claim
that the requirements are anchored in the national safety objectives, expressed as a
maximum number of fatalities per year caused by total railway operation. We also
believe that the calculations in a clear and understandable way show how large a
portion of the total safety requirements should be attributed to the signalling systems.

Comparison with Today’s Equipment Based Safety Requirements. Reference [3]
contains today’s safety requirements for Norwegian railway signalling systems.
Although the requirements included in [3] are equipment based and expressed for a
complete signalling system, they are in the same order of magnitude as the function-
based set of requirements presented in this paper. From this we may draw the
conclusions that the THR requirements presented in this paper both may be realized
with available technology as well as does not represent a degradation of today’s safety
level of signalling systems. An actual case study is however required to verify this
hypothesises.

5.2 THR’s Relations to Other Railway System Parameters

Basically, trains can be guided or controlled in two ways: Automatically, when the
signalling system is operational, or manually, when the signalling system is down.
The two safety critical functions SCF1 and SCF2 defined in Sect. 0 both apply to
automatic train control. Further, THR requirements are always related to random
faults. However, statistical data show that systematic faults contribute significantly to
accidents and hazard. Consequently, system safety can not be characterized by THR
requirements alone without regarding other system parameters.

System Availability. A system’s availability is a measure of whether it can be
expected to be operational. [5] defines the term “Availability” as

 Functional Apportioning of Safety Requirements on Railway Signalling Systems 297

the ability of a product to be in a state to perform a required function under
the given conditions at a given instant of time or over a given time interval
assuming that the required external resources are provided.

 Note that a system’s availability is not dealing with safety: A system can be
unavailable due to a variety of reasons, not only because the system’s safety functions
are not operational. When a railway signalling system is unavailable, all signal
aspects are set to red (“stop”) which is considered a safe state as seen from the
signalling system.

Some sources (e.g. ref. [4]), claim that manual and automatic train control (through
the signalling system) contribute equally to the total risk of railway operation. If that
is the case, and the availability value for signalling systems is 99.5 % (ref. [4]), the
hazard rate during periods of manual train control is 200 times larger than the
corresponding rate with automatic control. This illustrates that there is obviously a
trade-off whether to use resources to improve THR values of the signalling systems,
effective during normal automatic train control, or to improve the system’s
availability to reduce the risks imposed through manual control.

Random vs. Systematic Faults. THR reflects the expected rate of hazards due to
safety related, random equipment faults. Such faults are random because they are
triggered by random events as a malfunctioning component.

Systematic faults are faults which will re-occur if the situation producing the fault
is recreated. Examples of systematic faults are faults in specification, design, software
coding as well as operational procedures. Generally for the PES (Programmable
Electronic System) type of technology, systematic faults are claimed to occur as often
as random faults.

However, it is of minor importance to the public whether a number of people have
been killed in a railway accident due to a random or a systematic fault. Taken
together, signalling system THR values may therefore be applicable to only one forth
of the total risk (random faults occurring during automatic train control). Even so, we
choose not to change the THR values for the signalling systems since the correction
would be minor compared to the decadic approximations used to arrive at these
figures.

Size of Installation. In this paper, THR is apportioned on safety critical functions,
SCFs. A large installation will have a larger number of SCFs than a smaller
installation. Because the number of SCFs is directly related to the number of signals
and points, it can be argued that the number of SCFs is directly proportional to the
size of the installation. It will thus scale very well with installation size.

Therefore, with respect to safety requirements, the same equipment can be used
both for large and small installations. This makes it easier for the railway authority to
standardize on specific types of equipment, in turn reducing costs with respect to
maintenance, spare parts storage and personnel training.

298 O. Løkberg and Ø. Skogstad

6 From THR for SCF to THR for Equipment

We have in Sect. 0 shown how a TLL (Tolerable Loss of Life) national railway safety
requirement value can be distributed onto a set of safety critical functions, SCF.

The next step is to distribute this further onto the collection of equipment required
to implement the SCFs. The method for this is shown in the following figure:

Fig. 2. Function vs. implementation

6.1 Duality Between Function and Equipment

Generally speaking, any technical construction or mechanism can be represented by a
dual view: Either by the functions it performs, or by the equipment by which it is
realized. For a system, both function and equipment are hierarchical in nature and can
thus be illustrated as a pyramid as shown in Figure 2.

Applied to the topic of this paper, a railway Infrastructure can thus be viewed as
a duality between its Main Function (Operation of signal aspects, points) and the
Installation (Railway signalling system) realizing this function.

The concrete structure of these pyramids and the mapping between them depend on
the actual system solutions being selected. Without such knowledge, only the
relationships/proportions between the different THR/HR values can be given, not
their absolute values.

 Functional Apportioning of Safety Requirements on Railway Signalling Systems 299

Function Pyramid. As described in Sect. 0 the safety critical functionality Operation
of signal aspects, points will be represented by two safety critical functions, SCF1 and
SCF2. All safety critical functionality within the scope of an interlocking system is
covered by these two safety critical functions.

Further, within an infrastructure there will generally be several instances of an
SCF. These instances are not necessarily realized identically, this will often depend
on where in the infrastructure they are located. The method therefore supports that the
infrastructure contains N instances of SCF1 (denoted SCF1i, i = 1...N) and M instances
of SCF2 (denoted SCF2i, i = 1...M).

Due to the effect of any barriers and/or safety redundancy, the resulting Hazard
Rate HR of any given instance of an SCF (denoted SCFxi) will always be less than or
equal to the sum of Hazard Rates of the equipment required to realize the instance:

HRSCFxi HREquipment (all eq. realizing SCFxi) (1)

 Any instance SCFxi of an SCF must be apportioned a corresponding safety
requirement in form of a Tolerable Hazard Rate value, THRSCFxi. For the safety
requirement to be fulfilled, this THR value must be greater or equal to the
corresponding (calculated) HR value, i.e.:

 THRSCFxi HRSCFxi (2)

 The defined types of safety critical functions SCF1 and SCF2 may use the same
equipment parts and are thus not statistically independent. In addition, the same
equipment may be a part of the realization of several instances of the same type of
SCF (SCFx), typically this will be the case for the central interlocking system.
Consequently, the sum of HR for all instances of SCF1 and SCF2 in the installation
will be higher than the HR of the total installation:

HRInstallation < HREquipment (all eq. realizing all instances of
 SCF1 and SCF2) (3)

Safety Critical Sub Functions (SCSF). It may be necessary (e.g. in case the
equipment realizing one SCFx come from several suppliers) to further divide SCFx
into safety critical sub functions SCSFx. These can in principle again be divided into
new sub functions (SCSSFx) and so forth. In general, the same sub function (e.g. train
location detection) may be a part of both SCF1 and SCF2.

If it is required to divide SCFx into sub functions SCSFxy, the sum of THR for all
SCSFxy will be equal to the THR for the corresponding SCFx:

THRSCFx = THRSCSFxy (for all SCSFxy of SCFx) (4)

 However, because the same sub-function SCSC can be a part of both SCF1 and
SCF2,. the sum of THRs for all SCFx will always be less or equal to the sum of THRs
for all sub-functions SCSFxy:

THRSCFx (in total for all x) THRSCSFxy (in total for all x and y) (5)

 This division into sub functions SCSF, and if required sub-sub functions SCSSF,
may be performed until one and only one supplier supplies equipment to one

300 O. Løkberg and Ø. Skogstad

SCF/SCSF/SCSSF. When so, there will be a pure function-equipment interface
between the Railway Authority and the suppliers.

Equipment Pyramid. The safety critical main function Operation of signal aspects,
points is realized by a Railway signalling system. The Railway signalling system is in
turn realized by a number of Subsystems, in Figure 2 denoted D1 to D3. The
subsystems may be overlapping in the way that several subsystems rely on some
common service (e.g. central logic). Subsystems D1 and D2 are in Figure 2 shown as
overlapping.

Every subsystem is in turn realized as one or more Modules. Because subsystems
may be overlapping, one module may belong to several subsystems. Module 2 in
Figure 2 is an example of this.

Each module is further realized by one or more Components. Each component
will belong to one and only one module. Generally speaking, a number of components
from different modules (but not necessarily all components within one module) will
be a part of the realization of one SCF. Because one component can be a part of the
realization of both SCF1 and SCF2 as well as due to barrier/redundancy effects, the
sum of the hazard rates HR for all components C used to realize SCFx will always be
equal to or larger than HR for SCFx, that is

HRSCFx HRC, in total for all components C included (6)
 in the realization of SCFx

6.2 Method for Apportioning THR on Equipment

The method for determination and verification of safety requirements based on THR
to safety critical functions is based on the duality between the function and equipment
pyramids as shown in Figure 2. The method can be described as follows:

1. Starting point. THR requirements are apportioned to all instances of SCFs
within the actual infrastructure. This can either be done on a generic basis as
shown in Sect. 0, or on a installation specific basis facilitating special treatment
of the individual installation, taking other factors than the actual number of
SCFs into consideration.

2. Transform SCF THR requirements to THR requirements to equipment.
The actual method is indifferent to whether there are one or several suppliers of
equipment realizing the SCF. However, with only one supplier the SCF itself
constitutes the interface between the Railway Authority and the supplier. With
several suppliers, the SCF and the corresponding THR requirement must be
apportioned (by the Railway Authority) into sub functions SCSF before handed
over to the supplier.

3. Verification of selected equipment against THR requirement to SCF. This is
done by computing the resulting HR for the SCFs (see Sect. 0). If the specified
THR requirements are not satisfied, the realization of the SCF must be changed,
either by using other (and less error prone) components, or by changing the
architecture, e.g. by incorporating a higher degree of redundancy.

 Functional Apportioning of Safety Requirements on Railway Signalling Systems 301

7 Verification of THR Requirement

Normally it is the task of the supplier to prove that his selection of equipment satisfies
the THR requirement for SCFx. It is generally acceptable that this is done as an
analytical computation based on reliability theory. Such a computation must include
the following elements:

1. Identify the individual equipment (Figure 2: Subsystems, Modules,
Components) required to realize the relevant instance of SCFx.

2. Determine the failure rate for this equipment from the manufacturer’s
specifications.

3. Determine the Hazard Rate (HR) for the same equipment, e.g. by carrying out
an FMEA (Failure Mode and Effect Analysis). Normally the HR will be
significantly lower than the failure rate (not all failure modes will be safety
critical, redundancy).

4. The corresponding Hazard Rate for the different realizations of SCF1 and SCF2
are computed using the equipment HR as input. The effect of any barriers (e.g.
human) must be included.

 If the analysis shows that the resulting Hazard Rate for SCFx is in the same order as
the corresponding THR, the requirement should be considered as satisfied. Due to the
uncertainty in the input data a sensitivity analysis may be requested if the THR
requirement is not completely satisfied. Factors as system availability and the effect
of systematic faults (see Sect. 0) should also be taken into consideration if the result is
close to the requirement.

8 Conclusion

This paper has presented a method of imposing safety requirements on safety critical
functions, SCFs, rather than directly on equipment. By doing this, the requirement of
the individual SCF will be independent of installation topography as well as
implementation technology. In the longer term, the confidence in railway safety
should also be improved by the fact that going through SCFs forces the railway safety
management to focus directly on safety critical functions.

It can be argued whether going through safety critical functions rather than directly
on equipment makes it more easy or difficult to verify safety requirements.
Experience indicates that there is no difference: In both cases, traditional safety and
reliability analyses techniques for electronic/electromechanical systems must be
applied.

References

1. Løkberg, O., Øien, K., Hokstad, P., Skogstad, Ø.: Utvikling av Tolerable Hazard Rates for
signalanlegg (in Norwegian). SINTEF Report STF90 F05005 (2005)

2. Jernbaneverket, Sikkerhetshåndbok (in Norwegian). Document. no. 1B-Sikkerhet
(2003)

302 O. Løkberg and Ø. Skogstad

3. Jernbaneverket, Teknisk regelverk. Signal/prosjektering (in Norwegian). Document. no. JD-
550 (2004)

4. Andersen, Terje. Sikkerhetskrav til sikringsanlegg, rev. 01 (in Norwegian). DNV report
2002-0157 (2002)

5. EN 50126. Railway applications – The specification and demonstration of reliability,
availability, maintainability and safety (RAMS) (1999)

6. EN 50128. Railway applications – Communications, signalling and processing systems –
Software for railway control and protection systems (2001)

7. EN 50129. Railway applications – Communications, signalling and processing systems –
Safety related electronic systems for signalling (2003)

8. DIRECTIVE 2004/49/EC OF THE EUROPEAN PARLIAMENT AND
OF THE COUNCIL of 29 April 2004 on safety on the Community’s railways and amending
Council Directive 95/18/EC on the licensing of railway undertakings and Directive
2001/14/EC on the allocation of railway infrastructure capacity and the levying of charges
for the use of railway infrastructure and certification (Railway Safety Directive) (2004)

9. Report on the Representative Architecture. Revision 1.8, December 2002. Report issued by
the AEIF project team (2002)

R. Winther, B.A. Gran, and G. Dahll (Eds.): SAFECOMP 2005, LNCS 3688, pp. 303 – 316, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Automatic Code Generation for PLC Controllers

Krzysztof Sacha

Warsaw University of Technology, Nowowiejska 15/19, 00-665 Warszawa, Poland
k.sacha@ia.pw.edu.pl

Abstract. The paper describes a formal method for automatic generation of
programs for PLC controllers. The method starts from modeling the desired be-
havior of the system under design by means of a state machine with the ability
to measure time and ends-up with a complete program written in a ladder dia-
gram language. The model is formal, yet readable, and can be verified against
the behavioral and safety requirements. The conversion of the model into a pro-
gram is done automatically, which reduces the need for further program
verification.

1 Introduction

Computerized control systems are used in many industrial applications in which a mal-
function of the system can endanger the environment or human life. The systems that
are used in such application areas are expected to exhibit always an acceptable behavior.
Such a property, often referred to as dependability, is a system-level attribute, which
must be considered at hardware as well as software level. The typical hardware devices
used in industrial control are Programmable Logic Controllers (PLC) that are designed
in such a way that promotes reliability and predictability of the controller operation, and
makes the design of time- and safety-critical systems easier.

PLC is a specialized computer, which has a set of input interfaces to sensors, a set
of output interfaces to actuators and an operating system that manages the repeated
execution of the following cycle:

• Reading all input sensors and storing the read data as values of input variables.
• Processing the inputs and computing the new values of the output variables.
• Updating all outputs with the current values of output variables.

 The maximum duration of each execution cycle is bounded and guaranteed by the
operating system. This introduces an explicit granularity of time: An input signal that
does not hold for at least the maximum duration of the cycle can remain unnoticed by
the PLC. Moreover, a response to an input signal cannot be expected earlier than in
the next consecutive cycle of execution.

Programming of a PLC deals with the computing phase of the execution cycle
only. The core part of the computation relates to calculations of Boolean conditions
that define the current state of the controller and the current values of two-state output
variables. The programming languages, standardized in [1], include: Instruction List
(IL), Structured Text (ST), Ladder Diagram (LD) and Function Block Diagram
(FBD).

304 K. Sacha

A PLC can be used alone, but in many real applications it is a part of a bigger sys-
tem that consists of several PLCs and computers coupled and working together. The
development of such a system can be driven by a set of UML-based models [2] that
describe the required behavior of the system as a whole, and of all of its components.
The conceptual tool that is offered by UML to model this type of processing that is
done by a PLC is state diagram – a model that describes the states an object can have
and how events (input signals) affect those states over time.

The goal of this paper is to describe a formal method for automatic programming
of PLCs, which uses a subset of UML-based state diagram model to define a correct
control algorithm, and to implement the algorithm automatically using the ladder dia-
gram language. The choice of the target language (LD) has been motivated by the
widespread use of certified programming environments offered by the majority of
PLC manufacturers. Nevertheless, generation of a program in C language executed
under a POSIX-type operating system is also possible. The advantages of the method
are simplicity that has been verified in student labs, easy interfacing to UML-based
software development process and tools, and the possibility of automatic code genera-
tion. The verification of the program correctness can be performed at the model level.

The paper is organized as follows. Section 2 provides the reader with a short over-
view of the subset of UML-based state diagram model that is used in the paper. Sec-
tion 3 introduces a formal definition of the finite state time machine that defines the
semantics of the state diagram model. The process of converting a finite state time
machine into a program, written in the ladder diagram language, is described in Sec-
tion 4. The description is illustrated using a case study of a bottling line controller. Fi-
nal remarks and plans for future work are given in Conclusions.

2 State Diagram

Basically, state diagram is a graph that shows how an object reacts to events that
originate in the outside world. It consists of states that capture distinct modes of the
object behavior and transitions between states that are caused by events and accom-
panied with actions. Relating the model to the structure of PLCs one can note that
events correspond to the occurrences of input signals, and actions correspond to
changes of the output signals. The modeling concept is simple and consistent with the
mathematical theory of finite state machines. UML adds further elements to this
model:

• Entry and exit actions of a state that are executed on entering and exiting the state.
• Guards, i.e. Boolean conditions that enable or disable transitions.
• Internal transitions that are handled without causing a change in state.
• Deferred events that are memorized for handling in another state.
• Time events that correspond to the expirations of predefined periods of time.

Entry and exit actions of a state do not add any new semantics to the model as they
can easily be reassigned to transitions that input or output the state. Guards deal with
the attributes of an object and do not apply to modeling of PLCs. Internal transitions
and deferred events violate the rule that the only memory of an object is state, and

 Automatic Code Generation for PLC Controllers 305

therefore are excluded of the model that is used in this paper. If an event could make a
permanent change to an output or had to be memorized, an explicit change to the ob-
ject state must be shown.

A substantial extension to the model of a finite state machine is the introduction of
time events. Such an event originates inside the modeled object, and breaks the rule
that the reaction of the object to an external event depends on the current state only.
An additional memory of timers that measure the flow of time is needed. An attempt
to describe the extension is given by the theory of timed automata [3]. Still another
formal model of a finite state time machine is introduced in Sect. 3.

A disadvantage of a state diagram, as described above, is the lack of tools for man-
aging complexity of real systems that can have hundreds or even thousands of states
reflecting very general or very detailed properties of the modeled objects. One way to
capture the behavior of such a complex system is to describe its behavior using many
levels of abstraction. UML offers hierarchical state diagrams, in which a state can
have sub-states, each of which can be shown in another state diagram. A transition
that leads to a super-state activates the internal state diagram in its initial state. A tran-
sition that roots in a super-state can occur in each of its internal sub-states.

The presence of nested states leads to quite a new concept of a history indicator
that is used to memorize the last sub-state on exit of a super-state, so that it’s possible
to go back to this sub-state at a later time. History indicator adds memory to the
model – a discussion of this feature is given in Sect. 4.2.

3 Finite State Time Machine

Finite state machine is a recognized tool for defining the algorithms of processing the
enumerative sets of events. The automaton-like graphical models are formal, as well
as understandable to engineers and computer programmers. What is missing to a clas-
sical finite state machine is the ability to model time. In this section we define a new
model of a finite state time machine that adds time to the classical Moore automaton.

Definition. A finite state time machine is a tuple A = (S, Σ, Γ, τ , δ, s0 , ε, Ω, ω),
where

S is a finite set of states,
Σ is a finite set of input symbols,
Ω is a finite set of output symbols,
Γ is a finite set of timer symbols,
τ : Γ → S × R+ is an injective function, called timer function,
δ : (S × Σ ∪ S × Σ × Γ) → S is a function, called transition function, which is total

on S × Σ and partial on S × Σ × Γ: (s,a,t)∈Dom(δ) ⇔ (∃ r∈R+)[τ (t)= (s,r)]
s0 ∈ S is the initial state,
ε ∈ R

+ is the granularity of time,
ω : S → Ω is an output function.

Notation: R+ is the set of positive real numbers, Dom(δ) is the domain of function δ.
Cardinality of a set X will be denoted card(X).

306 K. Sacha

It can be noted from the above definition that a finite state time machine is finite,
and looks much like a Moore automaton with three additional elements: Γ, τ , ε. The
rationale that stands behind the timer symbols can be explained as follows. The only
memory of a Moore automaton is state. Adding time to such an automaton adds an
additional kind of memory that stores durations of time intervals. This additional kind
of memory is explicitly shown as a set of timer symbols. Each timer symbol will be
converted in the implementation process into a timer device that measures time.

For an example, consider a train-detecting sensor [4] that signals ‘a’ if a train is
approaching, ‘b’ if not, and ‘Error’ if a failure of the device has been detected. The
sensor can stutter for a time Δt after a train has passed the sensor. The control system
is expected to filter the stuttering and to react on the ‘Error’ signal immediately.

The behavior of the required system can be described precisely using an automaton
that could measure time (Fig. 1). The automaton starts in state N and reads the input.
If the train approaches, the input reads ‘a’ and the automaton moves to state T. Now
the input can stutter, but the automaton does not react to signal ‘b’, until it has contin-
ued to be in state T at least through the period Δt. Afterwards, if ‘b’ still holds, the
automaton returns back to state N and continues as before. If the input reads ‘Error’,
the automaton moves to state X.

Fig. 1. Filtering device with detection of errors

The notation in Fig. 1 suggests that period Δt is attributed to a transition between
states, rather than to a state. This is because a transition is enabled by a combination
of an input symbol and a timer symbol.

Formal definition of the filtering device can be written as follows:

 S = { N, T, X }
Σ = { a, b, Error }
Ω = { no approach, approach, don’t know }
Γ = { t1 }
τ : τ (t1) = (T, Δt)
δ: δ (N, a)= T δ (N, b)= N δ (N, Error)= X
 δ (T, a)= T δ (T, b)= T δ (T, Error)= X
 δ (T, a, t1)= T δ (T, b, t1)= N δ (T, Error, t1)= X
 δ (X, a)= X δ (X, b)= X δ (X, Error)= X
s0 = N
ω : ω (N) = no approach ω (T) = approach ω (X) = don’t know

 The granularity of time ε has not been defined in [4].

a

N

T

b⋅ Δt
Error

Error

X

 Automatic Code Generation for PLC Controllers 307

3.1 Execution of a Finite State Time Machine

Moore automaton models a device that cooperates with its environment. The execu-
tion of an automaton starts in state s0. The environment generates a sequence of input
symbols a0 , a1 ,…, ak ,… and the automaton moves through a sequence of states s0 ,
s1 ,…, sk ,… such that sk+1= δ (sk, ak) for k= 0,1,…. Each state sk of the automaton corre-
sponds to an output symbol qk= ω (sk). This way the automaton responds to a se-
quence of input symbols a0 , a1 ,…, ak ,… with a sequence of output symbols q0 , q1 ,…,
qk ,….

A finite state time machine adds to the model the dimension of time. The function
τ defines for each state s∈S a set of timers T(s), such that:

T(s)= { t∈Γ: (∃ r∈R+)[τ (t)= (s,r)] }

A timer t, such that τ (t) = (s,r), will be denoted ts,r. The same symbol will be used
for the value of r, rounded up to the nearest multiplicity of ε. This will not lead to a
misunderstanding, as the actual meaning of ts,r will always be clear from the context.

A nonempty set T(s) can be ordered with respect to the value of ts,r:

T(s)= { ts,r1 , …ts,rp }

The sequence { ts,r1, … ts,rp } defines a partition of time into p+ 1 intervals:

[0, ts,r1) … , [ts,rp ,∞)

 There is only one interval [0,∞) if the set T(s) was empty. The execution of a finite
state time machine starts in state s0. When it enters a state s∈S, it enters the first time
interval [0, ts,r1) as well. The machine executes in this interval by taking an input sym-
bol a and moving from the current state s to the next state s’∈S, such that s’=δ(s,a).

If the machine has continued to be in state s at least through ts,r1 time units, then it
moves to the time interval [ts,r1 , ts,r2), then to [ts,r2 , ts,r3) and so on. The machine exe-
cutes in a time interval [ts,rj , ts,r(j+1)) by taking an input symbol a and moving from the
current state s to the next state s’∈ S, such that s’= δ(s,a,ts,rj). The flow of time does
not depend on the sequence of input symbols. Therefore, unlike in a Moore automa-
ton, there is no deterministic mapping from an input sequence a0 , a1 ,…, ak ,… to an
output sequence q0 , q1 ,…, qk ,…. The response of a finite state time machine depends
on the time intervals within the sequence of input symbols.

3.2 Relation to Other Models

Moore automaton is equivalent to a finite state time machine with no timers, i.e.:

• (∀s∈S) [card(T(s)) = 0]

If the above condition holds, then no partitioning of time exists and there is a single
time interval [0,∞) for each state of the automaton.

PLC-automaton [4] can be converted into a finite state time machine such that:

• (∀s∈S) [card(T(s)) ≤ 1]

308 K. Sacha

Let P= (S, Σ, δ, s0, ε, St, Se, Ω, ω) be a PLC-automaton. The equivalent finite state
time machine A= (S, Σ, Γ, τ, δ, s0, ε, Ω, ω) can be constructed as follows:

• The elements S, Σ, s0, ε, Ω, ω of A are equal to S, Σ, s0, ε, Ω, ω of P, respectively.
• The other three elements of A are the following:

Γ = s∈S: St(s)>0 { ts,St(s) } − note that this defines the timer function τ, as well.

δ (s,a) =

δ (s,a,ts,St(s)) = δ (s,a)

Timed automaton [3] represents a broader class of models than finite state time ma-
chine. This is because a clock of a timed automaton can measure time between two
arbitrary transitions in a state transition graph, while the life of a timer of a finite state
time machine is limited to the period of time, in which the machine continues being in
a single state. A minor drawback of timed automaton is the lack of output symbols.

The advantages of the model of a finite state time machine are simplicity, expres-
siveness and ease of implementation. The limitation on the life of timers helps in
keeping the size of the state space small. To demonstrate the expressive power of the
model, consider a requirement to measure the time period between two events: ‘a’
and ‘b’, and to classify the delay as: Short, middle, long or infinite. The problem can-
not be represented directly as a PLC-automaton [4]. Finite state time machine model
(Fig. 2) is simple and understandable.

Fig. 2. Measurement and classification of time periods (0 < Δt1 < Δt2 < Δt3)

The semantics of a finite state machine can be defined formally using the Duration
Calculus [5], which is a real-time extension to the discrete interval temporal logic.
Such a definition allows formal reasoning and proving correctness of the model. This
topic is not covered by this paper.

4 Code Generation

A developer defines the algorithm of processing input signals into output signals of a
PLC by means of a state diagram. The semantics of this model is defined formally by

s if St(s)> 0 and a∈Se(s)
δ (s,a) otherwise

start b⋅Δt1

b⋅Δt1⋅Δt2 middle

short

long

infiniteΔt3

— duration < Δt1

— Δt1 ≤ duration < Δt2

— Δt2 ≤ duration < Δt3

— duration ≥ Δt3

a

b⋅Δt2⋅Δt3

 Automatic Code Generation for PLC Controllers 309

a finite state time machine. Input and output symbols of the machine correspond to
particular combinations of input or output signals of the PLC, respectively. Timer
symbols correspond to timers, i.e. program elements that can measure time and signal
the expiration of time periods that are defined by the timer function.

The states of the finite state time machine are stored within the controller as states
of flip-flops, used by a program. Using n flip-flops one can store at most 2n states.
The mapping of states into the states of flip-flops (coding of states) is not unique, and
can be a result of a design decision or an optimization procedure. A program of the
controller implements the transition function in such a way that each pass through the
program fires a single transition between the states of the finite state time machine.

PLC program takes the form of a ladder diagram [1] and is structured into a se-
quence of lines, each of which describes a Boolean condition to set or reset a flip-flop,
a timer or an output signal, according to the values of input signals, states of flip-flops
and timers. The Boolean conditions reflect the selected coding of states and imple-
ment the transition function, the output function and the timer function.

The development process of a PLC program consists of two phases. The first phase,
which corresponds to the requirements modeling and analysis, followed by a safety
analysis, requires creativity of the developer and must be performed manually. The
second phase, which corresponds to program design and implementation, can be per-
formed automatically. The first phase is not covered by this paper, but a detailed dis-
cussion can be found in [6,7].

Design and implementation phase starts with the verified model of a state diagram
developed previously. The phase consists of the six basic steps:

1. Coding states.
2. Implementing the timer function.
3. Implementing the transition function.
4. Filling up the state space (error recovery).
5. Implementing the output function.
6. Building a program.

A description of the conversion process from a state diagram to a ladder diagram,
given in the reminder of Sect. 4, will be illustrated using a case study of a simple bot-
tling line. Although simply stated, the problem contains many of the elements of ac-
tual control systems.

4.1 Case Study

A bottling line (Fig. 3) consists of a bottle supply with a gate, a conveyor system, a
scale platform and a bottle-filling pipe with a valve. Bottles to be filled are drawn one
by one from the supply of bottles and moved to the scale platform by the conveyor.
As soon as the bottle is at required position, a contact sensor attached to the platform
is depressed and the bottle-filling valve is opened. The scale platform measures the
weight of the bottle with its contents. When the bottle is full, the bottle-filling valve is
shut off, and an operator manually removes the bottle from the line. Removing the
bottle releases the contact sensor, and the entire cycle repeats automatically.

310 K. Sacha

The current line status is described by a set of two-state signals issued by the plant
sensors and switches:

S start the line: A manual signal that enables the repetitive line operation;
P suspend the line: A manual signal that suspends temporarily the bottling process;
R bottle ready: A signal from the electrical contact of the platform sensor;
F bottle full: A signal issued by the scale.

The controller reads the current line status and yields the three control signals:

G open the gate of the bottle supply (a pulse signal of the length Δt1),
T start the conveyor,
Z open the bottle-filling valve.

Fig. 3. Bottling line

There are three different modes of control of the bottling line: Working (regular
line operation), Blocked (when something went wrong) and Suspended (a mainte-
nance mode). Different modes of control are modeled as different states in a state dia-
gram (Fig. 4). Working mode is modeled as a super-state, which has four sub-states
nested that correspond to the particular phases of the bottling process.

Fig. 4. Optimized state diagram of a bottling-line

open start

scale platformgate bottle supply

T G F Z S R

conveyor

line gate ready
bottle

full
bottle

valve
open suspend

line

P
start
conveyor

Working

S Stopped
do: T=0, G=0, Z=0

Gate Open
do: T=1, G=1, Z=0

Moving
do: T=1, G=0, Z=0

Bottle Filling
do: T=0, G=0, Z=1

Blocked
do: T=0, G=0, Z=0

Suspended
do: T=0, G=0, Z=0

H

P

P

S ⋅ P⋅ R

P⋅Δt1

P⋅ R

P⋅ R⋅ F P⋅ R + P⋅Δt2

 Automatic Code Generation for PLC Controllers 311

The model defines the desired behavior of the bottling line. It implements a safety
feature that the line is blocked until a manual intervention (confirmed by depressing
of S), if the bottle on the scale platform was broken or the bottle-filling phase has not
been finished within the period of Δt2. The process of building the requirements speci-
fication, safety analysis and the optimization of the model, has been described and
discussed in detail in [7].

4.2 Coding States

The algorithm for coding states in a hierarchical state diagram traverses the hierarchy
in a top-down manner and assigns a separate group of flip-flops to code the sub-states
of each super-state. This way, at least two flip-flops are needed to code the three
states at the top level in Fig. 4, and the next two flip-flops are used to code the sub-
states within the state Working. A selected coding of states is shown in Table 1.

Table 1. The coding of states (flip-flops: M1, M2, M3, M4)

M1 M2 M3 M4 Bottling line state
0 0 Blocked
1 0 0 0 Stopped
1 0 0 1 Gate Open
1 0 1 1 Moving
1 0 1 0 Bottle Filling
1 1 ∗ ∗ Suspended

There are six states at the lowest level of nesting shown explicitly in Fig. 4 and
listed in Table 1. However, the history indicator adds an additional implicit memory
of the former sub-states of the state Working that are to be re-entered from Suspended.
Hence, there are in fact four sub-states nested in the state Suspended that correspond
to sub-states of the state Working. These sub-states preserve the same coding of M3
and M4. The two transitions between Working and Suspended in Fig. 4 are then trans-
formed into a set of four pairs of transitions between the corresponding sub-states.
The semantics of history indicator and the transformation described above is defined
formally in Sect. 4.3. One can note that the coding of states presented in Table 1 is
more economical than the one-hot coding used routinely for hardwired controllers.

4.3 Formal Model

There are nine states, sixteen input symbols and two timers in the finite state time ma-
chine, which defines the semantics of the state diagram in Fig. 4. These sets together
with the timer function and the transition function are defined below:

S = { Blocked, Stopped, GateOpen, Moving, BottleFilling,
Suspended-Stopped, Suspended-Open, Suspended-Moving, Suspended-Filling }

Σ = { S⋅ P⋅ R⋅ F , S⋅ P⋅ R⋅ F , S⋅ P⋅ R⋅ F , S⋅ P⋅ R⋅ F , ..., S⋅ P⋅ R⋅ F }
Γ = { t1, t2 }
τ : τ (t1)= (GateOpen, Δt1) τ (t2)= (BottleFilling, Δt2)

312 K. Sacha

δ: δ (Blocked, S)= Stopped
 δ (Stopped, P)= Suspended-Stopped δ (Stopped, S⋅ P⋅ R)= GateOpen
 δ (GateOpen, P)= Suspended-Open δ (GateOpen, P, t1)= Suspended-Open
 δ (GateOpen, P, t1)= Moving
 δ (Moving, P)= Suspended-Moving δ (Moving, P⋅ R)= BottleFilling
 δ (BottleFilling, P)= Suspended-Filling δ (BottleFilling, P, t2)= Suspended-Filling
 δ (BottleFilling, P⋅ R⋅ F)= Stopped
 δ (BottleFilling, P⋅ R)= Blocked δ (BottleFilling, P, t2)= Blocked
 δ (Suspended-Stopped, P)= Stopped δ (Suspended-Open, P)= GateOpen
 δ (Suspended- Moving, P)= Moving δ (Suspended-Filling, P)= BottleFilling

 In all other cases δ (s, a)= s and δ (s, a, t)= s. These transitions are not shown in Fig
4. The usual Boolean notation for the subsets of input symbols is used in the above
definition of the function δ, e.g.: S⋅ P⋅ R represents the set { S⋅ P⋅ R⋅ F , S⋅ P⋅ R⋅ F }.

4.4 Implementing Timers

Each timer symbol of a finite state time machine is implemented within a PLC con-
troller by a separate timer block of a ladder diagram. A timer block is a conceptual
device that has one input signal, which can set (enable) the timer, and one output sig-
nal. As long as the input signal equals 0, the timer is reset with the output equal to 0.
When the input signal changes to 1, the timer is set and starts counting time. The out-
put signal changes to 1 as soon as the input signal has continued to be 1 for a prede-
fined period of time. Such type of a timer block is called a delay on make flip-flop.

A Boolean condition that sets a timer depends on the coding of this state, which is
assigned to the timer by the timer function. For example, timers t1 and t2 (See Sect.
4.2), are assigned to states Gate Open and Bottle Filling, respectively. Hence, the
conditions to set the timers can be read from Table 1:

Each time the above two expressions are executed by a PLC, time is counted and

the outputs of the timers are set appropriately.

4.5 Implementing the Transition Function

The transition function of a finite state time machine defines conditions to set or reset
flip-flops. It is implemented by a sequence of Boolean expressions that depend on the
coding of states, input signals and timers.

Consider the transition from Blocked to Stopped in Fig. 4, described formally as:
δ (Blocked, S)= Stopped. The transition occurs in a state such that M1= 0 and M2= 0
(Table 1), when S= 0. After the transition has occurred, the state changes to the one, in
which M1= 1 and M2= 0 and M3= 0 and M4= 0. So, the transition is implemented by
setting M1 flip-flop and resetting M3, M4:

M2M1SM4

M2 M1 SM3

M2 M1 S M1

⋅⋅=
⋅⋅=
⋅⋅=

 Res
 Res

Set

M4M3M2M1t2

M4M3M2 M1 t1

⋅⋅⋅=
⋅⋅⋅=

Set
Set

 Automatic Code Generation for PLC Controllers 313

Similarly, to implement the transition from Bottle Filling to Blocked one must reset
M1 (M2 is reset in Bottle Filling, the values of M3 and M4 are insignificant). Hence:

Boolean expressions that implement the other transitions by setting and resetting
particular flip-flops can be defined similarly.

In order to ensure the atomicity of transitions, a set of secondary flip-flops can be
used, assigned on a one-to-one basis to the primary flip-flops that are used to encode
the system states. The secondary flip-flops store the next state of the system, calcu-
lated by the execution of Boolean expressions, until the computation of all the expres-
sions has been finished. The next state is then converted into the current state by
copying the state of secondary flip-flops to the primary flip-flops [6].

There are four flip-flops in Table 1. Denote the secondary flip-flops: M11 … M14,
respectively. A complete sequence of Boolean expressions that implement the transi-
tion function can be defined as follows:

It can be noted that the expressions to set timers have been placed in the sequence
before the expressions that implement the transition function. A PLC controller sam-
ples all the input signals at the beginning of each program cycle, before executing any
Boolean expressions. This way the input signals are up-to-date, but stable during the
entire program execution. The output of a timer can also be used as an input to ex-
pressions. Therefore the timers are processed before the computation of expressions
that implement the transition function can start.

The functions can be minimized using the standard rules of Boolean algebra, e.g.:

4.6 Filling Up the State Space

The requirement for high dependability of a control program cannot be fulfilled with-
out a planned reaction to faults that can develop during the program execution.

M4M3M2M1t2P RP M1 ⋅⋅⋅⋅⋅+⋅=)(Res

M4MM2M1Pt2)R(M11 ⋅⋅⋅⋅⋅+= 3 Res(b5)

M14M4
M13M3
M12M2
M11M1

M2M1SM4M3M2M1RPM14

M2M1SM4MM2M1FRPM13

M2M1PM12

M4MM2M1t2)PRP(M11

M4M3M2M1RPSM14

MMM2M1t1PM13

M2M1PM12

M2M1SM11

M4M3M2M1t2

M4M3M2 M1 t1

=
=
=
=

⋅⋅+⋅⋅⋅⋅⋅=
⋅⋅+⋅⋅⋅⋅⋅⋅=

⋅⋅=
⋅⋅⋅⋅⋅+⋅=

⋅⋅⋅⋅⋅⋅=
⋅⋅⋅⋅⋅=

⋅⋅=
⋅⋅=

⋅⋅⋅=
⋅⋅⋅=

 (d4)
 (d3)
 (d2)
 (d1)

...
 Res(b8)

3 Res(b7)

 Res(b6)
3 Res(b5)

Set b4)(

43Set (b3)
Set)2b(

Set (b1)
Set (a2)

Set (a1)

314 K. Sacha

Consider a failure that sets an improper value of a primary flip-flop and leads to a
faulty combination that does not correspond to any valid state of the system [6]. Such
a combination of flip-flops that is not a valid system state can be detected automati-
cally. Then, a policy of state recovery must exist, which returns the system to a valid
and safe state. One choice of such a policy is entering a safe stop position, if the one
exists in the application domain. To implement such a policy, the next state of the sys-
tem must be verified before becoming the current state. If the computed next state ap-
pears invalid, it is discarded, and the system is stopped in a safe position.

In order to implement such a fail-stop strategy an auxiliary flip-flop can be set tem-
porarily if a faulty next state was observed. If this is the case, the primary flip-flops
are reset to the safe stop position, in which the automaton waits for being restarted.

In the bottling line example, all the combinations of flip-flops such that M1= 0 and
M2= 1 are not used and do not correspond to any valid state. On the other hand, a safe
stop position exists and corresponds to the state Blocked. A sequence of Boolean ex-
pressions that implement the fail-stop strategy can be written as follows:

4.7 Implementing the Output Function

The output function defines conditions to set or reset the output signals in relation to
the current state of the finite state time machine. It is implemented by a sequence of
Boolean expressions that depend on the coding of states. These expressions must be
computed at the end of the program cycle, after copying the state of secondary flip-
flops to the primary flip-flops – this way the physical outputs of a PLC will be set
consistently with the computed current state of the system as soon as possible.

A complete sequence of Boolean expressions that implement the output function of
the bottling line controller can be defined as follows:

4.8 Building a Program

The sequence of Boolean expressions, generated by an automatic tool from a state
diagram, or a set of state diagrams, defines in all detail a program for a PLC. Such a
program can be expressed in the language of a ladder diagram or an instruction list
[1,8]. Each expression is converted into a single line of the ladder. Disjunction of
terms is represented by parallel branches within the line, while conjunction of sym-
bols is represented by serial elements within a given branch. Negation of an argument
is implemented by a normally closed contact. Each timer symbol is implemented by a
separate timer provided by the language. A part of the program for a bottling-plant
controller is shown in Figure 5.

M5 M14 M4

M5 M13 M3

M5 M12 M2

M5 M11 M1

M12M11 M5

⋅=
⋅=
⋅=

⋅=
⋅=

)4d(

)3d(
)2d(
)1d(
)1c(

M4M2M1M4M3M2M1M4M3M2M1T

M4M3M2M1Z

M4M3M2M1G

⋅⋅=⋅⋅⋅+⋅⋅⋅=
⋅⋅⋅=
⋅⋅⋅=

 (e3)

 (e2)

 (e1)

 Automatic Code Generation for PLC Controllers 315

Fig. 5. A part of the program of a bottling line controller

Finite state time machine can also be implemented using a procedural language,
e.g. C. A description of the conversion process is outside the scope of this paper.

5 Conclusions

This paper describes a method for automatic generation of code for PLC controllers.
The process of converting a specification into a program code is defined formally, us-
ing a model of finite state time machine. The method has the following advantages:

• Graphical requirements specification, based on a subset of UML state diagrams.
• Formal model of the specification with formally defined meaning and behavior.
• Formal definition of the conversion process.
• The potential for formal analysis using a temporal logic of Duration Calculus.

 A disadvantage is complexity that results from exponential growth of the sets of in-
put symbols and states. However, the concept of input symbol helps in making the
specification unambiguous, and the concepts of hierarchical state diagram and history
indicator make part of the state space invisible to the modeler. The full size of the

(a2)
M1 M2

t2

(b1)
M1 M2

S
M11 S

(b5) R

M11

t2

M1

M3

R M2 M3

(c1)
M12 M11 M5

(d1)
M11 M5 M1

(d2)
M2 M12 M5

(a1)
M1 M2

t1
M3

(b2)
M1 M2

S
M12 P

(b3)
M1 M2

S
M13 t1 M3 M4

M4

M4

(b4)
R M1

S
M14 S M2 M3 M4

M4

P

P

P

316 K. Sacha

state space appears only at the level of a finite state time machine. Appropriate repre-
sentation can make automatic verification of systems of 1020 states feasible [9].

Models and methods that are based on the theory of finite state machines are rec-
ommended by IEC for modeling and developing safety related systems [10].

The method has been tested manually in a student lab, where the students had to
develop programs (ladder diagrams) executed finally by Siemens S7 PLC controllers.
The method worked well, and the model of a state diagram proved to be well suited to
the education profile of the software engineering students working in the lab.

A version of an automatic tool for program generation is currently being tested.
The tool inputs UML state diagrams, generated by Rational Rose [11], and outputs the
ladder diagrams for Siemens Step 7 programming environment [8]. A huge advantage
of the tool over the prototype generation feature of Rational Rose itself, is simplicity –
once a state diagram has been developed and validated, the generation process re-
quires virtually no effort of the developer.

The plans for future work are aimed at the application of Duration Calculus formu-
lae for proving real-time properties of finite state time machines. The other goal is to
cover concurrent operations that are allowed in the UML-based state diagrams.

References

1. IEC 1131-3, Programmable controllers – part 3: Programming languages, IEC (1993)
2. Douglass, B.P.: Real-Time UML, Addison-Wesley, Reading, Massachusetts (1998)
3. Alur, R., Dill, D.L.: Automata-theoretic verification of real-time systems. In: Formal

Methods for Real-Time Computing, Trends in Software Series. John Wiley & Sons (1996)
55-82

4. Dierks, H.: PLC-Automata: A New Class of Implementable Real-Time Automata. In: Ber-
tran, M., Rus, T. (eds.): Transformation-Based Reactive Systems Development. LNCS,
Vol. 1231. Springer-Verlag, Berlin (1997) 111-125

5. Chaochen, Z.: Duration Calculi: An overview, LNCS, Vol. 735, Springer-Verlag, Berlin
(1993) 256-266

6. Sacha, K.: A Simple Method for PLC Programming. In: Colnaric, M., Adamski, M., W -
grzyn, M. (eds): Real-Time Programming 2003, Elsevier (2003) 27-31

7. Sacha, K.: Dependable Programming Using Statechart Models, Proc. 29th IFAC Workshop
on Real Time Programming, Istanbul (2004)

8. Siemens, SIMATIC S7-200 Programmable Controller, System manual, Siemens (1998)
9. Burch, J.R., Clarke E.M., McMillan, K.L., Dill, D.L., Hwang, L.J.: Symbolic model

checking: 1020 states and beyond. Information and Computation, Vol. 98,2 (1992) 142-170
10. IEC 61508, Functional Safety: Safety-Related Systems, IEC, 1998/2000
11. Rational Rose Corporation, http://www.rational.com/product/rose

R. Winther, B.A. Gran, and G. Dahll (Eds.): SAFECOMP 2005, LNCS 3688, pp. 317 – 329, 2005.
© Springer-Verlag Berlin Heidelberg 2005

The TACO Approach for Traceability and
Communication of Requirements

Terje Sivertsen1, Rune Fredriksen1, Atoosa P-J Thunem1,
Jan-Erik Holmberg2, Janne Valkonen2, Olli Ventä2, and Jan-Ove Andersson3

1 Institute for Energy Technology, Software Engineering Laboratory, PB 173,
NO-1751 Halden, Norway

{terje.sivertsen, rune.fredriksen, atoosa.p-j.thunem}@hrp.no
2 VTT Industrial Systems, P.O. Box 1301, FIN-02044 VTT, Finland

{jan-erik.holmberg, janne.valkonen, olli.venta}@vtt.fi
3 Ringhals AB, Barsebäck Kraft, P.O. Box 524, SE-246 25, Löddeköpinge, Sweden

jan-ove.andersson@ringhals.se

Abstract. This paper outlines the main achievements of the TACO project. The
overall objective of the TACO project was to improve the knowledge about
principles and best practices related to the issues concretised in the TACO
preproject. On the basis of experiences in the Nordic countries, the project
aimed at identifying the best practices and most important criteria for ensuring
effective communication in relation to requirements elicitation and analysis,
understandability of requirements to all parties, and traceability of requirements
through the different design phases. It is expected that the project will provide
important input to the development of guidelines and establishment of
recommended practices related to these activities.

1 Introduction

The title of the reported project is “Traceability and Communication of Requirements
in Digital I&C Systems Development”, abbreviated TACO. The project was funded
by Nordic nuclear safety research (NKS) and the project number was
NKS_R_2002_16.

The overall objective of the TACO project was to improve the knowledge on
principles and best practices related to the issues concretised in the preproject. On the
basis of experiences in the Nordic countries, the project aimed at identifying the best
practices and most important criteria for ensuring effective communication in relation
to requirements elicitation and analysis, understandability of requirements to all
parties, and traceability of requirements through the different design phases. It is
expected that the project will provide important input to the development of
guidelines and establishment of recommended practices related to these activities.

The overall aim of the first phase of the project, the TACO preproject, which was
carried out in the second half of 2002, was to identify the main issues related to
traceability and communication of requirements in digital I&C systems
development. By focusing on the identification of main issues, the preproject
provided a basis for prioritising further work, while at the same time providing some

318 T. Sivertsen et al.

initial recommendations related to these issues. The establishment of a Nordic expert
network within the subject was another important result of the preproject.

The project activities in 2003 constituted a natural continuation of the preproject,
and focused on the technical issues concretised in the preproject report. The work
concentrated on four central and related issues, viz.

• Representation of requirements origins
• Traceability techniques
• Configuration management and the traceability of requirements
• Identification and categorisation of system aspects and their models

The results from the preproject and the activities in 2003 were presented at the first
TACO Industrial Seminar, which took place in Stockholm on the 12th of December
2003. The seminar was hosted by the Swedish Nuclear Power Inspectorate (SKI).

In 2004, the work has focused on providing a unified exposition on the issues
studied and thereby facilitating a common approach to requirements handling, from
their origins and through the different development phases. Emphasis has been put on
the development of the TACO Traceability Model. The model supports
understandability, communication and traceability by providing a common basis, in
the form of a requirements change history, for different kinds of analysis and
presentation of different requirements perspectives. Traceability is facilitated through
the representation of requirements changes in terms of a change history tree built up
by composition of instances of a number of change types, and by providing analysis
on the basis of this representation. Much of the strength of the TACO Traceability
Model is that it aims at forming the logic needed for formalising the activities related
to change management and hence their further automation.

The work was presented at the second TACO Industrial Seminar, which took place
in Helsinki on the 8th of December 2004. The seminar was hosted by the Finnish
Radiation and Nuclear Safety Authority (STUK).

2 The TACO Approach

The present chapter introduces the TACO common approach to requirements
handling, called the TACO Shell. The idea is that the shell is a framework for
traceability and communication of requirements, which can be filled with different
contents to reflect the needs in different application areas. To facilitate its practical
use, the TACO Shell is provided with guidelines, comprising ingredients and recipes,
for filling and utilizing the TACO Shell. The TACO approach to requirements change
management is based on a mathematically well-founded traceability model, called the
TACO Traceability Model, where the introduction, changes, and relationships
between different requirements, design steps, implementations, documentation, etc.
are represented in terms of an extended change history tree. The traceability model
adopted aims at forming the logic needed for formalising the activities related to
change management and hence their further automation. By complementing the
model with appropriate terminology, data structures and guidelines for use, the model
can be adapted to the different needs related to management of changes in computer-
based systems, including safety-critical and security-critical systems.

 The TACO Approach for Traceability and Communication of Requirements 319

2.1 The TACO Shell

The TACO Shell is the overall TACO framework for requirements handling, and
represents a generic approach to lifecycle-oriented, traceability-based requirements
management. The TACO Shell comprises the overall methodology, the TACO
Traceability Model, and the different guidelines related to its contents (ingredients)
and use (recipes). By varying the ingredients and recipes, the shell can be used for the
development of different kinds of target systems, with different requirements origins,
different emphasis on quality attributes, and different selection of dependability
factors.

2.2 The TACO Traceability Model

The TACO Traceability Model adopts several of the ideas to fine-grained traceability
presented in [3]. Accordingly, traceability is facilitated by representing the
requirements changes in terms of a change history tree built up by composition of
instances of seven different change types, and to provide analysis on the basis of this
representation. The change types correspond to the following generic actions
performed on requirements, or more generally, paragraphs (from [3]):

• Creating a new paragraph with no prior history.
• Deleting an existing paragraph.
• Splitting an existing paragraph, thereby creating a number of new paragraphs.
• Combining existing paragraphs by a new paragraph.
• Replacing existing paragraphs by a new paragraph.
• Deriving a new paragraph from existing paragraphs.
• Modifying a paragraph without changing its meaning.

The change history can be represented by a tree where the paragraphs constitute
the nodes. The tree representation constitutes an appropriate basis for different kinds
of analysis, including finding

• all initial paragraphs;
• all deleted paragraphs;
• all applicable paragraphs;
• the complete history of a paragraph;
• the complete backwards traceability from a set of paragraphs;
• the complete forwards traceability from a set of paragraphs;
• the legality of a proposed requirements change.

The possibility to find the backwards or forwards traceability from a set of
requirements facilitates backwards and forwards branch isolation and analysis of the
change history. The versatility of the representation can be further improved by
extending the representation of the paragraphs to include different parameters that
classify the requirements, provide additional information, etc. Possible parameters are
discussed later in the report.

When it comes to the representation of the actual parameters, it is important to
distinguish between (1) the information that is essential to identify the paragraph, and
(2) the various information associated to this parameter. Conceptually, and from a

320 T. Sivertsen et al.

perspective of modularity, it is useful to let the nodes in the change history tree
represent the necessary and sufficient information related to the identity of a
paragraph. In the TACO Traceability Model, a paragraph is represented by the
combination of a unique identifier for this paragraph and a version number to
distinguish several versions of the same paragraph. At any time, only the latest
version of a paragraph can be an applicable paragraph. That is, a new version of a
paragraph is introduced only if this replaces old versions. In any case, it is possible to
make duplicates of a paragraph when these are treated as different paragraphs. This
can also be used for representing different variants of the same requirement, possibly
with “application conditions” attached as guidelines to every single variant. Each
variant will however be represented with a separate paragraph.

It is important to note that concepts similar to those described above for the TACO
Traceability Model can be found in commercial tools for version control and
configuration management. Although the change types might have other names, they
typically resemble those defined here. In general, however, these tools do not offer an
identifiable, formally defined traceability model, and leave to the user to define the
actual semantics underlying the different change types. The strength of the TACO
Traceability Model is that it aims at forming the logic needed for formalising the
activities related to change management and hence their further automation.

Conceptually, we can think of a node of the change history tree as a versioned
paragraph, represented by a pair of a paragraph identifier and a version number. In the
following we will use the change history in Figure 1 as an example.

The development of the requirements in Figure 1 starts with the introduction of the
paragraphs p1, p2, and p3. At later stages, another two new paragraphs are
introduced, viz. p5 and p11. All the other paragraphs are developed on basis of these
five paragraphs. Paragraphs p1 and p2 are first modified and then combined into a
new paragraph p4. After a modification, this paragraph is split into four separate
paragraphs p7 to p10. The latter of these paragraphs is modified and then combined
with p6, originally derived from paragraphs p3 and p5, giving paragraph p12. Note
that, at any point in the development of the paragraphs, at most one version of a
paragraph is applicable (in the sense that it is the valid version of the paragraph). It is
certainly possible to represent the change history tree textually in such a way that the
temporal relationships between the different changes are maintained.

Let us now consider the other information attached to a paragraph. As has been
argued in the foregoing, it is not necessary to represent this information in the change
history tree. The purpose of the tree is to give a complete representation of the
changes and how they are related to each other. What about the other information,
including the actual text of the paragraph? Formally, we can think of these relations in
terms of some basic mathematical concepts:

• Sets: These are finite collections of objects of some type, and can be used for
representing subsets of the paragraphs. By way of example, the classification of
paragraphs with respect to Business plan, Requirements document, Design
specification, etc, can be represented by means of separate, maybe overlapping sets
corresponding to the different classification terms. Finding, say, all Business plan
related requirements is then trivial, since they are given by the corresponding set.
Checking whether a requirement belongs to the Business plan is also easy and can

 The TACO Approach for Traceability and Communication of Requirements 321

Fig. 1. The example change history

 be done simply by checking whether the given paragraph is a member of the
corresponding set. On the other hand, finding the class of a given paragraph cannot
be done by simple look-up but involves checking all the different sets for
membership.

• Mappings: These are functions from a source set to a target set, and can be used for
assigning information to the paragraphs in a simple look-up fashion. With this
solution, e.g. the classification of paragraphs can be represented by mappings from
the paragraphs to their classification. Finding the classification of a requirement is
then simple, since it reduces to looking up the classification of that requirement.
Finding all requirements is possible, but less trivial than for sets, as it involves
selecting all requirements that are mapped to a certain term. On the other hand, the
concept of relation is more convenient if there may be more than one class for a
requirement.

• Relations: These are more general than mappings, since they allow an element in
the source set to be associated to more than one element in the target set. With this
solution, finding the classification of a requirement involves finding all elements in
the target set (the classes) that are related to the given requirement. Finding all
requirements related to a certain class can alternatively be understood as the
inverse relation.

add add add

(p1,v0) (p2,v0) (p3,v0)

modify modify modify

(p1,v1) (p2,v1) (p3,v1)

combine modify add

(p4,v0) (p3,v2) (p5,v0)

modify derive

(p4,v1) (p6,v0)

split modify

(p7,v0) (p8,v0) (p9,v0) (p10,v0) (p6,v1)

modify delete modify modify

(p7,v1) (p10,v1) (p6,v2)

modify modify add combine

(p7,v2) (p8,v1) (p11,v0) (p12,v0)

replace modify modify

(p13,v0) (p11,v1) (p12,v1)

add add add

(p1,v0) (p2,v0) (p3,v0)

modify modify modify

(p1,v1) (p2,v1) (p3,v1)

combine modify add

(p4,v0) (p3,v2) (p5,v0)

modify derive

(p4,v1) (p6,v0)

split modify

(p7,v0) (p8,v0) (p9,v0) (p10,v0) (p6,v1)

modify delete modify modify

(p7,v1) (p10,v1) (p6,v2)

modify modify add combine

(p7,v2) (p8,v1) (p11,v0) (p12,v0)

replace modify modify

(p13,v0) (p11,v1) (p12,v1)

322 T. Sivertsen et al.

Sets can be considered as being implemented as simple lists. Mappings and
relations can be considered as being implemented as tables. As we will see in the
continued discussion, these representation concepts will suffice for representing all
information associated to the requirements. It is of course possible to represent the
same information in other ways as well, as long as consistency is maintained.

A basic piece of information related to a requirement is certainly the statement
(phrasing) of the requirement. Assuming that (at most) one statement is associated to
each requirement, we may think of this information as being available by means of a
mapping from versioned requirements to their statements, see Figure 2.

Table 1. Mapping from requirements to their statements

Requirement Statement
(p1,v0) <Statement of version v0 of

paragraph p1>
(p1,v1) <Statement of version v1 of

paragraph p1>
(p2,v0) <Statement of version v0 of

paragraph p2>
... ...

(p13,v0) <Statement of version v0 of
paragraph p13>

As is evident from Table 1, the statement of a given requirement can be found by
simple look-up in the table implementing the mapping. The table can be utilized in
different ways. By way of example, finding all relevant requirements can be found by
filtering the mapping with respect to the applicable paragraphs to find the subset of
the mapping that relates to applicable paragraphs only. Filling in the relevant
information is an obvious task of an information system designed to support the use
of the model.

Other useful information can be represented in the same way. By way of example,
a recurrent problem with modernization projects is the difficulties of recapturing both
the “what” and the “why” of a requirement. In the TACO Traceability Model, the
“what” is covered by Table 1. In a similar way, the “why” of the requirements can be
covered by a similar mapping from requirements to comments giving information on
the background, motivation, reasons, etc. for including the requirements.

2.3 Utilization

A possible utilization of the TACO Traceability Model is in the identification of
relative influences, correlations, and conflicts between safety/security
countermeasures and other dependability factors. On this basis, guidelines to the use,
implementation, and verification of the different change types can be developed.
These guidelines would have to reflect the identified relative influences, correlations,
and conflicts in the sense that they provide a better basis for controlling the effects of
changes. The guidelines should include descriptions on how different techniques can
be applied for this purpose, such as the use of formal specification and proof for

 The TACO Approach for Traceability and Communication of Requirements 323

demonstrating the correct derivation of requirements, coding standards for
implementation of specific design features, etc.

The utilization and applicability of the TACO Traceability Model will be further
explored and documented by cooperation with other projects and partners. The results
will be collected within the framework of the Nordic project MORE (Management of
Requirements in NPP Modernization Projects).

On basis of compiled experiences on the problem of handling large amounts of
information in relation to Nordic modernization projects, the MORE project will
investigate how the approach to requirements management developed in the TACO
project can be utilised to handle large amounts of evolving requirements in NPP
modernization projects. It is expected that the activity will provide important input to
the development of guidelines and establishment of recommended practices related to
the management of requirements in such projects. This kind of input is of high
importance to a common understanding between vendors, utilities, and regulators
about the proper handling of requirements in the digital I&C systems development
process, and consequently to the successful introduction of such systems in NPPs.

3 TACO Guidelines

The TACO project aims at providing input to the development of guidelines and
establishment of recommended practices related to requirements elicitation and
analysis, understandability of requirements to all parties, and traceability of
requirements through the different design phases. In this chapter, guidelines will be
presented to the practical use of the TACO Shell in activities related to the different
lifecycle phases. The guidelines can be seen as comprising ingredients and recipes for
filling and utilizing the TACO Shell. By gradually complementing the TACO Shell
and the TACO Traceability Model with appropriate terminology, data structures and
guidelines for use, the model can be adapted to the different needs related to
management of changes in computer-based systems, including safety-critical and
security-critical systems. By way of example, the model can organize communication
and analysis of requirements by generating subsets of the change history showing the
backwards or forwards traceability of given requirements. The TACO guidelines help
to utilize these possibilities in practical work.

By varying the ingredients and recipes, the TACO Shell can be used for the
development of different kinds of target systems, with different requirements origins,
different emphasis on quality attributes, and different selection of dependability
factors. The TACO guidelines can be developed on a continual basis to fit the use,
implementation, and verification of the different change types. The guidelines should
include descriptions on how different techniques can be applied, such as the use of
formal specification and proof for demonstrating the correct derivation of
requirements, coding standards for implementation of specific design features, etc.

The mathematical underpinnings of the TACO Guidelines is described in Sivertsen
et al. [4] in terms of a functional specification of the change history tree, the different
change types and different kinds of analysis that can be performed on basis of this
representation. The TACO Traceability Model is specified in two layers, reflected in a
hierarchy of two specifications. In the “lower” specification, the different change

324 T. Sivertsen et al.

types are specified inductively as generators, thus providing a data structure for the
change history. At the top of this specification, the different change types are
specified as operators, checking that the given change is legal and producing a lower
layer representation together with the set of applicable paragraphs. By applying these
operators, only legal change histories are represented.

3.1 Validity of Requirements Changes

Software development needs to deal with changes to the requirements, also after the
requirements specification phase ideally is completed and the requirements frozen.
The evolutionary nature of software implies that changes will have to be anticipated.
Other changes may be necessary due to our evolving understanding about the
application under development.

One of the lessons learned in the software engineering area is that software should
be designed for change. The focus in the present report is on how to manage the
evolution of the requirements in this situation. The present section deals with how the
TACO Traceability Model can be utilized in the validation of the changes
representing this evolution.

The TACO Traceability Model is based on a number of change types that can be
employed to manage requirements changes throughout the life cycle of a system.
Each change introduced in the life cycle should in principle be validated. Depending
on the level of rigidity or formality employed, the validity of a change can be done in
a variety of ways, from a simple inspection to a formal mathematical proof.
Notwithstanding these differences, we will in the following concentrate on what
validity in general means for the different change types. Validity should not be
confused with the legality of changes. While validation concerns the semantics of the
changes, the legality of a change can be checked mechanically from the structure of
the change history tree.

Creating: Applied on requirements, creating a new paragraph with no prior history
involves introducing a new requirement. The validity of the requirement involves
both its correctness with respect to its intended meaning, its completeness with
respect to its coverage of its intended meaning, and its consistency with other
requirements. In short, the validity of a new requirement requires that it faithfully
reflects the intended meaning and that it is not in conflict with other requirements.
This is the only change type that is allowed to introduce new requirements or new
aspects of requirements that are not already covered by existing paragraphs.

Deleting: Deleting an existing paragraph involves that a requirement in fact is
withdrawn from the set of requirements. A requirement can be deleted if either the
requirement in itself is no longer valid, or it is covered by other requirements. To
demonstrate the validity of the change therefore either involves showing that it is the
intention to withdraw the requirement as such or showing that it can be derived from
other requirements.

Splitting: Splitting an existing paragraph involves creating a number of new
paragraphs that collectively replaces the given one. Applied on requirements, a
paragraph split is valid only if the requirements given in the new paragraphs together

 The TACO Approach for Traceability and Communication of Requirements 325

cover the replaced requirement, but not more. In other words, splitting a paragraph is
not valid if the new paragraphs require more or less than the replaced paragraph.

Combining: Combining a set of existing paragraphs involves creating a new
paragraph on basis of the existing ones, without deleting any of the existing
paragraphs. Applied on requirements, a combination of paragraphs is valid only if the
new paragraph covers the given paragraphs, but not more. In other words, combining
a set of paragraphs is not valid if the new paragraph requires more or less than the
given paragraphs.

Replacing: Replacing a set of existing paragraphs involves creating a new paragraph
that replaces the existing ones. The validity criterion is identical to that of
combination. Replacing a set of paragraphs and splitting an existing paragraph are
inverse changes.

Deriving: Deriving a new paragraph from a set of existing paragraphs involves
creating a new paragraph on the basis of the existing ones, without deleting any of the
existing paragraphs. Applied on requirements, deriving a new paragraph is valid only
if the requirement is one of the possible results/consequences of the requirements it is
derived from.

Modifying: Modifying a paragraph should involve no changes to its meaning. The
new requirement should therefore cover the replaced requirement, but not more.

Attempts on demonstrating the validity of individual changes may reveal flaws in
the requirements management, such as introducing new paragraphs in a paragraph
split that actually adds new requirements that are not covered by the replaced
requirement. Detecting such flaws can be utilized in the requirements change process
to produce an appropriate requirements change history, such as specifying such added
requirements in terms of separate changes of type creating new paragraphs with no
prior history. Similarly, insufficient coverage of the replaced requirement in a split
change can be made “clean” by complementing the split with separate changes of type
deleting an existing paragraph. In this way, an invalid change can be replaced by a
set of valid changes, and the need for demonstrating the validity of the different
changes can be made explicit.

3.2 Formal Review and Test of Requirements

Due to the high costs associated with defects slipping through the requirements
specification phase, formal review and test of the requirements documents are usually
highly prioritised activities. Industrial experience shows that very often a significant
fraction of the most critical software defects are introduced already in the
requirements specification. Of this reason, it is generally recommended to carry out
tests on this specification that are as near as exhaustive as possible, and for this
purpose, the use of a formal approach is often advocated.

Requirements analysis and requirements validation have much in common, but the
latter type of activity is more concerned with checking a final draft of the
requirements document which includes all system requirements and where known
incompleteness and inconsistency has been removed, see [1]. As such, it should be

326 T. Sivertsen et al.

planned and scheduled in the quality plan for the project, and be carried out in
accordance with good quality assurance practice.

One of the theses behind the present report is that the TACO Traceability Model
can be used for revealing and correcting several kinds of shortcomings discovered
during the validation of the requirements document. This is true in particular for
problems related to lack of conformance with the standards employed. The validation
of the requirements against a given standards can be carried out by utilizing the
information included about the origins of the requirements.

Such a validation could include the following steps:

1. Add all the requirements from the given standard by creating new paragraphs. If
certain requirements are found irrelevant, the exclusion of these can be made
explicit by deleting these paragraphs. This also makes explicit the need to validate
their exclusion.

2. Check that the applicable and deleted paragraphs together constitute the complete
set of requirements given in the standard. This can partly be automated by keeping
these requirements on file.

3. Validate the change history related to the applicable paragraphs originating from
the standard, utilizing the guidelines listed in section 3.1.

4. Validate the deletion of paragraphs originating from the standard, utilizing the
guidelines listed in section 3.1.

Using the TACO Traceability Model in validating the requirements document may
be done in the context of a formal requirements review meetings, in accordance with
general guidelines to such meetings. Requirements validation may also take other
forms, like prototyping, model validation, and requirements testing, but the focus in
the TACO project has been on the utilization of the requirements change history in
the review meetings. For further reading on formal review meetings, see [1].

Requirements reviews are conventionally carried out as a formal meeting involving
a group representing the stakeholders. The general idea is that the system
stakeholders, requirements engineers and system designers together check the
requirements to verify that they adequately describe the system to be implemented.
Traceability and requirements changes are of course only part of the concern at such a
meeting. The TACO Traceability Model may however provide important assistance
for discovering requirements problems related to requirements conflicts or lack of
conformance to standards and other requirements origins.

In the end, the requirements traceability is itself a concern of the requirements
review. As discussed in [1], the requirements should be unambiguously identified,
include links to related requirements and to the reasons why these requirements have
been included. Furthermore, there should be a clear link between software
requirements and more general systems engineering requirements. This relates to the
obvious fact that the software engineering activity is part of the much larger systems
development process in which the requirements of the software are balanced against
the requirements of other parts of the system being developed [2]. Furthermore, the
software requirements are usually developed from the more general system
requirements, and thus the traceability and consistency with these requirements is a
basic premise for a successful process and its resulting product.

 The TACO Approach for Traceability and Communication of Requirements 327

3.3 Correctness of Implementation

The correctness of implementation is a quality that characterizes the ability of the
application to perform its function as expected [2]. Reasoning about correctness
therefore requires the availability of the functional requirements, and we say that the
application is functionally correct if it behaves according to the specification of these
requirements.

In principle, correctness is in this context a mathematical property that establishes
the equivalence between the software and its specification. In practice, the assessment
of correctness is done in a more or less systematic manner, depending on how
rigorously the requirements are specified and the software developed. In any case, the
assessment requires that the requirements can be traced forward to their
implementation, and vice versa.

The TACO Traceability Model supports the assessment of correctness by relating
the requirements and their implementation through the change history tree. This
relationship can be utilized in both a forwards and backwards fashion. The TACO
shell provides both forwards and backwards traceability analysis, without requiring
separate links for forwards and backwards traceability. The different types of analysis
can be defined on the basis of one and the same representation of the change history
tree.

In general, a forward traceability approach to assessment of correctness would take
the specified requirements as starting point, and then demonstrate that all the
requirements have been correctly implemented. Analogously, a backward traceability
approach would take the implementation as starting point and check the consistency
with the requirements. Of these two, the forward approach probably fits better with
respect to a conventional approach to correctness assessment.

In practice, using the TACO Traceability Model for assessment of functional
correctness can be done in terms of the following steps.

1. For each requirement introduced, indicate whether it is a functional requirement.
This can be done by means of mappings.

2. For each implementation of a requirement, indicate - by means of mappings - that
it is an implementation.

3. For each functional requirement introduced, check that the forward traceability
leads up to an implementation of this requirement. This can be done by:

4. For each functional requirement, check that the requirement is correctly
implemented by validating the sequence of changes leading from the requirement
to its implementation.

3.4 Requirements Understanding

One important aspect of the requirements understandability relates to the
understanding of the interface between the application to be developed and its
external environment (such as the physical plant). This requires that the software
engineers understand the application domain and communicate well with the different
stakeholders. To facilitate this communication, it might be necessary to specify the
requirements in accordance with the different viewpoints the stakeholders have to the
system, where each viewpoint provides a partial view of what the system is expected

328 T. Sivertsen et al.

to provide. As a consequence, the requirements specification will cover different
views on the same system, giving an additional dimension to the question of
consistency between the different requirements. An important task of the software
engineers is to integrate and reconcile the different views in such a way that
contradictions are revealed and corrected.

In order to cope with the complexity of the resulting set of requirements, it is
advisable to classify and document the requirements in accordance with the views
they represent. This way of separating the concerns can provide a horizontal, modular
structure to the requirements. Modularity provides several benefits in the
requirements engineering process, including the capability to understand the system in
terms of its pieces. This first of all relates to the fact that modularity allows separation
of concerns, both with respect to the different views represented by the different
stakeholders’ expectations to the system and to different levels of abstraction. This
makes it easier for the different stakeholders to verify their requirements, while at the
same time providing a means for handling the complexity of the full set of
requirements. The TACO Traceability Model can be adopted to facilitate this
separation of concerns by relating requirements to the views they reflect. This can be
utilized in different kinds of analysis of the requirements throughout the development
of the system.

Some of the stakeholders may be unable to read the types of specifications
preferred by the software engineers or mandated for the application. In such cases, the
needs of the different stakeholders can be reconciled by providing (horizontal)
traceability links between the, possibly formal, specifications used by the software
engineers and more informal, natural language based expression of the same
requirements. One could even consider providing links between the requirements and
the user manual within the same traceability model. This could be utilized both for
communication purposes and for the purpose of developing the user manual in
parallel to the engineering of the requirements, which in some cases may be a
recommended practice.

3.5 Implementation

The TACO Guidelines can be implemented in a variety of commercial or non-
commercial tools extending the tools’ capabilities by supporting relationship to
diverse requirements sources in a formalized way and not only support the software
development process from the specified requirements.

4 The TACO Network

The TACO project organisation is intended to constitute a Nordic expert network on
requirements elicitation, specification, and assessment for digital I&C. The network
provides a forum for exchanging experiences and research results on the questions to
be addressed by the project, and provides a basis for evaluating the relative merits of
the different practices, the relative importance of identified criteria, etc. A related
concern is to facilitate knowledge transfer from other areas applying equipment that
are used in NPPs.

 The TACO Approach for Traceability and Communication of Requirements 329

The emphasis on best practices and identified success criteria means that the
project needs to deal with real cases involving the development of a digital I&C
system. By organising the project on basis of a Nordic expert network, the project
contributes to the synthesis of knowledge and experiences, enhancement of
competence on requirements elicitation, specification, and assessment, improved
awareness of alternative practices, a basis for assessing current practices, and an
incentive to search for best practice.

5 Further Work

The results from the TACO project will be utilized in the Nordic project MORE
(Management of Requirements in NPP Modernization Projects, NKS project number
NKS_R_2005_47). The overall objective of MORE is to improve the means for
managing the large amounts of evolving requirements in NPP modernization projects.
On basis of compiled experiences on the problem of handling large amounts of
information in relation to Nordic modernization projects, the project will investigate
how the approach to requirements management developed in the TACO project can
be utilised to handle large amounts of evolving requirements in NPP modernization
projects. While configuration management typically is file based, the TACO
Traceability Model is paragraph based and therefore possibly more adequate for
handling requirements (i.e., a requirement, or a composition of requirements, is
treated as a single paragraph). The research will study how requirements can be
grouped into concepts, and how design patterns can help to achieve this. One
possibility is to utilise requirements (or design) templates, with guidance on how
requirements can be decomposed or composed. The research will clarify how design
patterns and requirements templates can be generated by utilizing the change history
trees of the TACO Traceability Model.

References

[1] G. Kotonya and I. Sommerville, Requirements Engineering: Processes and Techniques
(Wiley, 1998).

[2] C. Ghezzi, M. Jazayeri, D. Mandrioli, Fundamentals of Software Engineering, 2nd edition
(Prentice-Hall, 2003)

[3] P. Lindsay and O. Traynor. Supporting fine-grained traceability in software development
environments. Technical Report No. 98-10, Software Verification Research Centre, School
of Information Technology, The University of Queensland (July 1998).

[4] T. Sivertsen, R. Fredriksen, A. P-J Thunem, J-E. Holmberg, J. Valkonen, O. Ventä, J-O
Andersson. Traceability and Communication of Requirements in Digital I&C Systems
Development. Project Report 2004. NKS_R_2002_16. Nordic nuclear safety research
(NKS, 2004).

An IEC 62061 Compliant Safety System Design
Method for Machinery

Bengt Ljungquist and Thomas Thelin

Department of Communication Systems,
Lund University, Box 118, SE-221 00, Sweden

{bengtl, thomast}@telecom.lth.se

Abstract. The purpose of safety systems is to reduce dangers to hu-
man life or environment to acceptable levels. In order to aid companies
in this when developing safety systems for functional safety of machin-
ery, the standard IEC 62061 has recently been released. The standard
proposes an outlined design method to follow requirements specification.
However, companies that use the standard have to implement a design
method on their own. This paper presents an implementation and en-
hancements to the design method in terms of using state machines and
function block analysis documentation. The state machine connects the
functional safety requirements with ordinary behaviour for equipment
under control. The proposed method is evaluated in an industrial case
and the main results from this indicate that the method works well, but
needs tool support. Hence, the paper presents requirements for such a
tool and discusses how it could be used to develop safety systems.

1 Introduction

Safety means absence from catastrophic consequences on the user(s) and the en-
vironment [1]. A safety-critical system is one by which the safety of equipment
or a plant is assured. Examples of such systems are aeroplanes, nuclear plants
and machinery systems. In order to develop safety-critical systems, structured
methods are needed. Safety-critical development includes all project phases, from
requirements specification with risk analysis, design, implementation, to verifica-
tion and validation of the system. The development often involves both hardware
and software (embedded systems).

This work is performed in a Swedish research project, SafeProd [8], which
purpose is to develop guidelines aiding companies to interpret different safety
standards. The paper describes application of the standard for functional safety
of machinery IEC 62061 [2], which is based on the more general standard IEC
61508 [3]. IEC 62061 addresses both hardware and software safety issues.

There are three objectives of this paper:

– elaborate the design method for safety-related control functions in IEC 62061
– evaluate the proposed design method in an industrial case study
– define features for a tool that aim to help engineers to use the design method.

R. Winther, B.A. Gran, and G. Dahll (Eds.): SAFECOMP 2005, LNCS 3688, pp. 330–343, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

An IEC 62061 Compliant Safety System Design Method for Machinery 331

After the requirements have been specified and before the actual implemen-
tation of the system, the standard points out what should be done, but does not
describe how. Hence, a company that implements the IEC 62061 is not aided on
how to perform the design of the safety-related control functions. Additionally,
the design method is very important in order to achieve the desired quality of
the system. In this paper, we propose and clarify a design method to be ap-
plied when IEC 62061 is used in an industrial safety project. Furthermore, the
method is evaluated in an industrial case and experiences from the evaluation
are discussed. The main result of the evaluation is that the design method is ap-
propriate to use and aid the implementation of safety-related control functions.
However, in order to use it in a large scale, tool support is needed. No such tool
exist today, but this paper outline some tool features.

The outline of the paper is as follows. In Section 2, the IEC 62061 standard
for functional safety of machinery is described briefly including background and
objectives, as well as basic terminology together with process and artefact re-
quirements. Section 3 details the implementation of a design and development
process according to the standard and also provides an example with a result-
ing artefact structure. Section 4 reports from an industrial case study in which
the method was applied and executed. In Section 5 possible features of a tool
supporting the design and development process are outlined. Section 6 then
summarizes the paper with a discussion of results and further work.

2 The IEC 62061 Standard for Functional Safety of
Machinery

2.1 Background

Automation together with requirements for larger production volumes and re-
duced physical effort have resulted in increased demands for Safety-Related Elec-
trical Control Systems (SRECS) in order to achieve machine safety. Development
of these SRECS employing complex electronic technology may be a difficult task
requiring a considerable share of the total machinery development effort. As
a response to these problems, IEC 62061 [2], a standard for safety of machin-
ery and specifically functional safety of safety-related electrical, electronic and
programmable electronic control systems, has been developed.

2.2 Objectives and Scope

IEC 62061 is a standard specific for machinery within the framework of IEC
61508 [3] and it was published in January 2005. It intends to facilitate the perfor-
mance specification of safety-related electrical control systems in relation to the
significant hazards of machines. Furthermore, it defines an approach and provides
requirements to achieve the necessary performance of SRECS. The standard is
intended to be used by machinery designers, control system manufacturers, in-
tegrators and others involved in the specification, design and validation of a

332 B. Ljungquist and T. Thelin

SRECS. The approach and requirements address assigning safety integrity lev-
els, enabling SRECS design, integration of safety-related subsystems and SRECS
validation. Requirements are also provided for information for safe use of SRECS
of machines that can also be relevant to later SRECS life phases.

IEC 62061 provides safety by means of employing SRECS as parts of safety
measures that have been provided to achieve risk reduction and thereby avoid-
ing faults [1]. Additionally, the electrical control system that is used to achieve
correct operation of the machine process contributes to safety by mitigating
risks associated with hazards arising directly from control system failures, i.e.,
tolerating faults [1].

2.3 Basic IEC 62061 Terminology [2]

IEC 62061 has a detailed list of terminology from which we here present only
the most essential for understanding this paper in Table 1.

Table 1. IEC 62061 Terms

Term Description
Safety-Related
Electrical Control
System (SRECS)

Electrical control system of a machine whose failure can result in
an immediate increase of the risk(s)

Safety-Related
Control Function
(SRCF)

Control function with a specified integrity level that is intended to
maintain the safe condition of the machine or prevent an immediate
increase of the risk(s)

Subsystem Entity of the top-level architectural design of the SRECS where a
failure of any subsystem will result in a failure of an SRCF

Function block Smallest element of a SRCF whose failure can result in a failure of
the SRCF. Note that this definition is not equivalent to the function
block as a programmatic concept described in IEC 61131-3 [11]

Electrical control
system

All the electrical, electronic and programmable electronic parts of
the machine control system used to provide, for example, opera-
tional control, monitoring, interlocking, communications, protection
and SRCFs

Safety Integrity
Level (SIL)

Discrete level (one out of a possible three) for specifying the safety
integrity requirements of the SRCFs to be allocated to the SRECS,
where SIL three has the highest level of safety integrity and SIL one
has the lowest. Note that this definition differs from IEC 61508

2.4 Standard Process Requirements

In order to support SRECS design and development, the IEC 62061 standard
imposes a structured development method to be used for design and architecture
elicitation. However, it does not provide detailed guidance of the composition
of such a method but outlines it to include ten steps and provides detailed
requirements for which information to be produced. It is up to the user of the

An IEC 62061 Compliant Safety System Design Method for Machinery 333

standard to implement a method fulfilling these requirements. The first steps
are as follows according to the standard [2]:

1. Identify the proposed SRECS for each SRCF from the safety requirements
specification (SRS)

2. For each function decompose the SRCF into function blocks and create an
initial concept for an architecture of the SRECS

3. Detail the safety requirements of each function block
4. Allocate the function blocks to SRECS subsystems
5. Verification

This paper focuses on these steps since these, this far, have been the scope of
the research project (see Chapter 4) in which this paper has been produced.
However, the standard also outlines a five-step procedure following these steps
concerning subsystem realisation and design.

2.5 Artefact Structure Requirements

IEC 62061 requires that the SRS shall describe the functional safety and safety
integrity requirements of each SRCF to be performed. This includes the condi-
tions of the machine in which the SRCF shall be active. The functional safety
requirements of the SRCF shall then be further decomposed into so called func-
tion blocks forming a logical AND of the SRCF. A function block is defined
as the smallest element of an SRCF whose failure can result in a failure of the
SRCF. They are thus an abstraction of the functional components and should
not be confused with its physical structure. The standard then requires that the
function blocks structure should be documented in terms of:

– A description of the structure
– The safety requirements for each function block
– Inputs and outputs and internal logic of each function block

Furthermore, the standard requires that function blocks shall be allocated to
subsystems, realizing functional safety requirements. Non-functional safety re-
quirements like maintainability and integrity [1] are then captured in the de-
scription of the subsystems. If the safety requirements of the subsystem cannot
be realized with a single component, then the subsystems must be further de-
composed into subsystem elements. When this structure is clear at an element
level, the function blocks are decomposed into function block elements. These
are then mapped onto subsystem elements in a many-to-one relationship with
many function block elements with similar functionality in different SRCFs being
allocated to a single subsystem element. For example, motion sensing in differ-
ent SRCFs is mapped to an inductive motion sensor subsystem. In Fig. 1, an
example artefact structure is provided. For simplicity, the function blocks and
subsystems consisting of only one element have not been illustrated as being
composed of single elements. Hence, the standard provides a structured design
framework in which each part of the safety related electrical control system is
traceable from hazard analysis to physical components of the SRECS.

334 B. Ljungquist and T. Thelin

Fig. 1. Example of a design artefact structure according to the IEC 62061 standard

3 Design and Development Method Implementation

3.1 Process

In Fig. 2, a suggested process implementing the requirements stated in Section
2.4 is shown. This process follows the same basic outline as prescribed by the
standard and have been used in the research project. Below follows step-by-step
details on how these requirements may be implemented. Also, an overview which
artefacts that are related to which documents is provided in Fig. 3.

Step 1 - Refine SRS. The system analyst revises the SRS specified by the
requirements specifier. He/She relates the SRCFs to the behaviour of the EUC
(Equipment Under Control) by using a state machine denoting in which states of
the normal equipment behaviour that the SRCF is active. The IEC 62061 does
not prescribe the SRS to include such a state machine, but it proved important
for method success as described in Section 3.2.

Step input: FBSD
Step output: Refined SRS
Steps 2-3 - Function block analysis and architecture prototyping.

The architecture and design phase starts with the system analyst breaking down
the functional safety requirements into function blocks and documenting them
as required. In this step the system analyst should communicate with system
developers implementing a prototype according to the suggested function block

An IEC 62061 Compliant Safety System Design Method for Machinery 335

Fig. 2. The implemented design process

structure. By this early prototype implementation, it is possible to validate that
the suggested architecture is feasible to implement. The function blocks structure
shall be captured in a function block structure document. In this document,
it shall be specified to which SRCF that each function block is traced. This
facilitates verification since it is possible to trace a safety requirement from
specification to implementation. Furthermore, the function blocks inherit the
SIL of the SRCF they are traced to.

Step input: Refined SRS
Step output: Function Block Structure Document (FBSD)
Step 4 - Allocation of function blocks to subsystems. Finally, the sys-

tem analyst identifies, in terms of physical components, the subsystems needed
to implement allocated function blocks processing their inputs and outputs. Typ-
ically, a subsystem implements many function blocks with similar functionality.
For example logic function blocks of the different safety related control functions
are likely implemented by the same PLC subsystem. This is documented in a
subsystem definition document. For this step it is enough to name the different
subsystems since these will be specified and documented in detail in later steps
(that is steps 6-10).

Step input: FBSD
Step output: Outlined subsystem definition document (SDD) with subsys-

tems named and traced to function blocks.
Step 5 - Verification. A review meeting then takes place together with

the safety requirements specifier and system developers in order to verify safety
requirements and to ensure that the suggested solution is possible to implement.
If the review meeting does not approve the suggested solution, then steps 2-4 are
iterated until the solution is acceptable and approved in a new review meeting.

Step input: Refined SRS, FBSD, Outlined SDD
Step output: Verified SRS, verified FBSD,verified SDD.

3.2 Example SRECS Design - Rotation Speed Supervision

In order to further illustrate the method, a short example is provided below.
This example is partly fictional and partly using some safety functionality as
discovered during the industrial case study described in Section 4.

In the example the EUC, a machine in an automation environment, has a
rotating part normally moving at high speed. In order to specify its behaviour,
the EUC has been implemented according to the ANSI/ISA S88 standard state
transition model [9]. However, the machine is currently running without any

336 B. Ljungquist and T. Thelin

Fig. 3. Artefact-to-document mapping in method implementation

protections. If operators are caught by this part while it is moving, result may
be severe injuries. There is a need to reduce the risk for this during normal
operation. However, there is also a need to maintain and clean the machine
with power enabled in order to shorten machine down times. In addition to a
safe stand still under these conditions, there is a need for the rotating part to
move at low speed during maintenance and cleaning in order to access the entire
part easily. For the purpose of reducing risks to acceptable levels, three different
SRCFs are used:

– Guard Door - active during normal machine operation. If guard door is not
closed, it is not possible to empower the EUC, except for when one of the
other two safety functions is active.

– Safe Stand Still - active during cleaning and maintenance. Rotating part
must not move, but power to electrical drives is enabled.

– Safe Low Speed - active during cleaning and maintenance. Rotating part
speed must be less than a specific value if low speed is requested.

In accordance with Step 1 of the method described above, a state machine is
then elicited for the example, see Fig. 4.

To improve diagram clarity, the transient states (states specifying the ma-
chine is under way to another state) that the ANSI/ISA S88 standard suggests
for machine behaviour have not been accounted for in Fig. 4 above. The state
machine thus relates the safety functions to the ordinary EUC behaviour. In the
diagram it is indicated that the SRCF guard door is active during the states
HELD and RUNNING and then leaves the task of keeping the system safe to
the SRCFs Safe Stand Still and Safe Low Speed if the guard door is opened.

An IEC 62061 Compliant Safety System Design Method for Machinery 337

Fig. 4. State machine diagram example relating EUC behaviour to SRCFs

It then follows from steps 2-3 of the method that the SRCFs should be broken
down into function blocks specifying input and output relationships. The guard
door SRCF is broken down into function blocks door sensing, logic and power
switching. Furthermore, the Safe Stand Still and the Safe Low Speed SRCFs are
then broken down into function blocks speed sensing, logic and power switching.
The next step, allocation of these function blocks to subsystems (step 4), is then
done as follows:

– Door sensing → Electromechanical door position sensor
– Speed sensing → Encoder signal sensor
– Power switching → Contactor and server drive

In this example neither details of each function block, function block diagrams
nor subsystems details are provided due to the limited space. We do though
provide an artefact overview in order to illustrate the artefact relationship, see
Fig. 5. In this figure we also see that the door position sensor is duplicated. This
illustrates the concept of duplicating sensors due to IEC 62061 requirements on
number of tolerated hardware failures on a subsystem for a specific safe failure
fraction [2] and required SIL.

4 Industrial Evaluation

4.1 Project Characteristics

The standard and the suggested enhancements were applied in a currently running
research project, SafeProd [8]. The project includes the following participants:

– Software experts and system analysts - Lund University
– Hardware experts - Swedish National Testing and Research Institute
– Machinery manufacturer where EUC development project is sited

338 B. Ljungquist and T. Thelin

Fig. 5. Resulting example artefacts relationship

The objectives of SafeProd are to apply the IEC 62061, IEC 61508 and IEC
61511 (process industry sector specific safety standard) standards to industrial
problems in three separate sub projects and publish guidelines which aim at
faciliting the application of these standards in Swedish industry.

4.2 Method Execution

The SRS was created according to a template, which has been elicited in the
project using MS Word. Initially there was no state machine present in the SRS
produced. This had the effect that the system analyst did not know when the
SRCFs was supposed to be active, since the requirements did not address this.
In the light of this hindsight, a state machine model of the EUC was elicited
using the tool Omondo EclipseUML Studio [10] and UML [13] state diagrams in
which the SRCFs were denoted as either new states or actions during transitions
between states. These diagrams were then added to the specification. A function
block analysis was then made of the SRS, resulting in a function block structure
document written in MS Word in accordance with the method. In this document,
information according to the IEC 62061 requirements for function blocks (see
Section 2.5) was made available.

The document was elaborated iteratively using project meetings for approval
of the documentation that the system analyst had elicited. The function blocks
with similar functionality in different SRCFs were then allocated to common
subsystems (e.g. sensors sensing the same type of data, like torque sensors and
safety PLCs realizing logic function blocks). Implementation of an architectural
proof of concept according to this function block structure is currently just about
to begin in the project. Also, the project currently is documenting these sub-

An IEC 62061 Compliant Safety System Design Method for Machinery 339

systems into a subsystem definition document written in MS Word, in which
requirements according to the standard are collected for each of the subsystems.

4.3 Experiences

The system analyst, who performed most of the design analysis, experienced that
the state diagram notation facilitated communication of the ordinary behaviour
of the EUC state model, based on that of the ANSI/ISA S88 standard [9] and
assisted understanding and communication when the SRCFs should be active.
The system analyst was unable to functionally decompose the SRCFs to function
blocks until state diagrams were available.

The function blocks analysis allowed the SRECS functional requirements to
be specified precisely and correctly. The ambiguities related to what information
that was to be recorded was dealt with and the input and output to the SR-
CFs were identified. Furthermore, specifying the functional requirements of the
SRECS in function blocks and the non-functional (except for safety requirements
which were stated at a function block level) requirements at subsystem level
proved to be an effective way of structuring the system requirements. This had
previously been experienced as a problem by the industrial project. The func-
tional requirements are typically derived from scenarios of SRCF behaviour and
the non-functional requirements are more likely derived from expected hardware
behaviour. Separation of these into an abstract functional layer and a physical
non-functional layer thus benefited SRECS development greatly.

In addition to the system analyst experiences, separate follow-up interviews
with a project leader as well as a advisor for product safety of the machinery
manufacturer organisation were conducted separately. These interviews provided
the following information:

– Regarding formerly used design methods, these have previously been of lesser
complexity. Risk analysis has provided sufficient information for direct imple-
mentation. Furthermore, safety systems have been mostly in form of COTS
safety components. There is however increasing needs of customising safety
functions, which may not be offered by these.

– When it comes to the terms of expectations upon the standard before the
project, the respondents expected more sophisticated safety functions allow-
ing increased production time with adequate safety. Previous standards like
EN954-1 [12] have provided more primitive safety functions like powerless
machine states, disturbing production flow when active. This has sometimes
made users deliberately by-passing safety functions in order to increase pro-
duction. There are also expectations of being able to handle complexity and
modularisation better; by component and block structures in safety, equip-
ment components that have been analysed individually may be put together
with a minimum of effort for safety integration testing. Both respondents
felt that it was too early in the project to consider the standard as a success
regarding meeting these expectations, but the result this far was felt to be
promising.

340 B. Ljungquist and T. Thelin

– Concerning the techniques used, the state machine diagramming approach
felt natural to use when describing the ordinary EUC behaviour and the
extension of this using SRCFs. In development of the EUC ordinary control
system using a state machine together with naming conventions have been
key success factors and it seems natural to use these also for the derivation
of the SRECS.

– The function block analysis technique appeared to clarify the structure of
the SRECS and it was concluded that the function block structure document
may be used for verification purposes checking that no ”extra” functions
have been added, which sometimes have been the case in some previous
system development projects. However, one of the respondents meant that
the function block analysis seemed like a little bit overhead effort, and would
like to get to realisation quicker.

– The concept of requirements layering, that is, mapping functional require-
ments to function blocks and non-functional requirements to subsystems,
was also perceived as natural. The respondents felt as if non-functional re-
quirements must be solved at physical level. The structure is in alignment
with and may support the iterative hazard analysis that currently is carried
out in the organisation with an up-front analysis finding hazards at a system
level and then detailed analysis at a component level finding failures related
to components and applications.

In addition to the findings described above, it was discovered that there was
a need for a tool supporting the design development process. This is mainly
motivated by the following problems encountered during the project:

– Automated development tasks provide shorter SRECS development and doc-
umentation time and thus implies cheaper projects and provides argument
for justification of implementing safety even with a limited budget.

– Automated development tasks provide better quality and thus better safety.
Examples of such tasks are artefact traceability management, state machine
documentation and IEC 62061 standard compliance checks.

– In order to be able to verify requirements and manage change reports (e.g. in-
cident reports indicating flaws in SRECS implementation) traceability man-
agement is needed. Traceability is easily corrupted if performed manually,
e.g. an update of a document in one section must be followed up by updating
dependent sections in other documents.

– State machine modelling is best done graphically. Capturing graphical mod-
els is best done with a tool.

– Communication problems. A common model accessible for all project mem-
bers helps settling disagreement occurring due to knowledge being in people’s
heads and not in the organisation. This could be achieved by a tool.

– Problem with grasping the entire standard and remembering to use standard
requirements in the development process at the right time. Knowledge should
be in the tool and not required to be in peoples heads [4]. The organisation
using the IEC 62061 in a development project would then have a much flatter

An IEC 62061 Compliant Safety System Design Method for Machinery 341

learning-curve. Using similar arguments, an example of a tool facilitating
implementation of IEC 61508 have been provided by Faller [5].

– IEC 62061 requires documentation which has to be captured in some way.
A tool (more advanced than a word processor) could provide a structure for
this. If using a tool not more advanced than a word processor, it is much up
to the analyst to maintain the document structure.

5 Design Process Tool Support

As mentioned and motivated in previous section, there is a need for a tool fa-
cilitating the development process outlined in Section 3. Implementing such a
tool is out of scope of this paper, but we do provide a feature overview below,
including a screen shot from a tool prototype.

– A tool that is used for supporting standards must be able to change as
standards change. Therefore, it should support changing development pro-
cess requirements reflecting different versions of standards by taking pro-
cess definition as input. This could be done in suitable XML-format[14] like
SPEM[7].

– Regarding documentation, the tool should support making state machine
diagram modelling SRCFs to be active during either states (either in existent
EUC states or being states on their own) or in transitions. This feature is
shown in the screen shot in Fig. 6.

– Function block and subsystem documentation (that is the documents FBSD
and SDD) could be in form of a requirements database helping the user by
requiring specific input data for each artefact.

– The tool should support collaborative and distributed development.

Fig. 6. Prototype screenshot of State machine diagram feature

342 B. Ljungquist and T. Thelin

– To support reporting to management and handouts of system models to be
discussed at meetings, the tool should have documentation export function-
ality to proper document formats.

– To reduce the burden of the engineer of having the whole standard in mind
when developing systems, the tool should have development process decision
support (i.e. ”what to do next”). This can be used for driving the project in
terms of feedback e.g. on not yet produced artefacts.

– One experience during the research project was that graphical models of
the artefact model facilitated the process of understanding it. Therefore, the
tool should support graphical function block structure modelling, in order
to visualize function block input-output relationships. Another process that
could be supported by graphical modelling is traceability management with
graphical function block-to-subsystem mapping.

– The tool should have querying capabilities to support finding the right in-
formation in a large system model, like finding functional requirements of
subsystems from assigned function blocks.

6 Discussion

Where previously method requirements of standards have been poor or not ex-
isting at all, the IEC 62061 standard shows a possible way of filling this gap by
stating requirements and providing guidelines for the system design process of a
SRECS. This paper has taken the method of this standard further and provided
a more hands-on method for implementation of a design process according to
the standard. It defines a step-by-step method which could be used in a SRECS
development project for functional safety of machinery and clearly defines the
input and output documentation of each step, which the standard does not.

The state machine approach of modelling when SRCFs should be active
turned out to integrate well with the existent way of specifying EUC behaviour
by extending already existent specifications in form of state machines. It was
perceived as clarifying by project members when the SRCFs should be active,
which was hard to define in natural language, even if this technique was ap-
propriate according to the standard. Furthermore, the function block analysis
facilitated structuring of information by requirements layering as prescribed by
the standard. Performing this had previously been perceived as a problem by
the machinery manufacturer. However, some project members perceived it as
overhead analysis.

However, it remains to show in the future whether the method prescribed
by the standard at large is valid. The focus of this paper is to report from the
design method. Furthermore, the general validity of the design method suggested
by this paper should be studied in other projects independent from this.

The paper presents some basic features of a tool, which currently is being
developed in the research project. Furthermore, case studies regarding the effects
of using the tool in development projects should be performed. One of the major
research questions of these studies will be demonstrating the feasibility of the
concept of transforming standards to guiding tools.

An IEC 62061 Compliant Safety System Design Method for Machinery 343

It has also been indicated in the project that the suggested method could
be improved. One thing that would be interesting to model is SRFCs overriding
each other by modelling them as a hierarchy of state machines. For example,
an emergency stop would override all other functions of a SRECS. This cannot
be captured by a single level state machine diagram. A similar technique of
applying hierarchies of state machine is shown by Papadopoulos [6], but has
there been applied for purposes of safety monitoring, whereas the improvements
of the model suggested in this paper would be regarding hierarchies of safety
functions.

Acknowledgements

This work was partly funded by The Swedish National Agency for Innovation
Systems (VINNOVA). The authors would like to thank Per Runeson and Karl-
Erik Årzen for their valuable ideas and comments regarding this paper. We also
would like to thank all SafeProd project members for their helpful input.

References

[1] Laprie, J-C., Dependability: basic concepts and terminology, dependable comput-
ing and fault-tolerant systems. Springer Verlag, Wien-New York, 1992

[2] IEC 62061: Safety of machinery Functional safety of safety-related electrical, elec-
tronic and programmable electronic control system. International Electrotechnical
Commission, 2005

[3] IEC 61508: Functional Safety of Electrical/Electronic/Programmable Electronic
Safety-Related Systems, parts 1 to 7, International Electrotechnical Commission,
1998 and 2000

[4] Norman, D., The Design of Everyday Things, Doubleday/Currency, New York,
1988

[5] Faller, R., Project experience with IEC 61508 and its consequences, Safety Science,
Volume 42, Issue 5, 2004, pp 405-422

[6] Papadopoulos, Y., Model-based system monitoring and diagnosis of failures using
statecharts and fault trees, Reliability Engineering & System Safety, Volume 81,
Issue 3, 2003, pp 325-341

[7] Software Process Engineering Metamodel Specification, Version 1.1, Object Man-
agement Group, 2005

[8] SafeProd, http://www.sp.se/safeprod
[9] ANSI/ISA 88.01-1995, Batch Control, Part 1 : Models and Terminology.

[10] EclipseUML Studio, Version 1.1.0, Omondo, 2004
[11] IEC 61131-3: Programmable Controllers, Part 3: Programming Languages, Inter-

national Electrotechnical Commission, 1993
[12] EN-954-1: Safety of Machinery Safety related parts of control systems, Part 1:

General principles for design, 1996
[13] The Unified Modelling Language Specification, Version 1.5, Object Management

Group, 2003
[14] Extensible Markup Language (XML), Version 1.1, W3C Recommendation, 04

February 2004

R. Winther, B.A. Gran, and G. Dahll (Eds.): SAFECOMP 2005, LNCS 3688, pp. 344 – 356, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Design Evaluation: Estimating Multiple Critical
Performance and Cost Impacts of Designs

Tom Gilb

Tom@Gilb.com

Abstract. How should we evaluate someone’s design suggestion? Is gut feel
and experience enough for most cases? Is anything more substantial and
systematic possible? This paper outlines a process for design evaluation, which
assesses the impacts of designs towards meeting quantified requirements. The
design evaluation process is viewed as consisting of a series of design filters.

1 Introduction

This paper proposes that: (1) Design evaluation is primarily a matter of understanding
the ‘performance and cost’ impacts of the design(s) numerically, in relation to
quantified performance and cost requirements; and (2) Design evaluation needs to go
through several maturity stages, but remains fundamentally the same question: what
does the design contribute to meeting our requirements?

Prior to design evaluation, the requirements must be specified. All the performance
and cost requirements must be specified quantitatively. The requirements should be
subject to specification quality control (SQC). An entry condition into the design
evaluation process should be that the requirement specification has successfully
exited quality control with an acceptable level of remaining defects per logical page
(for example, less than one remaining defect per 300 words). The design evaluation
process consists of several maturity stages, which can be viewed as design filters.
These maturity stages include:

• Value-based selection: Select the requirements with the highest stakeholder value;
• Constraint-based elimination: Delete designs that violate constraints;
• Performance-based selection: Pick the most effective remaining designs;
• Resource-based optimization: Select the effective designs that are most efficient

– effect/cost;
• Risk-based elimination: Evaluate designs based on performance and cost risks.

Each of these evaluation filters requires specification and estimation tools that
are common sense, but are not commonly taught or employed. These tools are
based on the defined Planning Language (‘Planguage’), developed by the author for
practical industrial use through many years [1]. Let’s now go through the design
evaluation process in greater detail. The main points will be summarized as a set of
principles.

 Design Evaluation: Estimating Multiple Critical Performance and Cost Impacts 345

2 Clear Specification of Requirements

Principle 1: A design can only be evaluated with respect to specific clear
requirements.

The foundation of design evaluation is a set of clear requirements. Any evaluation of
any design to try to ensure meeting vague requirements is going to be imprecise1. If
you look around you, both inside the systems engineering community and outside it,
you will observe that people commonly evaluate designs ‘in general terms’ (for
example, “that design is the most user-friendly…”), rather than with respect to
specific immediate, and residual2 project or product requirements.

One of several reasons for this generalizing about ‘good designs,’ is that we are very
vague with requirements specification. Our most critical requirements are typically
unclear, and not quantified. In my consulting and teaching practice I see this happening
worldwide. When I evaluate such requirements using SQC, there are invariably
approximately 100 defects present per page, unless special effort has been made to
eliminate them [2]. To the degree that is the case, we cannot readily expect anyone to
perform a logical evaluation of the suitability of a given design for a fuzzy requirement.
Consider the following questions: How good is a ‘Mac interface’ for getting ‘higher
usability’? And how good is ‘MAC OS X’ compared to ‘Windows’ for ‘higher security’?

These are silly questions because the requirements are not clearly defined (Note
also that the other security designs that will co-exist are not listed and analyzed).
Now, requirements are not the primary subject of this paper3. So we need to be brief
on them, so as to concentrate on design itself.

But here are some of the things I would insist are necessary pre-requisites for being
able to evaluate a design:

• All performance (including all qualities) and cost requirements are expressed
quantitatively (with defined scales of measure). Not just nice sounding words.

Scale: Minutes for defined [Tasks] done by defined [People].

• All performance requirements must include at least one target (A target is a level
we aim for) and at least one constraint (A constraint is a level we aim to avoid with
our design).

Goal: 3 minutes.

Fail: 10 minutes.

1 This is not the same as demanding that the requirements are known upfront: requirements

should not be ‘frozen’ and they should be allowed to evolve over time. The issue here is that
the known or predicted requirements are expressed clearly.

2 Residual requirements: Residual: Concept *359: The remaining distance to a target level
from a benchmark or current level (From Planguage Glossary in [1]). The point being that
design is a sequential process of evaluating necessary designs, to add onto the current set of
designs – and the only designs necessary at any point in the process, are designs that will
move us from the performance levels we estimate we have reached, with the current set of
designs, towards our required Goal levels of performance. A good analogy is the ‘next
chess move’.

3 See [2] for further discussion on requirements.

346 T. Gilb

• All performance requirements must include explicit and detailed information
regarding the short-term and the long-term timescales of expectation.

Goal [Release 1.0]: 3 minutes.

Fail [Release 1.0]: 10 minutes.

• All relevant constraints on solving the design problem are specified complete,
officially, explicitly, unambiguously, and clearly. This includes all notions of
restrictions such as legal, policy, and cultural constraints. It also includes any
known design constraints (such as from our own architecture specification).
Constraints will consider all necessary aspects of development, operations, and
decommissioning resources.

 Clear and complete requirements are a set of basic entry conditions to any design or
architecture process. Without it a design process is like a fighter plane with no known
enemy, like a passenger ship at sea with no destination port identified, or like a great
invention with no market. Design evaluation is quite simply about deciding how well
a design meets the total set of requirements.

Principle 2: All designs have performance and cost attributes, but not necessarily
the ones you require.

Fig. 1. A map of the requirements concepts, which includes a variety of constraints. The *nnn
are references to detailed definitions of these concepts in the Planguage Glossary [1].

Goal
*109

Budget

 *480

Stretch
*404

Wish
*244

Fail
*098

Survival
*440

Stretch
*404

Wish
*244

Fail
*098

Survival
*440

Requirement *026

Vision
*422

Function
Requirement

*074

Performance
Requirement

*100 (objective)

Resource
Requirement

*431

Design
Constraint

*181

Condition
Constraint

*498

Function
Target
*420

Function
Constraint

*469

Performance
Constraint

*438

Performance
Target

*439 (goal)

Resource
Target

*436 (budget)

Resource
Constraint

*478

Mission
*097

Quality
Requirement *453

Resource Saving
Requirement *622

Workload Capacity
Requirement *544

 Design Evaluation: Estimating Multiple Critical Performance and Cost Impacts 347

3 Value-Based Selection

Principle 3: The real value of a design to a stakeholder depends partly on the
technical characteristics of the design, and partly on the planned, perceived and
actual use of those characteristics in practice, over time.

 The value of a design depends on the stakeholder view taken. The producer of a
product has one view. The users of a product have another view. It is going to be the
producer of a product who will directly and primarily evaluate designs from their
point of view. They ideally will try to maximize their profitability or service delivery.
The commercial producers will do this by maximizing the value delivered to their
customers, so that their customers will ‘return the favor’ by paying well, in terms of
price and volume. It should be possible to evaluate a design market, segment by
market segment, for estimated sales or profit as a result of it. Ideally your marketing
people would make such an evaluation. The service providers (such as military, space,
government) will worry about value to their stakeholders for money spent.

<Name tag of the performance requirement or cost requirement>:

Ambition: <Give overall real ambition level in 5-20 words>.
Version: <Each requirement specification should have a version, at least a date, yymmdd>.
Owner: <The person or instance allowed to make official changes to this requirement>.
Type: <Performance|Cost Requirement>.
Stakeholder: { , , }. “Who can influence your profit, success or failure?”
Scale: <Defined units of measure, with [parameters] if you like>.
Meter [<qualify which version and level>]: <Specify how you will measure>.
==== Benchmarks ============ the Past ==================================
Past [<time>, <place>, <event>]: <Actual or estimate of past level> <- <Source of past data>.
Record [<time>, <place>, <event>]: <Actual or estimate of record level>] <- <Source of
record data>.
Trend [<time>, <place>, <event>]: <Prediction of level> <- <Source of prediction>.
==== Targets ============= Future Needs ==================================
Wish [<time>, <place>, <event>]: <- <Source of wish>.

For Performance Requirements Only – Use ‘Goal’
Goal [<time>, <place>, <event>]: <Target level> <- <Source of goal>.
Value [<stakeholder>]: <Refer to what this impacts or how much it creates of value>.

For Cost Requirements Only – Use ‘Budget’
Budget [<time>, <place>, <event>]: <Target level> <- <Source of budget>.
Stretch [<time>, <place>, <event>]: <Motivating target level> <- <Source of stretch>.
==== Constraints ===
Fail [<time>, <place>, <event>]: <- <Source of fail>. “Failure Point”
Survival [<time>, <place>, <event>]: <- <Source of survival>. “Survival Point”

Fig. 2. This figure shows a Planguage requirement template with hints. This gives some idea of
the basic parameters that should be used to describe a performance or cost requirement
quantitatively [1].

348 T. Gilb

Table 1. A symbolic example of evaluating two different ‘designs’ for ‘which fruit to buy’.
This is a simple Impact Estimation table application. The % estimated impact of a design is on
a scale where 100% means the design brings us to the Goal level on time. 0% means there is no
impact compared to some defined benchmark level, such as the previous system state.

If the marketing people are not involved or helpful, the technologist is left to look at the

contribution of a given design to the performance requirement levels. Designs have value
primarily as long as they help us move to the Goal levels, and perhaps to the degree they
help us move to the Stretch levels (see Figure 2). Beyond those target levels, a design does
not have any formally agreed value, because it is not formally required.

So we need to find the designs that satisfy the prioritized agreed target levels, at the
lowest costs and risks available. I have developed an Impact Estimation (IE) method
to help us see the contribution of design ideas to the requirement levels, the degree of
risk involved and the corresponding development costs (See later, Table 1). So we can
make a rational decision and present it to others.

4 Constraint-Based Elimination

Principle 4: It doesn’t matter how good or how cheap a design is, if constraints
forbid it.

 We are assuming that there is a flow of one or more design ideas to be evaluated.
The question of how we identify these design ideas is a separate topic. Before we go

Strategy Comparison: Apples and Oranges
Alternative Strategies

Performance to Cost Ratio

Sum of Performance

Sum of Costs

Apples Oranges

Eater Acceptance
From 50% to 80% of People

Pesticide Measurement
Reduce from 5% to1%

Relative Cost
Local currency

Vitamin C
Increase from 50mg to 100mg per day

Carbohydrates
Increase from 100mg to 200mg per day

Shelf-Life
Increase from 1 week to 1 month

70% 85%

50% 100%

70% 200%

50% 80%

20% 5%

260% 470%

0.50 3.00

3.000.50

1.571.575.25.2

 EvidenceÓ
for these numbers
should, of course,

be available
on a separate sheet

(but not shown here)

Objectives

Resources

 Design Evaluation: Estimating Multiple Critical Performance and Cost Impacts 349

deeper into the design, we need to assess if any design idea is disqualified by any
requirement.

We need to pass the design through the set of design filters known as constraints.
The questions to be asked include:

• Does the design violate any specified design constraint?
• Does the design violate any condition constraint?
• Does the design violate any performance constraint or cost constraint?
• Does the design in combination with other design elements, adopted or projected,

threaten to violate any constraint?

Because if a design violates, or threatens to violate, any defined constraint, a
design needs to be set aside in favor of designs that do not. Later we could, if
necessary, discuss relaxing a constraint, or risking or tolerating a constraint violation,
in order to make use of an otherwise superior design, so we need to be careful about
permanently discarding designs that initially violate some constraint. They might turn
out to be the best design of all. So, ‘set aside’, preferably with annotation about the
constraint violation.

Design X: <Detailed description>.
Status: Set Aside <- Tom, November 13, 2004.

Rationale: Threatens to violate cost constraints as it alone
takes 90% of the budget.

I seriously suggest that all rejected designs be formally kept in the systems
engineering documentation, with their status and rationale for rejection.

Principle 5: Designs should not be rejected permanently. The reasons for
rejection should be clearly documented, the design specification kept; and the
rejection possibly re-evaluated later.

5 Performance-Based Selection

For the set of proposed designs that survive constraint evaluation, the next step is to
evaluate which ones have the best set of impacts on our required performance target
levels.

Principle 6: The major capability of a design is its ability to contribute to
required residual performance levels.

We fail to evaluate designs in all critical dimensions. I find that systems and software
engineers, in too many cases, do not even do a systematic evaluation of a design along a
single performance dimension (such as ‘Reliability’). But, even if they did do that, there
is another evaluation problem to confront. Designs have potential impacts on many of
our most critical performance requirement dimensions. Real systems seem to have about
20 to 40 performance dimensions that people are willing to set quantified requirements
for, and to evaluate. One dimension is not enough. We need to look at:

• Other major secondary contributions to critical requirements;
• Possible negative side effects on the critical requirements.

350 T. Gilb

We usually do not have good enough facts about the design impacts. Anything less than
a thorough examination of the potential impacts of a design in all critical performance
requirement dimensions, is irresponsible design engineering. The major initial outcome of
any systematic quantitative evaluation in these many dimensions is, initially, ‘shocking’.

It turns out that even our most expert designers do not even claim to have any
factual knowledge about most of the performance impacts of a design specification, in
all our specified requirement dimensions! This may seem hopeless: ‘Knowing that we
do not know’. But in a sense it is the beginning of wisdom, and there is a systematic
approach to dealing with this ignorance – that is the subject of this paper. But we
would do well to recognize this ignorance initially, clearly, and publicly, in our design
engineering processes. Recognize the initial level of knowledge about a design, and
then act cautiously as we progress the design towards serious commitment.

What is the alternative to a systematic initial design impact evaluation process? We
do not have to ‘act like engineers’ and evaluate designs in a systematic and
quantitative way. We can just ‘decide to implement them and see what happens’. The
problem there is that it may be too late to use better designs, and it would perhaps
have paid off to do more engineering evaluation earlier.

There are interesting options between the extremes of ‘full ignorance/high risk’,
and ‘expecting perfect research data for all impacts of all design candidates’. For
example evolutionary methods [1], [4], [5], [6] may allow us to remove some of our
ignorance about a design, at relatively low risk (By designing and implementing small
Evo steps, we can ensure the maximum potential project loss 2% for a design that is a
total failure). The fact that we rarely have the facts we need, in order to evaluate
designs properly, is not a good reason to avoid trying to evaluate them quantitatively,
before final commitment to using them. The lack of facts is a warning signal about
risks. It can lead directly to more realistic expectations. It can also lead to risk
mitigation tactics in contracting, alternative conservative design specifications, or lead
to doing experimental steps to get needed data before scaling up – all traditional good
engineering tactics.

Principle 7: A design will be best understood in terms of its multiple quantified
impacts on your residual requirements.

 How far should we go in evaluating a design? It is not enough, in my opinion to let
your in-house expert loose, to make estimates of a design’s impact on performance
levels. They should be asked (in your systems engineering standards!) to document
the basis for the estimates, and the basis for the uncertainty of their estimates. An
example of doing this is given in Table 2 using the Impact Estimation method.

Notice that for each estimate we ask for the uncertainty boundaries (worst
case/best case). We ask for evidence –the facts backing the estimate. We ask for the
source of the evidence – a person or document for example. A reviewer of such
estimates might be a skeptic, and want to check the evidence first hand. We can even
rate the quality of the basis for the estimate using the ‘credibility index’ (say 0 for no
credibility at all, and 1.0 for 100% credibility). Notice we can use the credibility-
rating number to modify, by multiplication, the initial estimate, in the direction of a
more pessimistic estimate. Better to be safe.

Principle 8: Designs must be evaluated with respect to uncertainty, and the level
of risk you want to take.

 Design Evaluation: Estimating Multiple Critical Performance and Cost Impacts 351

 I also like to get a simple estimate of the cost of the design, at least to become
conscious of cost extremes.

Table 2. A simplified example of using an impact estimation table to collect data about a single
performance attributes. In this case, the performance attribute is ‘Learning’, which has a target
level of 10 minutes. There are four design idea candidates (For example, ‘On-line Support’ is
the tag of one design idea). We need to repeat this process for all other critical performance
requirements. This is difficult because of lack of facts about most designs, in most dimensions.
But the difficulty usefully makes us formally aware of design risks, and consequent project
risks – which we can decide to mitigate by investigation, contracting, design or re-design.

Learning
Past: 60 minutes
<-> Goal: 10 minutes

Scale Impact

Scale Uncertainty

Percentage Impact

Percentage Uncertainty

Evidence

Source

Credibility

Development Cost

Performance to Cost Ratio

Credibility-adjusted
Performance to Cost Ratio
(to 1 decimal place)

Note: Time Period
is two years.

On-line
Support

On-line
Help

Picture
Handbook

On-line
Help +
Access
Index

5 min.

±3 min.

110%

±6%
(3 of 50
minutes)

Project Ajax
achieved
7 minutes

Ajax Report,
Page 6

0.7

120K

110/120
= 0.92

0.92*0.7
= 0.6

10 min.

±5 min.

100%

±10%

Other
Systems

World
Report
Page 17

0.8

25K

100/25
= 4.0

4.0*0.8
= 3.2

30 min.

±10 min.

60%

±20%

Guess

John B.

0.2

10K

60/10
= 6.0

6.0*0.2
= 1.2

8 min.

±5 min.

104%

±10%

Other
Systems
+ Guess

World Report
Page 17
+ John B.

0.6

26K

104/26
= 4.0

4.0*0.6
= 2.4

Longer
timescale
to develop

352 T. Gilb

6 Resource-Based Optimization

Of course, you do not understand a design idea, if you do not understand its costs. I
mean the entire range of cost types (for example, effort, time, and money). I mean for
the entire system lifespan.

Why do projects consistently run over time and budget, and you never seem to
have enough people to do the job? [7]. One reason is that people fail to evaluate the
costs of their designs. We do not practice ‘design to cost’.

At least, if you have two or more promising design idea alternatives, you should
consider using the one with the least impact on your resource budgets.

Principle 9: Design ideas must also be evaluated with respect to the design costs’
relation to our finite resources. Don’t design what you can’t afford.

But, I don’t see people doing this in practice. I just see them running out of
resources and instead of understanding that it might come from poor design practices,
they blame other causes (such as too few resources).

7 Risk-Based Elimination

So, at this point, if you have followed the advice above, you might feel you have
picked a winner set of design ideas with high performance impacts at low costs. But
this is probably all based on estimates. Maybe those estimates are based on thin ice,
such as rumor? Maybe experience data says the spread of possible actual design
impacts on requirement levels is quite wide (like 10 minutes ± 9.9 minutes)? Maybe
the ‘technology behind the design’ is not that new, but it has never been tried in your
‘space vehicle’, only in ‘bicycles’? Enter the idea of ‘risk evaluation’. What is the risk
that your design idea, however hot it looks on paper, will not really work, or worse
will ruin your entire project?

Twelve Tough Questions
1. NUMBERS: Why isn’t the improvement quantified?
2. RISK: What’s the risk or uncertainty and why?
3. DOUBT: Are you sure? If not, why not?
4. SOURCE: Where did you get that information from? How can I check it out?
5. IMPACT: How does your idea affect my goals?
6. ALL CRITICAL FACTORS: Did we forget anything critical?
7. EVIDENCE: How do you know it works that way?
8. ENOUGH: Have we got a complete solution?
9. PROFITABILITY FIRST: Are we going to do the profitable things first?
10. COMMITMENT: Who’s responsible?
11. PROOF: How can we be sure the plan is working?
12. NO CURE: Is it no cure, no pay?

Fig. 3. Twelve Tough Questions to help strengthen plans. A more detailed treatment of these
questions is in a paper at http://www.gilb.com.

 Design Evaluation: Estimating Multiple Critical Performance and Cost Impacts 353

So, we need to ask the risk questions about each design idea. My favorite set of
risk questions is my ‘Twelve Tough Questions’, given in Figure 3.

List of Principles

1. A design can only be evaluated with respect to specific clear requirements.
2. All designs have performance and cost attributes, but not necessarily the ones you
require.
3. The real value of a design to a stakeholder depends partly on the technical
characteristics of the design, and partly on the planned, perceived and actual use of
those characteristics in practice, over time.
4. It doesn’t matter how good or how cheap a design is, if constraints forbid it.
5. Designs should not be rejected permanently. The reasons for rejection should be
clearly documented, the design specification kept; and the rejection possibly re-
evaluated later.
6. The major capability of a design is its ability to contribute to required residual
performance levels.
7. A design will be best understood in terms of its multiple quantified impacts on your
residual requirements.
8. Designs must be evaluated with respect to uncertainty, and the level of risk you
want to take.
9. Design ideas must also be evaluated with respect to the design costs’ relation to our
finite resources. Don’t design what you can’t afford.
10. The evaluation of a design idea is a continuous process over a series of estimation
and validation events. A lot of questions need asking, by a lot of people, and we need
many good answers to evaluate a design.
11. The best practical evaluation of design risks is by practical small step integration
of the design, with measurement, feedback and analysis of its real performance and
costs. Evolutionary evaluation helps us make better decisions about designs than any
review committee will ever be able to make.

Fig. 4. A list of the principles presented in this paper

Curiosità: Insatiably curious, unrelenting quest for continuous learning
Dimostrazione:
 Commitment to test knowledge through experience, willingness to learn from mistakes.
 Learning for ones self, through practical experience
Sensazione: Continual refinement of senses. As means to enliven experience.
Sfumato: Willingness to embrace ambiguity, paradox, uncertainty
Arte/Scienza: Balance science/art, logic & imagination, whole brain thinking
Corporalità: Cultivation of grace, ambidexterity, fitness, poise
Connessione: Recognition & appreciation for interconnectedness of all things and phenomena.
 Systems thinking

Fig. 5. Da Vinci’s Principles from How to Think Like Leonardo da Vinci by Michael Gelb.
They describe the evolutionary principles for handling risk.

354 T. Gilb

Fig. 6. The step-by-step evolution of designs delivering impact to performance requirements

Fig. 7. Relevance Control filters start after the QC filters of Rules and Exit make sure we have
good presentation. The Relevance Control filters deal with questions of substance: how good is
the plan in practice? The QC filters deal with the question, how well is the plan presented? The
downstream plan improvements can come from any source, any reason, at any time, or any
stage downstream (See also [1] for details of SQC).

We have been asking some of these twelve analytical questions earlier in the
design evaluation process above. But some are new. Who is responsible for making it
work? Who is responsible if it does not work? Is their money where their mouth is?

I believe, in sharp contrast with the papers and textbooks that I have seen on risk
management, that the risk analysis process is something that needs to be intimately
pervasive in every single specification, in every detail of it. It must be part of what all
systems engineers do every minute of their working life. Live it and breathe it. Every
systems engineering specification has an element of risk – or it would not be termed
‘engineering’ [8].

All
System

Functions

0% 100%
Goal

Fail

Fail

Reliability

Usability

Impact
of

Step 1

Impact
of

Step 1

Impact
of

Step 2

Impact
of

Step 2

Impact
of

Step 3

Evo
Plan:

Designs
And
Evo

Steps

Far Upstream
Feedback

Value-
Based

Requirement
Selection

Constraint-
Based

Elimination

Performance-
Based

Selection

Resource
Optimization Risk Conditional

Decisions
Trial

Near Upstream Feedback

+
+
+

+
+

Downstream
Plan Improvement

Filtered Out
Plan - No Go Õ

 Design Evaluation: Estimating Multiple Critical Performance and Cost Impacts 355

We need, not to minimize risk, nor to reduce it to zero, but to be constantly aware
of risks. We need to be constantly looking, waiting to pounce on risk if it shows signs
of giving us trouble [9].

Principle 10: The evaluation of a design idea is a continuous process over a series
of estimation and validation events. A lot of questions need asking, by a lot of
people, and we need many good answers to evaluate a design.

 Our systems engineering work should be totally robust so that no matter what
happens we have a backup. We have a reasonable way out. We need to be so sensitive
to the impacts of our designs that we know when we are threatened. We know early,
because we worry early. We try things out early. We keep on measuring early as we
make changes and add new designs cumulatively into the system.

We need above all not to trust a probability model of risk analysis. We need to take
da Vinci’s advice and try things out. See Figure 4. Much of his advice can be seen in
the Evolutionary project management model, with its 2% increments, required for
measurement, use of feedback, analysis of the feedback, and concept of changing the
plan as necessary. We need to use evolutionary step planning to consciously sequence
the riskiest elements for early integration and field trialing. Then if there is something
wrong, we have lots of time to fix it.

Evolutionary project management (Evo) [1], [4], [5], [10] is one of the greatest
devices for risk management and for design evaluation with respect to risk, but Evo
never, as far as I can see, made it into a paper or book on risk management, other than
my own [9]! Evo allows you to evaluate one design at a time, and to evaluate them
cumulatively, one at a time [6].

In fact too many project management people have no clue what Evo really is.
However, the US Department of Defense (DoD) finally understood it and adopted it
(in 1995 with Mil Std 498 and on), calling it ‘Evolutionary Acquisition’.

Principle 11: The best practical evaluation of design risks is by practical small
step integration of the design, with measurement, feedback and analysis of its
real performance and costs. Evolutionary evaluation helps us make better
decisions about designs than any review committee will ever be able to make.

8 Summary

Design evaluation needs a series of processes to determine the best-known design for
a specific project. The foundation is a complete, clear and quantified set of
requirements, against which to judge the design ideas. The second is a detailed design
specification including justifications, assumptions, sources, and expected impacts.
The third is the ability to see the expected effects of a set of design ideas, and their
total impact on requirements. This initially can be achieved using an Impact
Estimation (IE) table. However ultimately a design needs to be proven in practice by
evolutionary implementation of the design ideas, while measuring their real
cumulative impacts.

356 T. Gilb

References

1. Gilb, Tom: Competitive Engineering: A Handbook For Systems Engineering, Requirements
Engineering, and Software Engineering Using Planguage, Elsevier Butterworth-Heinemann
(Due June/July 2005) ISBN 0750665076. See http://books.
elsevier.com/companions

2. Gilb, Tom: Agile Specification Quality Control: Shifting emphasis from cleanup to
sampling defects. Proceedings of INCOSE Conference, Rochester NY USA (July 2005)
Earlier version published as Agile Specification Quality Control. Cutter IT Journal, Vol.
18. No. 1 (January 2005) 35-39. See http://www.cutter.com [Last Accessed: April
2005].

3. Gilb, Tom: Real Requirements: How to find out what the requirements really are.
Proceedings of INCOSE Conference, Rochester NY USA (July 2005)

4. Larman, Craig: Agile and Iterative Development: A Manager’s Guide, Addison Wesley
(2003). See Chapter 10 on Evo.

5. Gilb, Tom: Fundamental Principles of Evolutionary Project Management. Proceedings of
INCOSE Conference, Rochester NY USA (July 2005)

6. Johansen, Trond and Gilb, Tom: From Waterfall to Evolutionary Development (Evo) or
How We Rapidly Created Faster, More User-Friendly, and More Productive Software
Products for a Competitive Multi-national Market. July 2005. Proceedings of INCOSE
Conference, Rochester NY USA (July 2005)

7. Gilb, Tom: Project Failure Prevention: 10 Principles of Project Control. Proceedings of
INCOSE Conference, Rochester NY USA (July 2005)

8. Koen, Billy Vaughn: Discussion of The Method: Conducting the engineer’s approach to
problem solving. Oxford University Press (January 2003) ISBN 0-195-15599-8. See also
http://www.me.utexas.edu/~koen/ [Last Accessed: April 2005].

9. Gilb, Tom: Managing Your Project Risks in Requirements, Design and Development:
Using the Planning Language. Proceedings of INCOSE Conference, Washington DC
(2003)

10. Larman, Craig and Basili, Victor R.: Iterative and Incremental Development: A Brief
History. IEEE Computer Society (June 2003) 2-11

11. Gilb, Tom: Rule-Based Design Reviews. Software Quality Professional, Vol. 7, No. 1
(2004) 4-13. See website for American Society for Quality: http://www.asq.org -
member access only for recent papers.

12. Gilb, Tom and Maier, Mark: Managing Priorities: A Key to Systematic Decision Making.
Proceedings of INCOSE Conference, Rochester NY USA (July 2005)

R. Winther, B.A. Gran, and G. Dahll (Eds.): SAFECOMP 2005, LNCS 3688, pp. 357 – 367, 2005.
© Springer-Verlag Berlin Heidelberg 2005

The Application of an Object-Oriented Method
in Information System Security Evaluation

Qiang Yan and Hua-ying Shu

School of Economics and Management,
Beijing University of Posts and Communications,

Beijing 100876, China
yanqiang@infosec.pku.edu.cn

Abstract. It's essential for critical systems to measure their security status.
However, the research on the information system security evaluation still faces
many difficulties which are caused by the complexity of the system and the
inexplicit relation between the component security and the system security. In
this paper, an object-oriented information system security evaluation method is
introduced, the security context object model and security evaluation object
model are established. These models resolve the current problems and a set of
information system security evaluation tools are developed according to these
works. The application of the tools is introduced and the deficiencies which
need further improvement are also pointed out.

1 Introduction

Information system security evaluation provides the basis of confidence to users. The
evaluation results help users to make sure whether the information system is secure
enough or the potential risk in operation is acceptable.

China published “Computer Information System Security Protection Classifying
Criteria” (GB 17859) [1] in 1999 and adopted Common Criteria (CC) as GB/T 18336.
These criteria, including CC, define standards to be used as the basis for evaluation of
security properties of IT products and systems. However, the research on information
system security evaluation method still faces many difficulties, which include:

• Complexity of information system per se. Information system is the integration of
computer or communication hardware, software and firmware for information
processing. It includes not only local computing environment and enclave
boundary, but also remote terminals and network infrastructure. The topology and
application vary from one system to another. The uncertainty of system boundary,
complexity of topology and the variety of applications lead to the complexity of
security evaluation.

• The relationship between the security of components and the whole system.
Information system often comprises components that are developed and evaluated
independently. During the evaluation of the system, the relationship between the
security of components and the whole system must be clarified firstly. However,
current evaluation criteria didn’t explain the problem of combination [2, 3].

358 Q. Yan and H.-y. Shu

• The lack of testing methods and tools for security functions. Penetration testing is
the mostly used method to evaluate the security of information systems at present.
However, unlike security functional testing, which demonstrates correct behavior
of the system’s advertised security controls, penetration testing is a form of stress
testing, which exposes weaknesses in the TCB. Penetration testing is the
complement of security functional testing [4] and can’t by itself reflect the overall
security posture of the information system. Moreover, there still exist controversies
about the form of penetration testing results [2, 5].

This paper introduces an object-oriented information system security evaluation
method that takes advantage of class, encapsulation and inheritance mechanism of
object-oriented technology to solve the above problems.

The remainder of this paper is organized as follow. Section 2 introduces object
model of information system security context. Section 3 introduces object model of
information system security evaluation. Section 4 describes the realization and
application of our method. Discussion about our method and related work are
presented in Section 5. Finally our conclusions are outlined in Section 6.

2 Object Model of Information System Security Context

2.1 Security Concepts and Relationships Defined in CC

According to the description of CC [6], information system and its components are
assets of their owner. Vulnerabilities may exist in these assets and may be exploited
or abused by threats, which cause risk to assets. Countermeasures are imposed to
reduce vulnerabilities while they may possess vulnerabilities. Residual risk may
remain after the imposition of countermeasures. Periodic risk evaluation is necessary
to keep the risk at an acceptable level. Figure 1 illustrates the security concepts and
relationships defined in CC.

2.2 Object Model of Information System Security Context

This paper establishes object model of information system security context based on
the security concepts and relationships defined in CC. In this model, as illustrated by
figure 2, class Asset, Vulnerability, Countermeasure and Threat are corresponding to
the concepts in CC. Class Risk_State extends the concept of risk based on the
definition of information system security levels in GB 17859.

2.2.1 Class, Attribute and Method
As illustrated in figure 3, two classes inherit from Asset: Component and
Application_Service. Component includes software and hardware such as OS, DBMS,
firewall and etc. Application_Service denotes the services that system provides to
users such as email service, web service and etc. Since application services need the
cooperation of multiple components, their security depends not only on the security of
components but also on the security of the combination of components. So we create
class Application_Service to distinguish application services from components.

 The Application of an Object-Oriented Method 359

GB 17859 defines ten security elements and five security levels. These ten security
elements are integrity, authentication, discretionary access control, object reuse, audit,
label, mandatory access control, trusted recovery, trusted path and covert channel
analysis. Attributes of class Asset denote the security levels of security elements of
asset according to GB 17859. Component and Application_Service inherit the
attributes of Asset. These attributes of Component are set by the evaluation results of
constituent software and hardware, while attributes of Application_Service are set
during the process of information system evaluation. Besides the inherited attributes,
class Component adds a new attribute location, which points out whether a
component belongs to system boundary, computing environment or network. Class
Application_Service adds two attributes: components and type. Components denote

������

�	��
��

�	��
��
����

�����

����

������
��������

���������
�����

�
���

���	������������

���������

������

�	
���
����

����������

�	
���
�

�������

�
�����
�
�����

��
������

�	
�

�������

���

�������
�	
�������
�� ��

��

���	����
�����
�������
���
�
�

Fig. 1. Security concepts and relationships defined in CC

����

����� ���	�
����� ���	��
�����
�

��
���

�

�

�

�

� �

�

�

����

���������

���� ����

����

����

�

�

����

����

Fig. 2. Object model of information system security context

360 Q. Yan and H.-y. Shu

Fig. 3. Inheritance relationship between Asset and Component, Application_Service

those involved in the application service and type denotes the type of application such
as email service, web service and etc.

Class Risk_State extends the concept of risk based on the definition of information
system security levels in GB 17859. Traditional risk, including the concept in security
context of CC, means the economic losses caused by the damage to assets. It is
determined both by the possibility of the occurrence of threats and the consequences
caused by the threats. But in the IT field, it is hard to estimate the possibility of the
occurrence of threats and the losses caused by the threats can’t always be figured by
money. For instance, the exposure of cipher may endanger the security of the nation
and the occurrence of DoS attack may degrade the reputation of an organization. In
GB 17859, different security levels represent the different security states of the
security elements as well as of the information system. In our object model of
information system security context, security levels reflect the risk state of the
information system. The higher the level, the lower the risk. But even the system of
highest level doesn’t eliminate all security risks. It is just of higher protection
capability and lower risk compared with the systems of lower levels.

Class Risk_State, Vulnerability and Countermeasure all have ten attributes
corresponding to the ten security elements. In Risk_State, these attributes denote the
final security levels of security elements of the information system. In Vulnerability,
these attributes denote vulnerabilities’ effects on security elements. While in
Countermeasure, these attributes mean to which security element countermeasures
can provide protection. Moreover, attributes of Countermeasure also include the
implementing cost to support the cost-benefit analysis during the process of risk
evaluation. Attributes of class Threat include the possibility of occurrence, the
capability, motivation and effect on security elements of threat.

Class Risk_State provides method evaluation(), which judges the overall security
level of information system according to the attributes of Risk_State. Besides, all the
classes in the object model provide methods to read and write their attributes.

Class Asset and Countermeasure are both assets of the system owner. Asset is the
initial evaluation target. Countermeasure is the security control adopted later with the
perceiving of risks. But just as described in CC, risk evaluation is a periodic activity;
the Countermeasure in the first evaluating process will be treated as Asset in next
turn.

�����

���	�
�
� �		������
�������

 The Application of an Object-Oriented Method 361

2.2.2. Instance Connection
The instance connections in the object model reflect the following relationships
between entities in the real world:

− Assets may possess none or more vulnerabilities;
− A vulnerability may have effect on one ore more assets;
− A vulnerability may be eliminated by none or more countermeasures;
− A countermeasure can eliminate one ore more vulnerabilities;
− Assets may encounter none or more threats;
− A threat may aim at one or more assets;
− A vulnerability may be exploited by none or more threats;
− A threat may exploit one or more vulnerabilities;
− Risk state represents the overall security posture of the information system. Any

changes of the entities in the system will cause the changes of the risk state.

3 Object Model of Information System Security Evaluation

Object model of information system security context provides information about the
target of evaluation and its environment. This section will introduce object model of
information system security evaluation to describe the evaluation actions utilizing the
object-oriented technology.

3.1 Class, Attribute and Method

Current security evaluation criteria demand not only vulnerability testing and
penetration testing but also security function testing. So we establish six classes:
Correlation_Testing, Dependency_Testing, Scan, Attack, Questionnaire and Criteria.

Class Correlation_Testing and Dependency_Testing analyze the compositional
security of components from the aspects of correlation and dependency. Correlation
means that components in the information system should keep consistent and
cooperative with each other and comply with the unified security policy of the whole
system when they enforce their functions. Dependency means that the security of a
component, which is deficient in security per se, can be enhanced by other
components. During the process of information system security evaluation, the
function testing mainly focuses on correlation and dependency between components,
while the function testing of components themselves is carried out during the process
of products evaluation. Correlation and dependency are dynamic relationships
between components and take place when system provides application services to
users. Focusing on the process of application services, the testing of correlation and
dependency is a supplement of penetration testing and distinguishes the security
evaluation of information systems from that of products. To discriminate the
correlation and dependency between components locating at different parts of the
system topology, class Correlation_Testing and Dependency_Testing include three
categories of attributes:

− Computing environment correlation/ dependency rules
− Boundary correlation/dependency rules
− Network correlation/dependency rules

362 Q. Yan and H.-y. Shu

Each of these categories includes ten attributes corresponding to the correlation and
dependency rules of the ten security elements. The methods of class
Correlation_Testing and Dependency_Testing include:

− rule_substitute()
− testing_navigate()
− assess()

When testing the application service, correlation and dependency rules are
substituted according to the attribute location of the components involved. Final
verdict is obtained through the testing navigation.

The methods of class Scan and Attack are scan() and attack(), which carry out
penetration testing on Component and Application_Service objects. Attribute of class
Scan and Attack is type, which indicates the types of scan and attack such as network
scan, system scan, cache overflow and so on.

The methods of class Questionnaire include investigate() and assess(), which
investigate the internal and external environments to find out the potential threats to
information system by well-designed questionnaire and assess the impact of these
threats on the security state of the system. The attribute of class Questionnaire,
coverage, identifies the depth and breadth of investigation, the value of which falls in
set {1,2,3,4,5} corresponding to the five security levels of GB 17859.

Class Criteria represents the standards for correlation testing, dependency testing,
scan, attack and investigating. The attributes of class Criteria indicate the security
requirements and the methods of Criteria provide means to read and write these
requirements.

3.2 Instance Connection

During the process of evaluation, class Correlation_Testing, Dependency_Testing,
Scan, Attack and Questionnaire read security requirements from class Criteria.
Correlation_Testing and Dependency_Testing send messages to Application_Service
and Component to get the types of application services, the location of constituent
components in the system topology and the evaluation results of components
themselves. According to the corresponding rules, correlation and dependency
between components located at system boundary, computing environment and
network are tested respectively and the security of the application services is
evaluated. The results are sent to class Risk_State and thus the later adjusts the
security status of the information system.

Class Scan and Attack carry out penetration testing to find out the vulnerabilities of
the system. Scan and Attack synthesize the information of vulnerabilities with
corresponding impacts and security requirements, which are read from class
Vulnerability and Criteria separately, and send the results to Risk_State. Class
Risk_State adjusts the security status of the information system according to these
messages.

During the process of evaluation, the possibility, motivation and the source of
threats are investigated in the form of questionnaire and the results are sent to
Risk_State. Class Risk_State adjusts the security status of the information system
according to these messages.

 The Application of an Object-Oriented Method 363

Class Risk_State receives messages from class Correlation_Testing,
Dependency_Testing, Scan, Attack and Questionnaire and makes the final verdict of
the security of information system.

Class Countermeasure reads the security state of the information system from class
Risk_State. According to the protection countermeasures can provide and
corresponding implementation costs, class Countermeasure recommends security
controls to system owner during the process of security improvement.

Figure 4 illustrates the object model of information system security evaluation.

Fig. 4. Object model of information system security evaluation

4 Realization and Application

Based on the object models of information system security context and security
evaluation, we developed a toolkit for information system security evaluation. The
toolkit now includes eight Application_Service objects, i.e. database service, file
service, email service, web service, print service, disk service, domain name service
and security application service. Component objects include most products in market
such as firewall, IDS, OS, DBMS, router and etc. Correlation_Testing and
Dependency_Testing objects provide methods, i.e. rule_substitute(),

�������	�

�	�	������

���

���

������

����

��	�

��	���

���

���	��

	��	����

���

�
������	��

���
����	�
��

	��
����

���
�	�

����
�	������
�����

��
�� �����
��
�
�������	���	�
��

	��
����

��!�����"
������#

!
��" ����
�	����

��
"�$" ���"��"����

 ��%	��" ����
�	#

����"��
" �$"���"��
����

�
�&���" ����
�	����

��
"�$" ���"��"����

'
�
�%
�����
�����

��
�� �����
��
�
�������	���	�
��

	��
����

��!�����"
������#

!
��"%
�
�%
���

��
"�$" ���"��"����

 ��%	��" %
�
�%
���

��
"�$" ���"��"����
�
�&���" %
�
�%
���

��
"�$" ���"��"����
������	������
����

������

�
�
���$����

�
�
���$����
������

�
�
���$�����

��!���
���

���

��!���
���

������

�
�
���$����

�
�
���$����

������

�
�
���$�����
���	����

����
��	

������

�
(��
!
����$����

�
(��
!
����$����
������

�
(��
!
����$�����

)��
�	 �����

������

$$
���������

$$
���������
������

$$
����������

�*�
	�

������

����� �����

!����	����
�	�	 �����

$$
�������������

����

����
�!
	��

�
�
����

����

����
������������
����
������������

������

����
�������������

364 Q. Yan and H.-y. Shu

testing_navigate() and assess(), for currently included Application_Service and
Component objects. For example, in a network consisting of a firewall, a database
server and other necessary components, the firewall and the DBMS both provide
auditing function. The firewall can record the IP addresses of the accessing machines
and the DBMS logs the user IDs performing the database operations. When
performing Correlation_Testing, testing_navigate() and rule_substitute() will indicate
the evaluators to set up rules about how to check if the logs of the firewall and the
DBMS can be correlated to depict the complete traces of the user access. Then
assess() performs the check according to the rules created in the previous step.

Vulnerability objects include information about more than 4,000 vulnerabilities
known at present. The severity of these vulnerabilities is often denoted qualitatively
such as low, medium and high [7]. However, there are no direct relations between the
severity of vulnerabilities and security elements in GB 17859. Vulnerabilities with
high severity usually affect more than one security elements, and those with low
severity usually affect single one security element while those with medium severity
affect from one to more security elements. According to the analysis of
vulnerabilities, we associated vulnerabilities with security elements. If any
vulnerability has effect on security element n, the attribute of the corresponding
Vulnerability object, effect_on_SEn, is set to one; otherwise the attribute is set to zero.
Scan and Attack objects include the most popular tools available on the INTERNET.
With their extensibility, Scan and Attack objects can verify the survivability of target
system under the threat environment of the time. Attributes of Criteria object denote
the security requirements of GB 17859. The coverage of Questionnaire object is
corresponding to the requirements of security level one to three of GB 17859.
Instances of Threat and Countermeasure are created during the process of
evaluations. We didn’t take account of the cost of Countermeasure objects for
simplicity in this toolkit at present. As a representation of system security states,
Risk_State object reflects the security level of the system. The higher the security
level, the lower the security risk.

This toolkit is used in the security evaluations of several companies in Beijing and
Hunan province in China. During the testing, we launched the tests from both the
internal and the external of the target systems so that we could examine the security of
the boundary and the computing environment. Figure 5 illustrates the testing
environment.

INTERNET

network

equipment

ServerServer

terminal Security evaluation tools

Security evaluation tools

Fig. 5. Testing Environment

 The Application of an Object-Oriented Method 365

The testing shows that:

− The Application Services in the model cover the most conditions during the tests.
− The Attack and the Scan objects meet the testing requirements in the main.
− The correlation and dependency rules need further improvement. Since the network

environments vary from case to case, it's hard to figure out all the correlation and
dependency rules at present. This work can be improved in the future evaluation
experiences.

− The Object-Oriented method is practical in the information system security
evaluation.

5 Discussion and Related Work

This paper established object models of information system security context and
security evaluation, introduced an object-oriented information system security
evaluation method. The main contributions of this method include the following:

• The object model of security context represents the structure and characters of
information systems clearly. OO technology simplifies the analysis process and
improves the efficiency of security evaluation for complex information systems.

• The object model of security evaluation introduces class Correlation_Testing and
Dependency_Testing to assess the compositional security of components at system
boundary, computing environment and network. Focusing on security functions,
the testing of correlation and dependency is a supplement of penetration testing and
distinguishes the security evaluation of information systems from that of products.

• Class Scan and Attack encapsulate penetration testing and eliminate the diversity of
testing results caused by the diversity of evaluators’ experiences. Vulnerability
associates the results of penetration testing with security elements.

• The object model of security evaluation associates risk management with the
evaluation of security levels. It extends the concept of traditional risk and denotes
risk state of system by security levels defined in GB 17859.

There are also many other researchers who work on object-oriented security
analysis and evaluation methods. Peter Herrmann introduced an object-oriented
security analysis and modeling method [8]; J. L. Bramlage proposed an object-
oriented risk analysis model [9]; M S Olivier described an object-based version of the
path context model [10] to analyze the security of component system. However these
methods focus on the analysis of security requirements but not on the evaluation of
systems in operation. Bruce Barnett developed a networked object-oriented security
examiner, NOOSE [11]. It was used to examine the security of UNIX. Table 1
compares our work with the others.

Although object-oriented analysis and design have been widely adopted in the field
of software engineering, the researches on object-oriented security analysis and
evaluation are still in their infancy. We hope to establish a practical security
evaluation method and corresponding tools and procedures by adopting the object-
oriented technology.

366 Q. Yan and H.-y. Shu

Table 1. Comparison between the different models

Model Application Area Research Object
Peter Herrmann CORBA based distributed

application
Define the evaluation
method

J. L. Bramlage Risk management of information
resources

Risk management method

M S Olivier Access control of the network
resources

Security requirements
analysis

Bruce Barnett UNIX system Create an object model to
support multiple algorithm

Our work Information system security
evaluation

Establish the evaluation
procedures and tools

6 Conclusion

This paper introduced an object-oriented information system security evaluation
method, established security context object model and security evaluation object
model and developed a set of information system security evaluation tools according
to these models.

Based on the current research, the future work includes:

• Establish more Application_Service and Component objects to meet the evaluation
requirements of all kinds of information systems.

• Formally describe the correlation and dependency rules.
• Improve the method in practice and develop special object models and tools for

typical systems such as E-commerce systems and E-government systems.

References

[1] National Criteria of PRC. Computer Information System Security Protection Classifying
Criteria (in Chinese). 1999. Available at http://www.infosec.org.cn/fanv/03_22.htm.

[2] A. K. Ghosh, G. McGraw, An Approach for Certifying Security in Software Components.
In Proceedings of 21st NIST-NCSC National Information Systems Security Conference,
1998, pp. 42-48.

[3] Jun Han, Yuliang Zheng. Security Characterisation and Integrity Assurance for Software
Components and Component-Based Systems. In Proceedings of 1998 Australasian
Workshop on Software Architectures, Melbourne, 1998, pp. 83-89.

[4] Clark Weissman. Penetration Testing. Technical report, Naval Research Laboratory,
January 1995. NRL Technical Memorandum 5540:082A.

[5] B. S. Yee. Security Metrology and Monty Hall Problem. Available at:
http://www.cs.ucsd.edu/~bsy/pub/metrology.pdf, April 2001.

[6] Common Criteria Project Sponsoring Organisations, Common Criteria for Information
Security Evaluation Part 1:Introduction and general model, Version 2.1, August 1999.

[7] URL: http://icat.nist.gov/icat.cfm
[8] Peter Herrmann, Heiko Krumm. Object-oriented Security Analysis and Modeling. In

Proceedings of 9th International Conference on Telecommunication Systems – Modelling
and Analysis, ATSMA, IFIP, Dallas, TX, USA, March 2001, pp. 21-32.

 The Application of an Object-Oriented Method 367

[9] J. L. Bramlage. A New Paradigm For Performing Risk Assessment. In Proceedings of
20th National Information Systems Security Conference, Baltimore, Maryland. Oct. 1997,
pp. 565-576.

[10] MS Olivier, SH von Solms. An Object-based Version of the Path Context Model.
International Journal of Computer Mathematics, 49, 3&4, 1993, pp. 133-144.

[11] Bruce Barnett. NOOSE – Networked Object-Oriented Security Examiner. In Proceedings
of the 14th Systems Administration Conference (LISA 2000), New Orleans, Louisiana,
USA, December 3-8, 2000, pp. 369-378.

R. Winther, B.A. Gran, and G. Dahll (Eds.): SAFECOMP 2005, LNCS 3688, pp. 368 – 380, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Towards a Cyber Security Reporting System – A Quality
Improvement Process

Jose J. Gonzalez

Faculty of Engineering and Science,
Research Cell “Security and Quality in Organizations”,

Agder University College, Groosveien 36, NO-4876 GRIMSTAD, Norway
Phone: +47 37 25 32 40, Fax: +47 37 25 30 01

Jose.J.Gonzalez@hia.no
http://ikt.hia.no/sqo

Abstract. IT-security lacks the equivalent of an Air Safety Reporting System.
Yet, the current trend to outsource security processes might be the birth of a
Cyber Security Reporting System – CSRS. A necessary condition for providers
of security services to evolve toward a CSRS is successful quality management.
The increasing demand for “fire-fighting” – deriving from the growth in
number and sophistication of attacks and the decline in the expertise of the
average system administrator – pushes farther and farther away from “fire-
prevention.” But growth of insight, and its codification and communication are
prerequisites for even the most rudimentary CSRS. Studies show that few
attempts to implement quality improvement processes succeed; yet, successful
quality management provides decisive competitive advantage. System
dynamics studies of quality management have identified causes of
implementation failure and provided guidance for success. Transferring these
lessons to security service organizations is a promising path toward the vision
of a CSRS.

1 Introduction

Evidence for the benefits of safety and security reporting systems is found in many
references. In his seminal book about organizational accidents, Reason states that
«many highly effective reporting programmes [do] exist». Reason describes in detail
two instances of an ‘Air Safety Reporting System’1 followed by a discussion of
successful reporting programs in other domains that have used aviation reporting
systems as point of departure and template (cf. [2] p. 196ff). Unfortunately, cyber
security (including cyber security in IT-dependent critical infrastructures) are not
examples of successful reporting programs. One could quote many papers and books
lamenting that the scarcity and incompleteness of (most) security incident data are

1 The name Air Safety Reporting System is generic; instances of it are e.g. NASA’s Aviation

Safety Reporting System (ASRS) or the British Airways Safety Information System (BASIS).
For one of the first discussions of the benefits Air Safety Reporting Systems see ref. [1], p.
168-169.

 Towards a Cyber Security Reporting System – A Quality Improvement Process 369

hampering progress. A particular and passionate statement (ref. [3], p. 391ff.)
compares the frustrating situation for cyber data reporting with the success of ‘Air
Safety Reporting Systems’.

There should be little doubt about the need to improve reporting of cyber security
data – intrusion attempts, successful intrusions, incidents of all kinds, DDoS, etc –,
followed by analysis and sharing of insights. True, the numerous computer emergency
teams (CERTs) and computer security incident response teams (CSIRTs) around the
world have established cyber security reporting systems of sorts. But nearly two
decades after their emergence, distinguished experts from the nestor organization
among them, the CERT® Coordination Center, acknowledge that systematically
collected data on cyber attacks is not generally available (cf. §1.3 Cyber Data
Restrictions of ref. [4]). 2

Reason (op. cit. p. 197) acknowledges that the implementation of critical incident
and near-miss reports is not easy. Such task is indeed of daunting difficulty for cyber
security. This lack of availability stems from three basic causes: Attackers generally
act to conceal their attacks; defenders gather data on attacks for narrow purposes;
organizations controlling information assets rarely share data on attacks. First, cyber
attacks are in general the more successful, the more unexpected they are. Hence,
attackers conceal as much information as possible in order to preserve the utility of
their tools; as a result defenders only capture incomplete information on the methods
and objectives of the attackers. (An exception are honeypots and honeynets, cf. [5,
6].) Second, defenders of information assets rarely have the capacity and the know-
how to collect detailed attack information; in addition, they often are overburdened.
Data are only collected if needed for a specific purpose, such as forensic needs or for
legal proceedings. Also, collected data is normally stored in ad-hoc formats for the
intended purpose – it is rarely stored in generally accessible databases. Third, attack
data is rarely shared, and if so, often only in vague terms. Sharing of information may
be precluded by the rules of evidence in a criminal prosecution. Often, data is
withheld for fear of bad publicity, etc. When detailed data are shared, in most cases
restricted use agreements hamper their availability to the research community.

Unfortunately, recent trends seem to indicate a worsening of the situation:
Intruders have progressively improved their tools and it has become more difficult to
detect an attack. This has a direct negative impact on the availability of cyber data.
But there is an indirect negative effect on availability (both of quantity and quality)
stemming from the huge increase in quantity and sophistication of the attacks.
Defenders are increasingly overburdened, damage amount is increasing and neither
data collection nor smart prevention and detection are becoming easier.

Accordingly, the vision of a Cyber Security Reporting System – CSRS for short – of
a scope comparable to an ‘Air Safety Reporting System’ would appear very distant,
nearly utopian. This paper argues that a CSRS might be a realistic vision nevertheless,
provided more attention is given to quality improvement processes in entities dealing
with incident prevention and handling. It is argued that there are some key elements that
– if combined – could lead to more comprehensive and effective cyber data collection
and analysis, gradually approaching a CSRS of scope comparable to an Air Safety

2 The description of cyber data restrictions in ref. [4] was provided by CERT/CC co-authors

Dawn Cappelli, Andy Moore and Tim Shimeall.

370 J.J. Gonzalez

Reporting System. The most important is that cyber security agents, whether individuals
(CISO, CIO) or teams (e.g. CSIRTs), find the right balance between responding to
incidents and learning from incidents – this requires a successful quality improvement
process to manage the process, as well as improved data collection and analysis to
permit learning from incidents. With quality improvement and learning from incidents
in place, the trend to outsource security processes will create larger arenas for sharing
data and insight, including the development of new methods and tools. For specificity,
this paper uses (external) CSIRTs as focal point. First, it is argued that external CSIRTs
are good candidates for discussing outsourced security processes from this paper’s
perspective. Second, evidence is provided that attack and defend trends inhibit the
performance of CSIRTs. Third, a simple conceptual model suggests that the
performance stress on CSIRTs might force CSIRTs to work hard to the detriment of
working smart (“learning from incidents”). The model also shows that CSIRTs can be
locked into a “capability trap” – that is a stable underperforming mode. Decisions
leading to an underperforming CSIRT are likely to yield a deceitful, transient
improvement to begin with (a “better-before-worse” situation). Conversely, the model
indicates that the desired mode of a well-performing CSIRT is likely to require a
“worse-before-better” stage. Even when managers persevere through the initial “worse”
stage to achieve superior performance, shortcuts during stress situations might
destabilize CSIRTs toward an underperforming mode.

The perspective of a CSRS is in the sustained operation of working smart and in
the diffusion of insights to ever growing circles.

1.1 Outsourcing Security Processes

Cyber security is a very complex field and experts are in great demand. With more
and more aspects of our life occurring in cyberspace the demand for security expertise
is rapidly growing. Very few organizations have sufficient resources or motivation to
have a full cyber defence capacity in-house. Thus, organizations find it necessary to
outsource security processes. The constantly changing threat – with the number and
sophistication of email, virus, and network-based attacks growing each year – will
probably reinforce the current trend to outsource security processes.

Outsourcing of security processes triggers the appearance of informal arenas for
sharing of cyber security information. After some transitory phase the arenas develop to
fora or institutions. Their very existence and ubiquity promotes sharing of information –
within limits – but the constraints will become less restrictive as progress on protocols
and data processing activities increases the utility of data for improving security, while
protecting the legitimate interest of owners of information sources. Expertise will be
shared too – in workshops and conferences (often dedicated to specific security
processes, such as the annual FIRST3 conferences). Generic tools for categories of
security processes will be developed – the advantage that the tools provide will facilitate
standardization and availability of security data on which they operate. The increasing
benefits of the outsourcing security processes (and the accompanying sharing of data)
are likely to promote trust as well as further outsourcing and sharing of cyber security
data. It is a slow process, but it is happening already.

3 FIRST is the global Forum for Incident Response and Security Teams.

 Towards a Cyber Security Reporting System – A Quality Improvement Process 371

CSIRTs (Computer Security Incident Response Teams) are of particular interest,
since they are probably the most ubiquitous category of outsourced security processes
with an arena for diffusion of knowledge to a larger community. The goal of a CSIRT is
to control and minimize any damage, preserve evidence, provide quick and efficient
recovery, prevent similar future events, and gain insight into cyber threats against a
“constituency” of independent organizations.4 A CSIRT is by definition a clearinghouse
for security incident data within the scope defined by its constituency. The TERENA
Technical Programme has established the TF-CSIRT Task Force with goals that include
providing a forum for exchanging experiences and knowledge and promoting common
standards and procedures for responding to security incidents.5 With such auspices
CSIRTs might be seen in retrospect as a significant step towards a future Cyber Security
Reporting System – CSRS. Because of this, and for specificity, the remainder of this
paper is dedicated to CSIRTs.6

Note that a recent CERT/CC study on the state of practice of CSIRTs [7] supports
our expectations, at least for a particular domain of cyber security (incident handling):
1) A large increase in the number of incident response teams over the past four to five
years before the study (i.e. since 1998) – i.e. a growth in outsourced security services
(op. cit. p. 131); 2) the goal to establish standards, and to develop and utilize a common
and easy-to-use mechanism for sharing of data between teams and the synthesis of
collected data (op. cit. p. 133); 3) the intention to develop generic tools for use in
incident handling (op. cit. p. 135.).

2 Attack and Defence Trends

Trends since the early 1990s indicate that the sophistication of attack tools is increasing
while the required individual know-how to deploy those tools is decreasing (Fig. 1). 7

In the 1980s intruders were system experts with a high level of expertise and they
personally constructed the methods for breaking into systems. Today, anyone can
attack a network using intrusion tools and exploit scripts from the “public domain”
that capture known methods of attack. While experienced intruders are getting
smarter, as demonstrated by the increased sophistication in the types of attacks, the
knowledge required on the part of novice intruders to copy and launch known
methods of attack is decreasing.

In the early era of cyber attacks, intruders manually entering commands on
computers could access tens to hundreds of systems; today, intruders use automated
tools to attack thousands to tens of thousands of systems – and nothing prohibits the
access to hundreds of thousands or even millions of sites. In 1980s, it was relatively

4 Strictly speaking, this statement concerns external CSIRTs. Broadly speaking there are two

kinds of CSIRTs, internal and external. An internal CSIRT is a unit within an organization.
5 TERENA stands for Trans-European Research and Education Networking Association. For

details about the task-force, cf. http://www.terena.nl/tech/task-forces/tf-csirt/.
6 CSIRT is a generic name; cf. http://www.first.org/about/organization/teams/ for examples of

existing CSIRTs.
7 Graphic © Copyright 2004 Carnegie Mellon University. Reprinted with kind permission of

CERT®/CC. CERT®/CC is a registered trademark and service mark of Carnegie Mellon
University.

372 J.J. Gonzalez

straightforward to determine if an intruder had penetrated the system and understand
the damage done. Today, intruders are able to totally hide their presence by, for
example, disabling commonly used services and reinstalling their own versions, and
erasing their tracks in audit and log files. In the beginning of the cyber attack era,
denial-of-service attacks were rare and not considered serious. Today, for an
increasing number of organizations that operate electronically, a successful denial-of-
service attack can put them out of business. Unfortunately, these types of attacks are
becoming more frequent. For more details, cf. [7] §3.8 Changes in Intruder Attacks
and Tools, p. 107ff. Note also that the rate at which new vulnerabilities are discovered
continues to increase (op. cit. p. 111).

Fig. 1. Attack sophistication vs Intruder Knowledge. © Copyright 2004 Carnegie Mellon
University. Reprinted with permission of the CERT® Coordination Center.

Not surprisingly, CSIRTs have problems in coping with the increasing flood of
incidents. Killcrece et al. state in the seminal CERT/CC study (ref. [7], p. 77):
«Because of the amount of detailed work done by incident handlers and the increasing
work loads, many of the authors of the books and articles reviewed in the literature
identified staff burnout as a problem for CSIRTs.» Further: «As the volume of
incident and vulnerability reports continue to rise, and the automation and speed of
many attack tools continue to increase, CSIRT and information security staff
members now have less time to react to new threats.» (Op. cit. p. 112).

Summarizing: The increasing number of attacks and their sophistication has
increased the workload in CSIRTs and it is becoming overwhelming, implying a wide
range of internal problems, such as insufficient funding, inadequate management
support, shortage of trained incident handling staff, lack of clearly defined mission
and authority, and lack of coordination mechanisms. (Op. cit. p. 126).

email propagation of malicious code

“stealth”/advanced scanning techniques

widespread attacks using NNTP to distribute attack

widespread attacks on DNS infrastructure

executable code attacks (against browsers)

automated widespread attacks

GUI intruder tools

hijacking sessions

Internet social engineering
attacks

packet spoofing
automated probes/scans

widespread
denial-of-service

attacks

techniques to analyze
code for vulnerabilities
without source code

DDoS attacks

increase in worms

sophisticated command
& control

anti-forensic techniques

home users targeted

distributed attack tools

increase in wide-scale
Trojan horse distribution

Windows-based
remote controllable

Trojans (Back Orifice)

Intruder Knowledge

A
tt

ac
k

S
o

p
h

is
ti

ca
ti

o
n

1990 2003

 Towards a Cyber Security Reporting System – A Quality Improvement Process 373

In the following section it is argued that this stressful situation is a main obstacle
for the reporting of cyber security data, learning from incidents and for sharing of
insights.

3 CSIRT Services – Status and Shortcomings

The CERT/CC report on organizational models for CSIRTs classifies services
provided by Computer Security Incident Response Teams as reactive services,
proactive services and security quality management services. Reactive services are the
core component of CSIRT work; they are triggered by incidents events or requests –
those services can be compared to fire-fighting activities. Proactive services target
preparation, protection and securing constituent systems. Security quality
management services «augment existing and well-established services that are
independent of incident handling and traditionally performed by other areas of an
organization such as the IT, audit, or training departments.» (Ref. [7] p. 65.) While
proactive services directly reduce the number of incidents, security management
services do indirectly so (cf. [8] p. 14-15.) Proactive services and security quality
management processes can be compared to fire-preventing activities.

The CERT/CC report on the state of the practice of CSIRTs [7] gives much
evidence that most current CSIRTs still are incipient, that their services are reactive in
nature or still striving to achieve maturity: Computer security must be proactive to be
successful – being reactive is no longer sufficient (p. 131); incident response is still an
immature field and there are few standards (p. 131-132, 133); there are no consistent
structure or set of services for a CSIRT (p. 132); There is no commonly used
taxonomy for incident response and computer security terminology (p. 132);
employees who are trained and experienced in incident response techniques and
practices are difficult to find (p. 132); few tools addressing the specific needs of
CSIRTs are readily available (p. 132); shortcomings in best practices (p. 132); etc.

One might safely conclude that in many CSIRTs reactive fire-fighting dominates to
the detriment of proactive work and security quality management services. To release
the potential of CSIRTs in security prevention and their ability to evolve toward
Cyber Security Reporting Systems a paradigm shift is needed. In the next section it is
argued that the clue is a successful quality improvement program in CSIRTs.

4 The Need for Quality Improvement Processes in CSIRTs

A very interesting parallel to the situation in CSIRTs occurs in quality improvement
programs: Despite vast investments – in the USA in the order of hundreds of billions
USD per annum – few efforts to implement such programs yield significant results.
But enterprises that succeed to implement total quality management programs
outperform their competitors [9-12]. A team at MIT’s Sloan School of Management
led by professors Nelson Repenning and John Sterman has conducted about a dozen
brilliant in depth studies of the “quality improvement paradox” in several sectors
(telecommunication, semiconductors, recreational products, chemicals, oil, auto-
mobiles). System dynamics models based on detailed data are able to capture the

374 J.J. Gonzalez

essentials of the quality improvement process (see the award-winning paper [13] and
references given in endnotes 4-5 therein). If the methods and lessons from the MIT
studies can be applied to CSIRTs, a major improvement in their performance might
be achieved.

Several projects in our research cell “Security and Quality in Organizations” are
concerned with the dynamics of CSIRT management (refs. [14, 15] are results from
two of them; in addition there is a recently begun project, AMBASEC,8 related to
incident response and management in the context of eOperation in offshore oil and
gas fields). Of particular interest is the PhD project of Johannes Wiik, which is
concerned with the management of CNF-CERT, a state-of-the art external CSIRT.
Preliminary results with data provided by K.-P. Kossakoswki from CNF-CERT
suggest indeed that the MIT approach to quality improvement processes is relevant
for CSIRT management as well [14, 16]. The ultimate goal is to derive best practice
recommendations in order to improve a generic CSIRT’s ability to provide processes
and security quality management services. The potential of the approach can be
illustrated with an adapted version of a basic, qualitative system dynamics model
developed by Repenning and Sterman. The model explains the core behaviour of the
dynamics of quality improvement processes; it has four feedback loops depicting the
trade-offs between working hard vs. working smart (op. cit., section The Structure of
Improvement, p. 66 ff). In the case of CSIRTs, “working hard” corresponds to routine
coping with the flood of incidents, while “working smart” is tantamount to learning
from incidents – i.e. distilling lessons; proactive work leading to preventive measures;
developing tools that improve performance; sharing of insights; promoting better
security management; etc.

Figure 2 shows the CSIRT version of Repenning and Sterman’s basic model. The
four feedback loops determining the performance of the CSIRT are:

• ‘B1: COPING WITH INCIDENTS.’ This is a balancing loop consisting of the variables
‘Performance gap’, ‘Pressure to handle incidents’, ‘Time spent on incident
response’ and ‘Actual CSIRT performance’;

• ‘B2: LEARNING FROM INCIDENTS.’ This is a balancing loop consisting of the
variables ‘Performance gap’, ‘Pressure to improve CSIRT capability’, ‘Time spent
on improvement’, ‘Development of CSIRT capability’, ‘CSIRT's capability’,
‘Prevented incidents’ and ‘Actual CSIRT performance’;

• ‘B3: SHORTCUTS.’ This is a balancing loop consisting of the variables
‘Performance gap’, ‘Pressure to handle incidents’, ‘Time spent on improvement’,
‘Time spent on incident response’ and ‘Actual CSIRT performance’;

• ‘R1: REINVESTMENT.’ This is a reinforcing loop consisting of the variables
‘Performance gap’, ‘Pressure to improve CSIRT capability’, ‘Time spent on
improvement’, ‘Development of CSIRT capability’, ‘CSIRT's capability’,
‘Prevented incidents’ and ‘Actual CSIRT performance’.

The plus and minus signs in the diagram refer to the polarity of the causal
influence: A plus sign indicates a causal influence in the same direction; a minus sign
indicates an influence in the opposite direction.9

8 AMBASEC (A Model-based Approach to Security Culture).
9 For a more accurate definition of causal link polarity, see ref. [14] p. 139.

 Towards a Cyber Security Reporting System – A Quality Improvement Process 375

A rising number of security incidents (Attacks) widens the ‘Performance gap’ (the
difference between desired and actual CSIRT performance). CSIRT management has
to choose the right balance between two options, COPING WITH INCIDENTS and
LEARNING FROM INCIDENTS. LEARNING FROM INCIDENTS is in principle the smarter
option because preventive measures, better tools, improved security culture, etc., yield
enduring change and enhance the power of direct efforts. COPING WITH INCIDENTS is
constrained by available staff time and resources, but it has the (dangerous) attraction
of yielding immediate results. Unfortunately, the better option LEARNING FROM

INCIDENTS, involving development and deployment of smart solutions, takes time to
develop and to come into play (the time delay is shown by the delay mark //). There is
a trade-off between both options, since ‘Time spent on incident response’ and ‘Time
spent on improvement’ add up to total available time.

Working under the pressure to respond to an increasing stream of incidents, most
managers of CSIRTs would react by increasing ‘Pressure to handle incidents’. The
resulting balancing feedback loop ‘B1: COPING WITH INCIDENTS’ counteracts the
widening performance gap and some transient improvement is seen.

CSIRT management could opt to increase ‘Pressure to improve CSIRT capability’.
There is a dilemma, because ‘Time spent on improvement’ does not yield immediate
results; it takes time for piecemeal improvements (depicted as the flow variable
‘Development of CSIRT capability’) to add up to sizable ‘CSIRT's capability’ that

Actual CSIRT
performance

Time spent on
incident response

+

CSIRT's
capabilityDevelopment of

CSIRT capability
Capability

erosion

Time spent on
improvement

+

Desired CSIRT
incident handling

performance

Performance
gap

-

+

Pressure to handle
incidents +

+
B1

Coping with Incidents

Pressure to improve
CSIRT capability

+

+

B2

Learning from
Incidents

-

-

R1

Reinvestment

B3

Shortcuts

Prevented
incidents

+

+

Attacks

-

Fig. 2. Basic system dynamics model of CSIRT performance

376 J.J. Gonzalez

tends to persist. (The persistence of ‘CSIRT's capability’ means that it is a stock
variable – shown as a rectangle – that cumulates the flow, the improvements over
time.) Ultimately, capability does erode over time (as knowledge, routines, tools, etc.
become obsolete); this is depicted by the flow variable ‘Capability erosion’.
Improved ‘CSIRT’s capability’ rises ‘Prevented incidents’ and so does ‘Actual CSIRT
performance’. Summarizing: The balancing feedback loop ‘B2: LEARNING FROM

INCIDENTS’ acts also to close the ‘Performance gap’, it gives quite persistent results,
but it takes time.

The feedback loop ‘R: REINVESTMENT’ is reinforcing; the conundrum is that it
reinforces whichever strategy management chooses. If management gives too much
priority to reactive work, perhaps because the swelling flood of security incidents
forces them to, the REINVESTMENT loop increases ‘Pressure to handle incidents’ even
more at the expense of CSIRT’s capability (in other words the REINVESTMENT loop
makes the COPING WITH INCIDENTS feedback loop the dominant one, i.e. the CSIRT is
likely to lock into reactive fire-fighting at the expense of becoming smarter). If
management instead decides to increase ‘Pressure to improve CSIRT capability’, the
REINVESTMENT loop facilitates further improvements of ‘CSIRT's capability’ (i.e. the
REINVESTMENT loop makes the LEARNING FROM INCIDENTS loop the dominant one
and the CSIRT becomes more effective at handling and preventing incidents).

Figure 3 shows the results of two simulations showing how a hypothetical CSIRT
would react to management opting for more “Coping with Incidents” vs. more
“Learning from Incidents” (working harder vs. working smarter). In both cases the
CSIRT begins in the same stationary state, but a sudden increase in intrusions forces
management to either handle more incidents or to invest in more capability
development (via “Learning from Incidents”). The first simulation shows the CSIRT’s
response to emphasis on “Coping with Incidents.” As more pressure on handling
incidents increases, effort to handle incidents does so too. Time spent on improving
CSIRT capability falls quickly, but CSIRT capability stays the same for a while.
Hence, the actual CSIRT performance, in terms of how many incidents are handled
per time unit, rises without delay. But the gain of working harder to cope with
incidents is transitory. In contrast, if management decides to invest in CSIRT
capability development through learning from incidents, CSIRT performance falls
transiently until the gain from enhanced capability results in sustained superior
performance.10 Choosing working harder (more coping with incidents) gives a
“better-before-worse” response; opting for working smarter (more capability
development through learning from incidents) yields a “worse-before-better”
situation. CSIRT management can be lured by short-lived gains and become locked in
an underperforming situation, or it can prematurely give up developing sustainable
CSIRT capability. The term “capability trap” (coined by Repenning and Sterman –
op. cit.) is a metaphor for this double peril.

But there is more to it. Even when management has opted for more LEARNING

FROM INCIDENTS, there is a substantial risk that emergency would force the staff to
temporarily reduce ‘Time spent on improvement’ and to increase ‘Time spent on

10 In the conceptual model behind Figure 3 it is also assumed a smooth transition to more effort

on capability improvement (r.h.s.), whereas it is assumed that the transition to more incident
handling can be implemented very fast (l.h.s.).

 Towards a Cyber Security Reporting System – A Quality Improvement Process 377

incident response’. The resulting ‘B3: SHORTCUTS’ loop is again a balancing loop that
helps meet short time objectives – but the time won by cutting corners reduces the
capability of the CSIRT. In other words, the SHORTCUTS loop can in a subtle way lead
away from the best strategy and lock CSIRT performance in the “capability trap.”

Fig. 3 Simulations of CSIRT response to emphasis on Coping with Incidents vs. Learning from
Incidents (Time scale is arbitrary)

5 Concluding Remarks

At first sight, the vision to establish a Cyber Security Reporting System (CSRS) in the
spirit of ‘Air Safety Reporting Systems’ seems too distant to be a guide for current
endeavours. But the vision might not be that distant: In this paper it is argued that the
outsourcing of security processes – particularly of incident response handling – might
be a first step toward a CSRS. A necessary condition for this to happen is that
providers of outsourced security services improve their capability to do proactive

378 J.J. Gonzalez

work and to deliver security quality management services. The challenge is analogous
to quality improvement processes. This paper suggests that CSIRTs are a promising
first venue for quality improvement.

The analysis derived from the pioneering work on quality improvement processes
lead by Repenning and Sterman at MIT’s Sloan School of Management makes it
promising to transfer the methods and to transfer their approach to quality
improvement processes in CSIRTs: If the capability of CSIRTs (of which there are
hundreds in the world) improves significantly, there would be a multiplier effect
concerning better data mining and use of incident data to improve organizational
security and survivability. Thus, directing the performance of CSIRTs toward more
proactive work and improved security services would have strong leverage when it
comes for progress in data mining and downstream activities from cyber security data
(analysis, modelling, insight, dissemination of results, etc).

To find out the right balance between reactive work and learning from incidents is
not a trivial task; nor is the implementation of the right strategy – once found – trivial.
Among the problems facing management is the dilemma that – in order to achieve
sustainable gains in CSIRT capability – the CSIRT’s performance is likely to
decrease before it improves. Indeed, to improve CSIRT capability one must invest the
existing limited resources into learning from incidents, i.e. to redirect efforts from
response to quality improvement – an investment that takes time to yield visible
results. And vice versa: Performance improves transiently if management enforces
more reactive work to cope with the swelling flood of security incidents – in the
meantime CSIRT capability erodes and a strong negative outcome in performance
ensues. Management can fall into the capability trap in two ways: 1) Emphasis on
coping with incidents yields initially deceitful promising results, but subsequently
CSIRT performance gets locked in an underperforming mode; 2) emphasis on
learning from incidents does establish superior and sustained performance, but
inadvertent recourse to more and more shortcuts during stressful periods of incident
response destabilizes performance.

The capability trap is hard enough to avoid in enterprises under tough competition
pressure; the exponential rise of security incidents and the growing sophistication of
attacks puts CSIRTs (and probably most other organizations providing security
services) under an even greater pressure; the basic, conceptual system dynamic model
discussed above would suggest that avoiding the capability trap in the cyber security
case is an even tougher task than in, say, manufacturing companies. A central target in
the projects of our research cell Security and Quality in Organizations is to suggest
specific CSIRT management policies that prevent the capability trap and, hence, a
degrading effectiveness of such organisations. Achieving sustainable superior CSIRT
performance is expected to promote better security data mining and learning from
such data.

CSIRT is a generic name and instances of CSIRTs are found in critical infrastructure
(defence, finance, energy sector, etc.). The PhD project of Johannes Wiik and the
AMBASEC project are just a beginning – though a promising one. More studies will be
needed, since the topic is complex and CSIRTs occur in many shapes and
configurations. For further progress to occur it is crucial that incident response teams
engage in quality improvement processes – a modest first step would be to interact with
our team (i.e. comment and criticize our approach, to discuss cooperative projects, etc.).

 Towards a Cyber Security Reporting System – A Quality Improvement Process 379

Although this paper has selected external CSIRTs as specific case for the vision to
CSRS through quality process improvement, much of the arguments presented should
be of generic validity for other kinds of outsourced security processes.

Improved cyber security is closely related to dependability of infrastructures that
depend critically on information technology. This perspective is beyond the scope of
this paper but it is a central aspect of the collaboration of the AMBASEC project of
our research cell Security and Quality in Organizations with SINTEF’s IRMA project.
The target of the collaboration is to improve information security in the oil and gas
industry, for individual enterprises and as part of critical infrastructure, by improving
incident response management.

Acknowledgement

The work leading to this paper is part of the AMBASEC project that is funded by the
Research Council of Norway under the IKTSoS program.11 The idea to write this
paper surfaced when attending the IKTSoS workshop at Oslo Airport Hotel 1-2
March 2005. We express our gratitude to the Research Council of Norway for
arranging and financing the IKTSoS workshop.

The paper has greatly benefited from discussions with PhD fellow Johannes Wiik
and post doctoral fellow Dr. Agata Sawicka. We thank also project secretary M.Sc.
Maren S. Assev for her critical comments and stylistic corrections.

We also thank the CERT®/CC, Carnegie Mellon University, for permission to
reproduce Fig. 1 and to adapt the explanatory text.

References

1. Perrow, C., Normal accidents: living with high-risk technologies. 1999, Princeton, N.J.:
Princeton University Press. Original pub.: New York: Basic Books, c1984.

2. Reason, J., Managing the Risks of Organizational Accidents. 1997, Aldershot, Hants, UK:
Ashgate Publishing Ltd. 1997.

3. Schneier, B., Secrets and Lies: Digital Security in a Networked World. 2000, New York:
John Wiley & Sons, Inc.

4 . Andersen, D.F., et al. Preliminary System Dynamics Maps of the Insider Cyber-threat
Problem. In Twenty Second International Conference of the System Dynamics Society.
2004. Oxford, UK.

5. Spitzner, L., Honeypots: Tracking Hackers. 2003, Boston: Addison-Wesley Publishing
Company.

6. The Honeynet Project, Know Your Enemy: Learning About Security Threats. 2 ed. 2004,
Boston: Addison-Wesley Publishing Company.

7. Killcrece, G., et al. State of the practice of Computer Security Incident Response Teams
(CSIRTs). 2003 [cited 2005 24 February]; Available from: http://www.cert.org/
archive/pdf/03tr001.pdf.

8. Killcrece, G., et al. Organizational Models for Computer Security Incident Response
Teams (CSIRTs). 2003 [cited 2005 23 February]; Available from: http://www.sei.cmu.
edu/pub/documents/03.reports/pdf/03hb001.pdf.

11 AMBASEC, A Model-based Approach to Security Culture, grant number 164384/V30.

IKTSoS is an abbreviation for IKT Sikkerhet og Sårbarhet (ICT Security and Vulnerability).

380 J.J. Gonzalez

9. Easton, G.S. and S.L. Jarrell, The effects of total quality management on corporate
performance: An empirical investigation. Journal of Business, 1998. 71(2): p. 253-307.

10. Hendricks, K.B. and V.R. Singhal, Quality awards and the market value of the firm: An
empirical investigation. Management Science, 1996. 42(3): p. 415-36.

11. Hendricks, K.B. and V.R. Singhal, Does implementing an effective TQM program actually
improve operating performance? Empirical evidence from firms that have won quality
awards. Management Science, 1997. 47(9): p. 1258-74.

12. Hendricks, K.B. and V.R. Singhal, Firm characteristics, total quality management, and
financial performance. Journal of Operations Management, 2001. 19(3): p. 269-285.

13. Repenning, N.R. and J.D. Sterman, Nobody ever gets credit for fixing problems that never
happened. California Management Review, 2001. 43(4): p. 64-88.

14. Wiik, J. and J.J. Gonzalez. Limits to effectiveness of Computer Security Incident Response
Teams (CSIRTs). in TwentyThird International Conference of the System Dynamics
Society. 2005. Boston, MA: The System Dynamics Society.

15. Sawicka, A., J.J. Gonzalez, and Y. Qian. Managing a CSIRT. in Twenty Third
International Conference of the System Dynamics Society. 2005. Boston, USA.

16. Wiik, J. and K.-P. Kossakowski. Dynamics of CSIRT Management. in Seventeenth Annual
FIRST Conference on Computer Security Incident Handling. 2005. Singapore: FIRST.

17. Sterman, J.D., Business Dynamics: Systems Thinking and Modeling for a Complex World.
2000, Boston: Irwin/McGraw-Hill.

R. Winther, B.A. Gran, and G. Dahll (Eds.): SAFECOMP 2005, LNCS 3688, pp. 381 – 389, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Security Research from a Multi-disciplinary and
Multi-sectoral Perspective

Atoosa P-J Thunem

Software Engineering laboratory, Institute for Energy Technology,
NO-1751 Halden, Norway

atoosa.p-j.thunem@hrp.no

Abstract. During the era of information technology and within the domain, the
topic of security has for many years been perceived of as a “goodness” factor
particularly relevant to IT in general and Telecommunications in particular.
Nevertheless, rapid application growth of complex Information and
Communication Technologies (ICT) in every society and state infrastructure
has revealed vulnerabilities that eventually have given rise to serious security
breaches. These vulnerabilities together with the course of the breaches from
cause to consequence have gradually convinced the field experts that ensuring
the security is no longer possible by only relying on the fundaments of the
computer science, IT, or Telecommunications. Appropriating knowledge from
other domains of science is not only beneficial, but indeed very necessary. At
the same time, it is a common observation today that ICT-systems are used
everywhere, from the aviation, nuclear, commerce and healthcare domains to
camera-equipped web-enabled cellular phones used by your next door
teenagers. There ought to be common mechanisms on security analysis and
countermeasures against the possible breaches, which are valid for all these
domains. This paper advocates the importance of a multi-disciplinary and multi-
sectoral security research and analysis, and highlights the European and
Norwegian initiatives in that direction.

1 Introduction

During the recent years, technological research within security has evolved from
computer and IT security, through cyber and information security and now to the
rapidly growing scope of ICT security. During the era of IT and within the domain,
the topic of security has for many years been perceived of as a “goodness” factor
particularly relevant to IT in general and Telecommunications in particular. In the
light of this, the topic of security from a pure technological point of view has been
believed to be a function of mainly three variables, the notorious CIA
(Confidentiality, Integrity and Availability). In accordance with the increasing
complexity of information and communication technologies and their applications and
especially within computer security, Accountability1 is also believed to be the fourth

1 A system’s accountability is usually used to address a quality of a system that makes it

possible to trace a security breach (related to one or several from CIA) caused by an artefact
uniquely to that artefact.

382 A.P-J Thunem

deciding variable [1]. All four variables are mutually related. Nevertheless, the
integration of ICT systems into all groups of society infrastructure has seriously
challenged the validity of the CIAA belief. Within the ICT community, a common
consensus today is that the deciding CIA variables are closely related to factors,
which traditionally have not been regarded as of technological nature. The most
compelling evidence is the issue of safety: While security in the context of safety has
so far been an issue only within certain industrial domains such as the nuclear field, it
has become more relevant today for other areas, e.g., eHealth. Examples of other
factors increasing in their importance are trust, (data) protection of personal privacy,
user-friendliness [2][3], robustness, maintainability, flexibility, and mobility.

One of the oldest non-technological perceptions of security is from the banking
domain. For many years, sociological, financial, political, defence-political,
jurisprudential and environmental observations and analyses have been contributing
to a non-technological understanding of security. Then again, the observations and
analyses made by these areas today cannot deny the major role of insight into
technological trends such as the advance of ICT systems on how to understand and
deal with security.

The above indicates the inevitable: Ongoing and future security research efforts
within various disciplines and application areas cannot be mutually exclusive, if
wished to achieve an acceptable level of success. In other words, security research is
by nature a multi-disciplinary and multi-sectoral research area.

2 Security as a Dependability Factor and the Related Challenges

Based on the above, it is not far from the (relative) truth to claim that competence in
technological pillars of the ICT domain and dependability analysis, gained knowledge
and experience within other domains that are relying on and applying ICT systems,
and focus on continuously learning from, exploiting and engaging other disciplines
and application areas in the efforts within security research all contribute to better
understanding of the relationships between the security in one side and other
dependability factors in the other side, and hence to more effective and long-lasting
countermeasures against possible threats eventually resulting in serious security
breaches [4].

To begin with understanding such relationships, the following provides detailed
definition of safety and security and their associated risk. The definitions are not only
in agreement with the corresponding definitions offered by applied international
standards (e.g., IEC 61508), but also are more advanced, as far as the level of detail
and clarity of involved terms are concerned.

2.1 Safety, Security and Their Associated Risk

The term safety is associated with a system’s2 physical condition not being harmed or
damaged by its outside environment (including humans). At the same time, a system

2 A system is a compound of interrelated and interconnected entities that function together in

order to attain a set of overall goals for the system. Scientifically, a system can be of natural
character (e.g., a human being) or human-made (e.g., an oven, a television set, or the nation-
wide electricity power network).

 Security Research from a Multi-disciplinary and Multi-sectoral Perspective 383

contributes to the safety of its outside environment, when the system is able to
function and to be used as intended or expected without harming or damaging this
environment. Thus, safety is used to express the prevention of unacceptable risk of
harm. Harm and risk are defined as follows [5]:

• Harm is the physical injury, or the physical damage to condition or property
of a system or its outside environment, caused by an intended or unintended
action or an event.

• Risk is a collective effect (qualitative or quantitative) of the occurrence
likelihood of a hazard causing harm and the degree of severity of the harm,
given the degree of vulnerability of the system or its environment subject to
that harm.

 The perception of failure of a safety-related system can vary considerably
depending on the application in focus. It is this variation that leads to concepts such as
the "level of safety", the "Safety Integrity Level" (SIL), and the “As Low As
Reasonably Possible” (ALARP) for a system.

In general, the term safety is more often applied for living beings than, e.g., pure
technological systems. Bearing the physical condition and protection of a system in
mind, however, the term is equally applicable for all systems.

The term security is associated with the protection of a system’s assets such as the
information3 and information processing resources, from being threatened to
unintended or intended damage by the system’s outside environment. Thus, a
system’s level of security may decline without affecting the system’s level of safety.
As an example, the confidentiality of a nuclear scientist’s knowledge carried by its
brain may be intentionally disclosed, hence causing the scientist’s security level to
decline, without affecting the scientist’s level of safety in any manner.

Of course, a security breach for a system might affect the safety of its outside
environment, both in a positive and negative manner. In the context of security, threat
and risk are defined as follows [6]:

• Threat is defined as an intended or unintended action or an event that might
jeopardise the security of a system.

• A risk is defined as the collective effect of the occurrence likelihood of a
particular threat and the degree of severity of the threat (i.e., the potential
consequences of the threat, if it did occur), given the degree of vulnerability
of the system subject to that threat.

 In general, the term security is more often applied for technological systems than
living beings. Bearing the assets of a system in mind (i.e., its information and
information processing resources), however, the term is equally applicable for all
systems that possess information.

Nevertheless, the tradition of relating safety to the living beings and security to
technological systems (or “machines”) is still helpful, when addressing the

3 Thus, the asset can also include knowledge, which is a piece of information already declared

to have a certain value of use.

384 A.P-J Thunem

relationship between safety and security (such as “security in the context of safety”).
The best illustration existing today is perhaps the three laws of Robotics4:

1. A robot may not injure a human being or, through inaction, allow a human
being to come to harm.

2. A robot must obey orders given it by human beings except where such orders
would conflict with the First Law.

3. A robot must protect its own existence as long as such protection does not
conflict with the First or Second Law.

2.2 Pertinent Security-Related Issues Subject to Deeper Exploitation

Assuming that the conditions described in the beginning of this chapter are fulfilled,
one is able to identify issues that need further exploitation. Four of these are explained
bellow.

1. Identification of technological and non-technological factors defining,
deciding or relating to the level of security in security-critical systems,
society and state infrastructures and processes. A society infrastructure can
be the nationwide electricity network, where the relationships among factors
such as availability, integrity, maintainability and safety are crucial to
identify in order to ensure an acceptable level of security. A state process can
be a continuously updated collection of guidelines and means to implement
actions to protect the society against the threat caused by international
terrorism. Here, it is of paramount importance to clarify factors such as trust,
(data) protection of personal privacy, user-friendliness (e.g., of instructions)
and robustness (e.g., against vulnerability sources), in order to establish a
certain level of belief in security countermeasures.

2. Identification of both overlaps and discrepancies across involving sectors, so
that it becomes easier to develop common methodologies and models to deal
with security in present and future complex systems, infrastructures and
processes, without causing the tailor-made methodologies and models in
each sector to become invalid or ineffective.

3. Integration of risk factors into the established security affecting and security
related factors addressed above, so that the entire risk management process,
including risk analysis, assessment and treatment can be mapped into the
development process (lifecycle) of security-critical systems, infrastructures
and processes, hence resulting in risk-informed development processes with
security as their core focus. In practice, this means that there should be a risk
model involved as an integrated part of a certain security related factor for,
e.g., a modernised ICT system, an updated guideline, or a modified state
decision. This factor could be the “accepted” level of data protection of

4 The three laws of Robotics were established by the father of Robotics, Isaac Asimov whose

thoughts and theories on possible patterns of relationships between humans and machines
have highly inspired the masters of information and communication engineering as well as
human factors engineering.

 Security Research from a Multi-disciplinary and Multi-sectoral Perspective 385

personal privacy, so that the consequence of its change to other levels in the
future can be viewed and studied.

4. Intensified focus on research within communication and traceability of
security affecting and security related requirements for all systems and
processes used in technological/industrial, sociological, financial, political,
defence-political, jurisprudential and environmental applications and sectors,
in addition to society and state infrastructures. Joint efforts from different
disciplines within this particular area are central in dealing with continuous
changes in the requirements for such complex systems, processes and
infrastructures, as a response to modernisation and improvement needs, as
well as social, economical, environmental, technological and political
influences from the world.

3 European and Norwegian Initiatives Towards Security
 Research

The European Commission’s movements and actions in progress indicate a clearly
increasing focus on the topic of security. In that respect, a dedicated programme for
security research as a part of the 7th Framework Programme is about to form [7]. The
prime rationale behind the programme is in fact to better and more efficiently
conform to the multi-disciplinary and multi-sectoral requirements for giving a boost
to Europe’s security research.

In accordance with the above, the Research Council of Norway has launched
several initiatives to prepare the research and education community in Norway for
better compliance with the requirements set up by the EC.

3.1 The European Security Research Programme (ESRP)

The major difference between the new programme and the EC’s security-related
activities within the previous and current framework programmes is the programme’s
particular focus on joint civil-defence research. The aim is to establish an
environment for more coherent research towards security for society and
infrastructure, so that the risk for terrorism, organised crime, large-scale accidents and
natural disasters can be reduced in a more effective manner. The research programme
will therefore be multidisciplinary and multi-industrial of nature. The EC undertook
in that regard two concrete actions:

• Launching a Preparatory Action in the field of Security Research (PASR),
http://europa.eu.int/eur-lex/en/com/cnc/2004/com2004_0072en01.pdf

• Asking a high level Group of Personalities (GoP) to advise on a long-term
strategy for European Security Research Programme (ESRP) within the
European Union

 The PASR has been launched with the first call closed on June 2004 and the second
call closing on May 2005. The main objective of the PASR exercise is to bring
together the greatest possible number of interested parties, so that a robust community

386 A.P-J Thunem

accustomed to working together is established by the time the comprehensive ESRP is
launched in 2007.

The GoP’s report, http://europa.eu.int/comm/research/security/pdf/gop_en.pdf, was
published in March 2004. This report recommends the following:

1. A Community-funded ESRP ensuring the involvement of all Member States
should be launched as early as 2007. Its minimum funding should be €1
billion per year, additional to existing funding. This spending level should be
reached rapidly, with the possibility to progressively increase it further, if
appropriate, to bring the combined EU (Community, national and
intergovernmental) security research investment level close to that of the
U.S.

2. An ESRP should fund capability-related research projects up to the level of
demonstrators that are useful in particular for Internal Security in the EU and
for CFSP/ESDP-missions.

3. In closing the gap between civil and defence research, an ESRP should seek
to maximize the benefits of multi-purpose aspects of technology. In order to
stimulate synergies, it should encourage transformation, integration of
applications and technology transfer from one sector to the other.

4. An ESRP should focus on interoperability and connectivity as key elements
of cross-border and inter-service cooperation. In this context, a kernel of
architectural design rules and standards should be worked out at an early
stage.

5. The rules governing an ESRP must suit the specificities of security research.
The Commission should, in consultation with all relevant stakeholders,
develop the necessary rules for IPR and technology transfer.

6. Recognizing that many requirements will be government-specified, new
financing instruments should be created to enable research funding to be
disbursed, if justified, at up to 100% of cost.

7. A ‘Security Research Advisory Board’ should be established to draw
strategic lines of action to prepare the research agenda of an ESRP as well as
to advise on the principles and mechanisms for its implementation.
Moreover, it should identify critical technology areas where Europe should
aim for an indigenous competitive capability. The Board should consist of
high-level experts from public and private customers, industry, research
organizations and any other relevant stakeholders.

8. Definition of customer needs will be key for the successful implementation
of an ESRP. A mechanism should therefore be established at EU level to
identify in consultation with potential customers, future capability needs for
Internal Security missions.

9. Effective coordination must make sure that the ESRP does not duplicate but
complements other European research activities whether funded at
Community, national or intergovernmental level.

10. The Commission and the Council should ensure an effective and efficient
liaison between an ESRP and the future ‘Agency in the field of defence
capabilities development, research, acquisition and armaments’.

 Security Research from a Multi-disciplinary and Multi-sectoral Perspective 387

11. The ESRP should take into account and, where appropriate, coordinate with
research efforts of international organizations with responsibilities for global
or regional security issues.

12. An ESRP should aim at fostering the competitiveness of the European
security industries and stimulating the development of the market (public and
private) for security products and systems. Implementing the Proposals for
Action put forward in the Commission’s Communication ‘Towards a
European defence equipment market’ would greatly help to achieve this
objective and to maximize the benefits of an ESRP.

 Based on this report, the EC chose to highlights the following four domains,
through http://europa.eu.int/eur-lex/en/com/cnc/2004/com2004_0590en01.pdf:

1. Consultation and co-operation among all stakeholders through a ‘European
Security Research Advisory Board’ (ESRAB, which is now being set up)

2. Development of a European Security Research Programme (ESRP) as a part
of the 7th EU Research Framework Programme, to commence in 2007

3. Creation of an effective institutional framework that takes into account the
Union's relevant policies, namely the Common Foreign and Security Policy
(CFSP), European Security and Defence Policy (ESDP), and the new
European Defence Agency (EDA)

4. Specific measures for the allocation of contracts and funding in security
research

 The next step was then the identification of the elements of the PASR 2005:

• Optimising security and protection of networked systems
• Protecting against terrorism (including bio-terrorism and incidents with

biological, chemical and other substances)
• Enhancing crisis management (including evacuation, search and rescue

operations, control and remediation)
• Achieving interoperability and integration of systems for information and

communication
• Improving situation awareness (e.g. in crisis management, anti-terrorism

activities, or border control)

3.2 The Norwegian Efforts Towards Security Research

In response to EC’s plans on a security research programme, the Research Council of
Norway (RCN) newly launched the “insight” project UTSIKT (Development
Possibilities and Choice of Strategy within ICT) and its first outcome, in terms of the
research programme VERDIKT (Core Competence and Added Value within ICT). A
significant difference between RCN’s initiatives UTSIKT and VERDIKT compared
to the previous efforts within the ICT domain is the considerably increased focus on
multi-disciplinary and multi-sectoral aspects of ICT research [8].

At the same time, an increased focus on security in the context of safety and the
related risks is to observe within current sector-oriented research programmes,
especially towards the transport and oil/energy sectors. The following gathers

388 A.P-J Thunem

important conclusions drawn from the strategy and the topics of the funded projects
related to the transport sector, in terms of the corresponding research programme
RISIT:

1. There is a shift from the traditional deductive manner of research to a more
holistic form, demonstrating more awareness about the potentials of a
multidisciplinary research on particularly transport safety and security and
related risk analysis.

2. The focus on experienced risk, as opposed to calculated (or “objective”) risk
is growing, among others, as a result of the shift explained above.

3. There is a new view on risk analysis; no longer as a single activity, but as a
dynamic process that includes defining risk indicators as a function of both
scenario-based data (involving analysis of future tendencies) and historical
data, providing better models for risk communications, and more clarified
representations of risk acceptance or rejection criteria. Additionally, this risk
analysis process is now advocated for becoming an integrated part of the
entire development process, including planning, construction and
deployment of the systems/infrastructures subject to risk.

4. There is an increasing focus on decision analysis, which includes analysis
and assessment of other alternative solutions for handling risks, as a
decision’s elements are usually based on the underlying risk analysis
process, its resulting risk indicators and the suggested risk elimination,
mitigation and containment/control mechanisms.

5. There is a growing concern about the risk compensation mechanisms and
their consequences. These are basically caused by the unintended result from
the implementation of safety countermeasures, namely the increased
conviction and feeling of being safe amongst the public, leading many to
take risks that are evaluated to be unacceptable by the same safety
countermeasures.

6. In spite of the rapidly growing application of ICT systems for building and
modernising the Norwegian transport infrastructures, the focus on research
towards analysing the role of ICT systems and/or assuring their security has
so far been negligible within the RISIT programme. On the basis of the
recent granting of funds to several projects, however, there is a clear
indication that this trend is about to change.

 Finally, the RCN is planning to launch a new programme on Society Security
(SAMRISK), where the multi-disciplinary and multi-sectoral nature of the research
topics subject to granting funds is an absolute requirement for participation.

4 Conclusions

This paper has advocated the importance of a multi-disciplinary and multi-sectoral
security research, and highlighted the European and Norwegian initiatives in that
direction. The rationale for such a research is covered by addressing the recognised
problems and ways of solutions from various technological and non-technological

 Security Research from a Multi-disciplinary and Multi-sectoral Perspective 389

research fields and the corresponding customers from industrial, sociological,
financial, political, defence-political, jurisprudential and environmental sectors. In
that regard, some issues for further exploitation are brought to light. Next, the paper
provides valuable information about the European and Norwegian initiatives towards
security research of the nature stressed in the paper. For the prospective applicants
and partners, the information would otherwise have been difficult to gather and use,
as it is spread over numerous sites and documents.

References

1. NIST: Computer Security, Underlying Technical Models for Information Technology
Security, http://csrc.nist.gov/publications/nistpubs/800-33/sp800-33.pdf.

2. EVANS, S., Heinbuch D., Kyle, E., Wallner, J.: “Agency Risk-Based Systems Security
Engineering: Stopping Attacks with Intention”, IEEE Security & Privacy Transactions,
November/December 2004, pp 59-62.

3. Yan, J., Blackwell, A., Anderson, R., Grant, A.: “Password Memorability and Security:
Empirical Results”, IEEE Security & Privacy Transactions, September/October 2004, pp
25-31.

4. Thunem, A. P-J.: “Modelling of Knowledge Intensive Computerised Systems Based on
Capability-Oriented Agent Theory (COAT)”, In Proc. International IEEE Conference on
Integration of Knowledge Intensive Multi-Agent Systems, IEEE-KIMAS’03, pp 58-63,
Cambridge (MA), USA, 2003.

5. International Atomic Energy Agency: “Planning and Preparing for Emergency Response to
Transport Accidents Involving Radioactive Material”, Safety Guide, Safety Standard Series,
No. TS-G-1.2 (ST-3).

6. International Standardisation Organisation: “Banking and related financial services
(standards)”, ISO TC68.

7. http://www.cordis.lu/security/
8. http://www.forskningsradet.no/

Problem Frames and Architectures
for Security Problems

Denis Hatebur1 and Maritta Heisel2

1 Universität Duisburg-Essen and Institut für technische Systeme GmbH
denis.hatebur@uni-duisburg-essen.de,d.hatebur@itesys.de

2 Universität Duisburg-Essen, Germany, Fachbereich Ingenieurwissenschaften
maritta.heisel@uni-duisburg-essen.de

Abstract. We present several problem frames that serve to structure, character-
ize and analyze software development problems in the area of software and sys-
tem security. These problem frames constitute patterns for representing security
problems, variants of which occur frequently in practice. Solving such problems
starts with the development of an appropriate software architecture. To support
that process, we furthermore present architectural patterns associated with the
problem frames. We illustrate our approach by the example of an electronic purse
card.

1 Introduction

Problem frames were developed by Michael Jackson [6]. He describes them as fol-
lows (emphasis ours): “A problem frame is a kind of pattern. It defines an intuitively
identifiable problem class in terms of its context and the characteristics of its domains,
interfaces and requirement.”

Patterns are a means to reuse software development knowledge on different levels of
abstraction. They classify sets of software development problems or solutions that share
the same structure. Patterns are defined for different activities at different stages of the
software life cycle. Problem Frames [6] are patterns that classify software development
problems. Architectural styles are patterns that characterize software architectures [1,
11]. They are also called “architectural patterns” (see Section 2.2). Design Patterns [5]
are used for finer-grained software design1, while idioms are low-level patterns related
to specific programming languages [3].

Using patterns, we can hope to construct software in a systematic way, making
use of a body of accumulated knowledge, instead of starting from scratch each time.
The problem frames defined by Jackson cover a large number of software development
problems, because they are quite general in nature. To support software development in
more specific areas, however, specialized problem frames are needed.

In this paper, we present four problem frames that capture software development
problems occurring frequently in the area of software and system security. We call these
problem frames security frames. Two of our security frames concern authentication. The
third one deals with the secure (i.e., encrypted) transmission of data, and the fourth one

1 Design patterns for security have also been defined, see Section 5.

R. Winther, B.A. Gran, and G. Dahll (Eds.): SAFECOMP 2005, LNCS 3688, pp. 390–404, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Problem Frames and Architectures for Security Problems 391

is suitable for generating and storing security information (such as public and private
keys, PINs).

Architectural patterns are suitable solution structures for problem frames, because
architectural design is one of the first activities in solving software development prob-
lems. Hence, the gap between the problem description and the software architecture
is not too large, and we can establish direct relations between problem structures and
solution structures. As we have shown in [4], one can define architectural patterns that
reflect the characteristics of the different problem frames. In much the same way, we
equip our security frames with corresponding architectural patterns.

Section 2 describes the basics of our work, while the security frames and corre-
sponding architectures are presented in Section 3. We illustrate our approach by devel-
oping a secure electronic purse card in Section 4. Section 5 discusses related work, and
we conclude in Section 6.

2 Problem Frames and Architectural Patterns

In this paper, we present new problem frames for security problems and the correspond-
ing architectural patterns. As a notation for our architectural patterns, we use composite
structure diagrams of UML 2.0 [12]. In the following, we give brief descriptions of
these basic concepts of our work.

2.1 Problem Frames

Problem frames are described by frame diagrams, which basically consist of rectangles
and links between these, see left-hand side of Fig. 1. The task is to construct a machine
that improves the behavior of the environment it is integrated in.

Plain rectangles denote application domains (that already exist), a rectangle with
a double vertical stripe denotes the machine to be developed, and requirements are
denoted with a dashed oval. The connecting lines represent interfaces that consist of
shared phenomena. A dashed line represents a requirements reference, and the arrow
shows that it is a constraining reference.

User
B

X
Workpieces Y4

E3

effects
Command

E!E1
WP!Y2

Editor

U!E3

Application

Editor

User (E3)

Storage
Data User

Interface

Workpieces (E1, Y2)

Fig. 1. Workpieces Frame Diagram and Architectural Pattern

392 D. Hatebur and M. Heisel

Jackson distinguishes causal domains that comply with some laws, lexical domains
that are data representations, and biddable domains that are usually people. Jackson
defines five basic problem frames (Required Behaviour, Commanded Behaviour, Infor-
mation Display, Workpieces and Transformation). As an example, we present the Work-
pieces frame in more detail. The following problems fit to that problem frame [6]: “A
tool is needed to allow a user to create and edit a certain class of computer processable
text or graphic objects, or similar structures, so that they can be subsequently copied,
printed, analyzed or used in other ways. The problem is to build a machine that can
act as this tool.” The “X” indicates that the Workpieces domain of the frame diagram
shown on the left-hand side of Fig. 1 is a lexical domain. The notation “U!E3” means
that the user commands E3 are controlled by the (biddable) User domain. Similarly, the
phenomena E1 are the commands used by the Editor to change the Workpieces domain.
The shared phenomena Y2 represent the state of a workpiece; they are controlled by
the Workpieces domain. The shared phenomena Y4 need not be the same as Y2. They
will often have some meaning to the user, whereas the phenomena Y2 are phenomena
accessible by the machine.

Software development with problem frames proceeds as follows: first, the environ-
ment in which the machine will operate is represented by a context diagram. Like a
frame diagram, a context diagram consists of domains and interfaces. However, a con-
text diagram contains no requirements, and it is not shown who is in control of the
shared phenomena. An example of a context diagram is shown in Fig. 8. Then, the
problem is decomposed into subproblems. If ever possible, the decomposition is done
in such a way that the subproblems fit to given problem frames. To fit a subproblem
to a problem frame, one must instantiate its frame diagram, i.e., provide instances for
its domains, phenomena, interfaces and requirements. The instantiated frame diagram
is called a problem diagram (for an example, see Fig. 9). It describes the problem as
a whole. Since the requirements refer to the environment in which the machine must
operate, the next step consists in deriving a specification for the machine, using domain
knowledge. In that process, non-implementable requirements are transformed into im-
plementable ones. (For a more detailed description, see [7].) The specification is the
starting point for the development of the machine.

Successfully fitting a problem to a given problem frame means that the concrete
problem indeed exhibits the properties that are characteristic for the problem class de-
fined by the problem frame. Since all problems fitting in a problem frame share the
same characteristic properties, their solutions will have common characteristic prop-
erties, too. Therefore, it is worthwhile to look for solution structures that match the
problem structures defined by problem frames.

2.2 Architectural Styles

According to Bass, Clements, and Kazman [1], “the software architecture of a pro-
gram or computing system is the structure or structures of the system, which comprise
software components, the externally visible properties of those components, and the
relationships among them.” Architectural styles are patterns for software architectures.

When choosing an architecture for a system, usually several architectural styles are
possible. However, instead of considering all possible architectures, we propose specific

Problem Frames and Architectures for Security Problems 393

architectural patterns for our security frames in order to provide a concrete starting point
for the further development of the machine. The architectural patterns we have defined
for Jackson’s problem frames (see [4]) and the ones we will define for security frames
are based on a layered architecture. The components in this layered architecture are
either communicating processes (active components), or they are used with a call-and-
return mechanism (passive components). That design decision is taken in a later step
of the development. In [4], we also show how the repository and the pipe-and-filter
architectural styles can be integrated into the layered architecture. We use UML 2.0
composite structure diagrams (see Section 2.3) to represent architectural patterns as
well as concrete architectures.

The architectural pattern shown on the right-hand side of Fig. 1 contains a user
interface component, because the problem frame diagram contains a user. The data
storage component of the architecture corresponds to the Workpieces domain of the
frame diagram. The Editor Application component is responsible for manipulating the
data storage according to the user commands. Note that there is only one interface with
the environment – namely the interface with the user – because the lexical Workpieces
domain is part of the machine.

2.3 Composite Structure Diagrams

Composite structure diagrams [12] are a means to describe architectures. They contain
named rectangles, called parts. These parts are components of the software. Each com-
ponent may contain other (sub-) components. Atomic components can be described by
state machines and operations for accessing internal data. In our architectures, compo-
nents for data storage are only included if the data are stored persistently. Otherwise
they are assumed to be part of some other component. Parts may have ports, denoted
by small rectangles. Ports may have interfaces associated to them. Provided interfaces
are denoted using the “lollipop” notation, and required interfaces using the “socket”
notation.

Fig. 2 shows how interfaces in problem diagrams are transformed into interfaces
in composite structure diagrams. The partial problem diagram shown on the left-hand
side of Fig. 2 states that the phenomena phen1 and phen2 shared between the machine
and a domain are controlled by the machine. In the composite structure diagram (with
associated interface class) shown in the middle of Fig. 2, this is expressed by a required
interface P1 if of the part component of the machine, which is the same as for the whole
machine. Shared phenomena controlled by a domain correspond to provided instead of

P1: {phen1, phen2}

Machine

Domain
M!P1

Machine

Part

Domain (P1)

<<interface>>
P1_if

phen1()
phen2()

Machine

Part

P1_if

=̂

Domain (P1)

P1_if

Fig. 2. Notation for Architectures

394 D. Hatebur and M. Heisel

required interfaces of the part and the machine, respectively. Because of this direct
correspondence, we do not use the socket and lollipop notation in the following, but use
connectors between ports, as shown on the right-hand side of Fig. 2. These connectors
can be implemented e.g. as data streams, function calls, asynchronous messages or
hardware access.

3 Security Frames and Architectural Patterns

We now present the four security frames we have developed, together with the corre-
sponding architectural patterns that define structures for the machine domains of the
security frames.

The first two security frames are concerned with authentication. We distinguish
two authentication frames. In the first frame, a subject must authenticate itself to the
machine to be constructed. In the second frame, the machine to be constructed must
authenticate itself to some other subject. The third security frame deals with the secure
transmission of data over an insecure channel, and the fourth frame is applicable when
common security knowledge must be distributed with the help of a trust center. None
of these problem classes is addressed by Jackson’s problem frames.

3.1 Accept Authentication Frame

For security systems, authentication of users and other components is an important
concern. Authentication is necessary to allow access to some other information. That
information is not part of the problem and hence not part of the frame diagram shown
on the left-hand side of Fig. 3.

The Subject in the frame diagram can be a user or another machine. To make au-
thentication possible, there must be a common knowledge between subject to be authen-
ticated and the machine. If the authentication information S2 provided by the subject
matches the common knowledge S1 stored in the machine, then the authentication is
successful. Otherwise, it fails. That information is represented by the domain Security
state.

In the corresponding architectural pattern on the right-hand side of Fig. 3, we in-
clude the Common knowledge, but we do not include the Security state because it should
not be stored persistently and hence does not correspond to an architectural component.

AA!{success,
failure} X

success, failure

S1 matches S2
S1

S2

CK!S1

S!S2

X

Security
state

Auth.
Accept

Subject

knowledge
Common

B

sucess iff
DataCommon

(Secret)
Transmission

Subject (S2)S1

knowledge

AcceptAuth Application

AcceptAuth

Interface
Driver

Fig. 3. Accept Authentication Information Frame Diagram and Architectural Pattern

Problem Frames and Architectures for Security Problems 395

Auth.
S1

S2

CommonCK!S1Submit

X

Identification
SA!S2

S2 matches
 S1

Data of
XMachine

knowledge

S1

Data
Transmission

Common
Knowledge
(Secret)

Identification Data
of Machine (S2)

SubmitAuth Application

SubmitAuth

Interface
Driver

Fig. 4. Submit Authentication Information Frame Diagram and Architectural Pattern

Channel
Insecure

Intrusion
or detect
D1 ~ D2

RcvData
X

X
SntData

Compon.
Security
Receive

Compon.
Security
Send

SD!D2

D2

D1

SC!EncrData

IC!{EncrData, IntrData}

RSC!D1

Channel
Insecure

RcvData
X

X
SntData

Compon.
Security
Send

SD!D2

D2

D1

SC!EncrData

IC!{EncrData, IntrData}

RSC!D1

Compon.
Security
Receive

Encr D1 ~ D2 /
D2 cannot be
derived from
EncrData

Data

Fig. 5. Secure Data Transmission Frame Diagrams

Instead, it is reflected in the internal state of the part AcceptAuth Application that is
responsible for enabling or disabling other functionality.

3.2 Submit Authentication Frame

Because the subject might be a system, there exists the problem Submit Authentication.
The frame diagram and the corresponding architectural pattern are shown in
Fig. 4. For this problem, the Security state is part of the subject to which the machine
to be built wants to authenticate itself. Therefore the Security State it is not part of the
frame diagram. The machine has to use the Common knowledge to generate matching
Identification Data for the subject.

3.3 Secure Data Transmission Frames

Another important security problem is the secure transmission of data. We need to build
a security component that receives data from another component or sends data to an-
other component over an insecure channel. That situation is depicted in Fig. 5 on the
left-hand side for receiving data and on the right-hand side for sending data.

The security component at the bottom of the figure wants to send data (domain
SntData, phenomena D2) to the security component at the top of the figure. Because
the transmission channel is insecure, the data is encrypted (phenomena EncrData).
It is possible that the insecure channel transmits some intruder data IntrData instead

396 D. Hatebur and M. Heisel

Data

Data

Common
Knowledge

Secure Transmission

Transmission

Outputs (D1) Inputs (D2)

Receive Application

Receive Security Component Send Security Component

Send Application

Secure Transmission
Data

Common
Knowledge

Data
Transmission

Insecure connection

Interface
Driver

Interface
Drivert

(Secret)
[0..1]

(Secret)
[0..1]

Fig. 6. Secure Data Transmission Architectural Pattern

S1 matches
S2

Manage
Secret X

Secret

X

Common
Secret

Trust
Center

B

S2

TC!S1

MC!S1
S1

S2

Add direction when instantiate

Secure Storage or Transfer

Secure Channel
Data
Transmission

Common
Knowledge
(Secret)

Trust Center (S1)S1

Manage Secret Application

Manage Secret

Interface
Driver

Fig. 7. Distribute Security Information Frame Diagram and Architectural Pattern

of the original encrypted data. The encrypted data or intruder data will be decrypted
by the security component shown on the top of the figure, yielding D1. The require-
ment for receiving data states that either the data D1 and D2 match, or the intru-
sion will be detected (integrity). The requirement for sending data states that the data
D1 and D2 match, and that the D1 cannot be derived from EncrData (integrity and
confidentiality).

For this class of problems, we propose the architectural patterns shown in Fig. 6. In
this architecture, a storage for a secret is necessary in addition to the data storage. If this
storage is persistent it is an additional part in the architecture. Otherwise, the storage
component is not included, as indicated by the notation [0..1].

3.4 Distribute Security Information Frame

For the architecture shown in Fig. 6, it is necessary that each machine has some common
knowledge. This raises the problem of how to distribute that common knowledge. Fig. 7
shows the frame diagram. The common (secret) knowledge is transferred to the machine
by a trusted component, the Trust Center, over a secure channel. The requirement states
that indeed the correct common knowledge is stored in the machine.

The corresponding architectural pattern contains a part ManageSecretApplication
that has to store the secret (or common knowledge) and restrict the access to it. Its
purpose is to manage the secret.

Problem Frames and Architectures for Security Problems 397

4 Case Study: Electronic Purse Card

The illustrate the usage of security frames, we consider a smart card with a simplified
electronic purse application using asymmetric encryption. This smart card is used to
ensure secure payment. To pay with the card, the user has to enter a PIN at a card
reader. The authorization of the card is checked via a website. The card also has to
check the authorization of the website. The transmitted data have to be protected against
unauthorized read and change access. To allow payment, money must be loaded on the
card. This is only possible if the the account information allows this transaction (the
card can be locked).

4.1 Requirements and Context Diagram

The following requirements must be met. We number them in order to reference them
in the description of the different subproblems.

R1 Loading money on the card is possible if the account information allows to do this
transaction.

R2 Paying with the card is possible if there is enough money on the card.
R3 Authentication of the card is necessary for paying and loading money.
R4 Authentication of the website is necessary for paying and loading money.
R5 Authentication of the user using a PIN is necessary for paying.
R6 The card should prevent replay-intrusion and even prevent somebody else from

reading transmitted information (man-in-the-middle attack).
R7 It should not be possible to copy the card.
R8 Only a card and a website personalized by a trust center should be usable for trans-

actions.

Card
Reader

User

PC
Internet
Intruder

Trust
Center

Smart
Card

CalculatedSignature,

RandomNo, EncrRandomNo

EnterAmountToPay
EnterAmountToLoad,
EnterPIN,

EnteredAmount,
CheckPIN,

TransferAmountEncr,
AuthCardAndWebsite

GeneratedPIN

Website

PIN

Account

TransferAmountEncr,
DenyTransferEncr,

RequestedAmountToLoad/PayEncr,

RandomNo, EncrRandomNo

RequestedAmountToLoad/PayEncr,
TransferAmountEncr,
DenyTransferEncr,

GetAccountAmount, AccountInformation, UpdateAccountAmount

PublicSignatureKey
CalculatedSignature,
GeneratedKeyPair,

GeneratedKeyPair,

PublicSignatureKey,

Fig. 8. Context diagram for Electronic Purse Card

Fig. 8 shows the context diagram corresponding to this problem. It contains the
relevant domains and shared phenomena. The domains SmartCard, Website and Ac-
count occur only once in the diagram. However, the system will work with different

398 D. Hatebur and M. Heisel

instances of these domains. It will be able to handle different smart cards, and it will be
connected via different websites to different accounts. Moreover, the interface between
the CardReader and the User has been simplified. The domain PC, Internet, Intruder
denotes the insecure channel that involves a PC, the Internet, and possibly an intruder.

The following table shows the subproblems that can be identified, the problem/
security frame the subproblem fits to, and the requirements that are covered. In the fol-
lowing, we present one instantiation for each of the introduced problem/security frames.

Subproblem Frame Reqs.

Load Money Workpieces R1
Pay Workpieces R2
Authenticate Card Submit Authentication R3
Authenticate Website Accept Authentication R4
PIN Authentication Accept Authentication R5
Receive Secure Data Secure Data Transmission R6
Send Secure Data Secure Data Transmission R6
Distribute Keys Distribute Security Information R7, R8
Distribute PIN Distribute Security Information R7, R8

4.2 Subproblem: Load Money

This subproblem is concerned with loading money on the card (R1). It fits to a variant
of Jackson’s Workpieces problem frame. It is extended with the constraint that only
if the account information allows it, the amount of money can be loaded onto card.
The problem shown in Fig. 9 states that the CardAmount should change according to
EnterAmountToLoad and AccountInformation.

The problem diagram of Fig. 9 is derived from the context diagram of Fig. 8 as fol-
lows: the domain Trust Center is not relevant for this subproblem. The connection do-
mains2 Card Reader and PC, Internet, Intruder are left out in this subproblem, because
the connection is assumed to be secure, the security of the connection being covered
by other subproblems. To describe this problem, we split the domain SmartCard into
Money on Card and Load Money.

The problem of Fig. 9 shows the requirements the machine must achieve when in-
tegrated into its environment. As noted earlier, the requirements must be transformed
into a specification that describes the behavior of the machine. In the area of security,
protocols [9] exist that make it possible to transform requirements such as “secure trans-
mission” of “authentication” into sequences of messages exchanged between different
partners.

Fig. 10 shows a UML 2.0 sequence diagram that represents the specification of
the machine Load Money. When the User enters the amount of money (EnterAmount-
ToLoad) the message RequestedAmountToLoadEncr will be sent to the Website. The
Website will check the AccountInformation. The sequence diagram in Fig. 10 describes

2 These are domains that serve to connect two other domains. If a connection domain is reliable
and does not cause significant delays, it may be ignored, see [6].

Problem Frames and Architectures for Security Problems 399

Website

R1

Load

Money

Money on
Card

Account

User
EnterAmount
ToLoad

CardAmount

LM!{UpdateCardAmount}

LM!{Requested
AmountToLoadEncr}

W!{TransferAmountEncr,
DenyTransferEncr}

Account

U!{EnterAmountToLoad}

A!{AccountInformation}

Information

W!{UpdateAccountAmount, GetAccountAmount}

Secure
Data
Transmission

Money
on
Card

LoadMoney

LoadMoney Application

Interface
Driver

WebsiteUser,

Fig. 9. Load Money Subproblem Diagram and Architecture

sd considerloadmoney

UpdateCardAmount () TransferAmountEncr ()

DenyTransferEncr ()

UpdateCardAmount,EnterAmountToLoad, RequestedAmountToLoadEncr,
TransferAmountEncr, DenyTransferEncr, Get/UpdateAccountInformation, AccountInformation

: Money on Card : Website : Account: User

EnterAmountToLoad ()

ALT

Application
: Load Money

GetAccountAmount ()

AccountInformation (OK)

RequestedAmountToLoadEncr ()

AccountInformation (NotOK)

UpdateAccountInformation ()

Fig. 10. Load Money Sequence Diagram

the following two alternatives, marked with the keyword ALT. If the AccountInforma-
tion allows to load the requested amount of money on card, the amount of money on
the Account will be updated (UpdateAccountInformation), the amount will be transmit-
ted (TransferAmountEncr), and Money on Card will be updated (UpdateCardAmount3).
Otherwise the phenomenon DenyTransferEncr occurs. For reasons of space, we do not
give the sequence diagrams for the other subproblems. For this subproblem, the Website
is the website of the user’s bank, and the Account is the user’s account, which is debited
with the account loaded onto the card.

The right-hand side of Fig. 9 shows the corresponding architecture, which is an
instantiation of the pattern given in Fig. 1. Here, User and Website are connected to the
machine via a Secure Data Transmission Interface.

4.3 Subproblem: Authenticate Website

An authentication of the website is required in R4. Here, we instantiate the “Accept
Authentication” frame as shown in Fig. 11. For this authentication, a Random Num-
ber should be used to prevent replay intrusion. Therefore, we need to add the random
number RN as a shared phenomenon between the Auth Website machine and Website,
controlled by the machine.

3 With the new domain Money on Card the shared phenomenon UpdateCardAmount has to be
added.

400 D. Hatebur and M. Heisel

Security
state

 Auth
Website

AW!{Allow,

Website

R4
natureKey

RandomNo
PublicSig−Key}

RN,Key

AW!{RN}

RP!{RN,

SignedPublicKey
SignatureRN,

W!{SignatureRN,
SignedPublicKey}

Allow/Forbid
 any Access, RNForbid, RN}

Website

Card
Reader

Auth Website Application

Driver

Auth Website

RandomNo
PublicSig−
natureKey

Fig. 11. Website Authentication Subproblem Diagram and Architecture

The part Auth Website of the architecture shown in Fig. 11 must contain a part Ran-
domNo PublicSignatureKey that can generate random numbers with sufficient quality.
To check the authenticity of the website, the website encrypts the random number pro-
vided by the card with its private key (it generates the signature of the random number
(SignatureRN). This signature can be checked using the public key of the website. To
make it possible that new websites can be added to the system without replacing all
cards, the website has to provide its own public key. The card can check the provided
public key using a signature of a Trust Center. The interaction for a combination of
submitting and accepting authentications can be found in [10].

4.4 Subproblem: Receive Secure Data

To prevent replay intrusion and read access on transmitted data, we define the subprob-
lem shown in Fig. 12. The Card Reader and the Trust Center are not directly relevant
for this subproblem. Moreover, is not relevant what data are transmitted. Therefore we
take an abstraction from Load Money and Pay. Also the messages TransmitAmountEn-
crMessage and CheckAmountEncrMessage are merged to AccessAmountEncr.

A common secret as described in the architectural pattern of Fig. 6 is not stored
persistently on the card. It can be derived from the random number and can be changed
for each transmission. Hence, the architecture of Fig. 12 (derived from the pattern given
in Fig. 6) does not contain a corresponding component.

R6

Money
on Card

Receive
Secure
Data

Website

Money to

Account
transfer from

PC
Internet
Intruder

PII!{AccessAcountEncr,
IntrAccess}

W!{AccessAmountEncr}

AccountAmount

CardAmount

RSD!{AccessCardAmount}

W!{AccessAccountAmount}

Update Money On Card

Money
on
Card

Secure Transmission

Card
Reader

ReceiveSecureData

Driver

WebsiteUser,

Fig. 12. Receive Secure Data Subproblem Diagram and Architecture

Problem Frames and Architectures for Security Problems 401

4.5 Subproblem: Distribute Keys

Requirements R7 and R8 express that only the trust center may generate a valid card.
Important for a valid card are the PIN and the keys. In this subproblem, we focus on the
keys. The requirements are covered partly in the subproblem shown in Fig. 13, where
the Common Secret domain that is part of the Trust Center is shown separately. That
subproblem is an instance of the “Distribute Security Information” frame.

The trust center has to generate an individual public/private key pair for each card
and write it onto the card. To guarantee that this key pair is valid and originated from
the trust center, it is signed with the private key of the trust center. To allow the card
to authenticate other systems, it needs the public key of the trust center. This also is
written onto the card.

The subproblem the machine Manage Secrets has to solve is to manage the access to
the security information. After producing the card, everybody owning an uninitialized
card can initialize it. But only the trust center is able to generate a signature with its
private key that allows the key to be used in the payment system. The machine has to
manage the access to the secrets. After initializing the card, the functionality to change
the security information is disabled. The private part of the key pair must also be pro-
tected against read access. Moreover, all other functionality has to be disabled as long
as the card is not yet initialized.

The architecture of Fig. 13 is an instantiation of the pattern given in Fig. 7.

4.6 Composed Architecture

We now must compose the architectures developed for the subproblems to obtain an
architecture for the whole Smart Card. For doing this, we must find the parts occurring
in different subproblem architectures that must be mapped to the same component in
the composed architecture.

The composed architecture for the Smart Card is shown in Fig. 14. The component
Amount Of Money combines the persistent storage of the subproblems Pay and Load
Money. The Load Money/Pay-Application combines the behavior of the machines Load
Money and Pay. The component Secure Data Transmission Interface is replaced by
the components of the security subproblem architectures (including the ones given in

Secure Channel

Secret

Center

Manage

Common

Trust

Card
Secret

TC!{generatedKeyPair,
PublicSignatureKey,
calculatedSignature}

PrivateSignatureKey}

Secrets

Secure Storage

PublicSignatureKey,
PrivateSignatureKey

calculatedSignature
PublicSignatureKey,

generatedKeyPair,

PublicSignatureKey,
calculatedSignature}

CS!{PublicSignatureKey,

MS!{generatedKeyPair,

 R7 partly
R8 partly KeyPair

Signature
PublicSig−
natureKey

CardReader

TrustCenter

Manage Secrets Application

Driver

Manage Secrets

Fig. 13. Distribute Keys Subproblem Diagram and Architecture

402 D. Hatebur and M. Heisel

Amount
of
Money PIN

KeyPair
Signature
PublicSig−
natureKey

CardReader
Driver

Manage Secrets / PIN Access

Secure Transmission / Check PIN
Submit Auth / Auth Website

EPC

LoadMoney/Pay−Application

User, Website, TrustCenter

Fig. 14. Composed Architecture

Figs. 11–13). The Card Reader Driver is the same in all security subproblem architec-
tures and can be used directly in the composed architecture. The functionality of the
remaining two components have to be derived from those in the security subproblem
architectures.

For all components, their exact specifications must be set up, and it must be shown
that the components work together in such a way that they fulfill the specifications
of all machines corresponding to the different subproblems. The functionalities of the
different architectural parts are now clear, as well as the interfaces between them. Thus,
we have established an appropriate starting point for the further development of the
smart card system in a systematic way.

5 Related Work

Our security frames are related to abuse frames on the one hand and to security patterns
on the other hand.

Security frames treat security requirements in the same way as other (functional) re-
quirements, and the goal is to construct a machine that fulfills the security requirements.
Lin et al. [8] take another approach to use the ideas underlying problem frames in secu-
rity. They define so-called anti-requirements and the corresponding abuse frames. An
anti-requirement expresses the intentions of a malicious user, and an abuse frame repre-
sents a security threat. The purpose of anti-requirements and abuse frames is to analyze
security threats and derive security requirements. Thus, the two approaches comple-
ment each other. Abuse frames can be used to derive the security requirements that can
then be addressed with security frames.

While abuse frames can be used earlier in the software development process than
security frames, security patterns [2] are applied in a later phase, namely the phase of
detailed design. The relation between security frames and security patterns is much the
same as the relation between problem frames and design patterns: the frames describe
problems, whereas the design/security patterns describe solutions on a fairly detailed

Problem Frames and Architectures for Security Problems 403

level of abstraction. Moreover, design and security patterns are applicable only in an
object-oriented setting, while problem and security frames are independent of a partic-
ular programming paradigm.

6 Conclusion

In this paper, we have presented a new kind of problem frames tailored for represent-
ing security problems, called security frames. Security frames are patterns for software
development problems occurring frequently when security-critical software has to be
developed.

The security frames presented in this paper are intended to be the first in a more
complete collection. Once a (relatively) complete collection of security frames is de-
fined, it is of considerable help for developers. For a new security-critical system to be
constructed, the security frame catalogue can be inspected in order to find the frames
that apply for the given problem. Thus, a security frame catalogue helps to avoid omis-
sions and to cover all security aspects that are relevant for the given problem.

Furthermore, the security frames help to decompose complex security problems to
simpler ones that can be handled by standard mechanisms. Like design and security
patterns, security frames can establish a common vocabulary and shared knowledge
between developers of security-critical systems.

While the security frames themselves “only” help to comprehend, locate and rep-
resent problems, our architectural patterns associated with the different security frames
propose concrete structures for solving the problems fitted to security frames. The ar-
chitectural patterns also help to compose the solutions of the different subproblems in
order to construct the complete system, as is shown in more detail in [4].

With the concept of security frames and corresponding architectural patterns (in
addition to abuse frames and security patterns), one can hope to cover large parts the
development of security-critical software with a pattern-based approach.

References

[1] L. Bass, P. Clements, and R. Kazman. Software Architecture in Practice. Addison-Wesley,
1998.

[2] B. Blakley and C. Heath. Technical Guide: Security Design Patterns. The Open
Group, April 2004. http://www.opengroup.org/publications/catalog/
g031.htm.

[3] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal. Pattern-Oriented
Software Architecture: A System of Patterns. John Wiley & Sons, 1996.

[4] C. Choppy, D. Hatebur, and M. Heisel. Architectural patterns for problem frames. IEE
Proceedings – Software, Special issue on Relating Software Requirements and Architecture,
2005. To appear.

[5] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns – Elements of Reusable
Object-Oriented Software. Addison Wesley, Reading, 1995.

[6] M. Jackson. Problem Frames. Analyzing and structuring software development problems.
Addison-Wesley, 2001.

404 D. Hatebur and M. Heisel

[7] M. Jackson and P. Zave. Deriving specifications from requirements: an example. In Pro-
ceedings 17th Int. Conf. on Software Engineering, Seattle, USA, pages 15–24. ACM Press,
1995.

[8] L. Lin, B. Nuseibeh, D. Ince, M. Jackson, and J. Moffett. Introducing abuse frames for
analysing security requirements. In Proceedings of 11th IEEE International Requirements
Engineering Conference (RE’03), pages 371–372, 2003. Poster Paper.

[9] C. P. Pfleeger. Security in Computing. Prentice Hall, 1996.
[10] T. Rottke, D. Hatebur, M. Heisel, and M. Heiner. A problem-oriented approach to common

criteria certification. In S. Anderson, S. Bologna, and M. Felici, editors, Proceedings of the
21st International Conference on Computer Safety, Reliability and Security (SAFECOMP),
LNCS 2434, pages 334–346. Springer-Verlag, 2002.

[11] M. Shaw and D. Garlan. Software Architecture. Perspectives on an Emerging Discipline.
Prentice-Hall, 1996.

[12] UML Revision Task Force. OMG UML Specification. http://www.uml.org.

Author Index

Addouche, Nawal 24
Alexandersson, Ruben 165
Andersson, Jan-Ove 317
Antoine, Christian 24

Bearfield, George 52
Bishop, Peter 194
Bloomfield, Robin 194

Campagnano, Edoardo 94
Cha, Sungdeok 67
Chaitanya, Krishna D. 165
Ciancamerla, Ester 94

de Almeida Júnior, Jorge Rady 1

Elmqvist, Jonas 246
Enkerud, Torgeir 13

Felici, Massimo 208
Fonseca, Jose Antonio 1
Fredriksen, Rune 317

Gilb, Tom 344
Gonzalez, Jose J. 368
Gruber, Thomas 81
Guerra, Sofia 194

Hall-May, Martin 37
Hamid, Brahim 108
Hatebur, Denis 390
Heimdahl, Mats P.E. 122
Heisel, Maritta 390
Herzner, Wolfgang 81
Holmberg, Jan-Erik 317

Jee, Eunkyoung 67
Joshi, Anjali 122

Kelly, Tim P. 37, 136
King, D.J. 275
Kristiansen, Monica 179
Kurd, Zeshan 136

Länger, Thomas 81
Ljungquist, Bengt 330

Løkberg, Ola 289
Lupetti, Simone 222

Marsh, William 52
Martinez, Robert 13
Minea, Marius 246
Minichino, Michele 94
Montmain, Jacky 24
Mosbah, Mohamed 108

Nadjm-Tehrani, Simin 246
Nyström, J.H. 275

Öhman, Peter 165

Ramberger, Stephan 81
Reumann, Christian 81
Revilla, Miguel A. 151

Sacha, Krzysztof 303
Sejkora, Christian 81
Shu, Hua-ying 357
Siraj, Yasir 165
Sivertsen, Terje 317
Skambraks, Martin 261
Skogstad, Øystein 289
Stabell-Kulø, Tage 222
Strigini, Lorenzo 151

Thelin, Thomas 330
Thunem, Atoosa P-J 317, 381
Tourlas, Kostas 194
Trinder, P.W. 275
Tronci, Enrico 94

Valkonen, Janne 317
van der Meulen, Meine J.P. 151
Ventä, Olli 317

Wang, Lei 233
Wu, Zhaohui 233

Yan, Qiang 357
Yoo, Junbeom 67

Zhao, Mingde 233
Zheng, Zengwei 233

	Frontmatter
	CMMI RAMS Extension Based on CENELEC Railway Standard
	The Importance of Single-Source Engineering of Emergency and Process Shutdown Systems
	Combining Extended UML Models and Formal Methods to Analyze Real-Time Systems
	Defining and Decomposing Safety Policy for Systems of Systems
	Generalising Event Trees Using Bayesian Networks with a Case Study of Train Derailment
	Control and Data Flow Testing on Function Block Diagrams
	Comparing Software Measures with Fault Counts Derived from Unit-Testing of Safety-Critical Software
	Automatic Analysis of a Safety Critical Tele Control System
	A Formal Model for Fault-Tolerance in Distributed Systems
	Model-Based Safety Analysis of Simulink Models Using SCADE Design Verifier
	Using Safety Critical Artificial Neural Networks in Gas Turbine Aero-Engine Control
	On the Effectiveness of Run-Time Checks
	A Technique for Fault Tolerance Assessment of COTS Based Systems
	Finding Upper Bounds for Software Failure Probabilities -- Experiments and Results
	Justification of Smart Sensors for Nuclear Applications
	Evolutionary Safety Analysis: Motivations from the Air Traffic Management Domain
	Public-Key Cryptography and Availability
	End-To-End Worst-Case Response Time Analysis for Hard Real-Time Distributed Systems
	Safety Interfaces for Component-Based Systems
	A Safety-Related PES for Task-Oriented Real-Time Execution Without Asynchronous Interrupts
	Are High-Level Languages Suitable for Robust Telecoms Software?
	Functional Apportioning of Safety Requirements on Railway Signalling Systems
	Automatic Code Generation for PLC Controllers
	The TACO Approach for Traceability and Communication of Requirements
	An IEC 62061 Compliant Safety System Design Method for Machinery
	Design Evaluation: Estimating Multiple Critical Performance and Cost Impacts of Designs
	The Application of an Object-Oriented Method in Information System Security Evaluation
	Towards a Cyber Security Reporting System -- A Quality Improvement Process
	Security Research from a Multi-disciplinary and Multi-sectoral Perspective
	Problem Frames and Architectures for Security Problems
	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

